xref: /linux/kernel/sched/fair.c (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32 
33 #include <trace/events/sched.h>
34 
35 #include "sched.h"
36 
37 /*
38  * Targeted preemption latency for CPU-bound tasks:
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51 
52 /*
53  * The initial- and re-scaling of tunables is configurable
54  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55  *
56  * Options are:
57  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60  */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 	= SCHED_TUNABLESCALING_LOG;
63 
64 /*
65  * Minimal preemption granularity for CPU-bound tasks:
66  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 
71 /*
72  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73  */
74 static unsigned int sched_nr_latency = 8;
75 
76 /*
77  * After fork, child runs first. If set to 0 (default) then
78  * parent will (try to) run first.
79  */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81 
82 /*
83  * SCHED_OTHER wake-up granularity.
84  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85  *
86  * This option delays the preemption effects of decoupled workloads
87  * and reduces their over-scheduling. Synchronous workloads will still
88  * have immediate wakeup/sleep latencies.
89  */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 
95 /*
96  * The exponential sliding  window over which load is averaged for shares
97  * distribution.
98  * (default: 10msec)
99  */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101 
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105  * each time a cfs_rq requests quota.
106  *
107  * Note: in the case that the slice exceeds the runtime remaining (either due
108  * to consumption or the quota being specified to be smaller than the slice)
109  * we will always only issue the remaining available time.
110  *
111  * default: 5 msec, units: microseconds
112   */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115 
116 /*
117  * Increase the granularity value when there are more CPUs,
118  * because with more CPUs the 'effective latency' as visible
119  * to users decreases. But the relationship is not linear,
120  * so pick a second-best guess by going with the log2 of the
121  * number of CPUs.
122  *
123  * This idea comes from the SD scheduler of Con Kolivas:
124  */
125 static int get_update_sysctl_factor(void)
126 {
127 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 	unsigned int factor;
129 
130 	switch (sysctl_sched_tunable_scaling) {
131 	case SCHED_TUNABLESCALING_NONE:
132 		factor = 1;
133 		break;
134 	case SCHED_TUNABLESCALING_LINEAR:
135 		factor = cpus;
136 		break;
137 	case SCHED_TUNABLESCALING_LOG:
138 	default:
139 		factor = 1 + ilog2(cpus);
140 		break;
141 	}
142 
143 	return factor;
144 }
145 
146 static void update_sysctl(void)
147 {
148 	unsigned int factor = get_update_sysctl_factor();
149 
150 #define SET_SYSCTL(name) \
151 	(sysctl_##name = (factor) * normalized_sysctl_##name)
152 	SET_SYSCTL(sched_min_granularity);
153 	SET_SYSCTL(sched_latency);
154 	SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157 
158 void sched_init_granularity(void)
159 {
160 	update_sysctl();
161 }
162 
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST	(~0UL)
165 #else
166 # define WMULT_CONST	(1UL << 32)
167 #endif
168 
169 #define WMULT_SHIFT	32
170 
171 /*
172  * Shift right and round:
173  */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175 
176 /*
177  * delta *= weight / lw
178  */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 		struct load_weight *lw)
182 {
183 	u64 tmp;
184 
185 	/*
186 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 	 * 2^SCHED_LOAD_RESOLUTION.
189 	 */
190 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 		tmp = (u64)delta_exec * scale_load_down(weight);
192 	else
193 		tmp = (u64)delta_exec;
194 
195 	if (!lw->inv_weight) {
196 		unsigned long w = scale_load_down(lw->weight);
197 
198 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 			lw->inv_weight = 1;
200 		else if (unlikely(!w))
201 			lw->inv_weight = WMULT_CONST;
202 		else
203 			lw->inv_weight = WMULT_CONST / w;
204 	}
205 
206 	/*
207 	 * Check whether we'd overflow the 64-bit multiplication:
208 	 */
209 	if (unlikely(tmp > WMULT_CONST))
210 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 			WMULT_SHIFT/2);
212 	else
213 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214 
215 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217 
218 
219 const struct sched_class fair_sched_class;
220 
221 /**************************************************************
222  * CFS operations on generic schedulable entities:
223  */
224 
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226 
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 	return cfs_rq->rq;
231 }
232 
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se)	(!se->my_q)
235 
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 	WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 	return container_of(se, struct task_struct, se);
242 }
243 
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 		for (; se; se = se->parent)
247 
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 	return p->se.cfs_rq;
251 }
252 
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 	return se->cfs_rq;
257 }
258 
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 	return grp->my_q;
263 }
264 
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 				       int force_update);
267 
268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270 	if (!cfs_rq->on_list) {
271 		/*
272 		 * Ensure we either appear before our parent (if already
273 		 * enqueued) or force our parent to appear after us when it is
274 		 * enqueued.  The fact that we always enqueue bottom-up
275 		 * reduces this to two cases.
276 		 */
277 		if (cfs_rq->tg->parent &&
278 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
281 		} else {
282 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
284 		}
285 
286 		cfs_rq->on_list = 1;
287 		/* We should have no load, but we need to update last_decay. */
288 		update_cfs_rq_blocked_load(cfs_rq, 0);
289 	}
290 }
291 
292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 	if (cfs_rq->on_list) {
295 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 		cfs_rq->on_list = 0;
297 	}
298 }
299 
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303 
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308 	if (se->cfs_rq == pse->cfs_rq)
309 		return 1;
310 
311 	return 0;
312 }
313 
314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316 	return se->parent;
317 }
318 
319 /* return depth at which a sched entity is present in the hierarchy */
320 static inline int depth_se(struct sched_entity *se)
321 {
322 	int depth = 0;
323 
324 	for_each_sched_entity(se)
325 		depth++;
326 
327 	return depth;
328 }
329 
330 static void
331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333 	int se_depth, pse_depth;
334 
335 	/*
336 	 * preemption test can be made between sibling entities who are in the
337 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 	 * both tasks until we find their ancestors who are siblings of common
339 	 * parent.
340 	 */
341 
342 	/* First walk up until both entities are at same depth */
343 	se_depth = depth_se(*se);
344 	pse_depth = depth_se(*pse);
345 
346 	while (se_depth > pse_depth) {
347 		se_depth--;
348 		*se = parent_entity(*se);
349 	}
350 
351 	while (pse_depth > se_depth) {
352 		pse_depth--;
353 		*pse = parent_entity(*pse);
354 	}
355 
356 	while (!is_same_group(*se, *pse)) {
357 		*se = parent_entity(*se);
358 		*pse = parent_entity(*pse);
359 	}
360 }
361 
362 #else	/* !CONFIG_FAIR_GROUP_SCHED */
363 
364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366 	return container_of(se, struct task_struct, se);
367 }
368 
369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371 	return container_of(cfs_rq, struct rq, cfs);
372 }
373 
374 #define entity_is_task(se)	1
375 
376 #define for_each_sched_entity(se) \
377 		for (; se; se = NULL)
378 
379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381 	return &task_rq(p)->cfs;
382 }
383 
384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386 	struct task_struct *p = task_of(se);
387 	struct rq *rq = task_rq(p);
388 
389 	return &rq->cfs;
390 }
391 
392 /* runqueue "owned" by this group */
393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395 	return NULL;
396 }
397 
398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401 
402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405 
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408 
409 static inline int
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 	return 1;
413 }
414 
415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417 	return NULL;
418 }
419 
420 static inline void
421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424 
425 #endif	/* CONFIG_FAIR_GROUP_SCHED */
426 
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429 
430 /**************************************************************
431  * Scheduling class tree data structure manipulation methods:
432  */
433 
434 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
435 {
436 	s64 delta = (s64)(vruntime - min_vruntime);
437 	if (delta > 0)
438 		min_vruntime = vruntime;
439 
440 	return min_vruntime;
441 }
442 
443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445 	s64 delta = (s64)(vruntime - min_vruntime);
446 	if (delta < 0)
447 		min_vruntime = vruntime;
448 
449 	return min_vruntime;
450 }
451 
452 static inline int entity_before(struct sched_entity *a,
453 				struct sched_entity *b)
454 {
455 	return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457 
458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460 	u64 vruntime = cfs_rq->min_vruntime;
461 
462 	if (cfs_rq->curr)
463 		vruntime = cfs_rq->curr->vruntime;
464 
465 	if (cfs_rq->rb_leftmost) {
466 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 						   struct sched_entity,
468 						   run_node);
469 
470 		if (!cfs_rq->curr)
471 			vruntime = se->vruntime;
472 		else
473 			vruntime = min_vruntime(vruntime, se->vruntime);
474 	}
475 
476 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 	smp_wmb();
479 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482 
483 /*
484  * Enqueue an entity into the rb-tree:
485  */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct sched_entity *entry;
491 	int leftmost = 1;
492 
493 	/*
494 	 * Find the right place in the rbtree:
495 	 */
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct sched_entity, run_node);
499 		/*
500 		 * We dont care about collisions. Nodes with
501 		 * the same key stay together.
502 		 */
503 		if (entity_before(se, entry)) {
504 			link = &parent->rb_left;
505 		} else {
506 			link = &parent->rb_right;
507 			leftmost = 0;
508 		}
509 	}
510 
511 	/*
512 	 * Maintain a cache of leftmost tree entries (it is frequently
513 	 * used):
514 	 */
515 	if (leftmost)
516 		cfs_rq->rb_leftmost = &se->run_node;
517 
518 	rb_link_node(&se->run_node, parent, link);
519 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521 
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 	if (cfs_rq->rb_leftmost == &se->run_node) {
525 		struct rb_node *next_node;
526 
527 		next_node = rb_next(&se->run_node);
528 		cfs_rq->rb_leftmost = next_node;
529 	}
530 
531 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533 
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 	struct rb_node *left = cfs_rq->rb_leftmost;
537 
538 	if (!left)
539 		return NULL;
540 
541 	return rb_entry(left, struct sched_entity, run_node);
542 }
543 
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 	struct rb_node *next = rb_next(&se->run_node);
547 
548 	if (!next)
549 		return NULL;
550 
551 	return rb_entry(next, struct sched_entity, run_node);
552 }
553 
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558 
559 	if (!last)
560 		return NULL;
561 
562 	return rb_entry(last, struct sched_entity, run_node);
563 }
564 
565 /**************************************************************
566  * Scheduling class statistics methods:
567  */
568 
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 		void __user *buffer, size_t *lenp,
571 		loff_t *ppos)
572 {
573 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 	int factor = get_update_sysctl_factor();
575 
576 	if (ret || !write)
577 		return ret;
578 
579 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 					sysctl_sched_min_granularity);
581 
582 #define WRT_SYSCTL(name) \
583 	(normalized_sysctl_##name = sysctl_##name / (factor))
584 	WRT_SYSCTL(sched_min_granularity);
585 	WRT_SYSCTL(sched_latency);
586 	WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588 
589 	return 0;
590 }
591 #endif
592 
593 /*
594  * delta /= w
595  */
596 static inline unsigned long
597 calc_delta_fair(unsigned long delta, struct sched_entity *se)
598 {
599 	if (unlikely(se->load.weight != NICE_0_LOAD))
600 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
601 
602 	return delta;
603 }
604 
605 /*
606  * The idea is to set a period in which each task runs once.
607  *
608  * When there are too many tasks (sched_nr_latency) we have to stretch
609  * this period because otherwise the slices get too small.
610  *
611  * p = (nr <= nl) ? l : l*nr/nl
612  */
613 static u64 __sched_period(unsigned long nr_running)
614 {
615 	u64 period = sysctl_sched_latency;
616 	unsigned long nr_latency = sched_nr_latency;
617 
618 	if (unlikely(nr_running > nr_latency)) {
619 		period = sysctl_sched_min_granularity;
620 		period *= nr_running;
621 	}
622 
623 	return period;
624 }
625 
626 /*
627  * We calculate the wall-time slice from the period by taking a part
628  * proportional to the weight.
629  *
630  * s = p*P[w/rw]
631  */
632 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
635 
636 	for_each_sched_entity(se) {
637 		struct load_weight *load;
638 		struct load_weight lw;
639 
640 		cfs_rq = cfs_rq_of(se);
641 		load = &cfs_rq->load;
642 
643 		if (unlikely(!se->on_rq)) {
644 			lw = cfs_rq->load;
645 
646 			update_load_add(&lw, se->load.weight);
647 			load = &lw;
648 		}
649 		slice = calc_delta_mine(slice, se->load.weight, load);
650 	}
651 	return slice;
652 }
653 
654 /*
655  * We calculate the vruntime slice of a to be inserted task
656  *
657  * vs = s/w
658  */
659 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
660 {
661 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
662 }
663 
664 /*
665  * Update the current task's runtime statistics. Skip current tasks that
666  * are not in our scheduling class.
667  */
668 static inline void
669 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
670 	      unsigned long delta_exec)
671 {
672 	unsigned long delta_exec_weighted;
673 
674 	schedstat_set(curr->statistics.exec_max,
675 		      max((u64)delta_exec, curr->statistics.exec_max));
676 
677 	curr->sum_exec_runtime += delta_exec;
678 	schedstat_add(cfs_rq, exec_clock, delta_exec);
679 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
680 
681 	curr->vruntime += delta_exec_weighted;
682 	update_min_vruntime(cfs_rq);
683 }
684 
685 static void update_curr(struct cfs_rq *cfs_rq)
686 {
687 	struct sched_entity *curr = cfs_rq->curr;
688 	u64 now = rq_of(cfs_rq)->clock_task;
689 	unsigned long delta_exec;
690 
691 	if (unlikely(!curr))
692 		return;
693 
694 	/*
695 	 * Get the amount of time the current task was running
696 	 * since the last time we changed load (this cannot
697 	 * overflow on 32 bits):
698 	 */
699 	delta_exec = (unsigned long)(now - curr->exec_start);
700 	if (!delta_exec)
701 		return;
702 
703 	__update_curr(cfs_rq, curr, delta_exec);
704 	curr->exec_start = now;
705 
706 	if (entity_is_task(curr)) {
707 		struct task_struct *curtask = task_of(curr);
708 
709 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
710 		cpuacct_charge(curtask, delta_exec);
711 		account_group_exec_runtime(curtask, delta_exec);
712 	}
713 
714 	account_cfs_rq_runtime(cfs_rq, delta_exec);
715 }
716 
717 static inline void
718 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
721 }
722 
723 /*
724  * Task is being enqueued - update stats:
725  */
726 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 	/*
729 	 * Are we enqueueing a waiting task? (for current tasks
730 	 * a dequeue/enqueue event is a NOP)
731 	 */
732 	if (se != cfs_rq->curr)
733 		update_stats_wait_start(cfs_rq, se);
734 }
735 
736 static void
737 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 {
739 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
740 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
741 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
742 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
743 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
744 #ifdef CONFIG_SCHEDSTATS
745 	if (entity_is_task(se)) {
746 		trace_sched_stat_wait(task_of(se),
747 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
748 	}
749 #endif
750 	schedstat_set(se->statistics.wait_start, 0);
751 }
752 
753 static inline void
754 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 	/*
757 	 * Mark the end of the wait period if dequeueing a
758 	 * waiting task:
759 	 */
760 	if (se != cfs_rq->curr)
761 		update_stats_wait_end(cfs_rq, se);
762 }
763 
764 /*
765  * We are picking a new current task - update its stats:
766  */
767 static inline void
768 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
769 {
770 	/*
771 	 * We are starting a new run period:
772 	 */
773 	se->exec_start = rq_of(cfs_rq)->clock_task;
774 }
775 
776 /**************************************************
777  * Scheduling class queueing methods:
778  */
779 
780 #ifdef CONFIG_NUMA_BALANCING
781 /*
782  * numa task sample period in ms
783  */
784 unsigned int sysctl_numa_balancing_scan_period_min = 100;
785 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
786 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
787 
788 /* Portion of address space to scan in MB */
789 unsigned int sysctl_numa_balancing_scan_size = 256;
790 
791 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
792 unsigned int sysctl_numa_balancing_scan_delay = 1000;
793 
794 static void task_numa_placement(struct task_struct *p)
795 {
796 	int seq;
797 
798 	if (!p->mm)	/* for example, ksmd faulting in a user's mm */
799 		return;
800 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
801 	if (p->numa_scan_seq == seq)
802 		return;
803 	p->numa_scan_seq = seq;
804 
805 	/* FIXME: Scheduling placement policy hints go here */
806 }
807 
808 /*
809  * Got a PROT_NONE fault for a page on @node.
810  */
811 void task_numa_fault(int node, int pages, bool migrated)
812 {
813 	struct task_struct *p = current;
814 
815 	if (!sched_feat_numa(NUMA))
816 		return;
817 
818 	/* FIXME: Allocate task-specific structure for placement policy here */
819 
820 	/*
821 	 * If pages are properly placed (did not migrate) then scan slower.
822 	 * This is reset periodically in case of phase changes
823 	 */
824         if (!migrated)
825 		p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
826 			p->numa_scan_period + jiffies_to_msecs(10));
827 
828 	task_numa_placement(p);
829 }
830 
831 static void reset_ptenuma_scan(struct task_struct *p)
832 {
833 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
834 	p->mm->numa_scan_offset = 0;
835 }
836 
837 /*
838  * The expensive part of numa migration is done from task_work context.
839  * Triggered from task_tick_numa().
840  */
841 void task_numa_work(struct callback_head *work)
842 {
843 	unsigned long migrate, next_scan, now = jiffies;
844 	struct task_struct *p = current;
845 	struct mm_struct *mm = p->mm;
846 	struct vm_area_struct *vma;
847 	unsigned long start, end;
848 	long pages;
849 
850 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
851 
852 	work->next = work; /* protect against double add */
853 	/*
854 	 * Who cares about NUMA placement when they're dying.
855 	 *
856 	 * NOTE: make sure not to dereference p->mm before this check,
857 	 * exit_task_work() happens _after_ exit_mm() so we could be called
858 	 * without p->mm even though we still had it when we enqueued this
859 	 * work.
860 	 */
861 	if (p->flags & PF_EXITING)
862 		return;
863 
864 	/*
865 	 * We do not care about task placement until a task runs on a node
866 	 * other than the first one used by the address space. This is
867 	 * largely because migrations are driven by what CPU the task
868 	 * is running on. If it's never scheduled on another node, it'll
869 	 * not migrate so why bother trapping the fault.
870 	 */
871 	if (mm->first_nid == NUMA_PTE_SCAN_INIT)
872 		mm->first_nid = numa_node_id();
873 	if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
874 		/* Are we running on a new node yet? */
875 		if (numa_node_id() == mm->first_nid &&
876 		    !sched_feat_numa(NUMA_FORCE))
877 			return;
878 
879 		mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
880 	}
881 
882 	/*
883 	 * Reset the scan period if enough time has gone by. Objective is that
884 	 * scanning will be reduced if pages are properly placed. As tasks
885 	 * can enter different phases this needs to be re-examined. Lacking
886 	 * proper tracking of reference behaviour, this blunt hammer is used.
887 	 */
888 	migrate = mm->numa_next_reset;
889 	if (time_after(now, migrate)) {
890 		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
891 		next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
892 		xchg(&mm->numa_next_reset, next_scan);
893 	}
894 
895 	/*
896 	 * Enforce maximal scan/migration frequency..
897 	 */
898 	migrate = mm->numa_next_scan;
899 	if (time_before(now, migrate))
900 		return;
901 
902 	if (p->numa_scan_period == 0)
903 		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
904 
905 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
906 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
907 		return;
908 
909 	/*
910 	 * Do not set pte_numa if the current running node is rate-limited.
911 	 * This loses statistics on the fault but if we are unwilling to
912 	 * migrate to this node, it is less likely we can do useful work
913 	 */
914 	if (migrate_ratelimited(numa_node_id()))
915 		return;
916 
917 	start = mm->numa_scan_offset;
918 	pages = sysctl_numa_balancing_scan_size;
919 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
920 	if (!pages)
921 		return;
922 
923 	down_read(&mm->mmap_sem);
924 	vma = find_vma(mm, start);
925 	if (!vma) {
926 		reset_ptenuma_scan(p);
927 		start = 0;
928 		vma = mm->mmap;
929 	}
930 	for (; vma; vma = vma->vm_next) {
931 		if (!vma_migratable(vma))
932 			continue;
933 
934 		/* Skip small VMAs. They are not likely to be of relevance */
935 		if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
936 			continue;
937 
938 		do {
939 			start = max(start, vma->vm_start);
940 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
941 			end = min(end, vma->vm_end);
942 			pages -= change_prot_numa(vma, start, end);
943 
944 			start = end;
945 			if (pages <= 0)
946 				goto out;
947 		} while (end != vma->vm_end);
948 	}
949 
950 out:
951 	/*
952 	 * It is possible to reach the end of the VMA list but the last few VMAs are
953 	 * not guaranteed to the vma_migratable. If they are not, we would find the
954 	 * !migratable VMA on the next scan but not reset the scanner to the start
955 	 * so check it now.
956 	 */
957 	if (vma)
958 		mm->numa_scan_offset = start;
959 	else
960 		reset_ptenuma_scan(p);
961 	up_read(&mm->mmap_sem);
962 }
963 
964 /*
965  * Drive the periodic memory faults..
966  */
967 void task_tick_numa(struct rq *rq, struct task_struct *curr)
968 {
969 	struct callback_head *work = &curr->numa_work;
970 	u64 period, now;
971 
972 	/*
973 	 * We don't care about NUMA placement if we don't have memory.
974 	 */
975 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
976 		return;
977 
978 	/*
979 	 * Using runtime rather than walltime has the dual advantage that
980 	 * we (mostly) drive the selection from busy threads and that the
981 	 * task needs to have done some actual work before we bother with
982 	 * NUMA placement.
983 	 */
984 	now = curr->se.sum_exec_runtime;
985 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
986 
987 	if (now - curr->node_stamp > period) {
988 		if (!curr->node_stamp)
989 			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
990 		curr->node_stamp = now;
991 
992 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
993 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
994 			task_work_add(curr, work, true);
995 		}
996 	}
997 }
998 #else
999 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1000 {
1001 }
1002 #endif /* CONFIG_NUMA_BALANCING */
1003 
1004 static void
1005 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1006 {
1007 	update_load_add(&cfs_rq->load, se->load.weight);
1008 	if (!parent_entity(se))
1009 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1010 #ifdef CONFIG_SMP
1011 	if (entity_is_task(se))
1012 		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1013 #endif
1014 	cfs_rq->nr_running++;
1015 }
1016 
1017 static void
1018 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1019 {
1020 	update_load_sub(&cfs_rq->load, se->load.weight);
1021 	if (!parent_entity(se))
1022 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1023 	if (entity_is_task(se))
1024 		list_del_init(&se->group_node);
1025 	cfs_rq->nr_running--;
1026 }
1027 
1028 #ifdef CONFIG_FAIR_GROUP_SCHED
1029 # ifdef CONFIG_SMP
1030 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1031 {
1032 	long tg_weight;
1033 
1034 	/*
1035 	 * Use this CPU's actual weight instead of the last load_contribution
1036 	 * to gain a more accurate current total weight. See
1037 	 * update_cfs_rq_load_contribution().
