1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return 0; 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 u64_u32_store(cfs_rq->min_vruntime, 783 __update_min_vruntime(cfs_rq, vruntime)); 784 } 785 786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 787 { 788 return entity_before(__node_2_se(a), __node_2_se(b)); 789 } 790 791 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 792 793 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 794 { 795 if (node) { 796 struct sched_entity *rse = __node_2_se(node); 797 if (vruntime_gt(min_vruntime, se, rse)) 798 se->min_vruntime = rse->min_vruntime; 799 } 800 } 801 802 /* 803 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 804 */ 805 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 806 { 807 u64 old_min_vruntime = se->min_vruntime; 808 struct rb_node *node = &se->run_node; 809 810 se->min_vruntime = se->vruntime; 811 __min_vruntime_update(se, node->rb_right); 812 __min_vruntime_update(se, node->rb_left); 813 814 return se->min_vruntime == old_min_vruntime; 815 } 816 817 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 818 run_node, min_vruntime, min_vruntime_update); 819 820 /* 821 * Enqueue an entity into the rb-tree: 822 */ 823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 824 { 825 avg_vruntime_add(cfs_rq, se); 826 se->min_vruntime = se->vruntime; 827 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 828 __entity_less, &min_vruntime_cb); 829 } 830 831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 834 &min_vruntime_cb); 835 avg_vruntime_sub(cfs_rq, se); 836 } 837 838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 839 { 840 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 841 842 if (!root) 843 return NULL; 844 845 return __node_2_se(root); 846 } 847 848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 849 { 850 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 851 852 if (!left) 853 return NULL; 854 855 return __node_2_se(left); 856 } 857 858 /* 859 * Earliest Eligible Virtual Deadline First 860 * 861 * In order to provide latency guarantees for different request sizes 862 * EEVDF selects the best runnable task from two criteria: 863 * 864 * 1) the task must be eligible (must be owed service) 865 * 866 * 2) from those tasks that meet 1), we select the one 867 * with the earliest virtual deadline. 868 * 869 * We can do this in O(log n) time due to an augmented RB-tree. The 870 * tree keeps the entries sorted on deadline, but also functions as a 871 * heap based on the vruntime by keeping: 872 * 873 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 874 * 875 * Which allows tree pruning through eligibility. 876 */ 877 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 878 { 879 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 880 struct sched_entity *se = __pick_first_entity(cfs_rq); 881 struct sched_entity *curr = cfs_rq->curr; 882 struct sched_entity *best = NULL; 883 884 /* 885 * We can safely skip eligibility check if there is only one entity 886 * in this cfs_rq, saving some cycles. 887 */ 888 if (cfs_rq->nr_running == 1) 889 return curr && curr->on_rq ? curr : se; 890 891 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 892 curr = NULL; 893 894 /* 895 * Once selected, run a task until it either becomes non-eligible or 896 * until it gets a new slice. See the HACK in set_next_entity(). 897 */ 898 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 899 return curr; 900 901 /* Pick the leftmost entity if it's eligible */ 902 if (se && entity_eligible(cfs_rq, se)) { 903 best = se; 904 goto found; 905 } 906 907 /* Heap search for the EEVD entity */ 908 while (node) { 909 struct rb_node *left = node->rb_left; 910 911 /* 912 * Eligible entities in left subtree are always better 913 * choices, since they have earlier deadlines. 914 */ 915 if (left && vruntime_eligible(cfs_rq, 916 __node_2_se(left)->min_vruntime)) { 917 node = left; 918 continue; 919 } 920 921 se = __node_2_se(node); 922 923 /* 924 * The left subtree either is empty or has no eligible 925 * entity, so check the current node since it is the one 926 * with earliest deadline that might be eligible. 927 */ 928 if (entity_eligible(cfs_rq, se)) { 929 best = se; 930 break; 931 } 932 933 node = node->rb_right; 934 } 935 found: 936 if (!best || (curr && entity_before(curr, best))) 937 best = curr; 938 939 return best; 940 } 941 942 #ifdef CONFIG_SCHED_DEBUG 943 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 944 { 945 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 946 947 if (!last) 948 return NULL; 949 950 return __node_2_se(last); 951 } 952 953 /************************************************************** 954 * Scheduling class statistics methods: 955 */ 956 #ifdef CONFIG_SMP 957 int sched_update_scaling(void) 958 { 959 unsigned int factor = get_update_sysctl_factor(); 960 961 #define WRT_SYSCTL(name) \ 962 (normalized_sysctl_##name = sysctl_##name / (factor)) 963 WRT_SYSCTL(sched_base_slice); 964 #undef WRT_SYSCTL 965 966 return 0; 967 } 968 #endif 969 #endif 970 971 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 972 973 /* 974 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 975 * this is probably good enough. 976 */ 977 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 978 { 979 if ((s64)(se->vruntime - se->deadline) < 0) 980 return; 981 982 /* 983 * For EEVDF the virtual time slope is determined by w_i (iow. 984 * nice) while the request time r_i is determined by 985 * sysctl_sched_base_slice. 986 */ 987 se->slice = sysctl_sched_base_slice; 988 989 /* 990 * EEVDF: vd_i = ve_i + r_i / w_i 991 */ 992 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 993 994 /* 995 * The task has consumed its request, reschedule. 996 */ 997 if (cfs_rq->nr_running > 1) { 998 resched_curr(rq_of(cfs_rq)); 999 clear_buddies(cfs_rq, se); 1000 } 1001 } 1002 1003 #include "pelt.h" 1004 #ifdef CONFIG_SMP 1005 1006 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1007 static unsigned long task_h_load(struct task_struct *p); 1008 static unsigned long capacity_of(int cpu); 1009 1010 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1011 void init_entity_runnable_average(struct sched_entity *se) 1012 { 1013 struct sched_avg *sa = &se->avg; 1014 1015 memset(sa, 0, sizeof(*sa)); 1016 1017 /* 1018 * Tasks are initialized with full load to be seen as heavy tasks until 1019 * they get a chance to stabilize to their real load level. 1020 * Group entities are initialized with zero load to reflect the fact that 1021 * nothing has been attached to the task group yet. 1022 */ 1023 if (entity_is_task(se)) 1024 sa->load_avg = scale_load_down(se->load.weight); 1025 1026 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1027 } 1028 1029 /* 1030 * With new tasks being created, their initial util_avgs are extrapolated 1031 * based on the cfs_rq's current util_avg: 1032 * 1033 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1034 * * se_weight(se) 1035 * 1036 * However, in many cases, the above util_avg does not give a desired 1037 * value. Moreover, the sum of the util_avgs may be divergent, such 1038 * as when the series is a harmonic series. 1039 * 1040 * To solve this problem, we also cap the util_avg of successive tasks to 1041 * only 1/2 of the left utilization budget: 1042 * 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1044 * 1045 * where n denotes the nth task and cpu_scale the CPU capacity. 1046 * 1047 * For example, for a CPU with 1024 of capacity, a simplest series from 1048 * the beginning would be like: 1049 * 1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1052 * 1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1054 * if util_avg > util_avg_cap. 1055 */ 1056 void post_init_entity_util_avg(struct task_struct *p) 1057 { 1058 struct sched_entity *se = &p->se; 1059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1060 struct sched_avg *sa = &se->avg; 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1063 1064 if (p->sched_class != &fair_sched_class) { 1065 /* 1066 * For !fair tasks do: 1067 * 1068 update_cfs_rq_load_avg(now, cfs_rq); 1069 attach_entity_load_avg(cfs_rq, se); 1070 switched_from_fair(rq, p); 1071 * 1072 * such that the next switched_to_fair() has the 1073 * expected state. 1074 */ 1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1076 return; 1077 } 1078 1079 if (cap > 0) { 1080 if (cfs_rq->avg.util_avg != 0) { 1081 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1083 1084 if (sa->util_avg > cap) 1085 sa->util_avg = cap; 1086 } else { 1087 sa->util_avg = cap; 1088 } 1089 } 1090 1091 sa->runnable_avg = sa->util_avg; 1092 } 1093 1094 #else /* !CONFIG_SMP */ 1095 void init_entity_runnable_average(struct sched_entity *se) 1096 { 1097 } 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 } 1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1102 { 1103 } 1104 #endif /* CONFIG_SMP */ 1105 1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1107 { 1108 u64 now = rq_clock_task(rq); 1109 s64 delta_exec; 1110 1111 delta_exec = now - curr->exec_start; 1112 if (unlikely(delta_exec <= 0)) 1113 return delta_exec; 1114 1115 curr->exec_start = now; 1116 curr->sum_exec_runtime += delta_exec; 1117 1118 if (schedstat_enabled()) { 1119 struct sched_statistics *stats; 1120 1121 stats = __schedstats_from_se(curr); 1122 __schedstat_set(stats->exec_max, 1123 max(delta_exec, stats->exec_max)); 1124 } 1125 1126 return delta_exec; 1127 } 1128 1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1130 { 1131 trace_sched_stat_runtime(p, delta_exec); 1132 account_group_exec_runtime(p, delta_exec); 1133 cgroup_account_cputime(p, delta_exec); 1134 if (p->dl_server) 1135 dl_server_update(p->dl_server, delta_exec); 1136 } 1137 1138 /* 1139 * Used by other classes to account runtime. 1140 */ 1141 s64 update_curr_common(struct rq *rq) 1142 { 1143 struct task_struct *curr = rq->curr; 1144 s64 delta_exec; 1145 1146 delta_exec = update_curr_se(rq, &curr->se); 1147 if (likely(delta_exec > 0)) 1148 update_curr_task(curr, delta_exec); 1149 1150 return delta_exec; 1151 } 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 s64 delta_exec; 1160 1161 if (unlikely(!curr)) 1162 return; 1163 1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr); 1165 if (unlikely(delta_exec <= 0)) 1166 return; 1167 1168 curr->vruntime += calc_delta_fair(delta_exec, curr); 1169 update_deadline(cfs_rq, curr); 1170 update_min_vruntime(cfs_rq); 1171 1172 if (entity_is_task(curr)) 1173 update_curr_task(task_of(curr), delta_exec); 1174 1175 account_cfs_rq_runtime(cfs_rq, delta_exec); 1176 } 1177 1178 static void update_curr_fair(struct rq *rq) 1179 { 1180 update_curr(cfs_rq_of(&rq->curr->se)); 1181 } 1182 1183 static inline void 1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1185 { 1186 struct sched_statistics *stats; 1187 struct task_struct *p = NULL; 1188 1189 if (!schedstat_enabled()) 1190 return; 1191 1192 stats = __schedstats_from_se(se); 1193 1194 if (entity_is_task(se)) 1195 p = task_of(se); 1196 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1198 } 1199 1200 static inline void 1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1202 { 1203 struct sched_statistics *stats; 1204 struct task_struct *p = NULL; 1205 1206 if (!schedstat_enabled()) 1207 return; 1208 1209 stats = __schedstats_from_se(se); 1210 1211 /* 1212 * When the sched_schedstat changes from 0 to 1, some sched se 1213 * maybe already in the runqueue, the se->statistics.wait_start 1214 * will be 0.So it will let the delta wrong. We need to avoid this 1215 * scenario. 1216 */ 1217 if (unlikely(!schedstat_val(stats->wait_start))) 1218 return; 1219 1220 if (entity_is_task(se)) 1221 p = task_of(se); 1222 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1224 } 1225 1226 static inline void 1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1228 { 1229 struct sched_statistics *stats; 1230 struct task_struct *tsk = NULL; 1231 1232 if (!schedstat_enabled()) 1233 return; 1234 1235 stats = __schedstats_from_se(se); 1236 1237 if (entity_is_task(se)) 1238 tsk = task_of(se); 1239 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1241 } 1242 1243 /* 1244 * Task is being enqueued - update stats: 1245 */ 1246 static inline void 1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1248 { 1249 if (!schedstat_enabled()) 1250 return; 1251 1252 /* 1253 * Are we enqueueing a waiting task? (for current tasks 1254 * a dequeue/enqueue event is a NOP) 1255 */ 1256 if (se != cfs_rq->curr) 1257 update_stats_wait_start_fair(cfs_rq, se); 1258 1259 if (flags & ENQUEUE_WAKEUP) 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1261 } 1262 1263 static inline void 1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1265 { 1266 1267 if (!schedstat_enabled()) 1268 return; 1269 1270 /* 1271 * Mark the end of the wait period if dequeueing a 1272 * waiting task: 1273 */ 1274 if (se != cfs_rq->curr) 1275 update_stats_wait_end_fair(cfs_rq, se); 1276 1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1278 struct task_struct *tsk = task_of(se); 1279 unsigned int state; 1280 1281 /* XXX racy against TTWU */ 1282 state = READ_ONCE(tsk->__state); 1283 if (state & TASK_INTERRUPTIBLE) 1284 __schedstat_set(tsk->stats.sleep_start, 1285 rq_clock(rq_of(cfs_rq))); 1286 if (state & TASK_UNINTERRUPTIBLE) 1287 __schedstat_set(tsk->stats.block_start, 1288 rq_clock(rq_of(cfs_rq))); 1289 } 1290 } 1291 1292 /* 1293 * We are picking a new current task - update its stats: 1294 */ 1295 static inline void 1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1297 { 1298 /* 1299 * We are starting a new run period: 1300 */ 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1302 } 1303 1304 /************************************************** 1305 * Scheduling class queueing methods: 1306 */ 1307 1308 static inline bool is_core_idle(int cpu) 1309 { 1310 #ifdef CONFIG_SCHED_SMT 1311 int sibling; 1312 1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1314 if (cpu == sibling) 1315 continue; 1316 1317 if (!idle_cpu(sibling)) 1318 return false; 1319 } 1320 #endif 1321 1322 return true; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 #define NUMA_IMBALANCE_MIN 2 1327 1328 static inline long 1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1330 { 1331 /* 1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1333 * threshold. Above this threshold, individual tasks may be contending 1334 * for both memory bandwidth and any shared HT resources. This is an 1335 * approximation as the number of running tasks may not be related to 1336 * the number of busy CPUs due to sched_setaffinity. 1337 */ 1338 if (dst_running > imb_numa_nr) 1339 return imbalance; 1340 1341 /* 1342 * Allow a small imbalance based on a simple pair of communicating 1343 * tasks that remain local when the destination is lightly loaded. 1344 */ 1345 if (imbalance <= NUMA_IMBALANCE_MIN) 1346 return 0; 1347 1348 return imbalance; 1349 } 1350 #endif /* CONFIG_NUMA */ 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 /* 1354 * Approximate time to scan a full NUMA task in ms. The task scan period is 1355 * calculated based on the tasks virtual memory size and 1356 * numa_balancing_scan_size. 1357 */ 1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1360 1361 /* Portion of address space to scan in MB */ 1362 unsigned int sysctl_numa_balancing_scan_size = 256; 1363 1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1365 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1366 1367 /* The page with hint page fault latency < threshold in ms is considered hot */ 1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1369 1370 struct numa_group { 1371 refcount_t refcount; 1372 1373 spinlock_t lock; /* nr_tasks, tasks */ 1374 int nr_tasks; 1375 pid_t gid; 1376 int active_nodes; 1377 1378 struct rcu_head rcu; 1379 unsigned long total_faults; 1380 unsigned long max_faults_cpu; 1381 /* 1382 * faults[] array is split into two regions: faults_mem and faults_cpu. 1383 * 1384 * Faults_cpu is used to decide whether memory should move 1385 * towards the CPU. As a consequence, these stats are weighted 1386 * more by CPU use than by memory faults. 1387 */ 1388 unsigned long faults[]; 1389 }; 1390 1391 /* 1392 * For functions that can be called in multiple contexts that permit reading 1393 * ->numa_group (see struct task_struct for locking rules). 1394 */ 1395 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1396 { 1397 return rcu_dereference_check(p->numa_group, p == current || 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1399 } 1400 1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1402 { 1403 return rcu_dereference_protected(p->numa_group, p == current); 1404 } 1405 1406 static inline unsigned long group_faults_priv(struct numa_group *ng); 1407 static inline unsigned long group_faults_shared(struct numa_group *ng); 1408 1409 static unsigned int task_nr_scan_windows(struct task_struct *p) 1410 { 1411 unsigned long rss = 0; 1412 unsigned long nr_scan_pages; 1413 1414 /* 1415 * Calculations based on RSS as non-present and empty pages are skipped 1416 * by the PTE scanner and NUMA hinting faults should be trapped based 1417 * on resident pages 1418 */ 1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1420 rss = get_mm_rss(p->mm); 1421 if (!rss) 1422 rss = nr_scan_pages; 1423 1424 rss = round_up(rss, nr_scan_pages); 1425 return rss / nr_scan_pages; 1426 } 1427 1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1429 #define MAX_SCAN_WINDOW 2560 1430 1431 static unsigned int task_scan_min(struct task_struct *p) 1432 { 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1434 unsigned int scan, floor; 1435 unsigned int windows = 1; 1436 1437 if (scan_size < MAX_SCAN_WINDOW) 1438 windows = MAX_SCAN_WINDOW / scan_size; 1439 floor = 1000 / windows; 1440 1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1442 return max_t(unsigned int, floor, scan); 1443 } 1444 1445 static unsigned int task_scan_start(struct task_struct *p) 1446 { 1447 unsigned long smin = task_scan_min(p); 1448 unsigned long period = smin; 1449 struct numa_group *ng; 1450 1451 /* Scale the maximum scan period with the amount of shared memory. */ 1452 rcu_read_lock(); 1453 ng = rcu_dereference(p->numa_group); 1454 if (ng) { 1455 unsigned long shared = group_faults_shared(ng); 1456 unsigned long private = group_faults_priv(ng); 1457 1458 period *= refcount_read(&ng->refcount); 1459 period *= shared + 1; 1460 period /= private + shared + 1; 1461 } 1462 rcu_read_unlock(); 1463 1464 return max(smin, period); 1465 } 1466 1467 static unsigned int task_scan_max(struct task_struct *p) 1468 { 1469 unsigned long smin = task_scan_min(p); 1470 unsigned long smax; 1471 struct numa_group *ng; 1472 1473 /* Watch for min being lower than max due to floor calculations */ 1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1475 1476 /* Scale the maximum scan period with the amount of shared memory. */ 1477 ng = deref_curr_numa_group(p); 1478 if (ng) { 1479 unsigned long shared = group_faults_shared(ng); 1480 unsigned long private = group_faults_priv(ng); 1481 unsigned long period = smax; 1482 1483 period *= refcount_read(&ng->refcount); 1484 period *= shared + 1; 1485 period /= private + shared + 1; 1486 1487 smax = max(smax, period); 1488 } 1489 1490 return max(smin, smax); 1491 } 1492 1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1494 { 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1497 } 1498 1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1500 { 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1503 } 1504 1505 /* Shared or private faults. */ 1506 #define NR_NUMA_HINT_FAULT_TYPES 2 1507 1508 /* Memory and CPU locality */ 1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1510 1511 /* Averaged statistics, and temporary buffers. */ 1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1513 1514 pid_t task_numa_group_id(struct task_struct *p) 1515 { 1516 struct numa_group *ng; 1517 pid_t gid = 0; 1518 1519 rcu_read_lock(); 1520 ng = rcu_dereference(p->numa_group); 1521 if (ng) 1522 gid = ng->gid; 1523 rcu_read_unlock(); 1524 1525 return gid; 1526 } 1527 1528 /* 1529 * The averaged statistics, shared & private, memory & CPU, 1530 * occupy the first half of the array. The second half of the 1531 * array is for current counters, which are averaged into the 1532 * first set by task_numa_placement. 1533 */ 1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1535 { 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1537 } 1538 1539 static inline unsigned long task_faults(struct task_struct *p, int nid) 1540 { 1541 if (!p->numa_faults) 1542 return 0; 1543 1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1546 } 1547 1548 static inline unsigned long group_faults(struct task_struct *p, int nid) 1549 { 1550 struct numa_group *ng = deref_task_numa_group(p); 1551 1552 if (!ng) 1553 return 0; 1554 1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1557 } 1558 1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1560 { 1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1563 } 1564 1565 static inline unsigned long group_faults_priv(struct numa_group *ng) 1566 { 1567 unsigned long faults = 0; 1568 int node; 1569 1570 for_each_online_node(node) { 1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1572 } 1573 1574 return faults; 1575 } 1576 1577 static inline unsigned long group_faults_shared(struct numa_group *ng) 1578 { 1579 unsigned long faults = 0; 1580 int node; 1581 1582 for_each_online_node(node) { 1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1584 } 1585 1586 return faults; 1587 } 1588 1589 /* 1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1591 * considered part of a numa group's pseudo-interleaving set. Migrations 1592 * between these nodes are slowed down, to allow things to settle down. 1593 */ 1594 #define ACTIVE_NODE_FRACTION 3 1595 1596 static bool numa_is_active_node(int nid, struct numa_group *ng) 1597 { 1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1599 } 1600 1601 /* Handle placement on systems where not all nodes are directly connected. */ 1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1603 int lim_dist, bool task) 1604 { 1605 unsigned long score = 0; 1606 int node, max_dist; 1607 1608 /* 1609 * All nodes are directly connected, and the same distance 1610 * from each other. No need for fancy placement algorithms. 1611 */ 1612 if (sched_numa_topology_type == NUMA_DIRECT) 1613 return 0; 1614 1615 /* sched_max_numa_distance may be changed in parallel. */ 1616 max_dist = READ_ONCE(sched_max_numa_distance); 1617 /* 1618 * This code is called for each node, introducing N^2 complexity, 1619 * which should be OK given the number of nodes rarely exceeds 8. 1620 */ 1621 for_each_online_node(node) { 1622 unsigned long faults; 1623 int dist = node_distance(nid, node); 1624 1625 /* 1626 * The furthest away nodes in the system are not interesting 1627 * for placement; nid was already counted. 1628 */ 1629 if (dist >= max_dist || node == nid) 1630 continue; 1631 1632 /* 1633 * On systems with a backplane NUMA topology, compare groups 1634 * of nodes, and move tasks towards the group with the most 1635 * memory accesses. When comparing two nodes at distance 1636 * "hoplimit", only nodes closer by than "hoplimit" are part 1637 * of each group. Skip other nodes. 1638 */ 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1640 continue; 1641 1642 /* Add up the faults from nearby nodes. */ 1643 if (task) 1644 faults = task_faults(p, node); 1645 else 1646 faults = group_faults(p, node); 1647 1648 /* 1649 * On systems with a glueless mesh NUMA topology, there are 1650 * no fixed "groups of nodes". Instead, nodes that are not 1651 * directly connected bounce traffic through intermediate 1652 * nodes; a numa_group can occupy any set of nodes. 1653 * The further away a node is, the less the faults count. 1654 * This seems to result in good task placement. 1655 */ 1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1657 faults *= (max_dist - dist); 1658 faults /= (max_dist - LOCAL_DISTANCE); 1659 } 1660 1661 score += faults; 1662 } 1663 1664 return score; 1665 } 1666 1667 /* 1668 * These return the fraction of accesses done by a particular task, or 1669 * task group, on a particular numa node. The group weight is given a 1670 * larger multiplier, in order to group tasks together that are almost 1671 * evenly spread out between numa nodes. 1672 */ 1673 static inline unsigned long task_weight(struct task_struct *p, int nid, 1674 int dist) 1675 { 1676 unsigned long faults, total_faults; 1677 1678 if (!p->numa_faults) 1679 return 0; 1680 1681 total_faults = p->total_numa_faults; 1682 1683 if (!total_faults) 1684 return 0; 1685 1686 faults = task_faults(p, nid); 1687 faults += score_nearby_nodes(p, nid, dist, true); 1688 1689 return 1000 * faults / total_faults; 1690 } 1691 1692 static inline unsigned long group_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 struct numa_group *ng = deref_task_numa_group(p); 1696 unsigned long faults, total_faults; 1697 1698 if (!ng) 1699 return 0; 1700 1701 total_faults = ng->total_faults; 1702 1703 if (!total_faults) 1704 return 0; 1705 1706 faults = group_faults(p, nid); 1707 faults += score_nearby_nodes(p, nid, dist, false); 1708 1709 return 1000 * faults / total_faults; 1710 } 1711 1712 /* 1713 * If memory tiering mode is enabled, cpupid of slow memory page is 1714 * used to record scan time instead of CPU and PID. When tiering mode 1715 * is disabled at run time, the scan time (in cpupid) will be 1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1717 * access out of array bound. 1718 */ 1719 static inline bool cpupid_valid(int cpupid) 1720 { 1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1722 } 1723 1724 /* 1725 * For memory tiering mode, if there are enough free pages (more than 1726 * enough watermark defined here) in fast memory node, to take full 1727 * advantage of fast memory capacity, all recently accessed slow 1728 * memory pages will be migrated to fast memory node without 1729 * considering hot threshold. 1730 */ 1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1732 { 1733 int z; 1734 unsigned long enough_wmark; 1735 1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1737 pgdat->node_present_pages >> 4); 1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1739 struct zone *zone = pgdat->node_zones + z; 1740 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 if (zone_watermark_ok(zone, 0, 1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1746 ZONE_MOVABLE, 0)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /* 1753 * For memory tiering mode, when page tables are scanned, the scan 1754 * time will be recorded in struct page in addition to make page 1755 * PROT_NONE for slow memory page. So when the page is accessed, in 1756 * hint page fault handler, the hint page fault latency is calculated 1757 * via, 1758 * 1759 * hint page fault latency = hint page fault time - scan time 1760 * 1761 * The smaller the hint page fault latency, the higher the possibility 1762 * for the page to be hot. 1763 */ 1764 static int numa_hint_fault_latency(struct folio *folio) 1765 { 1766 int last_time, time; 1767 1768 time = jiffies_to_msecs(jiffies); 1769 last_time = folio_xchg_access_time(folio, time); 1770 1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1772 } 1773 1774 /* 1775 * For memory tiering mode, too high promotion/demotion throughput may 1776 * hurt application latency. So we provide a mechanism to rate limit 1777 * the number of pages that are tried to be promoted. 1778 */ 1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1780 unsigned long rate_limit, int nr) 1781 { 1782 unsigned long nr_cand; 1783 unsigned int now, start; 1784 1785 now = jiffies_to_msecs(jiffies); 1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1788 start = pgdat->nbp_rl_start; 1789 if (now - start > MSEC_PER_SEC && 1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1791 pgdat->nbp_rl_nr_cand = nr_cand; 1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1793 return true; 1794 return false; 1795 } 1796 1797 #define NUMA_MIGRATION_ADJUST_STEPS 16 1798 1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1800 unsigned long rate_limit, 1801 unsigned int ref_th) 1802 { 1803 unsigned int now, start, th_period, unit_th, th; 1804 unsigned long nr_cand, ref_cand, diff_cand; 1805 1806 now = jiffies_to_msecs(jiffies); 1807 th_period = sysctl_numa_balancing_scan_period_max; 1808 start = pgdat->nbp_th_start; 1809 if (now - start > th_period && 1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1811 ref_cand = rate_limit * 1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1816 th = pgdat->nbp_threshold ? : ref_th; 1817 if (diff_cand > ref_cand * 11 / 10) 1818 th = max(th - unit_th, unit_th); 1819 else if (diff_cand < ref_cand * 9 / 10) 1820 th = min(th + unit_th, ref_th * 2); 1821 pgdat->nbp_th_nr_cand = nr_cand; 1822 pgdat->nbp_threshold = th; 1823 } 1824 } 1825 1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1827 int src_nid, int dst_cpu) 1828 { 1829 struct numa_group *ng = deref_curr_numa_group(p); 1830 int dst_nid = cpu_to_node(dst_cpu); 1831 int last_cpupid, this_cpupid; 1832 1833 /* 1834 * Cannot migrate to memoryless nodes. 1835 */ 1836 if (!node_state(dst_nid, N_MEMORY)) 1837 return false; 1838 1839 /* 1840 * The pages in slow memory node should be migrated according 1841 * to hot/cold instead of private/shared. 1842 */ 1843 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1844 !node_is_toptier(src_nid)) { 1845 struct pglist_data *pgdat; 1846 unsigned long rate_limit; 1847 unsigned int latency, th, def_th; 1848 1849 pgdat = NODE_DATA(dst_nid); 1850 if (pgdat_free_space_enough(pgdat)) { 1851 /* workload changed, reset hot threshold */ 1852 pgdat->nbp_threshold = 0; 1853 return true; 1854 } 1855 1856 def_th = sysctl_numa_balancing_hot_threshold; 1857 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1858 (20 - PAGE_SHIFT); 1859 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1860 1861 th = pgdat->nbp_threshold ? : def_th; 1862 latency = numa_hint_fault_latency(folio); 1863 if (latency >= th) 1864 return false; 1865 1866 return !numa_promotion_rate_limit(pgdat, rate_limit, 1867 folio_nr_pages(folio)); 1868 } 1869 1870 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1871 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1872 1873 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1874 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1875 return false; 1876 1877 /* 1878 * Allow first faults or private faults to migrate immediately early in 1879 * the lifetime of a task. The magic number 4 is based on waiting for 1880 * two full passes of the "multi-stage node selection" test that is 1881 * executed below. 1882 */ 1883 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1884 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1885 return true; 1886 1887 /* 1888 * Multi-stage node selection is used in conjunction with a periodic 1889 * migration fault to build a temporal task<->page relation. By using 1890 * a two-stage filter we remove short/unlikely relations. 1891 * 1892 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1893 * a task's usage of a particular page (n_p) per total usage of this 1894 * page (n_t) (in a given time-span) to a probability. 1895 * 1896 * Our periodic faults will sample this probability and getting the 1897 * same result twice in a row, given these samples are fully 1898 * independent, is then given by P(n)^2, provided our sample period 1899 * is sufficiently short compared to the usage pattern. 1900 * 1901 * This quadric squishes small probabilities, making it less likely we 1902 * act on an unlikely task<->page relation. 1903 */ 1904 if (!cpupid_pid_unset(last_cpupid) && 1905 cpupid_to_nid(last_cpupid) != dst_nid) 1906 return false; 1907 1908 /* Always allow migrate on private faults */ 1909 if (cpupid_match_pid(p, last_cpupid)) 1910 return true; 1911 1912 /* A shared fault, but p->numa_group has not been set up yet. */ 1913 if (!ng) 1914 return true; 1915 1916 /* 1917 * Destination node is much more heavily used than the source 1918 * node? Allow migration. 1919 */ 1920 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1921 ACTIVE_NODE_FRACTION) 1922 return true; 1923 1924 /* 1925 * Distribute memory according to CPU & memory use on each node, 1926 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1927 * 1928 * faults_cpu(dst) 3 faults_cpu(src) 1929 * --------------- * - > --------------- 1930 * faults_mem(dst) 4 faults_mem(src) 1931 */ 1932 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1933 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1934 } 1935 1936 /* 1937 * 'numa_type' describes the node at the moment of load balancing. 1938 */ 1939 enum numa_type { 1940 /* The node has spare capacity that can be used to run more tasks. */ 1941 node_has_spare = 0, 1942 /* 1943 * The node is fully used and the tasks don't compete for more CPU 1944 * cycles. Nevertheless, some tasks might wait before running. 1945 */ 1946 node_fully_busy, 1947 /* 1948 * The node is overloaded and can't provide expected CPU cycles to all 1949 * tasks. 1950 */ 1951 node_overloaded 1952 }; 1953 1954 /* Cached statistics for all CPUs within a node */ 1955 struct numa_stats { 1956 unsigned long load; 1957 unsigned long runnable; 1958 unsigned long util; 1959 /* Total compute capacity of CPUs on a node */ 1960 unsigned long compute_capacity; 1961 unsigned int nr_running; 1962 unsigned int weight; 1963 enum numa_type node_type; 1964 int idle_cpu; 1965 }; 1966 1967 struct task_numa_env { 1968 struct task_struct *p; 1969 1970 int src_cpu, src_nid; 1971 int dst_cpu, dst_nid; 1972 int imb_numa_nr; 1973 1974 struct numa_stats src_stats, dst_stats; 1975 1976 int imbalance_pct; 1977 int dist; 1978 1979 struct task_struct *best_task; 1980 long best_imp; 1981 int best_cpu; 1982 }; 1983 1984 static unsigned long cpu_load(struct rq *rq); 1985 static unsigned long cpu_runnable(struct rq *rq); 1986 1987 static inline enum 1988 numa_type numa_classify(unsigned int imbalance_pct, 1989 struct numa_stats *ns) 1990 { 1991 if ((ns->nr_running > ns->weight) && 1992 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1993 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1994 return node_overloaded; 1995 1996 if ((ns->nr_running < ns->weight) || 1997 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1998 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1999 return node_has_spare; 2000 2001 return node_fully_busy; 2002 } 2003 2004 #ifdef CONFIG_SCHED_SMT 2005 /* Forward declarations of select_idle_sibling helpers */ 2006 static inline bool test_idle_cores(int cpu); 2007 static inline int numa_idle_core(int idle_core, int cpu) 2008 { 2009 if (!static_branch_likely(&sched_smt_present) || 2010 idle_core >= 0 || !test_idle_cores(cpu)) 2011 return idle_core; 2012 2013 /* 2014 * Prefer cores instead of packing HT siblings 2015 * and triggering future load balancing. 2016 */ 2017 if (is_core_idle(cpu)) 2018 idle_core = cpu; 2019 2020 return idle_core; 2021 } 2022 #else 2023 static inline int numa_idle_core(int idle_core, int cpu) 2024 { 2025 return idle_core; 2026 } 2027 #endif 2028 2029 /* 2030 * Gather all necessary information to make NUMA balancing placement 2031 * decisions that are compatible with standard load balancer. This 2032 * borrows code and logic from update_sg_lb_stats but sharing a 2033 * common implementation is impractical. 2034 */ 2035 static void update_numa_stats(struct task_numa_env *env, 2036 struct numa_stats *ns, int nid, 2037 bool find_idle) 2038 { 2039 int cpu, idle_core = -1; 2040 2041 memset(ns, 0, sizeof(*ns)); 2042 ns->idle_cpu = -1; 2043 2044 rcu_read_lock(); 2045 for_each_cpu(cpu, cpumask_of_node(nid)) { 2046 struct rq *rq = cpu_rq(cpu); 2047 2048 ns->load += cpu_load(rq); 2049 ns->runnable += cpu_runnable(rq); 2050 ns->util += cpu_util_cfs(cpu); 2051 ns->nr_running += rq->cfs.h_nr_running; 2052 ns->compute_capacity += capacity_of(cpu); 2053 2054 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2055 if (READ_ONCE(rq->numa_migrate_on) || 2056 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2057 continue; 2058 2059 if (ns->idle_cpu == -1) 2060 ns->idle_cpu = cpu; 2061 2062 idle_core = numa_idle_core(idle_core, cpu); 2063 } 2064 } 2065 rcu_read_unlock(); 2066 2067 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2068 2069 ns->node_type = numa_classify(env->imbalance_pct, ns); 2070 2071 if (idle_core >= 0) 2072 ns->idle_cpu = idle_core; 2073 } 2074 2075 static void task_numa_assign(struct task_numa_env *env, 2076 struct task_struct *p, long imp) 2077 { 2078 struct rq *rq = cpu_rq(env->dst_cpu); 2079 2080 /* Check if run-queue part of active NUMA balance. */ 2081 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2082 int cpu; 2083 int start = env->dst_cpu; 2084 2085 /* Find alternative idle CPU. */ 2086 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2087 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2088 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2089 continue; 2090 } 2091 2092 env->dst_cpu = cpu; 2093 rq = cpu_rq(env->dst_cpu); 2094 if (!xchg(&rq->numa_migrate_on, 1)) 2095 goto assign; 2096 } 2097 2098 /* Failed to find an alternative idle CPU */ 2099 return; 2100 } 2101 2102 assign: 2103 /* 2104 * Clear previous best_cpu/rq numa-migrate flag, since task now 2105 * found a better CPU to move/swap. 2106 */ 2107 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2108 rq = cpu_rq(env->best_cpu); 2109 WRITE_ONCE(rq->numa_migrate_on, 0); 2110 } 2111 2112 if (env->best_task) 2113 put_task_struct(env->best_task); 2114 if (p) 2115 get_task_struct(p); 2116 2117 env->best_task = p; 2118 env->best_imp = imp; 2119 env->best_cpu = env->dst_cpu; 2120 } 2121 2122 static bool load_too_imbalanced(long src_load, long dst_load, 2123 struct task_numa_env *env) 2124 { 2125 long imb, old_imb; 2126 long orig_src_load, orig_dst_load; 2127 long src_capacity, dst_capacity; 2128 2129 /* 2130 * The load is corrected for the CPU capacity available on each node. 2131 * 2132 * src_load dst_load 2133 * ------------ vs --------- 2134 * src_capacity dst_capacity 2135 */ 2136 src_capacity = env->src_stats.compute_capacity; 2137 dst_capacity = env->dst_stats.compute_capacity; 2138 2139 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2140 2141 orig_src_load = env->src_stats.load; 2142 orig_dst_load = env->dst_stats.load; 2143 2144 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2145 2146 /* Would this change make things worse? */ 2147 return (imb > old_imb); 2148 } 2149 2150 /* 2151 * Maximum NUMA importance can be 1998 (2*999); 2152 * SMALLIMP @ 30 would be close to 1998/64. 2153 * Used to deter task migration. 2154 */ 2155 #define SMALLIMP 30 2156 2157 /* 2158 * This checks if the overall compute and NUMA accesses of the system would 2159 * be improved if the source tasks was migrated to the target dst_cpu taking 2160 * into account that it might be best if task running on the dst_cpu should 2161 * be exchanged with the source task 2162 */ 2163 static bool task_numa_compare(struct task_numa_env *env, 2164 long taskimp, long groupimp, bool maymove) 2165 { 2166 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2167 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2168 long imp = p_ng ? groupimp : taskimp; 2169 struct task_struct *cur; 2170 long src_load, dst_load; 2171 int dist = env->dist; 2172 long moveimp = imp; 2173 long load; 2174 bool stopsearch = false; 2175 2176 if (READ_ONCE(dst_rq->numa_migrate_on)) 2177 return false; 2178 2179 rcu_read_lock(); 2180 cur = rcu_dereference(dst_rq->curr); 2181 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2182 cur = NULL; 2183 2184 /* 2185 * Because we have preemption enabled we can get migrated around and 2186 * end try selecting ourselves (current == env->p) as a swap candidate. 2187 */ 2188 if (cur == env->p) { 2189 stopsearch = true; 2190 goto unlock; 2191 } 2192 2193 if (!cur) { 2194 if (maymove && moveimp >= env->best_imp) 2195 goto assign; 2196 else 2197 goto unlock; 2198 } 2199 2200 /* Skip this swap candidate if cannot move to the source cpu. */ 2201 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2202 goto unlock; 2203 2204 /* 2205 * Skip this swap candidate if it is not moving to its preferred 2206 * node and the best task is. 2207 */ 2208 if (env->best_task && 2209 env->best_task->numa_preferred_nid == env->src_nid && 2210 cur->numa_preferred_nid != env->src_nid) { 2211 goto unlock; 2212 } 2213 2214 /* 2215 * "imp" is the fault differential for the source task between the 2216 * source and destination node. Calculate the total differential for 2217 * the source task and potential destination task. The more negative 2218 * the value is, the more remote accesses that would be expected to 2219 * be incurred if the tasks were swapped. 2220 * 2221 * If dst and source tasks are in the same NUMA group, or not 2222 * in any group then look only at task weights. 2223 */ 2224 cur_ng = rcu_dereference(cur->numa_group); 2225 if (cur_ng == p_ng) { 2226 /* 2227 * Do not swap within a group or between tasks that have 2228 * no group if there is spare capacity. Swapping does 2229 * not address the load imbalance and helps one task at 2230 * the cost of punishing another. 2231 */ 2232 if (env->dst_stats.node_type == node_has_spare) 2233 goto unlock; 2234 2235 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2236 task_weight(cur, env->dst_nid, dist); 2237 /* 2238 * Add some hysteresis to prevent swapping the 2239 * tasks within a group over tiny differences. 2240 */ 2241 if (cur_ng) 2242 imp -= imp / 16; 2243 } else { 2244 /* 2245 * Compare the group weights. If a task is all by itself 2246 * (not part of a group), use the task weight instead. 2247 */ 2248 if (cur_ng && p_ng) 2249 imp += group_weight(cur, env->src_nid, dist) - 2250 group_weight(cur, env->dst_nid, dist); 2251 else 2252 imp += task_weight(cur, env->src_nid, dist) - 2253 task_weight(cur, env->dst_nid, dist); 2254 } 2255 2256 /* Discourage picking a task already on its preferred node */ 2257 if (cur->numa_preferred_nid == env->dst_nid) 2258 imp -= imp / 16; 2259 2260 /* 2261 * Encourage picking a task that moves to its preferred node. 2262 * This potentially makes imp larger than it's maximum of 2263 * 1998 (see SMALLIMP and task_weight for why) but in this 2264 * case, it does not matter. 2265 */ 2266 if (cur->numa_preferred_nid == env->src_nid) 2267 imp += imp / 8; 2268 2269 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2270 imp = moveimp; 2271 cur = NULL; 2272 goto assign; 2273 } 2274 2275 /* 2276 * Prefer swapping with a task moving to its preferred node over a 2277 * task that is not. 2278 */ 2279 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2280 env->best_task->numa_preferred_nid != env->src_nid) { 2281 goto assign; 2282 } 2283 2284 /* 2285 * If the NUMA importance is less than SMALLIMP, 2286 * task migration might only result in ping pong 2287 * of tasks and also hurt performance due to cache 2288 * misses. 2289 */ 2290 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2291 goto unlock; 2292 2293 /* 2294 * In the overloaded case, try and keep the load balanced. 2295 */ 2296 load = task_h_load(env->p) - task_h_load(cur); 2297 if (!load) 2298 goto assign; 2299 2300 dst_load = env->dst_stats.load + load; 2301 src_load = env->src_stats.load - load; 2302 2303 if (load_too_imbalanced(src_load, dst_load, env)) 2304 goto unlock; 2305 2306 assign: 2307 /* Evaluate an idle CPU for a task numa move. */ 2308 if (!cur) { 2309 int cpu = env->dst_stats.idle_cpu; 2310 2311 /* Nothing cached so current CPU went idle since the search. */ 2312 if (cpu < 0) 2313 cpu = env->dst_cpu; 2314 2315 /* 2316 * If the CPU is no longer truly idle and the previous best CPU 2317 * is, keep using it. 2318 */ 2319 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2320 idle_cpu(env->best_cpu)) { 2321 cpu = env->best_cpu; 2322 } 2323 2324 env->dst_cpu = cpu; 2325 } 2326 2327 task_numa_assign(env, cur, imp); 2328 2329 /* 2330 * If a move to idle is allowed because there is capacity or load 2331 * balance improves then stop the search. While a better swap 2332 * candidate may exist, a search is not free. 2333 */ 2334 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2335 stopsearch = true; 2336 2337 /* 2338 * If a swap candidate must be identified and the current best task 2339 * moves its preferred node then stop the search. 2340 */ 2341 if (!maymove && env->best_task && 2342 env->best_task->numa_preferred_nid == env->src_nid) { 2343 stopsearch = true; 2344 } 2345 unlock: 2346 rcu_read_unlock(); 2347 2348 return stopsearch; 2349 } 2350 2351 static void task_numa_find_cpu(struct task_numa_env *env, 2352 long taskimp, long groupimp) 2353 { 2354 bool maymove = false; 2355 int cpu; 2356 2357 /* 2358 * If dst node has spare capacity, then check if there is an 2359 * imbalance that would be overruled by the load balancer. 2360 */ 2361 if (env->dst_stats.node_type == node_has_spare) { 2362 unsigned int imbalance; 2363 int src_running, dst_running; 2364 2365 /* 2366 * Would movement cause an imbalance? Note that if src has 2367 * more running tasks that the imbalance is ignored as the 2368 * move improves the imbalance from the perspective of the 2369 * CPU load balancer. 2370 * */ 2371 src_running = env->src_stats.nr_running - 1; 2372 dst_running = env->dst_stats.nr_running + 1; 2373 imbalance = max(0, dst_running - src_running); 2374 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2375 env->imb_numa_nr); 2376 2377 /* Use idle CPU if there is no imbalance */ 2378 if (!imbalance) { 2379 maymove = true; 2380 if (env->dst_stats.idle_cpu >= 0) { 2381 env->dst_cpu = env->dst_stats.idle_cpu; 2382 task_numa_assign(env, NULL, 0); 2383 return; 2384 } 2385 } 2386 } else { 2387 long src_load, dst_load, load; 2388 /* 2389 * If the improvement from just moving env->p direction is better 2390 * than swapping tasks around, check if a move is possible. 2391 */ 2392 load = task_h_load(env->p); 2393 dst_load = env->dst_stats.load + load; 2394 src_load = env->src_stats.load - load; 2395 maymove = !load_too_imbalanced(src_load, dst_load, env); 2396 } 2397 2398 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2399 /* Skip this CPU if the source task cannot migrate */ 2400 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2401 continue; 2402 2403 env->dst_cpu = cpu; 2404 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2405 break; 2406 } 2407 } 2408 2409 static int task_numa_migrate(struct task_struct *p) 2410 { 2411 struct task_numa_env env = { 2412 .p = p, 2413 2414 .src_cpu = task_cpu(p), 2415 .src_nid = task_node(p), 2416 2417 .imbalance_pct = 112, 2418 2419 .best_task = NULL, 2420 .best_imp = 0, 2421 .best_cpu = -1, 2422 }; 2423 unsigned long taskweight, groupweight; 2424 struct sched_domain *sd; 2425 long taskimp, groupimp; 2426 struct numa_group *ng; 2427 struct rq *best_rq; 2428 int nid, ret, dist; 2429 2430 /* 2431 * Pick the lowest SD_NUMA domain, as that would have the smallest 2432 * imbalance and would be the first to start moving tasks about. 