1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 30 #include <trace/events/sched.h> 31 32 #include "sched.h" 33 34 /* 35 * Targeted preemption latency for CPU-bound tasks: 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 * 38 * NOTE: this latency value is not the same as the concept of 39 * 'timeslice length' - timeslices in CFS are of variable length 40 * and have no persistent notion like in traditional, time-slice 41 * based scheduling concepts. 42 * 43 * (to see the precise effective timeslice length of your workload, 44 * run vmstat and monitor the context-switches (cs) field) 45 */ 46 unsigned int sysctl_sched_latency = 6000000ULL; 47 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 48 49 /* 50 * The initial- and re-scaling of tunables is configurable 51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 52 * 53 * Options are: 54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 57 */ 58 enum sched_tunable_scaling sysctl_sched_tunable_scaling 59 = SCHED_TUNABLESCALING_LOG; 60 61 /* 62 * Minimal preemption granularity for CPU-bound tasks: 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 64 */ 65 unsigned int sysctl_sched_min_granularity = 750000ULL; 66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 67 68 /* 69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 70 */ 71 static unsigned int sched_nr_latency = 8; 72 73 /* 74 * After fork, child runs first. If set to 0 (default) then 75 * parent will (try to) run first. 76 */ 77 unsigned int sysctl_sched_child_runs_first __read_mostly; 78 79 /* 80 * SCHED_OTHER wake-up granularity. 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 82 * 83 * This option delays the preemption effects of decoupled workloads 84 * and reduces their over-scheduling. Synchronous workloads will still 85 * have immediate wakeup/sleep latencies. 86 */ 87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 89 90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 91 92 /* 93 * The exponential sliding window over which load is averaged for shares 94 * distribution. 95 * (default: 10msec) 96 */ 97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * default: 5 msec, units: microseconds 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * Increase the granularity value when there are more CPUs, 115 * because with more CPUs the 'effective latency' as visible 116 * to users decreases. But the relationship is not linear, 117 * so pick a second-best guess by going with the log2 of the 118 * number of CPUs. 119 * 120 * This idea comes from the SD scheduler of Con Kolivas: 121 */ 122 static int get_update_sysctl_factor(void) 123 { 124 unsigned int cpus = min_t(int, num_online_cpus(), 8); 125 unsigned int factor; 126 127 switch (sysctl_sched_tunable_scaling) { 128 case SCHED_TUNABLESCALING_NONE: 129 factor = 1; 130 break; 131 case SCHED_TUNABLESCALING_LINEAR: 132 factor = cpus; 133 break; 134 case SCHED_TUNABLESCALING_LOG: 135 default: 136 factor = 1 + ilog2(cpus); 137 break; 138 } 139 140 return factor; 141 } 142 143 static void update_sysctl(void) 144 { 145 unsigned int factor = get_update_sysctl_factor(); 146 147 #define SET_SYSCTL(name) \ 148 (sysctl_##name = (factor) * normalized_sysctl_##name) 149 SET_SYSCTL(sched_min_granularity); 150 SET_SYSCTL(sched_latency); 151 SET_SYSCTL(sched_wakeup_granularity); 152 #undef SET_SYSCTL 153 } 154 155 void sched_init_granularity(void) 156 { 157 update_sysctl(); 158 } 159 160 #if BITS_PER_LONG == 32 161 # define WMULT_CONST (~0UL) 162 #else 163 # define WMULT_CONST (1UL << 32) 164 #endif 165 166 #define WMULT_SHIFT 32 167 168 /* 169 * Shift right and round: 170 */ 171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 172 173 /* 174 * delta *= weight / lw 175 */ 176 static unsigned long 177 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 178 struct load_weight *lw) 179 { 180 u64 tmp; 181 182 /* 183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 185 * 2^SCHED_LOAD_RESOLUTION. 186 */ 187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 188 tmp = (u64)delta_exec * scale_load_down(weight); 189 else 190 tmp = (u64)delta_exec; 191 192 if (!lw->inv_weight) { 193 unsigned long w = scale_load_down(lw->weight); 194 195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 196 lw->inv_weight = 1; 197 else if (unlikely(!w)) 198 lw->inv_weight = WMULT_CONST; 199 else 200 lw->inv_weight = WMULT_CONST / w; 201 } 202 203 /* 204 * Check whether we'd overflow the 64-bit multiplication: 205 */ 206 if (unlikely(tmp > WMULT_CONST)) 207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 208 WMULT_SHIFT/2); 209 else 210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 211 212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 213 } 214 215 216 const struct sched_class fair_sched_class; 217 218 /************************************************************** 219 * CFS operations on generic schedulable entities: 220 */ 221 222 #ifdef CONFIG_FAIR_GROUP_SCHED 223 224 /* cpu runqueue to which this cfs_rq is attached */ 225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 226 { 227 return cfs_rq->rq; 228 } 229 230 /* An entity is a task if it doesn't "own" a runqueue */ 231 #define entity_is_task(se) (!se->my_q) 232 233 static inline struct task_struct *task_of(struct sched_entity *se) 234 { 235 #ifdef CONFIG_SCHED_DEBUG 236 WARN_ON_ONCE(!entity_is_task(se)); 237 #endif 238 return container_of(se, struct task_struct, se); 239 } 240 241 /* Walk up scheduling entities hierarchy */ 242 #define for_each_sched_entity(se) \ 243 for (; se; se = se->parent) 244 245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 246 { 247 return p->se.cfs_rq; 248 } 249 250 /* runqueue on which this entity is (to be) queued */ 251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 252 { 253 return se->cfs_rq; 254 } 255 256 /* runqueue "owned" by this group */ 257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 258 { 259 return grp->my_q; 260 } 261 262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 263 { 264 if (!cfs_rq->on_list) { 265 /* 266 * Ensure we either appear before our parent (if already 267 * enqueued) or force our parent to appear after us when it is 268 * enqueued. The fact that we always enqueue bottom-up 269 * reduces this to two cases. 270 */ 271 if (cfs_rq->tg->parent && 272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 274 &rq_of(cfs_rq)->leaf_cfs_rq_list); 275 } else { 276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 277 &rq_of(cfs_rq)->leaf_cfs_rq_list); 278 } 279 280 cfs_rq->on_list = 1; 281 } 282 } 283 284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 285 { 286 if (cfs_rq->on_list) { 287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 288 cfs_rq->on_list = 0; 289 } 290 } 291 292 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 295 296 /* Do the two (enqueued) entities belong to the same group ? */ 297 static inline int 298 is_same_group(struct sched_entity *se, struct sched_entity *pse) 299 { 300 if (se->cfs_rq == pse->cfs_rq) 301 return 1; 302 303 return 0; 304 } 305 306 static inline struct sched_entity *parent_entity(struct sched_entity *se) 307 { 308 return se->parent; 309 } 310 311 /* return depth at which a sched entity is present in the hierarchy */ 312 static inline int depth_se(struct sched_entity *se) 313 { 314 int depth = 0; 315 316 for_each_sched_entity(se) 317 depth++; 318 319 return depth; 320 } 321 322 static void 323 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 324 { 325 int se_depth, pse_depth; 326 327 /* 328 * preemption test can be made between sibling entities who are in the 329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 330 * both tasks until we find their ancestors who are siblings of common 331 * parent. 332 */ 333 334 /* First walk up until both entities are at same depth */ 335 se_depth = depth_se(*se); 336 pse_depth = depth_se(*pse); 337 338 while (se_depth > pse_depth) { 339 se_depth--; 340 *se = parent_entity(*se); 341 } 342 343 while (pse_depth > se_depth) { 344 pse_depth--; 345 *pse = parent_entity(*pse); 346 } 347 348 while (!is_same_group(*se, *pse)) { 349 *se = parent_entity(*se); 350 *pse = parent_entity(*pse); 351 } 352 } 353 354 #else /* !CONFIG_FAIR_GROUP_SCHED */ 355 356 static inline struct task_struct *task_of(struct sched_entity *se) 357 { 358 return container_of(se, struct task_struct, se); 359 } 360 361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 362 { 363 return container_of(cfs_rq, struct rq, cfs); 364 } 365 366 #define entity_is_task(se) 1 367 368 #define for_each_sched_entity(se) \ 369 for (; se; se = NULL) 370 371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 372 { 373 return &task_rq(p)->cfs; 374 } 375 376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 377 { 378 struct task_struct *p = task_of(se); 379 struct rq *rq = task_rq(p); 380 381 return &rq->cfs; 382 } 383 384 /* runqueue "owned" by this group */ 385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 386 { 387 return NULL; 388 } 389 390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 391 { 392 } 393 394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 395 { 396 } 397 398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 400 401 static inline int 402 is_same_group(struct sched_entity *se, struct sched_entity *pse) 403 { 404 return 1; 405 } 406 407 static inline struct sched_entity *parent_entity(struct sched_entity *se) 408 { 409 return NULL; 410 } 411 412 static inline void 413 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 414 { 415 } 416 417 #endif /* CONFIG_FAIR_GROUP_SCHED */ 418 419 static __always_inline 420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec); 421 422 /************************************************************** 423 * Scheduling class tree data structure manipulation methods: 424 */ 425 426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) 427 { 428 s64 delta = (s64)(vruntime - min_vruntime); 429 if (delta > 0) 430 min_vruntime = vruntime; 431 432 return min_vruntime; 433 } 434 435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 436 { 437 s64 delta = (s64)(vruntime - min_vruntime); 438 if (delta < 0) 439 min_vruntime = vruntime; 440 441 return min_vruntime; 442 } 443 444 static inline int entity_before(struct sched_entity *a, 445 struct sched_entity *b) 446 { 447 return (s64)(a->vruntime - b->vruntime) < 0; 448 } 449 450 static void update_min_vruntime(struct cfs_rq *cfs_rq) 451 { 452 u64 vruntime = cfs_rq->min_vruntime; 453 454 if (cfs_rq->curr) 455 vruntime = cfs_rq->curr->vruntime; 456 457 if (cfs_rq->rb_leftmost) { 458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 459 struct sched_entity, 460 run_node); 461 462 if (!cfs_rq->curr) 463 vruntime = se->vruntime; 464 else 465 vruntime = min_vruntime(vruntime, se->vruntime); 466 } 467 468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 469 #ifndef CONFIG_64BIT 470 smp_wmb(); 471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 472 #endif 473 } 474 475 /* 476 * Enqueue an entity into the rb-tree: 477 */ 478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 479 { 480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 481 struct rb_node *parent = NULL; 482 struct sched_entity *entry; 483 int leftmost = 1; 484 485 /* 486 * Find the right place in the rbtree: 487 */ 488 while (*link) { 489 parent = *link; 490 entry = rb_entry(parent, struct sched_entity, run_node); 491 /* 492 * We dont care about collisions. Nodes with 493 * the same key stay together. 494 */ 495 if (entity_before(se, entry)) { 496 link = &parent->rb_left; 497 } else { 498 link = &parent->rb_right; 499 leftmost = 0; 500 } 501 } 502 503 /* 504 * Maintain a cache of leftmost tree entries (it is frequently 505 * used): 506 */ 507 if (leftmost) 508 cfs_rq->rb_leftmost = &se->run_node; 509 510 rb_link_node(&se->run_node, parent, link); 511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 512 } 513 514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 515 { 516 if (cfs_rq->rb_leftmost == &se->run_node) { 517 struct rb_node *next_node; 518 519 next_node = rb_next(&se->run_node); 520 cfs_rq->rb_leftmost = next_node; 521 } 522 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 524 } 525 526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 527 { 528 struct rb_node *left = cfs_rq->rb_leftmost; 529 530 if (!left) 531 return NULL; 532 533 return rb_entry(left, struct sched_entity, run_node); 534 } 535 536 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 537 { 538 struct rb_node *next = rb_next(&se->run_node); 539 540 if (!next) 541 return NULL; 542 543 return rb_entry(next, struct sched_entity, run_node); 544 } 545 546 #ifdef CONFIG_SCHED_DEBUG 547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 548 { 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 550 551 if (!last) 552 return NULL; 553 554 return rb_entry(last, struct sched_entity, run_node); 555 } 556 557 /************************************************************** 558 * Scheduling class statistics methods: 559 */ 560 561 int sched_proc_update_handler(struct ctl_table *table, int write, 562 void __user *buffer, size_t *lenp, 563 loff_t *ppos) 564 { 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 566 int factor = get_update_sysctl_factor(); 567 568 if (ret || !write) 569 return ret; 570 571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 572 sysctl_sched_min_granularity); 573 574 #define WRT_SYSCTL(name) \ 575 (normalized_sysctl_##name = sysctl_##name / (factor)) 576 WRT_SYSCTL(sched_min_granularity); 577 WRT_SYSCTL(sched_latency); 578 WRT_SYSCTL(sched_wakeup_granularity); 579 #undef WRT_SYSCTL 580 581 return 0; 582 } 583 #endif 584 585 /* 586 * delta /= w 587 */ 588 static inline unsigned long 589 calc_delta_fair(unsigned long delta, struct sched_entity *se) 590 { 591 if (unlikely(se->load.weight != NICE_0_LOAD)) 592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 593 594 return delta; 595 } 596 597 /* 598 * The idea is to set a period in which each task runs once. 599 * 600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch 601 * this period because otherwise the slices get too small. 