1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 51 #include <asm/switch_to.h> 52 53 #include <linux/sched/cond_resched.h> 54 55 #include "sched.h" 56 #include "stats.h" 57 #include "autogroup.h" 58 59 /* 60 * Targeted preemption latency for CPU-bound tasks: 61 * 62 * NOTE: this latency value is not the same as the concept of 63 * 'timeslice length' - timeslices in CFS are of variable length 64 * and have no persistent notion like in traditional, time-slice 65 * based scheduling concepts. 66 * 67 * (to see the precise effective timeslice length of your workload, 68 * run vmstat and monitor the context-switches (cs) field) 69 * 70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_latency = 6000000ULL; 73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 74 75 /* 76 * The initial- and re-scaling of tunables is configurable 77 * 78 * Options are: 79 * 80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 83 * 84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 85 */ 86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 87 88 /* 89 * Minimal preemption granularity for CPU-bound tasks: 90 * 91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 92 */ 93 unsigned int sysctl_sched_min_granularity = 750000ULL; 94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 95 96 /* 97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 98 * Applies only when SCHED_IDLE tasks compete with normal tasks. 99 * 100 * (default: 0.75 msec) 101 */ 102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 103 104 /* 105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 106 */ 107 static unsigned int sched_nr_latency = 8; 108 109 /* 110 * After fork, child runs first. If set to 0 (default) then 111 * parent will (try to) run first. 112 */ 113 unsigned int sysctl_sched_child_runs_first __read_mostly; 114 115 /* 116 * SCHED_OTHER wake-up granularity. 117 * 118 * This option delays the preemption effects of decoupled workloads 119 * and reduces their over-scheduling. Synchronous workloads will still 120 * have immediate wakeup/sleep latencies. 121 * 122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 123 */ 124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 126 127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 128 129 int sched_thermal_decay_shift; 130 static int __init setup_sched_thermal_decay_shift(char *str) 131 { 132 int _shift = 0; 133 134 if (kstrtoint(str, 0, &_shift)) 135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 136 137 sched_thermal_decay_shift = clamp(_shift, 0, 10); 138 return 1; 139 } 140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 141 142 #ifdef CONFIG_SMP 143 /* 144 * For asym packing, by default the lower numbered CPU has higher priority. 145 */ 146 int __weak arch_asym_cpu_priority(int cpu) 147 { 148 return -cpu; 149 } 150 151 /* 152 * The margin used when comparing utilization with CPU capacity. 153 * 154 * (default: ~20%) 155 */ 156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 157 158 /* 159 * The margin used when comparing CPU capacities. 160 * is 'cap1' noticeably greater than 'cap2' 161 * 162 * (default: ~5%) 163 */ 164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 165 #endif 166 167 #ifdef CONFIG_CFS_BANDWIDTH 168 /* 169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 170 * each time a cfs_rq requests quota. 171 * 172 * Note: in the case that the slice exceeds the runtime remaining (either due 173 * to consumption or the quota being specified to be smaller than the slice) 174 * we will always only issue the remaining available time. 175 * 176 * (default: 5 msec, units: microseconds) 177 */ 178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 179 #endif 180 181 #ifdef CONFIG_NUMA_BALANCING 182 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 183 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 184 #endif 185 186 #ifdef CONFIG_SYSCTL 187 static struct ctl_table sched_fair_sysctls[] = { 188 { 189 .procname = "sched_child_runs_first", 190 .data = &sysctl_sched_child_runs_first, 191 .maxlen = sizeof(unsigned int), 192 .mode = 0644, 193 .proc_handler = proc_dointvec, 194 }, 195 #ifdef CONFIG_CFS_BANDWIDTH 196 { 197 .procname = "sched_cfs_bandwidth_slice_us", 198 .data = &sysctl_sched_cfs_bandwidth_slice, 199 .maxlen = sizeof(unsigned int), 200 .mode = 0644, 201 .proc_handler = proc_dointvec_minmax, 202 .extra1 = SYSCTL_ONE, 203 }, 204 #endif 205 #ifdef CONFIG_NUMA_BALANCING 206 { 207 .procname = "numa_balancing_promote_rate_limit_MBps", 208 .data = &sysctl_numa_balancing_promote_rate_limit, 209 .maxlen = sizeof(unsigned int), 210 .mode = 0644, 211 .proc_handler = proc_dointvec_minmax, 212 .extra1 = SYSCTL_ZERO, 213 }, 214 #endif /* CONFIG_NUMA_BALANCING */ 215 {} 216 }; 217 218 static int __init sched_fair_sysctl_init(void) 219 { 220 register_sysctl_init("kernel", sched_fair_sysctls); 221 return 0; 222 } 223 late_initcall(sched_fair_sysctl_init); 224 #endif 225 226 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 227 { 228 lw->weight += inc; 229 lw->inv_weight = 0; 230 } 231 232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 233 { 234 lw->weight -= dec; 235 lw->inv_weight = 0; 236 } 237 238 static inline void update_load_set(struct load_weight *lw, unsigned long w) 239 { 240 lw->weight = w; 241 lw->inv_weight = 0; 242 } 243 244 /* 245 * Increase the granularity value when there are more CPUs, 246 * because with more CPUs the 'effective latency' as visible 247 * to users decreases. But the relationship is not linear, 248 * so pick a second-best guess by going with the log2 of the 249 * number of CPUs. 250 * 251 * This idea comes from the SD scheduler of Con Kolivas: 252 */ 253 static unsigned int get_update_sysctl_factor(void) 254 { 255 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 256 unsigned int factor; 257 258 switch (sysctl_sched_tunable_scaling) { 259 case SCHED_TUNABLESCALING_NONE: 260 factor = 1; 261 break; 262 case SCHED_TUNABLESCALING_LINEAR: 263 factor = cpus; 264 break; 265 case SCHED_TUNABLESCALING_LOG: 266 default: 267 factor = 1 + ilog2(cpus); 268 break; 269 } 270 271 return factor; 272 } 273 274 static void update_sysctl(void) 275 { 276 unsigned int factor = get_update_sysctl_factor(); 277 278 #define SET_SYSCTL(name) \ 279 (sysctl_##name = (factor) * normalized_sysctl_##name) 280 SET_SYSCTL(sched_min_granularity); 281 SET_SYSCTL(sched_latency); 282 SET_SYSCTL(sched_wakeup_granularity); 283 #undef SET_SYSCTL 284 } 285 286 void __init sched_init_granularity(void) 287 { 288 update_sysctl(); 289 } 290 291 #define WMULT_CONST (~0U) 292 #define WMULT_SHIFT 32 293 294 static void __update_inv_weight(struct load_weight *lw) 295 { 296 unsigned long w; 297 298 if (likely(lw->inv_weight)) 299 return; 300 301 w = scale_load_down(lw->weight); 302 303 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 304 lw->inv_weight = 1; 305 else if (unlikely(!w)) 306 lw->inv_weight = WMULT_CONST; 307 else 308 lw->inv_weight = WMULT_CONST / w; 309 } 310 311 /* 312 * delta_exec * weight / lw.weight 313 * OR 314 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 315 * 316 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 317 * we're guaranteed shift stays positive because inv_weight is guaranteed to 318 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 319 * 320 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 321 * weight/lw.weight <= 1, and therefore our shift will also be positive. 322 */ 323 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 324 { 325 u64 fact = scale_load_down(weight); 326 u32 fact_hi = (u32)(fact >> 32); 327 int shift = WMULT_SHIFT; 328 int fs; 329 330 __update_inv_weight(lw); 331 332 if (unlikely(fact_hi)) { 333 fs = fls(fact_hi); 334 shift -= fs; 335 fact >>= fs; 336 } 337 338 fact = mul_u32_u32(fact, lw->inv_weight); 339 340 fact_hi = (u32)(fact >> 32); 341 if (fact_hi) { 342 fs = fls(fact_hi); 343 shift -= fs; 344 fact >>= fs; 345 } 346 347 return mul_u64_u32_shr(delta_exec, fact, shift); 348 } 349 350 351 const struct sched_class fair_sched_class; 352 353 /************************************************************** 354 * CFS operations on generic schedulable entities: 355 */ 356 357 #ifdef CONFIG_FAIR_GROUP_SCHED 358 359 /* Walk up scheduling entities hierarchy */ 360 #define for_each_sched_entity(se) \ 361 for (; se; se = se->parent) 362 363 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 struct rq *rq = rq_of(cfs_rq); 366 int cpu = cpu_of(rq); 367 368 if (cfs_rq->on_list) 369 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 370 371 cfs_rq->on_list = 1; 372 373 /* 374 * Ensure we either appear before our parent (if already 375 * enqueued) or force our parent to appear after us when it is 376 * enqueued. The fact that we always enqueue bottom-up 377 * reduces this to two cases and a special case for the root 378 * cfs_rq. Furthermore, it also means that we will always reset 379 * tmp_alone_branch either when the branch is connected 380 * to a tree or when we reach the top of the tree 381 */ 382 if (cfs_rq->tg->parent && 383 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 384 /* 385 * If parent is already on the list, we add the child 386 * just before. Thanks to circular linked property of 387 * the list, this means to put the child at the tail 388 * of the list that starts by parent. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 392 /* 393 * The branch is now connected to its tree so we can 394 * reset tmp_alone_branch to the beginning of the 395 * list. 396 */ 397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 398 return true; 399 } 400 401 if (!cfs_rq->tg->parent) { 402 /* 403 * cfs rq without parent should be put 404 * at the tail of the list. 405 */ 406 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 407 &rq->leaf_cfs_rq_list); 408 /* 409 * We have reach the top of a tree so we can reset 410 * tmp_alone_branch to the beginning of the list. 411 */ 412 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 413 return true; 414 } 415 416 /* 417 * The parent has not already been added so we want to 418 * make sure that it will be put after us. 419 * tmp_alone_branch points to the begin of the branch 420 * where we will add parent. 421 */ 422 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 423 /* 424 * update tmp_alone_branch to points to the new begin 425 * of the branch 426 */ 427 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 428 return false; 429 } 430 431 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 432 { 433 if (cfs_rq->on_list) { 434 struct rq *rq = rq_of(cfs_rq); 435 436 /* 437 * With cfs_rq being unthrottled/throttled during an enqueue, 438 * it can happen the tmp_alone_branch points the a leaf that 439 * we finally want to del. In this case, tmp_alone_branch moves 440 * to the prev element but it will point to rq->leaf_cfs_rq_list 441 * at the end of the enqueue. 442 */ 443 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 444 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 445 446 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 447 cfs_rq->on_list = 0; 448 } 449 } 450 451 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 452 { 453 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 454 } 455 456 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 457 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 458 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 459 leaf_cfs_rq_list) 460 461 /* Do the two (enqueued) entities belong to the same group ? */ 462 static inline struct cfs_rq * 463 is_same_group(struct sched_entity *se, struct sched_entity *pse) 464 { 465 if (se->cfs_rq == pse->cfs_rq) 466 return se->cfs_rq; 467 468 return NULL; 469 } 470 471 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 472 { 473 return se->parent; 474 } 475 476 static void 477 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 478 { 479 int se_depth, pse_depth; 480 481 /* 482 * preemption test can be made between sibling entities who are in the 483 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 484 * both tasks until we find their ancestors who are siblings of common 485 * parent. 486 */ 487 488 /* First walk up until both entities are at same depth */ 489 se_depth = (*se)->depth; 490 pse_depth = (*pse)->depth; 491 492 while (se_depth > pse_depth) { 493 se_depth--; 494 *se = parent_entity(*se); 495 } 496 497 while (pse_depth > se_depth) { 498 pse_depth--; 499 *pse = parent_entity(*pse); 500 } 501 502 while (!is_same_group(*se, *pse)) { 503 *se = parent_entity(*se); 504 *pse = parent_entity(*pse); 505 } 506 } 507 508 static int tg_is_idle(struct task_group *tg) 509 { 510 return tg->idle > 0; 511 } 512 513 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 514 { 515 return cfs_rq->idle > 0; 516 } 517 518 static int se_is_idle(struct sched_entity *se) 519 { 520 if (entity_is_task(se)) 521 return task_has_idle_policy(task_of(se)); 522 return cfs_rq_is_idle(group_cfs_rq(se)); 523 } 524 525 #else /* !CONFIG_FAIR_GROUP_SCHED */ 526 527 #define for_each_sched_entity(se) \ 528 for (; se; se = NULL) 529 530 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 531 { 532 return true; 533 } 534 535 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 536 { 537 } 538 539 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 540 { 541 } 542 543 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 544 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 545 546 static inline struct sched_entity *parent_entity(struct sched_entity *se) 547 { 548 return NULL; 549 } 550 551 static inline void 552 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 553 { 554 } 555 556 static inline int tg_is_idle(struct task_group *tg) 557 { 558 return 0; 559 } 560 561 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 562 { 563 return 0; 564 } 565 566 static int se_is_idle(struct sched_entity *se) 567 { 568 return 0; 569 } 570 571 #endif /* CONFIG_FAIR_GROUP_SCHED */ 572 573 static __always_inline 574 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 575 576 /************************************************************** 577 * Scheduling class tree data structure manipulation methods: 578 */ 579 580 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 581 { 582 s64 delta = (s64)(vruntime - max_vruntime); 583 if (delta > 0) 584 max_vruntime = vruntime; 585 586 return max_vruntime; 587 } 588 589 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 590 { 591 s64 delta = (s64)(vruntime - min_vruntime); 592 if (delta < 0) 593 min_vruntime = vruntime; 594 595 return min_vruntime; 596 } 597 598 static inline bool entity_before(const struct sched_entity *a, 599 const struct sched_entity *b) 600 { 601 return (s64)(a->vruntime - b->vruntime) < 0; 602 } 603 604 #define __node_2_se(node) \ 605 rb_entry((node), struct sched_entity, run_node) 606 607 static void update_min_vruntime(struct cfs_rq *cfs_rq) 608 { 609 struct sched_entity *curr = cfs_rq->curr; 610 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 611 612 u64 vruntime = cfs_rq->min_vruntime; 613 614 if (curr) { 615 if (curr->on_rq) 616 vruntime = curr->vruntime; 617 else 618 curr = NULL; 619 } 620 621 if (leftmost) { /* non-empty tree */ 622 struct sched_entity *se = __node_2_se(leftmost); 623 624 if (!curr) 625 vruntime = se->vruntime; 626 else 627 vruntime = min_vruntime(vruntime, se->vruntime); 628 } 629 630 /* ensure we never gain time by being placed backwards. */ 631 u64_u32_store(cfs_rq->min_vruntime, 632 max_vruntime(cfs_rq->min_vruntime, vruntime)); 633 } 634 635 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 636 { 637 return entity_before(__node_2_se(a), __node_2_se(b)); 638 } 639 640 /* 641 * Enqueue an entity into the rb-tree: 642 */ 643 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 644 { 645 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 646 } 647 648 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 649 { 650 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 651 } 652 653 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 654 { 655 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 656 657 if (!left) 658 return NULL; 659 660 return __node_2_se(left); 661 } 662 663 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 664 { 665 struct rb_node *next = rb_next(&se->run_node); 666 667 if (!next) 668 return NULL; 669 670 return __node_2_se(next); 671 } 672 673 #ifdef CONFIG_SCHED_DEBUG 674 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 675 { 676 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 677 678 if (!last) 679 return NULL; 680 681 return __node_2_se(last); 682 } 683 684 /************************************************************** 685 * Scheduling class statistics methods: 686 */ 687 688 int sched_update_scaling(void) 689 { 690 unsigned int factor = get_update_sysctl_factor(); 691 692 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 693 sysctl_sched_min_granularity); 694 695 #define WRT_SYSCTL(name) \ 696 (normalized_sysctl_##name = sysctl_##name / (factor)) 697 WRT_SYSCTL(sched_min_granularity); 698 WRT_SYSCTL(sched_latency); 699 WRT_SYSCTL(sched_wakeup_granularity); 700 #undef WRT_SYSCTL 701 702 return 0; 703 } 704 #endif 705 706 /* 707 * delta /= w 708 */ 709 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 710 { 711 if (unlikely(se->load.weight != NICE_0_LOAD)) 712 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 713 714 return delta; 715 } 716 717 /* 718 * The idea is to set a period in which each task runs once. 719 * 720 * When there are too many tasks (sched_nr_latency) we have to stretch 721 * this period because otherwise the slices get too small. 722 * 723 * p = (nr <= nl) ? l : l*nr/nl 724 */ 725 static u64 __sched_period(unsigned long nr_running) 726 { 727 if (unlikely(nr_running > sched_nr_latency)) 728 return nr_running * sysctl_sched_min_granularity; 729 else 730 return sysctl_sched_latency; 731 } 732 733 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 734 735 /* 736 * We calculate the wall-time slice from the period by taking a part 737 * proportional to the weight. 738 * 739 * s = p*P[w/rw] 740 */ 741 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 742 { 743 unsigned int nr_running = cfs_rq->nr_running; 744 struct sched_entity *init_se = se; 745 unsigned int min_gran; 746 u64 slice; 747 748 if (sched_feat(ALT_PERIOD)) 749 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 750 751 slice = __sched_period(nr_running + !se->on_rq); 752 753 for_each_sched_entity(se) { 754 struct load_weight *load; 755 struct load_weight lw; 756 struct cfs_rq *qcfs_rq; 757 758 qcfs_rq = cfs_rq_of(se); 759 load = &qcfs_rq->load; 760 761 if (unlikely(!se->on_rq)) { 762 lw = qcfs_rq->load; 763 764 update_load_add(&lw, se->load.weight); 765 load = &lw; 766 } 767 slice = __calc_delta(slice, se->load.weight, load); 768 } 769 770 if (sched_feat(BASE_SLICE)) { 771 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 772 min_gran = sysctl_sched_idle_min_granularity; 773 else 774 min_gran = sysctl_sched_min_granularity; 775 776 slice = max_t(u64, slice, min_gran); 777 } 778 779 return slice; 780 } 781 782 /* 783 * We calculate the vruntime slice of a to-be-inserted task. 784 * 785 * vs = s/w 786 */ 787 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 788 { 789 return calc_delta_fair(sched_slice(cfs_rq, se), se); 790 } 791 792 #include "pelt.h" 793 #ifdef CONFIG_SMP 794 795 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 796 static unsigned long task_h_load(struct task_struct *p); 797 static unsigned long capacity_of(int cpu); 798 799 /* Give new sched_entity start runnable values to heavy its load in infant time */ 800 void init_entity_runnable_average(struct sched_entity *se) 801 { 802 struct sched_avg *sa = &se->avg; 803 804 memset(sa, 0, sizeof(*sa)); 805 806 /* 807 * Tasks are initialized with full load to be seen as heavy tasks until 808 * they get a chance to stabilize to their real load level. 809 * Group entities are initialized with zero load to reflect the fact that 810 * nothing has been attached to the task group yet. 811 */ 812 if (entity_is_task(se)) 813 sa->load_avg = scale_load_down(se->load.weight); 814 815 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 816 } 817 818 /* 819 * With new tasks being created, their initial util_avgs are extrapolated 820 * based on the cfs_rq's current util_avg: 821 * 822 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 823 * 824 * However, in many cases, the above util_avg does not give a desired 825 * value. Moreover, the sum of the util_avgs may be divergent, such 826 * as when the series is a harmonic series. 827 * 828 * To solve this problem, we also cap the util_avg of successive tasks to 829 * only 1/2 of the left utilization budget: 830 * 831 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 832 * 833 * where n denotes the nth task and cpu_scale the CPU capacity. 834 * 835 * For example, for a CPU with 1024 of capacity, a simplest series from 836 * the beginning would be like: 837 * 838 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 839 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 840 * 841 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 842 * if util_avg > util_avg_cap. 843 */ 844 void post_init_entity_util_avg(struct task_struct *p) 845 { 846 struct sched_entity *se = &p->se; 847 struct cfs_rq *cfs_rq = cfs_rq_of(se); 848 struct sched_avg *sa = &se->avg; 849 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 850 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 851 852 if (p->sched_class != &fair_sched_class) { 853 /* 854 * For !fair tasks do: 855 * 856 update_cfs_rq_load_avg(now, cfs_rq); 857 attach_entity_load_avg(cfs_rq, se); 858 switched_from_fair(rq, p); 859 * 860 * such that the next switched_to_fair() has the 861 * expected state. 862 */ 863 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 864 return; 865 } 866 867 if (cap > 0) { 868 if (cfs_rq->avg.util_avg != 0) { 869 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 870 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 871 872 if (sa->util_avg > cap) 873 sa->util_avg = cap; 874 } else { 875 sa->util_avg = cap; 876 } 877 } 878 879 sa->runnable_avg = sa->util_avg; 880 } 881 882 #else /* !CONFIG_SMP */ 883 void init_entity_runnable_average(struct sched_entity *se) 884 { 885 } 886 void post_init_entity_util_avg(struct task_struct *p) 887 { 888 } 889 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 890 { 891 } 892 #endif /* CONFIG_SMP */ 893 894 /* 895 * Update the current task's runtime statistics. 896 */ 897 static void update_curr(struct cfs_rq *cfs_rq) 898 { 899 struct sched_entity *curr = cfs_rq->curr; 900 u64 now = rq_clock_task(rq_of(cfs_rq)); 901 u64 delta_exec; 902 903 if (unlikely(!curr)) 904 return; 905 906 delta_exec = now - curr->exec_start; 907 if (unlikely((s64)delta_exec <= 0)) 908 return; 909 910 curr->exec_start = now; 911 912 if (schedstat_enabled()) { 913 struct sched_statistics *stats; 914 915 stats = __schedstats_from_se(curr); 916 __schedstat_set(stats->exec_max, 917 max(delta_exec, stats->exec_max)); 918 } 919 920 curr->sum_exec_runtime += delta_exec; 921 schedstat_add(cfs_rq->exec_clock, delta_exec); 922 923 curr->vruntime += calc_delta_fair(delta_exec, curr); 924 update_min_vruntime(cfs_rq); 925 926 if (entity_is_task(curr)) { 927 struct task_struct *curtask = task_of(curr); 928 929 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 930 cgroup_account_cputime(curtask, delta_exec); 931 account_group_exec_runtime(curtask, delta_exec); 932 } 933 934 account_cfs_rq_runtime(cfs_rq, delta_exec); 935 } 936 937 static void update_curr_fair(struct rq *rq) 938 { 939 update_curr(cfs_rq_of(&rq->curr->se)); 940 } 941 942 static inline void 943 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 944 { 945 struct sched_statistics *stats; 946 struct task_struct *p = NULL; 947 948 if (!schedstat_enabled()) 949 return; 950 951 stats = __schedstats_from_se(se); 952 953 if (entity_is_task(se)) 954 p = task_of(se); 955 956 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 957 } 958 959 static inline void 960 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 961 { 962 struct sched_statistics *stats; 963 struct task_struct *p = NULL; 964 965 if (!schedstat_enabled()) 966 return; 967 968 stats = __schedstats_from_se(se); 969 970 /* 971 * When the sched_schedstat changes from 0 to 1, some sched se 972 * maybe already in the runqueue, the se->statistics.wait_start 973 * will be 0.So it will let the delta wrong. We need to avoid this 974 * scenario. 975 */ 976 if (unlikely(!schedstat_val(stats->wait_start))) 977 return; 978 979 if (entity_is_task(se)) 980 p = task_of(se); 981 982 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 983 } 984 985 static inline void 986 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 987 { 988 struct sched_statistics *stats; 989 struct task_struct *tsk = NULL; 990 991 if (!schedstat_enabled()) 992 return; 993 994 stats = __schedstats_from_se(se); 995 996 if (entity_is_task(se)) 997 tsk = task_of(se); 998 999 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start_fair(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end_fair(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 unsigned int state; 1039 1040 /* XXX racy against TTWU */ 1041 state = READ_ONCE(tsk->__state); 1042 if (state & TASK_INTERRUPTIBLE) 1043 __schedstat_set(tsk->stats.sleep_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 if (state & TASK_UNINTERRUPTIBLE) 1046 __schedstat_set(tsk->stats.block_start, 1047 rq_clock(rq_of(cfs_rq))); 1048 } 1049 } 1050 1051 /* 1052 * We are picking a new current task - update its stats: 1053 */ 1054 static inline void 1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1056 { 1057 /* 1058 * We are starting a new run period: 1059 */ 1060 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1061 } 1062 1063 /************************************************** 1064 * Scheduling class queueing methods: 1065 */ 1066 1067 #ifdef CONFIG_NUMA 1068 #define NUMA_IMBALANCE_MIN 2 1069 1070 static inline long 1071 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1072 { 1073 /* 1074 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1075 * threshold. Above this threshold, individual tasks may be contending 1076 * for both memory bandwidth and any shared HT resources. This is an 1077 * approximation as the number of running tasks may not be related to 1078 * the number of busy CPUs due to sched_setaffinity. 1079 */ 1080 if (dst_running > imb_numa_nr) 1081 return imbalance; 1082 1083 /* 1084 * Allow a small imbalance based on a simple pair of communicating 1085 * tasks that remain local when the destination is lightly loaded. 1086 */ 1087 if (imbalance <= NUMA_IMBALANCE_MIN) 1088 return 0; 1089 1090 return imbalance; 1091 } 1092 #endif /* CONFIG_NUMA */ 1093 1094 #ifdef CONFIG_NUMA_BALANCING 1095 /* 1096 * Approximate time to scan a full NUMA task in ms. The task scan period is 1097 * calculated based on the tasks virtual memory size and 1098 * numa_balancing_scan_size. 1099 */ 1100 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1101 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1102 1103 /* Portion of address space to scan in MB */ 1104 unsigned int sysctl_numa_balancing_scan_size = 256; 1105 1106 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1107 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1108 1109 /* The page with hint page fault latency < threshold in ms is considered hot */ 1110 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1111 1112 struct numa_group { 1113 refcount_t refcount; 1114 1115 spinlock_t lock; /* nr_tasks, tasks */ 1116 int nr_tasks; 1117 pid_t gid; 1118 int active_nodes; 1119 1120 struct rcu_head rcu; 1121 unsigned long total_faults; 1122 unsigned long max_faults_cpu; 1123 /* 1124 * faults[] array is split into two regions: faults_mem and faults_cpu. 1125 * 1126 * Faults_cpu is used to decide whether memory should move 1127 * towards the CPU. As a consequence, these stats are weighted 1128 * more by CPU use than by memory faults. 1129 */ 1130 unsigned long faults[]; 1131 }; 1132 1133 /* 1134 * For functions that can be called in multiple contexts that permit reading 1135 * ->numa_group (see struct task_struct for locking rules). 1136 */ 1137 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1138 { 1139 return rcu_dereference_check(p->numa_group, p == current || 1140 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1141 } 1142 1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1144 { 1145 return rcu_dereference_protected(p->numa_group, p == current); 1146 } 1147 1148 static inline unsigned long group_faults_priv(struct numa_group *ng); 1149 static inline unsigned long group_faults_shared(struct numa_group *ng); 1150 1151 static unsigned int task_nr_scan_windows(struct task_struct *p) 1152 { 1153 unsigned long rss = 0; 1154 unsigned long nr_scan_pages; 1155 1156 /* 1157 * Calculations based on RSS as non-present and empty pages are skipped 1158 * by the PTE scanner and NUMA hinting faults should be trapped based 1159 * on resident pages 1160 */ 1161 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1162 rss = get_mm_rss(p->mm); 1163 if (!rss) 1164 rss = nr_scan_pages; 1165 1166 rss = round_up(rss, nr_scan_pages); 1167 return rss / nr_scan_pages; 1168 } 1169 1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1171 #define MAX_SCAN_WINDOW 2560 1172 1173 static unsigned int task_scan_min(struct task_struct *p) 1174 { 1175 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1176 unsigned int scan, floor; 1177 unsigned int windows = 1; 1178 1179 if (scan_size < MAX_SCAN_WINDOW) 1180 windows = MAX_SCAN_WINDOW / scan_size; 1181 floor = 1000 / windows; 1182 1183 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1184 return max_t(unsigned int, floor, scan); 1185 } 1186 1187 static unsigned int task_scan_start(struct task_struct *p) 1188 { 1189 unsigned long smin = task_scan_min(p); 1190 unsigned long period = smin; 1191 struct numa_group *ng; 1192 1193 /* Scale the maximum scan period with the amount of shared memory. */ 1194 rcu_read_lock(); 1195 ng = rcu_dereference(p->numa_group); 1196 if (ng) { 1197 unsigned long shared = group_faults_shared(ng); 1198 unsigned long private = group_faults_priv(ng); 1199 1200 period *= refcount_read(&ng->refcount); 1201 period *= shared + 1; 1202 period /= private + shared + 1; 1203 } 1204 rcu_read_unlock(); 1205 1206 return max(smin, period); 1207 } 1208 1209 static unsigned int task_scan_max(struct task_struct *p) 1210 { 1211 unsigned long smin = task_scan_min(p); 1212 unsigned long smax; 1213 struct numa_group *ng; 1214 1215 /* Watch for min being lower than max due to floor calculations */ 1216 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1217 1218 /* Scale the maximum scan period with the amount of shared memory. */ 1219 ng = deref_curr_numa_group(p); 1220 if (ng) { 1221 unsigned long shared = group_faults_shared(ng); 1222 unsigned long private = group_faults_priv(ng); 1223 unsigned long period = smax; 1224 1225 period *= refcount_read(&ng->refcount); 1226 period *= shared + 1; 1227 period /= private + shared + 1; 1228 1229 smax = max(smax, period); 1230 } 1231 1232 return max(smin, smax); 1233 } 1234 1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1236 { 1237 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1238 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1239 } 1240 1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1242 { 1243 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1244 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1245 } 1246 1247 /* Shared or private faults. */ 1248 #define NR_NUMA_HINT_FAULT_TYPES 2 1249 1250 /* Memory and CPU locality */ 1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1252 1253 /* Averaged statistics, and temporary buffers. */ 1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1255 1256 pid_t task_numa_group_id(struct task_struct *p) 1257 { 1258 struct numa_group *ng; 1259 pid_t gid = 0; 1260 1261 rcu_read_lock(); 1262 ng = rcu_dereference(p->numa_group); 1263 if (ng) 1264 gid = ng->gid; 1265 rcu_read_unlock(); 1266 1267 return gid; 1268 } 1269 1270 /* 1271 * The averaged statistics, shared & private, memory & CPU, 1272 * occupy the first half of the array. The second half of the 1273 * array is for current counters, which are averaged into the 1274 * first set by task_numa_placement. 1275 */ 1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1277 { 1278 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1279 } 1280 1281 static inline unsigned long task_faults(struct task_struct *p, int nid) 1282 { 1283 if (!p->numa_faults) 1284 return 0; 1285 1286 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1287 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1288 } 1289 1290 static inline unsigned long group_faults(struct task_struct *p, int nid) 1291 { 1292 struct numa_group *ng = deref_task_numa_group(p); 1293 1294 if (!ng) 1295 return 0; 1296 1297 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1298 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1299 } 1300 1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1302 { 1303 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1304 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1305 } 1306 1307 static inline unsigned long group_faults_priv(struct numa_group *ng) 1308 { 1309 unsigned long faults = 0; 1310 int node; 1311 1312 for_each_online_node(node) { 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1314 } 1315 1316 return faults; 1317 } 1318 1319 static inline unsigned long group_faults_shared(struct numa_group *ng) 1320 { 1321 unsigned long faults = 0; 1322 int node; 1323 1324 for_each_online_node(node) { 1325 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1326 } 1327 1328 return faults; 1329 } 1330 1331 /* 1332 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1333 * considered part of a numa group's pseudo-interleaving set. Migrations 1334 * between these nodes are slowed down, to allow things to settle down. 1335 */ 1336 #define ACTIVE_NODE_FRACTION 3 1337 1338 static bool numa_is_active_node(int nid, struct numa_group *ng) 1339 { 1340 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1341 } 1342 1343 /* Handle placement on systems where not all nodes are directly connected. */ 1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1345 int lim_dist, bool task) 1346 { 1347 unsigned long score = 0; 1348 int node, max_dist; 1349 1350 /* 1351 * All nodes are directly connected, and the same distance 1352 * from each other. No need for fancy placement algorithms. 1353 */ 1354 if (sched_numa_topology_type == NUMA_DIRECT) 1355 return 0; 1356 1357 /* sched_max_numa_distance may be changed in parallel. */ 1358 max_dist = READ_ONCE(sched_max_numa_distance); 1359 /* 1360 * This code is called for each node, introducing N^2 complexity, 1361 * which should be ok given the number of nodes rarely exceeds 8. 1362 */ 1363 for_each_online_node(node) { 1364 unsigned long faults; 1365 int dist = node_distance(nid, node); 1366 1367 /* 1368 * The furthest away nodes in the system are not interesting 1369 * for placement; nid was already counted. 1370 */ 1371 if (dist >= max_dist || node == nid) 1372 continue; 1373 1374 /* 1375 * On systems with a backplane NUMA topology, compare groups 1376 * of nodes, and move tasks towards the group with the most 1377 * memory accesses. When comparing two nodes at distance 1378 * "hoplimit", only nodes closer by than "hoplimit" are part 1379 * of each group. Skip other nodes. 1380 */ 1381 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1382 continue; 1383 1384 /* Add up the faults from nearby nodes. */ 1385 if (task) 1386 faults = task_faults(p, node); 1387 else 1388 faults = group_faults(p, node); 1389 1390 /* 1391 * On systems with a glueless mesh NUMA topology, there are 1392 * no fixed "groups of nodes". Instead, nodes that are not 1393 * directly connected bounce traffic through intermediate 1394 * nodes; a numa_group can occupy any set of nodes. 1395 * The further away a node is, the less the faults count. 1396 * This seems to result in good task placement. 1397 */ 1398 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1399 faults *= (max_dist - dist); 1400 faults /= (max_dist - LOCAL_DISTANCE); 1401 } 1402 1403 score += faults; 1404 } 1405 1406 return score; 1407 } 1408 1409 /* 1410 * These return the fraction of accesses done by a particular task, or 1411 * task group, on a particular numa node. The group weight is given a 1412 * larger multiplier, in order to group tasks together that are almost 1413 * evenly spread out between numa nodes. 1414 */ 1415 static inline unsigned long task_weight(struct task_struct *p, int nid, 1416 int dist) 1417 { 1418 unsigned long faults, total_faults; 1419 1420 if (!p->numa_faults) 1421 return 0; 1422 1423 total_faults = p->total_numa_faults; 1424 1425 if (!total_faults) 1426 return 0; 1427 1428 faults = task_faults(p, nid); 1429 faults += score_nearby_nodes(p, nid, dist, true); 1430 1431 return 1000 * faults / total_faults; 1432 } 1433 1434 static inline unsigned long group_weight(struct task_struct *p, int nid, 1435 int dist) 1436 { 1437 struct numa_group *ng = deref_task_numa_group(p); 1438 unsigned long faults, total_faults; 1439 1440 if (!ng) 1441 return 0; 1442 1443 total_faults = ng->total_faults; 1444 1445 if (!total_faults) 1446 return 0; 1447 1448 faults = group_faults(p, nid); 1449 faults += score_nearby_nodes(p, nid, dist, false); 1450 1451 return 1000 * faults / total_faults; 1452 } 1453 1454 /* 1455 * If memory tiering mode is enabled, cpupid of slow memory page is 1456 * used to record scan time instead of CPU and PID. When tiering mode 1457 * is disabled at run time, the scan time (in cpupid) will be 1458 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1459 * access out of array bound. 1460 */ 1461 static inline bool cpupid_valid(int cpupid) 1462 { 1463 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1464 } 1465 1466 /* 1467 * For memory tiering mode, if there are enough free pages (more than 1468 * enough watermark defined here) in fast memory node, to take full 1469 * advantage of fast memory capacity, all recently accessed slow 1470 * memory pages will be migrated to fast memory node without 1471 * considering hot threshold. 1472 */ 1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1474 { 1475 int z; 1476 unsigned long enough_wmark; 1477 1478 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1479 pgdat->node_present_pages >> 4); 1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1481 struct zone *zone = pgdat->node_zones + z; 1482 1483 if (!populated_zone(zone)) 1484 continue; 1485 1486 if (zone_watermark_ok(zone, 0, 1487 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1488 ZONE_MOVABLE, 0)) 1489 return true; 1490 } 1491 return false; 1492 } 1493 1494 /* 1495 * For memory tiering mode, when page tables are scanned, the scan 1496 * time will be recorded in struct page in addition to make page 1497 * PROT_NONE for slow memory page. So when the page is accessed, in 1498 * hint page fault handler, the hint page fault latency is calculated 1499 * via, 1500 * 1501 * hint page fault latency = hint page fault time - scan time 1502 * 1503 * The smaller the hint page fault latency, the higher the possibility 1504 * for the page to be hot. 1505 */ 1506 static int numa_hint_fault_latency(struct page *page) 1507 { 1508 int last_time, time; 1509 1510 time = jiffies_to_msecs(jiffies); 1511 last_time = xchg_page_access_time(page, time); 1512 1513 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1514 } 1515 1516 /* 1517 * For memory tiering mode, too high promotion/demotion throughput may 1518 * hurt application latency. So we provide a mechanism to rate limit 1519 * the number of pages that are tried to be promoted. 1520 */ 1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1522 unsigned long rate_limit, int nr) 1523 { 1524 unsigned long nr_cand; 1525 unsigned int now, start; 1526 1527 now = jiffies_to_msecs(jiffies); 1528 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1529 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1530 start = pgdat->nbp_rl_start; 1531 if (now - start > MSEC_PER_SEC && 1532 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1533 pgdat->nbp_rl_nr_cand = nr_cand; 1534 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1535 return true; 1536 return false; 1537 } 1538 1539 #define NUMA_MIGRATION_ADJUST_STEPS 16 1540 1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1542 unsigned long rate_limit, 1543 unsigned int ref_th) 1544 { 1545 unsigned int now, start, th_period, unit_th, th; 1546 unsigned long nr_cand, ref_cand, diff_cand; 1547 1548 now = jiffies_to_msecs(jiffies); 1549 th_period = sysctl_numa_balancing_scan_period_max; 1550 start = pgdat->nbp_th_start; 1551 if (now - start > th_period && 1552 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1553 ref_cand = rate_limit * 1554 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1555 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1556 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1557 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1558 th = pgdat->nbp_threshold ? : ref_th; 1559 if (diff_cand > ref_cand * 11 / 10) 1560 th = max(th - unit_th, unit_th); 1561 else if (diff_cand < ref_cand * 9 / 10) 1562 th = min(th + unit_th, ref_th * 2); 1563 pgdat->nbp_th_nr_cand = nr_cand; 1564 pgdat->nbp_threshold = th; 1565 } 1566 } 1567 1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1569 int src_nid, int dst_cpu) 1570 { 1571 struct numa_group *ng = deref_curr_numa_group(p); 1572 int dst_nid = cpu_to_node(dst_cpu); 1573 int last_cpupid, this_cpupid; 1574 1575 /* 1576 * The pages in slow memory node should be migrated according 1577 * to hot/cold instead of private/shared. 1578 */ 1579 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1580 !node_is_toptier(src_nid)) { 1581 struct pglist_data *pgdat; 1582 unsigned long rate_limit; 1583 unsigned int latency, th, def_th; 1584 1585 pgdat = NODE_DATA(dst_nid); 1586 if (pgdat_free_space_enough(pgdat)) { 1587 /* workload changed, reset hot threshold */ 1588 pgdat->nbp_threshold = 0; 1589 return true; 1590 } 1591 1592 def_th = sysctl_numa_balancing_hot_threshold; 1593 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1594 (20 - PAGE_SHIFT); 1595 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1596 1597 th = pgdat->nbp_threshold ? : def_th; 1598 latency = numa_hint_fault_latency(page); 1599 if (latency >= th) 1600 return false; 1601 1602 return !numa_promotion_rate_limit(pgdat, rate_limit, 1603 thp_nr_pages(page)); 1604 } 1605 1606 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1607 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1608 1609 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1610 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1611 return false; 1612 1613 /* 1614 * Allow first faults or private faults to migrate immediately early in 1615 * the lifetime of a task. The magic number 4 is based on waiting for 1616 * two full passes of the "multi-stage node selection" test that is 1617 * executed below. 1618 */ 1619 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1620 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1621 return true; 1622 1623 /* 1624 * Multi-stage node selection is used in conjunction with a periodic 1625 * migration fault to build a temporal task<->page relation. By using 1626 * a two-stage filter we remove short/unlikely relations. 1627 * 1628 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1629 * a task's usage of a particular page (n_p) per total usage of this 1630 * page (n_t) (in a given time-span) to a probability. 1631 * 1632 * Our periodic faults will sample this probability and getting the 1633 * same result twice in a row, given these samples are fully 1634 * independent, is then given by P(n)^2, provided our sample period 1635 * is sufficiently short compared to the usage pattern. 1636 * 1637 * This quadric squishes small probabilities, making it less likely we 1638 * act on an unlikely task<->page relation. 1639 */ 1640 if (!cpupid_pid_unset(last_cpupid) && 1641 cpupid_to_nid(last_cpupid) != dst_nid) 1642 return false; 1643 1644 /* Always allow migrate on private faults */ 1645 if (cpupid_match_pid(p, last_cpupid)) 1646 return true; 1647 1648 /* A shared fault, but p->numa_group has not been set up yet. */ 1649 if (!ng) 1650 return true; 1651 1652 /* 1653 * Destination node is much more heavily used than the source 1654 * node? Allow migration. 1655 */ 1656 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1657 ACTIVE_NODE_FRACTION) 1658 return true; 1659 1660 /* 1661 * Distribute memory according to CPU & memory use on each node, 1662 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1663 * 1664 * faults_cpu(dst) 3 faults_cpu(src) 1665 * --------------- * - > --------------- 1666 * faults_mem(dst) 4 faults_mem(src) 1667 */ 1668 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1669 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1670 } 1671 1672 /* 1673 * 'numa_type' describes the node at the moment of load balancing. 1674 */ 1675 enum numa_type { 1676 /* The node has spare capacity that can be used to run more tasks. */ 1677 node_has_spare = 0, 1678 /* 1679 * The node is fully used and the tasks don't compete for more CPU 1680 * cycles. Nevertheless, some tasks might wait before running. 1681 */ 1682 node_fully_busy, 1683 /* 1684 * The node is overloaded and can't provide expected CPU cycles to all 1685 * tasks. 