1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 51 #include <asm/switch_to.h> 52 53 #include <linux/sched/cond_resched.h> 54 55 #include "sched.h" 56 #include "stats.h" 57 #include "autogroup.h" 58 59 /* 60 * Targeted preemption latency for CPU-bound tasks: 61 * 62 * NOTE: this latency value is not the same as the concept of 63 * 'timeslice length' - timeslices in CFS are of variable length 64 * and have no persistent notion like in traditional, time-slice 65 * based scheduling concepts. 66 * 67 * (to see the precise effective timeslice length of your workload, 68 * run vmstat and monitor the context-switches (cs) field) 69 * 70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_latency = 6000000ULL; 73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 74 75 /* 76 * The initial- and re-scaling of tunables is configurable 77 * 78 * Options are: 79 * 80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 83 * 84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 85 */ 86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 87 88 /* 89 * Minimal preemption granularity for CPU-bound tasks: 90 * 91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 92 */ 93 unsigned int sysctl_sched_min_granularity = 750000ULL; 94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 95 96 /* 97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 98 * Applies only when SCHED_IDLE tasks compete with normal tasks. 99 * 100 * (default: 0.75 msec) 101 */ 102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 103 104 /* 105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 106 */ 107 static unsigned int sched_nr_latency = 8; 108 109 /* 110 * After fork, child runs first. If set to 0 (default) then 111 * parent will (try to) run first. 112 */ 113 unsigned int sysctl_sched_child_runs_first __read_mostly; 114 115 /* 116 * SCHED_OTHER wake-up granularity. 117 * 118 * This option delays the preemption effects of decoupled workloads 119 * and reduces their over-scheduling. Synchronous workloads will still 120 * have immediate wakeup/sleep latencies. 121 * 122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 123 */ 124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 126 127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 128 129 int sched_thermal_decay_shift; 130 static int __init setup_sched_thermal_decay_shift(char *str) 131 { 132 int _shift = 0; 133 134 if (kstrtoint(str, 0, &_shift)) 135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 136 137 sched_thermal_decay_shift = clamp(_shift, 0, 10); 138 return 1; 139 } 140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 141 142 #ifdef CONFIG_SMP 143 /* 144 * For asym packing, by default the lower numbered CPU has higher priority. 145 */ 146 int __weak arch_asym_cpu_priority(int cpu) 147 { 148 return -cpu; 149 } 150 151 /* 152 * The margin used when comparing utilization with CPU capacity. 153 * 154 * (default: ~20%) 155 */ 156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 157 158 /* 159 * The margin used when comparing CPU capacities. 160 * is 'cap1' noticeably greater than 'cap2' 161 * 162 * (default: ~5%) 163 */ 164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 165 #endif 166 167 #ifdef CONFIG_CFS_BANDWIDTH 168 /* 169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 170 * each time a cfs_rq requests quota. 171 * 172 * Note: in the case that the slice exceeds the runtime remaining (either due 173 * to consumption or the quota being specified to be smaller than the slice) 174 * we will always only issue the remaining available time. 175 * 176 * (default: 5 msec, units: microseconds) 177 */ 178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 179 #endif 180 181 #ifdef CONFIG_NUMA_BALANCING 182 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 183 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 184 #endif 185 186 #ifdef CONFIG_SYSCTL 187 static struct ctl_table sched_fair_sysctls[] = { 188 { 189 .procname = "sched_child_runs_first", 190 .data = &sysctl_sched_child_runs_first, 191 .maxlen = sizeof(unsigned int), 192 .mode = 0644, 193 .proc_handler = proc_dointvec, 194 }, 195 #ifdef CONFIG_CFS_BANDWIDTH 196 { 197 .procname = "sched_cfs_bandwidth_slice_us", 198 .data = &sysctl_sched_cfs_bandwidth_slice, 199 .maxlen = sizeof(unsigned int), 200 .mode = 0644, 201 .proc_handler = proc_dointvec_minmax, 202 .extra1 = SYSCTL_ONE, 203 }, 204 #endif 205 #ifdef CONFIG_NUMA_BALANCING 206 { 207 .procname = "numa_balancing_promote_rate_limit_MBps", 208 .data = &sysctl_numa_balancing_promote_rate_limit, 209 .maxlen = sizeof(unsigned int), 210 .mode = 0644, 211 .proc_handler = proc_dointvec_minmax, 212 .extra1 = SYSCTL_ZERO, 213 }, 214 #endif /* CONFIG_NUMA_BALANCING */ 215 {} 216 }; 217 218 static int __init sched_fair_sysctl_init(void) 219 { 220 register_sysctl_init("kernel", sched_fair_sysctls); 221 return 0; 222 } 223 late_initcall(sched_fair_sysctl_init); 224 #endif 225 226 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 227 { 228 lw->weight += inc; 229 lw->inv_weight = 0; 230 } 231 232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 233 { 234 lw->weight -= dec; 235 lw->inv_weight = 0; 236 } 237 238 static inline void update_load_set(struct load_weight *lw, unsigned long w) 239 { 240 lw->weight = w; 241 lw->inv_weight = 0; 242 } 243 244 /* 245 * Increase the granularity value when there are more CPUs, 246 * because with more CPUs the 'effective latency' as visible 247 * to users decreases. But the relationship is not linear, 248 * so pick a second-best guess by going with the log2 of the 249 * number of CPUs. 250 * 251 * This idea comes from the SD scheduler of Con Kolivas: 252 */ 253 static unsigned int get_update_sysctl_factor(void) 254 { 255 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 256 unsigned int factor; 257 258 switch (sysctl_sched_tunable_scaling) { 259 case SCHED_TUNABLESCALING_NONE: 260 factor = 1; 261 break; 262 case SCHED_TUNABLESCALING_LINEAR: 263 factor = cpus; 264 break; 265 case SCHED_TUNABLESCALING_LOG: 266 default: 267 factor = 1 + ilog2(cpus); 268 break; 269 } 270 271 return factor; 272 } 273 274 static void update_sysctl(void) 275 { 276 unsigned int factor = get_update_sysctl_factor(); 277 278 #define SET_SYSCTL(name) \ 279 (sysctl_##name = (factor) * normalized_sysctl_##name) 280 SET_SYSCTL(sched_min_granularity); 281 SET_SYSCTL(sched_latency); 282 SET_SYSCTL(sched_wakeup_granularity); 283 #undef SET_SYSCTL 284 } 285 286 void __init sched_init_granularity(void) 287 { 288 update_sysctl(); 289 } 290 291 #define WMULT_CONST (~0U) 292 #define WMULT_SHIFT 32 293 294 static void __update_inv_weight(struct load_weight *lw) 295 { 296 unsigned long w; 297 298 if (likely(lw->inv_weight)) 299 return; 300 301 w = scale_load_down(lw->weight); 302 303 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 304 lw->inv_weight = 1; 305 else if (unlikely(!w)) 306 lw->inv_weight = WMULT_CONST; 307 else 308 lw->inv_weight = WMULT_CONST / w; 309 } 310 311 /* 312 * delta_exec * weight / lw.weight 313 * OR 314 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 315 * 316 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 317 * we're guaranteed shift stays positive because inv_weight is guaranteed to 318 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 319 * 320 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 321 * weight/lw.weight <= 1, and therefore our shift will also be positive. 322 */ 323 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 324 { 325 u64 fact = scale_load_down(weight); 326 u32 fact_hi = (u32)(fact >> 32); 327 int shift = WMULT_SHIFT; 328 int fs; 329 330 __update_inv_weight(lw); 331 332 if (unlikely(fact_hi)) { 333 fs = fls(fact_hi); 334 shift -= fs; 335 fact >>= fs; 336 } 337 338 fact = mul_u32_u32(fact, lw->inv_weight); 339 340 fact_hi = (u32)(fact >> 32); 341 if (fact_hi) { 342 fs = fls(fact_hi); 343 shift -= fs; 344 fact >>= fs; 345 } 346 347 return mul_u64_u32_shr(delta_exec, fact, shift); 348 } 349 350 351 const struct sched_class fair_sched_class; 352 353 /************************************************************** 354 * CFS operations on generic schedulable entities: 355 */ 356 357 #ifdef CONFIG_FAIR_GROUP_SCHED 358 359 /* Walk up scheduling entities hierarchy */ 360 #define for_each_sched_entity(se) \ 361 for (; se; se = se->parent) 362 363 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 struct rq *rq = rq_of(cfs_rq); 366 int cpu = cpu_of(rq); 367 368 if (cfs_rq->on_list) 369 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 370 371 cfs_rq->on_list = 1; 372 373 /* 374 * Ensure we either appear before our parent (if already 375 * enqueued) or force our parent to appear after us when it is 376 * enqueued. The fact that we always enqueue bottom-up 377 * reduces this to two cases and a special case for the root 378 * cfs_rq. Furthermore, it also means that we will always reset 379 * tmp_alone_branch either when the branch is connected 380 * to a tree or when we reach the top of the tree 381 */ 382 if (cfs_rq->tg->parent && 383 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 384 /* 385 * If parent is already on the list, we add the child 386 * just before. Thanks to circular linked property of 387 * the list, this means to put the child at the tail 388 * of the list that starts by parent. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 392 /* 393 * The branch is now connected to its tree so we can 394 * reset tmp_alone_branch to the beginning of the 395 * list. 396 */ 397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 398 return true; 399 } 400 401 if (!cfs_rq->tg->parent) { 402 /* 403 * cfs rq without parent should be put 404 * at the tail of the list. 405 */ 406 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 407 &rq->leaf_cfs_rq_list); 408 /* 409 * We have reach the top of a tree so we can reset 410 * tmp_alone_branch to the beginning of the list. 411 */ 412 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 413 return true; 414 } 415 416 /* 417 * The parent has not already been added so we want to 418 * make sure that it will be put after us. 419 * tmp_alone_branch points to the begin of the branch 420 * where we will add parent. 421 */ 422 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 423 /* 424 * update tmp_alone_branch to points to the new begin 425 * of the branch 426 */ 427 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 428 return false; 429 } 430 431 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 432 { 433 if (cfs_rq->on_list) { 434 struct rq *rq = rq_of(cfs_rq); 435 436 /* 437 * With cfs_rq being unthrottled/throttled during an enqueue, 438 * it can happen the tmp_alone_branch points the a leaf that 439 * we finally want to del. In this case, tmp_alone_branch moves 440 * to the prev element but it will point to rq->leaf_cfs_rq_list 441 * at the end of the enqueue. 442 */ 443 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 444 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 445 446 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 447 cfs_rq->on_list = 0; 448 } 449 } 450 451 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 452 { 453 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 454 } 455 456 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 457 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 458 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 459 leaf_cfs_rq_list) 460 461 /* Do the two (enqueued) entities belong to the same group ? */ 462 static inline struct cfs_rq * 463 is_same_group(struct sched_entity *se, struct sched_entity *pse) 464 { 465 if (se->cfs_rq == pse->cfs_rq) 466 return se->cfs_rq; 467 468 return NULL; 469 } 470 471 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 472 { 473 return se->parent; 474 } 475 476 static void 477 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 478 { 479 int se_depth, pse_depth; 480 481 /* 482 * preemption test can be made between sibling entities who are in the 483 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 484 * both tasks until we find their ancestors who are siblings of common 485 * parent. 486 */ 487 488 /* First walk up until both entities are at same depth */ 489 se_depth = (*se)->depth; 490 pse_depth = (*pse)->depth; 491 492 while (se_depth > pse_depth) { 493 se_depth--; 494 *se = parent_entity(*se); 495 } 496 497 while (pse_depth > se_depth) { 498 pse_depth--; 499 *pse = parent_entity(*pse); 500 } 501 502 while (!is_same_group(*se, *pse)) { 503 *se = parent_entity(*se); 504 *pse = parent_entity(*pse); 505 } 506 } 507 508 static int tg_is_idle(struct task_group *tg) 509 { 510 return tg->idle > 0; 511 } 512 513 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 514 { 515 return cfs_rq->idle > 0; 516 } 517 518 static int se_is_idle(struct sched_entity *se) 519 { 520 if (entity_is_task(se)) 521 return task_has_idle_policy(task_of(se)); 522 return cfs_rq_is_idle(group_cfs_rq(se)); 523 } 524 525 #else /* !CONFIG_FAIR_GROUP_SCHED */ 526 527 #define for_each_sched_entity(se) \ 528 for (; se; se = NULL) 529 530 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 531 { 532 return true; 533 } 534 535 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 536 { 537 } 538 539 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 540 { 541 } 542 543 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 544 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 545 546 static inline struct sched_entity *parent_entity(struct sched_entity *se) 547 { 548 return NULL; 549 } 550 551 static inline void 552 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 553 { 554 } 555 556 static inline int tg_is_idle(struct task_group *tg) 557 { 558 return 0; 559 } 560 561 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 562 { 563 return 0; 564 } 565 566 static int se_is_idle(struct sched_entity *se) 567 { 568 return 0; 569 } 570 571 #endif /* CONFIG_FAIR_GROUP_SCHED */ 572 573 static __always_inline 574 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 575 576 /************************************************************** 577 * Scheduling class tree data structure manipulation methods: 578 */ 579 580 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 581 { 582 s64 delta = (s64)(vruntime - max_vruntime); 583 if (delta > 0) 584 max_vruntime = vruntime; 585 586 return max_vruntime; 587 } 588 589 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 590 { 591 s64 delta = (s64)(vruntime - min_vruntime); 592 if (delta < 0) 593 min_vruntime = vruntime; 594 595 return min_vruntime; 596 } 597 598 static inline bool entity_before(const struct sched_entity *a, 599 const struct sched_entity *b) 600 { 601 return (s64)(a->vruntime - b->vruntime) < 0; 602 } 603 604 #define __node_2_se(node) \ 605 rb_entry((node), struct sched_entity, run_node) 606 607 static void update_min_vruntime(struct cfs_rq *cfs_rq) 608 { 609 struct sched_entity *curr = cfs_rq->curr; 610 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 611 612 u64 vruntime = cfs_rq->min_vruntime; 613 614 if (curr) { 615 if (curr->on_rq) 616 vruntime = curr->vruntime; 617 else 618 curr = NULL; 619 } 620 621 if (leftmost) { /* non-empty tree */ 622 struct sched_entity *se = __node_2_se(leftmost); 623 624 if (!curr) 625 vruntime = se->vruntime; 626 else 627 vruntime = min_vruntime(vruntime, se->vruntime); 628 } 629 630 /* ensure we never gain time by being placed backwards. */ 631 u64_u32_store(cfs_rq->min_vruntime, 632 max_vruntime(cfs_rq->min_vruntime, vruntime)); 633 } 634 635 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 636 { 637 return entity_before(__node_2_se(a), __node_2_se(b)); 638 } 639 640 /* 641 * Enqueue an entity into the rb-tree: 642 */ 643 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 644 { 645 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 646 } 647 648 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 649 { 650 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 651 } 652 653 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 654 { 655 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 656 657 if (!left) 658 return NULL; 659 660 return __node_2_se(left); 661 } 662 663 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 664 { 665 struct rb_node *next = rb_next(&se->run_node); 666 667 if (!next) 668 return NULL; 669 670 return __node_2_se(next); 671 } 672 673 #ifdef CONFIG_SCHED_DEBUG 674 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 675 { 676 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 677 678 if (!last) 679 return NULL; 680 681 return __node_2_se(last); 682 } 683 684 /************************************************************** 685 * Scheduling class statistics methods: 686 */ 687 688 int sched_update_scaling(void) 689 { 690 unsigned int factor = get_update_sysctl_factor(); 691 692 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 693 sysctl_sched_min_granularity); 694 695 #define WRT_SYSCTL(name) \ 696 (normalized_sysctl_##name = sysctl_##name / (factor)) 697 WRT_SYSCTL(sched_min_granularity); 698 WRT_SYSCTL(sched_latency); 699 WRT_SYSCTL(sched_wakeup_granularity); 700 #undef WRT_SYSCTL 701 702 return 0; 703 } 704 #endif 705 706 /* 707 * delta /= w 708 */ 709 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 710 { 711 if (unlikely(se->load.weight != NICE_0_LOAD)) 712 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 713 714 return delta; 715 } 716 717 /* 718 * The idea is to set a period in which each task runs once. 719 * 720 * When there are too many tasks (sched_nr_latency) we have to stretch 721 * this period because otherwise the slices get too small. 722 * 723 * p = (nr <= nl) ? l : l*nr/nl 724 */ 725 static u64 __sched_period(unsigned long nr_running) 726 { 727 if (unlikely(nr_running > sched_nr_latency)) 728 return nr_running * sysctl_sched_min_granularity; 729 else 730 return sysctl_sched_latency; 731 } 732 733 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 734 735 /* 736 * We calculate the wall-time slice from the period by taking a part 737 * proportional to the weight. 738 * 739 * s = p*P[w/rw] 740 */ 741 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 742 { 743 unsigned int nr_running = cfs_rq->nr_running; 744 struct sched_entity *init_se = se; 745 unsigned int min_gran; 746 u64 slice; 747 748 if (sched_feat(ALT_PERIOD)) 749 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 750 751 slice = __sched_period(nr_running + !se->on_rq); 752 753 for_each_sched_entity(se) { 754 struct load_weight *load; 755 struct load_weight lw; 756 struct cfs_rq *qcfs_rq; 757 758 qcfs_rq = cfs_rq_of(se); 759 load = &qcfs_rq->load; 760 761 if (unlikely(!se->on_rq)) { 762 lw = qcfs_rq->load; 763 764 update_load_add(&lw, se->load.weight); 765 load = &lw; 766 } 767 slice = __calc_delta(slice, se->load.weight, load); 768 } 769 770 if (sched_feat(BASE_SLICE)) { 771 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 772 min_gran = sysctl_sched_idle_min_granularity; 773 else 774 min_gran = sysctl_sched_min_granularity; 775 776 slice = max_t(u64, slice, min_gran); 777 } 778 779 return slice; 780 } 781 782 /* 783 * We calculate the vruntime slice of a to-be-inserted task. 784 * 785 * vs = s/w 786 */ 787 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 788 { 789 return calc_delta_fair(sched_slice(cfs_rq, se), se); 790 } 791 792 #include "pelt.h" 793 #ifdef CONFIG_SMP 794 795 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 796 static unsigned long task_h_load(struct task_struct *p); 797 static unsigned long capacity_of(int cpu); 798 799 /* Give new sched_entity start runnable values to heavy its load in infant time */ 800 void init_entity_runnable_average(struct sched_entity *se) 801 { 802 struct sched_avg *sa = &se->avg; 803 804 memset(sa, 0, sizeof(*sa)); 805 806 /* 807 * Tasks are initialized with full load to be seen as heavy tasks until 808 * they get a chance to stabilize to their real load level. 809 * Group entities are initialized with zero load to reflect the fact that 810 * nothing has been attached to the task group yet. 811 */ 812 if (entity_is_task(se)) 813 sa->load_avg = scale_load_down(se->load.weight); 814 815 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 816 } 817 818 /* 819 * With new tasks being created, their initial util_avgs are extrapolated 820 * based on the cfs_rq's current util_avg: 821 * 822 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 823 * 824 * However, in many cases, the above util_avg does not give a desired 825 * value. Moreover, the sum of the util_avgs may be divergent, such 826 * as when the series is a harmonic series. 827 * 828 * To solve this problem, we also cap the util_avg of successive tasks to 829 * only 1/2 of the left utilization budget: 830 * 831 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 832 * 833 * where n denotes the nth task and cpu_scale the CPU capacity. 834 * 835 * For example, for a CPU with 1024 of capacity, a simplest series from 836 * the beginning would be like: 837 * 838 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 839 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 840 * 841 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 842 * if util_avg > util_avg_cap. 843 */ 844 void post_init_entity_util_avg(struct task_struct *p) 845 { 846 struct sched_entity *se = &p->se; 847 struct cfs_rq *cfs_rq = cfs_rq_of(se); 848 struct sched_avg *sa = &se->avg; 849 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 850 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 851 852 if (p->sched_class != &fair_sched_class) { 853 /* 854 * For !fair tasks do: 855 * 856 update_cfs_rq_load_avg(now, cfs_rq); 857 attach_entity_load_avg(cfs_rq, se); 858 switched_from_fair(rq, p); 859 * 860 * such that the next switched_to_fair() has the 861 * expected state. 862 */ 863 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 864 return; 865 } 866 867 if (cap > 0) { 868 if (cfs_rq->avg.util_avg != 0) { 869 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 870 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 871 872 if (sa->util_avg > cap) 873 sa->util_avg = cap; 874 } else { 875 sa->util_avg = cap; 876 } 877 } 878 879 sa->runnable_avg = sa->util_avg; 880 } 881 882 #else /* !CONFIG_SMP */ 883 void init_entity_runnable_average(struct sched_entity *se) 884 { 885 } 886 void post_init_entity_util_avg(struct task_struct *p) 887 { 888 } 889 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 890 { 891 } 892 #endif /* CONFIG_SMP */ 893 894 /* 895 * Update the current task's runtime statistics. 896 */ 897 static void update_curr(struct cfs_rq *cfs_rq) 898 { 899 struct sched_entity *curr = cfs_rq->curr; 900 u64 now = rq_clock_task(rq_of(cfs_rq)); 901 u64 delta_exec; 902 903 if (unlikely(!curr)) 904 return; 905 906 delta_exec = now - curr->exec_start; 907 if (unlikely((s64)delta_exec <= 0)) 908 return; 909 910 curr->exec_start = now; 911 912 if (schedstat_enabled()) { 913 struct sched_statistics *stats; 914 915 stats = __schedstats_from_se(curr); 916 __schedstat_set(stats->exec_max, 917 max(delta_exec, stats->exec_max)); 918 } 919 920 curr->sum_exec_runtime += delta_exec; 921 schedstat_add(cfs_rq->exec_clock, delta_exec); 922 923 curr->vruntime += calc_delta_fair(delta_exec, curr); 924 update_min_vruntime(cfs_rq); 925 926 if (entity_is_task(curr)) { 927 struct task_struct *curtask = task_of(curr); 928 929 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 930 cgroup_account_cputime(curtask, delta_exec); 931 account_group_exec_runtime(curtask, delta_exec); 932 } 933 934 account_cfs_rq_runtime(cfs_rq, delta_exec); 935 } 936 937 static void update_curr_fair(struct rq *rq) 938 { 939 update_curr(cfs_rq_of(&rq->curr->se)); 940 } 941 942 static inline void 943 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 944 { 945 struct sched_statistics *stats; 946 struct task_struct *p = NULL; 947 948 if (!schedstat_enabled()) 949 return; 950 951 stats = __schedstats_from_se(se); 952 953 if (entity_is_task(se)) 954 p = task_of(se); 955 956 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 957 } 958 959 static inline void 960 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 961 { 962 struct sched_statistics *stats; 963 struct task_struct *p = NULL; 964 965 if (!schedstat_enabled()) 966 return; 967 968 stats = __schedstats_from_se(se); 969 970 /* 971 * When the sched_schedstat changes from 0 to 1, some sched se 972 * maybe already in the runqueue, the se->statistics.wait_start 973 * will be 0.So it will let the delta wrong. We need to avoid this 974 * scenario. 975 */ 976 if (unlikely(!schedstat_val(stats->wait_start))) 977 return; 978 979 if (entity_is_task(se)) 980 p = task_of(se); 981 982 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 983 } 984 985 static inline void 986 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 987 { 988 struct sched_statistics *stats; 989 struct task_struct *tsk = NULL; 990 991 if (!schedstat_enabled()) 992 return; 993 994 stats = __schedstats_from_se(se); 995 996 if (entity_is_task(se)) 997 tsk = task_of(se); 998 999 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start_fair(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end_fair(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 unsigned int state; 1039 1040 /* XXX racy against TTWU */ 1041 state = READ_ONCE(tsk->__state); 1042 if (state & TASK_INTERRUPTIBLE) 1043 __schedstat_set(tsk->stats.sleep_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 if (state & TASK_UNINTERRUPTIBLE) 1046 __schedstat_set(tsk->stats.block_start, 1047 rq_clock(rq_of(cfs_rq))); 1048 } 1049 } 1050 1051 /* 1052 * We are picking a new current task - update its stats: 1053 */ 1054 static inline void 1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1056 { 1057 /* 1058 * We are starting a new run period: 1059 */ 1060 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1061 } 1062 1063 /************************************************** 1064 * Scheduling class queueing methods: 1065 */ 1066 1067 #ifdef CONFIG_NUMA 1068 #define NUMA_IMBALANCE_MIN 2 1069 1070 static inline long 1071 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1072 { 1073 /* 1074 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1075 * threshold. Above this threshold, individual tasks may be contending 1076 * for both memory bandwidth and any shared HT resources. This is an 1077 * approximation as the number of running tasks may not be related to 1078 * the number of busy CPUs due to sched_setaffinity. 1079 */ 1080 if (dst_running > imb_numa_nr) 1081 return imbalance; 1082 1083 /* 1084 * Allow a small imbalance based on a simple pair of communicating 1085 * tasks that remain local when the destination is lightly loaded. 1086 */ 1087 if (imbalance <= NUMA_IMBALANCE_MIN) 1088 return 0; 1089 1090 return imbalance; 1091 } 1092 #endif /* CONFIG_NUMA */ 1093 1094 #ifdef CONFIG_NUMA_BALANCING 1095 /* 1096 * Approximate time to scan a full NUMA task in ms. The task scan period is 1097 * calculated based on the tasks virtual memory size and 1098 * numa_balancing_scan_size. 1099 */ 1100 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1101 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1102 1103 /* Portion of address space to scan in MB */ 1104 unsigned int sysctl_numa_balancing_scan_size = 256; 1105 1106 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1107 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1108 1109 /* The page with hint page fault latency < threshold in ms is considered hot */ 1110 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1111 1112 struct numa_group { 1113 refcount_t refcount; 1114 1115 spinlock_t lock; /* nr_tasks, tasks */ 1116 int nr_tasks; 1117 pid_t gid; 1118 int active_nodes; 1119 1120 struct rcu_head rcu; 1121 unsigned long total_faults; 1122 unsigned long max_faults_cpu; 1123 /* 1124 * faults[] array is split into two regions: faults_mem and faults_cpu. 1125 * 1126 * Faults_cpu is used to decide whether memory should move 1127 * towards the CPU. As a consequence, these stats are weighted 1128 * more by CPU use than by memory faults. 1129 */ 1130 unsigned long faults[]; 1131 }; 1132 1133 /* 1134 * For functions that can be called in multiple contexts that permit reading 1135 * ->numa_group (see struct task_struct for locking rules). 1136 */ 1137 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1138 { 1139 return rcu_dereference_check(p->numa_group, p == current || 1140 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1141 } 1142 1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1144 { 1145 return rcu_dereference_protected(p->numa_group, p == current); 1146 } 1147 1148 static inline unsigned long group_faults_priv(struct numa_group *ng); 1149 static inline unsigned long group_faults_shared(struct numa_group *ng); 1150 1151 static unsigned int task_nr_scan_windows(struct task_struct *p) 1152 { 1153 unsigned long rss = 0; 1154 unsigned long nr_scan_pages; 1155 1156 /* 1157 * Calculations based on RSS as non-present and empty pages are skipped 1158 * by the PTE scanner and NUMA hinting faults should be trapped based 1159 * on resident pages 1160 */ 1161 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1162 rss = get_mm_rss(p->mm); 1163 if (!rss) 1164 rss = nr_scan_pages; 1165 1166 rss = round_up(rss, nr_scan_pages); 1167 return rss / nr_scan_pages; 1168 } 1169 1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1171 #define MAX_SCAN_WINDOW 2560 1172 1173 static unsigned int task_scan_min(struct task_struct *p) 1174 { 1175 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1176 unsigned int scan, floor; 1177 unsigned int windows = 1; 1178 1179 if (scan_size < MAX_SCAN_WINDOW) 1180 windows = MAX_SCAN_WINDOW / scan_size; 1181 floor = 1000 / windows; 1182 1183 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1184 return max_t(unsigned int, floor, scan); 1185 } 1186 1187 static unsigned int task_scan_start(struct task_struct *p) 1188 { 1189 unsigned long smin = task_scan_min(p); 1190 unsigned long period = smin; 1191 struct numa_group *ng; 1192 1193 /* Scale the maximum scan period with the amount of shared memory. */ 1194 rcu_read_lock(); 1195 ng = rcu_dereference(p->numa_group); 1196 if (ng) { 1197 unsigned long shared = group_faults_shared(ng); 1198 unsigned long private = group_faults_priv(ng); 1199 1200 period *= refcount_read(&ng->refcount); 1201 period *= shared + 1; 1202 period /= private + shared + 1; 1203 } 1204 rcu_read_unlock(); 1205 1206 return max(smin, period); 1207 } 1208 1209 static unsigned int task_scan_max(struct task_struct *p) 1210 { 1211 unsigned long smin = task_scan_min(p); 1212 unsigned long smax; 1213 struct numa_group *ng; 1214 1215 /* Watch for min being lower than max due to floor calculations */ 1216 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1217 1218 /* Scale the maximum scan period with the amount of shared memory. */ 1219 ng = deref_curr_numa_group(p); 1220 if (ng) { 1221 unsigned long shared = group_faults_shared(ng); 1222 unsigned long private = group_faults_priv(ng); 1223 unsigned long period = smax; 1224 1225 period *= refcount_read(&ng->refcount); 1226 period *= shared + 1; 1227 period /= private + shared + 1; 1228 1229 smax = max(smax, period); 1230 } 1231 1232 return max(smin, smax); 1233 } 1234 1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1236 { 1237 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1238 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1239 } 1240 1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1242 { 1243 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1244 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1245 } 1246 1247 /* Shared or private faults. */ 1248 #define NR_NUMA_HINT_FAULT_TYPES 2 1249 1250 /* Memory and CPU locality */ 1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1252 1253 /* Averaged statistics, and temporary buffers. */ 1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1255 1256 pid_t task_numa_group_id(struct task_struct *p) 1257 { 1258 struct numa_group *ng; 1259 pid_t gid = 0; 1260 1261 rcu_read_lock(); 1262 ng = rcu_dereference(p->numa_group); 1263 if (ng) 1264 gid = ng->gid; 1265 rcu_read_unlock(); 1266 1267 return gid; 1268 } 1269 1270 /* 1271 * The averaged statistics, shared & private, memory & CPU, 1272 * occupy the first half of the array. The second half of the 1273 * array is for current counters, which are averaged into the 1274 * first set by task_numa_placement. 1275 */ 1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1277 { 1278 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1279 } 1280 1281 static inline unsigned long task_faults(struct task_struct *p, int nid) 1282 { 1283 if (!p->numa_faults) 1284 return 0; 1285 1286 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1287 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1288 } 1289 1290 static inline unsigned long group_faults(struct task_struct *p, int nid) 1291 { 1292 struct numa_group *ng = deref_task_numa_group(p); 1293 1294 if (!ng) 1295 return 0; 1296 1297 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1298 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1299 } 1300 1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1302 { 1303 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1304 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1305 } 1306 1307 static inline unsigned long group_faults_priv(struct numa_group *ng) 1308 { 1309 unsigned long faults = 0; 1310 int node; 1311 1312 for_each_online_node(node) { 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1314 } 1315 1316 return faults; 1317 } 1318 1319 static inline unsigned long group_faults_shared(struct numa_group *ng) 1320 { 1321 unsigned long faults = 0; 1322 int node; 1323 1324 for_each_online_node(node) { 1325 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1326 } 1327 1328 return faults; 1329 } 1330 1331 /* 1332 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1333 * considered part of a numa group's pseudo-interleaving set. Migrations 1334 * between these nodes are slowed down, to allow things to settle down. 1335 */ 1336 #define ACTIVE_NODE_FRACTION 3 1337 1338 static bool numa_is_active_node(int nid, struct numa_group *ng) 1339 { 1340 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1341 } 1342 1343 /* Handle placement on systems where not all nodes are directly connected. */ 1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1345 int lim_dist, bool task) 1346 { 1347 unsigned long score = 0; 1348 int node, max_dist; 1349 1350 /* 1351 * All nodes are directly connected, and the same distance 1352 * from each other. No need for fancy placement algorithms. 1353 */ 1354 if (sched_numa_topology_type == NUMA_DIRECT) 1355 return 0; 1356 1357 /* sched_max_numa_distance may be changed in parallel. */ 1358 max_dist = READ_ONCE(sched_max_numa_distance); 1359 /* 1360 * This code is called for each node, introducing N^2 complexity, 1361 * which should be ok given the number of nodes rarely exceeds 8. 1362 */ 1363 for_each_online_node(node) { 1364 unsigned long faults; 1365 int dist = node_distance(nid, node); 1366 1367 /* 1368 * The furthest away nodes in the system are not interesting 1369 * for placement; nid was already counted. 1370 */ 1371 if (dist >= max_dist || node == nid) 1372 continue; 1373 1374 /* 1375 * On systems with a backplane NUMA topology, compare groups 1376 * of nodes, and move tasks towards the group with the most 1377 * memory accesses. When comparing two nodes at distance 1378 * "hoplimit", only nodes closer by than "hoplimit" are part 1379 * of each group. Skip other nodes. 1380 */ 1381 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1382 continue; 1383 1384 /* Add up the faults from nearby nodes. */ 1385 if (task) 1386 faults = task_faults(p, node); 1387 else 1388 faults = group_faults(p, node); 1389 1390 /* 1391 * On systems with a glueless mesh NUMA topology, there are 1392 * no fixed "groups of nodes". Instead, nodes that are not 1393 * directly connected bounce traffic through intermediate 1394 * nodes; a numa_group can occupy any set of nodes. 1395 * The further away a node is, the less the faults count. 1396 * This seems to result in good task placement. 1397 */ 1398 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1399 faults *= (max_dist - dist); 1400 faults /= (max_dist - LOCAL_DISTANCE); 1401 } 1402 1403 score += faults; 1404 } 1405 1406 return score; 1407 } 1408 1409 /* 1410 * These return the fraction of accesses done by a particular task, or 1411 * task group, on a particular numa node. The group weight is given a 1412 * larger multiplier, in order to group tasks together that are almost 1413 * evenly spread out between numa nodes. 1414 */ 1415 static inline unsigned long task_weight(struct task_struct *p, int nid, 1416 int dist) 1417 { 1418 unsigned long faults, total_faults; 1419 1420 if (!p->numa_faults) 1421 return 0; 1422 1423 total_faults = p->total_numa_faults; 1424 1425 if (!total_faults) 1426 return 0; 1427 1428 faults = task_faults(p, nid); 1429 faults += score_nearby_nodes(p, nid, dist, true); 1430 1431 return 1000 * faults / total_faults; 1432 } 1433 1434 static inline unsigned long group_weight(struct task_struct *p, int nid, 1435 int dist) 1436 { 1437 struct numa_group *ng = deref_task_numa_group(p); 1438 unsigned long faults, total_faults; 1439 1440 if (!ng) 1441 return 0; 1442 1443 total_faults = ng->total_faults; 1444 1445 if (!total_faults) 1446 return 0; 1447 1448 faults = group_faults(p, nid); 1449 faults += score_nearby_nodes(p, nid, dist, false); 1450 1451 return 1000 * faults / total_faults; 1452 } 1453 1454 /* 1455 * If memory tiering mode is enabled, cpupid of slow memory page is 1456 * used to record scan time instead of CPU and PID. When tiering mode 1457 * is disabled at run time, the scan time (in cpupid) will be 1458 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1459 * access out of array bound. 1460 */ 1461 static inline bool cpupid_valid(int cpupid) 1462 { 1463 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1464 } 1465 1466 /* 1467 * For memory tiering mode, if there are enough free pages (more than 1468 * enough watermark defined here) in fast memory node, to take full 1469 * advantage of fast memory capacity, all recently accessed slow 1470 * memory pages will be migrated to fast memory node without 1471 * considering hot threshold. 1472 */ 1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1474 { 1475 int z; 1476 unsigned long enough_wmark; 1477 1478 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1479 pgdat->node_present_pages >> 4); 1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1481 struct zone *zone = pgdat->node_zones + z; 1482 1483 if (!populated_zone(zone)) 1484 continue; 1485 1486 if (zone_watermark_ok(zone, 0, 1487 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1488 ZONE_MOVABLE, 0)) 1489 return true; 1490 } 1491 return false; 1492 } 1493 1494 /* 1495 * For memory tiering mode, when page tables are scanned, the scan 1496 * time will be recorded in struct page in addition to make page 1497 * PROT_NONE for slow memory page. So when the page is accessed, in 1498 * hint page fault handler, the hint page fault latency is calculated 1499 * via, 1500 * 1501 * hint page fault latency = hint page fault time - scan time 1502 * 1503 * The smaller the hint page fault latency, the higher the possibility 1504 * for the page to be hot. 1505 */ 1506 static int numa_hint_fault_latency(struct page *page) 1507 { 1508 int last_time, time; 1509 1510 time = jiffies_to_msecs(jiffies); 1511 last_time = xchg_page_access_time(page, time); 1512 1513 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1514 } 1515 1516 /* 1517 * For memory tiering mode, too high promotion/demotion throughput may 1518 * hurt application latency. So we provide a mechanism to rate limit 1519 * the number of pages that are tried to be promoted. 1520 */ 1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1522 unsigned long rate_limit, int nr) 1523 { 1524 unsigned long nr_cand; 1525 unsigned int now, start; 1526 1527 now = jiffies_to_msecs(jiffies); 1528 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1529 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1530 start = pgdat->nbp_rl_start; 1531 if (now - start > MSEC_PER_SEC && 1532 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1533 pgdat->nbp_rl_nr_cand = nr_cand; 1534 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1535 return true; 1536 return false; 1537 } 1538 1539 #define NUMA_MIGRATION_ADJUST_STEPS 16 1540 1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1542 unsigned long rate_limit, 1543 unsigned int ref_th) 1544 { 1545 unsigned int now, start, th_period, unit_th, th; 1546 unsigned long nr_cand, ref_cand, diff_cand; 1547 1548 now = jiffies_to_msecs(jiffies); 1549 th_period = sysctl_numa_balancing_scan_period_max; 1550 start = pgdat->nbp_th_start; 1551 if (now - start > th_period && 1552 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1553 ref_cand = rate_limit * 1554 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1555 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1556 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1557 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1558 th = pgdat->nbp_threshold ? : ref_th; 1559 if (diff_cand > ref_cand * 11 / 10) 1560 th = max(th - unit_th, unit_th); 1561 else if (diff_cand < ref_cand * 9 / 10) 1562 th = min(th + unit_th, ref_th * 2); 1563 pgdat->nbp_th_nr_cand = nr_cand; 1564 pgdat->nbp_threshold = th; 1565 } 1566 } 1567 1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1569 int src_nid, int dst_cpu) 1570 { 1571 struct numa_group *ng = deref_curr_numa_group(p); 1572 int dst_nid = cpu_to_node(dst_cpu); 1573 int last_cpupid, this_cpupid; 1574 1575 /* 1576 * The pages in slow memory node should be migrated according 1577 * to hot/cold instead of private/shared. 1578 */ 1579 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1580 !node_is_toptier(src_nid)) { 1581 struct pglist_data *pgdat; 1582 unsigned long rate_limit; 1583 unsigned int latency, th, def_th; 1584 1585 pgdat = NODE_DATA(dst_nid); 1586 if (pgdat_free_space_enough(pgdat)) { 1587 /* workload changed, reset hot threshold */ 1588 pgdat->nbp_threshold = 0; 1589 return true; 1590 } 1591 1592 def_th = sysctl_numa_balancing_hot_threshold; 1593 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1594 (20 - PAGE_SHIFT); 1595 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1596 1597 th = pgdat->nbp_threshold ? : def_th; 1598 latency = numa_hint_fault_latency(page); 1599 if (latency >= th) 1600 return false; 1601 1602 return !numa_promotion_rate_limit(pgdat, rate_limit, 1603 thp_nr_pages(page)); 1604 } 1605 1606 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1607 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1608 1609 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1610 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1611 return false; 1612 1613 /* 1614 * Allow first faults or private faults to migrate immediately early in 1615 * the lifetime of a task. The magic number 4 is based on waiting for 1616 * two full passes of the "multi-stage node selection" test that is 1617 * executed below. 1618 */ 1619 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1620 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1621 return true; 1622 1623 /* 1624 * Multi-stage node selection is used in conjunction with a periodic 1625 * migration fault to build a temporal task<->page relation. By using 1626 * a two-stage filter we remove short/unlikely relations. 1627 * 1628 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1629 * a task's usage of a particular page (n_p) per total usage of this 1630 * page (n_t) (in a given time-span) to a probability. 1631 * 1632 * Our periodic faults will sample this probability and getting the 1633 * same result twice in a row, given these samples are fully 1634 * independent, is then given by P(n)^2, provided our sample period 1635 * is sufficiently short compared to the usage pattern. 1636 * 1637 * This quadric squishes small probabilities, making it less likely we 1638 * act on an unlikely task<->page relation. 1639 */ 1640 if (!cpupid_pid_unset(last_cpupid) && 1641 cpupid_to_nid(last_cpupid) != dst_nid) 1642 return false; 1643 1644 /* Always allow migrate on private faults */ 1645 if (cpupid_match_pid(p, last_cpupid)) 1646 return true; 1647 1648 /* A shared fault, but p->numa_group has not been set up yet. */ 1649 if (!ng) 1650 return true; 1651 1652 /* 1653 * Destination node is much more heavily used than the source 1654 * node? Allow migration. 1655 */ 1656 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1657 ACTIVE_NODE_FRACTION) 1658 return true; 1659 1660 /* 1661 * Distribute memory according to CPU & memory use on each node, 1662 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1663 * 1664 * faults_cpu(dst) 3 faults_cpu(src) 1665 * --------------- * - > --------------- 1666 * faults_mem(dst) 4 faults_mem(src) 1667 */ 1668 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1669 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1670 } 1671 1672 /* 1673 * 'numa_type' describes the node at the moment of load balancing. 1674 */ 1675 enum numa_type { 1676 /* The node has spare capacity that can be used to run more tasks. */ 1677 node_has_spare = 0, 1678 /* 1679 * The node is fully used and the tasks don't compete for more CPU 1680 * cycles. Nevertheless, some tasks might wait before running. 1681 */ 1682 node_fully_busy, 1683 /* 1684 * The node is overloaded and can't provide expected CPU cycles to all 1685 * tasks. 