602 * 603 * p = (nr <= nl) ? l : l*nr/nl 604 */ 605 static u64 __sched_period(unsigned long nr_running) 606 { 607 u64 period = sysctl_sched_latency; 608 unsigned long nr_latency = sched_nr_latency; 609 610 if (unlikely(nr_running > nr_latency)) { 611 period = sysctl_sched_min_granularity; 612 period *= nr_running; 613 } 614 615 return period; 616 } 617 618 /* 619 * We calculate the wall-time slice from the period by taking a part 620 * proportional to the weight. 621 * 622 * s = p*P[w/rw] 623 */ 624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 627 628 for_each_sched_entity(se) { 629 struct load_weight *load; 630 struct load_weight lw; 631 632 cfs_rq = cfs_rq_of(se); 633 load = &cfs_rq->load; 634 635 if (unlikely(!se->on_rq)) { 636 lw = cfs_rq->load; 637 638 update_load_add(&lw, se->load.weight); 639 load = &lw; 640 } 641 slice = calc_delta_mine(slice, se->load.weight, load); 642 } 643 return slice; 644 } 645 646 /* 647 * We calculate the vruntime slice of a to be inserted task 648 * 649 * vs = s/w 650 */ 651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 return calc_delta_fair(sched_slice(cfs_rq, se), se); 654 } 655 656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); 657 static void update_cfs_shares(struct cfs_rq *cfs_rq); 658 659 /* 660 * Update the current task's runtime statistics. Skip current tasks that 661 * are not in our scheduling class. 662 */ 663 static inline void 664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 665 unsigned long delta_exec) 666 { 667 unsigned long delta_exec_weighted; 668 669 schedstat_set(curr->statistics.exec_max, 670 max((u64)delta_exec, curr->statistics.exec_max)); 671 672 curr->sum_exec_runtime += delta_exec; 673 schedstat_add(cfs_rq, exec_clock, delta_exec); 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 675 676 curr->vruntime += delta_exec_weighted; 677 update_min_vruntime(cfs_rq); 678 679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED 680 cfs_rq->load_unacc_exec_time += delta_exec; 681 #endif 682 } 683 684 static void update_curr(struct cfs_rq *cfs_rq) 685 { 686 struct sched_entity *curr = cfs_rq->curr; 687 u64 now = rq_of(cfs_rq)->clock_task; 688 unsigned long delta_exec; 689 690 if (unlikely(!curr)) 691 return; 692 693 /* 694 * Get the amount of time the current task was running 695 * since the last time we changed load (this cannot 696 * overflow on 32 bits): 697 */ 698 delta_exec = (unsigned long)(now - curr->exec_start); 699 if (!delta_exec) 700 return; 701 702 __update_curr(cfs_rq, curr, delta_exec); 703 curr->exec_start = now; 704 705 if (entity_is_task(curr)) { 706 struct task_struct *curtask = task_of(curr); 707 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 709 cpuacct_charge(curtask, delta_exec); 710 account_group_exec_runtime(curtask, delta_exec); 711 } 712 713 account_cfs_rq_runtime(cfs_rq, delta_exec); 714 } 715 716 static inline void 717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 718 { 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); 720 } 721 722 /* 723 * Task is being enqueued - update stats: 724 */ 725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 /* 728 * Are we enqueueing a waiting task? (for current tasks 729 * a dequeue/enqueue event is a NOP) 730 */ 731 if (se != cfs_rq->curr) 732 update_stats_wait_start(cfs_rq, se); 733 } 734 735 static void 736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 737 { 738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 739 rq_of(cfs_rq)->clock - se->statistics.wait_start)); 740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 742 rq_of(cfs_rq)->clock - se->statistics.wait_start); 743 #ifdef CONFIG_SCHEDSTATS 744 if (entity_is_task(se)) { 745 trace_sched_stat_wait(task_of(se), 746 rq_of(cfs_rq)->clock - se->statistics.wait_start); 747 } 748 #endif 749 schedstat_set(se->statistics.wait_start, 0); 750 } 751 752 static inline void 753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 /* 756 * Mark the end of the wait period if dequeueing a 757 * waiting task: 758 */ 759 if (se != cfs_rq->curr) 760 update_stats_wait_end(cfs_rq, se); 761 } 762 763 /* 764 * We are picking a new current task - update its stats: 765 */ 766 static inline void 767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 768 { 769 /* 770 * We are starting a new run period: 771 */ 772 se->exec_start = rq_of(cfs_rq)->clock_task; 773 } 774 775 /************************************************** 776 * Scheduling class queueing methods: 777 */ 778 779 static void 780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 781 { 782 update_load_add(&cfs_rq->load, se->load.weight); 783 if (!parent_entity(se)) 784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 785 #ifdef CONFIG_SMP 786 if (entity_is_task(se)) 787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks); 788 #endif 789 cfs_rq->nr_running++; 790 } 791 792 static void 793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 794 { 795 update_load_sub(&cfs_rq->load, se->load.weight); 796 if (!parent_entity(se)) 797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 798 if (entity_is_task(se)) 799 list_del_init(&se->group_node); 800 cfs_rq->nr_running--; 801 } 802 803 #ifdef CONFIG_FAIR_GROUP_SCHED 804 /* we need this in update_cfs_load and load-balance functions below */ 805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 806 # ifdef CONFIG_SMP 807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, 808 int global_update) 809 { 810 struct task_group *tg = cfs_rq->tg; 811 long load_avg; 812 813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); 814 load_avg -= cfs_rq->load_contribution; 815 816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { 817 atomic_add(load_avg, &tg->load_weight); 818 cfs_rq->load_contribution += load_avg; 819 } 820 } 821 822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 823 { 824 u64 period = sysctl_sched_shares_window; 825 u64 now, delta; 826 unsigned long load = cfs_rq->load.weight; 827 828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) 829 return; 830 831 now = rq_of(cfs_rq)->clock_task; 832 delta = now - cfs_rq->load_stamp; 833 834 /* truncate load history at 4 idle periods */ 835 if (cfs_rq->load_stamp > cfs_rq->load_last && 836 now - cfs_rq->load_last > 4 * period) { 837 cfs_rq->load_period = 0; 838 cfs_rq->load_avg = 0; 839 delta = period - 1; 840 } 841 842 cfs_rq->load_stamp = now; 843 cfs_rq->load_unacc_exec_time = 0; 844 cfs_rq->load_period += delta; 845 if (load) { 846 cfs_rq->load_last = now; 847 cfs_rq->load_avg += delta * load; 848 } 849 850 /* consider updating load contribution on each fold or truncate */ 851 if (global_update || cfs_rq->load_period > period 852 || !cfs_rq->load_period) 853 update_cfs_rq_load_contribution(cfs_rq, global_update); 854 855 while (cfs_rq->load_period > period) { 856 /* 857 * Inline assembly required to prevent the compiler 858 * optimising this loop into a divmod call. 859 * See __iter_div_u64_rem() for another example of this. 860 */ 861 asm("" : "+rm" (cfs_rq->load_period)); 862 cfs_rq->load_period /= 2; 863 cfs_rq->load_avg /= 2; 864 } 865 866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) 867 list_del_leaf_cfs_rq(cfs_rq); 868 } 869 870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 871 { 872 long tg_weight; 873 874 /* 875 * Use this CPU's actual weight instead of the last load_contribution 876 * to gain a more accurate current total weight. See 877 * update_cfs_rq_load_contribution(). 878 */ 879 tg_weight = atomic_read(&tg->load_weight); 880 tg_weight -= cfs_rq->load_contribution; 881 tg_weight += cfs_rq->load.weight; 882 883 return tg_weight; 884 } 885 886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 887 { 888 long tg_weight, load, shares; 889 890 tg_weight = calc_tg_weight(tg, cfs_rq); 891 load = cfs_rq->load.weight; 892 893 shares = (tg->shares * load); 894 if (tg_weight) 895 shares /= tg_weight; 896 897 if (shares < MIN_SHARES) 898 shares = MIN_SHARES; 899 if (shares > tg->shares) 900 shares = tg->shares; 901 902 return shares; 903 } 904 905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq) 906 { 907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { 908 update_cfs_load(cfs_rq, 0); 909 update_cfs_shares(cfs_rq); 910 } 911 } 912 # else /* CONFIG_SMP */ 913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 914 { 915 } 916 917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 918 { 919 return tg->shares; 920 } 921 922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 923 { 924 } 925 # endif /* CONFIG_SMP */ 926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 927 unsigned long weight) 928 { 929 if (se->on_rq) { 930 /* commit outstanding execution time */ 931 if (cfs_rq->curr == se) 932 update_curr(cfs_rq); 933 account_entity_dequeue(cfs_rq, se); 934 } 935 936 update_load_set(&se->load, weight); 937 938 if (se->on_rq) 939 account_entity_enqueue(cfs_rq, se); 940 } 941 942 static void update_cfs_shares(struct cfs_rq *cfs_rq) 943 { 944 struct task_group *tg; 945 struct sched_entity *se; 946 long shares; 947 948 tg = cfs_rq->tg; 949 se = tg->se[cpu_of(rq_of(cfs_rq))]; 950 if (!se || throttled_hierarchy(cfs_rq)) 951 return; 952 #ifndef CONFIG_SMP 953 if (likely(se->load.weight == tg->shares)) 954 return; 955 #endif 956 shares = calc_cfs_shares(cfs_rq, tg); 957 958 reweight_entity(cfs_rq_of(se), se, shares); 959 } 960 #else /* CONFIG_FAIR_GROUP_SCHED */ 961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 962 { 963 } 964 965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 966 { 967 } 968 969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 970 { 971 } 972 #endif /* CONFIG_FAIR_GROUP_SCHED */ 973 974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 975 { 976 #ifdef CONFIG_SCHEDSTATS 977 struct task_struct *tsk = NULL; 978 979 if (entity_is_task(se)) 980 tsk = task_of(se); 981 982 if (se->statistics.sleep_start) { 983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; 984 985 if ((s64)delta < 0) 986 delta = 0; 987 988 if (unlikely(delta > se->statistics.sleep_max)) 989 se->statistics.sleep_max = delta; 990 991 se->statistics.sleep_start = 0; 992 se->statistics.sum_sleep_runtime += delta; 993 994 if (tsk) { 995 account_scheduler_latency(tsk, delta >> 10, 1); 996 trace_sched_stat_sleep(tsk, delta); 997 } 998 } 999 if (se->statistics.block_start) { 1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; 1001 1002 if ((s64)delta < 0) 1003 delta = 0; 1004 1005 if (unlikely(delta > se->statistics.block_max)) 1006 se->statistics.block_max = delta; 1007 1008 se->statistics.block_start = 0; 1009 se->statistics.sum_sleep_runtime += delta; 1010 1011 if (tsk) { 1012 if (tsk->in_iowait) { 1013 se->statistics.iowait_sum += delta; 1014 se->statistics.iowait_count++; 1015 trace_sched_stat_iowait(tsk, delta); 1016 } 1017 1018 trace_sched_stat_blocked(tsk, delta); 1019 1020 /* 1021 * Blocking time is in units of nanosecs, so shift by 1022 * 20 to get a milliseconds-range estimation of the 1023 * amount of time that the task spent sleeping: 1024 */ 1025 if (unlikely(prof_on == SLEEP_PROFILING)) { 1026 profile_hits(SLEEP_PROFILING, 1027 (void *)get_wchan(tsk), 1028 delta >> 20); 1029 } 1030 account_scheduler_latency(tsk, delta >> 10, 0); 1031 } 1032 } 1033 #endif 1034 } 1035 1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1037 { 1038 #ifdef CONFIG_SCHED_DEBUG 1039 s64 d = se->vruntime - cfs_rq->min_vruntime; 1040 1041 if (d < 0) 1042 d = -d; 1043 1044 if (d > 3*sysctl_sched_latency) 1045 schedstat_inc(cfs_rq, nr_spread_over); 1046 #endif 1047 } 1048 1049 static void 1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1051 { 1052 u64 vruntime = cfs_rq->min_vruntime; 1053 1054 /* 1055 * The 'current' period is already promised to the current tasks, 1056 * however the extra weight of the new task will slow them down a 1057 * little, place the new task so that it fits in the slot that 1058 * stays open at the end. 1059 */ 1060 if (initial && sched_feat(START_DEBIT)) 1061 vruntime += sched_vslice(cfs_rq, se); 1062 1063 /* sleeps up to a single latency don't count. */ 1064 if (!initial) { 1065 unsigned long thresh = sysctl_sched_latency; 1066 1067 /* 1068 * Halve their sleep time's effect, to allow 1069 * for a gentler effect of sleepers: 1070 */ 1071 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1072 thresh >>= 1; 1073 1074 vruntime -= thresh; 1075 } 1076 1077 /* ensure we never gain time by being placed backwards. */ 1078 vruntime = max_vruntime(se->vruntime, vruntime); 1079 1080 se->vruntime = vruntime; 1081 } 1082 1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1084 1085 static void 1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1087 { 1088 /* 1089 * Update the normalized vruntime before updating min_vruntime 1090 * through callig update_curr(). 1091 */ 1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1093 se->vruntime += cfs_rq->min_vruntime; 1094 1095 /* 1096 * Update run-time statistics of the 'current'. 