1038 	 */
1039 	tg_weight = atomic64_read(&tg->load_avg);
1040 	tg_weight -= cfs_rq->tg_load_contrib;
1041 	tg_weight += cfs_rq->load.weight;
1042 
1043 	return tg_weight;
1044 }
1045 
1046 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1047 {
1048 	long tg_weight, load, shares;
1049 
1050 	tg_weight = calc_tg_weight(tg, cfs_rq);
1051 	load = cfs_rq->load.weight;
1052 
1053 	shares = (tg->shares * load);
1054 	if (tg_weight)
1055 		shares /= tg_weight;
1056 
1057 	if (shares < MIN_SHARES)
1058 		shares = MIN_SHARES;
1059 	if (shares > tg->shares)
1060 		shares = tg->shares;
1061 
1062 	return shares;
1063 }
1064 # else /* CONFIG_SMP */
1065 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1066 {
1067 	return tg->shares;
1068 }
1069 # endif /* CONFIG_SMP */
1070 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1071 			    unsigned long weight)
1072 {
1073 	if (se->on_rq) {
1074 		/* commit outstanding execution time */
1075 		if (cfs_rq->curr == se)
1076 			update_curr(cfs_rq);
1077 		account_entity_dequeue(cfs_rq, se);
1078 	}
1079 
1080 	update_load_set(&se->load, weight);
1081 
1082 	if (se->on_rq)
1083 		account_entity_enqueue(cfs_rq, se);
1084 }
1085 
1086 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1087 
1088 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1089 {
1090 	struct task_group *tg;
1091 	struct sched_entity *se;
1092 	long shares;
1093 
1094 	tg = cfs_rq->tg;
1095 	se = tg->se[cpu_of(rq_of(cfs_rq))];
1096 	if (!se || throttled_hierarchy(cfs_rq))
1097 		return;
1098 #ifndef CONFIG_SMP
1099 	if (likely(se->load.weight == tg->shares))
1100 		return;
1101 #endif
1102 	shares = calc_cfs_shares(cfs_rq, tg);
1103 
1104 	reweight_entity(cfs_rq_of(se), se, shares);
1105 }
1106 #else /* CONFIG_FAIR_GROUP_SCHED */
1107 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1108 {
1109 }
1110 #endif /* CONFIG_FAIR_GROUP_SCHED */
1111 
1112 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1113 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1114 /*
1115  * We choose a half-life close to 1 scheduling period.
1116  * Note: The tables below are dependent on this value.
1117  */
1118 #define LOAD_AVG_PERIOD 32
1119 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1120 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1121 
1122 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1123 static const u32 runnable_avg_yN_inv[] = {
1124 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1125 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1126 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1127 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1128 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1129 	0x85aac367, 0x82cd8698,
1130 };
1131 
1132 /*
1133  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
1134  * over-estimates when re-combining.
1135  */
1136 static const u32 runnable_avg_yN_sum[] = {
1137 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1138 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1139 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1140 };
1141 
1142 /*
1143  * Approximate:
1144  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
1145  */
1146 static __always_inline u64 decay_load(u64 val, u64 n)
1147 {
1148 	unsigned int local_n;
1149 
1150 	if (!n)
1151 		return val;
1152 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1153 		return 0;
1154 
1155 	/* after bounds checking we can collapse to 32-bit */
1156 	local_n = n;
1157 
1158 	/*
1159 	 * As y^PERIOD = 1/2, we can combine
1160 	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1161 	 * With a look-up table which covers k^n (n<PERIOD)
1162 	 *
1163 	 * To achieve constant time decay_load.
1164 	 */
1165 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1166 		val >>= local_n / LOAD_AVG_PERIOD;
1167 		local_n %= LOAD_AVG_PERIOD;
1168 	}
1169 
1170 	val *= runnable_avg_yN_inv[local_n];
1171 	/* We don't use SRR here since we always want to round down. */
1172 	return val >> 32;
1173 }
1174 
1175 /*
1176  * For updates fully spanning n periods, the contribution to runnable
1177  * average will be: \Sum 1024*y^n
1178  *
1179  * We can compute this reasonably efficiently by combining:
1180  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
1181  */
1182 static u32 __compute_runnable_contrib(u64 n)
1183 {
1184 	u32 contrib = 0;
1185 
1186 	if (likely(n <= LOAD_AVG_PERIOD))
1187 		return runnable_avg_yN_sum[n];
1188 	else if (unlikely(n >= LOAD_AVG_MAX_N))
1189 		return LOAD_AVG_MAX;
1190 
1191 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1192 	do {
1193 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1194 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1195 
1196 		n -= LOAD_AVG_PERIOD;
1197 	} while (n > LOAD_AVG_PERIOD);
1198 
1199 	contrib = decay_load(contrib, n);
1200 	return contrib + runnable_avg_yN_sum[n];
1201 }
1202 
1203 /*
1204  * We can represent the historical contribution to runnable average as the
1205  * coefficients of a geometric series.  To do this we sub-divide our runnable
1206  * history into segments of approximately 1ms (1024us); label the segment that
1207  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1208  *
1209  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1210  *      p0            p1           p2
1211  *     (now)       (~1ms ago)  (~2ms ago)
1212  *
1213  * Let u_i denote the fraction of p_i that the entity was runnable.
1214  *
1215  * We then designate the fractions u_i as our co-efficients, yielding the
1216  * following representation of historical load:
1217  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1218  *
1219  * We choose y based on the with of a reasonably scheduling period, fixing:
1220  *   y^32 = 0.5
1221  *
1222  * This means that the contribution to load ~32ms ago (u_32) will be weighted
1223  * approximately half as much as the contribution to load within the last ms
1224  * (u_0).
1225  *
1226  * When a period "rolls over" and we have new u_0`, multiplying the previous
1227  * sum again by y is sufficient to update:
1228  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1229  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1230  */
1231 static __always_inline int __update_entity_runnable_avg(u64 now,
1232 							struct sched_avg *sa,
1233 							int runnable)
1234 {
1235 	u64 delta, periods;
1236 	u32 runnable_contrib;
1237 	int delta_w, decayed = 0;
1238 
1239 	delta = now - sa->last_runnable_update;
1240 	/*
1241 	 * This should only happen when time goes backwards, which it
1242 	 * unfortunately does during sched clock init when we swap over to TSC.
1243 	 */
1244 	if ((s64)delta < 0) {
1245 		sa->last_runnable_update = now;
1246 		return 0;
1247 	}
1248 
1249 	/*
1250 	 * Use 1024ns as the unit of measurement since it's a reasonable
1251 	 * approximation of 1us and fast to compute.
1252 	 */
1253 	delta >>= 10;
1254 	if (!delta)
1255 		return 0;
1256 	sa->last_runnable_update = now;
1257 
1258 	/* delta_w is the amount already accumulated against our next period */
1259 	delta_w = sa->runnable_avg_period % 1024;
1260 	if (delta + delta_w >= 1024) {
1261 		/* period roll-over */
1262 		decayed = 1;
1263 
1264 		/*
1265 		 * Now that we know we're crossing a period boundary, figure
1266 		 * out how much from delta we need to complete the current
1267 		 * period and accrue it.
1268 		 */
1269 		delta_w = 1024 - delta_w;
1270 		if (runnable)
1271 			sa->runnable_avg_sum += delta_w;
1272 		sa->runnable_avg_period += delta_w;
1273 
1274 		delta -= delta_w;
1275 
1276 		/* Figure out how many additional periods this update spans */
1277 		periods = delta / 1024;
1278 		delta %= 1024;
1279 
1280 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1281 						  periods + 1);
1282 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1283 						     periods + 1);
1284 
1285 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
1286 		runnable_contrib = __compute_runnable_contrib(periods);
1287 		if (runnable)
1288 			sa->runnable_avg_sum += runnable_contrib;
1289 		sa->runnable_avg_period += runnable_contrib;
1290 	}
1291 
1292 	/* Remainder of delta accrued against u_0` */
1293 	if (runnable)
1294 		sa->runnable_avg_sum += delta;
1295 	sa->runnable_avg_period += delta;
1296 
1297 	return decayed;
1298 }
1299 
1300 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1301 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1302 {
1303 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1304 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
1305 
1306 	decays -= se->avg.decay_count;
1307 	if (!decays)
1308 		return 0;
1309 
1310 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1311 	se->avg.decay_count = 0;
1312 
1313 	return decays;
1314 }
1315 
1316 #ifdef CONFIG_FAIR_GROUP_SCHED
1317 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1318 						 int force_update)
1319 {
1320 	struct task_group *tg = cfs_rq->tg;
1321 	s64 tg_contrib;
1322 
1323 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1324 	tg_contrib -= cfs_rq->tg_load_contrib;
1325 
1326 	if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1327 		atomic64_add(tg_contrib, &tg->load_avg);
1328 		cfs_rq->tg_load_contrib += tg_contrib;
1329 	}
1330 }
1331 
1332 /*
1333  * Aggregate cfs_rq runnable averages into an equivalent task_group
1334  * representation for computing load contributions.
1335  */
1336 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1337 						  struct cfs_rq *cfs_rq)
1338 {
1339 	struct task_group *tg = cfs_rq->tg;
1340 	long contrib;
1341 
1342 	/* The fraction of a cpu used by this cfs_rq */
1343 	contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1344 			  sa->runnable_avg_period + 1);
1345 	contrib -= cfs_rq->tg_runnable_contrib;
1346 
1347 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1348 		atomic_add(contrib, &tg->runnable_avg);
1349 		cfs_rq->tg_runnable_contrib += contrib;
1350 	}
1351 }
1352 
1353 static inline void __update_group_entity_contrib(struct sched_entity *se)
1354 {
1355 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
1356 	struct task_group *tg = cfs_rq->tg;
1357 	int runnable_avg;
1358 
1359 	u64 contrib;
1360 
1361 	contrib = cfs_rq->tg_load_contrib * tg->shares;
1362 	se->avg.load_avg_contrib = div64_u64(contrib,
1363 					     atomic64_read(&tg->load_avg) + 1);
1364 
1365 	/*
1366 	 * For group entities we need to compute a correction term in the case
1367 	 * that they are consuming <1 cpu so that we would contribute the same
1368 	 * load as a task of equal weight.
1369 	 *
1370 	 * Explicitly co-ordinating this measurement would be expensive, but
1371 	 * fortunately the sum of each cpus contribution forms a usable
1372 	 * lower-bound on the true value.
1373 	 *
1374 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
1375 	 * (and the sum represents true value) or they are disjoint and we are
1376 	 * understating by the aggregate of their overlap.
1377 	 *
1378 	 * Extending this to N cpus, for a given overlap, the maximum amount we
1379 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1380 	 * cpus that overlap for this interval and w_i is the interval width.
1381 	 *
1382 	 * On a small machine; the first term is well-bounded which bounds the
1383 	 * total error since w_i is a subset of the period.  Whereas on a
1384 	 * larger machine, while this first term can be larger, if w_i is the
1385 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
1386 	 * our upper bound of 1-cpu.
1387 	 */
1388 	runnable_avg = atomic_read(&tg->runnable_avg);
1389 	if (runnable_avg < NICE_0_LOAD) {
1390 		se->avg.load_avg_contrib *= runnable_avg;
1391 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1392 	}
1393 }
1394 #else
1395 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1396 						 int force_update) {}
1397 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1398 						  struct cfs_rq *cfs_rq) {}
1399 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1400 #endif
1401 
1402 static inline void __update_task_entity_contrib(struct sched_entity *se)
1403 {
1404 	u32 contrib;
1405 
1406 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1407 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1408 	contrib /= (se->avg.runnable_avg_period + 1);
1409 	se->avg.load_avg_contrib = scale_load(contrib);
1410 }
1411 
1412 /* Compute the current contribution to load_avg by se, return any delta */
1413 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1414 {
1415 	long old_contrib = se->avg.load_avg_contrib;
1416 
1417 	if (entity_is_task(se)) {
1418 		__update_task_entity_contrib(se);
1419 	} else {
1420 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1421 		__update_group_entity_contrib(se);
1422 	}
1423 
1424 	return se->avg.load_avg_contrib - old_contrib;
1425 }
1426 
1427 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1428 						 long load_contrib)
1429 {
1430 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
1431 		cfs_rq->blocked_load_avg -= load_contrib;
1432 	else
1433 		cfs_rq->blocked_load_avg = 0;
1434 }
1435 
1436 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1437 
1438 /* Update a sched_entity's runnable average */
1439 static inline void update_entity_load_avg(struct sched_entity *se,
1440 					  int update_cfs_rq)
1441 {
1442 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1443 	long contrib_delta;
1444 	u64 now;
1445 
1446 	/*
1447 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
1448 	 * case they are the parent of a throttled hierarchy.
1449 	 */
1450 	if (entity_is_task(se))
1451 		now = cfs_rq_clock_task(cfs_rq);
1452 	else
1453 		now = cfs_rq_clock_task(group_cfs_rq(se));
1454 
1455 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1456 		return;
1457 
1458 	contrib_delta = __update_entity_load_avg_contrib(se);
1459 
1460 	if (!update_cfs_rq)
1461 		return;
1462 
1463 	if (se->on_rq)
1464 		cfs_rq->runnable_load_avg += contrib_delta;
1465 	else
1466 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1467 }
1468 
1469 /*
1470  * Decay the load contributed by all blocked children and account this so that
1471  * their contribution may appropriately discounted when they wake up.
1472  */
1473 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1474 {
1475 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1476 	u64 decays;
1477 
1478 	decays = now - cfs_rq->last_decay;
1479 	if (!decays && !force_update)
1480 		return;
1481 
1482 	if (atomic64_read(&cfs_rq->removed_load)) {
1483 		u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1484 		subtract_blocked_load_contrib(cfs_rq, removed_load);
1485 	}
1486 
1487 	if (decays) {
1488 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1489 						      decays);
1490 		atomic64_add(decays, &cfs_rq->decay_counter);
1491 		cfs_rq->last_decay = now;
1492 	}
1493 
1494 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1495 }
1496 
1497 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1498 {
1499 	__update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1500 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
1501 }
1502 
1503 /* Add the load generated by se into cfs_rq's child load-average */
1504 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1505 						  struct sched_entity *se,
1506 						  int wakeup)
1507 {
1508 	/*
1509 	 * We track migrations using entity decay_count <= 0, on a wake-up
1510 	 * migration we use a negative decay count to track the remote decays
1511 	 * accumulated while sleeping.
1512 	 */
1513 	if (unlikely(se->avg.decay_count <= 0)) {
1514 		se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1515 		if (se->avg.decay_count) {
1516 			/*
1517 			 * In a wake-up migration we have to approximate the
1518 			 * time sleeping.  This is because we can't synchronize
1519 			 * clock_task between the two cpus, and it is not
1520 			 * guaranteed to be read-safe.  Instead, we can
1521 			 * approximate this using our carried decays, which are
1522 			 * explicitly atomically readable.
1523 			 */
1524 			se->avg.last_runnable_update -= (-se->avg.decay_count)
1525 							<< 20;
1526 			update_entity_load_avg(se, 0);
1527 			/* Indicate that we're now synchronized and on-rq */
1528 			se->avg.decay_count = 0;
1529 		}
1530 		wakeup = 0;
1531 	} else {
1532 		__synchronize_entity_decay(se);
1533 	}
1534 
1535 	/* migrated tasks did not contribute to our blocked load */
1536 	if (wakeup) {
1537 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1538 		update_entity_load_avg(se, 0);
1539 	}
1540 
1541 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1542 	/* we force update consideration on load-balancer moves */
1543 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1544 }
1545 
1546 /*
1547  * Remove se's load from this cfs_rq child load-average, if the entity is
1548  * transitioning to a blocked state we track its projected decay using
1549  * blocked_load_avg.
1550  */
1551 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1552 						  struct sched_entity *se,
1553 						  int sleep)
1554 {
1555 	update_entity_load_avg(se, 1);
1556 	/* we force update consideration on load-balancer moves */
1557 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
1558 
1559 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1560 	if (sleep) {
1561 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1562 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1563 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
1564 }
1565 #else
1566 static inline void update_entity_load_avg(struct sched_entity *se,
1567 					  int update_cfs_rq) {}
1568 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1569 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1570 					   struct sched_entity *se,
1571 					   int wakeup) {}
1572 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1573 					   struct sched_entity *se,
1574 					   int sleep) {}
1575 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1576 					      int force_update) {}
1577 #endif
1578 
1579 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1580 {
1581 #ifdef CONFIG_SCHEDSTATS
1582 	struct task_struct *tsk = NULL;
1583 
1584 	if (entity_is_task(se))
1585 		tsk = task_of(se);
1586 
1587 	if (se->statistics.sleep_start) {
1588 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1589 
1590 		if ((s64)delta < 0)
1591 			delta = 0;
1592 
1593 		if (unlikely(delta > se->statistics.sleep_max))
1594 			se->statistics.sleep_max = delta;
1595 
1596 		se->statistics.sleep_start = 0;
1597 		se->statistics.sum_sleep_runtime += delta;
1598 
1599 		if (tsk) {
1600 			account_scheduler_latency(tsk, delta >> 10, 1);
1601 			trace_sched_stat_sleep(tsk, delta);
1602 		}
1603 	}
1604 	if (se->statistics.block_start) {
1605 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1606 
1607 		if ((s64)delta < 0)
1608 			delta = 0;
1609 
1610 		if (unlikely(delta > se->statistics.block_max))
1611 			se->statistics.block_max = delta;
1612 
1613 		se->statistics.block_start = 0;
1614 		se->statistics.sum_sleep_runtime += delta;
1615 
1616 		if (tsk) {
1617 			if (tsk->in_iowait) {
1618 				se->statistics.iowait_sum += delta;
1619 				se->statistics.iowait_count++;
1620 				trace_sched_stat_iowait(tsk, delta);
1621 			}
1622 
1623 			trace_sched_stat_blocked(tsk, delta);
1624 
1625 			/*
1626 			 * Blocking time is in units of nanosecs, so shift by
1627 			 * 20 to get a milliseconds-range estimation of the
1628 			 * amount of time that the task spent sleeping:
1629 			 */
1630 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1631 				profile_hits(SLEEP_PROFILING,
1632 						(void *)get_wchan(tsk),
1633 						delta >> 20);
1634 			}
1635 			account_scheduler_latency(tsk, delta >> 10, 0);
1636 		}
1637 	}
1638 #endif
1639 }
1640 
1641 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1642 {
1643 #ifdef CONFIG_SCHED_DEBUG
1644 	s64 d = se->vruntime - cfs_rq->min_vruntime;
1645 
1646 	if (d < 0)
1647 		d = -d;
1648 
1649 	if (d > 3*sysctl_sched_latency)
1650 		schedstat_inc(cfs_rq, nr_spread_over);
1651 #endif
1652 }
1653 
1654 static void
1655 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1656 {
1657 	u64 vruntime = cfs_rq->min_vruntime;
1658 
1659 	/*
1660 	 * The 'current' period is already promised to the current tasks,
1661 	 * however the extra weight of the new task will slow them down a
1662 	 * little, place the new task so that it fits in the slot that
1663 	 * stays open at the end.
1664 	 */
1665 	if (initial && sched_feat(START_DEBIT))
1666 		vruntime += sched_vslice(cfs_rq, se);
1667 
1668 	/* sleeps up to a single latency don't count. */
1669 	if (!initial) {
1670 		unsigned long thresh = sysctl_sched_latency;
1671 
1672 		/*
1673 		 * Halve their sleep time's effect, to allow
1674 		 * for a gentler effect of sleepers:
1675 		 */
1676 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
1677 			thresh >>= 1;
1678 
1679 		vruntime -= thresh;
1680 	}
1681 
1682 	/* ensure we never gain time by being placed backwards. */
1683 	vruntime = max_vruntime(se->vruntime, vruntime);
1684 
1685 	se->vruntime = vruntime;
1686 }
1687 
1688 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1689 
1690 static void
1691 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1692 {
1693 	/*
1694 	 * Update the normalized vruntime before updating min_vruntime
1695 	 * through callig update_curr().
1696 	 */
1697 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1698 		se->vruntime += cfs_rq->min_vruntime;
1699 
1700 	/*
1701 	 * Update run-time statistics of the 'current'.
1702 	 */
1703 	update_curr(cfs_rq);
1704 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1705 	account_entity_enqueue(cfs_rq, se);
1706 	update_cfs_shares(cfs_rq);
1707 
1708 	if (flags & ENQUEUE_WAKEUP) {
1709 		place_entity(cfs_rq, se, 0);
1710 		enqueue_sleeper(cfs_rq, se);
1711 	}
1712 
1713 	update_stats_enqueue(cfs_rq, se);
1714 	check_spread(cfs_rq, se);
1715 	if (se != cfs_rq->curr)
1716 		__enqueue_entity(cfs_rq, se);
1717 	se->on_rq = 1;
1718 
1719 	if (cfs_rq->nr_running == 1) {
1720 		list_add_leaf_cfs_rq(cfs_rq);
1721 		check_enqueue_throttle(cfs_rq);
1722 	}
1723 }
1724 
1725 static void __clear_buddies_last(struct sched_entity *se)
1726 {
1727 	for_each_sched_entity(se) {
1728 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1729 		if (cfs_rq->last == se)
1730 			cfs_rq->last = NULL;
1731 		else
1732 			break;
1733 	}
1734 }
1735 
1736 static void __clear_buddies_next(struct sched_entity *se)
1737 {
1738 	for_each_sched_entity(se) {
1739 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1740 		if (cfs_rq->next == se)
1741 			cfs_rq->next = NULL;
1742 		else
1743 			break;
1744 	}
1745 }
1746 
1747 static void __clear_buddies_skip(struct sched_entity *se)
1748 {
1749 	for_each_sched_entity(se) {
1750 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1751 		if (cfs_rq->skip == se)
1752 			cfs_rq->skip = NULL;
1753 		else
1754 			break;
1755 	}
1756 }
1757 
1758 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1759 {
1760 	if (cfs_rq->last == se)
1761 		__clear_buddies_last(se);
1762 
1763 	if (cfs_rq->next == se)
1764 		__clear_buddies_next(se);
1765 
1766 	if (cfs_rq->skip == se)
1767 		__clear_buddies_skip(se);
1768 }
1769 
1770 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1771 
1772 static void
1773 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1774 {
1775 	/*
1776 	 * Update run-time statistics of the 'current'.
1777 	 */
1778 	update_curr(cfs_rq);
1779 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1780 
1781 	update_stats_dequeue(cfs_rq, se);
1782 	if (flags & DEQUEUE_SLEEP) {
1783 #ifdef CONFIG_SCHEDSTATS
1784 		if (entity_is_task(se)) {
1785 			struct task_struct *tsk = task_of(se);
1786 
1787 			if (tsk->state & TASK_INTERRUPTIBLE)
1788 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1789 			if (tsk->state & TASK_UNINTERRUPTIBLE)
1790 				se->statistics.block_start = rq_of(cfs_rq)->clock;
1791 		}
1792 #endif
1793 	}
1794 
1795 	clear_buddies(cfs_rq, se);
1796 
1797 	if (se != cfs_rq->curr)
1798 		__dequeue_entity(cfs_rq, se);
1799 	se->on_rq = 0;
1800 	account_entity_dequeue(cfs_rq, se);
1801 
1802 	/*
1803 	 * Normalize the entity after updating the min_vruntime because the
1804 	 * update can refer to the ->curr item and we need to reflect this
1805 	 * movement in our normalized position.