1686 */ 1687 node_overloaded 1688 }; 1689 1690 /* Cached statistics for all CPUs within a node */ 1691 struct numa_stats { 1692 unsigned long load; 1693 unsigned long runnable; 1694 unsigned long util; 1695 /* Total compute capacity of CPUs on a node */ 1696 unsigned long compute_capacity; 1697 unsigned int nr_running; 1698 unsigned int weight; 1699 enum numa_type node_type; 1700 int idle_cpu; 1701 }; 1702 1703 static inline bool is_core_idle(int cpu) 1704 { 1705 #ifdef CONFIG_SCHED_SMT 1706 int sibling; 1707 1708 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1709 if (cpu == sibling) 1710 continue; 1711 1712 if (!idle_cpu(sibling)) 1713 return false; 1714 } 1715 #endif 1716 1717 return true; 1718 } 1719 1720 struct task_numa_env { 1721 struct task_struct *p; 1722 1723 int src_cpu, src_nid; 1724 int dst_cpu, dst_nid; 1725 int imb_numa_nr; 1726 1727 struct numa_stats src_stats, dst_stats; 1728 1729 int imbalance_pct; 1730 int dist; 1731 1732 struct task_struct *best_task; 1733 long best_imp; 1734 int best_cpu; 1735 }; 1736 1737 static unsigned long cpu_load(struct rq *rq); 1738 static unsigned long cpu_runnable(struct rq *rq); 1739 1740 static inline enum 1741 numa_type numa_classify(unsigned int imbalance_pct, 1742 struct numa_stats *ns) 1743 { 1744 if ((ns->nr_running > ns->weight) && 1745 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1746 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1747 return node_overloaded; 1748 1749 if ((ns->nr_running < ns->weight) || 1750 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1751 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1752 return node_has_spare; 1753 1754 return node_fully_busy; 1755 } 1756 1757 #ifdef CONFIG_SCHED_SMT 1758 /* Forward declarations of select_idle_sibling helpers */ 1759 static inline bool test_idle_cores(int cpu); 1760 static inline int numa_idle_core(int idle_core, int cpu) 1761 { 1762 if (!static_branch_likely(&sched_smt_present) || 1763 idle_core >= 0 || !test_idle_cores(cpu)) 1764 return idle_core; 1765 1766 /* 1767 * Prefer cores instead of packing HT siblings 1768 * and triggering future load balancing. 1769 */ 1770 if (is_core_idle(cpu)) 1771 idle_core = cpu; 1772 1773 return idle_core; 1774 } 1775 #else 1776 static inline int numa_idle_core(int idle_core, int cpu) 1777 { 1778 return idle_core; 1779 } 1780 #endif 1781 1782 /* 1783 * Gather all necessary information to make NUMA balancing placement 1784 * decisions that are compatible with standard load balancer. This 1785 * borrows code and logic from update_sg_lb_stats but sharing a 1786 * common implementation is impractical. 1787 */ 1788 static void update_numa_stats(struct task_numa_env *env, 1789 struct numa_stats *ns, int nid, 1790 bool find_idle) 1791 { 1792 int cpu, idle_core = -1; 1793 1794 memset(ns, 0, sizeof(*ns)); 1795 ns->idle_cpu = -1; 1796 1797 rcu_read_lock(); 1798 for_each_cpu(cpu, cpumask_of_node(nid)) { 1799 struct rq *rq = cpu_rq(cpu); 1800 1801 ns->load += cpu_load(rq); 1802 ns->runnable += cpu_runnable(rq); 1803 ns->util += cpu_util_cfs(cpu); 1804 ns->nr_running += rq->cfs.h_nr_running; 1805 ns->compute_capacity += capacity_of(cpu); 1806 1807 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 1808 if (READ_ONCE(rq->numa_migrate_on) || 1809 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1810 continue; 1811 1812 if (ns->idle_cpu == -1) 1813 ns->idle_cpu = cpu; 1814 1815 idle_core = numa_idle_core(idle_core, cpu); 1816 } 1817 } 1818 rcu_read_unlock(); 1819 1820 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1821 1822 ns->node_type = numa_classify(env->imbalance_pct, ns); 1823 1824 if (idle_core >= 0) 1825 ns->idle_cpu = idle_core; 1826 } 1827 1828 static void task_numa_assign(struct task_numa_env *env, 1829 struct task_struct *p, long imp) 1830 { 1831 struct rq *rq = cpu_rq(env->dst_cpu); 1832 1833 /* Check if run-queue part of active NUMA balance. */ 1834 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1835 int cpu; 1836 int start = env->dst_cpu; 1837 1838 /* Find alternative idle CPU. */ 1839 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 1840 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1841 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1842 continue; 1843 } 1844 1845 env->dst_cpu = cpu; 1846 rq = cpu_rq(env->dst_cpu); 1847 if (!xchg(&rq->numa_migrate_on, 1)) 1848 goto assign; 1849 } 1850 1851 /* Failed to find an alternative idle CPU */ 1852 return; 1853 } 1854 1855 assign: 1856 /* 1857 * Clear previous best_cpu/rq numa-migrate flag, since task now 1858 * found a better CPU to move/swap. 1859 */ 1860 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1861 rq = cpu_rq(env->best_cpu); 1862 WRITE_ONCE(rq->numa_migrate_on, 0); 1863 } 1864 1865 if (env->best_task) 1866 put_task_struct(env->best_task); 1867 if (p) 1868 get_task_struct(p); 1869 1870 env->best_task = p; 1871 env->best_imp = imp; 1872 env->best_cpu = env->dst_cpu; 1873 } 1874 1875 static bool load_too_imbalanced(long src_load, long dst_load, 1876 struct task_numa_env *env) 1877 { 1878 long imb, old_imb; 1879 long orig_src_load, orig_dst_load; 1880 long src_capacity, dst_capacity; 1881 1882 /* 1883 * The load is corrected for the CPU capacity available on each node. 1884 * 1885 * src_load dst_load 1886 * ------------ vs --------- 1887 * src_capacity dst_capacity 1888 */ 1889 src_capacity = env->src_stats.compute_capacity; 1890 dst_capacity = env->dst_stats.compute_capacity; 1891 1892 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1893 1894 orig_src_load = env->src_stats.load; 1895 orig_dst_load = env->dst_stats.load; 1896 1897 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1898 1899 /* Would this change make things worse? */ 1900 return (imb > old_imb); 1901 } 1902 1903 /* 1904 * Maximum NUMA importance can be 1998 (2*999); 1905 * SMALLIMP @ 30 would be close to 1998/64. 1906 * Used to deter task migration. 1907 */ 1908 #define SMALLIMP 30 1909 1910 /* 1911 * This checks if the overall compute and NUMA accesses of the system would 1912 * be improved if the source tasks was migrated to the target dst_cpu taking 1913 * into account that it might be best if task running on the dst_cpu should 1914 * be exchanged with the source task 1915 */ 1916 static bool task_numa_compare(struct task_numa_env *env, 1917 long taskimp, long groupimp, bool maymove) 1918 { 1919 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1920 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1921 long imp = p_ng ? groupimp : taskimp; 1922 struct task_struct *cur; 1923 long src_load, dst_load; 1924 int dist = env->dist; 1925 long moveimp = imp; 1926 long load; 1927 bool stopsearch = false; 1928 1929 if (READ_ONCE(dst_rq->numa_migrate_on)) 1930 return false; 1931 1932 rcu_read_lock(); 1933 cur = rcu_dereference(dst_rq->curr); 1934 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1935 cur = NULL; 1936 1937 /* 1938 * Because we have preemption enabled we can get migrated around and 1939 * end try selecting ourselves (current == env->p) as a swap candidate. 1940 */ 1941 if (cur == env->p) { 1942 stopsearch = true; 1943 goto unlock; 1944 } 1945 1946 if (!cur) { 1947 if (maymove && moveimp >= env->best_imp) 1948 goto assign; 1949 else 1950 goto unlock; 1951 } 1952 1953 /* Skip this swap candidate if cannot move to the source cpu. */ 1954 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1955 goto unlock; 1956 1957 /* 1958 * Skip this swap candidate if it is not moving to its preferred 1959 * node and the best task is. 1960 */ 1961 if (env->best_task && 1962 env->best_task->numa_preferred_nid == env->src_nid && 1963 cur->numa_preferred_nid != env->src_nid) { 1964 goto unlock; 1965 } 1966 1967 /* 1968 * "imp" is the fault differential for the source task between the 1969 * source and destination node. Calculate the total differential for 1970 * the source task and potential destination task. The more negative 1971 * the value is, the more remote accesses that would be expected to 1972 * be incurred if the tasks were swapped. 1973 * 1974 * If dst and source tasks are in the same NUMA group, or not 1975 * in any group then look only at task weights. 1976 */ 1977 cur_ng = rcu_dereference(cur->numa_group); 1978 if (cur_ng == p_ng) { 1979 /* 1980 * Do not swap within a group or between tasks that have 1981 * no group if there is spare capacity. Swapping does 1982 * not address the load imbalance and helps one task at 1983 * the cost of punishing another. 1984 */ 1985 if (env->dst_stats.node_type == node_has_spare) 1986 goto unlock; 1987 1988 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1989 task_weight(cur, env->dst_nid, dist); 1990 /* 1991 * Add some hysteresis to prevent swapping the 1992 * tasks within a group over tiny differences. 1993 */ 1994 if (cur_ng) 1995 imp -= imp / 16; 1996 } else { 1997 /* 1998 * Compare the group weights. If a task is all by itself 1999 * (not part of a group), use the task weight instead. 2000 */ 2001 if (cur_ng && p_ng) 2002 imp += group_weight(cur, env->src_nid, dist) - 2003 group_weight(cur, env->dst_nid, dist); 2004 else 2005 imp += task_weight(cur, env->src_nid, dist) - 2006 task_weight(cur, env->dst_nid, dist); 2007 } 2008 2009 /* Discourage picking a task already on its preferred node */ 2010 if (cur->numa_preferred_nid == env->dst_nid) 2011 imp -= imp / 16; 2012 2013 /* 2014 * Encourage picking a task that moves to its preferred node. 2015 * This potentially makes imp larger than it's maximum of 2016 * 1998 (see SMALLIMP and task_weight for why) but in this 2017 * case, it does not matter. 2018 */ 2019 if (cur->numa_preferred_nid == env->src_nid) 2020 imp += imp / 8; 2021 2022 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2023 imp = moveimp; 2024 cur = NULL; 2025 goto assign; 2026 } 2027 2028 /* 2029 * Prefer swapping with a task moving to its preferred node over a 2030 * task that is not. 2031 */ 2032 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2033 env->best_task->numa_preferred_nid != env->src_nid) { 2034 goto assign; 2035 } 2036 2037 /* 2038 * If the NUMA importance is less than SMALLIMP, 2039 * task migration might only result in ping pong 2040 * of tasks and also hurt performance due to cache 2041 * misses. 2042 */ 2043 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2044 goto unlock; 2045 2046 /* 2047 * In the overloaded case, try and keep the load balanced. 2048 */ 2049 load = task_h_load(env->p) - task_h_load(cur); 2050 if (!load) 2051 goto assign; 2052 2053 dst_load = env->dst_stats.load + load; 2054 src_load = env->src_stats.load - load; 2055 2056 if (load_too_imbalanced(src_load, dst_load, env)) 2057 goto unlock; 2058 2059 assign: 2060 /* Evaluate an idle CPU for a task numa move. */ 2061 if (!cur) { 2062 int cpu = env->dst_stats.idle_cpu; 2063 2064 /* Nothing cached so current CPU went idle since the search. */ 2065 if (cpu < 0) 2066 cpu = env->dst_cpu; 2067 2068 /* 2069 * If the CPU is no longer truly idle and the previous best CPU 2070 * is, keep using it. 2071 */ 2072 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2073 idle_cpu(env->best_cpu)) { 2074 cpu = env->best_cpu; 2075 } 2076 2077 env->dst_cpu = cpu; 2078 } 2079 2080 task_numa_assign(env, cur, imp); 2081 2082 /* 2083 * If a move to idle is allowed because there is capacity or load 2084 * balance improves then stop the search. While a better swap 2085 * candidate may exist, a search is not free. 2086 */ 2087 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2088 stopsearch = true; 2089 2090 /* 2091 * If a swap candidate must be identified and the current best task 2092 * moves its preferred node then stop the search. 2093 */ 2094 if (!maymove && env->best_task && 2095 env->best_task->numa_preferred_nid == env->src_nid) { 2096 stopsearch = true; 2097 } 2098 unlock: 2099 rcu_read_unlock(); 2100 2101 return stopsearch; 2102 } 2103 2104 static void task_numa_find_cpu(struct task_numa_env *env, 2105 long taskimp, long groupimp) 2106 { 2107 bool maymove = false; 2108 int cpu; 2109 2110 /* 2111 * If dst node has spare capacity, then check if there is an 2112 * imbalance that would be overruled by the load balancer. 2113 */ 2114 if (env->dst_stats.node_type == node_has_spare) { 2115 unsigned int imbalance; 2116 int src_running, dst_running; 2117 2118 /* 2119 * Would movement cause an imbalance? Note that if src has 2120 * more running tasks that the imbalance is ignored as the 2121 * move improves the imbalance from the perspective of the 2122 * CPU load balancer. 2123 * */ 2124 src_running = env->src_stats.nr_running - 1; 2125 dst_running = env->dst_stats.nr_running + 1; 2126 imbalance = max(0, dst_running - src_running); 2127 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2128 env->imb_numa_nr); 2129 2130 /* Use idle CPU if there is no imbalance */ 2131 if (!imbalance) { 2132 maymove = true; 2133 if (env->dst_stats.idle_cpu >= 0) { 2134 env->dst_cpu = env->dst_stats.idle_cpu; 2135 task_numa_assign(env, NULL, 0); 2136 return; 2137 } 2138 } 2139 } else { 2140 long src_load, dst_load, load; 2141 /* 2142 * If the improvement from just moving env->p direction is better 2143 * than swapping tasks around, check if a move is possible. 2144 */ 2145 load = task_h_load(env->p); 2146 dst_load = env->dst_stats.load + load; 2147 src_load = env->src_stats.load - load; 2148 maymove = !load_too_imbalanced(src_load, dst_load, env); 2149 } 2150 2151 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2152 /* Skip this CPU if the source task cannot migrate */ 2153 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2154 continue; 2155 2156 env->dst_cpu = cpu; 2157 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2158 break; 2159 } 2160 } 2161 2162 static int task_numa_migrate(struct task_struct *p) 2163 { 2164 struct task_numa_env env = { 2165 .p = p, 2166 2167 .src_cpu = task_cpu(p), 2168 .src_nid = task_node(p), 2169 2170 .imbalance_pct = 112, 2171 2172 .best_task = NULL, 2173 .best_imp = 0, 2174 .best_cpu = -1, 2175 }; 2176 unsigned long taskweight, groupweight; 2177 struct sched_domain *sd; 2178 long taskimp, groupimp; 2179 struct numa_group *ng; 2180 struct rq *best_rq; 2181 int nid, ret, dist; 2182 2183 /* 2184 * Pick the lowest SD_NUMA domain, as that would have the smallest 2185 * imbalance and would be the first to start moving tasks about. 2186 * 2187 * And we want to avoid any moving of tasks about, as that would create 2188 * random movement of tasks -- counter the numa conditions we're trying 2189 * to satisfy here. 2190 */ 2191 rcu_read_lock(); 2192 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2193 if (sd) { 2194 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2195 env.imb_numa_nr = sd->imb_numa_nr; 2196 } 2197 rcu_read_unlock(); 2198 2199 /* 2200 * Cpusets can break the scheduler domain tree into smaller 2201 * balance domains, some of which do not cross NUMA boundaries. 2202 * Tasks that are "trapped" in such domains cannot be migrated 2203 * elsewhere, so there is no point in (re)trying. 2204 */ 2205 if (unlikely(!sd)) { 2206 sched_setnuma(p, task_node(p)); 2207 return -EINVAL; 2208 } 2209 2210 env.dst_nid = p->numa_preferred_nid; 2211 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2212 taskweight = task_weight(p, env.src_nid, dist); 2213 groupweight = group_weight(p, env.src_nid, dist); 2214 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2215 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2216 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2217 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2218 2219 /* Try to find a spot on the preferred nid. */ 2220 task_numa_find_cpu(&env, taskimp, groupimp); 2221 2222 /* 2223 * Look at other nodes in these cases: 2224 * - there is no space available on the preferred_nid 2225 * - the task is part of a numa_group that is interleaved across 2226 * multiple NUMA nodes; in order to better consolidate the group, 2227 * we need to check other locations. 2228 */ 2229 ng = deref_curr_numa_group(p); 2230 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2231 for_each_node_state(nid, N_CPU) { 2232 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2233 continue; 2234 2235 dist = node_distance(env.src_nid, env.dst_nid); 2236 if (sched_numa_topology_type == NUMA_BACKPLANE && 2237 dist != env.dist) { 2238 taskweight = task_weight(p, env.src_nid, dist); 2239 groupweight = group_weight(p, env.src_nid, dist); 2240 } 2241 2242 /* Only consider nodes where both task and groups benefit */ 2243 taskimp = task_weight(p, nid, dist) - taskweight; 2244 groupimp = group_weight(p, nid, dist) - groupweight; 2245 if (taskimp < 0 && groupimp < 0) 2246 continue; 2247 2248 env.dist = dist; 2249 env.dst_nid = nid; 2250 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2251 task_numa_find_cpu(&env, taskimp, groupimp); 2252 } 2253 } 2254 2255 /* 2256 * If the task is part of a workload that spans multiple NUMA nodes, 2257 * and is migrating into one of the workload's active nodes, remember 2258 * this node as the task's preferred numa node, so the workload can 2259 * settle down. 2260 * A task that migrated to a second choice node will be better off 2261 * trying for a better one later. Do not set the preferred node here. 2262 */ 2263 if (ng) { 2264 if (env.best_cpu == -1) 2265 nid = env.src_nid; 2266 else 2267 nid = cpu_to_node(env.best_cpu); 2268 2269 if (nid != p->numa_preferred_nid) 2270 sched_setnuma(p, nid); 2271 } 2272 2273 /* No better CPU than the current one was found. */ 2274 if (env.best_cpu == -1) { 2275 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2276 return -EAGAIN; 2277 } 2278 2279 best_rq = cpu_rq(env.best_cpu); 2280 if (env.best_task == NULL) { 2281 ret = migrate_task_to(p, env.best_cpu); 2282 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2283 if (ret != 0) 2284 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2285 return ret; 2286 } 2287 2288 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2289 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2290 2291 if (ret != 0) 2292 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2293 put_task_struct(env.best_task); 2294 return ret; 2295 } 2296 2297 /* Attempt to migrate a task to a CPU on the preferred node. */ 2298 static void numa_migrate_preferred(struct task_struct *p) 2299 { 2300 unsigned long interval = HZ; 2301 2302 /* This task has no NUMA fault statistics yet */ 2303 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2304 return; 2305 2306 /* Periodically retry migrating the task to the preferred node */ 2307 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2308 p->numa_migrate_retry = jiffies + interval; 2309 2310 /* Success if task is already running on preferred CPU */ 2311 if (task_node(p) == p->numa_preferred_nid) 2312 return; 2313 2314 /* Otherwise, try migrate to a CPU on the preferred node */ 2315 task_numa_migrate(p); 2316 } 2317 2318 /* 2319 * Find out how many nodes the workload is actively running on. Do this by 2320 * tracking the nodes from which NUMA hinting faults are triggered. This can 2321 * be different from the set of nodes where the workload's memory is currently 2322 * located. 2323 */ 2324 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2325 { 2326 unsigned long faults, max_faults = 0; 2327 int nid, active_nodes = 0; 2328 2329 for_each_node_state(nid, N_CPU) { 2330 faults = group_faults_cpu(numa_group, nid); 2331 if (faults > max_faults) 2332 max_faults = faults; 2333 } 2334 2335 for_each_node_state(nid, N_CPU) { 2336 faults = group_faults_cpu(numa_group, nid); 2337 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2338 active_nodes++; 2339 } 2340 2341 numa_group->max_faults_cpu = max_faults; 2342 numa_group->active_nodes = active_nodes; 2343 } 2344 2345 /* 2346 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2347 * increments. The more local the fault statistics are, the higher the scan 2348 * period will be for the next scan window. If local/(local+remote) ratio is 2349 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2350 * the scan period will decrease. Aim for 70% local accesses. 2351 */ 2352 #define NUMA_PERIOD_SLOTS 10 2353 #define NUMA_PERIOD_THRESHOLD 7 2354 2355 /* 2356 * Increase the scan period (slow down scanning) if the majority of 2357 * our memory is already on our local node, or if the majority of 2358 * the page accesses are shared with other processes. 2359 * Otherwise, decrease the scan period. 2360 */ 2361 static void update_task_scan_period(struct task_struct *p, 2362 unsigned long shared, unsigned long private) 2363 { 2364 unsigned int period_slot; 2365 int lr_ratio, ps_ratio; 2366 int diff; 2367 2368 unsigned long remote = p->numa_faults_locality[0]; 2369 unsigned long local = p->numa_faults_locality[1]; 2370 2371 /* 2372 * If there were no record hinting faults then either the task is 2373 * completely idle or all activity is in areas that are not of interest 2374 * to automatic numa balancing. Related to that, if there were failed 2375 * migration then it implies we are migrating too quickly or the local 2376 * node is overloaded. In either case, scan slower 2377 */ 2378 if (local + shared == 0 || p->numa_faults_locality[2]) { 2379 p->numa_scan_period = min(p->numa_scan_period_max, 2380 p->numa_scan_period << 1); 2381 2382 p->mm->numa_next_scan = jiffies + 2383 msecs_to_jiffies(p->numa_scan_period); 2384 2385 return; 2386 } 2387 2388 /* 2389 * Prepare to scale scan period relative to the current period. 2390 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2391 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2392 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2393 */ 2394 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2395 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2396 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2397 2398 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2399 /* 2400 * Most memory accesses are local. There is no need to 2401 * do fast NUMA scanning, since memory is already local. 2402 */ 2403 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2404 if (!slot) 2405 slot = 1; 2406 diff = slot * period_slot; 2407 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2408 /* 2409 * Most memory accesses are shared with other tasks. 2410 * There is no point in continuing fast NUMA scanning, 2411 * since other tasks may just move the memory elsewhere. 2412 */ 2413 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2414 if (!slot) 2415 slot = 1; 2416 diff = slot * period_slot; 2417 } else { 2418 /* 2419 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2420 * yet they are not on the local NUMA node. Speed up 2421 * NUMA scanning to get the memory moved over. 2422 */ 2423 int ratio = max(lr_ratio, ps_ratio); 2424 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2425 } 2426 2427 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2428 task_scan_min(p), task_scan_max(p)); 2429 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2430 } 2431 2432 /* 2433 * Get the fraction of time the task has been running since the last 2434 * NUMA placement cycle. The scheduler keeps similar statistics, but 2435 * decays those on a 32ms period, which is orders of magnitude off 2436 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2437 * stats only if the task is so new there are no NUMA statistics yet. 2438 */ 2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2440 { 2441 u64 runtime, delta, now; 2442 /* Use the start of this time slice to avoid calculations. */ 2443 now = p->se.exec_start; 2444 runtime = p->se.sum_exec_runtime; 2445 2446 if (p->last_task_numa_placement) { 2447 delta = runtime - p->last_sum_exec_runtime; 2448 *period = now - p->last_task_numa_placement; 2449 2450 /* Avoid time going backwards, prevent potential divide error: */ 2451 if (unlikely((s64)*period < 0)) 2452 *period = 0; 2453 } else { 2454 delta = p->se.avg.load_sum; 2455 *period = LOAD_AVG_MAX; 2456 } 2457 2458 p->last_sum_exec_runtime = runtime; 2459 p->last_task_numa_placement = now; 2460 2461 return delta; 2462 } 2463 2464 /* 2465 * Determine the preferred nid for a task in a numa_group. This needs to 2466 * be done in a way that produces consistent results with group_weight, 2467 * otherwise workloads might not converge. 2468 */ 2469 static int preferred_group_nid(struct task_struct *p, int nid) 2470 { 2471 nodemask_t nodes; 2472 int dist; 2473 2474 /* Direct connections between all NUMA nodes. */ 2475 if (sched_numa_topology_type == NUMA_DIRECT) 2476 return nid; 2477 2478 /* 2479 * On a system with glueless mesh NUMA topology, group_weight 2480 * scores nodes according to the number of NUMA hinting faults on 2481 * both the node itself, and on nearby nodes. 2482 */ 2483 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2484 unsigned long score, max_score = 0; 2485 int node, max_node = nid; 2486 2487 dist = sched_max_numa_distance; 2488 2489 for_each_node_state(node, N_CPU) { 2490 score = group_weight(p, node, dist); 2491 if (score > max_score) { 2492 max_score = score; 2493 max_node = node; 2494 } 2495 } 2496 return max_node; 2497 } 2498 2499 /* 2500 * Finding the preferred nid in a system with NUMA backplane 2501 * interconnect topology is more involved. The goal is to locate 2502 * tasks from numa_groups near each other in the system, and 2503 * untangle workloads from different sides of the system. This requires 2504 * searching down the hierarchy of node groups, recursively searching 2505 * inside the highest scoring group of nodes. The nodemask tricks 2506 * keep the complexity of the search down. 2507 */ 2508 nodes = node_states[N_CPU]; 2509 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2510 unsigned long max_faults = 0; 2511 nodemask_t max_group = NODE_MASK_NONE; 2512 int a, b; 2513 2514 /* Are there nodes at this distance from each other? */ 2515 if (!find_numa_distance(dist)) 2516 continue; 2517 2518 for_each_node_mask(a, nodes) { 2519 unsigned long faults = 0; 2520 nodemask_t this_group; 2521 nodes_clear(this_group); 2522 2523 /* Sum group's NUMA faults; includes a==b case. */ 2524 for_each_node_mask(b, nodes) { 2525 if (node_distance(a, b) < dist) { 2526 faults += group_faults(p, b); 2527 node_set(b, this_group); 2528 node_clear(b, nodes); 2529 } 2530 } 2531 2532 /* Remember the top group. */ 2533 if (faults > max_faults) { 2534 max_faults = faults; 2535 max_group = this_group; 2536 /* 2537 * subtle: at the smallest distance there is 2538 * just one node left in each "group", the 2539 * winner is the preferred nid. 2540 */ 2541 nid = a; 2542 } 2543 } 2544 /* Next round, evaluate the nodes within max_group. */ 2545 if (!max_faults) 2546 break; 2547 nodes = max_group; 2548 } 2549 return nid; 2550 } 2551 2552 static void task_numa_placement(struct task_struct *p) 2553 { 2554 int seq, nid, max_nid = NUMA_NO_NODE; 2555 unsigned long max_faults = 0; 2556 unsigned long fault_types[2] = { 0, 0 }; 2557 unsigned long total_faults; 2558 u64 runtime, period; 2559 spinlock_t *group_lock = NULL; 2560 struct numa_group *ng; 2561 2562 /* 2563 * The p->mm->numa_scan_seq field gets updated without 2564 * exclusive access. Use READ_ONCE() here to ensure 2565 * that the field is read in a single access: 2566 */ 2567 seq = READ_ONCE(p->mm->numa_scan_seq); 2568 if (p->numa_scan_seq == seq) 2569 return; 2570 p->numa_scan_seq = seq; 2571 p->numa_scan_period_max = task_scan_max(p); 2572 2573 total_faults = p->numa_faults_locality[0] + 2574 p->numa_faults_locality[1]; 2575 runtime = numa_get_avg_runtime(p, &period); 2576 2577 /* If the task is part of a group prevent parallel updates to group stats */ 2578 ng = deref_curr_numa_group(p); 2579 if (ng) { 2580 group_lock = &ng->lock; 2581 spin_lock_irq(group_lock); 2582 } 2583 2584 /* Find the node with the highest number of faults */ 2585 for_each_online_node(nid) { 2586 /* Keep track of the offsets in numa_faults array */ 2587 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2588 unsigned long faults = 0, group_faults = 0; 2589 int priv; 2590 2591 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2592 long diff, f_diff, f_weight; 2593 2594 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2595 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2596 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2597 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2598 2599 /* Decay existing window, copy faults since last scan */ 2600 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2601 fault_types[priv] += p->numa_faults[membuf_idx]; 2602 p->numa_faults[membuf_idx] = 0; 2603 2604 /* 2605 * Normalize the faults_from, so all tasks in a group 2606 * count according to CPU use, instead of by the raw 2607 * number of faults. Tasks with little runtime have 2608 * little over-all impact on throughput, and thus their 2609 * faults are less important. 2610 */ 2611 f_weight = div64_u64(runtime << 16, period + 1); 2612 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2613 (total_faults + 1); 2614 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2615 p->numa_faults[cpubuf_idx] = 0; 2616 2617 p->numa_faults[mem_idx] += diff; 2618 p->numa_faults[cpu_idx] += f_diff; 2619 faults += p->numa_faults[mem_idx]; 2620 p->total_numa_faults += diff; 2621 if (ng) { 2622 /* 2623 * safe because we can only change our own group 2624 * 2625 * mem_idx represents the offset for a given 2626 * nid and priv in a specific region because it 2627 * is at the beginning of the numa_faults array. 2628 */ 2629 ng->faults[mem_idx] += diff; 2630 ng->faults[cpu_idx] += f_diff; 2631 ng->total_faults += diff; 2632 group_faults += ng->faults[mem_idx]; 2633 } 2634 } 2635 2636 if (!ng) { 2637 if (faults > max_faults) { 2638 max_faults = faults; 2639 max_nid = nid; 2640 } 2641 } else if (group_faults > max_faults) { 2642 max_faults = group_faults; 2643 max_nid = nid; 2644 } 2645 } 2646 2647 /* Cannot migrate task to CPU-less node */ 2648 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2649 int near_nid = max_nid; 2650 int distance, near_distance = INT_MAX; 2651 2652 for_each_node_state(nid, N_CPU) { 2653 distance = node_distance(max_nid, nid); 2654 if (distance < near_distance) { 2655 near_nid = nid; 2656 near_distance = distance; 2657 } 2658 } 2659 max_nid = near_nid; 2660 } 2661 2662 if (ng) { 2663 numa_group_count_active_nodes(ng); 2664 spin_unlock_irq(group_lock); 2665 max_nid = preferred_group_nid(p, max_nid); 2666 } 2667 2668 if (max_faults) { 2669 /* Set the new preferred node */ 2670 if (max_nid != p->numa_preferred_nid) 2671 sched_setnuma(p, max_nid); 2672 } 2673 2674 update_task_scan_period(p, fault_types[0], fault_types[1]); 2675 } 2676 2677 static inline int get_numa_group(struct numa_group *grp) 2678 { 2679 return refcount_inc_not_zero(&grp->refcount); 2680 } 2681 2682 static inline void put_numa_group(struct numa_group *grp) 2683 { 2684 if (refcount_dec_and_test(&grp->refcount)) 2685 kfree_rcu(grp, rcu); 2686 } 2687 2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2689 int *priv) 2690 { 2691 struct numa_group *grp, *my_grp; 2692 struct task_struct *tsk; 2693 bool join = false; 2694 int cpu = cpupid_to_cpu(cpupid); 2695 int i; 2696 2697 if (unlikely(!deref_curr_numa_group(p))) { 2698 unsigned int size = sizeof(struct numa_group) + 2699 NR_NUMA_HINT_FAULT_STATS * 2700 nr_node_ids * sizeof(unsigned long); 2701 2702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2703 if (!grp) 2704 return; 2705 2706 refcount_set(&grp->refcount, 1); 2707 grp->active_nodes = 1; 2708 grp->max_faults_cpu = 0; 2709 spin_lock_init(&grp->lock); 2710 grp->gid = p->pid; 2711 2712 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2713 grp->faults[i] = p->numa_faults[i]; 2714 2715 grp->total_faults = p->total_numa_faults; 2716 2717 grp->nr_tasks++; 2718 rcu_assign_pointer(p->numa_group, grp); 2719 } 2720 2721 rcu_read_lock(); 2722 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2723 2724 if (!cpupid_match_pid(tsk, cpupid)) 2725 goto no_join; 2726 2727 grp = rcu_dereference(tsk->numa_group); 2728 if (!grp) 2729 goto no_join; 2730 2731 my_grp = deref_curr_numa_group(p); 2732 if (grp == my_grp) 2733 goto no_join; 2734 2735 /* 2736 * Only join the other group if its bigger; if we're the bigger group, 2737 * the other task will join us. 2738 */ 2739 if (my_grp->nr_tasks > grp->nr_tasks) 2740 goto no_join; 2741 2742 /* 2743 * Tie-break on the grp address. 2744 */ 2745 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2746 goto no_join; 2747 2748 /* Always join threads in the same process. */ 2749 if (tsk->mm == current->mm) 2750 join = true; 2751 2752 /* Simple filter to avoid false positives due to PID collisions */ 2753 if (flags & TNF_SHARED) 2754 join = true; 2755 2756 /* Update priv based on whether false sharing was detected */ 2757 *priv = !join; 2758 2759 if (join && !get_numa_group(grp)) 2760 goto no_join; 2761 2762 rcu_read_unlock(); 2763 2764 if (!join) 2765 return; 2766 2767 WARN_ON_ONCE(irqs_disabled()); 2768 double_lock_irq(&my_grp->lock, &grp->lock); 2769 2770 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2771 my_grp->faults[i] -= p->numa_faults[i]; 2772 grp->faults[i] += p->numa_faults[i]; 2773 } 2774 my_grp->total_faults -= p->total_numa_faults; 2775 grp->total_faults += p->total_numa_faults; 2776 2777 my_grp->nr_tasks--; 2778 grp->nr_tasks++; 2779 2780 spin_unlock(&my_grp->lock); 2781 spin_unlock_irq(&grp->lock); 2782 2783 rcu_assign_pointer(p->numa_group, grp); 2784 2785 put_numa_group(my_grp); 2786 return; 2787 2788 no_join: 2789 rcu_read_unlock(); 2790 return; 2791 } 2792 2793 /* 2794 * Get rid of NUMA statistics associated with a task (either current or dead). 2795 * If @final is set, the task is dead and has reached refcount zero, so we can 2796 * safely free all relevant data structures. Otherwise, there might be 2797 * concurrent reads from places like load balancing and procfs, and we should 2798 * reset the data back to default state without freeing ->numa_faults. 2799 */ 2800 void task_numa_free(struct task_struct *p, bool final) 2801 { 2802 /* safe: p either is current or is being freed by current */ 2803 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2804 unsigned long *numa_faults = p->numa_faults; 2805 unsigned long flags; 2806 int i; 2807 2808 if (!numa_faults) 2809 return; 2810 2811 if (grp) { 2812 spin_lock_irqsave(&grp->lock, flags); 2813 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2814 grp->faults[i] -= p->numa_faults[i]; 2815 grp->total_faults -= p->total_numa_faults; 2816 2817 grp->nr_tasks--; 2818 spin_unlock_irqrestore(&grp->lock, flags); 2819 RCU_INIT_POINTER(p->numa_group, NULL); 2820 put_numa_group(grp); 2821 } 2822 2823 if (final) { 2824 p->numa_faults = NULL; 2825 kfree(numa_faults); 2826 } else { 2827 p->total_numa_faults = 0; 2828 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2829 numa_faults[i] = 0; 2830 } 2831 } 2832 2833 /* 2834 * Got a PROT_NONE fault for a page on @node. 2835 */ 2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2837 { 2838 struct task_struct *p = current; 2839 bool migrated = flags & TNF_MIGRATED; 2840 int cpu_node = task_node(current); 2841 int local = !!(flags & TNF_FAULT_LOCAL); 2842 struct numa_group *ng; 2843 int priv; 2844 2845 if (!static_branch_likely(&sched_numa_balancing)) 2846 return; 2847 2848 /* for example, ksmd faulting in a user's mm */ 2849 if (!p->mm) 2850 return; 2851 2852 /* 2853 * NUMA faults statistics are unnecessary for the slow memory 2854 * node for memory tiering mode. 2855 */ 2856 if (!node_is_toptier(mem_node) && 2857 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 2858 !cpupid_valid(last_cpupid))) 2859 return; 2860 2861 /* Allocate buffer to track faults on a per-node basis */ 2862 if (unlikely(!p->numa_faults)) { 2863 int size = sizeof(*p->numa_faults) * 2864 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2865 2866 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2867 if (!p->numa_faults) 2868 return; 2869 2870 p->total_numa_faults = 0; 2871 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2872 } 2873 2874 /* 2875 * First accesses are treated as private, otherwise consider accesses 2876 * to be private if the accessing pid has not changed 2877 */ 2878 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2879 priv = 1; 2880 } else { 2881 priv = cpupid_match_pid(p, last_cpupid); 2882 if (!priv && !(flags & TNF_NO_GROUP)) 2883 task_numa_group(p, last_cpupid, flags, &priv); 2884 } 2885 2886 /* 2887 * If a workload spans multiple NUMA nodes, a shared fault that 2888 * occurs wholly within the set of nodes that the workload is 2889 * actively using should be counted as local. This allows the 2890 * scan rate to slow down when a workload has settled down. 2891 */ 2892 ng = deref_curr_numa_group(p); 2893 if (!priv && !local && ng && ng->active_nodes > 1 && 2894 numa_is_active_node(cpu_node, ng) && 2895 numa_is_active_node(mem_node, ng)) 2896 local = 1; 2897 2898 /* 2899 * Retry to migrate task to preferred node periodically, in case it 2900 * previously failed, or the scheduler moved us. 2901 */ 2902 if (time_after(jiffies, p->numa_migrate_retry)) { 2903 task_numa_placement(p); 2904 numa_migrate_preferred(p); 2905 } 2906 2907 if (migrated) 2908 p->numa_pages_migrated += pages; 2909 if (flags & TNF_MIGRATE_FAIL) 2910 p->numa_faults_locality[2] += pages; 2911 2912 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2913 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2914 p->numa_faults_locality[local] += pages; 2915 } 2916 2917 static void reset_ptenuma_scan(struct task_struct *p) 2918 { 2919 /* 2920 * We only did a read acquisition of the mmap sem, so 2921 * p->mm->numa_scan_seq is written to without exclusive access 2922 * and the update is not guaranteed to be atomic. That's not 2923 * much of an issue though, since this is just used for 2924 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2925 * expensive, to avoid any form of compiler optimizations: 2926 */ 2927 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2928 p->mm->numa_scan_offset = 0; 2929 } 2930 2931 /* 2932 * The expensive part of numa migration is done from task_work context. 2933 * Triggered from task_tick_numa(). 2934 */ 2935 static void task_numa_work(struct callback_head *work) 2936 { 2937 unsigned long migrate, next_scan, now = jiffies; 2938 struct task_struct *p = current; 2939 struct mm_struct *mm = p->mm; 2940 u64 runtime = p->se.sum_exec_runtime; 2941 struct vm_area_struct *vma; 2942 unsigned long start, end; 2943 unsigned long nr_pte_updates = 0; 2944 long pages, virtpages; 2945 struct vma_iterator vmi; 2946 2947 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2948 2949 work->next = work; 2950 /* 2951 * Who cares about NUMA placement when they're dying. 2952 * 2953 * NOTE: make sure not to dereference p->mm before this check, 2954 * exit_task_work() happens _after_ exit_mm() so we could be called 2955 * without p->mm even though we still had it when we enqueued this 2956 * work. 2957 */ 2958 if (p->flags & PF_EXITING) 2959 return; 2960 2961 if (!mm->numa_next_scan) { 2962 mm->numa_next_scan = now + 2963 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2964 } 2965 2966 /* 2967 * Enforce maximal scan/migration frequency.. 2968 */ 2969 migrate = mm->numa_next_scan; 2970 if (time_before(now, migrate)) 2971 return; 2972 2973 if (p->numa_scan_period == 0) { 2974 p->numa_scan_period_max = task_scan_max(p); 2975 p->numa_scan_period = task_scan_start(p); 2976 } 2977 2978 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2979 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 2980 return; 2981 2982 /* 2983 * Delay this task enough that another task of this mm will likely win 2984 * the next time around. 2985 */ 2986 p->node_stamp += 2 * TICK_NSEC; 2987 2988 start = mm->numa_scan_offset; 2989 pages = sysctl_numa_balancing_scan_size; 2990 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2991 virtpages = pages * 8; /* Scan up to this much virtual space */ 2992 if (!pages) 2993 return; 2994 2995 2996 if (!mmap_read_trylock(mm)) 2997 return; 2998 vma_iter_init(&vmi, mm, start); 2999 vma = vma_next(&vmi); 3000 if (!vma) { 3001 reset_ptenuma_scan(p); 3002 start = 0; 3003 vma_iter_set(&vmi, start); 3004 vma = vma_next(&vmi); 3005 } 3006 3007 do { 3008 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3009 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3010 continue; 3011 } 3012 3013 /* 3014 * Shared library pages mapped by multiple processes are not 3015 * migrated as it is expected they are cache replicated. Avoid 3016 * hinting faults in read-only file-backed mappings or the vdso 3017 * as migrating the pages will be of marginal benefit. 3018 */ 3019 if (!vma->vm_mm || 3020 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3021 continue; 3022 3023 /* 3024 * Skip inaccessible VMAs to avoid any confusion between 3025 * PROT_NONE and NUMA hinting ptes 3026 */ 3027 if (!vma_is_accessible(vma)) 3028 continue; 3029 3030 do { 3031 start = max(start, vma->vm_start); 3032 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3033 end = min(end, vma->vm_end); 3034 nr_pte_updates = change_prot_numa(vma, start, end); 3035 3036 /* 3037 * Try to scan sysctl_numa_balancing_size worth of 3038 * hpages that have at least one present PTE that 3039 * is not already pte-numa. If the VMA contains 3040 * areas that are unused or already full of prot_numa 3041 * PTEs, scan up to virtpages, to skip through those 3042 * areas faster. 3043 */ 3044 if (nr_pte_updates) 3045 pages -= (end - start) >> PAGE_SHIFT; 3046 virtpages -= (end - start) >> PAGE_SHIFT; 3047 3048 start = end; 3049 if (pages <= 0 || virtpages <= 0) 3050 goto out; 3051 3052 cond_resched(); 3053 } while (end != vma->vm_end); 3054 } for_each_vma(vmi, vma); 3055 3056 out: 3057 /* 3058 * It is possible to reach the end of the VMA list but the last few 3059 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3060 * would find the !migratable VMA on the next scan but not reset the 3061 * scanner to the start so check it now. 3062 */ 3063 if (vma) 3064 mm->numa_scan_offset = start; 3065 else 3066 reset_ptenuma_scan(p); 3067 mmap_read_unlock(mm); 3068 3069 /* 3070 * Make sure tasks use at least 32x as much time to run other code 3071 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3072 * Usually update_task_scan_period slows down scanning enough; on an 3073 * overloaded system we need to limit overhead on a per task basis. 3074 */ 3075 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3076 u64 diff = p->se.sum_exec_runtime - runtime; 3077 p->node_stamp += 32 * diff; 3078 } 3079 } 3080 3081 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3082 { 3083 int mm_users = 0; 3084 struct mm_struct *mm = p->mm; 3085 3086 if (mm) { 3087 mm_users = atomic_read(&mm->mm_users); 3088 if (mm_users == 1) { 3089 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3090 mm->numa_scan_seq = 0; 3091 } 3092 } 3093 p->node_stamp = 0; 3094 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3095 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3096 p->numa_migrate_retry = 0; 3097 /* Protect against double add, see task_tick_numa and task_numa_work */ 3098 p->numa_work.next = &p->numa_work; 3099 p->numa_faults = NULL; 3100 p->numa_pages_migrated = 0; 3101 p->total_numa_faults = 0; 3102 RCU_INIT_POINTER(p->numa_group, NULL); 3103 p->last_task_numa_placement = 0; 3104 p->last_sum_exec_runtime = 0; 3105 3106 init_task_work(&p->numa_work, task_numa_work); 3107 3108 /* New address space, reset the preferred nid */ 3109 if (!(clone_flags & CLONE_VM)) { 3110 p->numa_preferred_nid = NUMA_NO_NODE; 3111 return; 3112 } 3113 3114 /* 3115 * New thread, keep existing numa_preferred_nid which should be copied 3116 * already by arch_dup_task_struct but stagger when scans start. 3117 */ 3118 if (mm) { 3119 unsigned int delay; 3120 3121 delay = min_t(unsigned int, task_scan_max(current), 3122 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3123 delay += 2 * TICK_NSEC; 3124 p->node_stamp = delay; 3125 } 3126 } 3127 3128 /* 3129 * Drive the periodic memory faults.. 3130 */ 3131 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3132 { 3133 struct callback_head *work = &curr->numa_work; 3134 u64 period, now; 3135 3136 /* 3137 * We don't care about NUMA placement if we don't have memory. 3138 */ 3139 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3140 return; 3141 3142 /* 3143 * Using runtime rather than walltime has the dual advantage that 3144 * we (mostly) drive the selection from busy threads and that the 3145 * task needs to have done some actual work before we bother with 3146 * NUMA placement. 3147 */ 3148 now = curr->se.sum_exec_runtime; 3149 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3150 3151 if (now > curr->node_stamp + period) { 3152 if (!curr->node_stamp) 3153 curr->numa_scan_period = task_scan_start(curr); 3154 curr->node_stamp += period; 3155 3156 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3157 task_work_add(curr, work, TWA_RESUME); 3158 } 3159 } 3160 3161 static void update_scan_period(struct task_struct *p, int new_cpu) 3162 { 3163 int src_nid = cpu_to_node(task_cpu(p)); 3164 int dst_nid = cpu_to_node(new_cpu); 3165 3166 if (!static_branch_likely(&sched_numa_balancing)) 3167 return; 3168 3169 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3170 return; 3171 3172 if (src_nid == dst_nid) 3173 return; 3174 3175 /* 3176 * Allow resets if faults have been trapped before one scan 3177 * has completed. This is most likely due to a new task that 3178 * is pulled cross-node due to wakeups or load balancing. 3179 */ 3180 if (p->numa_scan_seq) { 3181 /* 3182 * Avoid scan adjustments if moving to the preferred 3183 * node or if the task was not previously running on 3184 * the preferred node. 3185 */ 3186 if (dst_nid == p->numa_preferred_nid || 3187 (p->numa_preferred_nid != NUMA_NO_NODE && 3188 src_nid != p->numa_preferred_nid)) 3189 return; 3190 } 3191 3192 p->numa_scan_period = task_scan_start(p); 3193 } 3194 3195 #else 3196 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3197 { 3198 } 3199 3200 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3201 { 3202 } 3203 3204 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3205 { 3206 } 3207 3208 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3209 { 3210 } 3211 3212 #endif /* CONFIG_NUMA_BALANCING */ 3213 3214 static void 3215 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3216 { 3217 update_load_add(&cfs_rq->load, se->load.weight); 3218 #ifdef CONFIG_SMP 3219 if (entity_is_task(se)) { 3220 struct rq *rq = rq_of(cfs_rq); 3221 3222 account_numa_enqueue(rq, task_of(se)); 3223 list_add(&se->group_node, &rq->cfs_tasks); 3224 } 3225 #endif 3226 cfs_rq->nr_running++; 3227 if (se_is_idle(se)) 3228 cfs_rq->idle_nr_running++; 3229 } 3230 3231 static void 3232 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3233 { 3234 update_load_sub(&cfs_rq->load, se->load.weight); 3235 #ifdef CONFIG_SMP 3236 if (entity_is_task(se)) { 3237 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3238 list_del_init(&se->group_node); 3239 } 3240 #endif 3241 cfs_rq->nr_running--; 3242 if (se_is_idle(se)) 3243 cfs_rq->idle_nr_running--; 3244 } 3245 3246 /* 3247 * Signed add and clamp on underflow. 3248 * 3249 * Explicitly do a load-store to ensure the intermediate value never hits 3250 * memory. This allows lockless observations without ever seeing the negative 3251 * values. 