1097 */ 1098 update_curr(cfs_rq); 1099 update_cfs_load(cfs_rq, 0); 1100 account_entity_enqueue(cfs_rq, se); 1101 update_cfs_shares(cfs_rq); 1102 1103 if (flags & ENQUEUE_WAKEUP) { 1104 place_entity(cfs_rq, se, 0); 1105 enqueue_sleeper(cfs_rq, se); 1106 } 1107 1108 update_stats_enqueue(cfs_rq, se); 1109 check_spread(cfs_rq, se); 1110 if (se != cfs_rq->curr) 1111 __enqueue_entity(cfs_rq, se); 1112 se->on_rq = 1; 1113 1114 if (cfs_rq->nr_running == 1) { 1115 list_add_leaf_cfs_rq(cfs_rq); 1116 check_enqueue_throttle(cfs_rq); 1117 } 1118 } 1119 1120 static void __clear_buddies_last(struct sched_entity *se) 1121 { 1122 for_each_sched_entity(se) { 1123 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1124 if (cfs_rq->last == se) 1125 cfs_rq->last = NULL; 1126 else 1127 break; 1128 } 1129 } 1130 1131 static void __clear_buddies_next(struct sched_entity *se) 1132 { 1133 for_each_sched_entity(se) { 1134 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1135 if (cfs_rq->next == se) 1136 cfs_rq->next = NULL; 1137 else 1138 break; 1139 } 1140 } 1141 1142 static void __clear_buddies_skip(struct sched_entity *se) 1143 { 1144 for_each_sched_entity(se) { 1145 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1146 if (cfs_rq->skip == se) 1147 cfs_rq->skip = NULL; 1148 else 1149 break; 1150 } 1151 } 1152 1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1154 { 1155 if (cfs_rq->last == se) 1156 __clear_buddies_last(se); 1157 1158 if (cfs_rq->next == se) 1159 __clear_buddies_next(se); 1160 1161 if (cfs_rq->skip == se) 1162 __clear_buddies_skip(se); 1163 } 1164 1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1166 1167 static void 1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1169 { 1170 /* 1171 * Update run-time statistics of the 'current'. 1172 */ 1173 update_curr(cfs_rq); 1174 1175 update_stats_dequeue(cfs_rq, se); 1176 if (flags & DEQUEUE_SLEEP) { 1177 #ifdef CONFIG_SCHEDSTATS 1178 if (entity_is_task(se)) { 1179 struct task_struct *tsk = task_of(se); 1180 1181 if (tsk->state & TASK_INTERRUPTIBLE) 1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock; 1183 if (tsk->state & TASK_UNINTERRUPTIBLE) 1184 se->statistics.block_start = rq_of(cfs_rq)->clock; 1185 } 1186 #endif 1187 } 1188 1189 clear_buddies(cfs_rq, se); 1190 1191 if (se != cfs_rq->curr) 1192 __dequeue_entity(cfs_rq, se); 1193 se->on_rq = 0; 1194 update_cfs_load(cfs_rq, 0); 1195 account_entity_dequeue(cfs_rq, se); 1196 1197 /* 1198 * Normalize the entity after updating the min_vruntime because the 1199 * update can refer to the ->curr item and we need to reflect this 1200 * movement in our normalized position. 1201 */ 1202 if (!(flags & DEQUEUE_SLEEP)) 1203 se->vruntime -= cfs_rq->min_vruntime; 1204 1205 /* return excess runtime on last dequeue */ 1206 return_cfs_rq_runtime(cfs_rq); 1207 1208 update_min_vruntime(cfs_rq); 1209 update_cfs_shares(cfs_rq); 1210 } 1211 1212 /* 1213 * Preempt the current task with a newly woken task if needed: 1214 */ 1215 static void 1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1217 { 1218 unsigned long ideal_runtime, delta_exec; 1219 struct sched_entity *se; 1220 s64 delta; 1221 1222 ideal_runtime = sched_slice(cfs_rq, curr); 1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1224 if (delta_exec > ideal_runtime) { 1225 resched_task(rq_of(cfs_rq)->curr); 1226 /* 1227 * The current task ran long enough, ensure it doesn't get 1228 * re-elected due to buddy favours. 1229 */ 1230 clear_buddies(cfs_rq, curr); 1231 return; 1232 } 1233 1234 /* 1235 * Ensure that a task that missed wakeup preemption by a 1236 * narrow margin doesn't have to wait for a full slice. 1237 * This also mitigates buddy induced latencies under load. 1238 */ 1239 if (delta_exec < sysctl_sched_min_granularity) 1240 return; 1241 1242 se = __pick_first_entity(cfs_rq); 1243 delta = curr->vruntime - se->vruntime; 1244 1245 if (delta < 0) 1246 return; 1247 1248 if (delta > ideal_runtime) 1249 resched_task(rq_of(cfs_rq)->curr); 1250 } 1251 1252 static void 1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1254 { 1255 /* 'current' is not kept within the tree. */ 1256 if (se->on_rq) { 1257 /* 1258 * Any task has to be enqueued before it get to execute on 1259 * a CPU. So account for the time it spent waiting on the 1260 * runqueue. 1261 */ 1262 update_stats_wait_end(cfs_rq, se); 1263 __dequeue_entity(cfs_rq, se); 1264 } 1265 1266 update_stats_curr_start(cfs_rq, se); 1267 cfs_rq->curr = se; 1268 #ifdef CONFIG_SCHEDSTATS 1269 /* 1270 * Track our maximum slice length, if the CPU's load is at 1271 * least twice that of our own weight (i.e. dont track it 1272 * when there are only lesser-weight tasks around): 1273 */ 1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1275 se->statistics.slice_max = max(se->statistics.slice_max, 1276 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1277 } 1278 #endif 1279 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1280 } 1281 1282 static int 1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1284 1285 /* 1286 * Pick the next process, keeping these things in mind, in this order: 1287 * 1) keep things fair between processes/task groups 1288 * 2) pick the "next" process, since someone really wants that to run 1289 * 3) pick the "last" process, for cache locality 1290 * 4) do not run the "skip" process, if something else is available 1291 */ 1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1293 { 1294 struct sched_entity *se = __pick_first_entity(cfs_rq); 1295 struct sched_entity *left = se; 1296 1297 /* 1298 * Avoid running the skip buddy, if running something else can 1299 * be done without getting too unfair. 1300 */ 1301 if (cfs_rq->skip == se) { 1302 struct sched_entity *second = __pick_next_entity(se); 1303 if (second && wakeup_preempt_entity(second, left) < 1) 1304 se = second; 1305 } 1306 1307 /* 1308 * Prefer last buddy, try to return the CPU to a preempted task. 1309 */ 1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1311 se = cfs_rq->last; 1312 1313 /* 1314 * Someone really wants this to run. If it's not unfair, run it. 1315 */ 1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1317 se = cfs_rq->next; 1318 1319 clear_buddies(cfs_rq, se); 1320 1321 return se; 1322 } 1323 1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1325 1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 1327 { 1328 /* 1329 * If still on the runqueue then deactivate_task() 1330 * was not called and update_curr() has to be done: 1331 */ 1332 if (prev->on_rq) 1333 update_curr(cfs_rq); 1334 1335 /* throttle cfs_rqs exceeding runtime */ 1336 check_cfs_rq_runtime(cfs_rq); 1337 1338 check_spread(cfs_rq, prev); 1339 if (prev->on_rq) { 1340 update_stats_wait_start(cfs_rq, prev); 1341 /* Put 'current' back into the tree. */ 1342 __enqueue_entity(cfs_rq, prev); 1343 } 1344 cfs_rq->curr = NULL; 1345 } 1346 1347 static void 1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 1349 { 1350 /* 1351 * Update run-time statistics of the 'current'. 1352 */ 1353 update_curr(cfs_rq); 1354 1355 /* 1356 * Update share accounting for long-running entities. 1357 */ 1358 update_entity_shares_tick(cfs_rq); 1359 1360 #ifdef CONFIG_SCHED_HRTICK 1361 /* 1362 * queued ticks are scheduled to match the slice, so don't bother 1363 * validating it and just reschedule. 1364 */ 1365 if (queued) { 1366 resched_task(rq_of(cfs_rq)->curr); 1367 return; 1368 } 1369 /* 1370 * don't let the period tick interfere with the hrtick preemption 1371 */ 1372 if (!sched_feat(DOUBLE_TICK) && 1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 1374 return; 1375 #endif 1376 1377 if (cfs_rq->nr_running > 1) 1378 check_preempt_tick(cfs_rq, curr); 1379 } 1380 1381 1382 /************************************************** 1383 * CFS bandwidth control machinery 1384 */ 1385 1386 #ifdef CONFIG_CFS_BANDWIDTH 1387 1388 #ifdef HAVE_JUMP_LABEL 1389 static struct static_key __cfs_bandwidth_used; 1390 1391 static inline bool cfs_bandwidth_used(void) 1392 { 1393 return static_key_false(&__cfs_bandwidth_used); 1394 } 1395 1396 void account_cfs_bandwidth_used(int enabled, int was_enabled) 1397 { 1398 /* only need to count groups transitioning between enabled/!enabled */ 1399 if (enabled && !was_enabled) 1400 static_key_slow_inc(&__cfs_bandwidth_used); 1401 else if (!enabled && was_enabled) 1402 static_key_slow_dec(&__cfs_bandwidth_used); 1403 } 1404 #else /* HAVE_JUMP_LABEL */ 1405 static bool cfs_bandwidth_used(void) 1406 { 1407 return true; 1408 } 1409 1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 1411 #endif /* HAVE_JUMP_LABEL */ 1412 1413 /* 1414 * default period for cfs group bandwidth. 1415 * default: 0.1s, units: nanoseconds 1416 */ 1417 static inline u64 default_cfs_period(void) 1418 { 1419 return 100000000ULL; 1420 } 1421 1422 static inline u64 sched_cfs_bandwidth_slice(void) 1423 { 1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 1425 } 1426 1427 /* 1428 * Replenish runtime according to assigned quota and update expiration time. 1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 1430 * additional synchronization around rq->lock. 1431 * 1432 * requires cfs_b->lock 1433 */ 1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 1435 { 1436 u64 now; 1437 1438 if (cfs_b->quota == RUNTIME_INF) 1439 return; 1440 1441 now = sched_clock_cpu(smp_processor_id()); 1442 cfs_b->runtime = cfs_b->quota; 1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 1444 } 1445 1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 1447 { 1448 return &tg->cfs_bandwidth; 1449 } 1450 1451 /* returns 0 on failure to allocate runtime */ 1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1453 { 1454 struct task_group *tg = cfs_rq->tg; 1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 1456 u64 amount = 0, min_amount, expires; 1457 1458 /* note: this is a positive sum as runtime_remaining <= 0 */ 1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 1460 1461 raw_spin_lock(&cfs_b->lock); 1462 if (cfs_b->quota == RUNTIME_INF) 1463 amount = min_amount; 1464 else { 1465 /* 1466 * If the bandwidth pool has become inactive, then at least one 1467 * period must have elapsed since the last consumption. 1468 * Refresh the global state and ensure bandwidth timer becomes 1469 * active. 1470 */ 1471 if (!cfs_b->timer_active) { 1472 __refill_cfs_bandwidth_runtime(cfs_b); 1473 __start_cfs_bandwidth(cfs_b); 1474 } 1475 1476 if (cfs_b->runtime > 0) { 1477 amount = min(cfs_b->runtime, min_amount); 1478 cfs_b->runtime -= amount; 1479 cfs_b->idle = 0; 1480 } 1481 } 1482 expires = cfs_b->runtime_expires; 1483 raw_spin_unlock(&cfs_b->lock); 1484 1485 cfs_rq->runtime_remaining += amount; 1486 /* 1487 * we may have advanced our local expiration to account for allowed 1488 * spread between our sched_clock and the one on which runtime was 1489 * issued. 1490 */ 1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 1492 cfs_rq->runtime_expires = expires; 1493 1494 return cfs_rq->runtime_remaining > 0; 1495 } 1496 1497 /* 1498 * Note: This depends on the synchronization provided by sched_clock and the 1499 * fact that rq->clock snapshots this value. 1500 */ 1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1502 { 1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1504 struct rq *rq = rq_of(cfs_rq); 1505 1506 /* if the deadline is ahead of our clock, nothing to do */ 1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) 1508 return; 1509 1510 if (cfs_rq->runtime_remaining < 0) 1511 return; 1512 1513 /* 1514 * If the local deadline has passed we have to consider the 1515 * possibility that our sched_clock is 'fast' and the global deadline 1516 * has not truly expired. 1517 * 1518 * Fortunately we can check determine whether this the case by checking 1519 * whether the global deadline has advanced. 1520 */ 1521 1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 1523 /* extend local deadline, drift is bounded above by 2 ticks */ 1524 cfs_rq->runtime_expires += TICK_NSEC; 1525 } else { 1526 /* global deadline is ahead, expiration has passed */ 1527 cfs_rq->runtime_remaining = 0; 1528 } 1529 } 1530 1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 1532 unsigned long delta_exec) 1533 { 1534 /* dock delta_exec before expiring quota (as it could span periods) */ 1535 cfs_rq->runtime_remaining -= delta_exec; 1536 expire_cfs_rq_runtime(cfs_rq); 1537 1538 if (likely(cfs_rq->runtime_remaining > 0)) 1539 return; 1540 1541 /* 1542 * if we're unable to extend our runtime we resched so that the active 1543 * hierarchy can be throttled 1544 */ 1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 1546 resched_task(rq_of(cfs_rq)->curr); 1547 } 1548 1549 static __always_inline 1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) 1551 { 1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 1553 return; 1554 1555 __account_cfs_rq_runtime(cfs_rq, delta_exec); 1556 } 1557 1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 1559 { 1560 return cfs_bandwidth_used() && cfs_rq->throttled; 1561 } 1562 1563 /* check whether cfs_rq, or any parent, is throttled */ 1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 1565 { 1566 return cfs_bandwidth_used() && cfs_rq->throttle_count; 1567 } 1568 1569 /* 1570 * Ensure that neither of the group entities corresponding to src_cpu or 1571 * dest_cpu are members of a throttled hierarchy when performing group 1572 * load-balance operations. 