1806 	 */
1807 	if (!(flags & DEQUEUE_SLEEP))
1808 		se->vruntime -= cfs_rq->min_vruntime;
1809 
1810 	/* return excess runtime on last dequeue */
1811 	return_cfs_rq_runtime(cfs_rq);
1812 
1813 	update_min_vruntime(cfs_rq);
1814 	update_cfs_shares(cfs_rq);
1815 }
1816 
1817 /*
1818  * Preempt the current task with a newly woken task if needed:
1819  */
1820 static void
1821 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1822 {
1823 	unsigned long ideal_runtime, delta_exec;
1824 	struct sched_entity *se;
1825 	s64 delta;
1826 
1827 	ideal_runtime = sched_slice(cfs_rq, curr);
1828 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1829 	if (delta_exec > ideal_runtime) {
1830 		resched_task(rq_of(cfs_rq)->curr);
1831 		/*
1832 		 * The current task ran long enough, ensure it doesn't get
1833 		 * re-elected due to buddy favours.
1834 		 */
1835 		clear_buddies(cfs_rq, curr);
1836 		return;
1837 	}
1838 
1839 	/*
1840 	 * Ensure that a task that missed wakeup preemption by a
1841 	 * narrow margin doesn't have to wait for a full slice.
1842 	 * This also mitigates buddy induced latencies under load.
1843 	 */
1844 	if (delta_exec < sysctl_sched_min_granularity)
1845 		return;
1846 
1847 	se = __pick_first_entity(cfs_rq);
1848 	delta = curr->vruntime - se->vruntime;
1849 
1850 	if (delta < 0)
1851 		return;
1852 
1853 	if (delta > ideal_runtime)
1854 		resched_task(rq_of(cfs_rq)->curr);
1855 }
1856 
1857 static void
1858 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1859 {
1860 	/* 'current' is not kept within the tree. */
1861 	if (se->on_rq) {
1862 		/*
1863 		 * Any task has to be enqueued before it get to execute on
1864 		 * a CPU. So account for the time it spent waiting on the
1865 		 * runqueue.
1866 		 */
1867 		update_stats_wait_end(cfs_rq, se);
1868 		__dequeue_entity(cfs_rq, se);
1869 	}
1870 
1871 	update_stats_curr_start(cfs_rq, se);
1872 	cfs_rq->curr = se;
1873 #ifdef CONFIG_SCHEDSTATS
1874 	/*
1875 	 * Track our maximum slice length, if the CPU's load is at
1876 	 * least twice that of our own weight (i.e. dont track it
1877 	 * when there are only lesser-weight tasks around):
1878 	 */
1879 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1880 		se->statistics.slice_max = max(se->statistics.slice_max,
1881 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1882 	}
1883 #endif
1884 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1885 }
1886 
1887 static int
1888 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1889 
1890 /*
1891  * Pick the next process, keeping these things in mind, in this order:
1892  * 1) keep things fair between processes/task groups
1893  * 2) pick the "next" process, since someone really wants that to run
1894  * 3) pick the "last" process, for cache locality
1895  * 4) do not run the "skip" process, if something else is available
1896  */
1897 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1898 {
1899 	struct sched_entity *se = __pick_first_entity(cfs_rq);
1900 	struct sched_entity *left = se;
1901 
1902 	/*
1903 	 * Avoid running the skip buddy, if running something else can
1904 	 * be done without getting too unfair.
1905 	 */
1906 	if (cfs_rq->skip == se) {
1907 		struct sched_entity *second = __pick_next_entity(se);
1908 		if (second && wakeup_preempt_entity(second, left) < 1)
1909 			se = second;
1910 	}
1911 
1912 	/*
1913 	 * Prefer last buddy, try to return the CPU to a preempted task.
1914 	 */
1915 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1916 		se = cfs_rq->last;
1917 
1918 	/*
1919 	 * Someone really wants this to run. If it's not unfair, run it.
1920 	 */
1921 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1922 		se = cfs_rq->next;
1923 
1924 	clear_buddies(cfs_rq, se);
1925 
1926 	return se;
1927 }
1928 
1929 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1930 
1931 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1932 {
1933 	/*
1934 	 * If still on the runqueue then deactivate_task()
1935 	 * was not called and update_curr() has to be done:
1936 	 */
1937 	if (prev->on_rq)
1938 		update_curr(cfs_rq);
1939 
1940 	/* throttle cfs_rqs exceeding runtime */
1941 	check_cfs_rq_runtime(cfs_rq);
1942 
1943 	check_spread(cfs_rq, prev);
1944 	if (prev->on_rq) {
1945 		update_stats_wait_start(cfs_rq, prev);
1946 		/* Put 'current' back into the tree. */
1947 		__enqueue_entity(cfs_rq, prev);
1948 		/* in !on_rq case, update occurred at dequeue */
1949 		update_entity_load_avg(prev, 1);
1950 	}
1951 	cfs_rq->curr = NULL;
1952 }
1953 
1954 static void
1955 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1956 {
1957 	/*
1958 	 * Update run-time statistics of the 'current'.
1959 	 */
1960 	update_curr(cfs_rq);
1961 
1962 	/*
1963 	 * Ensure that runnable average is periodically updated.
1964 	 */
1965 	update_entity_load_avg(curr, 1);
1966 	update_cfs_rq_blocked_load(cfs_rq, 1);
1967 
1968 #ifdef CONFIG_SCHED_HRTICK
1969 	/*
1970 	 * queued ticks are scheduled to match the slice, so don't bother
1971 	 * validating it and just reschedule.
1972 	 */
1973 	if (queued) {
1974 		resched_task(rq_of(cfs_rq)->curr);
1975 		return;
1976 	}
1977 	/*
1978 	 * don't let the period tick interfere with the hrtick preemption
1979 	 */
1980 	if (!sched_feat(DOUBLE_TICK) &&
1981 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1982 		return;
1983 #endif
1984 
1985 	if (cfs_rq->nr_running > 1)
1986 		check_preempt_tick(cfs_rq, curr);
1987 }
1988 
1989 
1990 /**************************************************
1991  * CFS bandwidth control machinery
1992  */
1993 
1994 #ifdef CONFIG_CFS_BANDWIDTH
1995 
1996 #ifdef HAVE_JUMP_LABEL
1997 static struct static_key __cfs_bandwidth_used;
1998 
1999 static inline bool cfs_bandwidth_used(void)
2000 {
2001 	return static_key_false(&__cfs_bandwidth_used);
2002 }
2003 
2004 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2005 {
2006 	/* only need to count groups transitioning between enabled/!enabled */
2007 	if (enabled && !was_enabled)
2008 		static_key_slow_inc(&__cfs_bandwidth_used);
2009 	else if (!enabled && was_enabled)
2010 		static_key_slow_dec(&__cfs_bandwidth_used);
2011 }
2012 #else /* HAVE_JUMP_LABEL */
2013 static bool cfs_bandwidth_used(void)
2014 {
2015 	return true;
2016 }
2017 
2018 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2019 #endif /* HAVE_JUMP_LABEL */
2020 
2021 /*
2022  * default period for cfs group bandwidth.
2023  * default: 0.1s, units: nanoseconds
2024  */
2025 static inline u64 default_cfs_period(void)
2026 {
2027 	return 100000000ULL;
2028 }
2029 
2030 static inline u64 sched_cfs_bandwidth_slice(void)
2031 {
2032 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2033 }
2034 
2035 /*
2036  * Replenish runtime according to assigned quota and update expiration time.
2037  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2038  * additional synchronization around rq->lock.
2039  *
2040  * requires cfs_b->lock
2041  */
2042 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2043 {
2044 	u64 now;
2045 
2046 	if (cfs_b->quota == RUNTIME_INF)
2047 		return;
2048 
2049 	now = sched_clock_cpu(smp_processor_id());
2050 	cfs_b->runtime = cfs_b->quota;
2051 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2052 }
2053 
2054 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2055 {
2056 	return &tg->cfs_bandwidth;
2057 }
2058 
2059 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2060 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2061 {
2062 	if (unlikely(cfs_rq->throttle_count))
2063 		return cfs_rq->throttled_clock_task;
2064 
2065 	return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2066 }
2067 
2068 /* returns 0 on failure to allocate runtime */
2069 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2070 {
2071 	struct task_group *tg = cfs_rq->tg;
2072 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2073 	u64 amount = 0, min_amount, expires;
2074 
2075 	/* note: this is a positive sum as runtime_remaining <= 0 */
2076 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2077 
2078 	raw_spin_lock(&cfs_b->lock);
2079 	if (cfs_b->quota == RUNTIME_INF)
2080 		amount = min_amount;
2081 	else {
2082 		/*
2083 		 * If the bandwidth pool has become inactive, then at least one
2084 		 * period must have elapsed since the last consumption.
2085 		 * Refresh the global state and ensure bandwidth timer becomes
2086 		 * active.
2087 		 */
2088 		if (!cfs_b->timer_active) {
2089 			__refill_cfs_bandwidth_runtime(cfs_b);
2090 			__start_cfs_bandwidth(cfs_b);
2091 		}
2092 
2093 		if (cfs_b->runtime > 0) {
2094 			amount = min(cfs_b->runtime, min_amount);
2095 			cfs_b->runtime -= amount;
2096 			cfs_b->idle = 0;
2097 		}
2098 	}
2099 	expires = cfs_b->runtime_expires;
2100 	raw_spin_unlock(&cfs_b->lock);
2101 
2102 	cfs_rq->runtime_remaining += amount;
2103 	/*
2104 	 * we may have advanced our local expiration to account for allowed
2105 	 * spread between our sched_clock and the one on which runtime was
2106 	 * issued.
2107 	 */
2108 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2109 		cfs_rq->runtime_expires = expires;
2110 
2111 	return cfs_rq->runtime_remaining > 0;
2112 }
2113 
2114 /*
2115  * Note: This depends on the synchronization provided by sched_clock and the
2116  * fact that rq->clock snapshots this value.
2117  */
2118 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2119 {
2120 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2121 	struct rq *rq = rq_of(cfs_rq);
2122 
2123 	/* if the deadline is ahead of our clock, nothing to do */
2124 	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2125 		return;
2126 
2127 	if (cfs_rq->runtime_remaining < 0)
2128 		return;
2129 
2130 	/*
2131 	 * If the local deadline has passed we have to consider the
2132 	 * possibility that our sched_clock is 'fast' and the global deadline
2133 	 * has not truly expired.
2134 	 *
2135 	 * Fortunately we can check determine whether this the case by checking
2136 	 * whether the global deadline has advanced.
2137 	 */
2138 
2139 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2140 		/* extend local deadline, drift is bounded above by 2 ticks */
2141 		cfs_rq->runtime_expires += TICK_NSEC;
2142 	} else {
2143 		/* global deadline is ahead, expiration has passed */
2144 		cfs_rq->runtime_remaining = 0;
2145 	}
2146 }
2147 
2148 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2149 				     unsigned long delta_exec)
2150 {
2151 	/* dock delta_exec before expiring quota (as it could span periods) */
2152 	cfs_rq->runtime_remaining -= delta_exec;
2153 	expire_cfs_rq_runtime(cfs_rq);
2154 
2155 	if (likely(cfs_rq->runtime_remaining > 0))
2156 		return;
2157 
2158 	/*
2159 	 * if we're unable to extend our runtime we resched so that the active
2160 	 * hierarchy can be throttled
2161 	 */
2162 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2163 		resched_task(rq_of(cfs_rq)->curr);
2164 }
2165 
2166 static __always_inline
2167 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2168 {
2169 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2170 		return;
2171 
2172 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
2173 }
2174 
2175 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2176 {
2177 	return cfs_bandwidth_used() && cfs_rq->throttled;
2178 }
2179 
2180 /* check whether cfs_rq, or any parent, is throttled */
2181 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2182 {
2183 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
2184 }
2185 
2186 /*
2187  * Ensure that neither of the group entities corresponding to src_cpu or
2188  * dest_cpu are members of a throttled hierarchy when performing group
2189  * load-balance operations.
2190  */
2191 static inline int throttled_lb_pair(struct task_group *tg,
2192 				    int src_cpu, int dest_cpu)
2193 {
2194 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2195 
2196 	src_cfs_rq = tg->cfs_rq[src_cpu];
2197 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
2198 
2199 	return throttled_hierarchy(src_cfs_rq) ||
2200 	       throttled_hierarchy(dest_cfs_rq);
2201 }
2202 
2203 /* updated child weight may affect parent so we have to do this bottom up */
2204 static int tg_unthrottle_up(struct task_group *tg, void *data)
2205 {
2206 	struct rq *rq = data;
2207 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2208 
2209 	cfs_rq->throttle_count--;
2210 #ifdef CONFIG_SMP
2211 	if (!cfs_rq->throttle_count) {
2212 		/* adjust cfs_rq_clock_task() */
2213 		cfs_rq->throttled_clock_task_time += rq->clock_task -
2214 					     cfs_rq->throttled_clock_task;
2215 	}
2216 #endif
2217 
2218 	return 0;
2219 }
2220 
2221 static int tg_throttle_down(struct task_group *tg, void *data)
2222 {
2223 	struct rq *rq = data;
2224 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2225 
2226 	/* group is entering throttled state, stop time */
2227 	if (!cfs_rq->throttle_count)
2228 		cfs_rq->throttled_clock_task = rq->clock_task;
2229 	cfs_rq->throttle_count++;
2230 
2231 	return 0;
2232 }
2233 
2234 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2235 {
2236 	struct rq *rq = rq_of(cfs_rq);
2237 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2238 	struct sched_entity *se;
2239 	long task_delta, dequeue = 1;
2240 
2241 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2242 
2243 	/* freeze hierarchy runnable averages while throttled */
2244 	rcu_read_lock();
2245 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2246 	rcu_read_unlock();
2247 
2248 	task_delta = cfs_rq->h_nr_running;
2249 	for_each_sched_entity(se) {
2250 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2251 		/* throttled entity or throttle-on-deactivate */
2252 		if (!se->on_rq)
2253 			break;
2254 
2255 		if (dequeue)
2256 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2257 		qcfs_rq->h_nr_running -= task_delta;
2258 
2259 		if (qcfs_rq->load.weight)
2260 			dequeue = 0;
2261 	}
2262 
2263 	if (!se)
2264 		rq->nr_running -= task_delta;
2265 
2266 	cfs_rq->throttled = 1;
2267 	cfs_rq->throttled_clock = rq->clock;
2268 	raw_spin_lock(&cfs_b->lock);
2269 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2270 	raw_spin_unlock(&cfs_b->lock);
2271 }
2272 
2273 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2274 {
2275 	struct rq *rq = rq_of(cfs_rq);
2276 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2277 	struct sched_entity *se;
2278 	int enqueue = 1;
2279 	long task_delta;
2280 
2281 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2282 
2283 	cfs_rq->throttled = 0;
2284 	raw_spin_lock(&cfs_b->lock);
2285 	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2286 	list_del_rcu(&cfs_rq->throttled_list);
2287 	raw_spin_unlock(&cfs_b->lock);
2288 
2289 	update_rq_clock(rq);
2290 	/* update hierarchical throttle state */
2291 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2292 
2293 	if (!cfs_rq->load.weight)
2294 		return;
2295 
2296 	task_delta = cfs_rq->h_nr_running;
2297 	for_each_sched_entity(se) {
2298 		if (se->on_rq)
2299 			enqueue = 0;
2300 
2301 		cfs_rq = cfs_rq_of(se);
2302 		if (enqueue)
2303 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2304 		cfs_rq->h_nr_running += task_delta;
2305 
2306 		if (cfs_rq_throttled(cfs_rq))
2307 			break;
2308 	}
2309 
2310 	if (!se)
2311 		rq->nr_running += task_delta;
2312 
2313 	/* determine whether we need to wake up potentially idle cpu */
2314 	if (rq->curr == rq->idle && rq->cfs.nr_running)
2315 		resched_task(rq->curr);
2316 }
2317 
2318 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2319 		u64 remaining, u64 expires)
2320 {
2321 	struct cfs_rq *cfs_rq;
2322 	u64 runtime = remaining;
2323 
2324 	rcu_read_lock();
2325 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2326 				throttled_list) {
2327 		struct rq *rq = rq_of(cfs_rq);
2328 
2329 		raw_spin_lock(&rq->lock);
2330 		if (!cfs_rq_throttled(cfs_rq))
2331 			goto next;
2332 
2333 		runtime = -cfs_rq->runtime_remaining + 1;
2334 		if (runtime > remaining)
2335 			runtime = remaining;
2336 		remaining -= runtime;
2337 
2338 		cfs_rq->runtime_remaining += runtime;
2339 		cfs_rq->runtime_expires = expires;
2340 
2341 		/* we check whether we're throttled above */
2342 		if (cfs_rq->runtime_remaining > 0)
2343 			unthrottle_cfs_rq(cfs_rq);
2344 
2345 next:
2346 		raw_spin_unlock(&rq->lock);
2347 
2348 		if (!remaining)
2349 			break;
2350 	}
2351 	rcu_read_unlock();
2352 
2353 	return remaining;
2354 }
2355 
2356 /*
2357  * Responsible for refilling a task_group's bandwidth and unthrottling its
2358  * cfs_rqs as appropriate. If there has been no activity within the last
2359  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2360  * used to track this state.
2361  */
2362 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2363 {
2364 	u64 runtime, runtime_expires;
2365 	int idle = 1, throttled;
2366 
2367 	raw_spin_lock(&cfs_b->lock);
2368 	/* no need to continue the timer with no bandwidth constraint */
2369 	if (cfs_b->quota == RUNTIME_INF)
2370 		goto out_unlock;
2371 
2372 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2373 	/* idle depends on !throttled (for the case of a large deficit) */
2374 	idle = cfs_b->idle && !throttled;
2375 	cfs_b->nr_periods += overrun;
2376 
2377 	/* if we're going inactive then everything else can be deferred */
2378 	if (idle)
2379 		goto out_unlock;
2380 
2381 	__refill_cfs_bandwidth_runtime(cfs_b);
2382 
2383 	if (!throttled) {
2384 		/* mark as potentially idle for the upcoming period */
2385 		cfs_b->idle = 1;
2386 		goto out_unlock;
2387 	}
2388 
2389 	/* account preceding periods in which throttling occurred */
2390 	cfs_b->nr_throttled += overrun;
2391 
2392 	/*
2393 	 * There are throttled entities so we must first use the new bandwidth
2394 	 * to unthrottle them before making it generally available.  This
2395 	 * ensures that all existing debts will be paid before a new cfs_rq is
2396 	 * allowed to run.
2397 	 */
2398 	runtime = cfs_b->runtime;
2399 	runtime_expires = cfs_b->runtime_expires;
2400 	cfs_b->runtime = 0;
2401 
2402 	/*
2403 	 * This check is repeated as we are holding onto the new bandwidth
2404 	 * while we unthrottle.  This can potentially race with an unthrottled
2405 	 * group trying to acquire new bandwidth from the global pool.
2406 	 */
2407 	while (throttled && runtime > 0) {
2408 		raw_spin_unlock(&cfs_b->lock);
2409 		/* we can't nest cfs_b->lock while distributing bandwidth */
2410 		runtime = distribute_cfs_runtime(cfs_b, runtime,
2411 						 runtime_expires);
2412 		raw_spin_lock(&cfs_b->lock);
2413 
2414 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2415 	}
2416 
2417 	/* return (any) remaining runtime */
2418 	cfs_b->runtime = runtime;
2419 	/*
2420 	 * While we are ensured activity in the period following an
2421 	 * unthrottle, this also covers the case in which the new bandwidth is
2422 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
2423 	 * timer to remain active while there are any throttled entities.)
2424 	 */
2425 	cfs_b->idle = 0;
2426 out_unlock:
2427 	if (idle)
2428 		cfs_b->timer_active = 0;
2429 	raw_spin_unlock(&cfs_b->lock);
2430 
2431 	return idle;
2432 }
2433 
2434 /* a cfs_rq won't donate quota below this amount */
2435 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2436 /* minimum remaining period time to redistribute slack quota */
2437 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2438 /* how long we wait to gather additional slack before distributing */
2439 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2440 
2441 /* are we near the end of the current quota period? */
2442 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2443 {
2444 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
2445 	u64 remaining;
2446 
2447 	/* if the call-back is running a quota refresh is already occurring */
2448 	if (hrtimer_callback_running(refresh_timer))
2449 		return 1;
2450 
2451 	/* is a quota refresh about to occur? */
2452 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2453 	if (remaining < min_expire)
2454 		return 1;
2455 
2456 	return 0;
2457 }
2458 
2459 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2460 {
2461 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2462 
2463 	/* if there's a quota refresh soon don't bother with slack */
2464 	if (runtime_refresh_within(cfs_b, min_left))
2465 		return;
2466 
2467 	start_bandwidth_timer(&cfs_b->slack_timer,
2468 				ns_to_ktime(cfs_bandwidth_slack_period));
2469 }
2470 
2471 /* we know any runtime found here is valid as update_curr() precedes return */
2472 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2473 {
2474 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2475 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2476 
2477 	if (slack_runtime <= 0)
2478 		return;
2479 
2480 	raw_spin_lock(&cfs_b->lock);
2481 	if (cfs_b->quota != RUNTIME_INF &&
2482 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2483 		cfs_b->runtime += slack_runtime;
2484 
2485 		/* we are under rq->lock, defer unthrottling using a timer */
2486 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2487 		    !list_empty(&cfs_b->throttled_cfs_rq))
2488 			start_cfs_slack_bandwidth(cfs_b);
2489 	}
2490 	raw_spin_unlock(&cfs_b->lock);
2491 
2492 	/* even if it's not valid for return we don't want to try again */
2493 	cfs_rq->runtime_remaining -= slack_runtime;
2494 }
2495 
2496 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2497 {
2498 	if (!cfs_bandwidth_used())
2499 		return;
2500 
2501 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2502 		return;
2503 
2504 	__return_cfs_rq_runtime(cfs_rq);
2505 }
2506 
2507 /*
2508  * This is done with a timer (instead of inline with bandwidth return) since
2509  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2510  */
2511 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2512 {
2513 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2514 	u64 expires;
2515 
2516 	/* confirm we're still not at a refresh boundary */
2517 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2518 		return;
2519 
2520 	raw_spin_lock(&cfs_b->lock);
2521 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2522 		runtime = cfs_b->runtime;
2523 		cfs_b->runtime = 0;
2524 	}
2525 	expires = cfs_b->runtime_expires;
2526 	raw_spin_unlock(&cfs_b->lock);
2527 
2528 	if (!runtime)
2529 		return;
2530 
2531 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2532 
2533 	raw_spin_lock(&cfs_b->lock);
2534 	if (expires == cfs_b->runtime_expires)
2535 		cfs_b->runtime = runtime;
2536 	raw_spin_unlock(&cfs_b->lock);
2537 }
2538 
2539 /*
2540  * When a group wakes up we want to make sure that its quota is not already
2541  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2542  * runtime as update_curr() throttling can not not trigger until it's on-rq.