1686 */ 1687 node_overloaded 1688 }; 1689 1690 /* Cached statistics for all CPUs within a node */ 1691 struct numa_stats { 1692 unsigned long load; 1693 unsigned long runnable; 1694 unsigned long util; 1695 /* Total compute capacity of CPUs on a node */ 1696 unsigned long compute_capacity; 1697 unsigned int nr_running; 1698 unsigned int weight; 1699 enum numa_type node_type; 1700 int idle_cpu; 1701 }; 1702 1703 static inline bool is_core_idle(int cpu) 1704 { 1705 #ifdef CONFIG_SCHED_SMT 1706 int sibling; 1707 1708 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1709 if (cpu == sibling) 1710 continue; 1711 1712 if (!idle_cpu(sibling)) 1713 return false; 1714 } 1715 #endif 1716 1717 return true; 1718 } 1719 1720 struct task_numa_env { 1721 struct task_struct *p; 1722 1723 int src_cpu, src_nid; 1724 int dst_cpu, dst_nid; 1725 int imb_numa_nr; 1726 1727 struct numa_stats src_stats, dst_stats; 1728 1729 int imbalance_pct; 1730 int dist; 1731 1732 struct task_struct *best_task; 1733 long best_imp; 1734 int best_cpu; 1735 }; 1736 1737 static unsigned long cpu_load(struct rq *rq); 1738 static unsigned long cpu_runnable(struct rq *rq); 1739 1740 static inline enum 1741 numa_type numa_classify(unsigned int imbalance_pct, 1742 struct numa_stats *ns) 1743 { 1744 if ((ns->nr_running > ns->weight) && 1745 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1746 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1747 return node_overloaded; 1748 1749 if ((ns->nr_running < ns->weight) || 1750 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1751 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1752 return node_has_spare; 1753 1754 return node_fully_busy; 1755 } 1756 1757 #ifdef CONFIG_SCHED_SMT 1758 /* Forward declarations of select_idle_sibling helpers */ 1759 static inline bool test_idle_cores(int cpu); 1760 static inline int numa_idle_core(int idle_core, int cpu) 1761 { 1762 if (!static_branch_likely(&sched_smt_present) || 1763 idle_core >= 0 || !test_idle_cores(cpu)) 1764 return idle_core; 1765 1766 /* 1767 * Prefer cores instead of packing HT siblings 1768 * and triggering future load balancing. 1769 */ 1770 if (is_core_idle(cpu)) 1771 idle_core = cpu; 1772 1773 return idle_core; 1774 } 1775 #else 1776 static inline int numa_idle_core(int idle_core, int cpu) 1777 { 1778 return idle_core; 1779 } 1780 #endif 1781 1782 /* 1783 * Gather all necessary information to make NUMA balancing placement 1784 * decisions that are compatible with standard load balancer. This 1785 * borrows code and logic from update_sg_lb_stats but sharing a 1786 * common implementation is impractical. 1787 */ 1788 static void update_numa_stats(struct task_numa_env *env, 1789 struct numa_stats *ns, int nid, 1790 bool find_idle) 1791 { 1792 int cpu, idle_core = -1; 1793 1794 memset(ns, 0, sizeof(*ns)); 1795 ns->idle_cpu = -1; 1796 1797 rcu_read_lock(); 1798 for_each_cpu(cpu, cpumask_of_node(nid)) { 1799 struct rq *rq = cpu_rq(cpu); 1800 1801 ns->load += cpu_load(rq); 1802 ns->runnable += cpu_runnable(rq); 1803 ns->util += cpu_util_cfs(cpu); 1804 ns->nr_running += rq->cfs.h_nr_running; 1805 ns->compute_capacity += capacity_of(cpu); 1806 1807 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 1808 if (READ_ONCE(rq->numa_migrate_on) || 1809 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1810 continue; 1811 1812 if (ns->idle_cpu == -1) 1813 ns->idle_cpu = cpu; 1814 1815 idle_core = numa_idle_core(idle_core, cpu); 1816 } 1817 } 1818 rcu_read_unlock(); 1819 1820 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1821 1822 ns->node_type = numa_classify(env->imbalance_pct, ns); 1823 1824 if (idle_core >= 0) 1825 ns->idle_cpu = idle_core; 1826 } 1827 1828 static void task_numa_assign(struct task_numa_env *env, 1829 struct task_struct *p, long imp) 1830 { 1831 struct rq *rq = cpu_rq(env->dst_cpu); 1832 1833 /* Check if run-queue part of active NUMA balance. */ 1834 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1835 int cpu; 1836 int start = env->dst_cpu; 1837 1838 /* Find alternative idle CPU. */ 1839 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 1840 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1841 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1842 continue; 1843 } 1844 1845 env->dst_cpu = cpu; 1846 rq = cpu_rq(env->dst_cpu); 1847 if (!xchg(&rq->numa_migrate_on, 1)) 1848 goto assign; 1849 } 1850 1851 /* Failed to find an alternative idle CPU */ 1852 return; 1853 } 1854 1855 assign: 1856 /* 1857 * Clear previous best_cpu/rq numa-migrate flag, since task now 1858 * found a better CPU to move/swap. 1859 */ 1860 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1861 rq = cpu_rq(env->best_cpu); 1862 WRITE_ONCE(rq->numa_migrate_on, 0); 1863 } 1864 1865 if (env->best_task) 1866 put_task_struct(env->best_task); 1867 if (p) 1868 get_task_struct(p); 1869 1870 env->best_task = p; 1871 env->best_imp = imp; 1872 env->best_cpu = env->dst_cpu; 1873 } 1874 1875 static bool load_too_imbalanced(long src_load, long dst_load, 1876 struct task_numa_env *env) 1877 { 1878 long imb, old_imb; 1879 long orig_src_load, orig_dst_load; 1880 long src_capacity, dst_capacity; 1881 1882 /* 1883 * The load is corrected for the CPU capacity available on each node. 1884 * 1885 * src_load dst_load 1886 * ------------ vs --------- 1887 * src_capacity dst_capacity 1888 */ 1889 src_capacity = env->src_stats.compute_capacity; 1890 dst_capacity = env->dst_stats.compute_capacity; 1891 1892 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1893 1894 orig_src_load = env->src_stats.load; 1895 orig_dst_load = env->dst_stats.load; 1896 1897 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1898 1899 /* Would this change make things worse? */ 1900 return (imb > old_imb); 1901 } 1902 1903 /* 1904 * Maximum NUMA importance can be 1998 (2*999); 1905 * SMALLIMP @ 30 would be close to 1998/64. 1906 * Used to deter task migration. 1907 */ 1908 #define SMALLIMP 30 1909 1910 /* 1911 * This checks if the overall compute and NUMA accesses of the system would 1912 * be improved if the source tasks was migrated to the target dst_cpu taking 1913 * into account that it might be best if task running on the dst_cpu should 1914 * be exchanged with the source task 1915 */ 1916 static bool task_numa_compare(struct task_numa_env *env, 1917 long taskimp, long groupimp, bool maymove) 1918 { 1919 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1920 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1921 long imp = p_ng ? groupimp : taskimp; 1922 struct task_struct *cur; 1923 long src_load, dst_load; 1924 int dist = env->dist; 1925 long moveimp = imp; 1926 long load; 1927 bool stopsearch = false; 1928 1929 if (READ_ONCE(dst_rq->numa_migrate_on)) 1930 return false; 1931 1932 rcu_read_lock(); 1933 cur = rcu_dereference(dst_rq->curr); 1934 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1935 cur = NULL; 1936 1937 /* 1938 * Because we have preemption enabled we can get migrated around and 1939 * end try selecting ourselves (current == env->p) as a swap candidate. 1940 */ 1941 if (cur == env->p) { 1942 stopsearch = true; 1943 goto unlock; 1944 } 1945 1946 if (!cur) { 1947 if (maymove && moveimp >= env->best_imp) 1948 goto assign; 1949 else 1950 goto unlock; 1951 } 1952 1953 /* Skip this swap candidate if cannot move to the source cpu. */ 1954 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1955 goto unlock; 1956 1957 /* 1958 * Skip this swap candidate if it is not moving to its preferred 1959 * node and the best task is. 1960 */ 1961 if (env->best_task && 1962 env->best_task->numa_preferred_nid == env->src_nid && 1963 cur->numa_preferred_nid != env->src_nid) { 1964 goto unlock; 1965 } 1966 1967 /* 1968 * "imp" is the fault differential for the source task between the 1969 * source and destination node. Calculate the total differential for 1970 * the source task and potential destination task. The more negative 1971 * the value is, the more remote accesses that would be expected to 1972 * be incurred if the tasks were swapped. 1973 * 1974 * If dst and source tasks are in the same NUMA group, or not 1975 * in any group then look only at task weights. 1976 */ 1977 cur_ng = rcu_dereference(cur->numa_group); 1978 if (cur_ng == p_ng) { 1979 /* 1980 * Do not swap within a group or between tasks that have 1981 * no group if there is spare capacity. Swapping does 1982 * not address the load imbalance and helps one task at 1983 * the cost of punishing another. 1984 */ 1985 if (env->dst_stats.node_type == node_has_spare) 1986 goto unlock; 1987 1988 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1989 task_weight(cur, env->dst_nid, dist); 1990 /* 1991 * Add some hysteresis to prevent swapping the 1992 * tasks within a group over tiny differences. 1993 */ 1994 if (cur_ng) 1995 imp -= imp / 16; 1996 } else { 1997 /* 1998 * Compare the group weights. If a task is all by itself 1999 * (not part of a group), use the task weight instead. 2000 */ 2001 if (cur_ng && p_ng) 2002 imp += group_weight(cur, env->src_nid, dist) - 2003 group_weight(cur, env->dst_nid, dist); 2004 else 2005 imp += task_weight(cur, env->src_nid, dist) - 2006 task_weight(cur, env->dst_nid, dist); 2007 } 2008 2009 /* Discourage picking a task already on its preferred node */ 2010 if (cur->numa_preferred_nid == env->dst_nid) 2011 imp -= imp / 16; 2012 2013 /* 2014 * Encourage picking a task that moves to its preferred node. 2015 * This potentially makes imp larger than it's maximum of 2016 * 1998 (see SMALLIMP and task_weight for why) but in this 2017 * case, it does not matter. 2018 */ 2019 if (cur->numa_preferred_nid == env->src_nid) 2020 imp += imp / 8; 2021 2022 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2023 imp = moveimp; 2024 cur = NULL; 2025 goto assign; 2026 } 2027 2028 /* 2029 * Prefer swapping with a task moving to its preferred node over a 2030 * task that is not. 2031 */ 2032 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2033 env->best_task->numa_preferred_nid != env->src_nid) { 2034 goto assign; 2035 } 2036 2037 /* 2038 * If the NUMA importance is less than SMALLIMP, 2039 * task migration might only result in ping pong 2040 * of tasks and also hurt performance due to cache 2041 * misses. 2042 */ 2043 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2044 goto unlock; 2045 2046 /* 2047 * In the overloaded case, try and keep the load balanced. 2048 */ 2049 load = task_h_load(env->p) - task_h_load(cur); 2050 if (!load) 2051 goto assign; 2052 2053 dst_load = env->dst_stats.load + load; 2054 src_load = env->src_stats.load - load; 2055 2056 if (load_too_imbalanced(src_load, dst_load, env)) 2057 goto unlock; 2058 2059 assign: 2060 /* Evaluate an idle CPU for a task numa move. */ 2061 if (!cur) { 2062 int cpu = env->dst_stats.idle_cpu; 2063 2064 /* Nothing cached so current CPU went idle since the search. */ 2065 if (cpu < 0) 2066 cpu = env->dst_cpu; 2067 2068 /* 2069 * If the CPU is no longer truly idle and the previous best CPU 2070 * is, keep using it. 2071 */ 2072 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2073 idle_cpu(env->best_cpu)) { 2074 cpu = env->best_cpu; 2075 } 2076 2077 env->dst_cpu = cpu; 2078 } 2079 2080 task_numa_assign(env, cur, imp); 2081 2082 /* 2083 * If a move to idle is allowed because there is capacity or load 2084 * balance improves then stop the search. While a better swap 2085 * candidate may exist, a search is not free. 2086 */ 2087 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2088 stopsearch = true; 2089 2090 /* 2091 * If a swap candidate must be identified and the current best task 2092 * moves its preferred node then stop the search. 2093 */ 2094 if (!maymove && env->best_task && 2095 env->best_task->numa_preferred_nid == env->src_nid) { 2096 stopsearch = true; 2097 } 2098 unlock: 2099 rcu_read_unlock(); 2100 2101 return stopsearch; 2102 } 2103 2104 static void task_numa_find_cpu(struct task_numa_env *env, 2105 long taskimp, long groupimp) 2106 { 2107 bool maymove = false; 2108 int cpu; 2109 2110 /* 2111 * If dst node has spare capacity, then check if there is an 2112 * imbalance that would be overruled by the load balancer. 2113 */ 2114 if (env->dst_stats.node_type == node_has_spare) { 2115 unsigned int imbalance; 2116 int src_running, dst_running; 2117 2118 /* 2119 * Would movement cause an imbalance? Note that if src has 2120 * more running tasks that the imbalance is ignored as the 2121 * move improves the imbalance from the perspective of the 2122 * CPU load balancer. 2123 * */ 2124 src_running = env->src_stats.nr_running - 1; 2125 dst_running = env->dst_stats.nr_running + 1; 2126 imbalance = max(0, dst_running - src_running); 2127 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2128 env->imb_numa_nr); 2129 2130 /* Use idle CPU if there is no imbalance */ 2131 if (!imbalance) { 2132 maymove = true; 2133 if (env->dst_stats.idle_cpu >= 0) { 2134 env->dst_cpu = env->dst_stats.idle_cpu; 2135 task_numa_assign(env, NULL, 0); 2136 return; 2137 } 2138 } 2139 } else { 2140 long src_load, dst_load, load; 2141 /* 2142 * If the improvement from just moving env->p direction is better 2143 * than swapping tasks around, check if a move is possible. 2144 */ 2145 load = task_h_load(env->p); 2146 dst_load = env->dst_stats.load + load; 2147 src_load = env->src_stats.load - load; 2148 maymove = !load_too_imbalanced(src_load, dst_load, env); 2149 } 2150 2151 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2152 /* Skip this CPU if the source task cannot migrate */ 2153 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2154 continue; 2155 2156 env->dst_cpu = cpu; 2157 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2158 break; 2159 } 2160 } 2161 2162 static int task_numa_migrate(struct task_struct *p) 2163 { 2164 struct task_numa_env env = { 2165 .p = p, 2166 2167 .src_cpu = task_cpu(p), 2168 .src_nid = task_node(p), 2169 2170 .imbalance_pct = 112, 2171 2172 .best_task = NULL, 2173 .best_imp = 0, 2174 .best_cpu = -1, 2175 }; 2176 unsigned long taskweight, groupweight; 2177 struct sched_domain *sd; 2178 long taskimp, groupimp; 2179 struct numa_group *ng; 2180 struct rq *best_rq; 2181 int nid, ret, dist; 2182 2183 /* 2184 * Pick the lowest SD_NUMA domain, as that would have the smallest 2185 * imbalance and would be the first to start moving tasks about. 2186 * 2187 * And we want to avoid any moving of tasks about, as that would create 2188 * random movement of tasks -- counter the numa conditions we're trying 2189 * to satisfy here. 2190 */ 2191 rcu_read_lock(); 2192 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2193 if (sd) { 2194 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2195 env.imb_numa_nr = sd->imb_numa_nr; 2196 } 2197 rcu_read_unlock(); 2198 2199 /* 2200 * Cpusets can break the scheduler domain tree into smaller 2201 * balance domains, some of which do not cross NUMA boundaries. 2202 * Tasks that are "trapped" in such domains cannot be migrated 2203 * elsewhere, so there is no point in (re)trying. 2204 */ 2205 if (unlikely(!sd)) { 2206 sched_setnuma(p, task_node(p)); 2207 return -EINVAL; 2208 } 2209 2210 env.dst_nid = p->numa_preferred_nid; 2211 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2212 taskweight = task_weight(p, env.src_nid, dist); 2213 groupweight = group_weight(p, env.src_nid, dist); 2214 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2215 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2216 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2217 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2218 2219 /* Try to find a spot on the preferred nid. */ 2220 task_numa_find_cpu(&env, taskimp, groupimp); 2221 2222 /* 2223 * Look at other nodes in these cases: 2224 * - there is no space available on the preferred_nid 2225 * - the task is part of a numa_group that is interleaved across 2226 * multiple NUMA nodes; in order to better consolidate the group, 2227 * we need to check other locations. 2228 */ 2229 ng = deref_curr_numa_group(p); 2230 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2231 for_each_node_state(nid, N_CPU) { 2232 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2233 continue; 2234 2235 dist = node_distance(env.src_nid, env.dst_nid); 2236 if (sched_numa_topology_type == NUMA_BACKPLANE && 2237 dist != env.dist) { 2238 taskweight = task_weight(p, env.src_nid, dist); 2239 groupweight = group_weight(p, env.src_nid, dist); 2240 } 2241 2242 /* Only consider nodes where both task and groups benefit */ 2243 taskimp = task_weight(p, nid, dist) - taskweight; 2244 groupimp = group_weight(p, nid, dist) - groupweight; 2245 if (taskimp < 0 && groupimp < 0) 2246 continue; 2247 2248 env.dist = dist; 2249 env.dst_nid = nid; 2250 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2251 task_numa_find_cpu(&env, taskimp, groupimp); 2252 } 2253 } 2254 2255 /* 2256 * If the task is part of a workload that spans multiple NUMA nodes, 2257 * and is migrating into one of the workload's active nodes, remember 2258 * this node as the task's preferred numa node, so the workload can 2259 * settle down. 2260 * A task that migrated to a second choice node will be better off 2261 * trying for a better one later. Do not set the preferred node here. 2262 */ 2263 if (ng) { 2264 if (env.best_cpu == -1) 2265 nid = env.src_nid; 2266 else 2267 nid = cpu_to_node(env.best_cpu); 2268 2269 if (nid != p->numa_preferred_nid) 2270 sched_setnuma(p, nid); 2271 } 2272 2273 /* No better CPU than the current one was found. */ 2274 if (env.best_cpu == -1) { 2275 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2276 return -EAGAIN; 2277 } 2278 2279 best_rq = cpu_rq(env.best_cpu); 2280 if (env.best_task == NULL) { 2281 ret = migrate_task_to(p, env.best_cpu); 2282 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2283 if (ret != 0) 2284 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2285 return ret; 2286 } 2287 2288 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2289 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2290 2291 if (ret != 0) 2292 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2293 put_task_struct(env.best_task); 2294 return ret; 2295 } 2296 2297 /* Attempt to migrate a task to a CPU on the preferred node. */ 2298 static void numa_migrate_preferred(struct task_struct *p) 2299 { 2300 unsigned long interval = HZ; 2301 2302 /* This task has no NUMA fault statistics yet */ 2303 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2304 return; 2305 2306 /* Periodically retry migrating the task to the preferred node */ 2307 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2308 p->numa_migrate_retry = jiffies + interval; 2309 2310 /* Success if task is already running on preferred CPU */ 2311 if (task_node(p) == p->numa_preferred_nid) 2312 return; 2313 2314 /* Otherwise, try migrate to a CPU on the preferred node */ 2315 task_numa_migrate(p); 2316 } 2317 2318 /* 2319 * Find out how many nodes the workload is actively running on. Do this by 2320 * tracking the nodes from which NUMA hinting faults are triggered. This can 2321 * be different from the set of nodes where the workload's memory is currently 2322 * located. 2323 */ 2324 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2325 { 2326 unsigned long faults, max_faults = 0; 2327 int nid, active_nodes = 0; 2328 2329 for_each_node_state(nid, N_CPU) { 2330 faults = group_faults_cpu(numa_group, nid); 2331 if (faults > max_faults) 2332 max_faults = faults; 2333 } 2334 2335 for_each_node_state(nid, N_CPU) { 2336 faults = group_faults_cpu(numa_group, nid); 2337 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2338 active_nodes++; 2339 } 2340 2341 numa_group->max_faults_cpu = max_faults; 2342 numa_group->active_nodes = active_nodes; 2343 } 2344 2345 /* 2346 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2347 * increments. The more local the fault statistics are, the higher the scan 2348 * period will be for the next scan window. If local/(local+remote) ratio is 2349 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2350 * the scan period will decrease. Aim for 70% local accesses. 2351 */ 2352 #define NUMA_PERIOD_SLOTS 10 2353 #define NUMA_PERIOD_THRESHOLD 7 2354 2355 /* 2356 * Increase the scan period (slow down scanning) if the majority of 2357 * our memory is already on our local node, or if the majority of 2358 * the page accesses are shared with other processes. 2359 * Otherwise, decrease the scan period. 2360 */ 2361 static void update_task_scan_period(struct task_struct *p, 2362 unsigned long shared, unsigned long private) 2363 { 2364 unsigned int period_slot; 2365 int lr_ratio, ps_ratio; 2366 int diff; 2367 2368 unsigned long remote = p->numa_faults_locality[0]; 2369 unsigned long local = p->numa_faults_locality[1]; 2370 2371 /* 2372 * If there were no record hinting faults then either the task is 2373 * completely idle or all activity is in areas that are not of interest 2374 * to automatic numa balancing. Related to that, if there were failed 2375 * migration then it implies we are migrating too quickly or the local 2376 * node is overloaded. In either case, scan slower 2377 */ 2378 if (local + shared == 0 || p->numa_faults_locality[2]) { 2379 p->numa_scan_period = min(p->numa_scan_period_max, 2380 p->numa_scan_period << 1); 2381 2382 p->mm->numa_next_scan = jiffies + 2383 msecs_to_jiffies(p->numa_scan_period); 2384 2385 return; 2386 } 2387 2388 /* 2389 * Prepare to scale scan period relative to the current period. 2390 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2391 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2392 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2393 */ 2394 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2395 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2396 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2397 2398 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2399 /* 2400 * Most memory accesses are local. There is no need to 2401 * do fast NUMA scanning, since memory is already local. 2402 */ 2403 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2404 if (!slot) 2405 slot = 1; 2406 diff = slot * period_slot; 2407 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2408 /* 2409 * Most memory accesses are shared with other tasks. 2410 * There is no point in continuing fast NUMA scanning, 2411 * since other tasks may just move the memory elsewhere. 2412 */ 2413 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2414 if (!slot) 2415 slot = 1; 2416 diff = slot * period_slot; 2417 } else { 2418 /* 2419 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2420 * yet they are not on the local NUMA node. Speed up 2421 * NUMA scanning to get the memory moved over. 2422 */ 2423 int ratio = max(lr_ratio, ps_ratio); 2424 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2425 } 2426 2427 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2428 task_scan_min(p), task_scan_max(p)); 2429 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2430 } 2431 2432 /* 2433 * Get the fraction of time the task has been running since the last 2434 * NUMA placement cycle. The scheduler keeps similar statistics, but 2435 * decays those on a 32ms period, which is orders of magnitude off 2436 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2437 * stats only if the task is so new there are no NUMA statistics yet. 2438 */ 2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2440 { 2441 u64 runtime, delta, now; 2442 /* Use the start of this time slice to avoid calculations. */ 2443 now = p->se.exec_start; 2444 runtime = p->se.sum_exec_runtime; 2445 2446 if (p->last_task_numa_placement) { 2447 delta = runtime - p->last_sum_exec_runtime; 2448 *period = now - p->last_task_numa_placement; 2449 2450 /* Avoid time going backwards, prevent potential divide error: */ 2451 if (unlikely((s64)*period < 0)) 2452 *period = 0; 2453 } else { 2454 delta = p->se.avg.load_sum; 2455 *period = LOAD_AVG_MAX; 2456 } 2457 2458 p->last_sum_exec_runtime = runtime; 2459 p->last_task_numa_placement = now; 2460 2461 return delta; 2462 } 2463 2464 /* 2465 * Determine the preferred nid for a task in a numa_group. This needs to 2466 * be done in a way that produces consistent results with group_weight, 2467 * otherwise workloads might not converge. 2468 */ 2469 static int preferred_group_nid(struct task_struct *p, int nid) 2470 { 2471 nodemask_t nodes; 2472 int dist; 2473 2474 /* Direct connections between all NUMA nodes. */ 2475 if (sched_numa_topology_type == NUMA_DIRECT) 2476 return nid; 2477 2478 /* 2479 * On a system with glueless mesh NUMA topology, group_weight 2480 * scores nodes according to the number of NUMA hinting faults on 2481 * both the node itself, and on nearby nodes. 2482 */ 2483 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2484 unsigned long score, max_score = 0; 2485 int node, max_node = nid; 2486 2487 dist = sched_max_numa_distance; 2488 2489 for_each_node_state(node, N_CPU) { 2490 score = group_weight(p, node, dist); 2491 if (score > max_score) { 2492 max_score = score; 2493 max_node = node; 2494 } 2495 } 2496 return max_node; 2497 } 2498 2499 /* 2500 * Finding the preferred nid in a system with NUMA backplane 2501 * interconnect topology is more involved. The goal is to locate 2502 * tasks from numa_groups near each other in the system, and 2503 * untangle workloads from different sides of the system. This requires 2504 * searching down the hierarchy of node groups, recursively searching 2505 * inside the highest scoring group of nodes. The nodemask tricks 2506 * keep the complexity of the search down. 2507 */ 2508 nodes = node_states[N_CPU]; 2509 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2510 unsigned long max_faults = 0; 2511 nodemask_t max_group = NODE_MASK_NONE; 2512 int a, b; 2513 2514 /* Are there nodes at this distance from each other? */ 2515 if (!find_numa_distance(dist)) 2516 continue; 2517 2518 for_each_node_mask(a, nodes) { 2519 unsigned long faults = 0; 2520 nodemask_t this_group; 2521 nodes_clear(this_group); 2522 2523 /* Sum group's NUMA faults; includes a==b case. */ 2524 for_each_node_mask(b, nodes) { 2525 if (node_distance(a, b) < dist) { 2526 faults += group_faults(p, b); 2527 node_set(b, this_group); 2528 node_clear(b, nodes); 2529 } 2530 } 2531 2532 /* Remember the top group. */ 2533 if (faults > max_faults) { 2534 max_faults = faults; 2535 max_group = this_group; 2536 /* 2537 * subtle: at the smallest distance there is 2538 * just one node left in each "group", the 2539 * winner is the preferred nid. 2540 */ 2541 nid = a; 2542 } 2543 } 2544 /* Next round, evaluate the nodes within max_group. */ 2545 if (!max_faults) 2546 break; 2547 nodes = max_group; 2548 } 2549 return nid; 2550 } 2551 2552 static void task_numa_placement(struct task_struct *p) 2553 { 2554 int seq, nid, max_nid = NUMA_NO_NODE; 2555 unsigned long max_faults = 0; 2556 unsigned long fault_types[2] = { 0, 0 }; 2557 unsigned long total_faults; 2558 u64 runtime, period; 2559 spinlock_t *group_lock = NULL; 2560 struct numa_group *ng; 2561 2562 /* 2563 * The p->mm->numa_scan_seq field gets updated without 2564 * exclusive access. Use READ_ONCE() here to ensure 2565 * that the field is read in a single access: 2566 */ 2567 seq = READ_ONCE(p->mm->numa_scan_seq); 2568 if (p->numa_scan_seq == seq) 2569 return; 2570 p->numa_scan_seq = seq; 2571 p->numa_scan_period_max = task_scan_max(p); 2572 2573 total_faults = p->numa_faults_locality[0] + 2574 p->numa_faults_locality[1]; 2575 runtime = numa_get_avg_runtime(p, &period); 2576 2577 /* If the task is part of a group prevent parallel updates to group stats */ 2578 ng = deref_curr_numa_group(p); 2579 if (ng) { 2580 group_lock = &ng->lock; 2581 spin_lock_irq(group_lock); 2582 } 2583 2584 /* Find the node with the highest number of faults */ 2585 for_each_online_node(nid) { 2586 /* Keep track of the offsets in numa_faults array */ 2587 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2588 unsigned long faults = 0, group_faults = 0; 2589 int priv; 2590 2591 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2592 long diff, f_diff, f_weight; 2593 2594 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2595 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2596 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2597 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2598 2599 /* Decay existing window, copy faults since last scan */ 2600 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2601 fault_types[priv] += p->numa_faults[membuf_idx]; 2602 p->numa_faults[membuf_idx] = 0; 2603 2604 /* 2605 * Normalize the faults_from, so all tasks in a group 2606 * count according to CPU use, instead of by the raw 2607 * number of faults. Tasks with little runtime have 2608 * little over-all impact on throughput, and thus their 2609 * faults are less important. 2610 */ 2611 f_weight = div64_u64(runtime << 16, period + 1); 2612 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2613 (total_faults + 1); 2614 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2615 p->numa_faults[cpubuf_idx] = 0; 2616 2617 p->numa_faults[mem_idx] += diff; 2618 p->numa_faults[cpu_idx] += f_diff; 2619 faults += p->numa_faults[mem_idx]; 2620 p->total_numa_faults += diff; 2621 if (ng) { 2622 /* 2623 * safe because we can only change our own group 2624 * 2625 * mem_idx represents the offset for a given 2626 * nid and priv in a specific region because it 2627 * is at the beginning of the numa_faults array. 2628 */ 2629 ng->faults[mem_idx] += diff; 2630 ng->faults[cpu_idx] += f_diff; 2631 ng->total_faults += diff; 2632 group_faults += ng->faults[mem_idx]; 2633 } 2634 } 2635 2636 if (!ng) { 2637 if (faults > max_faults) { 2638 max_faults = faults; 2639 max_nid = nid; 2640 } 2641 } else if (group_faults > max_faults) { 2642 max_faults = group_faults; 2643 max_nid = nid; 2644 } 2645 } 2646 2647 /* Cannot migrate task to CPU-less node */ 2648 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2649 int near_nid = max_nid; 2650 int distance, near_distance = INT_MAX; 2651 2652 for_each_node_state(nid, N_CPU) { 2653 distance = node_distance(max_nid, nid); 2654 if (distance < near_distance) { 2655 near_nid = nid; 2656 near_distance = distance; 2657 } 2658 } 2659 max_nid = near_nid; 2660 } 2661 2662 if (ng) { 2663 numa_group_count_active_nodes(ng); 2664 spin_unlock_irq(group_lock); 2665 max_nid = preferred_group_nid(p, max_nid); 2666 } 2667 2668 if (max_faults) { 2669 /* Set the new preferred node */ 2670 if (max_nid != p->numa_preferred_nid) 2671 sched_setnuma(p, max_nid); 2672 } 2673 2674 update_task_scan_period(p, fault_types[0], fault_types[1]); 2675 } 2676 2677 static inline int get_numa_group(struct numa_group *grp) 2678 { 2679 return refcount_inc_not_zero(&grp->refcount); 2680 } 2681 2682 static inline void put_numa_group(struct numa_group *grp) 2683 { 2684 if (refcount_dec_and_test(&grp->refcount)) 2685 kfree_rcu(grp, rcu); 2686 } 2687 2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2689 int *priv) 2690 { 2691 struct numa_group *grp, *my_grp; 2692 struct task_struct *tsk; 2693 bool join = false; 2694 int cpu = cpupid_to_cpu(cpupid); 2695 int i; 2696 2697 if (unlikely(!deref_curr_numa_group(p))) { 2698 unsigned int size = sizeof(struct numa_group) + 2699 NR_NUMA_HINT_FAULT_STATS * 2700 nr_node_ids * sizeof(unsigned long); 2701 2702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2703 if (!grp) 2704 return; 2705 2706 refcount_set(&grp->refcount, 1); 2707 grp->active_nodes = 1; 2708 grp->max_faults_cpu = 0; 2709 spin_lock_init(&grp->lock); 2710 grp->gid = p->pid; 2711 2712 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2713 grp->faults[i] = p->numa_faults[i]; 2714 2715 grp->total_faults = p->total_numa_faults; 2716 2717 grp->nr_tasks++; 2718 rcu_assign_pointer(p->numa_group, grp); 2719 } 2720 2721 rcu_read_lock(); 2722 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2723 2724 if (!cpupid_match_pid(tsk, cpupid)) 2725 goto no_join; 2726 2727 grp = rcu_dereference(tsk->numa_group); 2728 if (!grp) 2729 goto no_join; 2730 2731 my_grp = deref_curr_numa_group(p); 2732 if (grp == my_grp) 2733 goto no_join; 2734 2735 /* 2736 * Only join the other group if its bigger; if we're the bigger group, 2737 * the other task will join us. 2738 */ 2739 if (my_grp->nr_tasks > grp->nr_tasks) 2740 goto no_join; 2741 2742 /* 2743 * Tie-break on the grp address. 2744 */ 2745 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2746 goto no_join; 2747 2748 /* Always join threads in the same process. */ 2749 if (tsk->mm == current->mm) 2750 join = true; 2751 2752 /* Simple filter to avoid false positives due to PID collisions */ 2753 if (flags & TNF_SHARED) 2754 join = true; 2755 2756 /* Update priv based on whether false sharing was detected */ 2757 *priv = !join; 2758 2759 if (join && !get_numa_group(grp)) 2760 goto no_join; 2761 2762 rcu_read_unlock(); 2763 2764 if (!join) 2765 return; 2766 2767 WARN_ON_ONCE(irqs_disabled()); 2768 double_lock_irq(&my_grp->lock, &grp->lock); 2769 2770 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2771 my_grp->faults[i] -= p->numa_faults[i]; 2772 grp->faults[i] += p->numa_faults[i]; 2773 } 2774 my_grp->total_faults -= p->total_numa_faults; 2775 grp->total_faults += p->total_numa_faults; 2776 2777 my_grp->nr_tasks--; 2778 grp->nr_tasks++; 2779 2780 spin_unlock(&my_grp->lock); 2781 spin_unlock_irq(&grp->lock); 2782 2783 rcu_assign_pointer(p->numa_group, grp); 2784 2785 put_numa_group(my_grp); 2786 return; 2787 2788 no_join: 2789 rcu_read_unlock(); 2790 return; 2791 } 2792 2793 /* 2794 * Get rid of NUMA statistics associated with a task (either current or dead). 2795 * If @final is set, the task is dead and has reached refcount zero, so we can 2796 * safely free all relevant data structures. Otherwise, there might be 2797 * concurrent reads from places like load balancing and procfs, and we should 2798 * reset the data back to default state without freeing ->numa_faults. 2799 */ 2800 void task_numa_free(struct task_struct *p, bool final) 2801 { 2802 /* safe: p either is current or is being freed by current */ 2803 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2804 unsigned long *numa_faults = p->numa_faults; 2805 unsigned long flags; 2806 int i; 2807 2808 if (!numa_faults) 2809 return; 2810 2811 if (grp) { 2812 spin_lock_irqsave(&grp->lock, flags); 2813 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2814 grp->faults[i] -= p->numa_faults[i]; 2815 grp->total_faults -= p->total_numa_faults; 2816 2817 grp->nr_tasks--; 2818 spin_unlock_irqrestore(&grp->lock, flags); 2819 RCU_INIT_POINTER(p->numa_group, NULL); 2820 put_numa_group(grp); 2821 } 2822 2823 if (final) { 2824 p->numa_faults = NULL; 2825 kfree(numa_faults); 2826 } else { 2827 p->total_numa_faults = 0; 2828 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2829 numa_faults[i] = 0; 2830 } 2831 } 2832 2833 /* 2834 * Got a PROT_NONE fault for a page on @node. 2835 */ 2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2837 { 2838 struct task_struct *p = current; 2839 bool migrated = flags & TNF_MIGRATED; 2840 int cpu_node = task_node(current); 2841 int local = !!(flags & TNF_FAULT_LOCAL); 2842 struct numa_group *ng; 2843 int priv; 2844 2845 if (!static_branch_likely(&sched_numa_balancing)) 2846 return; 2847 2848 /* for example, ksmd faulting in a user's mm */ 2849 if (!p->mm) 2850 return; 2851 2852 /* 2853 * NUMA faults statistics are unnecessary for the slow memory 2854 * node for memory tiering mode. 2855 */ 2856 if (!node_is_toptier(mem_node) && 2857 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 2858 !cpupid_valid(last_cpupid))) 2859 return; 2860 2861 /* Allocate buffer to track faults on a per-node basis */ 2862 if (unlikely(!p->numa_faults)) { 2863 int size = sizeof(*p->numa_faults) * 2864 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2865 2866 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2867 if (!p->numa_faults) 2868 return; 2869 2870 p->total_numa_faults = 0; 2871 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2872 } 2873 2874 /* 2875 * First accesses are treated as private, otherwise consider accesses 2876 * to be private if the accessing pid has not changed 2877 */ 2878 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2879 priv = 1; 2880 } else { 2881 priv = cpupid_match_pid(p, last_cpupid); 2882 if (!priv && !(flags & TNF_NO_GROUP)) 2883 task_numa_group(p, last_cpupid, flags, &priv); 2884 } 2885 2886 /* 2887 * If a workload spans multiple NUMA nodes, a shared fault that 2888 * occurs wholly within the set of nodes that the workload is 2889 * actively using should be counted as local. This allows the 2890 * scan rate to slow down when a workload has settled down. 2891 */ 2892 ng = deref_curr_numa_group(p); 2893 if (!priv && !local && ng && ng->active_nodes > 1 && 2894 numa_is_active_node(cpu_node, ng) && 2895 numa_is_active_node(mem_node, ng)) 2896 local = 1; 2897 2898 /* 2899 * Retry to migrate task to preferred node periodically, in case it 2900 * previously failed, or the scheduler moved us. 2901 */ 2902 if (time_after(jiffies, p->numa_migrate_retry)) { 2903 task_numa_placement(p); 2904 numa_migrate_preferred(p); 2905 } 2906 2907 if (migrated) 2908 p->numa_pages_migrated += pages; 2909 if (flags & TNF_MIGRATE_FAIL) 2910 p->numa_faults_locality[2] += pages; 2911 2912 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2913 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2914 p->numa_faults_locality[local] += pages; 2915 } 2916 2917 static void reset_ptenuma_scan(struct task_struct *p) 2918 { 2919 /* 2920 * We only did a read acquisition of the mmap sem, so 2921 * p->mm->numa_scan_seq is written to without exclusive access 2922 * and the update is not guaranteed to be atomic. That's not 2923 * much of an issue though, since this is just used for 2924 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2925 * expensive, to avoid any form of compiler optimizations: 2926 */ 2927 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2928 p->mm->numa_scan_offset = 0; 2929 } 2930 2931 /* 2932 * The expensive part of numa migration is done from task_work context. 2933 * Triggered from task_tick_numa(). 2934 */ 2935 static void task_numa_work(struct callback_head *work) 2936 { 2937 unsigned long migrate, next_scan, now = jiffies; 2938 struct task_struct *p = current; 2939 struct mm_struct *mm = p->mm; 2940 u64 runtime = p->se.sum_exec_runtime; 2941 MA_STATE(mas, &mm->mm_mt, 0, 0); 2942 struct vm_area_struct *vma; 2943 unsigned long start, end; 2944 unsigned long nr_pte_updates = 0; 2945 long pages, virtpages; 2946 2947 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2948 2949 work->next = work; 2950 /* 2951 * Who cares about NUMA placement when they're dying. 2952 * 2953 * NOTE: make sure not to dereference p->mm before this check, 2954 * exit_task_work() happens _after_ exit_mm() so we could be called 2955 * without p->mm even though we still had it when we enqueued this 2956 * work. 2957 */ 2958 if (p->flags & PF_EXITING) 2959 return; 2960 2961 if (!mm->numa_next_scan) { 2962 mm->numa_next_scan = now + 2963 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2964 } 2965 2966 /* 2967 * Enforce maximal scan/migration frequency.. 2968 */ 2969 migrate = mm->numa_next_scan; 2970 if (time_before(now, migrate)) 2971 return; 2972 2973 if (p->numa_scan_period == 0) { 2974 p->numa_scan_period_max = task_scan_max(p); 2975 p->numa_scan_period = task_scan_start(p); 2976 } 2977 2978 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2979 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 2980 return; 2981 2982 /* 2983 * Delay this task enough that another task of this mm will likely win 2984 * the next time around. 2985 */ 2986 p->node_stamp += 2 * TICK_NSEC; 2987 2988 start = mm->numa_scan_offset; 2989 pages = sysctl_numa_balancing_scan_size; 2990 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2991 virtpages = pages * 8; /* Scan up to this much virtual space */ 2992 if (!pages) 2993 return; 2994 2995 2996 if (!mmap_read_trylock(mm)) 2997 return; 2998 mas_set(&mas, start); 2999 vma = mas_find(&mas, ULONG_MAX); 3000 if (!vma) { 3001 reset_ptenuma_scan(p); 3002 start = 0; 3003 mas_set(&mas, start); 3004 vma = mas_find(&mas, ULONG_MAX); 3005 } 3006 3007 for (; vma; vma = mas_find(&mas, ULONG_MAX)) { 3008 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3009 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3010 continue; 3011 } 3012 3013 /* 3014 * Shared library pages mapped by multiple processes are not 3015 * migrated as it is expected they are cache replicated. Avoid 3016 * hinting faults in read-only file-backed mappings or the vdso 3017 * as migrating the pages will be of marginal benefit. 3018 */ 3019 if (!vma->vm_mm || 3020 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3021 continue; 3022 3023 /* 3024 * Skip inaccessible VMAs to avoid any confusion between 3025 * PROT_NONE and NUMA hinting ptes 3026 */ 3027 if (!vma_is_accessible(vma)) 3028 continue; 3029 3030 do { 3031 start = max(start, vma->vm_start); 3032 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3033 end = min(end, vma->vm_end); 3034 nr_pte_updates = change_prot_numa(vma, start, end); 3035 3036 /* 3037 * Try to scan sysctl_numa_balancing_size worth of 3038 * hpages that have at least one present PTE that 3039 * is not already pte-numa. If the VMA contains 3040 * areas that are unused or already full of prot_numa 3041 * PTEs, scan up to virtpages, to skip through those 3042 * areas faster. 3043 */ 3044 if (nr_pte_updates) 3045 pages -= (end - start) >> PAGE_SHIFT; 3046 virtpages -= (end - start) >> PAGE_SHIFT; 3047 3048 start = end; 3049 if (pages <= 0 || virtpages <= 0) 3050 goto out; 3051 3052 cond_resched(); 3053 } while (end != vma->vm_end); 3054 } 3055 3056 out: 3057 /* 3058 * It is possible to reach the end of the VMA list but the last few 3059 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3060 * would find the !migratable VMA on the next scan but not reset the 3061 * scanner to the start so check it now. 3062 */ 3063 if (vma) 3064 mm->numa_scan_offset = start; 3065 else 3066 reset_ptenuma_scan(p); 3067 mmap_read_unlock(mm); 3068 3069 /* 3070 * Make sure tasks use at least 32x as much time to run other code 3071 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3072 * Usually update_task_scan_period slows down scanning enough; on an 3073 * overloaded system we need to limit overhead on a per task basis. 3074 */ 3075 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3076 u64 diff = p->se.sum_exec_runtime - runtime; 3077 p->node_stamp += 32 * diff; 3078 } 3079 } 3080 3081 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3082 { 3083 int mm_users = 0; 3084 struct mm_struct *mm = p->mm; 3085 3086 if (mm) { 3087 mm_users = atomic_read(&mm->mm_users); 3088 if (mm_users == 1) { 3089 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3090 mm->numa_scan_seq = 0; 3091 } 3092 } 3093 p->node_stamp = 0; 3094 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3095 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3096 p->numa_migrate_retry = 0; 3097 /* Protect against double add, see task_tick_numa and task_numa_work */ 3098 p->numa_work.next = &p->numa_work; 3099 p->numa_faults = NULL; 3100 p->numa_pages_migrated = 0; 3101 p->total_numa_faults = 0; 3102 RCU_INIT_POINTER(p->numa_group, NULL); 3103 p->last_task_numa_placement = 0; 3104 p->last_sum_exec_runtime = 0; 3105 3106 init_task_work(&p->numa_work, task_numa_work); 3107 3108 /* New address space, reset the preferred nid */ 3109 if (!(clone_flags & CLONE_VM)) { 3110 p->numa_preferred_nid = NUMA_NO_NODE; 3111 return; 3112 } 3113 3114 /* 3115 * New thread, keep existing numa_preferred_nid which should be copied 3116 * already by arch_dup_task_struct but stagger when scans start. 3117 */ 3118 if (mm) { 3119 unsigned int delay; 3120 3121 delay = min_t(unsigned int, task_scan_max(current), 3122 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3123 delay += 2 * TICK_NSEC; 3124 p->node_stamp = delay; 3125 } 3126 } 3127 3128 /* 3129 * Drive the periodic memory faults.. 3130 */ 3131 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3132 { 3133 struct callback_head *work = &curr->numa_work; 3134 u64 period, now; 3135 3136 /* 3137 * We don't care about NUMA placement if we don't have memory. 3138 */ 3139 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3140 return; 3141 3142 /* 3143 * Using runtime rather than walltime has the dual advantage that 3144 * we (mostly) drive the selection from busy threads and that the 3145 * task needs to have done some actual work before we bother with 3146 * NUMA placement. 3147 */ 3148 now = curr->se.sum_exec_runtime; 3149 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3150 3151 if (now > curr->node_stamp + period) { 3152 if (!curr->node_stamp) 3153 curr->numa_scan_period = task_scan_start(curr); 3154 curr->node_stamp += period; 3155 3156 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3157 task_work_add(curr, work, TWA_RESUME); 3158 } 3159 } 3160 3161 static void update_scan_period(struct task_struct *p, int new_cpu) 3162 { 3163 int src_nid = cpu_to_node(task_cpu(p)); 3164 int dst_nid = cpu_to_node(new_cpu); 3165 3166 if (!static_branch_likely(&sched_numa_balancing)) 3167 return; 3168 3169 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3170 return; 3171 3172 if (src_nid == dst_nid) 3173 return; 3174 3175 /* 3176 * Allow resets if faults have been trapped before one scan 3177 * has completed. This is most likely due to a new task that 3178 * is pulled cross-node due to wakeups or load balancing. 3179 */ 3180 if (p->numa_scan_seq) { 3181 /* 3182 * Avoid scan adjustments if moving to the preferred 3183 * node or if the task was not previously running on 3184 * the preferred node. 3185 */ 3186 if (dst_nid == p->numa_preferred_nid || 3187 (p->numa_preferred_nid != NUMA_NO_NODE && 3188 src_nid != p->numa_preferred_nid)) 3189 return; 3190 } 3191 3192 p->numa_scan_period = task_scan_start(p); 3193 } 3194 3195 #else 3196 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3197 { 3198 } 3199 3200 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3201 { 3202 } 3203 3204 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3205 { 3206 } 3207 3208 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3209 { 3210 } 3211 3212 #endif /* CONFIG_NUMA_BALANCING */ 3213 3214 static void 3215 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3216 { 3217 update_load_add(&cfs_rq->load, se->load.weight); 3218 #ifdef CONFIG_SMP 3219 if (entity_is_task(se)) { 3220 struct rq *rq = rq_of(cfs_rq); 3221 3222 account_numa_enqueue(rq, task_of(se)); 3223 list_add(&se->group_node, &rq->cfs_tasks); 3224 } 3225 #endif 3226 cfs_rq->nr_running++; 3227 if (se_is_idle(se)) 3228 cfs_rq->idle_nr_running++; 3229 } 3230 3231 static void 3232 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3233 { 3234 update_load_sub(&cfs_rq->load, se->load.weight); 3235 #ifdef CONFIG_SMP 3236 if (entity_is_task(se)) { 3237 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3238 list_del_init(&se->group_node); 3239 } 3240 #endif 3241 cfs_rq->nr_running--; 3242 if (se_is_idle(se)) 3243 cfs_rq->idle_nr_running--; 3244 } 3245 3246 /* 3247 * Signed add and clamp on underflow. 