1573 */ 1574 static inline int throttled_lb_pair(struct task_group *tg, 1575 int src_cpu, int dest_cpu) 1576 { 1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 1578 1579 src_cfs_rq = tg->cfs_rq[src_cpu]; 1580 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 1581 1582 return throttled_hierarchy(src_cfs_rq) || 1583 throttled_hierarchy(dest_cfs_rq); 1584 } 1585 1586 /* updated child weight may affect parent so we have to do this bottom up */ 1587 static int tg_unthrottle_up(struct task_group *tg, void *data) 1588 { 1589 struct rq *rq = data; 1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1591 1592 cfs_rq->throttle_count--; 1593 #ifdef CONFIG_SMP 1594 if (!cfs_rq->throttle_count) { 1595 u64 delta = rq->clock_task - cfs_rq->load_stamp; 1596 1597 /* leaving throttled state, advance shares averaging windows */ 1598 cfs_rq->load_stamp += delta; 1599 cfs_rq->load_last += delta; 1600 1601 /* update entity weight now that we are on_rq again */ 1602 update_cfs_shares(cfs_rq); 1603 } 1604 #endif 1605 1606 return 0; 1607 } 1608 1609 static int tg_throttle_down(struct task_group *tg, void *data) 1610 { 1611 struct rq *rq = data; 1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1613 1614 /* group is entering throttled state, record last load */ 1615 if (!cfs_rq->throttle_count) 1616 update_cfs_load(cfs_rq, 0); 1617 cfs_rq->throttle_count++; 1618 1619 return 0; 1620 } 1621 1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 1623 { 1624 struct rq *rq = rq_of(cfs_rq); 1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1626 struct sched_entity *se; 1627 long task_delta, dequeue = 1; 1628 1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1630 1631 /* account load preceding throttle */ 1632 rcu_read_lock(); 1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 1634 rcu_read_unlock(); 1635 1636 task_delta = cfs_rq->h_nr_running; 1637 for_each_sched_entity(se) { 1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 1639 /* throttled entity or throttle-on-deactivate */ 1640 if (!se->on_rq) 1641 break; 1642 1643 if (dequeue) 1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 1645 qcfs_rq->h_nr_running -= task_delta; 1646 1647 if (qcfs_rq->load.weight) 1648 dequeue = 0; 1649 } 1650 1651 if (!se) 1652 rq->nr_running -= task_delta; 1653 1654 cfs_rq->throttled = 1; 1655 cfs_rq->throttled_timestamp = rq->clock; 1656 raw_spin_lock(&cfs_b->lock); 1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 1658 raw_spin_unlock(&cfs_b->lock); 1659 } 1660 1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 1662 { 1663 struct rq *rq = rq_of(cfs_rq); 1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1665 struct sched_entity *se; 1666 int enqueue = 1; 1667 long task_delta; 1668 1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1670 1671 cfs_rq->throttled = 0; 1672 raw_spin_lock(&cfs_b->lock); 1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; 1674 list_del_rcu(&cfs_rq->throttled_list); 1675 raw_spin_unlock(&cfs_b->lock); 1676 cfs_rq->throttled_timestamp = 0; 1677 1678 update_rq_clock(rq); 1679 /* update hierarchical throttle state */ 1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 1681 1682 if (!cfs_rq->load.weight) 1683 return; 1684 1685 task_delta = cfs_rq->h_nr_running; 1686 for_each_sched_entity(se) { 1687 if (se->on_rq) 1688 enqueue = 0; 1689 1690 cfs_rq = cfs_rq_of(se); 1691 if (enqueue) 1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 1693 cfs_rq->h_nr_running += task_delta; 1694 1695 if (cfs_rq_throttled(cfs_rq)) 1696 break; 1697 } 1698 1699 if (!se) 1700 rq->nr_running += task_delta; 1701 1702 /* determine whether we need to wake up potentially idle cpu */ 1703 if (rq->curr == rq->idle && rq->cfs.nr_running) 1704 resched_task(rq->curr); 1705 } 1706 1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 1708 u64 remaining, u64 expires) 1709 { 1710 struct cfs_rq *cfs_rq; 1711 u64 runtime = remaining; 1712 1713 rcu_read_lock(); 1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 1715 throttled_list) { 1716 struct rq *rq = rq_of(cfs_rq); 1717 1718 raw_spin_lock(&rq->lock); 1719 if (!cfs_rq_throttled(cfs_rq)) 1720 goto next; 1721 1722 runtime = -cfs_rq->runtime_remaining + 1; 1723 if (runtime > remaining) 1724 runtime = remaining; 1725 remaining -= runtime; 1726 1727 cfs_rq->runtime_remaining += runtime; 1728 cfs_rq->runtime_expires = expires; 1729 1730 /* we check whether we're throttled above */ 1731 if (cfs_rq->runtime_remaining > 0) 1732 unthrottle_cfs_rq(cfs_rq); 1733 1734 next: 1735 raw_spin_unlock(&rq->lock); 1736 1737 if (!remaining) 1738 break; 1739 } 1740 rcu_read_unlock(); 1741 1742 return remaining; 1743 } 1744 1745 /* 1746 * Responsible for refilling a task_group's bandwidth and unthrottling its 1747 * cfs_rqs as appropriate. If there has been no activity within the last 1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 1749 * used to track this state. 1750 */ 1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 1752 { 1753 u64 runtime, runtime_expires; 1754 int idle = 1, throttled; 1755 1756 raw_spin_lock(&cfs_b->lock); 1757 /* no need to continue the timer with no bandwidth constraint */ 1758 if (cfs_b->quota == RUNTIME_INF) 1759 goto out_unlock; 1760 1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1762 /* idle depends on !throttled (for the case of a large deficit) */ 1763 idle = cfs_b->idle && !throttled; 1764 cfs_b->nr_periods += overrun; 1765 1766 /* if we're going inactive then everything else can be deferred */ 1767 if (idle) 1768 goto out_unlock; 1769 1770 __refill_cfs_bandwidth_runtime(cfs_b); 1771 1772 if (!throttled) { 1773 /* mark as potentially idle for the upcoming period */ 1774 cfs_b->idle = 1; 1775 goto out_unlock; 1776 } 1777 1778 /* account preceding periods in which throttling occurred */ 1779 cfs_b->nr_throttled += overrun; 1780 1781 /* 1782 * There are throttled entities so we must first use the new bandwidth 1783 * to unthrottle them before making it generally available. This 1784 * ensures that all existing debts will be paid before a new cfs_rq is 1785 * allowed to run. 1786 */ 1787 runtime = cfs_b->runtime; 1788 runtime_expires = cfs_b->runtime_expires; 1789 cfs_b->runtime = 0; 1790 1791 /* 1792 * This check is repeated as we are holding onto the new bandwidth 1793 * while we unthrottle. This can potentially race with an unthrottled 1794 * group trying to acquire new bandwidth from the global pool. 1795 */ 1796 while (throttled && runtime > 0) { 1797 raw_spin_unlock(&cfs_b->lock); 1798 /* we can't nest cfs_b->lock while distributing bandwidth */ 1799 runtime = distribute_cfs_runtime(cfs_b, runtime, 1800 runtime_expires); 1801 raw_spin_lock(&cfs_b->lock); 1802 1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1804 } 1805 1806 /* return (any) remaining runtime */ 1807 cfs_b->runtime = runtime; 1808 /* 1809 * While we are ensured activity in the period following an 1810 * unthrottle, this also covers the case in which the new bandwidth is 1811 * insufficient to cover the existing bandwidth deficit. (Forcing the 1812 * timer to remain active while there are any throttled entities.) 1813 */ 1814 cfs_b->idle = 0; 1815 out_unlock: 1816 if (idle) 1817 cfs_b->timer_active = 0; 1818 raw_spin_unlock(&cfs_b->lock); 1819 1820 return idle; 1821 } 1822 1823 /* a cfs_rq won't donate quota below this amount */ 1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 1825 /* minimum remaining period time to redistribute slack quota */ 1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 1827 /* how long we wait to gather additional slack before distributing */ 1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 1829 1830 /* are we near the end of the current quota period? */ 1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 1832 { 1833 struct hrtimer *refresh_timer = &cfs_b->period_timer; 1834 u64 remaining; 1835 1836 /* if the call-back is running a quota refresh is already occurring */ 1837 if (hrtimer_callback_running(refresh_timer)) 1838 return 1; 1839 1840 /* is a quota refresh about to occur? */ 1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 1842 if (remaining < min_expire) 1843 return 1; 1844 1845 return 0; 1846 } 1847 1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 1849 { 1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 1851 1852 /* if there's a quota refresh soon don't bother with slack */ 1853 if (runtime_refresh_within(cfs_b, min_left)) 1854 return; 1855 1856 start_bandwidth_timer(&cfs_b->slack_timer, 1857 ns_to_ktime(cfs_bandwidth_slack_period)); 1858 } 1859 1860 /* we know any runtime found here is valid as update_curr() precedes return */ 1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1862 { 1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 1865 1866 if (slack_runtime <= 0) 1867 return; 1868 1869 raw_spin_lock(&cfs_b->lock); 1870 if (cfs_b->quota != RUNTIME_INF && 1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 1872 cfs_b->runtime += slack_runtime; 1873 1874 /* we are under rq->lock, defer unthrottling using a timer */ 1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 1876 !list_empty(&cfs_b->throttled_cfs_rq)) 1877 start_cfs_slack_bandwidth(cfs_b); 1878 } 1879 raw_spin_unlock(&cfs_b->lock); 1880 1881 /* even if it's not valid for return we don't want to try again */ 1882 cfs_rq->runtime_remaining -= slack_runtime; 1883 } 1884 1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1886 { 1887 if (!cfs_bandwidth_used()) 1888 return; 1889 1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 1891 return; 1892 1893 __return_cfs_rq_runtime(cfs_rq); 1894 } 1895 1896 /* 1897 * This is done with a timer (instead of inline with bandwidth return) since 1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 1899 */ 1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 1901 { 1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 1903 u64 expires; 1904 1905 /* confirm we're still not at a refresh boundary */ 1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 1907 return; 1908 1909 raw_spin_lock(&cfs_b->lock); 1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 1911 runtime = cfs_b->runtime; 1912 cfs_b->runtime = 0; 1913 } 1914 expires = cfs_b->runtime_expires; 1915 raw_spin_unlock(&cfs_b->lock); 1916 1917 if (!runtime) 1918 return; 1919 1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 1921 1922 raw_spin_lock(&cfs_b->lock); 1923 if (expires == cfs_b->runtime_expires) 1924 cfs_b->runtime = runtime; 1925 raw_spin_unlock(&cfs_b->lock); 1926 } 1927 1928 /* 1929 * When a group wakes up we want to make sure that its quota is not already 1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 1931 * runtime as update_curr() throttling can not not trigger until it's on-rq. 1932 */ 1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 1934 { 1935 if (!cfs_bandwidth_used()) 1936 return; 1937 1938 /* an active group must be handled by the update_curr()->put() path */ 1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 1940 return; 1941 1942 /* ensure the group is not already throttled */ 1943 if (cfs_rq_throttled(cfs_rq)) 1944 return; 1945 1946 /* update runtime allocation */ 1947 account_cfs_rq_runtime(cfs_rq, 0); 1948 if (cfs_rq->runtime_remaining <= 0) 1949 throttle_cfs_rq(cfs_rq); 1950 } 1951 1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1954 { 1955 if (!cfs_bandwidth_used()) 1956 return; 1957 1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 1959 return; 1960 1961 /* 1962 * it's possible for a throttled entity to be forced into a running 1963 * state (e.g. set_curr_task), in this case we're finished. 1964 */ 1965 if (cfs_rq_throttled(cfs_rq)) 1966 return; 1967 1968 throttle_cfs_rq(cfs_rq); 1969 } 1970 1971 static inline u64 default_cfs_period(void); 1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); 1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); 1974 1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 1976 { 1977 struct cfs_bandwidth *cfs_b = 1978 container_of(timer, struct cfs_bandwidth, slack_timer); 1979 do_sched_cfs_slack_timer(cfs_b); 1980 1981 return HRTIMER_NORESTART; 1982 } 1983 1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 1985 { 1986 struct cfs_bandwidth *cfs_b = 1987 container_of(timer, struct cfs_bandwidth, period_timer); 1988 ktime_t now; 1989 int overrun; 1990 int idle = 0; 1991 1992 for (;;) { 1993 now = hrtimer_cb_get_time(timer); 1994 overrun = hrtimer_forward(timer, now, cfs_b->period); 1995 1996 if (!overrun) 1997 break; 1998 1999 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2000 } 2001 2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2003 } 2004 2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2006 { 2007 raw_spin_lock_init(&cfs_b->lock); 2008 cfs_b->runtime = 0; 2009 cfs_b->quota = RUNTIME_INF; 2010 cfs_b->period = ns_to_ktime(default_cfs_period()); 2011 2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2014 cfs_b->period_timer.function = sched_cfs_period_timer; 2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2016 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2017 } 2018 2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2020 { 2021 cfs_rq->runtime_enabled = 0; 2022 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2023 } 2024 2025 /* requires cfs_b->lock, may release to reprogram timer */ 2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2027 { 2028 /* 2029 * The timer may be active because we're trying to set a new bandwidth 2030 * period or because we're racing with the tear-down path 2031 * (timer_active==0 becomes visible before the hrtimer call-back 2032 * terminates). In either case we ensure that it's re-programmed 2033 */ 2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2035 raw_spin_unlock(&cfs_b->lock); 2036 /* ensure cfs_b->lock is available while we wait */ 2037 