2543  */
2544 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2545 {
2546 	if (!cfs_bandwidth_used())
2547 		return;
2548 
2549 	/* an active group must be handled by the update_curr()->put() path */
2550 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2551 		return;
2552 
2553 	/* ensure the group is not already throttled */
2554 	if (cfs_rq_throttled(cfs_rq))
2555 		return;
2556 
2557 	/* update runtime allocation */
2558 	account_cfs_rq_runtime(cfs_rq, 0);
2559 	if (cfs_rq->runtime_remaining <= 0)
2560 		throttle_cfs_rq(cfs_rq);
2561 }
2562 
2563 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2564 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2565 {
2566 	if (!cfs_bandwidth_used())
2567 		return;
2568 
2569 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2570 		return;
2571 
2572 	/*
2573 	 * it's possible for a throttled entity to be forced into a running
2574 	 * state (e.g. set_curr_task), in this case we're finished.
2575 	 */
2576 	if (cfs_rq_throttled(cfs_rq))
2577 		return;
2578 
2579 	throttle_cfs_rq(cfs_rq);
2580 }
2581 
2582 static inline u64 default_cfs_period(void);
2583 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2584 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2585 
2586 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2587 {
2588 	struct cfs_bandwidth *cfs_b =
2589 		container_of(timer, struct cfs_bandwidth, slack_timer);
2590 	do_sched_cfs_slack_timer(cfs_b);
2591 
2592 	return HRTIMER_NORESTART;
2593 }
2594 
2595 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2596 {
2597 	struct cfs_bandwidth *cfs_b =
2598 		container_of(timer, struct cfs_bandwidth, period_timer);
2599 	ktime_t now;
2600 	int overrun;
2601 	int idle = 0;
2602 
2603 	for (;;) {
2604 		now = hrtimer_cb_get_time(timer);
2605 		overrun = hrtimer_forward(timer, now, cfs_b->period);
2606 
2607 		if (!overrun)
2608 			break;
2609 
2610 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
2611 	}
2612 
2613 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2614 }
2615 
2616 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2617 {
2618 	raw_spin_lock_init(&cfs_b->lock);
2619 	cfs_b->runtime = 0;
2620 	cfs_b->quota = RUNTIME_INF;
2621 	cfs_b->period = ns_to_ktime(default_cfs_period());
2622 
2623 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2624 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2625 	cfs_b->period_timer.function = sched_cfs_period_timer;
2626 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2627 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
2628 }
2629 
2630 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2631 {
2632 	cfs_rq->runtime_enabled = 0;
2633 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
2634 }
2635 
2636 /* requires cfs_b->lock, may release to reprogram timer */
2637 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2638 {
2639 	/*
2640 	 * The timer may be active because we're trying to set a new bandwidth
2641 	 * period or because we're racing with the tear-down path
2642 	 * (timer_active==0 becomes visible before the hrtimer call-back
2643 	 * terminates).  In either case we ensure that it's re-programmed
2644 	 */
2645 	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2646 		raw_spin_unlock(&cfs_b->lock);
2647 		/* ensure cfs_b->lock is available while we wait */
2648 		hrtimer_cancel(&cfs_b->period_timer);
2649 
2650 		raw_spin_lock(&cfs_b->lock);
2651 		/* if someone else restarted the timer then we're done */
2652 		if (cfs_b->timer_active)
2653 			return;
2654 	}
2655 
2656 	cfs_b->timer_active = 1;
2657 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2658 }
2659 
2660 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2661 {
2662 	hrtimer_cancel(&cfs_b->period_timer);
2663 	hrtimer_cancel(&cfs_b->slack_timer);
2664 }
2665 
2666 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2667 {
2668 	struct cfs_rq *cfs_rq;
2669 
2670 	for_each_leaf_cfs_rq(rq, cfs_rq) {
2671 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2672 
2673 		if (!cfs_rq->runtime_enabled)
2674 			continue;
2675 
2676 		/*
2677 		 * clock_task is not advancing so we just need to make sure
2678 		 * there's some valid quota amount
2679 		 */
2680 		cfs_rq->runtime_remaining = cfs_b->quota;
2681 		if (cfs_rq_throttled(cfs_rq))
2682 			unthrottle_cfs_rq(cfs_rq);
2683 	}
2684 }
2685 
2686 #else /* CONFIG_CFS_BANDWIDTH */
2687 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2688 {
2689 	return rq_of(cfs_rq)->clock_task;
2690 }
2691 
2692 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2693 				     unsigned long delta_exec) {}
2694 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2695 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2696 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2697 
2698 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2699 {
2700 	return 0;
2701 }
2702 
2703 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2704 {
2705 	return 0;
2706 }
2707 
2708 static inline int throttled_lb_pair(struct task_group *tg,
2709 				    int src_cpu, int dest_cpu)
2710 {
2711 	return 0;
2712 }
2713 
2714 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2715 
2716 #ifdef CONFIG_FAIR_GROUP_SCHED
2717 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2718 #endif
2719 
2720 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2721 {
2722 	return NULL;
2723 }
2724 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2725 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2726 
2727 #endif /* CONFIG_CFS_BANDWIDTH */
2728 
2729 /**************************************************
2730  * CFS operations on tasks:
2731  */
2732 
2733 #ifdef CONFIG_SCHED_HRTICK
2734 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2735 {
2736 	struct sched_entity *se = &p->se;
2737 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2738 
2739 	WARN_ON(task_rq(p) != rq);
2740 
2741 	if (cfs_rq->nr_running > 1) {
2742 		u64 slice = sched_slice(cfs_rq, se);
2743 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2744 		s64 delta = slice - ran;
2745 
2746 		if (delta < 0) {
2747 			if (rq->curr == p)
2748 				resched_task(p);
2749 			return;
2750 		}
2751 
2752 		/*
2753 		 * Don't schedule slices shorter than 10000ns, that just
2754 		 * doesn't make sense. Rely on vruntime for fairness.
2755 		 */
2756 		if (rq->curr != p)
2757 			delta = max_t(s64, 10000LL, delta);
2758 
2759 		hrtick_start(rq, delta);
2760 	}
2761 }
2762 
2763 /*
2764  * called from enqueue/dequeue and updates the hrtick when the
2765  * current task is from our class and nr_running is low enough
2766  * to matter.
2767  */
2768 static void hrtick_update(struct rq *rq)
2769 {
2770 	struct task_struct *curr = rq->curr;
2771 
2772 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2773 		return;
2774 
2775 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2776 		hrtick_start_fair(rq, curr);
2777 }
2778 #else /* !CONFIG_SCHED_HRTICK */
2779 static inline void
2780 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2781 {
2782 }
2783 
2784 static inline void hrtick_update(struct rq *rq)
2785 {
2786 }
2787 #endif
2788 
2789 /*
2790  * The enqueue_task method is called before nr_running is
2791  * increased. Here we update the fair scheduling stats and
2792  * then put the task into the rbtree:
2793  */
2794 static void
2795 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2796 {
2797 	struct cfs_rq *cfs_rq;
2798 	struct sched_entity *se = &p->se;
2799 
2800 	for_each_sched_entity(se) {
2801 		if (se->on_rq)
2802 			break;
2803 		cfs_rq = cfs_rq_of(se);
2804 		enqueue_entity(cfs_rq, se, flags);
2805 
2806 		/*
2807 		 * end evaluation on encountering a throttled cfs_rq
2808 		 *
2809 		 * note: in the case of encountering a throttled cfs_rq we will
2810 		 * post the final h_nr_running increment below.
2811 		*/
2812 		if (cfs_rq_throttled(cfs_rq))
2813 			break;
2814 		cfs_rq->h_nr_running++;
2815 
2816 		flags = ENQUEUE_WAKEUP;
2817 	}
2818 
2819 	for_each_sched_entity(se) {
2820 		cfs_rq = cfs_rq_of(se);
2821 		cfs_rq->h_nr_running++;
2822 
2823 		if (cfs_rq_throttled(cfs_rq))
2824 			break;
2825 
2826 		update_cfs_shares(cfs_rq);
2827 		update_entity_load_avg(se, 1);
2828 	}
2829 
2830 	if (!se) {
2831 		update_rq_runnable_avg(rq, rq->nr_running);
2832 		inc_nr_running(rq);
2833 	}
2834 	hrtick_update(rq);
2835 }
2836 
2837 static void set_next_buddy(struct sched_entity *se);
2838 
2839 /*
2840  * The dequeue_task method is called before nr_running is
2841  * decreased. We remove the task from the rbtree and
2842  * update the fair scheduling stats:
2843  */
2844 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2845 {
2846 	struct cfs_rq *cfs_rq;
2847 	struct sched_entity *se = &p->se;
2848 	int task_sleep = flags & DEQUEUE_SLEEP;
2849 
2850 	for_each_sched_entity(se) {
2851 		cfs_rq = cfs_rq_of(se);
2852 		dequeue_entity(cfs_rq, se, flags);
2853 
2854 		/*
2855 		 * end evaluation on encountering a throttled cfs_rq
2856 		 *
2857 		 * note: in the case of encountering a throttled cfs_rq we will
2858 		 * post the final h_nr_running decrement below.
2859 		*/
2860 		if (cfs_rq_throttled(cfs_rq))
2861 			break;
2862 		cfs_rq->h_nr_running--;
2863 
2864 		/* Don't dequeue parent if it has other entities besides us */
2865 		if (cfs_rq->load.weight) {
2866 			/*
2867 			 * Bias pick_next to pick a task from this cfs_rq, as
2868 			 * p is sleeping when it is within its sched_slice.
2869 			 */
2870 			if (task_sleep && parent_entity(se))
2871 				set_next_buddy(parent_entity(se));
2872 
2873 			/* avoid re-evaluating load for this entity */
2874 			se = parent_entity(se);
2875 			break;
2876 		}
2877 		flags |= DEQUEUE_SLEEP;
2878 	}
2879 
2880 	for_each_sched_entity(se) {
2881 		cfs_rq = cfs_rq_of(se);
2882 		cfs_rq->h_nr_running--;
2883 
2884 		if (cfs_rq_throttled(cfs_rq))
2885 			break;
2886 
2887 		update_cfs_shares(cfs_rq);
2888 		update_entity_load_avg(se, 1);
2889 	}
2890 
2891 	if (!se) {
2892 		dec_nr_running(rq);
2893 		update_rq_runnable_avg(rq, 1);
2894 	}
2895 	hrtick_update(rq);
2896 }
2897 
2898 #ifdef CONFIG_SMP
2899 /* Used instead of source_load when we know the type == 0 */
2900 static unsigned long weighted_cpuload(const int cpu)
2901 {
2902 	return cpu_rq(cpu)->load.weight;
2903 }
2904 
2905 /*
2906  * Return a low guess at the load of a migration-source cpu weighted
2907  * according to the scheduling class and "nice" value.
2908  *
2909  * We want to under-estimate the load of migration sources, to
2910  * balance conservatively.
2911  */
2912 static unsigned long source_load(int cpu, int type)
2913 {
2914 	struct rq *rq = cpu_rq(cpu);
2915 	unsigned long total = weighted_cpuload(cpu);
2916 
2917 	if (type == 0 || !sched_feat(LB_BIAS))
2918 		return total;
2919 
2920 	return min(rq->cpu_load[type-1], total);
2921 }
2922 
2923 /*
2924  * Return a high guess at the load of a migration-target cpu weighted
2925  * according to the scheduling class and "nice" value.
2926  */
2927 static unsigned long target_load(int cpu, int type)
2928 {
2929 	struct rq *rq = cpu_rq(cpu);
2930 	unsigned long total = weighted_cpuload(cpu);
2931 
2932 	if (type == 0 || !sched_feat(LB_BIAS))
2933 		return total;
2934 
2935 	return max(rq->cpu_load[type-1], total);
2936 }
2937 
2938 static unsigned long power_of(int cpu)
2939 {
2940 	return cpu_rq(cpu)->cpu_power;
2941 }
2942 
2943 static unsigned long cpu_avg_load_per_task(int cpu)
2944 {
2945 	struct rq *rq = cpu_rq(cpu);
2946 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2947 
2948 	if (nr_running)
2949 		return rq->load.weight / nr_running;
2950 
2951 	return 0;
2952 }
2953 
2954 
2955 static void task_waking_fair(struct task_struct *p)
2956 {
2957 	struct sched_entity *se = &p->se;
2958 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2959 	u64 min_vruntime;
2960 
2961 #ifndef CONFIG_64BIT
2962 	u64 min_vruntime_copy;
2963 
2964 	do {
2965 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
2966 		smp_rmb();
2967 		min_vruntime = cfs_rq->min_vruntime;
2968 	} while (min_vruntime != min_vruntime_copy);
2969 #else
2970 	min_vruntime = cfs_rq->min_vruntime;
2971 #endif
2972 
2973 	se->vruntime -= min_vruntime;
2974 }
2975 
2976 #ifdef CONFIG_FAIR_GROUP_SCHED
2977 /*
2978  * effective_load() calculates the load change as seen from the root_task_group
2979  *
2980  * Adding load to a group doesn't make a group heavier, but can cause movement
2981  * of group shares between cpus. Assuming the shares were perfectly aligned one
2982  * can calculate the shift in shares.
2983  *
2984  * Calculate the effective load difference if @wl is added (subtracted) to @tg
2985  * on this @cpu and results in a total addition (subtraction) of @wg to the
2986  * total group weight.
2987  *
2988  * Given a runqueue weight distribution (rw_i) we can compute a shares
2989  * distribution (s_i) using:
2990  *
2991  *   s_i = rw_i / \Sum rw_j						(1)
2992  *
2993  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2994  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2995  * shares distribution (s_i):
2996  *
2997  *   rw_i = {   2,   4,   1,   0 }
2998  *   s_i  = { 2/7, 4/7, 1/7,   0 }
2999  *
3000  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3001  * task used to run on and the CPU the waker is running on), we need to
3002  * compute the effect of waking a task on either CPU and, in case of a sync
3003  * wakeup, compute the effect of the current task going to sleep.
3004  *
3005  * So for a change of @wl to the local @cpu with an overall group weight change
3006  * of @wl we can compute the new shares distribution (s'_i) using:
3007  *
3008  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
3009  *
3010  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3011  * differences in waking a task to CPU 0. The additional task changes the
3012  * weight and shares distributions like:
3013  *
3014  *   rw'_i = {   3,   4,   1,   0 }
3015  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
3016  *
3017  * We can then compute the difference in effective weight by using:
3018  *
3019  *   dw_i = S * (s'_i - s_i)						(3)
3020  *
3021  * Where 'S' is the group weight as seen by its parent.
3022  *
3023  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3024  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3025  * 4/7) times the weight of the group.
3026  */
3027 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3028 {
3029 	struct sched_entity *se = tg->se[cpu];
3030 
3031 	if (!tg->parent)	/* the trivial, non-cgroup case */
3032 		return wl;
3033 
3034 	for_each_sched_entity(se) {
3035 		long w, W;
3036 
3037 		tg = se->my_q->tg;
3038 
3039 		/*
3040 		 * W = @wg + \Sum rw_j
3041 		 */
3042 		W = wg + calc_tg_weight(tg, se->my_q);
3043 
3044 		/*
3045 		 * w = rw_i + @wl
3046 		 */
3047 		w = se->my_q->load.weight + wl;
3048 
3049 		/*
3050 		 * wl = S * s'_i; see (2)
3051 		 */
3052 		if (W > 0 && w < W)
3053 			wl = (w * tg->shares) / W;
3054 		else
3055 			wl = tg->shares;
3056 
3057 		/*
3058 		 * Per the above, wl is the new se->load.weight value; since
3059 		 * those are clipped to [MIN_SHARES, ...) do so now. See
3060 		 * calc_cfs_shares().
3061 		 */
3062 		if (wl < MIN_SHARES)
3063 			wl = MIN_SHARES;
3064 
3065 		/*
3066 		 * wl = dw_i = S * (s'_i - s_i); see (3)
3067 		 */
3068 		wl -= se->load.weight;
3069 
3070 		/*
3071 		 * Recursively apply this logic to all parent groups to compute
3072 		 * the final effective load change on the root group. Since
3073 		 * only the @tg group gets extra weight, all parent groups can
3074 		 * only redistribute existing shares. @wl is the shift in shares
3075 		 * resulting from this level per the above.
3076 		 */
3077 		wg = 0;
3078 	}
3079 
3080 	return wl;
3081 }
3082 #else
3083 
3084 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3085 		unsigned long wl, unsigned long wg)
3086 {
3087 	return wl;
3088 }
3089 
3090 #endif
3091 
3092 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3093 {
3094 	s64 this_load, load;
3095 	int idx, this_cpu, prev_cpu;
3096 	unsigned long tl_per_task;
3097 	struct task_group *tg;
3098 	unsigned long weight;
3099 	int balanced;
3100 
3101 	idx	  = sd->wake_idx;
3102 	this_cpu  = smp_processor_id();
3103 	prev_cpu  = task_cpu(p);
3104 	load	  = source_load(prev_cpu, idx);
3105 	this_load = target_load(this_cpu, idx);
3106 
3107 	/*
3108 	 * If sync wakeup then subtract the (maximum possible)
3109 	 * effect of the currently running task from the load
3110 	 * of the current CPU:
3111 	 */
3112 	if (sync) {
3113 		tg = task_group(current);
3114 		weight = current->se.load.weight;
3115 
3116 		this_load += effective_load(tg, this_cpu, -weight, -weight);
3117 		load += effective_load(tg, prev_cpu, 0, -weight);
3118 	}
3119 
3120 	tg = task_group(p);
3121 	weight = p->se.load.weight;
3122 
3123 	/*
3124 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3125 	 * due to the sync cause above having dropped this_load to 0, we'll
3126 	 * always have an imbalance, but there's really nothing you can do
3127 	 * about that, so that's good too.
3128 	 *
3129 	 * Otherwise check if either cpus are near enough in load to allow this
3130 	 * task to be woken on this_cpu.
3131 	 */
3132 	if (this_load > 0) {
3133 		s64 this_eff_load, prev_eff_load;
3134 
3135 		this_eff_load = 100;
3136 		this_eff_load *= power_of(prev_cpu);
3137 		this_eff_load *= this_load +
3138 			effective_load(tg, this_cpu, weight, weight);
3139 
3140 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3141 		prev_eff_load *= power_of(this_cpu);
3142 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3143 
3144 		balanced = this_eff_load <= prev_eff_load;
3145 	} else
3146 		balanced = true;
3147 
3148 	/*
3149 	 * If the currently running task will sleep within
3150 	 * a reasonable amount of time then attract this newly
3151 	 * woken task:
3152 	 */
3153 	if (sync && balanced)
3154 		return 1;
3155 
3156 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3157 	tl_per_task = cpu_avg_load_per_task(this_cpu);
3158 
3159 	if (balanced ||
3160 	    (this_load <= load &&
3161 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3162 		/*
3163 		 * This domain has SD_WAKE_AFFINE and
3164 		 * p is cache cold in this domain, and
3165 		 * there is no bad imbalance.
3166 		 */
3167 		schedstat_inc(sd, ttwu_move_affine);
3168 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
3169 
3170 		return 1;
3171 	}
3172 	return 0;
3173 }
3174 
3175 /*
3176  * find_idlest_group finds and returns the least busy CPU group within the
3177  * domain.
3178  */
3179 static struct sched_group *
3180 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3181 		  int this_cpu, int load_idx)
3182 {
3183 	struct sched_group *idlest = NULL, *group = sd->groups;
3184 	unsigned long min_load = ULONG_MAX, this_load = 0;
3185 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
3186 
3187 	do {
3188 		unsigned long load, avg_load;
3189 		int local_group;
3190 		int i;
3191 
3192 		/* Skip over this group if it has no CPUs allowed */
3193 		if (!cpumask_intersects(sched_group_cpus(group),
3194 					tsk_cpus_allowed(p)))
3195 			continue;
3196 
3197 		local_group = cpumask_test_cpu(this_cpu,
3198 					       sched_group_cpus(group));
3199 
3200 		/* Tally up the load of all CPUs in the group */
3201 		avg_load = 0;
3202 
3203 		for_each_cpu(i, sched_group_cpus(group)) {
3204 			/* Bias balancing toward cpus of our domain */
3205 			if (local_group)
3206 				load = source_load(i, load_idx);
3207 			else
3208 				load = target_load(i, load_idx);
3209 
3210 			avg_load += load;
3211 		}
3212 
3213 		/* Adjust by relative CPU power of the group */
3214 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3215 
3216 		if (local_group) {
3217 			this_load = avg_load;
3218 		} else if (avg_load < min_load) {
3219 			min_load = avg_load;
3220 			idlest = group;
3221 		}
3222 	} while (group = group->next, group != sd->groups);
3223 
3224 	if (!idlest || 100*this_load < imbalance*min_load)
3225 		return NULL;
3226 	return idlest;
3227 }
3228 
3229 /*
3230  * find_idlest_cpu - find the idlest cpu among the cpus in group.
3231  */
3232 static int
3233 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3234 {
3235 	unsigned long load, min_load = ULONG_MAX;
3236 	int idlest = -1;
3237 	int i;
3238 
3239 	/* Traverse only the allowed CPUs */
3240 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3241 		load = weighted_cpuload(i);
3242 
3243 		if (load < min_load || (load == min_load && i == this_cpu)) {
3244 			min_load = load;
3245 			idlest = i;
3246 		}
3247 	}
3248 
3249 	return idlest;
3250 }
3251 
3252 /*
3253  * Try and locate an idle CPU in the sched_domain.
3254  */
3255 static int select_idle_sibling(struct task_struct *p, int target)
3256 {
3257 	int cpu = smp_processor_id();
3258 	int prev_cpu = task_cpu(p);
3259 	struct sched_domain *sd;
3260 	struct sched_group *sg;
3261 	int i;
3262 
3263 	/*
3264 	 * If the task is going to be woken-up on this cpu and if it is
3265 	 * already idle, then it is the right target.
3266 	 */
3267 	if (target == cpu && idle_cpu(cpu))
3268 		return cpu;
3269 
3270 	/*
3271 	 * If the task is going to be woken-up on the cpu where it previously
3272 	 * ran and if it is currently idle, then it the right target.
3273 	 */
3274 	if (target == prev_cpu && idle_cpu(prev_cpu))
3275 		return prev_cpu;
3276 
3277 	/*
3278 	 * Otherwise, iterate the domains and find an elegible idle cpu.
3279 	 */
3280 	sd = rcu_dereference(per_cpu(sd_llc, target));
3281 	for_each_lower_domain(sd) {
3282 		sg = sd->groups;
3283 		do {
3284 			if (!cpumask_intersects(sched_group_cpus(sg),
3285 						tsk_cpus_allowed(p)))
3286 				goto next;
3287 
3288 			for_each_cpu(i, sched_group_cpus(sg)) {
3289 				if (!idle_cpu(i))
3290 					goto next;
3291 			}
3292 
3293 			target = cpumask_first_and(sched_group_cpus(sg),
3294 					tsk_cpus_allowed(p));
3295 			goto done;
3296 next:
3297 			sg = sg->next;
3298 		} while (sg != sd->groups);
3299 	}
3300 done:
3301 	return target;
3302 }
3303 
3304 /*
3305  * sched_balance_self: balance the current task (running on cpu) in domains
3306  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3307  * SD_BALANCE_EXEC.