3248 * 3249 * Explicitly do a load-store to ensure the intermediate value never hits 3250 * memory. This allows lockless observations without ever seeing the negative 3251 * values. 3252 */ 3253 #define add_positive(_ptr, _val) do { \ 3254 typeof(_ptr) ptr = (_ptr); \ 3255 typeof(_val) val = (_val); \ 3256 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3257 \ 3258 res = var + val; \ 3259 \ 3260 if (val < 0 && res > var) \ 3261 res = 0; \ 3262 \ 3263 WRITE_ONCE(*ptr, res); \ 3264 } while (0) 3265 3266 /* 3267 * Unsigned subtract and clamp on underflow. 3268 * 3269 * Explicitly do a load-store to ensure the intermediate value never hits 3270 * memory. This allows lockless observations without ever seeing the negative 3271 * values. 3272 */ 3273 #define sub_positive(_ptr, _val) do { \ 3274 typeof(_ptr) ptr = (_ptr); \ 3275 typeof(*ptr) val = (_val); \ 3276 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3277 res = var - val; \ 3278 if (res > var) \ 3279 res = 0; \ 3280 WRITE_ONCE(*ptr, res); \ 3281 } while (0) 3282 3283 /* 3284 * Remove and clamp on negative, from a local variable. 3285 * 3286 * A variant of sub_positive(), which does not use explicit load-store 3287 * and is thus optimized for local variable updates. 3288 */ 3289 #define lsub_positive(_ptr, _val) do { \ 3290 typeof(_ptr) ptr = (_ptr); \ 3291 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3292 } while (0) 3293 3294 #ifdef CONFIG_SMP 3295 static inline void 3296 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3297 { 3298 cfs_rq->avg.load_avg += se->avg.load_avg; 3299 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3300 } 3301 3302 static inline void 3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3304 { 3305 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3306 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3307 /* See update_cfs_rq_load_avg() */ 3308 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3309 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3310 } 3311 #else 3312 static inline void 3313 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3314 static inline void 3315 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3316 #endif 3317 3318 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3319 unsigned long weight) 3320 { 3321 if (se->on_rq) { 3322 /* commit outstanding execution time */ 3323 if (cfs_rq->curr == se) 3324 update_curr(cfs_rq); 3325 update_load_sub(&cfs_rq->load, se->load.weight); 3326 } 3327 dequeue_load_avg(cfs_rq, se); 3328 3329 update_load_set(&se->load, weight); 3330 3331 #ifdef CONFIG_SMP 3332 do { 3333 u32 divider = get_pelt_divider(&se->avg); 3334 3335 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3336 } while (0); 3337 #endif 3338 3339 enqueue_load_avg(cfs_rq, se); 3340 if (se->on_rq) 3341 update_load_add(&cfs_rq->load, se->load.weight); 3342 3343 } 3344 3345 void reweight_task(struct task_struct *p, int prio) 3346 { 3347 struct sched_entity *se = &p->se; 3348 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3349 struct load_weight *load = &se->load; 3350 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3351 3352 reweight_entity(cfs_rq, se, weight); 3353 load->inv_weight = sched_prio_to_wmult[prio]; 3354 } 3355 3356 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3357 3358 #ifdef CONFIG_FAIR_GROUP_SCHED 3359 #ifdef CONFIG_SMP 3360 /* 3361 * All this does is approximate the hierarchical proportion which includes that 3362 * global sum we all love to hate. 3363 * 3364 * That is, the weight of a group entity, is the proportional share of the 3365 * group weight based on the group runqueue weights. That is: 3366 * 3367 * tg->weight * grq->load.weight 3368 * ge->load.weight = ----------------------------- (1) 3369 * \Sum grq->load.weight 3370 * 3371 * Now, because computing that sum is prohibitively expensive to compute (been 3372 * there, done that) we approximate it with this average stuff. The average 3373 * moves slower and therefore the approximation is cheaper and more stable. 3374 * 3375 * So instead of the above, we substitute: 3376 * 3377 * grq->load.weight -> grq->avg.load_avg (2) 3378 * 3379 * which yields the following: 3380 * 3381 * tg->weight * grq->avg.load_avg 3382 * ge->load.weight = ------------------------------ (3) 3383 * tg->load_avg 3384 * 3385 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3386 * 3387 * That is shares_avg, and it is right (given the approximation (2)). 3388 * 3389 * The problem with it is that because the average is slow -- it was designed 3390 * to be exactly that of course -- this leads to transients in boundary 3391 * conditions. In specific, the case where the group was idle and we start the 3392 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3393 * yielding bad latency etc.. 3394 * 3395 * Now, in that special case (1) reduces to: 3396 * 3397 * tg->weight * grq->load.weight 3398 * ge->load.weight = ----------------------------- = tg->weight (4) 3399 * grp->load.weight 3400 * 3401 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3402 * 3403 * So what we do is modify our approximation (3) to approach (4) in the (near) 3404 * UP case, like: 3405 * 3406 * ge->load.weight = 3407 * 3408 * tg->weight * grq->load.weight 3409 * --------------------------------------------------- (5) 3410 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3411 * 3412 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3413 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3414 * 3415 * 3416 * tg->weight * grq->load.weight 3417 * ge->load.weight = ----------------------------- (6) 3418 * tg_load_avg' 3419 * 3420 * Where: 3421 * 3422 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3423 * max(grq->load.weight, grq->avg.load_avg) 3424 * 3425 * And that is shares_weight and is icky. In the (near) UP case it approaches 3426 * (4) while in the normal case it approaches (3). It consistently 3427 * overestimates the ge->load.weight and therefore: 3428 * 3429 * \Sum ge->load.weight >= tg->weight 3430 * 3431 * hence icky! 3432 */ 3433 static long calc_group_shares(struct cfs_rq *cfs_rq) 3434 { 3435 long tg_weight, tg_shares, load, shares; 3436 struct task_group *tg = cfs_rq->tg; 3437 3438 tg_shares = READ_ONCE(tg->shares); 3439 3440 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3441 3442 tg_weight = atomic_long_read(&tg->load_avg); 3443 3444 /* Ensure tg_weight >= load */ 3445 tg_weight -= cfs_rq->tg_load_avg_contrib; 3446 tg_weight += load; 3447 3448 shares = (tg_shares * load); 3449 if (tg_weight) 3450 shares /= tg_weight; 3451 3452 /* 3453 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3454 * of a group with small tg->shares value. It is a floor value which is 3455 * assigned as a minimum load.weight to the sched_entity representing 3456 * the group on a CPU. 3457 * 3458 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3459 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3460 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3461 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3462 * instead of 0. 3463 */ 3464 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3465 } 3466 #endif /* CONFIG_SMP */ 3467 3468 /* 3469 * Recomputes the group entity based on the current state of its group 3470 * runqueue. 3471 */ 3472 static void update_cfs_group(struct sched_entity *se) 3473 { 3474 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3475 long shares; 3476 3477 if (!gcfs_rq) 3478 return; 3479 3480 if (throttled_hierarchy(gcfs_rq)) 3481 return; 3482 3483 #ifndef CONFIG_SMP 3484 shares = READ_ONCE(gcfs_rq->tg->shares); 3485 3486 if (likely(se->load.weight == shares)) 3487 return; 3488 #else 3489 shares = calc_group_shares(gcfs_rq); 3490 #endif 3491 3492 reweight_entity(cfs_rq_of(se), se, shares); 3493 } 3494 3495 #else /* CONFIG_FAIR_GROUP_SCHED */ 3496 static inline void update_cfs_group(struct sched_entity *se) 3497 { 3498 } 3499 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3500 3501 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3502 { 3503 struct rq *rq = rq_of(cfs_rq); 3504 3505 if (&rq->cfs == cfs_rq) { 3506 /* 3507 * There are a few boundary cases this might miss but it should 3508 * get called often enough that that should (hopefully) not be 3509 * a real problem. 3510 * 3511 * It will not get called when we go idle, because the idle 3512 * thread is a different class (!fair), nor will the utilization 3513 * number include things like RT tasks. 3514 * 3515 * As is, the util number is not freq-invariant (we'd have to 3516 * implement arch_scale_freq_capacity() for that). 3517 * 3518 * See cpu_util_cfs(). 3519 */ 3520 cpufreq_update_util(rq, flags); 3521 } 3522 } 3523 3524 #ifdef CONFIG_SMP 3525 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3526 { 3527 if (sa->load_sum) 3528 return false; 3529 3530 if (sa->util_sum) 3531 return false; 3532 3533 if (sa->runnable_sum) 3534 return false; 3535 3536 /* 3537 * _avg must be null when _sum are null because _avg = _sum / divider 3538 * Make sure that rounding and/or propagation of PELT values never 3539 * break this. 3540 */ 3541 SCHED_WARN_ON(sa->load_avg || 3542 sa->util_avg || 3543 sa->runnable_avg); 3544 3545 return true; 3546 } 3547 3548 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3549 { 3550 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3551 cfs_rq->last_update_time_copy); 3552 } 3553 #ifdef CONFIG_FAIR_GROUP_SCHED 3554 /* 3555 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3556 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3557 * bottom-up, we only have to test whether the cfs_rq before us on the list 3558 * is our child. 3559 * If cfs_rq is not on the list, test whether a child needs its to be added to 3560 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3561 */ 3562 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3563 { 3564 struct cfs_rq *prev_cfs_rq; 3565 struct list_head *prev; 3566 3567 if (cfs_rq->on_list) { 3568 prev = cfs_rq->leaf_cfs_rq_list.prev; 3569 } else { 3570 struct rq *rq = rq_of(cfs_rq); 3571 3572 prev = rq->tmp_alone_branch; 3573 } 3574 3575 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3576 3577 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3578 } 3579 3580 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3581 { 3582 if (cfs_rq->load.weight) 3583 return false; 3584 3585 if (!load_avg_is_decayed(&cfs_rq->avg)) 3586 return false; 3587 3588 if (child_cfs_rq_on_list(cfs_rq)) 3589 return false; 3590 3591 return true; 3592 } 3593 3594 /** 3595 * update_tg_load_avg - update the tg's load avg 3596 * @cfs_rq: the cfs_rq whose avg changed 3597 * 3598 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3599 * However, because tg->load_avg is a global value there are performance 3600 * considerations. 3601 * 3602 * In order to avoid having to look at the other cfs_rq's, we use a 3603 * differential update where we store the last value we propagated. This in 3604 * turn allows skipping updates if the differential is 'small'. 3605 * 3606 * Updating tg's load_avg is necessary before update_cfs_share(). 3607 */ 3608 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3609 { 3610 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3611 3612 /* 3613 * No need to update load_avg for root_task_group as it is not used. 3614 */ 3615 if (cfs_rq->tg == &root_task_group) 3616 return; 3617 3618 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3619 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3620 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3621 } 3622 } 3623 3624 /* 3625 * Called within set_task_rq() right before setting a task's CPU. The 3626 * caller only guarantees p->pi_lock is held; no other assumptions, 3627 * including the state of rq->lock, should be made. 3628 */ 3629 void set_task_rq_fair(struct sched_entity *se, 3630 struct cfs_rq *prev, struct cfs_rq *next) 3631 { 3632 u64 p_last_update_time; 3633 u64 n_last_update_time; 3634 3635 if (!sched_feat(ATTACH_AGE_LOAD)) 3636 return; 3637 3638 /* 3639 * We are supposed to update the task to "current" time, then its up to 3640 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3641 * getting what current time is, so simply throw away the out-of-date 3642 * time. This will result in the wakee task is less decayed, but giving 3643 * the wakee more load sounds not bad. 3644 */ 3645 if (!(se->avg.last_update_time && prev)) 3646 return; 3647 3648 p_last_update_time = cfs_rq_last_update_time(prev); 3649 n_last_update_time = cfs_rq_last_update_time(next); 3650 3651 __update_load_avg_blocked_se(p_last_update_time, se); 3652 se->avg.last_update_time = n_last_update_time; 3653 } 3654 3655 /* 3656 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3657 * propagate its contribution. The key to this propagation is the invariant 3658 * that for each group: 3659 * 3660 * ge->avg == grq->avg (1) 3661 * 3662 * _IFF_ we look at the pure running and runnable sums. Because they 3663 * represent the very same entity, just at different points in the hierarchy. 3664 * 3665 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3666 * and simply copies the running/runnable sum over (but still wrong, because 3667 * the group entity and group rq do not have their PELT windows aligned). 3668 * 3669 * However, update_tg_cfs_load() is more complex. So we have: 3670 * 3671 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3672 * 3673 * And since, like util, the runnable part should be directly transferable, 3674 * the following would _appear_ to be the straight forward approach: 3675 * 3676 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3677 * 3678 * And per (1) we have: 3679 * 3680 * ge->avg.runnable_avg == grq->avg.runnable_avg 3681 * 3682 * Which gives: 3683 * 3684 * ge->load.weight * grq->avg.load_avg 3685 * ge->avg.load_avg = ----------------------------------- (4) 3686 * grq->load.weight 3687 * 3688 * Except that is wrong! 3689 * 3690 * Because while for entities historical weight is not important and we 3691 * really only care about our future and therefore can consider a pure 3692 * runnable sum, runqueues can NOT do this. 3693 * 3694 * We specifically want runqueues to have a load_avg that includes 3695 * historical weights. Those represent the blocked load, the load we expect 3696 * to (shortly) return to us. This only works by keeping the weights as 3697 * integral part of the sum. We therefore cannot decompose as per (3). 3698 * 3699 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3700 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3701 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3702 * runnable section of these tasks overlap (or not). If they were to perfectly 3703 * align the rq as a whole would be runnable 2/3 of the time. If however we 3704 * always have at least 1 runnable task, the rq as a whole is always runnable. 3705 * 3706 * So we'll have to approximate.. :/ 3707 * 3708 * Given the constraint: 3709 * 3710 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3711 * 3712 * We can construct a rule that adds runnable to a rq by assuming minimal 3713 * overlap. 3714 * 3715 * On removal, we'll assume each task is equally runnable; which yields: 3716 * 3717 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3718 * 3719 * XXX: only do this for the part of runnable > running ? 3720 * 3721 */ 3722 static inline void 3723 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3724 { 3725 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3726 u32 new_sum, divider; 3727 3728 /* Nothing to update */ 3729 if (!delta_avg) 3730 return; 3731 3732 /* 3733 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3734 * See ___update_load_avg() for details. 3735 */ 3736 divider = get_pelt_divider(&cfs_rq->avg); 3737 3738 3739 /* Set new sched_entity's utilization */ 3740 se->avg.util_avg = gcfs_rq->avg.util_avg; 3741 new_sum = se->avg.util_avg * divider; 3742 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3743 se->avg.util_sum = new_sum; 3744 3745 /* Update parent cfs_rq utilization */ 3746 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3747 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3748 3749 /* See update_cfs_rq_load_avg() */ 3750 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3751 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3752 } 3753 3754 static inline void 3755 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3756 { 3757 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3758 u32 new_sum, divider; 3759 3760 /* Nothing to update */ 3761 if (!delta_avg) 3762 return; 3763 3764 /* 3765 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3766 * See ___update_load_avg() for details. 3767 */ 3768 divider = get_pelt_divider(&cfs_rq->avg); 3769 3770 /* Set new sched_entity's runnable */ 3771 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3772 new_sum = se->avg.runnable_avg * divider; 3773 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3774 se->avg.runnable_sum = new_sum; 3775 3776 /* Update parent cfs_rq runnable */ 3777 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3778 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3779 /* See update_cfs_rq_load_avg() */ 3780 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3781 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3782 } 3783 3784 static inline void 3785 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3786 { 3787 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3788 unsigned long load_avg; 3789 u64 load_sum = 0; 3790 s64 delta_sum; 3791 u32 divider; 3792 3793 if (!runnable_sum) 3794 return; 3795 3796 gcfs_rq->prop_runnable_sum = 0; 3797 3798 /* 3799 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3800 * See ___update_load_avg() for details. 3801 */ 3802 divider = get_pelt_divider(&cfs_rq->avg); 3803 3804 if (runnable_sum >= 0) { 3805 /* 3806 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3807 * the CPU is saturated running == runnable. 3808 */ 3809 runnable_sum += se->avg.load_sum; 3810 runnable_sum = min_t(long, runnable_sum, divider); 3811 } else { 3812 /* 3813 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3814 * assuming all tasks are equally runnable. 3815 */ 3816 if (scale_load_down(gcfs_rq->load.weight)) { 3817 load_sum = div_u64(gcfs_rq->avg.load_sum, 3818 scale_load_down(gcfs_rq->load.weight)); 3819 } 3820 3821 /* But make sure to not inflate se's runnable */ 3822 runnable_sum = min(se->avg.load_sum, load_sum); 3823 } 3824 3825 /* 3826 * runnable_sum can't be lower than running_sum 3827 * Rescale running sum to be in the same range as runnable sum 3828 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3829 * runnable_sum is in [0 : LOAD_AVG_MAX] 3830 */ 3831 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3832 runnable_sum = max(runnable_sum, running_sum); 3833 3834 load_sum = se_weight(se) * runnable_sum; 3835 load_avg = div_u64(load_sum, divider); 3836 3837 delta_avg = load_avg - se->avg.load_avg; 3838 if (!delta_avg) 3839 return; 3840 3841 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3842 3843 se->avg.load_sum = runnable_sum; 3844 se->avg.load_avg = load_avg; 3845 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3846 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3847 /* See update_cfs_rq_load_avg() */ 3848 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3849 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3850 } 3851 3852 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3853 { 3854 cfs_rq->propagate = 1; 3855 cfs_rq->prop_runnable_sum += runnable_sum; 3856 } 3857 3858 /* Update task and its cfs_rq load average */ 3859 static inline int propagate_entity_load_avg(struct sched_entity *se) 3860 { 3861 struct cfs_rq *cfs_rq, *gcfs_rq; 3862 3863 if (entity_is_task(se)) 3864 return 0; 3865 3866 gcfs_rq = group_cfs_rq(se); 3867 if (!gcfs_rq->propagate) 3868 return 0; 3869 3870 gcfs_rq->propagate = 0; 3871 3872 cfs_rq = cfs_rq_of(se); 3873 3874 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3875 3876 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3877 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3878 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3879 3880 trace_pelt_cfs_tp(cfs_rq); 3881 trace_pelt_se_tp(se); 3882 3883 return 1; 3884 } 3885 3886 /* 3887 * Check if we need to update the load and the utilization of a blocked 3888 * group_entity: 3889 */ 3890 static inline bool skip_blocked_update(struct sched_entity *se) 3891 { 3892 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3893 3894 /* 3895 * If sched_entity still have not zero load or utilization, we have to 3896 * decay it: 3897 */ 3898 if (se->avg.load_avg || se->avg.util_avg) 3899 return false; 3900 3901 /* 3902 * If there is a pending propagation, we have to update the load and 3903 * the utilization of the sched_entity: 3904 */ 3905 if (gcfs_rq->propagate) 3906 return false; 3907 3908 /* 3909 * Otherwise, the load and the utilization of the sched_entity is 3910 * already zero and there is no pending propagation, so it will be a 3911 * waste of time to try to decay it: 3912 */ 3913 return true; 3914 } 3915 3916 #else /* CONFIG_FAIR_GROUP_SCHED */ 3917 3918 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3919 3920 static inline int propagate_entity_load_avg(struct sched_entity *se) 3921 { 3922 return 0; 3923 } 3924 3925 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3926 3927 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3928 3929 #ifdef CONFIG_NO_HZ_COMMON 3930 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3931 { 3932 u64 throttled = 0, now, lut; 3933 struct cfs_rq *cfs_rq; 3934 struct rq *rq; 3935 bool is_idle; 3936 3937 if (load_avg_is_decayed(&se->avg)) 3938 return; 3939 3940 cfs_rq = cfs_rq_of(se); 3941 rq = rq_of(cfs_rq); 3942 3943 rcu_read_lock(); 3944 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3945 rcu_read_unlock(); 3946 3947 /* 3948 * The lag estimation comes with a cost we don't want to pay all the 3949 * time. Hence, limiting to the case where the source CPU is idle and 3950 * we know we are at the greatest risk to have an outdated clock. 3951 */ 3952 if (!is_idle) 3953 return; 3954 3955 /* 3956 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3957 * 3958 * last_update_time (the cfs_rq's last_update_time) 3959 * = cfs_rq_clock_pelt()@cfs_rq_idle 3960 * = rq_clock_pelt()@cfs_rq_idle 3961 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3962 * 3963 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3964 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3965 * 3966 * rq_idle_lag (delta between now and rq's update) 3967 * = sched_clock_cpu() - rq_clock()@rq_idle 3968 * 3969 * We can then write: 3970 * 3971 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3972 * sched_clock_cpu() - rq_clock()@rq_idle 3973 * Where: 3974 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3975 * rq_clock()@rq_idle is rq->clock_idle 3976 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3977 * is cfs_rq->throttled_pelt_idle 3978 */ 3979 3980 #ifdef CONFIG_CFS_BANDWIDTH 3981 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3982 /* The clock has been stopped for throttling */ 3983 if (throttled == U64_MAX) 3984 return; 3985 #endif 3986 now = u64_u32_load(rq->clock_pelt_idle); 3987 /* 3988 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3989 * is observed the old clock_pelt_idle value and the new clock_idle, 3990 * which lead to an underestimation. The opposite would lead to an 3991 * overestimation. 3992 */ 3993 smp_rmb(); 3994 lut = cfs_rq_last_update_time(cfs_rq); 3995 3996 now -= throttled; 3997 if (now < lut) 3998 /* 3999 * cfs_rq->avg.last_update_time is more recent than our 4000 * estimation, let's use it. 4001 */ 4002 now = lut; 4003 else 4004 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4005 4006 __update_load_avg_blocked_se(now, se); 4007 } 4008 #else 4009 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4010 #endif 4011 4012 /** 4013 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4014 * @now: current time, as per cfs_rq_clock_pelt() 4015 * @cfs_rq: cfs_rq to update 4016 * 4017 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4018 * avg. The immediate corollary is that all (fair) tasks must be attached. 4019 * 4020 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4021 * 4022 * Return: true if the load decayed or we removed load. 4023 * 4024 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4025 * call update_tg_load_avg() when this function returns true. 4026 */ 4027 static inline int 4028 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4029 { 4030 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4031 struct sched_avg *sa = &cfs_rq->avg; 4032 int decayed = 0; 4033 4034 if (cfs_rq->removed.nr) { 4035 unsigned long r; 4036 u32 divider = get_pelt_divider(&cfs_rq->avg); 4037 4038 raw_spin_lock(&cfs_rq->removed.lock); 4039 swap(cfs_rq->removed.util_avg, removed_util); 4040 swap(cfs_rq->removed.load_avg, removed_load); 4041 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4042 cfs_rq->removed.nr = 0; 4043 raw_spin_unlock(&cfs_rq->removed.lock); 4044 4045 r = removed_load; 4046 sub_positive(&sa->load_avg, r); 4047 sub_positive(&sa->load_sum, r * divider); 4048 /* See sa->util_sum below */ 4049 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4050 4051 r = removed_util; 4052 sub_positive(&sa->util_avg, r); 4053 sub_positive(&sa->util_sum, r * divider); 4054 /* 4055 * Because of rounding, se->util_sum might ends up being +1 more than 4056 * cfs->util_sum. Although this is not a problem by itself, detaching 4057 * a lot of tasks with the rounding problem between 2 updates of 4058 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4059 * cfs_util_avg is not. 4060 * Check that util_sum is still above its lower bound for the new 4061 * util_avg. Given that period_contrib might have moved since the last 4062 * sync, we are only sure that util_sum must be above or equal to 4063 * util_avg * minimum possible divider 4064 */ 4065 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4066 4067 r = removed_runnable; 4068 sub_positive(&sa->runnable_avg, r); 4069 sub_positive(&sa->runnable_sum, r * divider); 4070 /* See sa->util_sum above */ 4071 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4072 sa->runnable_avg * PELT_MIN_DIVIDER); 4073 4074 /* 4075 * removed_runnable is the unweighted version of removed_load so we 4076 * can use it to estimate removed_load_sum. 4077 */ 4078 add_tg_cfs_propagate(cfs_rq, 4079 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4080 4081 decayed = 1; 4082 } 4083 4084 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4085 u64_u32_store_copy(sa->last_update_time, 4086 cfs_rq->last_update_time_copy, 4087 sa->last_update_time); 4088 return decayed; 4089 } 4090 4091 /** 4092 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4093 * @cfs_rq: cfs_rq to attach to 4094 * @se: sched_entity to attach 4095 * 4096 * Must call update_cfs_rq_load_avg() before this, since we rely on 4097 * cfs_rq->avg.last_update_time being current. 4098 */ 4099 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4100 { 4101 /* 4102 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4103 * See ___update_load_avg() for details. 4104 */ 4105 u32 divider = get_pelt_divider(&cfs_rq->avg); 4106 4107 /* 4108 * When we attach the @se to the @cfs_rq, we must align the decay 4109 * window because without that, really weird and wonderful things can 4110 * happen. 4111 * 4112 * XXX illustrate 4113 */ 4114 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4115 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4116 4117 /* 4118 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4119 * period_contrib. This isn't strictly correct, but since we're 4120 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4121 * _sum a little. 4122 */ 4123 se->avg.util_sum = se->avg.util_avg * divider; 4124 4125 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4126 4127 se->avg.load_sum = se->avg.load_avg * divider; 4128 if (se_weight(se) < se->avg.load_sum) 4129 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4130 else 4131 se->avg.load_sum = 1; 4132 4133 enqueue_load_avg(cfs_rq, se); 4134 cfs_rq->avg.util_avg += se->avg.util_avg; 4135 cfs_rq->avg.util_sum += se->avg.util_sum; 4136 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4137 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4138 4139 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4140 4141 cfs_rq_util_change(cfs_rq, 0); 4142 4143 trace_pelt_cfs_tp(cfs_rq); 4144 } 4145 4146 /** 4147 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4148 * @cfs_rq: cfs_rq to detach from 4149 * @se: sched_entity to detach 4150 * 4151 * Must call update_cfs_rq_load_avg() before this, since we rely on 4152 * cfs_rq->avg.last_update_time being current. 4153 */ 4154 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4155 { 4156 dequeue_load_avg(cfs_rq, se); 4157 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4158 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4159 /* See update_cfs_rq_load_avg() */ 4160 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4161 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4162 4163 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4164 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4165 /* See update_cfs_rq_load_avg() */ 4166 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4167 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4168 4169 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4170 4171 cfs_rq_util_change(cfs_rq, 0); 4172 4173 trace_pelt_cfs_tp(cfs_rq); 4174 } 4175 4176 /* 4177 * Optional action to be done while updating the load average 4178 */ 4179 #define UPDATE_TG 0x1 4180 #define SKIP_AGE_LOAD 0x2 4181 #define DO_ATTACH 0x4 4182 #define DO_DETACH 0x8 4183 4184 /* Update task and its cfs_rq load average */ 4185 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4186 { 4187 u64 now = cfs_rq_clock_pelt(cfs_rq); 4188 int decayed; 4189 4190 /* 4191 * Track task load average for carrying it to new CPU after migrated, and 4192 * track group sched_entity load average for task_h_load calc in migration 4193 */ 4194 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4195 __update_load_avg_se(now, cfs_rq, se); 4196 4197 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4198 decayed |= propagate_entity_load_avg(se); 4199 4200 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4201 4202 /* 4203 * DO_ATTACH means we're here from enqueue_entity(). 4204 * !last_update_time means we've passed through 4205 * migrate_task_rq_fair() indicating we migrated. 4206 * 4207 * IOW we're enqueueing a task on a new CPU. 4208 */ 4209 attach_entity_load_avg(cfs_rq, se); 4210 update_tg_load_avg(cfs_rq); 4211 4212 } else if (flags & DO_DETACH) { 4213 /* 4214 * DO_DETACH means we're here from dequeue_entity() 4215 * and we are migrating task out of the CPU. 4216 */ 4217 detach_entity_load_avg(cfs_rq, se); 4218 update_tg_load_avg(cfs_rq); 4219 } else if (decayed) { 4220 cfs_rq_util_change(cfs_rq, 0); 4221 4222 if (flags & UPDATE_TG) 4223 update_tg_load_avg(cfs_rq); 4224 } 4225 } 4226 4227 /* 4228 * Synchronize entity load avg of dequeued entity without locking 4229 * the previous rq. 4230 */ 4231 static void sync_entity_load_avg(struct sched_entity *se) 4232 { 4233 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4234 u64 last_update_time; 4235 4236 last_update_time = cfs_rq_last_update_time(cfs_rq); 4237 __update_load_avg_blocked_se(last_update_time, se); 4238 } 4239 4240 /* 4241 * Task first catches up with cfs_rq, and then subtract 4242 * itself from the cfs_rq (task must be off the queue now). 4243 */ 4244 static void remove_entity_load_avg(struct sched_entity *se) 4245 { 4246 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4247 unsigned long flags; 4248 4249 /* 4250 * tasks cannot exit without having gone through wake_up_new_task() -> 4251 * enqueue_task_fair() which will have added things to the cfs_rq, 4252 * so we can remove unconditionally. 4253 */ 4254 4255 sync_entity_load_avg(se); 4256 4257 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4258 ++cfs_rq->removed.nr; 4259 cfs_rq->removed.util_avg += se->avg.util_avg; 4260 cfs_rq->removed.load_avg += se->avg.load_avg; 4261 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4262 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4263 } 4264 4265 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4266 { 4267 return cfs_rq->avg.runnable_avg; 4268 } 4269 4270 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4271 { 4272 return cfs_rq->avg.load_avg; 4273 } 4274 4275 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4276 4277 static inline unsigned long task_util(struct task_struct *p) 4278 { 4279 return READ_ONCE(p->se.avg.util_avg); 4280 } 4281 4282 static inline unsigned long _task_util_est(struct task_struct *p) 4283 { 4284 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4285 4286 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4287 } 4288 4289 static inline unsigned long task_util_est(struct task_struct *p) 4290 { 4291 return max(task_util(p), _task_util_est(p)); 4292 } 4293 4294 #ifdef CONFIG_UCLAMP_TASK 4295 static inline unsigned long uclamp_task_util(struct task_struct *p, 4296 unsigned long uclamp_min, 4297 unsigned long uclamp_max) 4298 { 4299 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4300 } 4301 #else 4302 static inline unsigned long uclamp_task_util(struct task_struct *p, 4303 unsigned long uclamp_min, 4304 unsigned long uclamp_max) 4305 { 4306 return task_util_est(p); 4307 } 4308 #endif 4309 4310 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4311 struct task_struct *p) 4312 { 4313 unsigned int enqueued; 4314 4315 if (!sched_feat(UTIL_EST)) 4316 return; 4317 4318 /* Update root cfs_rq's estimated utilization */ 4319 enqueued = cfs_rq->avg.util_est.enqueued; 4320 enqueued += _task_util_est(p); 4321 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4322 4323 trace_sched_util_est_cfs_tp(cfs_rq); 4324 } 4325 4326 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4327 struct task_struct *p) 4328 { 4329 unsigned int enqueued; 4330 4331 if (!sched_feat(UTIL_EST)) 4332 return; 4333 4334 /* Update root cfs_rq's estimated utilization */ 4335 enqueued = cfs_rq->avg.util_est.enqueued; 4336 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4337 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4338 4339 trace_sched_util_est_cfs_tp(cfs_rq); 4340 } 4341 4342 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4343 4344 /* 4345 * Check if a (signed) value is within a specified (unsigned) margin, 4346 * based on the observation that: 4347 * 4348 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4349 * 4350 * NOTE: this only works when value + margin < INT_MAX. 4351 */ 4352 static inline bool within_margin(int value, int margin) 4353 { 4354 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4355 } 4356 4357 static inline void util_est_update(struct cfs_rq *cfs_rq, 4358 struct task_struct *p, 4359 bool task_sleep) 4360 { 4361 long last_ewma_diff, last_enqueued_diff; 4362 struct util_est ue; 4363 4364 if (!sched_feat(UTIL_EST)) 4365 return; 4366 4367 /* 4368 * Skip update of task's estimated utilization when the task has not 4369 * yet completed an activation, e.g. being migrated. 4370 */ 4371 if (!task_sleep) 4372 return; 4373 4374 /* 4375 * If the PELT values haven't changed since enqueue time, 4376 * skip the util_est update. 4377 */ 4378 ue = p->se.avg.util_est; 4379 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4380 return; 4381 4382 last_enqueued_diff = ue.enqueued; 4383 4384 /* 4385 * Reset EWMA on utilization increases, the moving average is used only 4386 * to smooth utilization decreases. 4387 */ 4388 ue.enqueued = task_util(p); 4389 if (sched_feat(UTIL_EST_FASTUP)) { 4390 if (ue.ewma < ue.enqueued) { 4391 ue.ewma = ue.enqueued; 4392 goto done; 4393 } 4394 } 4395 4396 /* 4397 * Skip update of task's estimated utilization when its members are 4398 * already ~1% close to its last activation value. 4399 */ 4400 last_ewma_diff = ue.enqueued - ue.ewma; 4401 last_enqueued_diff -= ue.enqueued; 4402 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4403 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4404 goto done; 4405 4406 return; 4407 } 4408 4409 /* 4410 * To avoid overestimation of actual task utilization, skip updates if 4411 * we cannot grant there is idle time in this CPU. 4412 */ 4413 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4414 return; 4415 4416 /* 4417 * Update Task's estimated utilization 4418 * 4419 * When *p completes an activation we can consolidate another sample 4420 * of the task size. This is done by storing the current PELT value 4421 * as ue.enqueued and by using this value to update the Exponential 4422 * Weighted Moving Average (EWMA): 4423 * 4424 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4425 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4426 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4427 * = w * ( last_ewma_diff ) + ewma(t-1) 4428 * = w * (last_ewma_diff + ewma(t-1) / w) 4429 * 4430 * Where 'w' is the weight of new samples, which is configured to be 4431 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4432 */ 4433 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4434 ue.ewma += last_ewma_diff; 4435 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4436 done: 4437 ue.enqueued |= UTIL_AVG_UNCHANGED; 4438 WRITE_ONCE(p->se.avg.util_est, ue); 4439 4440 trace_sched_util_est_se_tp(&p->se); 4441 } 4442 4443 static inline int util_fits_cpu(unsigned long util, 4444 unsigned long uclamp_min, 4445 unsigned long uclamp_max, 4446 int cpu) 4447 { 4448 unsigned long capacity_orig, capacity_orig_thermal; 4449 unsigned long capacity = capacity_of(cpu); 4450 bool fits, uclamp_max_fits; 4451 4452 /* 4453 * Check if the real util fits without any uclamp boost/cap applied. 4454 */ 4455 fits = fits_capacity(util, capacity); 4456 4457 if (!uclamp_is_used()) 4458 return fits; 4459 4460 /* 4461 * We must use capacity_orig_of() for comparing against uclamp_min and 4462 * uclamp_max. We only care about capacity pressure (by using 4463 * capacity_of()) for comparing against the real util. 4464 * 4465 * If a task is boosted to 1024 for example, we don't want a tiny 4466 * pressure to skew the check whether it fits a CPU or not. 4467 * 4468 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4469 * should fit a little cpu even if there's some pressure. 4470 * 4471 * Only exception is for thermal pressure since it has a direct impact 4472 * on available OPP of the system. 4473 * 4474 * We honour it for uclamp_min only as a drop in performance level 4475 * could result in not getting the requested minimum performance level. 4476 * 4477 * For uclamp_max, we can tolerate a drop in performance level as the 4478 * goal is to cap the task. So it's okay if it's getting less. 4479 * 4480 * In case of capacity inversion we should honour the inverted capacity 4481 * for both uclamp_min and uclamp_max all the time. 4482 */ 4483 capacity_orig = cpu_in_capacity_inversion(cpu); 4484 if (capacity_orig) { 4485 capacity_orig_thermal = capacity_orig; 4486 } else { 4487 capacity_orig = capacity_orig_of(cpu); 4488 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4489 } 4490 4491 /* 4492 * We want to force a task to fit a cpu as implied by uclamp_max. 4493 * But we do have some corner cases to cater for.. 4494 * 4495 * 4496 * C=z 4497 * | ___ 4498 * | C=y | | 4499 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4500 * | C=x | | | | 4501 * | ___ | | | | 4502 * | | | | | | | (util somewhere in this region) 4503 * | | | | | | | 4504 * | | | | | | | 4505 * +---------------------------------------- 4506 * cpu0 cpu1 cpu2 4507 * 4508 * In the above example if a task is capped to a specific performance 4509 * point, y, then when: 4510 * 4511 * * util = 80% of x then it does not fit on cpu0 and should migrate 4512 * to cpu1 4513 * * util = 80% of y then it is forced to fit on cpu1 to honour 4514 * uclamp_max request. 4515 * 4516 * which is what we're enforcing here. A task always fits if 4517 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4518 * the normal upmigration rules should withhold still. 4519 * 4520 * Only exception is when we are on max capacity, then we need to be 4521 * careful not to block overutilized state. This is so because: 4522 * 4523 * 1. There's no concept of capping at max_capacity! We can't go 4524 * beyond this performance level anyway. 4525 * 2. The system is being saturated when we're operating near 4526 * max capacity, it doesn't make sense to block overutilized. 4527 */ 4528 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4529 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4530 fits = fits || uclamp_max_fits; 4531 4532 /* 4533 * 4534 * C=z 4535 * | ___ (region a, capped, util >= uclamp_max) 4536 * | C=y | | 4537 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4538 * | C=x | | | | 4539 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4540 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4541 * | | | | | | | 4542 * | | | | | | | (region c, boosted, util < uclamp_min) 4543 * +---------------------------------------- 4544 * cpu0 cpu1 cpu2 4545 * 4546 * a) If util > uclamp_max, then we're capped, we don't care about 4547 * actual fitness value here. We only care if uclamp_max fits 4548 * capacity without taking margin/pressure into account. 4549 * See comment above. 4550 * 4551 * b) If uclamp_min <= util <= uclamp_max, then the normal 4552 * fits_capacity() rules apply. Except we need to ensure that we 4553 * enforce we remain within uclamp_max, see comment above. 4554 * 4555 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4556 * need to take into account the boosted value fits the CPU without 4557 * taking margin/pressure into account. 4558 * 4559 * Cases (a) and (b) are handled in the 'fits' variable already. We 4560 * just need to consider an extra check for case (c) after ensuring we 4561 * handle the case uclamp_min > uclamp_max. 4562 */ 4563 uclamp_min = min(uclamp_min, uclamp_max); 4564 if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE) 4565 fits = fits && (uclamp_min <= capacity_orig_thermal); 4566 4567 return fits; 4568 } 4569 4570 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4571 { 4572 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4573 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4574 unsigned long util = task_util_est(p); 4575 return util_fits_cpu(util, uclamp_min, uclamp_max, cpu); 4576 } 4577 4578 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4579 { 4580 if (!sched_asym_cpucap_active()) 4581 return; 4582 4583 if (!p || p->nr_cpus_allowed == 1) { 4584 rq->misfit_task_load = 0; 4585 return; 4586 } 4587 4588 if (task_fits_cpu(p, cpu_of(rq))) { 4589 rq->misfit_task_load = 0; 4590 return; 4591 } 4592 4593 /* 4594 * Make sure that misfit_task_load will not be null even if 4595 * task_h_load() returns 0. 4596 */ 4597 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4598 } 4599 4600 #else /* CONFIG_SMP */ 4601 4602 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4603 { 4604 return true; 4605 } 4606 4607 #define UPDATE_TG 0x0 4608 #define SKIP_AGE_LOAD 0x0 4609 #define DO_ATTACH 0x0 4610 #define DO_DETACH 0x0 4611 4612 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4613 { 4614 cfs_rq_util_change(cfs_rq, 0); 4615 } 4616 4617 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4618 4619 static inline void 4620 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4621 static inline void 4622 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4623 4624 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4625 { 4626 return 0; 4627 } 4628 4629 static inline void 4630 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4631 4632 static inline void 4633 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4634 4635 static inline void 4636 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4637 bool task_sleep) {} 4638 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4639 4640 #endif /* CONFIG_SMP */ 4641 4642 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4643 { 4644 #ifdef CONFIG_SCHED_DEBUG 4645 s64 d = se->vruntime - cfs_rq->min_vruntime; 4646 4647 if (d < 0) 4648 d = -d; 4649 4650 if (d > 3*sysctl_sched_latency) 4651 schedstat_inc(cfs_rq->nr_spread_over); 4652 #endif 4653 } 4654 4655 static void 4656 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4657 { 4658 u64 vruntime = cfs_rq->min_vruntime; 4659 4660 /* 4661 * The 'current' period is already promised to the current tasks, 4662 * however the extra weight of the new task will slow them down a 4663 * little, place the new task so that it fits in the slot that 4664 * stays open at the end. 4665 */ 4666 if (initial && sched_feat(START_DEBIT)) 4667 vruntime += sched_vslice(cfs_rq, se); 4668 4669 /* sleeps up to a single latency don't count. */ 4670 if (!initial) { 4671 unsigned long thresh; 4672 4673 if (se_is_idle(se)) 4674 thresh = sysctl_sched_min_granularity; 4675 else 4676 thresh = sysctl_sched_latency; 4677 4678 /* 4679 * Halve their sleep time's effect, to allow 4680 * for a gentler effect of sleepers: 4681 */ 4682 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4683 thresh >>= 1; 4684 4685 vruntime -= thresh; 4686 } 4687 4688 /* ensure we never gain time by being placed backwards. */ 4689 se->vruntime = max_vruntime(se->vruntime, vruntime); 4690 } 4691 4692 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4693 4694 static inline bool cfs_bandwidth_used(void); 4695 4696 /* 4697 * MIGRATION 4698 * 4699 * dequeue 4700 * update_curr() 4701 * update_min_vruntime() 4702 * vruntime -= min_vruntime 4703 * 4704 * enqueue 4705 * update_curr() 4706 * update_min_vruntime() 4707 * vruntime += min_vruntime 4708 * 4709 * this way the vruntime transition between RQs is done when both 4710 * min_vruntime are up-to-date. 4711 * 4712 * WAKEUP (remote) 4713 * 4714 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4715 * vruntime -= min_vruntime 4716 * 4717 * enqueue 4718 * update_curr() 4719 * update_min_vruntime() 4720 * vruntime += min_vruntime 4721 * 4722 * this way we don't have the most up-to-date min_vruntime on the originating 4723 * CPU and an up-to-date min_vruntime on the destination CPU. 4724 */ 4725 4726 static void 4727 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4728 { 4729 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4730 bool curr = cfs_rq->curr == se; 4731 4732 /* 4733 * If we're the current task, we must renormalise before calling 4734 * update_curr(). 