hrtimer_cancel(&cfs_b->period_timer); 2038 2039 raw_spin_lock(&cfs_b->lock); 2040 /* if someone else restarted the timer then we're done */ 2041 if (cfs_b->timer_active) 2042 return; 2043 } 2044 2045 cfs_b->timer_active = 1; 2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2047 } 2048 2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2050 { 2051 hrtimer_cancel(&cfs_b->period_timer); 2052 hrtimer_cancel(&cfs_b->slack_timer); 2053 } 2054 2055 void unthrottle_offline_cfs_rqs(struct rq *rq) 2056 { 2057 struct cfs_rq *cfs_rq; 2058 2059 for_each_leaf_cfs_rq(rq, cfs_rq) { 2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2061 2062 if (!cfs_rq->runtime_enabled) 2063 continue; 2064 2065 /* 2066 * clock_task is not advancing so we just need to make sure 2067 * there's some valid quota amount 2068 */ 2069 cfs_rq->runtime_remaining = cfs_b->quota; 2070 if (cfs_rq_throttled(cfs_rq)) 2071 unthrottle_cfs_rq(cfs_rq); 2072 } 2073 } 2074 2075 #else /* CONFIG_CFS_BANDWIDTH */ 2076 static __always_inline 2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {} 2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2081 2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2083 { 2084 return 0; 2085 } 2086 2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2088 { 2089 return 0; 2090 } 2091 2092 static inline int throttled_lb_pair(struct task_group *tg, 2093 int src_cpu, int dest_cpu) 2094 { 2095 return 0; 2096 } 2097 2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2099 2100 #ifdef CONFIG_FAIR_GROUP_SCHED 2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2102 #endif 2103 2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2105 { 2106 return NULL; 2107 } 2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2110 2111 #endif /* CONFIG_CFS_BANDWIDTH */ 2112 2113 /************************************************** 2114 * CFS operations on tasks: 2115 */ 2116 2117 #ifdef CONFIG_SCHED_HRTICK 2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2119 { 2120 struct sched_entity *se = &p->se; 2121 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2122 2123 WARN_ON(task_rq(p) != rq); 2124 2125 if (cfs_rq->nr_running > 1) { 2126 u64 slice = sched_slice(cfs_rq, se); 2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2128 s64 delta = slice - ran; 2129 2130 if (delta < 0) { 2131 if (rq->curr == p) 2132 resched_task(p); 2133 return; 2134 } 2135 2136 /* 2137 * Don't schedule slices shorter than 10000ns, that just 2138 * doesn't make sense. Rely on vruntime for fairness. 2139 */ 2140 if (rq->curr != p) 2141 delta = max_t(s64, 10000LL, delta); 2142 2143 hrtick_start(rq, delta); 2144 } 2145 } 2146 2147 /* 2148 * called from enqueue/dequeue and updates the hrtick when the 2149 * current task is from our class and nr_running is low enough 2150 * to matter. 2151 */ 2152 static void hrtick_update(struct rq *rq) 2153 { 2154 struct task_struct *curr = rq->curr; 2155 2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2157 return; 2158 2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2160 hrtick_start_fair(rq, curr); 2161 } 2162 #else /* !CONFIG_SCHED_HRTICK */ 2163 static inline void 2164 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2165 { 2166 } 2167 2168 static inline void hrtick_update(struct rq *rq) 2169 { 2170 } 2171 #endif 2172 2173 /* 2174 * The enqueue_task method is called before nr_running is 2175 * increased. Here we update the fair scheduling stats and 2176 * then put the task into the rbtree: 2177 */ 2178 static void 2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2180 { 2181 struct cfs_rq *cfs_rq; 2182 struct sched_entity *se = &p->se; 2183 2184 for_each_sched_entity(se) { 2185 if (se->on_rq) 2186 break; 2187 cfs_rq = cfs_rq_of(se); 2188 enqueue_entity(cfs_rq, se, flags); 2189 2190 /* 2191 * end evaluation on encountering a throttled cfs_rq 2192 * 2193 * note: in the case of encountering a throttled cfs_rq we will 2194 * post the final h_nr_running increment below. 2195 */ 2196 if (cfs_rq_throttled(cfs_rq)) 2197 break; 2198 cfs_rq->h_nr_running++; 2199 2200 flags = ENQUEUE_WAKEUP; 2201 } 2202 2203 for_each_sched_entity(se) { 2204 cfs_rq = cfs_rq_of(se); 2205 cfs_rq->h_nr_running++; 2206 2207 if (cfs_rq_throttled(cfs_rq)) 2208 break; 2209 2210 update_cfs_load(cfs_rq, 0); 2211 update_cfs_shares(cfs_rq); 2212 } 2213 2214 if (!se) 2215 inc_nr_running(rq); 2216 hrtick_update(rq); 2217 } 2218 2219 static void set_next_buddy(struct sched_entity *se); 2220 2221 /* 2222 * The dequeue_task method is called before nr_running is 2223 * decreased. We remove the task from the rbtree and 2224 * update the fair scheduling stats: 2225 */ 2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2227 { 2228 struct cfs_rq *cfs_rq; 2229 struct sched_entity *se = &p->se; 2230 int task_sleep = flags & DEQUEUE_SLEEP; 2231 2232 for_each_sched_entity(se) { 2233 cfs_rq = cfs_rq_of(se); 2234 dequeue_entity(cfs_rq, se, flags); 2235 2236 /* 2237 * end evaluation on encountering a throttled cfs_rq 2238 * 2239 * note: in the case of encountering a throttled cfs_rq we will 2240 * post the final h_nr_running decrement below. 2241 */ 2242 if (cfs_rq_throttled(cfs_rq)) 2243 break; 2244 cfs_rq->h_nr_running--; 2245 2246 /* Don't dequeue parent if it has other entities besides us */ 2247 if (cfs_rq->load.weight) { 2248 /* 2249 * Bias pick_next to pick a task from this cfs_rq, as 2250 * p is sleeping when it is within its sched_slice. 2251 */ 2252 if (task_sleep && parent_entity(se)) 2253 set_next_buddy(parent_entity(se)); 2254 2255 /* avoid re-evaluating load for this entity */ 2256 se = parent_entity(se); 2257 break; 2258 } 2259 flags |= DEQUEUE_SLEEP; 2260 } 2261 2262 for_each_sched_entity(se) { 2263 cfs_rq = cfs_rq_of(se); 2264 cfs_rq->h_nr_running--; 2265 2266 if (cfs_rq_throttled(cfs_rq)) 2267 break; 2268 2269 update_cfs_load(cfs_rq, 0); 2270 update_cfs_shares(cfs_rq); 2271 } 2272 2273 if (!se) 2274 dec_nr_running(rq); 2275 hrtick_update(rq); 2276 } 2277 2278 #ifdef CONFIG_SMP 2279 /* Used instead of source_load when we know the type == 0 */ 2280 static unsigned long weighted_cpuload(const int cpu) 2281 { 2282 return cpu_rq(cpu)->load.weight; 2283 } 2284 2285 /* 2286 * Return a low guess at the load of a migration-source cpu weighted 2287 * according to the scheduling class and "nice" value. 2288 * 2289 * We want to under-estimate the load of migration sources, to 2290 * balance conservatively. 2291 */ 2292 static unsigned long source_load(int cpu, int type) 2293 { 2294 struct rq *rq = cpu_rq(cpu); 2295 unsigned long total = weighted_cpuload(cpu); 2296 2297 if (type == 0 || !sched_feat(LB_BIAS)) 2298 return total; 2299 2300 return min(rq->cpu_load[type-1], total); 2301 } 2302 2303 /* 2304 * Return a high guess at the load of a migration-target cpu weighted 2305 * according to the scheduling class and "nice" value. 2306 */ 2307 static unsigned long target_load(int cpu, int type) 2308 { 2309 struct rq *rq = cpu_rq(cpu); 2310 unsigned long total = weighted_cpuload(cpu); 2311 2312 if (type == 0 || !sched_feat(LB_BIAS)) 2313 return total; 2314 2315 return max(rq->cpu_load[type-1], total); 2316 } 2317 2318 static unsigned long power_of(int cpu) 2319 { 2320 return cpu_rq(cpu)->cpu_power; 2321 } 2322 2323 static unsigned long cpu_avg_load_per_task(int cpu) 2324 { 2325 struct rq *rq = cpu_rq(cpu); 2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 2327 2328 if (nr_running) 2329 return rq->load.weight / nr_running; 2330 2331 return 0; 2332 } 2333 2334 2335 static void task_waking_fair(struct task_struct *p) 2336 { 2337 struct sched_entity *se = &p->se; 2338 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2339 u64 min_vruntime; 2340 2341 #ifndef CONFIG_64BIT 2342 u64 min_vruntime_copy; 2343 2344 do { 2345 min_vruntime_copy = cfs_rq->min_vruntime_copy; 2346 smp_rmb(); 2347 min_vruntime = cfs_rq->min_vruntime; 2348 } while (min_vruntime != min_vruntime_copy); 2349 #else 2350 min_vruntime = cfs_rq->min_vruntime; 2351 #endif 2352 2353 se->vruntime -= min_vruntime; 2354 } 2355 2356 #ifdef CONFIG_FAIR_GROUP_SCHED 2357 /* 2358 * effective_load() calculates the load change as seen from the root_task_group 2359 * 2360 * Adding load to a group doesn't make a group heavier, but can cause movement 2361 * of group shares between cpus. Assuming the shares were perfectly aligned one 2362 * can calculate the shift in shares. 2363 * 2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg 2365 * on this @cpu and results in a total addition (subtraction) of @wg to the 2366 * total group weight. 2367 * 2368 * Given a runqueue weight distribution (rw_i) we can compute a shares 2369 * distribution (s_i) using: 2370 * 2371 * s_i = rw_i / \Sum rw_j (1) 2372 * 2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 2375 * shares distribution (s_i): 2376 * 2377 * rw_i = { 2, 4, 1, 0 } 2378 * s_i = { 2/7, 4/7, 1/7, 0 } 2379 * 2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 2381 * task used to run on and the CPU the waker is running on), we need to 2382 * compute the effect of waking a task on either CPU and, in case of a sync 2383 * wakeup, compute the effect of the current task going to sleep. 2384 * 2385 * So for a change of @wl to the local @cpu with an overall group weight change 2386 * of @wl we can compute the new shares distribution (s'_i) using: 2387 * 2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 2389 * 2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 2391 * differences in waking a task to CPU 0. The additional task changes the 2392 * weight and shares distributions like: 2393 * 2394 * rw'_i = { 3, 4, 1, 0 } 2395 * s'_i = { 3/8, 4/8, 1/8, 0 } 2396 * 2397 * We can then compute the difference in effective weight by using: 2398 * 2399 * dw_i = S * (s'_i - s_i) (3) 2400 * 2401 * Where 'S' is the group weight as seen by its parent. 2402 * 2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 2405 * 4/7) times the weight of the group. 2406 */ 2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 2408 { 2409 struct sched_entity *se = tg->se[cpu]; 2410 2411 if (!tg->parent) /* the trivial, non-cgroup case */ 2412 return wl; 2413 2414 for_each_sched_entity(se) { 2415 long w, W; 2416 2417 tg = se->my_q->tg; 2418 2419 /* 2420 * W = @wg + \Sum rw_j 2421 */ 2422 W = wg + calc_tg_weight(tg, se->my_q); 2423 2424 /* 2425 * w = rw_i + @wl 2426 */ 2427 w = se->my_q->load.weight + wl; 2428 2429 /* 2430 * wl = S * s'_i; see (2) 2431 */ 2432 if (W > 0 && w < W) 2433 wl = (w * tg->shares) / W; 2434 else 2435 wl = tg->shares; 2436 2437 /* 2438 * Per the above, wl is the new se->load.weight value; since 2439 * those are clipped to [MIN_SHARES, ...) do so now. See 2440 * calc_cfs_shares(). 2441 */ 2442 if (wl < MIN_SHARES) 2443 wl = MIN_SHARES; 2444 2445 /* 2446 * wl = dw_i = S * (s'_i - s_i); see (3) 2447 */ 2448 wl -= se->load.weight; 2449 2450 /* 2451 * Recursively apply this logic to all parent groups to compute 2452 * the final effective load change on the root group. Since 2453 * only the @tg group gets extra weight, all parent groups can 2454 * only redistribute existing shares. @wl is the shift in shares 2455 * resulting from this level per the above. 2456 */ 2457 wg = 0; 2458 } 2459 2460 return wl; 2461 } 2462 #else 2463 2464 static inline unsigned long effective_load(struct task_group *tg, int cpu, 2465 unsigned long wl, unsigned long wg) 2466 { 2467 return wl; 2468 } 2469 2470 #endif 2471 2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 2473 { 2474 s64 this_load, load; 2475 int idx, this_cpu, prev_cpu; 2476 unsigned long tl_per_task; 2477 struct task_group *tg; 2478 unsigned long weight; 2479 int balanced; 2480 2481 idx = sd->wake_idx; 2482 this_cpu = smp_processor_id(); 2483 prev_cpu = task_cpu(p); 2484 load = source_load(prev_cpu, idx); 2485 this_load = target_load(this_cpu, idx); 2486 2487 /* 2488 * If sync wakeup then subtract the (maximum possible) 2489 * effect of the currently running task from the load 2490 * of the current CPU: 2491 */ 2492 if (sync) { 2493 tg = task_group(current); 2494 weight = current->se.load.weight; 2495 2496 this_load += effective_load(tg, this_cpu, -weight, -weight); 2497 load += effective_load(tg, prev_cpu, 0, -weight); 2498 } 2499 2500 tg = task_group(p); 2501 weight = p->se.load.weight; 2502 2503 /* 2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle 2505 * due to the sync cause above having dropped this_load to 0, we'll 2506 * always have an imbalance, but there's really nothing you can do 2507 * about that, so that's good too. 2508 * 2509 * Otherwise check if either cpus are near enough in load to allow this 2510 * task to be woken on this_cpu. 2511 */ 2512 if (this_load > 0) { 2513 s64 this_eff_load, prev_eff_load; 2514 2515 this_eff_load = 100; 2516 this_eff_load *= power_of(prev_cpu); 2517 this_eff_load *= this_load + 2518 effective_load(tg, this_cpu, weight, weight); 2519 2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 2521 prev_eff_load *= power_of(this_cpu); 2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 2523 2524 balanced = this_eff_load <= prev_eff_load; 2525 } else 2526 balanced = true; 2527 2528 /* 2529 * If the currently running task will sleep within 2530 * a reasonable amount of time then attract this newly 2531 * woken task: 2532 */ 2533 if (sync && balanced) 2534 return 1; 2535 2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 2537 tl_per_task = cpu_avg_load_per_task(this_cpu); 2538 2539 if (balanced || 2540 (this_load <= load && 2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 2542 /* 2543 * This domain has SD_WAKE_AFFINE and 2544 * p is cache cold in this domain, and 2545 * there is no bad imbalance. 