3308  *
3309  * Balance, ie. select the least loaded group.
3310  *
3311  * Returns the target CPU number, or the same CPU if no balancing is needed.
3312  *
3313  * preempt must be disabled.
3314  */
3315 static int
3316 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3317 {
3318 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3319 	int cpu = smp_processor_id();
3320 	int prev_cpu = task_cpu(p);
3321 	int new_cpu = cpu;
3322 	int want_affine = 0;
3323 	int sync = wake_flags & WF_SYNC;
3324 
3325 	if (p->nr_cpus_allowed == 1)
3326 		return prev_cpu;
3327 
3328 	if (sd_flag & SD_BALANCE_WAKE) {
3329 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3330 			want_affine = 1;
3331 		new_cpu = prev_cpu;
3332 	}
3333 
3334 	rcu_read_lock();
3335 	for_each_domain(cpu, tmp) {
3336 		if (!(tmp->flags & SD_LOAD_BALANCE))
3337 			continue;
3338 
3339 		/*
3340 		 * If both cpu and prev_cpu are part of this domain,
3341 		 * cpu is a valid SD_WAKE_AFFINE target.
3342 		 */
3343 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3344 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3345 			affine_sd = tmp;
3346 			break;
3347 		}
3348 
3349 		if (tmp->flags & sd_flag)
3350 			sd = tmp;
3351 	}
3352 
3353 	if (affine_sd) {
3354 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3355 			prev_cpu = cpu;
3356 
3357 		new_cpu = select_idle_sibling(p, prev_cpu);
3358 		goto unlock;
3359 	}
3360 
3361 	while (sd) {
3362 		int load_idx = sd->forkexec_idx;
3363 		struct sched_group *group;
3364 		int weight;
3365 
3366 		if (!(sd->flags & sd_flag)) {
3367 			sd = sd->child;
3368 			continue;
3369 		}
3370 
3371 		if (sd_flag & SD_BALANCE_WAKE)
3372 			load_idx = sd->wake_idx;
3373 
3374 		group = find_idlest_group(sd, p, cpu, load_idx);
3375 		if (!group) {
3376 			sd = sd->child;
3377 			continue;
3378 		}
3379 
3380 		new_cpu = find_idlest_cpu(group, p, cpu);
3381 		if (new_cpu == -1 || new_cpu == cpu) {
3382 			/* Now try balancing at a lower domain level of cpu */
3383 			sd = sd->child;
3384 			continue;
3385 		}
3386 
3387 		/* Now try balancing at a lower domain level of new_cpu */
3388 		cpu = new_cpu;
3389 		weight = sd->span_weight;
3390 		sd = NULL;
3391 		for_each_domain(cpu, tmp) {
3392 			if (weight <= tmp->span_weight)
3393 				break;
3394 			if (tmp->flags & sd_flag)
3395 				sd = tmp;
3396 		}
3397 		/* while loop will break here if sd == NULL */
3398 	}
3399 unlock:
3400 	rcu_read_unlock();
3401 
3402 	return new_cpu;
3403 }
3404 
3405 /*
3406  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3407  * removed when useful for applications beyond shares distribution (e.g.
3408  * load-balance).
3409  */
3410 #ifdef CONFIG_FAIR_GROUP_SCHED
3411 /*
3412  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3413  * cfs_rq_of(p) references at time of call are still valid and identify the
3414  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
3415  * other assumptions, including the state of rq->lock, should be made.
3416  */
3417 static void
3418 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3419 {
3420 	struct sched_entity *se = &p->se;
3421 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3422 
3423 	/*
3424 	 * Load tracking: accumulate removed load so that it can be processed
3425 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
3426 	 * to blocked load iff they have a positive decay-count.  It can never
3427 	 * be negative here since on-rq tasks have decay-count == 0.
3428 	 */
3429 	if (se->avg.decay_count) {
3430 		se->avg.decay_count = -__synchronize_entity_decay(se);
3431 		atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3432 	}
3433 }
3434 #endif
3435 #endif /* CONFIG_SMP */
3436 
3437 static unsigned long
3438 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3439 {
3440 	unsigned long gran = sysctl_sched_wakeup_granularity;
3441 
3442 	/*
3443 	 * Since its curr running now, convert the gran from real-time
3444 	 * to virtual-time in his units.
3445 	 *
3446 	 * By using 'se' instead of 'curr' we penalize light tasks, so
3447 	 * they get preempted easier. That is, if 'se' < 'curr' then
3448 	 * the resulting gran will be larger, therefore penalizing the
3449 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3450 	 * be smaller, again penalizing the lighter task.
3451 	 *
3452 	 * This is especially important for buddies when the leftmost
3453 	 * task is higher priority than the buddy.
3454 	 */
3455 	return calc_delta_fair(gran, se);
3456 }
3457 
3458 /*
3459  * Should 'se' preempt 'curr'.
3460  *
3461  *             |s1
3462  *        |s2
3463  *   |s3
3464  *         g
3465  *      |<--->|c
3466  *
3467  *  w(c, s1) = -1
3468  *  w(c, s2) =  0
3469  *  w(c, s3) =  1
3470  *
3471  */
3472 static int
3473 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3474 {
3475 	s64 gran, vdiff = curr->vruntime - se->vruntime;
3476 
3477 	if (vdiff <= 0)
3478 		return -1;
3479 
3480 	gran = wakeup_gran(curr, se);
3481 	if (vdiff > gran)
3482 		return 1;
3483 
3484 	return 0;
3485 }
3486 
3487 static void set_last_buddy(struct sched_entity *se)
3488 {
3489 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3490 		return;
3491 
3492 	for_each_sched_entity(se)
3493 		cfs_rq_of(se)->last = se;
3494 }
3495 
3496 static void set_next_buddy(struct sched_entity *se)
3497 {
3498 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3499 		return;
3500 
3501 	for_each_sched_entity(se)
3502 		cfs_rq_of(se)->next = se;
3503 }
3504 
3505 static void set_skip_buddy(struct sched_entity *se)
3506 {
3507 	for_each_sched_entity(se)
3508 		cfs_rq_of(se)->skip = se;
3509 }
3510 
3511 /*
3512  * Preempt the current task with a newly woken task if needed:
3513  */
3514 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3515 {
3516 	struct task_struct *curr = rq->curr;
3517 	struct sched_entity *se = &curr->se, *pse = &p->se;
3518 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3519 	int scale = cfs_rq->nr_running >= sched_nr_latency;
3520 	int next_buddy_marked = 0;
3521 
3522 	if (unlikely(se == pse))
3523 		return;
3524 
3525 	/*
3526 	 * This is possible from callers such as move_task(), in which we
3527 	 * unconditionally check_prempt_curr() after an enqueue (which may have
3528 	 * lead to a throttle).  This both saves work and prevents false
3529 	 * next-buddy nomination below.
3530 	 */
3531 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3532 		return;
3533 
3534 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3535 		set_next_buddy(pse);
3536 		next_buddy_marked = 1;
3537 	}
3538 
3539 	/*
3540 	 * We can come here with TIF_NEED_RESCHED already set from new task
3541 	 * wake up path.
3542 	 *
3543 	 * Note: this also catches the edge-case of curr being in a throttled
3544 	 * group (e.g. via set_curr_task), since update_curr() (in the
3545 	 * enqueue of curr) will have resulted in resched being set.  This
3546 	 * prevents us from potentially nominating it as a false LAST_BUDDY
3547 	 * below.
3548 	 */
3549 	if (test_tsk_need_resched(curr))
3550 		return;
3551 
3552 	/* Idle tasks are by definition preempted by non-idle tasks. */
3553 	if (unlikely(curr->policy == SCHED_IDLE) &&
3554 	    likely(p->policy != SCHED_IDLE))
3555 		goto preempt;
3556 
3557 	/*
3558 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3559 	 * is driven by the tick):
3560 	 */
3561 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3562 		return;
3563 
3564 	find_matching_se(&se, &pse);
3565 	update_curr(cfs_rq_of(se));
3566 	BUG_ON(!pse);
3567 	if (wakeup_preempt_entity(se, pse) == 1) {
3568 		/*
3569 		 * Bias pick_next to pick the sched entity that is
3570 		 * triggering this preemption.
3571 		 */
3572 		if (!next_buddy_marked)
3573 			set_next_buddy(pse);
3574 		goto preempt;
3575 	}
3576 
3577 	return;
3578 
3579 preempt:
3580 	resched_task(curr);
3581 	/*
3582 	 * Only set the backward buddy when the current task is still
3583 	 * on the rq. This can happen when a wakeup gets interleaved
3584 	 * with schedule on the ->pre_schedule() or idle_balance()
3585 	 * point, either of which can * drop the rq lock.
3586 	 *
3587 	 * Also, during early boot the idle thread is in the fair class,
3588 	 * for obvious reasons its a bad idea to schedule back to it.
3589 	 */
3590 	if (unlikely(!se->on_rq || curr == rq->idle))
3591 		return;
3592 
3593 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3594 		set_last_buddy(se);
3595 }
3596 
3597 static struct task_struct *pick_next_task_fair(struct rq *rq)
3598 {
3599 	struct task_struct *p;
3600 	struct cfs_rq *cfs_rq = &rq->cfs;
3601 	struct sched_entity *se;
3602 
3603 	if (!cfs_rq->nr_running)
3604 		return NULL;
3605 
3606 	do {
3607 		se = pick_next_entity(cfs_rq);
3608 		set_next_entity(cfs_rq, se);
3609 		cfs_rq = group_cfs_rq(se);
3610 	} while (cfs_rq);
3611 
3612 	p = task_of(se);
3613 	if (hrtick_enabled(rq))
3614 		hrtick_start_fair(rq, p);
3615 
3616 	return p;
3617 }
3618 
3619 /*
3620  * Account for a descheduled task:
3621  */
3622 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3623 {
3624 	struct sched_entity *se = &prev->se;
3625 	struct cfs_rq *cfs_rq;
3626 
3627 	for_each_sched_entity(se) {
3628 		cfs_rq = cfs_rq_of(se);
3629 		put_prev_entity(cfs_rq, se);
3630 	}
3631 }
3632 
3633 /*
3634  * sched_yield() is very simple
3635  *
3636  * The magic of dealing with the ->skip buddy is in pick_next_entity.
3637  */
3638 static void yield_task_fair(struct rq *rq)
3639 {
3640 	struct task_struct *curr = rq->curr;
3641 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3642 	struct sched_entity *se = &curr->se;
3643 
3644 	/*
3645 	 * Are we the only task in the tree?
3646 	 */
3647 	if (unlikely(rq->nr_running == 1))
3648 		return;
3649 
3650 	clear_buddies(cfs_rq, se);
3651 
3652 	if (curr->policy != SCHED_BATCH) {
3653 		update_rq_clock(rq);
3654 		/*
3655 		 * Update run-time statistics of the 'current'.
3656 		 */
3657 		update_curr(cfs_rq);
3658 		/*
3659 		 * Tell update_rq_clock() that we've just updated,
3660 		 * so we don't do microscopic update in schedule()
3661 		 * and double the fastpath cost.
3662 		 */
3663 		 rq->skip_clock_update = 1;
3664 	}
3665 
3666 	set_skip_buddy(se);
3667 }
3668 
3669 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3670 {
3671 	struct sched_entity *se = &p->se;
3672 
3673 	/* throttled hierarchies are not runnable */
3674 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3675 		return false;
3676 
3677 	/* Tell the scheduler that we'd really like pse to run next. */
3678 	set_next_buddy(se);
3679 
3680 	yield_task_fair(rq);
3681 
3682 	return true;
3683 }
3684 
3685 #ifdef CONFIG_SMP
3686 /**************************************************
3687  * Fair scheduling class load-balancing methods.
3688  *
3689  * BASICS
3690  *
3691  * The purpose of load-balancing is to achieve the same basic fairness the
3692  * per-cpu scheduler provides, namely provide a proportional amount of compute
3693  * time to each task. This is expressed in the following equation:
3694  *
3695  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
3696  *
3697  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3698  * W_i,0 is defined as:
3699  *
3700  *   W_i,0 = \Sum_j w_i,j                                             (2)
3701  *
3702  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3703  * is derived from the nice value as per prio_to_weight[].
3704  *
3705  * The weight average is an exponential decay average of the instantaneous
3706  * weight:
3707  *
3708  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
3709  *
3710  * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3711  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3712  * can also include other factors [XXX].
3713  *
3714  * To achieve this balance we define a measure of imbalance which follows
3715  * directly from (1):
3716  *
3717  *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
3718  *
3719  * We them move tasks around to minimize the imbalance. In the continuous
3720  * function space it is obvious this converges, in the discrete case we get
3721  * a few fun cases generally called infeasible weight scenarios.
3722  *
3723  * [XXX expand on:
3724  *     - infeasible weights;
3725  *     - local vs global optima in the discrete case. ]
3726  *
3727  *
3728  * SCHED DOMAINS
3729  *
3730  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3731  * for all i,j solution, we create a tree of cpus that follows the hardware
3732  * topology where each level pairs two lower groups (or better). This results
3733  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3734  * tree to only the first of the previous level and we decrease the frequency
3735  * of load-balance at each level inv. proportional to the number of cpus in
3736  * the groups.
3737  *
3738  * This yields:
3739  *
3740  *     log_2 n     1     n
3741  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
3742  *     i = 0      2^i   2^i
3743  *                               `- size of each group
3744  *         |         |     `- number of cpus doing load-balance
3745  *         |         `- freq
3746  *         `- sum over all levels
3747  *
3748  * Coupled with a limit on how many tasks we can migrate every balance pass,
3749  * this makes (5) the runtime complexity of the balancer.
3750  *
3751  * An important property here is that each CPU is still (indirectly) connected
3752  * to every other cpu in at most O(log n) steps:
3753  *
3754  * The adjacency matrix of the resulting graph is given by:
3755  *
3756  *             log_2 n
3757  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
3758  *             k = 0
3759  *
3760  * And you'll find that:
3761  *
3762  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
3763  *
3764  * Showing there's indeed a path between every cpu in at most O(log n) steps.
3765  * The task movement gives a factor of O(m), giving a convergence complexity
3766  * of:
3767  *
3768  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
3769  *
3770  *
3771  * WORK CONSERVING
3772  *
3773  * In order to avoid CPUs going idle while there's still work to do, new idle
3774  * balancing is more aggressive and has the newly idle cpu iterate up the domain
3775  * tree itself instead of relying on other CPUs to bring it work.
3776  *
3777  * This adds some complexity to both (5) and (8) but it reduces the total idle
3778  * time.
3779  *
3780  * [XXX more?]
3781  *
3782  *
3783  * CGROUPS
3784  *
3785  * Cgroups make a horror show out of (2), instead of a simple sum we get:
3786  *
3787  *                                s_k,i
3788  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
3789  *                                 S_k
3790  *
3791  * Where
3792  *
3793  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
3794  *
3795  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3796  *
3797  * The big problem is S_k, its a global sum needed to compute a local (W_i)
3798  * property.
3799  *
3800  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3801  *      rewrite all of this once again.]
3802  */
3803 
3804 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3805 
3806 #define LBF_ALL_PINNED	0x01
3807 #define LBF_NEED_BREAK	0x02
3808 #define LBF_SOME_PINNED 0x04
3809 
3810 struct lb_env {
3811 	struct sched_domain	*sd;
3812 
3813 	struct rq		*src_rq;
3814 	int			src_cpu;
3815 
3816 	int			dst_cpu;
3817 	struct rq		*dst_rq;
3818 
3819 	struct cpumask		*dst_grpmask;
3820 	int			new_dst_cpu;
3821 	enum cpu_idle_type	idle;
3822 	long			imbalance;
3823 	/* The set of CPUs under consideration for load-balancing */
3824 	struct cpumask		*cpus;
3825 
3826 	unsigned int		flags;
3827 
3828 	unsigned int		loop;
3829 	unsigned int		loop_break;
3830 	unsigned int		loop_max;
3831 };
3832 
3833 /*
3834  * move_task - move a task from one runqueue to another runqueue.
3835  * Both runqueues must be locked.
3836  */
3837 static void move_task(struct task_struct *p, struct lb_env *env)
3838 {
3839 	deactivate_task(env->src_rq, p, 0);
3840 	set_task_cpu(p, env->dst_cpu);
3841 	activate_task(env->dst_rq, p, 0);
3842 	check_preempt_curr(env->dst_rq, p, 0);
3843 }
3844 
3845 /*
3846  * Is this task likely cache-hot:
3847  */
3848 static int
3849 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3850 {
3851 	s64 delta;
3852 
3853 	if (p->sched_class != &fair_sched_class)
3854 		return 0;
3855 
3856 	if (unlikely(p->policy == SCHED_IDLE))
3857 		return 0;
3858 
3859 	/*
3860 	 * Buddy candidates are cache hot:
3861 	 */
3862 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3863 			(&p->se == cfs_rq_of(&p->se)->next ||
3864 			 &p->se == cfs_rq_of(&p->se)->last))
3865 		return 1;
3866 
3867 	if (sysctl_sched_migration_cost == -1)
3868 		return 1;
3869 	if (sysctl_sched_migration_cost == 0)
3870 		return 0;
3871 
3872 	delta = now - p->se.exec_start;
3873 
3874 	return delta < (s64)sysctl_sched_migration_cost;
3875 }
3876 
3877 /*
3878  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3879  */
3880 static
3881 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3882 {
3883 	int tsk_cache_hot = 0;
3884 	/*
3885 	 * We do not migrate tasks that are:
3886 	 * 1) running (obviously), or
3887 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3888 	 * 3) are cache-hot on their current CPU.
3889 	 */
3890 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3891 		int new_dst_cpu;
3892 
3893 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3894 
3895 		/*
3896 		 * Remember if this task can be migrated to any other cpu in
3897 		 * our sched_group. We may want to revisit it if we couldn't
3898 		 * meet load balance goals by pulling other tasks on src_cpu.
3899 		 *
3900 		 * Also avoid computing new_dst_cpu if we have already computed
3901 		 * one in current iteration.
3902 		 */
3903 		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3904 			return 0;
3905 
3906 		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3907 						tsk_cpus_allowed(p));
3908 		if (new_dst_cpu < nr_cpu_ids) {
3909 			env->flags |= LBF_SOME_PINNED;
3910 			env->new_dst_cpu = new_dst_cpu;
3911 		}
3912 		return 0;
3913 	}
3914 
3915 	/* Record that we found atleast one task that could run on dst_cpu */
3916 	env->flags &= ~LBF_ALL_PINNED;
3917 
3918 	if (task_running(env->src_rq, p)) {
3919 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3920 		return 0;
3921 	}
3922 
3923 	/*
3924 	 * Aggressive migration if:
3925 	 * 1) task is cache cold, or
3926 	 * 2) too many balance attempts have failed.
3927 	 */
3928 
3929 	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3930 	if (!tsk_cache_hot ||
3931 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3932 #ifdef CONFIG_SCHEDSTATS
3933 		if (tsk_cache_hot) {
3934 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3935 			schedstat_inc(p, se.statistics.nr_forced_migrations);
3936 		}
3937 #endif
3938 		return 1;
3939 	}
3940 
3941 	if (tsk_cache_hot) {
3942 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3943 		return 0;
3944 	}
3945 	return 1;
3946 }
3947 
3948 /*
3949  * move_one_task tries to move exactly one task from busiest to this_rq, as
3950  * part of active balancing operations within "domain".
3951  * Returns 1 if successful and 0 otherwise.
3952  *
3953  * Called with both runqueues locked.
3954  */
3955 static int move_one_task(struct lb_env *env)
3956 {
3957 	struct task_struct *p, *n;
3958 
3959 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3960 		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3961 			continue;
3962 
3963 		if (!can_migrate_task(p, env))
3964 			continue;
3965 
3966 		move_task(p, env);
3967 		/*
3968 		 * Right now, this is only the second place move_task()
3969 		 * is called, so we can safely collect move_task()
3970 		 * stats here rather than inside move_task().
3971 		 */
3972 		schedstat_inc(env->sd, lb_gained[env->idle]);
3973 		return 1;
3974 	}
3975 	return 0;
3976 }
3977 
3978 static unsigned long task_h_load(struct task_struct *p);
3979 
3980 static const unsigned int sched_nr_migrate_break = 32;
3981 
3982 /*
3983  * move_tasks tries to move up to imbalance weighted load from busiest to
3984  * this_rq, as part of a balancing operation within domain "sd".
3985  * Returns 1 if successful and 0 otherwise.
3986  *
3987  * Called with both runqueues locked.
3988  */
3989 static int move_tasks(struct lb_env *env)
3990 {
3991 	struct list_head *tasks = &env->src_rq->cfs_tasks;
3992 	struct task_struct *p;
3993 	unsigned long load;
3994 	int pulled = 0;
3995 
3996 	if (env->imbalance <= 0)
3997 		return 0;
3998 
3999 	while (!list_empty(tasks)) {
4000 		p = list_first_entry(tasks, struct task_struct, se.group_node);
4001 
4002 		env->loop++;
4003 		/* We've more or less seen every task there is, call it quits */
4004 		if (env->loop > env->loop_max)
4005 			break;
4006 
4007 		/* take a breather every nr_migrate tasks */
4008 		if (env->loop > env->loop_break) {
4009 			env->loop_break += sched_nr_migrate_break;
4010 			env->flags |= LBF_NEED_BREAK;
4011 			break;
4012 		}
4013 
4014 		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4015 			goto next;
4016 
4017 		load = task_h_load(p);
4018 
4019 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4020 			goto next;
4021 
4022 		if ((load / 2) > env->imbalance)
4023 			goto next;
4024 
4025 		if (!can_migrate_task(p, env))
4026 			goto next;
4027 
4028 		move_task(p, env);
4029 		pulled++;
4030 		env->imbalance -= load;
4031 
4032 #ifdef CONFIG_PREEMPT
4033 		/*
4034 		 * NEWIDLE balancing is a source of latency, so preemptible
4035 		 * kernels will stop after the first task is pulled to minimize
4036 		 * the critical section.
4037 		 */
4038 		if (env->idle == CPU_NEWLY_IDLE)
4039 			break;
4040 #endif
4041 
4042 		/*
4043 		 * We only want to steal up to the prescribed amount of
4044 		 * weighted load.
4045 		 */
4046 		if (env->imbalance <= 0)
4047 			break;
4048 
4049 		continue;
4050 next:
4051 		list_move_tail(&p->se.group_node, tasks);
4052 	}
4053 
4054 	/*
4055 	 * Right now, this is one of only two places move_task() is called,
4056 	 * so we can safely collect move_task() stats here rather than
4057 	 * inside move_task().
4058 	 */
4059 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
4060 
4061 	return pulled;
4062 }
4063 
4064 #ifdef CONFIG_FAIR_GROUP_SCHED
4065 /*
4066  * update tg->load_weight by folding this cpu's load_avg
4067  */
4068 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4069 {
4070 	struct sched_entity *se = tg->se[cpu];
4071 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4072 
4073 	/* throttled entities do not contribute to load */
4074 	if (throttled_hierarchy(cfs_rq))
4075 		return;
4076 
4077 	update_cfs_rq_blocked_load(cfs_rq, 1);
4078 
4079 	if (se) {
4080 		update_entity_load_avg(se, 1);
4081 		/*
4082 		 * We pivot on our runnable average having decayed to zero for
4083 		 * list removal.  This generally implies that all our children
4084 		 * have also been removed (modulo rounding error or bandwidth
4085 		 * control); however, such cases are rare and we can fix these
4086 		 * at enqueue.