3252 */ 3253 #define add_positive(_ptr, _val) do { \ 3254 typeof(_ptr) ptr = (_ptr); \ 3255 typeof(_val) val = (_val); \ 3256 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3257 \ 3258 res = var + val; \ 3259 \ 3260 if (val < 0 && res > var) \ 3261 res = 0; \ 3262 \ 3263 WRITE_ONCE(*ptr, res); \ 3264 } while (0) 3265 3266 /* 3267 * Unsigned subtract and clamp on underflow. 3268 * 3269 * Explicitly do a load-store to ensure the intermediate value never hits 3270 * memory. This allows lockless observations without ever seeing the negative 3271 * values. 3272 */ 3273 #define sub_positive(_ptr, _val) do { \ 3274 typeof(_ptr) ptr = (_ptr); \ 3275 typeof(*ptr) val = (_val); \ 3276 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3277 res = var - val; \ 3278 if (res > var) \ 3279 res = 0; \ 3280 WRITE_ONCE(*ptr, res); \ 3281 } while (0) 3282 3283 /* 3284 * Remove and clamp on negative, from a local variable. 3285 * 3286 * A variant of sub_positive(), which does not use explicit load-store 3287 * and is thus optimized for local variable updates. 3288 */ 3289 #define lsub_positive(_ptr, _val) do { \ 3290 typeof(_ptr) ptr = (_ptr); \ 3291 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3292 } while (0) 3293 3294 #ifdef CONFIG_SMP 3295 static inline void 3296 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3297 { 3298 cfs_rq->avg.load_avg += se->avg.load_avg; 3299 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3300 } 3301 3302 static inline void 3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3304 { 3305 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3306 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3307 /* See update_cfs_rq_load_avg() */ 3308 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3309 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3310 } 3311 #else 3312 static inline void 3313 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3314 static inline void 3315 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3316 #endif 3317 3318 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3319 unsigned long weight) 3320 { 3321 if (se->on_rq) { 3322 /* commit outstanding execution time */ 3323 if (cfs_rq->curr == se) 3324 update_curr(cfs_rq); 3325 update_load_sub(&cfs_rq->load, se->load.weight); 3326 } 3327 dequeue_load_avg(cfs_rq, se); 3328 3329 update_load_set(&se->load, weight); 3330 3331 #ifdef CONFIG_SMP 3332 do { 3333 u32 divider = get_pelt_divider(&se->avg); 3334 3335 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3336 } while (0); 3337 #endif 3338 3339 enqueue_load_avg(cfs_rq, se); 3340 if (se->on_rq) 3341 update_load_add(&cfs_rq->load, se->load.weight); 3342 3343 } 3344 3345 void reweight_task(struct task_struct *p, int prio) 3346 { 3347 struct sched_entity *se = &p->se; 3348 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3349 struct load_weight *load = &se->load; 3350 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3351 3352 reweight_entity(cfs_rq, se, weight); 3353 load->inv_weight = sched_prio_to_wmult[prio]; 3354 } 3355 3356 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3357 3358 #ifdef CONFIG_FAIR_GROUP_SCHED 3359 #ifdef CONFIG_SMP 3360 /* 3361 * All this does is approximate the hierarchical proportion which includes that 3362 * global sum we all love to hate. 3363 * 3364 * That is, the weight of a group entity, is the proportional share of the 3365 * group weight based on the group runqueue weights. That is: 3366 * 3367 * tg->weight * grq->load.weight 3368 * ge->load.weight = ----------------------------- (1) 3369 * \Sum grq->load.weight 3370 * 3371 * Now, because computing that sum is prohibitively expensive to compute (been 3372 * there, done that) we approximate it with this average stuff. The average 3373 * moves slower and therefore the approximation is cheaper and more stable. 3374 * 3375 * So instead of the above, we substitute: 3376 * 3377 * grq->load.weight -> grq->avg.load_avg (2) 3378 * 3379 * which yields the following: 3380 * 3381 * tg->weight * grq->avg.load_avg 3382 * ge->load.weight = ------------------------------ (3) 3383 * tg->load_avg 3384 * 3385 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3386 * 3387 * That is shares_avg, and it is right (given the approximation (2)). 3388 * 3389 * The problem with it is that because the average is slow -- it was designed 3390 * to be exactly that of course -- this leads to transients in boundary 3391 * conditions. In specific, the case where the group was idle and we start the 3392 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3393 * yielding bad latency etc.. 3394 * 3395 * Now, in that special case (1) reduces to: 3396 * 3397 * tg->weight * grq->load.weight 3398 * ge->load.weight = ----------------------------- = tg->weight (4) 3399 * grp->load.weight 3400 * 3401 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3402 * 3403 * So what we do is modify our approximation (3) to approach (4) in the (near) 3404 * UP case, like: 3405 * 3406 * ge->load.weight = 3407 * 3408 * tg->weight * grq->load.weight 3409 * --------------------------------------------------- (5) 3410 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3411 * 3412 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3413 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3414 * 3415 * 3416 * tg->weight * grq->load.weight 3417 * ge->load.weight = ----------------------------- (6) 3418 * tg_load_avg' 3419 * 3420 * Where: 3421 * 3422 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3423 * max(grq->load.weight, grq->avg.load_avg) 3424 * 3425 * And that is shares_weight and is icky. In the (near) UP case it approaches 3426 * (4) while in the normal case it approaches (3). It consistently 3427 * overestimates the ge->load.weight and therefore: 3428 * 3429 * \Sum ge->load.weight >= tg->weight 3430 * 3431 * hence icky! 3432 */ 3433 static long calc_group_shares(struct cfs_rq *cfs_rq) 3434 { 3435 long tg_weight, tg_shares, load, shares; 3436 struct task_group *tg = cfs_rq->tg; 3437 3438 tg_shares = READ_ONCE(tg->shares); 3439 3440 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3441 3442 tg_weight = atomic_long_read(&tg->load_avg); 3443 3444 /* Ensure tg_weight >= load */ 3445 tg_weight -= cfs_rq->tg_load_avg_contrib; 3446 tg_weight += load; 3447 3448 shares = (tg_shares * load); 3449 if (tg_weight) 3450 shares /= tg_weight; 3451 3452 /* 3453 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3454 * of a group with small tg->shares value. It is a floor value which is 3455 * assigned as a minimum load.weight to the sched_entity representing 3456 * the group on a CPU. 3457 * 3458 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3459 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3460 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3461 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3462 * instead of 0. 3463 */ 3464 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3465 } 3466 #endif /* CONFIG_SMP */ 3467 3468 /* 3469 * Recomputes the group entity based on the current state of its group 3470 * runqueue. 3471 */ 3472 static void update_cfs_group(struct sched_entity *se) 3473 { 3474 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3475 long shares; 3476 3477 if (!gcfs_rq) 3478 return; 3479 3480 if (throttled_hierarchy(gcfs_rq)) 3481 return; 3482 3483 #ifndef CONFIG_SMP 3484 shares = READ_ONCE(gcfs_rq->tg->shares); 3485 3486 if (likely(se->load.weight == shares)) 3487 return; 3488 #else 3489 shares = calc_group_shares(gcfs_rq); 3490 #endif 3491 3492 reweight_entity(cfs_rq_of(se), se, shares); 3493 } 3494 3495 #else /* CONFIG_FAIR_GROUP_SCHED */ 3496 static inline void update_cfs_group(struct sched_entity *se) 3497 { 3498 } 3499 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3500 3501 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3502 { 3503 struct rq *rq = rq_of(cfs_rq); 3504 3505 if (&rq->cfs == cfs_rq) { 3506 /* 3507 * There are a few boundary cases this might miss but it should 3508 * get called often enough that that should (hopefully) not be 3509 * a real problem. 3510 * 3511 * It will not get called when we go idle, because the idle 3512 * thread is a different class (!fair), nor will the utilization 3513 * number include things like RT tasks. 3514 * 3515 * As is, the util number is not freq-invariant (we'd have to 3516 * implement arch_scale_freq_capacity() for that). 3517 * 3518 * See cpu_util_cfs(). 3519 */ 3520 cpufreq_update_util(rq, flags); 3521 } 3522 } 3523 3524 #ifdef CONFIG_SMP 3525 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3526 { 3527 if (sa->load_sum) 3528 return false; 3529 3530 if (sa->util_sum) 3531 return false; 3532 3533 if (sa->runnable_sum) 3534 return false; 3535 3536 /* 3537 * _avg must be null when _sum are null because _avg = _sum / divider 3538 * Make sure that rounding and/or propagation of PELT values never 3539 * break this. 3540 */ 3541 SCHED_WARN_ON(sa->load_avg || 3542 sa->util_avg || 3543 sa->runnable_avg); 3544 3545 return true; 3546 } 3547 3548 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3549 { 3550 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3551 cfs_rq->last_update_time_copy); 3552 } 3553 #ifdef CONFIG_FAIR_GROUP_SCHED 3554 /* 3555 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3556 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3557 * bottom-up, we only have to test whether the cfs_rq before us on the list 3558 * is our child. 3559 * If cfs_rq is not on the list, test whether a child needs its to be added to 3560 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3561 */ 3562 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3563 { 3564 struct cfs_rq *prev_cfs_rq; 3565 struct list_head *prev; 3566 3567 if (cfs_rq->on_list) { 3568 prev = cfs_rq->leaf_cfs_rq_list.prev; 3569 } else { 3570 struct rq *rq = rq_of(cfs_rq); 3571 3572 prev = rq->tmp_alone_branch; 3573 } 3574 3575 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3576 3577 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3578 } 3579 3580 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3581 { 3582 if (cfs_rq->load.weight) 3583 return false; 3584 3585 if (!load_avg_is_decayed(&cfs_rq->avg)) 3586 return false; 3587 3588 if (child_cfs_rq_on_list(cfs_rq)) 3589 return false; 3590 3591 return true; 3592 } 3593 3594 /** 3595 * update_tg_load_avg - update the tg's load avg 3596 * @cfs_rq: the cfs_rq whose avg changed 3597 * 3598 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3599 * However, because tg->load_avg is a global value there are performance 3600 * considerations. 3601 * 3602 * In order to avoid having to look at the other cfs_rq's, we use a 3603 * differential update where we store the last value we propagated. This in 3604 * turn allows skipping updates if the differential is 'small'. 3605 * 3606 * Updating tg's load_avg is necessary before update_cfs_share(). 3607 */ 3608 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3609 { 3610 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3611 3612 /* 3613 * No need to update load_avg for root_task_group as it is not used. 3614 */ 3615 if (cfs_rq->tg == &root_task_group) 3616 return; 3617 3618 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3619 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3620 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3621 } 3622 } 3623 3624 /* 3625 * Called within set_task_rq() right before setting a task's CPU. The 3626 * caller only guarantees p->pi_lock is held; no other assumptions, 3627 * including the state of rq->lock, should be made. 3628 */ 3629 void set_task_rq_fair(struct sched_entity *se, 3630 struct cfs_rq *prev, struct cfs_rq *next) 3631 { 3632 u64 p_last_update_time; 3633 u64 n_last_update_time; 3634 3635 if (!sched_feat(ATTACH_AGE_LOAD)) 3636 return; 3637 3638 /* 3639 * We are supposed to update the task to "current" time, then its up to 3640 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3641 * getting what current time is, so simply throw away the out-of-date 3642 * time. This will result in the wakee task is less decayed, but giving 3643 * the wakee more load sounds not bad. 3644 */ 3645 if (!(se->avg.last_update_time && prev)) 3646 return; 3647 3648 p_last_update_time = cfs_rq_last_update_time(prev); 3649 n_last_update_time = cfs_rq_last_update_time(next); 3650 3651 __update_load_avg_blocked_se(p_last_update_time, se); 3652 se->avg.last_update_time = n_last_update_time; 3653 } 3654 3655 /* 3656 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3657 * propagate its contribution. The key to this propagation is the invariant 3658 * that for each group: 3659 * 3660 * ge->avg == grq->avg (1) 3661 * 3662 * _IFF_ we look at the pure running and runnable sums. Because they 3663 * represent the very same entity, just at different points in the hierarchy. 3664 * 3665 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3666 * and simply copies the running/runnable sum over (but still wrong, because 3667 * the group entity and group rq do not have their PELT windows aligned). 3668 * 3669 * However, update_tg_cfs_load() is more complex. So we have: 3670 * 3671 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3672 * 3673 * And since, like util, the runnable part should be directly transferable, 3674 * the following would _appear_ to be the straight forward approach: 3675 * 3676 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3677 * 3678 * And per (1) we have: 3679 * 3680 * ge->avg.runnable_avg == grq->avg.runnable_avg 3681 * 3682 * Which gives: 3683 * 3684 * ge->load.weight * grq->avg.load_avg 3685 * ge->avg.load_avg = ----------------------------------- (4) 3686 * grq->load.weight 3687 * 3688 * Except that is wrong! 3689 * 3690 * Because while for entities historical weight is not important and we 3691 * really only care about our future and therefore can consider a pure 3692 * runnable sum, runqueues can NOT do this. 3693 * 3694 * We specifically want runqueues to have a load_avg that includes 3695 * historical weights. Those represent the blocked load, the load we expect 3696 * to (shortly) return to us. This only works by keeping the weights as 3697 * integral part of the sum. We therefore cannot decompose as per (3). 3698 * 3699 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3700 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3701 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3702 * runnable section of these tasks overlap (or not). If they were to perfectly 3703 * align the rq as a whole would be runnable 2/3 of the time. If however we 3704 * always have at least 1 runnable task, the rq as a whole is always runnable. 3705 * 3706 * So we'll have to approximate.. :/ 3707 * 3708 * Given the constraint: 3709 * 3710 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3711 * 3712 * We can construct a rule that adds runnable to a rq by assuming minimal 3713 * overlap. 3714 * 3715 * On removal, we'll assume each task is equally runnable; which yields: 3716 * 3717 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3718 * 3719 * XXX: only do this for the part of runnable > running ? 3720 * 3721 */ 3722 static inline void 3723 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3724 { 3725 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3726 u32 new_sum, divider; 3727 3728 /* Nothing to update */ 3729 if (!delta_avg) 3730 return; 3731 3732 /* 3733 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3734 * See ___update_load_avg() for details. 3735 */ 3736 divider = get_pelt_divider(&cfs_rq->avg); 3737 3738 3739 /* Set new sched_entity's utilization */ 3740 se->avg.util_avg = gcfs_rq->avg.util_avg; 3741 new_sum = se->avg.util_avg * divider; 3742 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3743 se->avg.util_sum = new_sum; 3744 3745 /* Update parent cfs_rq utilization */ 3746 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3747 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3748 3749 /* See update_cfs_rq_load_avg() */ 3750 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3751 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3752 } 3753 3754 static inline void 3755 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3756 { 3757 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3758 u32 new_sum, divider; 3759 3760 /* Nothing to update */ 3761 if (!delta_avg) 3762 return; 3763 3764 /* 3765 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3766 * See ___update_load_avg() for details. 3767 */ 3768 divider = get_pelt_divider(&cfs_rq->avg); 3769 3770 /* Set new sched_entity's runnable */ 3771 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3772 new_sum = se->avg.runnable_avg * divider; 3773 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3774 se->avg.runnable_sum = new_sum; 3775 3776 /* Update parent cfs_rq runnable */ 3777 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3778 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3779 /* See update_cfs_rq_load_avg() */ 3780 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3781 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3782 } 3783 3784 static inline void 3785 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3786 { 3787 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3788 unsigned long load_avg; 3789 u64 load_sum = 0; 3790 s64 delta_sum; 3791 u32 divider; 3792 3793 if (!runnable_sum) 3794 return; 3795 3796 gcfs_rq->prop_runnable_sum = 0; 3797 3798 /* 3799 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3800 * See ___update_load_avg() for details. 3801 */ 3802 divider = get_pelt_divider(&cfs_rq->avg); 3803 3804 if (runnable_sum >= 0) { 3805 /* 3806 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3807 * the CPU is saturated running == runnable. 3808 */ 3809 runnable_sum += se->avg.load_sum; 3810 runnable_sum = min_t(long, runnable_sum, divider); 3811 } else { 3812 /* 3813 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3814 * assuming all tasks are equally runnable. 3815 */ 3816 if (scale_load_down(gcfs_rq->load.weight)) { 3817 load_sum = div_u64(gcfs_rq->avg.load_sum, 3818 scale_load_down(gcfs_rq->load.weight)); 3819 } 3820 3821 /* But make sure to not inflate se's runnable */ 3822 runnable_sum = min(se->avg.load_sum, load_sum); 3823 } 3824 3825 /* 3826 * runnable_sum can't be lower than running_sum 3827 * Rescale running sum to be in the same range as runnable sum 3828 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3829 * runnable_sum is in [0 : LOAD_AVG_MAX] 3830 */ 3831 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3832 runnable_sum = max(runnable_sum, running_sum); 3833 3834 load_sum = se_weight(se) * runnable_sum; 3835 load_avg = div_u64(load_sum, divider); 3836 3837 delta_avg = load_avg - se->avg.load_avg; 3838 if (!delta_avg) 3839 return; 3840 3841 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3842 3843 se->avg.load_sum = runnable_sum; 3844 se->avg.load_avg = load_avg; 3845 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3846 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3847 /* See update_cfs_rq_load_avg() */ 3848 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3849 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3850 } 3851 3852 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3853 { 3854 cfs_rq->propagate = 1; 3855 cfs_rq->prop_runnable_sum += runnable_sum; 3856 } 3857 3858 /* Update task and its cfs_rq load average */ 3859 static inline int propagate_entity_load_avg(struct sched_entity *se) 3860 { 3861 struct cfs_rq *cfs_rq, *gcfs_rq; 3862 3863 if (entity_is_task(se)) 3864 return 0; 3865 3866 gcfs_rq = group_cfs_rq(se); 3867 if (!gcfs_rq->propagate) 3868 return 0; 3869 3870 gcfs_rq->propagate = 0; 3871 3872 cfs_rq = cfs_rq_of(se); 3873 3874 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3875 3876 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3877 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3878 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3879 3880 trace_pelt_cfs_tp(cfs_rq); 3881 trace_pelt_se_tp(se); 3882 3883 return 1; 3884 } 3885 3886 /* 3887 * Check if we need to update the load and the utilization of a blocked 3888 * group_entity: 3889 */ 3890 static inline bool skip_blocked_update(struct sched_entity *se) 3891 { 3892 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3893 3894 /* 3895 * If sched_entity still have not zero load or utilization, we have to 3896 * decay it: 3897 */ 3898 if (se->avg.load_avg || se->avg.util_avg) 3899 return false; 3900 3901 /* 3902 * If there is a pending propagation, we have to update the load and 3903 * the utilization of the sched_entity: 3904 */ 3905 if (gcfs_rq->propagate) 3906 return false; 3907 3908 /* 3909 * Otherwise, the load and the utilization of the sched_entity is 3910 * already zero and there is no pending propagation, so it will be a 3911 * waste of time to try to decay it: 3912 */ 3913 return true; 3914 } 3915 3916 #else /* CONFIG_FAIR_GROUP_SCHED */ 3917 3918 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3919 3920 static inline int propagate_entity_load_avg(struct sched_entity *se) 3921 { 3922 return 0; 3923 } 3924 3925 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3926 3927 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3928 3929 #ifdef CONFIG_NO_HZ_COMMON 3930 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3931 { 3932 u64 throttled = 0, now, lut; 3933 struct cfs_rq *cfs_rq; 3934 struct rq *rq; 3935 bool is_idle; 3936 3937 if (load_avg_is_decayed(&se->avg)) 3938 return; 3939 3940 cfs_rq = cfs_rq_of(se); 3941 rq = rq_of(cfs_rq); 3942 3943 rcu_read_lock(); 3944 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3945 rcu_read_unlock(); 3946 3947 /* 3948 * The lag estimation comes with a cost we don't want to pay all the 3949 * time. Hence, limiting to the case where the source CPU is idle and 3950 * we know we are at the greatest risk to have an outdated clock. 3951 */ 3952 if (!is_idle) 3953 return; 3954 3955 /* 3956 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3957 * 3958 * last_update_time (the cfs_rq's last_update_time) 3959 * = cfs_rq_clock_pelt()@cfs_rq_idle 3960 * = rq_clock_pelt()@cfs_rq_idle 3961 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3962 * 3963 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3964 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3965 * 3966 * rq_idle_lag (delta between now and rq's update) 3967 * = sched_clock_cpu() - rq_clock()@rq_idle 3968 * 3969 * We can then write: 3970 * 3971 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3972 * sched_clock_cpu() - rq_clock()@rq_idle 3973 * Where: 3974 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3975 * rq_clock()@rq_idle is rq->clock_idle 3976 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3977 * is cfs_rq->throttled_pelt_idle 3978 */ 3979 3980 #ifdef CONFIG_CFS_BANDWIDTH 3981 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3982 /* The clock has been stopped for throttling */ 3983 if (throttled == U64_MAX) 3984 return; 3985 #endif 3986 now = u64_u32_load(rq->clock_pelt_idle); 3987 /* 3988 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3989 * is observed the old clock_pelt_idle value and the new clock_idle, 3990 * which lead to an underestimation. The opposite would lead to an 3991 * overestimation. 3992 */ 3993 smp_rmb(); 3994 lut = cfs_rq_last_update_time(cfs_rq); 3995 3996 now -= throttled; 3997 if (now < lut) 3998 /* 3999 * cfs_rq->avg.last_update_time is more recent than our 4000 * estimation, let's use it. 4001 */ 4002 now = lut; 4003 else 4004 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4005 4006 __update_load_avg_blocked_se(now, se); 4007 } 4008 #else 4009 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4010 #endif 4011 4012 /** 4013 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4014 * @now: current time, as per cfs_rq_clock_pelt() 4015 * @cfs_rq: cfs_rq to update 4016 * 4017 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4018 * avg. The immediate corollary is that all (fair) tasks must be attached. 4019 * 4020 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4021 * 4022 * Return: true if the load decayed or we removed load. 4023 * 4024 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4025 * call update_tg_load_avg() when this function returns true. 4026 */ 4027 static inline int 4028 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4029 { 4030 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4031 struct sched_avg *sa = &cfs_rq->avg; 4032 int decayed = 0; 4033 4034 if (cfs_rq->removed.nr) { 4035 unsigned long r; 4036 u32 divider = get_pelt_divider(&cfs_rq->avg); 4037 4038 raw_spin_lock(&cfs_rq->removed.lock); 4039 swap(cfs_rq->removed.util_avg, removed_util); 4040 swap(cfs_rq->removed.load_avg, removed_load); 4041 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4042 cfs_rq->removed.nr = 0; 4043 raw_spin_unlock(&cfs_rq->removed.lock); 4044 4045 r = removed_load; 4046 sub_positive(&sa->load_avg, r); 4047 sub_positive(&sa->load_sum, r * divider); 4048 /* See sa->util_sum below */ 4049 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4050 4051 r = removed_util; 4052 sub_positive(&sa->util_avg, r); 4053 sub_positive(&sa->util_sum, r * divider); 4054 /* 4055 * Because of rounding, se->util_sum might ends up being +1 more than 4056 * cfs->util_sum. Although this is not a problem by itself, detaching 4057 * a lot of tasks with the rounding problem between 2 updates of 4058 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4059 * cfs_util_avg is not. 4060 * Check that util_sum is still above its lower bound for the new 4061 * util_avg. Given that period_contrib might have moved since the last 4062 * sync, we are only sure that util_sum must be above or equal to 4063 * util_avg * minimum possible divider 4064 */ 4065 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4066 4067 r = removed_runnable; 4068 sub_positive(&sa->runnable_avg, r); 4069 sub_positive(&sa->runnable_sum, r * divider); 4070 /* See sa->util_sum above */ 4071 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4072 sa->runnable_avg * PELT_MIN_DIVIDER); 4073 4074 /* 4075 * removed_runnable is the unweighted version of removed_load so we 4076 * can use it to estimate removed_load_sum. 4077 */ 4078 add_tg_cfs_propagate(cfs_rq, 4079 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4080 4081 decayed = 1; 4082 } 4083 4084 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4085 u64_u32_store_copy(sa->last_update_time, 4086 cfs_rq->last_update_time_copy, 4087 sa->last_update_time); 4088 return decayed; 4089 } 4090 4091 /** 4092 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4093 * @cfs_rq: cfs_rq to attach to 4094 * @se: sched_entity to attach 4095 * 4096 * Must call update_cfs_rq_load_avg() before this, since we rely on 4097 * cfs_rq->avg.last_update_time being current. 4098 */ 4099 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4100 { 4101 /* 4102 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4103 * See ___update_load_avg() for details. 4104 */ 4105 u32 divider = get_pelt_divider(&cfs_rq->avg); 4106 4107 /* 4108 * When we attach the @se to the @cfs_rq, we must align the decay 4109 * window because without that, really weird and wonderful things can 4110 * happen. 4111 * 4112 * XXX illustrate 4113 */ 4114 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4115 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4116 4117 /* 4118 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4119 * period_contrib. This isn't strictly correct, but since we're 4120 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4121 * _sum a little. 4122 */ 4123 se->avg.util_sum = se->avg.util_avg * divider; 4124 4125 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4126 4127 se->avg.load_sum = se->avg.load_avg * divider; 4128 if (se_weight(se) < se->avg.load_sum) 4129 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4130 else 4131 se->avg.load_sum = 1; 4132 4133 enqueue_load_avg(cfs_rq, se); 4134 cfs_rq->avg.util_avg += se->avg.util_avg; 4135 cfs_rq->avg.util_sum += se->avg.util_sum; 4136 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4137 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4138 4139 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4140 4141 cfs_rq_util_change(cfs_rq, 0); 4142 4143 trace_pelt_cfs_tp(cfs_rq); 4144 } 4145 4146 /** 4147 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4148 * @cfs_rq: cfs_rq to detach from 4149 * @se: sched_entity to detach 4150 * 4151 * Must call update_cfs_rq_load_avg() before this, since we rely on 4152 * cfs_rq->avg.last_update_time being current. 4153 */ 4154 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4155 { 4156 dequeue_load_avg(cfs_rq, se); 4157 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4158 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4159 /* See update_cfs_rq_load_avg() */ 4160 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4161 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4162 4163 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4164 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4165 /* See update_cfs_rq_load_avg() */ 4166 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4167 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4168 4169 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4170 4171 cfs_rq_util_change(cfs_rq, 0); 4172 4173 trace_pelt_cfs_tp(cfs_rq); 4174 } 4175 4176 /* 4177 * Optional action to be done while updating the load average 4178 */ 4179 #define UPDATE_TG 0x1 4180 #define SKIP_AGE_LOAD 0x2 4181 #define DO_ATTACH 0x4 4182 #define DO_DETACH 0x8 4183 4184 /* Update task and its cfs_rq load average */ 4185 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4186 { 4187 u64 now = cfs_rq_clock_pelt(cfs_rq); 4188 int decayed; 4189 4190 /* 4191 * Track task load average for carrying it to new CPU after migrated, and 4192 * track group sched_entity load average for task_h_load calc in migration 4193 */ 4194 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4195 __update_load_avg_se(now, cfs_rq, se); 4196 4197 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4198 decayed |= propagate_entity_load_avg(se); 4199 4200 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4201 4202 /* 4203 * DO_ATTACH means we're here from enqueue_entity(). 4204 * !last_update_time means we've passed through 4205 * migrate_task_rq_fair() indicating we migrated. 4206 * 4207 * IOW we're enqueueing a task on a new CPU. 4208 */ 4209 attach_entity_load_avg(cfs_rq, se); 4210 update_tg_load_avg(cfs_rq); 4211 4212 } else if (flags & DO_DETACH) { 4213 /* 4214 * DO_DETACH means we're here from dequeue_entity() 4215 * and we are migrating task out of the CPU. 4216 */ 4217 detach_entity_load_avg(cfs_rq, se); 4218 update_tg_load_avg(cfs_rq); 4219 } else if (decayed) { 4220 cfs_rq_util_change(cfs_rq, 0); 4221 4222 if (flags & UPDATE_TG) 4223 update_tg_load_avg(cfs_rq); 4224 } 4225 } 4226 4227 /* 4228 * Synchronize entity load avg of dequeued entity without locking 4229 * the previous rq. 4230 */ 4231 static void sync_entity_load_avg(struct sched_entity *se) 4232 { 4233 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4234 u64 last_update_time; 4235 4236 last_update_time = cfs_rq_last_update_time(cfs_rq); 4237 __update_load_avg_blocked_se(last_update_time, se); 4238 } 4239 4240 /* 4241 * Task first catches up with cfs_rq, and then subtract 4242 * itself from the cfs_rq (task must be off the queue now). 4243 */ 4244 static void remove_entity_load_avg(struct sched_entity *se) 4245 { 4246 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4247 unsigned long flags; 4248 4249 /* 4250 * tasks cannot exit without having gone through wake_up_new_task() -> 4251 * enqueue_task_fair() which will have added things to the cfs_rq, 4252 * so we can remove unconditionally. 4253 */ 4254 4255 sync_entity_load_avg(se); 4256 4257 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4258 ++cfs_rq->removed.nr; 4259 cfs_rq->removed.util_avg += se->avg.util_avg; 4260 cfs_rq->removed.load_avg += se->avg.load_avg; 4261 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4262 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4263 } 4264 4265 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4266 { 4267 return cfs_rq->avg.runnable_avg; 4268 } 4269 4270 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4271 { 4272 return cfs_rq->avg.load_avg; 4273 } 4274 4275 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4276 4277 static inline unsigned long task_util(struct task_struct *p) 4278 { 4279 return READ_ONCE(p->se.avg.util_avg); 4280 } 4281 4282 static inline unsigned long _task_util_est(struct task_struct *p) 4283 { 4284 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4285 4286 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4287 } 4288 4289 static inline unsigned long task_util_est(struct task_struct *p) 4290 { 4291 return max(task_util(p), _task_util_est(p)); 4292 } 4293 4294 #ifdef CONFIG_UCLAMP_TASK 4295 static inline unsigned long uclamp_task_util(struct task_struct *p, 4296 unsigned long uclamp_min, 4297 unsigned long uclamp_max) 4298 { 4299 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4300 } 4301 #else 4302 static inline unsigned long uclamp_task_util(struct task_struct *p, 4303 unsigned long uclamp_min, 4304 unsigned long uclamp_max) 4305 { 4306 return task_util_est(p); 4307 } 4308 #endif 4309 4310 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4311 struct task_struct *p) 4312 { 4313 unsigned int enqueued; 4314 4315 if (!sched_feat(UTIL_EST)) 4316 return; 4317 4318 /* Update root cfs_rq's estimated utilization */ 4319 enqueued = cfs_rq->avg.util_est.enqueued; 4320 enqueued += _task_util_est(p); 4321 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4322 4323 trace_sched_util_est_cfs_tp(cfs_rq); 4324 } 4325 4326 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4327 struct task_struct *p) 4328 { 4329 unsigned int enqueued; 4330 4331 if (!sched_feat(UTIL_EST)) 4332 return; 4333 4334 /* Update root cfs_rq's estimated utilization */ 4335 enqueued = cfs_rq->avg.util_est.enqueued; 4336 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4337 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4338 4339 trace_sched_util_est_cfs_tp(cfs_rq); 4340 } 4341 4342 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4343 4344 /* 4345 * Check if a (signed) value is within a specified (unsigned) margin, 4346 * based on the observation that: 4347 * 4348 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4349 * 4350 * NOTE: this only works when value + margin < INT_MAX. 4351 */ 4352 static inline bool within_margin(int value, int margin) 4353 { 4354 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4355 } 4356 4357 static inline void util_est_update(struct cfs_rq *cfs_rq, 4358 struct task_struct *p, 4359 bool task_sleep) 4360 { 4361 long last_ewma_diff, last_enqueued_diff; 4362 struct util_est ue; 4363 4364 if (!sched_feat(UTIL_EST)) 4365 return; 4366 4367 /* 4368 * Skip update of task's estimated utilization when the task has not 4369 * yet completed an activation, e.g. being migrated. 4370 */ 4371 if (!task_sleep) 4372 return; 4373 4374 /* 4375 * If the PELT values haven't changed since enqueue time, 4376 * skip the util_est update. 4377 */ 4378 ue = p->se.avg.util_est; 4379 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4380 return; 4381 4382 last_enqueued_diff = ue.enqueued; 4383 4384 /* 4385 * Reset EWMA on utilization increases, the moving average is used only 4386 * to smooth utilization decreases. 4387 */ 4388 ue.enqueued = task_util(p); 4389 if (sched_feat(UTIL_EST_FASTUP)) { 4390 if (ue.ewma < ue.enqueued) { 4391 ue.ewma = ue.enqueued; 4392 goto done; 4393 } 4394 } 4395 4396 /* 4397 * Skip update of task's estimated utilization when its members are 4398 * already ~1% close to its last activation value. 4399 */ 4400 last_ewma_diff = ue.enqueued - ue.ewma; 4401 last_enqueued_diff -= ue.enqueued; 4402 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4403 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4404 goto done; 4405 4406 return; 4407 } 4408 4409 /* 4410 * To avoid overestimation of actual task utilization, skip updates if 4411 * we cannot grant there is idle time in this CPU. 4412 */ 4413 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4414 return; 4415 4416 /* 4417 * Update Task's estimated utilization 4418 * 4419 * When *p completes an activation we can consolidate another sample 4420 * of the task size. This is done by storing the current PELT value 4421 * as ue.enqueued and by using this value to update the Exponential 4422 * Weighted Moving Average (EWMA): 4423 * 4424 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4425 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4426 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4427 * = w * ( last_ewma_diff ) + ewma(t-1) 4428 * = w * (last_ewma_diff + ewma(t-1) / w) 4429 * 4430 * Where 'w' is the weight of new samples, which is configured to be 4431 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4432 */ 4433 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4434 ue.ewma += last_ewma_diff; 4435 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4436 done: 4437 ue.enqueued |= UTIL_AVG_UNCHANGED; 4438 WRITE_ONCE(p->se.avg.util_est, ue); 4439 4440 trace_sched_util_est_se_tp(&p->se); 4441 } 4442 4443 static inline int util_fits_cpu(unsigned long util, 4444 unsigned long uclamp_min, 4445 unsigned long uclamp_max, 4446 int cpu) 4447 { 4448 unsigned long capacity_orig, capacity_orig_thermal; 4449 unsigned long capacity = capacity_of(cpu); 4450 bool fits, uclamp_max_fits; 4451 4452 /* 4453 * Check if the real util fits without any uclamp boost/cap applied. 4454 */ 4455 fits = fits_capacity(util, capacity); 4456 4457 if (!uclamp_is_used()) 4458 return fits; 4459 4460 /* 4461 * We must use capacity_orig_of() for comparing against uclamp_min and 4462 * uclamp_max. We only care about capacity pressure (by using 4463 * capacity_of()) for comparing against the real util. 4464 * 4465 * If a task is boosted to 1024 for example, we don't want a tiny 4466 * pressure to skew the check whether it fits a CPU or not. 4467 * 4468 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4469 * should fit a little cpu even if there's some pressure. 4470 * 4471 * Only exception is for thermal pressure since it has a direct impact 4472 * on available OPP of the system. 4473 * 4474 * We honour it for uclamp_min only as a drop in performance level 4475 * could result in not getting the requested minimum performance level. 4476 * 4477 * For uclamp_max, we can tolerate a drop in performance level as the 4478 * goal is to cap the task. So it's okay if it's getting less. 4479 */ 4480 capacity_orig = capacity_orig_of(cpu); 4481 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4482 4483 /* 4484 * We want to force a task to fit a cpu as implied by uclamp_max. 4485 * But we do have some corner cases to cater for.. 4486 * 4487 * 4488 * C=z 4489 * | ___ 4490 * | C=y | | 4491 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4492 * | C=x | | | | 4493 * | ___ | | | | 4494 * | | | | | | | (util somewhere in this region) 4495 * | | | | | | | 4496 * | | | | | | | 4497 * +---------------------------------------- 4498 * cpu0 cpu1 cpu2 4499 * 4500 * In the above example if a task is capped to a specific performance 4501 * point, y, then when: 4502 * 4503 * * util = 80% of x then it does not fit on cpu0 and should migrate 4504 * to cpu1 4505 * * util = 80% of y then it is forced to fit on cpu1 to honour 4506 * uclamp_max request. 4507 * 4508 * which is what we're enforcing here. A task always fits if 4509 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4510 * the normal upmigration rules should withhold still. 4511 * 4512 * Only exception is when we are on max capacity, then we need to be 4513 * careful not to block overutilized state. This is so because: 4514 * 4515 * 1. There's no concept of capping at max_capacity! We can't go 4516 * beyond this performance level anyway. 4517 * 2. The system is being saturated when we're operating near 4518 * max capacity, it doesn't make sense to block overutilized. 4519 */ 4520 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4521 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4522 fits = fits || uclamp_max_fits; 4523 4524 /* 4525 * 4526 * C=z 4527 * | ___ (region a, capped, util >= uclamp_max) 4528 * | C=y | | 4529 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4530 * | C=x | | | | 4531 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4532 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4533 * | | | | | | | 4534 * | | | | | | | (region c, boosted, util < uclamp_min) 4535 * +---------------------------------------- 4536 * cpu0 cpu1 cpu2 4537 * 4538 * a) If util > uclamp_max, then we're capped, we don't care about 4539 * actual fitness value here. We only care if uclamp_max fits 4540 * capacity without taking margin/pressure into account. 4541 * See comment above. 4542 * 4543 * b) If uclamp_min <= util <= uclamp_max, then the normal 4544 * fits_capacity() rules apply. Except we need to ensure that we 4545 * enforce we remain within uclamp_max, see comment above. 4546 * 4547 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4548 * need to take into account the boosted value fits the CPU without 4549 * taking margin/pressure into account. 4550 * 4551 * Cases (a) and (b) are handled in the 'fits' variable already. We 4552 * just need to consider an extra check for case (c) after ensuring we 4553 * handle the case uclamp_min > uclamp_max. 4554 */ 4555 uclamp_min = min(uclamp_min, uclamp_max); 4556 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4557 return -1; 4558 4559 return fits; 4560 } 4561 4562 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4563 { 4564 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4565 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4566 unsigned long util = task_util_est(p); 4567 /* 4568 * Return true only if the cpu fully fits the task requirements, which 4569 * include the utilization but also the performance hints. 4570 */ 4571 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4572 } 4573 4574 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4575 { 4576 if (!sched_asym_cpucap_active()) 4577 return; 4578 4579 if (!p || p->nr_cpus_allowed == 1) { 4580 rq->misfit_task_load = 0; 4581 return; 4582 } 4583 4584 if (task_fits_cpu(p, cpu_of(rq))) { 4585 rq->misfit_task_load = 0; 4586 return; 4587 } 4588 4589 /* 4590 * Make sure that misfit_task_load will not be null even if 4591 * task_h_load() returns 0. 4592 */ 4593 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4594 } 4595 4596 #else /* CONFIG_SMP */ 4597 4598 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4599 { 4600 return true; 4601 } 4602 4603 #define UPDATE_TG 0x0 4604 #define SKIP_AGE_LOAD 0x0 4605 #define DO_ATTACH 0x0 4606 #define DO_DETACH 0x0 4607 4608 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4609 { 4610 cfs_rq_util_change(cfs_rq, 0); 4611 } 4612 4613 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4614 4615 static inline void 4616 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4617 static inline void 4618 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4619 4620 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4621 { 4622 return 0; 4623 } 4624 4625 static inline void 4626 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4627 4628 static inline void 4629 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4630 4631 static inline void 4632 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4633 bool task_sleep) {} 4634 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4635 4636 #endif /* CONFIG_SMP */ 4637 4638 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4639 { 4640 #ifdef CONFIG_SCHED_DEBUG 4641 s64 d = se->vruntime - cfs_rq->min_vruntime; 4642 4643 if (d < 0) 4644 d = -d; 4645 4646 if (d > 3*sysctl_sched_latency) 4647 schedstat_inc(cfs_rq->nr_spread_over); 4648 #endif 4649 } 4650 4651 static void 4652 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4653 { 4654 u64 vruntime = cfs_rq->min_vruntime; 4655 u64 sleep_time; 4656 4657 /* 4658 * The 'current' period is already promised to the current tasks, 4659 * however the extra weight of the new task will slow them down a 4660 * little, place the new task so that it fits in the slot that 4661 * stays open at the end. 4662 */ 4663 if (initial && sched_feat(START_DEBIT)) 4664 vruntime += sched_vslice(cfs_rq, se); 4665 4666 /* sleeps up to a single latency don't count. */ 4667 if (!initial) { 4668 unsigned long thresh; 4669 4670 if (se_is_idle(se)) 4671 thresh = sysctl_sched_min_granularity; 4672 else 4673 thresh = sysctl_sched_latency; 4674 4675 /* 4676 * Halve their sleep time's effect, to allow 4677 * for a gentler effect of sleepers: 4678 */ 4679 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4680 thresh >>= 1; 4681 4682 vruntime -= thresh; 4683 } 4684 4685 /* 4686 * Pull vruntime of the entity being placed to the base level of 4687 * cfs_rq, to prevent boosting it if placed backwards. If the entity 4688 * slept for a long time, don't even try to compare its vruntime with 4689 * the base as it may be too far off and the comparison may get 4690 * inversed due to s64 overflow. 4691 */ 4692 sleep_time = rq_clock_task(rq_of(cfs_rq)) - se->exec_start; 4693 if ((s64)sleep_time > 60LL * NSEC_PER_SEC) 4694 se->vruntime = vruntime; 4695 else 4696 se->vruntime = max_vruntime(se->vruntime, vruntime); 4697 } 4698 4699 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4700 4701 static inline bool cfs_bandwidth_used(void); 4702 4703 /* 4704 * MIGRATION 4705 * 4706 * dequeue 4707 * update_curr() 4708 * update_min_vruntime() 4709 * vruntime -= min_vruntime 4710 * 4711 * enqueue 4712 * update_curr() 4713 * update_min_vruntime() 4714 * vruntime += min_vruntime 4715 * 4716 * this way the vruntime transition between RQs is done when both 4717 * min_vruntime are up-to-date. 4718 * 4719 * WAKEUP (remote) 4720 * 4721 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4722 * vruntime -= min_vruntime 4723 * 4724 * enqueue 4725 * update_curr() 4726 * update_min_vruntime() 4727 * vruntime += min_vruntime 4728 * 4729 * this way we don't have the most up-to-date min_vruntime on the originating 4730 * CPU and an up-to-date min_vruntime on the destination CPU. 4731 */ 4732 4733 static void 4734 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4735 { 4736 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4737 bool curr = cfs_rq->curr == se; 4738 4739 /* 4740 * If we're the current task, we must renormalise before calling 4741 * update_curr(). 