4735 */ 4736 if (renorm && curr) 4737 se->vruntime += cfs_rq->min_vruntime; 4738 4739 update_curr(cfs_rq); 4740 4741 /* 4742 * Otherwise, renormalise after, such that we're placed at the current 4743 * moment in time, instead of some random moment in the past. Being 4744 * placed in the past could significantly boost this task to the 4745 * fairness detriment of existing tasks. 4746 */ 4747 if (renorm && !curr) 4748 se->vruntime += cfs_rq->min_vruntime; 4749 4750 /* 4751 * When enqueuing a sched_entity, we must: 4752 * - Update loads to have both entity and cfs_rq synced with now. 4753 * - For group_entity, update its runnable_weight to reflect the new 4754 * h_nr_running of its group cfs_rq. 4755 * - For group_entity, update its weight to reflect the new share of 4756 * its group cfs_rq 4757 * - Add its new weight to cfs_rq->load.weight 4758 */ 4759 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4760 se_update_runnable(se); 4761 update_cfs_group(se); 4762 account_entity_enqueue(cfs_rq, se); 4763 4764 if (flags & ENQUEUE_WAKEUP) 4765 place_entity(cfs_rq, se, 0); 4766 4767 check_schedstat_required(); 4768 update_stats_enqueue_fair(cfs_rq, se, flags); 4769 check_spread(cfs_rq, se); 4770 if (!curr) 4771 __enqueue_entity(cfs_rq, se); 4772 se->on_rq = 1; 4773 4774 if (cfs_rq->nr_running == 1) { 4775 check_enqueue_throttle(cfs_rq); 4776 if (!throttled_hierarchy(cfs_rq)) 4777 list_add_leaf_cfs_rq(cfs_rq); 4778 } 4779 } 4780 4781 static void __clear_buddies_last(struct sched_entity *se) 4782 { 4783 for_each_sched_entity(se) { 4784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4785 if (cfs_rq->last != se) 4786 break; 4787 4788 cfs_rq->last = NULL; 4789 } 4790 } 4791 4792 static void __clear_buddies_next(struct sched_entity *se) 4793 { 4794 for_each_sched_entity(se) { 4795 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4796 if (cfs_rq->next != se) 4797 break; 4798 4799 cfs_rq->next = NULL; 4800 } 4801 } 4802 4803 static void __clear_buddies_skip(struct sched_entity *se) 4804 { 4805 for_each_sched_entity(se) { 4806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4807 if (cfs_rq->skip != se) 4808 break; 4809 4810 cfs_rq->skip = NULL; 4811 } 4812 } 4813 4814 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4815 { 4816 if (cfs_rq->last == se) 4817 __clear_buddies_last(se); 4818 4819 if (cfs_rq->next == se) 4820 __clear_buddies_next(se); 4821 4822 if (cfs_rq->skip == se) 4823 __clear_buddies_skip(se); 4824 } 4825 4826 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4827 4828 static void 4829 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4830 { 4831 int action = UPDATE_TG; 4832 4833 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4834 action |= DO_DETACH; 4835 4836 /* 4837 * Update run-time statistics of the 'current'. 4838 */ 4839 update_curr(cfs_rq); 4840 4841 /* 4842 * When dequeuing a sched_entity, we must: 4843 * - Update loads to have both entity and cfs_rq synced with now. 4844 * - For group_entity, update its runnable_weight to reflect the new 4845 * h_nr_running of its group cfs_rq. 4846 * - Subtract its previous weight from cfs_rq->load.weight. 4847 * - For group entity, update its weight to reflect the new share 4848 * of its group cfs_rq. 4849 */ 4850 update_load_avg(cfs_rq, se, action); 4851 se_update_runnable(se); 4852 4853 update_stats_dequeue_fair(cfs_rq, se, flags); 4854 4855 clear_buddies(cfs_rq, se); 4856 4857 if (se != cfs_rq->curr) 4858 __dequeue_entity(cfs_rq, se); 4859 se->on_rq = 0; 4860 account_entity_dequeue(cfs_rq, se); 4861 4862 /* 4863 * Normalize after update_curr(); which will also have moved 4864 * min_vruntime if @se is the one holding it back. But before doing 4865 * update_min_vruntime() again, which will discount @se's position and 4866 * can move min_vruntime forward still more. 4867 */ 4868 if (!(flags & DEQUEUE_SLEEP)) 4869 se->vruntime -= cfs_rq->min_vruntime; 4870 4871 /* return excess runtime on last dequeue */ 4872 return_cfs_rq_runtime(cfs_rq); 4873 4874 update_cfs_group(se); 4875 4876 /* 4877 * Now advance min_vruntime if @se was the entity holding it back, 4878 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4879 * put back on, and if we advance min_vruntime, we'll be placed back 4880 * further than we started -- ie. we'll be penalized. 4881 */ 4882 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4883 update_min_vruntime(cfs_rq); 4884 4885 if (cfs_rq->nr_running == 0) 4886 update_idle_cfs_rq_clock_pelt(cfs_rq); 4887 } 4888 4889 /* 4890 * Preempt the current task with a newly woken task if needed: 4891 */ 4892 static void 4893 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4894 { 4895 unsigned long ideal_runtime, delta_exec; 4896 struct sched_entity *se; 4897 s64 delta; 4898 4899 ideal_runtime = sched_slice(cfs_rq, curr); 4900 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4901 if (delta_exec > ideal_runtime) { 4902 resched_curr(rq_of(cfs_rq)); 4903 /* 4904 * The current task ran long enough, ensure it doesn't get 4905 * re-elected due to buddy favours. 4906 */ 4907 clear_buddies(cfs_rq, curr); 4908 return; 4909 } 4910 4911 /* 4912 * Ensure that a task that missed wakeup preemption by a 4913 * narrow margin doesn't have to wait for a full slice. 4914 * This also mitigates buddy induced latencies under load. 4915 */ 4916 if (delta_exec < sysctl_sched_min_granularity) 4917 return; 4918 4919 se = __pick_first_entity(cfs_rq); 4920 delta = curr->vruntime - se->vruntime; 4921 4922 if (delta < 0) 4923 return; 4924 4925 if (delta > ideal_runtime) 4926 resched_curr(rq_of(cfs_rq)); 4927 } 4928 4929 static void 4930 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4931 { 4932 clear_buddies(cfs_rq, se); 4933 4934 /* 'current' is not kept within the tree. */ 4935 if (se->on_rq) { 4936 /* 4937 * Any task has to be enqueued before it get to execute on 4938 * a CPU. So account for the time it spent waiting on the 4939 * runqueue. 4940 */ 4941 update_stats_wait_end_fair(cfs_rq, se); 4942 __dequeue_entity(cfs_rq, se); 4943 update_load_avg(cfs_rq, se, UPDATE_TG); 4944 } 4945 4946 update_stats_curr_start(cfs_rq, se); 4947 cfs_rq->curr = se; 4948 4949 /* 4950 * Track our maximum slice length, if the CPU's load is at 4951 * least twice that of our own weight (i.e. dont track it 4952 * when there are only lesser-weight tasks around): 4953 */ 4954 if (schedstat_enabled() && 4955 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4956 struct sched_statistics *stats; 4957 4958 stats = __schedstats_from_se(se); 4959 __schedstat_set(stats->slice_max, 4960 max((u64)stats->slice_max, 4961 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4962 } 4963 4964 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4965 } 4966 4967 static int 4968 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4969 4970 /* 4971 * Pick the next process, keeping these things in mind, in this order: 4972 * 1) keep things fair between processes/task groups 4973 * 2) pick the "next" process, since someone really wants that to run 4974 * 3) pick the "last" process, for cache locality 4975 * 4) do not run the "skip" process, if something else is available 4976 */ 4977 static struct sched_entity * 4978 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4979 { 4980 struct sched_entity *left = __pick_first_entity(cfs_rq); 4981 struct sched_entity *se; 4982 4983 /* 4984 * If curr is set we have to see if its left of the leftmost entity 4985 * still in the tree, provided there was anything in the tree at all. 4986 */ 4987 if (!left || (curr && entity_before(curr, left))) 4988 left = curr; 4989 4990 se = left; /* ideally we run the leftmost entity */ 4991 4992 /* 4993 * Avoid running the skip buddy, if running something else can 4994 * be done without getting too unfair. 4995 */ 4996 if (cfs_rq->skip && cfs_rq->skip == se) { 4997 struct sched_entity *second; 4998 4999 if (se == curr) { 5000 second = __pick_first_entity(cfs_rq); 5001 } else { 5002 second = __pick_next_entity(se); 5003 if (!second || (curr && entity_before(curr, second))) 5004 second = curr; 5005 } 5006 5007 if (second && wakeup_preempt_entity(second, left) < 1) 5008 se = second; 5009 } 5010 5011 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 5012 /* 5013 * Someone really wants this to run. If it's not unfair, run it. 5014 */ 5015 se = cfs_rq->next; 5016 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 5017 /* 5018 * Prefer last buddy, try to return the CPU to a preempted task. 5019 */ 5020 se = cfs_rq->last; 5021 } 5022 5023 return se; 5024 } 5025 5026 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5027 5028 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5029 { 5030 /* 5031 * If still on the runqueue then deactivate_task() 5032 * was not called and update_curr() has to be done: 5033 */ 5034 if (prev->on_rq) 5035 update_curr(cfs_rq); 5036 5037 /* throttle cfs_rqs exceeding runtime */ 5038 check_cfs_rq_runtime(cfs_rq); 5039 5040 check_spread(cfs_rq, prev); 5041 5042 if (prev->on_rq) { 5043 update_stats_wait_start_fair(cfs_rq, prev); 5044 /* Put 'current' back into the tree. */ 5045 __enqueue_entity(cfs_rq, prev); 5046 /* in !on_rq case, update occurred at dequeue */ 5047 update_load_avg(cfs_rq, prev, 0); 5048 } 5049 cfs_rq->curr = NULL; 5050 } 5051 5052 static void 5053 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5054 { 5055 /* 5056 * Update run-time statistics of the 'current'. 5057 */ 5058 update_curr(cfs_rq); 5059 5060 /* 5061 * Ensure that runnable average is periodically updated. 5062 */ 5063 update_load_avg(cfs_rq, curr, UPDATE_TG); 5064 update_cfs_group(curr); 5065 5066 #ifdef CONFIG_SCHED_HRTICK 5067 /* 5068 * queued ticks are scheduled to match the slice, so don't bother 5069 * validating it and just reschedule. 5070 */ 5071 if (queued) { 5072 resched_curr(rq_of(cfs_rq)); 5073 return; 5074 } 5075 /* 5076 * don't let the period tick interfere with the hrtick preemption 5077 */ 5078 if (!sched_feat(DOUBLE_TICK) && 5079 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5080 return; 5081 #endif 5082 5083 if (cfs_rq->nr_running > 1) 5084 check_preempt_tick(cfs_rq, curr); 5085 } 5086 5087 5088 /************************************************** 5089 * CFS bandwidth control machinery 5090 */ 5091 5092 #ifdef CONFIG_CFS_BANDWIDTH 5093 5094 #ifdef CONFIG_JUMP_LABEL 5095 static struct static_key __cfs_bandwidth_used; 5096 5097 static inline bool cfs_bandwidth_used(void) 5098 { 5099 return static_key_false(&__cfs_bandwidth_used); 5100 } 5101 5102 void cfs_bandwidth_usage_inc(void) 5103 { 5104 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5105 } 5106 5107 void cfs_bandwidth_usage_dec(void) 5108 { 5109 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5110 } 5111 #else /* CONFIG_JUMP_LABEL */ 5112 static bool cfs_bandwidth_used(void) 5113 { 5114 return true; 5115 } 5116 5117 void cfs_bandwidth_usage_inc(void) {} 5118 void cfs_bandwidth_usage_dec(void) {} 5119 #endif /* CONFIG_JUMP_LABEL */ 5120 5121 /* 5122 * default period for cfs group bandwidth. 5123 * default: 0.1s, units: nanoseconds 5124 */ 5125 static inline u64 default_cfs_period(void) 5126 { 5127 return 100000000ULL; 5128 } 5129 5130 static inline u64 sched_cfs_bandwidth_slice(void) 5131 { 5132 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5133 } 5134 5135 /* 5136 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5137 * directly instead of rq->clock to avoid adding additional synchronization 5138 * around rq->lock. 5139 * 5140 * requires cfs_b->lock 5141 */ 5142 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5143 { 5144 s64 runtime; 5145 5146 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5147 return; 5148 5149 cfs_b->runtime += cfs_b->quota; 5150 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5151 if (runtime > 0) { 5152 cfs_b->burst_time += runtime; 5153 cfs_b->nr_burst++; 5154 } 5155 5156 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5157 cfs_b->runtime_snap = cfs_b->runtime; 5158 } 5159 5160 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5161 { 5162 return &tg->cfs_bandwidth; 5163 } 5164 5165 /* returns 0 on failure to allocate runtime */ 5166 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5167 struct cfs_rq *cfs_rq, u64 target_runtime) 5168 { 5169 u64 min_amount, amount = 0; 5170 5171 lockdep_assert_held(&cfs_b->lock); 5172 5173 /* note: this is a positive sum as runtime_remaining <= 0 */ 5174 min_amount = target_runtime - cfs_rq->runtime_remaining; 5175 5176 if (cfs_b->quota == RUNTIME_INF) 5177 amount = min_amount; 5178 else { 5179 start_cfs_bandwidth(cfs_b); 5180 5181 if (cfs_b->runtime > 0) { 5182 amount = min(cfs_b->runtime, min_amount); 5183 cfs_b->runtime -= amount; 5184 cfs_b->idle = 0; 5185 } 5186 } 5187 5188 cfs_rq->runtime_remaining += amount; 5189 5190 return cfs_rq->runtime_remaining > 0; 5191 } 5192 5193 /* returns 0 on failure to allocate runtime */ 5194 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5195 { 5196 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5197 int ret; 5198 5199 raw_spin_lock(&cfs_b->lock); 5200 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5201 raw_spin_unlock(&cfs_b->lock); 5202 5203 return ret; 5204 } 5205 5206 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5207 { 5208 /* dock delta_exec before expiring quota (as it could span periods) */ 5209 cfs_rq->runtime_remaining -= delta_exec; 5210 5211 if (likely(cfs_rq->runtime_remaining > 0)) 5212 return; 5213 5214 if (cfs_rq->throttled) 5215 return; 5216 /* 5217 * if we're unable to extend our runtime we resched so that the active 5218 * hierarchy can be throttled 5219 */ 5220 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5221 resched_curr(rq_of(cfs_rq)); 5222 } 5223 5224 static __always_inline 5225 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5226 { 5227 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5228 return; 5229 5230 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5231 } 5232 5233 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5234 { 5235 return cfs_bandwidth_used() && cfs_rq->throttled; 5236 } 5237 5238 /* check whether cfs_rq, or any parent, is throttled */ 5239 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5240 { 5241 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5242 } 5243 5244 /* 5245 * Ensure that neither of the group entities corresponding to src_cpu or 5246 * dest_cpu are members of a throttled hierarchy when performing group 5247 * load-balance operations. 5248 */ 5249 static inline int throttled_lb_pair(struct task_group *tg, 5250 int src_cpu, int dest_cpu) 5251 { 5252 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5253 5254 src_cfs_rq = tg->cfs_rq[src_cpu]; 5255 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5256 5257 return throttled_hierarchy(src_cfs_rq) || 5258 throttled_hierarchy(dest_cfs_rq); 5259 } 5260 5261 static int tg_unthrottle_up(struct task_group *tg, void *data) 5262 { 5263 struct rq *rq = data; 5264 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5265 5266 cfs_rq->throttle_count--; 5267 if (!cfs_rq->throttle_count) { 5268 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5269 cfs_rq->throttled_clock_pelt; 5270 5271 /* Add cfs_rq with load or one or more already running entities to the list */ 5272 if (!cfs_rq_is_decayed(cfs_rq)) 5273 list_add_leaf_cfs_rq(cfs_rq); 5274 } 5275 5276 return 0; 5277 } 5278 5279 static int tg_throttle_down(struct task_group *tg, void *data) 5280 { 5281 struct rq *rq = data; 5282 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5283 5284 /* group is entering throttled state, stop time */ 5285 if (!cfs_rq->throttle_count) { 5286 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5287 list_del_leaf_cfs_rq(cfs_rq); 5288 } 5289 cfs_rq->throttle_count++; 5290 5291 return 0; 5292 } 5293 5294 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5295 { 5296 struct rq *rq = rq_of(cfs_rq); 5297 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5298 struct sched_entity *se; 5299 long task_delta, idle_task_delta, dequeue = 1; 5300 5301 raw_spin_lock(&cfs_b->lock); 5302 /* This will start the period timer if necessary */ 5303 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5304 /* 5305 * We have raced with bandwidth becoming available, and if we 5306 * actually throttled the timer might not unthrottle us for an 5307 * entire period. We additionally needed to make sure that any 5308 * subsequent check_cfs_rq_runtime calls agree not to throttle 5309 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5310 * for 1ns of runtime rather than just check cfs_b. 5311 */ 5312 dequeue = 0; 5313 } else { 5314 list_add_tail_rcu(&cfs_rq->throttled_list, 5315 &cfs_b->throttled_cfs_rq); 5316 } 5317 raw_spin_unlock(&cfs_b->lock); 5318 5319 if (!dequeue) 5320 return false; /* Throttle no longer required. */ 5321 5322 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5323 5324 /* freeze hierarchy runnable averages while throttled */ 5325 rcu_read_lock(); 5326 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5327 rcu_read_unlock(); 5328 5329 task_delta = cfs_rq->h_nr_running; 5330 idle_task_delta = cfs_rq->idle_h_nr_running; 5331 for_each_sched_entity(se) { 5332 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5333 /* throttled entity or throttle-on-deactivate */ 5334 if (!se->on_rq) 5335 goto done; 5336 5337 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5338 5339 if (cfs_rq_is_idle(group_cfs_rq(se))) 5340 idle_task_delta = cfs_rq->h_nr_running; 5341 5342 qcfs_rq->h_nr_running -= task_delta; 5343 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5344 5345 if (qcfs_rq->load.weight) { 5346 /* Avoid re-evaluating load for this entity: */ 5347 se = parent_entity(se); 5348 break; 5349 } 5350 } 5351 5352 for_each_sched_entity(se) { 5353 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5354 /* throttled entity or throttle-on-deactivate */ 5355 if (!se->on_rq) 5356 goto done; 5357 5358 update_load_avg(qcfs_rq, se, 0); 5359 se_update_runnable(se); 5360 5361 if (cfs_rq_is_idle(group_cfs_rq(se))) 5362 idle_task_delta = cfs_rq->h_nr_running; 5363 5364 qcfs_rq->h_nr_running -= task_delta; 5365 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5366 } 5367 5368 /* At this point se is NULL and we are at root level*/ 5369 sub_nr_running(rq, task_delta); 5370 5371 done: 5372 /* 5373 * Note: distribution will already see us throttled via the 5374 * throttled-list. rq->lock protects completion. 5375 */ 5376 cfs_rq->throttled = 1; 5377 cfs_rq->throttled_clock = rq_clock(rq); 5378 return true; 5379 } 5380 5381 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5382 { 5383 struct rq *rq = rq_of(cfs_rq); 5384 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5385 struct sched_entity *se; 5386 long task_delta, idle_task_delta; 5387 5388 se = cfs_rq->tg->se[cpu_of(rq)]; 5389 5390 cfs_rq->throttled = 0; 5391 5392 update_rq_clock(rq); 5393 5394 raw_spin_lock(&cfs_b->lock); 5395 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5396 list_del_rcu(&cfs_rq->throttled_list); 5397 raw_spin_unlock(&cfs_b->lock); 5398 5399 /* update hierarchical throttle state */ 5400 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5401 5402 if (!cfs_rq->load.weight) { 5403 if (!cfs_rq->on_list) 5404 return; 5405 /* 5406 * Nothing to run but something to decay (on_list)? 5407 * Complete the branch. 5408 */ 5409 for_each_sched_entity(se) { 5410 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5411 break; 5412 } 5413 goto unthrottle_throttle; 5414 } 5415 5416 task_delta = cfs_rq->h_nr_running; 5417 idle_task_delta = cfs_rq->idle_h_nr_running; 5418 for_each_sched_entity(se) { 5419 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5420 5421 if (se->on_rq) 5422 break; 5423 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5424 5425 if (cfs_rq_is_idle(group_cfs_rq(se))) 5426 idle_task_delta = cfs_rq->h_nr_running; 5427 5428 qcfs_rq->h_nr_running += task_delta; 5429 qcfs_rq->idle_h_nr_running += idle_task_delta; 5430 5431 /* end evaluation on encountering a throttled cfs_rq */ 5432 if (cfs_rq_throttled(qcfs_rq)) 5433 goto unthrottle_throttle; 5434 } 5435 5436 for_each_sched_entity(se) { 5437 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5438 5439 update_load_avg(qcfs_rq, se, UPDATE_TG); 5440 se_update_runnable(se); 5441 5442 if (cfs_rq_is_idle(group_cfs_rq(se))) 5443 idle_task_delta = cfs_rq->h_nr_running; 5444 5445 qcfs_rq->h_nr_running += task_delta; 5446 qcfs_rq->idle_h_nr_running += idle_task_delta; 5447 5448 /* end evaluation on encountering a throttled cfs_rq */ 5449 if (cfs_rq_throttled(qcfs_rq)) 5450 goto unthrottle_throttle; 5451 } 5452 5453 /* At this point se is NULL and we are at root level*/ 5454 add_nr_running(rq, task_delta); 5455 5456 unthrottle_throttle: 5457 assert_list_leaf_cfs_rq(rq); 5458 5459 /* Determine whether we need to wake up potentially idle CPU: */ 5460 if (rq->curr == rq->idle && rq->cfs.nr_running) 5461 resched_curr(rq); 5462 } 5463 5464 #ifdef CONFIG_SMP 5465 static void __cfsb_csd_unthrottle(void *arg) 5466 { 5467 struct cfs_rq *cursor, *tmp; 5468 struct rq *rq = arg; 5469 struct rq_flags rf; 5470 5471 rq_lock(rq, &rf); 5472 5473 /* 5474 * Since we hold rq lock we're safe from concurrent manipulation of 5475 * the CSD list. However, this RCU critical section annotates the 5476 * fact that we pair with sched_free_group_rcu(), so that we cannot 5477 * race with group being freed in the window between removing it 5478 * from the list and advancing to the next entry in the list. 5479 */ 5480 rcu_read_lock(); 5481 5482 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5483 throttled_csd_list) { 5484 list_del_init(&cursor->throttled_csd_list); 5485 5486 if (cfs_rq_throttled(cursor)) 5487 unthrottle_cfs_rq(cursor); 5488 } 5489 5490 rcu_read_unlock(); 5491 5492 rq_unlock(rq, &rf); 5493 } 5494 5495 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5496 { 5497 struct rq *rq = rq_of(cfs_rq); 5498 bool first; 5499 5500 if (rq == this_rq()) { 5501 unthrottle_cfs_rq(cfs_rq); 5502 return; 5503 } 5504 5505 /* Already enqueued */ 5506 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5507 return; 5508 5509 first = list_empty(&rq->cfsb_csd_list); 5510 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5511 if (first) 5512 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5513 } 5514 #else 5515 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5516 { 5517 unthrottle_cfs_rq(cfs_rq); 5518 } 5519 #endif 5520 5521 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5522 { 5523 lockdep_assert_rq_held(rq_of(cfs_rq)); 5524 5525 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5526 cfs_rq->runtime_remaining <= 0)) 5527 return; 5528 5529 __unthrottle_cfs_rq_async(cfs_rq); 5530 } 5531 5532 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5533 { 5534 struct cfs_rq *local_unthrottle = NULL; 5535 int this_cpu = smp_processor_id(); 5536 u64 runtime, remaining = 1; 5537 bool throttled = false; 5538 struct cfs_rq *cfs_rq; 5539 struct rq_flags rf; 5540 struct rq *rq; 5541 5542 rcu_read_lock(); 5543 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5544 throttled_list) { 5545 rq = rq_of(cfs_rq); 5546 5547 if (!remaining) { 5548 throttled = true; 5549 break; 5550 } 5551 5552 rq_lock_irqsave(rq, &rf); 5553 if (!cfs_rq_throttled(cfs_rq)) 5554 goto next; 5555 5556 #ifdef CONFIG_SMP 5557 /* Already queued for async unthrottle */ 5558 if (!list_empty(&cfs_rq->throttled_csd_list)) 5559 goto next; 5560 #endif 5561 5562 /* By the above checks, this should never be true */ 5563 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5564 5565 raw_spin_lock(&cfs_b->lock); 5566 runtime = -cfs_rq->runtime_remaining + 1; 5567 if (runtime > cfs_b->runtime) 5568 runtime = cfs_b->runtime; 5569 cfs_b->runtime -= runtime; 5570 remaining = cfs_b->runtime; 5571 raw_spin_unlock(&cfs_b->lock); 5572 5573 cfs_rq->runtime_remaining += runtime; 5574 5575 /* we check whether we're throttled above */ 5576 if (cfs_rq->runtime_remaining > 0) { 5577 if (cpu_of(rq) != this_cpu || 5578 SCHED_WARN_ON(local_unthrottle)) 5579 unthrottle_cfs_rq_async(cfs_rq); 5580 else 5581 local_unthrottle = cfs_rq; 5582 } else { 5583 throttled = true; 5584 } 5585 5586 next: 5587 rq_unlock_irqrestore(rq, &rf); 5588 } 5589 rcu_read_unlock(); 5590 5591 if (local_unthrottle) { 5592 rq = cpu_rq(this_cpu); 5593 rq_lock_irqsave(rq, &rf); 5594 if (cfs_rq_throttled(local_unthrottle)) 5595 unthrottle_cfs_rq(local_unthrottle); 5596 rq_unlock_irqrestore(rq, &rf); 5597 } 5598 5599 return throttled; 5600 } 5601 5602 /* 5603 * Responsible for refilling a task_group's bandwidth and unthrottling its 5604 * cfs_rqs as appropriate. If there has been no activity within the last 5605 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5606 * used to track this state. 5607 */ 5608 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5609 { 5610 int throttled; 5611 5612 /* no need to continue the timer with no bandwidth constraint */ 5613 if (cfs_b->quota == RUNTIME_INF) 5614 goto out_deactivate; 5615 5616 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5617 cfs_b->nr_periods += overrun; 5618 5619 /* Refill extra burst quota even if cfs_b->idle */ 5620 __refill_cfs_bandwidth_runtime(cfs_b); 5621 5622 /* 5623 * idle depends on !throttled (for the case of a large deficit), and if 5624 * we're going inactive then everything else can be deferred 5625 */ 5626 if (cfs_b->idle && !throttled) 5627 goto out_deactivate; 5628 5629 if (!throttled) { 5630 /* mark as potentially idle for the upcoming period */ 5631 cfs_b->idle = 1; 5632 return 0; 5633 } 5634 5635 /* account preceding periods in which throttling occurred */ 5636 cfs_b->nr_throttled += overrun; 5637 5638 /* 5639 * This check is repeated as we release cfs_b->lock while we unthrottle. 5640 */ 5641 while (throttled && cfs_b->runtime > 0) { 5642 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5643 /* we can't nest cfs_b->lock while distributing bandwidth */ 5644 throttled = distribute_cfs_runtime(cfs_b); 5645 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5646 } 5647 5648 /* 5649 * While we are ensured activity in the period following an 5650 * unthrottle, this also covers the case in which the new bandwidth is 5651 * insufficient to cover the existing bandwidth deficit. (Forcing the 5652 * timer to remain active while there are any throttled entities.) 5653 */ 5654 cfs_b->idle = 0; 5655 5656 return 0; 5657 5658 out_deactivate: 5659 return 1; 5660 } 5661 5662 /* a cfs_rq won't donate quota below this amount */ 5663 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5664 /* minimum remaining period time to redistribute slack quota */ 5665 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5666 /* how long we wait to gather additional slack before distributing */ 5667 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5668 5669 /* 5670 * Are we near the end of the current quota period? 5671 * 5672 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5673 * hrtimer base being cleared by hrtimer_start. In the case of 5674 * migrate_hrtimers, base is never cleared, so we are fine. 5675 */ 5676 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5677 { 5678 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5679 s64 remaining; 5680 5681 /* if the call-back is running a quota refresh is already occurring */ 5682 if (hrtimer_callback_running(refresh_timer)) 5683 return 1; 5684 5685 /* is a quota refresh about to occur? */ 5686 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5687 if (remaining < (s64)min_expire) 5688 return 1; 5689 5690 return 0; 5691 } 5692 5693 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5694 { 5695 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5696 5697 /* if there's a quota refresh soon don't bother with slack */ 5698 if (runtime_refresh_within(cfs_b, min_left)) 5699 return; 5700 5701 /* don't push forwards an existing deferred unthrottle */ 5702 if (cfs_b->slack_started) 5703 return; 5704 cfs_b->slack_started = true; 5705 5706 hrtimer_start(&cfs_b->slack_timer, 5707 ns_to_ktime(cfs_bandwidth_slack_period), 5708 HRTIMER_MODE_REL); 5709 } 5710 5711 /* we know any runtime found here is valid as update_curr() precedes return */ 5712 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5713 { 5714 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5715 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5716 5717 if (slack_runtime <= 0) 5718 return; 5719 5720 raw_spin_lock(&cfs_b->lock); 5721 if (cfs_b->quota != RUNTIME_INF) { 5722 cfs_b->runtime += slack_runtime; 5723 5724 /* we are under rq->lock, defer unthrottling using a timer */ 5725 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5726 !list_empty(&cfs_b->throttled_cfs_rq)) 5727 start_cfs_slack_bandwidth(cfs_b); 5728 } 5729 raw_spin_unlock(&cfs_b->lock); 5730 5731 /* even if it's not valid for return we don't want to try again */ 5732 cfs_rq->runtime_remaining -= slack_runtime; 5733 } 5734 5735 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5736 { 5737 if (!cfs_bandwidth_used()) 5738 return; 5739 5740 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5741 return; 5742 5743 __return_cfs_rq_runtime(cfs_rq); 5744 } 5745 5746 /* 5747 * This is done with a timer (instead of inline with bandwidth return) since 5748 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5749 */ 5750 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5751 { 5752 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5753 unsigned long flags; 5754 5755 /* confirm we're still not at a refresh boundary */ 5756 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5757 cfs_b->slack_started = false; 5758 5759 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5760 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5761 return; 5762 } 5763 5764 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5765 runtime = cfs_b->runtime; 5766 5767 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5768 5769 if (!runtime) 5770 return; 5771 5772 distribute_cfs_runtime(cfs_b); 5773 } 5774 5775 /* 5776 * When a group wakes up we want to make sure that its quota is not already 5777 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5778 * runtime as update_curr() throttling can not trigger until it's on-rq. 5779 */ 5780 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5781 { 5782 if (!cfs_bandwidth_used()) 5783 return; 5784 5785 /* an active group must be handled by the update_curr()->put() path */ 5786 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5787 return; 5788 5789 /* ensure the group is not already throttled */ 5790 if (cfs_rq_throttled(cfs_rq)) 5791 return; 5792 5793 /* update runtime allocation */ 5794 account_cfs_rq_runtime(cfs_rq, 0); 5795 if (cfs_rq->runtime_remaining <= 0) 5796 throttle_cfs_rq(cfs_rq); 5797 } 5798 5799 static void sync_throttle(struct task_group *tg, int cpu) 5800 { 5801 struct cfs_rq *pcfs_rq, *cfs_rq; 5802 5803 if (!cfs_bandwidth_used()) 5804 return; 5805 5806 if (!tg->parent) 5807 return; 5808 5809 cfs_rq = tg->cfs_rq[cpu]; 5810 pcfs_rq = tg->parent->cfs_rq[cpu]; 5811 5812 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5813 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5814 } 5815 5816 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5817 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5818 { 5819 if (!cfs_bandwidth_used()) 5820 return false; 5821 5822 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5823 return false; 5824 5825 /* 5826 * it's possible for a throttled entity to be forced into a running 5827 * state (e.g. set_curr_task), in this case we're finished. 5828 */ 5829 if (cfs_rq_throttled(cfs_rq)) 5830 return true; 5831 5832 return throttle_cfs_rq(cfs_rq); 5833 } 5834 5835 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5836 { 5837 struct cfs_bandwidth *cfs_b = 5838 container_of(timer, struct cfs_bandwidth, slack_timer); 5839 5840 do_sched_cfs_slack_timer(cfs_b); 5841 5842 return HRTIMER_NORESTART; 5843 } 5844 5845 extern const u64 max_cfs_quota_period; 5846 5847 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5848 { 5849 struct cfs_bandwidth *cfs_b = 5850 container_of(timer, struct cfs_bandwidth, period_timer); 5851 unsigned long flags; 5852 int overrun; 5853 int idle = 0; 5854 int count = 0; 5855 5856 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5857 for (;;) { 5858 overrun = hrtimer_forward_now(timer, cfs_b->period); 5859 if (!overrun) 5860 break; 5861 5862 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5863 5864 if (++count > 3) { 5865 u64 new, old = ktime_to_ns(cfs_b->period); 5866 5867 /* 5868 * Grow period by a factor of 2 to avoid losing precision. 5869 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5870 * to fail. 5871 */ 5872 new = old * 2; 5873 if (new < max_cfs_quota_period) { 5874 cfs_b->period = ns_to_ktime(new); 5875 cfs_b->quota *= 2; 5876 cfs_b->burst *= 2; 5877 5878 pr_warn_ratelimited( 5879 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5880 smp_processor_id(), 5881 div_u64(new, NSEC_PER_USEC), 5882 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5883 } else { 5884 pr_warn_ratelimited( 5885 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5886 smp_processor_id(), 5887 div_u64(old, NSEC_PER_USEC), 5888 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5889 } 5890 5891 /* reset count so we don't come right back in here */ 5892 count = 0; 5893 } 5894 } 5895 if (idle) 5896 cfs_b->period_active = 0; 5897 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5898 5899 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5900 } 5901 5902 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5903 { 5904 raw_spin_lock_init(&cfs_b->lock); 5905 cfs_b->runtime = 0; 5906 cfs_b->quota = RUNTIME_INF; 5907 cfs_b->period = ns_to_ktime(default_cfs_period()); 5908 cfs_b->burst = 0; 5909 5910 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5911 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5912 cfs_b->period_timer.function = sched_cfs_period_timer; 5913 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5914 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5915 cfs_b->slack_started = false; 5916 } 5917 5918 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5919 { 5920 cfs_rq->runtime_enabled = 0; 5921 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5922 #ifdef CONFIG_SMP 5923 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 5924 #endif 5925 } 5926 5927 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5928 { 5929 lockdep_assert_held(&cfs_b->lock); 5930 5931 if (cfs_b->period_active) 5932 return; 5933 5934 cfs_b->period_active = 1; 5935 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5936 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5937 } 5938 5939 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5940 { 5941 int __maybe_unused i; 5942 5943 /* init_cfs_bandwidth() was not called */ 5944 if (!cfs_b->throttled_cfs_rq.next) 5945 return; 5946 5947 hrtimer_cancel(&cfs_b->period_timer); 5948 hrtimer_cancel(&cfs_b->slack_timer); 5949 5950 /* 5951 * It is possible that we still have some cfs_rq's pending on a CSD 5952 * list, though this race is very rare. In order for this to occur, we 5953 * must have raced with the last task leaving the group while there 5954 * exist throttled cfs_rq(s), and the period_timer must have queued the 5955 * CSD item but the remote cpu has not yet processed it. To handle this, 5956 * we can simply flush all pending CSD work inline here. We're 5957 * guaranteed at this point that no additional cfs_rq of this group can 5958 * join a CSD list. 5959 */ 5960 #ifdef CONFIG_SMP 5961 for_each_possible_cpu(i) { 5962 struct rq *rq = cpu_rq(i); 5963 unsigned long flags; 5964 5965 if (list_empty(&rq->cfsb_csd_list)) 5966 continue; 5967 5968 local_irq_save(flags); 5969 __cfsb_csd_unthrottle(rq); 5970 local_irq_restore(flags); 5971 } 5972 #endif 5973 } 5974 5975 /* 5976 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5977 * 5978 * The race is harmless, since modifying bandwidth settings of unhooked group 5979 * bits doesn't do much. 5980 */ 5981 5982 /* cpu online callback */ 5983 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5984 { 5985 struct task_group *tg; 5986 5987 lockdep_assert_rq_held(rq); 5988 5989 rcu_read_lock(); 5990 list_for_each_entry_rcu(tg, &task_groups, list) { 5991 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5992 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5993 5994 raw_spin_lock(&cfs_b->lock); 5995 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5996 raw_spin_unlock(&cfs_b->lock); 5997 } 5998 rcu_read_unlock(); 5999 } 6000 6001 /* cpu offline callback */ 6002 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6003 { 6004 struct task_group *tg; 6005 6006 lockdep_assert_rq_held(rq); 6007 6008 rcu_read_lock(); 6009 list_for_each_entry_rcu(tg, &task_groups, list) { 6010 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6011 6012 if (!cfs_rq->runtime_enabled) 6013 continue; 6014 6015 /* 6016 * clock_task is not advancing so we just need to make sure 6017 * there's some valid quota amount 6018 */ 6019 cfs_rq->runtime_remaining = 1; 6020 /* 6021 * Offline rq is schedulable till CPU is completely disabled 6022 * in take_cpu_down(), so we prevent new cfs throttling here. 6023 */ 6024 cfs_rq->runtime_enabled = 0; 6025 6026 if (cfs_rq_throttled(cfs_rq)) 6027 unthrottle_cfs_rq(cfs_rq); 6028 } 6029 rcu_read_unlock(); 6030 } 6031 6032 #else /* CONFIG_CFS_BANDWIDTH */ 6033 6034 static inline bool cfs_bandwidth_used(void) 6035 { 6036 return false; 6037 } 6038 6039 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6040 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6041 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6042 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6043 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6044 6045 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6046 { 6047 return 0; 6048 } 6049 6050 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6051 { 6052 return 0; 6053 } 6054 6055 static inline int throttled_lb_pair(struct task_group *tg, 6056 int src_cpu, int dest_cpu) 6057 { 6058 return 0; 6059 } 6060 6061 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6062 6063 #ifdef CONFIG_FAIR_GROUP_SCHED 6064 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6065 #endif 6066 6067 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6068 { 6069 return NULL; 6070 } 6071 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6072 static inline void update_runtime_enabled(struct rq *rq) {} 6073 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6074 6075 #endif /* CONFIG_CFS_BANDWIDTH */ 6076 6077 /************************************************** 6078 * CFS operations on tasks: 6079 */ 6080 6081 #ifdef CONFIG_SCHED_HRTICK 6082 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6083 { 6084 struct sched_entity *se = &p->se; 6085 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6086 6087 SCHED_WARN_ON(task_rq(p) != rq); 6088 6089 if (rq->cfs.h_nr_running > 1) { 6090 u64 slice = sched_slice(cfs_rq, se); 6091 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6092 s64 delta = slice - ran; 6093 6094 if (delta < 0) { 6095 if (task_current(rq, p)) 6096 resched_curr(rq); 6097 return; 6098 } 6099 hrtick_start(rq, delta); 6100 } 6101 } 6102 6103 /* 6104 * called from enqueue/dequeue and updates the hrtick when the 6105 * current task is from our class and nr_running is low enough 6106 * to matter. 6107 */ 6108 static void hrtick_update(struct rq *rq) 6109 { 6110 struct task_struct *curr = rq->curr; 6111 6112 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6113 return; 6114 6115 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 6116 hrtick_start_fair(rq, curr); 6117 } 6118 #else /* !CONFIG_SCHED_HRTICK */ 6119 static inline void 6120 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6121 { 6122 } 6123 6124 static inline void hrtick_update(struct rq *rq) 6125 { 6126 } 6127 #endif 6128 6129 #ifdef CONFIG_SMP 6130 static inline bool cpu_overutilized(int cpu) 6131 { 6132 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6133 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6134 6135 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6136 } 6137 6138 static inline void update_overutilized_status(struct rq *rq) 6139 { 6140 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6141 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6142 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6143 } 6144 } 6145 #else 6146 static inline void update_overutilized_status(struct rq *rq) { } 6147 #endif 6148 6149 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6150 static int sched_idle_rq(struct rq *rq) 6151 { 6152 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6153 rq->nr_running); 6154 } 6155 6156 /* 6157 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 6158 * of idle_nr_running, which does not consider idle descendants of normal 6159 * entities. 6160 */ 6161 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 6162 { 6163 return cfs_rq->nr_running && 6164 cfs_rq->nr_running == cfs_rq->idle_nr_running; 6165 } 6166 6167 #ifdef CONFIG_SMP 6168 static int sched_idle_cpu(int cpu) 6169 { 6170 return sched_idle_rq(cpu_rq(cpu)); 6171 } 6172 #endif 6173 6174 /* 6175 * The enqueue_task method is called before nr_running is 6176 * increased. Here we update the fair scheduling stats and 6177 * then put the task into the rbtree: 6178 */ 6179 static void 6180 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6181 { 6182 struct cfs_rq *cfs_rq; 6183 struct sched_entity *se = &p->se; 6184 int idle_h_nr_running = task_has_idle_policy(p); 6185 int task_new = !(flags & ENQUEUE_WAKEUP); 6186 6187 /* 6188 * The code below (indirectly) updates schedutil which looks at 6189 * the cfs_rq utilization to select a frequency. 6190 * Let's add the task's estimated utilization to the cfs_rq's 6191 * estimated utilization, before we update schedutil. 6192 */ 6193 util_est_enqueue(&rq->cfs, p); 6194 6195 /* 6196 * If in_iowait is set, the code below may not trigger any cpufreq 6197 * utilization updates, so do it here explicitly with the IOWAIT flag 6198 * passed. 6199 */ 6200 if (p->in_iowait) 6201 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6202 6203 for_each_sched_entity(se) { 6204 if (se->on_rq) 6205 break; 6206 cfs_rq = cfs_rq_of(se); 6207 enqueue_entity(cfs_rq, se, flags); 6208 6209 cfs_rq->h_nr_running++; 6210 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6211 6212 if (cfs_rq_is_idle(cfs_rq)) 6213 idle_h_nr_running = 1; 6214 6215 /* end evaluation on encountering a throttled cfs_rq */ 6216 if (cfs_rq_throttled(cfs_rq)) 6217 goto enqueue_throttle; 6218 6219 flags = ENQUEUE_WAKEUP; 6220 } 6221 6222 for_each_sched_entity(se) { 6223 cfs_rq = cfs_rq_of(se); 6224 6225 update_load_avg(cfs_rq, se, UPDATE_TG); 6226 se_update_runnable(se); 6227 update_cfs_group(se); 6228 6229 cfs_rq->h_nr_running++; 6230 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6231 6232 if (cfs_rq_is_idle(cfs_rq)) 6233 idle_h_nr_running = 1; 6234 6235 /* end evaluation on encountering a throttled cfs_rq */ 6236 if (cfs_rq_throttled(cfs_rq)) 6237 goto enqueue_throttle; 6238 } 6239 6240 /* At this point se is NULL and we are at root level*/ 6241 add_nr_running(rq, 1); 6242 6243 /* 6244 * Since new tasks are assigned an initial util_avg equal to 6245 * half of the spare capacity of their CPU, tiny tasks have the 6246 * ability to cross the overutilized threshold, which will 6247 * result in the load balancer ruining all the task placement 6248 * done by EAS. As a way to mitigate that effect, do not account 6249 * for the first enqueue operation of new tasks during the 6250 * overutilized flag detection. 6251 * 6252 * A better way of solving this problem would be to wait for 6253 * the PELT signals of tasks to converge before taking them 6254 * into account, but that is not straightforward to implement, 6255 * and the following generally works well enough in practice. 6256 */ 6257 if (!task_new) 6258 update_overutilized_status(rq); 6259 6260 enqueue_throttle: 6261 assert_list_leaf_cfs_rq(rq); 6262 6263 hrtick_update(rq); 6264 } 6265 6266 static void set_next_buddy(struct sched_entity *se); 6267 6268 /* 6269 * The dequeue_task method is called before nr_running is 6270 * decreased. We remove the task from the rbtree and 6271 * update the fair scheduling stats: 6272 */ 6273 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6274 { 6275 struct cfs_rq *cfs_rq; 6276 struct sched_entity *se = &p->se; 6277 int task_sleep = flags & DEQUEUE_SLEEP; 6278 int idle_h_nr_running = task_has_idle_policy(p); 6279 bool was_sched_idle = sched_idle_rq(rq); 6280 6281 util_est_dequeue(&rq->cfs, p); 6282 6283 for_each_sched_entity(se) { 6284 cfs_rq = cfs_rq_of(se); 6285 dequeue_entity(cfs_rq, se, flags); 6286 6287 cfs_rq->h_nr_running--; 6288 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6289 6290 if (cfs_rq_is_idle(cfs_rq)) 6291 idle_h_nr_running = 1; 6292 6293 /* end evaluation on encountering a throttled cfs_rq */ 6294 if (cfs_rq_throttled(cfs_rq)) 6295 goto dequeue_throttle; 6296 6297 /* Don't dequeue parent if it has other entities besides us */ 6298 if (cfs_rq->load.weight) { 6299 /* Avoid re-evaluating load for this entity: */ 6300 se = parent_entity(se); 6301 /* 6302 * Bias pick_next to pick a task from this cfs_rq, as 6303 * p is sleeping when it is within its sched_slice. 