4087 		 *
4088 		 * TODO: fix up out-of-order children on enqueue.
4089 		 */
4090 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4091 			list_del_leaf_cfs_rq(cfs_rq);
4092 	} else {
4093 		struct rq *rq = rq_of(cfs_rq);
4094 		update_rq_runnable_avg(rq, rq->nr_running);
4095 	}
4096 }
4097 
4098 static void update_blocked_averages(int cpu)
4099 {
4100 	struct rq *rq = cpu_rq(cpu);
4101 	struct cfs_rq *cfs_rq;
4102 	unsigned long flags;
4103 
4104 	raw_spin_lock_irqsave(&rq->lock, flags);
4105 	update_rq_clock(rq);
4106 	/*
4107 	 * Iterates the task_group tree in a bottom up fashion, see
4108 	 * list_add_leaf_cfs_rq() for details.
4109 	 */
4110 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4111 		/*
4112 		 * Note: We may want to consider periodically releasing
4113 		 * rq->lock about these updates so that creating many task
4114 		 * groups does not result in continually extending hold time.
4115 		 */
4116 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4117 	}
4118 
4119 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4120 }
4121 
4122 /*
4123  * Compute the cpu's hierarchical load factor for each task group.
4124  * This needs to be done in a top-down fashion because the load of a child
4125  * group is a fraction of its parents load.
4126  */
4127 static int tg_load_down(struct task_group *tg, void *data)
4128 {
4129 	unsigned long load;
4130 	long cpu = (long)data;
4131 
4132 	if (!tg->parent) {
4133 		load = cpu_rq(cpu)->load.weight;
4134 	} else {
4135 		load = tg->parent->cfs_rq[cpu]->h_load;
4136 		load *= tg->se[cpu]->load.weight;
4137 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4138 	}
4139 
4140 	tg->cfs_rq[cpu]->h_load = load;
4141 
4142 	return 0;
4143 }
4144 
4145 static void update_h_load(long cpu)
4146 {
4147 	struct rq *rq = cpu_rq(cpu);
4148 	unsigned long now = jiffies;
4149 
4150 	if (rq->h_load_throttle == now)
4151 		return;
4152 
4153 	rq->h_load_throttle = now;
4154 
4155 	rcu_read_lock();
4156 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4157 	rcu_read_unlock();
4158 }
4159 
4160 static unsigned long task_h_load(struct task_struct *p)
4161 {
4162 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
4163 	unsigned long load;
4164 
4165 	load = p->se.load.weight;
4166 	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4167 
4168 	return load;
4169 }
4170 #else
4171 static inline void update_blocked_averages(int cpu)
4172 {
4173 }
4174 
4175 static inline void update_h_load(long cpu)
4176 {
4177 }
4178 
4179 static unsigned long task_h_load(struct task_struct *p)
4180 {
4181 	return p->se.load.weight;
4182 }
4183 #endif
4184 
4185 /********** Helpers for find_busiest_group ************************/
4186 /*
4187  * sd_lb_stats - Structure to store the statistics of a sched_domain
4188  * 		during load balancing.
4189  */
4190 struct sd_lb_stats {
4191 	struct sched_group *busiest; /* Busiest group in this sd */
4192 	struct sched_group *this;  /* Local group in this sd */
4193 	unsigned long total_load;  /* Total load of all groups in sd */
4194 	unsigned long total_pwr;   /*	Total power of all groups in sd */
4195 	unsigned long avg_load;	   /* Average load across all groups in sd */
4196 
4197 	/** Statistics of this group */
4198 	unsigned long this_load;
4199 	unsigned long this_load_per_task;
4200 	unsigned long this_nr_running;
4201 	unsigned long this_has_capacity;
4202 	unsigned int  this_idle_cpus;
4203 
4204 	/* Statistics of the busiest group */
4205 	unsigned int  busiest_idle_cpus;
4206 	unsigned long max_load;
4207 	unsigned long busiest_load_per_task;
4208 	unsigned long busiest_nr_running;
4209 	unsigned long busiest_group_capacity;
4210 	unsigned long busiest_has_capacity;
4211 	unsigned int  busiest_group_weight;
4212 
4213 	int group_imb; /* Is there imbalance in this sd */
4214 };
4215 
4216 /*
4217  * sg_lb_stats - stats of a sched_group required for load_balancing
4218  */
4219 struct sg_lb_stats {
4220 	unsigned long avg_load; /*Avg load across the CPUs of the group */
4221 	unsigned long group_load; /* Total load over the CPUs of the group */
4222 	unsigned long sum_nr_running; /* Nr tasks running in the group */
4223 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4224 	unsigned long group_capacity;
4225 	unsigned long idle_cpus;
4226 	unsigned long group_weight;
4227 	int group_imb; /* Is there an imbalance in the group ? */
4228 	int group_has_capacity; /* Is there extra capacity in the group? */
4229 };
4230 
4231 /**
4232  * get_sd_load_idx - Obtain the load index for a given sched domain.
4233  * @sd: The sched_domain whose load_idx is to be obtained.
4234  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4235  */
4236 static inline int get_sd_load_idx(struct sched_domain *sd,
4237 					enum cpu_idle_type idle)
4238 {
4239 	int load_idx;
4240 
4241 	switch (idle) {
4242 	case CPU_NOT_IDLE:
4243 		load_idx = sd->busy_idx;
4244 		break;
4245 
4246 	case CPU_NEWLY_IDLE:
4247 		load_idx = sd->newidle_idx;
4248 		break;
4249 	default:
4250 		load_idx = sd->idle_idx;
4251 		break;
4252 	}
4253 
4254 	return load_idx;
4255 }
4256 
4257 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4258 {
4259 	return SCHED_POWER_SCALE;
4260 }
4261 
4262 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4263 {
4264 	return default_scale_freq_power(sd, cpu);
4265 }
4266 
4267 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4268 {
4269 	unsigned long weight = sd->span_weight;
4270 	unsigned long smt_gain = sd->smt_gain;
4271 
4272 	smt_gain /= weight;
4273 
4274 	return smt_gain;
4275 }
4276 
4277 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4278 {
4279 	return default_scale_smt_power(sd, cpu);
4280 }
4281 
4282 unsigned long scale_rt_power(int cpu)
4283 {
4284 	struct rq *rq = cpu_rq(cpu);
4285 	u64 total, available, age_stamp, avg;
4286 
4287 	/*
4288 	 * Since we're reading these variables without serialization make sure
4289 	 * we read them once before doing sanity checks on them.
4290 	 */
4291 	age_stamp = ACCESS_ONCE(rq->age_stamp);
4292 	avg = ACCESS_ONCE(rq->rt_avg);
4293 
4294 	total = sched_avg_period() + (rq->clock - age_stamp);
4295 
4296 	if (unlikely(total < avg)) {
4297 		/* Ensures that power won't end up being negative */
4298 		available = 0;
4299 	} else {
4300 		available = total - avg;
4301 	}
4302 
4303 	if (unlikely((s64)total < SCHED_POWER_SCALE))
4304 		total = SCHED_POWER_SCALE;
4305 
4306 	total >>= SCHED_POWER_SHIFT;
4307 
4308 	return div_u64(available, total);
4309 }
4310 
4311 static void update_cpu_power(struct sched_domain *sd, int cpu)
4312 {
4313 	unsigned long weight = sd->span_weight;
4314 	unsigned long power = SCHED_POWER_SCALE;
4315 	struct sched_group *sdg = sd->groups;
4316 
4317 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4318 		if (sched_feat(ARCH_POWER))
4319 			power *= arch_scale_smt_power(sd, cpu);
4320 		else
4321 			power *= default_scale_smt_power(sd, cpu);
4322 
4323 		power >>= SCHED_POWER_SHIFT;
4324 	}
4325 
4326 	sdg->sgp->power_orig = power;
4327 
4328 	if (sched_feat(ARCH_POWER))
4329 		power *= arch_scale_freq_power(sd, cpu);
4330 	else
4331 		power *= default_scale_freq_power(sd, cpu);
4332 
4333 	power >>= SCHED_POWER_SHIFT;
4334 
4335 	power *= scale_rt_power(cpu);
4336 	power >>= SCHED_POWER_SHIFT;
4337 
4338 	if (!power)
4339 		power = 1;
4340 
4341 	cpu_rq(cpu)->cpu_power = power;
4342 	sdg->sgp->power = power;
4343 }
4344 
4345 void update_group_power(struct sched_domain *sd, int cpu)
4346 {
4347 	struct sched_domain *child = sd->child;
4348 	struct sched_group *group, *sdg = sd->groups;
4349 	unsigned long power;
4350 	unsigned long interval;
4351 
4352 	interval = msecs_to_jiffies(sd->balance_interval);
4353 	interval = clamp(interval, 1UL, max_load_balance_interval);
4354 	sdg->sgp->next_update = jiffies + interval;
4355 
4356 	if (!child) {
4357 		update_cpu_power(sd, cpu);
4358 		return;
4359 	}
4360 
4361 	power = 0;
4362 
4363 	if (child->flags & SD_OVERLAP) {
4364 		/*
4365 		 * SD_OVERLAP domains cannot assume that child groups
4366 		 * span the current group.
4367 		 */
4368 
4369 		for_each_cpu(cpu, sched_group_cpus(sdg))
4370 			power += power_of(cpu);
4371 	} else  {
4372 		/*
4373 		 * !SD_OVERLAP domains can assume that child groups
4374 		 * span the current group.
4375 		 */
4376 
4377 		group = child->groups;
4378 		do {
4379 			power += group->sgp->power;
4380 			group = group->next;
4381 		} while (group != child->groups);
4382 	}
4383 
4384 	sdg->sgp->power_orig = sdg->sgp->power = power;
4385 }
4386 
4387 /*
4388  * Try and fix up capacity for tiny siblings, this is needed when
4389  * things like SD_ASYM_PACKING need f_b_g to select another sibling
4390  * which on its own isn't powerful enough.
4391  *
4392  * See update_sd_pick_busiest() and check_asym_packing().
4393  */
4394 static inline int
4395 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4396 {
4397 	/*
4398 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
4399 	 */
4400 	if (!(sd->flags & SD_SHARE_CPUPOWER))
4401 		return 0;
4402 
4403 	/*
4404 	 * If ~90% of the cpu_power is still there, we're good.
4405 	 */
4406 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4407 		return 1;
4408 
4409 	return 0;
4410 }
4411 
4412 /**
4413  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4414  * @env: The load balancing environment.
4415  * @group: sched_group whose statistics are to be updated.
4416  * @load_idx: Load index of sched_domain of this_cpu for load calc.
4417  * @local_group: Does group contain this_cpu.
4418  * @balance: Should we balance.
4419  * @sgs: variable to hold the statistics for this group.
4420  */
4421 static inline void update_sg_lb_stats(struct lb_env *env,
4422 			struct sched_group *group, int load_idx,
4423 			int local_group, int *balance, struct sg_lb_stats *sgs)
4424 {
4425 	unsigned long nr_running, max_nr_running, min_nr_running;
4426 	unsigned long load, max_cpu_load, min_cpu_load;
4427 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
4428 	unsigned long avg_load_per_task = 0;
4429 	int i;
4430 
4431 	if (local_group)
4432 		balance_cpu = group_balance_cpu(group);
4433 
4434 	/* Tally up the load of all CPUs in the group */
4435 	max_cpu_load = 0;
4436 	min_cpu_load = ~0UL;
4437 	max_nr_running = 0;
4438 	min_nr_running = ~0UL;
4439 
4440 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4441 		struct rq *rq = cpu_rq(i);
4442 
4443 		nr_running = rq->nr_running;
4444 
4445 		/* Bias balancing toward cpus of our domain */
4446 		if (local_group) {
4447 			if (idle_cpu(i) && !first_idle_cpu &&
4448 					cpumask_test_cpu(i, sched_group_mask(group))) {
4449 				first_idle_cpu = 1;
4450 				balance_cpu = i;
4451 			}
4452 
4453 			load = target_load(i, load_idx);
4454 		} else {
4455 			load = source_load(i, load_idx);
4456 			if (load > max_cpu_load)
4457 				max_cpu_load = load;
4458 			if (min_cpu_load > load)
4459 				min_cpu_load = load;
4460 
4461 			if (nr_running > max_nr_running)
4462 				max_nr_running = nr_running;
4463 			if (min_nr_running > nr_running)
4464 				min_nr_running = nr_running;
4465 		}
4466 
4467 		sgs->group_load += load;
4468 		sgs->sum_nr_running += nr_running;
4469 		sgs->sum_weighted_load += weighted_cpuload(i);
4470 		if (idle_cpu(i))
4471 			sgs->idle_cpus++;
4472 	}
4473 
4474 	/*
4475 	 * First idle cpu or the first cpu(busiest) in this sched group
4476 	 * is eligible for doing load balancing at this and above
4477 	 * domains. In the newly idle case, we will allow all the cpu's
4478 	 * to do the newly idle load balance.
4479 	 */
4480 	if (local_group) {
4481 		if (env->idle != CPU_NEWLY_IDLE) {
4482 			if (balance_cpu != env->dst_cpu) {
4483 				*balance = 0;
4484 				return;
4485 			}
4486 			update_group_power(env->sd, env->dst_cpu);
4487 		} else if (time_after_eq(jiffies, group->sgp->next_update))
4488 			update_group_power(env->sd, env->dst_cpu);
4489 	}
4490 
4491 	/* Adjust by relative CPU power of the group */
4492 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4493 
4494 	/*
4495 	 * Consider the group unbalanced when the imbalance is larger
4496 	 * than the average weight of a task.
4497 	 *
4498 	 * APZ: with cgroup the avg task weight can vary wildly and
4499 	 *      might not be a suitable number - should we keep a
4500 	 *      normalized nr_running number somewhere that negates
4501 	 *      the hierarchy?
4502 	 */
4503 	if (sgs->sum_nr_running)
4504 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4505 
4506 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4507 	    (max_nr_running - min_nr_running) > 1)
4508 		sgs->group_imb = 1;
4509 
4510 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4511 						SCHED_POWER_SCALE);
4512 	if (!sgs->group_capacity)
4513 		sgs->group_capacity = fix_small_capacity(env->sd, group);
4514 	sgs->group_weight = group->group_weight;
4515 
4516 	if (sgs->group_capacity > sgs->sum_nr_running)
4517 		sgs->group_has_capacity = 1;
4518 }
4519 
4520 /**
4521  * update_sd_pick_busiest - return 1 on busiest group
4522  * @env: The load balancing environment.
4523  * @sds: sched_domain statistics
4524  * @sg: sched_group candidate to be checked for being the busiest
4525  * @sgs: sched_group statistics
4526  *
4527  * Determine if @sg is a busier group than the previously selected
4528  * busiest group.
4529  */
4530 static bool update_sd_pick_busiest(struct lb_env *env,
4531 				   struct sd_lb_stats *sds,
4532 				   struct sched_group *sg,
4533 				   struct sg_lb_stats *sgs)
4534 {
4535 	if (sgs->avg_load <= sds->max_load)
4536 		return false;
4537 
4538 	if (sgs->sum_nr_running > sgs->group_capacity)
4539 		return true;
4540 
4541 	if (sgs->group_imb)
4542 		return true;
4543 
4544 	/*
4545 	 * ASYM_PACKING needs to move all the work to the lowest
4546 	 * numbered CPUs in the group, therefore mark all groups
4547 	 * higher than ourself as busy.
4548 	 */
4549 	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4550 	    env->dst_cpu < group_first_cpu(sg)) {
4551 		if (!sds->busiest)
4552 			return true;
4553 
4554 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4555 			return true;
4556 	}
4557 
4558 	return false;
4559 }
4560 
4561 /**
4562  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4563  * @env: The load balancing environment.
4564  * @balance: Should we balance.
4565  * @sds: variable to hold the statistics for this sched_domain.
4566  */
4567 static inline void update_sd_lb_stats(struct lb_env *env,
4568 					int *balance, struct sd_lb_stats *sds)
4569 {
4570 	struct sched_domain *child = env->sd->child;
4571 	struct sched_group *sg = env->sd->groups;
4572 	struct sg_lb_stats sgs;
4573 	int load_idx, prefer_sibling = 0;
4574 
4575 	if (child && child->flags & SD_PREFER_SIBLING)
4576 		prefer_sibling = 1;
4577 
4578 	load_idx = get_sd_load_idx(env->sd, env->idle);
4579 
4580 	do {
4581 		int local_group;
4582 
4583 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4584 		memset(&sgs, 0, sizeof(sgs));
4585 		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4586 
4587 		if (local_group && !(*balance))
4588 			return;
4589 
4590 		sds->total_load += sgs.group_load;
4591 		sds->total_pwr += sg->sgp->power;
4592 
4593 		/*
4594 		 * In case the child domain prefers tasks go to siblings
4595 		 * first, lower the sg capacity to one so that we'll try
4596 		 * and move all the excess tasks away. We lower the capacity
4597 		 * of a group only if the local group has the capacity to fit
4598 		 * these excess tasks, i.e. nr_running < group_capacity. The
4599 		 * extra check prevents the case where you always pull from the
4600 		 * heaviest group when it is already under-utilized (possible
4601 		 * with a large weight task outweighs the tasks on the system).
4602 		 */
4603 		if (prefer_sibling && !local_group && sds->this_has_capacity)
4604 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
4605 
4606 		if (local_group) {
4607 			sds->this_load = sgs.avg_load;
4608 			sds->this = sg;
4609 			sds->this_nr_running = sgs.sum_nr_running;
4610 			sds->this_load_per_task = sgs.sum_weighted_load;
4611 			sds->this_has_capacity = sgs.group_has_capacity;
4612 			sds->this_idle_cpus = sgs.idle_cpus;
4613 		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4614 			sds->max_load = sgs.avg_load;
4615 			sds->busiest = sg;
4616 			sds->busiest_nr_running = sgs.sum_nr_running;
4617 			sds->busiest_idle_cpus = sgs.idle_cpus;
4618 			sds->busiest_group_capacity = sgs.group_capacity;
4619 			sds->busiest_load_per_task = sgs.sum_weighted_load;
4620 			sds->busiest_has_capacity = sgs.group_has_capacity;
4621 			sds->busiest_group_weight = sgs.group_weight;
4622 			sds->group_imb = sgs.group_imb;
4623 		}
4624 
4625 		sg = sg->next;
4626 	} while (sg != env->sd->groups);
4627 }
4628 
4629 /**
4630  * check_asym_packing - Check to see if the group is packed into the
4631  *			sched doman.
4632  *
4633  * This is primarily intended to used at the sibling level.  Some
4634  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
4635  * case of POWER7, it can move to lower SMT modes only when higher
4636  * threads are idle.  When in lower SMT modes, the threads will
4637  * perform better since they share less core resources.  Hence when we
4638  * have idle threads, we want them to be the higher ones.
4639  *
4640  * This packing function is run on idle threads.  It checks to see if
4641  * the busiest CPU in this domain (core in the P7 case) has a higher
4642  * CPU number than the packing function is being run on.  Here we are
4643  * assuming lower CPU number will be equivalent to lower a SMT thread
4644  * number.
4645  *
4646  * Returns 1 when packing is required and a task should be moved to
4647  * this CPU.  The amount of the imbalance is returned in *imbalance.
4648  *
4649  * @env: The load balancing environment.
4650  * @sds: Statistics of the sched_domain which is to be packed
4651  */
4652 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4653 {
4654 	int busiest_cpu;
4655 
4656 	if (!(env->sd->flags & SD_ASYM_PACKING))
4657 		return 0;
4658 
4659 	if (!sds->busiest)
4660 		return 0;
4661 
4662 	busiest_cpu = group_first_cpu(sds->busiest);
4663 	if (env->dst_cpu > busiest_cpu)
4664 		return 0;
4665 
4666 	env->imbalance = DIV_ROUND_CLOSEST(
4667 		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4668 
4669 	return 1;
4670 }
4671 
4672 /**
4673  * fix_small_imbalance - Calculate the minor imbalance that exists
4674  *			amongst the groups of a sched_domain, during
4675  *			load balancing.
4676  * @env: The load balancing environment.
4677  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4678  */
4679 static inline
4680 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4681 {
4682 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
4683 	unsigned int imbn = 2;
4684 	unsigned long scaled_busy_load_per_task;
4685 
4686 	if (sds->this_nr_running) {
4687 		sds->this_load_per_task /= sds->this_nr_running;
4688 		if (sds->busiest_load_per_task >
4689 				sds->this_load_per_task)
4690 			imbn = 1;
4691 	} else {
4692 		sds->this_load_per_task =
4693 			cpu_avg_load_per_task(env->dst_cpu);
4694 	}
4695 
4696 	scaled_busy_load_per_task = sds->busiest_load_per_task
4697 					 * SCHED_POWER_SCALE;
4698 	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4699 
4700 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4701 			(scaled_busy_load_per_task * imbn)) {
4702 		env->imbalance = sds->busiest_load_per_task;
4703 		return;
4704 	}
4705 
4706 	/*
4707 	 * OK, we don't have enough imbalance to justify moving tasks,
4708 	 * however we may be able to increase total CPU power used by
4709 	 * moving them.
4710 	 */
4711 
4712 	pwr_now += sds->busiest->sgp->power *
4713 			min(sds->busiest_load_per_task, sds->max_load);
4714 	pwr_now += sds->this->sgp->power *
4715 			min(sds->this_load_per_task, sds->this_load);
4716 	pwr_now /= SCHED_POWER_SCALE;
4717 
4718 	/* Amount of load we'd subtract */
4719 	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4720 		sds->busiest->sgp->power;
4721 	if (sds->max_load > tmp)
4722 		pwr_move += sds->busiest->sgp->power *
4723 			min(sds->busiest_load_per_task, sds->max_load - tmp);
4724 
4725 	/* Amount of load we'd add */
4726 	if (sds->max_load * sds->busiest->sgp->power <
4727 		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4728 		tmp = (sds->max_load * sds->busiest->sgp->power) /
4729 			sds->this->sgp->power;
4730 	else
4731 		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4732 			sds->this->sgp->power;
4733 	pwr_move += sds->this->sgp->power *
4734 			min(sds->this_load_per_task, sds->this_load + tmp);
4735 	pwr_move /= SCHED_POWER_SCALE;
4736 
4737 	/* Move if we gain throughput */
4738 	if (pwr_move > pwr_now)
4739 		env->imbalance = sds->busiest_load_per_task;
4740 }
4741 
4742 /**
4743  * calculate_imbalance - Calculate the amount of imbalance present within the
4744  *			 groups of a given sched_domain during load balance.
4745  * @env: load balance environment
4746  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4747  */
4748 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4749 {
4750 	unsigned long max_pull, load_above_capacity = ~0UL;
4751 
4752 	sds->busiest_load_per_task /= sds->busiest_nr_running;
4753 	if (sds->group_imb) {
4754 		sds->busiest_load_per_task =
4755 			min(sds->busiest_load_per_task, sds->avg_load);
4756 	}
4757 
4758 	/*
4759 	 * In the presence of smp nice balancing, certain scenarios can have
4760 	 * max load less than avg load(as we skip the groups at or below
4761 	 * its cpu_power, while calculating max_load..)