4742 */ 4743 if (renorm && curr) 4744 se->vruntime += cfs_rq->min_vruntime; 4745 4746 update_curr(cfs_rq); 4747 4748 /* 4749 * Otherwise, renormalise after, such that we're placed at the current 4750 * moment in time, instead of some random moment in the past. Being 4751 * placed in the past could significantly boost this task to the 4752 * fairness detriment of existing tasks. 4753 */ 4754 if (renorm && !curr) 4755 se->vruntime += cfs_rq->min_vruntime; 4756 4757 /* 4758 * When enqueuing a sched_entity, we must: 4759 * - Update loads to have both entity and cfs_rq synced with now. 4760 * - For group_entity, update its runnable_weight to reflect the new 4761 * h_nr_running of its group cfs_rq. 4762 * - For group_entity, update its weight to reflect the new share of 4763 * its group cfs_rq 4764 * - Add its new weight to cfs_rq->load.weight 4765 */ 4766 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4767 se_update_runnable(se); 4768 update_cfs_group(se); 4769 account_entity_enqueue(cfs_rq, se); 4770 4771 if (flags & ENQUEUE_WAKEUP) 4772 place_entity(cfs_rq, se, 0); 4773 4774 check_schedstat_required(); 4775 update_stats_enqueue_fair(cfs_rq, se, flags); 4776 check_spread(cfs_rq, se); 4777 if (!curr) 4778 __enqueue_entity(cfs_rq, se); 4779 se->on_rq = 1; 4780 4781 if (cfs_rq->nr_running == 1) { 4782 check_enqueue_throttle(cfs_rq); 4783 if (!throttled_hierarchy(cfs_rq)) 4784 list_add_leaf_cfs_rq(cfs_rq); 4785 } 4786 } 4787 4788 static void __clear_buddies_last(struct sched_entity *se) 4789 { 4790 for_each_sched_entity(se) { 4791 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4792 if (cfs_rq->last != se) 4793 break; 4794 4795 cfs_rq->last = NULL; 4796 } 4797 } 4798 4799 static void __clear_buddies_next(struct sched_entity *se) 4800 { 4801 for_each_sched_entity(se) { 4802 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4803 if (cfs_rq->next != se) 4804 break; 4805 4806 cfs_rq->next = NULL; 4807 } 4808 } 4809 4810 static void __clear_buddies_skip(struct sched_entity *se) 4811 { 4812 for_each_sched_entity(se) { 4813 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4814 if (cfs_rq->skip != se) 4815 break; 4816 4817 cfs_rq->skip = NULL; 4818 } 4819 } 4820 4821 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4822 { 4823 if (cfs_rq->last == se) 4824 __clear_buddies_last(se); 4825 4826 if (cfs_rq->next == se) 4827 __clear_buddies_next(se); 4828 4829 if (cfs_rq->skip == se) 4830 __clear_buddies_skip(se); 4831 } 4832 4833 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4834 4835 static void 4836 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4837 { 4838 int action = UPDATE_TG; 4839 4840 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4841 action |= DO_DETACH; 4842 4843 /* 4844 * Update run-time statistics of the 'current'. 4845 */ 4846 update_curr(cfs_rq); 4847 4848 /* 4849 * When dequeuing a sched_entity, we must: 4850 * - Update loads to have both entity and cfs_rq synced with now. 4851 * - For group_entity, update its runnable_weight to reflect the new 4852 * h_nr_running of its group cfs_rq. 4853 * - Subtract its previous weight from cfs_rq->load.weight. 4854 * - For group entity, update its weight to reflect the new share 4855 * of its group cfs_rq. 4856 */ 4857 update_load_avg(cfs_rq, se, action); 4858 se_update_runnable(se); 4859 4860 update_stats_dequeue_fair(cfs_rq, se, flags); 4861 4862 clear_buddies(cfs_rq, se); 4863 4864 if (se != cfs_rq->curr) 4865 __dequeue_entity(cfs_rq, se); 4866 se->on_rq = 0; 4867 account_entity_dequeue(cfs_rq, se); 4868 4869 /* 4870 * Normalize after update_curr(); which will also have moved 4871 * min_vruntime if @se is the one holding it back. But before doing 4872 * update_min_vruntime() again, which will discount @se's position and 4873 * can move min_vruntime forward still more. 4874 */ 4875 if (!(flags & DEQUEUE_SLEEP)) 4876 se->vruntime -= cfs_rq->min_vruntime; 4877 4878 /* return excess runtime on last dequeue */ 4879 return_cfs_rq_runtime(cfs_rq); 4880 4881 update_cfs_group(se); 4882 4883 /* 4884 * Now advance min_vruntime if @se was the entity holding it back, 4885 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4886 * put back on, and if we advance min_vruntime, we'll be placed back 4887 * further than we started -- ie. we'll be penalized. 4888 */ 4889 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4890 update_min_vruntime(cfs_rq); 4891 4892 if (cfs_rq->nr_running == 0) 4893 update_idle_cfs_rq_clock_pelt(cfs_rq); 4894 } 4895 4896 /* 4897 * Preempt the current task with a newly woken task if needed: 4898 */ 4899 static void 4900 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4901 { 4902 unsigned long ideal_runtime, delta_exec; 4903 struct sched_entity *se; 4904 s64 delta; 4905 4906 /* 4907 * When many tasks blow up the sched_period; it is possible that 4908 * sched_slice() reports unusually large results (when many tasks are 4909 * very light for example). Therefore impose a maximum. 4910 */ 4911 ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency); 4912 4913 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4914 if (delta_exec > ideal_runtime) { 4915 resched_curr(rq_of(cfs_rq)); 4916 /* 4917 * The current task ran long enough, ensure it doesn't get 4918 * re-elected due to buddy favours. 4919 */ 4920 clear_buddies(cfs_rq, curr); 4921 return; 4922 } 4923 4924 /* 4925 * Ensure that a task that missed wakeup preemption by a 4926 * narrow margin doesn't have to wait for a full slice. 4927 * This also mitigates buddy induced latencies under load. 4928 */ 4929 if (delta_exec < sysctl_sched_min_granularity) 4930 return; 4931 4932 se = __pick_first_entity(cfs_rq); 4933 delta = curr->vruntime - se->vruntime; 4934 4935 if (delta < 0) 4936 return; 4937 4938 if (delta > ideal_runtime) 4939 resched_curr(rq_of(cfs_rq)); 4940 } 4941 4942 static void 4943 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4944 { 4945 clear_buddies(cfs_rq, se); 4946 4947 /* 'current' is not kept within the tree. */ 4948 if (se->on_rq) { 4949 /* 4950 * Any task has to be enqueued before it get to execute on 4951 * a CPU. So account for the time it spent waiting on the 4952 * runqueue. 4953 */ 4954 update_stats_wait_end_fair(cfs_rq, se); 4955 __dequeue_entity(cfs_rq, se); 4956 update_load_avg(cfs_rq, se, UPDATE_TG); 4957 } 4958 4959 update_stats_curr_start(cfs_rq, se); 4960 cfs_rq->curr = se; 4961 4962 /* 4963 * Track our maximum slice length, if the CPU's load is at 4964 * least twice that of our own weight (i.e. dont track it 4965 * when there are only lesser-weight tasks around): 4966 */ 4967 if (schedstat_enabled() && 4968 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4969 struct sched_statistics *stats; 4970 4971 stats = __schedstats_from_se(se); 4972 __schedstat_set(stats->slice_max, 4973 max((u64)stats->slice_max, 4974 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4975 } 4976 4977 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4978 } 4979 4980 static int 4981 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4982 4983 /* 4984 * Pick the next process, keeping these things in mind, in this order: 4985 * 1) keep things fair between processes/task groups 4986 * 2) pick the "next" process, since someone really wants that to run 4987 * 3) pick the "last" process, for cache locality 4988 * 4) do not run the "skip" process, if something else is available 4989 */ 4990 static struct sched_entity * 4991 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4992 { 4993 struct sched_entity *left = __pick_first_entity(cfs_rq); 4994 struct sched_entity *se; 4995 4996 /* 4997 * If curr is set we have to see if its left of the leftmost entity 4998 * still in the tree, provided there was anything in the tree at all. 4999 */ 5000 if (!left || (curr && entity_before(curr, left))) 5001 left = curr; 5002 5003 se = left; /* ideally we run the leftmost entity */ 5004 5005 /* 5006 * Avoid running the skip buddy, if running something else can 5007 * be done without getting too unfair. 5008 */ 5009 if (cfs_rq->skip && cfs_rq->skip == se) { 5010 struct sched_entity *second; 5011 5012 if (se == curr) { 5013 second = __pick_first_entity(cfs_rq); 5014 } else { 5015 second = __pick_next_entity(se); 5016 if (!second || (curr && entity_before(curr, second))) 5017 second = curr; 5018 } 5019 5020 if (second && wakeup_preempt_entity(second, left) < 1) 5021 se = second; 5022 } 5023 5024 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 5025 /* 5026 * Someone really wants this to run. If it's not unfair, run it. 5027 */ 5028 se = cfs_rq->next; 5029 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 5030 /* 5031 * Prefer last buddy, try to return the CPU to a preempted task. 5032 */ 5033 se = cfs_rq->last; 5034 } 5035 5036 return se; 5037 } 5038 5039 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5040 5041 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5042 { 5043 /* 5044 * If still on the runqueue then deactivate_task() 5045 * was not called and update_curr() has to be done: 5046 */ 5047 if (prev->on_rq) 5048 update_curr(cfs_rq); 5049 5050 /* throttle cfs_rqs exceeding runtime */ 5051 check_cfs_rq_runtime(cfs_rq); 5052 5053 check_spread(cfs_rq, prev); 5054 5055 if (prev->on_rq) { 5056 update_stats_wait_start_fair(cfs_rq, prev); 5057 /* Put 'current' back into the tree. */ 5058 __enqueue_entity(cfs_rq, prev); 5059 /* in !on_rq case, update occurred at dequeue */ 5060 update_load_avg(cfs_rq, prev, 0); 5061 } 5062 cfs_rq->curr = NULL; 5063 } 5064 5065 static void 5066 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5067 { 5068 /* 5069 * Update run-time statistics of the 'current'. 5070 */ 5071 update_curr(cfs_rq); 5072 5073 /* 5074 * Ensure that runnable average is periodically updated. 5075 */ 5076 update_load_avg(cfs_rq, curr, UPDATE_TG); 5077 update_cfs_group(curr); 5078 5079 #ifdef CONFIG_SCHED_HRTICK 5080 /* 5081 * queued ticks are scheduled to match the slice, so don't bother 5082 * validating it and just reschedule. 5083 */ 5084 if (queued) { 5085 resched_curr(rq_of(cfs_rq)); 5086 return; 5087 } 5088 /* 5089 * don't let the period tick interfere with the hrtick preemption 5090 */ 5091 if (!sched_feat(DOUBLE_TICK) && 5092 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5093 return; 5094 #endif 5095 5096 if (cfs_rq->nr_running > 1) 5097 check_preempt_tick(cfs_rq, curr); 5098 } 5099 5100 5101 /************************************************** 5102 * CFS bandwidth control machinery 5103 */ 5104 5105 #ifdef CONFIG_CFS_BANDWIDTH 5106 5107 #ifdef CONFIG_JUMP_LABEL 5108 static struct static_key __cfs_bandwidth_used; 5109 5110 static inline bool cfs_bandwidth_used(void) 5111 { 5112 return static_key_false(&__cfs_bandwidth_used); 5113 } 5114 5115 void cfs_bandwidth_usage_inc(void) 5116 { 5117 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5118 } 5119 5120 void cfs_bandwidth_usage_dec(void) 5121 { 5122 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5123 } 5124 #else /* CONFIG_JUMP_LABEL */ 5125 static bool cfs_bandwidth_used(void) 5126 { 5127 return true; 5128 } 5129 5130 void cfs_bandwidth_usage_inc(void) {} 5131 void cfs_bandwidth_usage_dec(void) {} 5132 #endif /* CONFIG_JUMP_LABEL */ 5133 5134 /* 5135 * default period for cfs group bandwidth. 5136 * default: 0.1s, units: nanoseconds 5137 */ 5138 static inline u64 default_cfs_period(void) 5139 { 5140 return 100000000ULL; 5141 } 5142 5143 static inline u64 sched_cfs_bandwidth_slice(void) 5144 { 5145 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5146 } 5147 5148 /* 5149 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5150 * directly instead of rq->clock to avoid adding additional synchronization 5151 * around rq->lock. 5152 * 5153 * requires cfs_b->lock 5154 */ 5155 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5156 { 5157 s64 runtime; 5158 5159 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5160 return; 5161 5162 cfs_b->runtime += cfs_b->quota; 5163 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5164 if (runtime > 0) { 5165 cfs_b->burst_time += runtime; 5166 cfs_b->nr_burst++; 5167 } 5168 5169 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5170 cfs_b->runtime_snap = cfs_b->runtime; 5171 } 5172 5173 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5174 { 5175 return &tg->cfs_bandwidth; 5176 } 5177 5178 /* returns 0 on failure to allocate runtime */ 5179 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5180 struct cfs_rq *cfs_rq, u64 target_runtime) 5181 { 5182 u64 min_amount, amount = 0; 5183 5184 lockdep_assert_held(&cfs_b->lock); 5185 5186 /* note: this is a positive sum as runtime_remaining <= 0 */ 5187 min_amount = target_runtime - cfs_rq->runtime_remaining; 5188 5189 if (cfs_b->quota == RUNTIME_INF) 5190 amount = min_amount; 5191 else { 5192 start_cfs_bandwidth(cfs_b); 5193 5194 if (cfs_b->runtime > 0) { 5195 amount = min(cfs_b->runtime, min_amount); 5196 cfs_b->runtime -= amount; 5197 cfs_b->idle = 0; 5198 } 5199 } 5200 5201 cfs_rq->runtime_remaining += amount; 5202 5203 return cfs_rq->runtime_remaining > 0; 5204 } 5205 5206 /* returns 0 on failure to allocate runtime */ 5207 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5208 { 5209 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5210 int ret; 5211 5212 raw_spin_lock(&cfs_b->lock); 5213 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5214 raw_spin_unlock(&cfs_b->lock); 5215 5216 return ret; 5217 } 5218 5219 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5220 { 5221 /* dock delta_exec before expiring quota (as it could span periods) */ 5222 cfs_rq->runtime_remaining -= delta_exec; 5223 5224 if (likely(cfs_rq->runtime_remaining > 0)) 5225 return; 5226 5227 if (cfs_rq->throttled) 5228 return; 5229 /* 5230 * if we're unable to extend our runtime we resched so that the active 5231 * hierarchy can be throttled 5232 */ 5233 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5234 resched_curr(rq_of(cfs_rq)); 5235 } 5236 5237 static __always_inline 5238 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5239 { 5240 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5241 return; 5242 5243 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5244 } 5245 5246 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5247 { 5248 return cfs_bandwidth_used() && cfs_rq->throttled; 5249 } 5250 5251 /* check whether cfs_rq, or any parent, is throttled */ 5252 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5253 { 5254 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5255 } 5256 5257 /* 5258 * Ensure that neither of the group entities corresponding to src_cpu or 5259 * dest_cpu are members of a throttled hierarchy when performing group 5260 * load-balance operations. 5261 */ 5262 static inline int throttled_lb_pair(struct task_group *tg, 5263 int src_cpu, int dest_cpu) 5264 { 5265 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5266 5267 src_cfs_rq = tg->cfs_rq[src_cpu]; 5268 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5269 5270 return throttled_hierarchy(src_cfs_rq) || 5271 throttled_hierarchy(dest_cfs_rq); 5272 } 5273 5274 static int tg_unthrottle_up(struct task_group *tg, void *data) 5275 { 5276 struct rq *rq = data; 5277 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5278 5279 cfs_rq->throttle_count--; 5280 if (!cfs_rq->throttle_count) { 5281 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5282 cfs_rq->throttled_clock_pelt; 5283 5284 /* Add cfs_rq with load or one or more already running entities to the list */ 5285 if (!cfs_rq_is_decayed(cfs_rq)) 5286 list_add_leaf_cfs_rq(cfs_rq); 5287 } 5288 5289 return 0; 5290 } 5291 5292 static int tg_throttle_down(struct task_group *tg, void *data) 5293 { 5294 struct rq *rq = data; 5295 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5296 5297 /* group is entering throttled state, stop time */ 5298 if (!cfs_rq->throttle_count) { 5299 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5300 list_del_leaf_cfs_rq(cfs_rq); 5301 } 5302 cfs_rq->throttle_count++; 5303 5304 return 0; 5305 } 5306 5307 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5308 { 5309 struct rq *rq = rq_of(cfs_rq); 5310 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5311 struct sched_entity *se; 5312 long task_delta, idle_task_delta, dequeue = 1; 5313 5314 raw_spin_lock(&cfs_b->lock); 5315 /* This will start the period timer if necessary */ 5316 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5317 /* 5318 * We have raced with bandwidth becoming available, and if we 5319 * actually throttled the timer might not unthrottle us for an 5320 * entire period. We additionally needed to make sure that any 5321 * subsequent check_cfs_rq_runtime calls agree not to throttle 5322 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5323 * for 1ns of runtime rather than just check cfs_b. 5324 */ 5325 dequeue = 0; 5326 } else { 5327 list_add_tail_rcu(&cfs_rq->throttled_list, 5328 &cfs_b->throttled_cfs_rq); 5329 } 5330 raw_spin_unlock(&cfs_b->lock); 5331 5332 if (!dequeue) 5333 return false; /* Throttle no longer required. */ 5334 5335 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5336 5337 /* freeze hierarchy runnable averages while throttled */ 5338 rcu_read_lock(); 5339 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5340 rcu_read_unlock(); 5341 5342 task_delta = cfs_rq->h_nr_running; 5343 idle_task_delta = cfs_rq->idle_h_nr_running; 5344 for_each_sched_entity(se) { 5345 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5346 /* throttled entity or throttle-on-deactivate */ 5347 if (!se->on_rq) 5348 goto done; 5349 5350 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5351 5352 if (cfs_rq_is_idle(group_cfs_rq(se))) 5353 idle_task_delta = cfs_rq->h_nr_running; 5354 5355 qcfs_rq->h_nr_running -= task_delta; 5356 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5357 5358 if (qcfs_rq->load.weight) { 5359 /* Avoid re-evaluating load for this entity: */ 5360 se = parent_entity(se); 5361 break; 5362 } 5363 } 5364 5365 for_each_sched_entity(se) { 5366 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5367 /* throttled entity or throttle-on-deactivate */ 5368 if (!se->on_rq) 5369 goto done; 5370 5371 update_load_avg(qcfs_rq, se, 0); 5372 se_update_runnable(se); 5373 5374 if (cfs_rq_is_idle(group_cfs_rq(se))) 5375 idle_task_delta = cfs_rq->h_nr_running; 5376 5377 qcfs_rq->h_nr_running -= task_delta; 5378 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5379 } 5380 5381 /* At this point se is NULL and we are at root level*/ 5382 sub_nr_running(rq, task_delta); 5383 5384 done: 5385 /* 5386 * Note: distribution will already see us throttled via the 5387 * throttled-list. rq->lock protects completion. 5388 */ 5389 cfs_rq->throttled = 1; 5390 cfs_rq->throttled_clock = rq_clock(rq); 5391 return true; 5392 } 5393 5394 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5395 { 5396 struct rq *rq = rq_of(cfs_rq); 5397 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5398 struct sched_entity *se; 5399 long task_delta, idle_task_delta; 5400 5401 se = cfs_rq->tg->se[cpu_of(rq)]; 5402 5403 cfs_rq->throttled = 0; 5404 5405 update_rq_clock(rq); 5406 5407 raw_spin_lock(&cfs_b->lock); 5408 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5409 list_del_rcu(&cfs_rq->throttled_list); 5410 raw_spin_unlock(&cfs_b->lock); 5411 5412 /* update hierarchical throttle state */ 5413 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5414 5415 if (!cfs_rq->load.weight) { 5416 if (!cfs_rq->on_list) 5417 return; 5418 /* 5419 * Nothing to run but something to decay (on_list)? 5420 * Complete the branch. 5421 */ 5422 for_each_sched_entity(se) { 5423 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5424 break; 5425 } 5426 goto unthrottle_throttle; 5427 } 5428 5429 task_delta = cfs_rq->h_nr_running; 5430 idle_task_delta = cfs_rq->idle_h_nr_running; 5431 for_each_sched_entity(se) { 5432 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5433 5434 if (se->on_rq) 5435 break; 5436 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5437 5438 if (cfs_rq_is_idle(group_cfs_rq(se))) 5439 idle_task_delta = cfs_rq->h_nr_running; 5440 5441 qcfs_rq->h_nr_running += task_delta; 5442 qcfs_rq->idle_h_nr_running += idle_task_delta; 5443 5444 /* end evaluation on encountering a throttled cfs_rq */ 5445 if (cfs_rq_throttled(qcfs_rq)) 5446 goto unthrottle_throttle; 5447 } 5448 5449 for_each_sched_entity(se) { 5450 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5451 5452 update_load_avg(qcfs_rq, se, UPDATE_TG); 5453 se_update_runnable(se); 5454 5455 if (cfs_rq_is_idle(group_cfs_rq(se))) 5456 idle_task_delta = cfs_rq->h_nr_running; 5457 5458 qcfs_rq->h_nr_running += task_delta; 5459 qcfs_rq->idle_h_nr_running += idle_task_delta; 5460 5461 /* end evaluation on encountering a throttled cfs_rq */ 5462 if (cfs_rq_throttled(qcfs_rq)) 5463 goto unthrottle_throttle; 5464 } 5465 5466 /* At this point se is NULL and we are at root level*/ 5467 add_nr_running(rq, task_delta); 5468 5469 unthrottle_throttle: 5470 assert_list_leaf_cfs_rq(rq); 5471 5472 /* Determine whether we need to wake up potentially idle CPU: */ 5473 if (rq->curr == rq->idle && rq->cfs.nr_running) 5474 resched_curr(rq); 5475 } 5476 5477 #ifdef CONFIG_SMP 5478 static void __cfsb_csd_unthrottle(void *arg) 5479 { 5480 struct cfs_rq *cursor, *tmp; 5481 struct rq *rq = arg; 5482 struct rq_flags rf; 5483 5484 rq_lock(rq, &rf); 5485 5486 /* 5487 * Since we hold rq lock we're safe from concurrent manipulation of 5488 * the CSD list. However, this RCU critical section annotates the 5489 * fact that we pair with sched_free_group_rcu(), so that we cannot 5490 * race with group being freed in the window between removing it 5491 * from the list and advancing to the next entry in the list. 5492 */ 5493 rcu_read_lock(); 5494 5495 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5496 throttled_csd_list) { 5497 list_del_init(&cursor->throttled_csd_list); 5498 5499 if (cfs_rq_throttled(cursor)) 5500 unthrottle_cfs_rq(cursor); 5501 } 5502 5503 rcu_read_unlock(); 5504 5505 rq_unlock(rq, &rf); 5506 } 5507 5508 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5509 { 5510 struct rq *rq = rq_of(cfs_rq); 5511 bool first; 5512 5513 if (rq == this_rq()) { 5514 unthrottle_cfs_rq(cfs_rq); 5515 return; 5516 } 5517 5518 /* Already enqueued */ 5519 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5520 return; 5521 5522 first = list_empty(&rq->cfsb_csd_list); 5523 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5524 if (first) 5525 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5526 } 5527 #else 5528 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5529 { 5530 unthrottle_cfs_rq(cfs_rq); 5531 } 5532 #endif 5533 5534 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5535 { 5536 lockdep_assert_rq_held(rq_of(cfs_rq)); 5537 5538 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5539 cfs_rq->runtime_remaining <= 0)) 5540 return; 5541 5542 __unthrottle_cfs_rq_async(cfs_rq); 5543 } 5544 5545 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5546 { 5547 struct cfs_rq *local_unthrottle = NULL; 5548 int this_cpu = smp_processor_id(); 5549 u64 runtime, remaining = 1; 5550 bool throttled = false; 5551 struct cfs_rq *cfs_rq; 5552 struct rq_flags rf; 5553 struct rq *rq; 5554 5555 rcu_read_lock(); 5556 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5557 throttled_list) { 5558 rq = rq_of(cfs_rq); 5559 5560 if (!remaining) { 5561 throttled = true; 5562 break; 5563 } 5564 5565 rq_lock_irqsave(rq, &rf); 5566 if (!cfs_rq_throttled(cfs_rq)) 5567 goto next; 5568 5569 #ifdef CONFIG_SMP 5570 /* Already queued for async unthrottle */ 5571 if (!list_empty(&cfs_rq->throttled_csd_list)) 5572 goto next; 5573 #endif 5574 5575 /* By the above checks, this should never be true */ 5576 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5577 5578 raw_spin_lock(&cfs_b->lock); 5579 runtime = -cfs_rq->runtime_remaining + 1; 5580 if (runtime > cfs_b->runtime) 5581 runtime = cfs_b->runtime; 5582 cfs_b->runtime -= runtime; 5583 remaining = cfs_b->runtime; 5584 raw_spin_unlock(&cfs_b->lock); 5585 5586 cfs_rq->runtime_remaining += runtime; 5587 5588 /* we check whether we're throttled above */ 5589 if (cfs_rq->runtime_remaining > 0) { 5590 if (cpu_of(rq) != this_cpu || 5591 SCHED_WARN_ON(local_unthrottle)) 5592 unthrottle_cfs_rq_async(cfs_rq); 5593 else 5594 local_unthrottle = cfs_rq; 5595 } else { 5596 throttled = true; 5597 } 5598 5599 next: 5600 rq_unlock_irqrestore(rq, &rf); 5601 } 5602 rcu_read_unlock(); 5603 5604 if (local_unthrottle) { 5605 rq = cpu_rq(this_cpu); 5606 rq_lock_irqsave(rq, &rf); 5607 if (cfs_rq_throttled(local_unthrottle)) 5608 unthrottle_cfs_rq(local_unthrottle); 5609 rq_unlock_irqrestore(rq, &rf); 5610 } 5611 5612 return throttled; 5613 } 5614 5615 /* 5616 * Responsible for refilling a task_group's bandwidth and unthrottling its 5617 * cfs_rqs as appropriate. If there has been no activity within the last 5618 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5619 * used to track this state. 5620 */ 5621 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5622 { 5623 int throttled; 5624 5625 /* no need to continue the timer with no bandwidth constraint */ 5626 if (cfs_b->quota == RUNTIME_INF) 5627 goto out_deactivate; 5628 5629 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5630 cfs_b->nr_periods += overrun; 5631 5632 /* Refill extra burst quota even if cfs_b->idle */ 5633 __refill_cfs_bandwidth_runtime(cfs_b); 5634 5635 /* 5636 * idle depends on !throttled (for the case of a large deficit), and if 5637 * we're going inactive then everything else can be deferred 5638 */ 5639 if (cfs_b->idle && !throttled) 5640 goto out_deactivate; 5641 5642 if (!throttled) { 5643 /* mark as potentially idle for the upcoming period */ 5644 cfs_b->idle = 1; 5645 return 0; 5646 } 5647 5648 /* account preceding periods in which throttling occurred */ 5649 cfs_b->nr_throttled += overrun; 5650 5651 /* 5652 * This check is repeated as we release cfs_b->lock while we unthrottle. 5653 */ 5654 while (throttled && cfs_b->runtime > 0) { 5655 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5656 /* we can't nest cfs_b->lock while distributing bandwidth */ 5657 throttled = distribute_cfs_runtime(cfs_b); 5658 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5659 } 5660 5661 /* 5662 * While we are ensured activity in the period following an 5663 * unthrottle, this also covers the case in which the new bandwidth is 5664 * insufficient to cover the existing bandwidth deficit. (Forcing the 5665 * timer to remain active while there are any throttled entities.) 5666 */ 5667 cfs_b->idle = 0; 5668 5669 return 0; 5670 5671 out_deactivate: 5672 return 1; 5673 } 5674 5675 /* a cfs_rq won't donate quota below this amount */ 5676 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5677 /* minimum remaining period time to redistribute slack quota */ 5678 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5679 /* how long we wait to gather additional slack before distributing */ 5680 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5681 5682 /* 5683 * Are we near the end of the current quota period? 5684 * 5685 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5686 * hrtimer base being cleared by hrtimer_start. In the case of 5687 * migrate_hrtimers, base is never cleared, so we are fine. 5688 */ 5689 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5690 { 5691 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5692 s64 remaining; 5693 5694 /* if the call-back is running a quota refresh is already occurring */ 5695 if (hrtimer_callback_running(refresh_timer)) 5696 return 1; 5697 5698 /* is a quota refresh about to occur? */ 5699 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5700 if (remaining < (s64)min_expire) 5701 return 1; 5702 5703 return 0; 5704 } 5705 5706 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5707 { 5708 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5709 5710 /* if there's a quota refresh soon don't bother with slack */ 5711 if (runtime_refresh_within(cfs_b, min_left)) 5712 return; 5713 5714 /* don't push forwards an existing deferred unthrottle */ 5715 if (cfs_b->slack_started) 5716 return; 5717 cfs_b->slack_started = true; 5718 5719 hrtimer_start(&cfs_b->slack_timer, 5720 ns_to_ktime(cfs_bandwidth_slack_period), 5721 HRTIMER_MODE_REL); 5722 } 5723 5724 /* we know any runtime found here is valid as update_curr() precedes return */ 5725 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5726 { 5727 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5728 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5729 5730 if (slack_runtime <= 0) 5731 return; 5732 5733 raw_spin_lock(&cfs_b->lock); 5734 if (cfs_b->quota != RUNTIME_INF) { 5735 cfs_b->runtime += slack_runtime; 5736 5737 /* we are under rq->lock, defer unthrottling using a timer */ 5738 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5739 !list_empty(&cfs_b->throttled_cfs_rq)) 5740 start_cfs_slack_bandwidth(cfs_b); 5741 } 5742 raw_spin_unlock(&cfs_b->lock); 5743 5744 /* even if it's not valid for return we don't want to try again */ 5745 cfs_rq->runtime_remaining -= slack_runtime; 5746 } 5747 5748 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5749 { 5750 if (!cfs_bandwidth_used()) 5751 return; 5752 5753 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5754 return; 5755 5756 __return_cfs_rq_runtime(cfs_rq); 5757 } 5758 5759 /* 5760 * This is done with a timer (instead of inline with bandwidth return) since 5761 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5762 */ 5763 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5764 { 5765 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5766 unsigned long flags; 5767 5768 /* confirm we're still not at a refresh boundary */ 5769 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5770 cfs_b->slack_started = false; 5771 5772 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5773 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5774 return; 5775 } 5776 5777 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5778 runtime = cfs_b->runtime; 5779 5780 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5781 5782 if (!runtime) 5783 return; 5784 5785 distribute_cfs_runtime(cfs_b); 5786 } 5787 5788 /* 5789 * When a group wakes up we want to make sure that its quota is not already 5790 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5791 * runtime as update_curr() throttling can not trigger until it's on-rq. 5792 */ 5793 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5794 { 5795 if (!cfs_bandwidth_used()) 5796 return; 5797 5798 /* an active group must be handled by the update_curr()->put() path */ 5799 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5800 return; 5801 5802 /* ensure the group is not already throttled */ 5803 if (cfs_rq_throttled(cfs_rq)) 5804 return; 5805 5806 /* update runtime allocation */ 5807 account_cfs_rq_runtime(cfs_rq, 0); 5808 if (cfs_rq->runtime_remaining <= 0) 5809 throttle_cfs_rq(cfs_rq); 5810 } 5811 5812 static void sync_throttle(struct task_group *tg, int cpu) 5813 { 5814 struct cfs_rq *pcfs_rq, *cfs_rq; 5815 5816 if (!cfs_bandwidth_used()) 5817 return; 5818 5819 if (!tg->parent) 5820 return; 5821 5822 cfs_rq = tg->cfs_rq[cpu]; 5823 pcfs_rq = tg->parent->cfs_rq[cpu]; 5824 5825 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5826 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5827 } 5828 5829 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5830 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5831 { 5832 if (!cfs_bandwidth_used()) 5833 return false; 5834 5835 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5836 return false; 5837 5838 /* 5839 * it's possible for a throttled entity to be forced into a running 5840 * state (e.g. set_curr_task), in this case we're finished. 5841 */ 5842 if (cfs_rq_throttled(cfs_rq)) 5843 return true; 5844 5845 return throttle_cfs_rq(cfs_rq); 5846 } 5847 5848 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5849 { 5850 struct cfs_bandwidth *cfs_b = 5851 container_of(timer, struct cfs_bandwidth, slack_timer); 5852 5853 do_sched_cfs_slack_timer(cfs_b); 5854 5855 return HRTIMER_NORESTART; 5856 } 5857 5858 extern const u64 max_cfs_quota_period; 5859 5860 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5861 { 5862 struct cfs_bandwidth *cfs_b = 5863 container_of(timer, struct cfs_bandwidth, period_timer); 5864 unsigned long flags; 5865 int overrun; 5866 int idle = 0; 5867 int count = 0; 5868 5869 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5870 for (;;) { 5871 overrun = hrtimer_forward_now(timer, cfs_b->period); 5872 if (!overrun) 5873 break; 5874 5875 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5876 5877 if (++count > 3) { 5878 u64 new, old = ktime_to_ns(cfs_b->period); 5879 5880 /* 5881 * Grow period by a factor of 2 to avoid losing precision. 5882 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5883 * to fail. 5884 */ 5885 new = old * 2; 5886 if (new < max_cfs_quota_period) { 5887 cfs_b->period = ns_to_ktime(new); 5888 cfs_b->quota *= 2; 5889 cfs_b->burst *= 2; 5890 5891 pr_warn_ratelimited( 5892 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5893 smp_processor_id(), 5894 div_u64(new, NSEC_PER_USEC), 5895 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5896 } else { 5897 pr_warn_ratelimited( 5898 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5899 smp_processor_id(), 5900 div_u64(old, NSEC_PER_USEC), 5901 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5902 } 5903 5904 /* reset count so we don't come right back in here */ 5905 count = 0; 5906 } 5907 } 5908 if (idle) 5909 cfs_b->period_active = 0; 5910 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5911 5912 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5913 } 5914 5915 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5916 { 5917 raw_spin_lock_init(&cfs_b->lock); 5918 cfs_b->runtime = 0; 5919 cfs_b->quota = RUNTIME_INF; 5920 cfs_b->period = ns_to_ktime(default_cfs_period()); 5921 cfs_b->burst = 0; 5922 5923 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5924 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5925 cfs_b->period_timer.function = sched_cfs_period_timer; 5926 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5927 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5928 cfs_b->slack_started = false; 5929 } 5930 5931 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5932 { 5933 cfs_rq->runtime_enabled = 0; 5934 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5935 #ifdef CONFIG_SMP 5936 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 5937 #endif 5938 } 5939 5940 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5941 { 5942 lockdep_assert_held(&cfs_b->lock); 5943 5944 if (cfs_b->period_active) 5945 return; 5946 5947 cfs_b->period_active = 1; 5948 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5949 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5950 } 5951 5952 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5953 { 5954 int __maybe_unused i; 5955 5956 /* init_cfs_bandwidth() was not called */ 5957 if (!cfs_b->throttled_cfs_rq.next) 5958 return; 5959 5960 hrtimer_cancel(&cfs_b->period_timer); 5961 hrtimer_cancel(&cfs_b->slack_timer); 5962 5963 /* 5964 * It is possible that we still have some cfs_rq's pending on a CSD 5965 * list, though this race is very rare. In order for this to occur, we 5966 * must have raced with the last task leaving the group while there 5967 * exist throttled cfs_rq(s), and the period_timer must have queued the 5968 * CSD item but the remote cpu has not yet processed it. To handle this, 5969 * we can simply flush all pending CSD work inline here. We're 5970 * guaranteed at this point that no additional cfs_rq of this group can 5971 * join a CSD list. 5972 */ 5973 #ifdef CONFIG_SMP 5974 for_each_possible_cpu(i) { 5975 struct rq *rq = cpu_rq(i); 5976 unsigned long flags; 5977 5978 if (list_empty(&rq->cfsb_csd_list)) 5979 continue; 5980 5981 local_irq_save(flags); 5982 __cfsb_csd_unthrottle(rq); 5983 local_irq_restore(flags); 5984 } 5985 #endif 5986 } 5987 5988 /* 5989 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5990 * 5991 * The race is harmless, since modifying bandwidth settings of unhooked group 5992 * bits doesn't do much. 5993 */ 5994 5995 /* cpu online callback */ 5996 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5997 { 5998 struct task_group *tg; 5999 6000 lockdep_assert_rq_held(rq); 6001 6002 rcu_read_lock(); 6003 list_for_each_entry_rcu(tg, &task_groups, list) { 6004 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6005 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6006 6007 raw_spin_lock(&cfs_b->lock); 6008 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6009 raw_spin_unlock(&cfs_b->lock); 6010 } 6011 rcu_read_unlock(); 6012 } 6013 6014 /* cpu offline callback */ 6015 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6016 { 6017 struct task_group *tg; 6018 6019 lockdep_assert_rq_held(rq); 6020 6021 rcu_read_lock(); 6022 list_for_each_entry_rcu(tg, &task_groups, list) { 6023 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6024 6025 if (!cfs_rq->runtime_enabled) 6026 continue; 6027 6028 /* 6029 * clock_task is not advancing so we just need to make sure 6030 * there's some valid quota amount 6031 */ 6032 cfs_rq->runtime_remaining = 1; 6033 /* 6034 * Offline rq is schedulable till CPU is completely disabled 6035 * in take_cpu_down(), so we prevent new cfs throttling here. 6036 */ 6037 cfs_rq->runtime_enabled = 0; 6038 6039 if (cfs_rq_throttled(cfs_rq)) 6040 unthrottle_cfs_rq(cfs_rq); 6041 } 6042 rcu_read_unlock(); 6043 } 6044 6045 #else /* CONFIG_CFS_BANDWIDTH */ 6046 6047 static inline bool cfs_bandwidth_used(void) 6048 { 6049 return false; 6050 } 6051 6052 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6053 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6054 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6055 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6056 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6057 6058 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6059 { 6060 return 0; 6061 } 6062 6063 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6064 { 6065 return 0; 6066 } 6067 6068 static inline int throttled_lb_pair(struct task_group *tg, 6069 int src_cpu, int dest_cpu) 6070 { 6071 return 0; 6072 } 6073 6074 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6075 6076 #ifdef CONFIG_FAIR_GROUP_SCHED 6077 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6078 #endif 6079 6080 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6081 { 6082 return NULL; 6083 } 6084 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6085 static inline void update_runtime_enabled(struct rq *rq) {} 6086 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6087 6088 #endif /* CONFIG_CFS_BANDWIDTH */ 6089 6090 /************************************************** 6091 * CFS operations on tasks: 6092 */ 6093 6094 #ifdef CONFIG_SCHED_HRTICK 6095 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6096 { 6097 struct sched_entity *se = &p->se; 6098 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6099 6100 SCHED_WARN_ON(task_rq(p) != rq); 6101 6102 if (rq->cfs.h_nr_running > 1) { 6103 u64 slice = sched_slice(cfs_rq, se); 6104 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6105 s64 delta = slice - ran; 6106 6107 if (delta < 0) { 6108 if (task_current(rq, p)) 6109 resched_curr(rq); 6110 return; 6111 } 6112 hrtick_start(rq, delta); 6113 } 6114 } 6115 6116 /* 6117 * called from enqueue/dequeue and updates the hrtick when the 6118 * current task is from our class and nr_running is low enough 6119 * to matter. 6120 */ 6121 static void hrtick_update(struct rq *rq) 6122 { 6123 struct task_struct *curr = rq->curr; 6124 6125 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6126 return; 6127 6128 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 6129 hrtick_start_fair(rq, curr); 6130 } 6131 #else /* !CONFIG_SCHED_HRTICK */ 6132 static inline void 6133 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6134 { 6135 } 6136 6137 static inline void hrtick_update(struct rq *rq) 6138 { 6139 } 6140 #endif 6141 6142 #ifdef CONFIG_SMP 6143 static inline bool cpu_overutilized(int cpu) 6144 { 6145 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6146 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6147 6148 /* Return true only if the utilization doesn't fit CPU's capacity */ 6149 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6150 } 6151 6152 static inline void update_overutilized_status(struct rq *rq) 6153 { 6154 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6155 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6156 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6157 } 6158 } 6159 #else 6160 static inline void update_overutilized_status(struct rq *rq) { } 6161 #endif 6162 6163 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6164 static int sched_idle_rq(struct rq *rq) 6165 { 6166 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6167 rq->nr_running); 6168 } 6169 6170 /* 6171 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 6172 * of idle_nr_running, which does not consider idle descendants of normal 6173 * entities. 6174 */ 6175 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 6176 { 6177 return cfs_rq->nr_running && 6178 cfs_rq->nr_running == cfs_rq->idle_nr_running; 6179 } 6180 6181 #ifdef CONFIG_SMP 6182 static int sched_idle_cpu(int cpu) 6183 { 6184 return sched_idle_rq(cpu_rq(cpu)); 6185 } 6186 #endif 6187 6188 /* 6189 * The enqueue_task method is called before nr_running is 6190 * increased. Here we update the fair scheduling stats and 6191 * then put the task into the rbtree: 6192 */ 6193 static void 6194 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6195 { 6196 struct cfs_rq *cfs_rq; 6197 struct sched_entity *se = &p->se; 6198 int idle_h_nr_running = task_has_idle_policy(p); 6199 int task_new = !(flags & ENQUEUE_WAKEUP); 6200 6201 /* 6202 * The code below (indirectly) updates schedutil which looks at 6203 * the cfs_rq utilization to select a frequency. 6204 * Let's add the task's estimated utilization to the cfs_rq's 6205 * estimated utilization, before we update schedutil. 6206 */ 6207 util_est_enqueue(&rq->cfs, p); 6208 6209 /* 6210 * If in_iowait is set, the code below may not trigger any cpufreq 6211 * utilization updates, so do it here explicitly with the IOWAIT flag 6212 * passed. 6213 */ 6214 if (p->in_iowait) 6215 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6216 6217 for_each_sched_entity(se) { 6218 if (se->on_rq) 6219 break; 6220 cfs_rq = cfs_rq_of(se); 6221 enqueue_entity(cfs_rq, se, flags); 6222 6223 cfs_rq->h_nr_running++; 6224 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6225 6226 if (cfs_rq_is_idle(cfs_rq)) 6227 idle_h_nr_running = 1; 6228 6229 /* end evaluation on encountering a throttled cfs_rq */ 6230 if (cfs_rq_throttled(cfs_rq)) 6231 goto enqueue_throttle; 6232 6233 flags = ENQUEUE_WAKEUP; 6234 } 6235 6236 for_each_sched_entity(se) { 6237 cfs_rq = cfs_rq_of(se); 6238 6239 update_load_avg(cfs_rq, se, UPDATE_TG); 6240 se_update_runnable(se); 6241 update_cfs_group(se); 6242 6243 cfs_rq->h_nr_running++; 6244 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6245 6246 if (cfs_rq_is_idle(cfs_rq)) 6247 idle_h_nr_running = 1; 6248 6249 /* end evaluation on encountering a throttled cfs_rq */ 6250 if (cfs_rq_throttled(cfs_rq)) 6251 goto enqueue_throttle; 6252 } 6253 6254 /* At this point se is NULL and we are at root level*/ 6255 add_nr_running(rq, 1); 6256 6257 /* 6258 * Since new tasks are assigned an initial util_avg equal to 6259 * half of the spare capacity of their CPU, tiny tasks have the 6260 * ability to cross the overutilized threshold, which will 6261 * result in the load balancer ruining all the task placement 6262 * done by EAS. As a way to mitigate that effect, do not account 6263 * for the first enqueue operation of new tasks during the 6264 * overutilized flag detection. 6265 * 6266 * A better way of solving this problem would be to wait for 6267 * the PELT signals of tasks to converge before taking them 6268 * into account, but that is not straightforward to implement, 6269 * and the following generally works well enough in practice. 6270 */ 6271 if (!task_new) 6272 update_overutilized_status(rq); 6273 6274 enqueue_throttle: 6275 assert_list_leaf_cfs_rq(rq); 6276 6277 hrtick_update(rq); 6278 } 6279 6280 static void set_next_buddy(struct sched_entity *se); 6281 6282 /* 6283 * The dequeue_task method is called before nr_running is 6284 * decreased. We remove the task from the rbtree and 6285 * update the fair scheduling stats: 6286 */ 6287 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6288 { 6289 struct cfs_rq *cfs_rq; 6290 struct sched_entity *se = &p->se; 6291 int task_sleep = flags & DEQUEUE_SLEEP; 6292 int idle_h_nr_running = task_has_idle_policy(p); 6293 bool was_sched_idle = sched_idle_rq(rq); 6294 6295 util_est_dequeue(&rq->cfs, p); 6296 6297 for_each_sched_entity(se) { 6298 cfs_rq = cfs_rq_of(se); 6299 dequeue_entity(cfs_rq, se, flags); 6300 6301 cfs_rq->h_nr_running--; 6302 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6303 6304 if (cfs_rq_is_idle(cfs_rq)) 6305 idle_h_nr_running = 1; 6306 6307 /* end evaluation on encountering a throttled cfs_rq */ 6308 if (cfs_rq_throttled(cfs_rq)) 6309 goto dequeue_throttle; 6310 6311 /* Don't dequeue parent if it has other entities besides us */ 6312 if (cfs_rq->load.weight) { 6313 /* Avoid re-evaluating load for this entity: */ 6314 se = parent_entity(se); 6315 /* 6316 * Bias pick_next to pick a task from this cfs_rq, as 6317 * p is sleeping when it is within its sched_slice. 