6304 */ 6305 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6306 set_next_buddy(se); 6307 break; 6308 } 6309 flags |= DEQUEUE_SLEEP; 6310 } 6311 6312 for_each_sched_entity(se) { 6313 cfs_rq = cfs_rq_of(se); 6314 6315 update_load_avg(cfs_rq, se, UPDATE_TG); 6316 se_update_runnable(se); 6317 update_cfs_group(se); 6318 6319 cfs_rq->h_nr_running--; 6320 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6321 6322 if (cfs_rq_is_idle(cfs_rq)) 6323 idle_h_nr_running = 1; 6324 6325 /* end evaluation on encountering a throttled cfs_rq */ 6326 if (cfs_rq_throttled(cfs_rq)) 6327 goto dequeue_throttle; 6328 6329 } 6330 6331 /* At this point se is NULL and we are at root level*/ 6332 sub_nr_running(rq, 1); 6333 6334 /* balance early to pull high priority tasks */ 6335 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6336 rq->next_balance = jiffies; 6337 6338 dequeue_throttle: 6339 util_est_update(&rq->cfs, p, task_sleep); 6340 hrtick_update(rq); 6341 } 6342 6343 #ifdef CONFIG_SMP 6344 6345 /* Working cpumask for: load_balance, load_balance_newidle. */ 6346 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6347 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6348 6349 #ifdef CONFIG_NO_HZ_COMMON 6350 6351 static struct { 6352 cpumask_var_t idle_cpus_mask; 6353 atomic_t nr_cpus; 6354 int has_blocked; /* Idle CPUS has blocked load */ 6355 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6356 unsigned long next_balance; /* in jiffy units */ 6357 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6358 } nohz ____cacheline_aligned; 6359 6360 #endif /* CONFIG_NO_HZ_COMMON */ 6361 6362 static unsigned long cpu_load(struct rq *rq) 6363 { 6364 return cfs_rq_load_avg(&rq->cfs); 6365 } 6366 6367 /* 6368 * cpu_load_without - compute CPU load without any contributions from *p 6369 * @cpu: the CPU which load is requested 6370 * @p: the task which load should be discounted 6371 * 6372 * The load of a CPU is defined by the load of tasks currently enqueued on that 6373 * CPU as well as tasks which are currently sleeping after an execution on that 6374 * CPU. 6375 * 6376 * This method returns the load of the specified CPU by discounting the load of 6377 * the specified task, whenever the task is currently contributing to the CPU 6378 * load. 6379 */ 6380 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6381 { 6382 struct cfs_rq *cfs_rq; 6383 unsigned int load; 6384 6385 /* Task has no contribution or is new */ 6386 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6387 return cpu_load(rq); 6388 6389 cfs_rq = &rq->cfs; 6390 load = READ_ONCE(cfs_rq->avg.load_avg); 6391 6392 /* Discount task's util from CPU's util */ 6393 lsub_positive(&load, task_h_load(p)); 6394 6395 return load; 6396 } 6397 6398 static unsigned long cpu_runnable(struct rq *rq) 6399 { 6400 return cfs_rq_runnable_avg(&rq->cfs); 6401 } 6402 6403 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6404 { 6405 struct cfs_rq *cfs_rq; 6406 unsigned int runnable; 6407 6408 /* Task has no contribution or is new */ 6409 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6410 return cpu_runnable(rq); 6411 6412 cfs_rq = &rq->cfs; 6413 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6414 6415 /* Discount task's runnable from CPU's runnable */ 6416 lsub_positive(&runnable, p->se.avg.runnable_avg); 6417 6418 return runnable; 6419 } 6420 6421 static unsigned long capacity_of(int cpu) 6422 { 6423 return cpu_rq(cpu)->cpu_capacity; 6424 } 6425 6426 static void record_wakee(struct task_struct *p) 6427 { 6428 /* 6429 * Only decay a single time; tasks that have less then 1 wakeup per 6430 * jiffy will not have built up many flips. 6431 */ 6432 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6433 current->wakee_flips >>= 1; 6434 current->wakee_flip_decay_ts = jiffies; 6435 } 6436 6437 if (current->last_wakee != p) { 6438 current->last_wakee = p; 6439 current->wakee_flips++; 6440 } 6441 } 6442 6443 /* 6444 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6445 * 6446 * A waker of many should wake a different task than the one last awakened 6447 * at a frequency roughly N times higher than one of its wakees. 6448 * 6449 * In order to determine whether we should let the load spread vs consolidating 6450 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6451 * partner, and a factor of lls_size higher frequency in the other. 6452 * 6453 * With both conditions met, we can be relatively sure that the relationship is 6454 * non-monogamous, with partner count exceeding socket size. 6455 * 6456 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6457 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6458 * socket size. 6459 */ 6460 static int wake_wide(struct task_struct *p) 6461 { 6462 unsigned int master = current->wakee_flips; 6463 unsigned int slave = p->wakee_flips; 6464 int factor = __this_cpu_read(sd_llc_size); 6465 6466 if (master < slave) 6467 swap(master, slave); 6468 if (slave < factor || master < slave * factor) 6469 return 0; 6470 return 1; 6471 } 6472 6473 /* 6474 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6475 * soonest. For the purpose of speed we only consider the waking and previous 6476 * CPU. 6477 * 6478 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6479 * cache-affine and is (or will be) idle. 6480 * 6481 * wake_affine_weight() - considers the weight to reflect the average 6482 * scheduling latency of the CPUs. This seems to work 6483 * for the overloaded case. 6484 */ 6485 static int 6486 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6487 { 6488 /* 6489 * If this_cpu is idle, it implies the wakeup is from interrupt 6490 * context. Only allow the move if cache is shared. Otherwise an 6491 * interrupt intensive workload could force all tasks onto one 6492 * node depending on the IO topology or IRQ affinity settings. 6493 * 6494 * If the prev_cpu is idle and cache affine then avoid a migration. 6495 * There is no guarantee that the cache hot data from an interrupt 6496 * is more important than cache hot data on the prev_cpu and from 6497 * a cpufreq perspective, it's better to have higher utilisation 6498 * on one CPU. 6499 */ 6500 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6501 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6502 6503 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6504 return this_cpu; 6505 6506 if (available_idle_cpu(prev_cpu)) 6507 return prev_cpu; 6508 6509 return nr_cpumask_bits; 6510 } 6511 6512 static int 6513 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6514 int this_cpu, int prev_cpu, int sync) 6515 { 6516 s64 this_eff_load, prev_eff_load; 6517 unsigned long task_load; 6518 6519 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6520 6521 if (sync) { 6522 unsigned long current_load = task_h_load(current); 6523 6524 if (current_load > this_eff_load) 6525 return this_cpu; 6526 6527 this_eff_load -= current_load; 6528 } 6529 6530 task_load = task_h_load(p); 6531 6532 this_eff_load += task_load; 6533 if (sched_feat(WA_BIAS)) 6534 this_eff_load *= 100; 6535 this_eff_load *= capacity_of(prev_cpu); 6536 6537 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6538 prev_eff_load -= task_load; 6539 if (sched_feat(WA_BIAS)) 6540 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6541 prev_eff_load *= capacity_of(this_cpu); 6542 6543 /* 6544 * If sync, adjust the weight of prev_eff_load such that if 6545 * prev_eff == this_eff that select_idle_sibling() will consider 6546 * stacking the wakee on top of the waker if no other CPU is 6547 * idle. 6548 */ 6549 if (sync) 6550 prev_eff_load += 1; 6551 6552 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6553 } 6554 6555 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6556 int this_cpu, int prev_cpu, int sync) 6557 { 6558 int target = nr_cpumask_bits; 6559 6560 if (sched_feat(WA_IDLE)) 6561 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6562 6563 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6564 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6565 6566 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6567 if (target == nr_cpumask_bits) 6568 return prev_cpu; 6569 6570 schedstat_inc(sd->ttwu_move_affine); 6571 schedstat_inc(p->stats.nr_wakeups_affine); 6572 return target; 6573 } 6574 6575 static struct sched_group * 6576 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6577 6578 /* 6579 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6580 */ 6581 static int 6582 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6583 { 6584 unsigned long load, min_load = ULONG_MAX; 6585 unsigned int min_exit_latency = UINT_MAX; 6586 u64 latest_idle_timestamp = 0; 6587 int least_loaded_cpu = this_cpu; 6588 int shallowest_idle_cpu = -1; 6589 int i; 6590 6591 /* Check if we have any choice: */ 6592 if (group->group_weight == 1) 6593 return cpumask_first(sched_group_span(group)); 6594 6595 /* Traverse only the allowed CPUs */ 6596 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6597 struct rq *rq = cpu_rq(i); 6598 6599 if (!sched_core_cookie_match(rq, p)) 6600 continue; 6601 6602 if (sched_idle_cpu(i)) 6603 return i; 6604 6605 if (available_idle_cpu(i)) { 6606 struct cpuidle_state *idle = idle_get_state(rq); 6607 if (idle && idle->exit_latency < min_exit_latency) { 6608 /* 6609 * We give priority to a CPU whose idle state 6610 * has the smallest exit latency irrespective 6611 * of any idle timestamp. 6612 */ 6613 min_exit_latency = idle->exit_latency; 6614 latest_idle_timestamp = rq->idle_stamp; 6615 shallowest_idle_cpu = i; 6616 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6617 rq->idle_stamp > latest_idle_timestamp) { 6618 /* 6619 * If equal or no active idle state, then 6620 * the most recently idled CPU might have 6621 * a warmer cache. 6622 */ 6623 latest_idle_timestamp = rq->idle_stamp; 6624 shallowest_idle_cpu = i; 6625 } 6626 } else if (shallowest_idle_cpu == -1) { 6627 load = cpu_load(cpu_rq(i)); 6628 if (load < min_load) { 6629 min_load = load; 6630 least_loaded_cpu = i; 6631 } 6632 } 6633 } 6634 6635 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6636 } 6637 6638 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6639 int cpu, int prev_cpu, int sd_flag) 6640 { 6641 int new_cpu = cpu; 6642 6643 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6644 return prev_cpu; 6645 6646 /* 6647 * We need task's util for cpu_util_without, sync it up to 6648 * prev_cpu's last_update_time. 6649 */ 6650 if (!(sd_flag & SD_BALANCE_FORK)) 6651 sync_entity_load_avg(&p->se); 6652 6653 while (sd) { 6654 struct sched_group *group; 6655 struct sched_domain *tmp; 6656 int weight; 6657 6658 if (!(sd->flags & sd_flag)) { 6659 sd = sd->child; 6660 continue; 6661 } 6662 6663 group = find_idlest_group(sd, p, cpu); 6664 if (!group) { 6665 sd = sd->child; 6666 continue; 6667 } 6668 6669 new_cpu = find_idlest_group_cpu(group, p, cpu); 6670 if (new_cpu == cpu) { 6671 /* Now try balancing at a lower domain level of 'cpu': */ 6672 sd = sd->child; 6673 continue; 6674 } 6675 6676 /* Now try balancing at a lower domain level of 'new_cpu': */ 6677 cpu = new_cpu; 6678 weight = sd->span_weight; 6679 sd = NULL; 6680 for_each_domain(cpu, tmp) { 6681 if (weight <= tmp->span_weight) 6682 break; 6683 if (tmp->flags & sd_flag) 6684 sd = tmp; 6685 } 6686 } 6687 6688 return new_cpu; 6689 } 6690 6691 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6692 { 6693 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6694 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6695 return cpu; 6696 6697 return -1; 6698 } 6699 6700 #ifdef CONFIG_SCHED_SMT 6701 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6702 EXPORT_SYMBOL_GPL(sched_smt_present); 6703 6704 static inline void set_idle_cores(int cpu, int val) 6705 { 6706 struct sched_domain_shared *sds; 6707 6708 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6709 if (sds) 6710 WRITE_ONCE(sds->has_idle_cores, val); 6711 } 6712 6713 static inline bool test_idle_cores(int cpu) 6714 { 6715 struct sched_domain_shared *sds; 6716 6717 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6718 if (sds) 6719 return READ_ONCE(sds->has_idle_cores); 6720 6721 return false; 6722 } 6723 6724 /* 6725 * Scans the local SMT mask to see if the entire core is idle, and records this 6726 * information in sd_llc_shared->has_idle_cores. 6727 * 6728 * Since SMT siblings share all cache levels, inspecting this limited remote 6729 * state should be fairly cheap. 6730 */ 6731 void __update_idle_core(struct rq *rq) 6732 { 6733 int core = cpu_of(rq); 6734 int cpu; 6735 6736 rcu_read_lock(); 6737 if (test_idle_cores(core)) 6738 goto unlock; 6739 6740 for_each_cpu(cpu, cpu_smt_mask(core)) { 6741 if (cpu == core) 6742 continue; 6743 6744 if (!available_idle_cpu(cpu)) 6745 goto unlock; 6746 } 6747 6748 set_idle_cores(core, 1); 6749 unlock: 6750 rcu_read_unlock(); 6751 } 6752 6753 /* 6754 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6755 * there are no idle cores left in the system; tracked through 6756 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6757 */ 6758 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6759 { 6760 bool idle = true; 6761 int cpu; 6762 6763 for_each_cpu(cpu, cpu_smt_mask(core)) { 6764 if (!available_idle_cpu(cpu)) { 6765 idle = false; 6766 if (*idle_cpu == -1) { 6767 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6768 *idle_cpu = cpu; 6769 break; 6770 } 6771 continue; 6772 } 6773 break; 6774 } 6775 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6776 *idle_cpu = cpu; 6777 } 6778 6779 if (idle) 6780 return core; 6781 6782 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6783 return -1; 6784 } 6785 6786 /* 6787 * Scan the local SMT mask for idle CPUs. 6788 */ 6789 static int select_idle_smt(struct task_struct *p, int target) 6790 { 6791 int cpu; 6792 6793 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6794 if (cpu == target) 6795 continue; 6796 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6797 return cpu; 6798 } 6799 6800 return -1; 6801 } 6802 6803 #else /* CONFIG_SCHED_SMT */ 6804 6805 static inline void set_idle_cores(int cpu, int val) 6806 { 6807 } 6808 6809 static inline bool test_idle_cores(int cpu) 6810 { 6811 return false; 6812 } 6813 6814 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6815 { 6816 return __select_idle_cpu(core, p); 6817 } 6818 6819 static inline int select_idle_smt(struct task_struct *p, int target) 6820 { 6821 return -1; 6822 } 6823 6824 #endif /* CONFIG_SCHED_SMT */ 6825 6826 /* 6827 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6828 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6829 * average idle time for this rq (as found in rq->avg_idle). 6830 */ 6831 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6832 { 6833 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6834 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6835 struct sched_domain_shared *sd_share; 6836 struct rq *this_rq = this_rq(); 6837 int this = smp_processor_id(); 6838 struct sched_domain *this_sd = NULL; 6839 u64 time = 0; 6840 6841 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6842 6843 if (sched_feat(SIS_PROP) && !has_idle_core) { 6844 u64 avg_cost, avg_idle, span_avg; 6845 unsigned long now = jiffies; 6846 6847 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6848 if (!this_sd) 6849 return -1; 6850 6851 /* 6852 * If we're busy, the assumption that the last idle period 6853 * predicts the future is flawed; age away the remaining 6854 * predicted idle time. 6855 */ 6856 if (unlikely(this_rq->wake_stamp < now)) { 6857 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6858 this_rq->wake_stamp++; 6859 this_rq->wake_avg_idle >>= 1; 6860 } 6861 } 6862 6863 avg_idle = this_rq->wake_avg_idle; 6864 avg_cost = this_sd->avg_scan_cost + 1; 6865 6866 span_avg = sd->span_weight * avg_idle; 6867 if (span_avg > 4*avg_cost) 6868 nr = div_u64(span_avg, avg_cost); 6869 else 6870 nr = 4; 6871 6872 time = cpu_clock(this); 6873 } 6874 6875 if (sched_feat(SIS_UTIL)) { 6876 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6877 if (sd_share) { 6878 /* because !--nr is the condition to stop scan */ 6879 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6880 /* overloaded LLC is unlikely to have idle cpu/core */ 6881 if (nr == 1) 6882 return -1; 6883 } 6884 } 6885 6886 for_each_cpu_wrap(cpu, cpus, target + 1) { 6887 if (has_idle_core) { 6888 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6889 if ((unsigned int)i < nr_cpumask_bits) 6890 return i; 6891 6892 } else { 6893 if (!--nr) 6894 return -1; 6895 idle_cpu = __select_idle_cpu(cpu, p); 6896 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6897 break; 6898 } 6899 } 6900 6901 if (has_idle_core) 6902 set_idle_cores(target, false); 6903 6904 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 6905 time = cpu_clock(this) - time; 6906 6907 /* 6908 * Account for the scan cost of wakeups against the average 6909 * idle time. 6910 */ 6911 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6912 6913 update_avg(&this_sd->avg_scan_cost, time); 6914 } 6915 6916 return idle_cpu; 6917 } 6918 6919 /* 6920 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6921 * the task fits. If no CPU is big enough, but there are idle ones, try to 6922 * maximize capacity. 6923 */ 6924 static int 6925 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6926 { 6927 unsigned long task_util, util_min, util_max, best_cap = 0; 6928 int cpu, best_cpu = -1; 6929 struct cpumask *cpus; 6930 6931 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6932 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6933 6934 task_util = task_util_est(p); 6935 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6936 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6937 6938 for_each_cpu_wrap(cpu, cpus, target + 1) { 6939 unsigned long cpu_cap = capacity_of(cpu); 6940 6941 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6942 continue; 6943 if (util_fits_cpu(task_util, util_min, util_max, cpu)) 6944 return cpu; 6945 6946 if (cpu_cap > best_cap) { 6947 best_cap = cpu_cap; 6948 best_cpu = cpu; 6949 } 6950 } 6951 6952 return best_cpu; 6953 } 6954 6955 static inline bool asym_fits_cpu(unsigned long util, 6956 unsigned long util_min, 6957 unsigned long util_max, 6958 int cpu) 6959 { 6960 if (sched_asym_cpucap_active()) 6961 return util_fits_cpu(util, util_min, util_max, cpu); 6962 6963 return true; 6964 } 6965 6966 /* 6967 * Try and locate an idle core/thread in the LLC cache domain. 6968 */ 6969 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6970 { 6971 bool has_idle_core = false; 6972 struct sched_domain *sd; 6973 unsigned long task_util, util_min, util_max; 6974 int i, recent_used_cpu; 6975 6976 /* 6977 * On asymmetric system, update task utilization because we will check 6978 * that the task fits with cpu's capacity. 6979 */ 6980 if (sched_asym_cpucap_active()) { 6981 sync_entity_load_avg(&p->se); 6982 task_util = task_util_est(p); 6983 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6984 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6985 } 6986 6987 /* 6988 * per-cpu select_rq_mask usage 6989 */ 6990 lockdep_assert_irqs_disabled(); 6991 6992 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6993 asym_fits_cpu(task_util, util_min, util_max, target)) 6994 return target; 6995 6996 /* 6997 * If the previous CPU is cache affine and idle, don't be stupid: 6998 */ 6999 if (prev != target && cpus_share_cache(prev, target) && 7000 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7001 asym_fits_cpu(task_util, util_min, util_max, prev)) 7002 return prev; 7003 7004 /* 7005 * Allow a per-cpu kthread to stack with the wakee if the 7006 * kworker thread and the tasks previous CPUs are the same. 7007 * The assumption is that the wakee queued work for the 7008 * per-cpu kthread that is now complete and the wakeup is 7009 * essentially a sync wakeup. An obvious example of this 7010 * pattern is IO completions. 7011 */ 7012 if (is_per_cpu_kthread(current) && 7013 in_task() && 7014 prev == smp_processor_id() && 7015 this_rq()->nr_running <= 1 && 7016 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7017 return prev; 7018 } 7019 7020 /* Check a recently used CPU as a potential idle candidate: */ 7021 recent_used_cpu = p->recent_used_cpu; 7022 p->recent_used_cpu = prev; 7023 if (recent_used_cpu != prev && 7024 recent_used_cpu != target && 7025 cpus_share_cache(recent_used_cpu, target) && 7026 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7027 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 7028 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7029 return recent_used_cpu; 7030 } 7031 7032 /* 7033 * For asymmetric CPU capacity systems, our domain of interest is 7034 * sd_asym_cpucapacity rather than sd_llc. 7035 */ 7036 if (sched_asym_cpucap_active()) { 7037 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7038 /* 7039 * On an asymmetric CPU capacity system where an exclusive 7040 * cpuset defines a symmetric island (i.e. one unique 7041 * capacity_orig value through the cpuset), the key will be set 7042 * but the CPUs within that cpuset will not have a domain with 7043 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7044 * capacity path. 7045 */ 7046 if (sd) { 7047 i = select_idle_capacity(p, sd, target); 7048 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7049 } 7050 } 7051 7052 sd = rcu_dereference(per_cpu(sd_llc, target)); 7053 if (!sd) 7054 return target; 7055 7056 if (sched_smt_active()) { 7057 has_idle_core = test_idle_cores(target); 7058 7059 if (!has_idle_core && cpus_share_cache(prev, target)) { 7060 i = select_idle_smt(p, prev); 7061 if ((unsigned int)i < nr_cpumask_bits) 7062 return i; 7063 } 7064 } 7065 7066 i = select_idle_cpu(p, sd, has_idle_core, target); 7067 if ((unsigned)i < nr_cpumask_bits) 7068 return i; 7069 7070 return target; 7071 } 7072 7073 /* 7074 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 7075 * (@dst_cpu = -1) or migrated to @dst_cpu. 7076 */ 7077 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 7078 { 7079 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7080 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7081 7082 /* 7083 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7084 * contribution. If @p migrates from another CPU to @cpu add its 7085 * contribution. In all the other cases @cpu is not impacted by the 7086 * migration so its util_avg is already correct. 7087 */ 7088 if (task_cpu(p) == cpu && dst_cpu != cpu) 7089 lsub_positive(&util, task_util(p)); 7090 else if (task_cpu(p) != cpu && dst_cpu == cpu) 7091 util += task_util(p); 7092 7093 if (sched_feat(UTIL_EST)) { 7094 unsigned long util_est; 7095 7096 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7097 7098 /* 7099 * During wake-up @p isn't enqueued yet and doesn't contribute 7100 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7101 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7102 * has been enqueued. 7103 * 7104 * During exec (@dst_cpu = -1) @p is enqueued and does 7105 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7106 * Remove it to "simulate" cpu_util without @p's contribution. 7107 * 7108 * Despite the task_on_rq_queued(@p) check there is still a 7109 * small window for a possible race when an exec 7110 * select_task_rq_fair() races with LB's detach_task(). 7111 * 7112 * detach_task() 7113 * deactivate_task() 7114 * p->on_rq = TASK_ON_RQ_MIGRATING; 7115 * -------------------------------- A 7116 * dequeue_task() \ 7117 * dequeue_task_fair() + Race Time 7118 * util_est_dequeue() / 7119 * -------------------------------- B 7120 * 7121 * The additional check "current == p" is required to further 7122 * reduce the race window. 7123 */ 7124 if (dst_cpu == cpu) 7125 util_est += _task_util_est(p); 7126 else if (unlikely(task_on_rq_queued(p) || current == p)) 7127 lsub_positive(&util_est, _task_util_est(p)); 7128 7129 util = max(util, util_est); 7130 } 7131 7132 return min(util, capacity_orig_of(cpu)); 7133 } 7134 7135 /* 7136 * cpu_util_without: compute cpu utilization without any contributions from *p 7137 * @cpu: the CPU which utilization is requested 7138 * @p: the task which utilization should be discounted 7139 * 7140 * The utilization of a CPU is defined by the utilization of tasks currently 7141 * enqueued on that CPU as well as tasks which are currently sleeping after an 7142 * execution on that CPU. 7143 * 7144 * This method returns the utilization of the specified CPU by discounting the 7145 * utilization of the specified task, whenever the task is currently 7146 * contributing to the CPU utilization. 7147 */ 7148 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7149 { 7150 /* Task has no contribution or is new */ 7151 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7152 return cpu_util_cfs(cpu); 7153 7154 return cpu_util_next(cpu, p, -1); 7155 } 7156 7157 /* 7158 * energy_env - Utilization landscape for energy estimation. 7159 * @task_busy_time: Utilization contribution by the task for which we test the 7160 * placement. Given by eenv_task_busy_time(). 7161 * @pd_busy_time: Utilization of the whole perf domain without the task 7162 * contribution. Given by eenv_pd_busy_time(). 7163 * @cpu_cap: Maximum CPU capacity for the perf domain. 7164 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7165 */ 7166 struct energy_env { 7167 unsigned long task_busy_time; 7168 unsigned long pd_busy_time; 7169 unsigned long cpu_cap; 7170 unsigned long pd_cap; 7171 }; 7172 7173 /* 7174 * Compute the task busy time for compute_energy(). This time cannot be 7175 * injected directly into effective_cpu_util() because of the IRQ scaling. 7176 * The latter only makes sense with the most recent CPUs where the task has 7177 * run. 7178 */ 7179 static inline void eenv_task_busy_time(struct energy_env *eenv, 7180 struct task_struct *p, int prev_cpu) 7181 { 7182 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7183 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7184 7185 if (unlikely(irq >= max_cap)) 7186 busy_time = max_cap; 7187 else 7188 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7189 7190 eenv->task_busy_time = busy_time; 7191 } 7192 7193 /* 7194 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7195 * utilization for each @pd_cpus, it however doesn't take into account 7196 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7197 * scale the EM reported power consumption at the (eventually clamped) 7198 * cpu_capacity. 7199 * 7200 * The contribution of the task @p for which we want to estimate the 7201 * energy cost is removed (by cpu_util_next()) and must be calculated 7202 * separately (see eenv_task_busy_time). This ensures: 7203 * 7204 * - A stable PD utilization, no matter which CPU of that PD we want to place 7205 * the task on. 7206 * 7207 * - A fair comparison between CPUs as the task contribution (task_util()) 7208 * will always be the same no matter which CPU utilization we rely on 7209 * (util_avg or util_est). 7210 * 7211 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7212 * exceed @eenv->pd_cap. 7213 */ 7214 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7215 struct cpumask *pd_cpus, 7216 struct task_struct *p) 7217 { 7218 unsigned long busy_time = 0; 7219 int cpu; 7220 7221 for_each_cpu(cpu, pd_cpus) { 7222 unsigned long util = cpu_util_next(cpu, p, -1); 7223 7224 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7225 } 7226 7227 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7228 } 7229 7230 /* 7231 * Compute the maximum utilization for compute_energy() when the task @p 7232 * is placed on the cpu @dst_cpu. 7233 * 7234 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7235 * exceed @eenv->cpu_cap. 7236 */ 7237 static inline unsigned long 7238 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7239 struct task_struct *p, int dst_cpu) 7240 { 7241 unsigned long max_util = 0; 7242 int cpu; 7243 7244 for_each_cpu(cpu, pd_cpus) { 7245 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7246 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 7247 unsigned long cpu_util; 7248 7249 /* 7250 * Performance domain frequency: utilization clamping 7251 * must be considered since it affects the selection 7252 * of the performance domain frequency. 7253 * NOTE: in case RT tasks are running, by default the 7254 * FREQUENCY_UTIL's utilization can be max OPP. 7255 */ 7256 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7257 max_util = max(max_util, cpu_util); 7258 } 7259 7260 return min(max_util, eenv->cpu_cap); 7261 } 7262 7263 /* 7264 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7265 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7266 * contribution is ignored. 7267 */ 7268 static inline unsigned long 7269 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7270 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7271 { 7272 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7273 unsigned long busy_time = eenv->pd_busy_time; 7274 7275 if (dst_cpu >= 0) 7276 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7277 7278 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7279 } 7280 7281 /* 7282 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7283 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7284 * spare capacity in each performance domain and uses it as a potential 7285 * candidate to execute the task. Then, it uses the Energy Model to figure 7286 * out which of the CPU candidates is the most energy-efficient. 7287 * 7288 * The rationale for this heuristic is as follows. In a performance domain, 7289 * all the most energy efficient CPU candidates (according to the Energy 7290 * Model) are those for which we'll request a low frequency. When there are 7291 * several CPUs for which the frequency request will be the same, we don't 7292 * have enough data to break the tie between them, because the Energy Model 7293 * only includes active power costs. With this model, if we assume that 7294 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7295 * the maximum spare capacity in a performance domain is guaranteed to be among 7296 * the best candidates of the performance domain. 7297 * 7298 * In practice, it could be preferable from an energy standpoint to pack 7299 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7300 * but that could also hurt our chances to go cluster idle, and we have no 7301 * ways to tell with the current Energy Model if this is actually a good 7302 * idea or not. So, find_energy_efficient_cpu() basically favors 7303 * cluster-packing, and spreading inside a cluster. That should at least be 7304 * a good thing for latency, and this is consistent with the idea that most 7305 * of the energy savings of EAS come from the asymmetry of the system, and 7306 * not so much from breaking the tie between identical CPUs. That's also the 7307 * reason why EAS is enabled in the topology code only for systems where 7308 * SD_ASYM_CPUCAPACITY is set. 7309 * 7310 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7311 * they don't have any useful utilization data yet and it's not possible to 7312 * forecast their impact on energy consumption. Consequently, they will be 7313 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7314 * to be energy-inefficient in some use-cases. The alternative would be to 7315 * bias new tasks towards specific types of CPUs first, or to try to infer 7316 * their util_avg from the parent task, but those heuristics could hurt 7317 * other use-cases too. So, until someone finds a better way to solve this, 7318 * let's keep things simple by re-using the existing slow path. 7319 */ 7320 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7321 { 7322 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7323 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7324 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7325 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7326 struct root_domain *rd = this_rq()->rd; 7327 int cpu, best_energy_cpu, target = -1; 7328 struct sched_domain *sd; 7329 struct perf_domain *pd; 7330 struct energy_env eenv; 7331 7332 rcu_read_lock(); 7333 pd = rcu_dereference(rd->pd); 7334 if (!pd || READ_ONCE(rd->overutilized)) 7335 goto unlock; 7336 7337 /* 7338 * Energy-aware wake-up happens on the lowest sched_domain starting 7339 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7340 */ 7341 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7342 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7343 sd = sd->parent; 7344 if (!sd) 7345 goto unlock; 7346 7347 target = prev_cpu; 7348 7349 sync_entity_load_avg(&p->se); 7350 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7351 goto unlock; 7352 7353 eenv_task_busy_time(&eenv, p, prev_cpu); 7354 7355 for (; pd; pd = pd->next) { 7356 unsigned long cpu_cap, cpu_thermal_cap, util; 7357 unsigned long cur_delta, max_spare_cap = 0; 7358 unsigned long rq_util_min, rq_util_max; 7359 unsigned long util_min, util_max; 7360 unsigned long prev_spare_cap = 0; 7361 int max_spare_cap_cpu = -1; 7362 unsigned long base_energy; 7363 7364 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7365 7366 if (cpumask_empty(cpus)) 7367 continue; 7368 7369 /* Account thermal pressure for the energy estimation */ 7370 cpu = cpumask_first(cpus); 7371 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7372 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7373 7374 eenv.cpu_cap = cpu_thermal_cap; 7375 eenv.pd_cap = 0; 7376 7377 for_each_cpu(cpu, cpus) { 7378 eenv.pd_cap += cpu_thermal_cap; 7379 7380 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7381 continue; 7382 7383 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7384 continue; 7385 7386 util = cpu_util_next(cpu, p, cpu); 7387 cpu_cap = capacity_of(cpu); 7388 7389 /* 7390 * Skip CPUs that cannot satisfy the capacity request. 7391 * IOW, placing the task there would make the CPU 7392 * overutilized. Take uclamp into account to see how 7393 * much capacity we can get out of the CPU; this is 7394 * aligned with sched_cpu_util(). 7395 */ 7396 if (uclamp_is_used()) { 7397 if (uclamp_rq_is_idle(cpu_rq(cpu))) { 7398 util_min = p_util_min; 7399 util_max = p_util_max; 7400 } else { 7401 /* 7402 * Open code uclamp_rq_util_with() except for 7403 * the clamp() part. Ie: apply max aggregation 7404 * only. util_fits_cpu() logic requires to 7405 * operate on non clamped util but must use the 7406 * max-aggregated uclamp_{min, max}. 7407 */ 7408 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 7409 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 7410 7411 util_min = max(rq_util_min, p_util_min); 7412 util_max = max(rq_util_max, p_util_max); 7413 } 7414 } 7415 if (!util_fits_cpu(util, util_min, util_max, cpu)) 7416 continue; 7417 7418 lsub_positive(&cpu_cap, util); 7419 7420 if (cpu == prev_cpu) { 7421 /* Always use prev_cpu as a candidate. */ 7422 prev_spare_cap = cpu_cap; 7423 } else if (cpu_cap > max_spare_cap) { 7424 /* 7425 * Find the CPU with the maximum spare capacity 7426 * among the remaining CPUs in the performance 7427 * domain. 7428 */ 7429 max_spare_cap = cpu_cap; 7430 max_spare_cap_cpu = cpu; 7431 } 7432 } 7433 7434 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7435 continue; 7436 7437 eenv_pd_busy_time(&eenv, cpus, p); 7438 /* Compute the 'base' energy of the pd, without @p */ 7439 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7440 7441 /* Evaluate the energy impact of using prev_cpu. */ 7442 if (prev_spare_cap > 0) { 7443 prev_delta = compute_energy(&eenv, pd, cpus, p, 7444 prev_cpu); 7445 /* CPU utilization has changed */ 7446 if (prev_delta < base_energy) 7447 goto unlock; 7448 prev_delta -= base_energy; 7449 best_delta = min(best_delta, prev_delta); 7450 } 7451 7452 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7453 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7454 cur_delta = compute_energy(&eenv, pd, cpus, p, 7455 max_spare_cap_cpu); 7456 /* CPU utilization has changed */ 7457 if (cur_delta < base_energy) 7458 goto unlock; 7459 cur_delta -= base_energy; 7460 if (cur_delta < best_delta) { 7461 best_delta = cur_delta; 7462 best_energy_cpu = max_spare_cap_cpu; 7463 } 7464 } 7465 } 7466 rcu_read_unlock(); 7467 7468 if (best_delta < prev_delta) 7469 target = best_energy_cpu; 7470 7471 return target; 7472 7473 unlock: 7474 rcu_read_unlock(); 7475 7476 return target; 7477 } 7478 7479 /* 7480 * select_task_rq_fair: Select target runqueue for the waking task in domains 7481 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7482 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7483 * 7484 * Balances load by selecting the idlest CPU in the idlest group, or under 7485 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7486 * 7487 * Returns the target CPU number. 7488 */ 7489 static int 7490 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7491 { 7492 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7493 struct sched_domain *tmp, *sd = NULL; 7494 int cpu = smp_processor_id(); 7495 int new_cpu = prev_cpu; 7496 int want_affine = 0; 7497 /* SD_flags and WF_flags share the first nibble */ 7498 int sd_flag = wake_flags & 0xF; 7499 7500 /* 7501 * required for stable ->cpus_allowed 7502 */ 7503 lockdep_assert_held(&p->pi_lock); 7504 if (wake_flags & WF_TTWU) { 7505 record_wakee(p); 7506 7507 if (sched_energy_enabled()) { 7508 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7509 if (new_cpu >= 0) 7510 return new_cpu; 7511 new_cpu = prev_cpu; 7512 } 7513 7514 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7515 } 7516 7517 rcu_read_lock(); 7518 for_each_domain(cpu, tmp) { 7519 /* 7520 * If both 'cpu' and 'prev_cpu' are part of this domain, 7521 * cpu is a valid SD_WAKE_AFFINE target. 7522 */ 7523 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7524 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7525 if (cpu != prev_cpu) 7526 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7527 7528 sd = NULL; /* Prefer wake_affine over balance flags */ 7529 break; 7530 } 7531 7532 /* 7533 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7534 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7535 * will usually go to the fast path. 7536 */ 7537 if (tmp->flags & sd_flag) 7538 sd = tmp; 7539 else if (!want_affine) 7540 break; 7541 } 7542 7543 if (unlikely(sd)) { 7544 /* Slow path */ 7545 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7546 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7547 /* Fast path */ 7548 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7549 } 7550 rcu_read_unlock(); 7551 7552 return new_cpu; 7553 } 7554 7555 /* 7556 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7557 * cfs_rq_of(p) references at time of call are still valid and identify the 7558 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7559 */ 7560 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7561 { 7562 struct sched_entity *se = &p->se; 7563 7564 /* 7565 * As blocked tasks retain absolute vruntime the migration needs to 7566 * deal with this by subtracting the old and adding the new 7567 * min_vruntime -- the latter is done by enqueue_entity() when placing 7568 * the task on the new runqueue. 7569 */ 7570 if (READ_ONCE(p->__state) == TASK_WAKING) { 7571 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7572 7573 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7574 } 7575 7576 if (!task_on_rq_migrating(p)) { 7577 remove_entity_load_avg(se); 7578 7579 /* 7580 * Here, the task's PELT values have been updated according to 7581 * the current rq's clock. But if that clock hasn't been 7582 * updated in a while, a substantial idle time will be missed, 7583 * leading to an inflation after wake-up on the new rq. 7584 * 7585 * Estimate the missing time from the cfs_rq last_update_time 7586 * and update sched_avg to improve the PELT continuity after 7587 * migration. 7588 */ 7589 migrate_se_pelt_lag(se); 7590 } 7591 7592 /* Tell new CPU we are migrated */ 7593 se->avg.last_update_time = 0; 7594 7595 /* We have migrated, no longer consider this task hot */ 7596 se->exec_start = 0; 7597 7598 update_scan_period(p, new_cpu); 7599 } 7600 7601 static void task_dead_fair(struct task_struct *p) 7602 { 7603 remove_entity_load_avg(&p->se); 7604 } 7605 7606 static int 7607 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7608 { 7609 if (rq->nr_running) 7610 return 1; 7611 7612 return newidle_balance(rq, rf) != 0; 7613 } 7614 #endif /* CONFIG_SMP */ 7615 7616 static unsigned long wakeup_gran(struct sched_entity *se) 7617 { 7618 unsigned long gran = sysctl_sched_wakeup_granularity; 7619 7620 /* 7621 * Since its curr running now, convert the gran from real-time 7622 * to virtual-time in his units. 7623 * 7624 * By using 'se' instead of 'curr' we penalize light tasks, so 7625 * they get preempted easier. That is, if 'se' < 'curr' then 7626 * the resulting gran will be larger, therefore penalizing the 7627 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7628 * be smaller, again penalizing the lighter task. 7629 * 7630 * This is especially important for buddies when the leftmost 7631 * task is higher priority than the buddy. 7632 */ 7633 return calc_delta_fair(gran, se); 7634 } 7635 7636 /* 7637 * Should 'se' preempt 'curr'. 7638 * 7639 * |s1 7640 * |s2 7641 * |s3 7642 * g 7643 * |<--->|c 7644 * 7645 * w(c, s1) = -1 7646 * w(c, s2) = 0 7647 * w(c, s3) = 1 7648 * 7649 */ 7650 static int 7651 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7652 { 7653 s64 gran, vdiff = curr->vruntime - se->vruntime; 7654 7655 if (vdiff <= 0) 7656 return -1; 7657 7658 gran = wakeup_gran(se); 7659 if (vdiff > gran) 7660 return 1; 7661 7662 return 0; 7663 } 7664 7665 static void set_last_buddy(struct sched_entity *se) 7666 { 7667 for_each_sched_entity(se) { 7668 if (SCHED_WARN_ON(!se->on_rq)) 7669 return; 7670 if (se_is_idle(se)) 7671 return; 7672 cfs_rq_of(se)->last = se; 7673 } 7674 } 7675 7676 static void set_next_buddy(struct sched_entity *se) 7677 { 7678 for_each_sched_entity(se) { 7679 if (SCHED_WARN_ON(!se->on_rq)) 7680 return; 7681 if (se_is_idle(se)) 7682 return; 7683 cfs_rq_of(se)->next = se; 7684 } 7685 } 7686 7687 static void set_skip_buddy(struct sched_entity *se) 7688 { 7689 for_each_sched_entity(se) 7690 cfs_rq_of(se)->skip = se; 7691 } 7692 7693 /* 7694 * Preempt the current task with a newly woken task if needed: 7695 */ 7696 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7697 { 7698 struct task_struct *curr = rq->curr; 7699 struct sched_entity *se = &curr->se, *pse = &p->se; 7700 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7701 int scale = cfs_rq->nr_running >= sched_nr_latency; 7702 int next_buddy_marked = 0; 7703 int cse_is_idle, pse_is_idle; 7704 7705 if (unlikely(se == pse)) 7706 return; 7707 7708 /* 7709 * This is possible from callers such as attach_tasks(), in which we 7710 * unconditionally check_preempt_curr() after an enqueue (which may have 7711 * lead to a throttle). This both saves work and prevents false 7712 * next-buddy nomination below. 7713 */ 7714 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7715 return; 7716 7717 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7718 set_next_buddy(pse); 7719 next_buddy_marked = 1; 7720 } 7721 7722 /* 7723 * We can come here with TIF_NEED_RESCHED already set from new task 7724 * wake up path. 7725 * 7726 * Note: this also catches the edge-case of curr being in a throttled 7727 * group (e.g. via set_curr_task), since update_curr() (in the 7728 * enqueue of curr) will have resulted in resched being set. This 7729 * prevents us from potentially nominating it as a false LAST_BUDDY 7730 * below. 7731 */ 7732 if (test_tsk_need_resched(curr)) 7733 return; 7734 7735 /* Idle tasks are by definition preempted by non-idle tasks. */ 7736 if (unlikely(task_has_idle_policy(curr)) && 7737 likely(!task_has_idle_policy(p))) 7738 goto preempt; 7739 7740 /* 7741 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7742 * is driven by the tick): 7743 */ 7744 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7745 return; 7746 7747 find_matching_se(&se, &pse); 7748 WARN_ON_ONCE(!pse); 7749 7750 cse_is_idle = se_is_idle(se); 7751 pse_is_idle = se_is_idle(pse); 7752 7753 /* 7754 * Preempt an idle group in favor of a non-idle group (and don't preempt 7755 * in the inverse case). 7756 */ 7757 if (cse_is_idle && !pse_is_idle) 7758 goto preempt; 7759 if (cse_is_idle != pse_is_idle) 7760 return; 7761 7762 update_curr(cfs_rq_of(se)); 7763 if (wakeup_preempt_entity(se, pse) == 1) { 7764 /* 7765 * Bias pick_next to pick the sched entity that is 7766 * triggering this preemption. 7767 */ 7768 if (!next_buddy_marked) 7769 set_next_buddy(pse); 7770 goto preempt; 7771 } 7772 7773 return; 7774 7775 preempt: 7776 resched_curr(rq); 7777 /* 7778 * Only set the backward buddy when the current task is still 7779 * on the rq. This can happen when a wakeup gets interleaved 7780 * with schedule on the ->pre_schedule() or idle_balance() 7781 * point, either of which can * drop the rq lock. 7782 * 7783 * Also, during early boot the idle thread is in the fair class, 7784 * for obvious reasons its a bad idea to schedule back to it. 7785 */ 7786 if (unlikely(!se->on_rq || curr == rq->idle)) 7787 return; 7788 7789 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7790 set_last_buddy(se); 7791 } 7792 7793 #ifdef CONFIG_SMP 7794 static struct task_struct *pick_task_fair(struct rq *rq) 7795 { 7796 struct sched_entity *se; 7797 struct cfs_rq *cfs_rq; 7798 7799 again: 7800 cfs_rq = &rq->cfs; 7801 if (!cfs_rq->nr_running) 7802 return NULL; 7803 7804 do { 7805 struct sched_entity *curr = cfs_rq->curr; 7806 7807 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7808 if (curr) { 7809 if (curr->on_rq) 7810 update_curr(cfs_rq); 7811 else 7812 curr = NULL; 7813 7814 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7815 goto again; 7816 } 7817 7818 se = pick_next_entity(cfs_rq, curr); 7819 cfs_rq = group_cfs_rq(se); 7820 } while (cfs_rq); 7821 7822 return task_of(se); 7823 } 7824 #endif 7825 7826 struct task_struct * 7827 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7828 { 7829 struct cfs_rq *cfs_rq = &rq->cfs; 7830 struct sched_entity *se; 7831 struct task_struct *p; 7832 int new_tasks; 7833 7834 again: 7835 if (!sched_fair_runnable(rq)) 7836 goto idle; 7837 7838 #ifdef CONFIG_FAIR_GROUP_SCHED 7839 if (!prev || prev->sched_class != &fair_sched_class) 7840 goto simple; 7841 7842 /* 7843 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7844 * likely that a next task is from the same cgroup as the current. 7845 * 7846 * Therefore attempt to avoid putting and setting the entire cgroup 7847 * hierarchy, only change the part that actually changes. 7848 */ 7849 7850 do { 7851 struct sched_entity *curr = cfs_rq->curr; 7852 7853 /* 7854 * Since we got here without doing put_prev_entity() we also 7855 * have to consider cfs_rq->curr. If it is still a runnable 7856 * entity, update_curr() will update its vruntime, otherwise 7857 * forget we've ever seen it. 7858 */ 7859 if (curr) { 7860 if (curr->on_rq) 7861 update_curr(cfs_rq); 7862 else 7863 curr = NULL; 7864 7865 /* 7866 * This call to check_cfs_rq_runtime() will do the 7867 * throttle and dequeue its entity in the parent(s). 7868 * Therefore the nr_running test will indeed 7869 * be correct. 