2546 */ 2547 schedstat_inc(sd, ttwu_move_affine); 2548 schedstat_inc(p, se.statistics.nr_wakeups_affine); 2549 2550 return 1; 2551 } 2552 return 0; 2553 } 2554 2555 /* 2556 * find_idlest_group finds and returns the least busy CPU group within the 2557 * domain. 2558 */ 2559 static struct sched_group * 2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 2561 int this_cpu, int load_idx) 2562 { 2563 struct sched_group *idlest = NULL, *group = sd->groups; 2564 unsigned long min_load = ULONG_MAX, this_load = 0; 2565 int imbalance = 100 + (sd->imbalance_pct-100)/2; 2566 2567 do { 2568 unsigned long load, avg_load; 2569 int local_group; 2570 int i; 2571 2572 /* Skip over this group if it has no CPUs allowed */ 2573 if (!cpumask_intersects(sched_group_cpus(group), 2574 tsk_cpus_allowed(p))) 2575 continue; 2576 2577 local_group = cpumask_test_cpu(this_cpu, 2578 sched_group_cpus(group)); 2579 2580 /* Tally up the load of all CPUs in the group */ 2581 avg_load = 0; 2582 2583 for_each_cpu(i, sched_group_cpus(group)) { 2584 /* Bias balancing toward cpus of our domain */ 2585 if (local_group) 2586 load = source_load(i, load_idx); 2587 else 2588 load = target_load(i, load_idx); 2589 2590 avg_load += load; 2591 } 2592 2593 /* Adjust by relative CPU power of the group */ 2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 2595 2596 if (local_group) { 2597 this_load = avg_load; 2598 } else if (avg_load < min_load) { 2599 min_load = avg_load; 2600 idlest = group; 2601 } 2602 } while (group = group->next, group != sd->groups); 2603 2604 if (!idlest || 100*this_load < imbalance*min_load) 2605 return NULL; 2606 return idlest; 2607 } 2608 2609 /* 2610 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2611 */ 2612 static int 2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 2614 { 2615 unsigned long load, min_load = ULONG_MAX; 2616 int idlest = -1; 2617 int i; 2618 2619 /* Traverse only the allowed CPUs */ 2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 2621 load = weighted_cpuload(i); 2622 2623 if (load < min_load || (load == min_load && i == this_cpu)) { 2624 min_load = load; 2625 idlest = i; 2626 } 2627 } 2628 2629 return idlest; 2630 } 2631 2632 /* 2633 * Try and locate an idle CPU in the sched_domain. 2634 */ 2635 static int select_idle_sibling(struct task_struct *p, int target) 2636 { 2637 int cpu = smp_processor_id(); 2638 int prev_cpu = task_cpu(p); 2639 struct sched_domain *sd; 2640 struct sched_group *sg; 2641 int i; 2642 2643 /* 2644 * If the task is going to be woken-up on this cpu and if it is 2645 * already idle, then it is the right target. 2646 */ 2647 if (target == cpu && idle_cpu(cpu)) 2648 return cpu; 2649 2650 /* 2651 * If the task is going to be woken-up on the cpu where it previously 2652 * ran and if it is currently idle, then it the right target. 2653 */ 2654 if (target == prev_cpu && idle_cpu(prev_cpu)) 2655 return prev_cpu; 2656 2657 /* 2658 * Otherwise, iterate the domains and find an elegible idle cpu. 2659 */ 2660 sd = rcu_dereference(per_cpu(sd_llc, target)); 2661 for_each_lower_domain(sd) { 2662 sg = sd->groups; 2663 do { 2664 if (!cpumask_intersects(sched_group_cpus(sg), 2665 tsk_cpus_allowed(p))) 2666 goto next; 2667 2668 for_each_cpu(i, sched_group_cpus(sg)) { 2669 if (!idle_cpu(i)) 2670 goto next; 2671 } 2672 2673 target = cpumask_first_and(sched_group_cpus(sg), 2674 tsk_cpus_allowed(p)); 2675 goto done; 2676 next: 2677 sg = sg->next; 2678 } while (sg != sd->groups); 2679 } 2680 done: 2681 return target; 2682 } 2683 2684 /* 2685 * sched_balance_self: balance the current task (running on cpu) in domains 2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 2687 * SD_BALANCE_EXEC. 2688 * 2689 * Balance, ie. select the least loaded group. 2690 * 2691 * Returns the target CPU number, or the same CPU if no balancing is needed. 2692 * 2693 * preempt must be disabled. 2694 */ 2695 static int 2696 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 2697 { 2698 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 2699 int cpu = smp_processor_id(); 2700 int prev_cpu = task_cpu(p); 2701 int new_cpu = cpu; 2702 int want_affine = 0; 2703 int want_sd = 1; 2704 int sync = wake_flags & WF_SYNC; 2705 2706 if (p->nr_cpus_allowed == 1) 2707 return prev_cpu; 2708 2709 if (sd_flag & SD_BALANCE_WAKE) { 2710 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 2711 want_affine = 1; 2712 new_cpu = prev_cpu; 2713 } 2714 2715 rcu_read_lock(); 2716 for_each_domain(cpu, tmp) { 2717 if (!(tmp->flags & SD_LOAD_BALANCE)) 2718 continue; 2719 2720 /* 2721 * If power savings logic is enabled for a domain, see if we 2722 * are not overloaded, if so, don't balance wider. 2723 */ 2724 if (tmp->flags & (SD_PREFER_LOCAL)) { 2725 unsigned long power = 0; 2726 unsigned long nr_running = 0; 2727 unsigned long capacity; 2728 int i; 2729 2730 for_each_cpu(i, sched_domain_span(tmp)) { 2731 power += power_of(i); 2732 nr_running += cpu_rq(i)->cfs.nr_running; 2733 } 2734 2735 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 2736 2737 if (nr_running < capacity) 2738 want_sd = 0; 2739 } 2740 2741 /* 2742 * If both cpu and prev_cpu are part of this domain, 2743 * cpu is a valid SD_WAKE_AFFINE target. 2744 */ 2745 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 2746 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 2747 affine_sd = tmp; 2748 want_affine = 0; 2749 } 2750 2751 if (!want_sd && !want_affine) 2752 break; 2753 2754 if (!(tmp->flags & sd_flag)) 2755 continue; 2756 2757 if (want_sd) 2758 sd = tmp; 2759 } 2760 2761 if (affine_sd) { 2762 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) 2763 prev_cpu = cpu; 2764 2765 new_cpu = select_idle_sibling(p, prev_cpu); 2766 goto unlock; 2767 } 2768 2769 while (sd) { 2770 int load_idx = sd->forkexec_idx; 2771 struct sched_group *group; 2772 int weight; 2773 2774 if (!(sd->flags & sd_flag)) { 2775 sd = sd->child; 2776 continue; 2777 } 2778 2779 if (sd_flag & SD_BALANCE_WAKE) 2780 load_idx = sd->wake_idx; 2781 2782 group = find_idlest_group(sd, p, cpu, load_idx); 2783 if (!group) { 2784 sd = sd->child; 2785 continue; 2786 } 2787 2788 new_cpu = find_idlest_cpu(group, p, cpu); 2789 if (new_cpu == -1 || new_cpu == cpu) { 2790 /* Now try balancing at a lower domain level of cpu */ 2791 sd = sd->child; 2792 continue; 2793 } 2794 2795 /* Now try balancing at a lower domain level of new_cpu */ 2796 cpu = new_cpu; 2797 weight = sd->span_weight; 2798 sd = NULL; 2799 for_each_domain(cpu, tmp) { 2800 if (weight <= tmp->span_weight) 2801 break; 2802 if (tmp->flags & sd_flag) 2803 sd = tmp; 2804 } 2805 /* while loop will break here if sd == NULL */ 2806 } 2807 unlock: 2808 rcu_read_unlock(); 2809 2810 return new_cpu; 2811 } 2812 #endif /* CONFIG_SMP */ 2813 2814 static unsigned long 2815 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 2816 { 2817 unsigned long gran = sysctl_sched_wakeup_granularity; 2818 2819 /* 2820 * Since its curr running now, convert the gran from real-time 2821 * to virtual-time in his units. 2822 * 2823 * By using 'se' instead of 'curr' we penalize light tasks, so 2824 * they get preempted easier. That is, if 'se' < 'curr' then 2825 * the resulting gran will be larger, therefore penalizing the 2826 * lighter, if otoh 'se' > 'curr' then the resulting gran will 2827 * be smaller, again penalizing the lighter task. 2828 * 2829 * This is especially important for buddies when the leftmost 2830 * task is higher priority than the buddy. 2831 */ 2832 return calc_delta_fair(gran, se); 2833 } 2834 2835 /* 2836 * Should 'se' preempt 'curr'. 2837 * 2838 * |s1 2839 * |s2 2840 * |s3 2841 * g 2842 * |<--->|c 2843 * 2844 * w(c, s1) = -1 2845 * w(c, s2) = 0 2846 * w(c, s3) = 1 2847 * 2848 */ 2849 static int 2850 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 2851 { 2852 s64 gran, vdiff = curr->vruntime - se->vruntime; 2853 2854 if (vdiff <= 0) 2855 return -1; 2856 2857 gran = wakeup_gran(curr, se); 2858 if (vdiff > gran) 2859 return 1; 2860 2861 return 0; 2862 } 2863 2864 static void set_last_buddy(struct sched_entity *se) 2865 { 2866 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2867 return; 2868 2869 for_each_sched_entity(se) 2870 cfs_rq_of(se)->last = se; 2871 } 2872 2873 static void set_next_buddy(struct sched_entity *se) 2874 { 2875 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2876 return; 2877 2878 for_each_sched_entity(se) 2879 cfs_rq_of(se)->next = se; 2880 } 2881 2882 static void set_skip_buddy(struct sched_entity *se) 2883 { 2884 for_each_sched_entity(se) 2885 cfs_rq_of(se)->skip = se; 2886 } 2887 2888 /* 2889 * Preempt the current task with a newly woken task if needed: 2890 */ 2891 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 2892 { 2893 struct task_struct *curr = rq->curr; 2894 struct sched_entity *se = &curr->se, *pse = &p->se; 2895 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 2896 int scale = cfs_rq->nr_running >= sched_nr_latency; 2897 int next_buddy_marked = 0; 2898 2899 if (unlikely(se == pse)) 2900 return; 2901 2902 /* 2903 * This is possible from callers such as move_task(), in which we 2904 * unconditionally check_prempt_curr() after an enqueue (which may have 2905 * lead to a throttle). This both saves work and prevents false 2906 * next-buddy nomination below. 2907 */ 2908 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 2909 return; 2910 2911 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 2912 set_next_buddy(pse); 2913 next_buddy_marked = 1; 2914 } 2915 2916 /* 2917 * We can come here with TIF_NEED_RESCHED already set from new task 2918 * wake up path. 2919 * 2920 * Note: this also catches the edge-case of curr being in a throttled 2921 * group (e.g. via set_curr_task), since update_curr() (in the 2922 * enqueue of curr) will have resulted in resched being set. This 2923 * prevents us from potentially nominating it as a false LAST_BUDDY 2924 * below. 2925 */ 2926 if (test_tsk_need_resched(curr)) 2927 return; 2928 2929 /* Idle tasks are by definition preempted by non-idle tasks. */ 2930 if (unlikely(curr->policy == SCHED_IDLE) && 2931 likely(p->policy != SCHED_IDLE)) 2932 goto preempt; 2933 2934 /* 2935 * Batch and idle tasks do not preempt non-idle tasks (their preemption 2936 * is driven by the tick): 2937 */ 2938 if (unlikely(p->policy != SCHED_NORMAL)) 2939 return; 2940 2941 find_matching_se(&se, &pse); 2942 update_curr(cfs_rq_of(se)); 2943 BUG_ON(!pse); 2944 if (wakeup_preempt_entity(se, pse) == 1) { 2945 /* 2946 * Bias pick_next to pick the sched entity that is 2947 * triggering this preemption. 2948 */ 2949 if (!next_buddy_marked) 2950 set_next_buddy(pse); 2951 goto preempt; 2952 } 2953 2954 return; 2955 2956 preempt: 2957 resched_task(curr); 2958 /* 2959 * Only set the backward buddy when the current task is still 2960 * on the rq. This can happen when a wakeup gets interleaved 2961 * with schedule on the ->pre_schedule() or idle_balance() 2962 * point, either of which can * drop the rq lock. 2963 * 2964 * Also, during early boot the idle thread is in the fair class, 2965 * for obvious reasons its a bad idea to schedule back to it. 2966 */ 2967 if (unlikely(!se->on_rq || curr == rq->idle)) 2968 return; 2969 2970 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 2971 set_last_buddy(se); 2972 } 2973 2974 static struct task_struct *pick_next_task_fair(struct rq *rq) 2975 { 2976 struct task_struct *p; 2977 struct cfs_rq *cfs_rq = &rq->cfs; 2978 struct sched_entity *se; 2979 2980 if (!cfs_rq->nr_running) 2981 return NULL; 2982 2983 do { 2984 se = pick_next_entity(cfs_rq); 2985 set_next_entity(cfs_rq, se); 2986 cfs_rq = group_cfs_rq(se); 2987 } while (cfs_rq); 2988 2989 p = task_of(se); 2990 if (hrtick_enabled(rq)) 2991 hrtick_start_fair(rq, p); 2992 2993 return p; 2994 } 2995 2996 /* 2997 * Account for a descheduled task: 2998 */ 2999 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 3000 { 3001 struct sched_entity *se = &prev->se; 3002 struct cfs_rq *cfs_rq; 3003 3004 for_each_sched_entity(se) { 3005 cfs_rq = cfs_rq_of(se); 3006 put_prev_entity(cfs_rq, se); 3007 } 3008 } 3009 3010 /* 3011 * sched_yield() is very simple 3012 * 3013 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3014 */ 3015 static void yield_task_fair(struct rq *rq) 3016 { 3017 struct task_struct *curr = rq->curr; 3018 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3019 struct sched_entity *se = &curr->se; 3020 3021 /* 3022 * Are we the only task in the tree? 3023 */ 3024 if (unlikely(rq->nr_running == 1)) 3025 return; 3026 3027 clear_buddies(cfs_rq, se); 3028 3029 if (curr->policy != SCHED_BATCH) { 3030 update_rq_clock(rq); 3031 /* 3032 * Update run-time statistics of the 'current'. 3033 */ 3034 update_curr(cfs_rq); 3035 /* 3036 * Tell update_rq_clock() that we've just updated, 3037 * so we don't do microscopic update in schedule() 3038 * and double the fastpath cost. 3039 */ 3040 rq->skip_clock_update = 1; 3041 } 3042 3043 set_skip_buddy(se); 3044 } 3045 3046 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3047 { 3048 struct sched_entity *se = &p->se; 3049 3050 /* throttled hierarchies are not runnable */ 3051 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3052 return false; 3053 3054 /* Tell the scheduler that we'd really like pse to run next. */ 3055 set_next_buddy(se); 3056 3057 yield_task_fair(rq); 3058 3059 return true; 3060 } 3061 3062 #ifdef CONFIG_SMP 3063 /************************************************** 3064 * Fair scheduling class load-balancing methods: 3065 */ 3066 3067 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 3068 3069 #define LBF_ALL_PINNED 0x01 3070 #define LBF_NEED_BREAK 0x02 3071 3072 struct lb_env { 3073 struct sched_domain *sd; 3074 3075 int src_cpu; 3076 struct rq *src_rq; 3077 3078 int dst_cpu; 3079 struct rq *dst_rq; 3080 3081 enum cpu_idle_type idle; 3082 long imbalance; 3083 unsigned int flags; 3084 3085 unsigned int loop; 3086 unsigned int loop_break; 3087 unsigned int loop_max; 3088 }; 3089 3090 /* 3091 * move_task - move a task from one runqueue to another runqueue. 