6318 */ 6319 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6320 set_next_buddy(se); 6321 break; 6322 } 6323 flags |= DEQUEUE_SLEEP; 6324 } 6325 6326 for_each_sched_entity(se) { 6327 cfs_rq = cfs_rq_of(se); 6328 6329 update_load_avg(cfs_rq, se, UPDATE_TG); 6330 se_update_runnable(se); 6331 update_cfs_group(se); 6332 6333 cfs_rq->h_nr_running--; 6334 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6335 6336 if (cfs_rq_is_idle(cfs_rq)) 6337 idle_h_nr_running = 1; 6338 6339 /* end evaluation on encountering a throttled cfs_rq */ 6340 if (cfs_rq_throttled(cfs_rq)) 6341 goto dequeue_throttle; 6342 6343 } 6344 6345 /* At this point se is NULL and we are at root level*/ 6346 sub_nr_running(rq, 1); 6347 6348 /* balance early to pull high priority tasks */ 6349 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6350 rq->next_balance = jiffies; 6351 6352 dequeue_throttle: 6353 util_est_update(&rq->cfs, p, task_sleep); 6354 hrtick_update(rq); 6355 } 6356 6357 #ifdef CONFIG_SMP 6358 6359 /* Working cpumask for: load_balance, load_balance_newidle. */ 6360 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6361 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6362 6363 #ifdef CONFIG_NO_HZ_COMMON 6364 6365 static struct { 6366 cpumask_var_t idle_cpus_mask; 6367 atomic_t nr_cpus; 6368 int has_blocked; /* Idle CPUS has blocked load */ 6369 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6370 unsigned long next_balance; /* in jiffy units */ 6371 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6372 } nohz ____cacheline_aligned; 6373 6374 #endif /* CONFIG_NO_HZ_COMMON */ 6375 6376 static unsigned long cpu_load(struct rq *rq) 6377 { 6378 return cfs_rq_load_avg(&rq->cfs); 6379 } 6380 6381 /* 6382 * cpu_load_without - compute CPU load without any contributions from *p 6383 * @cpu: the CPU which load is requested 6384 * @p: the task which load should be discounted 6385 * 6386 * The load of a CPU is defined by the load of tasks currently enqueued on that 6387 * CPU as well as tasks which are currently sleeping after an execution on that 6388 * CPU. 6389 * 6390 * This method returns the load of the specified CPU by discounting the load of 6391 * the specified task, whenever the task is currently contributing to the CPU 6392 * load. 6393 */ 6394 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6395 { 6396 struct cfs_rq *cfs_rq; 6397 unsigned int load; 6398 6399 /* Task has no contribution or is new */ 6400 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6401 return cpu_load(rq); 6402 6403 cfs_rq = &rq->cfs; 6404 load = READ_ONCE(cfs_rq->avg.load_avg); 6405 6406 /* Discount task's util from CPU's util */ 6407 lsub_positive(&load, task_h_load(p)); 6408 6409 return load; 6410 } 6411 6412 static unsigned long cpu_runnable(struct rq *rq) 6413 { 6414 return cfs_rq_runnable_avg(&rq->cfs); 6415 } 6416 6417 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6418 { 6419 struct cfs_rq *cfs_rq; 6420 unsigned int runnable; 6421 6422 /* Task has no contribution or is new */ 6423 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6424 return cpu_runnable(rq); 6425 6426 cfs_rq = &rq->cfs; 6427 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6428 6429 /* Discount task's runnable from CPU's runnable */ 6430 lsub_positive(&runnable, p->se.avg.runnable_avg); 6431 6432 return runnable; 6433 } 6434 6435 static unsigned long capacity_of(int cpu) 6436 { 6437 return cpu_rq(cpu)->cpu_capacity; 6438 } 6439 6440 static void record_wakee(struct task_struct *p) 6441 { 6442 /* 6443 * Only decay a single time; tasks that have less then 1 wakeup per 6444 * jiffy will not have built up many flips. 6445 */ 6446 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6447 current->wakee_flips >>= 1; 6448 current->wakee_flip_decay_ts = jiffies; 6449 } 6450 6451 if (current->last_wakee != p) { 6452 current->last_wakee = p; 6453 current->wakee_flips++; 6454 } 6455 } 6456 6457 /* 6458 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6459 * 6460 * A waker of many should wake a different task than the one last awakened 6461 * at a frequency roughly N times higher than one of its wakees. 6462 * 6463 * In order to determine whether we should let the load spread vs consolidating 6464 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6465 * partner, and a factor of lls_size higher frequency in the other. 6466 * 6467 * With both conditions met, we can be relatively sure that the relationship is 6468 * non-monogamous, with partner count exceeding socket size. 6469 * 6470 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6471 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6472 * socket size. 6473 */ 6474 static int wake_wide(struct task_struct *p) 6475 { 6476 unsigned int master = current->wakee_flips; 6477 unsigned int slave = p->wakee_flips; 6478 int factor = __this_cpu_read(sd_llc_size); 6479 6480 if (master < slave) 6481 swap(master, slave); 6482 if (slave < factor || master < slave * factor) 6483 return 0; 6484 return 1; 6485 } 6486 6487 /* 6488 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6489 * soonest. For the purpose of speed we only consider the waking and previous 6490 * CPU. 6491 * 6492 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6493 * cache-affine and is (or will be) idle. 6494 * 6495 * wake_affine_weight() - considers the weight to reflect the average 6496 * scheduling latency of the CPUs. This seems to work 6497 * for the overloaded case. 6498 */ 6499 static int 6500 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6501 { 6502 /* 6503 * If this_cpu is idle, it implies the wakeup is from interrupt 6504 * context. Only allow the move if cache is shared. Otherwise an 6505 * interrupt intensive workload could force all tasks onto one 6506 * node depending on the IO topology or IRQ affinity settings. 6507 * 6508 * If the prev_cpu is idle and cache affine then avoid a migration. 6509 * There is no guarantee that the cache hot data from an interrupt 6510 * is more important than cache hot data on the prev_cpu and from 6511 * a cpufreq perspective, it's better to have higher utilisation 6512 * on one CPU. 6513 */ 6514 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6515 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6516 6517 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6518 return this_cpu; 6519 6520 if (available_idle_cpu(prev_cpu)) 6521 return prev_cpu; 6522 6523 return nr_cpumask_bits; 6524 } 6525 6526 static int 6527 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6528 int this_cpu, int prev_cpu, int sync) 6529 { 6530 s64 this_eff_load, prev_eff_load; 6531 unsigned long task_load; 6532 6533 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6534 6535 if (sync) { 6536 unsigned long current_load = task_h_load(current); 6537 6538 if (current_load > this_eff_load) 6539 return this_cpu; 6540 6541 this_eff_load -= current_load; 6542 } 6543 6544 task_load = task_h_load(p); 6545 6546 this_eff_load += task_load; 6547 if (sched_feat(WA_BIAS)) 6548 this_eff_load *= 100; 6549 this_eff_load *= capacity_of(prev_cpu); 6550 6551 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6552 prev_eff_load -= task_load; 6553 if (sched_feat(WA_BIAS)) 6554 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6555 prev_eff_load *= capacity_of(this_cpu); 6556 6557 /* 6558 * If sync, adjust the weight of prev_eff_load such that if 6559 * prev_eff == this_eff that select_idle_sibling() will consider 6560 * stacking the wakee on top of the waker if no other CPU is 6561 * idle. 6562 */ 6563 if (sync) 6564 prev_eff_load += 1; 6565 6566 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6567 } 6568 6569 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6570 int this_cpu, int prev_cpu, int sync) 6571 { 6572 int target = nr_cpumask_bits; 6573 6574 if (sched_feat(WA_IDLE)) 6575 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6576 6577 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6578 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6579 6580 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6581 if (target == nr_cpumask_bits) 6582 return prev_cpu; 6583 6584 schedstat_inc(sd->ttwu_move_affine); 6585 schedstat_inc(p->stats.nr_wakeups_affine); 6586 return target; 6587 } 6588 6589 static struct sched_group * 6590 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6591 6592 /* 6593 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6594 */ 6595 static int 6596 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6597 { 6598 unsigned long load, min_load = ULONG_MAX; 6599 unsigned int min_exit_latency = UINT_MAX; 6600 u64 latest_idle_timestamp = 0; 6601 int least_loaded_cpu = this_cpu; 6602 int shallowest_idle_cpu = -1; 6603 int i; 6604 6605 /* Check if we have any choice: */ 6606 if (group->group_weight == 1) 6607 return cpumask_first(sched_group_span(group)); 6608 6609 /* Traverse only the allowed CPUs */ 6610 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6611 struct rq *rq = cpu_rq(i); 6612 6613 if (!sched_core_cookie_match(rq, p)) 6614 continue; 6615 6616 if (sched_idle_cpu(i)) 6617 return i; 6618 6619 if (available_idle_cpu(i)) { 6620 struct cpuidle_state *idle = idle_get_state(rq); 6621 if (idle && idle->exit_latency < min_exit_latency) { 6622 /* 6623 * We give priority to a CPU whose idle state 6624 * has the smallest exit latency irrespective 6625 * of any idle timestamp. 6626 */ 6627 min_exit_latency = idle->exit_latency; 6628 latest_idle_timestamp = rq->idle_stamp; 6629 shallowest_idle_cpu = i; 6630 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6631 rq->idle_stamp > latest_idle_timestamp) { 6632 /* 6633 * If equal or no active idle state, then 6634 * the most recently idled CPU might have 6635 * a warmer cache. 6636 */ 6637 latest_idle_timestamp = rq->idle_stamp; 6638 shallowest_idle_cpu = i; 6639 } 6640 } else if (shallowest_idle_cpu == -1) { 6641 load = cpu_load(cpu_rq(i)); 6642 if (load < min_load) { 6643 min_load = load; 6644 least_loaded_cpu = i; 6645 } 6646 } 6647 } 6648 6649 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6650 } 6651 6652 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6653 int cpu, int prev_cpu, int sd_flag) 6654 { 6655 int new_cpu = cpu; 6656 6657 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6658 return prev_cpu; 6659 6660 /* 6661 * We need task's util for cpu_util_without, sync it up to 6662 * prev_cpu's last_update_time. 6663 */ 6664 if (!(sd_flag & SD_BALANCE_FORK)) 6665 sync_entity_load_avg(&p->se); 6666 6667 while (sd) { 6668 struct sched_group *group; 6669 struct sched_domain *tmp; 6670 int weight; 6671 6672 if (!(sd->flags & sd_flag)) { 6673 sd = sd->child; 6674 continue; 6675 } 6676 6677 group = find_idlest_group(sd, p, cpu); 6678 if (!group) { 6679 sd = sd->child; 6680 continue; 6681 } 6682 6683 new_cpu = find_idlest_group_cpu(group, p, cpu); 6684 if (new_cpu == cpu) { 6685 /* Now try balancing at a lower domain level of 'cpu': */ 6686 sd = sd->child; 6687 continue; 6688 } 6689 6690 /* Now try balancing at a lower domain level of 'new_cpu': */ 6691 cpu = new_cpu; 6692 weight = sd->span_weight; 6693 sd = NULL; 6694 for_each_domain(cpu, tmp) { 6695 if (weight <= tmp->span_weight) 6696 break; 6697 if (tmp->flags & sd_flag) 6698 sd = tmp; 6699 } 6700 } 6701 6702 return new_cpu; 6703 } 6704 6705 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6706 { 6707 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6708 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6709 return cpu; 6710 6711 return -1; 6712 } 6713 6714 #ifdef CONFIG_SCHED_SMT 6715 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6716 EXPORT_SYMBOL_GPL(sched_smt_present); 6717 6718 static inline void set_idle_cores(int cpu, int val) 6719 { 6720 struct sched_domain_shared *sds; 6721 6722 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6723 if (sds) 6724 WRITE_ONCE(sds->has_idle_cores, val); 6725 } 6726 6727 static inline bool test_idle_cores(int cpu) 6728 { 6729 struct sched_domain_shared *sds; 6730 6731 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6732 if (sds) 6733 return READ_ONCE(sds->has_idle_cores); 6734 6735 return false; 6736 } 6737 6738 /* 6739 * Scans the local SMT mask to see if the entire core is idle, and records this 6740 * information in sd_llc_shared->has_idle_cores. 6741 * 6742 * Since SMT siblings share all cache levels, inspecting this limited remote 6743 * state should be fairly cheap. 6744 */ 6745 void __update_idle_core(struct rq *rq) 6746 { 6747 int core = cpu_of(rq); 6748 int cpu; 6749 6750 rcu_read_lock(); 6751 if (test_idle_cores(core)) 6752 goto unlock; 6753 6754 for_each_cpu(cpu, cpu_smt_mask(core)) { 6755 if (cpu == core) 6756 continue; 6757 6758 if (!available_idle_cpu(cpu)) 6759 goto unlock; 6760 } 6761 6762 set_idle_cores(core, 1); 6763 unlock: 6764 rcu_read_unlock(); 6765 } 6766 6767 /* 6768 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6769 * there are no idle cores left in the system; tracked through 6770 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6771 */ 6772 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6773 { 6774 bool idle = true; 6775 int cpu; 6776 6777 for_each_cpu(cpu, cpu_smt_mask(core)) { 6778 if (!available_idle_cpu(cpu)) { 6779 idle = false; 6780 if (*idle_cpu == -1) { 6781 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6782 *idle_cpu = cpu; 6783 break; 6784 } 6785 continue; 6786 } 6787 break; 6788 } 6789 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6790 *idle_cpu = cpu; 6791 } 6792 6793 if (idle) 6794 return core; 6795 6796 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6797 return -1; 6798 } 6799 6800 /* 6801 * Scan the local SMT mask for idle CPUs. 6802 */ 6803 static int select_idle_smt(struct task_struct *p, int target) 6804 { 6805 int cpu; 6806 6807 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6808 if (cpu == target) 6809 continue; 6810 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6811 return cpu; 6812 } 6813 6814 return -1; 6815 } 6816 6817 #else /* CONFIG_SCHED_SMT */ 6818 6819 static inline void set_idle_cores(int cpu, int val) 6820 { 6821 } 6822 6823 static inline bool test_idle_cores(int cpu) 6824 { 6825 return false; 6826 } 6827 6828 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6829 { 6830 return __select_idle_cpu(core, p); 6831 } 6832 6833 static inline int select_idle_smt(struct task_struct *p, int target) 6834 { 6835 return -1; 6836 } 6837 6838 #endif /* CONFIG_SCHED_SMT */ 6839 6840 /* 6841 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6842 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6843 * average idle time for this rq (as found in rq->avg_idle). 6844 */ 6845 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6846 { 6847 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6848 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6849 struct sched_domain_shared *sd_share; 6850 struct rq *this_rq = this_rq(); 6851 int this = smp_processor_id(); 6852 struct sched_domain *this_sd = NULL; 6853 u64 time = 0; 6854 6855 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6856 6857 if (sched_feat(SIS_PROP) && !has_idle_core) { 6858 u64 avg_cost, avg_idle, span_avg; 6859 unsigned long now = jiffies; 6860 6861 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6862 if (!this_sd) 6863 return -1; 6864 6865 /* 6866 * If we're busy, the assumption that the last idle period 6867 * predicts the future is flawed; age away the remaining 6868 * predicted idle time. 6869 */ 6870 if (unlikely(this_rq->wake_stamp < now)) { 6871 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6872 this_rq->wake_stamp++; 6873 this_rq->wake_avg_idle >>= 1; 6874 } 6875 } 6876 6877 avg_idle = this_rq->wake_avg_idle; 6878 avg_cost = this_sd->avg_scan_cost + 1; 6879 6880 span_avg = sd->span_weight * avg_idle; 6881 if (span_avg > 4*avg_cost) 6882 nr = div_u64(span_avg, avg_cost); 6883 else 6884 nr = 4; 6885 6886 time = cpu_clock(this); 6887 } 6888 6889 if (sched_feat(SIS_UTIL)) { 6890 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6891 if (sd_share) { 6892 /* because !--nr is the condition to stop scan */ 6893 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6894 /* overloaded LLC is unlikely to have idle cpu/core */ 6895 if (nr == 1) 6896 return -1; 6897 } 6898 } 6899 6900 for_each_cpu_wrap(cpu, cpus, target + 1) { 6901 if (has_idle_core) { 6902 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6903 if ((unsigned int)i < nr_cpumask_bits) 6904 return i; 6905 6906 } else { 6907 if (!--nr) 6908 return -1; 6909 idle_cpu = __select_idle_cpu(cpu, p); 6910 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6911 break; 6912 } 6913 } 6914 6915 if (has_idle_core) 6916 set_idle_cores(target, false); 6917 6918 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 6919 time = cpu_clock(this) - time; 6920 6921 /* 6922 * Account for the scan cost of wakeups against the average 6923 * idle time. 6924 */ 6925 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6926 6927 update_avg(&this_sd->avg_scan_cost, time); 6928 } 6929 6930 return idle_cpu; 6931 } 6932 6933 /* 6934 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6935 * the task fits. If no CPU is big enough, but there are idle ones, try to 6936 * maximize capacity. 6937 */ 6938 static int 6939 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6940 { 6941 unsigned long task_util, util_min, util_max, best_cap = 0; 6942 int fits, best_fits = 0; 6943 int cpu, best_cpu = -1; 6944 struct cpumask *cpus; 6945 6946 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6947 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6948 6949 task_util = task_util_est(p); 6950 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6951 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6952 6953 for_each_cpu_wrap(cpu, cpus, target + 1) { 6954 unsigned long cpu_cap = capacity_of(cpu); 6955 6956 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6957 continue; 6958 6959 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 6960 6961 /* This CPU fits with all requirements */ 6962 if (fits > 0) 6963 return cpu; 6964 /* 6965 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 6966 * Look for the CPU with best capacity. 6967 */ 6968 else if (fits < 0) 6969 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 6970 6971 /* 6972 * First, select CPU which fits better (-1 being better than 0). 6973 * Then, select the one with best capacity at same level. 6974 */ 6975 if ((fits < best_fits) || 6976 ((fits == best_fits) && (cpu_cap > best_cap))) { 6977 best_cap = cpu_cap; 6978 best_cpu = cpu; 6979 best_fits = fits; 6980 } 6981 } 6982 6983 return best_cpu; 6984 } 6985 6986 static inline bool asym_fits_cpu(unsigned long util, 6987 unsigned long util_min, 6988 unsigned long util_max, 6989 int cpu) 6990 { 6991 if (sched_asym_cpucap_active()) 6992 /* 6993 * Return true only if the cpu fully fits the task requirements 6994 * which include the utilization and the performance hints. 6995 */ 6996 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 6997 6998 return true; 6999 } 7000 7001 /* 7002 * Try and locate an idle core/thread in the LLC cache domain. 7003 */ 7004 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7005 { 7006 bool has_idle_core = false; 7007 struct sched_domain *sd; 7008 unsigned long task_util, util_min, util_max; 7009 int i, recent_used_cpu; 7010 7011 /* 7012 * On asymmetric system, update task utilization because we will check 7013 * that the task fits with cpu's capacity. 7014 */ 7015 if (sched_asym_cpucap_active()) { 7016 sync_entity_load_avg(&p->se); 7017 task_util = task_util_est(p); 7018 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7019 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7020 } 7021 7022 /* 7023 * per-cpu select_rq_mask usage 7024 */ 7025 lockdep_assert_irqs_disabled(); 7026 7027 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7028 asym_fits_cpu(task_util, util_min, util_max, target)) 7029 return target; 7030 7031 /* 7032 * If the previous CPU is cache affine and idle, don't be stupid: 7033 */ 7034 if (prev != target && cpus_share_cache(prev, target) && 7035 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7036 asym_fits_cpu(task_util, util_min, util_max, prev)) 7037 return prev; 7038 7039 /* 7040 * Allow a per-cpu kthread to stack with the wakee if the 7041 * kworker thread and the tasks previous CPUs are the same. 7042 * The assumption is that the wakee queued work for the 7043 * per-cpu kthread that is now complete and the wakeup is 7044 * essentially a sync wakeup. An obvious example of this 7045 * pattern is IO completions. 7046 */ 7047 if (is_per_cpu_kthread(current) && 7048 in_task() && 7049 prev == smp_processor_id() && 7050 this_rq()->nr_running <= 1 && 7051 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7052 return prev; 7053 } 7054 7055 /* Check a recently used CPU as a potential idle candidate: */ 7056 recent_used_cpu = p->recent_used_cpu; 7057 p->recent_used_cpu = prev; 7058 if (recent_used_cpu != prev && 7059 recent_used_cpu != target && 7060 cpus_share_cache(recent_used_cpu, target) && 7061 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7062 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 7063 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7064 return recent_used_cpu; 7065 } 7066 7067 /* 7068 * For asymmetric CPU capacity systems, our domain of interest is 7069 * sd_asym_cpucapacity rather than sd_llc. 7070 */ 7071 if (sched_asym_cpucap_active()) { 7072 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7073 /* 7074 * On an asymmetric CPU capacity system where an exclusive 7075 * cpuset defines a symmetric island (i.e. one unique 7076 * capacity_orig value through the cpuset), the key will be set 7077 * but the CPUs within that cpuset will not have a domain with 7078 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7079 * capacity path. 7080 */ 7081 if (sd) { 7082 i = select_idle_capacity(p, sd, target); 7083 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7084 } 7085 } 7086 7087 sd = rcu_dereference(per_cpu(sd_llc, target)); 7088 if (!sd) 7089 return target; 7090 7091 if (sched_smt_active()) { 7092 has_idle_core = test_idle_cores(target); 7093 7094 if (!has_idle_core && cpus_share_cache(prev, target)) { 7095 i = select_idle_smt(p, prev); 7096 if ((unsigned int)i < nr_cpumask_bits) 7097 return i; 7098 } 7099 } 7100 7101 i = select_idle_cpu(p, sd, has_idle_core, target); 7102 if ((unsigned)i < nr_cpumask_bits) 7103 return i; 7104 7105 return target; 7106 } 7107 7108 /* 7109 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 7110 * (@dst_cpu = -1) or migrated to @dst_cpu. 7111 */ 7112 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 7113 { 7114 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7115 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7116 7117 /* 7118 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7119 * contribution. If @p migrates from another CPU to @cpu add its 7120 * contribution. In all the other cases @cpu is not impacted by the 7121 * migration so its util_avg is already correct. 7122 */ 7123 if (task_cpu(p) == cpu && dst_cpu != cpu) 7124 lsub_positive(&util, task_util(p)); 7125 else if (task_cpu(p) != cpu && dst_cpu == cpu) 7126 util += task_util(p); 7127 7128 if (sched_feat(UTIL_EST)) { 7129 unsigned long util_est; 7130 7131 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7132 7133 /* 7134 * During wake-up @p isn't enqueued yet and doesn't contribute 7135 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7136 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7137 * has been enqueued. 7138 * 7139 * During exec (@dst_cpu = -1) @p is enqueued and does 7140 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7141 * Remove it to "simulate" cpu_util without @p's contribution. 7142 * 7143 * Despite the task_on_rq_queued(@p) check there is still a 7144 * small window for a possible race when an exec 7145 * select_task_rq_fair() races with LB's detach_task(). 7146 * 7147 * detach_task() 7148 * deactivate_task() 7149 * p->on_rq = TASK_ON_RQ_MIGRATING; 7150 * -------------------------------- A 7151 * dequeue_task() \ 7152 * dequeue_task_fair() + Race Time 7153 * util_est_dequeue() / 7154 * -------------------------------- B 7155 * 7156 * The additional check "current == p" is required to further 7157 * reduce the race window. 7158 */ 7159 if (dst_cpu == cpu) 7160 util_est += _task_util_est(p); 7161 else if (unlikely(task_on_rq_queued(p) || current == p)) 7162 lsub_positive(&util_est, _task_util_est(p)); 7163 7164 util = max(util, util_est); 7165 } 7166 7167 return min(util, capacity_orig_of(cpu)); 7168 } 7169 7170 /* 7171 * cpu_util_without: compute cpu utilization without any contributions from *p 7172 * @cpu: the CPU which utilization is requested 7173 * @p: the task which utilization should be discounted 7174 * 7175 * The utilization of a CPU is defined by the utilization of tasks currently 7176 * enqueued on that CPU as well as tasks which are currently sleeping after an 7177 * execution on that CPU. 7178 * 7179 * This method returns the utilization of the specified CPU by discounting the 7180 * utilization of the specified task, whenever the task is currently 7181 * contributing to the CPU utilization. 7182 */ 7183 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7184 { 7185 /* Task has no contribution or is new */ 7186 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7187 return cpu_util_cfs(cpu); 7188 7189 return cpu_util_next(cpu, p, -1); 7190 } 7191 7192 /* 7193 * energy_env - Utilization landscape for energy estimation. 7194 * @task_busy_time: Utilization contribution by the task for which we test the 7195 * placement. Given by eenv_task_busy_time(). 7196 * @pd_busy_time: Utilization of the whole perf domain without the task 7197 * contribution. Given by eenv_pd_busy_time(). 7198 * @cpu_cap: Maximum CPU capacity for the perf domain. 7199 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7200 */ 7201 struct energy_env { 7202 unsigned long task_busy_time; 7203 unsigned long pd_busy_time; 7204 unsigned long cpu_cap; 7205 unsigned long pd_cap; 7206 }; 7207 7208 /* 7209 * Compute the task busy time for compute_energy(). This time cannot be 7210 * injected directly into effective_cpu_util() because of the IRQ scaling. 7211 * The latter only makes sense with the most recent CPUs where the task has 7212 * run. 7213 */ 7214 static inline void eenv_task_busy_time(struct energy_env *eenv, 7215 struct task_struct *p, int prev_cpu) 7216 { 7217 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7218 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7219 7220 if (unlikely(irq >= max_cap)) 7221 busy_time = max_cap; 7222 else 7223 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7224 7225 eenv->task_busy_time = busy_time; 7226 } 7227 7228 /* 7229 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7230 * utilization for each @pd_cpus, it however doesn't take into account 7231 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7232 * scale the EM reported power consumption at the (eventually clamped) 7233 * cpu_capacity. 7234 * 7235 * The contribution of the task @p for which we want to estimate the 7236 * energy cost is removed (by cpu_util_next()) and must be calculated 7237 * separately (see eenv_task_busy_time). This ensures: 7238 * 7239 * - A stable PD utilization, no matter which CPU of that PD we want to place 7240 * the task on. 7241 * 7242 * - A fair comparison between CPUs as the task contribution (task_util()) 7243 * will always be the same no matter which CPU utilization we rely on 7244 * (util_avg or util_est). 7245 * 7246 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7247 * exceed @eenv->pd_cap. 7248 */ 7249 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7250 struct cpumask *pd_cpus, 7251 struct task_struct *p) 7252 { 7253 unsigned long busy_time = 0; 7254 int cpu; 7255 7256 for_each_cpu(cpu, pd_cpus) { 7257 unsigned long util = cpu_util_next(cpu, p, -1); 7258 7259 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7260 } 7261 7262 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7263 } 7264 7265 /* 7266 * Compute the maximum utilization for compute_energy() when the task @p 7267 * is placed on the cpu @dst_cpu. 7268 * 7269 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7270 * exceed @eenv->cpu_cap. 7271 */ 7272 static inline unsigned long 7273 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7274 struct task_struct *p, int dst_cpu) 7275 { 7276 unsigned long max_util = 0; 7277 int cpu; 7278 7279 for_each_cpu(cpu, pd_cpus) { 7280 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7281 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 7282 unsigned long cpu_util; 7283 7284 /* 7285 * Performance domain frequency: utilization clamping 7286 * must be considered since it affects the selection 7287 * of the performance domain frequency. 7288 * NOTE: in case RT tasks are running, by default the 7289 * FREQUENCY_UTIL's utilization can be max OPP. 7290 */ 7291 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7292 max_util = max(max_util, cpu_util); 7293 } 7294 7295 return min(max_util, eenv->cpu_cap); 7296 } 7297 7298 /* 7299 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7300 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7301 * contribution is ignored. 7302 */ 7303 static inline unsigned long 7304 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7305 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7306 { 7307 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7308 unsigned long busy_time = eenv->pd_busy_time; 7309 7310 if (dst_cpu >= 0) 7311 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7312 7313 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7314 } 7315 7316 /* 7317 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7318 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7319 * spare capacity in each performance domain and uses it as a potential 7320 * candidate to execute the task. Then, it uses the Energy Model to figure 7321 * out which of the CPU candidates is the most energy-efficient. 7322 * 7323 * The rationale for this heuristic is as follows. In a performance domain, 7324 * all the most energy efficient CPU candidates (according to the Energy 7325 * Model) are those for which we'll request a low frequency. When there are 7326 * several CPUs for which the frequency request will be the same, we don't 7327 * have enough data to break the tie between them, because the Energy Model 7328 * only includes active power costs. With this model, if we assume that 7329 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7330 * the maximum spare capacity in a performance domain is guaranteed to be among 7331 * the best candidates of the performance domain. 7332 * 7333 * In practice, it could be preferable from an energy standpoint to pack 7334 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7335 * but that could also hurt our chances to go cluster idle, and we have no 7336 * ways to tell with the current Energy Model if this is actually a good 7337 * idea or not. So, find_energy_efficient_cpu() basically favors 7338 * cluster-packing, and spreading inside a cluster. That should at least be 7339 * a good thing for latency, and this is consistent with the idea that most 7340 * of the energy savings of EAS come from the asymmetry of the system, and 7341 * not so much from breaking the tie between identical CPUs. That's also the 7342 * reason why EAS is enabled in the topology code only for systems where 7343 * SD_ASYM_CPUCAPACITY is set. 7344 * 7345 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7346 * they don't have any useful utilization data yet and it's not possible to 7347 * forecast their impact on energy consumption. Consequently, they will be 7348 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7349 * to be energy-inefficient in some use-cases. The alternative would be to 7350 * bias new tasks towards specific types of CPUs first, or to try to infer 7351 * their util_avg from the parent task, but those heuristics could hurt 7352 * other use-cases too. So, until someone finds a better way to solve this, 7353 * let's keep things simple by re-using the existing slow path. 7354 */ 7355 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7356 { 7357 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7358 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7359 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7360 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7361 struct root_domain *rd = this_rq()->rd; 7362 int cpu, best_energy_cpu, target = -1; 7363 int prev_fits = -1, best_fits = -1; 7364 unsigned long best_thermal_cap = 0; 7365 unsigned long prev_thermal_cap = 0; 7366 struct sched_domain *sd; 7367 struct perf_domain *pd; 7368 struct energy_env eenv; 7369 7370 rcu_read_lock(); 7371 pd = rcu_dereference(rd->pd); 7372 if (!pd || READ_ONCE(rd->overutilized)) 7373 goto unlock; 7374 7375 /* 7376 * Energy-aware wake-up happens on the lowest sched_domain starting 7377 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7378 */ 7379 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7380 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7381 sd = sd->parent; 7382 if (!sd) 7383 goto unlock; 7384 7385 target = prev_cpu; 7386 7387 sync_entity_load_avg(&p->se); 7388 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7389 goto unlock; 7390 7391 eenv_task_busy_time(&eenv, p, prev_cpu); 7392 7393 for (; pd; pd = pd->next) { 7394 unsigned long util_min = p_util_min, util_max = p_util_max; 7395 unsigned long cpu_cap, cpu_thermal_cap, util; 7396 unsigned long cur_delta, max_spare_cap = 0; 7397 unsigned long rq_util_min, rq_util_max; 7398 unsigned long prev_spare_cap = 0; 7399 int max_spare_cap_cpu = -1; 7400 unsigned long base_energy; 7401 int fits, max_fits = -1; 7402 7403 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7404 7405 if (cpumask_empty(cpus)) 7406 continue; 7407 7408 /* Account thermal pressure for the energy estimation */ 7409 cpu = cpumask_first(cpus); 7410 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7411 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7412 7413 eenv.cpu_cap = cpu_thermal_cap; 7414 eenv.pd_cap = 0; 7415 7416 for_each_cpu(cpu, cpus) { 7417 struct rq *rq = cpu_rq(cpu); 7418 7419 eenv.pd_cap += cpu_thermal_cap; 7420 7421 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7422 continue; 7423 7424 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7425 continue; 7426 7427 util = cpu_util_next(cpu, p, cpu); 7428 cpu_cap = capacity_of(cpu); 7429 7430 /* 7431 * Skip CPUs that cannot satisfy the capacity request. 7432 * IOW, placing the task there would make the CPU 7433 * overutilized. Take uclamp into account to see how 7434 * much capacity we can get out of the CPU; this is 7435 * aligned with sched_cpu_util(). 7436 */ 7437 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7438 /* 7439 * Open code uclamp_rq_util_with() except for 7440 * the clamp() part. Ie: apply max aggregation 7441 * only. util_fits_cpu() logic requires to 7442 * operate on non clamped util but must use the 7443 * max-aggregated uclamp_{min, max}. 7444 */ 7445 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7446 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7447 7448 util_min = max(rq_util_min, p_util_min); 7449 util_max = max(rq_util_max, p_util_max); 7450 } 7451 7452 fits = util_fits_cpu(util, util_min, util_max, cpu); 7453 if (!fits) 7454 continue; 7455 7456 lsub_positive(&cpu_cap, util); 7457 7458 if (cpu == prev_cpu) { 7459 /* Always use prev_cpu as a candidate. */ 7460 prev_spare_cap = cpu_cap; 7461 prev_fits = fits; 7462 } else if ((fits > max_fits) || 7463 ((fits == max_fits) && (cpu_cap > max_spare_cap))) { 7464 /* 7465 * Find the CPU with the maximum spare capacity 7466 * among the remaining CPUs in the performance 7467 * domain. 7468 */ 7469 max_spare_cap = cpu_cap; 7470 max_spare_cap_cpu = cpu; 7471 max_fits = fits; 7472 } 7473 } 7474 7475 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7476 continue; 7477 7478 eenv_pd_busy_time(&eenv, cpus, p); 7479 /* Compute the 'base' energy of the pd, without @p */ 7480 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7481 7482 /* Evaluate the energy impact of using prev_cpu. */ 7483 if (prev_spare_cap > 0) { 7484 prev_delta = compute_energy(&eenv, pd, cpus, p, 7485 prev_cpu); 7486 /* CPU utilization has changed */ 7487 if (prev_delta < base_energy) 7488 goto unlock; 7489 prev_delta -= base_energy; 7490 prev_thermal_cap = cpu_thermal_cap; 7491 best_delta = min(best_delta, prev_delta); 7492 } 7493 7494 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7495 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7496 /* Current best energy cpu fits better */ 7497 if (max_fits < best_fits) 7498 continue; 7499 7500 /* 7501 * Both don't fit performance hint (i.e. uclamp_min) 7502 * but best energy cpu has better capacity. 7503 */ 7504 if ((max_fits < 0) && 7505 (cpu_thermal_cap <= best_thermal_cap)) 7506 continue; 7507 7508 cur_delta = compute_energy(&eenv, pd, cpus, p, 7509 max_spare_cap_cpu); 7510 /* CPU utilization has changed */ 7511 if (cur_delta < base_energy) 7512 goto unlock; 7513 cur_delta -= base_energy; 7514 7515 /* 7516 * Both fit for the task but best energy cpu has lower 7517 * energy impact. 7518 */ 7519 if ((max_fits > 0) && (best_fits > 0) && 7520 (cur_delta >= best_delta)) 7521 continue; 7522 7523 best_delta = cur_delta; 7524 best_energy_cpu = max_spare_cap_cpu; 7525 best_fits = max_fits; 7526 best_thermal_cap = cpu_thermal_cap; 7527 } 7528 } 7529 rcu_read_unlock(); 7530 7531 if ((best_fits > prev_fits) || 7532 ((best_fits > 0) && (best_delta < prev_delta)) || 7533 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7534 target = best_energy_cpu; 7535 7536 return target; 7537 7538 unlock: 7539 rcu_read_unlock(); 7540 7541 return target; 7542 } 7543 7544 /* 7545 * select_task_rq_fair: Select target runqueue for the waking task in domains 7546 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7547 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7548 * 7549 * Balances load by selecting the idlest CPU in the idlest group, or under 7550 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7551 * 7552 * Returns the target CPU number. 7553 */ 7554 static int 7555 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7556 { 7557 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7558 struct sched_domain *tmp, *sd = NULL; 7559 int cpu = smp_processor_id(); 7560 int new_cpu = prev_cpu; 7561 int want_affine = 0; 7562 /* SD_flags and WF_flags share the first nibble */ 7563 int sd_flag = wake_flags & 0xF; 7564 7565 /* 7566 * required for stable ->cpus_allowed 7567 */ 7568 lockdep_assert_held(&p->pi_lock); 7569 if (wake_flags & WF_TTWU) { 7570 record_wakee(p); 7571 7572 if (sched_energy_enabled()) { 7573 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7574 if (new_cpu >= 0) 7575 return new_cpu; 7576 new_cpu = prev_cpu; 7577 } 7578 7579 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7580 } 7581 7582 rcu_read_lock(); 7583 for_each_domain(cpu, tmp) { 7584 /* 7585 * If both 'cpu' and 'prev_cpu' are part of this domain, 7586 * cpu is a valid SD_WAKE_AFFINE target. 7587 */ 7588 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7589 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7590 if (cpu != prev_cpu) 7591 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7592 7593 sd = NULL; /* Prefer wake_affine over balance flags */ 7594 break; 7595 } 7596 7597 /* 7598 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7599 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7600 * will usually go to the fast path. 7601 */ 7602 if (tmp->flags & sd_flag) 7603 sd = tmp; 7604 else if (!want_affine) 7605 break; 7606 } 7607 7608 if (unlikely(sd)) { 7609 /* Slow path */ 7610 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7611 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7612 /* Fast path */ 7613 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7614 } 7615 rcu_read_unlock(); 7616 7617 return new_cpu; 7618 } 7619 7620 /* 7621 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7622 * cfs_rq_of(p) references at time of call are still valid and identify the 7623 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7624 */ 7625 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7626 { 7627 struct sched_entity *se = &p->se; 7628 7629 /* 7630 * As blocked tasks retain absolute vruntime the migration needs to 7631 * deal with this by subtracting the old and adding the new 7632 * min_vruntime -- the latter is done by enqueue_entity() when placing 7633 * the task on the new runqueue. 7634 */ 7635 if (READ_ONCE(p->__state) == TASK_WAKING) { 7636 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7637 7638 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7639 } 7640 7641 if (!task_on_rq_migrating(p)) { 7642 remove_entity_load_avg(se); 7643 7644 /* 7645 * Here, the task's PELT values have been updated according to 7646 * the current rq's clock. But if that clock hasn't been 7647 * updated in a while, a substantial idle time will be missed, 7648 * leading to an inflation after wake-up on the new rq. 7649 * 7650 * Estimate the missing time from the cfs_rq last_update_time 7651 * and update sched_avg to improve the PELT continuity after 7652 * migration. 7653 */ 7654 migrate_se_pelt_lag(se); 7655 } 7656 7657 /* Tell new CPU we are migrated */ 7658 se->avg.last_update_time = 0; 7659 7660 /* We have migrated, no longer consider this task hot */ 7661 se->exec_start = 0; 7662 7663 update_scan_period(p, new_cpu); 7664 } 7665 7666 static void task_dead_fair(struct task_struct *p) 7667 { 7668 remove_entity_load_avg(&p->se); 7669 } 7670 7671 static int 7672 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7673 { 7674 if (rq->nr_running) 7675 return 1; 7676 7677 return newidle_balance(rq, rf) != 0; 7678 } 7679 #endif /* CONFIG_SMP */ 7680 7681 static unsigned long wakeup_gran(struct sched_entity *se) 7682 { 7683 unsigned long gran = sysctl_sched_wakeup_granularity; 7684 7685 /* 7686 * Since its curr running now, convert the gran from real-time 7687 * to virtual-time in his units. 7688 * 7689 * By using 'se' instead of 'curr' we penalize light tasks, so 7690 * they get preempted easier. That is, if 'se' < 'curr' then 7691 * the resulting gran will be larger, therefore penalizing the 7692 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7693 * be smaller, again penalizing the lighter task. 7694 * 7695 * This is especially important for buddies when the leftmost 7696 * task is higher priority than the buddy. 7697 */ 7698 return calc_delta_fair(gran, se); 7699 } 7700 7701 /* 7702 * Should 'se' preempt 'curr'. 7703 * 7704 * |s1 7705 * |s2 7706 * |s3 7707 * g 7708 * |<--->|c 7709 * 7710 * w(c, s1) = -1 7711 * w(c, s2) = 0 7712 * w(c, s3) = 1 7713 * 7714 */ 7715 static int 7716 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7717 { 7718 s64 gran, vdiff = curr->vruntime - se->vruntime; 7719 7720 if (vdiff <= 0) 7721 return -1; 7722 7723 gran = wakeup_gran(se); 7724 if (vdiff > gran) 7725 return 1; 7726 7727 return 0; 7728 } 7729 7730 static void set_last_buddy(struct sched_entity *se) 7731 { 7732 for_each_sched_entity(se) { 7733 if (SCHED_WARN_ON(!se->on_rq)) 7734 return; 7735 if (se_is_idle(se)) 7736 return; 7737 cfs_rq_of(se)->last = se; 7738 } 7739 } 7740 7741 static void set_next_buddy(struct sched_entity *se) 7742 { 7743 for_each_sched_entity(se) { 7744 if (SCHED_WARN_ON(!se->on_rq)) 7745 return; 7746 if (se_is_idle(se)) 7747 return; 7748 cfs_rq_of(se)->next = se; 7749 } 7750 } 7751 7752 static void set_skip_buddy(struct sched_entity *se) 7753 { 7754 for_each_sched_entity(se) 7755 cfs_rq_of(se)->skip = se; 7756 } 7757 7758 /* 7759 * Preempt the current task with a newly woken task if needed: 7760 */ 7761 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7762 { 7763 struct task_struct *curr = rq->curr; 7764 struct sched_entity *se = &curr->se, *pse = &p->se; 7765 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7766 int scale = cfs_rq->nr_running >= sched_nr_latency; 7767 int next_buddy_marked = 0; 7768 int cse_is_idle, pse_is_idle; 7769 7770 if (unlikely(se == pse)) 7771 return; 7772 7773 /* 7774 * This is possible from callers such as attach_tasks(), in which we 7775 * unconditionally check_preempt_curr() after an enqueue (which may have 7776 * lead to a throttle). This both saves work and prevents false 7777 * next-buddy nomination below. 7778 */ 7779 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7780 return; 7781 7782 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7783 set_next_buddy(pse); 7784 next_buddy_marked = 1; 7785 } 7786 7787 /* 7788 * We can come here with TIF_NEED_RESCHED already set from new task 7789 * wake up path. 7790 * 7791 * Note: this also catches the edge-case of curr being in a throttled 7792 * group (e.g. via set_curr_task), since update_curr() (in the 7793 * enqueue of curr) will have resulted in resched being set. This 7794 * prevents us from potentially nominating it as a false LAST_BUDDY 7795 * below. 7796 */ 7797 if (test_tsk_need_resched(curr)) 7798 return; 7799 7800 /* Idle tasks are by definition preempted by non-idle tasks. */ 7801 if (unlikely(task_has_idle_policy(curr)) && 7802 likely(!task_has_idle_policy(p))) 7803 goto preempt; 7804 7805 /* 7806 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7807 * is driven by the tick): 7808 */ 7809 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7810 return; 7811 7812 find_matching_se(&se, &pse); 7813 WARN_ON_ONCE(!pse); 7814 7815 cse_is_idle = se_is_idle(se); 7816 pse_is_idle = se_is_idle(pse); 7817 7818 /* 7819 * Preempt an idle group in favor of a non-idle group (and don't preempt 7820 * in the inverse case). 7821 */ 7822 if (cse_is_idle && !pse_is_idle) 7823 goto preempt; 7824 if (cse_is_idle != pse_is_idle) 7825 return; 7826 7827 update_curr(cfs_rq_of(se)); 7828 if (wakeup_preempt_entity(se, pse) == 1) { 7829 /* 7830 * Bias pick_next to pick the sched entity that is 7831 * triggering this preemption. 