4762 	 */
4763 	if (sds->max_load < sds->avg_load) {
4764 		env->imbalance = 0;
4765 		return fix_small_imbalance(env, sds);
4766 	}
4767 
4768 	if (!sds->group_imb) {
4769 		/*
4770 		 * Don't want to pull so many tasks that a group would go idle.
4771 		 */
4772 		load_above_capacity = (sds->busiest_nr_running -
4773 						sds->busiest_group_capacity);
4774 
4775 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4776 
4777 		load_above_capacity /= sds->busiest->sgp->power;
4778 	}
4779 
4780 	/*
4781 	 * We're trying to get all the cpus to the average_load, so we don't
4782 	 * want to push ourselves above the average load, nor do we wish to
4783 	 * reduce the max loaded cpu below the average load. At the same time,
4784 	 * we also don't want to reduce the group load below the group capacity
4785 	 * (so that we can implement power-savings policies etc). Thus we look
4786 	 * for the minimum possible imbalance.
4787 	 * Be careful of negative numbers as they'll appear as very large values
4788 	 * with unsigned longs.
4789 	 */
4790 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4791 
4792 	/* How much load to actually move to equalise the imbalance */
4793 	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4794 		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4795 			/ SCHED_POWER_SCALE;
4796 
4797 	/*
4798 	 * if *imbalance is less than the average load per runnable task
4799 	 * there is no guarantee that any tasks will be moved so we'll have
4800 	 * a think about bumping its value to force at least one task to be
4801 	 * moved
4802 	 */
4803 	if (env->imbalance < sds->busiest_load_per_task)
4804 		return fix_small_imbalance(env, sds);
4805 
4806 }
4807 
4808 /******* find_busiest_group() helpers end here *********************/
4809 
4810 /**
4811  * find_busiest_group - Returns the busiest group within the sched_domain
4812  * if there is an imbalance. If there isn't an imbalance, and
4813  * the user has opted for power-savings, it returns a group whose
4814  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4815  * such a group exists.
4816  *
4817  * Also calculates the amount of weighted load which should be moved
4818  * to restore balance.
4819  *
4820  * @env: The load balancing environment.
4821  * @balance: Pointer to a variable indicating if this_cpu
4822  *	is the appropriate cpu to perform load balancing at this_level.
4823  *
4824  * Returns:	- the busiest group if imbalance exists.
4825  *		- If no imbalance and user has opted for power-savings balance,
4826  *		   return the least loaded group whose CPUs can be
4827  *		   put to idle by rebalancing its tasks onto our group.
4828  */
4829 static struct sched_group *
4830 find_busiest_group(struct lb_env *env, int *balance)
4831 {
4832 	struct sd_lb_stats sds;
4833 
4834 	memset(&sds, 0, sizeof(sds));
4835 
4836 	/*
4837 	 * Compute the various statistics relavent for load balancing at
4838 	 * this level.
4839 	 */
4840 	update_sd_lb_stats(env, balance, &sds);
4841 
4842 	/*
4843 	 * this_cpu is not the appropriate cpu to perform load balancing at
4844 	 * this level.
4845 	 */
4846 	if (!(*balance))
4847 		goto ret;
4848 
4849 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4850 	    check_asym_packing(env, &sds))
4851 		return sds.busiest;
4852 
4853 	/* There is no busy sibling group to pull tasks from */
4854 	if (!sds.busiest || sds.busiest_nr_running == 0)
4855 		goto out_balanced;
4856 
4857 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4858 
4859 	/*
4860 	 * If the busiest group is imbalanced the below checks don't
4861 	 * work because they assumes all things are equal, which typically
4862 	 * isn't true due to cpus_allowed constraints and the like.
4863 	 */
4864 	if (sds.group_imb)
4865 		goto force_balance;
4866 
4867 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4868 	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4869 			!sds.busiest_has_capacity)
4870 		goto force_balance;
4871 
4872 	/*
4873 	 * If the local group is more busy than the selected busiest group
4874 	 * don't try and pull any tasks.
4875 	 */
4876 	if (sds.this_load >= sds.max_load)
4877 		goto out_balanced;
4878 
4879 	/*
4880 	 * Don't pull any tasks if this group is already above the domain
4881 	 * average load.
4882 	 */
4883 	if (sds.this_load >= sds.avg_load)
4884 		goto out_balanced;
4885 
4886 	if (env->idle == CPU_IDLE) {
4887 		/*
4888 		 * This cpu is idle. If the busiest group load doesn't
4889 		 * have more tasks than the number of available cpu's and
4890 		 * there is no imbalance between this and busiest group
4891 		 * wrt to idle cpu's, it is balanced.
4892 		 */
4893 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4894 		    sds.busiest_nr_running <= sds.busiest_group_weight)
4895 			goto out_balanced;
4896 	} else {
4897 		/*
4898 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4899 		 * imbalance_pct to be conservative.
4900 		 */
4901 		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4902 			goto out_balanced;
4903 	}
4904 
4905 force_balance:
4906 	/* Looks like there is an imbalance. Compute it */
4907 	calculate_imbalance(env, &sds);
4908 	return sds.busiest;
4909 
4910 out_balanced:
4911 ret:
4912 	env->imbalance = 0;
4913 	return NULL;
4914 }
4915 
4916 /*
4917  * find_busiest_queue - find the busiest runqueue among the cpus in group.
4918  */
4919 static struct rq *find_busiest_queue(struct lb_env *env,
4920 				     struct sched_group *group)
4921 {
4922 	struct rq *busiest = NULL, *rq;
4923 	unsigned long max_load = 0;
4924 	int i;
4925 
4926 	for_each_cpu(i, sched_group_cpus(group)) {
4927 		unsigned long power = power_of(i);
4928 		unsigned long capacity = DIV_ROUND_CLOSEST(power,
4929 							   SCHED_POWER_SCALE);
4930 		unsigned long wl;
4931 
4932 		if (!capacity)
4933 			capacity = fix_small_capacity(env->sd, group);
4934 
4935 		if (!cpumask_test_cpu(i, env->cpus))
4936 			continue;
4937 
4938 		rq = cpu_rq(i);
4939 		wl = weighted_cpuload(i);
4940 
4941 		/*
4942 		 * When comparing with imbalance, use weighted_cpuload()
4943 		 * which is not scaled with the cpu power.
4944 		 */
4945 		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4946 			continue;
4947 
4948 		/*
4949 		 * For the load comparisons with the other cpu's, consider
4950 		 * the weighted_cpuload() scaled with the cpu power, so that
4951 		 * the load can be moved away from the cpu that is potentially
4952 		 * running at a lower capacity.
4953 		 */
4954 		wl = (wl * SCHED_POWER_SCALE) / power;
4955 
4956 		if (wl > max_load) {
4957 			max_load = wl;
4958 			busiest = rq;
4959 		}
4960 	}
4961 
4962 	return busiest;
4963 }
4964 
4965 /*
4966  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4967  * so long as it is large enough.
4968  */
4969 #define MAX_PINNED_INTERVAL	512
4970 
4971 /* Working cpumask for load_balance and load_balance_newidle. */
4972 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4973 
4974 static int need_active_balance(struct lb_env *env)
4975 {
4976 	struct sched_domain *sd = env->sd;
4977 
4978 	if (env->idle == CPU_NEWLY_IDLE) {
4979 
4980 		/*
4981 		 * ASYM_PACKING needs to force migrate tasks from busy but
4982 		 * higher numbered CPUs in order to pack all tasks in the
4983 		 * lowest numbered CPUs.
4984 		 */
4985 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4986 			return 1;
4987 	}
4988 
4989 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4990 }
4991 
4992 static int active_load_balance_cpu_stop(void *data);
4993 
4994 /*
4995  * Check this_cpu to ensure it is balanced within domain. Attempt to move
4996  * tasks if there is an imbalance.
4997  */
4998 static int load_balance(int this_cpu, struct rq *this_rq,
4999 			struct sched_domain *sd, enum cpu_idle_type idle,
5000 			int *balance)
5001 {
5002 	int ld_moved, cur_ld_moved, active_balance = 0;
5003 	int lb_iterations, max_lb_iterations;
5004 	struct sched_group *group;
5005 	struct rq *busiest;
5006 	unsigned long flags;
5007 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5008 
5009 	struct lb_env env = {
5010 		.sd		= sd,
5011 		.dst_cpu	= this_cpu,
5012 		.dst_rq		= this_rq,
5013 		.dst_grpmask    = sched_group_cpus(sd->groups),
5014 		.idle		= idle,
5015 		.loop_break	= sched_nr_migrate_break,
5016 		.cpus		= cpus,
5017 	};
5018 
5019 	cpumask_copy(cpus, cpu_active_mask);
5020 	max_lb_iterations = cpumask_weight(env.dst_grpmask);
5021 
5022 	schedstat_inc(sd, lb_count[idle]);
5023 
5024 redo:
5025 	group = find_busiest_group(&env, balance);
5026 
5027 	if (*balance == 0)
5028 		goto out_balanced;
5029 
5030 	if (!group) {
5031 		schedstat_inc(sd, lb_nobusyg[idle]);
5032 		goto out_balanced;
5033 	}
5034 
5035 	busiest = find_busiest_queue(&env, group);
5036 	if (!busiest) {
5037 		schedstat_inc(sd, lb_nobusyq[idle]);
5038 		goto out_balanced;
5039 	}
5040 
5041 	BUG_ON(busiest == env.dst_rq);
5042 
5043 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5044 
5045 	ld_moved = 0;
5046 	lb_iterations = 1;
5047 	if (busiest->nr_running > 1) {
5048 		/*
5049 		 * Attempt to move tasks. If find_busiest_group has found
5050 		 * an imbalance but busiest->nr_running <= 1, the group is
5051 		 * still unbalanced. ld_moved simply stays zero, so it is
5052 		 * correctly treated as an imbalance.
5053 		 */
5054 		env.flags |= LBF_ALL_PINNED;
5055 		env.src_cpu   = busiest->cpu;
5056 		env.src_rq    = busiest;
5057 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5058 
5059 		update_h_load(env.src_cpu);
5060 more_balance:
5061 		local_irq_save(flags);
5062 		double_rq_lock(env.dst_rq, busiest);
5063 
5064 		/*
5065 		 * cur_ld_moved - load moved in current iteration
5066 		 * ld_moved     - cumulative load moved across iterations
5067 		 */
5068 		cur_ld_moved = move_tasks(&env);
5069 		ld_moved += cur_ld_moved;
5070 		double_rq_unlock(env.dst_rq, busiest);
5071 		local_irq_restore(flags);
5072 
5073 		if (env.flags & LBF_NEED_BREAK) {
5074 			env.flags &= ~LBF_NEED_BREAK;
5075 			goto more_balance;
5076 		}
5077 
5078 		/*
5079 		 * some other cpu did the load balance for us.
5080 		 */
5081 		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5082 			resched_cpu(env.dst_cpu);
5083 
5084 		/*
5085 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5086 		 * us and move them to an alternate dst_cpu in our sched_group
5087 		 * where they can run. The upper limit on how many times we
5088 		 * iterate on same src_cpu is dependent on number of cpus in our
5089 		 * sched_group.
5090 		 *
5091 		 * This changes load balance semantics a bit on who can move
5092 		 * load to a given_cpu. In addition to the given_cpu itself
5093 		 * (or a ilb_cpu acting on its behalf where given_cpu is
5094 		 * nohz-idle), we now have balance_cpu in a position to move
5095 		 * load to given_cpu. In rare situations, this may cause
5096 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5097 		 * _independently_ and at _same_ time to move some load to
5098 		 * given_cpu) causing exceess load to be moved to given_cpu.
5099 		 * This however should not happen so much in practice and
5100 		 * moreover subsequent load balance cycles should correct the
5101 		 * excess load moved.
5102 		 */
5103 		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5104 				lb_iterations++ < max_lb_iterations) {
5105 
5106 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
5107 			env.dst_cpu	 = env.new_dst_cpu;
5108 			env.flags	&= ~LBF_SOME_PINNED;
5109 			env.loop	 = 0;
5110 			env.loop_break	 = sched_nr_migrate_break;
5111 			/*
5112 			 * Go back to "more_balance" rather than "redo" since we
5113 			 * need to continue with same src_cpu.
5114 			 */
5115 			goto more_balance;
5116 		}
5117 
5118 		/* All tasks on this runqueue were pinned by CPU affinity */
5119 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
5120 			cpumask_clear_cpu(cpu_of(busiest), cpus);
5121 			if (!cpumask_empty(cpus)) {
5122 				env.loop = 0;
5123 				env.loop_break = sched_nr_migrate_break;
5124 				goto redo;
5125 			}
5126 			goto out_balanced;
5127 		}
5128 	}
5129 
5130 	if (!ld_moved) {
5131 		schedstat_inc(sd, lb_failed[idle]);
5132 		/*
5133 		 * Increment the failure counter only on periodic balance.
5134 		 * We do not want newidle balance, which can be very
5135 		 * frequent, pollute the failure counter causing
5136 		 * excessive cache_hot migrations and active balances.
5137 		 */
5138 		if (idle != CPU_NEWLY_IDLE)
5139 			sd->nr_balance_failed++;
5140 
5141 		if (need_active_balance(&env)) {
5142 			raw_spin_lock_irqsave(&busiest->lock, flags);
5143 
5144 			/* don't kick the active_load_balance_cpu_stop,
5145 			 * if the curr task on busiest cpu can't be
5146 			 * moved to this_cpu
5147 			 */
5148 			if (!cpumask_test_cpu(this_cpu,
5149 					tsk_cpus_allowed(busiest->curr))) {
5150 				raw_spin_unlock_irqrestore(&busiest->lock,
5151 							    flags);
5152 				env.flags |= LBF_ALL_PINNED;
5153 				goto out_one_pinned;
5154 			}
5155 
5156 			/*
5157 			 * ->active_balance synchronizes accesses to
5158 			 * ->active_balance_work.  Once set, it's cleared
5159 			 * only after active load balance is finished.
5160 			 */
5161 			if (!busiest->active_balance) {
5162 				busiest->active_balance = 1;
5163 				busiest->push_cpu = this_cpu;
5164 				active_balance = 1;
5165 			}
5166 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
5167 
5168 			if (active_balance) {
5169 				stop_one_cpu_nowait(cpu_of(busiest),
5170 					active_load_balance_cpu_stop, busiest,
5171 					&busiest->active_balance_work);
5172 			}
5173 
5174 			/*
5175 			 * We've kicked active balancing, reset the failure
5176 			 * counter.
5177 			 */
5178 			sd->nr_balance_failed = sd->cache_nice_tries+1;
5179 		}
5180 	} else
5181 		sd->nr_balance_failed = 0;
5182 
5183 	if (likely(!active_balance)) {
5184 		/* We were unbalanced, so reset the balancing interval */
5185 		sd->balance_interval = sd->min_interval;
5186 	} else {
5187 		/*
5188 		 * If we've begun active balancing, start to back off. This
5189 		 * case may not be covered by the all_pinned logic if there
5190 		 * is only 1 task on the busy runqueue (because we don't call
5191 		 * move_tasks).
5192 		 */
5193 		if (sd->balance_interval < sd->max_interval)
5194 			sd->balance_interval *= 2;
5195 	}
5196 
5197 	goto out;
5198 
5199 out_balanced:
5200 	schedstat_inc(sd, lb_balanced[idle]);
5201 
5202 	sd->nr_balance_failed = 0;
5203 
5204 out_one_pinned:
5205 	/* tune up the balancing interval */
5206 	if (((env.flags & LBF_ALL_PINNED) &&
5207 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
5208 			(sd->balance_interval < sd->max_interval))
5209 		sd->balance_interval *= 2;
5210 
5211 	ld_moved = 0;
5212 out:
5213 	return ld_moved;
5214 }
5215 
5216 /*
5217  * idle_balance is called by schedule() if this_cpu is about to become
5218  * idle. Attempts to pull tasks from other CPUs.
5219  */
5220 void idle_balance(int this_cpu, struct rq *this_rq)
5221 {
5222 	struct sched_domain *sd;
5223 	int pulled_task = 0;
5224 	unsigned long next_balance = jiffies + HZ;
5225 
5226 	this_rq->idle_stamp = this_rq->clock;
5227 
5228 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
5229 		return;
5230 
5231 	update_rq_runnable_avg(this_rq, 1);
5232 
5233 	/*
5234 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
5235 	 */
5236 	raw_spin_unlock(&this_rq->lock);
5237 
5238 	update_blocked_averages(this_cpu);
5239 	rcu_read_lock();
5240 	for_each_domain(this_cpu, sd) {
5241 		unsigned long interval;
5242 		int balance = 1;
5243 
5244 		if (!(sd->flags & SD_LOAD_BALANCE))
5245 			continue;
5246 
5247 		if (sd->flags & SD_BALANCE_NEWIDLE) {
5248 			/* If we've pulled tasks over stop searching: */
5249 			pulled_task = load_balance(this_cpu, this_rq,
5250 						   sd, CPU_NEWLY_IDLE, &balance);
5251 		}
5252 
5253 		interval = msecs_to_jiffies(sd->balance_interval);
5254 		if (time_after(next_balance, sd->last_balance + interval))
5255 			next_balance = sd->last_balance + interval;
5256 		if (pulled_task) {
5257 			this_rq->idle_stamp = 0;
5258 			break;
5259 		}
5260 	}
5261 	rcu_read_unlock();
5262 
5263 	raw_spin_lock(&this_rq->lock);
5264 
5265 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5266 		/*
5267 		 * We are going idle. next_balance may be set based on
5268 		 * a busy processor. So reset next_balance.
5269 		 */
5270 		this_rq->next_balance = next_balance;
5271 	}
5272 }
5273 
5274 /*
5275  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5276  * running tasks off the busiest CPU onto idle CPUs. It requires at
5277  * least 1 task to be running on each physical CPU where possible, and
5278  * avoids physical / logical imbalances.
5279  */
5280 static int active_load_balance_cpu_stop(void *data)
5281 {
5282 	struct rq *busiest_rq = data;
5283 	int busiest_cpu = cpu_of(busiest_rq);
5284 	int target_cpu = busiest_rq->push_cpu;
5285 	struct rq *target_rq = cpu_rq(target_cpu);
5286 	struct sched_domain *sd;
5287 
5288 	raw_spin_lock_irq(&busiest_rq->lock);
5289 
5290 	/* make sure the requested cpu hasn't gone down in the meantime */
5291 	if (unlikely(busiest_cpu != smp_processor_id() ||
5292 		     !busiest_rq->active_balance))
5293 		goto out_unlock;
5294 
5295 	/* Is there any task to move? */
5296 	if (busiest_rq->nr_running <= 1)
5297 		goto out_unlock;
5298 
5299 	/*
5300 	 * This condition is "impossible", if it occurs
5301 	 * we need to fix it. Originally reported by
5302 	 * Bjorn Helgaas on a 128-cpu setup.
5303 	 */
5304 	BUG_ON(busiest_rq == target_rq);
5305 
5306 	/* move a task from busiest_rq to target_rq */
5307 	double_lock_balance(busiest_rq, target_rq);
5308 
5309 	/* Search for an sd spanning us and the target CPU. */
5310 	rcu_read_lock();
5311 	for_each_domain(target_cpu, sd) {
5312 		if ((sd->flags & SD_LOAD_BALANCE) &&
5313 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5314 				break;
5315 	}
5316 
5317 	if (likely(sd)) {
5318 		struct lb_env env = {
5319 			.sd		= sd,
5320 			.dst_cpu	= target_cpu,
5321 			.dst_rq		= target_rq,
5322 			.src_cpu	= busiest_rq->cpu,
5323 			.src_rq		= busiest_rq,
5324 			.idle		= CPU_IDLE,
5325 		};
5326 
5327 		schedstat_inc(sd, alb_count);
5328 
5329 		if (move_one_task(&env))
5330 			schedstat_inc(sd, alb_pushed);
5331 		else
5332 			schedstat_inc(sd, alb_failed);
5333 	}
5334 	rcu_read_unlock();
5335 	double_unlock_balance(busiest_rq, target_rq);
5336 out_unlock:
5337 	busiest_rq->active_balance = 0;
5338 	raw_spin_unlock_irq(&busiest_rq->lock);
5339 	return 0;
5340 }
5341 
5342 #ifdef CONFIG_NO_HZ
5343 /*
5344  * idle load balancing details
5345  * - When one of the busy CPUs notice that there may be an idle rebalancing
5346  *   needed, they will kick the idle load balancer, which then does idle
5347  *   load balancing for all the idle CPUs.
5348  */
5349 static struct {
5350 	cpumask_var_t idle_cpus_mask;
5351 	atomic_t nr_cpus;
5352 	unsigned long next_balance;     /* in jiffy units */
5353 } nohz ____cacheline_aligned;
5354 
5355 static inline int find_new_ilb(int call_cpu)
5356 {
5357 	int ilb = cpumask_first(nohz.idle_cpus_mask);
5358 
5359 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
5360 		return ilb;
5361 
5362 	return nr_cpu_ids;
5363 }
5364 
5365 /*
5366  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5367  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5368  * CPU (if there is one).
5369  */
5370 static void nohz_balancer_kick(int cpu)
5371 {
5372 	int ilb_cpu;
5373 
5374 	nohz.next_balance++;
5375 
5376 	ilb_cpu = find_new_ilb(cpu);
5377 
5378 	if (ilb_cpu >= nr_cpu_ids)
5379 		return;
5380 
5381 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5382 		return;
5383 	/*
5384 	 * Use smp_send_reschedule() instead of resched_cpu().
5385 	 * This way we generate a sched IPI on the target cpu which
5386 	 * is idle. And the softirq performing nohz idle load balance
5387 	 * will be run before returning from the IPI.
5388 	 */
5389 	smp_send_reschedule(ilb_cpu);
5390 	return;
5391 }
5392 
5393 static inline void nohz_balance_exit_idle(int cpu)
5394 {
5395 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5396 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5397 		atomic_dec(&nohz.nr_cpus);
5398 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5399 	}
5400 }
5401 
5402 static inline void set_cpu_sd_state_busy(void)
5403 {
5404 	struct sched_domain *sd;
5405 	int cpu = smp_processor_id();
5406 
5407 	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5408 		return;
5409 	clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5410 
5411 	rcu_read_lock();
5412 	for_each_domain(cpu, sd)
5413 		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5414 	rcu_read_unlock();
5415 }
5416 
5417 void set_cpu_sd_state_idle(void)
5418 {
5419 	struct sched_domain *sd;
5420 	int cpu = smp_processor_id();
5421 
5422 	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5423 		return;
5424 	set_bit(NOHZ_IDLE, nohz_flags(cpu));
5425 
5426 	rcu_read_lock();
5427 	for_each_domain(cpu, sd)
5428 		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5429 	rcu_read_unlock();
5430 }
5431 
5432 /*
5433  * This routine will record that the cpu is going idle with tick stopped.
5434  * This info will be used in performing idle load balancing in the future.