2433 * 2434 * And we want to avoid any moving of tasks about, as that would create 2435 * random movement of tasks -- counter the numa conditions we're trying 2436 * to satisfy here. 2437 */ 2438 rcu_read_lock(); 2439 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2440 if (sd) { 2441 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2442 env.imb_numa_nr = sd->imb_numa_nr; 2443 } 2444 rcu_read_unlock(); 2445 2446 /* 2447 * Cpusets can break the scheduler domain tree into smaller 2448 * balance domains, some of which do not cross NUMA boundaries. 2449 * Tasks that are "trapped" in such domains cannot be migrated 2450 * elsewhere, so there is no point in (re)trying. 2451 */ 2452 if (unlikely(!sd)) { 2453 sched_setnuma(p, task_node(p)); 2454 return -EINVAL; 2455 } 2456 2457 env.dst_nid = p->numa_preferred_nid; 2458 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2459 taskweight = task_weight(p, env.src_nid, dist); 2460 groupweight = group_weight(p, env.src_nid, dist); 2461 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2462 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2463 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2464 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2465 2466 /* Try to find a spot on the preferred nid. */ 2467 task_numa_find_cpu(&env, taskimp, groupimp); 2468 2469 /* 2470 * Look at other nodes in these cases: 2471 * - there is no space available on the preferred_nid 2472 * - the task is part of a numa_group that is interleaved across 2473 * multiple NUMA nodes; in order to better consolidate the group, 2474 * we need to check other locations. 2475 */ 2476 ng = deref_curr_numa_group(p); 2477 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2478 for_each_node_state(nid, N_CPU) { 2479 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2480 continue; 2481 2482 dist = node_distance(env.src_nid, env.dst_nid); 2483 if (sched_numa_topology_type == NUMA_BACKPLANE && 2484 dist != env.dist) { 2485 taskweight = task_weight(p, env.src_nid, dist); 2486 groupweight = group_weight(p, env.src_nid, dist); 2487 } 2488 2489 /* Only consider nodes where both task and groups benefit */ 2490 taskimp = task_weight(p, nid, dist) - taskweight; 2491 groupimp = group_weight(p, nid, dist) - groupweight; 2492 if (taskimp < 0 && groupimp < 0) 2493 continue; 2494 2495 env.dist = dist; 2496 env.dst_nid = nid; 2497 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2498 task_numa_find_cpu(&env, taskimp, groupimp); 2499 } 2500 } 2501 2502 /* 2503 * If the task is part of a workload that spans multiple NUMA nodes, 2504 * and is migrating into one of the workload's active nodes, remember 2505 * this node as the task's preferred numa node, so the workload can 2506 * settle down. 2507 * A task that migrated to a second choice node will be better off 2508 * trying for a better one later. Do not set the preferred node here. 2509 */ 2510 if (ng) { 2511 if (env.best_cpu == -1) 2512 nid = env.src_nid; 2513 else 2514 nid = cpu_to_node(env.best_cpu); 2515 2516 if (nid != p->numa_preferred_nid) 2517 sched_setnuma(p, nid); 2518 } 2519 2520 /* No better CPU than the current one was found. */ 2521 if (env.best_cpu == -1) { 2522 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2523 return -EAGAIN; 2524 } 2525 2526 best_rq = cpu_rq(env.best_cpu); 2527 if (env.best_task == NULL) { 2528 ret = migrate_task_to(p, env.best_cpu); 2529 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2530 if (ret != 0) 2531 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2532 return ret; 2533 } 2534 2535 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2536 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2537 2538 if (ret != 0) 2539 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2540 put_task_struct(env.best_task); 2541 return ret; 2542 } 2543 2544 /* Attempt to migrate a task to a CPU on the preferred node. */ 2545 static void numa_migrate_preferred(struct task_struct *p) 2546 { 2547 unsigned long interval = HZ; 2548 2549 /* This task has no NUMA fault statistics yet */ 2550 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2551 return; 2552 2553 /* Periodically retry migrating the task to the preferred node */ 2554 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2555 p->numa_migrate_retry = jiffies + interval; 2556 2557 /* Success if task is already running on preferred CPU */ 2558 if (task_node(p) == p->numa_preferred_nid) 2559 return; 2560 2561 /* Otherwise, try migrate to a CPU on the preferred node */ 2562 task_numa_migrate(p); 2563 } 2564 2565 /* 2566 * Find out how many nodes the workload is actively running on. Do this by 2567 * tracking the nodes from which NUMA hinting faults are triggered. This can 2568 * be different from the set of nodes where the workload's memory is currently 2569 * located. 2570 */ 2571 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2572 { 2573 unsigned long faults, max_faults = 0; 2574 int nid, active_nodes = 0; 2575 2576 for_each_node_state(nid, N_CPU) { 2577 faults = group_faults_cpu(numa_group, nid); 2578 if (faults > max_faults) 2579 max_faults = faults; 2580 } 2581 2582 for_each_node_state(nid, N_CPU) { 2583 faults = group_faults_cpu(numa_group, nid); 2584 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2585 active_nodes++; 2586 } 2587 2588 numa_group->max_faults_cpu = max_faults; 2589 numa_group->active_nodes = active_nodes; 2590 } 2591 2592 /* 2593 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2594 * increments. The more local the fault statistics are, the higher the scan 2595 * period will be for the next scan window. If local/(local+remote) ratio is 2596 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2597 * the scan period will decrease. Aim for 70% local accesses. 2598 */ 2599 #define NUMA_PERIOD_SLOTS 10 2600 #define NUMA_PERIOD_THRESHOLD 7 2601 2602 /* 2603 * Increase the scan period (slow down scanning) if the majority of 2604 * our memory is already on our local node, or if the majority of 2605 * the page accesses are shared with other processes. 2606 * Otherwise, decrease the scan period. 2607 */ 2608 static void update_task_scan_period(struct task_struct *p, 2609 unsigned long shared, unsigned long private) 2610 { 2611 unsigned int period_slot; 2612 int lr_ratio, ps_ratio; 2613 int diff; 2614 2615 unsigned long remote = p->numa_faults_locality[0]; 2616 unsigned long local = p->numa_faults_locality[1]; 2617 2618 /* 2619 * If there were no record hinting faults then either the task is 2620 * completely idle or all activity is in areas that are not of interest 2621 * to automatic numa balancing. Related to that, if there were failed 2622 * migration then it implies we are migrating too quickly or the local 2623 * node is overloaded. In either case, scan slower 2624 */ 2625 if (local + shared == 0 || p->numa_faults_locality[2]) { 2626 p->numa_scan_period = min(p->numa_scan_period_max, 2627 p->numa_scan_period << 1); 2628 2629 p->mm->numa_next_scan = jiffies + 2630 msecs_to_jiffies(p->numa_scan_period); 2631 2632 return; 2633 } 2634 2635 /* 2636 * Prepare to scale scan period relative to the current period. 2637 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2638 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2639 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2640 */ 2641 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2642 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2643 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2644 2645 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2646 /* 2647 * Most memory accesses are local. There is no need to 2648 * do fast NUMA scanning, since memory is already local. 2649 */ 2650 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2651 if (!slot) 2652 slot = 1; 2653 diff = slot * period_slot; 2654 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2655 /* 2656 * Most memory accesses are shared with other tasks. 2657 * There is no point in continuing fast NUMA scanning, 2658 * since other tasks may just move the memory elsewhere. 2659 */ 2660 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2661 if (!slot) 2662 slot = 1; 2663 diff = slot * period_slot; 2664 } else { 2665 /* 2666 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2667 * yet they are not on the local NUMA node. Speed up 2668 * NUMA scanning to get the memory moved over. 2669 */ 2670 int ratio = max(lr_ratio, ps_ratio); 2671 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2672 } 2673 2674 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2675 task_scan_min(p), task_scan_max(p)); 2676 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2677 } 2678 2679 /* 2680 * Get the fraction of time the task has been running since the last 2681 * NUMA placement cycle. The scheduler keeps similar statistics, but 2682 * decays those on a 32ms period, which is orders of magnitude off 2683 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2684 * stats only if the task is so new there are no NUMA statistics yet. 2685 */ 2686 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2687 { 2688 u64 runtime, delta, now; 2689 /* Use the start of this time slice to avoid calculations. */ 2690 now = p->se.exec_start; 2691 runtime = p->se.sum_exec_runtime; 2692 2693 if (p->last_task_numa_placement) { 2694 delta = runtime - p->last_sum_exec_runtime; 2695 *period = now - p->last_task_numa_placement; 2696 2697 /* Avoid time going backwards, prevent potential divide error: */ 2698 if (unlikely((s64)*period < 0)) 2699 *period = 0; 2700 } else { 2701 delta = p->se.avg.load_sum; 2702 *period = LOAD_AVG_MAX; 2703 } 2704 2705 p->last_sum_exec_runtime = runtime; 2706 p->last_task_numa_placement = now; 2707 2708 return delta; 2709 } 2710 2711 /* 2712 * Determine the preferred nid for a task in a numa_group. This needs to 2713 * be done in a way that produces consistent results with group_weight, 2714 * otherwise workloads might not converge. 2715 */ 2716 static int preferred_group_nid(struct task_struct *p, int nid) 2717 { 2718 nodemask_t nodes; 2719 int dist; 2720 2721 /* Direct connections between all NUMA nodes. */ 2722 if (sched_numa_topology_type == NUMA_DIRECT) 2723 return nid; 2724 2725 /* 2726 * On a system with glueless mesh NUMA topology, group_weight 2727 * scores nodes according to the number of NUMA hinting faults on 2728 * both the node itself, and on nearby nodes. 2729 */ 2730 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2731 unsigned long score, max_score = 0; 2732 int node, max_node = nid; 2733 2734 dist = sched_max_numa_distance; 2735 2736 for_each_node_state(node, N_CPU) { 2737 score = group_weight(p, node, dist); 2738 if (score > max_score) { 2739 max_score = score; 2740 max_node = node; 2741 } 2742 } 2743 return max_node; 2744 } 2745 2746 /* 2747 * Finding the preferred nid in a system with NUMA backplane 2748 * interconnect topology is more involved. The goal is to locate 2749 * tasks from numa_groups near each other in the system, and 2750 * untangle workloads from different sides of the system. This requires 2751 * searching down the hierarchy of node groups, recursively searching 2752 * inside the highest scoring group of nodes. The nodemask tricks 2753 * keep the complexity of the search down. 2754 */ 2755 nodes = node_states[N_CPU]; 2756 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2757 unsigned long max_faults = 0; 2758 nodemask_t max_group = NODE_MASK_NONE; 2759 int a, b; 2760 2761 /* Are there nodes at this distance from each other? */ 2762 if (!find_numa_distance(dist)) 2763 continue; 2764 2765 for_each_node_mask(a, nodes) { 2766 unsigned long faults = 0; 2767 nodemask_t this_group; 2768 nodes_clear(this_group); 2769 2770 /* Sum group's NUMA faults; includes a==b case. */ 2771 for_each_node_mask(b, nodes) { 2772 if (node_distance(a, b) < dist) { 2773 faults += group_faults(p, b); 2774 node_set(b, this_group); 2775 node_clear(b, nodes); 2776 } 2777 } 2778 2779 /* Remember the top group. */ 2780 if (faults > max_faults) { 2781 max_faults = faults; 2782 max_group = this_group; 2783 /* 2784 * subtle: at the smallest distance there is 2785 * just one node left in each "group", the 2786 * winner is the preferred nid. 2787 */ 2788 nid = a; 2789 } 2790 } 2791 /* Next round, evaluate the nodes within max_group. */ 2792 if (!max_faults) 2793 break; 2794 nodes = max_group; 2795 } 2796 return nid; 2797 } 2798 2799 static void task_numa_placement(struct task_struct *p) 2800 { 2801 int seq, nid, max_nid = NUMA_NO_NODE; 2802 unsigned long max_faults = 0; 2803 unsigned long fault_types[2] = { 0, 0 }; 2804 unsigned long total_faults; 2805 u64 runtime, period; 2806 spinlock_t *group_lock = NULL; 2807 struct numa_group *ng; 2808 2809 /* 2810 * The p->mm->numa_scan_seq field gets updated without 2811 * exclusive access. Use READ_ONCE() here to ensure 2812 * that the field is read in a single access: 2813 */ 2814 seq = READ_ONCE(p->mm->numa_scan_seq); 2815 if (p->numa_scan_seq == seq) 2816 return; 2817 p->numa_scan_seq = seq; 2818 p->numa_scan_period_max = task_scan_max(p); 2819 2820 total_faults = p->numa_faults_locality[0] + 2821 p->numa_faults_locality[1]; 2822 runtime = numa_get_avg_runtime(p, &period); 2823 2824 /* If the task is part of a group prevent parallel updates to group stats */ 2825 ng = deref_curr_numa_group(p); 2826 if (ng) { 2827 group_lock = &ng->lock; 2828 spin_lock_irq(group_lock); 2829 } 2830 2831 /* Find the node with the highest number of faults */ 2832 for_each_online_node(nid) { 2833 /* Keep track of the offsets in numa_faults array */ 2834 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2835 unsigned long faults = 0, group_faults = 0; 2836 int priv; 2837 2838 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2839 long diff, f_diff, f_weight; 2840 2841 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2842 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2843 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2844 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2845 2846 /* Decay existing window, copy faults since last scan */ 2847 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2848 fault_types[priv] += p->numa_faults[membuf_idx]; 2849 p->numa_faults[membuf_idx] = 0; 2850 2851 /* 2852 * Normalize the faults_from, so all tasks in a group 2853 * count according to CPU use, instead of by the raw 2854 * number of faults. Tasks with little runtime have 2855 * little over-all impact on throughput, and thus their 2856 * faults are less important. 2857 */ 2858 f_weight = div64_u64(runtime << 16, period + 1); 2859 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2860 (total_faults + 1); 2861 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2862 p->numa_faults[cpubuf_idx] = 0; 2863 2864 p->numa_faults[mem_idx] += diff; 2865 p->numa_faults[cpu_idx] += f_diff; 2866 faults += p->numa_faults[mem_idx]; 2867 p->total_numa_faults += diff; 2868 if (ng) { 2869 /* 2870 * safe because we can only change our own group 2871 * 2872 * mem_idx represents the offset for a given 2873 * nid and priv in a specific region because it 2874 * is at the beginning of the numa_faults array. 2875 */ 2876 ng->faults[mem_idx] += diff; 2877 ng->faults[cpu_idx] += f_diff; 2878 ng->total_faults += diff; 2879 group_faults += ng->faults[mem_idx]; 2880 } 2881 } 2882 2883 if (!ng) { 2884 if (faults > max_faults) { 2885 max_faults = faults; 2886 max_nid = nid; 2887 } 2888 } else if (group_faults > max_faults) { 2889 max_faults = group_faults; 2890 max_nid = nid; 2891 } 2892 } 2893 2894 /* Cannot migrate task to CPU-less node */ 2895 max_nid = numa_nearest_node(max_nid, N_CPU); 2896 2897 if (ng) { 2898 numa_group_count_active_nodes(ng); 2899 spin_unlock_irq(group_lock); 2900 max_nid = preferred_group_nid(p, max_nid); 2901 } 2902 2903 if (max_faults) { 2904 /* Set the new preferred node */ 2905 if (max_nid != p->numa_preferred_nid) 2906 sched_setnuma(p, max_nid); 2907 } 2908 2909 update_task_scan_period(p, fault_types[0], fault_types[1]); 2910 } 2911 2912 static inline int get_numa_group(struct numa_group *grp) 2913 { 2914 return refcount_inc_not_zero(&grp->refcount); 2915 } 2916 2917 static inline void put_numa_group(struct numa_group *grp) 2918 { 2919 if (refcount_dec_and_test(&grp->refcount)) 2920 kfree_rcu(grp, rcu); 2921 } 2922 2923 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2924 int *priv) 2925 { 2926 struct numa_group *grp, *my_grp; 2927 struct task_struct *tsk; 2928 bool join = false; 2929 int cpu = cpupid_to_cpu(cpupid); 2930 int i; 2931 2932 if (unlikely(!deref_curr_numa_group(p))) { 2933 unsigned int size = sizeof(struct numa_group) + 2934 NR_NUMA_HINT_FAULT_STATS * 2935 nr_node_ids * sizeof(unsigned long); 2936 2937 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2938 if (!grp) 2939 return; 2940 2941 refcount_set(&grp->refcount, 1); 2942 grp->active_nodes = 1; 2943 grp->max_faults_cpu = 0; 2944 spin_lock_init(&grp->lock); 2945 grp->gid = p->pid; 2946 2947 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2948 grp->faults[i] = p->numa_faults[i]; 2949 2950 grp->total_faults = p->total_numa_faults; 2951 2952 grp->nr_tasks++; 2953 rcu_assign_pointer(p->numa_group, grp); 2954 } 2955 2956 rcu_read_lock(); 2957 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2958 2959 if (!cpupid_match_pid(tsk, cpupid)) 2960 goto no_join; 2961 2962 grp = rcu_dereference(tsk->numa_group); 2963 if (!grp) 2964 goto no_join; 2965 2966 my_grp = deref_curr_numa_group(p); 2967 if (grp == my_grp) 2968 goto no_join; 2969 2970 /* 2971 * Only join the other group if its bigger; if we're the bigger group, 2972 * the other task will join us. 2973 */ 2974 if (my_grp->nr_tasks > grp->nr_tasks) 2975 goto no_join; 2976 2977 /* 2978 * Tie-break on the grp address. 2979 */ 2980 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2981 goto no_join; 2982 2983 /* Always join threads in the same process. */ 2984 if (tsk->mm == current->mm) 2985 join = true; 2986 2987 /* Simple filter to avoid false positives due to PID collisions */ 2988 if (flags & TNF_SHARED) 2989 join = true; 2990 2991 /* Update priv based on whether false sharing was detected */ 2992 *priv = !join; 2993 2994 if (join && !get_numa_group(grp)) 2995 goto no_join; 2996 2997 rcu_read_unlock(); 2998 2999 if (!join) 3000 return; 3001 3002 WARN_ON_ONCE(irqs_disabled()); 3003 double_lock_irq(&my_grp->lock, &grp->lock); 3004 3005 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3006 my_grp->faults[i] -= p->numa_faults[i]; 3007 grp->faults[i] += p->numa_faults[i]; 3008 } 3009 my_grp->total_faults -= p->total_numa_faults; 3010 grp->total_faults += p->total_numa_faults; 3011 3012 my_grp->nr_tasks--; 3013 grp->nr_tasks++; 3014 3015 spin_unlock(&my_grp->lock); 3016 spin_unlock_irq(&grp->lock); 3017 3018 rcu_assign_pointer(p->numa_group, grp); 3019 3020 put_numa_group(my_grp); 3021 return; 3022 3023 no_join: 3024 rcu_read_unlock(); 3025 return; 3026 } 3027 3028 /* 3029 * Get rid of NUMA statistics associated with a task (either current or dead). 3030 * If @final is set, the task is dead and has reached refcount zero, so we can 3031 * safely free all relevant data structures. Otherwise, there might be 3032 * concurrent reads from places like load balancing and procfs, and we should 3033 * reset the data back to default state without freeing ->numa_faults. 3034 */ 3035 void task_numa_free(struct task_struct *p, bool final) 3036 { 3037 /* safe: p either is current or is being freed by current */ 3038 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3039 unsigned long *numa_faults = p->numa_faults; 3040 unsigned long flags; 3041 int i; 3042 3043 if (!numa_faults) 3044 return; 3045 3046 if (grp) { 3047 spin_lock_irqsave(&grp->lock, flags); 3048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3049 grp->faults[i] -= p->numa_faults[i]; 3050 grp->total_faults -= p->total_numa_faults; 3051 3052 grp->nr_tasks--; 3053 spin_unlock_irqrestore(&grp->lock, flags); 3054 RCU_INIT_POINTER(p->numa_group, NULL); 3055 put_numa_group(grp); 3056 } 3057 3058 if (final) { 3059 p->numa_faults = NULL; 3060 kfree(numa_faults); 3061 } else { 3062 p->total_numa_faults = 0; 3063 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3064 numa_faults[i] = 0; 3065 } 3066 } 3067 3068 /* 3069 * Got a PROT_NONE fault for a page on @node. 3070 */ 3071 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3072 { 3073 struct task_struct *p = current; 3074 bool migrated = flags & TNF_MIGRATED; 3075 int cpu_node = task_node(current); 3076 int local = !!(flags & TNF_FAULT_LOCAL); 3077 struct numa_group *ng; 3078 int priv; 3079 3080 if (!static_branch_likely(&sched_numa_balancing)) 3081 return; 3082 3083 /* for example, ksmd faulting in a user's mm */ 3084 if (!p->mm) 3085 return; 3086 3087 /* 3088 * NUMA faults statistics are unnecessary for the slow memory 3089 * node for memory tiering mode. 3090 */ 3091 if (!node_is_toptier(mem_node) && 3092 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3093 !cpupid_valid(last_cpupid))) 3094 return; 3095 3096 /* Allocate buffer to track faults on a per-node basis */ 3097 if (unlikely(!p->numa_faults)) { 3098 int size = sizeof(*p->numa_faults) * 3099 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3100 3101 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3102 if (!p->numa_faults) 3103 return; 3104 3105 p->total_numa_faults = 0; 3106 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3107 } 3108 3109 /* 3110 * First accesses are treated as private, otherwise consider accesses 3111 * to be private if the accessing pid has not changed 3112 */ 3113 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3114 priv = 1; 3115 } else { 3116 priv = cpupid_match_pid(p, last_cpupid); 3117 if (!priv && !(flags & TNF_NO_GROUP)) 3118 task_numa_group(p, last_cpupid, flags, &priv); 3119 } 3120 3121 /* 3122 * If a workload spans multiple NUMA nodes, a shared fault that 3123 * occurs wholly within the set of nodes that the workload is 3124 * actively using should be counted as local. This allows the 3125 * scan rate to slow down when a workload has settled down. 3126 */ 3127 ng = deref_curr_numa_group(p); 3128 if (!priv && !local && ng && ng->active_nodes > 1 && 3129 numa_is_active_node(cpu_node, ng) && 3130 numa_is_active_node(mem_node, ng)) 3131 local = 1; 3132 3133 /* 3134 * Retry to migrate task to preferred node periodically, in case it 3135 * previously failed, or the scheduler moved us. 3136 */ 3137 if (time_after(jiffies, p->numa_migrate_retry)) { 3138 task_numa_placement(p); 3139 numa_migrate_preferred(p); 3140 } 3141 3142 if (migrated) 3143 p->numa_pages_migrated += pages; 3144 if (flags & TNF_MIGRATE_FAIL) 3145 p->numa_faults_locality[2] += pages; 3146 3147 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3148 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3149 p->numa_faults_locality[local] += pages; 3150 } 3151 3152 static void reset_ptenuma_scan(struct task_struct *p) 3153 { 3154 /* 3155 * We only did a read acquisition of the mmap sem, so 3156 * p->mm->numa_scan_seq is written to without exclusive access 3157 * and the update is not guaranteed to be atomic. That's not 3158 * much of an issue though, since this is just used for 3159 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3160 * expensive, to avoid any form of compiler optimizations: 3161 */ 3162 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3163 p->mm->numa_scan_offset = 0; 3164 } 3165 3166 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3167 { 3168 unsigned long pids; 3169 /* 3170 * Allow unconditional access first two times, so that all the (pages) 3171 * of VMAs get prot_none fault introduced irrespective of accesses. 3172 * This is also done to avoid any side effect of task scanning 3173 * amplifying the unfairness of disjoint set of VMAs' access. 3174 */ 3175 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3176 return true; 3177 3178 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3179 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3180 return true; 3181 3182 /* 3183 * Complete a scan that has already started regardless of PID access, or 3184 * some VMAs may never be scanned in multi-threaded applications: 3185 */ 3186 if (mm->numa_scan_offset > vma->vm_start) { 3187 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3188 return true; 3189 } 3190 3191 return false; 3192 } 3193 3194 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3195 3196 /* 3197 * The expensive part of numa migration is done from task_work context. 3198 * Triggered from task_tick_numa(). 3199 */ 3200 static void task_numa_work(struct callback_head *work) 3201 { 3202 unsigned long migrate, next_scan, now = jiffies; 3203 struct task_struct *p = current; 3204 struct mm_struct *mm = p->mm; 3205 u64 runtime = p->se.sum_exec_runtime; 3206 struct vm_area_struct *vma; 3207 unsigned long start, end; 3208 unsigned long nr_pte_updates = 0; 3209 long pages, virtpages; 3210 struct vma_iterator vmi; 3211 bool vma_pids_skipped; 3212 bool vma_pids_forced = false; 3213 3214 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3215 3216 work->next = work; 3217 /* 3218 * Who cares about NUMA placement when they're dying. 3219 * 3220 * NOTE: make sure not to dereference p->mm before this check, 3221 * exit_task_work() happens _after_ exit_mm() so we could be called 3222 * without p->mm even though we still had it when we enqueued this 3223 * work. 3224 */ 3225 if (p->flags & PF_EXITING) 3226 return; 3227 3228 if (!mm->numa_next_scan) { 3229 mm->numa_next_scan = now + 3230 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3231 } 3232 3233 /* 3234 * Enforce maximal scan/migration frequency.. 3235 */ 3236 migrate = mm->numa_next_scan; 3237 if (time_before(now, migrate)) 3238 return; 3239 3240 if (p->numa_scan_period == 0) { 3241 p->numa_scan_period_max = task_scan_max(p); 3242 p->numa_scan_period = task_scan_start(p); 3243 } 3244 3245 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3246 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3247 return; 3248 3249 /* 3250 * Delay this task enough that another task of this mm will likely win 3251 * the next time around. 3252 */ 3253 p->node_stamp += 2 * TICK_NSEC; 3254 3255 pages = sysctl_numa_balancing_scan_size; 3256 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3257 virtpages = pages * 8; /* Scan up to this much virtual space */ 3258 if (!pages) 3259 return; 3260 3261 3262 if (!mmap_read_trylock(mm)) 3263 return; 3264 3265 /* 3266 * VMAs are skipped if the current PID has not trapped a fault within 3267 * the VMA recently. Allow scanning to be forced if there is no 3268 * suitable VMA remaining. 3269 */ 3270 vma_pids_skipped = false; 3271 3272 retry_pids: 3273 start = mm->numa_scan_offset; 3274 vma_iter_init(&vmi, mm, start); 3275 vma = vma_next(&vmi); 3276 if (!vma) { 3277 reset_ptenuma_scan(p); 3278 start = 0; 3279 vma_iter_set(&vmi, start); 3280 vma = vma_next(&vmi); 3281 } 3282 3283 do { 3284 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3285 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3286 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3287 continue; 3288 } 3289 3290 /* 3291 * Shared library pages mapped by multiple processes are not 3292 * migrated as it is expected they are cache replicated. Avoid 3293 * hinting faults in read-only file-backed mappings or the vDSO 3294 * as migrating the pages will be of marginal benefit. 3295 */ 3296 if (!vma->vm_mm || 3297 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3298 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3299 continue; 3300 } 3301 3302 /* 3303 * Skip inaccessible VMAs to avoid any confusion between 3304 * PROT_NONE and NUMA hinting PTEs 3305 */ 3306 if (!vma_is_accessible(vma)) { 3307 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3308 continue; 3309 } 3310 3311 /* Initialise new per-VMA NUMAB state. */ 3312 if (!vma->numab_state) { 3313 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3314 GFP_KERNEL); 3315 if (!vma->numab_state) 3316 continue; 3317 3318 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3319 3320 vma->numab_state->next_scan = now + 3321 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3322 3323 /* Reset happens after 4 times scan delay of scan start */ 3324 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3325 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3326 3327 /* 3328 * Ensure prev_scan_seq does not match numa_scan_seq, 3329 * to prevent VMAs being skipped prematurely on the 3330 * first scan: 3331 */ 3332 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3333 } 3334 3335 /* 3336 * Scanning the VMAs of short lived tasks add more overhead. So 3337 * delay the scan for new VMAs. 3338 */ 3339 if (mm->numa_scan_seq && time_before(jiffies, 3340 vma->numab_state->next_scan)) { 3341 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3342 continue; 3343 } 3344 3345 /* RESET access PIDs regularly for old VMAs. */ 3346 if (mm->numa_scan_seq && 3347 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3348 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3349 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3350 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3351 vma->numab_state->pids_active[1] = 0; 3352 } 3353 3354 /* Do not rescan VMAs twice within the same sequence. */ 3355 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3356 mm->numa_scan_offset = vma->vm_end; 3357 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3358 continue; 3359 } 3360 3361 /* 3362 * Do not scan the VMA if task has not accessed it, unless no other 3363 * VMA candidate exists. 3364 */ 3365 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3366 vma_pids_skipped = true; 3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3368 continue; 3369 } 3370 3371 do { 3372 start = max(start, vma->vm_start); 3373 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3374 end = min(end, vma->vm_end); 3375 nr_pte_updates = change_prot_numa(vma, start, end); 3376 3377 /* 3378 * Try to scan sysctl_numa_balancing_size worth of 3379 * hpages that have at least one present PTE that 3380 * is not already PTE-numa. If the VMA contains 3381 * areas that are unused or already full of prot_numa 3382 * PTEs, scan up to virtpages, to skip through those 3383 * areas faster. 3384 */ 3385 if (nr_pte_updates) 3386 pages -= (end - start) >> PAGE_SHIFT; 3387 virtpages -= (end - start) >> PAGE_SHIFT; 3388 3389 start = end; 3390 if (pages <= 0 || virtpages <= 0) 3391 goto out; 3392 3393 cond_resched(); 3394 } while (end != vma->vm_end); 3395 3396 /* VMA scan is complete, do not scan until next sequence. */ 3397 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3398 3399 /* 3400 * Only force scan within one VMA at a time, to limit the 3401 * cost of scanning a potentially uninteresting VMA. 3402 */ 3403 if (vma_pids_forced) 3404 break; 3405 } for_each_vma(vmi, vma); 3406 3407 /* 3408 * If no VMAs are remaining and VMAs were skipped due to the PID 3409 * not accessing the VMA previously, then force a scan to ensure 3410 * forward progress: 3411 */ 3412 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3413 vma_pids_forced = true; 3414 goto retry_pids; 3415 } 3416 3417 out: 3418 /* 3419 * It is possible to reach the end of the VMA list but the last few 3420 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3421 * would find the !migratable VMA on the next scan but not reset the 3422 * scanner to the start so check it now. 3423 */ 3424 if (vma) 3425 mm->numa_scan_offset = start; 3426 else 3427 reset_ptenuma_scan(p); 3428 mmap_read_unlock(mm); 3429 3430 /* 3431 * Make sure tasks use at least 32x as much time to run other code 3432 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3433 * Usually update_task_scan_period slows down scanning enough; on an 3434 * overloaded system we need to limit overhead on a per task basis. 3435 */ 3436 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3437 u64 diff = p->se.sum_exec_runtime - runtime; 3438 p->node_stamp += 32 * diff; 3439 } 3440 } 3441 3442 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3443 { 3444 int mm_users = 0; 3445 struct mm_struct *mm = p->mm; 3446 3447 if (mm) { 3448 mm_users = atomic_read(&mm->mm_users); 3449 if (mm_users == 1) { 3450 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3451 mm->numa_scan_seq = 0; 3452 } 3453 } 3454 p->node_stamp = 0; 3455 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3456 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3457 p->numa_migrate_retry = 0; 3458 /* Protect against double add, see task_tick_numa and task_numa_work */ 3459 p->numa_work.next = &p->numa_work; 3460 p->numa_faults = NULL; 3461 p->numa_pages_migrated = 0; 3462 p->total_numa_faults = 0; 3463 RCU_INIT_POINTER(p->numa_group, NULL); 3464 p->last_task_numa_placement = 0; 3465 p->last_sum_exec_runtime = 0; 3466 3467 init_task_work(&p->numa_work, task_numa_work); 3468 3469 /* New address space, reset the preferred nid */ 3470 if (!(clone_flags & CLONE_VM)) { 3471 p->numa_preferred_nid = NUMA_NO_NODE; 3472 return; 3473 } 3474 3475 /* 3476 * New thread, keep existing numa_preferred_nid which should be copied 3477 * already by arch_dup_task_struct but stagger when scans start. 3478 */ 3479 if (mm) { 3480 unsigned int delay; 3481 3482 delay = min_t(unsigned int, task_scan_max(current), 3483 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3484 delay += 2 * TICK_NSEC; 3485 p->node_stamp = delay; 3486 } 3487 } 3488 3489 /* 3490 * Drive the periodic memory faults.. 3491 */ 3492 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3493 { 3494 struct callback_head *work = &curr->numa_work; 3495 u64 period, now; 3496 3497 /* 3498 * We don't care about NUMA placement if we don't have memory. 3499 */ 3500 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3501 return; 3502 3503 /* 3504 * Using runtime rather than walltime has the dual advantage that 3505 * we (mostly) drive the selection from busy threads and that the 3506 * task needs to have done some actual work before we bother with 3507 * NUMA placement. 3508 */ 3509 now = curr->se.sum_exec_runtime; 3510 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3511 3512 if (now > curr->node_stamp + period) { 3513 if (!curr->node_stamp) 3514 curr->numa_scan_period = task_scan_start(curr); 3515 curr->node_stamp += period; 3516 3517 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3518 task_work_add(curr, work, TWA_RESUME); 3519 } 3520 } 3521 3522 static void update_scan_period(struct task_struct *p, int new_cpu) 3523 { 3524 int src_nid = cpu_to_node(task_cpu(p)); 3525 int dst_nid = cpu_to_node(new_cpu); 3526 3527 if (!static_branch_likely(&sched_numa_balancing)) 3528 return; 3529 3530 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3531 return; 3532 3533 if (src_nid == dst_nid) 3534 return; 3535 3536 /* 3537 * Allow resets if faults have been trapped before one scan 3538 * has completed. This is most likely due to a new task that 3539 * is pulled cross-node due to wakeups or load balancing. 3540 */ 3541 if (p->numa_scan_seq) { 3542 /* 3543 * Avoid scan adjustments if moving to the preferred 3544 * node or if the task was not previously running on 3545 * the preferred node. 3546 */ 3547 if (dst_nid == p->numa_preferred_nid || 3548 (p->numa_preferred_nid != NUMA_NO_NODE && 3549 src_nid != p->numa_preferred_nid)) 3550 return; 3551 } 3552 3553 p->numa_scan_period = task_scan_start(p); 3554 } 3555 3556 #else 3557 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3558 { 3559 } 3560 3561 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3562 { 3563 } 3564 3565 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3566 { 3567 } 3568 3569 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3570 { 3571 } 3572 3573 #endif /* CONFIG_NUMA_BALANCING */ 3574 3575 static void 3576 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3577 { 3578 update_load_add(&cfs_rq->load, se->load.weight); 3579 #ifdef CONFIG_SMP 3580 if (entity_is_task(se)) { 3581 struct rq *rq = rq_of(cfs_rq); 3582 3583 account_numa_enqueue(rq, task_of(se)); 3584 list_add(&se->group_node, &rq->cfs_tasks); 3585 } 3586 #endif 3587 cfs_rq->nr_running++; 3588 if (se_is_idle(se)) 3589 cfs_rq->idle_nr_running++; 3590 } 3591 3592 static void 3593 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3594 { 3595 update_load_sub(&cfs_rq->load, se->load.weight); 3596 #ifdef CONFIG_SMP 3597 if (entity_is_task(se)) { 3598 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3599 list_del_init(&se->group_node); 3600 } 3601 #endif 3602 cfs_rq->nr_running--; 3603 if (se_is_idle(se)) 3604 cfs_rq->idle_nr_running--; 3605 } 3606 3607 /* 3608 * Signed add and clamp on underflow. 3609 * 3610 * Explicitly do a load-store to ensure the intermediate value never hits 3611 * memory. This allows lockless observations without ever seeing the negative 3612 * values. 3613 */ 3614 #define add_positive(_ptr, _val) do { \ 3615 typeof(_ptr) ptr = (_ptr); \ 3616 typeof(_val) val = (_val); \ 3617 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3618 \ 3619 res = var + val; \ 3620 \ 3621 if (val < 0 && res > var) \ 3622 res = 0; \ 3623 \ 3624 WRITE_ONCE(*ptr, res); \ 3625 } while (0) 3626 3627 /* 3628 * Unsigned subtract and clamp on underflow. 3629 * 3630 * Explicitly do a load-store to ensure the intermediate value never hits 3631 * memory. This allows lockless observations without ever seeing the negative 3632 * values. 3633 */ 3634 #define sub_positive(_ptr, _val) do { \ 3635 typeof(_ptr) ptr = (_ptr); \ 3636 typeof(*ptr) val = (_val); \ 3637 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3638 res = var - val; \ 3639 if (res > var) \ 3640 res = 0; \ 3641 WRITE_ONCE(*ptr, res); \ 3642 } while (0) 3643 3644 /* 3645 * Remove and clamp on negative, from a local variable. 3646 * 3647 * A variant of sub_positive(), which does not use explicit load-store 3648 * and is thus optimized for local variable updates. 3649 */ 3650 #define lsub_positive(_ptr, _val) do { \ 3651 typeof(_ptr) ptr = (_ptr); \ 3652 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3653 } while (0) 3654 3655 #ifdef CONFIG_SMP 3656 static inline void 3657 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3658 { 3659 cfs_rq->avg.load_avg += se->avg.load_avg; 3660 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3661 } 3662 3663 static inline void 3664 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3665 { 3666 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3667 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3668 /* See update_cfs_rq_load_avg() */ 3669 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3670 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3671 } 3672 #else 3673 static inline void 3674 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3675 static inline void 3676 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3677 #endif 3678 3679 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3680 unsigned long weight) 3681 { 3682 unsigned long old_weight = se->load.weight; 3683 s64 vlag, vslice; 3684 3685 /* 3686 * VRUNTIME 3687 * -------- 3688 * 3689 * COROLLARY #1: The virtual runtime of the entity needs to be 3690 * adjusted if re-weight at !0-lag point. 3691 * 3692 * Proof: For contradiction assume this is not true, so we can 3693 * re-weight without changing vruntime at !0-lag point. 3694 * 3695 * Weight VRuntime Avg-VRuntime 3696 * before w v V 3697 * after w' v' V' 3698 * 3699 * Since lag needs to be preserved through re-weight: 3700 * 3701 * lag = (V - v)*w = (V'- v')*w', where v = v' 3702 * ==> V' = (V - v)*w/w' + v (1) 3703 * 3704 * Let W be the total weight of the entities before reweight, 3705 * since V' is the new weighted average of entities: 3706 * 3707 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3708 * 3709 * by using (1) & (2) we obtain: 3710 * 3711 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3712 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3713 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3714 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3715 * 3716 * Since we are doing at !0-lag point which means V != v, we 3717 * can simplify (3): 3718 * 3719 * ==> W / (W + w' - w) = w / w' 3720 * ==> Ww' = Ww + ww' - ww 3721 * ==> W * (w' - w) = w * (w' - w) 3722 * ==> W = w (re-weight indicates w' != w) 3723 * 3724 * So the cfs_rq contains only one entity, hence vruntime of 3725 * the entity @v should always equal to the cfs_rq's weighted 3726 * average vruntime @V, which means we will always re-weight 3727 * at 0-lag point, thus breach assumption. Proof completed. 3728 * 3729 * 3730 * COROLLARY #2: Re-weight does NOT affect weighted average 3731 * vruntime of all the entities. 3732 * 3733 * Proof: According to corollary #1, Eq. (1) should be: 3734 * 3735 * (V - v)*w = (V' - v')*w' 3736 * ==> v' = V' - (V - v)*w/w' (4) 3737 * 3738 * According to the weighted average formula, we have: 3739 * 3740 * V' = (WV - wv + w'v') / (W - w + w') 3741 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3742 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3743 * = (WV + w'V' - Vw) / (W - w + w') 3744 * 3745 * ==> V'*(W - w + w') = WV + w'V' - Vw 3746 * ==> V' * (W - w) = (W - w) * V (5) 3747 * 3748 * If the entity is the only one in the cfs_rq, then reweight 3749 * always occurs at 0-lag point, so V won't change. Or else 3750 * there are other entities, hence W != w, then Eq. (5) turns 3751 * into V' = V. So V won't change in either case, proof done. 3752 * 3753 * 3754 * So according to corollary #1 & #2, the effect of re-weight 3755 * on vruntime should be: 3756 * 3757 * v' = V' - (V - v) * w / w' (4) 3758 * = V - (V - v) * w / w' 3759 * = V - vl * w / w' 3760 * = V - vl' 3761 */ 3762 if (avruntime != se->vruntime) { 3763 vlag = entity_lag(avruntime, se); 3764 vlag = div_s64(vlag * old_weight, weight); 3765 se->vruntime = avruntime - vlag; 3766 } 3767 3768 /* 3769 * DEADLINE 3770 * -------- 3771 * 3772 * When the weight changes, the virtual time slope changes and 3773 * we should adjust the relative virtual deadline accordingly. 3774 * 3775 * d' = v' + (d - v)*w/w' 3776 * = V' - (V - v)*w/w' + (d - v)*w/w' 3777 * = V - (V - v)*w/w' + (d - v)*w/w' 3778 * = V + (d - V)*w/w' 3779 */ 3780 vslice = (s64)(se->deadline - avruntime); 3781 vslice = div_s64(vslice * old_weight, weight); 3782 se->deadline = avruntime + vslice; 3783 } 3784 3785 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3786 unsigned long weight) 3787 { 3788 bool curr = cfs_rq->curr == se; 3789 u64 avruntime; 3790 3791 if (se->on_rq) { 3792 /* commit outstanding execution time */ 3793 update_curr(cfs_rq); 3794 avruntime = avg_vruntime(cfs_rq); 3795 if (!curr) 3796 __dequeue_entity(cfs_rq, se); 3797 update_load_sub(&cfs_rq->load, se->load.weight); 3798 } 3799 dequeue_load_avg(cfs_rq, se); 3800 3801 if (se->on_rq) { 3802 reweight_eevdf(se, avruntime, weight); 3803 } else { 3804 /* 3805 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3806 * we need to scale se->vlag when w_i changes. 3807 */ 3808 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3809 } 3810 3811 update_load_set(&se->load, weight); 3812 3813 #ifdef CONFIG_SMP 3814 do { 3815 u32 divider = get_pelt_divider(&se->avg); 3816 3817 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3818 } while (0); 3819 #endif 3820 3821 enqueue_load_avg(cfs_rq, se); 3822 if (se->on_rq) { 3823 update_load_add(&cfs_rq->load, se->load.weight); 3824 if (!curr) 3825 __enqueue_entity(cfs_rq, se); 3826 3827 /* 3828 * The entity's vruntime has been adjusted, so let's check 3829 * whether the rq-wide min_vruntime needs updated too. Since 3830 * the calculations above require stable min_vruntime rather 3831 * than up-to-date one, we do the update at the end of the 3832 * reweight process. 3833 */ 3834 update_min_vruntime(cfs_rq); 3835 } 3836 } 3837 3838 void reweight_task(struct task_struct *p, const struct load_weight *lw) 3839 { 3840 struct sched_entity *se = &p->se; 3841 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3842 struct load_weight *load = &se->load; 3843 3844 reweight_entity(cfs_rq, se, lw->weight); 3845 load->inv_weight = lw->inv_weight; 3846 } 3847 3848 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3849 3850 #ifdef CONFIG_FAIR_GROUP_SCHED 3851 #ifdef CONFIG_SMP 3852 /* 3853 * All this does is approximate the hierarchical proportion which includes that 3854 * global sum we all love to hate. 3855 * 3856 * That is, the weight of a group entity, is the proportional share of the 3857 * group weight based on the group runqueue weights. That is: 3858 * 3859 * tg->weight * grq->load.weight 3860 * ge->load.weight = ----------------------------- (1) 3861 * \Sum grq->load.weight 3862 * 3863 * Now, because computing that sum is prohibitively expensive to compute (been 3864 * there, done that) we approximate it with this average stuff. The average 3865 * moves slower and therefore the approximation is cheaper and more stable. 3866 * 3867 * So instead of the above, we substitute: 3868 * 3869 * grq->load.weight -> grq->avg.load_avg (2) 3870 * 3871 * which yields the following: 3872 * 3873 * tg->weight * grq->avg.load_avg 3874 * ge->load.weight = ------------------------------ (3) 3875 * tg->load_avg 3876 * 3877 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3878 * 3879 * That is shares_avg, and it is right (given the approximation (2)). 