7832 */ 7833 if (!next_buddy_marked) 7834 set_next_buddy(pse); 7835 goto preempt; 7836 } 7837 7838 return; 7839 7840 preempt: 7841 resched_curr(rq); 7842 /* 7843 * Only set the backward buddy when the current task is still 7844 * on the rq. This can happen when a wakeup gets interleaved 7845 * with schedule on the ->pre_schedule() or idle_balance() 7846 * point, either of which can * drop the rq lock. 7847 * 7848 * Also, during early boot the idle thread is in the fair class, 7849 * for obvious reasons its a bad idea to schedule back to it. 7850 */ 7851 if (unlikely(!se->on_rq || curr == rq->idle)) 7852 return; 7853 7854 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7855 set_last_buddy(se); 7856 } 7857 7858 #ifdef CONFIG_SMP 7859 static struct task_struct *pick_task_fair(struct rq *rq) 7860 { 7861 struct sched_entity *se; 7862 struct cfs_rq *cfs_rq; 7863 7864 again: 7865 cfs_rq = &rq->cfs; 7866 if (!cfs_rq->nr_running) 7867 return NULL; 7868 7869 do { 7870 struct sched_entity *curr = cfs_rq->curr; 7871 7872 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7873 if (curr) { 7874 if (curr->on_rq) 7875 update_curr(cfs_rq); 7876 else 7877 curr = NULL; 7878 7879 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7880 goto again; 7881 } 7882 7883 se = pick_next_entity(cfs_rq, curr); 7884 cfs_rq = group_cfs_rq(se); 7885 } while (cfs_rq); 7886 7887 return task_of(se); 7888 } 7889 #endif 7890 7891 struct task_struct * 7892 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7893 { 7894 struct cfs_rq *cfs_rq = &rq->cfs; 7895 struct sched_entity *se; 7896 struct task_struct *p; 7897 int new_tasks; 7898 7899 again: 7900 if (!sched_fair_runnable(rq)) 7901 goto idle; 7902 7903 #ifdef CONFIG_FAIR_GROUP_SCHED 7904 if (!prev || prev->sched_class != &fair_sched_class) 7905 goto simple; 7906 7907 /* 7908 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7909 * likely that a next task is from the same cgroup as the current. 7910 * 7911 * Therefore attempt to avoid putting and setting the entire cgroup 7912 * hierarchy, only change the part that actually changes. 7913 */ 7914 7915 do { 7916 struct sched_entity *curr = cfs_rq->curr; 7917 7918 /* 7919 * Since we got here without doing put_prev_entity() we also 7920 * have to consider cfs_rq->curr. If it is still a runnable 7921 * entity, update_curr() will update its vruntime, otherwise 7922 * forget we've ever seen it. 7923 */ 7924 if (curr) { 7925 if (curr->on_rq) 7926 update_curr(cfs_rq); 7927 else 7928 curr = NULL; 7929 7930 /* 7931 * This call to check_cfs_rq_runtime() will do the 7932 * throttle and dequeue its entity in the parent(s). 7933 * Therefore the nr_running test will indeed 7934 * be correct. 7935 */ 7936 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7937 cfs_rq = &rq->cfs; 7938 7939 if (!cfs_rq->nr_running) 7940 goto idle; 7941 7942 goto simple; 7943 } 7944 } 7945 7946 se = pick_next_entity(cfs_rq, curr); 7947 cfs_rq = group_cfs_rq(se); 7948 } while (cfs_rq); 7949 7950 p = task_of(se); 7951 7952 /* 7953 * Since we haven't yet done put_prev_entity and if the selected task 7954 * is a different task than we started out with, try and touch the 7955 * least amount of cfs_rqs. 7956 */ 7957 if (prev != p) { 7958 struct sched_entity *pse = &prev->se; 7959 7960 while (!(cfs_rq = is_same_group(se, pse))) { 7961 int se_depth = se->depth; 7962 int pse_depth = pse->depth; 7963 7964 if (se_depth <= pse_depth) { 7965 put_prev_entity(cfs_rq_of(pse), pse); 7966 pse = parent_entity(pse); 7967 } 7968 if (se_depth >= pse_depth) { 7969 set_next_entity(cfs_rq_of(se), se); 7970 se = parent_entity(se); 7971 } 7972 } 7973 7974 put_prev_entity(cfs_rq, pse); 7975 set_next_entity(cfs_rq, se); 7976 } 7977 7978 goto done; 7979 simple: 7980 #endif 7981 if (prev) 7982 put_prev_task(rq, prev); 7983 7984 do { 7985 se = pick_next_entity(cfs_rq, NULL); 7986 set_next_entity(cfs_rq, se); 7987 cfs_rq = group_cfs_rq(se); 7988 } while (cfs_rq); 7989 7990 p = task_of(se); 7991 7992 done: __maybe_unused; 7993 #ifdef CONFIG_SMP 7994 /* 7995 * Move the next running task to the front of 7996 * the list, so our cfs_tasks list becomes MRU 7997 * one. 7998 */ 7999 list_move(&p->se.group_node, &rq->cfs_tasks); 8000 #endif 8001 8002 if (hrtick_enabled_fair(rq)) 8003 hrtick_start_fair(rq, p); 8004 8005 update_misfit_status(p, rq); 8006 8007 return p; 8008 8009 idle: 8010 if (!rf) 8011 return NULL; 8012 8013 new_tasks = newidle_balance(rq, rf); 8014 8015 /* 8016 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8017 * possible for any higher priority task to appear. In that case we 8018 * must re-start the pick_next_entity() loop. 8019 */ 8020 if (new_tasks < 0) 8021 return RETRY_TASK; 8022 8023 if (new_tasks > 0) 8024 goto again; 8025 8026 /* 8027 * rq is about to be idle, check if we need to update the 8028 * lost_idle_time of clock_pelt 8029 */ 8030 update_idle_rq_clock_pelt(rq); 8031 8032 return NULL; 8033 } 8034 8035 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8036 { 8037 return pick_next_task_fair(rq, NULL, NULL); 8038 } 8039 8040 /* 8041 * Account for a descheduled task: 8042 */ 8043 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8044 { 8045 struct sched_entity *se = &prev->se; 8046 struct cfs_rq *cfs_rq; 8047 8048 for_each_sched_entity(se) { 8049 cfs_rq = cfs_rq_of(se); 8050 put_prev_entity(cfs_rq, se); 8051 } 8052 } 8053 8054 /* 8055 * sched_yield() is very simple 8056 * 8057 * The magic of dealing with the ->skip buddy is in pick_next_entity. 8058 */ 8059 static void yield_task_fair(struct rq *rq) 8060 { 8061 struct task_struct *curr = rq->curr; 8062 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8063 struct sched_entity *se = &curr->se; 8064 8065 /* 8066 * Are we the only task in the tree? 8067 */ 8068 if (unlikely(rq->nr_running == 1)) 8069 return; 8070 8071 clear_buddies(cfs_rq, se); 8072 8073 if (curr->policy != SCHED_BATCH) { 8074 update_rq_clock(rq); 8075 /* 8076 * Update run-time statistics of the 'current'. 8077 */ 8078 update_curr(cfs_rq); 8079 /* 8080 * Tell update_rq_clock() that we've just updated, 8081 * so we don't do microscopic update in schedule() 8082 * and double the fastpath cost. 8083 */ 8084 rq_clock_skip_update(rq); 8085 } 8086 8087 set_skip_buddy(se); 8088 } 8089 8090 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8091 { 8092 struct sched_entity *se = &p->se; 8093 8094 /* throttled hierarchies are not runnable */ 8095 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8096 return false; 8097 8098 /* Tell the scheduler that we'd really like pse to run next. */ 8099 set_next_buddy(se); 8100 8101 yield_task_fair(rq); 8102 8103 return true; 8104 } 8105 8106 #ifdef CONFIG_SMP 8107 /************************************************** 8108 * Fair scheduling class load-balancing methods. 8109 * 8110 * BASICS 8111 * 8112 * The purpose of load-balancing is to achieve the same basic fairness the 8113 * per-CPU scheduler provides, namely provide a proportional amount of compute 8114 * time to each task. This is expressed in the following equation: 8115 * 8116 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8117 * 8118 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8119 * W_i,0 is defined as: 8120 * 8121 * W_i,0 = \Sum_j w_i,j (2) 8122 * 8123 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8124 * is derived from the nice value as per sched_prio_to_weight[]. 8125 * 8126 * The weight average is an exponential decay average of the instantaneous 8127 * weight: 8128 * 8129 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8130 * 8131 * C_i is the compute capacity of CPU i, typically it is the 8132 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8133 * can also include other factors [XXX]. 8134 * 8135 * To achieve this balance we define a measure of imbalance which follows 8136 * directly from (1): 8137 * 8138 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8139 * 8140 * We them move tasks around to minimize the imbalance. In the continuous 8141 * function space it is obvious this converges, in the discrete case we get 8142 * a few fun cases generally called infeasible weight scenarios. 8143 * 8144 * [XXX expand on: 8145 * - infeasible weights; 8146 * - local vs global optima in the discrete case. ] 8147 * 8148 * 8149 * SCHED DOMAINS 8150 * 8151 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8152 * for all i,j solution, we create a tree of CPUs that follows the hardware 8153 * topology where each level pairs two lower groups (or better). This results 8154 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8155 * tree to only the first of the previous level and we decrease the frequency 8156 * of load-balance at each level inv. proportional to the number of CPUs in 8157 * the groups. 8158 * 8159 * This yields: 8160 * 8161 * log_2 n 1 n 8162 * \Sum { --- * --- * 2^i } = O(n) (5) 8163 * i = 0 2^i 2^i 8164 * `- size of each group 8165 * | | `- number of CPUs doing load-balance 8166 * | `- freq 8167 * `- sum over all levels 8168 * 8169 * Coupled with a limit on how many tasks we can migrate every balance pass, 8170 * this makes (5) the runtime complexity of the balancer. 8171 * 8172 * An important property here is that each CPU is still (indirectly) connected 8173 * to every other CPU in at most O(log n) steps: 8174 * 8175 * The adjacency matrix of the resulting graph is given by: 8176 * 8177 * log_2 n 8178 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8179 * k = 0 8180 * 8181 * And you'll find that: 8182 * 8183 * A^(log_2 n)_i,j != 0 for all i,j (7) 8184 * 8185 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8186 * The task movement gives a factor of O(m), giving a convergence complexity 8187 * of: 8188 * 8189 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8190 * 8191 * 8192 * WORK CONSERVING 8193 * 8194 * In order to avoid CPUs going idle while there's still work to do, new idle 8195 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8196 * tree itself instead of relying on other CPUs to bring it work. 8197 * 8198 * This adds some complexity to both (5) and (8) but it reduces the total idle 8199 * time. 8200 * 8201 * [XXX more?] 8202 * 8203 * 8204 * CGROUPS 8205 * 8206 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8207 * 8208 * s_k,i 8209 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8210 * S_k 8211 * 8212 * Where 8213 * 8214 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8215 * 8216 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8217 * 8218 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8219 * property. 8220 * 8221 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8222 * rewrite all of this once again.] 8223 */ 8224 8225 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8226 8227 enum fbq_type { regular, remote, all }; 8228 8229 /* 8230 * 'group_type' describes the group of CPUs at the moment of load balancing. 8231 * 8232 * The enum is ordered by pulling priority, with the group with lowest priority 8233 * first so the group_type can simply be compared when selecting the busiest 8234 * group. See update_sd_pick_busiest(). 8235 */ 8236 enum group_type { 8237 /* The group has spare capacity that can be used to run more tasks. */ 8238 group_has_spare = 0, 8239 /* 8240 * The group is fully used and the tasks don't compete for more CPU 8241 * cycles. Nevertheless, some tasks might wait before running. 8242 */ 8243 group_fully_busy, 8244 /* 8245 * One task doesn't fit with CPU's capacity and must be migrated to a 8246 * more powerful CPU. 8247 */ 8248 group_misfit_task, 8249 /* 8250 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8251 * and the task should be migrated to it instead of running on the 8252 * current CPU. 8253 */ 8254 group_asym_packing, 8255 /* 8256 * The tasks' affinity constraints previously prevented the scheduler 8257 * from balancing the load across the system. 8258 */ 8259 group_imbalanced, 8260 /* 8261 * The CPU is overloaded and can't provide expected CPU cycles to all 8262 * tasks. 8263 */ 8264 group_overloaded 8265 }; 8266 8267 enum migration_type { 8268 migrate_load = 0, 8269 migrate_util, 8270 migrate_task, 8271 migrate_misfit 8272 }; 8273 8274 #define LBF_ALL_PINNED 0x01 8275 #define LBF_NEED_BREAK 0x02 8276 #define LBF_DST_PINNED 0x04 8277 #define LBF_SOME_PINNED 0x08 8278 #define LBF_ACTIVE_LB 0x10 8279 8280 struct lb_env { 8281 struct sched_domain *sd; 8282 8283 struct rq *src_rq; 8284 int src_cpu; 8285 8286 int dst_cpu; 8287 struct rq *dst_rq; 8288 8289 struct cpumask *dst_grpmask; 8290 int new_dst_cpu; 8291 enum cpu_idle_type idle; 8292 long imbalance; 8293 /* The set of CPUs under consideration for load-balancing */ 8294 struct cpumask *cpus; 8295 8296 unsigned int flags; 8297 8298 unsigned int loop; 8299 unsigned int loop_break; 8300 unsigned int loop_max; 8301 8302 enum fbq_type fbq_type; 8303 enum migration_type migration_type; 8304 struct list_head tasks; 8305 }; 8306 8307 /* 8308 * Is this task likely cache-hot: 8309 */ 8310 static int task_hot(struct task_struct *p, struct lb_env *env) 8311 { 8312 s64 delta; 8313 8314 lockdep_assert_rq_held(env->src_rq); 8315 8316 if (p->sched_class != &fair_sched_class) 8317 return 0; 8318 8319 if (unlikely(task_has_idle_policy(p))) 8320 return 0; 8321 8322 /* SMT siblings share cache */ 8323 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8324 return 0; 8325 8326 /* 8327 * Buddy candidates are cache hot: 8328 */ 8329 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8330 (&p->se == cfs_rq_of(&p->se)->next || 8331 &p->se == cfs_rq_of(&p->se)->last)) 8332 return 1; 8333 8334 if (sysctl_sched_migration_cost == -1) 8335 return 1; 8336 8337 /* 8338 * Don't migrate task if the task's cookie does not match 8339 * with the destination CPU's core cookie. 8340 */ 8341 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8342 return 1; 8343 8344 if (sysctl_sched_migration_cost == 0) 8345 return 0; 8346 8347 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8348 8349 return delta < (s64)sysctl_sched_migration_cost; 8350 } 8351 8352 #ifdef CONFIG_NUMA_BALANCING 8353 /* 8354 * Returns 1, if task migration degrades locality 8355 * Returns 0, if task migration improves locality i.e migration preferred. 8356 * Returns -1, if task migration is not affected by locality. 8357 */ 8358 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8359 { 8360 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8361 unsigned long src_weight, dst_weight; 8362 int src_nid, dst_nid, dist; 8363 8364 if (!static_branch_likely(&sched_numa_balancing)) 8365 return -1; 8366 8367 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8368 return -1; 8369 8370 src_nid = cpu_to_node(env->src_cpu); 8371 dst_nid = cpu_to_node(env->dst_cpu); 8372 8373 if (src_nid == dst_nid) 8374 return -1; 8375 8376 /* Migrating away from the preferred node is always bad. */ 8377 if (src_nid == p->numa_preferred_nid) { 8378 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8379 return 1; 8380 else 8381 return -1; 8382 } 8383 8384 /* Encourage migration to the preferred node. */ 8385 if (dst_nid == p->numa_preferred_nid) 8386 return 0; 8387 8388 /* Leaving a core idle is often worse than degrading locality. */ 8389 if (env->idle == CPU_IDLE) 8390 return -1; 8391 8392 dist = node_distance(src_nid, dst_nid); 8393 if (numa_group) { 8394 src_weight = group_weight(p, src_nid, dist); 8395 dst_weight = group_weight(p, dst_nid, dist); 8396 } else { 8397 src_weight = task_weight(p, src_nid, dist); 8398 dst_weight = task_weight(p, dst_nid, dist); 8399 } 8400 8401 return dst_weight < src_weight; 8402 } 8403 8404 #else 8405 static inline int migrate_degrades_locality(struct task_struct *p, 8406 struct lb_env *env) 8407 { 8408 return -1; 8409 } 8410 #endif 8411 8412 /* 8413 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8414 */ 8415 static 8416 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8417 { 8418 int tsk_cache_hot; 8419 8420 lockdep_assert_rq_held(env->src_rq); 8421 8422 /* 8423 * We do not migrate tasks that are: 8424 * 1) throttled_lb_pair, or 8425 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8426 * 3) running (obviously), or 8427 * 4) are cache-hot on their current CPU. 8428 */ 8429 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8430 return 0; 8431 8432 /* Disregard pcpu kthreads; they are where they need to be. */ 8433 if (kthread_is_per_cpu(p)) 8434 return 0; 8435 8436 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8437 int cpu; 8438 8439 schedstat_inc(p->stats.nr_failed_migrations_affine); 8440 8441 env->flags |= LBF_SOME_PINNED; 8442 8443 /* 8444 * Remember if this task can be migrated to any other CPU in 8445 * our sched_group. We may want to revisit it if we couldn't 8446 * meet load balance goals by pulling other tasks on src_cpu. 8447 * 8448 * Avoid computing new_dst_cpu 8449 * - for NEWLY_IDLE 8450 * - if we have already computed one in current iteration 8451 * - if it's an active balance 8452 */ 8453 if (env->idle == CPU_NEWLY_IDLE || 8454 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8455 return 0; 8456 8457 /* Prevent to re-select dst_cpu via env's CPUs: */ 8458 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8459 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8460 env->flags |= LBF_DST_PINNED; 8461 env->new_dst_cpu = cpu; 8462 break; 8463 } 8464 } 8465 8466 return 0; 8467 } 8468 8469 /* Record that we found at least one task that could run on dst_cpu */ 8470 env->flags &= ~LBF_ALL_PINNED; 8471 8472 if (task_on_cpu(env->src_rq, p)) { 8473 schedstat_inc(p->stats.nr_failed_migrations_running); 8474 return 0; 8475 } 8476 8477 /* 8478 * Aggressive migration if: 8479 * 1) active balance 8480 * 2) destination numa is preferred 8481 * 3) task is cache cold, or 8482 * 4) too many balance attempts have failed. 8483 */ 8484 if (env->flags & LBF_ACTIVE_LB) 8485 return 1; 8486 8487 tsk_cache_hot = migrate_degrades_locality(p, env); 8488 if (tsk_cache_hot == -1) 8489 tsk_cache_hot = task_hot(p, env); 8490 8491 if (tsk_cache_hot <= 0 || 8492 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8493 if (tsk_cache_hot == 1) { 8494 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8495 schedstat_inc(p->stats.nr_forced_migrations); 8496 } 8497 return 1; 8498 } 8499 8500 schedstat_inc(p->stats.nr_failed_migrations_hot); 8501 return 0; 8502 } 8503 8504 /* 8505 * detach_task() -- detach the task for the migration specified in env 8506 */ 8507 static void detach_task(struct task_struct *p, struct lb_env *env) 8508 { 8509 lockdep_assert_rq_held(env->src_rq); 8510 8511 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8512 set_task_cpu(p, env->dst_cpu); 8513 } 8514 8515 /* 8516 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8517 * part of active balancing operations within "domain". 8518 * 8519 * Returns a task if successful and NULL otherwise. 8520 */ 8521 static struct task_struct *detach_one_task(struct lb_env *env) 8522 { 8523 struct task_struct *p; 8524 8525 lockdep_assert_rq_held(env->src_rq); 8526 8527 list_for_each_entry_reverse(p, 8528 &env->src_rq->cfs_tasks, se.group_node) { 8529 if (!can_migrate_task(p, env)) 8530 continue; 8531 8532 detach_task(p, env); 8533 8534 /* 8535 * Right now, this is only the second place where 8536 * lb_gained[env->idle] is updated (other is detach_tasks) 8537 * so we can safely collect stats here rather than 8538 * inside detach_tasks(). 8539 */ 8540 schedstat_inc(env->sd->lb_gained[env->idle]); 8541 return p; 8542 } 8543 return NULL; 8544 } 8545 8546 /* 8547 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8548 * busiest_rq, as part of a balancing operation within domain "sd". 8549 * 8550 * Returns number of detached tasks if successful and 0 otherwise. 8551 */ 8552 static int detach_tasks(struct lb_env *env) 8553 { 8554 struct list_head *tasks = &env->src_rq->cfs_tasks; 8555 unsigned long util, load; 8556 struct task_struct *p; 8557 int detached = 0; 8558 8559 lockdep_assert_rq_held(env->src_rq); 8560 8561 /* 8562 * Source run queue has been emptied by another CPU, clear 8563 * LBF_ALL_PINNED flag as we will not test any task. 8564 */ 8565 if (env->src_rq->nr_running <= 1) { 8566 env->flags &= ~LBF_ALL_PINNED; 8567 return 0; 8568 } 8569 8570 if (env->imbalance <= 0) 8571 return 0; 8572 8573 while (!list_empty(tasks)) { 8574 /* 8575 * We don't want to steal all, otherwise we may be treated likewise, 8576 * which could at worst lead to a livelock crash. 8577 */ 8578 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8579 break; 8580 8581 env->loop++; 8582 /* 8583 * We've more or less seen every task there is, call it quits 8584 * unless we haven't found any movable task yet. 8585 */ 8586 if (env->loop > env->loop_max && 8587 !(env->flags & LBF_ALL_PINNED)) 8588 break; 8589 8590 /* take a breather every nr_migrate tasks */ 8591 if (env->loop > env->loop_break) { 8592 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8593 env->flags |= LBF_NEED_BREAK; 8594 break; 8595 } 8596 8597 p = list_last_entry(tasks, struct task_struct, se.group_node); 8598 8599 if (!can_migrate_task(p, env)) 8600 goto next; 8601 8602 switch (env->migration_type) { 8603 case migrate_load: 8604 /* 8605 * Depending of the number of CPUs and tasks and the 8606 * cgroup hierarchy, task_h_load() can return a null 8607 * value. Make sure that env->imbalance decreases 8608 * otherwise detach_tasks() will stop only after 8609 * detaching up to loop_max tasks. 8610 */ 8611 load = max_t(unsigned long, task_h_load(p), 1); 8612 8613 if (sched_feat(LB_MIN) && 8614 load < 16 && !env->sd->nr_balance_failed) 8615 goto next; 8616 8617 /* 8618 * Make sure that we don't migrate too much load. 8619 * Nevertheless, let relax the constraint if 8620 * scheduler fails to find a good waiting task to 8621 * migrate. 8622 */ 8623 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8624 goto next; 8625 8626 env->imbalance -= load; 8627 break; 8628 8629 case migrate_util: 8630 util = task_util_est(p); 8631 8632 if (util > env->imbalance) 8633 goto next; 8634 8635 env->imbalance -= util; 8636 break; 8637 8638 case migrate_task: 8639 env->imbalance--; 8640 break; 8641 8642 case migrate_misfit: 8643 /* This is not a misfit task */ 8644 if (task_fits_cpu(p, env->src_cpu)) 8645 goto next; 8646 8647 env->imbalance = 0; 8648 break; 8649 } 8650 8651 detach_task(p, env); 8652 list_add(&p->se.group_node, &env->tasks); 8653 8654 detached++; 8655 8656 #ifdef CONFIG_PREEMPTION 8657 /* 8658 * NEWIDLE balancing is a source of latency, so preemptible 8659 * kernels will stop after the first task is detached to minimize 8660 * the critical section. 8661 */ 8662 if (env->idle == CPU_NEWLY_IDLE) 8663 break; 8664 #endif 8665 8666 /* 8667 * We only want to steal up to the prescribed amount of 8668 * load/util/tasks. 8669 */ 8670 if (env->imbalance <= 0) 8671 break; 8672 8673 continue; 8674 next: 8675 list_move(&p->se.group_node, tasks); 8676 } 8677 8678 /* 8679 * Right now, this is one of only two places we collect this stat 8680 * so we can safely collect detach_one_task() stats here rather 8681 * than inside detach_one_task(). 8682 */ 8683 schedstat_add(env->sd->lb_gained[env->idle], detached); 8684 8685 return detached; 8686 } 8687 8688 /* 8689 * attach_task() -- attach the task detached by detach_task() to its new rq. 8690 */ 8691 static void attach_task(struct rq *rq, struct task_struct *p) 8692 { 8693 lockdep_assert_rq_held(rq); 8694 8695 WARN_ON_ONCE(task_rq(p) != rq); 8696 activate_task(rq, p, ENQUEUE_NOCLOCK); 8697 check_preempt_curr(rq, p, 0); 8698 } 8699 8700 /* 8701 * attach_one_task() -- attaches the task returned from detach_one_task() to 8702 * its new rq. 8703 */ 8704 static void attach_one_task(struct rq *rq, struct task_struct *p) 8705 { 8706 struct rq_flags rf; 8707 8708 rq_lock(rq, &rf); 8709 update_rq_clock(rq); 8710 attach_task(rq, p); 8711 rq_unlock(rq, &rf); 8712 } 8713 8714 /* 8715 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8716 * new rq. 8717 */ 8718 static void attach_tasks(struct lb_env *env) 8719 { 8720 struct list_head *tasks = &env->tasks; 8721 struct task_struct *p; 8722 struct rq_flags rf; 8723 8724 rq_lock(env->dst_rq, &rf); 8725 update_rq_clock(env->dst_rq); 8726 8727 while (!list_empty(tasks)) { 8728 p = list_first_entry(tasks, struct task_struct, se.group_node); 8729 list_del_init(&p->se.group_node); 8730 8731 attach_task(env->dst_rq, p); 8732 } 8733 8734 rq_unlock(env->dst_rq, &rf); 8735 } 8736 8737 #ifdef CONFIG_NO_HZ_COMMON 8738 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8739 { 8740 if (cfs_rq->avg.load_avg) 8741 return true; 8742 8743 if (cfs_rq->avg.util_avg) 8744 return true; 8745 8746 return false; 8747 } 8748 8749 static inline bool others_have_blocked(struct rq *rq) 8750 { 8751 if (READ_ONCE(rq->avg_rt.util_avg)) 8752 return true; 8753 8754 if (READ_ONCE(rq->avg_dl.util_avg)) 8755 return true; 8756 8757 if (thermal_load_avg(rq)) 8758 return true; 8759 8760 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8761 if (READ_ONCE(rq->avg_irq.util_avg)) 8762 return true; 8763 #endif 8764 8765 return false; 8766 } 8767 8768 static inline void update_blocked_load_tick(struct rq *rq) 8769 { 8770 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8771 } 8772 8773 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8774 { 8775 if (!has_blocked) 8776 rq->has_blocked_load = 0; 8777 } 8778 #else 8779 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8780 static inline bool others_have_blocked(struct rq *rq) { return false; } 8781 static inline void update_blocked_load_tick(struct rq *rq) {} 8782 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8783 #endif 8784 8785 static bool __update_blocked_others(struct rq *rq, bool *done) 8786 { 8787 const struct sched_class *curr_class; 8788 u64 now = rq_clock_pelt(rq); 8789 unsigned long thermal_pressure; 8790 bool decayed; 8791 8792 /* 8793 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8794 * DL and IRQ signals have been updated before updating CFS. 8795 */ 8796 curr_class = rq->curr->sched_class; 8797 8798 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8799 8800 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8801 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8802 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8803 update_irq_load_avg(rq, 0); 8804 8805 if (others_have_blocked(rq)) 8806 *done = false; 8807 8808 return decayed; 8809 } 8810 8811 #ifdef CONFIG_FAIR_GROUP_SCHED 8812 8813 static bool __update_blocked_fair(struct rq *rq, bool *done) 8814 { 8815 struct cfs_rq *cfs_rq, *pos; 8816 bool decayed = false; 8817 int cpu = cpu_of(rq); 8818 8819 /* 8820 * Iterates the task_group tree in a bottom up fashion, see 8821 * list_add_leaf_cfs_rq() for details. 8822 */ 8823 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8824 struct sched_entity *se; 8825 8826 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8827 update_tg_load_avg(cfs_rq); 8828 8829 if (cfs_rq->nr_running == 0) 8830 update_idle_cfs_rq_clock_pelt(cfs_rq); 8831 8832 if (cfs_rq == &rq->cfs) 8833 decayed = true; 8834 } 8835 8836 /* Propagate pending load changes to the parent, if any: */ 8837 se = cfs_rq->tg->se[cpu]; 8838 if (se && !skip_blocked_update(se)) 8839 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8840 8841 /* 8842 * There can be a lot of idle CPU cgroups. Don't let fully 8843 * decayed cfs_rqs linger on the list. 8844 */ 8845 if (cfs_rq_is_decayed(cfs_rq)) 8846 list_del_leaf_cfs_rq(cfs_rq); 8847 8848 /* Don't need periodic decay once load/util_avg are null */ 8849 if (cfs_rq_has_blocked(cfs_rq)) 8850 *done = false; 8851 } 8852 8853 return decayed; 8854 } 8855 8856 /* 8857 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8858 * This needs to be done in a top-down fashion because the load of a child 8859 * group is a fraction of its parents load. 8860 */ 8861 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8862 { 8863 struct rq *rq = rq_of(cfs_rq); 8864 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8865 unsigned long now = jiffies; 8866 unsigned long load; 8867 8868 if (cfs_rq->last_h_load_update == now) 8869 return; 8870 8871 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8872 for_each_sched_entity(se) { 8873 cfs_rq = cfs_rq_of(se); 8874 WRITE_ONCE(cfs_rq->h_load_next, se); 8875 if (cfs_rq->last_h_load_update == now) 8876 break; 8877 } 8878 8879 if (!se) { 8880 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8881 cfs_rq->last_h_load_update = now; 8882 } 8883 8884 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8885 load = cfs_rq->h_load; 8886 load = div64_ul(load * se->avg.load_avg, 8887 cfs_rq_load_avg(cfs_rq) + 1); 8888 cfs_rq = group_cfs_rq(se); 8889 cfs_rq->h_load = load; 8890 cfs_rq->last_h_load_update = now; 8891 } 8892 } 8893 8894 static unsigned long task_h_load(struct task_struct *p) 8895 { 8896 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8897 8898 update_cfs_rq_h_load(cfs_rq); 8899 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8900 cfs_rq_load_avg(cfs_rq) + 1); 8901 } 8902 #else 8903 static bool __update_blocked_fair(struct rq *rq, bool *done) 8904 { 8905 struct cfs_rq *cfs_rq = &rq->cfs; 8906 bool decayed; 8907 8908 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8909 if (cfs_rq_has_blocked(cfs_rq)) 8910 *done = false; 8911 8912 return decayed; 8913 } 8914 8915 static unsigned long task_h_load(struct task_struct *p) 8916 { 8917 return p->se.avg.load_avg; 8918 } 8919 #endif 8920 8921 static void update_blocked_averages(int cpu) 8922 { 8923 bool decayed = false, done = true; 8924 struct rq *rq = cpu_rq(cpu); 8925 struct rq_flags rf; 8926 8927 rq_lock_irqsave(rq, &rf); 8928 update_blocked_load_tick(rq); 8929 update_rq_clock(rq); 8930 8931 decayed |= __update_blocked_others(rq, &done); 8932 decayed |= __update_blocked_fair(rq, &done); 8933 8934 update_blocked_load_status(rq, !done); 8935 if (decayed) 8936 cpufreq_update_util(rq, 0); 8937 rq_unlock_irqrestore(rq, &rf); 8938 } 8939 8940 /********** Helpers for find_busiest_group ************************/ 8941 8942 /* 8943 * sg_lb_stats - stats of a sched_group required for load_balancing 8944 */ 8945 struct sg_lb_stats { 8946 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8947 unsigned long group_load; /* Total load over the CPUs of the group */ 8948 unsigned long group_capacity; 8949 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8950 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8951 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8952 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8953 unsigned int idle_cpus; 8954 unsigned int group_weight; 8955 enum group_type group_type; 8956 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8957 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8958 #ifdef CONFIG_NUMA_BALANCING 8959 unsigned int nr_numa_running; 8960 unsigned int nr_preferred_running; 8961 #endif 8962 }; 8963 8964 /* 8965 * sd_lb_stats - Structure to store the statistics of a sched_domain 8966 * during load balancing. 8967 */ 8968 struct sd_lb_stats { 8969 struct sched_group *busiest; /* Busiest group in this sd */ 8970 struct sched_group *local; /* Local group in this sd */ 8971 unsigned long total_load; /* Total load of all groups in sd */ 8972 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8973 unsigned long avg_load; /* Average load across all groups in sd */ 8974 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8975 8976 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8977 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8978 }; 8979 8980 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8981 { 8982 /* 8983 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8984 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8985 * We must however set busiest_stat::group_type and 8986 * busiest_stat::idle_cpus to the worst busiest group because 8987 * update_sd_pick_busiest() reads these before assignment. 8988 */ 8989 *sds = (struct sd_lb_stats){ 8990 .busiest = NULL, 8991 .local = NULL, 8992 .total_load = 0UL, 8993 .total_capacity = 0UL, 8994 .busiest_stat = { 8995 .idle_cpus = UINT_MAX, 8996 .group_type = group_has_spare, 8997 }, 8998 }; 8999 } 9000 9001 static unsigned long scale_rt_capacity(int cpu) 9002 { 9003 struct rq *rq = cpu_rq(cpu); 9004 unsigned long max = arch_scale_cpu_capacity(cpu); 9005 unsigned long used, free; 9006 unsigned long irq; 9007 9008 irq = cpu_util_irq(rq); 9009 9010 if (unlikely(irq >= max)) 9011 return 1; 9012 9013 /* 9014 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9015 * (running and not running) with weights 0 and 1024 respectively. 9016 * avg_thermal.load_avg tracks thermal pressure and the weighted 9017 * average uses the actual delta max capacity(load). 9018 */ 9019 used = READ_ONCE(rq->avg_rt.util_avg); 9020 used += READ_ONCE(rq->avg_dl.util_avg); 9021 used += thermal_load_avg(rq); 9022 9023 if (unlikely(used >= max)) 9024 return 1; 9025 9026 free = max - used; 9027 9028 return scale_irq_capacity(free, irq, max); 9029 } 9030 9031 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9032 { 9033 unsigned long capacity = scale_rt_capacity(cpu); 9034 struct sched_group *sdg = sd->groups; 9035 9036 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9037 9038 if (!capacity) 9039 capacity = 1; 9040 9041 cpu_rq(cpu)->cpu_capacity = capacity; 9042 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9043 9044 sdg->sgc->capacity = capacity; 9045 sdg->sgc->min_capacity = capacity; 9046 sdg->sgc->max_capacity = capacity; 9047 } 9048 9049 void update_group_capacity(struct sched_domain *sd, int cpu) 9050 { 9051 struct sched_domain *child = sd->child; 9052 struct sched_group *group, *sdg = sd->groups; 9053 unsigned long capacity, min_capacity, max_capacity; 9054 unsigned long interval; 9055 9056 interval = msecs_to_jiffies(sd->balance_interval); 9057 interval = clamp(interval, 1UL, max_load_balance_interval); 9058 sdg->sgc->next_update = jiffies + interval; 9059 9060 if (!child) { 9061 update_cpu_capacity(sd, cpu); 9062 return; 9063 } 9064 9065 capacity = 0; 9066 min_capacity = ULONG_MAX; 9067 max_capacity = 0; 9068 9069 if (child->flags & SD_OVERLAP) { 9070 /* 9071 * SD_OVERLAP domains cannot assume that child groups 9072 * span the current group. 9073 */ 9074 9075 for_each_cpu(cpu, sched_group_span(sdg)) { 9076 unsigned long cpu_cap = capacity_of(cpu); 9077 9078 capacity += cpu_cap; 9079 min_capacity = min(cpu_cap, min_capacity); 9080 max_capacity = max(cpu_cap, max_capacity); 9081 } 9082 } else { 9083 /* 9084 * !SD_OVERLAP domains can assume that child groups 9085 * span the current group. 9086 */ 9087 9088 group = child->groups; 9089 do { 9090 struct sched_group_capacity *sgc = group->sgc; 9091 9092 capacity += sgc->capacity; 9093 min_capacity = min(sgc->min_capacity, min_capacity); 9094 max_capacity = max(sgc->max_capacity, max_capacity); 9095 group = group->next; 9096 } while (group != child->groups); 9097 } 9098 9099 sdg->sgc->capacity = capacity; 9100 sdg->sgc->min_capacity = min_capacity; 9101 sdg->sgc->max_capacity = max_capacity; 9102 } 9103 9104 /* 9105 * Check whether the capacity of the rq has been noticeably reduced by side 9106 * activity. The imbalance_pct is used for the threshold. 9107 * Return true is the capacity is reduced 9108 */ 9109 static inline int 9110 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9111 { 9112 return ((rq->cpu_capacity * sd->imbalance_pct) < 9113 (rq->cpu_capacity_orig * 100)); 9114 } 9115 9116 /* 9117 * Check whether a rq has a misfit task and if it looks like we can actually 9118 * help that task: we can migrate the task to a CPU of higher capacity, or 9119 * the task's current CPU is heavily pressured. 9120 */ 9121 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9122 { 9123 return rq->misfit_task_load && 9124 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9125 check_cpu_capacity(rq, sd)); 9126 } 9127 9128 /* 9129 * Group imbalance indicates (and tries to solve) the problem where balancing 9130 * groups is inadequate due to ->cpus_ptr constraints. 9131 * 9132 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9133 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9134 * Something like: 9135 * 9136 * { 0 1 2 3 } { 4 5 6 7 } 9137 * * * * * 9138 * 9139 * If we were to balance group-wise we'd place two tasks in the first group and 9140 * two tasks in the second group. Clearly this is undesired as it will overload 9141 * cpu 3 and leave one of the CPUs in the second group unused. 9142 * 9143 * The current solution to this issue is detecting the skew in the first group 9144 * by noticing the lower domain failed to reach balance and had difficulty 9145 * moving tasks due to affinity constraints. 9146 * 9147 * When this is so detected; this group becomes a candidate for busiest; see 9148 * update_sd_pick_busiest(). And calculate_imbalance() and 9149 * find_busiest_group() avoid some of the usual balance conditions to allow it 9150 * to create an effective group imbalance. 9151 * 9152 * This is a somewhat tricky proposition since the next run might not find the 9153 * group imbalance and decide the groups need to be balanced again. A most 9154 * subtle and fragile situation. 9155 */ 9156 9157 static inline int sg_imbalanced(struct sched_group *group) 9158 { 9159 return group->sgc->imbalance; 9160 } 9161 9162 /* 9163 * group_has_capacity returns true if the group has spare capacity that could 9164 * be used by some tasks. 9165 * We consider that a group has spare capacity if the number of task is 9166 * smaller than the number of CPUs or if the utilization is lower than the 9167 * available capacity for CFS tasks. 9168 * For the latter, we use a threshold to stabilize the state, to take into 9169 * account the variance of the tasks' load and to return true if the available 9170 * capacity in meaningful for the load balancer. 9171 * As an example, an available capacity of 1% can appear but it doesn't make 9172 * any benefit for the load balance. 9173 */ 9174 static inline bool 9175 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9176 { 9177 if (sgs->sum_nr_running < sgs->group_weight) 9178 return true; 9179 9180 if ((sgs->group_capacity * imbalance_pct) < 9181 (sgs->group_runnable * 100)) 9182 return false; 9183 9184 if ((sgs->group_capacity * 100) > 9185 (sgs->group_util * imbalance_pct)) 9186 return true; 9187 9188 return false; 9189 } 9190 9191 /* 9192 * group_is_overloaded returns true if the group has more tasks than it can 9193 * handle. 9194 * group_is_overloaded is not equals to !group_has_capacity because a group 9195 * with the exact right number of tasks, has no more spare capacity but is not 9196 * overloaded so both group_has_capacity and group_is_overloaded return 9197 * false. 9198 */ 9199 static inline bool 9200 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9201 { 9202 if (sgs->sum_nr_running <= sgs->group_weight) 9203 return false; 9204 9205 if ((sgs->group_capacity * 100) < 9206 (sgs->group_util * imbalance_pct)) 9207 return true; 9208 9209 if ((sgs->group_capacity * imbalance_pct) < 9210 (sgs->group_runnable * 100)) 9211 return true; 9212 9213 return false; 9214 } 9215 9216 static inline enum 9217 group_type group_classify(unsigned int imbalance_pct, 9218 struct sched_group *group, 9219 struct sg_lb_stats *sgs) 9220 { 9221 if (group_is_overloaded(imbalance_pct, sgs)) 9222 return group_overloaded; 9223 9224 if (sg_imbalanced(group)) 9225 return group_imbalanced; 9226 9227 if (sgs->group_asym_packing) 9228 return group_asym_packing; 9229 9230 if (sgs->group_misfit_task_load) 9231 return group_misfit_task; 9232 9233 if (!group_has_capacity(imbalance_pct, sgs)) 9234 return group_fully_busy; 9235 9236 return group_has_spare; 9237 } 9238 9239 /** 9240 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 9241 * @dst_cpu: Destination CPU of the load balancing 9242 * @sds: Load-balancing data with statistics of the local group 9243 * @sgs: Load-balancing statistics of the candidate busiest group 9244 * @sg: The candidate busiest group 9245 * 9246 * Check the state of the SMT siblings of both @sds::local and @sg and decide 9247 * if @dst_cpu can pull tasks. 9248 * 9249 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 9250 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 9251 * only if @dst_cpu has higher priority. 9252 * 9253 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 9254 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 9255 * Bigger imbalances in the number of busy CPUs will be dealt with in 9256 * update_sd_pick_busiest(). 9257 * 9258 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 9259 * of @dst_cpu are idle and @sg has lower priority. 9260 * 9261 * Return: true if @dst_cpu can pull tasks, false otherwise. 9262 */ 9263 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 9264 struct sg_lb_stats *sgs, 9265 struct sched_group *sg) 9266 { 9267 #ifdef CONFIG_SCHED_SMT 9268 bool local_is_smt, sg_is_smt; 9269 int sg_busy_cpus; 9270 9271 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 9272 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 9273 9274 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 9275 9276 if (!local_is_smt) { 9277 /* 9278 * If we are here, @dst_cpu is idle and does not have SMT 9279 * siblings. Pull tasks if candidate group has two or more 9280 * busy CPUs. 9281 */ 9282 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 9283 return true; 9284 9285 /* 9286 * @dst_cpu does not have SMT siblings. @sg may have SMT 9287 * siblings and only one is busy. In such case, @dst_cpu 9288 * can help if it has higher priority and is idle (i.e., 9289 * it has no running tasks). 9290 */ 9291 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9292 } 9293 9294 /* @dst_cpu has SMT siblings. */ 9295 9296 if (sg_is_smt) { 9297 int local_busy_cpus = sds->local->group_weight - 9298 sds->local_stat.idle_cpus; 9299 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 9300 9301 if (busy_cpus_delta == 1) 9302 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9303 9304 return false; 9305 } 9306 9307 /* 9308 * @sg does not have SMT siblings. Ensure that @sds::local does not end 9309 * up with more than one busy SMT sibling and only pull tasks if there 9310 * are not busy CPUs (i.e., no CPU has running tasks). 9311 */ 9312 if (!sds->local_stat.sum_nr_running) 9313 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9314 9315 return false; 9316 #else 9317 /* Always return false so that callers deal with non-SMT cases. */ 9318 return false; 9319 #endif 9320 } 9321 9322 static inline bool 9323 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9324 struct sched_group *group) 9325 { 9326 /* Only do SMT checks if either local or candidate have SMT siblings */ 9327 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 9328 (group->flags & SD_SHARE_CPUCAPACITY)) 9329 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 9330 9331 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9332 } 9333 9334 static inline bool 9335 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9336 { 9337 /* 9338 * When there is more than 1 task, the group_overloaded case already 9339 * takes care of cpu with reduced capacity 9340 */ 9341 if (rq->cfs.h_nr_running != 1) 9342 return false; 9343 9344 return check_cpu_capacity(rq, sd); 9345 } 9346 9347 /** 9348 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9349 * @env: The load balancing environment. 9350 * @sds: Load-balancing data with statistics of the local group. 9351 * @group: sched_group whose statistics are to be updated. 9352 * @sgs: variable to hold the statistics for this group. 9353 * @sg_status: Holds flag indicating the status of the sched_group 9354 */ 9355 static inline void update_sg_lb_stats(struct lb_env *env, 9356 struct sd_lb_stats *sds, 9357 struct sched_group *group, 9358 struct sg_lb_stats *sgs, 9359 int *sg_status) 9360 { 9361 int i, nr_running, local_group; 9362 9363 memset(sgs, 0, sizeof(*sgs)); 9364 9365 local_group = group == sds->local; 9366 9367 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9368 struct rq *rq = cpu_rq(i); 9369 unsigned long load = cpu_load(rq); 9370 9371 sgs->group_load += load; 9372 sgs->group_util += cpu_util_cfs(i); 9373 sgs->group_runnable += cpu_runnable(rq); 9374 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9375 9376 nr_running = rq->nr_running; 9377 sgs->sum_nr_running += nr_running; 9378 9379 if (nr_running > 1) 9380 *sg_status |= SG_OVERLOAD; 9381 9382 if (cpu_overutilized(i)) 9383 *sg_status |= SG_OVERUTILIZED; 9384 9385 #ifdef CONFIG_NUMA_BALANCING 9386 sgs->nr_numa_running += rq->nr_numa_running; 9387 sgs->nr_preferred_running += rq->nr_preferred_running; 9388 #endif 9389 /* 9390 * No need to call idle_cpu() if nr_running is not 0 9391 */ 9392 if (!nr_running && idle_cpu(i)) { 9393 sgs->idle_cpus++; 9394 /* Idle cpu can't have misfit task */ 9395 continue; 9396 } 9397 9398 if (local_group) 9399 continue; 9400 9401 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9402 /* Check for a misfit task on the cpu */ 9403 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9404 sgs->group_misfit_task_load = rq->misfit_task_load; 9405 *sg_status |= SG_OVERLOAD; 9406 } 9407 } else if ((env->idle != CPU_NOT_IDLE) && 9408 sched_reduced_capacity(rq, env->sd)) { 9409 /* Check for a task running on a CPU with reduced capacity */ 9410 if (sgs->group_misfit_task_load < load) 9411 sgs->group_misfit_task_load = load; 9412 } 9413 } 9414 9415 sgs->group_capacity = group->sgc->capacity; 9416 9417 sgs->group_weight = group->group_weight; 9418 9419 /* Check if dst CPU is idle and preferred to this group */ 9420 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9421 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9422 sched_asym(env, sds, sgs, group)) { 9423 sgs->group_asym_packing = 1; 9424 } 9425 9426 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9427 9428 /* Computing avg_load makes sense only when group is overloaded */ 9429 if (sgs->group_type == group_overloaded) 9430 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9431 sgs->group_capacity; 9432 } 9433 9434 /** 9435 * update_sd_pick_busiest - return 1 on busiest group 9436 * @env: The load balancing environment. 9437 * @sds: sched_domain statistics 9438 * @sg: sched_group candidate to be checked for being the busiest 9439 * @sgs: sched_group statistics 9440 * 9441 * Determine if @sg is a busier group than the previously selected 9442 * busiest group. 9443 * 9444 * Return: %true if @sg is a busier group than the previously selected 9445 * busiest group. %false otherwise. 9446 */ 9447 static bool update_sd_pick_busiest(struct lb_env *env, 9448 struct sd_lb_stats *sds, 9449 struct sched_group *sg, 9450 struct sg_lb_stats *sgs) 9451 { 9452 struct sg_lb_stats *busiest = &sds->busiest_stat; 9453 9454 /* Make sure that there is at least one task to pull */ 9455 if (!sgs->sum_h_nr_running) 9456 return false; 9457 9458 /* 9459 * Don't try to pull misfit tasks we can't help. 9460 * We can use max_capacity here as reduction in capacity on some 9461 * CPUs in the group should either be possible to resolve 9462 * internally or be covered by avg_load imbalance (eventually). 