3092 * Both runqueues must be locked. 3093 */ 3094 static void move_task(struct task_struct *p, struct lb_env *env) 3095 { 3096 deactivate_task(env->src_rq, p, 0); 3097 set_task_cpu(p, env->dst_cpu); 3098 activate_task(env->dst_rq, p, 0); 3099 check_preempt_curr(env->dst_rq, p, 0); 3100 } 3101 3102 /* 3103 * Is this task likely cache-hot: 3104 */ 3105 static int 3106 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3107 { 3108 s64 delta; 3109 3110 if (p->sched_class != &fair_sched_class) 3111 return 0; 3112 3113 if (unlikely(p->policy == SCHED_IDLE)) 3114 return 0; 3115 3116 /* 3117 * Buddy candidates are cache hot: 3118 */ 3119 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3120 (&p->se == cfs_rq_of(&p->se)->next || 3121 &p->se == cfs_rq_of(&p->se)->last)) 3122 return 1; 3123 3124 if (sysctl_sched_migration_cost == -1) 3125 return 1; 3126 if (sysctl_sched_migration_cost == 0) 3127 return 0; 3128 3129 delta = now - p->se.exec_start; 3130 3131 return delta < (s64)sysctl_sched_migration_cost; 3132 } 3133 3134 /* 3135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3136 */ 3137 static 3138 int can_migrate_task(struct task_struct *p, struct lb_env *env) 3139 { 3140 int tsk_cache_hot = 0; 3141 /* 3142 * We do not migrate tasks that are: 3143 * 1) running (obviously), or 3144 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3145 * 3) are cache-hot on their current CPU. 3146 */ 3147 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 3148 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3149 return 0; 3150 } 3151 env->flags &= ~LBF_ALL_PINNED; 3152 3153 if (task_running(env->src_rq, p)) { 3154 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 3155 return 0; 3156 } 3157 3158 /* 3159 * Aggressive migration if: 3160 * 1) task is cache cold, or 3161 * 2) too many balance attempts have failed. 3162 */ 3163 3164 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd); 3165 if (!tsk_cache_hot || 3166 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 3167 #ifdef CONFIG_SCHEDSTATS 3168 if (tsk_cache_hot) { 3169 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 3170 schedstat_inc(p, se.statistics.nr_forced_migrations); 3171 } 3172 #endif 3173 return 1; 3174 } 3175 3176 if (tsk_cache_hot) { 3177 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 3178 return 0; 3179 } 3180 return 1; 3181 } 3182 3183 /* 3184 * move_one_task tries to move exactly one task from busiest to this_rq, as 3185 * part of active balancing operations within "domain". 3186 * Returns 1 if successful and 0 otherwise. 3187 * 3188 * Called with both runqueues locked. 3189 */ 3190 static int move_one_task(struct lb_env *env) 3191 { 3192 struct task_struct *p, *n; 3193 3194 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 3195 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu)) 3196 continue; 3197 3198 if (!can_migrate_task(p, env)) 3199 continue; 3200 3201 move_task(p, env); 3202 /* 3203 * Right now, this is only the second place move_task() 3204 * is called, so we can safely collect move_task() 3205 * stats here rather than inside move_task(). 3206 */ 3207 schedstat_inc(env->sd, lb_gained[env->idle]); 3208 return 1; 3209 } 3210 return 0; 3211 } 3212 3213 static unsigned long task_h_load(struct task_struct *p); 3214 3215 static const unsigned int sched_nr_migrate_break = 32; 3216 3217 /* 3218 * move_tasks tries to move up to imbalance weighted load from busiest to 3219 * this_rq, as part of a balancing operation within domain "sd". 3220 * Returns 1 if successful and 0 otherwise. 3221 * 3222 * Called with both runqueues locked. 3223 */ 3224 static int move_tasks(struct lb_env *env) 3225 { 3226 struct list_head *tasks = &env->src_rq->cfs_tasks; 3227 struct task_struct *p; 3228 unsigned long load; 3229 int pulled = 0; 3230 3231 if (env->imbalance <= 0) 3232 return 0; 3233 3234 while (!list_empty(tasks)) { 3235 p = list_first_entry(tasks, struct task_struct, se.group_node); 3236 3237 env->loop++; 3238 /* We've more or less seen every task there is, call it quits */ 3239 if (env->loop > env->loop_max) 3240 break; 3241 3242 /* take a breather every nr_migrate tasks */ 3243 if (env->loop > env->loop_break) { 3244 env->loop_break += sched_nr_migrate_break; 3245 env->flags |= LBF_NEED_BREAK; 3246 break; 3247 } 3248 3249 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 3250 goto next; 3251 3252 load = task_h_load(p); 3253 3254 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 3255 goto next; 3256 3257 if ((load / 2) > env->imbalance) 3258 goto next; 3259 3260 if (!can_migrate_task(p, env)) 3261 goto next; 3262 3263 move_task(p, env); 3264 pulled++; 3265 env->imbalance -= load; 3266 3267 #ifdef CONFIG_PREEMPT 3268 /* 3269 * NEWIDLE balancing is a source of latency, so preemptible 3270 * kernels will stop after the first task is pulled to minimize 3271 * the critical section. 3272 */ 3273 if (env->idle == CPU_NEWLY_IDLE) 3274 break; 3275 #endif 3276 3277 /* 3278 * We only want to steal up to the prescribed amount of 3279 * weighted load. 3280 */ 3281 if (env->imbalance <= 0) 3282 break; 3283 3284 continue; 3285 next: 3286 list_move_tail(&p->se.group_node, tasks); 3287 } 3288 3289 /* 3290 * Right now, this is one of only two places move_task() is called, 3291 * so we can safely collect move_task() stats here rather than 3292 * inside move_task(). 3293 */ 3294 schedstat_add(env->sd, lb_gained[env->idle], pulled); 3295 3296 return pulled; 3297 } 3298 3299 #ifdef CONFIG_FAIR_GROUP_SCHED 3300 /* 3301 * update tg->load_weight by folding this cpu's load_avg 3302 */ 3303 static int update_shares_cpu(struct task_group *tg, int cpu) 3304 { 3305 struct cfs_rq *cfs_rq; 3306 unsigned long flags; 3307 struct rq *rq; 3308 3309 if (!tg->se[cpu]) 3310 return 0; 3311 3312 rq = cpu_rq(cpu); 3313 cfs_rq = tg->cfs_rq[cpu]; 3314 3315 raw_spin_lock_irqsave(&rq->lock, flags); 3316 3317 update_rq_clock(rq); 3318 update_cfs_load(cfs_rq, 1); 3319 3320 /* 3321 * We need to update shares after updating tg->load_weight in 3322 * order to adjust the weight of groups with long running tasks. 3323 */ 3324 update_cfs_shares(cfs_rq); 3325 3326 raw_spin_unlock_irqrestore(&rq->lock, flags); 3327 3328 return 0; 3329 } 3330 3331 static void update_shares(int cpu) 3332 { 3333 struct cfs_rq *cfs_rq; 3334 struct rq *rq = cpu_rq(cpu); 3335 3336 rcu_read_lock(); 3337 /* 3338 * Iterates the task_group tree in a bottom up fashion, see 3339 * list_add_leaf_cfs_rq() for details. 3340 */ 3341 for_each_leaf_cfs_rq(rq, cfs_rq) { 3342 /* throttled entities do not contribute to load */ 3343 if (throttled_hierarchy(cfs_rq)) 3344 continue; 3345 3346 update_shares_cpu(cfs_rq->tg, cpu); 3347 } 3348 rcu_read_unlock(); 3349 } 3350 3351 /* 3352 * Compute the cpu's hierarchical load factor for each task group. 3353 * This needs to be done in a top-down fashion because the load of a child 3354 * group is a fraction of its parents load. 3355 */ 3356 static int tg_load_down(struct task_group *tg, void *data) 3357 { 3358 unsigned long load; 3359 long cpu = (long)data; 3360 3361 if (!tg->parent) { 3362 load = cpu_rq(cpu)->load.weight; 3363 } else { 3364 load = tg->parent->cfs_rq[cpu]->h_load; 3365 load *= tg->se[cpu]->load.weight; 3366 load /= tg->parent->cfs_rq[cpu]->load.weight + 1; 3367 } 3368 3369 tg->cfs_rq[cpu]->h_load = load; 3370 3371 return 0; 3372 } 3373 3374 static void update_h_load(long cpu) 3375 { 3376 rcu_read_lock(); 3377 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 3378 rcu_read_unlock(); 3379 } 3380 3381 static unsigned long task_h_load(struct task_struct *p) 3382 { 3383 struct cfs_rq *cfs_rq = task_cfs_rq(p); 3384 unsigned long load; 3385 3386 load = p->se.load.weight; 3387 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1); 3388 3389 return load; 3390 } 3391 #else 3392 static inline void update_shares(int cpu) 3393 { 3394 } 3395 3396 static inline void update_h_load(long cpu) 3397 { 3398 } 3399 3400 static unsigned long task_h_load(struct task_struct *p) 3401 { 3402 return p->se.load.weight; 3403 } 3404 #endif 3405 3406 /********** Helpers for find_busiest_group ************************/ 3407 /* 3408 * sd_lb_stats - Structure to store the statistics of a sched_domain 3409 * during load balancing. 3410 */ 3411 struct sd_lb_stats { 3412 struct sched_group *busiest; /* Busiest group in this sd */ 3413 struct sched_group *this; /* Local group in this sd */ 3414 unsigned long total_load; /* Total load of all groups in sd */ 3415 unsigned long total_pwr; /* Total power of all groups in sd */ 3416 unsigned long avg_load; /* Average load across all groups in sd */ 3417 3418 /** Statistics of this group */ 3419 unsigned long this_load; 3420 unsigned long this_load_per_task; 3421 unsigned long this_nr_running; 3422 unsigned long this_has_capacity; 3423 unsigned int this_idle_cpus; 3424 3425 /* Statistics of the busiest group */ 3426 unsigned int busiest_idle_cpus; 3427 unsigned long max_load; 3428 unsigned long busiest_load_per_task; 3429 unsigned long busiest_nr_running; 3430 unsigned long busiest_group_capacity; 3431 unsigned long busiest_has_capacity; 3432 unsigned int busiest_group_weight; 3433 3434 int group_imb; /* Is there imbalance in this sd */ 3435 }; 3436 3437 /* 3438 * sg_lb_stats - stats of a sched_group required for load_balancing 3439 */ 3440 struct sg_lb_stats { 3441 unsigned long avg_load; /*Avg load across the CPUs of the group */ 3442 unsigned long group_load; /* Total load over the CPUs of the group */ 3443 unsigned long sum_nr_running; /* Nr tasks running in the group */ 3444 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 3445 unsigned long group_capacity; 3446 unsigned long idle_cpus; 3447 unsigned long group_weight; 3448 int group_imb; /* Is there an imbalance in the group ? */ 3449 int group_has_capacity; /* Is there extra capacity in the group? */ 3450 }; 3451 3452 /** 3453 * get_sd_load_idx - Obtain the load index for a given sched domain. 3454 * @sd: The sched_domain whose load_idx is to be obtained. 3455 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 3456 */ 3457 static inline int get_sd_load_idx(struct sched_domain *sd, 3458 enum cpu_idle_type idle) 3459 { 3460 int load_idx; 3461 3462 switch (idle) { 3463 case CPU_NOT_IDLE: 3464 load_idx = sd->busy_idx; 3465 break; 3466 3467 case CPU_NEWLY_IDLE: 3468 load_idx = sd->newidle_idx; 3469 break; 3470 default: 3471 load_idx = sd->idle_idx; 3472 break; 3473 } 3474 3475 return load_idx; 3476 } 3477 3478 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 3479 { 3480 return SCHED_POWER_SCALE; 3481 } 3482 3483 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 3484 { 3485 return default_scale_freq_power(sd, cpu); 3486 } 3487 3488 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 3489 { 3490 unsigned long weight = sd->span_weight; 3491 unsigned long smt_gain = sd->smt_gain; 3492 3493 smt_gain /= weight; 3494 3495 return smt_gain; 3496 } 3497 3498 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 3499 { 3500 return default_scale_smt_power(sd, cpu); 3501 } 3502 3503 unsigned long scale_rt_power(int cpu) 3504 { 3505 struct rq *rq = cpu_rq(cpu); 3506 u64 total, available, age_stamp, avg; 3507 3508 /* 3509 * Since we're reading these variables without serialization make sure 3510 * we read them once before doing sanity checks on them. 3511 */ 3512 age_stamp = ACCESS_ONCE(rq->age_stamp); 3513 avg = ACCESS_ONCE(rq->rt_avg); 3514 3515 total = sched_avg_period() + (rq->clock - age_stamp); 3516 3517 if (unlikely(total < avg)) { 3518 /* Ensures that power won't end up being negative */ 3519 available = 0; 3520 } else { 3521 available = total - avg; 3522 } 3523 3524 if (unlikely((s64)total < SCHED_POWER_SCALE)) 3525 total = SCHED_POWER_SCALE; 3526 3527 total >>= SCHED_POWER_SHIFT; 3528 3529 return div_u64(available, total); 3530 } 3531 3532 static void update_cpu_power(struct sched_domain *sd, int cpu) 3533 { 3534 unsigned long weight = sd->span_weight; 3535 unsigned long power = SCHED_POWER_SCALE; 3536 struct sched_group *sdg = sd->groups; 3537 3538 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 3539 if (sched_feat(ARCH_POWER)) 3540 power *= arch_scale_smt_power(sd, cpu); 3541 else 3542 power *= default_scale_smt_power(sd, cpu); 3543 3544 power >>= SCHED_POWER_SHIFT; 3545 } 3546 3547 sdg->sgp->power_orig = power; 3548 3549 if (sched_feat(ARCH_POWER)) 3550 power *= arch_scale_freq_power(sd, cpu); 3551 else 3552 power *= default_scale_freq_power(sd, cpu); 3553 3554 power >>= SCHED_POWER_SHIFT; 3555 3556 power *= scale_rt_power(cpu); 3557 power >>= SCHED_POWER_SHIFT; 3558 3559 if (!power) 3560 power = 1; 3561 3562 cpu_rq(cpu)->cpu_power = power; 3563 sdg->sgp->power = power; 3564 } 3565 3566 void update_group_power(struct sched_domain *sd, int cpu) 3567 { 3568 struct sched_domain *child = sd->child; 3569 struct sched_group *group, *sdg = sd->groups; 3570 unsigned long power; 3571 unsigned long interval; 3572 3573 interval = msecs_to_jiffies(sd->balance_interval); 3574 interval = clamp(interval, 1UL, max_load_balance_interval); 3575 sdg->sgp->next_update = jiffies + interval; 3576 3577 if (!child) { 3578 update_cpu_power(sd, cpu); 3579 return; 3580 } 3581 3582 power = 0; 3583 3584 if (child->flags & SD_OVERLAP) { 3585 /* 3586 * SD_OVERLAP domains cannot assume that child groups 3587 * span the current group. 