3880 * 3881 * The problem with it is that because the average is slow -- it was designed 3882 * to be exactly that of course -- this leads to transients in boundary 3883 * conditions. In specific, the case where the group was idle and we start the 3884 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3885 * yielding bad latency etc.. 3886 * 3887 * Now, in that special case (1) reduces to: 3888 * 3889 * tg->weight * grq->load.weight 3890 * ge->load.weight = ----------------------------- = tg->weight (4) 3891 * grp->load.weight 3892 * 3893 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3894 * 3895 * So what we do is modify our approximation (3) to approach (4) in the (near) 3896 * UP case, like: 3897 * 3898 * ge->load.weight = 3899 * 3900 * tg->weight * grq->load.weight 3901 * --------------------------------------------------- (5) 3902 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3903 * 3904 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3905 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3906 * 3907 * 3908 * tg->weight * grq->load.weight 3909 * ge->load.weight = ----------------------------- (6) 3910 * tg_load_avg' 3911 * 3912 * Where: 3913 * 3914 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3915 * max(grq->load.weight, grq->avg.load_avg) 3916 * 3917 * And that is shares_weight and is icky. In the (near) UP case it approaches 3918 * (4) while in the normal case it approaches (3). It consistently 3919 * overestimates the ge->load.weight and therefore: 3920 * 3921 * \Sum ge->load.weight >= tg->weight 3922 * 3923 * hence icky! 3924 */ 3925 static long calc_group_shares(struct cfs_rq *cfs_rq) 3926 { 3927 long tg_weight, tg_shares, load, shares; 3928 struct task_group *tg = cfs_rq->tg; 3929 3930 tg_shares = READ_ONCE(tg->shares); 3931 3932 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3933 3934 tg_weight = atomic_long_read(&tg->load_avg); 3935 3936 /* Ensure tg_weight >= load */ 3937 tg_weight -= cfs_rq->tg_load_avg_contrib; 3938 tg_weight += load; 3939 3940 shares = (tg_shares * load); 3941 if (tg_weight) 3942 shares /= tg_weight; 3943 3944 /* 3945 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3946 * of a group with small tg->shares value. It is a floor value which is 3947 * assigned as a minimum load.weight to the sched_entity representing 3948 * the group on a CPU. 3949 * 3950 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3951 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3952 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3953 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3954 * instead of 0. 3955 */ 3956 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3957 } 3958 #endif /* CONFIG_SMP */ 3959 3960 /* 3961 * Recomputes the group entity based on the current state of its group 3962 * runqueue. 3963 */ 3964 static void update_cfs_group(struct sched_entity *se) 3965 { 3966 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3967 long shares; 3968 3969 if (!gcfs_rq) 3970 return; 3971 3972 if (throttled_hierarchy(gcfs_rq)) 3973 return; 3974 3975 #ifndef CONFIG_SMP 3976 shares = READ_ONCE(gcfs_rq->tg->shares); 3977 #else 3978 shares = calc_group_shares(gcfs_rq); 3979 #endif 3980 if (unlikely(se->load.weight != shares)) 3981 reweight_entity(cfs_rq_of(se), se, shares); 3982 } 3983 3984 #else /* CONFIG_FAIR_GROUP_SCHED */ 3985 static inline void update_cfs_group(struct sched_entity *se) 3986 { 3987 } 3988 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3989 3990 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3991 { 3992 struct rq *rq = rq_of(cfs_rq); 3993 3994 if (&rq->cfs == cfs_rq) { 3995 /* 3996 * There are a few boundary cases this might miss but it should 3997 * get called often enough that that should (hopefully) not be 3998 * a real problem. 3999 * 4000 * It will not get called when we go idle, because the idle 4001 * thread is a different class (!fair), nor will the utilization 4002 * number include things like RT tasks. 4003 * 4004 * As is, the util number is not freq-invariant (we'd have to 4005 * implement arch_scale_freq_capacity() for that). 4006 * 4007 * See cpu_util_cfs(). 4008 */ 4009 cpufreq_update_util(rq, flags); 4010 } 4011 } 4012 4013 #ifdef CONFIG_SMP 4014 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4015 { 4016 if (sa->load_sum) 4017 return false; 4018 4019 if (sa->util_sum) 4020 return false; 4021 4022 if (sa->runnable_sum) 4023 return false; 4024 4025 /* 4026 * _avg must be null when _sum are null because _avg = _sum / divider 4027 * Make sure that rounding and/or propagation of PELT values never 4028 * break this. 4029 */ 4030 SCHED_WARN_ON(sa->load_avg || 4031 sa->util_avg || 4032 sa->runnable_avg); 4033 4034 return true; 4035 } 4036 4037 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4038 { 4039 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4040 cfs_rq->last_update_time_copy); 4041 } 4042 #ifdef CONFIG_FAIR_GROUP_SCHED 4043 /* 4044 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4045 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4046 * bottom-up, we only have to test whether the cfs_rq before us on the list 4047 * is our child. 4048 * If cfs_rq is not on the list, test whether a child needs its to be added to 4049 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4050 */ 4051 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4052 { 4053 struct cfs_rq *prev_cfs_rq; 4054 struct list_head *prev; 4055 4056 if (cfs_rq->on_list) { 4057 prev = cfs_rq->leaf_cfs_rq_list.prev; 4058 } else { 4059 struct rq *rq = rq_of(cfs_rq); 4060 4061 prev = rq->tmp_alone_branch; 4062 } 4063 4064 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4065 4066 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4067 } 4068 4069 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4070 { 4071 if (cfs_rq->load.weight) 4072 return false; 4073 4074 if (!load_avg_is_decayed(&cfs_rq->avg)) 4075 return false; 4076 4077 if (child_cfs_rq_on_list(cfs_rq)) 4078 return false; 4079 4080 return true; 4081 } 4082 4083 /** 4084 * update_tg_load_avg - update the tg's load avg 4085 * @cfs_rq: the cfs_rq whose avg changed 4086 * 4087 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4088 * However, because tg->load_avg is a global value there are performance 4089 * considerations. 4090 * 4091 * In order to avoid having to look at the other cfs_rq's, we use a 4092 * differential update where we store the last value we propagated. This in 4093 * turn allows skipping updates if the differential is 'small'. 4094 * 4095 * Updating tg's load_avg is necessary before update_cfs_share(). 4096 */ 4097 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4098 { 4099 long delta; 4100 u64 now; 4101 4102 /* 4103 * No need to update load_avg for root_task_group as it is not used. 4104 */ 4105 if (cfs_rq->tg == &root_task_group) 4106 return; 4107 4108 /* rq has been offline and doesn't contribute to the share anymore: */ 4109 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4110 return; 4111 4112 /* 4113 * For migration heavy workloads, access to tg->load_avg can be 4114 * unbound. Limit the update rate to at most once per ms. 4115 */ 4116 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4117 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4118 return; 4119 4120 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4121 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4122 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4123 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4124 cfs_rq->last_update_tg_load_avg = now; 4125 } 4126 } 4127 4128 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4129 { 4130 long delta; 4131 u64 now; 4132 4133 /* 4134 * No need to update load_avg for root_task_group, as it is not used. 4135 */ 4136 if (cfs_rq->tg == &root_task_group) 4137 return; 4138 4139 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4140 delta = 0 - cfs_rq->tg_load_avg_contrib; 4141 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4142 cfs_rq->tg_load_avg_contrib = 0; 4143 cfs_rq->last_update_tg_load_avg = now; 4144 } 4145 4146 /* CPU offline callback: */ 4147 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4148 { 4149 struct task_group *tg; 4150 4151 lockdep_assert_rq_held(rq); 4152 4153 /* 4154 * The rq clock has already been updated in 4155 * set_rq_offline(), so we should skip updating 4156 * the rq clock again in unthrottle_cfs_rq(). 4157 */ 4158 rq_clock_start_loop_update(rq); 4159 4160 rcu_read_lock(); 4161 list_for_each_entry_rcu(tg, &task_groups, list) { 4162 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4163 4164 clear_tg_load_avg(cfs_rq); 4165 } 4166 rcu_read_unlock(); 4167 4168 rq_clock_stop_loop_update(rq); 4169 } 4170 4171 /* 4172 * Called within set_task_rq() right before setting a task's CPU. The 4173 * caller only guarantees p->pi_lock is held; no other assumptions, 4174 * including the state of rq->lock, should be made. 4175 */ 4176 void set_task_rq_fair(struct sched_entity *se, 4177 struct cfs_rq *prev, struct cfs_rq *next) 4178 { 4179 u64 p_last_update_time; 4180 u64 n_last_update_time; 4181 4182 if (!sched_feat(ATTACH_AGE_LOAD)) 4183 return; 4184 4185 /* 4186 * We are supposed to update the task to "current" time, then its up to 4187 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4188 * getting what current time is, so simply throw away the out-of-date 4189 * time. This will result in the wakee task is less decayed, but giving 4190 * the wakee more load sounds not bad. 4191 */ 4192 if (!(se->avg.last_update_time && prev)) 4193 return; 4194 4195 p_last_update_time = cfs_rq_last_update_time(prev); 4196 n_last_update_time = cfs_rq_last_update_time(next); 4197 4198 __update_load_avg_blocked_se(p_last_update_time, se); 4199 se->avg.last_update_time = n_last_update_time; 4200 } 4201 4202 /* 4203 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4204 * propagate its contribution. The key to this propagation is the invariant 4205 * that for each group: 4206 * 4207 * ge->avg == grq->avg (1) 4208 * 4209 * _IFF_ we look at the pure running and runnable sums. Because they 4210 * represent the very same entity, just at different points in the hierarchy. 4211 * 4212 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4213 * and simply copies the running/runnable sum over (but still wrong, because 4214 * the group entity and group rq do not have their PELT windows aligned). 4215 * 4216 * However, update_tg_cfs_load() is more complex. So we have: 4217 * 4218 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4219 * 4220 * And since, like util, the runnable part should be directly transferable, 4221 * the following would _appear_ to be the straight forward approach: 4222 * 4223 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4224 * 4225 * And per (1) we have: 4226 * 4227 * ge->avg.runnable_avg == grq->avg.runnable_avg 4228 * 4229 * Which gives: 4230 * 4231 * ge->load.weight * grq->avg.load_avg 4232 * ge->avg.load_avg = ----------------------------------- (4) 4233 * grq->load.weight 4234 * 4235 * Except that is wrong! 4236 * 4237 * Because while for entities historical weight is not important and we 4238 * really only care about our future and therefore can consider a pure 4239 * runnable sum, runqueues can NOT do this. 4240 * 4241 * We specifically want runqueues to have a load_avg that includes 4242 * historical weights. Those represent the blocked load, the load we expect 4243 * to (shortly) return to us. This only works by keeping the weights as 4244 * integral part of the sum. We therefore cannot decompose as per (3). 4245 * 4246 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4247 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4248 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4249 * runnable section of these tasks overlap (or not). If they were to perfectly 4250 * align the rq as a whole would be runnable 2/3 of the time. If however we 4251 * always have at least 1 runnable task, the rq as a whole is always runnable. 4252 * 4253 * So we'll have to approximate.. :/ 4254 * 4255 * Given the constraint: 4256 * 4257 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4258 * 4259 * We can construct a rule that adds runnable to a rq by assuming minimal 4260 * overlap. 4261 * 4262 * On removal, we'll assume each task is equally runnable; which yields: 4263 * 4264 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4265 * 4266 * XXX: only do this for the part of runnable > running ? 4267 * 4268 */ 4269 static inline void 4270 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4271 { 4272 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4273 u32 new_sum, divider; 4274 4275 /* Nothing to update */ 4276 if (!delta_avg) 4277 return; 4278 4279 /* 4280 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4281 * See ___update_load_avg() for details. 4282 */ 4283 divider = get_pelt_divider(&cfs_rq->avg); 4284 4285 4286 /* Set new sched_entity's utilization */ 4287 se->avg.util_avg = gcfs_rq->avg.util_avg; 4288 new_sum = se->avg.util_avg * divider; 4289 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4290 se->avg.util_sum = new_sum; 4291 4292 /* Update parent cfs_rq utilization */ 4293 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4294 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4295 4296 /* See update_cfs_rq_load_avg() */ 4297 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4298 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4299 } 4300 4301 static inline void 4302 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4303 { 4304 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4305 u32 new_sum, divider; 4306 4307 /* Nothing to update */ 4308 if (!delta_avg) 4309 return; 4310 4311 /* 4312 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4313 * See ___update_load_avg() for details. 4314 */ 4315 divider = get_pelt_divider(&cfs_rq->avg); 4316 4317 /* Set new sched_entity's runnable */ 4318 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4319 new_sum = se->avg.runnable_avg * divider; 4320 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4321 se->avg.runnable_sum = new_sum; 4322 4323 /* Update parent cfs_rq runnable */ 4324 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4325 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4326 /* See update_cfs_rq_load_avg() */ 4327 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4328 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4329 } 4330 4331 static inline void 4332 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4333 { 4334 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4335 unsigned long load_avg; 4336 u64 load_sum = 0; 4337 s64 delta_sum; 4338 u32 divider; 4339 4340 if (!runnable_sum) 4341 return; 4342 4343 gcfs_rq->prop_runnable_sum = 0; 4344 4345 /* 4346 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4347 * See ___update_load_avg() for details. 4348 */ 4349 divider = get_pelt_divider(&cfs_rq->avg); 4350 4351 if (runnable_sum >= 0) { 4352 /* 4353 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4354 * the CPU is saturated running == runnable. 4355 */ 4356 runnable_sum += se->avg.load_sum; 4357 runnable_sum = min_t(long, runnable_sum, divider); 4358 } else { 4359 /* 4360 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4361 * assuming all tasks are equally runnable. 4362 */ 4363 if (scale_load_down(gcfs_rq->load.weight)) { 4364 load_sum = div_u64(gcfs_rq->avg.load_sum, 4365 scale_load_down(gcfs_rq->load.weight)); 4366 } 4367 4368 /* But make sure to not inflate se's runnable */ 4369 runnable_sum = min(se->avg.load_sum, load_sum); 4370 } 4371 4372 /* 4373 * runnable_sum can't be lower than running_sum 4374 * Rescale running sum to be in the same range as runnable sum 4375 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4376 * runnable_sum is in [0 : LOAD_AVG_MAX] 4377 */ 4378 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4379 runnable_sum = max(runnable_sum, running_sum); 4380 4381 load_sum = se_weight(se) * runnable_sum; 4382 load_avg = div_u64(load_sum, divider); 4383 4384 delta_avg = load_avg - se->avg.load_avg; 4385 if (!delta_avg) 4386 return; 4387 4388 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4389 4390 se->avg.load_sum = runnable_sum; 4391 se->avg.load_avg = load_avg; 4392 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4393 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4394 /* See update_cfs_rq_load_avg() */ 4395 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4396 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4397 } 4398 4399 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4400 { 4401 cfs_rq->propagate = 1; 4402 cfs_rq->prop_runnable_sum += runnable_sum; 4403 } 4404 4405 /* Update task and its cfs_rq load average */ 4406 static inline int propagate_entity_load_avg(struct sched_entity *se) 4407 { 4408 struct cfs_rq *cfs_rq, *gcfs_rq; 4409 4410 if (entity_is_task(se)) 4411 return 0; 4412 4413 gcfs_rq = group_cfs_rq(se); 4414 if (!gcfs_rq->propagate) 4415 return 0; 4416 4417 gcfs_rq->propagate = 0; 4418 4419 cfs_rq = cfs_rq_of(se); 4420 4421 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4422 4423 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4424 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4425 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4426 4427 trace_pelt_cfs_tp(cfs_rq); 4428 trace_pelt_se_tp(se); 4429 4430 return 1; 4431 } 4432 4433 /* 4434 * Check if we need to update the load and the utilization of a blocked 4435 * group_entity: 4436 */ 4437 static inline bool skip_blocked_update(struct sched_entity *se) 4438 { 4439 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4440 4441 /* 4442 * If sched_entity still have not zero load or utilization, we have to 4443 * decay it: 4444 */ 4445 if (se->avg.load_avg || se->avg.util_avg) 4446 return false; 4447 4448 /* 4449 * If there is a pending propagation, we have to update the load and 4450 * the utilization of the sched_entity: 4451 */ 4452 if (gcfs_rq->propagate) 4453 return false; 4454 4455 /* 4456 * Otherwise, the load and the utilization of the sched_entity is 4457 * already zero and there is no pending propagation, so it will be a 4458 * waste of time to try to decay it: 4459 */ 4460 return true; 4461 } 4462 4463 #else /* CONFIG_FAIR_GROUP_SCHED */ 4464 4465 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4466 4467 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4468 4469 static inline int propagate_entity_load_avg(struct sched_entity *se) 4470 { 4471 return 0; 4472 } 4473 4474 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4475 4476 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4477 4478 #ifdef CONFIG_NO_HZ_COMMON 4479 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4480 { 4481 u64 throttled = 0, now, lut; 4482 struct cfs_rq *cfs_rq; 4483 struct rq *rq; 4484 bool is_idle; 4485 4486 if (load_avg_is_decayed(&se->avg)) 4487 return; 4488 4489 cfs_rq = cfs_rq_of(se); 4490 rq = rq_of(cfs_rq); 4491 4492 rcu_read_lock(); 4493 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4494 rcu_read_unlock(); 4495 4496 /* 4497 * The lag estimation comes with a cost we don't want to pay all the 4498 * time. Hence, limiting to the case where the source CPU is idle and 4499 * we know we are at the greatest risk to have an outdated clock. 4500 */ 4501 if (!is_idle) 4502 return; 4503 4504 /* 4505 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4506 * 4507 * last_update_time (the cfs_rq's last_update_time) 4508 * = cfs_rq_clock_pelt()@cfs_rq_idle 4509 * = rq_clock_pelt()@cfs_rq_idle 4510 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4511 * 4512 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4513 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4514 * 4515 * rq_idle_lag (delta between now and rq's update) 4516 * = sched_clock_cpu() - rq_clock()@rq_idle 4517 * 4518 * We can then write: 4519 * 4520 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4521 * sched_clock_cpu() - rq_clock()@rq_idle 4522 * Where: 4523 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4524 * rq_clock()@rq_idle is rq->clock_idle 4525 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4526 * is cfs_rq->throttled_pelt_idle 4527 */ 4528 4529 #ifdef CONFIG_CFS_BANDWIDTH 4530 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4531 /* The clock has been stopped for throttling */ 4532 if (throttled == U64_MAX) 4533 return; 4534 #endif 4535 now = u64_u32_load(rq->clock_pelt_idle); 4536 /* 4537 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4538 * is observed the old clock_pelt_idle value and the new clock_idle, 4539 * which lead to an underestimation. The opposite would lead to an 4540 * overestimation. 4541 */ 4542 smp_rmb(); 4543 lut = cfs_rq_last_update_time(cfs_rq); 4544 4545 now -= throttled; 4546 if (now < lut) 4547 /* 4548 * cfs_rq->avg.last_update_time is more recent than our 4549 * estimation, let's use it. 4550 */ 4551 now = lut; 4552 else 4553 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4554 4555 __update_load_avg_blocked_se(now, se); 4556 } 4557 #else 4558 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4559 #endif 4560 4561 /** 4562 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4563 * @now: current time, as per cfs_rq_clock_pelt() 4564 * @cfs_rq: cfs_rq to update 4565 * 4566 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4567 * avg. The immediate corollary is that all (fair) tasks must be attached. 4568 * 4569 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4570 * 4571 * Return: true if the load decayed or we removed load. 4572 * 4573 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4574 * call update_tg_load_avg() when this function returns true. 4575 */ 4576 static inline int 4577 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4578 { 4579 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4580 struct sched_avg *sa = &cfs_rq->avg; 4581 int decayed = 0; 4582 4583 if (cfs_rq->removed.nr) { 4584 unsigned long r; 4585 u32 divider = get_pelt_divider(&cfs_rq->avg); 4586 4587 raw_spin_lock(&cfs_rq->removed.lock); 4588 swap(cfs_rq->removed.util_avg, removed_util); 4589 swap(cfs_rq->removed.load_avg, removed_load); 4590 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4591 cfs_rq->removed.nr = 0; 4592 raw_spin_unlock(&cfs_rq->removed.lock); 4593 4594 r = removed_load; 4595 sub_positive(&sa->load_avg, r); 4596 sub_positive(&sa->load_sum, r * divider); 4597 /* See sa->util_sum below */ 4598 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4599 4600 r = removed_util; 4601 sub_positive(&sa->util_avg, r); 4602 sub_positive(&sa->util_sum, r * divider); 4603 /* 4604 * Because of rounding, se->util_sum might ends up being +1 more than 4605 * cfs->util_sum. Although this is not a problem by itself, detaching 4606 * a lot of tasks with the rounding problem between 2 updates of 4607 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4608 * cfs_util_avg is not. 4609 * Check that util_sum is still above its lower bound for the new 4610 * util_avg. Given that period_contrib might have moved since the last 4611 * sync, we are only sure that util_sum must be above or equal to 4612 * util_avg * minimum possible divider 4613 */ 4614 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4615 4616 r = removed_runnable; 4617 sub_positive(&sa->runnable_avg, r); 4618 sub_positive(&sa->runnable_sum, r * divider); 4619 /* See sa->util_sum above */ 4620 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4621 sa->runnable_avg * PELT_MIN_DIVIDER); 4622 4623 /* 4624 * removed_runnable is the unweighted version of removed_load so we 4625 * can use it to estimate removed_load_sum. 4626 */ 4627 add_tg_cfs_propagate(cfs_rq, 4628 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4629 4630 decayed = 1; 4631 } 4632 4633 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4634 u64_u32_store_copy(sa->last_update_time, 4635 cfs_rq->last_update_time_copy, 4636 sa->last_update_time); 4637 return decayed; 4638 } 4639 4640 /** 4641 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4642 * @cfs_rq: cfs_rq to attach to 4643 * @se: sched_entity to attach 4644 * 4645 * Must call update_cfs_rq_load_avg() before this, since we rely on 4646 * cfs_rq->avg.last_update_time being current. 4647 */ 4648 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4649 { 4650 /* 4651 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4652 * See ___update_load_avg() for details. 4653 */ 4654 u32 divider = get_pelt_divider(&cfs_rq->avg); 4655 4656 /* 4657 * When we attach the @se to the @cfs_rq, we must align the decay 4658 * window because without that, really weird and wonderful things can 4659 * happen. 4660 * 4661 * XXX illustrate 4662 */ 4663 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4664 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4665 4666 /* 4667 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4668 * period_contrib. This isn't strictly correct, but since we're 4669 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4670 * _sum a little. 4671 */ 4672 se->avg.util_sum = se->avg.util_avg * divider; 4673 4674 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4675 4676 se->avg.load_sum = se->avg.load_avg * divider; 4677 if (se_weight(se) < se->avg.load_sum) 4678 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4679 else 4680 se->avg.load_sum = 1; 4681 4682 enqueue_load_avg(cfs_rq, se); 4683 cfs_rq->avg.util_avg += se->avg.util_avg; 4684 cfs_rq->avg.util_sum += se->avg.util_sum; 4685 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4686 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4687 4688 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4689 4690 cfs_rq_util_change(cfs_rq, 0); 4691 4692 trace_pelt_cfs_tp(cfs_rq); 4693 } 4694 4695 /** 4696 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4697 * @cfs_rq: cfs_rq to detach from 4698 * @se: sched_entity to detach 4699 * 4700 * Must call update_cfs_rq_load_avg() before this, since we rely on 4701 * cfs_rq->avg.last_update_time being current. 4702 */ 4703 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4704 { 4705 dequeue_load_avg(cfs_rq, se); 4706 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4707 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4708 /* See update_cfs_rq_load_avg() */ 4709 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4710 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4711 4712 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4713 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4714 /* See update_cfs_rq_load_avg() */ 4715 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4716 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4717 4718 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4719 4720 cfs_rq_util_change(cfs_rq, 0); 4721 4722 trace_pelt_cfs_tp(cfs_rq); 4723 } 4724 4725 /* 4726 * Optional action to be done while updating the load average 4727 */ 4728 #define UPDATE_TG 0x1 4729 #define SKIP_AGE_LOAD 0x2 4730 #define DO_ATTACH 0x4 4731 #define DO_DETACH 0x8 4732 4733 /* Update task and its cfs_rq load average */ 4734 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4735 { 4736 u64 now = cfs_rq_clock_pelt(cfs_rq); 4737 int decayed; 4738 4739 /* 4740 * Track task load average for carrying it to new CPU after migrated, and 4741 * track group sched_entity load average for task_h_load calculation in migration 4742 */ 4743 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4744 __update_load_avg_se(now, cfs_rq, se); 4745 4746 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4747 decayed |= propagate_entity_load_avg(se); 4748 4749 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4750 4751 /* 4752 * DO_ATTACH means we're here from enqueue_entity(). 4753 * !last_update_time means we've passed through 4754 * migrate_task_rq_fair() indicating we migrated. 4755 * 4756 * IOW we're enqueueing a task on a new CPU. 4757 */ 4758 attach_entity_load_avg(cfs_rq, se); 4759 update_tg_load_avg(cfs_rq); 4760 4761 } else if (flags & DO_DETACH) { 4762 /* 4763 * DO_DETACH means we're here from dequeue_entity() 4764 * and we are migrating task out of the CPU. 4765 */ 4766 detach_entity_load_avg(cfs_rq, se); 4767 update_tg_load_avg(cfs_rq); 4768 } else if (decayed) { 4769 cfs_rq_util_change(cfs_rq, 0); 4770 4771 if (flags & UPDATE_TG) 4772 update_tg_load_avg(cfs_rq); 4773 } 4774 } 4775 4776 /* 4777 * Synchronize entity load avg of dequeued entity without locking 4778 * the previous rq. 4779 */ 4780 static void sync_entity_load_avg(struct sched_entity *se) 4781 { 4782 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4783 u64 last_update_time; 4784 4785 last_update_time = cfs_rq_last_update_time(cfs_rq); 4786 __update_load_avg_blocked_se(last_update_time, se); 4787 } 4788 4789 /* 4790 * Task first catches up with cfs_rq, and then subtract 4791 * itself from the cfs_rq (task must be off the queue now). 4792 */ 4793 static void remove_entity_load_avg(struct sched_entity *se) 4794 { 4795 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4796 unsigned long flags; 4797 4798 /* 4799 * tasks cannot exit without having gone through wake_up_new_task() -> 4800 * enqueue_task_fair() which will have added things to the cfs_rq, 4801 * so we can remove unconditionally. 4802 */ 4803 4804 sync_entity_load_avg(se); 4805 4806 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4807 ++cfs_rq->removed.nr; 4808 cfs_rq->removed.util_avg += se->avg.util_avg; 4809 cfs_rq->removed.load_avg += se->avg.load_avg; 4810 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4811 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4812 } 4813 4814 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4815 { 4816 return cfs_rq->avg.runnable_avg; 4817 } 4818 4819 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4820 { 4821 return cfs_rq->avg.load_avg; 4822 } 4823 4824 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4825 4826 static inline unsigned long task_util(struct task_struct *p) 4827 { 4828 return READ_ONCE(p->se.avg.util_avg); 4829 } 4830 4831 static inline unsigned long task_runnable(struct task_struct *p) 4832 { 4833 return READ_ONCE(p->se.avg.runnable_avg); 4834 } 4835 4836 static inline unsigned long _task_util_est(struct task_struct *p) 4837 { 4838 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4839 } 4840 4841 static inline unsigned long task_util_est(struct task_struct *p) 4842 { 4843 return max(task_util(p), _task_util_est(p)); 4844 } 4845 4846 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4847 struct task_struct *p) 4848 { 4849 unsigned int enqueued; 4850 4851 if (!sched_feat(UTIL_EST)) 4852 return; 4853 4854 /* Update root cfs_rq's estimated utilization */ 4855 enqueued = cfs_rq->avg.util_est; 4856 enqueued += _task_util_est(p); 4857 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4858 4859 trace_sched_util_est_cfs_tp(cfs_rq); 4860 } 4861 4862 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4863 struct task_struct *p) 4864 { 4865 unsigned int enqueued; 4866 4867 if (!sched_feat(UTIL_EST)) 4868 return; 4869 4870 /* Update root cfs_rq's estimated utilization */ 4871 enqueued = cfs_rq->avg.util_est; 4872 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4873 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4874 4875 trace_sched_util_est_cfs_tp(cfs_rq); 4876 } 4877 4878 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4879 4880 static inline void util_est_update(struct cfs_rq *cfs_rq, 4881 struct task_struct *p, 4882 bool task_sleep) 4883 { 4884 unsigned int ewma, dequeued, last_ewma_diff; 4885 4886 if (!sched_feat(UTIL_EST)) 4887 return; 4888 4889 /* 4890 * Skip update of task's estimated utilization when the task has not 4891 * yet completed an activation, e.g. being migrated. 4892 */ 4893 if (!task_sleep) 4894 return; 4895 4896 /* Get current estimate of utilization */ 4897 ewma = READ_ONCE(p->se.avg.util_est); 4898 4899 /* 4900 * If the PELT values haven't changed since enqueue time, 4901 * skip the util_est update. 4902 */ 4903 if (ewma & UTIL_AVG_UNCHANGED) 4904 return; 4905 4906 /* Get utilization at dequeue */ 4907 dequeued = task_util(p); 4908 4909 /* 4910 * Reset EWMA on utilization increases, the moving average is used only 4911 * to smooth utilization decreases. 4912 */ 4913 if (ewma <= dequeued) { 4914 ewma = dequeued; 4915 goto done; 4916 } 4917 4918 /* 4919 * Skip update of task's estimated utilization when its members are 4920 * already ~1% close to its last activation value. 4921 */ 4922 last_ewma_diff = ewma - dequeued; 4923 if (last_ewma_diff < UTIL_EST_MARGIN) 4924 goto done; 4925 4926 /* 4927 * To avoid overestimation of actual task utilization, skip updates if 4928 * we cannot grant there is idle time in this CPU. 4929 */ 4930 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4931 return; 4932 4933 /* 4934 * To avoid underestimate of task utilization, skip updates of EWMA if 4935 * we cannot grant that thread got all CPU time it wanted. 4936 */ 4937 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4938 goto done; 4939 4940 4941 /* 4942 * Update Task's estimated utilization 4943 * 4944 * When *p completes an activation we can consolidate another sample 4945 * of the task size. This is done by using this value to update the 4946 * Exponential Weighted Moving Average (EWMA): 4947 * 4948 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4949 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4950 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4951 * = w * ( -last_ewma_diff ) + ewma(t-1) 4952 * = w * (-last_ewma_diff + ewma(t-1) / w) 4953 * 4954 * Where 'w' is the weight of new samples, which is configured to be 4955 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4956 */ 4957 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4958 ewma -= last_ewma_diff; 4959 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4960 done: 4961 ewma |= UTIL_AVG_UNCHANGED; 4962 WRITE_ONCE(p->se.avg.util_est, ewma); 4963 4964 trace_sched_util_est_se_tp(&p->se); 4965 } 4966 4967 static inline unsigned long get_actual_cpu_capacity(int cpu) 4968 { 4969 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4970 4971 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4972 4973 return capacity; 4974 } 4975 4976 static inline int util_fits_cpu(unsigned long util, 4977 unsigned long uclamp_min, 4978 unsigned long uclamp_max, 4979 int cpu) 4980 { 4981 unsigned long capacity = capacity_of(cpu); 4982 unsigned long capacity_orig; 4983 bool fits, uclamp_max_fits; 4984 4985 /* 4986 * Check if the real util fits without any uclamp boost/cap applied. 4987 */ 4988 fits = fits_capacity(util, capacity); 4989 4990 if (!uclamp_is_used()) 4991 return fits; 4992 4993 /* 4994 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4995 * uclamp_max. We only care about capacity pressure (by using 4996 * capacity_of()) for comparing against the real util. 4997 * 4998 * If a task is boosted to 1024 for example, we don't want a tiny 4999 * pressure to skew the check whether it fits a CPU or not. 5000 * 5001 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5002 * should fit a little cpu even if there's some pressure. 5003 * 5004 * Only exception is for HW or cpufreq pressure since it has a direct impact 5005 * on available OPP of the system. 5006 * 5007 * We honour it for uclamp_min only as a drop in performance level 5008 * could result in not getting the requested minimum performance level. 5009 * 5010 * For uclamp_max, we can tolerate a drop in performance level as the 5011 * goal is to cap the task. So it's okay if it's getting less. 5012 */ 5013 capacity_orig = arch_scale_cpu_capacity(cpu); 5014 5015 /* 5016 * We want to force a task to fit a cpu as implied by uclamp_max. 5017 * But we do have some corner cases to cater for.. 5018 * 5019 * 5020 * C=z 5021 * | ___ 5022 * | C=y | | 5023 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5024 * | C=x | | | | 5025 * | ___ | | | | 5026 * | | | | | | | (util somewhere in this region) 5027 * | | | | | | | 5028 * | | | | | | | 5029 * +---------------------------------------- 5030 * CPU0 CPU1 CPU2 5031 * 5032 * In the above example if a task is capped to a specific performance 5033 * point, y, then when: 5034 * 5035 * * util = 80% of x then it does not fit on CPU0 and should migrate 5036 * to CPU1 5037 * * util = 80% of y then it is forced to fit on CPU1 to honour 5038 * uclamp_max request. 5039 * 5040 * which is what we're enforcing here. A task always fits if 5041 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5042 * the normal upmigration rules should withhold still. 5043 * 5044 * Only exception is when we are on max capacity, then we need to be 5045 * careful not to block overutilized state. This is so because: 5046 * 5047 * 1. There's no concept of capping at max_capacity! We can't go 5048 * beyond this performance level anyway. 5049 * 2. The system is being saturated when we're operating near 5050 * max capacity, it doesn't make sense to block overutilized. 5051 */ 5052 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5053 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5054 fits = fits || uclamp_max_fits; 5055 5056 /* 5057 * 5058 * C=z 5059 * | ___ (region a, capped, util >= uclamp_max) 5060 * | C=y | | 5061 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5062 * | C=x | | | | 5063 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5064 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5065 * | | | | | | | 5066 * | | | | | | | (region c, boosted, util < uclamp_min) 5067 * +---------------------------------------- 5068 * CPU0 CPU1 CPU2 5069 * 5070 * a) If util > uclamp_max, then we're capped, we don't care about 5071 * actual fitness value here. We only care if uclamp_max fits 5072 * capacity without taking margin/pressure into account. 5073 * See comment above. 5074 * 5075 * b) If uclamp_min <= util <= uclamp_max, then the normal 5076 * fits_capacity() rules apply. Except we need to ensure that we 5077 * enforce we remain within uclamp_max, see comment above. 5078 * 5079 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5080 * need to take into account the boosted value fits the CPU without 5081 * taking margin/pressure into account. 5082 * 5083 * Cases (a) and (b) are handled in the 'fits' variable already. We 5084 * just need to consider an extra check for case (c) after ensuring we 5085 * handle the case uclamp_min > uclamp_max. 5086 */ 5087 uclamp_min = min(uclamp_min, uclamp_max); 5088 if (fits && (util < uclamp_min) && 5089 (uclamp_min > get_actual_cpu_capacity(cpu))) 5090 return -1; 5091 5092 return fits; 5093 } 5094 5095 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5096 { 5097 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5098 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5099 unsigned long util = task_util_est(p); 5100 /* 5101 * Return true only if the cpu fully fits the task requirements, which 5102 * include the utilization but also the performance hints. 5103 */ 5104 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5105 } 5106 5107 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5108 { 5109 int cpu = cpu_of(rq); 5110 5111 if (!sched_asym_cpucap_active()) 5112 return; 5113 5114 /* 5115 * Affinity allows us to go somewhere higher? Or are we on biggest 5116 * available CPU already? Or do we fit into this CPU ? 5117 */ 5118 if (!p || (p->nr_cpus_allowed == 1) || 5119 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5120 task_fits_cpu(p, cpu)) { 5121 5122 rq->misfit_task_load = 0; 5123 return; 5124 } 5125 5126 /* 5127 * Make sure that misfit_task_load will not be null even if 5128 * task_h_load() returns 0. 5129 */ 5130 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5131 } 5132 5133 #else /* CONFIG_SMP */ 5134 5135 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5136 { 5137 return !cfs_rq->nr_running; 5138 } 5139 5140 #define UPDATE_TG 0x0 5141 #define SKIP_AGE_LOAD 0x0 5142 #define DO_ATTACH 0x0 5143 #define DO_DETACH 0x0 5144 5145 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5146 { 5147 cfs_rq_util_change(cfs_rq, 0); 5148 } 5149 5150 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5151 5152 static inline void 5153 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5154 static inline void 5155 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5156 5157 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5158 { 5159 return 0; 5160 } 5161 5162 static inline void 5163 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5164 5165 static inline void 5166 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5167 5168 static inline void 5169 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5170 bool task_sleep) {} 5171 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5172 5173 #endif /* CONFIG_SMP */ 5174 5175 static void 5176 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5177 { 5178 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5179 s64 lag = 0; 5180 5181 se->slice = sysctl_sched_base_slice; 5182 vslice = calc_delta_fair(se->slice, se); 5183 5184 /* 5185 * Due to how V is constructed as the weighted average of entities, 5186 * adding tasks with positive lag, or removing tasks with negative lag 5187 * will move 'time' backwards, this can screw around with the lag of 5188 * other tasks. 5189 * 5190 * EEVDF: placement strategy #1 / #2 5191 */ 5192 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5193 struct sched_entity *curr = cfs_rq->curr; 5194 unsigned long load; 5195 5196 lag = se->vlag; 5197 5198 /* 5199 * If we want to place a task and preserve lag, we have to 5200 * consider the effect of the new entity on the weighted 5201 * average and compensate for this, otherwise lag can quickly 5202 * evaporate. 5203 * 5204 * Lag is defined as: 5205 * 5206 * lag_i = S - s_i = w_i * (V - v_i) 5207 * 5208 * To avoid the 'w_i' term all over the place, we only track 5209 * the virtual lag: 5210 * 5211 * vl_i = V - v_i <=> v_i = V - vl_i 5212 * 5213 * And we take V to be the weighted average of all v: 5214 * 5215 * V = (\Sum w_j*v_j) / W 5216 * 5217 * Where W is: \Sum w_j 5218 * 5219 * Then, the weighted average after adding an entity with lag 5220 * vl_i is given by: 5221 * 5222 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5223 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5224 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5225 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5226 * = V - w_i*vl_i / (W + w_i) 5227 * 5228 * And the actual lag after adding an entity with vl_i is: 5229 * 5230 * vl'_i = V' - v_i 5231 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5232 * = vl_i - w_i*vl_i / (W + w_i) 5233 * 5234 * Which is strictly less than vl_i. So in order to preserve lag 5235 * we should inflate the lag before placement such that the 5236 * effective lag after placement comes out right. 5237 * 5238 * As such, invert the above relation for vl'_i to get the vl_i 5239 * we need to use such that the lag after placement is the lag 5240 * we computed before dequeue. 5241 * 5242 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5243 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5244 * 5245 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5246 * = W*vl_i 5247 * 5248 * vl_i = (W + w_i)*vl'_i / W 5249 */ 5250 load = cfs_rq->avg_load; 5251 if (curr && curr->on_rq) 5252 load += scale_load_down(curr->load.weight); 5253 5254 lag *= load + scale_load_down(se->load.weight); 5255 if (WARN_ON_ONCE(!load)) 5256 load = 1; 5257 lag = div_s64(lag, load); 5258 } 5259 5260 se->vruntime = vruntime - lag; 5261 5262 /* 5263 * When joining the competition; the existing tasks will be, 5264 * on average, halfway through their slice, as such start tasks 5265 * off with half a slice to ease into the competition. 5266 */ 5267 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5268 vslice /= 2; 5269 5270 /* 5271 * EEVDF: vd_i = ve_i + r_i/w_i 5272 */ 5273 se->deadline = se->vruntime + vslice; 5274 } 5275 5276 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5277 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5278 5279 static inline bool cfs_bandwidth_used(void); 5280 5281 static void 5282 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5283 { 5284 bool curr = cfs_rq->curr == se; 5285 5286 /* 5287 * If we're the current task, we must renormalise before calling 5288 * update_curr(). 5289 */ 5290 if (curr) 5291 place_entity(cfs_rq, se, flags); 5292 5293 update_curr(cfs_rq); 5294 5295 /* 5296 * When enqueuing a sched_entity, we must: 5297 * - Update loads to have both entity and cfs_rq synced with now. 5298 * - For group_entity, update its runnable_weight to reflect the new 5299 * h_nr_running of its group cfs_rq. 5300 * - For group_entity, update its weight to reflect the new share of 5301 * its group cfs_rq 5302 * - Add its new weight to cfs_rq->load.weight 5303 */ 5304 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5305 se_update_runnable(se); 5306 /* 5307 * XXX update_load_avg() above will have attached us to the pelt sum; 5308 * but update_cfs_group() here will re-adjust the weight and have to 5309 * undo/redo all that. Seems wasteful. 5310 */ 5311 update_cfs_group(se); 5312 5313 /* 5314 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5315 * we can place the entity. 5316 */ 5317 if (!curr) 5318 place_entity(cfs_rq, se, flags); 5319 5320 account_entity_enqueue(cfs_rq, se); 5321 5322 /* Entity has migrated, no longer consider this task hot */ 5323 if (flags & ENQUEUE_MIGRATED) 5324 se->exec_start = 0; 5325 5326 check_schedstat_required(); 5327 update_stats_enqueue_fair(cfs_rq, se, flags); 5328 if (!curr) 5329 __enqueue_entity(cfs_rq, se); 5330 se->on_rq = 1; 5331 5332 if (cfs_rq->nr_running == 1) { 5333 check_enqueue_throttle(cfs_rq); 5334 if (!throttled_hierarchy(cfs_rq)) { 5335 list_add_leaf_cfs_rq(cfs_rq); 5336 } else { 5337 #ifdef CONFIG_CFS_BANDWIDTH 5338 struct rq *rq = rq_of(cfs_rq); 5339 5340 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5341 cfs_rq->throttled_clock = rq_clock(rq); 5342 if (!cfs_rq->throttled_clock_self) 5343 cfs_rq->throttled_clock_self = rq_clock(rq); 5344 #endif 5345 } 5346 } 5347 } 5348 5349 static void __clear_buddies_next(struct sched_entity *se) 5350 { 5351 for_each_sched_entity(se) { 5352 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5353 if (cfs_rq->next != se) 5354 break; 5355 5356 cfs_rq->next = NULL; 5357 } 5358 } 5359 5360 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5361 { 5362 if (cfs_rq->next == se) 5363 __clear_buddies_next(se); 5364 } 5365 5366 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5367 5368 static void 5369 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5370 { 5371 int action = UPDATE_TG; 5372 5373 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5374 action |= DO_DETACH; 5375 5376 /* 5377 * Update run-time statistics of the 'current'. 5378 */ 5379 update_curr(cfs_rq); 5380 5381 /* 5382 * When dequeuing a sched_entity, we must: 5383 * - Update loads to have both entity and cfs_rq synced with now. 5384 * - For group_entity, update its runnable_weight to reflect the new 5385 * h_nr_running of its group cfs_rq. 5386 * - Subtract its previous weight from cfs_rq->load.weight. 5387 * - For group entity, update its weight to reflect the new share 5388 * of its group cfs_rq. 5389 */ 5390 update_load_avg(cfs_rq, se, action); 5391 se_update_runnable(se); 5392 5393 update_stats_dequeue_fair(cfs_rq, se, flags); 5394 5395 clear_buddies(cfs_rq, se); 5396 5397 update_entity_lag(cfs_rq, se); 5398 if (se != cfs_rq->curr) 5399 __dequeue_entity(cfs_rq, se); 5400 se->on_rq = 0; 5401 account_entity_dequeue(cfs_rq, se); 5402 5403 /* return excess runtime on last dequeue */ 5404 return_cfs_rq_runtime(cfs_rq); 5405 5406 update_cfs_group(se); 5407 5408 /* 5409 * Now advance min_vruntime if @se was the entity holding it back, 5410 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5411 * put back on, and if we advance min_vruntime, we'll be placed back 5412 * further than we started -- i.e. we'll be penalized. 