7870 */ 7871 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7872 cfs_rq = &rq->cfs; 7873 7874 if (!cfs_rq->nr_running) 7875 goto idle; 7876 7877 goto simple; 7878 } 7879 } 7880 7881 se = pick_next_entity(cfs_rq, curr); 7882 cfs_rq = group_cfs_rq(se); 7883 } while (cfs_rq); 7884 7885 p = task_of(se); 7886 7887 /* 7888 * Since we haven't yet done put_prev_entity and if the selected task 7889 * is a different task than we started out with, try and touch the 7890 * least amount of cfs_rqs. 7891 */ 7892 if (prev != p) { 7893 struct sched_entity *pse = &prev->se; 7894 7895 while (!(cfs_rq = is_same_group(se, pse))) { 7896 int se_depth = se->depth; 7897 int pse_depth = pse->depth; 7898 7899 if (se_depth <= pse_depth) { 7900 put_prev_entity(cfs_rq_of(pse), pse); 7901 pse = parent_entity(pse); 7902 } 7903 if (se_depth >= pse_depth) { 7904 set_next_entity(cfs_rq_of(se), se); 7905 se = parent_entity(se); 7906 } 7907 } 7908 7909 put_prev_entity(cfs_rq, pse); 7910 set_next_entity(cfs_rq, se); 7911 } 7912 7913 goto done; 7914 simple: 7915 #endif 7916 if (prev) 7917 put_prev_task(rq, prev); 7918 7919 do { 7920 se = pick_next_entity(cfs_rq, NULL); 7921 set_next_entity(cfs_rq, se); 7922 cfs_rq = group_cfs_rq(se); 7923 } while (cfs_rq); 7924 7925 p = task_of(se); 7926 7927 done: __maybe_unused; 7928 #ifdef CONFIG_SMP 7929 /* 7930 * Move the next running task to the front of 7931 * the list, so our cfs_tasks list becomes MRU 7932 * one. 7933 */ 7934 list_move(&p->se.group_node, &rq->cfs_tasks); 7935 #endif 7936 7937 if (hrtick_enabled_fair(rq)) 7938 hrtick_start_fair(rq, p); 7939 7940 update_misfit_status(p, rq); 7941 7942 return p; 7943 7944 idle: 7945 if (!rf) 7946 return NULL; 7947 7948 new_tasks = newidle_balance(rq, rf); 7949 7950 /* 7951 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7952 * possible for any higher priority task to appear. In that case we 7953 * must re-start the pick_next_entity() loop. 7954 */ 7955 if (new_tasks < 0) 7956 return RETRY_TASK; 7957 7958 if (new_tasks > 0) 7959 goto again; 7960 7961 /* 7962 * rq is about to be idle, check if we need to update the 7963 * lost_idle_time of clock_pelt 7964 */ 7965 update_idle_rq_clock_pelt(rq); 7966 7967 return NULL; 7968 } 7969 7970 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7971 { 7972 return pick_next_task_fair(rq, NULL, NULL); 7973 } 7974 7975 /* 7976 * Account for a descheduled task: 7977 */ 7978 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7979 { 7980 struct sched_entity *se = &prev->se; 7981 struct cfs_rq *cfs_rq; 7982 7983 for_each_sched_entity(se) { 7984 cfs_rq = cfs_rq_of(se); 7985 put_prev_entity(cfs_rq, se); 7986 } 7987 } 7988 7989 /* 7990 * sched_yield() is very simple 7991 * 7992 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7993 */ 7994 static void yield_task_fair(struct rq *rq) 7995 { 7996 struct task_struct *curr = rq->curr; 7997 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7998 struct sched_entity *se = &curr->se; 7999 8000 /* 8001 * Are we the only task in the tree? 8002 */ 8003 if (unlikely(rq->nr_running == 1)) 8004 return; 8005 8006 clear_buddies(cfs_rq, se); 8007 8008 if (curr->policy != SCHED_BATCH) { 8009 update_rq_clock(rq); 8010 /* 8011 * Update run-time statistics of the 'current'. 8012 */ 8013 update_curr(cfs_rq); 8014 /* 8015 * Tell update_rq_clock() that we've just updated, 8016 * so we don't do microscopic update in schedule() 8017 * and double the fastpath cost. 8018 */ 8019 rq_clock_skip_update(rq); 8020 } 8021 8022 set_skip_buddy(se); 8023 } 8024 8025 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8026 { 8027 struct sched_entity *se = &p->se; 8028 8029 /* throttled hierarchies are not runnable */ 8030 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8031 return false; 8032 8033 /* Tell the scheduler that we'd really like pse to run next. */ 8034 set_next_buddy(se); 8035 8036 yield_task_fair(rq); 8037 8038 return true; 8039 } 8040 8041 #ifdef CONFIG_SMP 8042 /************************************************** 8043 * Fair scheduling class load-balancing methods. 8044 * 8045 * BASICS 8046 * 8047 * The purpose of load-balancing is to achieve the same basic fairness the 8048 * per-CPU scheduler provides, namely provide a proportional amount of compute 8049 * time to each task. This is expressed in the following equation: 8050 * 8051 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8052 * 8053 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8054 * W_i,0 is defined as: 8055 * 8056 * W_i,0 = \Sum_j w_i,j (2) 8057 * 8058 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8059 * is derived from the nice value as per sched_prio_to_weight[]. 8060 * 8061 * The weight average is an exponential decay average of the instantaneous 8062 * weight: 8063 * 8064 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8065 * 8066 * C_i is the compute capacity of CPU i, typically it is the 8067 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8068 * can also include other factors [XXX]. 8069 * 8070 * To achieve this balance we define a measure of imbalance which follows 8071 * directly from (1): 8072 * 8073 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8074 * 8075 * We them move tasks around to minimize the imbalance. In the continuous 8076 * function space it is obvious this converges, in the discrete case we get 8077 * a few fun cases generally called infeasible weight scenarios. 8078 * 8079 * [XXX expand on: 8080 * - infeasible weights; 8081 * - local vs global optima in the discrete case. ] 8082 * 8083 * 8084 * SCHED DOMAINS 8085 * 8086 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8087 * for all i,j solution, we create a tree of CPUs that follows the hardware 8088 * topology where each level pairs two lower groups (or better). This results 8089 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8090 * tree to only the first of the previous level and we decrease the frequency 8091 * of load-balance at each level inv. proportional to the number of CPUs in 8092 * the groups. 8093 * 8094 * This yields: 8095 * 8096 * log_2 n 1 n 8097 * \Sum { --- * --- * 2^i } = O(n) (5) 8098 * i = 0 2^i 2^i 8099 * `- size of each group 8100 * | | `- number of CPUs doing load-balance 8101 * | `- freq 8102 * `- sum over all levels 8103 * 8104 * Coupled with a limit on how many tasks we can migrate every balance pass, 8105 * this makes (5) the runtime complexity of the balancer. 8106 * 8107 * An important property here is that each CPU is still (indirectly) connected 8108 * to every other CPU in at most O(log n) steps: 8109 * 8110 * The adjacency matrix of the resulting graph is given by: 8111 * 8112 * log_2 n 8113 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8114 * k = 0 8115 * 8116 * And you'll find that: 8117 * 8118 * A^(log_2 n)_i,j != 0 for all i,j (7) 8119 * 8120 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8121 * The task movement gives a factor of O(m), giving a convergence complexity 8122 * of: 8123 * 8124 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8125 * 8126 * 8127 * WORK CONSERVING 8128 * 8129 * In order to avoid CPUs going idle while there's still work to do, new idle 8130 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8131 * tree itself instead of relying on other CPUs to bring it work. 8132 * 8133 * This adds some complexity to both (5) and (8) but it reduces the total idle 8134 * time. 8135 * 8136 * [XXX more?] 8137 * 8138 * 8139 * CGROUPS 8140 * 8141 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8142 * 8143 * s_k,i 8144 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8145 * S_k 8146 * 8147 * Where 8148 * 8149 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8150 * 8151 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8152 * 8153 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8154 * property. 8155 * 8156 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8157 * rewrite all of this once again.] 8158 */ 8159 8160 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8161 8162 enum fbq_type { regular, remote, all }; 8163 8164 /* 8165 * 'group_type' describes the group of CPUs at the moment of load balancing. 8166 * 8167 * The enum is ordered by pulling priority, with the group with lowest priority 8168 * first so the group_type can simply be compared when selecting the busiest 8169 * group. See update_sd_pick_busiest(). 8170 */ 8171 enum group_type { 8172 /* The group has spare capacity that can be used to run more tasks. */ 8173 group_has_spare = 0, 8174 /* 8175 * The group is fully used and the tasks don't compete for more CPU 8176 * cycles. Nevertheless, some tasks might wait before running. 8177 */ 8178 group_fully_busy, 8179 /* 8180 * One task doesn't fit with CPU's capacity and must be migrated to a 8181 * more powerful CPU. 8182 */ 8183 group_misfit_task, 8184 /* 8185 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8186 * and the task should be migrated to it instead of running on the 8187 * current CPU. 8188 */ 8189 group_asym_packing, 8190 /* 8191 * The tasks' affinity constraints previously prevented the scheduler 8192 * from balancing the load across the system. 8193 */ 8194 group_imbalanced, 8195 /* 8196 * The CPU is overloaded and can't provide expected CPU cycles to all 8197 * tasks. 8198 */ 8199 group_overloaded 8200 }; 8201 8202 enum migration_type { 8203 migrate_load = 0, 8204 migrate_util, 8205 migrate_task, 8206 migrate_misfit 8207 }; 8208 8209 #define LBF_ALL_PINNED 0x01 8210 #define LBF_NEED_BREAK 0x02 8211 #define LBF_DST_PINNED 0x04 8212 #define LBF_SOME_PINNED 0x08 8213 #define LBF_ACTIVE_LB 0x10 8214 8215 struct lb_env { 8216 struct sched_domain *sd; 8217 8218 struct rq *src_rq; 8219 int src_cpu; 8220 8221 int dst_cpu; 8222 struct rq *dst_rq; 8223 8224 struct cpumask *dst_grpmask; 8225 int new_dst_cpu; 8226 enum cpu_idle_type idle; 8227 long imbalance; 8228 /* The set of CPUs under consideration for load-balancing */ 8229 struct cpumask *cpus; 8230 8231 unsigned int flags; 8232 8233 unsigned int loop; 8234 unsigned int loop_break; 8235 unsigned int loop_max; 8236 8237 enum fbq_type fbq_type; 8238 enum migration_type migration_type; 8239 struct list_head tasks; 8240 }; 8241 8242 /* 8243 * Is this task likely cache-hot: 8244 */ 8245 static int task_hot(struct task_struct *p, struct lb_env *env) 8246 { 8247 s64 delta; 8248 8249 lockdep_assert_rq_held(env->src_rq); 8250 8251 if (p->sched_class != &fair_sched_class) 8252 return 0; 8253 8254 if (unlikely(task_has_idle_policy(p))) 8255 return 0; 8256 8257 /* SMT siblings share cache */ 8258 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8259 return 0; 8260 8261 /* 8262 * Buddy candidates are cache hot: 8263 */ 8264 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8265 (&p->se == cfs_rq_of(&p->se)->next || 8266 &p->se == cfs_rq_of(&p->se)->last)) 8267 return 1; 8268 8269 if (sysctl_sched_migration_cost == -1) 8270 return 1; 8271 8272 /* 8273 * Don't migrate task if the task's cookie does not match 8274 * with the destination CPU's core cookie. 8275 */ 8276 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8277 return 1; 8278 8279 if (sysctl_sched_migration_cost == 0) 8280 return 0; 8281 8282 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8283 8284 return delta < (s64)sysctl_sched_migration_cost; 8285 } 8286 8287 #ifdef CONFIG_NUMA_BALANCING 8288 /* 8289 * Returns 1, if task migration degrades locality 8290 * Returns 0, if task migration improves locality i.e migration preferred. 8291 * Returns -1, if task migration is not affected by locality. 8292 */ 8293 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8294 { 8295 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8296 unsigned long src_weight, dst_weight; 8297 int src_nid, dst_nid, dist; 8298 8299 if (!static_branch_likely(&sched_numa_balancing)) 8300 return -1; 8301 8302 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8303 return -1; 8304 8305 src_nid = cpu_to_node(env->src_cpu); 8306 dst_nid = cpu_to_node(env->dst_cpu); 8307 8308 if (src_nid == dst_nid) 8309 return -1; 8310 8311 /* Migrating away from the preferred node is always bad. */ 8312 if (src_nid == p->numa_preferred_nid) { 8313 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8314 return 1; 8315 else 8316 return -1; 8317 } 8318 8319 /* Encourage migration to the preferred node. */ 8320 if (dst_nid == p->numa_preferred_nid) 8321 return 0; 8322 8323 /* Leaving a core idle is often worse than degrading locality. */ 8324 if (env->idle == CPU_IDLE) 8325 return -1; 8326 8327 dist = node_distance(src_nid, dst_nid); 8328 if (numa_group) { 8329 src_weight = group_weight(p, src_nid, dist); 8330 dst_weight = group_weight(p, dst_nid, dist); 8331 } else { 8332 src_weight = task_weight(p, src_nid, dist); 8333 dst_weight = task_weight(p, dst_nid, dist); 8334 } 8335 8336 return dst_weight < src_weight; 8337 } 8338 8339 #else 8340 static inline int migrate_degrades_locality(struct task_struct *p, 8341 struct lb_env *env) 8342 { 8343 return -1; 8344 } 8345 #endif 8346 8347 /* 8348 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8349 */ 8350 static 8351 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8352 { 8353 int tsk_cache_hot; 8354 8355 lockdep_assert_rq_held(env->src_rq); 8356 8357 /* 8358 * We do not migrate tasks that are: 8359 * 1) throttled_lb_pair, or 8360 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8361 * 3) running (obviously), or 8362 * 4) are cache-hot on their current CPU. 8363 */ 8364 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8365 return 0; 8366 8367 /* Disregard pcpu kthreads; they are where they need to be. */ 8368 if (kthread_is_per_cpu(p)) 8369 return 0; 8370 8371 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8372 int cpu; 8373 8374 schedstat_inc(p->stats.nr_failed_migrations_affine); 8375 8376 env->flags |= LBF_SOME_PINNED; 8377 8378 /* 8379 * Remember if this task can be migrated to any other CPU in 8380 * our sched_group. We may want to revisit it if we couldn't 8381 * meet load balance goals by pulling other tasks on src_cpu. 8382 * 8383 * Avoid computing new_dst_cpu 8384 * - for NEWLY_IDLE 8385 * - if we have already computed one in current iteration 8386 * - if it's an active balance 8387 */ 8388 if (env->idle == CPU_NEWLY_IDLE || 8389 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8390 return 0; 8391 8392 /* Prevent to re-select dst_cpu via env's CPUs: */ 8393 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8394 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8395 env->flags |= LBF_DST_PINNED; 8396 env->new_dst_cpu = cpu; 8397 break; 8398 } 8399 } 8400 8401 return 0; 8402 } 8403 8404 /* Record that we found at least one task that could run on dst_cpu */ 8405 env->flags &= ~LBF_ALL_PINNED; 8406 8407 if (task_on_cpu(env->src_rq, p)) { 8408 schedstat_inc(p->stats.nr_failed_migrations_running); 8409 return 0; 8410 } 8411 8412 /* 8413 * Aggressive migration if: 8414 * 1) active balance 8415 * 2) destination numa is preferred 8416 * 3) task is cache cold, or 8417 * 4) too many balance attempts have failed. 8418 */ 8419 if (env->flags & LBF_ACTIVE_LB) 8420 return 1; 8421 8422 tsk_cache_hot = migrate_degrades_locality(p, env); 8423 if (tsk_cache_hot == -1) 8424 tsk_cache_hot = task_hot(p, env); 8425 8426 if (tsk_cache_hot <= 0 || 8427 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8428 if (tsk_cache_hot == 1) { 8429 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8430 schedstat_inc(p->stats.nr_forced_migrations); 8431 } 8432 return 1; 8433 } 8434 8435 schedstat_inc(p->stats.nr_failed_migrations_hot); 8436 return 0; 8437 } 8438 8439 /* 8440 * detach_task() -- detach the task for the migration specified in env 8441 */ 8442 static void detach_task(struct task_struct *p, struct lb_env *env) 8443 { 8444 lockdep_assert_rq_held(env->src_rq); 8445 8446 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8447 set_task_cpu(p, env->dst_cpu); 8448 } 8449 8450 /* 8451 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8452 * part of active balancing operations within "domain". 8453 * 8454 * Returns a task if successful and NULL otherwise. 8455 */ 8456 static struct task_struct *detach_one_task(struct lb_env *env) 8457 { 8458 struct task_struct *p; 8459 8460 lockdep_assert_rq_held(env->src_rq); 8461 8462 list_for_each_entry_reverse(p, 8463 &env->src_rq->cfs_tasks, se.group_node) { 8464 if (!can_migrate_task(p, env)) 8465 continue; 8466 8467 detach_task(p, env); 8468 8469 /* 8470 * Right now, this is only the second place where 8471 * lb_gained[env->idle] is updated (other is detach_tasks) 8472 * so we can safely collect stats here rather than 8473 * inside detach_tasks(). 8474 */ 8475 schedstat_inc(env->sd->lb_gained[env->idle]); 8476 return p; 8477 } 8478 return NULL; 8479 } 8480 8481 /* 8482 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8483 * busiest_rq, as part of a balancing operation within domain "sd". 8484 * 8485 * Returns number of detached tasks if successful and 0 otherwise. 8486 */ 8487 static int detach_tasks(struct lb_env *env) 8488 { 8489 struct list_head *tasks = &env->src_rq->cfs_tasks; 8490 unsigned long util, load; 8491 struct task_struct *p; 8492 int detached = 0; 8493 8494 lockdep_assert_rq_held(env->src_rq); 8495 8496 /* 8497 * Source run queue has been emptied by another CPU, clear 8498 * LBF_ALL_PINNED flag as we will not test any task. 8499 */ 8500 if (env->src_rq->nr_running <= 1) { 8501 env->flags &= ~LBF_ALL_PINNED; 8502 return 0; 8503 } 8504 8505 if (env->imbalance <= 0) 8506 return 0; 8507 8508 while (!list_empty(tasks)) { 8509 /* 8510 * We don't want to steal all, otherwise we may be treated likewise, 8511 * which could at worst lead to a livelock crash. 8512 */ 8513 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8514 break; 8515 8516 env->loop++; 8517 /* 8518 * We've more or less seen every task there is, call it quits 8519 * unless we haven't found any movable task yet. 8520 */ 8521 if (env->loop > env->loop_max && 8522 !(env->flags & LBF_ALL_PINNED)) 8523 break; 8524 8525 /* take a breather every nr_migrate tasks */ 8526 if (env->loop > env->loop_break) { 8527 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8528 env->flags |= LBF_NEED_BREAK; 8529 break; 8530 } 8531 8532 p = list_last_entry(tasks, struct task_struct, se.group_node); 8533 8534 if (!can_migrate_task(p, env)) 8535 goto next; 8536 8537 switch (env->migration_type) { 8538 case migrate_load: 8539 /* 8540 * Depending of the number of CPUs and tasks and the 8541 * cgroup hierarchy, task_h_load() can return a null 8542 * value. Make sure that env->imbalance decreases 8543 * otherwise detach_tasks() will stop only after 8544 * detaching up to loop_max tasks. 8545 */ 8546 load = max_t(unsigned long, task_h_load(p), 1); 8547 8548 if (sched_feat(LB_MIN) && 8549 load < 16 && !env->sd->nr_balance_failed) 8550 goto next; 8551 8552 /* 8553 * Make sure that we don't migrate too much load. 8554 * Nevertheless, let relax the constraint if 8555 * scheduler fails to find a good waiting task to 8556 * migrate. 8557 */ 8558 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8559 goto next; 8560 8561 env->imbalance -= load; 8562 break; 8563 8564 case migrate_util: 8565 util = task_util_est(p); 8566 8567 if (util > env->imbalance) 8568 goto next; 8569 8570 env->imbalance -= util; 8571 break; 8572 8573 case migrate_task: 8574 env->imbalance--; 8575 break; 8576 8577 case migrate_misfit: 8578 /* This is not a misfit task */ 8579 if (task_fits_cpu(p, env->src_cpu)) 8580 goto next; 8581 8582 env->imbalance = 0; 8583 break; 8584 } 8585 8586 detach_task(p, env); 8587 list_add(&p->se.group_node, &env->tasks); 8588 8589 detached++; 8590 8591 #ifdef CONFIG_PREEMPTION 8592 /* 8593 * NEWIDLE balancing is a source of latency, so preemptible 8594 * kernels will stop after the first task is detached to minimize 8595 * the critical section. 8596 */ 8597 if (env->idle == CPU_NEWLY_IDLE) 8598 break; 8599 #endif 8600 8601 /* 8602 * We only want to steal up to the prescribed amount of 8603 * load/util/tasks. 8604 */ 8605 if (env->imbalance <= 0) 8606 break; 8607 8608 continue; 8609 next: 8610 list_move(&p->se.group_node, tasks); 8611 } 8612 8613 /* 8614 * Right now, this is one of only two places we collect this stat 8615 * so we can safely collect detach_one_task() stats here rather 8616 * than inside detach_one_task(). 8617 */ 8618 schedstat_add(env->sd->lb_gained[env->idle], detached); 8619 8620 return detached; 8621 } 8622 8623 /* 8624 * attach_task() -- attach the task detached by detach_task() to its new rq. 8625 */ 8626 static void attach_task(struct rq *rq, struct task_struct *p) 8627 { 8628 lockdep_assert_rq_held(rq); 8629 8630 WARN_ON_ONCE(task_rq(p) != rq); 8631 activate_task(rq, p, ENQUEUE_NOCLOCK); 8632 check_preempt_curr(rq, p, 0); 8633 } 8634 8635 /* 8636 * attach_one_task() -- attaches the task returned from detach_one_task() to 8637 * its new rq. 8638 */ 8639 static void attach_one_task(struct rq *rq, struct task_struct *p) 8640 { 8641 struct rq_flags rf; 8642 8643 rq_lock(rq, &rf); 8644 update_rq_clock(rq); 8645 attach_task(rq, p); 8646 rq_unlock(rq, &rf); 8647 } 8648 8649 /* 8650 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8651 * new rq. 8652 */ 8653 static void attach_tasks(struct lb_env *env) 8654 { 8655 struct list_head *tasks = &env->tasks; 8656 struct task_struct *p; 8657 struct rq_flags rf; 8658 8659 rq_lock(env->dst_rq, &rf); 8660 update_rq_clock(env->dst_rq); 8661 8662 while (!list_empty(tasks)) { 8663 p = list_first_entry(tasks, struct task_struct, se.group_node); 8664 list_del_init(&p->se.group_node); 8665 8666 attach_task(env->dst_rq, p); 8667 } 8668 8669 rq_unlock(env->dst_rq, &rf); 8670 } 8671 8672 #ifdef CONFIG_NO_HZ_COMMON 8673 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8674 { 8675 if (cfs_rq->avg.load_avg) 8676 return true; 8677 8678 if (cfs_rq->avg.util_avg) 8679 return true; 8680 8681 return false; 8682 } 8683 8684 static inline bool others_have_blocked(struct rq *rq) 8685 { 8686 if (READ_ONCE(rq->avg_rt.util_avg)) 8687 return true; 8688 8689 if (READ_ONCE(rq->avg_dl.util_avg)) 8690 return true; 8691 8692 if (thermal_load_avg(rq)) 8693 return true; 8694 8695 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8696 if (READ_ONCE(rq->avg_irq.util_avg)) 8697 return true; 8698 #endif 8699 8700 return false; 8701 } 8702 8703 static inline void update_blocked_load_tick(struct rq *rq) 8704 { 8705 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8706 } 8707 8708 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8709 { 8710 if (!has_blocked) 8711 rq->has_blocked_load = 0; 8712 } 8713 #else 8714 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8715 static inline bool others_have_blocked(struct rq *rq) { return false; } 8716 static inline void update_blocked_load_tick(struct rq *rq) {} 8717 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8718 #endif 8719 8720 static bool __update_blocked_others(struct rq *rq, bool *done) 8721 { 8722 const struct sched_class *curr_class; 8723 u64 now = rq_clock_pelt(rq); 8724 unsigned long thermal_pressure; 8725 bool decayed; 8726 8727 /* 8728 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8729 * DL and IRQ signals have been updated before updating CFS. 8730 */ 8731 curr_class = rq->curr->sched_class; 8732 8733 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8734 8735 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8736 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8737 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8738 update_irq_load_avg(rq, 0); 8739 8740 if (others_have_blocked(rq)) 8741 *done = false; 8742 8743 return decayed; 8744 } 8745 8746 #ifdef CONFIG_FAIR_GROUP_SCHED 8747 8748 static bool __update_blocked_fair(struct rq *rq, bool *done) 8749 { 8750 struct cfs_rq *cfs_rq, *pos; 8751 bool decayed = false; 8752 int cpu = cpu_of(rq); 8753 8754 /* 8755 * Iterates the task_group tree in a bottom up fashion, see 8756 * list_add_leaf_cfs_rq() for details. 8757 */ 8758 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8759 struct sched_entity *se; 8760 8761 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8762 update_tg_load_avg(cfs_rq); 8763 8764 if (cfs_rq->nr_running == 0) 8765 update_idle_cfs_rq_clock_pelt(cfs_rq); 8766 8767 if (cfs_rq == &rq->cfs) 8768 decayed = true; 8769 } 8770 8771 /* Propagate pending load changes to the parent, if any: */ 8772 se = cfs_rq->tg->se[cpu]; 8773 if (se && !skip_blocked_update(se)) 8774 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8775 8776 /* 8777 * There can be a lot of idle CPU cgroups. Don't let fully 8778 * decayed cfs_rqs linger on the list. 8779 */ 8780 if (cfs_rq_is_decayed(cfs_rq)) 8781 list_del_leaf_cfs_rq(cfs_rq); 8782 8783 /* Don't need periodic decay once load/util_avg are null */ 8784 if (cfs_rq_has_blocked(cfs_rq)) 8785 *done = false; 8786 } 8787 8788 return decayed; 8789 } 8790 8791 /* 8792 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8793 * This needs to be done in a top-down fashion because the load of a child 8794 * group is a fraction of its parents load. 8795 */ 8796 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8797 { 8798 struct rq *rq = rq_of(cfs_rq); 8799 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8800 unsigned long now = jiffies; 8801 unsigned long load; 8802 8803 if (cfs_rq->last_h_load_update == now) 8804 return; 8805 8806 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8807 for_each_sched_entity(se) { 8808 cfs_rq = cfs_rq_of(se); 8809 WRITE_ONCE(cfs_rq->h_load_next, se); 8810 if (cfs_rq->last_h_load_update == now) 8811 break; 8812 } 8813 8814 if (!se) { 8815 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8816 cfs_rq->last_h_load_update = now; 8817 } 8818 8819 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8820 load = cfs_rq->h_load; 8821 load = div64_ul(load * se->avg.load_avg, 8822 cfs_rq_load_avg(cfs_rq) + 1); 8823 cfs_rq = group_cfs_rq(se); 8824 cfs_rq->h_load = load; 8825 cfs_rq->last_h_load_update = now; 8826 } 8827 } 8828 8829 static unsigned long task_h_load(struct task_struct *p) 8830 { 8831 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8832 8833 update_cfs_rq_h_load(cfs_rq); 8834 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8835 cfs_rq_load_avg(cfs_rq) + 1); 8836 } 8837 #else 8838 static bool __update_blocked_fair(struct rq *rq, bool *done) 8839 { 8840 struct cfs_rq *cfs_rq = &rq->cfs; 8841 bool decayed; 8842 8843 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8844 if (cfs_rq_has_blocked(cfs_rq)) 8845 *done = false; 8846 8847 return decayed; 8848 } 8849 8850 static unsigned long task_h_load(struct task_struct *p) 8851 { 8852 return p->se.avg.load_avg; 8853 } 8854 #endif 8855 8856 static void update_blocked_averages(int cpu) 8857 { 8858 bool decayed = false, done = true; 8859 struct rq *rq = cpu_rq(cpu); 8860 struct rq_flags rf; 8861 8862 rq_lock_irqsave(rq, &rf); 8863 update_blocked_load_tick(rq); 8864 update_rq_clock(rq); 8865 8866 decayed |= __update_blocked_others(rq, &done); 8867 decayed |= __update_blocked_fair(rq, &done); 8868 8869 update_blocked_load_status(rq, !done); 8870 if (decayed) 8871 cpufreq_update_util(rq, 0); 8872 rq_unlock_irqrestore(rq, &rf); 8873 } 8874 8875 /********** Helpers for find_busiest_group ************************/ 8876 8877 /* 8878 * sg_lb_stats - stats of a sched_group required for load_balancing 8879 */ 8880 struct sg_lb_stats { 8881 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8882 unsigned long group_load; /* Total load over the CPUs of the group */ 8883 unsigned long group_capacity; 8884 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8885 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8886 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8887 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8888 unsigned int idle_cpus; 8889 unsigned int group_weight; 8890 enum group_type group_type; 8891 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8892 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8893 #ifdef CONFIG_NUMA_BALANCING 8894 unsigned int nr_numa_running; 8895 unsigned int nr_preferred_running; 8896 #endif 8897 }; 8898 8899 /* 8900 * sd_lb_stats - Structure to store the statistics of a sched_domain 8901 * during load balancing. 8902 */ 8903 struct sd_lb_stats { 8904 struct sched_group *busiest; /* Busiest group in this sd */ 8905 struct sched_group *local; /* Local group in this sd */ 8906 unsigned long total_load; /* Total load of all groups in sd */ 8907 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8908 unsigned long avg_load; /* Average load across all groups in sd */ 8909 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8910 8911 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8912 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8913 }; 8914 8915 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8916 { 8917 /* 8918 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8919 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8920 * We must however set busiest_stat::group_type and 8921 * busiest_stat::idle_cpus to the worst busiest group because 8922 * update_sd_pick_busiest() reads these before assignment. 8923 */ 8924 *sds = (struct sd_lb_stats){ 8925 .busiest = NULL, 8926 .local = NULL, 8927 .total_load = 0UL, 8928 .total_capacity = 0UL, 8929 .busiest_stat = { 8930 .idle_cpus = UINT_MAX, 8931 .group_type = group_has_spare, 8932 }, 8933 }; 8934 } 8935 8936 static unsigned long scale_rt_capacity(int cpu) 8937 { 8938 struct rq *rq = cpu_rq(cpu); 8939 unsigned long max = arch_scale_cpu_capacity(cpu); 8940 unsigned long used, free; 8941 unsigned long irq; 8942 8943 irq = cpu_util_irq(rq); 8944 8945 if (unlikely(irq >= max)) 8946 return 1; 8947 8948 /* 8949 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8950 * (running and not running) with weights 0 and 1024 respectively. 8951 * avg_thermal.load_avg tracks thermal pressure and the weighted 8952 * average uses the actual delta max capacity(load). 8953 */ 8954 used = READ_ONCE(rq->avg_rt.util_avg); 8955 used += READ_ONCE(rq->avg_dl.util_avg); 8956 used += thermal_load_avg(rq); 8957 8958 if (unlikely(used >= max)) 8959 return 1; 8960 8961 free = max - used; 8962 8963 return scale_irq_capacity(free, irq, max); 8964 } 8965 8966 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8967 { 8968 unsigned long capacity_orig = arch_scale_cpu_capacity(cpu); 8969 unsigned long capacity = scale_rt_capacity(cpu); 8970 struct sched_group *sdg = sd->groups; 8971 struct rq *rq = cpu_rq(cpu); 8972 8973 rq->cpu_capacity_orig = capacity_orig; 8974 8975 if (!capacity) 8976 capacity = 1; 8977 8978 rq->cpu_capacity = capacity; 8979 8980 /* 8981 * Detect if the performance domain is in capacity inversion state. 8982 * 8983 * Capacity inversion happens when another perf domain with equal or 8984 * lower capacity_orig_of() ends up having higher capacity than this 8985 * domain after subtracting thermal pressure. 8986 * 8987 * We only take into account thermal pressure in this detection as it's 8988 * the only metric that actually results in *real* reduction of 8989 * capacity due to performance points (OPPs) being dropped/become 8990 * unreachable due to thermal throttling. 8991 * 8992 * We assume: 8993 * * That all cpus in a perf domain have the same capacity_orig 8994 * (same uArch). 8995 * * Thermal pressure will impact all cpus in this perf domain 8996 * equally. 8997 */ 8998 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 8999 unsigned long inv_cap = capacity_orig - thermal_load_avg(rq); 9000 struct perf_domain *pd = rcu_dereference(rq->rd->pd); 9001 9002 rq->cpu_capacity_inverted = 0; 9003 9004 for (; pd; pd = pd->next) { 9005 struct cpumask *pd_span = perf_domain_span(pd); 9006 unsigned long pd_cap_orig, pd_cap; 9007 9008 cpu = cpumask_any(pd_span); 9009 pd_cap_orig = arch_scale_cpu_capacity(cpu); 9010 9011 if (capacity_orig < pd_cap_orig) 9012 continue; 9013 9014 /* 9015 * handle the case of multiple perf domains have the 9016 * same capacity_orig but one of them is under higher 9017 * thermal pressure. We record it as capacity 9018 * inversion. 9019 */ 9020 if (capacity_orig == pd_cap_orig) { 9021 pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu)); 9022 9023 if (pd_cap > inv_cap) { 9024 rq->cpu_capacity_inverted = inv_cap; 9025 break; 9026 } 9027 } else if (pd_cap_orig > inv_cap) { 9028 rq->cpu_capacity_inverted = inv_cap; 9029 break; 9030 } 9031 } 9032 } 9033 9034 trace_sched_cpu_capacity_tp(rq); 9035 9036 sdg->sgc->capacity = capacity; 9037 sdg->sgc->min_capacity = capacity; 9038 sdg->sgc->max_capacity = capacity; 9039 } 9040 9041 void update_group_capacity(struct sched_domain *sd, int cpu) 9042 { 9043 struct sched_domain *child = sd->child; 9044 struct sched_group *group, *sdg = sd->groups; 9045 unsigned long capacity, min_capacity, max_capacity; 9046 unsigned long interval; 9047 9048 interval = msecs_to_jiffies(sd->balance_interval); 9049 interval = clamp(interval, 1UL, max_load_balance_interval); 9050 sdg->sgc->next_update = jiffies + interval; 9051 9052 if (!child) { 9053 update_cpu_capacity(sd, cpu); 9054 return; 9055 } 9056 9057 capacity = 0; 9058 min_capacity = ULONG_MAX; 9059 max_capacity = 0; 9060 9061 if (child->flags & SD_OVERLAP) { 9062 /* 9063 * SD_OVERLAP domains cannot assume that child groups 9064 * span the current group. 9065 */ 9066 9067 for_each_cpu(cpu, sched_group_span(sdg)) { 9068 unsigned long cpu_cap = capacity_of(cpu); 9069 9070 capacity += cpu_cap; 9071 min_capacity = min(cpu_cap, min_capacity); 9072 max_capacity = max(cpu_cap, max_capacity); 9073 } 9074 } else { 9075 /* 9076 * !SD_OVERLAP domains can assume that child groups 9077 * span the current group. 9078 */ 9079 9080 group = child->groups; 9081 do { 9082 struct sched_group_capacity *sgc = group->sgc; 9083 9084 capacity += sgc->capacity; 9085 min_capacity = min(sgc->min_capacity, min_capacity); 9086 max_capacity = max(sgc->max_capacity, max_capacity); 9087 group = group->next; 9088 } while (group != child->groups); 9089 } 9090 9091 sdg->sgc->capacity = capacity; 9092 sdg->sgc->min_capacity = min_capacity; 9093 sdg->sgc->max_capacity = max_capacity; 9094 } 9095 9096 /* 9097 * Check whether the capacity of the rq has been noticeably reduced by side 9098 * activity. The imbalance_pct is used for the threshold. 9099 * Return true is the capacity is reduced 9100 */ 9101 static inline int 9102 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9103 { 9104 return ((rq->cpu_capacity * sd->imbalance_pct) < 9105 (rq->cpu_capacity_orig * 100)); 9106 } 9107 9108 /* 9109 * Check whether a rq has a misfit task and if it looks like we can actually 9110 * help that task: we can migrate the task to a CPU of higher capacity, or 9111 * the task's current CPU is heavily pressured. 9112 */ 9113 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9114 { 9115 return rq->misfit_task_load && 9116 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9117 check_cpu_capacity(rq, sd)); 9118 } 9119 9120 /* 9121 * Group imbalance indicates (and tries to solve) the problem where balancing 9122 * groups is inadequate due to ->cpus_ptr constraints. 9123 * 9124 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9125 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9126 * Something like: 9127 * 9128 * { 0 1 2 3 } { 4 5 6 7 } 9129 * * * * * 9130 * 9131 * If we were to balance group-wise we'd place two tasks in the first group and 9132 * two tasks in the second group. Clearly this is undesired as it will overload 9133 * cpu 3 and leave one of the CPUs in the second group unused. 9134 * 9135 * The current solution to this issue is detecting the skew in the first group 9136 * by noticing the lower domain failed to reach balance and had difficulty 9137 * moving tasks due to affinity constraints. 9138 * 9139 * When this is so detected; this group becomes a candidate for busiest; see 9140 * update_sd_pick_busiest(). And calculate_imbalance() and 9141 * find_busiest_group() avoid some of the usual balance conditions to allow it 9142 * to create an effective group imbalance. 9143 * 9144 * This is a somewhat tricky proposition since the next run might not find the 9145 * group imbalance and decide the groups need to be balanced again. A most 9146 * subtle and fragile situation. 9147 */ 9148 9149 static inline int sg_imbalanced(struct sched_group *group) 9150 { 9151 return group->sgc->imbalance; 9152 } 9153 9154 /* 9155 * group_has_capacity returns true if the group has spare capacity that could 9156 * be used by some tasks. 9157 * We consider that a group has spare capacity if the number of task is 9158 * smaller than the number of CPUs or if the utilization is lower than the 9159 * available capacity for CFS tasks. 9160 * For the latter, we use a threshold to stabilize the state, to take into 9161 * account the variance of the tasks' load and to return true if the available 9162 * capacity in meaningful for the load balancer. 9163 * As an example, an available capacity of 1% can appear but it doesn't make 9164 * any benefit for the load balance. 9165 */ 9166 static inline bool 9167 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9168 { 9169 if (sgs->sum_nr_running < sgs->group_weight) 9170 return true; 9171 9172 if ((sgs->group_capacity * imbalance_pct) < 9173 (sgs->group_runnable * 100)) 9174 return false; 9175 9176 if ((sgs->group_capacity * 100) > 9177 (sgs->group_util * imbalance_pct)) 9178 return true; 9179 9180 return false; 9181 } 9182 9183 /* 9184 * group_is_overloaded returns true if the group has more tasks than it can 9185 * handle. 9186 * group_is_overloaded is not equals to !group_has_capacity because a group 9187 * with the exact right number of tasks, has no more spare capacity but is not 9188 * overloaded so both group_has_capacity and group_is_overloaded return 9189 * false. 9190 */ 9191 static inline bool 9192 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9193 { 9194 if (sgs->sum_nr_running <= sgs->group_weight) 9195 return false; 9196 9197 if ((sgs->group_capacity * 100) < 9198 (sgs->group_util * imbalance_pct)) 9199 return true; 9200 9201 if ((sgs->group_capacity * imbalance_pct) < 9202 (sgs->group_runnable * 100)) 9203 return true; 9204 9205 return false; 9206 } 9207 9208 static inline enum 9209 group_type group_classify(unsigned int imbalance_pct, 9210 struct sched_group *group, 9211 struct sg_lb_stats *sgs) 9212 { 9213 if (group_is_overloaded(imbalance_pct, sgs)) 9214 return group_overloaded; 9215 9216 if (sg_imbalanced(group)) 9217 return group_imbalanced; 9218 9219 if (sgs->group_asym_packing) 9220 return group_asym_packing; 9221 9222 if (sgs->group_misfit_task_load) 9223 return group_misfit_task; 9224 9225 if (!group_has_capacity(imbalance_pct, sgs)) 9226 return group_fully_busy; 9227 9228 return group_has_spare; 9229 } 9230 9231 /** 9232 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 9233 * @dst_cpu: Destination CPU of the load balancing 9234 * @sds: Load-balancing data with statistics of the local group 9235 * @sgs: Load-balancing statistics of the candidate busiest group 9236 * @sg: The candidate busiest group 9237 * 9238 * Check the state of the SMT siblings of both @sds::local and @sg and decide 9239 * if @dst_cpu can pull tasks. 9240 * 9241 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 9242 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 9243 * only if @dst_cpu has higher priority. 9244 * 9245 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 9246 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 9247 * Bigger imbalances in the number of busy CPUs will be dealt with in 9248 * update_sd_pick_busiest(). 9249 * 9250 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 9251 * of @dst_cpu are idle and @sg has lower priority. 9252 * 9253 * Return: true if @dst_cpu can pull tasks, false otherwise. 9254 */ 9255 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 9256 struct sg_lb_stats *sgs, 9257 struct sched_group *sg) 9258 { 9259 #ifdef CONFIG_SCHED_SMT 9260 bool local_is_smt, sg_is_smt; 9261 int sg_busy_cpus; 9262 9263 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 9264 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 9265 9266 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 9267 9268 if (!local_is_smt) { 9269 /* 9270 * If we are here, @dst_cpu is idle and does not have SMT 9271 * siblings. Pull tasks if candidate group has two or more 9272 * busy CPUs. 9273 */ 9274 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 9275 return true; 9276 9277 /* 9278 * @dst_cpu does not have SMT siblings. @sg may have SMT 9279 * siblings and only one is busy. In such case, @dst_cpu 9280 * can help if it has higher priority and is idle (i.e., 9281 * it has no running tasks). 9282 */ 9283 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9284 } 9285 9286 /* @dst_cpu has SMT siblings. */ 9287 9288 if (sg_is_smt) { 9289 int local_busy_cpus = sds->local->group_weight - 9290 sds->local_stat.idle_cpus; 9291 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 9292 9293 if (busy_cpus_delta == 1) 9294 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9295 9296 return false; 9297 } 9298 9299 /* 9300 * @sg does not have SMT siblings. Ensure that @sds::local does not end 9301 * up with more than one busy SMT sibling and only pull tasks if there 9302 * are not busy CPUs (i.e., no CPU has running tasks). 9303 */ 9304 if (!sds->local_stat.sum_nr_running) 9305 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9306 9307 return false; 9308 #else 9309 /* Always return false so that callers deal with non-SMT cases. */ 9310 return false; 9311 #endif 9312 } 9313 9314 static inline bool 9315 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9316 struct sched_group *group) 9317 { 9318 /* Only do SMT checks if either local or candidate have SMT siblings */ 9319 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 9320 (group->flags & SD_SHARE_CPUCAPACITY)) 9321 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 9322 9323 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9324 } 9325 9326 static inline bool 9327 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9328 { 9329 /* 9330 * When there is more than 1 task, the group_overloaded case already 9331 * takes care of cpu with reduced capacity 9332 */ 9333 if (rq->cfs.h_nr_running != 1) 9334 return false; 9335 9336 return check_cpu_capacity(rq, sd); 9337 } 9338 9339 /** 9340 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9341 * @env: The load balancing environment. 9342 * @sds: Load-balancing data with statistics of the local group. 9343 * @group: sched_group whose statistics are to be updated. 9344 * @sgs: variable to hold the statistics for this group. 9345 * @sg_status: Holds flag indicating the status of the sched_group 9346 */ 9347 static inline void update_sg_lb_stats(struct lb_env *env, 9348 struct sd_lb_stats *sds, 9349 struct sched_group *group, 9350 struct sg_lb_stats *sgs, 9351 int *sg_status) 9352 { 9353 int i, nr_running, local_group; 9354 9355 memset(sgs, 0, sizeof(*sgs)); 9356 9357 local_group = group == sds->local; 9358 9359 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9360 struct rq *rq = cpu_rq(i); 9361 unsigned long load = cpu_load(rq); 9362 9363 sgs->group_load += load; 9364 sgs->group_util += cpu_util_cfs(i); 9365 sgs->group_runnable += cpu_runnable(rq); 9366 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9367 9368 nr_running = rq->nr_running; 9369 sgs->sum_nr_running += nr_running; 9370 9371 if (nr_running > 1) 9372 *sg_status |= SG_OVERLOAD; 9373 9374 if (cpu_overutilized(i)) 9375 *sg_status |= SG_OVERUTILIZED; 9376 9377 #ifdef CONFIG_NUMA_BALANCING 9378 sgs->nr_numa_running += rq->nr_numa_running; 9379 sgs->nr_preferred_running += rq->nr_preferred_running; 9380 #endif 9381 /* 9382 * No need to call idle_cpu() if nr_running is not 0 9383 */ 9384 if (!nr_running && idle_cpu(i)) { 9385 sgs->idle_cpus++; 9386 /* Idle cpu can't have misfit task */ 9387 continue; 9388 } 9389 9390 if (local_group) 9391 continue; 9392 9393 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9394 /* Check for a misfit task on the cpu */ 9395 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9396 sgs->group_misfit_task_load = rq->misfit_task_load; 9397 *sg_status |= SG_OVERLOAD; 9398 } 9399 } else if ((env->idle != CPU_NOT_IDLE) && 9400 sched_reduced_capacity(rq, env->sd)) { 9401 /* Check for a task running on a CPU with reduced capacity */ 9402 if (sgs->group_misfit_task_load < load) 9403 sgs->group_misfit_task_load = load; 9404 } 9405 } 9406 9407 sgs->group_capacity = group->sgc->capacity; 9408 9409 sgs->group_weight = group->group_weight; 9410 9411 /* Check if dst CPU is idle and preferred to this group */ 9412 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9413 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9414 sched_asym(env, sds, sgs, group)) { 9415 sgs->group_asym_packing = 1; 9416 } 9417 9418 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9419 9420 /* Computing avg_load makes sense only when group is overloaded */ 9421 if (sgs->group_type == group_overloaded) 9422 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9423 sgs->group_capacity; 9424 } 9425 9426 /** 9427 * update_sd_pick_busiest - return 1 on busiest group 9428 * @env: The load balancing environment. 9429 * @sds: sched_domain statistics 9430 * @sg: sched_group candidate to be checked for being the busiest 9431 * @sgs: sched_group statistics 9432 * 9433 * Determine if @sg is a busier group than the previously selected 9434 * busiest group. 9435 * 9436 * Return: %true if @sg is a busier group than the previously selected 9437 * busiest group. %false otherwise. 9438 */ 9439 static bool update_sd_pick_busiest(struct lb_env *env, 9440 struct sd_lb_stats *sds, 9441 struct sched_group *sg, 9442 struct sg_lb_stats *sgs) 9443 { 9444 struct sg_lb_stats *busiest = &sds->busiest_stat; 9445 9446 /* Make sure that there is at least one task to pull */ 9447 if (!sgs->sum_h_nr_running) 9448 return false; 9449 9450 /* 9451 * Don't try to pull misfit tasks we can't help. 9452 * We can use max_capacity here as reduction in capacity on some 9453 * CPUs in the group should either be possible to resolve 9454 * internally or be covered by avg_load imbalance (eventually). 