5435  */
5436 void nohz_balance_enter_idle(int cpu)
5437 {
5438 	/*
5439 	 * If this cpu is going down, then nothing needs to be done.
5440 	 */
5441 	if (!cpu_active(cpu))
5442 		return;
5443 
5444 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5445 		return;
5446 
5447 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5448 	atomic_inc(&nohz.nr_cpus);
5449 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5450 }
5451 
5452 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5453 					unsigned long action, void *hcpu)
5454 {
5455 	switch (action & ~CPU_TASKS_FROZEN) {
5456 	case CPU_DYING:
5457 		nohz_balance_exit_idle(smp_processor_id());
5458 		return NOTIFY_OK;
5459 	default:
5460 		return NOTIFY_DONE;
5461 	}
5462 }
5463 #endif
5464 
5465 static DEFINE_SPINLOCK(balancing);
5466 
5467 /*
5468  * Scale the max load_balance interval with the number of CPUs in the system.
5469  * This trades load-balance latency on larger machines for less cross talk.
5470  */
5471 void update_max_interval(void)
5472 {
5473 	max_load_balance_interval = HZ*num_online_cpus()/10;
5474 }
5475 
5476 /*
5477  * It checks each scheduling domain to see if it is due to be balanced,
5478  * and initiates a balancing operation if so.
5479  *
5480  * Balancing parameters are set up in arch_init_sched_domains.
5481  */
5482 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5483 {
5484 	int balance = 1;
5485 	struct rq *rq = cpu_rq(cpu);
5486 	unsigned long interval;
5487 	struct sched_domain *sd;
5488 	/* Earliest time when we have to do rebalance again */
5489 	unsigned long next_balance = jiffies + 60*HZ;
5490 	int update_next_balance = 0;
5491 	int need_serialize;
5492 
5493 	update_blocked_averages(cpu);
5494 
5495 	rcu_read_lock();
5496 	for_each_domain(cpu, sd) {
5497 		if (!(sd->flags & SD_LOAD_BALANCE))
5498 			continue;
5499 
5500 		interval = sd->balance_interval;
5501 		if (idle != CPU_IDLE)
5502 			interval *= sd->busy_factor;
5503 
5504 		/* scale ms to jiffies */
5505 		interval = msecs_to_jiffies(interval);
5506 		interval = clamp(interval, 1UL, max_load_balance_interval);
5507 
5508 		need_serialize = sd->flags & SD_SERIALIZE;
5509 
5510 		if (need_serialize) {
5511 			if (!spin_trylock(&balancing))
5512 				goto out;
5513 		}
5514 
5515 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
5516 			if (load_balance(cpu, rq, sd, idle, &balance)) {
5517 				/*
5518 				 * We've pulled tasks over so either we're no
5519 				 * longer idle.
5520 				 */
5521 				idle = CPU_NOT_IDLE;
5522 			}
5523 			sd->last_balance = jiffies;
5524 		}
5525 		if (need_serialize)
5526 			spin_unlock(&balancing);
5527 out:
5528 		if (time_after(next_balance, sd->last_balance + interval)) {
5529 			next_balance = sd->last_balance + interval;
5530 			update_next_balance = 1;
5531 		}
5532 
5533 		/*
5534 		 * Stop the load balance at this level. There is another
5535 		 * CPU in our sched group which is doing load balancing more
5536 		 * actively.
5537 		 */
5538 		if (!balance)
5539 			break;
5540 	}
5541 	rcu_read_unlock();
5542 
5543 	/*
5544 	 * next_balance will be updated only when there is a need.
5545 	 * When the cpu is attached to null domain for ex, it will not be
5546 	 * updated.
5547 	 */
5548 	if (likely(update_next_balance))
5549 		rq->next_balance = next_balance;
5550 }
5551 
5552 #ifdef CONFIG_NO_HZ
5553 /*
5554  * In CONFIG_NO_HZ case, the idle balance kickee will do the
5555  * rebalancing for all the cpus for whom scheduler ticks are stopped.
5556  */
5557 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5558 {
5559 	struct rq *this_rq = cpu_rq(this_cpu);
5560 	struct rq *rq;
5561 	int balance_cpu;
5562 
5563 	if (idle != CPU_IDLE ||
5564 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5565 		goto end;
5566 
5567 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5568 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5569 			continue;
5570 
5571 		/*
5572 		 * If this cpu gets work to do, stop the load balancing
5573 		 * work being done for other cpus. Next load
5574 		 * balancing owner will pick it up.
5575 		 */
5576 		if (need_resched())
5577 			break;
5578 
5579 		rq = cpu_rq(balance_cpu);
5580 
5581 		raw_spin_lock_irq(&rq->lock);
5582 		update_rq_clock(rq);
5583 		update_idle_cpu_load(rq);
5584 		raw_spin_unlock_irq(&rq->lock);
5585 
5586 		rebalance_domains(balance_cpu, CPU_IDLE);
5587 
5588 		if (time_after(this_rq->next_balance, rq->next_balance))
5589 			this_rq->next_balance = rq->next_balance;
5590 	}
5591 	nohz.next_balance = this_rq->next_balance;
5592 end:
5593 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5594 }
5595 
5596 /*
5597  * Current heuristic for kicking the idle load balancer in the presence
5598  * of an idle cpu is the system.
5599  *   - This rq has more than one task.
5600  *   - At any scheduler domain level, this cpu's scheduler group has multiple
5601  *     busy cpu's exceeding the group's power.
5602  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5603  *     domain span are idle.
5604  */
5605 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5606 {
5607 	unsigned long now = jiffies;
5608 	struct sched_domain *sd;
5609 
5610 	if (unlikely(idle_cpu(cpu)))
5611 		return 0;
5612 
5613        /*
5614 	* We may be recently in ticked or tickless idle mode. At the first
5615 	* busy tick after returning from idle, we will update the busy stats.
5616 	*/
5617 	set_cpu_sd_state_busy();
5618 	nohz_balance_exit_idle(cpu);
5619 
5620 	/*
5621 	 * None are in tickless mode and hence no need for NOHZ idle load
5622 	 * balancing.
5623 	 */
5624 	if (likely(!atomic_read(&nohz.nr_cpus)))
5625 		return 0;
5626 
5627 	if (time_before(now, nohz.next_balance))
5628 		return 0;
5629 
5630 	if (rq->nr_running >= 2)
5631 		goto need_kick;
5632 
5633 	rcu_read_lock();
5634 	for_each_domain(cpu, sd) {
5635 		struct sched_group *sg = sd->groups;
5636 		struct sched_group_power *sgp = sg->sgp;
5637 		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5638 
5639 		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5640 			goto need_kick_unlock;
5641 
5642 		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5643 		    && (cpumask_first_and(nohz.idle_cpus_mask,
5644 					  sched_domain_span(sd)) < cpu))
5645 			goto need_kick_unlock;
5646 
5647 		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5648 			break;
5649 	}
5650 	rcu_read_unlock();
5651 	return 0;
5652 
5653 need_kick_unlock:
5654 	rcu_read_unlock();
5655 need_kick:
5656 	return 1;
5657 }
5658 #else
5659 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5660 #endif
5661 
5662 /*
5663  * run_rebalance_domains is triggered when needed from the scheduler tick.
5664  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5665  */
5666 static void run_rebalance_domains(struct softirq_action *h)
5667 {
5668 	int this_cpu = smp_processor_id();
5669 	struct rq *this_rq = cpu_rq(this_cpu);
5670 	enum cpu_idle_type idle = this_rq->idle_balance ?
5671 						CPU_IDLE : CPU_NOT_IDLE;
5672 
5673 	rebalance_domains(this_cpu, idle);
5674 
5675 	/*
5676 	 * If this cpu has a pending nohz_balance_kick, then do the
5677 	 * balancing on behalf of the other idle cpus whose ticks are
5678 	 * stopped.
5679 	 */
5680 	nohz_idle_balance(this_cpu, idle);
5681 }
5682 
5683 static inline int on_null_domain(int cpu)
5684 {
5685 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5686 }
5687 
5688 /*
5689  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5690  */
5691 void trigger_load_balance(struct rq *rq, int cpu)
5692 {
5693 	/* Don't need to rebalance while attached to NULL domain */
5694 	if (time_after_eq(jiffies, rq->next_balance) &&
5695 	    likely(!on_null_domain(cpu)))
5696 		raise_softirq(SCHED_SOFTIRQ);
5697 #ifdef CONFIG_NO_HZ
5698 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5699 		nohz_balancer_kick(cpu);
5700 #endif
5701 }
5702 
5703 static void rq_online_fair(struct rq *rq)
5704 {
5705 	update_sysctl();
5706 }
5707 
5708 static void rq_offline_fair(struct rq *rq)
5709 {
5710 	update_sysctl();
5711 
5712 	/* Ensure any throttled groups are reachable by pick_next_task */
5713 	unthrottle_offline_cfs_rqs(rq);
5714 }
5715 
5716 #endif /* CONFIG_SMP */
5717 
5718 /*
5719  * scheduler tick hitting a task of our scheduling class:
5720  */
5721 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5722 {
5723 	struct cfs_rq *cfs_rq;
5724 	struct sched_entity *se = &curr->se;
5725 
5726 	for_each_sched_entity(se) {
5727 		cfs_rq = cfs_rq_of(se);
5728 		entity_tick(cfs_rq, se, queued);
5729 	}
5730 
5731 	if (sched_feat_numa(NUMA))
5732 		task_tick_numa(rq, curr);
5733 
5734 	update_rq_runnable_avg(rq, 1);
5735 }
5736 
5737 /*
5738  * called on fork with the child task as argument from the parent's context
5739  *  - child not yet on the tasklist
5740  *  - preemption disabled
5741  */
5742 static void task_fork_fair(struct task_struct *p)
5743 {
5744 	struct cfs_rq *cfs_rq;
5745 	struct sched_entity *se = &p->se, *curr;
5746 	int this_cpu = smp_processor_id();
5747 	struct rq *rq = this_rq();
5748 	unsigned long flags;
5749 
5750 	raw_spin_lock_irqsave(&rq->lock, flags);
5751 
5752 	update_rq_clock(rq);
5753 
5754 	cfs_rq = task_cfs_rq(current);
5755 	curr = cfs_rq->curr;
5756 
5757 	if (unlikely(task_cpu(p) != this_cpu)) {
5758 		rcu_read_lock();
5759 		__set_task_cpu(p, this_cpu);
5760 		rcu_read_unlock();
5761 	}
5762 
5763 	update_curr(cfs_rq);
5764 
5765 	if (curr)
5766 		se->vruntime = curr->vruntime;
5767 	place_entity(cfs_rq, se, 1);
5768 
5769 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5770 		/*
5771 		 * Upon rescheduling, sched_class::put_prev_task() will place
5772 		 * 'current' within the tree based on its new key value.
5773 		 */
5774 		swap(curr->vruntime, se->vruntime);
5775 		resched_task(rq->curr);
5776 	}
5777 
5778 	se->vruntime -= cfs_rq->min_vruntime;
5779 
5780 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5781 }
5782 
5783 /*
5784  * Priority of the task has changed. Check to see if we preempt
5785  * the current task.
5786  */
5787 static void
5788 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5789 {
5790 	if (!p->se.on_rq)
5791 		return;
5792 
5793 	/*
5794 	 * Reschedule if we are currently running on this runqueue and
5795 	 * our priority decreased, or if we are not currently running on
5796 	 * this runqueue and our priority is higher than the current's
5797 	 */
5798 	if (rq->curr == p) {
5799 		if (p->prio > oldprio)
5800 			resched_task(rq->curr);
5801 	} else
5802 		check_preempt_curr(rq, p, 0);
5803 }
5804 
5805 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5806 {
5807 	struct sched_entity *se = &p->se;
5808 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5809 
5810 	/*
5811 	 * Ensure the task's vruntime is normalized, so that when its
5812 	 * switched back to the fair class the enqueue_entity(.flags=0) will
5813 	 * do the right thing.
5814 	 *
5815 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5816 	 * have normalized the vruntime, if it was !on_rq, then only when
5817 	 * the task is sleeping will it still have non-normalized vruntime.
5818 	 */
5819 	if (!se->on_rq && p->state != TASK_RUNNING) {
5820 		/*
5821 		 * Fix up our vruntime so that the current sleep doesn't
5822 		 * cause 'unlimited' sleep bonus.
5823 		 */
5824 		place_entity(cfs_rq, se, 0);
5825 		se->vruntime -= cfs_rq->min_vruntime;
5826 	}
5827 
5828 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5829 	/*
5830 	* Remove our load from contribution when we leave sched_fair
5831 	* and ensure we don't carry in an old decay_count if we
5832 	* switch back.
5833 	*/
5834 	if (p->se.avg.decay_count) {
5835 		struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5836 		__synchronize_entity_decay(&p->se);
5837 		subtract_blocked_load_contrib(cfs_rq,
5838 				p->se.avg.load_avg_contrib);
5839 	}
5840 #endif
5841 }
5842 
5843 /*
5844  * We switched to the sched_fair class.
5845  */
5846 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5847 {
5848 	if (!p->se.on_rq)
5849 		return;
5850 
5851 	/*
5852 	 * We were most likely switched from sched_rt, so
5853 	 * kick off the schedule if running, otherwise just see
5854 	 * if we can still preempt the current task.
5855 	 */
5856 	if (rq->curr == p)
5857 		resched_task(rq->curr);
5858 	else
5859 		check_preempt_curr(rq, p, 0);
5860 }
5861 
5862 /* Account for a task changing its policy or group.
5863  *
5864  * This routine is mostly called to set cfs_rq->curr field when a task
5865  * migrates between groups/classes.
5866  */
5867 static void set_curr_task_fair(struct rq *rq)
5868 {
5869 	struct sched_entity *se = &rq->curr->se;
5870 
5871 	for_each_sched_entity(se) {
5872 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5873 
5874 		set_next_entity(cfs_rq, se);
5875 		/* ensure bandwidth has been allocated on our new cfs_rq */
5876 		account_cfs_rq_runtime(cfs_rq, 0);
5877 	}
5878 }
5879 
5880 void init_cfs_rq(struct cfs_rq *cfs_rq)
5881 {
5882 	cfs_rq->tasks_timeline = RB_ROOT;
5883 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5884 #ifndef CONFIG_64BIT
5885 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5886 #endif
5887 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5888 	atomic64_set(&cfs_rq->decay_counter, 1);
5889 	atomic64_set(&cfs_rq->removed_load, 0);
5890 #endif
5891 }
5892 
5893 #ifdef CONFIG_FAIR_GROUP_SCHED
5894 static void task_move_group_fair(struct task_struct *p, int on_rq)
5895 {
5896 	struct cfs_rq *cfs_rq;
5897 	/*
5898 	 * If the task was not on the rq at the time of this cgroup movement
5899 	 * it must have been asleep, sleeping tasks keep their ->vruntime
5900 	 * absolute on their old rq until wakeup (needed for the fair sleeper
5901 	 * bonus in place_entity()).
5902 	 *
5903 	 * If it was on the rq, we've just 'preempted' it, which does convert
5904 	 * ->vruntime to a relative base.
5905 	 *
5906 	 * Make sure both cases convert their relative position when migrating
5907 	 * to another cgroup's rq. This does somewhat interfere with the
5908 	 * fair sleeper stuff for the first placement, but who cares.
5909 	 */
5910 	/*
5911 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
5912 	 * But there are some cases where it has already been normalized:
5913 	 *
5914 	 * - Moving a forked child which is waiting for being woken up by
5915 	 *   wake_up_new_task().
5916 	 * - Moving a task which has been woken up by try_to_wake_up() and
5917 	 *   waiting for actually being woken up by sched_ttwu_pending().
5918 	 *
5919 	 * To prevent boost or penalty in the new cfs_rq caused by delta
5920 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5921 	 */
5922 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5923 		on_rq = 1;
5924 
5925 	if (!on_rq)
5926 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5927 	set_task_rq(p, task_cpu(p));
5928 	if (!on_rq) {
5929 		cfs_rq = cfs_rq_of(&p->se);
5930 		p->se.vruntime += cfs_rq->min_vruntime;
5931 #ifdef CONFIG_SMP
5932 		/*
5933 		 * migrate_task_rq_fair() will have removed our previous
5934 		 * contribution, but we must synchronize for ongoing future
5935 		 * decay.
5936 		 */
5937 		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5938 		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5939 #endif
5940 	}
5941 }
5942 
5943 void free_fair_sched_group(struct task_group *tg)
5944 {
5945 	int i;
5946 
5947 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5948 
5949 	for_each_possible_cpu(i) {
5950 		if (tg->cfs_rq)
5951 			kfree(tg->cfs_rq[i]);
5952 		if (tg->se)
5953 			kfree(tg->se[i]);
5954 	}
5955 
5956 	kfree(tg->cfs_rq);
5957 	kfree(tg->se);
5958 }
5959 
5960 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5961 {
5962 	struct cfs_rq *cfs_rq;
5963 	struct sched_entity *se;
5964 	int i;
5965 
5966 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5967 	if (!tg->cfs_rq)
5968 		goto err;
5969 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5970 	if (!tg->se)
5971 		goto err;
5972 
5973 	tg->shares = NICE_0_LOAD;
5974 
5975 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5976 
5977 	for_each_possible_cpu(i) {
5978 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5979 				      GFP_KERNEL, cpu_to_node(i));
5980 		if (!cfs_rq)
5981 			goto err;
5982 
5983 		se = kzalloc_node(sizeof(struct sched_entity),
5984 				  GFP_KERNEL, cpu_to_node(i));
5985 		if (!se)
5986 			goto err_free_rq;
5987 
5988 		init_cfs_rq(cfs_rq);
5989 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5990 	}
5991 
5992 	return 1;
5993 
5994 err_free_rq:
5995 	kfree(cfs_rq);
5996 err:
5997 	return 0;
5998 }
5999 
6000 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6001 {
6002 	struct rq *rq = cpu_rq(cpu);
6003 	unsigned long flags;
6004 
6005 	/*
6006 	* Only empty task groups can be destroyed; so we can speculatively
6007 	* check on_list without danger of it being re-added.
6008 	*/
6009 	if (!tg->cfs_rq[cpu]->on_list)
6010 		return;
6011 
6012 	raw_spin_lock_irqsave(&rq->lock, flags);
6013 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6014 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6015 }
6016 
6017 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6018 			struct sched_entity *se, int cpu,
6019 			struct sched_entity *parent)
6020 {
6021 	struct rq *rq = cpu_rq(cpu);
6022 
6023 	cfs_rq->tg = tg;
6024 	cfs_rq->rq = rq;
6025 	init_cfs_rq_runtime(cfs_rq);
6026 
6027 	tg->cfs_rq[cpu] = cfs_rq;
6028 	tg->se[cpu] = se;
6029 
6030 	/* se could be NULL for root_task_group */
6031 	if (!se)
6032 		return;
6033 
6034 	if (!parent)
6035 		se->cfs_rq = &rq->cfs;
6036 	else
6037 		se->cfs_rq = parent->my_q;
6038 
6039 	se->my_q = cfs_rq;
6040 	update_load_set(&se->load, 0);
6041 	se->parent = parent;
6042 }
6043 
6044 static DEFINE_MUTEX(shares_mutex);
6045 
6046 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6047 {
6048 	int i;
6049 	unsigned long flags;
6050 
6051 	/*
6052 	 * We can't change the weight of the root cgroup.
6053 	 */
6054 	if (!tg->se[0])
6055 		return -EINVAL;
6056 
6057 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6058 
6059 	mutex_lock(&shares_mutex);
6060 	if (tg->shares == shares)
6061 		goto done;
6062 
6063 	tg->shares = shares;
6064 	for_each_possible_cpu(i) {
6065 		struct rq *rq = cpu_rq(i);
6066 		struct sched_entity *se;
6067 
6068 		se = tg->se[i];
6069 		/* Propagate contribution to hierarchy */
6070 		raw_spin_lock_irqsave(&rq->lock, flags);
6071 		for_each_sched_entity(se)
6072 			update_cfs_shares(group_cfs_rq(se));
6073 		raw_spin_unlock_irqrestore(&rq->lock, flags);
6074 	}
6075 
6076 done:
6077 	mutex_unlock(&shares_mutex);
6078 	return 0;
6079 }
6080 #else /* CONFIG_FAIR_GROUP_SCHED */
6081 
6082 void free_fair_sched_group(struct task_group *tg) { }
6083 
6084 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6085 {
6086 	return 1;
6087 }
6088 
6089 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6090 
6091 #endif /* CONFIG_FAIR_GROUP_SCHED */
6092 
6093 
6094 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6095 {
6096 	struct sched_entity *se = &task->se;
6097 	unsigned int rr_interval = 0;
6098 
6099 	/*
6100 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6101 	 * idle runqueue:
6102 	 */
6103 	if (rq->cfs.load.weight)
6104 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6105 
6106 	return rr_interval;
6107 }
6108 
6109 /*
6110  * All the scheduling class methods:
6111  */
6112 const struct sched_class fair_sched_class = {
6113 	.next			= &idle_sched_class,
6114 	.enqueue_task		= enqueue_task_fair,
6115 	.dequeue_task		= dequeue_task_fair,
6116 	.yield_task		= yield_task_fair,
6117 	.yield_to_task		= yield_to_task_fair,
6118 
6119 	.check_preempt_curr	= check_preempt_wakeup,
6120 
6121 	.pick_next_task		= pick_next_task_fair,
6122 	.put_prev_task		= put_prev_task_fair,
6123 
6124 #ifdef CONFIG_SMP
6125 	.select_task_rq		= select_task_rq_fair,
6126 #ifdef CONFIG_FAIR_GROUP_SCHED
6127 	.migrate_task_rq	= migrate_task_rq_fair,
6128 #endif
6129 	.rq_online		= rq_online_fair,
6130 	.rq_offline		= rq_offline_fair,
6131 
6132 	.task_waking		= task_waking_fair,
6133 #endif
6134 
6135 	.set_curr_task          = set_curr_task_fair,
6136 	.task_tick		= task_tick_fair,
6137 	.task_fork		= task_fork_fair,
6138 
6139 	.prio_changed		= prio_changed_fair,
6140 	.switched_from		= switched_from_fair,
6141 	.switched_to		= switched_to_fair,
6142 
6143 	.get_rr_interval	= get_rr_interval_fair,
6144 
6145 #ifdef CONFIG_FAIR_GROUP_SCHED
6146 	.task_move_group	= task_move_group_fair,
6147 #endif
6148 };
6149 
6150 #ifdef CONFIG_SCHED_DEBUG
6151 void print_cfs_stats(struct seq_file *m, int cpu)
6152 {
6153 	struct cfs_rq *cfs_rq;
6154 
6155 	rcu_read_lock();
6156 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6157 		print_cfs_rq(m, cpu, cfs_rq);
6158 	rcu_read_unlock();
6159 }
6160 #endif
6161 
6162 __init void init_sched_fair_class(void)
6163 {
6164 #ifdef CONFIG_SMP
6165 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6166 
6167 #ifdef CONFIG_NO_HZ
6168 	nohz.next_balance = jiffies;
6169 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6170 	cpu_notifier(sched_ilb_notifier, 0);
6171 #endif
6172 #endif /* SMP */
6173 
6174 }
6175