5413 */ 5414 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5415 update_min_vruntime(cfs_rq); 5416 5417 if (cfs_rq->nr_running == 0) 5418 update_idle_cfs_rq_clock_pelt(cfs_rq); 5419 } 5420 5421 static void 5422 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5423 { 5424 clear_buddies(cfs_rq, se); 5425 5426 /* 'current' is not kept within the tree. */ 5427 if (se->on_rq) { 5428 /* 5429 * Any task has to be enqueued before it get to execute on 5430 * a CPU. So account for the time it spent waiting on the 5431 * runqueue. 5432 */ 5433 update_stats_wait_end_fair(cfs_rq, se); 5434 __dequeue_entity(cfs_rq, se); 5435 update_load_avg(cfs_rq, se, UPDATE_TG); 5436 /* 5437 * HACK, stash a copy of deadline at the point of pick in vlag, 5438 * which isn't used until dequeue. 5439 */ 5440 se->vlag = se->deadline; 5441 } 5442 5443 update_stats_curr_start(cfs_rq, se); 5444 cfs_rq->curr = se; 5445 5446 /* 5447 * Track our maximum slice length, if the CPU's load is at 5448 * least twice that of our own weight (i.e. don't track it 5449 * when there are only lesser-weight tasks around): 5450 */ 5451 if (schedstat_enabled() && 5452 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5453 struct sched_statistics *stats; 5454 5455 stats = __schedstats_from_se(se); 5456 __schedstat_set(stats->slice_max, 5457 max((u64)stats->slice_max, 5458 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5459 } 5460 5461 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5462 } 5463 5464 /* 5465 * Pick the next process, keeping these things in mind, in this order: 5466 * 1) keep things fair between processes/task groups 5467 * 2) pick the "next" process, since someone really wants that to run 5468 * 3) pick the "last" process, for cache locality 5469 * 4) do not run the "skip" process, if something else is available 5470 */ 5471 static struct sched_entity * 5472 pick_next_entity(struct cfs_rq *cfs_rq) 5473 { 5474 /* 5475 * Enabling NEXT_BUDDY will affect latency but not fairness. 5476 */ 5477 if (sched_feat(NEXT_BUDDY) && 5478 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5479 return cfs_rq->next; 5480 5481 return pick_eevdf(cfs_rq); 5482 } 5483 5484 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5485 5486 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5487 { 5488 /* 5489 * If still on the runqueue then deactivate_task() 5490 * was not called and update_curr() has to be done: 5491 */ 5492 if (prev->on_rq) 5493 update_curr(cfs_rq); 5494 5495 /* throttle cfs_rqs exceeding runtime */ 5496 check_cfs_rq_runtime(cfs_rq); 5497 5498 if (prev->on_rq) { 5499 update_stats_wait_start_fair(cfs_rq, prev); 5500 /* Put 'current' back into the tree. */ 5501 __enqueue_entity(cfs_rq, prev); 5502 /* in !on_rq case, update occurred at dequeue */ 5503 update_load_avg(cfs_rq, prev, 0); 5504 } 5505 cfs_rq->curr = NULL; 5506 } 5507 5508 static void 5509 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5510 { 5511 /* 5512 * Update run-time statistics of the 'current'. 5513 */ 5514 update_curr(cfs_rq); 5515 5516 /* 5517 * Ensure that runnable average is periodically updated. 5518 */ 5519 update_load_avg(cfs_rq, curr, UPDATE_TG); 5520 update_cfs_group(curr); 5521 5522 #ifdef CONFIG_SCHED_HRTICK 5523 /* 5524 * queued ticks are scheduled to match the slice, so don't bother 5525 * validating it and just reschedule. 5526 */ 5527 if (queued) { 5528 resched_curr(rq_of(cfs_rq)); 5529 return; 5530 } 5531 /* 5532 * don't let the period tick interfere with the hrtick preemption 5533 */ 5534 if (!sched_feat(DOUBLE_TICK) && 5535 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5536 return; 5537 #endif 5538 } 5539 5540 5541 /************************************************** 5542 * CFS bandwidth control machinery 5543 */ 5544 5545 #ifdef CONFIG_CFS_BANDWIDTH 5546 5547 #ifdef CONFIG_JUMP_LABEL 5548 static struct static_key __cfs_bandwidth_used; 5549 5550 static inline bool cfs_bandwidth_used(void) 5551 { 5552 return static_key_false(&__cfs_bandwidth_used); 5553 } 5554 5555 void cfs_bandwidth_usage_inc(void) 5556 { 5557 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5558 } 5559 5560 void cfs_bandwidth_usage_dec(void) 5561 { 5562 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5563 } 5564 #else /* CONFIG_JUMP_LABEL */ 5565 static bool cfs_bandwidth_used(void) 5566 { 5567 return true; 5568 } 5569 5570 void cfs_bandwidth_usage_inc(void) {} 5571 void cfs_bandwidth_usage_dec(void) {} 5572 #endif /* CONFIG_JUMP_LABEL */ 5573 5574 /* 5575 * default period for cfs group bandwidth. 5576 * default: 0.1s, units: nanoseconds 5577 */ 5578 static inline u64 default_cfs_period(void) 5579 { 5580 return 100000000ULL; 5581 } 5582 5583 static inline u64 sched_cfs_bandwidth_slice(void) 5584 { 5585 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5586 } 5587 5588 /* 5589 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5590 * directly instead of rq->clock to avoid adding additional synchronization 5591 * around rq->lock. 5592 * 5593 * requires cfs_b->lock 5594 */ 5595 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5596 { 5597 s64 runtime; 5598 5599 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5600 return; 5601 5602 cfs_b->runtime += cfs_b->quota; 5603 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5604 if (runtime > 0) { 5605 cfs_b->burst_time += runtime; 5606 cfs_b->nr_burst++; 5607 } 5608 5609 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5610 cfs_b->runtime_snap = cfs_b->runtime; 5611 } 5612 5613 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5614 { 5615 return &tg->cfs_bandwidth; 5616 } 5617 5618 /* returns 0 on failure to allocate runtime */ 5619 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5620 struct cfs_rq *cfs_rq, u64 target_runtime) 5621 { 5622 u64 min_amount, amount = 0; 5623 5624 lockdep_assert_held(&cfs_b->lock); 5625 5626 /* note: this is a positive sum as runtime_remaining <= 0 */ 5627 min_amount = target_runtime - cfs_rq->runtime_remaining; 5628 5629 if (cfs_b->quota == RUNTIME_INF) 5630 amount = min_amount; 5631 else { 5632 start_cfs_bandwidth(cfs_b); 5633 5634 if (cfs_b->runtime > 0) { 5635 amount = min(cfs_b->runtime, min_amount); 5636 cfs_b->runtime -= amount; 5637 cfs_b->idle = 0; 5638 } 5639 } 5640 5641 cfs_rq->runtime_remaining += amount; 5642 5643 return cfs_rq->runtime_remaining > 0; 5644 } 5645 5646 /* returns 0 on failure to allocate runtime */ 5647 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5648 { 5649 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5650 int ret; 5651 5652 raw_spin_lock(&cfs_b->lock); 5653 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5654 raw_spin_unlock(&cfs_b->lock); 5655 5656 return ret; 5657 } 5658 5659 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5660 { 5661 /* dock delta_exec before expiring quota (as it could span periods) */ 5662 cfs_rq->runtime_remaining -= delta_exec; 5663 5664 if (likely(cfs_rq->runtime_remaining > 0)) 5665 return; 5666 5667 if (cfs_rq->throttled) 5668 return; 5669 /* 5670 * if we're unable to extend our runtime we resched so that the active 5671 * hierarchy can be throttled 5672 */ 5673 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5674 resched_curr(rq_of(cfs_rq)); 5675 } 5676 5677 static __always_inline 5678 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5679 { 5680 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5681 return; 5682 5683 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5684 } 5685 5686 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5687 { 5688 return cfs_bandwidth_used() && cfs_rq->throttled; 5689 } 5690 5691 /* check whether cfs_rq, or any parent, is throttled */ 5692 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5693 { 5694 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5695 } 5696 5697 /* 5698 * Ensure that neither of the group entities corresponding to src_cpu or 5699 * dest_cpu are members of a throttled hierarchy when performing group 5700 * load-balance operations. 5701 */ 5702 static inline int throttled_lb_pair(struct task_group *tg, 5703 int src_cpu, int dest_cpu) 5704 { 5705 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5706 5707 src_cfs_rq = tg->cfs_rq[src_cpu]; 5708 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5709 5710 return throttled_hierarchy(src_cfs_rq) || 5711 throttled_hierarchy(dest_cfs_rq); 5712 } 5713 5714 static int tg_unthrottle_up(struct task_group *tg, void *data) 5715 { 5716 struct rq *rq = data; 5717 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5718 5719 cfs_rq->throttle_count--; 5720 if (!cfs_rq->throttle_count) { 5721 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5722 cfs_rq->throttled_clock_pelt; 5723 5724 /* Add cfs_rq with load or one or more already running entities to the list */ 5725 if (!cfs_rq_is_decayed(cfs_rq)) 5726 list_add_leaf_cfs_rq(cfs_rq); 5727 5728 if (cfs_rq->throttled_clock_self) { 5729 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5730 5731 cfs_rq->throttled_clock_self = 0; 5732 5733 if (SCHED_WARN_ON((s64)delta < 0)) 5734 delta = 0; 5735 5736 cfs_rq->throttled_clock_self_time += delta; 5737 } 5738 } 5739 5740 return 0; 5741 } 5742 5743 static int tg_throttle_down(struct task_group *tg, void *data) 5744 { 5745 struct rq *rq = data; 5746 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5747 5748 /* group is entering throttled state, stop time */ 5749 if (!cfs_rq->throttle_count) { 5750 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5751 list_del_leaf_cfs_rq(cfs_rq); 5752 5753 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5754 if (cfs_rq->nr_running) 5755 cfs_rq->throttled_clock_self = rq_clock(rq); 5756 } 5757 cfs_rq->throttle_count++; 5758 5759 return 0; 5760 } 5761 5762 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5763 { 5764 struct rq *rq = rq_of(cfs_rq); 5765 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5766 struct sched_entity *se; 5767 long task_delta, idle_task_delta, dequeue = 1; 5768 5769 raw_spin_lock(&cfs_b->lock); 5770 /* This will start the period timer if necessary */ 5771 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5772 /* 5773 * We have raced with bandwidth becoming available, and if we 5774 * actually throttled the timer might not unthrottle us for an 5775 * entire period. We additionally needed to make sure that any 5776 * subsequent check_cfs_rq_runtime calls agree not to throttle 5777 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5778 * for 1ns of runtime rather than just check cfs_b. 5779 */ 5780 dequeue = 0; 5781 } else { 5782 list_add_tail_rcu(&cfs_rq->throttled_list, 5783 &cfs_b->throttled_cfs_rq); 5784 } 5785 raw_spin_unlock(&cfs_b->lock); 5786 5787 if (!dequeue) 5788 return false; /* Throttle no longer required. */ 5789 5790 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5791 5792 /* freeze hierarchy runnable averages while throttled */ 5793 rcu_read_lock(); 5794 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5795 rcu_read_unlock(); 5796 5797 task_delta = cfs_rq->h_nr_running; 5798 idle_task_delta = cfs_rq->idle_h_nr_running; 5799 for_each_sched_entity(se) { 5800 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5801 /* throttled entity or throttle-on-deactivate */ 5802 if (!se->on_rq) 5803 goto done; 5804 5805 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5806 5807 if (cfs_rq_is_idle(group_cfs_rq(se))) 5808 idle_task_delta = cfs_rq->h_nr_running; 5809 5810 qcfs_rq->h_nr_running -= task_delta; 5811 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5812 5813 if (qcfs_rq->load.weight) { 5814 /* Avoid re-evaluating load for this entity: */ 5815 se = parent_entity(se); 5816 break; 5817 } 5818 } 5819 5820 for_each_sched_entity(se) { 5821 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5822 /* throttled entity or throttle-on-deactivate */ 5823 if (!se->on_rq) 5824 goto done; 5825 5826 update_load_avg(qcfs_rq, se, 0); 5827 se_update_runnable(se); 5828 5829 if (cfs_rq_is_idle(group_cfs_rq(se))) 5830 idle_task_delta = cfs_rq->h_nr_running; 5831 5832 qcfs_rq->h_nr_running -= task_delta; 5833 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5834 } 5835 5836 /* At this point se is NULL and we are at root level*/ 5837 sub_nr_running(rq, task_delta); 5838 5839 done: 5840 /* 5841 * Note: distribution will already see us throttled via the 5842 * throttled-list. rq->lock protects completion. 5843 */ 5844 cfs_rq->throttled = 1; 5845 SCHED_WARN_ON(cfs_rq->throttled_clock); 5846 if (cfs_rq->nr_running) 5847 cfs_rq->throttled_clock = rq_clock(rq); 5848 return true; 5849 } 5850 5851 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5852 { 5853 struct rq *rq = rq_of(cfs_rq); 5854 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5855 struct sched_entity *se; 5856 long task_delta, idle_task_delta; 5857 5858 se = cfs_rq->tg->se[cpu_of(rq)]; 5859 5860 cfs_rq->throttled = 0; 5861 5862 update_rq_clock(rq); 5863 5864 raw_spin_lock(&cfs_b->lock); 5865 if (cfs_rq->throttled_clock) { 5866 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5867 cfs_rq->throttled_clock = 0; 5868 } 5869 list_del_rcu(&cfs_rq->throttled_list); 5870 raw_spin_unlock(&cfs_b->lock); 5871 5872 /* update hierarchical throttle state */ 5873 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5874 5875 if (!cfs_rq->load.weight) { 5876 if (!cfs_rq->on_list) 5877 return; 5878 /* 5879 * Nothing to run but something to decay (on_list)? 5880 * Complete the branch. 5881 */ 5882 for_each_sched_entity(se) { 5883 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5884 break; 5885 } 5886 goto unthrottle_throttle; 5887 } 5888 5889 task_delta = cfs_rq->h_nr_running; 5890 idle_task_delta = cfs_rq->idle_h_nr_running; 5891 for_each_sched_entity(se) { 5892 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5893 5894 if (se->on_rq) 5895 break; 5896 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5897 5898 if (cfs_rq_is_idle(group_cfs_rq(se))) 5899 idle_task_delta = cfs_rq->h_nr_running; 5900 5901 qcfs_rq->h_nr_running += task_delta; 5902 qcfs_rq->idle_h_nr_running += idle_task_delta; 5903 5904 /* end evaluation on encountering a throttled cfs_rq */ 5905 if (cfs_rq_throttled(qcfs_rq)) 5906 goto unthrottle_throttle; 5907 } 5908 5909 for_each_sched_entity(se) { 5910 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5911 5912 update_load_avg(qcfs_rq, se, UPDATE_TG); 5913 se_update_runnable(se); 5914 5915 if (cfs_rq_is_idle(group_cfs_rq(se))) 5916 idle_task_delta = cfs_rq->h_nr_running; 5917 5918 qcfs_rq->h_nr_running += task_delta; 5919 qcfs_rq->idle_h_nr_running += idle_task_delta; 5920 5921 /* end evaluation on encountering a throttled cfs_rq */ 5922 if (cfs_rq_throttled(qcfs_rq)) 5923 goto unthrottle_throttle; 5924 } 5925 5926 /* At this point se is NULL and we are at root level*/ 5927 add_nr_running(rq, task_delta); 5928 5929 unthrottle_throttle: 5930 assert_list_leaf_cfs_rq(rq); 5931 5932 /* Determine whether we need to wake up potentially idle CPU: */ 5933 if (rq->curr == rq->idle && rq->cfs.nr_running) 5934 resched_curr(rq); 5935 } 5936 5937 #ifdef CONFIG_SMP 5938 static void __cfsb_csd_unthrottle(void *arg) 5939 { 5940 struct cfs_rq *cursor, *tmp; 5941 struct rq *rq = arg; 5942 struct rq_flags rf; 5943 5944 rq_lock(rq, &rf); 5945 5946 /* 5947 * Iterating over the list can trigger several call to 5948 * update_rq_clock() in unthrottle_cfs_rq(). 5949 * Do it once and skip the potential next ones. 5950 */ 5951 update_rq_clock(rq); 5952 rq_clock_start_loop_update(rq); 5953 5954 /* 5955 * Since we hold rq lock we're safe from concurrent manipulation of 5956 * the CSD list. However, this RCU critical section annotates the 5957 * fact that we pair with sched_free_group_rcu(), so that we cannot 5958 * race with group being freed in the window between removing it 5959 * from the list and advancing to the next entry in the list. 5960 */ 5961 rcu_read_lock(); 5962 5963 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5964 throttled_csd_list) { 5965 list_del_init(&cursor->throttled_csd_list); 5966 5967 if (cfs_rq_throttled(cursor)) 5968 unthrottle_cfs_rq(cursor); 5969 } 5970 5971 rcu_read_unlock(); 5972 5973 rq_clock_stop_loop_update(rq); 5974 rq_unlock(rq, &rf); 5975 } 5976 5977 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5978 { 5979 struct rq *rq = rq_of(cfs_rq); 5980 bool first; 5981 5982 if (rq == this_rq()) { 5983 unthrottle_cfs_rq(cfs_rq); 5984 return; 5985 } 5986 5987 /* Already enqueued */ 5988 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5989 return; 5990 5991 first = list_empty(&rq->cfsb_csd_list); 5992 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5993 if (first) 5994 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5995 } 5996 #else 5997 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5998 { 5999 unthrottle_cfs_rq(cfs_rq); 6000 } 6001 #endif 6002 6003 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6004 { 6005 lockdep_assert_rq_held(rq_of(cfs_rq)); 6006 6007 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6008 cfs_rq->runtime_remaining <= 0)) 6009 return; 6010 6011 __unthrottle_cfs_rq_async(cfs_rq); 6012 } 6013 6014 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6015 { 6016 int this_cpu = smp_processor_id(); 6017 u64 runtime, remaining = 1; 6018 bool throttled = false; 6019 struct cfs_rq *cfs_rq, *tmp; 6020 struct rq_flags rf; 6021 struct rq *rq; 6022 LIST_HEAD(local_unthrottle); 6023 6024 rcu_read_lock(); 6025 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6026 throttled_list) { 6027 rq = rq_of(cfs_rq); 6028 6029 if (!remaining) { 6030 throttled = true; 6031 break; 6032 } 6033 6034 rq_lock_irqsave(rq, &rf); 6035 if (!cfs_rq_throttled(cfs_rq)) 6036 goto next; 6037 6038 /* Already queued for async unthrottle */ 6039 if (!list_empty(&cfs_rq->throttled_csd_list)) 6040 goto next; 6041 6042 /* By the above checks, this should never be true */ 6043 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6044 6045 raw_spin_lock(&cfs_b->lock); 6046 runtime = -cfs_rq->runtime_remaining + 1; 6047 if (runtime > cfs_b->runtime) 6048 runtime = cfs_b->runtime; 6049 cfs_b->runtime -= runtime; 6050 remaining = cfs_b->runtime; 6051 raw_spin_unlock(&cfs_b->lock); 6052 6053 cfs_rq->runtime_remaining += runtime; 6054 6055 /* we check whether we're throttled above */ 6056 if (cfs_rq->runtime_remaining > 0) { 6057 if (cpu_of(rq) != this_cpu) { 6058 unthrottle_cfs_rq_async(cfs_rq); 6059 } else { 6060 /* 6061 * We currently only expect to be unthrottling 6062 * a single cfs_rq locally. 6063 */ 6064 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6065 list_add_tail(&cfs_rq->throttled_csd_list, 6066 &local_unthrottle); 6067 } 6068 } else { 6069 throttled = true; 6070 } 6071 6072 next: 6073 rq_unlock_irqrestore(rq, &rf); 6074 } 6075 6076 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6077 throttled_csd_list) { 6078 struct rq *rq = rq_of(cfs_rq); 6079 6080 rq_lock_irqsave(rq, &rf); 6081 6082 list_del_init(&cfs_rq->throttled_csd_list); 6083 6084 if (cfs_rq_throttled(cfs_rq)) 6085 unthrottle_cfs_rq(cfs_rq); 6086 6087 rq_unlock_irqrestore(rq, &rf); 6088 } 6089 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6090 6091 rcu_read_unlock(); 6092 6093 return throttled; 6094 } 6095 6096 /* 6097 * Responsible for refilling a task_group's bandwidth and unthrottling its 6098 * cfs_rqs as appropriate. If there has been no activity within the last 6099 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6100 * used to track this state. 6101 */ 6102 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6103 { 6104 int throttled; 6105 6106 /* no need to continue the timer with no bandwidth constraint */ 6107 if (cfs_b->quota == RUNTIME_INF) 6108 goto out_deactivate; 6109 6110 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6111 cfs_b->nr_periods += overrun; 6112 6113 /* Refill extra burst quota even if cfs_b->idle */ 6114 __refill_cfs_bandwidth_runtime(cfs_b); 6115 6116 /* 6117 * idle depends on !throttled (for the case of a large deficit), and if 6118 * we're going inactive then everything else can be deferred 6119 */ 6120 if (cfs_b->idle && !throttled) 6121 goto out_deactivate; 6122 6123 if (!throttled) { 6124 /* mark as potentially idle for the upcoming period */ 6125 cfs_b->idle = 1; 6126 return 0; 6127 } 6128 6129 /* account preceding periods in which throttling occurred */ 6130 cfs_b->nr_throttled += overrun; 6131 6132 /* 6133 * This check is repeated as we release cfs_b->lock while we unthrottle. 6134 */ 6135 while (throttled && cfs_b->runtime > 0) { 6136 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6137 /* we can't nest cfs_b->lock while distributing bandwidth */ 6138 throttled = distribute_cfs_runtime(cfs_b); 6139 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6140 } 6141 6142 /* 6143 * While we are ensured activity in the period following an 6144 * unthrottle, this also covers the case in which the new bandwidth is 6145 * insufficient to cover the existing bandwidth deficit. (Forcing the 6146 * timer to remain active while there are any throttled entities.) 6147 */ 6148 cfs_b->idle = 0; 6149 6150 return 0; 6151 6152 out_deactivate: 6153 return 1; 6154 } 6155 6156 /* a cfs_rq won't donate quota below this amount */ 6157 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6158 /* minimum remaining period time to redistribute slack quota */ 6159 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6160 /* how long we wait to gather additional slack before distributing */ 6161 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6162 6163 /* 6164 * Are we near the end of the current quota period? 6165 * 6166 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6167 * hrtimer base being cleared by hrtimer_start. In the case of 6168 * migrate_hrtimers, base is never cleared, so we are fine. 6169 */ 6170 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6171 { 6172 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6173 s64 remaining; 6174 6175 /* if the call-back is running a quota refresh is already occurring */ 6176 if (hrtimer_callback_running(refresh_timer)) 6177 return 1; 6178 6179 /* is a quota refresh about to occur? */ 6180 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6181 if (remaining < (s64)min_expire) 6182 return 1; 6183 6184 return 0; 6185 } 6186 6187 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6188 { 6189 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6190 6191 /* if there's a quota refresh soon don't bother with slack */ 6192 if (runtime_refresh_within(cfs_b, min_left)) 6193 return; 6194 6195 /* don't push forwards an existing deferred unthrottle */ 6196 if (cfs_b->slack_started) 6197 return; 6198 cfs_b->slack_started = true; 6199 6200 hrtimer_start(&cfs_b->slack_timer, 6201 ns_to_ktime(cfs_bandwidth_slack_period), 6202 HRTIMER_MODE_REL); 6203 } 6204 6205 /* we know any runtime found here is valid as update_curr() precedes return */ 6206 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6207 { 6208 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6209 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6210 6211 if (slack_runtime <= 0) 6212 return; 6213 6214 raw_spin_lock(&cfs_b->lock); 6215 if (cfs_b->quota != RUNTIME_INF) { 6216 cfs_b->runtime += slack_runtime; 6217 6218 /* we are under rq->lock, defer unthrottling using a timer */ 6219 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6220 !list_empty(&cfs_b->throttled_cfs_rq)) 6221 start_cfs_slack_bandwidth(cfs_b); 6222 } 6223 raw_spin_unlock(&cfs_b->lock); 6224 6225 /* even if it's not valid for return we don't want to try again */ 6226 cfs_rq->runtime_remaining -= slack_runtime; 6227 } 6228 6229 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6230 { 6231 if (!cfs_bandwidth_used()) 6232 return; 6233 6234 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6235 return; 6236 6237 __return_cfs_rq_runtime(cfs_rq); 6238 } 6239 6240 /* 6241 * This is done with a timer (instead of inline with bandwidth return) since 6242 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6243 */ 6244 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6245 { 6246 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6247 unsigned long flags; 6248 6249 /* confirm we're still not at a refresh boundary */ 6250 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6251 cfs_b->slack_started = false; 6252 6253 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6254 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6255 return; 6256 } 6257 6258 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6259 runtime = cfs_b->runtime; 6260 6261 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6262 6263 if (!runtime) 6264 return; 6265 6266 distribute_cfs_runtime(cfs_b); 6267 } 6268 6269 /* 6270 * When a group wakes up we want to make sure that its quota is not already 6271 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6272 * runtime as update_curr() throttling can not trigger until it's on-rq. 6273 */ 6274 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6275 { 6276 if (!cfs_bandwidth_used()) 6277 return; 6278 6279 /* an active group must be handled by the update_curr()->put() path */ 6280 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6281 return; 6282 6283 /* ensure the group is not already throttled */ 6284 if (cfs_rq_throttled(cfs_rq)) 6285 return; 6286 6287 /* update runtime allocation */ 6288 account_cfs_rq_runtime(cfs_rq, 0); 6289 if (cfs_rq->runtime_remaining <= 0) 6290 throttle_cfs_rq(cfs_rq); 6291 } 6292 6293 static void sync_throttle(struct task_group *tg, int cpu) 6294 { 6295 struct cfs_rq *pcfs_rq, *cfs_rq; 6296 6297 if (!cfs_bandwidth_used()) 6298 return; 6299 6300 if (!tg->parent) 6301 return; 6302 6303 cfs_rq = tg->cfs_rq[cpu]; 6304 pcfs_rq = tg->parent->cfs_rq[cpu]; 6305 6306 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6307 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6308 } 6309 6310 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6311 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6312 { 6313 if (!cfs_bandwidth_used()) 6314 return false; 6315 6316 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6317 return false; 6318 6319 /* 6320 * it's possible for a throttled entity to be forced into a running 6321 * state (e.g. set_curr_task), in this case we're finished. 6322 */ 6323 if (cfs_rq_throttled(cfs_rq)) 6324 return true; 6325 6326 return throttle_cfs_rq(cfs_rq); 6327 } 6328 6329 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6330 { 6331 struct cfs_bandwidth *cfs_b = 6332 container_of(timer, struct cfs_bandwidth, slack_timer); 6333 6334 do_sched_cfs_slack_timer(cfs_b); 6335 6336 return HRTIMER_NORESTART; 6337 } 6338 6339 extern const u64 max_cfs_quota_period; 6340 6341 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6342 { 6343 struct cfs_bandwidth *cfs_b = 6344 container_of(timer, struct cfs_bandwidth, period_timer); 6345 unsigned long flags; 6346 int overrun; 6347 int idle = 0; 6348 int count = 0; 6349 6350 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6351 for (;;) { 6352 overrun = hrtimer_forward_now(timer, cfs_b->period); 6353 if (!overrun) 6354 break; 6355 6356 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6357 6358 if (++count > 3) { 6359 u64 new, old = ktime_to_ns(cfs_b->period); 6360 6361 /* 6362 * Grow period by a factor of 2 to avoid losing precision. 6363 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6364 * to fail. 6365 */ 6366 new = old * 2; 6367 if (new < max_cfs_quota_period) { 6368 cfs_b->period = ns_to_ktime(new); 6369 cfs_b->quota *= 2; 6370 cfs_b->burst *= 2; 6371 6372 pr_warn_ratelimited( 6373 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6374 smp_processor_id(), 6375 div_u64(new, NSEC_PER_USEC), 6376 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6377 } else { 6378 pr_warn_ratelimited( 6379 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6380 smp_processor_id(), 6381 div_u64(old, NSEC_PER_USEC), 6382 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6383 } 6384 6385 /* reset count so we don't come right back in here */ 6386 count = 0; 6387 } 6388 } 6389 if (idle) 6390 cfs_b->period_active = 0; 6391 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6392 6393 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6394 } 6395 6396 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6397 { 6398 raw_spin_lock_init(&cfs_b->lock); 6399 cfs_b->runtime = 0; 6400 cfs_b->quota = RUNTIME_INF; 6401 cfs_b->period = ns_to_ktime(default_cfs_period()); 6402 cfs_b->burst = 0; 6403 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6404 6405 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6406 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6407 cfs_b->period_timer.function = sched_cfs_period_timer; 6408 6409 /* Add a random offset so that timers interleave */ 6410 hrtimer_set_expires(&cfs_b->period_timer, 6411 get_random_u32_below(cfs_b->period)); 6412 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6413 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6414 cfs_b->slack_started = false; 6415 } 6416 6417 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6418 { 6419 cfs_rq->runtime_enabled = 0; 6420 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6421 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6422 } 6423 6424 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6425 { 6426 lockdep_assert_held(&cfs_b->lock); 6427 6428 if (cfs_b->period_active) 6429 return; 6430 6431 cfs_b->period_active = 1; 6432 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6433 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6434 } 6435 6436 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6437 { 6438 int __maybe_unused i; 6439 6440 /* init_cfs_bandwidth() was not called */ 6441 if (!cfs_b->throttled_cfs_rq.next) 6442 return; 6443 6444 hrtimer_cancel(&cfs_b->period_timer); 6445 hrtimer_cancel(&cfs_b->slack_timer); 6446 6447 /* 6448 * It is possible that we still have some cfs_rq's pending on a CSD 6449 * list, though this race is very rare. In order for this to occur, we 6450 * must have raced with the last task leaving the group while there 6451 * exist throttled cfs_rq(s), and the period_timer must have queued the 6452 * CSD item but the remote cpu has not yet processed it. To handle this, 6453 * we can simply flush all pending CSD work inline here. We're 6454 * guaranteed at this point that no additional cfs_rq of this group can 6455 * join a CSD list. 6456 */ 6457 #ifdef CONFIG_SMP 6458 for_each_possible_cpu(i) { 6459 struct rq *rq = cpu_rq(i); 6460 unsigned long flags; 6461 6462 if (list_empty(&rq->cfsb_csd_list)) 6463 continue; 6464 6465 local_irq_save(flags); 6466 __cfsb_csd_unthrottle(rq); 6467 local_irq_restore(flags); 6468 } 6469 #endif 6470 } 6471 6472 /* 6473 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6474 * 6475 * The race is harmless, since modifying bandwidth settings of unhooked group 6476 * bits doesn't do much. 6477 */ 6478 6479 /* cpu online callback */ 6480 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6481 { 6482 struct task_group *tg; 6483 6484 lockdep_assert_rq_held(rq); 6485 6486 rcu_read_lock(); 6487 list_for_each_entry_rcu(tg, &task_groups, list) { 6488 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6489 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6490 6491 raw_spin_lock(&cfs_b->lock); 6492 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6493 raw_spin_unlock(&cfs_b->lock); 6494 } 6495 rcu_read_unlock(); 6496 } 6497 6498 /* cpu offline callback */ 6499 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6500 { 6501 struct task_group *tg; 6502 6503 lockdep_assert_rq_held(rq); 6504 6505 /* 6506 * The rq clock has already been updated in the 6507 * set_rq_offline(), so we should skip updating 6508 * the rq clock again in unthrottle_cfs_rq(). 6509 */ 6510 rq_clock_start_loop_update(rq); 6511 6512 rcu_read_lock(); 6513 list_for_each_entry_rcu(tg, &task_groups, list) { 6514 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6515 6516 if (!cfs_rq->runtime_enabled) 6517 continue; 6518 6519 /* 6520 * clock_task is not advancing so we just need to make sure 6521 * there's some valid quota amount 6522 */ 6523 cfs_rq->runtime_remaining = 1; 6524 /* 6525 * Offline rq is schedulable till CPU is completely disabled 6526 * in take_cpu_down(), so we prevent new cfs throttling here. 6527 */ 6528 cfs_rq->runtime_enabled = 0; 6529 6530 if (cfs_rq_throttled(cfs_rq)) 6531 unthrottle_cfs_rq(cfs_rq); 6532 } 6533 rcu_read_unlock(); 6534 6535 rq_clock_stop_loop_update(rq); 6536 } 6537 6538 bool cfs_task_bw_constrained(struct task_struct *p) 6539 { 6540 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6541 6542 if (!cfs_bandwidth_used()) 6543 return false; 6544 6545 if (cfs_rq->runtime_enabled || 6546 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6547 return true; 6548 6549 return false; 6550 } 6551 6552 #ifdef CONFIG_NO_HZ_FULL 6553 /* called from pick_next_task_fair() */ 6554 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6555 { 6556 int cpu = cpu_of(rq); 6557 6558 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6559 return; 6560 6561 if (!tick_nohz_full_cpu(cpu)) 6562 return; 6563 6564 if (rq->nr_running != 1) 6565 return; 6566 6567 /* 6568 * We know there is only one task runnable and we've just picked it. The 6569 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6570 * be otherwise able to stop the tick. Just need to check if we are using 6571 * bandwidth control. 6572 */ 6573 if (cfs_task_bw_constrained(p)) 6574 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6575 } 6576 #endif 6577 6578 #else /* CONFIG_CFS_BANDWIDTH */ 6579 6580 static inline bool cfs_bandwidth_used(void) 6581 { 6582 return false; 6583 } 6584 6585 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6586 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6587 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6588 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6589 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6590 6591 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6592 { 6593 return 0; 6594 } 6595 6596 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6597 { 6598 return 0; 6599 } 6600 6601 static inline int throttled_lb_pair(struct task_group *tg, 6602 int src_cpu, int dest_cpu) 6603 { 6604 return 0; 6605 } 6606 6607 #ifdef CONFIG_FAIR_GROUP_SCHED 6608 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6609 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6610 #endif 6611 6612 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6613 { 6614 return NULL; 6615 } 6616 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6617 static inline void update_runtime_enabled(struct rq *rq) {} 6618 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6619 #ifdef CONFIG_CGROUP_SCHED 6620 bool cfs_task_bw_constrained(struct task_struct *p) 6621 { 6622 return false; 6623 } 6624 #endif 6625 #endif /* CONFIG_CFS_BANDWIDTH */ 6626 6627 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6628 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6629 #endif 6630 6631 /************************************************** 6632 * CFS operations on tasks: 6633 */ 6634 6635 #ifdef CONFIG_SCHED_HRTICK 6636 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6637 { 6638 struct sched_entity *se = &p->se; 6639 6640 SCHED_WARN_ON(task_rq(p) != rq); 6641 6642 if (rq->cfs.h_nr_running > 1) { 6643 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6644 u64 slice = se->slice; 6645 s64 delta = slice - ran; 6646 6647 if (delta < 0) { 6648 if (task_current(rq, p)) 6649 resched_curr(rq); 6650 return; 6651 } 6652 hrtick_start(rq, delta); 6653 } 6654 } 6655 6656 /* 6657 * called from enqueue/dequeue and updates the hrtick when the 6658 * current task is from our class and nr_running is low enough 6659 * to matter. 6660 */ 6661 static void hrtick_update(struct rq *rq) 6662 { 6663 struct task_struct *curr = rq->curr; 6664 6665 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6666 return; 6667 6668 hrtick_start_fair(rq, curr); 6669 } 6670 #else /* !CONFIG_SCHED_HRTICK */ 6671 static inline void 6672 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6673 { 6674 } 6675 6676 static inline void hrtick_update(struct rq *rq) 6677 { 6678 } 6679 #endif 6680 6681 #ifdef CONFIG_SMP 6682 static inline bool cpu_overutilized(int cpu) 6683 { 6684 unsigned long rq_util_min, rq_util_max; 6685 6686 if (!sched_energy_enabled()) 6687 return false; 6688 6689 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6690 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6691 6692 /* Return true only if the utilization doesn't fit CPU's capacity */ 6693 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6694 } 6695 6696 /* 6697 * overutilized value make sense only if EAS is enabled 6698 */ 6699 static inline bool is_rd_overutilized(struct root_domain *rd) 6700 { 6701 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6702 } 6703 6704 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6705 { 6706 if (!sched_energy_enabled()) 6707 return; 6708 6709 WRITE_ONCE(rd->overutilized, flag); 6710 trace_sched_overutilized_tp(rd, flag); 6711 } 6712 6713 static inline void check_update_overutilized_status(struct rq *rq) 6714 { 6715 /* 6716 * overutilized field is used for load balancing decisions only 6717 * if energy aware scheduler is being used 6718 */ 6719 6720 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6721 set_rd_overutilized(rq->rd, 1); 6722 } 6723 #else 6724 static inline void check_update_overutilized_status(struct rq *rq) { } 6725 #endif 6726 6727 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6728 static int sched_idle_rq(struct rq *rq) 6729 { 6730 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6731 rq->nr_running); 6732 } 6733 6734 #ifdef CONFIG_SMP 6735 static int sched_idle_cpu(int cpu) 6736 { 6737 return sched_idle_rq(cpu_rq(cpu)); 6738 } 6739 #endif 6740 6741 /* 6742 * The enqueue_task method is called before nr_running is 6743 * increased. Here we update the fair scheduling stats and 6744 * then put the task into the rbtree: 6745 */ 6746 static void 6747 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6748 { 6749 struct cfs_rq *cfs_rq; 6750 struct sched_entity *se = &p->se; 6751 int idle_h_nr_running = task_has_idle_policy(p); 6752 int task_new = !(flags & ENQUEUE_WAKEUP); 6753 6754 /* 6755 * The code below (indirectly) updates schedutil which looks at 6756 * the cfs_rq utilization to select a frequency. 6757 * Let's add the task's estimated utilization to the cfs_rq's 6758 * estimated utilization, before we update schedutil. 6759 */ 6760 util_est_enqueue(&rq->cfs, p); 6761 6762 /* 6763 * If in_iowait is set, the code below may not trigger any cpufreq 6764 * utilization updates, so do it here explicitly with the IOWAIT flag 6765 * passed. 6766 */ 6767 if (p->in_iowait) 6768 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6769 6770 for_each_sched_entity(se) { 6771 if (se->on_rq) 6772 break; 6773 cfs_rq = cfs_rq_of(se); 6774 enqueue_entity(cfs_rq, se, flags); 6775 6776 cfs_rq->h_nr_running++; 6777 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6778 6779 if (cfs_rq_is_idle(cfs_rq)) 6780 idle_h_nr_running = 1; 6781 6782 /* end evaluation on encountering a throttled cfs_rq */ 6783 if (cfs_rq_throttled(cfs_rq)) 6784 goto enqueue_throttle; 6785 6786 flags = ENQUEUE_WAKEUP; 6787 } 6788 6789 for_each_sched_entity(se) { 6790 cfs_rq = cfs_rq_of(se); 6791 6792 update_load_avg(cfs_rq, se, UPDATE_TG); 6793 se_update_runnable(se); 6794 update_cfs_group(se); 6795 6796 cfs_rq->h_nr_running++; 6797 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6798 6799 if (cfs_rq_is_idle(cfs_rq)) 6800 idle_h_nr_running = 1; 6801 6802 /* end evaluation on encountering a throttled cfs_rq */ 6803 if (cfs_rq_throttled(cfs_rq)) 6804 goto enqueue_throttle; 6805 } 6806 6807 /* At this point se is NULL and we are at root level*/ 6808 add_nr_running(rq, 1); 6809 6810 /* 6811 * Since new tasks are assigned an initial util_avg equal to 6812 * half of the spare capacity of their CPU, tiny tasks have the 6813 * ability to cross the overutilized threshold, which will 6814 * result in the load balancer ruining all the task placement 6815 * done by EAS. As a way to mitigate that effect, do not account 6816 * for the first enqueue operation of new tasks during the 6817 * overutilized flag detection. 6818 * 6819 * A better way of solving this problem would be to wait for 6820 * the PELT signals of tasks to converge before taking them 6821 * into account, but that is not straightforward to implement, 6822 * and the following generally works well enough in practice. 6823 */ 6824 if (!task_new) 6825 check_update_overutilized_status(rq); 6826 6827 enqueue_throttle: 6828 assert_list_leaf_cfs_rq(rq); 6829 6830 hrtick_update(rq); 6831 } 6832 6833 static void set_next_buddy(struct sched_entity *se); 6834 6835 /* 6836 * The dequeue_task method is called before nr_running is 6837 * decreased. We remove the task from the rbtree and 6838 * update the fair scheduling stats: 6839 */ 6840 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6841 { 6842 struct cfs_rq *cfs_rq; 6843 struct sched_entity *se = &p->se; 6844 int task_sleep = flags & DEQUEUE_SLEEP; 6845 int idle_h_nr_running = task_has_idle_policy(p); 6846 bool was_sched_idle = sched_idle_rq(rq); 6847 6848 util_est_dequeue(&rq->cfs, p); 6849 6850 for_each_sched_entity(se) { 6851 cfs_rq = cfs_rq_of(se); 6852 dequeue_entity(cfs_rq, se, flags); 6853 6854 cfs_rq->h_nr_running--; 6855 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6856 6857 if (cfs_rq_is_idle(cfs_rq)) 6858 idle_h_nr_running = 1; 6859 6860 /* end evaluation on encountering a throttled cfs_rq */ 6861 if (cfs_rq_throttled(cfs_rq)) 6862 goto dequeue_throttle; 6863 6864 /* Don't dequeue parent if it has other entities besides us */ 6865 if (cfs_rq->load.weight) { 6866 /* Avoid re-evaluating load for this entity: */ 6867 se = parent_entity(se); 6868 /* 6869 * Bias pick_next to pick a task from this cfs_rq, as 6870 * p is sleeping when it is within its sched_slice. 6871 */ 6872 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6873 set_next_buddy(se); 6874 break; 6875 } 6876 flags |= DEQUEUE_SLEEP; 6877 } 6878 6879 for_each_sched_entity(se) { 6880 cfs_rq = cfs_rq_of(se); 6881 6882 update_load_avg(cfs_rq, se, UPDATE_TG); 6883 se_update_runnable(se); 6884 update_cfs_group(se); 6885 6886 cfs_rq->h_nr_running--; 6887 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6888 6889 if (cfs_rq_is_idle(cfs_rq)) 6890 idle_h_nr_running = 1; 6891 6892 /* end evaluation on encountering a throttled cfs_rq */ 6893 if (cfs_rq_throttled(cfs_rq)) 6894 goto dequeue_throttle; 6895 6896 } 6897 6898 /* At this point se is NULL and we are at root level*/ 6899 sub_nr_running(rq, 1); 6900 6901 /* balance early to pull high priority tasks */ 6902 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6903 rq->next_balance = jiffies; 6904 6905 dequeue_throttle: 6906 util_est_update(&rq->cfs, p, task_sleep); 6907 hrtick_update(rq); 6908 } 6909 6910 #ifdef CONFIG_SMP 6911 6912 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 6913 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6914 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6915 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6916 6917 #ifdef CONFIG_NO_HZ_COMMON 6918 6919 static struct { 6920 cpumask_var_t idle_cpus_mask; 6921 atomic_t nr_cpus; 6922 int has_blocked; /* Idle CPUS has blocked load */ 6923 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6924 unsigned long next_balance; /* in jiffy units */ 6925 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6926 } nohz ____cacheline_aligned; 6927 6928 #endif /* CONFIG_NO_HZ_COMMON */ 6929 6930 static unsigned long cpu_load(struct rq *rq) 6931 { 6932 return cfs_rq_load_avg(&rq->cfs); 6933 } 6934 6935 /* 6936 * cpu_load_without - compute CPU load without any contributions from *p 6937 * @cpu: the CPU which load is requested 6938 * @p: the task which load should be discounted 6939 * 6940 * The load of a CPU is defined by the load of tasks currently enqueued on that 6941 * CPU as well as tasks which are currently sleeping after an execution on that 6942 * CPU. 6943 * 6944 * This method returns the load of the specified CPU by discounting the load of 6945 * the specified task, whenever the task is currently contributing to the CPU 6946 * load. 6947 */ 6948 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6949 { 6950 struct cfs_rq *cfs_rq; 6951 unsigned int load; 6952 6953 /* Task has no contribution or is new */ 6954 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6955 return cpu_load(rq); 6956 6957 cfs_rq = &rq->cfs; 6958 load = READ_ONCE(cfs_rq->avg.load_avg); 6959 6960 /* Discount task's util from CPU's util */ 6961 lsub_positive(&load, task_h_load(p)); 6962 6963 return load; 6964 } 6965 6966 static unsigned long cpu_runnable(struct rq *rq) 6967 { 6968 return cfs_rq_runnable_avg(&rq->cfs); 6969 } 6970 6971 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6972 { 6973 struct cfs_rq *cfs_rq; 6974 unsigned int runnable; 6975 6976 /* Task has no contribution or is new */ 6977 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6978 return cpu_runnable(rq); 6979 6980 cfs_rq = &rq->cfs; 6981 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6982 6983 /* Discount task's runnable from CPU's runnable */ 6984 lsub_positive(&runnable, p->se.avg.runnable_avg); 6985 6986 return runnable; 6987 } 6988 6989 static unsigned long capacity_of(int cpu) 6990 { 6991 return cpu_rq(cpu)->cpu_capacity; 6992 } 6993 6994 static void record_wakee(struct task_struct *p) 6995 { 6996 /* 6997 * Only decay a single time; tasks that have less then 1 wakeup per 6998 * jiffy will not have built up many flips. 6999 */ 7000 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7001 current->wakee_flips >>= 1; 7002 current->wakee_flip_decay_ts = jiffies; 7003 } 7004 7005 if (current->last_wakee != p) { 7006 current->last_wakee = p; 7007 current->wakee_flips++; 7008 } 7009 } 7010 7011 /* 7012 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7013 * 7014 * A waker of many should wake a different task than the one last awakened 7015 * at a frequency roughly N times higher than one of its wakees. 7016 * 7017 * In order to determine whether we should let the load spread vs consolidating 7018 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7019 * partner, and a factor of lls_size higher frequency in the other. 