9455 */ 9456 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9457 (sgs->group_type == group_misfit_task) && 9458 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9459 sds->local_stat.group_type != group_has_spare)) 9460 return false; 9461 9462 if (sgs->group_type > busiest->group_type) 9463 return true; 9464 9465 if (sgs->group_type < busiest->group_type) 9466 return false; 9467 9468 /* 9469 * The candidate and the current busiest group are the same type of 9470 * group. Let check which one is the busiest according to the type. 9471 */ 9472 9473 switch (sgs->group_type) { 9474 case group_overloaded: 9475 /* Select the overloaded group with highest avg_load. */ 9476 if (sgs->avg_load <= busiest->avg_load) 9477 return false; 9478 break; 9479 9480 case group_imbalanced: 9481 /* 9482 * Select the 1st imbalanced group as we don't have any way to 9483 * choose one more than another. 9484 */ 9485 return false; 9486 9487 case group_asym_packing: 9488 /* Prefer to move from lowest priority CPU's work */ 9489 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9490 return false; 9491 break; 9492 9493 case group_misfit_task: 9494 /* 9495 * If we have more than one misfit sg go with the biggest 9496 * misfit. 9497 */ 9498 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9499 return false; 9500 break; 9501 9502 case group_fully_busy: 9503 /* 9504 * Select the fully busy group with highest avg_load. In 9505 * theory, there is no need to pull task from such kind of 9506 * group because tasks have all compute capacity that they need 9507 * but we can still improve the overall throughput by reducing 9508 * contention when accessing shared HW resources. 9509 * 9510 * XXX for now avg_load is not computed and always 0 so we 9511 * select the 1st one. 9512 */ 9513 if (sgs->avg_load <= busiest->avg_load) 9514 return false; 9515 break; 9516 9517 case group_has_spare: 9518 /* 9519 * Select not overloaded group with lowest number of idle cpus 9520 * and highest number of running tasks. We could also compare 9521 * the spare capacity which is more stable but it can end up 9522 * that the group has less spare capacity but finally more idle 9523 * CPUs which means less opportunity to pull tasks. 9524 */ 9525 if (sgs->idle_cpus > busiest->idle_cpus) 9526 return false; 9527 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9528 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9529 return false; 9530 9531 break; 9532 } 9533 9534 /* 9535 * Candidate sg has no more than one task per CPU and has higher 9536 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9537 * throughput. Maximize throughput, power/energy consequences are not 9538 * considered. 9539 */ 9540 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9541 (sgs->group_type <= group_fully_busy) && 9542 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9543 return false; 9544 9545 return true; 9546 } 9547 9548 #ifdef CONFIG_NUMA_BALANCING 9549 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9550 { 9551 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9552 return regular; 9553 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9554 return remote; 9555 return all; 9556 } 9557 9558 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9559 { 9560 if (rq->nr_running > rq->nr_numa_running) 9561 return regular; 9562 if (rq->nr_running > rq->nr_preferred_running) 9563 return remote; 9564 return all; 9565 } 9566 #else 9567 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9568 { 9569 return all; 9570 } 9571 9572 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9573 { 9574 return regular; 9575 } 9576 #endif /* CONFIG_NUMA_BALANCING */ 9577 9578 9579 struct sg_lb_stats; 9580 9581 /* 9582 * task_running_on_cpu - return 1 if @p is running on @cpu. 9583 */ 9584 9585 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9586 { 9587 /* Task has no contribution or is new */ 9588 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9589 return 0; 9590 9591 if (task_on_rq_queued(p)) 9592 return 1; 9593 9594 return 0; 9595 } 9596 9597 /** 9598 * idle_cpu_without - would a given CPU be idle without p ? 9599 * @cpu: the processor on which idleness is tested. 9600 * @p: task which should be ignored. 9601 * 9602 * Return: 1 if the CPU would be idle. 0 otherwise. 9603 */ 9604 static int idle_cpu_without(int cpu, struct task_struct *p) 9605 { 9606 struct rq *rq = cpu_rq(cpu); 9607 9608 if (rq->curr != rq->idle && rq->curr != p) 9609 return 0; 9610 9611 /* 9612 * rq->nr_running can't be used but an updated version without the 9613 * impact of p on cpu must be used instead. The updated nr_running 9614 * be computed and tested before calling idle_cpu_without(). 9615 */ 9616 9617 #ifdef CONFIG_SMP 9618 if (rq->ttwu_pending) 9619 return 0; 9620 #endif 9621 9622 return 1; 9623 } 9624 9625 /* 9626 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9627 * @sd: The sched_domain level to look for idlest group. 9628 * @group: sched_group whose statistics are to be updated. 9629 * @sgs: variable to hold the statistics for this group. 9630 * @p: The task for which we look for the idlest group/CPU. 9631 */ 9632 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9633 struct sched_group *group, 9634 struct sg_lb_stats *sgs, 9635 struct task_struct *p) 9636 { 9637 int i, nr_running; 9638 9639 memset(sgs, 0, sizeof(*sgs)); 9640 9641 /* Assume that task can't fit any CPU of the group */ 9642 if (sd->flags & SD_ASYM_CPUCAPACITY) 9643 sgs->group_misfit_task_load = 1; 9644 9645 for_each_cpu(i, sched_group_span(group)) { 9646 struct rq *rq = cpu_rq(i); 9647 unsigned int local; 9648 9649 sgs->group_load += cpu_load_without(rq, p); 9650 sgs->group_util += cpu_util_without(i, p); 9651 sgs->group_runnable += cpu_runnable_without(rq, p); 9652 local = task_running_on_cpu(i, p); 9653 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9654 9655 nr_running = rq->nr_running - local; 9656 sgs->sum_nr_running += nr_running; 9657 9658 /* 9659 * No need to call idle_cpu_without() if nr_running is not 0 9660 */ 9661 if (!nr_running && idle_cpu_without(i, p)) 9662 sgs->idle_cpus++; 9663 9664 /* Check if task fits in the CPU */ 9665 if (sd->flags & SD_ASYM_CPUCAPACITY && 9666 sgs->group_misfit_task_load && 9667 task_fits_cpu(p, i)) 9668 sgs->group_misfit_task_load = 0; 9669 9670 } 9671 9672 sgs->group_capacity = group->sgc->capacity; 9673 9674 sgs->group_weight = group->group_weight; 9675 9676 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9677 9678 /* 9679 * Computing avg_load makes sense only when group is fully busy or 9680 * overloaded 9681 */ 9682 if (sgs->group_type == group_fully_busy || 9683 sgs->group_type == group_overloaded) 9684 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9685 sgs->group_capacity; 9686 } 9687 9688 static bool update_pick_idlest(struct sched_group *idlest, 9689 struct sg_lb_stats *idlest_sgs, 9690 struct sched_group *group, 9691 struct sg_lb_stats *sgs) 9692 { 9693 if (sgs->group_type < idlest_sgs->group_type) 9694 return true; 9695 9696 if (sgs->group_type > idlest_sgs->group_type) 9697 return false; 9698 9699 /* 9700 * The candidate and the current idlest group are the same type of 9701 * group. Let check which one is the idlest according to the type. 9702 */ 9703 9704 switch (sgs->group_type) { 9705 case group_overloaded: 9706 case group_fully_busy: 9707 /* Select the group with lowest avg_load. */ 9708 if (idlest_sgs->avg_load <= sgs->avg_load) 9709 return false; 9710 break; 9711 9712 case group_imbalanced: 9713 case group_asym_packing: 9714 /* Those types are not used in the slow wakeup path */ 9715 return false; 9716 9717 case group_misfit_task: 9718 /* Select group with the highest max capacity */ 9719 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9720 return false; 9721 break; 9722 9723 case group_has_spare: 9724 /* Select group with most idle CPUs */ 9725 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9726 return false; 9727 9728 /* Select group with lowest group_util */ 9729 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9730 idlest_sgs->group_util <= sgs->group_util) 9731 return false; 9732 9733 break; 9734 } 9735 9736 return true; 9737 } 9738 9739 /* 9740 * find_idlest_group() finds and returns the least busy CPU group within the 9741 * domain. 9742 * 9743 * Assumes p is allowed on at least one CPU in sd. 9744 */ 9745 static struct sched_group * 9746 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9747 { 9748 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9749 struct sg_lb_stats local_sgs, tmp_sgs; 9750 struct sg_lb_stats *sgs; 9751 unsigned long imbalance; 9752 struct sg_lb_stats idlest_sgs = { 9753 .avg_load = UINT_MAX, 9754 .group_type = group_overloaded, 9755 }; 9756 9757 do { 9758 int local_group; 9759 9760 /* Skip over this group if it has no CPUs allowed */ 9761 if (!cpumask_intersects(sched_group_span(group), 9762 p->cpus_ptr)) 9763 continue; 9764 9765 /* Skip over this group if no cookie matched */ 9766 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9767 continue; 9768 9769 local_group = cpumask_test_cpu(this_cpu, 9770 sched_group_span(group)); 9771 9772 if (local_group) { 9773 sgs = &local_sgs; 9774 local = group; 9775 } else { 9776 sgs = &tmp_sgs; 9777 } 9778 9779 update_sg_wakeup_stats(sd, group, sgs, p); 9780 9781 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9782 idlest = group; 9783 idlest_sgs = *sgs; 9784 } 9785 9786 } while (group = group->next, group != sd->groups); 9787 9788 9789 /* There is no idlest group to push tasks to */ 9790 if (!idlest) 9791 return NULL; 9792 9793 /* The local group has been skipped because of CPU affinity */ 9794 if (!local) 9795 return idlest; 9796 9797 /* 9798 * If the local group is idler than the selected idlest group 9799 * don't try and push the task. 9800 */ 9801 if (local_sgs.group_type < idlest_sgs.group_type) 9802 return NULL; 9803 9804 /* 9805 * If the local group is busier than the selected idlest group 9806 * try and push the task. 9807 */ 9808 if (local_sgs.group_type > idlest_sgs.group_type) 9809 return idlest; 9810 9811 switch (local_sgs.group_type) { 9812 case group_overloaded: 9813 case group_fully_busy: 9814 9815 /* Calculate allowed imbalance based on load */ 9816 imbalance = scale_load_down(NICE_0_LOAD) * 9817 (sd->imbalance_pct-100) / 100; 9818 9819 /* 9820 * When comparing groups across NUMA domains, it's possible for 9821 * the local domain to be very lightly loaded relative to the 9822 * remote domains but "imbalance" skews the comparison making 9823 * remote CPUs look much more favourable. When considering 9824 * cross-domain, add imbalance to the load on the remote node 9825 * and consider staying local. 9826 */ 9827 9828 if ((sd->flags & SD_NUMA) && 9829 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9830 return NULL; 9831 9832 /* 9833 * If the local group is less loaded than the selected 9834 * idlest group don't try and push any tasks. 9835 */ 9836 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9837 return NULL; 9838 9839 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9840 return NULL; 9841 break; 9842 9843 case group_imbalanced: 9844 case group_asym_packing: 9845 /* Those type are not used in the slow wakeup path */ 9846 return NULL; 9847 9848 case group_misfit_task: 9849 /* Select group with the highest max capacity */ 9850 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9851 return NULL; 9852 break; 9853 9854 case group_has_spare: 9855 #ifdef CONFIG_NUMA 9856 if (sd->flags & SD_NUMA) { 9857 int imb_numa_nr = sd->imb_numa_nr; 9858 #ifdef CONFIG_NUMA_BALANCING 9859 int idlest_cpu; 9860 /* 9861 * If there is spare capacity at NUMA, try to select 9862 * the preferred node 9863 */ 9864 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9865 return NULL; 9866 9867 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9868 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9869 return idlest; 9870 #endif /* CONFIG_NUMA_BALANCING */ 9871 /* 9872 * Otherwise, keep the task close to the wakeup source 9873 * and improve locality if the number of running tasks 9874 * would remain below threshold where an imbalance is 9875 * allowed while accounting for the possibility the 9876 * task is pinned to a subset of CPUs. If there is a 9877 * real need of migration, periodic load balance will 9878 * take care of it. 9879 */ 9880 if (p->nr_cpus_allowed != NR_CPUS) { 9881 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9882 9883 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9884 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9885 } 9886 9887 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9888 if (!adjust_numa_imbalance(imbalance, 9889 local_sgs.sum_nr_running + 1, 9890 imb_numa_nr)) { 9891 return NULL; 9892 } 9893 } 9894 #endif /* CONFIG_NUMA */ 9895 9896 /* 9897 * Select group with highest number of idle CPUs. We could also 9898 * compare the utilization which is more stable but it can end 9899 * up that the group has less spare capacity but finally more 9900 * idle CPUs which means more opportunity to run task. 9901 */ 9902 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9903 return NULL; 9904 break; 9905 } 9906 9907 return idlest; 9908 } 9909 9910 static void update_idle_cpu_scan(struct lb_env *env, 9911 unsigned long sum_util) 9912 { 9913 struct sched_domain_shared *sd_share; 9914 int llc_weight, pct; 9915 u64 x, y, tmp; 9916 /* 9917 * Update the number of CPUs to scan in LLC domain, which could 9918 * be used as a hint in select_idle_cpu(). The update of sd_share 9919 * could be expensive because it is within a shared cache line. 9920 * So the write of this hint only occurs during periodic load 9921 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9922 * can fire way more frequently than the former. 9923 */ 9924 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9925 return; 9926 9927 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9928 if (env->sd->span_weight != llc_weight) 9929 return; 9930 9931 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9932 if (!sd_share) 9933 return; 9934 9935 /* 9936 * The number of CPUs to search drops as sum_util increases, when 9937 * sum_util hits 85% or above, the scan stops. 9938 * The reason to choose 85% as the threshold is because this is the 9939 * imbalance_pct(117) when a LLC sched group is overloaded. 9940 * 9941 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9942 * and y'= y / SCHED_CAPACITY_SCALE 9943 * 9944 * x is the ratio of sum_util compared to the CPU capacity: 9945 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9946 * y' is the ratio of CPUs to be scanned in the LLC domain, 9947 * and the number of CPUs to scan is calculated by: 9948 * 9949 * nr_scan = llc_weight * y' [2] 9950 * 9951 * When x hits the threshold of overloaded, AKA, when 9952 * x = 100 / pct, y drops to 0. According to [1], 9953 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9954 * 9955 * Scale x by SCHED_CAPACITY_SCALE: 9956 * x' = sum_util / llc_weight; [3] 9957 * 9958 * and finally [1] becomes: 9959 * y = SCHED_CAPACITY_SCALE - 9960 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 9961 * 9962 */ 9963 /* equation [3] */ 9964 x = sum_util; 9965 do_div(x, llc_weight); 9966 9967 /* equation [4] */ 9968 pct = env->sd->imbalance_pct; 9969 tmp = x * x * pct * pct; 9970 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 9971 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 9972 y = SCHED_CAPACITY_SCALE - tmp; 9973 9974 /* equation [2] */ 9975 y *= llc_weight; 9976 do_div(y, SCHED_CAPACITY_SCALE); 9977 if ((int)y != sd_share->nr_idle_scan) 9978 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 9979 } 9980 9981 /** 9982 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9983 * @env: The load balancing environment. 9984 * @sds: variable to hold the statistics for this sched_domain. 9985 */ 9986 9987 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9988 { 9989 struct sched_domain *child = env->sd->child; 9990 struct sched_group *sg = env->sd->groups; 9991 struct sg_lb_stats *local = &sds->local_stat; 9992 struct sg_lb_stats tmp_sgs; 9993 unsigned long sum_util = 0; 9994 int sg_status = 0; 9995 9996 do { 9997 struct sg_lb_stats *sgs = &tmp_sgs; 9998 int local_group; 9999 10000 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10001 if (local_group) { 10002 sds->local = sg; 10003 sgs = local; 10004 10005 if (env->idle != CPU_NEWLY_IDLE || 10006 time_after_eq(jiffies, sg->sgc->next_update)) 10007 update_group_capacity(env->sd, env->dst_cpu); 10008 } 10009 10010 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10011 10012 if (local_group) 10013 goto next_group; 10014 10015 10016 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10017 sds->busiest = sg; 10018 sds->busiest_stat = *sgs; 10019 } 10020 10021 next_group: 10022 /* Now, start updating sd_lb_stats */ 10023 sds->total_load += sgs->group_load; 10024 sds->total_capacity += sgs->group_capacity; 10025 10026 sum_util += sgs->group_util; 10027 sg = sg->next; 10028 } while (sg != env->sd->groups); 10029 10030 /* Tag domain that child domain prefers tasks go to siblings first */ 10031 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 10032 10033 10034 if (env->sd->flags & SD_NUMA) 10035 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10036 10037 if (!env->sd->parent) { 10038 struct root_domain *rd = env->dst_rq->rd; 10039 10040 /* update overload indicator if we are at root domain */ 10041 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10042 10043 /* Update over-utilization (tipping point, U >= 0) indicator */ 10044 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10045 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10046 } else if (sg_status & SG_OVERUTILIZED) { 10047 struct root_domain *rd = env->dst_rq->rd; 10048 10049 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10050 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10051 } 10052 10053 update_idle_cpu_scan(env, sum_util); 10054 } 10055 10056 /** 10057 * calculate_imbalance - Calculate the amount of imbalance present within the 10058 * groups of a given sched_domain during load balance. 10059 * @env: load balance environment 10060 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10061 */ 10062 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10063 { 10064 struct sg_lb_stats *local, *busiest; 10065 10066 local = &sds->local_stat; 10067 busiest = &sds->busiest_stat; 10068 10069 if (busiest->group_type == group_misfit_task) { 10070 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10071 /* Set imbalance to allow misfit tasks to be balanced. */ 10072 env->migration_type = migrate_misfit; 10073 env->imbalance = 1; 10074 } else { 10075 /* 10076 * Set load imbalance to allow moving task from cpu 10077 * with reduced capacity. 10078 */ 10079 env->migration_type = migrate_load; 10080 env->imbalance = busiest->group_misfit_task_load; 10081 } 10082 return; 10083 } 10084 10085 if (busiest->group_type == group_asym_packing) { 10086 /* 10087 * In case of asym capacity, we will try to migrate all load to 10088 * the preferred CPU. 10089 */ 10090 env->migration_type = migrate_task; 10091 env->imbalance = busiest->sum_h_nr_running; 10092 return; 10093 } 10094 10095 if (busiest->group_type == group_imbalanced) { 10096 /* 10097 * In the group_imb case we cannot rely on group-wide averages 10098 * to ensure CPU-load equilibrium, try to move any task to fix 10099 * the imbalance. The next load balance will take care of 10100 * balancing back the system. 10101 */ 10102 env->migration_type = migrate_task; 10103 env->imbalance = 1; 10104 return; 10105 } 10106 10107 /* 10108 * Try to use spare capacity of local group without overloading it or 10109 * emptying busiest. 10110 */ 10111 if (local->group_type == group_has_spare) { 10112 if ((busiest->group_type > group_fully_busy) && 10113 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10114 /* 10115 * If busiest is overloaded, try to fill spare 10116 * capacity. This might end up creating spare capacity 10117 * in busiest or busiest still being overloaded but 10118 * there is no simple way to directly compute the 10119 * amount of load to migrate in order to balance the 10120 * system. 10121 */ 10122 env->migration_type = migrate_util; 10123 env->imbalance = max(local->group_capacity, local->group_util) - 10124 local->group_util; 10125 10126 /* 10127 * In some cases, the group's utilization is max or even 10128 * higher than capacity because of migrations but the 10129 * local CPU is (newly) idle. There is at least one 10130 * waiting task in this overloaded busiest group. Let's 10131 * try to pull it. 10132 */ 10133 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10134 env->migration_type = migrate_task; 10135 env->imbalance = 1; 10136 } 10137 10138 return; 10139 } 10140 10141 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10142 unsigned int nr_diff = busiest->sum_nr_running; 10143 /* 10144 * When prefer sibling, evenly spread running tasks on 10145 * groups. 10146 */ 10147 env->migration_type = migrate_task; 10148 lsub_positive(&nr_diff, local->sum_nr_running); 10149 env->imbalance = nr_diff; 10150 } else { 10151 10152 /* 10153 * If there is no overload, we just want to even the number of 10154 * idle cpus. 10155 */ 10156 env->migration_type = migrate_task; 10157 env->imbalance = max_t(long, 0, 10158 (local->idle_cpus - busiest->idle_cpus)); 10159 } 10160 10161 #ifdef CONFIG_NUMA 10162 /* Consider allowing a small imbalance between NUMA groups */ 10163 if (env->sd->flags & SD_NUMA) { 10164 env->imbalance = adjust_numa_imbalance(env->imbalance, 10165 local->sum_nr_running + 1, 10166 env->sd->imb_numa_nr); 10167 } 10168 #endif 10169 10170 /* Number of tasks to move to restore balance */ 10171 env->imbalance >>= 1; 10172 10173 return; 10174 } 10175 10176 /* 10177 * Local is fully busy but has to take more load to relieve the 10178 * busiest group 10179 */ 10180 if (local->group_type < group_overloaded) { 10181 /* 10182 * Local will become overloaded so the avg_load metrics are 10183 * finally needed. 10184 */ 10185 10186 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10187 local->group_capacity; 10188 10189 /* 10190 * If the local group is more loaded than the selected 10191 * busiest group don't try to pull any tasks. 10192 */ 10193 if (local->avg_load >= busiest->avg_load) { 10194 env->imbalance = 0; 10195 return; 10196 } 10197 10198 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10199 sds->total_capacity; 10200 } 10201 10202 /* 10203 * Both group are or will become overloaded and we're trying to get all 10204 * the CPUs to the average_load, so we don't want to push ourselves 10205 * above the average load, nor do we wish to reduce the max loaded CPU 10206 * below the average load. At the same time, we also don't want to 10207 * reduce the group load below the group capacity. Thus we look for 10208 * the minimum possible imbalance. 10209 */ 10210 env->migration_type = migrate_load; 10211 env->imbalance = min( 10212 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10213 (sds->avg_load - local->avg_load) * local->group_capacity 10214 ) / SCHED_CAPACITY_SCALE; 10215 } 10216 10217 /******* find_busiest_group() helpers end here *********************/ 10218 10219 /* 10220 * Decision matrix according to the local and busiest group type: 10221 * 10222 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10223 * has_spare nr_idle balanced N/A N/A balanced balanced 10224 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10225 * misfit_task force N/A N/A N/A N/A N/A 10226 * asym_packing force force N/A N/A force force 10227 * imbalanced force force N/A N/A force force 10228 * overloaded force force N/A N/A force avg_load 10229 * 10230 * N/A : Not Applicable because already filtered while updating 10231 * statistics. 10232 * balanced : The system is balanced for these 2 groups. 10233 * force : Calculate the imbalance as load migration is probably needed. 10234 * avg_load : Only if imbalance is significant enough. 10235 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10236 * different in groups. 10237 */ 10238 10239 /** 10240 * find_busiest_group - Returns the busiest group within the sched_domain 10241 * if there is an imbalance. 10242 * @env: The load balancing environment. 10243 * 10244 * Also calculates the amount of runnable load which should be moved 10245 * to restore balance. 10246 * 10247 * Return: - The busiest group if imbalance exists. 10248 */ 10249 static struct sched_group *find_busiest_group(struct lb_env *env) 10250 { 10251 struct sg_lb_stats *local, *busiest; 10252 struct sd_lb_stats sds; 10253 10254 init_sd_lb_stats(&sds); 10255 10256 /* 10257 * Compute the various statistics relevant for load balancing at 10258 * this level. 10259 */ 10260 update_sd_lb_stats(env, &sds); 10261 10262 if (sched_energy_enabled()) { 10263 struct root_domain *rd = env->dst_rq->rd; 10264 10265 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10266 goto out_balanced; 10267 } 10268 10269 local = &sds.local_stat; 10270 busiest = &sds.busiest_stat; 10271 10272 /* There is no busy sibling group to pull tasks from */ 10273 if (!sds.busiest) 10274 goto out_balanced; 10275 10276 /* Misfit tasks should be dealt with regardless of the avg load */ 10277 if (busiest->group_type == group_misfit_task) 10278 goto force_balance; 10279 10280 /* ASYM feature bypasses nice load balance check */ 10281 if (busiest->group_type == group_asym_packing) 10282 goto force_balance; 10283 10284 /* 10285 * If the busiest group is imbalanced the below checks don't 10286 * work because they assume all things are equal, which typically 10287 * isn't true due to cpus_ptr constraints and the like. 10288 */ 10289 if (busiest->group_type == group_imbalanced) 10290 goto force_balance; 10291 10292 /* 10293 * If the local group is busier than the selected busiest group 10294 * don't try and pull any tasks. 10295 */ 10296 if (local->group_type > busiest->group_type) 10297 goto out_balanced; 10298 10299 /* 10300 * When groups are overloaded, use the avg_load to ensure fairness 10301 * between tasks. 10302 */ 10303 if (local->group_type == group_overloaded) { 10304 /* 10305 * If the local group is more loaded than the selected 10306 * busiest group don't try to pull any tasks. 10307 */ 10308 if (local->avg_load >= busiest->avg_load) 10309 goto out_balanced; 10310 10311 /* XXX broken for overlapping NUMA groups */ 10312 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10313 sds.total_capacity; 10314 10315 /* 10316 * Don't pull any tasks if this group is already above the 10317 * domain average load. 10318 */ 10319 if (local->avg_load >= sds.avg_load) 10320 goto out_balanced; 10321 10322 /* 10323 * If the busiest group is more loaded, use imbalance_pct to be 10324 * conservative. 10325 */ 10326 if (100 * busiest->avg_load <= 10327 env->sd->imbalance_pct * local->avg_load) 10328 goto out_balanced; 10329 } 10330 10331 /* Try to move all excess tasks to child's sibling domain */ 10332 if (sds.prefer_sibling && local->group_type == group_has_spare && 10333 busiest->sum_nr_running > local->sum_nr_running + 1) 10334 goto force_balance; 10335 10336 if (busiest->group_type != group_overloaded) { 10337 if (env->idle == CPU_NOT_IDLE) 10338 /* 10339 * If the busiest group is not overloaded (and as a 10340 * result the local one too) but this CPU is already 10341 * busy, let another idle CPU try to pull task. 10342 */ 10343 goto out_balanced; 10344 10345 if (busiest->group_weight > 1 && 10346 local->idle_cpus <= (busiest->idle_cpus + 1)) 10347 /* 10348 * If the busiest group is not overloaded 10349 * and there is no imbalance between this and busiest 10350 * group wrt idle CPUs, it is balanced. The imbalance 10351 * becomes significant if the diff is greater than 1 10352 * otherwise we might end up to just move the imbalance 10353 * on another group. Of course this applies only if 10354 * there is more than 1 CPU per group. 10355 */ 10356 goto out_balanced; 10357 10358 if (busiest->sum_h_nr_running == 1) 10359 /* 10360 * busiest doesn't have any tasks waiting to run 10361 */ 10362 goto out_balanced; 10363 } 10364 10365 force_balance: 10366 /* Looks like there is an imbalance. Compute it */ 10367 calculate_imbalance(env, &sds); 10368 return env->imbalance ? sds.busiest : NULL; 10369 10370 out_balanced: 10371 env->imbalance = 0; 10372 return NULL; 10373 } 10374 10375 /* 10376 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10377 */ 10378 static struct rq *find_busiest_queue(struct lb_env *env, 10379 struct sched_group *group) 10380 { 10381 struct rq *busiest = NULL, *rq; 10382 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10383 unsigned int busiest_nr = 0; 10384 int i; 10385 10386 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10387 unsigned long capacity, load, util; 10388 unsigned int nr_running; 10389 enum fbq_type rt; 10390 10391 rq = cpu_rq(i); 10392 rt = fbq_classify_rq(rq); 10393 10394 /* 10395 * We classify groups/runqueues into three groups: 10396 * - regular: there are !numa tasks 10397 * - remote: there are numa tasks that run on the 'wrong' node 10398 * - all: there is no distinction 10399 * 10400 * In order to avoid migrating ideally placed numa tasks, 10401 * ignore those when there's better options. 10402 * 10403 * If we ignore the actual busiest queue to migrate another 10404 * task, the next balance pass can still reduce the busiest 10405 * queue by moving tasks around inside the node. 10406 * 10407 * If we cannot move enough load due to this classification 10408 * the next pass will adjust the group classification and 10409 * allow migration of more tasks. 10410 * 10411 * Both cases only affect the total convergence complexity. 10412 */ 10413 if (rt > env->fbq_type) 10414 continue; 10415 10416 nr_running = rq->cfs.h_nr_running; 10417 if (!nr_running) 10418 continue; 10419 10420 capacity = capacity_of(i); 10421 10422 /* 10423 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10424 * eventually lead to active_balancing high->low capacity. 10425 * Higher per-CPU capacity is considered better than balancing 10426 * average load. 10427 */ 10428 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10429 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10430 nr_running == 1) 10431 continue; 10432 10433 /* Make sure we only pull tasks from a CPU of lower priority */ 10434 if ((env->sd->flags & SD_ASYM_PACKING) && 10435 sched_asym_prefer(i, env->dst_cpu) && 10436 nr_running == 1) 10437 continue; 10438 10439 switch (env->migration_type) { 10440 case migrate_load: 10441 /* 10442 * When comparing with load imbalance, use cpu_load() 10443 * which is not scaled with the CPU capacity. 10444 */ 10445 load = cpu_load(rq); 10446 10447 if (nr_running == 1 && load > env->imbalance && 10448 !check_cpu_capacity(rq, env->sd)) 10449 break; 10450 10451 /* 10452 * For the load comparisons with the other CPUs, 10453 * consider the cpu_load() scaled with the CPU 10454 * capacity, so that the load can be moved away 10455 * from the CPU that is potentially running at a 10456 * lower capacity. 10457 * 10458 * Thus we're looking for max(load_i / capacity_i), 10459 * crosswise multiplication to rid ourselves of the 10460 * division works out to: 10461 * load_i * capacity_j > load_j * capacity_i; 10462 * where j is our previous maximum. 10463 */ 10464 if (load * busiest_capacity > busiest_load * capacity) { 10465 busiest_load = load; 10466 busiest_capacity = capacity; 10467 busiest = rq; 10468 } 10469 break; 10470 10471 case migrate_util: 10472 util = cpu_util_cfs(i); 10473 10474 /* 10475 * Don't try to pull utilization from a CPU with one 10476 * running task. Whatever its utilization, we will fail 10477 * detach the task. 10478 */ 10479 if (nr_running <= 1) 10480 continue; 10481 10482 if (busiest_util < util) { 10483 busiest_util = util; 10484 busiest = rq; 10485 } 10486 break; 10487 10488 case migrate_task: 10489 if (busiest_nr < nr_running) { 10490 busiest_nr = nr_running; 10491 busiest = rq; 10492 } 10493 break; 10494 10495 case migrate_misfit: 10496 /* 10497 * For ASYM_CPUCAPACITY domains with misfit tasks we 10498 * simply seek the "biggest" misfit task. 10499 */ 10500 if (rq->misfit_task_load > busiest_load) { 10501 busiest_load = rq->misfit_task_load; 10502 busiest = rq; 10503 } 10504 10505 break; 10506 10507 } 10508 } 10509 10510 return busiest; 10511 } 10512 10513 /* 10514 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10515 * so long as it is large enough. 10516 */ 10517 #define MAX_PINNED_INTERVAL 512 10518 10519 static inline bool 10520 asym_active_balance(struct lb_env *env) 10521 { 10522 /* 10523 * ASYM_PACKING needs to force migrate tasks from busy but 10524 * lower priority CPUs in order to pack all tasks in the 10525 * highest priority CPUs. 10526 */ 10527 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10528 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10529 } 10530 10531 static inline bool 10532 imbalanced_active_balance(struct lb_env *env) 10533 { 10534 struct sched_domain *sd = env->sd; 10535 10536 /* 10537 * The imbalanced case includes the case of pinned tasks preventing a fair 10538 * distribution of the load on the system but also the even distribution of the 10539 * threads on a system with spare capacity 10540 */ 10541 if ((env->migration_type == migrate_task) && 10542 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10543 return 1; 10544 10545 return 0; 10546 } 10547 10548 static int need_active_balance(struct lb_env *env) 10549 { 10550 struct sched_domain *sd = env->sd; 10551 10552 if (asym_active_balance(env)) 10553 return 1; 10554 10555 if (imbalanced_active_balance(env)) 10556 return 1; 10557 10558 /* 10559 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10560 * It's worth migrating the task if the src_cpu's capacity is reduced 10561 * because of other sched_class or IRQs if more capacity stays 10562 * available on dst_cpu. 10563 */ 10564 if ((env->idle != CPU_NOT_IDLE) && 10565 (env->src_rq->cfs.h_nr_running == 1)) { 10566 if ((check_cpu_capacity(env->src_rq, sd)) && 10567 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10568 return 1; 10569 } 10570 10571 if (env->migration_type == migrate_misfit) 10572 return 1; 10573 10574 return 0; 10575 } 10576 10577 static int active_load_balance_cpu_stop(void *data); 10578 10579 static int should_we_balance(struct lb_env *env) 10580 { 10581 struct sched_group *sg = env->sd->groups; 10582 int cpu; 10583 10584 /* 10585 * Ensure the balancing environment is consistent; can happen 10586 * when the softirq triggers 'during' hotplug. 10587 */ 10588 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10589 return 0; 10590 10591 /* 10592 * In the newly idle case, we will allow all the CPUs 10593 * to do the newly idle load balance. 10594 * 10595 * However, we bail out if we already have tasks or a wakeup pending, 10596 * to optimize wakeup latency. 10597 */ 10598 if (env->idle == CPU_NEWLY_IDLE) { 10599 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10600 return 0; 10601 return 1; 10602 } 10603 10604 /* Try to find first idle CPU */ 10605 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10606 if (!idle_cpu(cpu)) 10607 continue; 10608 10609 /* Are we the first idle CPU? */ 10610 return cpu == env->dst_cpu; 10611 } 10612 10613 /* Are we the first CPU of this group ? */ 10614 return group_balance_cpu(sg) == env->dst_cpu; 10615 } 10616 10617 /* 10618 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10619 * tasks if there is an imbalance. 10620 */ 10621 static int load_balance(int this_cpu, struct rq *this_rq, 10622 struct sched_domain *sd, enum cpu_idle_type idle, 10623 int *continue_balancing) 10624 { 10625 int ld_moved, cur_ld_moved, active_balance = 0; 10626 struct sched_domain *sd_parent = sd->parent; 10627 struct sched_group *group; 10628 struct rq *busiest; 10629 struct rq_flags rf; 10630 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10631 struct lb_env env = { 10632 .sd = sd, 10633 .dst_cpu = this_cpu, 10634 .dst_rq = this_rq, 10635 .dst_grpmask = sched_group_span(sd->groups), 10636 .idle = idle, 10637 .loop_break = SCHED_NR_MIGRATE_BREAK, 10638 .cpus = cpus, 10639 .fbq_type = all, 10640 .tasks = LIST_HEAD_INIT(env.tasks), 10641 }; 10642 10643 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10644 10645 schedstat_inc(sd->lb_count[idle]); 10646 10647 redo: 10648 if (!should_we_balance(&env)) { 10649 *continue_balancing = 0; 10650 goto out_balanced; 10651 } 10652 10653 group = find_busiest_group(&env); 10654 if (!group) { 10655 schedstat_inc(sd->lb_nobusyg[idle]); 10656 goto out_balanced; 10657 } 10658 10659 busiest = find_busiest_queue(&env, group); 10660 if (!busiest) { 10661 schedstat_inc(sd->lb_nobusyq[idle]); 10662 goto out_balanced; 10663 } 10664 10665 WARN_ON_ONCE(busiest == env.dst_rq); 10666 10667 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10668 10669 env.src_cpu = busiest->cpu; 10670 env.src_rq = busiest; 10671 10672 ld_moved = 0; 10673 /* Clear this flag as soon as we find a pullable task */ 10674 env.flags |= LBF_ALL_PINNED; 10675 if (busiest->nr_running > 1) { 10676 /* 10677 * Attempt to move tasks. If find_busiest_group has found 10678 * an imbalance but busiest->nr_running <= 1, the group is 10679 * still unbalanced. ld_moved simply stays zero, so it is 10680 * correctly treated as an imbalance. 10681 */ 10682 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10683 10684 more_balance: 10685 rq_lock_irqsave(busiest, &rf); 10686 update_rq_clock(busiest); 10687 10688 /* 10689 * cur_ld_moved - load moved in current iteration 10690 * ld_moved - cumulative load moved across iterations 10691 */ 10692 cur_ld_moved = detach_tasks(&env); 10693 10694 /* 10695 * We've detached some tasks from busiest_rq. Every 10696 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10697 * unlock busiest->lock, and we are able to be sure 10698 * that nobody can manipulate the tasks in parallel. 10699 * See task_rq_lock() family for the details. 10700 */ 10701 10702 rq_unlock(busiest, &rf); 10703 10704 if (cur_ld_moved) { 10705 attach_tasks(&env); 10706 ld_moved += cur_ld_moved; 10707 } 10708 10709 local_irq_restore(rf.flags); 10710 10711 if (env.flags & LBF_NEED_BREAK) { 10712 env.flags &= ~LBF_NEED_BREAK; 10713 /* Stop if we tried all running tasks */ 10714 if (env.loop < busiest->nr_running) 10715 goto more_balance; 10716 } 10717 10718 /* 10719 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10720 * us and move them to an alternate dst_cpu in our sched_group 10721 * where they can run. The upper limit on how many times we 10722 * iterate on same src_cpu is dependent on number of CPUs in our 10723 * sched_group. 10724 * 10725 * This changes load balance semantics a bit on who can move 10726 * load to a given_cpu. In addition to the given_cpu itself 10727 * (or a ilb_cpu acting on its behalf where given_cpu is 10728 * nohz-idle), we now have balance_cpu in a position to move 10729 * load to given_cpu. In rare situations, this may cause 10730 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10731 * _independently_ and at _same_ time to move some load to 10732 * given_cpu) causing excess load to be moved to given_cpu. 10733 * This however should not happen so much in practice and 10734 * moreover subsequent load balance cycles should correct the 10735 * excess load moved. 10736 */ 10737 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10738 10739 /* Prevent to re-select dst_cpu via env's CPUs */ 10740 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10741 10742 env.dst_rq = cpu_rq(env.new_dst_cpu); 10743 env.dst_cpu = env.new_dst_cpu; 10744 env.flags &= ~LBF_DST_PINNED; 10745 env.loop = 0; 10746 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10747 10748 /* 10749 * Go back to "more_balance" rather than "redo" since we 10750 * need to continue with same src_cpu. 10751 */ 10752 goto more_balance; 10753 } 10754 10755 /* 10756 * We failed to reach balance because of affinity. 10757 */ 10758 if (sd_parent) { 10759 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10760 10761 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10762 *group_imbalance = 1; 10763 } 10764 10765 /* All tasks on this runqueue were pinned by CPU affinity */ 10766 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10767 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10768 /* 10769 * Attempting to continue load balancing at the current 10770 * sched_domain level only makes sense if there are 10771 * active CPUs remaining as possible busiest CPUs to 10772 * pull load from which are not contained within the 10773 * destination group that is receiving any migrated 10774 * load. 10775 */ 10776 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10777 env.loop = 0; 10778 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10779 goto redo; 10780 } 10781 goto out_all_pinned; 10782 } 10783 } 10784 10785 if (!ld_moved) { 10786 schedstat_inc(sd->lb_failed[idle]); 10787 /* 10788 * Increment the failure counter only on periodic balance. 10789 * We do not want newidle balance, which can be very 10790 * frequent, pollute the failure counter causing 10791 * excessive cache_hot migrations and active balances. 10792 */ 10793 if (idle != CPU_NEWLY_IDLE) 10794 sd->nr_balance_failed++; 10795 10796 if (need_active_balance(&env)) { 10797 unsigned long flags; 10798 10799 raw_spin_rq_lock_irqsave(busiest, flags); 10800 10801 /* 10802 * Don't kick the active_load_balance_cpu_stop, 10803 * if the curr task on busiest CPU can't be 10804 * moved to this_cpu: 10805 */ 10806 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10807 raw_spin_rq_unlock_irqrestore(busiest, flags); 10808 goto out_one_pinned; 10809 } 10810 10811 /* Record that we found at least one task that could run on this_cpu */ 10812 env.flags &= ~LBF_ALL_PINNED; 10813 10814 /* 10815 * ->active_balance synchronizes accesses to 10816 * ->active_balance_work. Once set, it's cleared 10817 * only after active load balance is finished. 10818 */ 10819 if (!busiest->active_balance) { 10820 busiest->active_balance = 1; 10821 busiest->push_cpu = this_cpu; 10822 active_balance = 1; 10823 } 10824 raw_spin_rq_unlock_irqrestore(busiest, flags); 10825 10826 if (active_balance) { 10827 stop_one_cpu_nowait(cpu_of(busiest), 10828 active_load_balance_cpu_stop, busiest, 10829 &busiest->active_balance_work); 10830 } 10831 } 10832 } else { 10833 sd->nr_balance_failed = 0; 10834 } 10835 10836 if (likely(!active_balance) || need_active_balance(&env)) { 10837 /* We were unbalanced, so reset the balancing interval */ 10838 sd->balance_interval = sd->min_interval; 10839 } 10840 10841 goto out; 10842 10843 out_balanced: 10844 /* 10845 * We reach balance although we may have faced some affinity 10846 * constraints. Clear the imbalance flag only if other tasks got 10847 * a chance to move and fix the imbalance. 10848 */ 10849 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10850 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10851 10852 if (*group_imbalance) 10853 *group_imbalance = 0; 10854 } 10855 10856 out_all_pinned: 10857 /* 10858 * We reach balance because all tasks are pinned at this level so 10859 * we can't migrate them. Let the imbalance flag set so parent level 10860 * can try to migrate them. 10861 */ 10862 schedstat_inc(sd->lb_balanced[idle]); 10863 10864 sd->nr_balance_failed = 0; 10865 10866 out_one_pinned: 10867 ld_moved = 0; 10868 10869 /* 10870 * newidle_balance() disregards balance intervals, so we could 10871 * repeatedly reach this code, which would lead to balance_interval 10872 * skyrocketing in a short amount of time. Skip the balance_interval 10873 * increase logic to avoid that. 10874 */ 10875 if (env.idle == CPU_NEWLY_IDLE) 10876 goto out; 10877 10878 /* tune up the balancing interval */ 10879 if ((env.flags & LBF_ALL_PINNED && 10880 sd->balance_interval < MAX_PINNED_INTERVAL) || 10881 sd->balance_interval < sd->max_interval) 10882 sd->balance_interval *= 2; 10883 out: 10884 return ld_moved; 10885 } 10886 10887 static inline unsigned long 10888 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10889 { 10890 unsigned long interval = sd->balance_interval; 10891 10892 if (cpu_busy) 10893 interval *= sd->busy_factor; 10894 10895 /* scale ms to jiffies */ 10896 interval = msecs_to_jiffies(interval); 10897 10898 /* 10899 * Reduce likelihood of busy balancing at higher domains racing with 10900 * balancing at lower domains by preventing their balancing periods 10901 * from being multiples of each other. 10902 */ 10903 if (cpu_busy) 10904 interval -= 1; 10905 10906 interval = clamp(interval, 1UL, max_load_balance_interval); 10907 10908 return interval; 10909 } 10910 10911 static inline void 10912 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10913 { 10914 unsigned long interval, next; 10915 10916 /* used by idle balance, so cpu_busy = 0 */ 10917 interval = get_sd_balance_interval(sd, 0); 10918 next = sd->last_balance + interval; 10919 10920 if (time_after(*next_balance, next)) 10921 *next_balance = next; 10922 } 10923 10924 /* 10925 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10926 * running tasks off the busiest CPU onto idle CPUs. It requires at 10927 * least 1 task to be running on each physical CPU where possible, and 10928 * avoids physical / logical imbalances. 10929 */ 10930 static int active_load_balance_cpu_stop(void *data) 10931 { 10932 struct rq *busiest_rq = data; 10933 int busiest_cpu = cpu_of(busiest_rq); 10934 int target_cpu = busiest_rq->push_cpu; 10935 struct rq *target_rq = cpu_rq(target_cpu); 10936 struct sched_domain *sd; 10937 struct task_struct *p = NULL; 10938 struct rq_flags rf; 10939 10940 rq_lock_irq(busiest_rq, &rf); 10941 /* 10942 * Between queueing the stop-work and running it is a hole in which 10943 * CPUs can become inactive. We should not move tasks from or to 10944 * inactive CPUs. 10945 */ 10946 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10947 goto out_unlock; 10948 10949 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10950 if (unlikely(busiest_cpu != smp_processor_id() || 10951 !busiest_rq->active_balance)) 10952 goto out_unlock; 10953 10954 /* Is there any task to move? */ 10955 if (busiest_rq->nr_running <= 1) 10956 goto out_unlock; 10957 10958 /* 10959 * This condition is "impossible", if it occurs 10960 * we need to fix it. Originally reported by 10961 * Bjorn Helgaas on a 128-CPU setup. 