9463 */ 9464 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9465 (sgs->group_type == group_misfit_task) && 9466 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9467 sds->local_stat.group_type != group_has_spare)) 9468 return false; 9469 9470 if (sgs->group_type > busiest->group_type) 9471 return true; 9472 9473 if (sgs->group_type < busiest->group_type) 9474 return false; 9475 9476 /* 9477 * The candidate and the current busiest group are the same type of 9478 * group. Let check which one is the busiest according to the type. 9479 */ 9480 9481 switch (sgs->group_type) { 9482 case group_overloaded: 9483 /* Select the overloaded group with highest avg_load. */ 9484 if (sgs->avg_load <= busiest->avg_load) 9485 return false; 9486 break; 9487 9488 case group_imbalanced: 9489 /* 9490 * Select the 1st imbalanced group as we don't have any way to 9491 * choose one more than another. 9492 */ 9493 return false; 9494 9495 case group_asym_packing: 9496 /* Prefer to move from lowest priority CPU's work */ 9497 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9498 return false; 9499 break; 9500 9501 case group_misfit_task: 9502 /* 9503 * If we have more than one misfit sg go with the biggest 9504 * misfit. 9505 */ 9506 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9507 return false; 9508 break; 9509 9510 case group_fully_busy: 9511 /* 9512 * Select the fully busy group with highest avg_load. In 9513 * theory, there is no need to pull task from such kind of 9514 * group because tasks have all compute capacity that they need 9515 * but we can still improve the overall throughput by reducing 9516 * contention when accessing shared HW resources. 9517 * 9518 * XXX for now avg_load is not computed and always 0 so we 9519 * select the 1st one. 9520 */ 9521 if (sgs->avg_load <= busiest->avg_load) 9522 return false; 9523 break; 9524 9525 case group_has_spare: 9526 /* 9527 * Select not overloaded group with lowest number of idle cpus 9528 * and highest number of running tasks. We could also compare 9529 * the spare capacity which is more stable but it can end up 9530 * that the group has less spare capacity but finally more idle 9531 * CPUs which means less opportunity to pull tasks. 9532 */ 9533 if (sgs->idle_cpus > busiest->idle_cpus) 9534 return false; 9535 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9536 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9537 return false; 9538 9539 break; 9540 } 9541 9542 /* 9543 * Candidate sg has no more than one task per CPU and has higher 9544 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9545 * throughput. Maximize throughput, power/energy consequences are not 9546 * considered. 9547 */ 9548 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9549 (sgs->group_type <= group_fully_busy) && 9550 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9551 return false; 9552 9553 return true; 9554 } 9555 9556 #ifdef CONFIG_NUMA_BALANCING 9557 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9558 { 9559 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9560 return regular; 9561 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9562 return remote; 9563 return all; 9564 } 9565 9566 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9567 { 9568 if (rq->nr_running > rq->nr_numa_running) 9569 return regular; 9570 if (rq->nr_running > rq->nr_preferred_running) 9571 return remote; 9572 return all; 9573 } 9574 #else 9575 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9576 { 9577 return all; 9578 } 9579 9580 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9581 { 9582 return regular; 9583 } 9584 #endif /* CONFIG_NUMA_BALANCING */ 9585 9586 9587 struct sg_lb_stats; 9588 9589 /* 9590 * task_running_on_cpu - return 1 if @p is running on @cpu. 9591 */ 9592 9593 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9594 { 9595 /* Task has no contribution or is new */ 9596 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9597 return 0; 9598 9599 if (task_on_rq_queued(p)) 9600 return 1; 9601 9602 return 0; 9603 } 9604 9605 /** 9606 * idle_cpu_without - would a given CPU be idle without p ? 9607 * @cpu: the processor on which idleness is tested. 9608 * @p: task which should be ignored. 9609 * 9610 * Return: 1 if the CPU would be idle. 0 otherwise. 9611 */ 9612 static int idle_cpu_without(int cpu, struct task_struct *p) 9613 { 9614 struct rq *rq = cpu_rq(cpu); 9615 9616 if (rq->curr != rq->idle && rq->curr != p) 9617 return 0; 9618 9619 /* 9620 * rq->nr_running can't be used but an updated version without the 9621 * impact of p on cpu must be used instead. The updated nr_running 9622 * be computed and tested before calling idle_cpu_without(). 9623 */ 9624 9625 #ifdef CONFIG_SMP 9626 if (rq->ttwu_pending) 9627 return 0; 9628 #endif 9629 9630 return 1; 9631 } 9632 9633 /* 9634 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9635 * @sd: The sched_domain level to look for idlest group. 9636 * @group: sched_group whose statistics are to be updated. 9637 * @sgs: variable to hold the statistics for this group. 9638 * @p: The task for which we look for the idlest group/CPU. 9639 */ 9640 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9641 struct sched_group *group, 9642 struct sg_lb_stats *sgs, 9643 struct task_struct *p) 9644 { 9645 int i, nr_running; 9646 9647 memset(sgs, 0, sizeof(*sgs)); 9648 9649 /* Assume that task can't fit any CPU of the group */ 9650 if (sd->flags & SD_ASYM_CPUCAPACITY) 9651 sgs->group_misfit_task_load = 1; 9652 9653 for_each_cpu(i, sched_group_span(group)) { 9654 struct rq *rq = cpu_rq(i); 9655 unsigned int local; 9656 9657 sgs->group_load += cpu_load_without(rq, p); 9658 sgs->group_util += cpu_util_without(i, p); 9659 sgs->group_runnable += cpu_runnable_without(rq, p); 9660 local = task_running_on_cpu(i, p); 9661 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9662 9663 nr_running = rq->nr_running - local; 9664 sgs->sum_nr_running += nr_running; 9665 9666 /* 9667 * No need to call idle_cpu_without() if nr_running is not 0 9668 */ 9669 if (!nr_running && idle_cpu_without(i, p)) 9670 sgs->idle_cpus++; 9671 9672 /* Check if task fits in the CPU */ 9673 if (sd->flags & SD_ASYM_CPUCAPACITY && 9674 sgs->group_misfit_task_load && 9675 task_fits_cpu(p, i)) 9676 sgs->group_misfit_task_load = 0; 9677 9678 } 9679 9680 sgs->group_capacity = group->sgc->capacity; 9681 9682 sgs->group_weight = group->group_weight; 9683 9684 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9685 9686 /* 9687 * Computing avg_load makes sense only when group is fully busy or 9688 * overloaded 9689 */ 9690 if (sgs->group_type == group_fully_busy || 9691 sgs->group_type == group_overloaded) 9692 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9693 sgs->group_capacity; 9694 } 9695 9696 static bool update_pick_idlest(struct sched_group *idlest, 9697 struct sg_lb_stats *idlest_sgs, 9698 struct sched_group *group, 9699 struct sg_lb_stats *sgs) 9700 { 9701 if (sgs->group_type < idlest_sgs->group_type) 9702 return true; 9703 9704 if (sgs->group_type > idlest_sgs->group_type) 9705 return false; 9706 9707 /* 9708 * The candidate and the current idlest group are the same type of 9709 * group. Let check which one is the idlest according to the type. 9710 */ 9711 9712 switch (sgs->group_type) { 9713 case group_overloaded: 9714 case group_fully_busy: 9715 /* Select the group with lowest avg_load. */ 9716 if (idlest_sgs->avg_load <= sgs->avg_load) 9717 return false; 9718 break; 9719 9720 case group_imbalanced: 9721 case group_asym_packing: 9722 /* Those types are not used in the slow wakeup path */ 9723 return false; 9724 9725 case group_misfit_task: 9726 /* Select group with the highest max capacity */ 9727 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9728 return false; 9729 break; 9730 9731 case group_has_spare: 9732 /* Select group with most idle CPUs */ 9733 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9734 return false; 9735 9736 /* Select group with lowest group_util */ 9737 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9738 idlest_sgs->group_util <= sgs->group_util) 9739 return false; 9740 9741 break; 9742 } 9743 9744 return true; 9745 } 9746 9747 /* 9748 * find_idlest_group() finds and returns the least busy CPU group within the 9749 * domain. 9750 * 9751 * Assumes p is allowed on at least one CPU in sd. 9752 */ 9753 static struct sched_group * 9754 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9755 { 9756 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9757 struct sg_lb_stats local_sgs, tmp_sgs; 9758 struct sg_lb_stats *sgs; 9759 unsigned long imbalance; 9760 struct sg_lb_stats idlest_sgs = { 9761 .avg_load = UINT_MAX, 9762 .group_type = group_overloaded, 9763 }; 9764 9765 do { 9766 int local_group; 9767 9768 /* Skip over this group if it has no CPUs allowed */ 9769 if (!cpumask_intersects(sched_group_span(group), 9770 p->cpus_ptr)) 9771 continue; 9772 9773 /* Skip over this group if no cookie matched */ 9774 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9775 continue; 9776 9777 local_group = cpumask_test_cpu(this_cpu, 9778 sched_group_span(group)); 9779 9780 if (local_group) { 9781 sgs = &local_sgs; 9782 local = group; 9783 } else { 9784 sgs = &tmp_sgs; 9785 } 9786 9787 update_sg_wakeup_stats(sd, group, sgs, p); 9788 9789 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9790 idlest = group; 9791 idlest_sgs = *sgs; 9792 } 9793 9794 } while (group = group->next, group != sd->groups); 9795 9796 9797 /* There is no idlest group to push tasks to */ 9798 if (!idlest) 9799 return NULL; 9800 9801 /* The local group has been skipped because of CPU affinity */ 9802 if (!local) 9803 return idlest; 9804 9805 /* 9806 * If the local group is idler than the selected idlest group 9807 * don't try and push the task. 9808 */ 9809 if (local_sgs.group_type < idlest_sgs.group_type) 9810 return NULL; 9811 9812 /* 9813 * If the local group is busier than the selected idlest group 9814 * try and push the task. 9815 */ 9816 if (local_sgs.group_type > idlest_sgs.group_type) 9817 return idlest; 9818 9819 switch (local_sgs.group_type) { 9820 case group_overloaded: 9821 case group_fully_busy: 9822 9823 /* Calculate allowed imbalance based on load */ 9824 imbalance = scale_load_down(NICE_0_LOAD) * 9825 (sd->imbalance_pct-100) / 100; 9826 9827 /* 9828 * When comparing groups across NUMA domains, it's possible for 9829 * the local domain to be very lightly loaded relative to the 9830 * remote domains but "imbalance" skews the comparison making 9831 * remote CPUs look much more favourable. When considering 9832 * cross-domain, add imbalance to the load on the remote node 9833 * and consider staying local. 9834 */ 9835 9836 if ((sd->flags & SD_NUMA) && 9837 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9838 return NULL; 9839 9840 /* 9841 * If the local group is less loaded than the selected 9842 * idlest group don't try and push any tasks. 9843 */ 9844 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9845 return NULL; 9846 9847 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9848 return NULL; 9849 break; 9850 9851 case group_imbalanced: 9852 case group_asym_packing: 9853 /* Those type are not used in the slow wakeup path */ 9854 return NULL; 9855 9856 case group_misfit_task: 9857 /* Select group with the highest max capacity */ 9858 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9859 return NULL; 9860 break; 9861 9862 case group_has_spare: 9863 #ifdef CONFIG_NUMA 9864 if (sd->flags & SD_NUMA) { 9865 int imb_numa_nr = sd->imb_numa_nr; 9866 #ifdef CONFIG_NUMA_BALANCING 9867 int idlest_cpu; 9868 /* 9869 * If there is spare capacity at NUMA, try to select 9870 * the preferred node 9871 */ 9872 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9873 return NULL; 9874 9875 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9876 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9877 return idlest; 9878 #endif /* CONFIG_NUMA_BALANCING */ 9879 /* 9880 * Otherwise, keep the task close to the wakeup source 9881 * and improve locality if the number of running tasks 9882 * would remain below threshold where an imbalance is 9883 * allowed while accounting for the possibility the 9884 * task is pinned to a subset of CPUs. If there is a 9885 * real need of migration, periodic load balance will 9886 * take care of it. 9887 */ 9888 if (p->nr_cpus_allowed != NR_CPUS) { 9889 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9890 9891 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9892 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9893 } 9894 9895 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9896 if (!adjust_numa_imbalance(imbalance, 9897 local_sgs.sum_nr_running + 1, 9898 imb_numa_nr)) { 9899 return NULL; 9900 } 9901 } 9902 #endif /* CONFIG_NUMA */ 9903 9904 /* 9905 * Select group with highest number of idle CPUs. We could also 9906 * compare the utilization which is more stable but it can end 9907 * up that the group has less spare capacity but finally more 9908 * idle CPUs which means more opportunity to run task. 9909 */ 9910 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9911 return NULL; 9912 break; 9913 } 9914 9915 return idlest; 9916 } 9917 9918 static void update_idle_cpu_scan(struct lb_env *env, 9919 unsigned long sum_util) 9920 { 9921 struct sched_domain_shared *sd_share; 9922 int llc_weight, pct; 9923 u64 x, y, tmp; 9924 /* 9925 * Update the number of CPUs to scan in LLC domain, which could 9926 * be used as a hint in select_idle_cpu(). The update of sd_share 9927 * could be expensive because it is within a shared cache line. 9928 * So the write of this hint only occurs during periodic load 9929 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9930 * can fire way more frequently than the former. 9931 */ 9932 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9933 return; 9934 9935 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9936 if (env->sd->span_weight != llc_weight) 9937 return; 9938 9939 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9940 if (!sd_share) 9941 return; 9942 9943 /* 9944 * The number of CPUs to search drops as sum_util increases, when 9945 * sum_util hits 85% or above, the scan stops. 9946 * The reason to choose 85% as the threshold is because this is the 9947 * imbalance_pct(117) when a LLC sched group is overloaded. 9948 * 9949 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9950 * and y'= y / SCHED_CAPACITY_SCALE 9951 * 9952 * x is the ratio of sum_util compared to the CPU capacity: 9953 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9954 * y' is the ratio of CPUs to be scanned in the LLC domain, 9955 * and the number of CPUs to scan is calculated by: 9956 * 9957 * nr_scan = llc_weight * y' [2] 9958 * 9959 * When x hits the threshold of overloaded, AKA, when 9960 * x = 100 / pct, y drops to 0. According to [1], 9961 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9962 * 9963 * Scale x by SCHED_CAPACITY_SCALE: 9964 * x' = sum_util / llc_weight; [3] 9965 * 9966 * and finally [1] becomes: 9967 * y = SCHED_CAPACITY_SCALE - 9968 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 9969 * 9970 */ 9971 /* equation [3] */ 9972 x = sum_util; 9973 do_div(x, llc_weight); 9974 9975 /* equation [4] */ 9976 pct = env->sd->imbalance_pct; 9977 tmp = x * x * pct * pct; 9978 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 9979 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 9980 y = SCHED_CAPACITY_SCALE - tmp; 9981 9982 /* equation [2] */ 9983 y *= llc_weight; 9984 do_div(y, SCHED_CAPACITY_SCALE); 9985 if ((int)y != sd_share->nr_idle_scan) 9986 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 9987 } 9988 9989 /** 9990 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9991 * @env: The load balancing environment. 9992 * @sds: variable to hold the statistics for this sched_domain. 9993 */ 9994 9995 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9996 { 9997 struct sched_domain *child = env->sd->child; 9998 struct sched_group *sg = env->sd->groups; 9999 struct sg_lb_stats *local = &sds->local_stat; 10000 struct sg_lb_stats tmp_sgs; 10001 unsigned long sum_util = 0; 10002 int sg_status = 0; 10003 10004 do { 10005 struct sg_lb_stats *sgs = &tmp_sgs; 10006 int local_group; 10007 10008 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10009 if (local_group) { 10010 sds->local = sg; 10011 sgs = local; 10012 10013 if (env->idle != CPU_NEWLY_IDLE || 10014 time_after_eq(jiffies, sg->sgc->next_update)) 10015 update_group_capacity(env->sd, env->dst_cpu); 10016 } 10017 10018 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10019 10020 if (local_group) 10021 goto next_group; 10022 10023 10024 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10025 sds->busiest = sg; 10026 sds->busiest_stat = *sgs; 10027 } 10028 10029 next_group: 10030 /* Now, start updating sd_lb_stats */ 10031 sds->total_load += sgs->group_load; 10032 sds->total_capacity += sgs->group_capacity; 10033 10034 sum_util += sgs->group_util; 10035 sg = sg->next; 10036 } while (sg != env->sd->groups); 10037 10038 /* Tag domain that child domain prefers tasks go to siblings first */ 10039 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 10040 10041 10042 if (env->sd->flags & SD_NUMA) 10043 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10044 10045 if (!env->sd->parent) { 10046 struct root_domain *rd = env->dst_rq->rd; 10047 10048 /* update overload indicator if we are at root domain */ 10049 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10050 10051 /* Update over-utilization (tipping point, U >= 0) indicator */ 10052 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10053 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10054 } else if (sg_status & SG_OVERUTILIZED) { 10055 struct root_domain *rd = env->dst_rq->rd; 10056 10057 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10058 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10059 } 10060 10061 update_idle_cpu_scan(env, sum_util); 10062 } 10063 10064 /** 10065 * calculate_imbalance - Calculate the amount of imbalance present within the 10066 * groups of a given sched_domain during load balance. 10067 * @env: load balance environment 10068 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10069 */ 10070 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10071 { 10072 struct sg_lb_stats *local, *busiest; 10073 10074 local = &sds->local_stat; 10075 busiest = &sds->busiest_stat; 10076 10077 if (busiest->group_type == group_misfit_task) { 10078 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10079 /* Set imbalance to allow misfit tasks to be balanced. */ 10080 env->migration_type = migrate_misfit; 10081 env->imbalance = 1; 10082 } else { 10083 /* 10084 * Set load imbalance to allow moving task from cpu 10085 * with reduced capacity. 10086 */ 10087 env->migration_type = migrate_load; 10088 env->imbalance = busiest->group_misfit_task_load; 10089 } 10090 return; 10091 } 10092 10093 if (busiest->group_type == group_asym_packing) { 10094 /* 10095 * In case of asym capacity, we will try to migrate all load to 10096 * the preferred CPU. 10097 */ 10098 env->migration_type = migrate_task; 10099 env->imbalance = busiest->sum_h_nr_running; 10100 return; 10101 } 10102 10103 if (busiest->group_type == group_imbalanced) { 10104 /* 10105 * In the group_imb case we cannot rely on group-wide averages 10106 * to ensure CPU-load equilibrium, try to move any task to fix 10107 * the imbalance. The next load balance will take care of 10108 * balancing back the system. 10109 */ 10110 env->migration_type = migrate_task; 10111 env->imbalance = 1; 10112 return; 10113 } 10114 10115 /* 10116 * Try to use spare capacity of local group without overloading it or 10117 * emptying busiest. 10118 */ 10119 if (local->group_type == group_has_spare) { 10120 if ((busiest->group_type > group_fully_busy) && 10121 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10122 /* 10123 * If busiest is overloaded, try to fill spare 10124 * capacity. This might end up creating spare capacity 10125 * in busiest or busiest still being overloaded but 10126 * there is no simple way to directly compute the 10127 * amount of load to migrate in order to balance the 10128 * system. 10129 */ 10130 env->migration_type = migrate_util; 10131 env->imbalance = max(local->group_capacity, local->group_util) - 10132 local->group_util; 10133 10134 /* 10135 * In some cases, the group's utilization is max or even 10136 * higher than capacity because of migrations but the 10137 * local CPU is (newly) idle. There is at least one 10138 * waiting task in this overloaded busiest group. Let's 10139 * try to pull it. 10140 */ 10141 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10142 env->migration_type = migrate_task; 10143 env->imbalance = 1; 10144 } 10145 10146 return; 10147 } 10148 10149 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10150 unsigned int nr_diff = busiest->sum_nr_running; 10151 /* 10152 * When prefer sibling, evenly spread running tasks on 10153 * groups. 10154 */ 10155 env->migration_type = migrate_task; 10156 lsub_positive(&nr_diff, local->sum_nr_running); 10157 env->imbalance = nr_diff; 10158 } else { 10159 10160 /* 10161 * If there is no overload, we just want to even the number of 10162 * idle cpus. 10163 */ 10164 env->migration_type = migrate_task; 10165 env->imbalance = max_t(long, 0, 10166 (local->idle_cpus - busiest->idle_cpus)); 10167 } 10168 10169 #ifdef CONFIG_NUMA 10170 /* Consider allowing a small imbalance between NUMA groups */ 10171 if (env->sd->flags & SD_NUMA) { 10172 env->imbalance = adjust_numa_imbalance(env->imbalance, 10173 local->sum_nr_running + 1, 10174 env->sd->imb_numa_nr); 10175 } 10176 #endif 10177 10178 /* Number of tasks to move to restore balance */ 10179 env->imbalance >>= 1; 10180 10181 return; 10182 } 10183 10184 /* 10185 * Local is fully busy but has to take more load to relieve the 10186 * busiest group 10187 */ 10188 if (local->group_type < group_overloaded) { 10189 /* 10190 * Local will become overloaded so the avg_load metrics are 10191 * finally needed. 10192 */ 10193 10194 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10195 local->group_capacity; 10196 10197 /* 10198 * If the local group is more loaded than the selected 10199 * busiest group don't try to pull any tasks. 10200 */ 10201 if (local->avg_load >= busiest->avg_load) { 10202 env->imbalance = 0; 10203 return; 10204 } 10205 10206 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10207 sds->total_capacity; 10208 } 10209 10210 /* 10211 * Both group are or will become overloaded and we're trying to get all 10212 * the CPUs to the average_load, so we don't want to push ourselves 10213 * above the average load, nor do we wish to reduce the max loaded CPU 10214 * below the average load. At the same time, we also don't want to 10215 * reduce the group load below the group capacity. Thus we look for 10216 * the minimum possible imbalance. 10217 */ 10218 env->migration_type = migrate_load; 10219 env->imbalance = min( 10220 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10221 (sds->avg_load - local->avg_load) * local->group_capacity 10222 ) / SCHED_CAPACITY_SCALE; 10223 } 10224 10225 /******* find_busiest_group() helpers end here *********************/ 10226 10227 /* 10228 * Decision matrix according to the local and busiest group type: 10229 * 10230 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10231 * has_spare nr_idle balanced N/A N/A balanced balanced 10232 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10233 * misfit_task force N/A N/A N/A N/A N/A 10234 * asym_packing force force N/A N/A force force 10235 * imbalanced force force N/A N/A force force 10236 * overloaded force force N/A N/A force avg_load 10237 * 10238 * N/A : Not Applicable because already filtered while updating 10239 * statistics. 10240 * balanced : The system is balanced for these 2 groups. 10241 * force : Calculate the imbalance as load migration is probably needed. 10242 * avg_load : Only if imbalance is significant enough. 10243 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10244 * different in groups. 10245 */ 10246 10247 /** 10248 * find_busiest_group - Returns the busiest group within the sched_domain 10249 * if there is an imbalance. 10250 * @env: The load balancing environment. 10251 * 10252 * Also calculates the amount of runnable load which should be moved 10253 * to restore balance. 10254 * 10255 * Return: - The busiest group if imbalance exists. 10256 */ 10257 static struct sched_group *find_busiest_group(struct lb_env *env) 10258 { 10259 struct sg_lb_stats *local, *busiest; 10260 struct sd_lb_stats sds; 10261 10262 init_sd_lb_stats(&sds); 10263 10264 /* 10265 * Compute the various statistics relevant for load balancing at 10266 * this level. 10267 */ 10268 update_sd_lb_stats(env, &sds); 10269 10270 /* There is no busy sibling group to pull tasks from */ 10271 if (!sds.busiest) 10272 goto out_balanced; 10273 10274 busiest = &sds.busiest_stat; 10275 10276 /* Misfit tasks should be dealt with regardless of the avg load */ 10277 if (busiest->group_type == group_misfit_task) 10278 goto force_balance; 10279 10280 if (sched_energy_enabled()) { 10281 struct root_domain *rd = env->dst_rq->rd; 10282 10283 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10284 goto out_balanced; 10285 } 10286 10287 /* ASYM feature bypasses nice load balance check */ 10288 if (busiest->group_type == group_asym_packing) 10289 goto force_balance; 10290 10291 /* 10292 * If the busiest group is imbalanced the below checks don't 10293 * work because they assume all things are equal, which typically 10294 * isn't true due to cpus_ptr constraints and the like. 10295 */ 10296 if (busiest->group_type == group_imbalanced) 10297 goto force_balance; 10298 10299 local = &sds.local_stat; 10300 /* 10301 * If the local group is busier than the selected busiest group 10302 * don't try and pull any tasks. 10303 */ 10304 if (local->group_type > busiest->group_type) 10305 goto out_balanced; 10306 10307 /* 10308 * When groups are overloaded, use the avg_load to ensure fairness 10309 * between tasks. 10310 */ 10311 if (local->group_type == group_overloaded) { 10312 /* 10313 * If the local group is more loaded than the selected 10314 * busiest group don't try to pull any tasks. 10315 */ 10316 if (local->avg_load >= busiest->avg_load) 10317 goto out_balanced; 10318 10319 /* XXX broken for overlapping NUMA groups */ 10320 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10321 sds.total_capacity; 10322 10323 /* 10324 * Don't pull any tasks if this group is already above the 10325 * domain average load. 10326 */ 10327 if (local->avg_load >= sds.avg_load) 10328 goto out_balanced; 10329 10330 /* 10331 * If the busiest group is more loaded, use imbalance_pct to be 10332 * conservative. 10333 */ 10334 if (100 * busiest->avg_load <= 10335 env->sd->imbalance_pct * local->avg_load) 10336 goto out_balanced; 10337 } 10338 10339 /* Try to move all excess tasks to child's sibling domain */ 10340 if (sds.prefer_sibling && local->group_type == group_has_spare && 10341 busiest->sum_nr_running > local->sum_nr_running + 1) 10342 goto force_balance; 10343 10344 if (busiest->group_type != group_overloaded) { 10345 if (env->idle == CPU_NOT_IDLE) 10346 /* 10347 * If the busiest group is not overloaded (and as a 10348 * result the local one too) but this CPU is already 10349 * busy, let another idle CPU try to pull task. 10350 */ 10351 goto out_balanced; 10352 10353 if (busiest->group_weight > 1 && 10354 local->idle_cpus <= (busiest->idle_cpus + 1)) 10355 /* 10356 * If the busiest group is not overloaded 10357 * and there is no imbalance between this and busiest 10358 * group wrt idle CPUs, it is balanced. The imbalance 10359 * becomes significant if the diff is greater than 1 10360 * otherwise we might end up to just move the imbalance 10361 * on another group. Of course this applies only if 10362 * there is more than 1 CPU per group. 10363 */ 10364 goto out_balanced; 10365 10366 if (busiest->sum_h_nr_running == 1) 10367 /* 10368 * busiest doesn't have any tasks waiting to run 10369 */ 10370 goto out_balanced; 10371 } 10372 10373 force_balance: 10374 /* Looks like there is an imbalance. Compute it */ 10375 calculate_imbalance(env, &sds); 10376 return env->imbalance ? sds.busiest : NULL; 10377 10378 out_balanced: 10379 env->imbalance = 0; 10380 return NULL; 10381 } 10382 10383 /* 10384 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10385 */ 10386 static struct rq *find_busiest_queue(struct lb_env *env, 10387 struct sched_group *group) 10388 { 10389 struct rq *busiest = NULL, *rq; 10390 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10391 unsigned int busiest_nr = 0; 10392 int i; 10393 10394 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10395 unsigned long capacity, load, util; 10396 unsigned int nr_running; 10397 enum fbq_type rt; 10398 10399 rq = cpu_rq(i); 10400 rt = fbq_classify_rq(rq); 10401 10402 /* 10403 * We classify groups/runqueues into three groups: 10404 * - regular: there are !numa tasks 10405 * - remote: there are numa tasks that run on the 'wrong' node 10406 * - all: there is no distinction 10407 * 10408 * In order to avoid migrating ideally placed numa tasks, 10409 * ignore those when there's better options. 10410 * 10411 * If we ignore the actual busiest queue to migrate another 10412 * task, the next balance pass can still reduce the busiest 10413 * queue by moving tasks around inside the node. 10414 * 10415 * If we cannot move enough load due to this classification 10416 * the next pass will adjust the group classification and 10417 * allow migration of more tasks. 10418 * 10419 * Both cases only affect the total convergence complexity. 10420 */ 10421 if (rt > env->fbq_type) 10422 continue; 10423 10424 nr_running = rq->cfs.h_nr_running; 10425 if (!nr_running) 10426 continue; 10427 10428 capacity = capacity_of(i); 10429 10430 /* 10431 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10432 * eventually lead to active_balancing high->low capacity. 10433 * Higher per-CPU capacity is considered better than balancing 10434 * average load. 10435 */ 10436 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10437 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10438 nr_running == 1) 10439 continue; 10440 10441 /* Make sure we only pull tasks from a CPU of lower priority */ 10442 if ((env->sd->flags & SD_ASYM_PACKING) && 10443 sched_asym_prefer(i, env->dst_cpu) && 10444 nr_running == 1) 10445 continue; 10446 10447 switch (env->migration_type) { 10448 case migrate_load: 10449 /* 10450 * When comparing with load imbalance, use cpu_load() 10451 * which is not scaled with the CPU capacity. 10452 */ 10453 load = cpu_load(rq); 10454 10455 if (nr_running == 1 && load > env->imbalance && 10456 !check_cpu_capacity(rq, env->sd)) 10457 break; 10458 10459 /* 10460 * For the load comparisons with the other CPUs, 10461 * consider the cpu_load() scaled with the CPU 10462 * capacity, so that the load can be moved away 10463 * from the CPU that is potentially running at a 10464 * lower capacity. 10465 * 10466 * Thus we're looking for max(load_i / capacity_i), 10467 * crosswise multiplication to rid ourselves of the 10468 * division works out to: 10469 * load_i * capacity_j > load_j * capacity_i; 10470 * where j is our previous maximum. 10471 */ 10472 if (load * busiest_capacity > busiest_load * capacity) { 10473 busiest_load = load; 10474 busiest_capacity = capacity; 10475 busiest = rq; 10476 } 10477 break; 10478 10479 case migrate_util: 10480 util = cpu_util_cfs(i); 10481 10482 /* 10483 * Don't try to pull utilization from a CPU with one 10484 * running task. Whatever its utilization, we will fail 10485 * detach the task. 10486 */ 10487 if (nr_running <= 1) 10488 continue; 10489 10490 if (busiest_util < util) { 10491 busiest_util = util; 10492 busiest = rq; 10493 } 10494 break; 10495 10496 case migrate_task: 10497 if (busiest_nr < nr_running) { 10498 busiest_nr = nr_running; 10499 busiest = rq; 10500 } 10501 break; 10502 10503 case migrate_misfit: 10504 /* 10505 * For ASYM_CPUCAPACITY domains with misfit tasks we 10506 * simply seek the "biggest" misfit task. 10507 */ 10508 if (rq->misfit_task_load > busiest_load) { 10509 busiest_load = rq->misfit_task_load; 10510 busiest = rq; 10511 } 10512 10513 break; 10514 10515 } 10516 } 10517 10518 return busiest; 10519 } 10520 10521 /* 10522 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10523 * so long as it is large enough. 10524 */ 10525 #define MAX_PINNED_INTERVAL 512 10526 10527 static inline bool 10528 asym_active_balance(struct lb_env *env) 10529 { 10530 /* 10531 * ASYM_PACKING needs to force migrate tasks from busy but 10532 * lower priority CPUs in order to pack all tasks in the 10533 * highest priority CPUs. 10534 */ 10535 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10536 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10537 } 10538 10539 static inline bool 10540 imbalanced_active_balance(struct lb_env *env) 10541 { 10542 struct sched_domain *sd = env->sd; 10543 10544 /* 10545 * The imbalanced case includes the case of pinned tasks preventing a fair 10546 * distribution of the load on the system but also the even distribution of the 10547 * threads on a system with spare capacity 10548 */ 10549 if ((env->migration_type == migrate_task) && 10550 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10551 return 1; 10552 10553 return 0; 10554 } 10555 10556 static int need_active_balance(struct lb_env *env) 10557 { 10558 struct sched_domain *sd = env->sd; 10559 10560 if (asym_active_balance(env)) 10561 return 1; 10562 10563 if (imbalanced_active_balance(env)) 10564 return 1; 10565 10566 /* 10567 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10568 * It's worth migrating the task if the src_cpu's capacity is reduced 10569 * because of other sched_class or IRQs if more capacity stays 10570 * available on dst_cpu. 10571 */ 10572 if ((env->idle != CPU_NOT_IDLE) && 10573 (env->src_rq->cfs.h_nr_running == 1)) { 10574 if ((check_cpu_capacity(env->src_rq, sd)) && 10575 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10576 return 1; 10577 } 10578 10579 if (env->migration_type == migrate_misfit) 10580 return 1; 10581 10582 return 0; 10583 } 10584 10585 static int active_load_balance_cpu_stop(void *data); 10586 10587 static int should_we_balance(struct lb_env *env) 10588 { 10589 struct sched_group *sg = env->sd->groups; 10590 int cpu; 10591 10592 /* 10593 * Ensure the balancing environment is consistent; can happen 10594 * when the softirq triggers 'during' hotplug. 10595 */ 10596 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10597 return 0; 10598 10599 /* 10600 * In the newly idle case, we will allow all the CPUs 10601 * to do the newly idle load balance. 10602 * 10603 * However, we bail out if we already have tasks or a wakeup pending, 10604 * to optimize wakeup latency. 10605 */ 10606 if (env->idle == CPU_NEWLY_IDLE) { 10607 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10608 return 0; 10609 return 1; 10610 } 10611 10612 /* Try to find first idle CPU */ 10613 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10614 if (!idle_cpu(cpu)) 10615 continue; 10616 10617 /* Are we the first idle CPU? */ 10618 return cpu == env->dst_cpu; 10619 } 10620 10621 /* Are we the first CPU of this group ? */ 10622 return group_balance_cpu(sg) == env->dst_cpu; 10623 } 10624 10625 /* 10626 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10627 * tasks if there is an imbalance. 10628 */ 10629 static int load_balance(int this_cpu, struct rq *this_rq, 10630 struct sched_domain *sd, enum cpu_idle_type idle, 10631 int *continue_balancing) 10632 { 10633 int ld_moved, cur_ld_moved, active_balance = 0; 10634 struct sched_domain *sd_parent = sd->parent; 10635 struct sched_group *group; 10636 struct rq *busiest; 10637 struct rq_flags rf; 10638 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10639 struct lb_env env = { 10640 .sd = sd, 10641 .dst_cpu = this_cpu, 10642 .dst_rq = this_rq, 10643 .dst_grpmask = sched_group_span(sd->groups), 10644 .idle = idle, 10645 .loop_break = SCHED_NR_MIGRATE_BREAK, 10646 .cpus = cpus, 10647 .fbq_type = all, 10648 .tasks = LIST_HEAD_INIT(env.tasks), 10649 }; 10650 10651 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10652 10653 schedstat_inc(sd->lb_count[idle]); 10654 10655 redo: 10656 if (!should_we_balance(&env)) { 10657 *continue_balancing = 0; 10658 goto out_balanced; 10659 } 10660 10661 group = find_busiest_group(&env); 10662 if (!group) { 10663 schedstat_inc(sd->lb_nobusyg[idle]); 10664 goto out_balanced; 10665 } 10666 10667 busiest = find_busiest_queue(&env, group); 10668 if (!busiest) { 10669 schedstat_inc(sd->lb_nobusyq[idle]); 10670 goto out_balanced; 10671 } 10672 10673 WARN_ON_ONCE(busiest == env.dst_rq); 10674 10675 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10676 10677 env.src_cpu = busiest->cpu; 10678 env.src_rq = busiest; 10679 10680 ld_moved = 0; 10681 /* Clear this flag as soon as we find a pullable task */ 10682 env.flags |= LBF_ALL_PINNED; 10683 if (busiest->nr_running > 1) { 10684 /* 10685 * Attempt to move tasks. If find_busiest_group has found 10686 * an imbalance but busiest->nr_running <= 1, the group is 10687 * still unbalanced. ld_moved simply stays zero, so it is 10688 * correctly treated as an imbalance. 10689 */ 10690 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10691 10692 more_balance: 10693 rq_lock_irqsave(busiest, &rf); 10694 update_rq_clock(busiest); 10695 10696 /* 10697 * cur_ld_moved - load moved in current iteration 10698 * ld_moved - cumulative load moved across iterations 10699 */ 10700 cur_ld_moved = detach_tasks(&env); 10701 10702 /* 10703 * We've detached some tasks from busiest_rq. Every 10704 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10705 * unlock busiest->lock, and we are able to be sure 10706 * that nobody can manipulate the tasks in parallel. 10707 * See task_rq_lock() family for the details. 10708 */ 10709 10710 rq_unlock(busiest, &rf); 10711 10712 if (cur_ld_moved) { 10713 attach_tasks(&env); 10714 ld_moved += cur_ld_moved; 10715 } 10716 10717 local_irq_restore(rf.flags); 10718 10719 if (env.flags & LBF_NEED_BREAK) { 10720 env.flags &= ~LBF_NEED_BREAK; 10721 /* Stop if we tried all running tasks */ 10722 if (env.loop < busiest->nr_running) 10723 goto more_balance; 10724 } 10725 10726 /* 10727 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10728 * us and move them to an alternate dst_cpu in our sched_group 10729 * where they can run. The upper limit on how many times we 10730 * iterate on same src_cpu is dependent on number of CPUs in our 10731 * sched_group. 10732 * 10733 * This changes load balance semantics a bit on who can move 10734 * load to a given_cpu. In addition to the given_cpu itself 10735 * (or a ilb_cpu acting on its behalf where given_cpu is 10736 * nohz-idle), we now have balance_cpu in a position to move 10737 * load to given_cpu. In rare situations, this may cause 10738 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10739 * _independently_ and at _same_ time to move some load to 10740 * given_cpu) causing excess load to be moved to given_cpu. 10741 * This however should not happen so much in practice and 10742 * moreover subsequent load balance cycles should correct the 10743 * excess load moved. 10744 */ 10745 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10746 10747 /* Prevent to re-select dst_cpu via env's CPUs */ 10748 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10749 10750 env.dst_rq = cpu_rq(env.new_dst_cpu); 10751 env.dst_cpu = env.new_dst_cpu; 10752 env.flags &= ~LBF_DST_PINNED; 10753 env.loop = 0; 10754 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10755 10756 /* 10757 * Go back to "more_balance" rather than "redo" since we 10758 * need to continue with same src_cpu. 10759 */ 10760 goto more_balance; 10761 } 10762 10763 /* 10764 * We failed to reach balance because of affinity. 10765 */ 10766 if (sd_parent) { 10767 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10768 10769 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10770 *group_imbalance = 1; 10771 } 10772 10773 /* All tasks on this runqueue were pinned by CPU affinity */ 10774 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10775 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10776 /* 10777 * Attempting to continue load balancing at the current 10778 * sched_domain level only makes sense if there are 10779 * active CPUs remaining as possible busiest CPUs to 10780 * pull load from which are not contained within the 10781 * destination group that is receiving any migrated 10782 * load. 10783 */ 10784 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10785 env.loop = 0; 10786 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10787 goto redo; 10788 } 10789 goto out_all_pinned; 10790 } 10791 } 10792 10793 if (!ld_moved) { 10794 schedstat_inc(sd->lb_failed[idle]); 10795 /* 10796 * Increment the failure counter only on periodic balance. 10797 * We do not want newidle balance, which can be very 10798 * frequent, pollute the failure counter causing 10799 * excessive cache_hot migrations and active balances. 10800 */ 10801 if (idle != CPU_NEWLY_IDLE) 10802 sd->nr_balance_failed++; 10803 10804 if (need_active_balance(&env)) { 10805 unsigned long flags; 10806 10807 raw_spin_rq_lock_irqsave(busiest, flags); 10808 10809 /* 10810 * Don't kick the active_load_balance_cpu_stop, 10811 * if the curr task on busiest CPU can't be 10812 * moved to this_cpu: 10813 */ 10814 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10815 raw_spin_rq_unlock_irqrestore(busiest, flags); 10816 goto out_one_pinned; 10817 } 10818 10819 /* Record that we found at least one task that could run on this_cpu */ 10820 env.flags &= ~LBF_ALL_PINNED; 10821 10822 /* 10823 * ->active_balance synchronizes accesses to 10824 * ->active_balance_work. Once set, it's cleared 10825 * only after active load balance is finished. 10826 */ 10827 if (!busiest->active_balance) { 10828 busiest->active_balance = 1; 10829 busiest->push_cpu = this_cpu; 10830 active_balance = 1; 10831 } 10832 raw_spin_rq_unlock_irqrestore(busiest, flags); 10833 10834 if (active_balance) { 10835 stop_one_cpu_nowait(cpu_of(busiest), 10836 active_load_balance_cpu_stop, busiest, 10837 &busiest->active_balance_work); 10838 } 10839 } 10840 } else { 10841 sd->nr_balance_failed = 0; 10842 } 10843 10844 if (likely(!active_balance) || need_active_balance(&env)) { 10845 /* We were unbalanced, so reset the balancing interval */ 10846 sd->balance_interval = sd->min_interval; 10847 } 10848 10849 goto out; 10850 10851 out_balanced: 10852 /* 10853 * We reach balance although we may have faced some affinity 10854 * constraints. Clear the imbalance flag only if other tasks got 10855 * a chance to move and fix the imbalance. 10856 */ 10857 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10858 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10859 10860 if (*group_imbalance) 10861 *group_imbalance = 0; 10862 } 10863 10864 out_all_pinned: 10865 /* 10866 * We reach balance because all tasks are pinned at this level so 10867 * we can't migrate them. Let the imbalance flag set so parent level 10868 * can try to migrate them. 10869 */ 10870 schedstat_inc(sd->lb_balanced[idle]); 10871 10872 sd->nr_balance_failed = 0; 10873 10874 out_one_pinned: 10875 ld_moved = 0; 10876 10877 /* 10878 * newidle_balance() disregards balance intervals, so we could 10879 * repeatedly reach this code, which would lead to balance_interval 10880 * skyrocketing in a short amount of time. Skip the balance_interval 10881 * increase logic to avoid that. 10882 */ 10883 if (env.idle == CPU_NEWLY_IDLE) 10884 goto out; 10885 10886 /* tune up the balancing interval */ 10887 if ((env.flags & LBF_ALL_PINNED && 10888 sd->balance_interval < MAX_PINNED_INTERVAL) || 10889 sd->balance_interval < sd->max_interval) 10890 sd->balance_interval *= 2; 10891 out: 10892 return ld_moved; 10893 } 10894 10895 static inline unsigned long 10896 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10897 { 10898 unsigned long interval = sd->balance_interval; 10899 10900 if (cpu_busy) 10901 interval *= sd->busy_factor; 10902 10903 /* scale ms to jiffies */ 10904 interval = msecs_to_jiffies(interval); 10905 10906 /* 10907 * Reduce likelihood of busy balancing at higher domains racing with 10908 * balancing at lower domains by preventing their balancing periods 10909 * from being multiples of each other. 10910 */ 10911 if (cpu_busy) 10912 interval -= 1; 10913 10914 interval = clamp(interval, 1UL, max_load_balance_interval); 10915 10916 return interval; 10917 } 10918 10919 static inline void 10920 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10921 { 10922 unsigned long interval, next; 10923 10924 /* used by idle balance, so cpu_busy = 0 */ 10925 interval = get_sd_balance_interval(sd, 0); 10926 next = sd->last_balance + interval; 10927 10928 if (time_after(*next_balance, next)) 10929 *next_balance = next; 10930 } 10931 10932 /* 10933 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10934 * running tasks off the busiest CPU onto idle CPUs. It requires at 10935 * least 1 task to be running on each physical CPU where possible, and 10936 * avoids physical / logical imbalances. 10937 */ 10938 static int active_load_balance_cpu_stop(void *data) 10939 { 10940 struct rq *busiest_rq = data; 10941 int busiest_cpu = cpu_of(busiest_rq); 10942 int target_cpu = busiest_rq->push_cpu; 10943 struct rq *target_rq = cpu_rq(target_cpu); 10944 struct sched_domain *sd; 10945 struct task_struct *p = NULL; 10946 struct rq_flags rf; 10947 10948 rq_lock_irq(busiest_rq, &rf); 10949 /* 10950 * Between queueing the stop-work and running it is a hole in which 10951 * CPUs can become inactive. We should not move tasks from or to 10952 * inactive CPUs. 10953 */ 10954 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10955 goto out_unlock; 10956 10957 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10958 if (unlikely(busiest_cpu != smp_processor_id() || 10959 !busiest_rq->active_balance)) 10960 goto out_unlock; 10961 10962 /* Is there any task to move? */ 10963 if (busiest_rq->nr_running <= 1) 10964 goto out_unlock; 10965 10966 /* 10967 * This condition is "impossible", if it occurs 10968 * we need to fix it. Originally reported by 10969 * Bjorn Helgaas on a 128-CPU setup. 