7020 * 7021 * With both conditions met, we can be relatively sure that the relationship is 7022 * non-monogamous, with partner count exceeding socket size. 7023 * 7024 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7025 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7026 * socket size. 7027 */ 7028 static int wake_wide(struct task_struct *p) 7029 { 7030 unsigned int master = current->wakee_flips; 7031 unsigned int slave = p->wakee_flips; 7032 int factor = __this_cpu_read(sd_llc_size); 7033 7034 if (master < slave) 7035 swap(master, slave); 7036 if (slave < factor || master < slave * factor) 7037 return 0; 7038 return 1; 7039 } 7040 7041 /* 7042 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7043 * soonest. For the purpose of speed we only consider the waking and previous 7044 * CPU. 7045 * 7046 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7047 * cache-affine and is (or will be) idle. 7048 * 7049 * wake_affine_weight() - considers the weight to reflect the average 7050 * scheduling latency of the CPUs. This seems to work 7051 * for the overloaded case. 7052 */ 7053 static int 7054 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7055 { 7056 /* 7057 * If this_cpu is idle, it implies the wakeup is from interrupt 7058 * context. Only allow the move if cache is shared. Otherwise an 7059 * interrupt intensive workload could force all tasks onto one 7060 * node depending on the IO topology or IRQ affinity settings. 7061 * 7062 * If the prev_cpu is idle and cache affine then avoid a migration. 7063 * There is no guarantee that the cache hot data from an interrupt 7064 * is more important than cache hot data on the prev_cpu and from 7065 * a cpufreq perspective, it's better to have higher utilisation 7066 * on one CPU. 7067 */ 7068 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7069 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7070 7071 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7072 return this_cpu; 7073 7074 if (available_idle_cpu(prev_cpu)) 7075 return prev_cpu; 7076 7077 return nr_cpumask_bits; 7078 } 7079 7080 static int 7081 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7082 int this_cpu, int prev_cpu, int sync) 7083 { 7084 s64 this_eff_load, prev_eff_load; 7085 unsigned long task_load; 7086 7087 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7088 7089 if (sync) { 7090 unsigned long current_load = task_h_load(current); 7091 7092 if (current_load > this_eff_load) 7093 return this_cpu; 7094 7095 this_eff_load -= current_load; 7096 } 7097 7098 task_load = task_h_load(p); 7099 7100 this_eff_load += task_load; 7101 if (sched_feat(WA_BIAS)) 7102 this_eff_load *= 100; 7103 this_eff_load *= capacity_of(prev_cpu); 7104 7105 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7106 prev_eff_load -= task_load; 7107 if (sched_feat(WA_BIAS)) 7108 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7109 prev_eff_load *= capacity_of(this_cpu); 7110 7111 /* 7112 * If sync, adjust the weight of prev_eff_load such that if 7113 * prev_eff == this_eff that select_idle_sibling() will consider 7114 * stacking the wakee on top of the waker if no other CPU is 7115 * idle. 7116 */ 7117 if (sync) 7118 prev_eff_load += 1; 7119 7120 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7121 } 7122 7123 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7124 int this_cpu, int prev_cpu, int sync) 7125 { 7126 int target = nr_cpumask_bits; 7127 7128 if (sched_feat(WA_IDLE)) 7129 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7130 7131 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7132 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7133 7134 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7135 if (target != this_cpu) 7136 return prev_cpu; 7137 7138 schedstat_inc(sd->ttwu_move_affine); 7139 schedstat_inc(p->stats.nr_wakeups_affine); 7140 return target; 7141 } 7142 7143 static struct sched_group * 7144 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7145 7146 /* 7147 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7148 */ 7149 static int 7150 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7151 { 7152 unsigned long load, min_load = ULONG_MAX; 7153 unsigned int min_exit_latency = UINT_MAX; 7154 u64 latest_idle_timestamp = 0; 7155 int least_loaded_cpu = this_cpu; 7156 int shallowest_idle_cpu = -1; 7157 int i; 7158 7159 /* Check if we have any choice: */ 7160 if (group->group_weight == 1) 7161 return cpumask_first(sched_group_span(group)); 7162 7163 /* Traverse only the allowed CPUs */ 7164 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7165 struct rq *rq = cpu_rq(i); 7166 7167 if (!sched_core_cookie_match(rq, p)) 7168 continue; 7169 7170 if (sched_idle_cpu(i)) 7171 return i; 7172 7173 if (available_idle_cpu(i)) { 7174 struct cpuidle_state *idle = idle_get_state(rq); 7175 if (idle && idle->exit_latency < min_exit_latency) { 7176 /* 7177 * We give priority to a CPU whose idle state 7178 * has the smallest exit latency irrespective 7179 * of any idle timestamp. 7180 */ 7181 min_exit_latency = idle->exit_latency; 7182 latest_idle_timestamp = rq->idle_stamp; 7183 shallowest_idle_cpu = i; 7184 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7185 rq->idle_stamp > latest_idle_timestamp) { 7186 /* 7187 * If equal or no active idle state, then 7188 * the most recently idled CPU might have 7189 * a warmer cache. 7190 */ 7191 latest_idle_timestamp = rq->idle_stamp; 7192 shallowest_idle_cpu = i; 7193 } 7194 } else if (shallowest_idle_cpu == -1) { 7195 load = cpu_load(cpu_rq(i)); 7196 if (load < min_load) { 7197 min_load = load; 7198 least_loaded_cpu = i; 7199 } 7200 } 7201 } 7202 7203 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7204 } 7205 7206 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7207 int cpu, int prev_cpu, int sd_flag) 7208 { 7209 int new_cpu = cpu; 7210 7211 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7212 return prev_cpu; 7213 7214 /* 7215 * We need task's util for cpu_util_without, sync it up to 7216 * prev_cpu's last_update_time. 7217 */ 7218 if (!(sd_flag & SD_BALANCE_FORK)) 7219 sync_entity_load_avg(&p->se); 7220 7221 while (sd) { 7222 struct sched_group *group; 7223 struct sched_domain *tmp; 7224 int weight; 7225 7226 if (!(sd->flags & sd_flag)) { 7227 sd = sd->child; 7228 continue; 7229 } 7230 7231 group = sched_balance_find_dst_group(sd, p, cpu); 7232 if (!group) { 7233 sd = sd->child; 7234 continue; 7235 } 7236 7237 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7238 if (new_cpu == cpu) { 7239 /* Now try balancing at a lower domain level of 'cpu': */ 7240 sd = sd->child; 7241 continue; 7242 } 7243 7244 /* Now try balancing at a lower domain level of 'new_cpu': */ 7245 cpu = new_cpu; 7246 weight = sd->span_weight; 7247 sd = NULL; 7248 for_each_domain(cpu, tmp) { 7249 if (weight <= tmp->span_weight) 7250 break; 7251 if (tmp->flags & sd_flag) 7252 sd = tmp; 7253 } 7254 } 7255 7256 return new_cpu; 7257 } 7258 7259 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7260 { 7261 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7262 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7263 return cpu; 7264 7265 return -1; 7266 } 7267 7268 #ifdef CONFIG_SCHED_SMT 7269 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7270 EXPORT_SYMBOL_GPL(sched_smt_present); 7271 7272 static inline void set_idle_cores(int cpu, int val) 7273 { 7274 struct sched_domain_shared *sds; 7275 7276 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7277 if (sds) 7278 WRITE_ONCE(sds->has_idle_cores, val); 7279 } 7280 7281 static inline bool test_idle_cores(int cpu) 7282 { 7283 struct sched_domain_shared *sds; 7284 7285 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7286 if (sds) 7287 return READ_ONCE(sds->has_idle_cores); 7288 7289 return false; 7290 } 7291 7292 /* 7293 * Scans the local SMT mask to see if the entire core is idle, and records this 7294 * information in sd_llc_shared->has_idle_cores. 7295 * 7296 * Since SMT siblings share all cache levels, inspecting this limited remote 7297 * state should be fairly cheap. 7298 */ 7299 void __update_idle_core(struct rq *rq) 7300 { 7301 int core = cpu_of(rq); 7302 int cpu; 7303 7304 rcu_read_lock(); 7305 if (test_idle_cores(core)) 7306 goto unlock; 7307 7308 for_each_cpu(cpu, cpu_smt_mask(core)) { 7309 if (cpu == core) 7310 continue; 7311 7312 if (!available_idle_cpu(cpu)) 7313 goto unlock; 7314 } 7315 7316 set_idle_cores(core, 1); 7317 unlock: 7318 rcu_read_unlock(); 7319 } 7320 7321 /* 7322 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7323 * there are no idle cores left in the system; tracked through 7324 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7325 */ 7326 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7327 { 7328 bool idle = true; 7329 int cpu; 7330 7331 for_each_cpu(cpu, cpu_smt_mask(core)) { 7332 if (!available_idle_cpu(cpu)) { 7333 idle = false; 7334 if (*idle_cpu == -1) { 7335 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7336 *idle_cpu = cpu; 7337 break; 7338 } 7339 continue; 7340 } 7341 break; 7342 } 7343 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7344 *idle_cpu = cpu; 7345 } 7346 7347 if (idle) 7348 return core; 7349 7350 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7351 return -1; 7352 } 7353 7354 /* 7355 * Scan the local SMT mask for idle CPUs. 7356 */ 7357 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7358 { 7359 int cpu; 7360 7361 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7362 if (cpu == target) 7363 continue; 7364 /* 7365 * Check if the CPU is in the LLC scheduling domain of @target. 7366 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7367 */ 7368 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7369 continue; 7370 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7371 return cpu; 7372 } 7373 7374 return -1; 7375 } 7376 7377 #else /* CONFIG_SCHED_SMT */ 7378 7379 static inline void set_idle_cores(int cpu, int val) 7380 { 7381 } 7382 7383 static inline bool test_idle_cores(int cpu) 7384 { 7385 return false; 7386 } 7387 7388 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7389 { 7390 return __select_idle_cpu(core, p); 7391 } 7392 7393 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7394 { 7395 return -1; 7396 } 7397 7398 #endif /* CONFIG_SCHED_SMT */ 7399 7400 /* 7401 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7402 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7403 * average idle time for this rq (as found in rq->avg_idle). 7404 */ 7405 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7406 { 7407 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7408 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7409 struct sched_domain_shared *sd_share; 7410 7411 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7412 7413 if (sched_feat(SIS_UTIL)) { 7414 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7415 if (sd_share) { 7416 /* because !--nr is the condition to stop scan */ 7417 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7418 /* overloaded LLC is unlikely to have idle cpu/core */ 7419 if (nr == 1) 7420 return -1; 7421 } 7422 } 7423 7424 if (static_branch_unlikely(&sched_cluster_active)) { 7425 struct sched_group *sg = sd->groups; 7426 7427 if (sg->flags & SD_CLUSTER) { 7428 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7429 if (!cpumask_test_cpu(cpu, cpus)) 7430 continue; 7431 7432 if (has_idle_core) { 7433 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7434 if ((unsigned int)i < nr_cpumask_bits) 7435 return i; 7436 } else { 7437 if (--nr <= 0) 7438 return -1; 7439 idle_cpu = __select_idle_cpu(cpu, p); 7440 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7441 return idle_cpu; 7442 } 7443 } 7444 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7445 } 7446 } 7447 7448 for_each_cpu_wrap(cpu, cpus, target + 1) { 7449 if (has_idle_core) { 7450 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7451 if ((unsigned int)i < nr_cpumask_bits) 7452 return i; 7453 7454 } else { 7455 if (--nr <= 0) 7456 return -1; 7457 idle_cpu = __select_idle_cpu(cpu, p); 7458 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7459 break; 7460 } 7461 } 7462 7463 if (has_idle_core) 7464 set_idle_cores(target, false); 7465 7466 return idle_cpu; 7467 } 7468 7469 /* 7470 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7471 * the task fits. If no CPU is big enough, but there are idle ones, try to 7472 * maximize capacity. 7473 */ 7474 static int 7475 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7476 { 7477 unsigned long task_util, util_min, util_max, best_cap = 0; 7478 int fits, best_fits = 0; 7479 int cpu, best_cpu = -1; 7480 struct cpumask *cpus; 7481 7482 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7483 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7484 7485 task_util = task_util_est(p); 7486 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7487 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7488 7489 for_each_cpu_wrap(cpu, cpus, target) { 7490 unsigned long cpu_cap = capacity_of(cpu); 7491 7492 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7493 continue; 7494 7495 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7496 7497 /* This CPU fits with all requirements */ 7498 if (fits > 0) 7499 return cpu; 7500 /* 7501 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7502 * Look for the CPU with best capacity. 7503 */ 7504 else if (fits < 0) 7505 cpu_cap = get_actual_cpu_capacity(cpu); 7506 7507 /* 7508 * First, select CPU which fits better (-1 being better than 0). 7509 * Then, select the one with best capacity at same level. 7510 */ 7511 if ((fits < best_fits) || 7512 ((fits == best_fits) && (cpu_cap > best_cap))) { 7513 best_cap = cpu_cap; 7514 best_cpu = cpu; 7515 best_fits = fits; 7516 } 7517 } 7518 7519 return best_cpu; 7520 } 7521 7522 static inline bool asym_fits_cpu(unsigned long util, 7523 unsigned long util_min, 7524 unsigned long util_max, 7525 int cpu) 7526 { 7527 if (sched_asym_cpucap_active()) 7528 /* 7529 * Return true only if the cpu fully fits the task requirements 7530 * which include the utilization and the performance hints. 7531 */ 7532 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7533 7534 return true; 7535 } 7536 7537 /* 7538 * Try and locate an idle core/thread in the LLC cache domain. 7539 */ 7540 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7541 { 7542 bool has_idle_core = false; 7543 struct sched_domain *sd; 7544 unsigned long task_util, util_min, util_max; 7545 int i, recent_used_cpu, prev_aff = -1; 7546 7547 /* 7548 * On asymmetric system, update task utilization because we will check 7549 * that the task fits with CPU's capacity. 7550 */ 7551 if (sched_asym_cpucap_active()) { 7552 sync_entity_load_avg(&p->se); 7553 task_util = task_util_est(p); 7554 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7555 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7556 } 7557 7558 /* 7559 * per-cpu select_rq_mask usage 7560 */ 7561 lockdep_assert_irqs_disabled(); 7562 7563 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7564 asym_fits_cpu(task_util, util_min, util_max, target)) 7565 return target; 7566 7567 /* 7568 * If the previous CPU is cache affine and idle, don't be stupid: 7569 */ 7570 if (prev != target && cpus_share_cache(prev, target) && 7571 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7572 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7573 7574 if (!static_branch_unlikely(&sched_cluster_active) || 7575 cpus_share_resources(prev, target)) 7576 return prev; 7577 7578 prev_aff = prev; 7579 } 7580 7581 /* 7582 * Allow a per-cpu kthread to stack with the wakee if the 7583 * kworker thread and the tasks previous CPUs are the same. 7584 * The assumption is that the wakee queued work for the 7585 * per-cpu kthread that is now complete and the wakeup is 7586 * essentially a sync wakeup. An obvious example of this 7587 * pattern is IO completions. 7588 */ 7589 if (is_per_cpu_kthread(current) && 7590 in_task() && 7591 prev == smp_processor_id() && 7592 this_rq()->nr_running <= 1 && 7593 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7594 return prev; 7595 } 7596 7597 /* Check a recently used CPU as a potential idle candidate: */ 7598 recent_used_cpu = p->recent_used_cpu; 7599 p->recent_used_cpu = prev; 7600 if (recent_used_cpu != prev && 7601 recent_used_cpu != target && 7602 cpus_share_cache(recent_used_cpu, target) && 7603 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7604 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7605 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7606 7607 if (!static_branch_unlikely(&sched_cluster_active) || 7608 cpus_share_resources(recent_used_cpu, target)) 7609 return recent_used_cpu; 7610 7611 } else { 7612 recent_used_cpu = -1; 7613 } 7614 7615 /* 7616 * For asymmetric CPU capacity systems, our domain of interest is 7617 * sd_asym_cpucapacity rather than sd_llc. 7618 */ 7619 if (sched_asym_cpucap_active()) { 7620 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7621 /* 7622 * On an asymmetric CPU capacity system where an exclusive 7623 * cpuset defines a symmetric island (i.e. one unique 7624 * capacity_orig value through the cpuset), the key will be set 7625 * but the CPUs within that cpuset will not have a domain with 7626 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7627 * capacity path. 7628 */ 7629 if (sd) { 7630 i = select_idle_capacity(p, sd, target); 7631 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7632 } 7633 } 7634 7635 sd = rcu_dereference(per_cpu(sd_llc, target)); 7636 if (!sd) 7637 return target; 7638 7639 if (sched_smt_active()) { 7640 has_idle_core = test_idle_cores(target); 7641 7642 if (!has_idle_core && cpus_share_cache(prev, target)) { 7643 i = select_idle_smt(p, sd, prev); 7644 if ((unsigned int)i < nr_cpumask_bits) 7645 return i; 7646 } 7647 } 7648 7649 i = select_idle_cpu(p, sd, has_idle_core, target); 7650 if ((unsigned)i < nr_cpumask_bits) 7651 return i; 7652 7653 /* 7654 * For cluster machines which have lower sharing cache like L2 or 7655 * LLC Tag, we tend to find an idle CPU in the target's cluster 7656 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7657 * use them if possible when no idle CPU found in select_idle_cpu(). 7658 */ 7659 if ((unsigned int)prev_aff < nr_cpumask_bits) 7660 return prev_aff; 7661 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7662 return recent_used_cpu; 7663 7664 return target; 7665 } 7666 7667 /** 7668 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7669 * @cpu: the CPU to get the utilization for 7670 * @p: task for which the CPU utilization should be predicted or NULL 7671 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7672 * @boost: 1 to enable boosting, otherwise 0 7673 * 7674 * The unit of the return value must be the same as the one of CPU capacity 7675 * so that CPU utilization can be compared with CPU capacity. 7676 * 7677 * CPU utilization is the sum of running time of runnable tasks plus the 7678 * recent utilization of currently non-runnable tasks on that CPU. 7679 * It represents the amount of CPU capacity currently used by CFS tasks in 7680 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7681 * capacity at f_max. 7682 * 7683 * The estimated CPU utilization is defined as the maximum between CPU 7684 * utilization and sum of the estimated utilization of the currently 7685 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7686 * previously-executed tasks, which helps better deduce how busy a CPU will 7687 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7688 * of such a task would be significantly decayed at this point of time. 7689 * 7690 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7691 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7692 * utilization. Boosting is implemented in cpu_util() so that internal 7693 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7694 * latter via cpu_util_cfs_boost(). 7695 * 7696 * CPU utilization can be higher than the current CPU capacity 7697 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7698 * of rounding errors as well as task migrations or wakeups of new tasks. 7699 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7700 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7701 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7702 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7703 * though since this is useful for predicting the CPU capacity required 7704 * after task migrations (scheduler-driven DVFS). 7705 * 7706 * Return: (Boosted) (estimated) utilization for the specified CPU. 7707 */ 7708 static unsigned long 7709 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7710 { 7711 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7712 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7713 unsigned long runnable; 7714 7715 if (boost) { 7716 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7717 util = max(util, runnable); 7718 } 7719 7720 /* 7721 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7722 * contribution. If @p migrates from another CPU to @cpu add its 7723 * contribution. In all the other cases @cpu is not impacted by the 7724 * migration so its util_avg is already correct. 7725 */ 7726 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7727 lsub_positive(&util, task_util(p)); 7728 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7729 util += task_util(p); 7730 7731 if (sched_feat(UTIL_EST)) { 7732 unsigned long util_est; 7733 7734 util_est = READ_ONCE(cfs_rq->avg.util_est); 7735 7736 /* 7737 * During wake-up @p isn't enqueued yet and doesn't contribute 7738 * to any cpu_rq(cpu)->cfs.avg.util_est. 7739 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7740 * has been enqueued. 7741 * 7742 * During exec (@dst_cpu = -1) @p is enqueued and does 7743 * contribute to cpu_rq(cpu)->cfs.util_est. 7744 * Remove it to "simulate" cpu_util without @p's contribution. 7745 * 7746 * Despite the task_on_rq_queued(@p) check there is still a 7747 * small window for a possible race when an exec 7748 * select_task_rq_fair() races with LB's detach_task(). 7749 * 7750 * detach_task() 7751 * deactivate_task() 7752 * p->on_rq = TASK_ON_RQ_MIGRATING; 7753 * -------------------------------- A 7754 * dequeue_task() \ 7755 * dequeue_task_fair() + Race Time 7756 * util_est_dequeue() / 7757 * -------------------------------- B 7758 * 7759 * The additional check "current == p" is required to further 7760 * reduce the race window. 7761 */ 7762 if (dst_cpu == cpu) 7763 util_est += _task_util_est(p); 7764 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7765 lsub_positive(&util_est, _task_util_est(p)); 7766 7767 util = max(util, util_est); 7768 } 7769 7770 return min(util, arch_scale_cpu_capacity(cpu)); 7771 } 7772 7773 unsigned long cpu_util_cfs(int cpu) 7774 { 7775 return cpu_util(cpu, NULL, -1, 0); 7776 } 7777 7778 unsigned long cpu_util_cfs_boost(int cpu) 7779 { 7780 return cpu_util(cpu, NULL, -1, 1); 7781 } 7782 7783 /* 7784 * cpu_util_without: compute cpu utilization without any contributions from *p 7785 * @cpu: the CPU which utilization is requested 7786 * @p: the task which utilization should be discounted 7787 * 7788 * The utilization of a CPU is defined by the utilization of tasks currently 7789 * enqueued on that CPU as well as tasks which are currently sleeping after an 7790 * execution on that CPU. 7791 * 7792 * This method returns the utilization of the specified CPU by discounting the 7793 * utilization of the specified task, whenever the task is currently 7794 * contributing to the CPU utilization. 7795 */ 7796 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7797 { 7798 /* Task has no contribution or is new */ 7799 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7800 p = NULL; 7801 7802 return cpu_util(cpu, p, -1, 0); 7803 } 7804 7805 /* 7806 * energy_env - Utilization landscape for energy estimation. 7807 * @task_busy_time: Utilization contribution by the task for which we test the 7808 * placement. Given by eenv_task_busy_time(). 7809 * @pd_busy_time: Utilization of the whole perf domain without the task 7810 * contribution. Given by eenv_pd_busy_time(). 7811 * @cpu_cap: Maximum CPU capacity for the perf domain. 7812 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7813 */ 7814 struct energy_env { 7815 unsigned long task_busy_time; 7816 unsigned long pd_busy_time; 7817 unsigned long cpu_cap; 7818 unsigned long pd_cap; 7819 }; 7820 7821 /* 7822 * Compute the task busy time for compute_energy(). This time cannot be 7823 * injected directly into effective_cpu_util() because of the IRQ scaling. 7824 * The latter only makes sense with the most recent CPUs where the task has 7825 * run. 7826 */ 7827 static inline void eenv_task_busy_time(struct energy_env *eenv, 7828 struct task_struct *p, int prev_cpu) 7829 { 7830 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7831 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7832 7833 if (unlikely(irq >= max_cap)) 7834 busy_time = max_cap; 7835 else 7836 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7837 7838 eenv->task_busy_time = busy_time; 7839 } 7840 7841 /* 7842 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7843 * utilization for each @pd_cpus, it however doesn't take into account 7844 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7845 * scale the EM reported power consumption at the (eventually clamped) 7846 * cpu_capacity. 7847 * 7848 * The contribution of the task @p for which we want to estimate the 7849 * energy cost is removed (by cpu_util()) and must be calculated 7850 * separately (see eenv_task_busy_time). This ensures: 7851 * 7852 * - A stable PD utilization, no matter which CPU of that PD we want to place 7853 * the task on. 7854 * 7855 * - A fair comparison between CPUs as the task contribution (task_util()) 7856 * will always be the same no matter which CPU utilization we rely on 7857 * (util_avg or util_est). 7858 * 7859 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7860 * exceed @eenv->pd_cap. 7861 */ 7862 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7863 struct cpumask *pd_cpus, 7864 struct task_struct *p) 7865 { 7866 unsigned long busy_time = 0; 7867 int cpu; 7868 7869 for_each_cpu(cpu, pd_cpus) { 7870 unsigned long util = cpu_util(cpu, p, -1, 0); 7871 7872 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 7873 } 7874 7875 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7876 } 7877 7878 /* 7879 * Compute the maximum utilization for compute_energy() when the task @p 7880 * is placed on the cpu @dst_cpu. 7881 * 7882 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7883 * exceed @eenv->cpu_cap. 7884 */ 7885 static inline unsigned long 7886 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7887 struct task_struct *p, int dst_cpu) 7888 { 7889 unsigned long max_util = 0; 7890 int cpu; 7891 7892 for_each_cpu(cpu, pd_cpus) { 7893 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7894 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7895 unsigned long eff_util, min, max; 7896 7897 /* 7898 * Performance domain frequency: utilization clamping 7899 * must be considered since it affects the selection 7900 * of the performance domain frequency. 7901 * NOTE: in case RT tasks are running, by default the min 7902 * utilization can be max OPP. 7903 */ 7904 eff_util = effective_cpu_util(cpu, util, &min, &max); 7905 7906 /* Task's uclamp can modify min and max value */ 7907 if (tsk && uclamp_is_used()) { 7908 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 7909 7910 /* 7911 * If there is no active max uclamp constraint, 7912 * directly use task's one, otherwise keep max. 7913 */ 7914 if (uclamp_rq_is_idle(cpu_rq(cpu))) 7915 max = uclamp_eff_value(p, UCLAMP_MAX); 7916 else 7917 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 7918 } 7919 7920 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 7921 max_util = max(max_util, eff_util); 7922 } 7923 7924 return min(max_util, eenv->cpu_cap); 7925 } 7926 7927 /* 7928 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7929 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7930 * contribution is ignored. 7931 */ 7932 static inline unsigned long 7933 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7934 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7935 { 7936 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7937 unsigned long busy_time = eenv->pd_busy_time; 7938 unsigned long energy; 7939 7940 if (dst_cpu >= 0) 7941 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7942 7943 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7944 7945 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7946 7947 return energy; 7948 } 7949 7950 /* 7951 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7952 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7953 * spare capacity in each performance domain and uses it as a potential 7954 * candidate to execute the task. Then, it uses the Energy Model to figure 7955 * out which of the CPU candidates is the most energy-efficient. 7956 * 7957 * The rationale for this heuristic is as follows. In a performance domain, 7958 * all the most energy efficient CPU candidates (according to the Energy 7959 * Model) are those for which we'll request a low frequency. When there are 7960 * several CPUs for which the frequency request will be the same, we don't 7961 * have enough data to break the tie between them, because the Energy Model 7962 * only includes active power costs. With this model, if we assume that 7963 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7964 * the maximum spare capacity in a performance domain is guaranteed to be among 7965 * the best candidates of the performance domain. 7966 * 7967 * In practice, it could be preferable from an energy standpoint to pack 7968 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7969 * but that could also hurt our chances to go cluster idle, and we have no 7970 * ways to tell with the current Energy Model if this is actually a good 7971 * idea or not. So, find_energy_efficient_cpu() basically favors 7972 * cluster-packing, and spreading inside a cluster. That should at least be 7973 * a good thing for latency, and this is consistent with the idea that most 7974 * of the energy savings of EAS come from the asymmetry of the system, and 7975 * not so much from breaking the tie between identical CPUs. That's also the 7976 * reason why EAS is enabled in the topology code only for systems where 7977 * SD_ASYM_CPUCAPACITY is set. 7978 * 7979 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7980 * they don't have any useful utilization data yet and it's not possible to 7981 * forecast their impact on energy consumption. Consequently, they will be 7982 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 7983 * to be energy-inefficient in some use-cases. The alternative would be to 7984 * bias new tasks towards specific types of CPUs first, or to try to infer 7985 * their util_avg from the parent task, but those heuristics could hurt 7986 * other use-cases too. So, until someone finds a better way to solve this, 7987 * let's keep things simple by re-using the existing slow path. 7988 */ 7989 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7990 { 7991 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7992 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7993 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7994 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7995 struct root_domain *rd = this_rq()->rd; 7996 int cpu, best_energy_cpu, target = -1; 7997 int prev_fits = -1, best_fits = -1; 7998 unsigned long best_actual_cap = 0; 7999 unsigned long prev_actual_cap = 0; 8000 struct sched_domain *sd; 8001 struct perf_domain *pd; 8002 struct energy_env eenv; 8003 8004 rcu_read_lock(); 8005 pd = rcu_dereference(rd->pd); 8006 if (!pd) 8007 goto unlock; 8008 8009 /* 8010 * Energy-aware wake-up happens on the lowest sched_domain starting 8011 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8012 */ 8013 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8014 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8015 sd = sd->parent; 8016 if (!sd) 8017 goto unlock; 8018 8019 target = prev_cpu; 8020 8021 sync_entity_load_avg(&p->se); 8022 if (!task_util_est(p) && p_util_min == 0) 8023 goto unlock; 8024 8025 eenv_task_busy_time(&eenv, p, prev_cpu); 8026 8027 for (; pd; pd = pd->next) { 8028 unsigned long util_min = p_util_min, util_max = p_util_max; 8029 unsigned long cpu_cap, cpu_actual_cap, util; 8030 long prev_spare_cap = -1, max_spare_cap = -1; 8031 unsigned long rq_util_min, rq_util_max; 8032 unsigned long cur_delta, base_energy; 8033 int max_spare_cap_cpu = -1; 8034 int fits, max_fits = -1; 8035 8036 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8037 8038 if (cpumask_empty(cpus)) 8039 continue; 8040 8041 /* Account external pressure for the energy estimation */ 8042 cpu = cpumask_first(cpus); 8043 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8044 8045 eenv.cpu_cap = cpu_actual_cap; 8046 eenv.pd_cap = 0; 8047 8048 for_each_cpu(cpu, cpus) { 8049 struct rq *rq = cpu_rq(cpu); 8050 8051 eenv.pd_cap += cpu_actual_cap; 8052 8053 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8054 continue; 8055 8056 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8057 continue; 8058 8059 util = cpu_util(cpu, p, cpu, 0); 8060 cpu_cap = capacity_of(cpu); 8061 8062 /* 8063 * Skip CPUs that cannot satisfy the capacity request. 8064 * IOW, placing the task there would make the CPU 8065 * overutilized. Take uclamp into account to see how 8066 * much capacity we can get out of the CPU; this is 8067 * aligned with sched_cpu_util(). 8068 */ 8069 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8070 /* 8071 * Open code uclamp_rq_util_with() except for 8072 * the clamp() part. I.e.: apply max aggregation 8073 * only. util_fits_cpu() logic requires to 8074 * operate on non clamped util but must use the 8075 * max-aggregated uclamp_{min, max}. 8076 */ 8077 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8078 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8079 8080 util_min = max(rq_util_min, p_util_min); 8081 util_max = max(rq_util_max, p_util_max); 8082 } 8083 8084 fits = util_fits_cpu(util, util_min, util_max, cpu); 8085 if (!fits) 8086 continue; 8087 8088 lsub_positive(&cpu_cap, util); 8089 8090 if (cpu == prev_cpu) { 8091 /* Always use prev_cpu as a candidate. */ 8092 prev_spare_cap = cpu_cap; 8093 prev_fits = fits; 8094 } else if ((fits > max_fits) || 8095 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8096 /* 8097 * Find the CPU with the maximum spare capacity 8098 * among the remaining CPUs in the performance 8099 * domain. 8100 */ 8101 max_spare_cap = cpu_cap; 8102 max_spare_cap_cpu = cpu; 8103 max_fits = fits; 8104 } 8105 } 8106 8107 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8108 continue; 8109 8110 eenv_pd_busy_time(&eenv, cpus, p); 8111 /* Compute the 'base' energy of the pd, without @p */ 8112 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8113 8114 /* Evaluate the energy impact of using prev_cpu. */ 8115 if (prev_spare_cap > -1) { 8116 prev_delta = compute_energy(&eenv, pd, cpus, p, 8117 prev_cpu); 8118 /* CPU utilization has changed */ 8119 if (prev_delta < base_energy) 8120 goto unlock; 8121 prev_delta -= base_energy; 8122 prev_actual_cap = cpu_actual_cap; 8123 best_delta = min(best_delta, prev_delta); 8124 } 8125 8126 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8127 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8128 /* Current best energy cpu fits better */ 8129 if (max_fits < best_fits) 8130 continue; 8131 8132 /* 8133 * Both don't fit performance hint (i.e. uclamp_min) 8134 * but best energy cpu has better capacity. 8135 */ 8136 if ((max_fits < 0) && 8137 (cpu_actual_cap <= best_actual_cap)) 8138 continue; 8139 8140 cur_delta = compute_energy(&eenv, pd, cpus, p, 8141 max_spare_cap_cpu); 8142 /* CPU utilization has changed */ 8143 if (cur_delta < base_energy) 8144 goto unlock; 8145 cur_delta -= base_energy; 8146 8147 /* 8148 * Both fit for the task but best energy cpu has lower 8149 * energy impact. 8150 */ 8151 if ((max_fits > 0) && (best_fits > 0) && 8152 (cur_delta >= best_delta)) 8153 continue; 8154 8155 best_delta = cur_delta; 8156 best_energy_cpu = max_spare_cap_cpu; 8157 best_fits = max_fits; 8158 best_actual_cap = cpu_actual_cap; 8159 } 8160 } 8161 rcu_read_unlock(); 8162 8163 if ((best_fits > prev_fits) || 8164 ((best_fits > 0) && (best_delta < prev_delta)) || 8165 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8166 target = best_energy_cpu; 8167 8168 return target; 8169 8170 unlock: 8171 rcu_read_unlock(); 8172 8173 return target; 8174 } 8175 8176 /* 8177 * select_task_rq_fair: Select target runqueue for the waking task in domains 8178 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8179 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8180 * 8181 * Balances load by selecting the idlest CPU in the idlest group, or under 8182 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8183 * 8184 * Returns the target CPU number. 8185 */ 8186 static int 8187 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8188 { 8189 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8190 struct sched_domain *tmp, *sd = NULL; 8191 int cpu = smp_processor_id(); 8192 int new_cpu = prev_cpu; 8193 int want_affine = 0; 8194 /* SD_flags and WF_flags share the first nibble */ 8195 int sd_flag = wake_flags & 0xF; 8196 8197 /* 8198 * required for stable ->cpus_allowed 8199 */ 8200 lockdep_assert_held(&p->pi_lock); 8201 if (wake_flags & WF_TTWU) { 8202 record_wakee(p); 8203 8204 if ((wake_flags & WF_CURRENT_CPU) && 8205 cpumask_test_cpu(cpu, p->cpus_ptr)) 8206 return cpu; 8207 8208 if (!is_rd_overutilized(this_rq()->rd)) { 8209 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8210 if (new_cpu >= 0) 8211 return new_cpu; 8212 new_cpu = prev_cpu; 8213 } 8214 8215 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8216 } 8217 8218 rcu_read_lock(); 8219 for_each_domain(cpu, tmp) { 8220 /* 8221 * If both 'cpu' and 'prev_cpu' are part of this domain, 8222 * cpu is a valid SD_WAKE_AFFINE target. 8223 */ 8224 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8225 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8226 if (cpu != prev_cpu) 8227 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8228 8229 sd = NULL; /* Prefer wake_affine over balance flags */ 8230 break; 8231 } 8232 8233 /* 8234 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8235 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8236 * will usually go to the fast path. 8237 */ 8238 if (tmp->flags & sd_flag) 8239 sd = tmp; 8240 else if (!want_affine) 8241 break; 8242 } 8243 8244 if (unlikely(sd)) { 8245 /* Slow path */ 8246 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8247 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8248 /* Fast path */ 8249 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8250 } 8251 rcu_read_unlock(); 8252 8253 return new_cpu; 8254 } 8255 8256 /* 8257 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8258 * cfs_rq_of(p) references at time of call are still valid and identify the 8259 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8260 */ 8261 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8262 { 8263 struct sched_entity *se = &p->se; 8264 8265 if (!task_on_rq_migrating(p)) { 8266 remove_entity_load_avg(se); 8267 8268 /* 8269 * Here, the task's PELT values have been updated according to 8270 * the current rq's clock. But if that clock hasn't been 8271 * updated in a while, a substantial idle time will be missed, 8272 * leading to an inflation after wake-up on the new rq. 8273 * 8274 * Estimate the missing time from the cfs_rq last_update_time 8275 * and update sched_avg to improve the PELT continuity after 8276 * migration. 8277 */ 8278 migrate_se_pelt_lag(se); 8279 } 8280 8281 /* Tell new CPU we are migrated */ 8282 se->avg.last_update_time = 0; 8283 8284 update_scan_period(p, new_cpu); 8285 } 8286 8287 static void task_dead_fair(struct task_struct *p) 8288 { 8289 remove_entity_load_avg(&p->se); 8290 } 8291 8292 /* 8293 * Set the max capacity the task is allowed to run at for misfit detection. 8294 */ 8295 static void set_task_max_allowed_capacity(struct task_struct *p) 8296 { 8297 struct asym_cap_data *entry; 8298 8299 if (!sched_asym_cpucap_active()) 8300 return; 8301 8302 rcu_read_lock(); 8303 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8304 cpumask_t *cpumask; 8305 8306 cpumask = cpu_capacity_span(entry); 8307 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8308 continue; 8309 8310 p->max_allowed_capacity = entry->capacity; 8311 break; 8312 } 8313 rcu_read_unlock(); 8314 } 8315 8316 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8317 { 8318 set_cpus_allowed_common(p, ctx); 8319 set_task_max_allowed_capacity(p); 8320 } 8321 8322 static int 8323 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8324 { 8325 if (rq->nr_running) 8326 return 1; 8327 8328 return sched_balance_newidle(rq, rf) != 0; 8329 } 8330 #else 8331 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8332 #endif /* CONFIG_SMP */ 8333 8334 static void set_next_buddy(struct sched_entity *se) 8335 { 8336 for_each_sched_entity(se) { 8337 if (SCHED_WARN_ON(!se->on_rq)) 8338 return; 8339 if (se_is_idle(se)) 8340 return; 8341 cfs_rq_of(se)->next = se; 8342 } 8343 } 8344 8345 /* 8346 * Preempt the current task with a newly woken task if needed: 8347 */ 8348 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8349 { 8350 struct task_struct *curr = rq->curr; 8351 struct sched_entity *se = &curr->se, *pse = &p->se; 8352 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8353 int cse_is_idle, pse_is_idle; 8354 8355 if (unlikely(se == pse)) 8356 return; 8357 8358 /* 8359 * This is possible from callers such as attach_tasks(), in which we 8360 * unconditionally wakeup_preempt() after an enqueue (which may have 8361 * lead to a throttle). This both saves work and prevents false 8362 * next-buddy nomination below. 8363 */ 8364 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8365 return; 8366 8367 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8368 set_next_buddy(pse); 8369 } 8370 8371 /* 8372 * We can come here with TIF_NEED_RESCHED already set from new task 8373 * wake up path. 8374 * 8375 * Note: this also catches the edge-case of curr being in a throttled 8376 * group (e.g. via set_curr_task), since update_curr() (in the 8377 * enqueue of curr) will have resulted in resched being set. This 8378 * prevents us from potentially nominating it as a false LAST_BUDDY 8379 * below. 8380 */ 8381 if (test_tsk_need_resched(curr)) 8382 return; 8383 8384 /* Idle tasks are by definition preempted by non-idle tasks. */ 8385 if (unlikely(task_has_idle_policy(curr)) && 8386 likely(!task_has_idle_policy(p))) 8387 goto preempt; 8388 8389 /* 8390 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8391 * is driven by the tick): 8392 */ 8393 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8394 return; 8395 8396 find_matching_se(&se, &pse); 8397 WARN_ON_ONCE(!pse); 8398 8399 cse_is_idle = se_is_idle(se); 8400 pse_is_idle = se_is_idle(pse); 8401 8402 /* 8403 * Preempt an idle group in favor of a non-idle group (and don't preempt 8404 * in the inverse case). 8405 */ 8406 if (cse_is_idle && !pse_is_idle) 8407 goto preempt; 8408 if (cse_is_idle != pse_is_idle) 8409 return; 8410 8411 cfs_rq = cfs_rq_of(se); 8412 update_curr(cfs_rq); 8413 8414 /* 8415 * XXX pick_eevdf(cfs_rq) != se ? 8416 */ 8417 if (pick_eevdf(cfs_rq) == pse) 8418 goto preempt; 8419 8420 return; 8421 8422 preempt: 8423 resched_curr(rq); 8424 } 8425 8426 #ifdef CONFIG_SMP 8427 static struct task_struct *pick_task_fair(struct rq *rq) 8428 { 8429 struct sched_entity *se; 8430 struct cfs_rq *cfs_rq; 8431 8432 again: 8433 cfs_rq = &rq->cfs; 8434 if (!cfs_rq->nr_running) 8435 return NULL; 8436 8437 do { 8438 struct sched_entity *curr = cfs_rq->curr; 8439 8440 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8441 if (curr) { 8442 if (curr->on_rq) 8443 update_curr(cfs_rq); 8444 else 8445 curr = NULL; 8446 8447 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8448 goto again; 8449 } 8450 8451 se = pick_next_entity(cfs_rq); 8452 cfs_rq = group_cfs_rq(se); 8453 } while (cfs_rq); 8454 8455 return task_of(se); 8456 } 8457 #endif 8458 8459 struct task_struct * 8460 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8461 { 8462 struct cfs_rq *cfs_rq = &rq->cfs; 8463 struct sched_entity *se; 8464 struct task_struct *p; 8465 int new_tasks; 8466 8467 again: 8468 if (!sched_fair_runnable(rq)) 8469 goto idle; 8470 8471 #ifdef CONFIG_FAIR_GROUP_SCHED 8472 if (!prev || prev->sched_class != &fair_sched_class) 8473 goto simple; 8474 8475 /* 8476 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8477 * likely that a next task is from the same cgroup as the current. 8478 * 8479 * Therefore attempt to avoid putting and setting the entire cgroup 8480 * hierarchy, only change the part that actually changes. 8481 */ 8482 8483 do { 8484 struct sched_entity *curr = cfs_rq->curr; 8485 8486 /* 8487 * Since we got here without doing put_prev_entity() we also 8488 * have to consider cfs_rq->curr. If it is still a runnable 8489 * entity, update_curr() will update its vruntime, otherwise 8490 * forget we've ever seen it. 8491 */ 8492 if (curr) { 8493 if (curr->on_rq) 8494 update_curr(cfs_rq); 8495 else 8496 curr = NULL; 8497 8498 /* 8499 * This call to check_cfs_rq_runtime() will do the 8500 * throttle and dequeue its entity in the parent(s). 8501 * Therefore the nr_running test will indeed 8502 * be correct. 8503 */ 8504 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8505 cfs_rq = &rq->cfs; 8506 8507 if (!cfs_rq->nr_running) 8508 goto idle; 8509 8510 goto simple; 8511 } 8512 } 8513 8514 se = pick_next_entity(cfs_rq); 8515 cfs_rq = group_cfs_rq(se); 8516 } while (cfs_rq); 8517 8518 p = task_of(se); 8519 8520 /* 8521 * Since we haven't yet done put_prev_entity and if the selected task 8522 * is a different task than we started out with, try and touch the 8523 * least amount of cfs_rqs. 8524 */ 8525 if (prev != p) { 8526 struct sched_entity *pse = &prev->se; 8527 8528 while (!