10962 */ 10963 WARN_ON_ONCE(busiest_rq == target_rq); 10964 10965 /* Search for an sd spanning us and the target CPU. */ 10966 rcu_read_lock(); 10967 for_each_domain(target_cpu, sd) { 10968 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10969 break; 10970 } 10971 10972 if (likely(sd)) { 10973 struct lb_env env = { 10974 .sd = sd, 10975 .dst_cpu = target_cpu, 10976 .dst_rq = target_rq, 10977 .src_cpu = busiest_rq->cpu, 10978 .src_rq = busiest_rq, 10979 .idle = CPU_IDLE, 10980 .flags = LBF_ACTIVE_LB, 10981 }; 10982 10983 schedstat_inc(sd->alb_count); 10984 update_rq_clock(busiest_rq); 10985 10986 p = detach_one_task(&env); 10987 if (p) { 10988 schedstat_inc(sd->alb_pushed); 10989 /* Active balancing done, reset the failure counter. */ 10990 sd->nr_balance_failed = 0; 10991 } else { 10992 schedstat_inc(sd->alb_failed); 10993 } 10994 } 10995 rcu_read_unlock(); 10996 out_unlock: 10997 busiest_rq->active_balance = 0; 10998 rq_unlock(busiest_rq, &rf); 10999 11000 if (p) 11001 attach_one_task(target_rq, p); 11002 11003 local_irq_enable(); 11004 11005 return 0; 11006 } 11007 11008 static DEFINE_SPINLOCK(balancing); 11009 11010 /* 11011 * Scale the max load_balance interval with the number of CPUs in the system. 11012 * This trades load-balance latency on larger machines for less cross talk. 11013 */ 11014 void update_max_interval(void) 11015 { 11016 max_load_balance_interval = HZ*num_online_cpus()/10; 11017 } 11018 11019 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11020 { 11021 if (cost > sd->max_newidle_lb_cost) { 11022 /* 11023 * Track max cost of a domain to make sure to not delay the 11024 * next wakeup on the CPU. 11025 */ 11026 sd->max_newidle_lb_cost = cost; 11027 sd->last_decay_max_lb_cost = jiffies; 11028 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11029 /* 11030 * Decay the newidle max times by ~1% per second to ensure that 11031 * it is not outdated and the current max cost is actually 11032 * shorter. 11033 */ 11034 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11035 sd->last_decay_max_lb_cost = jiffies; 11036 11037 return true; 11038 } 11039 11040 return false; 11041 } 11042 11043 /* 11044 * It checks each scheduling domain to see if it is due to be balanced, 11045 * and initiates a balancing operation if so. 11046 * 11047 * Balancing parameters are set up in init_sched_domains. 11048 */ 11049 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11050 { 11051 int continue_balancing = 1; 11052 int cpu = rq->cpu; 11053 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11054 unsigned long interval; 11055 struct sched_domain *sd; 11056 /* Earliest time when we have to do rebalance again */ 11057 unsigned long next_balance = jiffies + 60*HZ; 11058 int update_next_balance = 0; 11059 int need_serialize, need_decay = 0; 11060 u64 max_cost = 0; 11061 11062 rcu_read_lock(); 11063 for_each_domain(cpu, sd) { 11064 /* 11065 * Decay the newidle max times here because this is a regular 11066 * visit to all the domains. 11067 */ 11068 need_decay = update_newidle_cost(sd, 0); 11069 max_cost += sd->max_newidle_lb_cost; 11070 11071 /* 11072 * Stop the load balance at this level. There is another 11073 * CPU in our sched group which is doing load balancing more 11074 * actively. 11075 */ 11076 if (!continue_balancing) { 11077 if (need_decay) 11078 continue; 11079 break; 11080 } 11081 11082 interval = get_sd_balance_interval(sd, busy); 11083 11084 need_serialize = sd->flags & SD_SERIALIZE; 11085 if (need_serialize) { 11086 if (!spin_trylock(&balancing)) 11087 goto out; 11088 } 11089 11090 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11091 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11092 /* 11093 * The LBF_DST_PINNED logic could have changed 11094 * env->dst_cpu, so we can't know our idle 11095 * state even if we migrated tasks. Update it. 11096 */ 11097 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11098 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11099 } 11100 sd->last_balance = jiffies; 11101 interval = get_sd_balance_interval(sd, busy); 11102 } 11103 if (need_serialize) 11104 spin_unlock(&balancing); 11105 out: 11106 if (time_after(next_balance, sd->last_balance + interval)) { 11107 next_balance = sd->last_balance + interval; 11108 update_next_balance = 1; 11109 } 11110 } 11111 if (need_decay) { 11112 /* 11113 * Ensure the rq-wide value also decays but keep it at a 11114 * reasonable floor to avoid funnies with rq->avg_idle. 11115 */ 11116 rq->max_idle_balance_cost = 11117 max((u64)sysctl_sched_migration_cost, max_cost); 11118 } 11119 rcu_read_unlock(); 11120 11121 /* 11122 * next_balance will be updated only when there is a need. 11123 * When the cpu is attached to null domain for ex, it will not be 11124 * updated. 11125 */ 11126 if (likely(update_next_balance)) 11127 rq->next_balance = next_balance; 11128 11129 } 11130 11131 static inline int on_null_domain(struct rq *rq) 11132 { 11133 return unlikely(!rcu_dereference_sched(rq->sd)); 11134 } 11135 11136 #ifdef CONFIG_NO_HZ_COMMON 11137 /* 11138 * idle load balancing details 11139 * - When one of the busy CPUs notice that there may be an idle rebalancing 11140 * needed, they will kick the idle load balancer, which then does idle 11141 * load balancing for all the idle CPUs. 11142 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11143 * anywhere yet. 11144 */ 11145 11146 static inline int find_new_ilb(void) 11147 { 11148 int ilb; 11149 const struct cpumask *hk_mask; 11150 11151 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11152 11153 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11154 11155 if (ilb == smp_processor_id()) 11156 continue; 11157 11158 if (idle_cpu(ilb)) 11159 return ilb; 11160 } 11161 11162 return nr_cpu_ids; 11163 } 11164 11165 /* 11166 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11167 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11168 */ 11169 static void kick_ilb(unsigned int flags) 11170 { 11171 int ilb_cpu; 11172 11173 /* 11174 * Increase nohz.next_balance only when if full ilb is triggered but 11175 * not if we only update stats. 11176 */ 11177 if (flags & NOHZ_BALANCE_KICK) 11178 nohz.next_balance = jiffies+1; 11179 11180 ilb_cpu = find_new_ilb(); 11181 11182 if (ilb_cpu >= nr_cpu_ids) 11183 return; 11184 11185 /* 11186 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11187 * the first flag owns it; cleared by nohz_csd_func(). 11188 */ 11189 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11190 if (flags & NOHZ_KICK_MASK) 11191 return; 11192 11193 /* 11194 * This way we generate an IPI on the target CPU which 11195 * is idle. And the softirq performing nohz idle load balance 11196 * will be run before returning from the IPI. 11197 */ 11198 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11199 } 11200 11201 /* 11202 * Current decision point for kicking the idle load balancer in the presence 11203 * of idle CPUs in the system. 11204 */ 11205 static void nohz_balancer_kick(struct rq *rq) 11206 { 11207 unsigned long now = jiffies; 11208 struct sched_domain_shared *sds; 11209 struct sched_domain *sd; 11210 int nr_busy, i, cpu = rq->cpu; 11211 unsigned int flags = 0; 11212 11213 if (unlikely(rq->idle_balance)) 11214 return; 11215 11216 /* 11217 * We may be recently in ticked or tickless idle mode. At the first 11218 * busy tick after returning from idle, we will update the busy stats. 11219 */ 11220 nohz_balance_exit_idle(rq); 11221 11222 /* 11223 * None are in tickless mode and hence no need for NOHZ idle load 11224 * balancing. 11225 */ 11226 if (likely(!atomic_read(&nohz.nr_cpus))) 11227 return; 11228 11229 if (READ_ONCE(nohz.has_blocked) && 11230 time_after(now, READ_ONCE(nohz.next_blocked))) 11231 flags = NOHZ_STATS_KICK; 11232 11233 if (time_before(now, nohz.next_balance)) 11234 goto out; 11235 11236 if (rq->nr_running >= 2) { 11237 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11238 goto out; 11239 } 11240 11241 rcu_read_lock(); 11242 11243 sd = rcu_dereference(rq->sd); 11244 if (sd) { 11245 /* 11246 * If there's a CFS task and the current CPU has reduced 11247 * capacity; kick the ILB to see if there's a better CPU to run 11248 * on. 11249 */ 11250 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11251 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11252 goto unlock; 11253 } 11254 } 11255 11256 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11257 if (sd) { 11258 /* 11259 * When ASYM_PACKING; see if there's a more preferred CPU 11260 * currently idle; in which case, kick the ILB to move tasks 11261 * around. 11262 */ 11263 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11264 if (sched_asym_prefer(i, cpu)) { 11265 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11266 goto unlock; 11267 } 11268 } 11269 } 11270 11271 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11272 if (sd) { 11273 /* 11274 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11275 * to run the misfit task on. 11276 */ 11277 if (check_misfit_status(rq, sd)) { 11278 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11279 goto unlock; 11280 } 11281 11282 /* 11283 * For asymmetric systems, we do not want to nicely balance 11284 * cache use, instead we want to embrace asymmetry and only 11285 * ensure tasks have enough CPU capacity. 11286 * 11287 * Skip the LLC logic because it's not relevant in that case. 11288 */ 11289 goto unlock; 11290 } 11291 11292 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11293 if (sds) { 11294 /* 11295 * If there is an imbalance between LLC domains (IOW we could 11296 * increase the overall cache use), we need some less-loaded LLC 11297 * domain to pull some load. Likewise, we may need to spread 11298 * load within the current LLC domain (e.g. packed SMT cores but 11299 * other CPUs are idle). We can't really know from here how busy 11300 * the others are - so just get a nohz balance going if it looks 11301 * like this LLC domain has tasks we could move. 11302 */ 11303 nr_busy = atomic_read(&sds->nr_busy_cpus); 11304 if (nr_busy > 1) { 11305 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11306 goto unlock; 11307 } 11308 } 11309 unlock: 11310 rcu_read_unlock(); 11311 out: 11312 if (READ_ONCE(nohz.needs_update)) 11313 flags |= NOHZ_NEXT_KICK; 11314 11315 if (flags) 11316 kick_ilb(flags); 11317 } 11318 11319 static void set_cpu_sd_state_busy(int cpu) 11320 { 11321 struct sched_domain *sd; 11322 11323 rcu_read_lock(); 11324 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11325 11326 if (!sd || !sd->nohz_idle) 11327 goto unlock; 11328 sd->nohz_idle = 0; 11329 11330 atomic_inc(&sd->shared->nr_busy_cpus); 11331 unlock: 11332 rcu_read_unlock(); 11333 } 11334 11335 void nohz_balance_exit_idle(struct rq *rq) 11336 { 11337 SCHED_WARN_ON(rq != this_rq()); 11338 11339 if (likely(!rq->nohz_tick_stopped)) 11340 return; 11341 11342 rq->nohz_tick_stopped = 0; 11343 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11344 atomic_dec(&nohz.nr_cpus); 11345 11346 set_cpu_sd_state_busy(rq->cpu); 11347 } 11348 11349 static void set_cpu_sd_state_idle(int cpu) 11350 { 11351 struct sched_domain *sd; 11352 11353 rcu_read_lock(); 11354 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11355 11356 if (!sd || sd->nohz_idle) 11357 goto unlock; 11358 sd->nohz_idle = 1; 11359 11360 atomic_dec(&sd->shared->nr_busy_cpus); 11361 unlock: 11362 rcu_read_unlock(); 11363 } 11364 11365 /* 11366 * This routine will record that the CPU is going idle with tick stopped. 11367 * This info will be used in performing idle load balancing in the future. 11368 */ 11369 void nohz_balance_enter_idle(int cpu) 11370 { 11371 struct rq *rq = cpu_rq(cpu); 11372 11373 SCHED_WARN_ON(cpu != smp_processor_id()); 11374 11375 /* If this CPU is going down, then nothing needs to be done: */ 11376 if (!cpu_active(cpu)) 11377 return; 11378 11379 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11380 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11381 return; 11382 11383 /* 11384 * Can be set safely without rq->lock held 11385 * If a clear happens, it will have evaluated last additions because 11386 * rq->lock is held during the check and the clear 11387 */ 11388 rq->has_blocked_load = 1; 11389 11390 /* 11391 * The tick is still stopped but load could have been added in the 11392 * meantime. We set the nohz.has_blocked flag to trig a check of the 11393 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11394 * of nohz.has_blocked can only happen after checking the new load 11395 */ 11396 if (rq->nohz_tick_stopped) 11397 goto out; 11398 11399 /* If we're a completely isolated CPU, we don't play: */ 11400 if (on_null_domain(rq)) 11401 return; 11402 11403 rq->nohz_tick_stopped = 1; 11404 11405 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11406 atomic_inc(&nohz.nr_cpus); 11407 11408 /* 11409 * Ensures that if nohz_idle_balance() fails to observe our 11410 * @idle_cpus_mask store, it must observe the @has_blocked 11411 * and @needs_update stores. 11412 */ 11413 smp_mb__after_atomic(); 11414 11415 set_cpu_sd_state_idle(cpu); 11416 11417 WRITE_ONCE(nohz.needs_update, 1); 11418 out: 11419 /* 11420 * Each time a cpu enter idle, we assume that it has blocked load and 11421 * enable the periodic update of the load of idle cpus 11422 */ 11423 WRITE_ONCE(nohz.has_blocked, 1); 11424 } 11425 11426 static bool update_nohz_stats(struct rq *rq) 11427 { 11428 unsigned int cpu = rq->cpu; 11429 11430 if (!rq->has_blocked_load) 11431 return false; 11432 11433 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11434 return false; 11435 11436 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11437 return true; 11438 11439 update_blocked_averages(cpu); 11440 11441 return rq->has_blocked_load; 11442 } 11443 11444 /* 11445 * Internal function that runs load balance for all idle cpus. The load balance 11446 * can be a simple update of blocked load or a complete load balance with 11447 * tasks movement depending of flags. 11448 */ 11449 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11450 { 11451 /* Earliest time when we have to do rebalance again */ 11452 unsigned long now = jiffies; 11453 unsigned long next_balance = now + 60*HZ; 11454 bool has_blocked_load = false; 11455 int update_next_balance = 0; 11456 int this_cpu = this_rq->cpu; 11457 int balance_cpu; 11458 struct rq *rq; 11459 11460 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11461 11462 /* 11463 * We assume there will be no idle load after this update and clear 11464 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11465 * set the has_blocked flag and trigger another update of idle load. 11466 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11467 * setting the flag, we are sure to not clear the state and not 11468 * check the load of an idle cpu. 11469 * 11470 * Same applies to idle_cpus_mask vs needs_update. 11471 */ 11472 if (flags & NOHZ_STATS_KICK) 11473 WRITE_ONCE(nohz.has_blocked, 0); 11474 if (flags & NOHZ_NEXT_KICK) 11475 WRITE_ONCE(nohz.needs_update, 0); 11476 11477 /* 11478 * Ensures that if we miss the CPU, we must see the has_blocked 11479 * store from nohz_balance_enter_idle(). 11480 */ 11481 smp_mb(); 11482 11483 /* 11484 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11485 * chance for other idle cpu to pull load. 11486 */ 11487 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11488 if (!idle_cpu(balance_cpu)) 11489 continue; 11490 11491 /* 11492 * If this CPU gets work to do, stop the load balancing 11493 * work being done for other CPUs. Next load 11494 * balancing owner will pick it up. 11495 */ 11496 if (need_resched()) { 11497 if (flags & NOHZ_STATS_KICK) 11498 has_blocked_load = true; 11499 if (flags & NOHZ_NEXT_KICK) 11500 WRITE_ONCE(nohz.needs_update, 1); 11501 goto abort; 11502 } 11503 11504 rq = cpu_rq(balance_cpu); 11505 11506 if (flags & NOHZ_STATS_KICK) 11507 has_blocked_load |= update_nohz_stats(rq); 11508 11509 /* 11510 * If time for next balance is due, 11511 * do the balance. 11512 */ 11513 if (time_after_eq(jiffies, rq->next_balance)) { 11514 struct rq_flags rf; 11515 11516 rq_lock_irqsave(rq, &rf); 11517 update_rq_clock(rq); 11518 rq_unlock_irqrestore(rq, &rf); 11519 11520 if (flags & NOHZ_BALANCE_KICK) 11521 rebalance_domains(rq, CPU_IDLE); 11522 } 11523 11524 if (time_after(next_balance, rq->next_balance)) { 11525 next_balance = rq->next_balance; 11526 update_next_balance = 1; 11527 } 11528 } 11529 11530 /* 11531 * next_balance will be updated only when there is a need. 11532 * When the CPU is attached to null domain for ex, it will not be 11533 * updated. 11534 */ 11535 if (likely(update_next_balance)) 11536 nohz.next_balance = next_balance; 11537 11538 if (flags & NOHZ_STATS_KICK) 11539 WRITE_ONCE(nohz.next_blocked, 11540 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11541 11542 abort: 11543 /* There is still blocked load, enable periodic update */ 11544 if (has_blocked_load) 11545 WRITE_ONCE(nohz.has_blocked, 1); 11546 } 11547 11548 /* 11549 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11550 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11551 */ 11552 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11553 { 11554 unsigned int flags = this_rq->nohz_idle_balance; 11555 11556 if (!flags) 11557 return false; 11558 11559 this_rq->nohz_idle_balance = 0; 11560 11561 if (idle != CPU_IDLE) 11562 return false; 11563 11564 _nohz_idle_balance(this_rq, flags); 11565 11566 return true; 11567 } 11568 11569 /* 11570 * Check if we need to run the ILB for updating blocked load before entering 11571 * idle state. 11572 */ 11573 void nohz_run_idle_balance(int cpu) 11574 { 11575 unsigned int flags; 11576 11577 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11578 11579 /* 11580 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11581 * (ie NOHZ_STATS_KICK set) and will do the same. 11582 */ 11583 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11584 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11585 } 11586 11587 static void nohz_newidle_balance(struct rq *this_rq) 11588 { 11589 int this_cpu = this_rq->cpu; 11590 11591 /* 11592 * This CPU doesn't want to be disturbed by scheduler 11593 * housekeeping 11594 */ 11595 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11596 return; 11597 11598 /* Will wake up very soon. No time for doing anything else*/ 11599 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11600 return; 11601 11602 /* Don't need to update blocked load of idle CPUs*/ 11603 if (!READ_ONCE(nohz.has_blocked) || 11604 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11605 return; 11606 11607 /* 11608 * Set the need to trigger ILB in order to update blocked load 11609 * before entering idle state. 11610 */ 11611 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11612 } 11613 11614 #else /* !CONFIG_NO_HZ_COMMON */ 11615 static inline void nohz_balancer_kick(struct rq *rq) { } 11616 11617 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11618 { 11619 return false; 11620 } 11621 11622 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11623 #endif /* CONFIG_NO_HZ_COMMON */ 11624 11625 /* 11626 * newidle_balance is called by schedule() if this_cpu is about to become 11627 * idle. Attempts to pull tasks from other CPUs. 11628 * 11629 * Returns: 11630 * < 0 - we released the lock and there are !fair tasks present 11631 * 0 - failed, no new tasks 11632 * > 0 - success, new (fair) tasks present 11633 */ 11634 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11635 { 11636 unsigned long next_balance = jiffies + HZ; 11637 int this_cpu = this_rq->cpu; 11638 u64 t0, t1, curr_cost = 0; 11639 struct sched_domain *sd; 11640 int pulled_task = 0; 11641 11642 update_misfit_status(NULL, this_rq); 11643 11644 /* 11645 * There is a task waiting to run. No need to search for one. 11646 * Return 0; the task will be enqueued when switching to idle. 11647 */ 11648 if (this_rq->ttwu_pending) 11649 return 0; 11650 11651 /* 11652 * We must set idle_stamp _before_ calling idle_balance(), such that we 11653 * measure the duration of idle_balance() as idle time. 11654 */ 11655 this_rq->idle_stamp = rq_clock(this_rq); 11656 11657 /* 11658 * Do not pull tasks towards !active CPUs... 11659 */ 11660 if (!cpu_active(this_cpu)) 11661 return 0; 11662 11663 /* 11664 * This is OK, because current is on_cpu, which avoids it being picked 11665 * for load-balance and preemption/IRQs are still disabled avoiding 11666 * further scheduler activity on it and we're being very careful to 11667 * re-start the picking loop. 11668 */ 11669 rq_unpin_lock(this_rq, rf); 11670 11671 rcu_read_lock(); 11672 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11673 11674 if (!READ_ONCE(this_rq->rd->overload) || 11675 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11676 11677 if (sd) 11678 update_next_balance(sd, &next_balance); 11679 rcu_read_unlock(); 11680 11681 goto out; 11682 } 11683 rcu_read_unlock(); 11684 11685 raw_spin_rq_unlock(this_rq); 11686 11687 t0 = sched_clock_cpu(this_cpu); 11688 update_blocked_averages(this_cpu); 11689 11690 rcu_read_lock(); 11691 for_each_domain(this_cpu, sd) { 11692 int continue_balancing = 1; 11693 u64 domain_cost; 11694 11695 update_next_balance(sd, &next_balance); 11696 11697 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11698 break; 11699 11700 if (sd->flags & SD_BALANCE_NEWIDLE) { 11701 11702 pulled_task = load_balance(this_cpu, this_rq, 11703 sd, CPU_NEWLY_IDLE, 11704 &continue_balancing); 11705 11706 t1 = sched_clock_cpu(this_cpu); 11707 domain_cost = t1 - t0; 11708 update_newidle_cost(sd, domain_cost); 11709 11710 curr_cost += domain_cost; 11711 t0 = t1; 11712 } 11713 11714 /* 11715 * Stop searching for tasks to pull if there are 11716 * now runnable tasks on this rq. 11717 */ 11718 if (pulled_task || this_rq->nr_running > 0 || 11719 this_rq->ttwu_pending) 11720 break; 11721 } 11722 rcu_read_unlock(); 11723 11724 raw_spin_rq_lock(this_rq); 11725 11726 if (curr_cost > this_rq->max_idle_balance_cost) 11727 this_rq->max_idle_balance_cost = curr_cost; 11728 11729 /* 11730 * While browsing the domains, we released the rq lock, a task could 11731 * have been enqueued in the meantime. Since we're not going idle, 11732 * pretend we pulled a task. 11733 */ 11734 if (this_rq->cfs.h_nr_running && !pulled_task) 11735 pulled_task = 1; 11736 11737 /* Is there a task of a high priority class? */ 11738 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11739 pulled_task = -1; 11740 11741 out: 11742 /* Move the next balance forward */ 11743 if (time_after(this_rq->next_balance, next_balance)) 11744 this_rq->next_balance = next_balance; 11745 11746 if (pulled_task) 11747 this_rq->idle_stamp = 0; 11748 else 11749 nohz_newidle_balance(this_rq); 11750 11751 rq_repin_lock(this_rq, rf); 11752 11753 return pulled_task; 11754 } 11755 11756 /* 11757 * run_rebalance_domains is triggered when needed from the scheduler tick. 11758 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11759 */ 11760 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11761 { 11762 struct rq *this_rq = this_rq(); 11763 enum cpu_idle_type idle = this_rq->idle_balance ? 11764 CPU_IDLE : CPU_NOT_IDLE; 11765 11766 /* 11767 * If this CPU has a pending nohz_balance_kick, then do the 11768 * balancing on behalf of the other idle CPUs whose ticks are 11769 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11770 * give the idle CPUs a chance to load balance. Else we may 11771 * load balance only within the local sched_domain hierarchy 11772 * and abort nohz_idle_balance altogether if we pull some load. 11773 */ 11774 if (nohz_idle_balance(this_rq, idle)) 11775 return; 11776 11777 /* normal load balance */ 11778 update_blocked_averages(this_rq->cpu); 11779 rebalance_domains(this_rq, idle); 11780 } 11781 11782 /* 11783 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11784 */ 11785 void trigger_load_balance(struct rq *rq) 11786 { 11787 /* 11788 * Don't need to rebalance while attached to NULL domain or 11789 * runqueue CPU is not active 11790 */ 11791 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11792 return; 11793 11794 if (time_after_eq(jiffies, rq->next_balance)) 11795 raise_softirq(SCHED_SOFTIRQ); 11796 11797 nohz_balancer_kick(rq); 11798 } 11799 11800 static void rq_online_fair(struct rq *rq) 11801 { 11802 update_sysctl(); 11803 11804 update_runtime_enabled(rq); 11805 } 11806 11807 static void rq_offline_fair(struct rq *rq) 11808 { 11809 update_sysctl(); 11810 11811 /* Ensure any throttled groups are reachable by pick_next_task */ 11812 unthrottle_offline_cfs_rqs(rq); 11813 } 11814 11815 #endif /* CONFIG_SMP */ 11816 11817 #ifdef CONFIG_SCHED_CORE 11818 static inline bool 11819 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11820 { 11821 u64 slice = sched_slice(cfs_rq_of(se), se); 11822 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11823 11824 return (rtime * min_nr_tasks > slice); 11825 } 11826 11827 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11828 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11829 { 11830 if (!sched_core_enabled(rq)) 11831 return; 11832 11833 /* 11834 * If runqueue has only one task which used up its slice and 11835 * if the sibling is forced idle, then trigger schedule to 11836 * give forced idle task a chance. 11837 * 11838 * sched_slice() considers only this active rq and it gets the 11839 * whole slice. But during force idle, we have siblings acting 11840 * like a single runqueue and hence we need to consider runnable 11841 * tasks on this CPU and the forced idle CPU. Ideally, we should 11842 * go through the forced idle rq, but that would be a perf hit. 11843 * We can assume that the forced idle CPU has at least 11844 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11845 * if we need to give up the CPU. 11846 */ 11847 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11848 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11849 resched_curr(rq); 11850 } 11851 11852 /* 11853 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11854 */ 11855 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 11856 bool forceidle) 11857 { 11858 for_each_sched_entity(se) { 11859 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11860 11861 if (forceidle) { 11862 if (cfs_rq->forceidle_seq == fi_seq) 11863 break; 11864 cfs_rq->forceidle_seq = fi_seq; 11865 } 11866 11867 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11868 } 11869 } 11870 11871 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11872 { 11873 struct sched_entity *se = &p->se; 11874 11875 if (p->sched_class != &fair_sched_class) 11876 return; 11877 11878 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11879 } 11880 11881 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 11882 bool in_fi) 11883 { 11884 struct rq *rq = task_rq(a); 11885 const struct sched_entity *sea = &a->se; 11886 const struct sched_entity *seb = &b->se; 11887 struct cfs_rq *cfs_rqa; 11888 struct cfs_rq *cfs_rqb; 11889 s64 delta; 11890 11891 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11892 11893 #ifdef CONFIG_FAIR_GROUP_SCHED 11894 /* 11895 * Find an se in the hierarchy for tasks a and b, such that the se's 11896 * are immediate siblings. 11897 */ 11898 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11899 int sea_depth = sea->depth; 11900 int seb_depth = seb->depth; 11901 11902 if (sea_depth >= seb_depth) 11903 sea = parent_entity(sea); 11904 if (sea_depth <= seb_depth) 11905 seb = parent_entity(seb); 11906 } 11907 11908 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11909 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11910 11911 cfs_rqa = sea->cfs_rq; 11912 cfs_rqb = seb->cfs_rq; 11913 #else 11914 cfs_rqa = &task_rq(a)->cfs; 11915 cfs_rqb = &task_rq(b)->cfs; 11916 #endif 11917 11918 /* 11919 * Find delta after normalizing se's vruntime with its cfs_rq's 11920 * min_vruntime_fi, which would have been updated in prior calls 11921 * to se_fi_update(). 11922 */ 11923 delta = (s64)(sea->vruntime - seb->vruntime) + 11924 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11925 11926 return delta > 0; 11927 } 11928 #else 11929 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11930 #endif 11931 11932 /* 11933 * scheduler tick hitting a task of our scheduling class. 11934 * 11935 * NOTE: This function can be called remotely by the tick offload that 11936 * goes along full dynticks. Therefore no local assumption can be made 11937 * and everything must be accessed through the @rq and @curr passed in 11938 * parameters. 11939 */ 11940 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11941 { 11942 struct cfs_rq *cfs_rq; 11943 struct sched_entity *se = &curr->se; 11944 11945 for_each_sched_entity(se) { 11946 cfs_rq = cfs_rq_of(se); 11947 entity_tick(cfs_rq, se, queued); 11948 } 11949 11950 if (static_branch_unlikely(&sched_numa_balancing)) 11951 task_tick_numa(rq, curr); 11952 11953 update_misfit_status(curr, rq); 11954 update_overutilized_status(task_rq(curr)); 11955 11956 task_tick_core(rq, curr); 11957 } 11958 11959 /* 11960 * called on fork with the child task as argument from the parent's context 11961 * - child not yet on the tasklist 11962 * - preemption disabled 11963 */ 11964 static void task_fork_fair(struct task_struct *p) 11965 { 11966 struct cfs_rq *cfs_rq; 11967 struct sched_entity *se = &p->se, *curr; 11968 struct rq *rq = this_rq(); 11969 struct rq_flags rf; 11970 11971 rq_lock(rq, &rf); 11972 update_rq_clock(rq); 11973 11974 cfs_rq = task_cfs_rq(current); 11975 curr = cfs_rq->curr; 11976 if (curr) { 11977 update_curr(cfs_rq); 11978 se->vruntime = curr->vruntime; 11979 } 11980 place_entity(cfs_rq, se, 1); 11981 11982 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11983 /* 11984 * Upon rescheduling, sched_class::put_prev_task() will place 11985 * 'current' within the tree based on its new key value. 11986 */ 11987 swap(curr->vruntime, se->vruntime); 11988 resched_curr(rq); 11989 } 11990 11991 se->vruntime -= cfs_rq->min_vruntime; 11992 rq_unlock(rq, &rf); 11993 } 11994 11995 /* 11996 * Priority of the task has changed. Check to see if we preempt 11997 * the current task. 11998 */ 11999 static void 12000 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12001 { 12002 if (!task_on_rq_queued(p)) 12003 return; 12004 12005 if (rq->cfs.nr_running == 1) 12006 return; 12007 12008 /* 12009 * Reschedule if we are currently running on this runqueue and 12010 * our priority decreased, or if we are not currently running on 12011 * this runqueue and our priority is higher than the current's 12012 */ 12013 if (task_current(rq, p)) { 12014 if (p->prio > oldprio) 12015 resched_curr(rq); 12016 } else 12017 check_preempt_curr(rq, p, 0); 12018 } 12019 12020 static inline bool vruntime_normalized(struct task_struct *p) 12021 { 12022 struct sched_entity *se = &p->se; 12023 12024 /* 12025 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 12026 * the dequeue_entity(.flags=0) will already have normalized the 12027 * vruntime. 12028 */ 12029 if (p->on_rq) 12030 return true; 12031 12032 /* 12033 * When !on_rq, vruntime of the task has usually NOT been normalized. 12034 * But there are some cases where it has already been normalized: 12035 * 12036 * - A forked child which is waiting for being woken up by 12037 * wake_up_new_task(). 12038 * - A task which has been woken up by try_to_wake_up() and 12039 * waiting for actually being woken up by sched_ttwu_pending(). 12040 */ 12041 if (!se->sum_exec_runtime || 12042 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 12043 return true; 12044 12045 return false; 12046 } 12047 12048 #ifdef CONFIG_FAIR_GROUP_SCHED 12049 /* 12050 * Propagate the changes of the sched_entity across the tg tree to make it 12051 * visible to the root 12052 */ 12053 static void propagate_entity_cfs_rq(struct sched_entity *se) 12054 { 12055 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12056 12057 if (cfs_rq_throttled(cfs_rq)) 12058 return; 12059 12060 if (!throttled_hierarchy(cfs_rq)) 12061 list_add_leaf_cfs_rq(cfs_rq); 12062 12063 /* Start to propagate at parent */ 12064 se = se->parent; 12065 12066 for_each_sched_entity(se) { 12067 cfs_rq = cfs_rq_of(se); 12068 12069 update_load_avg(cfs_rq, se, UPDATE_TG); 12070 12071 if (cfs_rq_throttled(cfs_rq)) 12072 break; 12073 12074 if (!throttled_hierarchy(cfs_rq)) 12075 list_add_leaf_cfs_rq(cfs_rq); 12076 } 12077 } 12078 #else 12079 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12080 #endif 12081 12082 static void detach_entity_cfs_rq(struct sched_entity *se) 12083 { 12084 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12085 12086 #ifdef CONFIG_SMP 12087 /* 12088 * In case the task sched_avg hasn't been attached: 12089 * - A forked task which hasn't been woken up by wake_up_new_task(). 12090 * - A task which has been woken up by try_to_wake_up() but is 12091 * waiting for actually being woken up by sched_ttwu_pending(). 12092 */ 12093 if (!se->avg.last_update_time) 12094 return; 12095 #endif 12096 12097 /* Catch up with the cfs_rq and remove our load when we leave */ 12098 update_load_avg(cfs_rq, se, 0); 12099 detach_entity_load_avg(cfs_rq, se); 12100 update_tg_load_avg(cfs_rq); 12101 propagate_entity_cfs_rq(se); 12102 } 12103 12104 static void attach_entity_cfs_rq(struct sched_entity *se) 12105 { 12106 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12107 12108 /* Synchronize entity with its cfs_rq */ 12109 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12110 attach_entity_load_avg(cfs_rq, se); 12111 update_tg_load_avg(cfs_rq); 12112 propagate_entity_cfs_rq(se); 12113 } 12114 12115 static void detach_task_cfs_rq(struct task_struct *p) 12116 { 12117 struct sched_entity *se = &p->se; 12118 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12119 12120 if (!vruntime_normalized(p)) { 12121 /* 12122 * Fix up our vruntime so that the current sleep doesn't 12123 * cause 'unlimited' sleep bonus. 12124 */ 12125 place_entity(cfs_rq, se, 0); 12126 se->vruntime -= cfs_rq->min_vruntime; 12127 } 12128 12129 detach_entity_cfs_rq(se); 12130 } 12131 12132 static void attach_task_cfs_rq(struct task_struct *p) 12133 { 12134 struct sched_entity *se = &p->se; 12135 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12136 12137 attach_entity_cfs_rq(se); 12138 12139 if (!vruntime_normalized(p)) 12140 se->vruntime += cfs_rq->min_vruntime; 12141 } 12142 12143 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12144 { 12145 detach_task_cfs_rq(p); 12146 } 12147 12148 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12149 { 12150 attach_task_cfs_rq(p); 12151 12152 if (task_on_rq_queued(p)) { 12153 /* 12154 * We were most likely switched from sched_rt, so 12155 * kick off the schedule if running, otherwise just see 12156 * if we can still preempt the current task. 12157 */ 12158 if (task_current(rq, p)) 12159 resched_curr(rq); 12160 else 12161 check_preempt_curr(rq, p, 0); 12162 } 12163 } 12164 12165 /* Account for a task changing its policy or group. 12166 * 12167 * This routine is mostly called to set cfs_rq->curr field when a task 12168 * migrates between groups/classes. 12169 */ 12170 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12171 { 12172 struct sched_entity *se = &p->se; 12173 12174 #ifdef CONFIG_SMP 12175 if (task_on_rq_queued(p)) { 12176 /* 12177 * Move the next running task to the front of the list, so our 12178 * cfs_tasks list becomes MRU one. 12179 */ 12180 list_move(&se->group_node, &rq->cfs_tasks); 12181 } 12182 #endif 12183 12184 for_each_sched_entity(se) { 12185 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12186 12187 set_next_entity(cfs_rq, se); 12188 /* ensure bandwidth has been allocated on our new cfs_rq */ 12189 account_cfs_rq_runtime(cfs_rq, 0); 12190 } 12191 } 12192 12193 void init_cfs_rq(struct cfs_rq *cfs_rq) 12194 { 12195 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12196 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12197 #ifdef CONFIG_SMP 12198 raw_spin_lock_init(&cfs_rq->removed.lock); 12199 #endif 12200 } 12201 12202 #ifdef CONFIG_FAIR_GROUP_SCHED 12203 static void task_change_group_fair(struct task_struct *p) 12204 { 12205 /* 12206 * We couldn't detach or attach a forked task which 12207 * hasn't been woken up by wake_up_new_task(). 12208 */ 12209 if (READ_ONCE(p->__state) == TASK_NEW) 12210 return; 12211 12212 detach_task_cfs_rq(p); 12213 12214 #ifdef CONFIG_SMP 12215 /* Tell se's cfs_rq has been changed -- migrated */ 12216 p->se.avg.last_update_time = 0; 12217 #endif 12218 set_task_rq(p, task_cpu(p)); 12219 attach_task_cfs_rq(p); 12220 } 12221 12222 void free_fair_sched_group(struct task_group *tg) 12223 { 12224 int i; 12225 12226 for_each_possible_cpu(i) { 12227 if (tg->cfs_rq) 12228 kfree(tg->cfs_rq[i]); 12229 if (tg->se) 12230 kfree(tg->se[i]); 12231 } 12232 12233 kfree(tg->cfs_rq); 12234 kfree(tg->se); 12235 } 12236 12237 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12238 { 12239 struct sched_entity *se; 12240 struct cfs_rq *cfs_rq; 12241 int i; 12242 12243 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12244 if (!tg->cfs_rq) 12245 goto err; 12246 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12247 if (!tg->se) 12248 goto err; 12249 12250 tg->shares = NICE_0_LOAD; 12251 12252 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12253 12254 for_each_possible_cpu(i) { 12255 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12256 GFP_KERNEL, cpu_to_node(i)); 12257 if (!cfs_rq) 12258 goto err; 12259 12260 se = kzalloc_node(sizeof(struct sched_entity_stats), 12261 GFP_KERNEL, cpu_to_node(i)); 12262 if (!se) 12263 goto err_free_rq; 12264 12265 init_cfs_rq(cfs_rq); 12266 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12267 init_entity_runnable_average(se); 12268 } 12269 12270 return 1; 12271 12272 err_free_rq: 12273 kfree(cfs_rq); 12274 err: 12275 return 0; 12276 } 12277 12278 void online_fair_sched_group(struct task_group *tg) 12279 { 12280 struct sched_entity *se; 12281 struct rq_flags rf; 12282 struct rq *rq; 12283 int i; 12284 12285 for_each_possible_cpu(i) { 12286 rq = cpu_rq(i); 12287 se = tg->se[i]; 12288 rq_lock_irq(rq, &rf); 12289 update_rq_clock(rq); 12290 attach_entity_cfs_rq(se); 12291 sync_throttle(tg, i); 12292 rq_unlock_irq(rq, &rf); 12293 } 12294 } 12295 12296 void unregister_fair_sched_group(struct task_group *tg) 12297 { 12298 unsigned long flags; 12299 struct rq *rq; 12300 int cpu; 12301 12302 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12303 12304 for_each_possible_cpu(cpu) { 12305 if (tg->se[cpu]) 12306 remove_entity_load_avg(tg->se[cpu]); 12307 12308 /* 12309 * Only empty task groups can be destroyed; so we can speculatively 12310 * check on_list without danger of it being re-added. 12311 */ 12312 if (!tg->cfs_rq[cpu]->on_list) 12313 continue; 12314 12315 rq = cpu_rq(cpu); 12316 12317 raw_spin_rq_lock_irqsave(rq, flags); 12318 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12319 raw_spin_rq_unlock_irqrestore(rq, flags); 12320 } 12321 } 12322 12323 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12324 struct sched_entity *se, int cpu, 12325 struct sched_entity *parent) 12326 { 12327 struct rq *rq = cpu_rq(cpu); 12328 12329 cfs_rq->tg = tg; 12330 cfs_rq->rq = rq; 12331 init_cfs_rq_runtime(cfs_rq); 12332 12333 tg->cfs_rq[cpu] = cfs_rq; 12334 tg->se[cpu] = se; 12335 12336 /* se could be NULL for root_task_group */ 12337 if (!se) 12338 return; 12339 12340 if (!parent) { 12341 se->cfs_rq = &rq->cfs; 12342 se->depth = 0; 12343 } else { 12344 se->cfs_rq = parent->my_q; 12345 se->depth = parent->depth + 1; 12346 } 12347 12348 se->my_q = cfs_rq; 12349 /* guarantee group entities always have weight */ 12350 update_load_set(&se->load, NICE_0_LOAD); 12351 se->parent = parent; 12352 } 12353 12354 static DEFINE_MUTEX(shares_mutex); 12355 12356 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12357 { 12358 int i; 12359 12360 lockdep_assert_held(&shares_mutex); 12361 12362 /* 12363 * We can't change the weight of the root cgroup. 12364 */ 12365 if (!tg->se[0]) 12366 return -EINVAL; 12367 12368 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12369 12370 if (tg->shares == shares) 12371 return 0; 12372 12373 tg->shares = shares; 12374 for_each_possible_cpu(i) { 12375 struct rq *rq = cpu_rq(i); 12376 struct sched_entity *se = tg->se[i]; 12377 struct rq_flags rf; 12378 12379 /* Propagate contribution to hierarchy */ 12380 rq_lock_irqsave(rq, &rf); 12381 update_rq_clock(rq); 12382 for_each_sched_entity(se) { 12383 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12384 update_cfs_group(se); 12385 } 12386 rq_unlock_irqrestore(rq, &rf); 12387 } 12388 12389 return 0; 12390 } 12391 12392 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12393 { 12394 int ret; 12395 12396 mutex_lock(&shares_mutex); 12397 if (tg_is_idle(tg)) 12398 ret = -EINVAL; 12399 else 12400 ret = __sched_group_set_shares(tg, shares); 12401 mutex_unlock(&shares_mutex); 12402 12403 return ret; 12404 } 12405 12406 int sched_group_set_idle(struct task_group *tg, long idle) 12407 { 12408 int i; 12409 12410 if (tg == &root_task_group) 12411 return -EINVAL; 12412 12413 if (idle < 0 || idle > 1) 12414 return -EINVAL; 12415 12416 mutex_lock(&shares_mutex); 12417 12418 if (tg->idle == idle) { 12419 mutex_unlock(&shares_mutex); 12420 return 0; 12421 } 12422 12423 tg->idle = idle; 12424 12425 for_each_possible_cpu(i) { 12426 struct rq *rq = cpu_rq(i); 12427 struct sched_entity *se = tg->se[i]; 12428 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12429 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12430 long idle_task_delta; 12431 struct rq_flags rf; 12432 12433 rq_lock_irqsave(rq, &rf); 12434 12435 grp_cfs_rq->idle = idle; 12436 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12437 goto next_cpu; 12438 12439 if (se->on_rq) { 12440 parent_cfs_rq = cfs_rq_of(se); 12441 if (cfs_rq_is_idle(grp_cfs_rq)) 12442 parent_cfs_rq->idle_nr_running++; 12443 else 12444 parent_cfs_rq->idle_nr_running--; 12445 } 12446 12447 idle_task_delta = grp_cfs_rq->h_nr_running - 12448 grp_cfs_rq->idle_h_nr_running; 12449 if (!cfs_rq_is_idle(grp_cfs_rq)) 12450 idle_task_delta *= -1; 12451 12452 for_each_sched_entity(se) { 12453 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12454 12455 if (!se->on_rq) 12456 break; 12457 12458 cfs_rq->idle_h_nr_running += idle_task_delta; 12459 12460 /* Already accounted at parent level and above. */ 12461 if (cfs_rq_is_idle(cfs_rq)) 12462 break; 12463 } 12464 12465 next_cpu: 12466 rq_unlock_irqrestore(rq, &rf); 12467 } 12468 12469 /* Idle groups have minimum weight. */ 12470 if (tg_is_idle(tg)) 12471 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12472 else 12473 __sched_group_set_shares(tg, NICE_0_LOAD); 12474 12475 mutex_unlock(&shares_mutex); 12476 return 0; 12477 } 12478 12479 #else /* CONFIG_FAIR_GROUP_SCHED */ 12480 12481 void free_fair_sched_group(struct task_group *tg) { } 12482 12483 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12484 { 12485 return 1; 12486 } 12487 12488 void online_fair_sched_group(struct task_group *tg) { } 12489 12490 void unregister_fair_sched_group(struct task_group *tg) { } 12491 12492 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12493 12494 12495 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12496 { 12497 struct sched_entity *se = &task->se; 12498 unsigned int rr_interval = 0; 12499 12500 /* 12501 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12502 * idle runqueue: 12503 */ 12504 if (rq->cfs.load.weight) 12505 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 12506 12507 return rr_interval; 12508 } 12509 12510 /* 12511 * All the scheduling class methods: 12512 */ 12513 DEFINE_SCHED_CLASS(fair) = { 12514 12515 .enqueue_task = enqueue_task_fair, 12516 .dequeue_task = dequeue_task_fair, 12517 .yield_task = yield_task_fair, 12518 .yield_to_task = yield_to_task_fair, 12519 12520 .check_preempt_curr = check_preempt_wakeup, 12521 12522 .pick_next_task = __pick_next_task_fair, 12523 .put_prev_task = put_prev_task_fair, 12524 .set_next_task = set_next_task_fair, 12525 12526 #ifdef CONFIG_SMP 12527 .balance = balance_fair, 12528 .pick_task = pick_task_fair, 12529 .select_task_rq = select_task_rq_fair, 12530 .migrate_task_rq = migrate_task_rq_fair, 12531 12532 .rq_online = rq_online_fair, 12533 .rq_offline = rq_offline_fair, 12534 12535 .task_dead = task_dead_fair, 12536 .set_cpus_allowed = set_cpus_allowed_common, 12537 #endif 12538 12539 .task_tick = task_tick_fair, 12540 .task_fork = task_fork_fair, 12541 12542 .prio_changed = prio_changed_fair, 12543 .switched_from = switched_from_fair, 12544 .switched_to = switched_to_fair, 12545 12546 .get_rr_interval = get_rr_interval_fair, 12547 12548 .update_curr = update_curr_fair, 12549 12550 #ifdef CONFIG_FAIR_GROUP_SCHED 12551 .task_change_group = task_change_group_fair, 12552 #endif 12553 12554 #ifdef CONFIG_UCLAMP_TASK 12555 .uclamp_enabled = 1, 12556 #endif 12557 }; 12558 12559 #ifdef CONFIG_SCHED_DEBUG 12560 void print_cfs_stats(struct seq_file *m, int cpu) 12561 { 12562 struct cfs_rq *cfs_rq, *pos; 12563 12564 rcu_read_lock(); 12565 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12566 print_cfs_rq(m, cpu, cfs_rq); 12567 rcu_read_unlock(); 12568 } 12569 12570 #ifdef CONFIG_NUMA_BALANCING 12571 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12572 { 12573 int node; 12574 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12575 struct numa_group *ng; 12576 12577 rcu_read_lock(); 12578 ng = rcu_dereference(p->numa_group); 12579 for_each_online_node(node) { 12580 if (p->numa_faults) { 12581 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12582 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12583 } 12584 if (ng) { 12585 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12586 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12587 } 12588 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12589 } 12590 rcu_read_unlock(); 12591 } 12592 #endif /* CONFIG_NUMA_BALANCING */ 12593 #endif /* CONFIG_SCHED_DEBUG */ 12594 12595 __init void init_sched_fair_class(void) 12596 { 12597 #ifdef CONFIG_SMP 12598 int i; 12599 12600 for_each_possible_cpu(i) { 12601 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12602 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12603 12604 #ifdef CONFIG_CFS_BANDWIDTH 12605 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 12606 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 12607 #endif 12608 } 12609 12610 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12611 12612 #ifdef CONFIG_NO_HZ_COMMON 12613 nohz.next_balance = jiffies; 12614 nohz.next_blocked = jiffies; 12615 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12616 #endif 12617 #endif /* SMP */ 12618 12619 } 12620