10970 */ 10971 WARN_ON_ONCE(busiest_rq == target_rq); 10972 10973 /* Search for an sd spanning us and the target CPU. */ 10974 rcu_read_lock(); 10975 for_each_domain(target_cpu, sd) { 10976 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10977 break; 10978 } 10979 10980 if (likely(sd)) { 10981 struct lb_env env = { 10982 .sd = sd, 10983 .dst_cpu = target_cpu, 10984 .dst_rq = target_rq, 10985 .src_cpu = busiest_rq->cpu, 10986 .src_rq = busiest_rq, 10987 .idle = CPU_IDLE, 10988 .flags = LBF_ACTIVE_LB, 10989 }; 10990 10991 schedstat_inc(sd->alb_count); 10992 update_rq_clock(busiest_rq); 10993 10994 p = detach_one_task(&env); 10995 if (p) { 10996 schedstat_inc(sd->alb_pushed); 10997 /* Active balancing done, reset the failure counter. */ 10998 sd->nr_balance_failed = 0; 10999 } else { 11000 schedstat_inc(sd->alb_failed); 11001 } 11002 } 11003 rcu_read_unlock(); 11004 out_unlock: 11005 busiest_rq->active_balance = 0; 11006 rq_unlock(busiest_rq, &rf); 11007 11008 if (p) 11009 attach_one_task(target_rq, p); 11010 11011 local_irq_enable(); 11012 11013 return 0; 11014 } 11015 11016 static DEFINE_SPINLOCK(balancing); 11017 11018 /* 11019 * Scale the max load_balance interval with the number of CPUs in the system. 11020 * This trades load-balance latency on larger machines for less cross talk. 11021 */ 11022 void update_max_interval(void) 11023 { 11024 max_load_balance_interval = HZ*num_online_cpus()/10; 11025 } 11026 11027 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11028 { 11029 if (cost > sd->max_newidle_lb_cost) { 11030 /* 11031 * Track max cost of a domain to make sure to not delay the 11032 * next wakeup on the CPU. 11033 */ 11034 sd->max_newidle_lb_cost = cost; 11035 sd->last_decay_max_lb_cost = jiffies; 11036 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11037 /* 11038 * Decay the newidle max times by ~1% per second to ensure that 11039 * it is not outdated and the current max cost is actually 11040 * shorter. 11041 */ 11042 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11043 sd->last_decay_max_lb_cost = jiffies; 11044 11045 return true; 11046 } 11047 11048 return false; 11049 } 11050 11051 /* 11052 * It checks each scheduling domain to see if it is due to be balanced, 11053 * and initiates a balancing operation if so. 11054 * 11055 * Balancing parameters are set up in init_sched_domains. 11056 */ 11057 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11058 { 11059 int continue_balancing = 1; 11060 int cpu = rq->cpu; 11061 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11062 unsigned long interval; 11063 struct sched_domain *sd; 11064 /* Earliest time when we have to do rebalance again */ 11065 unsigned long next_balance = jiffies + 60*HZ; 11066 int update_next_balance = 0; 11067 int need_serialize, need_decay = 0; 11068 u64 max_cost = 0; 11069 11070 rcu_read_lock(); 11071 for_each_domain(cpu, sd) { 11072 /* 11073 * Decay the newidle max times here because this is a regular 11074 * visit to all the domains. 11075 */ 11076 need_decay = update_newidle_cost(sd, 0); 11077 max_cost += sd->max_newidle_lb_cost; 11078 11079 /* 11080 * Stop the load balance at this level. There is another 11081 * CPU in our sched group which is doing load balancing more 11082 * actively. 11083 */ 11084 if (!continue_balancing) { 11085 if (need_decay) 11086 continue; 11087 break; 11088 } 11089 11090 interval = get_sd_balance_interval(sd, busy); 11091 11092 need_serialize = sd->flags & SD_SERIALIZE; 11093 if (need_serialize) { 11094 if (!spin_trylock(&balancing)) 11095 goto out; 11096 } 11097 11098 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11099 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11100 /* 11101 * The LBF_DST_PINNED logic could have changed 11102 * env->dst_cpu, so we can't know our idle 11103 * state even if we migrated tasks. Update it. 11104 */ 11105 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11106 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11107 } 11108 sd->last_balance = jiffies; 11109 interval = get_sd_balance_interval(sd, busy); 11110 } 11111 if (need_serialize) 11112 spin_unlock(&balancing); 11113 out: 11114 if (time_after(next_balance, sd->last_balance + interval)) { 11115 next_balance = sd->last_balance + interval; 11116 update_next_balance = 1; 11117 } 11118 } 11119 if (need_decay) { 11120 /* 11121 * Ensure the rq-wide value also decays but keep it at a 11122 * reasonable floor to avoid funnies with rq->avg_idle. 11123 */ 11124 rq->max_idle_balance_cost = 11125 max((u64)sysctl_sched_migration_cost, max_cost); 11126 } 11127 rcu_read_unlock(); 11128 11129 /* 11130 * next_balance will be updated only when there is a need. 11131 * When the cpu is attached to null domain for ex, it will not be 11132 * updated. 11133 */ 11134 if (likely(update_next_balance)) 11135 rq->next_balance = next_balance; 11136 11137 } 11138 11139 static inline int on_null_domain(struct rq *rq) 11140 { 11141 return unlikely(!rcu_dereference_sched(rq->sd)); 11142 } 11143 11144 #ifdef CONFIG_NO_HZ_COMMON 11145 /* 11146 * idle load balancing details 11147 * - When one of the busy CPUs notice that there may be an idle rebalancing 11148 * needed, they will kick the idle load balancer, which then does idle 11149 * load balancing for all the idle CPUs. 11150 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11151 * anywhere yet. 11152 */ 11153 11154 static inline int find_new_ilb(void) 11155 { 11156 int ilb; 11157 const struct cpumask *hk_mask; 11158 11159 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11160 11161 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11162 11163 if (ilb == smp_processor_id()) 11164 continue; 11165 11166 if (idle_cpu(ilb)) 11167 return ilb; 11168 } 11169 11170 return nr_cpu_ids; 11171 } 11172 11173 /* 11174 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11175 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11176 */ 11177 static void kick_ilb(unsigned int flags) 11178 { 11179 int ilb_cpu; 11180 11181 /* 11182 * Increase nohz.next_balance only when if full ilb is triggered but 11183 * not if we only update stats. 11184 */ 11185 if (flags & NOHZ_BALANCE_KICK) 11186 nohz.next_balance = jiffies+1; 11187 11188 ilb_cpu = find_new_ilb(); 11189 11190 if (ilb_cpu >= nr_cpu_ids) 11191 return; 11192 11193 /* 11194 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11195 * the first flag owns it; cleared by nohz_csd_func(). 11196 */ 11197 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11198 if (flags & NOHZ_KICK_MASK) 11199 return; 11200 11201 /* 11202 * This way we generate an IPI on the target CPU which 11203 * is idle. And the softirq performing nohz idle load balance 11204 * will be run before returning from the IPI. 11205 */ 11206 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11207 } 11208 11209 /* 11210 * Current decision point for kicking the idle load balancer in the presence 11211 * of idle CPUs in the system. 11212 */ 11213 static void nohz_balancer_kick(struct rq *rq) 11214 { 11215 unsigned long now = jiffies; 11216 struct sched_domain_shared *sds; 11217 struct sched_domain *sd; 11218 int nr_busy, i, cpu = rq->cpu; 11219 unsigned int flags = 0; 11220 11221 if (unlikely(rq->idle_balance)) 11222 return; 11223 11224 /* 11225 * We may be recently in ticked or tickless idle mode. At the first 11226 * busy tick after returning from idle, we will update the busy stats. 11227 */ 11228 nohz_balance_exit_idle(rq); 11229 11230 /* 11231 * None are in tickless mode and hence no need for NOHZ idle load 11232 * balancing. 11233 */ 11234 if (likely(!atomic_read(&nohz.nr_cpus))) 11235 return; 11236 11237 if (READ_ONCE(nohz.has_blocked) && 11238 time_after(now, READ_ONCE(nohz.next_blocked))) 11239 flags = NOHZ_STATS_KICK; 11240 11241 if (time_before(now, nohz.next_balance)) 11242 goto out; 11243 11244 if (rq->nr_running >= 2) { 11245 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11246 goto out; 11247 } 11248 11249 rcu_read_lock(); 11250 11251 sd = rcu_dereference(rq->sd); 11252 if (sd) { 11253 /* 11254 * If there's a CFS task and the current CPU has reduced 11255 * capacity; kick the ILB to see if there's a better CPU to run 11256 * on. 11257 */ 11258 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11259 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11260 goto unlock; 11261 } 11262 } 11263 11264 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11265 if (sd) { 11266 /* 11267 * When ASYM_PACKING; see if there's a more preferred CPU 11268 * currently idle; in which case, kick the ILB to move tasks 11269 * around. 11270 */ 11271 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11272 if (sched_asym_prefer(i, cpu)) { 11273 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11274 goto unlock; 11275 } 11276 } 11277 } 11278 11279 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11280 if (sd) { 11281 /* 11282 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11283 * to run the misfit task on. 11284 */ 11285 if (check_misfit_status(rq, sd)) { 11286 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11287 goto unlock; 11288 } 11289 11290 /* 11291 * For asymmetric systems, we do not want to nicely balance 11292 * cache use, instead we want to embrace asymmetry and only 11293 * ensure tasks have enough CPU capacity. 11294 * 11295 * Skip the LLC logic because it's not relevant in that case. 11296 */ 11297 goto unlock; 11298 } 11299 11300 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11301 if (sds) { 11302 /* 11303 * If there is an imbalance between LLC domains (IOW we could 11304 * increase the overall cache use), we need some less-loaded LLC 11305 * domain to pull some load. Likewise, we may need to spread 11306 * load within the current LLC domain (e.g. packed SMT cores but 11307 * other CPUs are idle). We can't really know from here how busy 11308 * the others are - so just get a nohz balance going if it looks 11309 * like this LLC domain has tasks we could move. 11310 */ 11311 nr_busy = atomic_read(&sds->nr_busy_cpus); 11312 if (nr_busy > 1) { 11313 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11314 goto unlock; 11315 } 11316 } 11317 unlock: 11318 rcu_read_unlock(); 11319 out: 11320 if (READ_ONCE(nohz.needs_update)) 11321 flags |= NOHZ_NEXT_KICK; 11322 11323 if (flags) 11324 kick_ilb(flags); 11325 } 11326 11327 static void set_cpu_sd_state_busy(int cpu) 11328 { 11329 struct sched_domain *sd; 11330 11331 rcu_read_lock(); 11332 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11333 11334 if (!sd || !sd->nohz_idle) 11335 goto unlock; 11336 sd->nohz_idle = 0; 11337 11338 atomic_inc(&sd->shared->nr_busy_cpus); 11339 unlock: 11340 rcu_read_unlock(); 11341 } 11342 11343 void nohz_balance_exit_idle(struct rq *rq) 11344 { 11345 SCHED_WARN_ON(rq != this_rq()); 11346 11347 if (likely(!rq->nohz_tick_stopped)) 11348 return; 11349 11350 rq->nohz_tick_stopped = 0; 11351 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11352 atomic_dec(&nohz.nr_cpus); 11353 11354 set_cpu_sd_state_busy(rq->cpu); 11355 } 11356 11357 static void set_cpu_sd_state_idle(int cpu) 11358 { 11359 struct sched_domain *sd; 11360 11361 rcu_read_lock(); 11362 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11363 11364 if (!sd || sd->nohz_idle) 11365 goto unlock; 11366 sd->nohz_idle = 1; 11367 11368 atomic_dec(&sd->shared->nr_busy_cpus); 11369 unlock: 11370 rcu_read_unlock(); 11371 } 11372 11373 /* 11374 * This routine will record that the CPU is going idle with tick stopped. 11375 * This info will be used in performing idle load balancing in the future. 11376 */ 11377 void nohz_balance_enter_idle(int cpu) 11378 { 11379 struct rq *rq = cpu_rq(cpu); 11380 11381 SCHED_WARN_ON(cpu != smp_processor_id()); 11382 11383 /* If this CPU is going down, then nothing needs to be done: */ 11384 if (!cpu_active(cpu)) 11385 return; 11386 11387 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11388 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11389 return; 11390 11391 /* 11392 * Can be set safely without rq->lock held 11393 * If a clear happens, it will have evaluated last additions because 11394 * rq->lock is held during the check and the clear 11395 */ 11396 rq->has_blocked_load = 1; 11397 11398 /* 11399 * The tick is still stopped but load could have been added in the 11400 * meantime. We set the nohz.has_blocked flag to trig a check of the 11401 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11402 * of nohz.has_blocked can only happen after checking the new load 11403 */ 11404 if (rq->nohz_tick_stopped) 11405 goto out; 11406 11407 /* If we're a completely isolated CPU, we don't play: */ 11408 if (on_null_domain(rq)) 11409 return; 11410 11411 rq->nohz_tick_stopped = 1; 11412 11413 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11414 atomic_inc(&nohz.nr_cpus); 11415 11416 /* 11417 * Ensures that if nohz_idle_balance() fails to observe our 11418 * @idle_cpus_mask store, it must observe the @has_blocked 11419 * and @needs_update stores. 11420 */ 11421 smp_mb__after_atomic(); 11422 11423 set_cpu_sd_state_idle(cpu); 11424 11425 WRITE_ONCE(nohz.needs_update, 1); 11426 out: 11427 /* 11428 * Each time a cpu enter idle, we assume that it has blocked load and 11429 * enable the periodic update of the load of idle cpus 11430 */ 11431 WRITE_ONCE(nohz.has_blocked, 1); 11432 } 11433 11434 static bool update_nohz_stats(struct rq *rq) 11435 { 11436 unsigned int cpu = rq->cpu; 11437 11438 if (!rq->has_blocked_load) 11439 return false; 11440 11441 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11442 return false; 11443 11444 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11445 return true; 11446 11447 update_blocked_averages(cpu); 11448 11449 return rq->has_blocked_load; 11450 } 11451 11452 /* 11453 * Internal function that runs load balance for all idle cpus. The load balance 11454 * can be a simple update of blocked load or a complete load balance with 11455 * tasks movement depending of flags. 11456 */ 11457 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11458 { 11459 /* Earliest time when we have to do rebalance again */ 11460 unsigned long now = jiffies; 11461 unsigned long next_balance = now + 60*HZ; 11462 bool has_blocked_load = false; 11463 int update_next_balance = 0; 11464 int this_cpu = this_rq->cpu; 11465 int balance_cpu; 11466 struct rq *rq; 11467 11468 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11469 11470 /* 11471 * We assume there will be no idle load after this update and clear 11472 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11473 * set the has_blocked flag and trigger another update of idle load. 11474 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11475 * setting the flag, we are sure to not clear the state and not 11476 * check the load of an idle cpu. 11477 * 11478 * Same applies to idle_cpus_mask vs needs_update. 11479 */ 11480 if (flags & NOHZ_STATS_KICK) 11481 WRITE_ONCE(nohz.has_blocked, 0); 11482 if (flags & NOHZ_NEXT_KICK) 11483 WRITE_ONCE(nohz.needs_update, 0); 11484 11485 /* 11486 * Ensures that if we miss the CPU, we must see the has_blocked 11487 * store from nohz_balance_enter_idle(). 11488 */ 11489 smp_mb(); 11490 11491 /* 11492 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11493 * chance for other idle cpu to pull load. 11494 */ 11495 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11496 if (!idle_cpu(balance_cpu)) 11497 continue; 11498 11499 /* 11500 * If this CPU gets work to do, stop the load balancing 11501 * work being done for other CPUs. Next load 11502 * balancing owner will pick it up. 11503 */ 11504 if (need_resched()) { 11505 if (flags & NOHZ_STATS_KICK) 11506 has_blocked_load = true; 11507 if (flags & NOHZ_NEXT_KICK) 11508 WRITE_ONCE(nohz.needs_update, 1); 11509 goto abort; 11510 } 11511 11512 rq = cpu_rq(balance_cpu); 11513 11514 if (flags & NOHZ_STATS_KICK) 11515 has_blocked_load |= update_nohz_stats(rq); 11516 11517 /* 11518 * If time for next balance is due, 11519 * do the balance. 11520 */ 11521 if (time_after_eq(jiffies, rq->next_balance)) { 11522 struct rq_flags rf; 11523 11524 rq_lock_irqsave(rq, &rf); 11525 update_rq_clock(rq); 11526 rq_unlock_irqrestore(rq, &rf); 11527 11528 if (flags & NOHZ_BALANCE_KICK) 11529 rebalance_domains(rq, CPU_IDLE); 11530 } 11531 11532 if (time_after(next_balance, rq->next_balance)) { 11533 next_balance = rq->next_balance; 11534 update_next_balance = 1; 11535 } 11536 } 11537 11538 /* 11539 * next_balance will be updated only when there is a need. 11540 * When the CPU is attached to null domain for ex, it will not be 11541 * updated. 11542 */ 11543 if (likely(update_next_balance)) 11544 nohz.next_balance = next_balance; 11545 11546 if (flags & NOHZ_STATS_KICK) 11547 WRITE_ONCE(nohz.next_blocked, 11548 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11549 11550 abort: 11551 /* There is still blocked load, enable periodic update */ 11552 if (has_blocked_load) 11553 WRITE_ONCE(nohz.has_blocked, 1); 11554 } 11555 11556 /* 11557 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11558 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11559 */ 11560 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11561 { 11562 unsigned int flags = this_rq->nohz_idle_balance; 11563 11564 if (!flags) 11565 return false; 11566 11567 this_rq->nohz_idle_balance = 0; 11568 11569 if (idle != CPU_IDLE) 11570 return false; 11571 11572 _nohz_idle_balance(this_rq, flags); 11573 11574 return true; 11575 } 11576 11577 /* 11578 * Check if we need to run the ILB for updating blocked load before entering 11579 * idle state. 11580 */ 11581 void nohz_run_idle_balance(int cpu) 11582 { 11583 unsigned int flags; 11584 11585 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11586 11587 /* 11588 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11589 * (ie NOHZ_STATS_KICK set) and will do the same. 11590 */ 11591 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11592 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11593 } 11594 11595 static void nohz_newidle_balance(struct rq *this_rq) 11596 { 11597 int this_cpu = this_rq->cpu; 11598 11599 /* 11600 * This CPU doesn't want to be disturbed by scheduler 11601 * housekeeping 11602 */ 11603 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11604 return; 11605 11606 /* Will wake up very soon. No time for doing anything else*/ 11607 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11608 return; 11609 11610 /* Don't need to update blocked load of idle CPUs*/ 11611 if (!READ_ONCE(nohz.has_blocked) || 11612 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11613 return; 11614 11615 /* 11616 * Set the need to trigger ILB in order to update blocked load 11617 * before entering idle state. 11618 */ 11619 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11620 } 11621 11622 #else /* !CONFIG_NO_HZ_COMMON */ 11623 static inline void nohz_balancer_kick(struct rq *rq) { } 11624 11625 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11626 { 11627 return false; 11628 } 11629 11630 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11631 #endif /* CONFIG_NO_HZ_COMMON */ 11632 11633 /* 11634 * newidle_balance is called by schedule() if this_cpu is about to become 11635 * idle. Attempts to pull tasks from other CPUs. 11636 * 11637 * Returns: 11638 * < 0 - we released the lock and there are !fair tasks present 11639 * 0 - failed, no new tasks 11640 * > 0 - success, new (fair) tasks present 11641 */ 11642 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11643 { 11644 unsigned long next_balance = jiffies + HZ; 11645 int this_cpu = this_rq->cpu; 11646 u64 t0, t1, curr_cost = 0; 11647 struct sched_domain *sd; 11648 int pulled_task = 0; 11649 11650 update_misfit_status(NULL, this_rq); 11651 11652 /* 11653 * There is a task waiting to run. No need to search for one. 11654 * Return 0; the task will be enqueued when switching to idle. 11655 */ 11656 if (this_rq->ttwu_pending) 11657 return 0; 11658 11659 /* 11660 * We must set idle_stamp _before_ calling idle_balance(), such that we 11661 * measure the duration of idle_balance() as idle time. 11662 */ 11663 this_rq->idle_stamp = rq_clock(this_rq); 11664 11665 /* 11666 * Do not pull tasks towards !active CPUs... 11667 */ 11668 if (!cpu_active(this_cpu)) 11669 return 0; 11670 11671 /* 11672 * This is OK, because current is on_cpu, which avoids it being picked 11673 * for load-balance and preemption/IRQs are still disabled avoiding 11674 * further scheduler activity on it and we're being very careful to 11675 * re-start the picking loop. 11676 */ 11677 rq_unpin_lock(this_rq, rf); 11678 11679 rcu_read_lock(); 11680 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11681 11682 if (!READ_ONCE(this_rq->rd->overload) || 11683 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11684 11685 if (sd) 11686 update_next_balance(sd, &next_balance); 11687 rcu_read_unlock(); 11688 11689 goto out; 11690 } 11691 rcu_read_unlock(); 11692 11693 raw_spin_rq_unlock(this_rq); 11694 11695 t0 = sched_clock_cpu(this_cpu); 11696 update_blocked_averages(this_cpu); 11697 11698 rcu_read_lock(); 11699 for_each_domain(this_cpu, sd) { 11700 int continue_balancing = 1; 11701 u64 domain_cost; 11702 11703 update_next_balance(sd, &next_balance); 11704 11705 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11706 break; 11707 11708 if (sd->flags & SD_BALANCE_NEWIDLE) { 11709 11710 pulled_task = load_balance(this_cpu, this_rq, 11711 sd, CPU_NEWLY_IDLE, 11712 &continue_balancing); 11713 11714 t1 = sched_clock_cpu(this_cpu); 11715 domain_cost = t1 - t0; 11716 update_newidle_cost(sd, domain_cost); 11717 11718 curr_cost += domain_cost; 11719 t0 = t1; 11720 } 11721 11722 /* 11723 * Stop searching for tasks to pull if there are 11724 * now runnable tasks on this rq. 11725 */ 11726 if (pulled_task || this_rq->nr_running > 0 || 11727 this_rq->ttwu_pending) 11728 break; 11729 } 11730 rcu_read_unlock(); 11731 11732 raw_spin_rq_lock(this_rq); 11733 11734 if (curr_cost > this_rq->max_idle_balance_cost) 11735 this_rq->max_idle_balance_cost = curr_cost; 11736 11737 /* 11738 * While browsing the domains, we released the rq lock, a task could 11739 * have been enqueued in the meantime. Since we're not going idle, 11740 * pretend we pulled a task. 11741 */ 11742 if (this_rq->cfs.h_nr_running && !pulled_task) 11743 pulled_task = 1; 11744 11745 /* Is there a task of a high priority class? */ 11746 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11747 pulled_task = -1; 11748 11749 out: 11750 /* Move the next balance forward */ 11751 if (time_after(this_rq->next_balance, next_balance)) 11752 this_rq->next_balance = next_balance; 11753 11754 if (pulled_task) 11755 this_rq->idle_stamp = 0; 11756 else 11757 nohz_newidle_balance(this_rq); 11758 11759 rq_repin_lock(this_rq, rf); 11760 11761 return pulled_task; 11762 } 11763 11764 /* 11765 * run_rebalance_domains is triggered when needed from the scheduler tick. 11766 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11767 */ 11768 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11769 { 11770 struct rq *this_rq = this_rq(); 11771 enum cpu_idle_type idle = this_rq->idle_balance ? 11772 CPU_IDLE : CPU_NOT_IDLE; 11773 11774 /* 11775 * If this CPU has a pending nohz_balance_kick, then do the 11776 * balancing on behalf of the other idle CPUs whose ticks are 11777 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11778 * give the idle CPUs a chance to load balance. Else we may 11779 * load balance only within the local sched_domain hierarchy 11780 * and abort nohz_idle_balance altogether if we pull some load. 11781 */ 11782 if (nohz_idle_balance(this_rq, idle)) 11783 return; 11784 11785 /* normal load balance */ 11786 update_blocked_averages(this_rq->cpu); 11787 rebalance_domains(this_rq, idle); 11788 } 11789 11790 /* 11791 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11792 */ 11793 void trigger_load_balance(struct rq *rq) 11794 { 11795 /* 11796 * Don't need to rebalance while attached to NULL domain or 11797 * runqueue CPU is not active 11798 */ 11799 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11800 return; 11801 11802 if (time_after_eq(jiffies, rq->next_balance)) 11803 raise_softirq(SCHED_SOFTIRQ); 11804 11805 nohz_balancer_kick(rq); 11806 } 11807 11808 static void rq_online_fair(struct rq *rq) 11809 { 11810 update_sysctl(); 11811 11812 update_runtime_enabled(rq); 11813 } 11814 11815 static void rq_offline_fair(struct rq *rq) 11816 { 11817 update_sysctl(); 11818 11819 /* Ensure any throttled groups are reachable by pick_next_task */ 11820 unthrottle_offline_cfs_rqs(rq); 11821 } 11822 11823 #endif /* CONFIG_SMP */ 11824 11825 #ifdef CONFIG_SCHED_CORE 11826 static inline bool 11827 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11828 { 11829 u64 slice = sched_slice(cfs_rq_of(se), se); 11830 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11831 11832 return (rtime * min_nr_tasks > slice); 11833 } 11834 11835 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11836 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11837 { 11838 if (!sched_core_enabled(rq)) 11839 return; 11840 11841 /* 11842 * If runqueue has only one task which used up its slice and 11843 * if the sibling is forced idle, then trigger schedule to 11844 * give forced idle task a chance. 11845 * 11846 * sched_slice() considers only this active rq and it gets the 11847 * whole slice. But during force idle, we have siblings acting 11848 * like a single runqueue and hence we need to consider runnable 11849 * tasks on this CPU and the forced idle CPU. Ideally, we should 11850 * go through the forced idle rq, but that would be a perf hit. 11851 * We can assume that the forced idle CPU has at least 11852 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11853 * if we need to give up the CPU. 11854 */ 11855 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11856 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11857 resched_curr(rq); 11858 } 11859 11860 /* 11861 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11862 */ 11863 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 11864 bool forceidle) 11865 { 11866 for_each_sched_entity(se) { 11867 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11868 11869 if (forceidle) { 11870 if (cfs_rq->forceidle_seq == fi_seq) 11871 break; 11872 cfs_rq->forceidle_seq = fi_seq; 11873 } 11874 11875 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11876 } 11877 } 11878 11879 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11880 { 11881 struct sched_entity *se = &p->se; 11882 11883 if (p->sched_class != &fair_sched_class) 11884 return; 11885 11886 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11887 } 11888 11889 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 11890 bool in_fi) 11891 { 11892 struct rq *rq = task_rq(a); 11893 const struct sched_entity *sea = &a->se; 11894 const struct sched_entity *seb = &b->se; 11895 struct cfs_rq *cfs_rqa; 11896 struct cfs_rq *cfs_rqb; 11897 s64 delta; 11898 11899 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11900 11901 #ifdef CONFIG_FAIR_GROUP_SCHED 11902 /* 11903 * Find an se in the hierarchy for tasks a and b, such that the se's 11904 * are immediate siblings. 11905 */ 11906 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11907 int sea_depth = sea->depth; 11908 int seb_depth = seb->depth; 11909 11910 if (sea_depth >= seb_depth) 11911 sea = parent_entity(sea); 11912 if (sea_depth <= seb_depth) 11913 seb = parent_entity(seb); 11914 } 11915 11916 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11917 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11918 11919 cfs_rqa = sea->cfs_rq; 11920 cfs_rqb = seb->cfs_rq; 11921 #else 11922 cfs_rqa = &task_rq(a)->cfs; 11923 cfs_rqb = &task_rq(b)->cfs; 11924 #endif 11925 11926 /* 11927 * Find delta after normalizing se's vruntime with its cfs_rq's 11928 * min_vruntime_fi, which would have been updated in prior calls 11929 * to se_fi_update(). 11930 */ 11931 delta = (s64)(sea->vruntime - seb->vruntime) + 11932 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11933 11934 return delta > 0; 11935 } 11936 #else 11937 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11938 #endif 11939 11940 /* 11941 * scheduler tick hitting a task of our scheduling class. 11942 * 11943 * NOTE: This function can be called remotely by the tick offload that 11944 * goes along full dynticks. Therefore no local assumption can be made 11945 * and everything must be accessed through the @rq and @curr passed in 11946 * parameters. 11947 */ 11948 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11949 { 11950 struct cfs_rq *cfs_rq; 11951 struct sched_entity *se = &curr->se; 11952 11953 for_each_sched_entity(se) { 11954 cfs_rq = cfs_rq_of(se); 11955 entity_tick(cfs_rq, se, queued); 11956 } 11957 11958 if (static_branch_unlikely(&sched_numa_balancing)) 11959 task_tick_numa(rq, curr); 11960 11961 update_misfit_status(curr, rq); 11962 update_overutilized_status(task_rq(curr)); 11963 11964 task_tick_core(rq, curr); 11965 } 11966 11967 /* 11968 * called on fork with the child task as argument from the parent's context 11969 * - child not yet on the tasklist 11970 * - preemption disabled 11971 */ 11972 static void task_fork_fair(struct task_struct *p) 11973 { 11974 struct cfs_rq *cfs_rq; 11975 struct sched_entity *se = &p->se, *curr; 11976 struct rq *rq = this_rq(); 11977 struct rq_flags rf; 11978 11979 rq_lock(rq, &rf); 11980 update_rq_clock(rq); 11981 11982 cfs_rq = task_cfs_rq(current); 11983 curr = cfs_rq->curr; 11984 if (curr) { 11985 update_curr(cfs_rq); 11986 se->vruntime = curr->vruntime; 11987 } 11988 place_entity(cfs_rq, se, 1); 11989 11990 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11991 /* 11992 * Upon rescheduling, sched_class::put_prev_task() will place 11993 * 'current' within the tree based on its new key value. 11994 */ 11995 swap(curr->vruntime, se->vruntime); 11996 resched_curr(rq); 11997 } 11998 11999 se->vruntime -= cfs_rq->min_vruntime; 12000 rq_unlock(rq, &rf); 12001 } 12002 12003 /* 12004 * Priority of the task has changed. Check to see if we preempt 12005 * the current task. 12006 */ 12007 static void 12008 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12009 { 12010 if (!task_on_rq_queued(p)) 12011 return; 12012 12013 if (rq->cfs.nr_running == 1) 12014 return; 12015 12016 /* 12017 * Reschedule if we are currently running on this runqueue and 12018 * our priority decreased, or if we are not currently running on 12019 * this runqueue and our priority is higher than the current's 12020 */ 12021 if (task_current(rq, p)) { 12022 if (p->prio > oldprio) 12023 resched_curr(rq); 12024 } else 12025 check_preempt_curr(rq, p, 0); 12026 } 12027 12028 static inline bool vruntime_normalized(struct task_struct *p) 12029 { 12030 struct sched_entity *se = &p->se; 12031 12032 /* 12033 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 12034 * the dequeue_entity(.flags=0) will already have normalized the 12035 * vruntime. 12036 */ 12037 if (p->on_rq) 12038 return true; 12039 12040 /* 12041 * When !on_rq, vruntime of the task has usually NOT been normalized. 12042 * But there are some cases where it has already been normalized: 12043 * 12044 * - A forked child which is waiting for being woken up by 12045 * wake_up_new_task(). 12046 * - A task which has been woken up by try_to_wake_up() and 12047 * waiting for actually being woken up by sched_ttwu_pending(). 12048 */ 12049 if (!se->sum_exec_runtime || 12050 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 12051 return true; 12052 12053 return false; 12054 } 12055 12056 #ifdef CONFIG_FAIR_GROUP_SCHED 12057 /* 12058 * Propagate the changes of the sched_entity across the tg tree to make it 12059 * visible to the root 12060 */ 12061 static void propagate_entity_cfs_rq(struct sched_entity *se) 12062 { 12063 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12064 12065 if (cfs_rq_throttled(cfs_rq)) 12066 return; 12067 12068 if (!throttled_hierarchy(cfs_rq)) 12069 list_add_leaf_cfs_rq(cfs_rq); 12070 12071 /* Start to propagate at parent */ 12072 se = se->parent; 12073 12074 for_each_sched_entity(se) { 12075 cfs_rq = cfs_rq_of(se); 12076 12077 update_load_avg(cfs_rq, se, UPDATE_TG); 12078 12079 if (cfs_rq_throttled(cfs_rq)) 12080 break; 12081 12082 if (!throttled_hierarchy(cfs_rq)) 12083 list_add_leaf_cfs_rq(cfs_rq); 12084 } 12085 } 12086 #else 12087 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12088 #endif 12089 12090 static void detach_entity_cfs_rq(struct sched_entity *se) 12091 { 12092 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12093 12094 #ifdef CONFIG_SMP 12095 /* 12096 * In case the task sched_avg hasn't been attached: 12097 * - A forked task which hasn't been woken up by wake_up_new_task(). 12098 * - A task which has been woken up by try_to_wake_up() but is 12099 * waiting for actually being woken up by sched_ttwu_pending(). 12100 */ 12101 if (!se->avg.last_update_time) 12102 return; 12103 #endif 12104 12105 /* Catch up with the cfs_rq and remove our load when we leave */ 12106 update_load_avg(cfs_rq, se, 0); 12107 detach_entity_load_avg(cfs_rq, se); 12108 update_tg_load_avg(cfs_rq); 12109 propagate_entity_cfs_rq(se); 12110 } 12111 12112 static void attach_entity_cfs_rq(struct sched_entity *se) 12113 { 12114 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12115 12116 /* Synchronize entity with its cfs_rq */ 12117 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12118 attach_entity_load_avg(cfs_rq, se); 12119 update_tg_load_avg(cfs_rq); 12120 propagate_entity_cfs_rq(se); 12121 } 12122 12123 static void detach_task_cfs_rq(struct task_struct *p) 12124 { 12125 struct sched_entity *se = &p->se; 12126 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12127 12128 if (!vruntime_normalized(p)) { 12129 /* 12130 * Fix up our vruntime so that the current sleep doesn't 12131 * cause 'unlimited' sleep bonus. 12132 */ 12133 place_entity(cfs_rq, se, 0); 12134 se->vruntime -= cfs_rq->min_vruntime; 12135 } 12136 12137 detach_entity_cfs_rq(se); 12138 } 12139 12140 static void attach_task_cfs_rq(struct task_struct *p) 12141 { 12142 struct sched_entity *se = &p->se; 12143 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12144 12145 attach_entity_cfs_rq(se); 12146 12147 if (!vruntime_normalized(p)) 12148 se->vruntime += cfs_rq->min_vruntime; 12149 } 12150 12151 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12152 { 12153 detach_task_cfs_rq(p); 12154 } 12155 12156 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12157 { 12158 attach_task_cfs_rq(p); 12159 12160 if (task_on_rq_queued(p)) { 12161 /* 12162 * We were most likely switched from sched_rt, so 12163 * kick off the schedule if running, otherwise just see 12164 * if we can still preempt the current task. 12165 */ 12166 if (task_current(rq, p)) 12167 resched_curr(rq); 12168 else 12169 check_preempt_curr(rq, p, 0); 12170 } 12171 } 12172 12173 /* Account for a task changing its policy or group. 12174 * 12175 * This routine is mostly called to set cfs_rq->curr field when a task 12176 * migrates between groups/classes. 12177 */ 12178 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12179 { 12180 struct sched_entity *se = &p->se; 12181 12182 #ifdef CONFIG_SMP 12183 if (task_on_rq_queued(p)) { 12184 /* 12185 * Move the next running task to the front of the list, so our 12186 * cfs_tasks list becomes MRU one. 12187 */ 12188 list_move(&se->group_node, &rq->cfs_tasks); 12189 } 12190 #endif 12191 12192 for_each_sched_entity(se) { 12193 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12194 12195 set_next_entity(cfs_rq, se); 12196 /* ensure bandwidth has been allocated on our new cfs_rq */ 12197 account_cfs_rq_runtime(cfs_rq, 0); 12198 } 12199 } 12200 12201 void init_cfs_rq(struct cfs_rq *cfs_rq) 12202 { 12203 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12204 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12205 #ifdef CONFIG_SMP 12206 raw_spin_lock_init(&cfs_rq->removed.lock); 12207 #endif 12208 } 12209 12210 #ifdef CONFIG_FAIR_GROUP_SCHED 12211 static void task_change_group_fair(struct task_struct *p) 12212 { 12213 /* 12214 * We couldn't detach or attach a forked task which 12215 * hasn't been woken up by wake_up_new_task(). 12216 */ 12217 if (READ_ONCE(p->__state) == TASK_NEW) 12218 return; 12219 12220 detach_task_cfs_rq(p); 12221 12222 #ifdef CONFIG_SMP 12223 /* Tell se's cfs_rq has been changed -- migrated */ 12224 p->se.avg.last_update_time = 0; 12225 #endif 12226 set_task_rq(p, task_cpu(p)); 12227 attach_task_cfs_rq(p); 12228 } 12229 12230 void free_fair_sched_group(struct task_group *tg) 12231 { 12232 int i; 12233 12234 for_each_possible_cpu(i) { 12235 if (tg->cfs_rq) 12236 kfree(tg->cfs_rq[i]); 12237 if (tg->se) 12238 kfree(tg->se[i]); 12239 } 12240 12241 kfree(tg->cfs_rq); 12242 kfree(tg->se); 12243 } 12244 12245 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12246 { 12247 struct sched_entity *se; 12248 struct cfs_rq *cfs_rq; 12249 int i; 12250 12251 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12252 if (!tg->cfs_rq) 12253 goto err; 12254 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12255 if (!tg->se) 12256 goto err; 12257 12258 tg->shares = NICE_0_LOAD; 12259 12260 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12261 12262 for_each_possible_cpu(i) { 12263 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12264 GFP_KERNEL, cpu_to_node(i)); 12265 if (!cfs_rq) 12266 goto err; 12267 12268 se = kzalloc_node(sizeof(struct sched_entity_stats), 12269 GFP_KERNEL, cpu_to_node(i)); 12270 if (!se) 12271 goto err_free_rq; 12272 12273 init_cfs_rq(cfs_rq); 12274 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12275 init_entity_runnable_average(se); 12276 } 12277 12278 return 1; 12279 12280 err_free_rq: 12281 kfree(cfs_rq); 12282 err: 12283 return 0; 12284 } 12285 12286 void online_fair_sched_group(struct task_group *tg) 12287 { 12288 struct sched_entity *se; 12289 struct rq_flags rf; 12290 struct rq *rq; 12291 int i; 12292 12293 for_each_possible_cpu(i) { 12294 rq = cpu_rq(i); 12295 se = tg->se[i]; 12296 rq_lock_irq(rq, &rf); 12297 update_rq_clock(rq); 12298 attach_entity_cfs_rq(se); 12299 sync_throttle(tg, i); 12300 rq_unlock_irq(rq, &rf); 12301 } 12302 } 12303 12304 void unregister_fair_sched_group(struct task_group *tg) 12305 { 12306 unsigned long flags; 12307 struct rq *rq; 12308 int cpu; 12309 12310 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12311 12312 for_each_possible_cpu(cpu) { 12313 if (tg->se[cpu]) 12314 remove_entity_load_avg(tg->se[cpu]); 12315 12316 /* 12317 * Only empty task groups can be destroyed; so we can speculatively 12318 * check on_list without danger of it being re-added. 12319 */ 12320 if (!tg->cfs_rq[cpu]->on_list) 12321 continue; 12322 12323 rq = cpu_rq(cpu); 12324 12325 raw_spin_rq_lock_irqsave(rq, flags); 12326 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12327 raw_spin_rq_unlock_irqrestore(rq, flags); 12328 } 12329 } 12330 12331 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12332 struct sched_entity *se, int cpu, 12333 struct sched_entity *parent) 12334 { 12335 struct rq *rq = cpu_rq(cpu); 12336 12337 cfs_rq->tg = tg; 12338 cfs_rq->rq = rq; 12339 init_cfs_rq_runtime(cfs_rq); 12340 12341 tg->cfs_rq[cpu] = cfs_rq; 12342 tg->se[cpu] = se; 12343 12344 /* se could be NULL for root_task_group */ 12345 if (!se) 12346 return; 12347 12348 if (!parent) { 12349 se->cfs_rq = &rq->cfs; 12350 se->depth = 0; 12351 } else { 12352 se->cfs_rq = parent->my_q; 12353 se->depth = parent->depth + 1; 12354 } 12355 12356 se->my_q = cfs_rq; 12357 /* guarantee group entities always have weight */ 12358 update_load_set(&se->load, NICE_0_LOAD); 12359 se->parent = parent; 12360 } 12361 12362 static DEFINE_MUTEX(shares_mutex); 12363 12364 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12365 { 12366 int i; 12367 12368 lockdep_assert_held(&shares_mutex); 12369 12370 /* 12371 * We can't change the weight of the root cgroup. 12372 */ 12373 if (!tg->se[0]) 12374 return -EINVAL; 12375 12376 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12377 12378 if (tg->shares == shares) 12379 return 0; 12380 12381 tg->shares = shares; 12382 for_each_possible_cpu(i) { 12383 struct rq *rq = cpu_rq(i); 12384 struct sched_entity *se = tg->se[i]; 12385 struct rq_flags rf; 12386 12387 /* Propagate contribution to hierarchy */ 12388 rq_lock_irqsave(rq, &rf); 12389 update_rq_clock(rq); 12390 for_each_sched_entity(se) { 12391 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12392 update_cfs_group(se); 12393 } 12394 rq_unlock_irqrestore(rq, &rf); 12395 } 12396 12397 return 0; 12398 } 12399 12400 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12401 { 12402 int ret; 12403 12404 mutex_lock(&shares_mutex); 12405 if (tg_is_idle(tg)) 12406 ret = -EINVAL; 12407 else 12408 ret = __sched_group_set_shares(tg, shares); 12409 mutex_unlock(&shares_mutex); 12410 12411 return ret; 12412 } 12413 12414 int sched_group_set_idle(struct task_group *tg, long idle) 12415 { 12416 int i; 12417 12418 if (tg == &root_task_group) 12419 return -EINVAL; 12420 12421 if (idle < 0 || idle > 1) 12422 return -EINVAL; 12423 12424 mutex_lock(&shares_mutex); 12425 12426 if (tg->idle == idle) { 12427 mutex_unlock(&shares_mutex); 12428 return 0; 12429 } 12430 12431 tg->idle = idle; 12432 12433 for_each_possible_cpu(i) { 12434 struct rq *rq = cpu_rq(i); 12435 struct sched_entity *se = tg->se[i]; 12436 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12437 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12438 long idle_task_delta; 12439 struct rq_flags rf; 12440 12441 rq_lock_irqsave(rq, &rf); 12442 12443 grp_cfs_rq->idle = idle; 12444 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12445 goto next_cpu; 12446 12447 if (se->on_rq) { 12448 parent_cfs_rq = cfs_rq_of(se); 12449 if (cfs_rq_is_idle(grp_cfs_rq)) 12450 parent_cfs_rq->idle_nr_running++; 12451 else 12452 parent_cfs_rq->idle_nr_running--; 12453 } 12454 12455 idle_task_delta = grp_cfs_rq->h_nr_running - 12456 grp_cfs_rq->idle_h_nr_running; 12457 if (!cfs_rq_is_idle(grp_cfs_rq)) 12458 idle_task_delta *= -1; 12459 12460 for_each_sched_entity(se) { 12461 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12462 12463 if (!se->on_rq) 12464 break; 12465 12466 cfs_rq->idle_h_nr_running += idle_task_delta; 12467 12468 /* Already accounted at parent level and above. */ 12469 if (cfs_rq_is_idle(cfs_rq)) 12470 break; 12471 } 12472 12473 next_cpu: 12474 rq_unlock_irqrestore(rq, &rf); 12475 } 12476 12477 /* Idle groups have minimum weight. */ 12478 if (tg_is_idle(tg)) 12479 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12480 else 12481 __sched_group_set_shares(tg, NICE_0_LOAD); 12482 12483 mutex_unlock(&shares_mutex); 12484 return 0; 12485 } 12486 12487 #else /* CONFIG_FAIR_GROUP_SCHED */ 12488 12489 void free_fair_sched_group(struct task_group *tg) { } 12490 12491 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12492 { 12493 return 1; 12494 } 12495 12496 void online_fair_sched_group(struct task_group *tg) { } 12497 12498 void unregister_fair_sched_group(struct task_group *tg) { } 12499 12500 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12501 12502 12503 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12504 { 12505 struct sched_entity *se = &task->se; 12506 unsigned int rr_interval = 0; 12507 12508 /* 12509 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12510 * idle runqueue: 12511 */ 12512 if (rq->cfs.load.weight) 12513 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 12514 12515 return rr_interval; 12516 } 12517 12518 /* 12519 * All the scheduling class methods: 12520 */ 12521 DEFINE_SCHED_CLASS(fair) = { 12522 12523 .enqueue_task = enqueue_task_fair, 12524 .dequeue_task = dequeue_task_fair, 12525 .yield_task = yield_task_fair, 12526 .yield_to_task = yield_to_task_fair, 12527 12528 .check_preempt_curr = check_preempt_wakeup, 12529 12530 .pick_next_task = __pick_next_task_fair, 12531 .put_prev_task = put_prev_task_fair, 12532 .set_next_task = set_next_task_fair, 12533 12534 #ifdef CONFIG_SMP 12535 .balance = balance_fair, 12536 .pick_task = pick_task_fair, 12537 .select_task_rq = select_task_rq_fair, 12538 .migrate_task_rq = migrate_task_rq_fair, 12539 12540 .rq_online = rq_online_fair, 12541 .rq_offline = rq_offline_fair, 12542 12543 .task_dead = task_dead_fair, 12544 .set_cpus_allowed = set_cpus_allowed_common, 12545 #endif 12546 12547 .task_tick = task_tick_fair, 12548 .task_fork = task_fork_fair, 12549 12550 .prio_changed = prio_changed_fair, 12551 .switched_from = switched_from_fair, 12552 .switched_to = switched_to_fair, 12553 12554 .get_rr_interval = get_rr_interval_fair, 12555 12556 .update_curr = update_curr_fair, 12557 12558 #ifdef CONFIG_FAIR_GROUP_SCHED 12559 .task_change_group = task_change_group_fair, 12560 #endif 12561 12562 #ifdef CONFIG_UCLAMP_TASK 12563 .uclamp_enabled = 1, 12564 #endif 12565 }; 12566 12567 #ifdef CONFIG_SCHED_DEBUG 12568 void print_cfs_stats(struct seq_file *m, int cpu) 12569 { 12570 struct cfs_rq *cfs_rq, *pos; 12571 12572 rcu_read_lock(); 12573 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12574 print_cfs_rq(m, cpu, cfs_rq); 12575 rcu_read_unlock(); 12576 } 12577 12578 #ifdef CONFIG_NUMA_BALANCING 12579 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12580 { 12581 int node; 12582 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12583 struct numa_group *ng; 12584 12585 rcu_read_lock(); 12586 ng = rcu_dereference(p->numa_group); 12587 for_each_online_node(node) { 12588 if (p->numa_faults) { 12589 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12590 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12591 } 12592 if (ng) { 12593 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12594 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12595 } 12596 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12597 } 12598 rcu_read_unlock(); 12599 } 12600 #endif /* CONFIG_NUMA_BALANCING */ 12601 #endif /* CONFIG_SCHED_DEBUG */ 12602 12603 __init void init_sched_fair_class(void) 12604 { 12605 #ifdef CONFIG_SMP 12606 int i; 12607 12608 for_each_possible_cpu(i) { 12609 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12610 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12611 12612 #ifdef CONFIG_CFS_BANDWIDTH 12613 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 12614 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 12615 #endif 12616 } 12617 12618 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12619 12620 #ifdef CONFIG_NO_HZ_COMMON 12621 nohz.next_balance = jiffies; 12622 nohz.next_blocked = jiffies; 12623 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12624 #endif 12625 #endif /* SMP */ 12626 12627 } 12628