(cfs_rq = is_same_group(se, pse))) { 8529 int se_depth = se->depth; 8530 int pse_depth = pse->depth; 8531 8532 if (se_depth <= pse_depth) { 8533 put_prev_entity(cfs_rq_of(pse), pse); 8534 pse = parent_entity(pse); 8535 } 8536 if (se_depth >= pse_depth) { 8537 set_next_entity(cfs_rq_of(se), se); 8538 se = parent_entity(se); 8539 } 8540 } 8541 8542 put_prev_entity(cfs_rq, pse); 8543 set_next_entity(cfs_rq, se); 8544 } 8545 8546 goto done; 8547 simple: 8548 #endif 8549 if (prev) 8550 put_prev_task(rq, prev); 8551 8552 do { 8553 se = pick_next_entity(cfs_rq); 8554 set_next_entity(cfs_rq, se); 8555 cfs_rq = group_cfs_rq(se); 8556 } while (cfs_rq); 8557 8558 p = task_of(se); 8559 8560 done: __maybe_unused; 8561 #ifdef CONFIG_SMP 8562 /* 8563 * Move the next running task to the front of 8564 * the list, so our cfs_tasks list becomes MRU 8565 * one. 8566 */ 8567 list_move(&p->se.group_node, &rq->cfs_tasks); 8568 #endif 8569 8570 if (hrtick_enabled_fair(rq)) 8571 hrtick_start_fair(rq, p); 8572 8573 update_misfit_status(p, rq); 8574 sched_fair_update_stop_tick(rq, p); 8575 8576 return p; 8577 8578 idle: 8579 if (!rf) 8580 return NULL; 8581 8582 new_tasks = sched_balance_newidle(rq, rf); 8583 8584 /* 8585 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8586 * possible for any higher priority task to appear. In that case we 8587 * must re-start the pick_next_entity() loop. 8588 */ 8589 if (new_tasks < 0) 8590 return RETRY_TASK; 8591 8592 if (new_tasks > 0) 8593 goto again; 8594 8595 /* 8596 * rq is about to be idle, check if we need to update the 8597 * lost_idle_time of clock_pelt 8598 */ 8599 update_idle_rq_clock_pelt(rq); 8600 8601 return NULL; 8602 } 8603 8604 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8605 { 8606 return pick_next_task_fair(rq, NULL, NULL); 8607 } 8608 8609 /* 8610 * Account for a descheduled task: 8611 */ 8612 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8613 { 8614 struct sched_entity *se = &prev->se; 8615 struct cfs_rq *cfs_rq; 8616 8617 for_each_sched_entity(se) { 8618 cfs_rq = cfs_rq_of(se); 8619 put_prev_entity(cfs_rq, se); 8620 } 8621 } 8622 8623 /* 8624 * sched_yield() is very simple 8625 */ 8626 static void yield_task_fair(struct rq *rq) 8627 { 8628 struct task_struct *curr = rq->curr; 8629 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8630 struct sched_entity *se = &curr->se; 8631 8632 /* 8633 * Are we the only task in the tree? 8634 */ 8635 if (unlikely(rq->nr_running == 1)) 8636 return; 8637 8638 clear_buddies(cfs_rq, se); 8639 8640 update_rq_clock(rq); 8641 /* 8642 * Update run-time statistics of the 'current'. 8643 */ 8644 update_curr(cfs_rq); 8645 /* 8646 * Tell update_rq_clock() that we've just updated, 8647 * so we don't do microscopic update in schedule() 8648 * and double the fastpath cost. 8649 */ 8650 rq_clock_skip_update(rq); 8651 8652 se->deadline += calc_delta_fair(se->slice, se); 8653 } 8654 8655 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8656 { 8657 struct sched_entity *se = &p->se; 8658 8659 /* throttled hierarchies are not runnable */ 8660 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8661 return false; 8662 8663 /* Tell the scheduler that we'd really like se to run next. */ 8664 set_next_buddy(se); 8665 8666 yield_task_fair(rq); 8667 8668 return true; 8669 } 8670 8671 #ifdef CONFIG_SMP 8672 /************************************************** 8673 * Fair scheduling class load-balancing methods. 8674 * 8675 * BASICS 8676 * 8677 * The purpose of load-balancing is to achieve the same basic fairness the 8678 * per-CPU scheduler provides, namely provide a proportional amount of compute 8679 * time to each task. This is expressed in the following equation: 8680 * 8681 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8682 * 8683 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8684 * W_i,0 is defined as: 8685 * 8686 * W_i,0 = \Sum_j w_i,j (2) 8687 * 8688 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8689 * is derived from the nice value as per sched_prio_to_weight[]. 8690 * 8691 * The weight average is an exponential decay average of the instantaneous 8692 * weight: 8693 * 8694 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8695 * 8696 * C_i is the compute capacity of CPU i, typically it is the 8697 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8698 * can also include other factors [XXX]. 8699 * 8700 * To achieve this balance we define a measure of imbalance which follows 8701 * directly from (1): 8702 * 8703 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8704 * 8705 * We them move tasks around to minimize the imbalance. In the continuous 8706 * function space it is obvious this converges, in the discrete case we get 8707 * a few fun cases generally called infeasible weight scenarios. 8708 * 8709 * [XXX expand on: 8710 * - infeasible weights; 8711 * - local vs global optima in the discrete case. ] 8712 * 8713 * 8714 * SCHED DOMAINS 8715 * 8716 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8717 * for all i,j solution, we create a tree of CPUs that follows the hardware 8718 * topology where each level pairs two lower groups (or better). This results 8719 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8720 * tree to only the first of the previous level and we decrease the frequency 8721 * of load-balance at each level inversely proportional to the number of CPUs in 8722 * the groups. 8723 * 8724 * This yields: 8725 * 8726 * log_2 n 1 n 8727 * \Sum { --- * --- * 2^i } = O(n) (5) 8728 * i = 0 2^i 2^i 8729 * `- size of each group 8730 * | | `- number of CPUs doing load-balance 8731 * | `- freq 8732 * `- sum over all levels 8733 * 8734 * Coupled with a limit on how many tasks we can migrate every balance pass, 8735 * this makes (5) the runtime complexity of the balancer. 8736 * 8737 * An important property here is that each CPU is still (indirectly) connected 8738 * to every other CPU in at most O(log n) steps: 8739 * 8740 * The adjacency matrix of the resulting graph is given by: 8741 * 8742 * log_2 n 8743 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8744 * k = 0 8745 * 8746 * And you'll find that: 8747 * 8748 * A^(log_2 n)_i,j != 0 for all i,j (7) 8749 * 8750 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8751 * The task movement gives a factor of O(m), giving a convergence complexity 8752 * of: 8753 * 8754 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8755 * 8756 * 8757 * WORK CONSERVING 8758 * 8759 * In order to avoid CPUs going idle while there's still work to do, new idle 8760 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8761 * tree itself instead of relying on other CPUs to bring it work. 8762 * 8763 * This adds some complexity to both (5) and (8) but it reduces the total idle 8764 * time. 8765 * 8766 * [XXX more?] 8767 * 8768 * 8769 * CGROUPS 8770 * 8771 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8772 * 8773 * s_k,i 8774 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8775 * S_k 8776 * 8777 * Where 8778 * 8779 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8780 * 8781 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8782 * 8783 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8784 * property. 8785 * 8786 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8787 * rewrite all of this once again.] 8788 */ 8789 8790 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8791 8792 enum fbq_type { regular, remote, all }; 8793 8794 /* 8795 * 'group_type' describes the group of CPUs at the moment of load balancing. 8796 * 8797 * The enum is ordered by pulling priority, with the group with lowest priority 8798 * first so the group_type can simply be compared when selecting the busiest 8799 * group. See update_sd_pick_busiest(). 8800 */ 8801 enum group_type { 8802 /* The group has spare capacity that can be used to run more tasks. */ 8803 group_has_spare = 0, 8804 /* 8805 * The group is fully used and the tasks don't compete for more CPU 8806 * cycles. Nevertheless, some tasks might wait before running. 8807 */ 8808 group_fully_busy, 8809 /* 8810 * One task doesn't fit with CPU's capacity and must be migrated to a 8811 * more powerful CPU. 8812 */ 8813 group_misfit_task, 8814 /* 8815 * Balance SMT group that's fully busy. Can benefit from migration 8816 * a task on SMT with busy sibling to another CPU on idle core. 8817 */ 8818 group_smt_balance, 8819 /* 8820 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8821 * and the task should be migrated to it instead of running on the 8822 * current CPU. 8823 */ 8824 group_asym_packing, 8825 /* 8826 * The tasks' affinity constraints previously prevented the scheduler 8827 * from balancing the load across the system. 8828 */ 8829 group_imbalanced, 8830 /* 8831 * The CPU is overloaded and can't provide expected CPU cycles to all 8832 * tasks. 8833 */ 8834 group_overloaded 8835 }; 8836 8837 enum migration_type { 8838 migrate_load = 0, 8839 migrate_util, 8840 migrate_task, 8841 migrate_misfit 8842 }; 8843 8844 #define LBF_ALL_PINNED 0x01 8845 #define LBF_NEED_BREAK 0x02 8846 #define LBF_DST_PINNED 0x04 8847 #define LBF_SOME_PINNED 0x08 8848 #define LBF_ACTIVE_LB 0x10 8849 8850 struct lb_env { 8851 struct sched_domain *sd; 8852 8853 struct rq *src_rq; 8854 int src_cpu; 8855 8856 int dst_cpu; 8857 struct rq *dst_rq; 8858 8859 struct cpumask *dst_grpmask; 8860 int new_dst_cpu; 8861 enum cpu_idle_type idle; 8862 long imbalance; 8863 /* The set of CPUs under consideration for load-balancing */ 8864 struct cpumask *cpus; 8865 8866 unsigned int flags; 8867 8868 unsigned int loop; 8869 unsigned int loop_break; 8870 unsigned int loop_max; 8871 8872 enum fbq_type fbq_type; 8873 enum migration_type migration_type; 8874 struct list_head tasks; 8875 }; 8876 8877 /* 8878 * Is this task likely cache-hot: 8879 */ 8880 static int task_hot(struct task_struct *p, struct lb_env *env) 8881 { 8882 s64 delta; 8883 8884 lockdep_assert_rq_held(env->src_rq); 8885 8886 if (p->sched_class != &fair_sched_class) 8887 return 0; 8888 8889 if (unlikely(task_has_idle_policy(p))) 8890 return 0; 8891 8892 /* SMT siblings share cache */ 8893 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8894 return 0; 8895 8896 /* 8897 * Buddy candidates are cache hot: 8898 */ 8899 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8900 (&p->se == cfs_rq_of(&p->se)->next)) 8901 return 1; 8902 8903 if (sysctl_sched_migration_cost == -1) 8904 return 1; 8905 8906 /* 8907 * Don't migrate task if the task's cookie does not match 8908 * with the destination CPU's core cookie. 8909 */ 8910 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8911 return 1; 8912 8913 if (sysctl_sched_migration_cost == 0) 8914 return 0; 8915 8916 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8917 8918 return delta < (s64)sysctl_sched_migration_cost; 8919 } 8920 8921 #ifdef CONFIG_NUMA_BALANCING 8922 /* 8923 * Returns 1, if task migration degrades locality 8924 * Returns 0, if task migration improves locality i.e migration preferred. 8925 * Returns -1, if task migration is not affected by locality. 8926 */ 8927 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8928 { 8929 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8930 unsigned long src_weight, dst_weight; 8931 int src_nid, dst_nid, dist; 8932 8933 if (!static_branch_likely(&sched_numa_balancing)) 8934 return -1; 8935 8936 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8937 return -1; 8938 8939 src_nid = cpu_to_node(env->src_cpu); 8940 dst_nid = cpu_to_node(env->dst_cpu); 8941 8942 if (src_nid == dst_nid) 8943 return -1; 8944 8945 /* Migrating away from the preferred node is always bad. */ 8946 if (src_nid == p->numa_preferred_nid) { 8947 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8948 return 1; 8949 else 8950 return -1; 8951 } 8952 8953 /* Encourage migration to the preferred node. */ 8954 if (dst_nid == p->numa_preferred_nid) 8955 return 0; 8956 8957 /* Leaving a core idle is often worse than degrading locality. */ 8958 if (env->idle == CPU_IDLE) 8959 return -1; 8960 8961 dist = node_distance(src_nid, dst_nid); 8962 if (numa_group) { 8963 src_weight = group_weight(p, src_nid, dist); 8964 dst_weight = group_weight(p, dst_nid, dist); 8965 } else { 8966 src_weight = task_weight(p, src_nid, dist); 8967 dst_weight = task_weight(p, dst_nid, dist); 8968 } 8969 8970 return dst_weight < src_weight; 8971 } 8972 8973 #else 8974 static inline int migrate_degrades_locality(struct task_struct *p, 8975 struct lb_env *env) 8976 { 8977 return -1; 8978 } 8979 #endif 8980 8981 /* 8982 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8983 */ 8984 static 8985 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8986 { 8987 int tsk_cache_hot; 8988 8989 lockdep_assert_rq_held(env->src_rq); 8990 8991 /* 8992 * We do not migrate tasks that are: 8993 * 1) throttled_lb_pair, or 8994 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8995 * 3) running (obviously), or 8996 * 4) are cache-hot on their current CPU. 8997 */ 8998 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8999 return 0; 9000 9001 /* Disregard percpu kthreads; they are where they need to be. */ 9002 if (kthread_is_per_cpu(p)) 9003 return 0; 9004 9005 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9006 int cpu; 9007 9008 schedstat_inc(p->stats.nr_failed_migrations_affine); 9009 9010 env->flags |= LBF_SOME_PINNED; 9011 9012 /* 9013 * Remember if this task can be migrated to any other CPU in 9014 * our sched_group. We may want to revisit it if we couldn't 9015 * meet load balance goals by pulling other tasks on src_cpu. 9016 * 9017 * Avoid computing new_dst_cpu 9018 * - for NEWLY_IDLE 9019 * - if we have already computed one in current iteration 9020 * - if it's an active balance 9021 */ 9022 if (env->idle == CPU_NEWLY_IDLE || 9023 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9024 return 0; 9025 9026 /* Prevent to re-select dst_cpu via env's CPUs: */ 9027 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9028 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9029 env->flags |= LBF_DST_PINNED; 9030 env->new_dst_cpu = cpu; 9031 break; 9032 } 9033 } 9034 9035 return 0; 9036 } 9037 9038 /* Record that we found at least one task that could run on dst_cpu */ 9039 env->flags &= ~LBF_ALL_PINNED; 9040 9041 if (task_on_cpu(env->src_rq, p)) { 9042 schedstat_inc(p->stats.nr_failed_migrations_running); 9043 return 0; 9044 } 9045 9046 /* 9047 * Aggressive migration if: 9048 * 1) active balance 9049 * 2) destination numa is preferred 9050 * 3) task is cache cold, or 9051 * 4) too many balance attempts have failed. 9052 */ 9053 if (env->flags & LBF_ACTIVE_LB) 9054 return 1; 9055 9056 tsk_cache_hot = migrate_degrades_locality(p, env); 9057 if (tsk_cache_hot == -1) 9058 tsk_cache_hot = task_hot(p, env); 9059 9060 if (tsk_cache_hot <= 0 || 9061 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9062 if (tsk_cache_hot == 1) { 9063 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9064 schedstat_inc(p->stats.nr_forced_migrations); 9065 } 9066 return 1; 9067 } 9068 9069 schedstat_inc(p->stats.nr_failed_migrations_hot); 9070 return 0; 9071 } 9072 9073 /* 9074 * detach_task() -- detach the task for the migration specified in env 9075 */ 9076 static void detach_task(struct task_struct *p, struct lb_env *env) 9077 { 9078 lockdep_assert_rq_held(env->src_rq); 9079 9080 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9081 set_task_cpu(p, env->dst_cpu); 9082 } 9083 9084 /* 9085 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9086 * part of active balancing operations within "domain". 9087 * 9088 * Returns a task if successful and NULL otherwise. 9089 */ 9090 static struct task_struct *detach_one_task(struct lb_env *env) 9091 { 9092 struct task_struct *p; 9093 9094 lockdep_assert_rq_held(env->src_rq); 9095 9096 list_for_each_entry_reverse(p, 9097 &env->src_rq->cfs_tasks, se.group_node) { 9098 if (!can_migrate_task(p, env)) 9099 continue; 9100 9101 detach_task(p, env); 9102 9103 /* 9104 * Right now, this is only the second place where 9105 * lb_gained[env->idle] is updated (other is detach_tasks) 9106 * so we can safely collect stats here rather than 9107 * inside detach_tasks(). 9108 */ 9109 schedstat_inc(env->sd->lb_gained[env->idle]); 9110 return p; 9111 } 9112 return NULL; 9113 } 9114 9115 /* 9116 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9117 * busiest_rq, as part of a balancing operation within domain "sd". 9118 * 9119 * Returns number of detached tasks if successful and 0 otherwise. 9120 */ 9121 static int detach_tasks(struct lb_env *env) 9122 { 9123 struct list_head *tasks = &env->src_rq->cfs_tasks; 9124 unsigned long util, load; 9125 struct task_struct *p; 9126 int detached = 0; 9127 9128 lockdep_assert_rq_held(env->src_rq); 9129 9130 /* 9131 * Source run queue has been emptied by another CPU, clear 9132 * LBF_ALL_PINNED flag as we will not test any task. 9133 */ 9134 if (env->src_rq->nr_running <= 1) { 9135 env->flags &= ~LBF_ALL_PINNED; 9136 return 0; 9137 } 9138 9139 if (env->imbalance <= 0) 9140 return 0; 9141 9142 while (!list_empty(tasks)) { 9143 /* 9144 * We don't want to steal all, otherwise we may be treated likewise, 9145 * which could at worst lead to a livelock crash. 9146 */ 9147 if (env->idle && env->src_rq->nr_running <= 1) 9148 break; 9149 9150 env->loop++; 9151 /* We've more or less seen every task there is, call it quits */ 9152 if (env->loop > env->loop_max) 9153 break; 9154 9155 /* take a breather every nr_migrate tasks */ 9156 if (env->loop > env->loop_break) { 9157 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9158 env->flags |= LBF_NEED_BREAK; 9159 break; 9160 } 9161 9162 p = list_last_entry(tasks, struct task_struct, se.group_node); 9163 9164 if (!can_migrate_task(p, env)) 9165 goto next; 9166 9167 switch (env->migration_type) { 9168 case migrate_load: 9169 /* 9170 * Depending of the number of CPUs and tasks and the 9171 * cgroup hierarchy, task_h_load() can return a null 9172 * value. Make sure that env->imbalance decreases 9173 * otherwise detach_tasks() will stop only after 9174 * detaching up to loop_max tasks. 9175 */ 9176 load = max_t(unsigned long, task_h_load(p), 1); 9177 9178 if (sched_feat(LB_MIN) && 9179 load < 16 && !env->sd->nr_balance_failed) 9180 goto next; 9181 9182 /* 9183 * Make sure that we don't migrate too much load. 9184 * Nevertheless, let relax the constraint if 9185 * scheduler fails to find a good waiting task to 9186 * migrate. 9187 */ 9188 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9189 goto next; 9190 9191 env->imbalance -= load; 9192 break; 9193 9194 case migrate_util: 9195 util = task_util_est(p); 9196 9197 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9198 goto next; 9199 9200 env->imbalance -= util; 9201 break; 9202 9203 case migrate_task: 9204 env->imbalance--; 9205 break; 9206 9207 case migrate_misfit: 9208 /* This is not a misfit task */ 9209 if (task_fits_cpu(p, env->src_cpu)) 9210 goto next; 9211 9212 env->imbalance = 0; 9213 break; 9214 } 9215 9216 detach_task(p, env); 9217 list_add(&p->se.group_node, &env->tasks); 9218 9219 detached++; 9220 9221 #ifdef CONFIG_PREEMPTION 9222 /* 9223 * NEWIDLE balancing is a source of latency, so preemptible 9224 * kernels will stop after the first task is detached to minimize 9225 * the critical section. 9226 */ 9227 if (env->idle == CPU_NEWLY_IDLE) 9228 break; 9229 #endif 9230 9231 /* 9232 * We only want to steal up to the prescribed amount of 9233 * load/util/tasks. 9234 */ 9235 if (env->imbalance <= 0) 9236 break; 9237 9238 continue; 9239 next: 9240 list_move(&p->se.group_node, tasks); 9241 } 9242 9243 /* 9244 * Right now, this is one of only two places we collect this stat 9245 * so we can safely collect detach_one_task() stats here rather 9246 * than inside detach_one_task(). 9247 */ 9248 schedstat_add(env->sd->lb_gained[env->idle], detached); 9249 9250 return detached; 9251 } 9252 9253 /* 9254 * attach_task() -- attach the task detached by detach_task() to its new rq. 9255 */ 9256 static void attach_task(struct rq *rq, struct task_struct *p) 9257 { 9258 lockdep_assert_rq_held(rq); 9259 9260 WARN_ON_ONCE(task_rq(p) != rq); 9261 activate_task(rq, p, ENQUEUE_NOCLOCK); 9262 wakeup_preempt(rq, p, 0); 9263 } 9264 9265 /* 9266 * attach_one_task() -- attaches the task returned from detach_one_task() to 9267 * its new rq. 9268 */ 9269 static void attach_one_task(struct rq *rq, struct task_struct *p) 9270 { 9271 struct rq_flags rf; 9272 9273 rq_lock(rq, &rf); 9274 update_rq_clock(rq); 9275 attach_task(rq, p); 9276 rq_unlock(rq, &rf); 9277 } 9278 9279 /* 9280 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9281 * new rq. 9282 */ 9283 static void attach_tasks(struct lb_env *env) 9284 { 9285 struct list_head *tasks = &env->tasks; 9286 struct task_struct *p; 9287 struct rq_flags rf; 9288 9289 rq_lock(env->dst_rq, &rf); 9290 update_rq_clock(env->dst_rq); 9291 9292 while (!list_empty(tasks)) { 9293 p = list_first_entry(tasks, struct task_struct, se.group_node); 9294 list_del_init(&p->se.group_node); 9295 9296 attach_task(env->dst_rq, p); 9297 } 9298 9299 rq_unlock(env->dst_rq, &rf); 9300 } 9301 9302 #ifdef CONFIG_NO_HZ_COMMON 9303 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9304 { 9305 if (cfs_rq->avg.load_avg) 9306 return true; 9307 9308 if (cfs_rq->avg.util_avg) 9309 return true; 9310 9311 return false; 9312 } 9313 9314 static inline bool others_have_blocked(struct rq *rq) 9315 { 9316 if (cpu_util_rt(rq)) 9317 return true; 9318 9319 if (cpu_util_dl(rq)) 9320 return true; 9321 9322 if (hw_load_avg(rq)) 9323 return true; 9324 9325 if (cpu_util_irq(rq)) 9326 return true; 9327 9328 return false; 9329 } 9330 9331 static inline void update_blocked_load_tick(struct rq *rq) 9332 { 9333 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9334 } 9335 9336 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9337 { 9338 if (!has_blocked) 9339 rq->has_blocked_load = 0; 9340 } 9341 #else 9342 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9343 static inline bool others_have_blocked(struct rq *rq) { return false; } 9344 static inline void update_blocked_load_tick(struct rq *rq) {} 9345 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9346 #endif 9347 9348 static bool __update_blocked_others(struct rq *rq, bool *done) 9349 { 9350 const struct sched_class *curr_class; 9351 u64 now = rq_clock_pelt(rq); 9352 unsigned long hw_pressure; 9353 bool decayed; 9354 9355 /* 9356 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9357 * DL and IRQ signals have been updated before updating CFS. 9358 */ 9359 curr_class = rq->curr->sched_class; 9360 9361 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 9362 9363 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9364 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9365 update_hw_load_avg(now, rq, hw_pressure) | 9366 update_irq_load_avg(rq, 0); 9367 9368 if (others_have_blocked(rq)) 9369 *done = false; 9370 9371 return decayed; 9372 } 9373 9374 #ifdef CONFIG_FAIR_GROUP_SCHED 9375 9376 static bool __update_blocked_fair(struct rq *rq, bool *done) 9377 { 9378 struct cfs_rq *cfs_rq, *pos; 9379 bool decayed = false; 9380 int cpu = cpu_of(rq); 9381 9382 /* 9383 * Iterates the task_group tree in a bottom up fashion, see 9384 * list_add_leaf_cfs_rq() for details. 9385 */ 9386 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9387 struct sched_entity *se; 9388 9389 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9390 update_tg_load_avg(cfs_rq); 9391 9392 if (cfs_rq->nr_running == 0) 9393 update_idle_cfs_rq_clock_pelt(cfs_rq); 9394 9395 if (cfs_rq == &rq->cfs) 9396 decayed = true; 9397 } 9398 9399 /* Propagate pending load changes to the parent, if any: */ 9400 se = cfs_rq->tg->se[cpu]; 9401 if (se && !skip_blocked_update(se)) 9402 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9403 9404 /* 9405 * There can be a lot of idle CPU cgroups. Don't let fully 9406 * decayed cfs_rqs linger on the list. 9407 */ 9408 if (cfs_rq_is_decayed(cfs_rq)) 9409 list_del_leaf_cfs_rq(cfs_rq); 9410 9411 /* Don't need periodic decay once load/util_avg are null */ 9412 if (cfs_rq_has_blocked(cfs_rq)) 9413 *done = false; 9414 } 9415 9416 return decayed; 9417 } 9418 9419 /* 9420 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9421 * This needs to be done in a top-down fashion because the load of a child 9422 * group is a fraction of its parents load. 9423 */ 9424 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9425 { 9426 struct rq *rq = rq_of(cfs_rq); 9427 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9428 unsigned long now = jiffies; 9429 unsigned long load; 9430 9431 if (cfs_rq->last_h_load_update == now) 9432 return; 9433 9434 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9435 for_each_sched_entity(se) { 9436 cfs_rq = cfs_rq_of(se); 9437 WRITE_ONCE(cfs_rq->h_load_next, se); 9438 if (cfs_rq->last_h_load_update == now) 9439 break; 9440 } 9441 9442 if (!se) { 9443 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9444 cfs_rq->last_h_load_update = now; 9445 } 9446 9447 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9448 load = cfs_rq->h_load; 9449 load = div64_ul(load * se->avg.load_avg, 9450 cfs_rq_load_avg(cfs_rq) + 1); 9451 cfs_rq = group_cfs_rq(se); 9452 cfs_rq->h_load = load; 9453 cfs_rq->last_h_load_update = now; 9454 } 9455 } 9456 9457 static unsigned long task_h_load(struct task_struct *p) 9458 { 9459 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9460 9461 update_cfs_rq_h_load(cfs_rq); 9462 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9463 cfs_rq_load_avg(cfs_rq) + 1); 9464 } 9465 #else 9466 static bool __update_blocked_fair(struct rq *rq, bool *done) 9467 { 9468 struct cfs_rq *cfs_rq = &rq->cfs; 9469 bool decayed; 9470 9471 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9472 if (cfs_rq_has_blocked(cfs_rq)) 9473 *done = false; 9474 9475 return decayed; 9476 } 9477 9478 static unsigned long task_h_load(struct task_struct *p) 9479 { 9480 return p->se.avg.load_avg; 9481 } 9482 #endif 9483 9484 static void sched_balance_update_blocked_averages(int cpu) 9485 { 9486 bool decayed = false, done = true; 9487 struct rq *rq = cpu_rq(cpu); 9488 struct rq_flags rf; 9489 9490 rq_lock_irqsave(rq, &rf); 9491 update_blocked_load_tick(rq); 9492 update_rq_clock(rq); 9493 9494 decayed |= __update_blocked_others(rq, &done); 9495 decayed |= __update_blocked_fair(rq, &done); 9496 9497 update_blocked_load_status(rq, !done); 9498 if (decayed) 9499 cpufreq_update_util(rq, 0); 9500 rq_unlock_irqrestore(rq, &rf); 9501 } 9502 9503 /********** Helpers for sched_balance_find_src_group ************************/ 9504 9505 /* 9506 * sg_lb_stats - stats of a sched_group required for load-balancing: 9507 */ 9508 struct sg_lb_stats { 9509 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9510 unsigned long group_load; /* Total load over the CPUs of the group */ 9511 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9512 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9513 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9514 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9515 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9516 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9517 unsigned int group_weight; 9518 enum group_type group_type; 9519 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9520 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9521 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9522 #ifdef CONFIG_NUMA_BALANCING 9523 unsigned int nr_numa_running; 9524 unsigned int nr_preferred_running; 9525 #endif 9526 }; 9527 9528 /* 9529 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9530 */ 9531 struct sd_lb_stats { 9532 struct sched_group *busiest; /* Busiest group in this sd */ 9533 struct sched_group *local; /* Local group in this sd */ 9534 unsigned long total_load; /* Total load of all groups in sd */ 9535 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9536 unsigned long avg_load; /* Average load across all groups in sd */ 9537 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9538 9539 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9540 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9541 }; 9542 9543 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9544 { 9545 /* 9546 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9547 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9548 * We must however set busiest_stat::group_type and 9549 * busiest_stat::idle_cpus to the worst busiest group because 9550 * update_sd_pick_busiest() reads these before assignment. 9551 */ 9552 *sds = (struct sd_lb_stats){ 9553 .busiest = NULL, 9554 .local = NULL, 9555 .total_load = 0UL, 9556 .total_capacity = 0UL, 9557 .busiest_stat = { 9558 .idle_cpus = UINT_MAX, 9559 .group_type = group_has_spare, 9560 }, 9561 }; 9562 } 9563 9564 static unsigned long scale_rt_capacity(int cpu) 9565 { 9566 unsigned long max = get_actual_cpu_capacity(cpu); 9567 struct rq *rq = cpu_rq(cpu); 9568 unsigned long used, free; 9569 unsigned long irq; 9570 9571 irq = cpu_util_irq(rq); 9572 9573 if (unlikely(irq >= max)) 9574 return 1; 9575 9576 /* 9577 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9578 * (running and not running) with weights 0 and 1024 respectively. 9579 */ 9580 used = cpu_util_rt(rq); 9581 used += cpu_util_dl(rq); 9582 9583 if (unlikely(used >= max)) 9584 return 1; 9585 9586 free = max - used; 9587 9588 return scale_irq_capacity(free, irq, max); 9589 } 9590 9591 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9592 { 9593 unsigned long capacity = scale_rt_capacity(cpu); 9594 struct sched_group *sdg = sd->groups; 9595 9596 if (!capacity) 9597 capacity = 1; 9598 9599 cpu_rq(cpu)->cpu_capacity = capacity; 9600 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9601 9602 sdg->sgc->capacity = capacity; 9603 sdg->sgc->min_capacity = capacity; 9604 sdg->sgc->max_capacity = capacity; 9605 } 9606 9607 void update_group_capacity(struct sched_domain *sd, int cpu) 9608 { 9609 struct sched_domain *child = sd->child; 9610 struct sched_group *group, *sdg = sd->groups; 9611 unsigned long capacity, min_capacity, max_capacity; 9612 unsigned long interval; 9613 9614 interval = msecs_to_jiffies(sd->balance_interval); 9615 interval = clamp(interval, 1UL, max_load_balance_interval); 9616 sdg->sgc->next_update = jiffies + interval; 9617 9618 if (!child) { 9619 update_cpu_capacity(sd, cpu); 9620 return; 9621 } 9622 9623 capacity = 0; 9624 min_capacity = ULONG_MAX; 9625 max_capacity = 0; 9626 9627 if (child->flags & SD_OVERLAP) { 9628 /* 9629 * SD_OVERLAP domains cannot assume that child groups 9630 * span the current group. 9631 */ 9632 9633 for_each_cpu(cpu, sched_group_span(sdg)) { 9634 unsigned long cpu_cap = capacity_of(cpu); 9635 9636 capacity += cpu_cap; 9637 min_capacity = min(cpu_cap, min_capacity); 9638 max_capacity = max(cpu_cap, max_capacity); 9639 } 9640 } else { 9641 /* 9642 * !SD_OVERLAP domains can assume that child groups 9643 * span the current group. 9644 */ 9645 9646 group = child->groups; 9647 do { 9648 struct sched_group_capacity *sgc = group->sgc; 9649 9650 capacity += sgc->capacity; 9651 min_capacity = min(sgc->min_capacity, min_capacity); 9652 max_capacity = max(sgc->max_capacity, max_capacity); 9653 group = group->next; 9654 } while (group != child->groups); 9655 } 9656 9657 sdg->sgc->capacity = capacity; 9658 sdg->sgc->min_capacity = min_capacity; 9659 sdg->sgc->max_capacity = max_capacity; 9660 } 9661 9662 /* 9663 * Check whether the capacity of the rq has been noticeably reduced by side 9664 * activity. The imbalance_pct is used for the threshold. 9665 * Return true is the capacity is reduced 9666 */ 9667 static inline int 9668 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9669 { 9670 return ((rq->cpu_capacity * sd->imbalance_pct) < 9671 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9672 } 9673 9674 /* Check if the rq has a misfit task */ 9675 static inline bool check_misfit_status(struct rq *rq) 9676 { 9677 return rq->misfit_task_load; 9678 } 9679 9680 /* 9681 * Group imbalance indicates (and tries to solve) the problem where balancing 9682 * groups is inadequate due to ->cpus_ptr constraints. 9683 * 9684 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9685 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9686 * Something like: 9687 * 9688 * { 0 1 2 3 } { 4 5 6 7 } 9689 * * * * * 9690 * 9691 * If we were to balance group-wise we'd place two tasks in the first group and 9692 * two tasks in the second group. Clearly this is undesired as it will overload 9693 * cpu 3 and leave one of the CPUs in the second group unused. 9694 * 9695 * The current solution to this issue is detecting the skew in the first group 9696 * by noticing the lower domain failed to reach balance and had difficulty 9697 * moving tasks due to affinity constraints. 9698 * 9699 * When this is so detected; this group becomes a candidate for busiest; see 9700 * update_sd_pick_busiest(). And calculate_imbalance() and 9701 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 9702 * to create an effective group imbalance. 9703 * 9704 * This is a somewhat tricky proposition since the next run might not find the 9705 * group imbalance and decide the groups need to be balanced again. A most 9706 * subtle and fragile situation. 9707 */ 9708 9709 static inline int sg_imbalanced(struct sched_group *group) 9710 { 9711 return group->sgc->imbalance; 9712 } 9713 9714 /* 9715 * group_has_capacity returns true if the group has spare capacity that could 9716 * be used by some tasks. 9717 * We consider that a group has spare capacity if the number of task is 9718 * smaller than the number of CPUs or if the utilization is lower than the 9719 * available capacity for CFS tasks. 9720 * For the latter, we use a threshold to stabilize the state, to take into 9721 * account the variance of the tasks' load and to return true if the available 9722 * capacity in meaningful for the load balancer. 9723 * As an example, an available capacity of 1% can appear but it doesn't make 9724 * any benefit for the load balance. 9725 */ 9726 static inline bool 9727 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9728 { 9729 if (sgs->sum_nr_running < sgs->group_weight) 9730 return true; 9731 9732 if ((sgs->group_capacity * imbalance_pct) < 9733 (sgs->group_runnable * 100)) 9734 return false; 9735 9736 if ((sgs->group_capacity * 100) > 9737 (sgs->group_util * imbalance_pct)) 9738 return true; 9739 9740 return false; 9741 } 9742 9743 /* 9744 * group_is_overloaded returns true if the group has more tasks than it can 9745 * handle. 9746 * group_is_overloaded is not equals to !group_has_capacity because a group 9747 * with the exact right number of tasks, has no more spare capacity but is not 9748 * overloaded so both group_has_capacity and group_is_overloaded return 9749 * false. 9750 */ 9751 static inline bool 9752 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9753 { 9754 if (sgs->sum_nr_running <= sgs->group_weight) 9755 return false; 9756 9757 if ((sgs->group_capacity * 100) < 9758 (sgs->group_util * imbalance_pct)) 9759 return true; 9760 9761 if ((sgs->group_capacity * imbalance_pct) < 9762 (sgs->group_runnable * 100)) 9763 return true; 9764 9765 return false; 9766 } 9767 9768 static inline enum 9769 group_type group_classify(unsigned int imbalance_pct, 9770 struct sched_group *group, 9771 struct sg_lb_stats *sgs) 9772 { 9773 if (group_is_overloaded(imbalance_pct, sgs)) 9774 return group_overloaded; 9775 9776 if (sg_imbalanced(group)) 9777 return group_imbalanced; 9778 9779 if (sgs->group_asym_packing) 9780 return group_asym_packing; 9781 9782 if (sgs->group_smt_balance) 9783 return group_smt_balance; 9784 9785 if (sgs->group_misfit_task_load) 9786 return group_misfit_task; 9787 9788 if (!group_has_capacity(imbalance_pct, sgs)) 9789 return group_fully_busy; 9790 9791 return group_has_spare; 9792 } 9793 9794 /** 9795 * sched_use_asym_prio - Check whether asym_packing priority must be used 9796 * @sd: The scheduling domain of the load balancing 9797 * @cpu: A CPU 9798 * 9799 * Always use CPU priority when balancing load between SMT siblings. When 9800 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9801 * use CPU priority if the whole core is idle. 9802 * 9803 * Returns: True if the priority of @cpu must be followed. False otherwise. 9804 */ 9805 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9806 { 9807 if (!(sd->flags & SD_ASYM_PACKING)) 9808 return false; 9809 9810 if (!sched_smt_active()) 9811 return true; 9812 9813 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9814 } 9815 9816 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 9817 { 9818 /* 9819 * First check if @dst_cpu can do asym_packing load balance. Only do it 9820 * if it has higher priority than @src_cpu. 9821 */ 9822 return sched_use_asym_prio(sd, dst_cpu) && 9823 sched_asym_prefer(dst_cpu, src_cpu); 9824 } 9825 9826 /** 9827 * sched_group_asym - Check if the destination CPU can do asym_packing balance 9828 * @env: The load balancing environment 9829 * @sgs: Load-balancing statistics of the candidate busiest group 9830 * @group: The candidate busiest group 9831 * 9832 * @env::dst_cpu can do asym_packing if it has higher priority than the 9833 * preferred CPU of @group. 9834 * 9835 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9836 * otherwise. 9837 */ 9838 static inline bool 9839 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 9840 { 9841 /* 9842 * CPU priorities do not make sense for SMT cores with more than one 9843 * busy sibling. 9844 */ 9845 if ((group->flags & SD_SHARE_CPUCAPACITY) && 9846 (sgs->group_weight - sgs->idle_cpus != 1)) 9847 return false; 9848 9849 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 9850 } 9851 9852 /* One group has more than one SMT CPU while the other group does not */ 9853 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9854 struct sched_group *sg2) 9855 { 9856 if (!sg1 || !sg2) 9857 return false; 9858 9859 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9860 (sg2->flags & SD_SHARE_CPUCAPACITY); 9861 } 9862 9863 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9864 struct sched_group *group) 9865 { 9866 if (!env->idle) 9867 return false; 9868 9869 /* 9870 * For SMT source group, it is better to move a task 9871 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9872 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9873 * will not be on. 9874 */ 9875 if (group->flags & SD_SHARE_CPUCAPACITY && 9876 sgs->sum_h_nr_running > 1) 9877 return true; 9878 9879 return false; 9880 } 9881 9882 static inline long sibling_imbalance(struct lb_env *env, 9883 struct sd_lb_stats *sds, 9884 struct sg_lb_stats *busiest, 9885 struct sg_lb_stats *local) 9886 { 9887 int ncores_busiest, ncores_local; 9888 long imbalance; 9889 9890 if (!env->idle || !busiest->sum_nr_running) 9891 return 0; 9892 9893 ncores_busiest = sds->busiest->cores; 9894 ncores_local = sds->local->cores; 9895 9896 if (ncores_busiest == ncores_local) { 9897 imbalance = busiest->sum_nr_running; 9898 lsub_positive(&imbalance, local->sum_nr_running); 9899 return imbalance; 9900 } 9901 9902 /* Balance such that nr_running/ncores ratio are same on both groups */ 9903 imbalance = ncores_local * busiest->sum_nr_running; 9904 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9905 /* Normalize imbalance and do rounding on normalization */ 9906 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9907 imbalance /= ncores_local + ncores_busiest; 9908 9909 /* Take advantage of resource in an empty sched group */ 9910 if (imbalance <= 1 && local->sum_nr_running == 0 && 9911 busiest->sum_nr_running > 1) 9912 imbalance = 2; 9913 9914 return imbalance; 9915 } 9916 9917 static inline bool 9918 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9919 { 9920 /* 9921 * When there is more than 1 task, the group_overloaded case already 9922 * takes care of cpu with reduced capacity 9923 */ 9924 if (rq->cfs.h_nr_running != 1) 9925 return false; 9926 9927 return check_cpu_capacity(rq, sd); 9928 } 9929 9930 /** 9931 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9932 * @env: The load balancing environment. 9933 * @sds: Load-balancing data with statistics of the local group. 9934 * @group: sched_group whose statistics are to be updated. 9935 * @sgs: variable to hold the statistics for this group. 9936 * @sg_overloaded: sched_group is overloaded 9937 * @sg_overutilized: sched_group is overutilized 9938 */ 9939 static inline void update_sg_lb_stats(struct lb_env *env, 9940 struct sd_lb_stats *sds, 9941 struct sched_group *group, 9942 struct sg_lb_stats *sgs, 9943 bool *sg_overloaded, 9944 bool *sg_overutilized) 9945 { 9946 int i, nr_running, local_group; 9947 9948 memset(sgs, 0, sizeof(*sgs)); 9949 9950 local_group = group == sds->local; 9951 9952 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9953 struct rq *rq = cpu_rq(i); 9954 unsigned long load = cpu_load(rq); 9955 9956 sgs->group_load += load; 9957 sgs->group_util += cpu_util_cfs(i); 9958 sgs->group_runnable += cpu_runnable(rq); 9959 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9960 9961 nr_running = rq->nr_running; 9962 sgs->sum_nr_running += nr_running; 9963 9964 if (nr_running > 1) 9965 *sg_overloaded = 1; 9966 9967 if (cpu_overutilized(i)) 9968 *sg_overutilized = 1; 9969 9970 #ifdef CONFIG_NUMA_BALANCING 9971 sgs->nr_numa_running += rq->nr_numa_running; 9972 sgs->nr_preferred_running += rq->nr_preferred_running; 9973 #endif 9974 /* 9975 * No need to call idle_cpu() if nr_running is not 0 9976 */ 9977 if (!nr_running && idle_cpu(i)) { 9978 sgs->idle_cpus++; 9979 /* Idle cpu can't have misfit task */ 9980 continue; 9981 } 9982 9983 if (local_group) 9984 continue; 9985 9986 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9987 /* Check for a misfit task on the cpu */ 9988 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9989 sgs->group_misfit_task_load = rq->misfit_task_load; 9990 *sg_overloaded = 1; 9991 } 9992 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 9993 /* Check for a task running on a CPU with reduced capacity */ 9994 if (sgs->group_misfit_task_load < load) 9995 sgs->group_misfit_task_load = load; 9996 } 9997 } 9998 9999 sgs->group_capacity = group->sgc->capacity; 10000 10001 sgs->group_weight = group->group_weight; 10002 10003 /* Check if dst CPU is idle and preferred to this group */ 10004 if (!local_group && env->idle && sgs->sum_h_nr_running && 10005 sched_group_asym(env, sgs, group)) 10006 sgs->group_asym_packing = 1; 10007 10008 /* Check for loaded SMT group to be balanced to dst CPU */ 10009 if (!local_group && smt_balance(env, sgs, group)) 10010 sgs->group_smt_balance = 1; 10011 10012 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10013 10014 /* Computing avg_load makes sense only when group is overloaded */ 10015 if (sgs->group_type == group_overloaded) 10016 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10017 sgs->group_capacity; 10018 } 10019 10020 /** 10021 * update_sd_pick_busiest - return 1 on busiest group 10022 * @env: The load balancing environment. 10023 * @sds: sched_domain statistics 10024 * @sg: sched_group candidate to be checked for being the busiest 10025 * @sgs: sched_group statistics 10026 * 10027 * Determine if @sg is a busier group than the previously selected 10028 * busiest group. 10029 * 10030 * Return: %true if @sg is a busier group than the previously selected 10031 * busiest group. %false otherwise. 10032 */ 10033 static bool update_sd_pick_busiest(struct lb_env *env, 10034 struct sd_lb_stats *sds, 10035 struct sched_group *sg, 10036 struct sg_lb_stats *sgs) 10037 { 10038 struct sg_lb_stats *busiest = &sds->busiest_stat; 10039 10040 /* Make sure that there is at least one task to pull */ 10041 if (!sgs->sum_h_nr_running) 10042 return false; 10043 10044 /* 10045 * Don't try to pull misfit tasks we can't help. 10046 * We can use max_capacity here as reduction in capacity on some 10047 * CPUs in the group should either be possible to resolve 10048 * internally or be covered by avg_load imbalance (eventually). 10049 */ 10050 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10051 (sgs->group_type == group_misfit_task) && 10052 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10053 sds->local_stat.group_type != group_has_spare)) 10054 return false; 10055 10056 if (sgs->group_type > busiest->group_type) 10057 return true; 10058 10059 if (sgs->group_type < busiest->group_type) 10060 return false; 10061 10062 /* 10063 * The candidate and the current busiest group are the same type of 10064 * group. Let check which one is the busiest according to the type. 10065 */ 10066 10067 switch (sgs->group_type) { 10068 case group_overloaded: 10069 /* Select the overloaded group with highest avg_load. */ 10070 return sgs->avg_load > busiest->avg_load; 10071 10072 case group_imbalanced: 10073 /* 10074 * Select the 1st imbalanced group as we don't have any way to 10075 * choose one more than another. 10076 */ 10077 return false; 10078 10079 case group_asym_packing: 10080 /* Prefer to move from lowest priority CPU's work */ 10081 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10082 10083 case group_misfit_task: 10084 /* 10085 * If we have more than one misfit sg go with the biggest 10086 * misfit. 10087 */ 10088 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10089 10090 case group_smt_balance: 10091 /* 10092 * Check if we have spare CPUs on either SMT group to 10093 * choose has spare or fully busy handling. 10094 */ 10095 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10096 goto has_spare; 10097 10098 fallthrough; 10099 10100 case group_fully_busy: 10101 /* 10102 * Select the fully busy group with highest avg_load. In 10103 * theory, there is no need to pull task from such kind of 10104 * group because tasks have all compute capacity that they need 10105 * but we can still improve the overall throughput by reducing 10106 * contention when accessing shared HW resources. 10107 * 10108 * XXX for now avg_load is not computed and always 0 so we 10109 * select the 1st one, except if @sg is composed of SMT 10110 * siblings. 10111 */ 10112 10113 if (sgs->avg_load < busiest->avg_load) 10114 return false; 10115 10116 if (sgs->avg_load == busiest->avg_load) { 10117 /* 10118 * SMT sched groups need more help than non-SMT groups. 10119 * If @sg happens to also be SMT, either choice is good. 10120 */ 10121 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10122 return false; 10123 } 10124 10125 break; 10126 10127 case group_has_spare: 10128 /* 10129 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10130 * as we do not want to pull task off SMT core with one task 10131 * and make the core idle. 10132 */ 10133 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10134 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10135 return false; 10136 else 10137 return true; 10138 } 10139 has_spare: 10140 10141 /* 10142 * Select not overloaded group with lowest number of idle CPUs 10143 * and highest number of running tasks. We could also compare 10144 * the spare capacity which is more stable but it can end up 10145 * that the group has less spare capacity but finally more idle 10146 * CPUs which means less opportunity to pull tasks. 10147 */ 10148 if (sgs->idle_cpus > busiest->idle_cpus) 10149 return false; 10150 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10151 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10152 return false; 10153 10154 break; 10155 } 10156 10157 /* 10158 * Candidate sg has no more than one task per CPU and has higher 10159 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10160 * throughput. Maximize throughput, power/energy consequences are not 10161 * considered. 10162 */ 10163 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10164 (sgs->group_type <= group_fully_busy) && 10165 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10166 return false; 10167 10168 return true; 10169 } 10170 10171 #ifdef CONFIG_NUMA_BALANCING 10172 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10173 { 10174 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10175 return regular; 10176 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10177 return remote; 10178 return all; 10179 } 10180 10181 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10182 { 10183 if (rq->nr_running > rq->nr_numa_running) 10184 return regular; 10185 if (rq->nr_running > rq->nr_preferred_running) 10186 return remote; 10187 return all; 10188 } 10189 #else 10190 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10191 { 10192 return all; 10193 } 10194 10195 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10196 { 10197 return regular; 10198 } 10199 #endif /* CONFIG_NUMA_BALANCING */ 10200 10201 10202 struct sg_lb_stats; 10203 10204 /* 10205 * task_running_on_cpu - return 1 if @p is running on @cpu. 10206 */ 10207 10208 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10209 { 10210 /* Task has no contribution or is new */ 10211 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10212 return 0; 10213 10214 if (task_on_rq_queued(p)) 10215 return 1; 10216 10217 return 0; 10218 } 10219 10220 /** 10221 * idle_cpu_without - would a given CPU be idle without p ? 10222 * @cpu: the processor on which idleness is tested. 10223 * @p: task which should be ignored. 10224 * 10225 * Return: 1 if the CPU would be idle. 0 otherwise. 10226 */ 10227 static int idle_cpu_without(int cpu, struct task_struct *p) 10228 { 10229 struct rq *rq = cpu_rq(cpu); 10230 10231 if (rq->curr != rq->idle && rq->curr != p) 10232 return 0; 10233 10234 /* 10235 * rq->nr_running can't be used but an updated version without the 10236 * impact of p on cpu must be used instead. The updated nr_running 10237 * be computed and tested before calling idle_cpu_without(). 10238 */ 10239 10240 if (rq->ttwu_pending) 10241 return 0; 10242 10243 return 1; 10244 } 10245 10246 /* 10247 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10248 * @sd: The sched_domain level to look for idlest group. 10249 * @group: sched_group whose statistics are to be updated. 10250 * @sgs: variable to hold the statistics for this group. 10251 * @p: The task for which we look for the idlest group/CPU. 10252 */ 10253 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10254 struct sched_group *group, 10255 struct sg_lb_stats *sgs, 10256 struct task_struct *p) 10257 { 10258 int i, nr_running; 10259 10260 memset(sgs, 0, sizeof(*sgs)); 10261 10262 /* Assume that task can't fit any CPU of the group */ 10263 if (sd->flags & SD_ASYM_CPUCAPACITY) 10264 sgs->group_misfit_task_load = 1; 10265 10266 for_each_cpu(i, sched_group_span(group)) { 10267 struct rq *rq = cpu_rq(i); 10268 unsigned int local; 10269 10270 sgs->group_load += cpu_load_without(rq, p); 10271 sgs->group_util += cpu_util_without(i, p); 10272 sgs->group_runnable += cpu_runnable_without(rq, p); 10273 local = task_running_on_cpu(i, p); 10274 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10275 10276 nr_running = rq->nr_running - local; 10277 sgs->sum_nr_running += nr_running; 10278 10279 /* 10280 * No need to call idle_cpu_without() if nr_running is not 0 10281 */ 10282 if (!nr_running && idle_cpu_without(i, p)) 10283 sgs->idle_cpus++; 10284 10285 /* Check if task fits in the CPU */ 10286 if (sd->flags & SD_ASYM_CPUCAPACITY && 10287 sgs->group_misfit_task_load && 10288 task_fits_cpu(p, i)) 10289 sgs->group_misfit_task_load = 0; 10290 10291 } 10292 10293 sgs->group_capacity = group->sgc->capacity; 10294 10295 sgs->group_weight = group->group_weight; 10296 10297 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10298 10299 /* 10300 * Computing avg_load makes sense only when group is fully busy or 10301 * overloaded 10302 */ 10303 if (sgs->group_type == group_fully_busy || 10304 sgs->group_type == group_overloaded) 10305 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10306 sgs->group_capacity; 10307 } 10308 10309 static bool update_pick_idlest(struct sched_group *idlest, 10310 struct sg_lb_stats *idlest_sgs, 10311 struct sched_group *group, 10312 struct sg_lb_stats *sgs) 10313 { 10314 if (sgs->group_type < idlest_sgs->group_type) 10315 return true; 10316 10317 if (sgs->group_type > idlest_sgs->group_type) 10318 return false; 10319 10320 /* 10321 * The candidate and the current idlest group are the same type of 10322 * group. Let check which one is the idlest according to the type. 10323 */ 10324 10325 switch (sgs->group_type) { 10326 case group_overloaded: 10327 case group_fully_busy: 10328 /* Select the group with lowest avg_load. */ 10329 if (idlest_sgs->avg_load <= sgs->avg_load) 10330 return false; 10331 break; 10332 10333 case group_imbalanced: 10334 case group_asym_packing: 10335 case group_smt_balance: 10336 /* Those types are not used in the slow wakeup path */ 10337 return false; 10338 10339 case group_misfit_task: 10340 /* Select group with the highest max capacity */ 10341 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10342 return false; 10343 break; 10344 10345 case group_has_spare: 10346 /* Select group with most idle CPUs */ 10347 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10348 return false; 10349 10350 /* Select group with lowest group_util */ 10351 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10352 idlest_sgs->group_util <= sgs->group_util) 10353 return false; 10354 10355 break; 10356 } 10357 10358 return true; 10359 } 10360 10361 /* 10362 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10363 * domain. 10364 * 10365 * Assumes p is allowed on at least one CPU in sd. 10366 */ 10367 static struct sched_group * 10368 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10369 { 10370 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10371 struct sg_lb_stats local_sgs, tmp_sgs; 10372 struct sg_lb_stats *sgs; 10373 unsigned long imbalance; 10374 struct sg_lb_stats idlest_sgs = { 10375 .avg_load = UINT_MAX, 10376 .group_type = group_overloaded, 10377 }; 10378 10379 do { 10380 int local_group; 10381 10382 /* Skip over this group if it has no CPUs allowed */ 10383 if (!cpumask_intersects(sched_group_span(group), 10384 p->cpus_ptr)) 10385 continue; 10386 10387 /* Skip over this group if no cookie matched */ 10388 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10389 continue; 10390 10391 local_group = cpumask_test_cpu(this_cpu, 10392 sched_group_span(group)); 10393 10394 if (local_group) { 10395 sgs = &local_sgs; 10396 local = group; 10397 } else { 10398 sgs = &tmp_sgs; 10399 } 10400 10401 update_sg_wakeup_stats(sd, group, sgs, p); 10402 10403 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10404 idlest = group; 10405 idlest_sgs = *sgs; 10406 } 10407 10408 } while (group = group->next, group != sd->groups); 10409 10410 10411 /* There is no idlest group to push tasks to */ 10412 if (!idlest) 10413 return NULL; 10414 10415 /* The local group has been skipped because of CPU affinity */ 10416 if (!local) 10417 return idlest; 10418 10419 /* 10420 * If the local group is idler than the selected idlest group 10421 * don't try and push the task. 10422 */ 10423 if (local_sgs.group_type < idlest_sgs.group_type) 10424 return NULL; 10425 10426 /* 10427 * If the local group is busier than the selected idlest group 10428 * try and push the task. 10429 */ 10430 if (local_sgs.group_type > idlest_sgs.group_type) 10431 return idlest; 10432 10433 switch (local_sgs.group_type) { 10434 case group_overloaded: 10435 case group_fully_busy: 10436 10437 /* Calculate allowed imbalance based on load */ 10438 imbalance = scale_load_down(NICE_0_LOAD) * 10439 (sd->imbalance_pct-100) / 100; 10440 10441 /* 10442 * When comparing groups across NUMA domains, it's possible for 10443 * the local domain to be very lightly loaded relative to the 10444 * remote domains but "imbalance" skews the comparison making 10445 * remote CPUs look much more favourable. When considering 10446 * cross-domain, add imbalance to the load on the remote node 10447 * and consider staying local. 10448 */ 10449 10450 if ((sd->flags & SD_NUMA) && 10451 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10452 return NULL; 10453 10454 /* 10455 * If the local group is less loaded than the selected 10456 * idlest group don't try and push any tasks. 10457 */ 10458 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10459 return NULL; 10460 10461 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10462 return NULL; 10463 break; 10464 10465 case group_imbalanced: 10466 case group_asym_packing: 10467 case group_smt_balance: 10468 /* Those type are not used in the slow wakeup path */ 10469 return NULL; 10470 10471 case group_misfit_task: 10472 /* Select group with the highest max capacity */ 10473 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10474 return NULL; 10475 break; 10476 10477 case group_has_spare: 10478 #ifdef CONFIG_NUMA 10479 if (sd->flags & SD_NUMA) { 10480 int imb_numa_nr = sd->imb_numa_nr; 10481 #ifdef CONFIG_NUMA_BALANCING 10482 int idlest_cpu; 10483 /* 10484 * If there is spare capacity at NUMA, try to select 10485 * the preferred node 10486 */ 10487 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10488 return NULL; 10489 10490 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10491 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10492 return idlest; 10493 #endif /* CONFIG_NUMA_BALANCING */ 10494 /* 10495 * Otherwise, keep the task close to the wakeup source 10496 * and improve locality if the number of running tasks 10497 * would remain below threshold where an imbalance is 10498 * allowed while accounting for the possibility the 10499 * task is pinned to a subset of CPUs. If there is a 10500 * real need of migration, periodic load balance will 10501 * take care of it. 10502 */ 10503 if (p->nr_cpus_allowed != NR_CPUS) { 10504 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10505 10506 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10507 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10508 } 10509 10510 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10511 if (!adjust_numa_imbalance(imbalance, 10512 local_sgs.sum_nr_running + 1, 10513 imb_numa_nr)) { 10514 return NULL; 10515 } 10516 } 10517 #endif /* CONFIG_NUMA */ 10518 10519 /* 10520 * Select group with highest number of idle CPUs. We could also 10521 * compare the utilization which is more stable but it can end 10522 * up that the group has less spare capacity but finally more 10523 * idle CPUs which means more opportunity to run task. 10524 */ 10525 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10526 return NULL; 10527 break; 10528 } 10529 10530 return idlest; 10531 } 10532 10533 static void update_idle_cpu_scan(struct lb_env *env, 10534 unsigned long sum_util) 10535 { 10536 struct sched_domain_shared *sd_share; 10537 int llc_weight, pct; 10538 u64 x, y, tmp; 10539 /* 10540 * Update the number of CPUs to scan in LLC domain, which could 10541 * be used as a hint in select_idle_cpu(). The update of sd_share 10542 * could be expensive because it is within a shared cache line. 10543 * So the write of this hint only occurs during periodic load 10544 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10545 * can fire way more frequently than the former. 10546 */ 10547 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10548 return; 10549 10550 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10551 if (env->sd->span_weight != llc_weight) 10552 return; 10553 10554 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10555 if (!sd_share) 10556 return; 10557 10558 /* 10559 * The number of CPUs to search drops as sum_util increases, when 10560 * sum_util hits 85% or above, the scan stops. 10561 * The reason to choose 85% as the threshold is because this is the 10562 * imbalance_pct(117) when a LLC sched group is overloaded. 10563 * 10564 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10565 * and y'= y / SCHED_CAPACITY_SCALE 10566 * 10567 * x is the ratio of sum_util compared to the CPU capacity: 10568 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10569 * y' is the ratio of CPUs to be scanned in the LLC domain, 10570 * and the number of CPUs to scan is calculated by: 10571 * 10572 * nr_scan = llc_weight * y' [2] 10573 * 10574 * When x hits the threshold of overloaded, AKA, when 10575 * x = 100 / pct, y drops to 0. According to [1], 10576 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10577 * 10578 * Scale x by SCHED_CAPACITY_SCALE: 10579 * x' = sum_util / llc_weight; [3] 10580 * 10581 * and finally [1] becomes: 10582 * y = SCHED_CAPACITY_SCALE - 10583 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10584 * 10585 */ 10586 /* equation [3] */ 10587 x = sum_util; 10588 do_div(x, llc_weight); 10589 10590 /* equation [4] */ 10591 pct = env->sd->imbalance_pct; 10592 tmp = x * x * pct * pct; 10593 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10594 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10595 y = SCHED_CAPACITY_SCALE - tmp; 10596 10597 /* equation [2] */ 10598 y *= llc_weight; 10599 do_div(y, SCHED_CAPACITY_SCALE); 10600 if ((int)y != sd_share->nr_idle_scan) 10601 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10602 } 10603 10604 /** 10605 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10606 * @env: The load balancing environment. 10607 * @sds: variable to hold the statistics for this sched_domain. 10608 */ 10609 10610 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10611 { 10612 struct sched_group *sg = env->sd->groups; 10613 struct sg_lb_stats *local = &sds->local_stat; 10614 struct sg_lb_stats tmp_sgs; 10615 unsigned long sum_util = 0; 10616 bool sg_overloaded = 0, sg_overutilized = 0; 10617 10618 do { 10619 struct sg_lb_stats *sgs = &tmp_sgs; 10620 int local_group; 10621 10622 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10623 if (local_group) { 10624 sds->local = sg; 10625 sgs = local; 10626 10627 if (env->idle != CPU_NEWLY_IDLE || 10628 time_after_eq(jiffies, sg->sgc->next_update)) 10629 update_group_capacity(env->sd, env->dst_cpu); 10630 } 10631 10632 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10633 10634 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10635 sds->busiest = sg; 10636 sds->busiest_stat = *sgs; 10637 } 10638 10639 /* Now, start updating sd_lb_stats */ 10640 sds->total_load += sgs->group_load; 10641 sds->total_capacity += sgs->group_capacity; 10642 10643 sum_util += sgs->group_util; 10644 sg = sg->next; 10645 } while (sg != env->sd->groups); 10646 10647 /* 10648 * Indicate that the child domain of the busiest group prefers tasks 10649 * go to a child's sibling domains first. NB the flags of a sched group 10650 * are those of the child domain. 10651 */ 10652 if (sds->busiest) 10653 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10654 10655 10656 if (env->sd->flags & SD_NUMA) 10657 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10658 10659 if (!env->sd->parent) { 10660 /* update overload indicator if we are at root domain */ 10661 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 10662 10663 /* Update over-utilization (tipping point, U >= 0) indicator */ 10664 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10665 } else if (sg_overutilized) { 10666 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10667 } 10668 10669 update_idle_cpu_scan(env, sum_util); 10670 } 10671 10672 /** 10673 * calculate_imbalance - Calculate the amount of imbalance present within the 10674 * groups of a given sched_domain during load balance. 10675 * @env: load balance environment 10676 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10677 */ 10678 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10679 { 10680 struct sg_lb_stats *local, *busiest; 10681 10682 local = &sds->local_stat; 10683 busiest = &sds->busiest_stat; 10684 10685 if (busiest->group_type == group_misfit_task) { 10686 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10687 /* Set imbalance to allow misfit tasks to be balanced. */ 10688 env->migration_type = migrate_misfit; 10689 env->imbalance = 1; 10690 } else { 10691 /* 10692 * Set load imbalance to allow moving task from cpu 10693 * with reduced capacity. 10694 */ 10695 env->migration_type = migrate_load; 10696 env->imbalance = busiest->group_misfit_task_load; 10697 } 10698 return; 10699 } 10700 10701 if (busiest->group_type == group_asym_packing) { 10702 /* 10703 * In case of asym capacity, we will try to migrate all load to 10704 * the preferred CPU. 10705 */ 10706 env->migration_type = migrate_task; 10707 env->imbalance = busiest->sum_h_nr_running; 10708 return; 10709 } 10710 10711 if (busiest->group_type == group_smt_balance) { 10712 /* Reduce number of tasks sharing CPU capacity */ 10713 env->migration_type = migrate_task; 10714 env->imbalance = 1; 10715 return; 10716 } 10717 10718 if (busiest->group_type == group_imbalanced) { 10719 /* 10720 * In the group_imb case we cannot rely on group-wide averages 10721 * to ensure CPU-load equilibrium, try to move any task to fix 10722 * the imbalance. The next load balance will take care of 10723 * balancing back the system. 10724 */ 10725 env->migration_type = migrate_task; 10726 env->imbalance = 1; 10727 return; 10728 } 10729 10730 /* 10731 * Try to use spare capacity of local group without overloading it or 10732 * emptying busiest. 10733 */ 10734 if (local->group_type == group_has_spare) { 10735 if ((busiest->group_type > group_fully_busy) && 10736 !(env->sd->flags & SD_SHARE_LLC)) { 10737 /* 10738 * If busiest is overloaded, try to fill spare 10739 * capacity. This might end up creating spare capacity 10740 * in busiest or busiest still being overloaded but 10741 * there is no simple way to directly compute the 10742 * amount of load to migrate in order to balance the 10743 * system. 10744 */ 10745 env->migration_type = migrate_util; 10746 env->imbalance = max(local->group_capacity, local->group_util) - 10747 local->group_util; 10748 10749 /* 10750 * In some cases, the group's utilization is max or even 10751 * higher than capacity because of migrations but the 10752 * local CPU is (newly) idle. There is at least one 10753 * waiting task in this overloaded busiest group. Let's 10754 * try to pull it. 10755 */ 10756 if (env->idle && env->imbalance == 0) { 10757 env->migration_type = migrate_task; 10758 env->imbalance = 1; 10759 } 10760 10761 return; 10762 } 10763 10764 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10765 /* 10766 * When prefer sibling, evenly spread running tasks on 10767 * groups. 10768 */ 10769 env->migration_type = migrate_task; 10770 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10771 } else { 10772 10773 /* 10774 * If there is no overload, we just want to even the number of 10775 * idle CPUs. 10776 */ 10777 env->migration_type = migrate_task; 10778 env->imbalance = max_t(long, 0, 10779 (local->idle_cpus - busiest->idle_cpus)); 10780 } 10781 10782 #ifdef CONFIG_NUMA 10783 /* Consider allowing a small imbalance between NUMA groups */ 10784 if (env->sd->flags & SD_NUMA) { 10785 env->imbalance = adjust_numa_imbalance(env->imbalance, 10786 local->sum_nr_running + 1, 10787 env->sd->imb_numa_nr); 10788 } 10789 #endif 10790 10791 /* Number of tasks to move to restore balance */ 10792 env->imbalance >>= 1; 10793 10794 return; 10795 } 10796 10797 /* 10798 * Local is fully busy but has to take more load to relieve the 10799 * busiest group 10800 */ 10801 if (local->group_type < group_overloaded) { 10802 /* 10803 * Local will become overloaded so the avg_load metrics are 10804 * finally needed. 10805 */ 10806 10807 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10808 local->group_capacity; 10809 10810 /* 10811 * If the local group is more loaded than the selected 10812 * busiest group don't try to pull any tasks. 10813 */ 10814 if (local->avg_load >= busiest->avg_load) { 10815 env->imbalance = 0; 10816 return; 10817 } 10818 10819 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10820 sds->total_capacity; 10821 10822 /* 10823 * If the local group is more loaded than the average system 10824 * load, don't try to pull any tasks. 10825 */ 10826 if (local->avg_load >= sds->avg_load) { 10827 env->imbalance = 0; 10828 return; 10829 } 10830 10831 } 10832 10833 /* 10834 * Both group are or will become overloaded and we're trying to get all 10835 * the CPUs to the average_load, so we don't want to push ourselves 10836 * above the average load, nor do we wish to reduce the max loaded CPU 10837 * below the average load. At the same time, we also don't want to 10838 * reduce the group load below the group capacity. Thus we look for 10839 * the minimum possible imbalance. 10840 */ 10841 env->migration_type = migrate_load; 10842 env->imbalance = min( 10843 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10844 (sds->avg_load - local->avg_load) * local->group_capacity 10845 ) / SCHED_CAPACITY_SCALE; 10846 } 10847 10848 /******* sched_balance_find_src_group() helpers end here *********************/ 10849 10850 /* 10851 * Decision matrix according to the local and busiest group type: 10852 * 10853 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10854 * has_spare nr_idle balanced N/A N/A balanced balanced 10855 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10856 * misfit_task force N/A N/A N/A N/A N/A 10857 * asym_packing force force N/A N/A force force 10858 * imbalanced force force N/A N/A force force 10859 * overloaded force force N/A N/A force avg_load 10860 * 10861 * N/A : Not Applicable because already filtered while updating 10862 * statistics. 10863 * balanced : The system is balanced for these 2 groups. 10864 * force : Calculate the imbalance as load migration is probably needed. 10865 * avg_load : Only if imbalance is significant enough. 10866 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10867 * different in groups. 10868 */ 10869 10870 /** 10871 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 10872 * if there is an imbalance. 10873 * @env: The load balancing environment. 10874 * 10875 * Also calculates the amount of runnable load which should be moved 10876 * to restore balance. 10877 * 10878 * Return: - The busiest group if imbalance exists. 10879 */ 10880 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 10881 { 10882 struct sg_lb_stats *local, *busiest; 10883 struct sd_lb_stats sds; 10884 10885 init_sd_lb_stats(&sds); 10886 10887 /* 10888 * Compute the various statistics relevant for load balancing at 10889 * this level. 10890 */ 10891 update_sd_lb_stats(env, &sds); 10892 10893 /* There is no busy sibling group to pull tasks from */ 10894 if (!sds.busiest) 10895 goto out_balanced; 10896 10897 busiest = &sds.busiest_stat; 10898 10899 /* Misfit tasks should be dealt with regardless of the avg load */ 10900 if (busiest->group_type == group_misfit_task) 10901 goto force_balance; 10902 10903 if (!is_rd_overutilized(env->dst_rq->rd) && 10904 rcu_dereference(env->dst_rq->rd->pd)) 10905 goto out_balanced; 10906 10907 /* ASYM feature bypasses nice load balance check */ 10908 if (busiest->group_type == group_asym_packing) 10909 goto force_balance; 10910 10911 /* 10912 * If the busiest group is imbalanced the below checks don't 10913 * work because they assume all things are equal, which typically 10914 * isn't true due to cpus_ptr constraints and the like. 10915 */ 10916 if (busiest->group_type == group_imbalanced) 10917 goto force_balance; 10918 10919 local = &sds.local_stat; 10920 /* 10921 * If the local group is busier than the selected busiest group 10922 * don't try and pull any tasks. 10923 */ 10924 if (local->group_type > busiest->group_type) 10925 goto out_balanced; 10926 10927 /* 10928 * When groups are overloaded, use the avg_load to ensure fairness 10929 * between tasks. 10930 */ 10931 if (local->group_type == group_overloaded) { 10932 /* 10933 * If the local group is more loaded than the selected 10934 * busiest group don't try to pull any tasks. 10935 */ 10936 if (local->avg_load >= busiest->avg_load) 10937 goto out_balanced; 10938 10939 /* XXX broken for overlapping NUMA groups */ 10940 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10941 sds.total_capacity; 10942 10943 /* 10944 * Don't pull any tasks if this group is already above the 10945 * domain average load. 10946 */ 10947 if (local->avg_load >= sds.avg_load) 10948 goto out_balanced; 10949 10950 /* 10951 * If the busiest group is more loaded, use imbalance_pct to be 10952 * conservative. 10953 */ 10954 if (100 * busiest->avg_load <= 10955 env->sd->imbalance_pct * local->avg_load) 10956 goto out_balanced; 10957 } 10958 10959 /* 10960 * Try to move all excess tasks to a sibling domain of the busiest 10961 * group's child domain. 10962 */ 10963 if (sds.prefer_sibling && local->group_type == group_has_spare && 10964 sibling_imbalance(env, &sds, busiest, local) > 1) 10965 goto force_balance; 10966 10967 if (busiest->group_type != group_overloaded) { 10968 if (!env->idle) { 10969 /* 10970 * If the busiest group is not overloaded (and as a 10971 * result the local one too) but this CPU is already 10972 * busy, let another idle CPU try to pull task. 10973 */ 10974 goto out_balanced; 10975 } 10976 10977 if (busiest->group_type == group_smt_balance && 10978 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10979 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10980 goto force_balance; 10981 } 10982 10983 if (busiest->group_weight > 1 && 10984 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10985 /* 10986 * If the busiest group is not overloaded 10987 * and there is no imbalance between this and busiest 10988 * group wrt idle CPUs, it is balanced. The imbalance 10989 * becomes significant if the diff is greater than 1 10990 * otherwise we might end up to just move the imbalance 10991 * on another group. Of course this applies only if 10992 * there is more than 1 CPU per group. 10993 */ 10994 goto out_balanced; 10995 } 10996 10997 if (busiest->sum_h_nr_running == 1) { 10998 /* 10999 * busiest doesn't have any tasks waiting to run 11000 */ 11001 goto out_balanced; 11002 } 11003 } 11004 11005 force_balance: 11006 /* Looks like there is an imbalance. Compute it */ 11007 calculate_imbalance(env, &sds); 11008 return env->imbalance ? sds.busiest : NULL; 11009 11010 out_balanced: 11011 env->imbalance = 0; 11012 return NULL; 11013 } 11014 11015 /* 11016 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11017 */ 11018 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11019 struct sched_group *group) 11020 { 11021 struct rq *busiest = NULL, *rq; 11022 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11023 unsigned int busiest_nr = 0; 11024 int i; 11025 11026 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11027 unsigned long capacity, load, util; 11028 unsigned int nr_running; 11029 enum fbq_type rt; 11030 11031 rq = cpu_rq(i); 11032 rt = fbq_classify_rq(rq); 11033 11034 /* 11035 * We classify groups/runqueues into three groups: 11036 * - regular: there are !numa tasks 11037 * - remote: there are numa tasks that run on the 'wrong' node 11038 * - all: there is no distinction 11039 * 11040 * In order to avoid migrating ideally placed numa tasks, 11041 * ignore those when there's better options. 11042 * 11043 * If we ignore the actual busiest queue to migrate another 11044 * task, the next balance pass can still reduce the busiest 11045 * queue by moving tasks around inside the node. 11046 * 11047 * If we cannot move enough load due to this classification 11048 * the next pass will adjust the group classification and 11049 * allow migration of more tasks. 11050 * 11051 * Both cases only affect the total convergence complexity. 11052 */ 11053 if (rt > env->fbq_type) 11054 continue; 11055 11056 nr_running = rq->cfs.h_nr_running; 11057 if (!nr_running) 11058 continue; 11059 11060 capacity = capacity_of(i); 11061 11062 /* 11063 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11064 * eventually lead to active_balancing high->low capacity. 11065 * Higher per-CPU capacity is considered better than balancing 11066 * average load. 11067 */ 11068 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11069 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11070 nr_running == 1) 11071 continue; 11072 11073 /* 11074 * Make sure we only pull tasks from a CPU of lower priority 11075 * when balancing between SMT siblings. 11076 * 11077 * If balancing between cores, let lower priority CPUs help 11078 * SMT cores with more than one busy sibling. 11079 */ 11080 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11081 continue; 11082 11083 switch (env->migration_type) { 11084 case migrate_load: 11085 /* 11086 * When comparing with load imbalance, use cpu_load() 11087 * which is not scaled with the CPU capacity. 11088 */ 11089 load = cpu_load(rq); 11090 11091 if (nr_running == 1 && load > env->imbalance && 11092 !check_cpu_capacity(rq, env->sd)) 11093 break; 11094 11095 /* 11096 * For the load comparisons with the other CPUs, 11097 * consider the cpu_load() scaled with the CPU 11098 * capacity, so that the load can be moved away 11099 * from the CPU that is potentially running at a 11100 * lower capacity. 11101 * 11102 * Thus we're looking for max(load_i / capacity_i), 11103 * crosswise multiplication to rid ourselves of the 11104 * division works out to: 11105 * load_i * capacity_j > load_j * capacity_i; 11106 * where j is our previous maximum. 11107 */ 11108 if (load * busiest_capacity > busiest_load * capacity) { 11109 busiest_load = load; 11110 busiest_capacity = capacity; 11111 busiest = rq; 11112 } 11113 break; 11114 11115 case migrate_util: 11116 util = cpu_util_cfs_boost(i); 11117 11118 /* 11119 * Don't try to pull utilization from a CPU with one 11120 * running task. Whatever its utilization, we will fail 11121 * detach the task. 11122 */ 11123 if (nr_running <= 1) 11124 continue; 11125 11126 if (busiest_util < util) { 11127 busiest_util = util; 11128 busiest = rq; 11129 } 11130 break; 11131 11132 case migrate_task: 11133 if (busiest_nr < nr_running) { 11134 busiest_nr = nr_running; 11135 busiest = rq; 11136 } 11137 break; 11138 11139 case migrate_misfit: 11140 /* 11141 * For ASYM_CPUCAPACITY domains with misfit tasks we 11142 * simply seek the "biggest" misfit task. 11143 */ 11144 if (rq->misfit_task_load > busiest_load) { 11145 busiest_load = rq->misfit_task_load; 11146 busiest = rq; 11147 } 11148 11149 break; 11150 11151 } 11152 } 11153 11154 return busiest; 11155 } 11156 11157 /* 11158 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11159 * so long as it is large enough. 11160 */ 11161 #define MAX_PINNED_INTERVAL 512 11162 11163 static inline bool 11164 asym_active_balance(struct lb_env *env) 11165 { 11166 /* 11167 * ASYM_PACKING needs to force migrate tasks from busy but lower 11168 * priority CPUs in order to pack all tasks in the highest priority 11169 * CPUs. When done between cores, do it only if the whole core if the 11170 * whole core is idle. 11171 * 11172 * If @env::src_cpu is an SMT core with busy siblings, let 11173 * the lower priority @env::dst_cpu help it. Do not follow 11174 * CPU priority. 11175 */ 11176 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11177 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11178 !sched_use_asym_prio(env->sd, env->src_cpu)); 11179 } 11180 11181 static inline bool 11182 imbalanced_active_balance(struct lb_env *env) 11183 { 11184 struct sched_domain *sd = env->sd; 11185 11186 /* 11187 * The imbalanced case includes the case of pinned tasks preventing a fair 11188 * distribution of the load on the system but also the even distribution of the 11189 * threads on a system with spare capacity 11190 */ 11191 if ((env->migration_type == migrate_task) && 11192 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11193 return 1; 11194 11195 return 0; 11196 } 11197 11198 static int need_active_balance(struct lb_env *env) 11199 { 11200 struct sched_domain *sd = env->sd; 11201 11202 if (asym_active_balance(env)) 11203 return 1; 11204 11205 if (imbalanced_active_balance(env)) 11206 return 1; 11207 11208 /* 11209 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11210 * It's worth migrating the task if the src_cpu's capacity is reduced 11211 * because of other sched_class or IRQs if more capacity stays 11212 * available on dst_cpu. 11213 */ 11214 if (env->idle && 11215 (env->src_rq->cfs.h_nr_running == 1)) { 11216 if ((check_cpu_capacity(env->src_rq, sd)) && 11217 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11218 return 1; 11219 } 11220 11221 if (env->migration_type == migrate_misfit) 11222 return 1; 11223 11224 return 0; 11225 } 11226 11227 static int active_load_balance_cpu_stop(void *data); 11228 11229 static int should_we_balance(struct lb_env *env) 11230 { 11231 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11232 struct sched_group *sg = env->sd->groups; 11233 int cpu, idle_smt = -1; 11234 11235 /* 11236 * Ensure the balancing environment is consistent; can happen 11237 * when the softirq triggers 'during' hotplug. 11238 */ 11239 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11240 return 0; 11241 11242 /* 11243 * In the newly idle case, we will allow all the CPUs 11244 * to do the newly idle load balance. 11245 * 11246 * However, we bail out if we already have tasks or a wakeup pending, 11247 * to optimize wakeup latency. 11248 */ 11249 if (env->idle == CPU_NEWLY_IDLE) { 11250 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11251 return 0; 11252 return 1; 11253 } 11254 11255 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11256 /* Try to find first idle CPU */ 11257 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11258 if (!idle_cpu(cpu)) 11259 continue; 11260 11261 /* 11262 * Don't balance to idle SMT in busy core right away when 11263 * balancing cores, but remember the first idle SMT CPU for 11264 * later consideration. Find CPU on an idle core first. 11265 */ 11266 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11267 if (idle_smt == -1) 11268 idle_smt = cpu; 11269 /* 11270 * If the core is not idle, and first SMT sibling which is 11271 * idle has been found, then its not needed to check other 11272 * SMT siblings for idleness: 11273 */ 11274 #ifdef CONFIG_SCHED_SMT 11275 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11276 #endif 11277 continue; 11278 } 11279 11280 /* 11281 * Are we the first idle core in a non-SMT domain or higher, 11282 * or the first idle CPU in a SMT domain? 11283 */ 11284 return cpu == env->dst_cpu; 11285 } 11286 11287 /* Are we the first idle CPU with busy siblings? */ 11288 if (idle_smt != -1) 11289 return idle_smt == env->dst_cpu; 11290 11291 /* Are we the first CPU of this group ? */ 11292 return group_balance_cpu(sg) == env->dst_cpu; 11293 } 11294 11295 /* 11296 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11297 * tasks if there is an imbalance. 11298 */ 11299 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11300 struct sched_domain *sd, enum cpu_idle_type idle, 11301 int *continue_balancing) 11302 { 11303 int ld_moved, cur_ld_moved, active_balance = 0; 11304 struct sched_domain *sd_parent = sd->parent; 11305 struct sched_group *group; 11306 struct rq *busiest; 11307 struct rq_flags rf; 11308 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11309 struct lb_env env = { 11310 .sd = sd, 11311 .dst_cpu = this_cpu, 11312 .dst_rq = this_rq, 11313 .dst_grpmask = group_balance_mask(sd->groups), 11314 .idle = idle, 11315 .loop_break = SCHED_NR_MIGRATE_BREAK, 11316 .cpus = cpus, 11317 .fbq_type = all, 11318 .tasks = LIST_HEAD_INIT(env.tasks), 11319 }; 11320 11321 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11322 11323 schedstat_inc(sd->lb_count[idle]); 11324 11325 redo: 11326 if (!should_we_balance(&env)) { 11327 *continue_balancing = 0; 11328 goto out_balanced; 11329 } 11330 11331 group = sched_balance_find_src_group(&env); 11332 if (!group) { 11333 schedstat_inc(sd->lb_nobusyg[idle]); 11334 goto out_balanced; 11335 } 11336 11337 busiest = sched_balance_find_src_rq(&env, group); 11338 if (!busiest) { 11339 schedstat_inc(sd->lb_nobusyq[idle]); 11340 goto out_balanced; 11341 } 11342 11343 WARN_ON_ONCE(busiest == env.dst_rq); 11344 11345 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11346 11347 env.src_cpu = busiest->cpu; 11348 env.src_rq = busiest; 11349 11350 ld_moved = 0; 11351 /* Clear this flag as soon as we find a pullable task */ 11352 env.flags |= LBF_ALL_PINNED; 11353 if (busiest->nr_running > 1) { 11354 /* 11355 * Attempt to move tasks. If sched_balance_find_src_group has found 11356 * an imbalance but busiest->nr_running <= 1, the group is 11357 * still unbalanced. ld_moved simply stays zero, so it is 11358 * correctly treated as an imbalance. 11359 */ 11360 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11361 11362 more_balance: 11363 rq_lock_irqsave(busiest, &rf); 11364 update_rq_clock(busiest); 11365 11366 /* 11367 * cur_ld_moved - load moved in current iteration 11368 * ld_moved - cumulative load moved across iterations 11369 */ 11370 cur_ld_moved = detach_tasks(&env); 11371 11372 /* 11373 * We've detached some tasks from busiest_rq. Every 11374 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11375 * unlock busiest->lock, and we are able to be sure 11376 * that nobody can manipulate the tasks in parallel. 11377 * See task_rq_lock() family for the details. 11378 */ 11379 11380 rq_unlock(busiest, &rf); 11381 11382 if (cur_ld_moved) { 11383 attach_tasks(&env); 11384 ld_moved += cur_ld_moved; 11385 } 11386 11387 local_irq_restore(rf.flags); 11388 11389 if (env.flags & LBF_NEED_BREAK) { 11390 env.flags &= ~LBF_NEED_BREAK; 11391 goto more_balance; 11392 } 11393 11394 /* 11395 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11396 * us and move them to an alternate dst_cpu in our sched_group 11397 * where they can run. The upper limit on how many times we 11398 * iterate on same src_cpu is dependent on number of CPUs in our 11399 * sched_group. 11400 * 11401 * This changes load balance semantics a bit on who can move 11402 * load to a given_cpu. In addition to the given_cpu itself 11403 * (or a ilb_cpu acting on its behalf where given_cpu is 11404 * nohz-idle), we now have balance_cpu in a position to move 11405 * load to given_cpu. In rare situations, this may cause 11406 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11407 * _independently_ and at _same_ time to move some load to 11408 * given_cpu) causing excess load to be moved to given_cpu. 11409 * This however should not happen so much in practice and 11410 * moreover subsequent load balance cycles should correct the 11411 * excess load moved. 11412 */ 11413 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11414 11415 /* Prevent to re-select dst_cpu via env's CPUs */ 11416 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11417 11418 env.dst_rq = cpu_rq(env.new_dst_cpu); 11419 env.dst_cpu = env.new_dst_cpu; 11420 env.flags &= ~LBF_DST_PINNED; 11421 env.loop = 0; 11422 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11423 11424 /* 11425 * Go back to "more_balance" rather than "redo" since we 11426 * need to continue with same src_cpu. 11427 */ 11428 goto more_balance; 11429 } 11430 11431 /* 11432 * We failed to reach balance because of affinity. 11433 */ 11434 if (sd_parent) { 11435 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11436 11437 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11438 *group_imbalance = 1; 11439 } 11440 11441 /* All tasks on this runqueue were pinned by CPU affinity */ 11442 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11443 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11444 /* 11445 * Attempting to continue load balancing at the current 11446 * sched_domain level only makes sense if there are 11447 * active CPUs remaining as possible busiest CPUs to 11448 * pull load from which are not contained within the 11449 * destination group that is receiving any migrated 11450 * load. 11451 */ 11452 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11453 env.loop = 0; 11454 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11455 goto redo; 11456 } 11457 goto out_all_pinned; 11458 } 11459 } 11460 11461 if (!ld_moved) { 11462 schedstat_inc(sd->lb_failed[idle]); 11463 /* 11464 * Increment the failure counter only on periodic balance. 11465 * We do not want newidle balance, which can be very 11466 * frequent, pollute the failure counter causing 11467 * excessive cache_hot migrations and active balances. 11468 * 11469 * Similarly for migration_misfit which is not related to 11470 * load/util migration, don't pollute nr_balance_failed. 11471 */ 11472 if (idle != CPU_NEWLY_IDLE && 11473 env.migration_type != migrate_misfit) 11474 sd->nr_balance_failed++; 11475 11476 if (need_active_balance(&env)) { 11477 unsigned long flags; 11478 11479 raw_spin_rq_lock_irqsave(busiest, flags); 11480 11481 /* 11482 * Don't kick the active_load_balance_cpu_stop, 11483 * if the curr task on busiest CPU can't be 11484 * moved to this_cpu: 11485 */ 11486 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11487 raw_spin_rq_unlock_irqrestore(busiest, flags); 11488 goto out_one_pinned; 11489 } 11490 11491 /* Record that we found at least one task that could run on this_cpu */ 11492 env.flags &= ~LBF_ALL_PINNED; 11493 11494 /* 11495 * ->active_balance synchronizes accesses to 11496 * ->active_balance_work. Once set, it's cleared 11497 * only after active load balance is finished. 11498 */ 11499 if (!busiest->active_balance) { 11500 busiest->active_balance = 1; 11501 busiest->push_cpu = this_cpu; 11502 active_balance = 1; 11503 } 11504 11505 preempt_disable(); 11506 raw_spin_rq_unlock_irqrestore(busiest, flags); 11507 if (active_balance) { 11508 stop_one_cpu_nowait(cpu_of(busiest), 11509 active_load_balance_cpu_stop, busiest, 11510 &busiest->active_balance_work); 11511 } 11512 preempt_enable(); 11513 } 11514 } else { 11515 sd->nr_balance_failed = 0; 11516 } 11517 11518 if (likely(!active_balance) || need_active_balance(&env)) { 11519 /* We were unbalanced, so reset the balancing interval */ 11520 sd->balance_interval = sd->min_interval; 11521 } 11522 11523 goto out; 11524 11525 out_balanced: 11526 /* 11527 * We reach balance although we may have faced some affinity 11528 * constraints. Clear the imbalance flag only if other tasks got 11529 * a chance to move and fix the imbalance. 11530 */ 11531 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11532 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11533 11534 if (*group_imbalance) 11535 *group_imbalance = 0; 11536 } 11537 11538 out_all_pinned: 11539 /* 11540 * We reach balance because all tasks are pinned at this level so 11541 * we can't migrate them. Let the imbalance flag set so parent level 11542 * can try to migrate them. 11543 */ 11544 schedstat_inc(sd->lb_balanced[idle]); 11545 11546 sd->nr_balance_failed = 0; 11547 11548 out_one_pinned: 11549 ld_moved = 0; 11550 11551 /* 11552 * sched_balance_newidle() disregards balance intervals, so we could 11553 * repeatedly reach this code, which would lead to balance_interval 11554 * skyrocketing in a short amount of time. Skip the balance_interval 11555 * increase logic to avoid that. 11556 * 11557 * Similarly misfit migration which is not necessarily an indication of 11558 * the system being busy and requires lb to backoff to let it settle 11559 * down. 11560 */ 11561 if (env.idle == CPU_NEWLY_IDLE || 11562 env.migration_type == migrate_misfit) 11563 goto out; 11564 11565 /* tune up the balancing interval */ 11566 if ((env.flags & LBF_ALL_PINNED && 11567 sd->balance_interval < MAX_PINNED_INTERVAL) || 11568 sd->balance_interval < sd->max_interval) 11569 sd->balance_interval *= 2; 11570 out: 11571 return ld_moved; 11572 } 11573 11574 static inline unsigned long 11575 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11576 { 11577 unsigned long interval = sd->balance_interval; 11578 11579 if (cpu_busy) 11580 interval *= sd->busy_factor; 11581 11582 /* scale ms to jiffies */ 11583 interval = msecs_to_jiffies(interval); 11584 11585 /* 11586 * Reduce likelihood of busy balancing at higher domains racing with 11587 * balancing at lower domains by preventing their balancing periods 11588 * from being multiples of each other. 11589 */ 11590 if (cpu_busy) 11591 interval -= 1; 11592 11593 interval = clamp(interval, 1UL, max_load_balance_interval); 11594 11595 return interval; 11596 } 11597 11598 static inline void 11599 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11600 { 11601 unsigned long interval, next; 11602 11603 /* used by idle balance, so cpu_busy = 0 */ 11604 interval = get_sd_balance_interval(sd, 0); 11605 next = sd->last_balance + interval; 11606 11607 if (time_after(*next_balance, next)) 11608 *next_balance = next; 11609 } 11610 11611 /* 11612 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11613 * running tasks off the busiest CPU onto idle CPUs. It requires at 11614 * least 1 task to be running on each physical CPU where possible, and 11615 * avoids physical / logical imbalances. 11616 */ 11617 static int active_load_balance_cpu_stop(void *data) 11618 { 11619 struct rq *busiest_rq = data; 11620 int busiest_cpu = cpu_of(busiest_rq); 11621 int target_cpu = busiest_rq->push_cpu; 11622 struct rq *target_rq = cpu_rq(target_cpu); 11623 struct sched_domain *sd; 11624 struct task_struct *p = NULL; 11625 struct rq_flags rf; 11626 11627 rq_lock_irq(busiest_rq, &rf); 11628 /* 11629 * Between queueing the stop-work and running it is a hole in which 11630 * CPUs can become inactive. We should not move tasks from or to 11631 * inactive CPUs. 11632 */ 11633 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11634 goto out_unlock; 11635 11636 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11637 if (unlikely(busiest_cpu != smp_processor_id() || 11638 !busiest_rq->active_balance)) 11639 goto out_unlock; 11640 11641 /* Is there any task to move? */ 11642 if (busiest_rq->nr_running <= 1) 11643 goto out_unlock; 11644 11645 /* 11646 * This condition is "impossible", if it occurs 11647 * we need to fix it. Originally reported by 11648 * Bjorn Helgaas on a 128-CPU setup. 11649 */ 11650 WARN_ON_ONCE(busiest_rq == target_rq); 11651 11652 /* Search for an sd spanning us and the target CPU. */ 11653 rcu_read_lock(); 11654 for_each_domain(target_cpu, sd) { 11655 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11656 break; 11657 } 11658 11659 if (likely(sd)) { 11660 struct lb_env env = { 11661 .sd = sd, 11662 .dst_cpu = target_cpu, 11663 .dst_rq = target_rq, 11664 .src_cpu = busiest_rq->cpu, 11665 .src_rq = busiest_rq, 11666 .idle = CPU_IDLE, 11667 .flags = LBF_ACTIVE_LB, 11668 }; 11669 11670 schedstat_inc(sd->alb_count); 11671 update_rq_clock(busiest_rq); 11672 11673 p = detach_one_task(&env); 11674 if (p) { 11675 schedstat_inc(sd->alb_pushed); 11676 /* Active balancing done, reset the failure counter. */ 11677 sd->nr_balance_failed = 0; 11678 } else { 11679 schedstat_inc(sd->alb_failed); 11680 } 11681 } 11682 rcu_read_unlock(); 11683 out_unlock: 11684 busiest_rq->active_balance = 0; 11685 rq_unlock(busiest_rq, &rf); 11686 11687 if (p) 11688 attach_one_task(target_rq, p); 11689 11690 local_irq_enable(); 11691 11692 return 0; 11693 } 11694 11695 /* 11696 * This flag serializes load-balancing passes over large domains 11697 * (above the NODE topology level) - only one load-balancing instance 11698 * may run at a time, to reduce overhead on very large systems with 11699 * lots of CPUs and large NUMA distances. 11700 * 11701 * - Note that load-balancing passes triggered while another one 11702 * is executing are skipped and not re-tried. 11703 * 11704 * - Also note that this does not serialize rebalance_domains() 11705 * execution, as non-SD_SERIALIZE domains will still be 11706 * load-balanced in parallel. 11707 */ 11708 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11709 11710 /* 11711 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 11712 * This trades load-balance latency on larger machines for less cross talk. 11713 */ 11714 void update_max_interval(void) 11715 { 11716 max_load_balance_interval = HZ*num_online_cpus()/10; 11717 } 11718 11719 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11720 { 11721 if (cost > sd->max_newidle_lb_cost) { 11722 /* 11723 * Track max cost of a domain to make sure to not delay the 11724 * next wakeup on the CPU. 11725 */ 11726 sd->max_newidle_lb_cost = cost; 11727 sd->last_decay_max_lb_cost = jiffies; 11728 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11729 /* 11730 * Decay the newidle max times by ~1% per second to ensure that 11731 * it is not outdated and the current max cost is actually 11732 * shorter. 11733 */ 11734 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11735 sd->last_decay_max_lb_cost = jiffies; 11736 11737 return true; 11738 } 11739 11740 return false; 11741 } 11742 11743 /* 11744 * It checks each scheduling domain to see if it is due to be balanced, 11745 * and initiates a balancing operation if so. 11746 * 11747 * Balancing parameters are set up in init_sched_domains. 11748 */ 11749 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 11750 { 11751 int continue_balancing = 1; 11752 int cpu = rq->cpu; 11753 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11754 unsigned long interval; 11755 struct sched_domain *sd; 11756 /* Earliest time when we have to do rebalance again */ 11757 unsigned long next_balance = jiffies + 60*HZ; 11758 int update_next_balance = 0; 11759 int need_serialize, need_decay = 0; 11760 u64 max_cost = 0; 11761 11762 rcu_read_lock(); 11763 for_each_domain(cpu, sd) { 11764 /* 11765 * Decay the newidle max times here because this is a regular 11766 * visit to all the domains. 11767 */ 11768 need_decay = update_newidle_cost(sd, 0); 11769 max_cost += sd->max_newidle_lb_cost; 11770 11771 /* 11772 * Stop the load balance at this level. There is another 11773 * CPU in our sched group which is doing load balancing more 11774 * actively. 11775 */ 11776 if (!continue_balancing) { 11777 if (need_decay) 11778 continue; 11779 break; 11780 } 11781 11782 interval = get_sd_balance_interval(sd, busy); 11783 11784 need_serialize = sd->flags & SD_SERIALIZE; 11785 if (need_serialize) { 11786 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 11787 goto out; 11788 } 11789 11790 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11791 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 11792 /* 11793 * The LBF_DST_PINNED logic could have changed 11794 * env->dst_cpu, so we can't know our idle 11795 * state even if we migrated tasks. Update it. 11796 */ 11797 idle = idle_cpu(cpu); 11798 busy = !idle && !sched_idle_cpu(cpu); 11799 } 11800 sd->last_balance = jiffies; 11801 interval = get_sd_balance_interval(sd, busy); 11802 } 11803 if (need_serialize) 11804 atomic_set_release(&sched_balance_running, 0); 11805 out: 11806 if (time_after(next_balance, sd->last_balance + interval)) { 11807 next_balance = sd->last_balance + interval; 11808 update_next_balance = 1; 11809 } 11810 } 11811 if (need_decay) { 11812 /* 11813 * Ensure the rq-wide value also decays but keep it at a 11814 * reasonable floor to avoid funnies with rq->avg_idle. 11815 */ 11816 rq->max_idle_balance_cost = 11817 max((u64)sysctl_sched_migration_cost, max_cost); 11818 } 11819 rcu_read_unlock(); 11820 11821 /* 11822 * next_balance will be updated only when there is a need. 11823 * When the cpu is attached to null domain for ex, it will not be 11824 * updated. 11825 */ 11826 if (likely(update_next_balance)) 11827 rq->next_balance = next_balance; 11828 11829 } 11830 11831 static inline int on_null_domain(struct rq *rq) 11832 { 11833 return unlikely(!rcu_dereference_sched(rq->sd)); 11834 } 11835 11836 #ifdef CONFIG_NO_HZ_COMMON 11837 /* 11838 * NOHZ idle load balancing (ILB) details: 11839 * 11840 * - When one of the busy CPUs notices that there may be an idle rebalancing 11841 * needed, they will kick the idle load balancer, which then does idle 11842 * load balancing for all the idle CPUs. 11843 * 11844 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11845 * anywhere yet. 11846 */ 11847 static inline int find_new_ilb(void) 11848 { 11849 const struct cpumask *hk_mask; 11850 int ilb_cpu; 11851 11852 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11853 11854 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11855 11856 if (ilb_cpu == smp_processor_id()) 11857 continue; 11858 11859 if (idle_cpu(ilb_cpu)) 11860 return ilb_cpu; 11861 } 11862 11863 return -1; 11864 } 11865 11866 /* 11867 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11868 * SMP function call (IPI). 11869 * 11870 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11871 */ 11872 static void kick_ilb(unsigned int flags) 11873 { 11874 int ilb_cpu; 11875 11876 /* 11877 * Increase nohz.next_balance only when if full ilb is triggered but 11878 * not if we only update stats. 11879 */ 11880 if (flags & NOHZ_BALANCE_KICK) 11881 nohz.next_balance = jiffies+1; 11882 11883 ilb_cpu = find_new_ilb(); 11884 if (ilb_cpu < 0) 11885 return; 11886 11887 /* 11888 * Don't bother if no new NOHZ balance work items for ilb_cpu, 11889 * i.e. all bits in flags are already set in ilb_cpu. 11890 */ 11891 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 11892 return; 11893 11894 /* 11895 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11896 * the first flag owns it; cleared by nohz_csd_func(). 11897 */ 11898 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11899 if (flags & NOHZ_KICK_MASK) 11900 return; 11901 11902 /* 11903 * This way we generate an IPI on the target CPU which 11904 * is idle, and the softirq performing NOHZ idle load balancing 11905 * will be run before returning from the IPI. 11906 */ 11907 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11908 } 11909 11910 /* 11911 * Current decision point for kicking the idle load balancer in the presence 11912 * of idle CPUs in the system. 11913 */ 11914 static void nohz_balancer_kick(struct rq *rq) 11915 { 11916 unsigned long now = jiffies; 11917 struct sched_domain_shared *sds; 11918 struct sched_domain *sd; 11919 int nr_busy, i, cpu = rq->cpu; 11920 unsigned int flags = 0; 11921 11922 if (unlikely(rq->idle_balance)) 11923 return; 11924 11925 /* 11926 * We may be recently in ticked or tickless idle mode. At the first 11927 * busy tick after returning from idle, we will update the busy stats. 11928 */ 11929 nohz_balance_exit_idle(rq); 11930 11931 /* 11932 * None are in tickless mode and hence no need for NOHZ idle load 11933 * balancing: 11934 */ 11935 if (likely(!atomic_read(&nohz.nr_cpus))) 11936 return; 11937 11938 if (READ_ONCE(nohz.has_blocked) && 11939 time_after(now, READ_ONCE(nohz.next_blocked))) 11940 flags = NOHZ_STATS_KICK; 11941 11942 if (time_before(now, nohz.next_balance)) 11943 goto out; 11944 11945 if (rq->nr_running >= 2) { 11946 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11947 goto out; 11948 } 11949 11950 rcu_read_lock(); 11951 11952 sd = rcu_dereference(rq->sd); 11953 if (sd) { 11954 /* 11955 * If there's a runnable CFS task and the current CPU has reduced 11956 * capacity, kick the ILB to see if there's a better CPU to run on: 11957 */ 11958 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11959 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11960 goto unlock; 11961 } 11962 } 11963 11964 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11965 if (sd) { 11966 /* 11967 * When ASYM_PACKING; see if there's a more preferred CPU 11968 * currently idle; in which case, kick the ILB to move tasks 11969 * around. 11970 * 11971 * When balancing between cores, all the SMT siblings of the 11972 * preferred CPU must be idle. 11973 */ 11974 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11975 if (sched_asym(sd, i, cpu)) { 11976 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11977 goto unlock; 11978 } 11979 } 11980 } 11981 11982 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11983 if (sd) { 11984 /* 11985 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11986 * to run the misfit task on. 11987 */ 11988 if (check_misfit_status(rq)) { 11989 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11990 goto unlock; 11991 } 11992 11993 /* 11994 * For asymmetric systems, we do not want to nicely balance 11995 * cache use, instead we want to embrace asymmetry and only 11996 * ensure tasks have enough CPU capacity. 11997 * 11998 * Skip the LLC logic because it's not relevant in that case. 11999 */ 12000 goto unlock; 12001 } 12002 12003 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12004 if (sds) { 12005 /* 12006 * If there is an imbalance between LLC domains (IOW we could 12007 * increase the overall cache utilization), we need a less-loaded LLC 12008 * domain to pull some load from. Likewise, we may need to spread 12009 * load within the current LLC domain (e.g. packed SMT cores but 12010 * other CPUs are idle). We can't really know from here how busy 12011 * the others are - so just get a NOHZ balance going if it looks 12012 * like this LLC domain has tasks we could move. 12013 */ 12014 nr_busy = atomic_read(&sds->nr_busy_cpus); 12015 if (nr_busy > 1) { 12016 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12017 goto unlock; 12018 } 12019 } 12020 unlock: 12021 rcu_read_unlock(); 12022 out: 12023 if (READ_ONCE(nohz.needs_update)) 12024 flags |= NOHZ_NEXT_KICK; 12025 12026 if (flags) 12027 kick_ilb(flags); 12028 } 12029 12030 static void set_cpu_sd_state_busy(int cpu) 12031 { 12032 struct sched_domain *sd; 12033 12034 rcu_read_lock(); 12035 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12036 12037 if (!sd || !sd->nohz_idle) 12038 goto unlock; 12039 sd->nohz_idle = 0; 12040 12041 atomic_inc(&sd->shared->nr_busy_cpus); 12042 unlock: 12043 rcu_read_unlock(); 12044 } 12045 12046 void nohz_balance_exit_idle(struct rq *rq) 12047 { 12048 SCHED_WARN_ON(rq != this_rq()); 12049 12050 if (likely(!rq->nohz_tick_stopped)) 12051 return; 12052 12053 rq->nohz_tick_stopped = 0; 12054 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12055 atomic_dec(&nohz.nr_cpus); 12056 12057 set_cpu_sd_state_busy(rq->cpu); 12058 } 12059 12060 static void set_cpu_sd_state_idle(int cpu) 12061 { 12062 struct sched_domain *sd; 12063 12064 rcu_read_lock(); 12065 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12066 12067 if (!sd || sd->nohz_idle) 12068 goto unlock; 12069 sd->nohz_idle = 1; 12070 12071 atomic_dec(&sd->shared->nr_busy_cpus); 12072 unlock: 12073 rcu_read_unlock(); 12074 } 12075 12076 /* 12077 * This routine will record that the CPU is going idle with tick stopped. 12078 * This info will be used in performing idle load balancing in the future. 12079 */ 12080 void nohz_balance_enter_idle(int cpu) 12081 { 12082 struct rq *rq = cpu_rq(cpu); 12083 12084 SCHED_WARN_ON(cpu != smp_processor_id()); 12085 12086 /* If this CPU is going down, then nothing needs to be done: */ 12087 if (!cpu_active(cpu)) 12088 return; 12089 12090 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12091 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12092 return; 12093 12094 /* 12095 * Can be set safely without rq->lock held 12096 * If a clear happens, it will have evaluated last additions because 12097 * rq->lock is held during the check and the clear 12098 */ 12099 rq->has_blocked_load = 1; 12100 12101 /* 12102 * The tick is still stopped but load could have been added in the 12103 * meantime. We set the nohz.has_blocked flag to trig a check of the 12104 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12105 * of nohz.has_blocked can only happen after checking the new load 12106 */ 12107 if (rq->nohz_tick_stopped) 12108 goto out; 12109 12110 /* If we're a completely isolated CPU, we don't play: */ 12111 if (on_null_domain(rq)) 12112 return; 12113 12114 rq->nohz_tick_stopped = 1; 12115 12116 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12117 atomic_inc(&nohz.nr_cpus); 12118 12119 /* 12120 * Ensures that if nohz_idle_balance() fails to observe our 12121 * @idle_cpus_mask store, it must observe the @has_blocked 12122 * and @needs_update stores. 12123 */ 12124 smp_mb__after_atomic(); 12125 12126 set_cpu_sd_state_idle(cpu); 12127 12128 WRITE_ONCE(nohz.needs_update, 1); 12129 out: 12130 /* 12131 * Each time a cpu enter idle, we assume that it has blocked load and 12132 * enable the periodic update of the load of idle CPUs 12133 */ 12134 WRITE_ONCE(nohz.has_blocked, 1); 12135 } 12136 12137 static bool update_nohz_stats(struct rq *rq) 12138 { 12139 unsigned int cpu = rq->cpu; 12140 12141 if (!rq->has_blocked_load) 12142 return false; 12143 12144 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12145 return false; 12146 12147 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12148 return true; 12149 12150 sched_balance_update_blocked_averages(cpu); 12151 12152 return rq->has_blocked_load; 12153 } 12154 12155 /* 12156 * Internal function that runs load balance for all idle CPUs. The load balance 12157 * can be a simple update of blocked load or a complete load balance with 12158 * tasks movement depending of flags. 12159 */ 12160 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12161 { 12162 /* Earliest time when we have to do rebalance again */ 12163 unsigned long now = jiffies; 12164 unsigned long next_balance = now + 60*HZ; 12165 bool has_blocked_load = false; 12166 int update_next_balance = 0; 12167 int this_cpu = this_rq->cpu; 12168 int balance_cpu; 12169 struct rq *rq; 12170 12171 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12172 12173 /* 12174 * We assume there will be no idle load after this update and clear 12175 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12176 * set the has_blocked flag and trigger another update of idle load. 12177 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12178 * setting the flag, we are sure to not clear the state and not 12179 * check the load of an idle cpu. 12180 * 12181 * Same applies to idle_cpus_mask vs needs_update. 12182 */ 12183 if (flags & NOHZ_STATS_KICK) 12184 WRITE_ONCE(nohz.has_blocked, 0); 12185 if (flags & NOHZ_NEXT_KICK) 12186 WRITE_ONCE(nohz.needs_update, 0); 12187 12188 /* 12189 * Ensures that if we miss the CPU, we must see the has_blocked 12190 * store from nohz_balance_enter_idle(). 12191 */ 12192 smp_mb(); 12193 12194 /* 12195 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12196 * chance for other idle cpu to pull load. 12197 */ 12198 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12199 if (!idle_cpu(balance_cpu)) 12200 continue; 12201 12202 /* 12203 * If this CPU gets work to do, stop the load balancing 12204 * work being done for other CPUs. Next load 12205 * balancing owner will pick it up. 12206 */ 12207 if (need_resched()) { 12208 if (flags & NOHZ_STATS_KICK) 12209 has_blocked_load = true; 12210 if (flags & NOHZ_NEXT_KICK) 12211 WRITE_ONCE(nohz.needs_update, 1); 12212 goto abort; 12213 } 12214 12215 rq = cpu_rq(balance_cpu); 12216 12217 if (flags & NOHZ_STATS_KICK) 12218 has_blocked_load |= update_nohz_stats(rq); 12219 12220 /* 12221 * If time for next balance is due, 12222 * do the balance. 12223 */ 12224 if (time_after_eq(jiffies, rq->next_balance)) { 12225 struct rq_flags rf; 12226 12227 rq_lock_irqsave(rq, &rf); 12228 update_rq_clock(rq); 12229 rq_unlock_irqrestore(rq, &rf); 12230 12231 if (flags & NOHZ_BALANCE_KICK) 12232 sched_balance_domains(rq, CPU_IDLE); 12233 } 12234 12235 if (time_after(next_balance, rq->next_balance)) { 12236 next_balance = rq->next_balance; 12237 update_next_balance = 1; 12238 } 12239 } 12240 12241 /* 12242 * next_balance will be updated only when there is a need. 12243 * When the CPU is attached to null domain for ex, it will not be 12244 * updated. 12245 */ 12246 if (likely(update_next_balance)) 12247 nohz.next_balance = next_balance; 12248 12249 if (flags & NOHZ_STATS_KICK) 12250 WRITE_ONCE(nohz.next_blocked, 12251 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12252 12253 abort: 12254 /* There is still blocked load, enable periodic update */ 12255 if (has_blocked_load) 12256 WRITE_ONCE(nohz.has_blocked, 1); 12257 } 12258 12259 /* 12260 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12261 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12262 */ 12263 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12264 { 12265 unsigned int flags = this_rq->nohz_idle_balance; 12266 12267 if (!flags) 12268 return false; 12269 12270 this_rq->nohz_idle_balance = 0; 12271 12272 if (idle != CPU_IDLE) 12273 return false; 12274 12275 _nohz_idle_balance(this_rq, flags); 12276 12277 return true; 12278 } 12279 12280 /* 12281 * Check if we need to directly run the ILB for updating blocked load before 12282 * entering idle state. Here we run ILB directly without issuing IPIs. 12283 * 12284 * Note that when this function is called, the tick may not yet be stopped on 12285 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12286 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12287 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12288 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12289 * called from this function on (this) CPU that's not yet in the mask. That's 12290 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12291 * updating the blocked load of already idle CPUs without waking up one of 12292 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12293 * cpu about to enter idle, because it can take a long time. 12294 */ 12295 void nohz_run_idle_balance(int cpu) 12296 { 12297 unsigned int flags; 12298 12299 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12300 12301 /* 12302 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12303 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12304 */ 12305 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12306 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12307 } 12308 12309 static void nohz_newidle_balance(struct rq *this_rq) 12310 { 12311 int this_cpu = this_rq->cpu; 12312 12313 /* 12314 * This CPU doesn't want to be disturbed by scheduler 12315 * housekeeping 12316 */ 12317 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12318 return; 12319 12320 /* Will wake up very soon. No time for doing anything else*/ 12321 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12322 return; 12323 12324 /* Don't need to update blocked load of idle CPUs*/ 12325 if (!READ_ONCE(nohz.has_blocked) || 12326 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12327 return; 12328 12329 /* 12330 * Set the need to trigger ILB in order to update blocked load 12331 * before entering idle state. 12332 */ 12333 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12334 } 12335 12336 #else /* !CONFIG_NO_HZ_COMMON */ 12337 static inline void nohz_balancer_kick(struct rq *rq) { } 12338 12339 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12340 { 12341 return false; 12342 } 12343 12344 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12345 #endif /* CONFIG_NO_HZ_COMMON */ 12346 12347 /* 12348 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12349 * idle. Attempts to pull tasks from other CPUs. 12350 * 12351 * Returns: 12352 * < 0 - we released the lock and there are !fair tasks present 12353 * 0 - failed, no new tasks 12354 * > 0 - success, new (fair) tasks present 12355 */ 12356 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12357 { 12358 unsigned long next_balance = jiffies + HZ; 12359 int this_cpu = this_rq->cpu; 12360 int continue_balancing = 1; 12361 u64 t0, t1, curr_cost = 0; 12362 struct sched_domain *sd; 12363 int pulled_task = 0; 12364 12365 update_misfit_status(NULL, this_rq); 12366 12367 /* 12368 * There is a task waiting to run. No need to search for one. 12369 * Return 0; the task will be enqueued when switching to idle. 12370 */ 12371 if (this_rq->ttwu_pending) 12372 return 0; 12373 12374 /* 12375 * We must set idle_stamp _before_ calling sched_balance_rq() 12376 * for CPU_NEWLY_IDLE, such that we measure the this duration 12377 * as idle time. 12378 */ 12379 this_rq->idle_stamp = rq_clock(this_rq); 12380 12381 /* 12382 * Do not pull tasks towards !active CPUs... 12383 */ 12384 if (!cpu_active(this_cpu)) 12385 return 0; 12386 12387 /* 12388 * This is OK, because current is on_cpu, which avoids it being picked 12389 * for load-balance and preemption/IRQs are still disabled avoiding 12390 * further scheduler activity on it and we're being very careful to 12391 * re-start the picking loop. 12392 */ 12393 rq_unpin_lock(this_rq, rf); 12394 12395 rcu_read_lock(); 12396 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12397 12398 if (!get_rd_overloaded(this_rq->rd) || 12399 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12400 12401 if (sd) 12402 update_next_balance(sd, &next_balance); 12403 rcu_read_unlock(); 12404 12405 goto out; 12406 } 12407 rcu_read_unlock(); 12408 12409 raw_spin_rq_unlock(this_rq); 12410 12411 t0 = sched_clock_cpu(this_cpu); 12412 sched_balance_update_blocked_averages(this_cpu); 12413 12414 rcu_read_lock(); 12415 for_each_domain(this_cpu, sd) { 12416 u64 domain_cost; 12417 12418 update_next_balance(sd, &next_balance); 12419 12420 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12421 break; 12422 12423 if (sd->flags & SD_BALANCE_NEWIDLE) { 12424 12425 pulled_task = sched_balance_rq(this_cpu, this_rq, 12426 sd, CPU_NEWLY_IDLE, 12427 &continue_balancing); 12428 12429 t1 = sched_clock_cpu(this_cpu); 12430 domain_cost = t1 - t0; 12431 update_newidle_cost(sd, domain_cost); 12432 12433 curr_cost += domain_cost; 12434 t0 = t1; 12435 } 12436 12437 /* 12438 * Stop searching for tasks to pull if there are 12439 * now runnable tasks on this rq. 12440 */ 12441 if (pulled_task || !continue_balancing) 12442 break; 12443 } 12444 rcu_read_unlock(); 12445 12446 raw_spin_rq_lock(this_rq); 12447 12448 if (curr_cost > this_rq->max_idle_balance_cost) 12449 this_rq->max_idle_balance_cost = curr_cost; 12450 12451 /* 12452 * While browsing the domains, we released the rq lock, a task could 12453 * have been enqueued in the meantime. Since we're not going idle, 12454 * pretend we pulled a task. 12455 */ 12456 if (this_rq->cfs.h_nr_running && !pulled_task) 12457 pulled_task = 1; 12458 12459 /* Is there a task of a high priority class? */ 12460 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12461 pulled_task = -1; 12462 12463 out: 12464 /* Move the next balance forward */ 12465 if (time_after(this_rq->next_balance, next_balance)) 12466 this_rq->next_balance = next_balance; 12467 12468 if (pulled_task) 12469 this_rq->idle_stamp = 0; 12470 else 12471 nohz_newidle_balance(this_rq); 12472 12473 rq_repin_lock(this_rq, rf); 12474 12475 return pulled_task; 12476 } 12477 12478 /* 12479 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12480 * 12481 * - directly from the local scheduler_tick() for periodic load balancing 12482 * 12483 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12484 * through the SMP cross-call nohz_csd_func() 12485 */ 12486 static __latent_entropy void sched_balance_softirq(struct softirq_action *h) 12487 { 12488 struct rq *this_rq = this_rq(); 12489 enum cpu_idle_type idle = this_rq->idle_balance; 12490 /* 12491 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12492 * balancing on behalf of the other idle CPUs whose ticks are 12493 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12494 * give the idle CPUs a chance to load balance. Else we may 12495 * load balance only within the local sched_domain hierarchy 12496 * and abort nohz_idle_balance altogether if we pull some load. 12497 */ 12498 if (nohz_idle_balance(this_rq, idle)) 12499 return; 12500 12501 /* normal load balance */ 12502 sched_balance_update_blocked_averages(this_rq->cpu); 12503 sched_balance_domains(this_rq, idle); 12504 } 12505 12506 /* 12507 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12508 */ 12509 void sched_balance_trigger(struct rq *rq) 12510 { 12511 /* 12512 * Don't need to rebalance while attached to NULL domain or 12513 * runqueue CPU is not active 12514 */ 12515 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12516 return; 12517 12518 if (time_after_eq(jiffies, rq->next_balance)) 12519 raise_softirq(SCHED_SOFTIRQ); 12520 12521 nohz_balancer_kick(rq); 12522 } 12523 12524 static void rq_online_fair(struct rq *rq) 12525 { 12526 update_sysctl(); 12527 12528 update_runtime_enabled(rq); 12529 } 12530 12531 static void rq_offline_fair(struct rq *rq) 12532 { 12533 update_sysctl(); 12534 12535 /* Ensure any throttled groups are reachable by pick_next_task */ 12536 unthrottle_offline_cfs_rqs(rq); 12537 12538 /* Ensure that we remove rq contribution to group share: */ 12539 clear_tg_offline_cfs_rqs(rq); 12540 } 12541 12542 #endif /* CONFIG_SMP */ 12543 12544 #ifdef CONFIG_SCHED_CORE 12545 static inline bool 12546 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12547 { 12548 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12549 u64 slice = se->slice; 12550 12551 return (rtime * min_nr_tasks > slice); 12552 } 12553 12554 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12555 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12556 { 12557 if (!sched_core_enabled(rq)) 12558 return; 12559 12560 /* 12561 * If runqueue has only one task which used up its slice and 12562 * if the sibling is forced idle, then trigger schedule to 12563 * give forced idle task a chance. 12564 * 12565 * sched_slice() considers only this active rq and it gets the 12566 * whole slice. But during force idle, we have siblings acting 12567 * like a single runqueue and hence we need to consider runnable 12568 * tasks on this CPU and the forced idle CPU. Ideally, we should 12569 * go through the forced idle rq, but that would be a perf hit. 12570 * We can assume that the forced idle CPU has at least 12571 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12572 * if we need to give up the CPU. 12573 */ 12574 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12575 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12576 resched_curr(rq); 12577 } 12578 12579 /* 12580 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12581 */ 12582 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12583 bool forceidle) 12584 { 12585 for_each_sched_entity(se) { 12586 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12587 12588 if (forceidle) { 12589 if (cfs_rq->forceidle_seq == fi_seq) 12590 break; 12591 cfs_rq->forceidle_seq = fi_seq; 12592 } 12593 12594 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12595 } 12596 } 12597 12598 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12599 { 12600 struct sched_entity *se = &p->se; 12601 12602 if (p->sched_class != &fair_sched_class) 12603 return; 12604 12605 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12606 } 12607 12608 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12609 bool in_fi) 12610 { 12611 struct rq *rq = task_rq(a); 12612 const struct sched_entity *sea = &a->se; 12613 const struct sched_entity *seb = &b->se; 12614 struct cfs_rq *cfs_rqa; 12615 struct cfs_rq *cfs_rqb; 12616 s64 delta; 12617 12618 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12619 12620 #ifdef CONFIG_FAIR_GROUP_SCHED 12621 /* 12622 * Find an se in the hierarchy for tasks a and b, such that the se's 12623 * are immediate siblings. 12624 */ 12625 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12626 int sea_depth = sea->depth; 12627 int seb_depth = seb->depth; 12628 12629 if (sea_depth >= seb_depth) 12630 sea = parent_entity(sea); 12631 if (sea_depth <= seb_depth) 12632 seb = parent_entity(seb); 12633 } 12634 12635 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12636 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12637 12638 cfs_rqa = sea->cfs_rq; 12639 cfs_rqb = seb->cfs_rq; 12640 #else 12641 cfs_rqa = &task_rq(a)->cfs; 12642 cfs_rqb = &task_rq(b)->cfs; 12643 #endif 12644 12645 /* 12646 * Find delta after normalizing se's vruntime with its cfs_rq's 12647 * min_vruntime_fi, which would have been updated in prior calls 12648 * to se_fi_update(). 12649 */ 12650 delta = (s64)(sea->vruntime - seb->vruntime) + 12651 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12652 12653 return delta > 0; 12654 } 12655 12656 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12657 { 12658 struct cfs_rq *cfs_rq; 12659 12660 #ifdef CONFIG_FAIR_GROUP_SCHED 12661 cfs_rq = task_group(p)->cfs_rq[cpu]; 12662 #else 12663 cfs_rq = &cpu_rq(cpu)->cfs; 12664 #endif 12665 return throttled_hierarchy(cfs_rq); 12666 } 12667 #else 12668 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12669 #endif 12670 12671 /* 12672 * scheduler tick hitting a task of our scheduling class. 12673 * 12674 * NOTE: This function can be called remotely by the tick offload that 12675 * goes along full dynticks. Therefore no local assumption can be made 12676 * and everything must be accessed through the @rq and @curr passed in 12677 * parameters. 12678 */ 12679 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12680 { 12681 struct cfs_rq *cfs_rq; 12682 struct sched_entity *se = &curr->se; 12683 12684 for_each_sched_entity(se) { 12685 cfs_rq = cfs_rq_of(se); 12686 entity_tick(cfs_rq, se, queued); 12687 } 12688 12689 if (static_branch_unlikely(&sched_numa_balancing)) 12690 task_tick_numa(rq, curr); 12691 12692 update_misfit_status(curr, rq); 12693 check_update_overutilized_status(task_rq(curr)); 12694 12695 task_tick_core(rq, curr); 12696 } 12697 12698 /* 12699 * called on fork with the child task as argument from the parent's context 12700 * - child not yet on the tasklist 12701 * - preemption disabled 12702 */ 12703 static void task_fork_fair(struct task_struct *p) 12704 { 12705 struct sched_entity *se = &p->se, *curr; 12706 struct cfs_rq *cfs_rq; 12707 struct rq *rq = this_rq(); 12708 struct rq_flags rf; 12709 12710 rq_lock(rq, &rf); 12711 update_rq_clock(rq); 12712 12713 set_task_max_allowed_capacity(p); 12714 12715 cfs_rq = task_cfs_rq(current); 12716 curr = cfs_rq->curr; 12717 if (curr) 12718 update_curr(cfs_rq); 12719 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12720 rq_unlock(rq, &rf); 12721 } 12722 12723 /* 12724 * Priority of the task has changed. Check to see if we preempt 12725 * the current task. 12726 */ 12727 static void 12728 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12729 { 12730 if (!task_on_rq_queued(p)) 12731 return; 12732 12733 if (rq->cfs.nr_running == 1) 12734 return; 12735 12736 /* 12737 * Reschedule if we are currently running on this runqueue and 12738 * our priority decreased, or if we are not currently running on 12739 * this runqueue and our priority is higher than the current's 12740 */ 12741 if (task_current(rq, p)) { 12742 if (p->prio > oldprio) 12743 resched_curr(rq); 12744 } else 12745 wakeup_preempt(rq, p, 0); 12746 } 12747 12748 #ifdef CONFIG_FAIR_GROUP_SCHED 12749 /* 12750 * Propagate the changes of the sched_entity across the tg tree to make it 12751 * visible to the root 12752 */ 12753 static void propagate_entity_cfs_rq(struct sched_entity *se) 12754 { 12755 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12756 12757 if (cfs_rq_throttled(cfs_rq)) 12758 return; 12759 12760 if (!throttled_hierarchy(cfs_rq)) 12761 list_add_leaf_cfs_rq(cfs_rq); 12762 12763 /* Start to propagate at parent */ 12764 se = se->parent; 12765 12766 for_each_sched_entity(se) { 12767 cfs_rq = cfs_rq_of(se); 12768 12769 update_load_avg(cfs_rq, se, UPDATE_TG); 12770 12771 if (cfs_rq_throttled(cfs_rq)) 12772 break; 12773 12774 if (!throttled_hierarchy(cfs_rq)) 12775 list_add_leaf_cfs_rq(cfs_rq); 12776 } 12777 } 12778 #else 12779 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12780 #endif 12781 12782 static void detach_entity_cfs_rq(struct sched_entity *se) 12783 { 12784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12785 12786 #ifdef CONFIG_SMP 12787 /* 12788 * In case the task sched_avg hasn't been attached: 12789 * - A forked task which hasn't been woken up by wake_up_new_task(). 12790 * - A task which has been woken up by try_to_wake_up() but is 12791 * waiting for actually being woken up by sched_ttwu_pending(). 12792 */ 12793 if (!se->avg.last_update_time) 12794 return; 12795 #endif 12796 12797 /* Catch up with the cfs_rq and remove our load when we leave */ 12798 update_load_avg(cfs_rq, se, 0); 12799 detach_entity_load_avg(cfs_rq, se); 12800 update_tg_load_avg(cfs_rq); 12801 propagate_entity_cfs_rq(se); 12802 } 12803 12804 static void attach_entity_cfs_rq(struct sched_entity *se) 12805 { 12806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12807 12808 /* Synchronize entity with its cfs_rq */ 12809 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12810 attach_entity_load_avg(cfs_rq, se); 12811 update_tg_load_avg(cfs_rq); 12812 propagate_entity_cfs_rq(se); 12813 } 12814 12815 static void detach_task_cfs_rq(struct task_struct *p) 12816 { 12817 struct sched_entity *se = &p->se; 12818 12819 detach_entity_cfs_rq(se); 12820 } 12821 12822 static void attach_task_cfs_rq(struct task_struct *p) 12823 { 12824 struct sched_entity *se = &p->se; 12825 12826 attach_entity_cfs_rq(se); 12827 } 12828 12829 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12830 { 12831 detach_task_cfs_rq(p); 12832 } 12833 12834 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12835 { 12836 attach_task_cfs_rq(p); 12837 12838 set_task_max_allowed_capacity(p); 12839 12840 if (task_on_rq_queued(p)) { 12841 /* 12842 * We were most likely switched from sched_rt, so 12843 * kick off the schedule if running, otherwise just see 12844 * if we can still preempt the current task. 12845 */ 12846 if (task_current(rq, p)) 12847 resched_curr(rq); 12848 else 12849 wakeup_preempt(rq, p, 0); 12850 } 12851 } 12852 12853 /* Account for a task changing its policy or group. 12854 * 12855 * This routine is mostly called to set cfs_rq->curr field when a task 12856 * migrates between groups/classes. 12857 */ 12858 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12859 { 12860 struct sched_entity *se = &p->se; 12861 12862 #ifdef CONFIG_SMP 12863 if (task_on_rq_queued(p)) { 12864 /* 12865 * Move the next running task to the front of the list, so our 12866 * cfs_tasks list becomes MRU one. 12867 */ 12868 list_move(&se->group_node, &rq->cfs_tasks); 12869 } 12870 #endif 12871 12872 for_each_sched_entity(se) { 12873 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12874 12875 set_next_entity(cfs_rq, se); 12876 /* ensure bandwidth has been allocated on our new cfs_rq */ 12877 account_cfs_rq_runtime(cfs_rq, 0); 12878 } 12879 } 12880 12881 void init_cfs_rq(struct cfs_rq *cfs_rq) 12882 { 12883 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12884 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12885 #ifdef CONFIG_SMP 12886 raw_spin_lock_init(&cfs_rq->removed.lock); 12887 #endif 12888 } 12889 12890 #ifdef CONFIG_FAIR_GROUP_SCHED 12891 static void task_change_group_fair(struct task_struct *p) 12892 { 12893 /* 12894 * We couldn't detach or attach a forked task which 12895 * hasn't been woken up by wake_up_new_task(). 12896 */ 12897 if (READ_ONCE(p->__state) == TASK_NEW) 12898 return; 12899 12900 detach_task_cfs_rq(p); 12901 12902 #ifdef CONFIG_SMP 12903 /* Tell se's cfs_rq has been changed -- migrated */ 12904 p->se.avg.last_update_time = 0; 12905 #endif 12906 set_task_rq(p, task_cpu(p)); 12907 attach_task_cfs_rq(p); 12908 } 12909 12910 void free_fair_sched_group(struct task_group *tg) 12911 { 12912 int i; 12913 12914 for_each_possible_cpu(i) { 12915 if (tg->cfs_rq) 12916 kfree(tg->cfs_rq[i]); 12917 if (tg->se) 12918 kfree(tg->se[i]); 12919 } 12920 12921 kfree(tg->cfs_rq); 12922 kfree(tg->se); 12923 } 12924 12925 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12926 { 12927 struct sched_entity *se; 12928 struct cfs_rq *cfs_rq; 12929 int i; 12930 12931 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12932 if (!tg->cfs_rq) 12933 goto err; 12934 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12935 if (!tg->se) 12936 goto err; 12937 12938 tg->shares = NICE_0_LOAD; 12939 12940 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12941 12942 for_each_possible_cpu(i) { 12943 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12944 GFP_KERNEL, cpu_to_node(i)); 12945 if (!cfs_rq) 12946 goto err; 12947 12948 se = kzalloc_node(sizeof(struct sched_entity_stats), 12949 GFP_KERNEL, cpu_to_node(i)); 12950 if (!se) 12951 goto err_free_rq; 12952 12953 init_cfs_rq(cfs_rq); 12954 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12955 init_entity_runnable_average(se); 12956 } 12957 12958 return 1; 12959 12960 err_free_rq: 12961 kfree(cfs_rq); 12962 err: 12963 return 0; 12964 } 12965 12966 void online_fair_sched_group(struct task_group *tg) 12967 { 12968 struct sched_entity *se; 12969 struct rq_flags rf; 12970 struct rq *rq; 12971 int i; 12972 12973 for_each_possible_cpu(i) { 12974 rq = cpu_rq(i); 12975 se = tg->se[i]; 12976 rq_lock_irq(rq, &rf); 12977 update_rq_clock(rq); 12978 attach_entity_cfs_rq(se); 12979 sync_throttle(tg, i); 12980 rq_unlock_irq(rq, &rf); 12981 } 12982 } 12983 12984 void unregister_fair_sched_group(struct task_group *tg) 12985 { 12986 unsigned long flags; 12987 struct rq *rq; 12988 int cpu; 12989 12990 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12991 12992 for_each_possible_cpu(cpu) { 12993 if (tg->se[cpu]) 12994 remove_entity_load_avg(tg->se[cpu]); 12995 12996 /* 12997 * Only empty task groups can be destroyed; so we can speculatively 12998 * check on_list without danger of it being re-added. 12999 */ 13000 if (!tg->cfs_rq[cpu]->on_list) 13001 continue; 13002 13003 rq = cpu_rq(cpu); 13004 13005 raw_spin_rq_lock_irqsave(rq, flags); 13006 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 13007 raw_spin_rq_unlock_irqrestore(rq, flags); 13008 } 13009 } 13010 13011 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13012 struct sched_entity *se, int cpu, 13013 struct sched_entity *parent) 13014 { 13015 struct rq *rq = cpu_rq(cpu); 13016 13017 cfs_rq->tg = tg; 13018 cfs_rq->rq = rq; 13019 init_cfs_rq_runtime(cfs_rq); 13020 13021 tg->cfs_rq[cpu] = cfs_rq; 13022 tg->se[cpu] = se; 13023 13024 /* se could be NULL for root_task_group */ 13025 if (!se) 13026 return; 13027 13028 if (!parent) { 13029 se->cfs_rq = &rq->cfs; 13030 se->depth = 0; 13031 } else { 13032 se->cfs_rq = parent->my_q; 13033 se->depth = parent->depth + 1; 13034 } 13035 13036 se->my_q = cfs_rq; 13037 /* guarantee group entities always have weight */ 13038 update_load_set(&se->load, NICE_0_LOAD); 13039 se->parent = parent; 13040 } 13041 13042 static DEFINE_MUTEX(shares_mutex); 13043 13044 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13045 { 13046 int i; 13047 13048 lockdep_assert_held(&shares_mutex); 13049 13050 /* 13051 * We can't change the weight of the root cgroup. 13052 */ 13053 if (!tg->se[0]) 13054 return -EINVAL; 13055 13056 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13057 13058 if (tg->shares == shares) 13059 return 0; 13060 13061 tg->shares = shares; 13062 for_each_possible_cpu(i) { 13063 struct rq *rq = cpu_rq(i); 13064 struct sched_entity *se = tg->se[i]; 13065 struct rq_flags rf; 13066 13067 /* Propagate contribution to hierarchy */ 13068 rq_lock_irqsave(rq, &rf); 13069 update_rq_clock(rq); 13070 for_each_sched_entity(se) { 13071 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13072 update_cfs_group(se); 13073 } 13074 rq_unlock_irqrestore(rq, &rf); 13075 } 13076 13077 return 0; 13078 } 13079 13080 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13081 { 13082 int ret; 13083 13084 mutex_lock(&shares_mutex); 13085 if (tg_is_idle(tg)) 13086 ret = -EINVAL; 13087 else 13088 ret = __sched_group_set_shares(tg, shares); 13089 mutex_unlock(&shares_mutex); 13090 13091 return ret; 13092 } 13093 13094 int sched_group_set_idle(struct task_group *tg, long idle) 13095 { 13096 int i; 13097 13098 if (tg == &root_task_group) 13099 return -EINVAL; 13100 13101 if (idle < 0 || idle > 1) 13102 return -EINVAL; 13103 13104 mutex_lock(&shares_mutex); 13105 13106 if (tg->idle == idle) { 13107 mutex_unlock(&shares_mutex); 13108 return 0; 13109 } 13110 13111 tg->idle = idle; 13112 13113 for_each_possible_cpu(i) { 13114 struct rq *rq = cpu_rq(i); 13115 struct sched_entity *se = tg->se[i]; 13116 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13117 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13118 long idle_task_delta; 13119 struct rq_flags rf; 13120 13121 rq_lock_irqsave(rq, &rf); 13122 13123 grp_cfs_rq->idle = idle; 13124 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13125 goto next_cpu; 13126 13127 if (se->on_rq) { 13128 parent_cfs_rq = cfs_rq_of(se); 13129 if (cfs_rq_is_idle(grp_cfs_rq)) 13130 parent_cfs_rq->idle_nr_running++; 13131 else 13132 parent_cfs_rq->idle_nr_running--; 13133 } 13134 13135 idle_task_delta = grp_cfs_rq->h_nr_running - 13136 grp_cfs_rq->idle_h_nr_running; 13137 if (!cfs_rq_is_idle(grp_cfs_rq)) 13138 idle_task_delta *= -1; 13139 13140 for_each_sched_entity(se) { 13141 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13142 13143 if (!se->on_rq) 13144 break; 13145 13146 cfs_rq->idle_h_nr_running += idle_task_delta; 13147 13148 /* Already accounted at parent level and above. */ 13149 if (cfs_rq_is_idle(cfs_rq)) 13150 break; 13151 } 13152 13153 next_cpu: 13154 rq_unlock_irqrestore(rq, &rf); 13155 } 13156 13157 /* Idle groups have minimum weight. */ 13158 if (tg_is_idle(tg)) 13159 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13160 else 13161 __sched_group_set_shares(tg, NICE_0_LOAD); 13162 13163 mutex_unlock(&shares_mutex); 13164 return 0; 13165 } 13166 13167 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13168 13169 13170 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13171 { 13172 struct sched_entity *se = &task->se; 13173 unsigned int rr_interval = 0; 13174 13175 /* 13176 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13177 * idle runqueue: 13178 */ 13179 if (rq->cfs.load.weight) 13180 rr_interval = NS_TO_JIFFIES(se->slice); 13181 13182 return rr_interval; 13183 } 13184 13185 /* 13186 * All the scheduling class methods: 13187 */ 13188 DEFINE_SCHED_CLASS(fair) = { 13189 13190 .enqueue_task = enqueue_task_fair, 13191 .dequeue_task = dequeue_task_fair, 13192 .yield_task = yield_task_fair, 13193 .yield_to_task = yield_to_task_fair, 13194 13195 .wakeup_preempt = check_preempt_wakeup_fair, 13196 13197 .pick_next_task = __pick_next_task_fair, 13198 .put_prev_task = put_prev_task_fair, 13199 .set_next_task = set_next_task_fair, 13200 13201 #ifdef CONFIG_SMP 13202 .balance = balance_fair, 13203 .pick_task = pick_task_fair, 13204 .select_task_rq = select_task_rq_fair, 13205 .migrate_task_rq = migrate_task_rq_fair, 13206 13207 .rq_online = rq_online_fair, 13208 .rq_offline = rq_offline_fair, 13209 13210 .task_dead = task_dead_fair, 13211 .set_cpus_allowed = set_cpus_allowed_fair, 13212 #endif 13213 13214 .task_tick = task_tick_fair, 13215 .task_fork = task_fork_fair, 13216 13217 .prio_changed = prio_changed_fair, 13218 .switched_from = switched_from_fair, 13219 .switched_to = switched_to_fair, 13220 13221 .get_rr_interval = get_rr_interval_fair, 13222 13223 .update_curr = update_curr_fair, 13224 13225 #ifdef CONFIG_FAIR_GROUP_SCHED 13226 .task_change_group = task_change_group_fair, 13227 #endif 13228 13229 #ifdef CONFIG_SCHED_CORE 13230 .task_is_throttled = task_is_throttled_fair, 13231 #endif 13232 13233 #ifdef CONFIG_UCLAMP_TASK 13234 .uclamp_enabled = 1, 13235 #endif 13236 }; 13237 13238 #ifdef CONFIG_SCHED_DEBUG 13239 void print_cfs_stats(struct seq_file *m, int cpu) 13240 { 13241 struct cfs_rq *cfs_rq, *pos; 13242 13243 rcu_read_lock(); 13244 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13245 print_cfs_rq(m, cpu, cfs_rq); 13246 rcu_read_unlock(); 13247 } 13248 13249 #ifdef CONFIG_NUMA_BALANCING 13250 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13251 { 13252 int node; 13253 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13254 struct numa_group *ng; 13255 13256 rcu_read_lock(); 13257 ng = rcu_dereference(p->numa_group); 13258 for_each_online_node(node) { 13259 if (p->numa_faults) { 13260 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13261 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13262 } 13263 if (ng) { 13264 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13265 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13266 } 13267 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13268 } 13269 rcu_read_unlock(); 13270 } 13271 #endif /* CONFIG_NUMA_BALANCING */ 13272 #endif /* CONFIG_SCHED_DEBUG */ 13273 13274 __init void init_sched_fair_class(void) 13275 { 13276 #ifdef CONFIG_SMP 13277 int i; 13278 13279 for_each_possible_cpu(i) { 13280 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13281 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13282 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13283 GFP_KERNEL, cpu_to_node(i)); 13284 13285 #ifdef CONFIG_CFS_BANDWIDTH 13286 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13287 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13288 #endif 13289 } 13290 13291 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13292 13293 #ifdef CONFIG_NO_HZ_COMMON 13294 nohz.next_balance = jiffies; 13295 nohz.next_blocked = jiffies; 13296 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13297 #endif 13298 #endif /* SMP */ 13299 13300 } 13301