3588 */ 3589 3590 for_each_cpu(cpu, sched_group_cpus(sdg)) 3591 power += power_of(cpu); 3592 } else { 3593 /* 3594 * !SD_OVERLAP domains can assume that child groups 3595 * span the current group. 3596 */ 3597 3598 group = child->groups; 3599 do { 3600 power += group->sgp->power; 3601 group = group->next; 3602 } while (group != child->groups); 3603 } 3604 3605 sdg->sgp->power_orig = sdg->sgp->power = power; 3606 } 3607 3608 /* 3609 * Try and fix up capacity for tiny siblings, this is needed when 3610 * things like SD_ASYM_PACKING need f_b_g to select another sibling 3611 * which on its own isn't powerful enough. 3612 * 3613 * See update_sd_pick_busiest() and check_asym_packing(). 3614 */ 3615 static inline int 3616 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 3617 { 3618 /* 3619 * Only siblings can have significantly less than SCHED_POWER_SCALE 3620 */ 3621 if (!(sd->flags & SD_SHARE_CPUPOWER)) 3622 return 0; 3623 3624 /* 3625 * If ~90% of the cpu_power is still there, we're good. 3626 */ 3627 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 3628 return 1; 3629 3630 return 0; 3631 } 3632 3633 /** 3634 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3635 * @env: The load balancing environment. 3636 * @group: sched_group whose statistics are to be updated. 3637 * @load_idx: Load index of sched_domain of this_cpu for load calc. 3638 * @local_group: Does group contain this_cpu. 3639 * @cpus: Set of cpus considered for load balancing. 3640 * @balance: Should we balance. 3641 * @sgs: variable to hold the statistics for this group. 3642 */ 3643 static inline void update_sg_lb_stats(struct lb_env *env, 3644 struct sched_group *group, int load_idx, 3645 int local_group, const struct cpumask *cpus, 3646 int *balance, struct sg_lb_stats *sgs) 3647 { 3648 unsigned long nr_running, max_nr_running, min_nr_running; 3649 unsigned long load, max_cpu_load, min_cpu_load; 3650 unsigned int balance_cpu = -1, first_idle_cpu = 0; 3651 unsigned long avg_load_per_task = 0; 3652 int i; 3653 3654 if (local_group) 3655 balance_cpu = group_balance_cpu(group); 3656 3657 /* Tally up the load of all CPUs in the group */ 3658 max_cpu_load = 0; 3659 min_cpu_load = ~0UL; 3660 max_nr_running = 0; 3661 min_nr_running = ~0UL; 3662 3663 for_each_cpu_and(i, sched_group_cpus(group), cpus) { 3664 struct rq *rq = cpu_rq(i); 3665 3666 nr_running = rq->nr_running; 3667 3668 /* Bias balancing toward cpus of our domain */ 3669 if (local_group) { 3670 if (idle_cpu(i) && !first_idle_cpu && 3671 cpumask_test_cpu(i, sched_group_mask(group))) { 3672 first_idle_cpu = 1; 3673 balance_cpu = i; 3674 } 3675 3676 load = target_load(i, load_idx); 3677 } else { 3678 load = source_load(i, load_idx); 3679 if (load > max_cpu_load) 3680 max_cpu_load = load; 3681 if (min_cpu_load > load) 3682 min_cpu_load = load; 3683 3684 if (nr_running > max_nr_running) 3685 max_nr_running = nr_running; 3686 if (min_nr_running > nr_running) 3687 min_nr_running = nr_running; 3688 } 3689 3690 sgs->group_load += load; 3691 sgs->sum_nr_running += nr_running; 3692 sgs->sum_weighted_load += weighted_cpuload(i); 3693 if (idle_cpu(i)) 3694 sgs->idle_cpus++; 3695 } 3696 3697 /* 3698 * First idle cpu or the first cpu(busiest) in this sched group 3699 * is eligible for doing load balancing at this and above 3700 * domains. In the newly idle case, we will allow all the cpu's 3701 * to do the newly idle load balance. 3702 */ 3703 if (local_group) { 3704 if (env->idle != CPU_NEWLY_IDLE) { 3705 if (balance_cpu != env->dst_cpu) { 3706 *balance = 0; 3707 return; 3708 } 3709 update_group_power(env->sd, env->dst_cpu); 3710 } else if (time_after_eq(jiffies, group->sgp->next_update)) 3711 update_group_power(env->sd, env->dst_cpu); 3712 } 3713 3714 /* Adjust by relative CPU power of the group */ 3715 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; 3716 3717 /* 3718 * Consider the group unbalanced when the imbalance is larger 3719 * than the average weight of a task. 3720 * 3721 * APZ: with cgroup the avg task weight can vary wildly and 3722 * might not be a suitable number - should we keep a 3723 * normalized nr_running number somewhere that negates 3724 * the hierarchy? 3725 */ 3726 if (sgs->sum_nr_running) 3727 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 3728 3729 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && 3730 (max_nr_running - min_nr_running) > 1) 3731 sgs->group_imb = 1; 3732 3733 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, 3734 SCHED_POWER_SCALE); 3735 if (!sgs->group_capacity) 3736 sgs->group_capacity = fix_small_capacity(env->sd, group); 3737 sgs->group_weight = group->group_weight; 3738 3739 if (sgs->group_capacity > sgs->sum_nr_running) 3740 sgs->group_has_capacity = 1; 3741 } 3742 3743 /** 3744 * update_sd_pick_busiest - return 1 on busiest group 3745 * @env: The load balancing environment. 3746 * @sds: sched_domain statistics 3747 * @sg: sched_group candidate to be checked for being the busiest 3748 * @sgs: sched_group statistics 3749 * 3750 * Determine if @sg is a busier group than the previously selected 3751 * busiest group. 3752 */ 3753 static bool update_sd_pick_busiest(struct lb_env *env, 3754 struct sd_lb_stats *sds, 3755 struct sched_group *sg, 3756 struct sg_lb_stats *sgs) 3757 { 3758 if (sgs->avg_load <= sds->max_load) 3759 return false; 3760 3761 if (sgs->sum_nr_running > sgs->group_capacity) 3762 return true; 3763 3764 if (sgs->group_imb) 3765 return true; 3766 3767 /* 3768 * ASYM_PACKING needs to move all the work to the lowest 3769 * numbered CPUs in the group, therefore mark all groups 3770 * higher than ourself as busy. 3771 */ 3772 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 3773 env->dst_cpu < group_first_cpu(sg)) { 3774 if (!sds->busiest) 3775 return true; 3776 3777 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 3778 return true; 3779 } 3780 3781 return false; 3782 } 3783 3784 /** 3785 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 3786 * @env: The load balancing environment. 3787 * @cpus: Set of cpus considered for load balancing. 3788 * @balance: Should we balance. 3789 * @sds: variable to hold the statistics for this sched_domain. 3790 */ 3791 static inline void update_sd_lb_stats(struct lb_env *env, 3792 const struct cpumask *cpus, 3793 int *balance, struct sd_lb_stats *sds) 3794 { 3795 struct sched_domain *child = env->sd->child; 3796 struct sched_group *sg = env->sd->groups; 3797 struct sg_lb_stats sgs; 3798 int load_idx, prefer_sibling = 0; 3799 3800 if (child && child->flags & SD_PREFER_SIBLING) 3801 prefer_sibling = 1; 3802 3803 load_idx = get_sd_load_idx(env->sd, env->idle); 3804 3805 do { 3806 int local_group; 3807 3808 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 3809 memset(&sgs, 0, sizeof(sgs)); 3810 update_sg_lb_stats(env, sg, load_idx, local_group, 3811 cpus, balance, &sgs); 3812 3813 if (local_group && !(*balance)) 3814 return; 3815 3816 sds->total_load += sgs.group_load; 3817 sds->total_pwr += sg->sgp->power; 3818 3819 /* 3820 * In case the child domain prefers tasks go to siblings 3821 * first, lower the sg capacity to one so that we'll try 3822 * and move all the excess tasks away. We lower the capacity 3823 * of a group only if the local group has the capacity to fit 3824 * these excess tasks, i.e. nr_running < group_capacity. The 3825 * extra check prevents the case where you always pull from the 3826 * heaviest group when it is already under-utilized (possible 3827 * with a large weight task outweighs the tasks on the system). 3828 */ 3829 if (prefer_sibling && !local_group && sds->this_has_capacity) 3830 sgs.group_capacity = min(sgs.group_capacity, 1UL); 3831 3832 if (local_group) { 3833 sds->this_load = sgs.avg_load; 3834 sds->this = sg; 3835 sds->this_nr_running = sgs.sum_nr_running; 3836 sds->this_load_per_task = sgs.sum_weighted_load; 3837 sds->this_has_capacity = sgs.group_has_capacity; 3838 sds->this_idle_cpus = sgs.idle_cpus; 3839 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) { 3840 sds->max_load = sgs.avg_load; 3841 sds->busiest = sg; 3842 sds->busiest_nr_running = sgs.sum_nr_running; 3843 sds->busiest_idle_cpus = sgs.idle_cpus; 3844 sds->busiest_group_capacity = sgs.group_capacity; 3845 sds->busiest_load_per_task = sgs.sum_weighted_load; 3846 sds->busiest_has_capacity = sgs.group_has_capacity; 3847 sds->busiest_group_weight = sgs.group_weight; 3848 sds->group_imb = sgs.group_imb; 3849 } 3850 3851 sg = sg->next; 3852 } while (sg != env->sd->groups); 3853 } 3854 3855 /** 3856 * check_asym_packing - Check to see if the group is packed into the 3857 * sched doman. 3858 * 3859 * This is primarily intended to used at the sibling level. Some 3860 * cores like POWER7 prefer to use lower numbered SMT threads. In the 3861 * case of POWER7, it can move to lower SMT modes only when higher 3862 * threads are idle. When in lower SMT modes, the threads will 3863 * perform better since they share less core resources. Hence when we 3864 * have idle threads, we want them to be the higher ones. 3865 * 3866 * This packing function is run on idle threads. It checks to see if 3867 * the busiest CPU in this domain (core in the P7 case) has a higher 3868 * CPU number than the packing function is being run on. Here we are 3869 * assuming lower CPU number will be equivalent to lower a SMT thread 3870 * number. 3871 * 3872 * Returns 1 when packing is required and a task should be moved to 3873 * this CPU. The amount of the imbalance is returned in *imbalance. 3874 * 3875 * @env: The load balancing environment. 3876 * @sds: Statistics of the sched_domain which is to be packed 3877 */ 3878 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 3879 { 3880 int busiest_cpu; 3881 3882 if (!(env->sd->flags & SD_ASYM_PACKING)) 3883 return 0; 3884 3885 if (!sds->busiest) 3886 return 0; 3887 3888 busiest_cpu = group_first_cpu(sds->busiest); 3889 if (env->dst_cpu > busiest_cpu) 3890 return 0; 3891 3892 env->imbalance = DIV_ROUND_CLOSEST( 3893 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE); 3894 3895 return 1; 3896 } 3897 3898 /** 3899 * fix_small_imbalance - Calculate the minor imbalance that exists 3900 * amongst the groups of a sched_domain, during 3901 * load balancing. 3902 * @env: The load balancing environment. 3903 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 3904 */ 3905 static inline 3906 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 3907 { 3908 unsigned long tmp, pwr_now = 0, pwr_move = 0; 3909 unsigned int imbn = 2; 3910 unsigned long scaled_busy_load_per_task; 3911 3912 if (sds->this_nr_running) { 3913 sds->this_load_per_task /= sds->this_nr_running; 3914 if (sds->busiest_load_per_task > 3915 sds->this_load_per_task) 3916 imbn = 1; 3917 } else { 3918 sds->this_load_per_task = 3919 cpu_avg_load_per_task(env->dst_cpu); 3920 } 3921 3922 scaled_busy_load_per_task = sds->busiest_load_per_task 3923 * SCHED_POWER_SCALE; 3924 scaled_busy_load_per_task /= sds->busiest->sgp->power; 3925 3926 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 3927 (scaled_busy_load_per_task * imbn)) { 3928 env->imbalance = sds->busiest_load_per_task; 3929 return; 3930 } 3931 3932 /* 3933 * OK, we don't have enough imbalance to justify moving tasks, 3934 * however we may be able to increase total CPU power used by 3935 * moving them. 3936 */ 3937 3938 pwr_now += sds->busiest->sgp->power * 3939 min(sds->busiest_load_per_task, sds->max_load); 3940 pwr_now += sds->this->sgp->power * 3941 min(sds->this_load_per_task, sds->this_load); 3942 pwr_now /= SCHED_POWER_SCALE; 3943 3944 /* Amount of load we'd subtract */ 3945 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 3946 sds->busiest->sgp->power; 3947 if (sds->max_load > tmp) 3948 pwr_move += sds->busiest->sgp->power * 3949 min(sds->busiest_load_per_task, sds->max_load - tmp); 3950 3951 /* Amount of load we'd add */ 3952 if (sds->max_load * sds->busiest->sgp->power < 3953 sds->busiest_load_per_task * SCHED_POWER_SCALE) 3954 tmp = (sds->max_load * sds->busiest->sgp->power) / 3955 sds->this->sgp->power; 3956 else 3957 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 3958 sds->this->sgp->power; 3959 pwr_move += sds->this->sgp->power * 3960 min(sds->this_load_per_task, sds->this_load + tmp); 3961 pwr_move /= SCHED_POWER_SCALE; 3962 3963 /* Move if we gain throughput */ 3964 if (pwr_move > pwr_now) 3965 env->imbalance = sds->busiest_load_per_task; 3966 } 3967 3968 /** 3969 * calculate_imbalance - Calculate the amount of imbalance present within the 3970 * groups of a given sched_domain during load balance. 3971 * @env: load balance environment 3972 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 3973 */ 3974 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 3975 { 3976 unsigned long max_pull, load_above_capacity = ~0UL; 3977 3978 sds->busiest_load_per_task /= sds->busiest_nr_running; 3979 if (sds->group_imb) { 3980 sds->busiest_load_per_task = 3981 min(sds->busiest_load_per_task, sds->avg_load); 3982 } 3983 3984 /* 3985 * In the presence of smp nice balancing, certain scenarios can have 3986 * max load less than avg load(as we skip the groups at or below 3987 * its cpu_power, while calculating max_load..) 3988 */ 3989 if (sds->max_load < sds->avg_load) { 3990 env->imbalance = 0; 3991 return fix_small_imbalance(env, sds); 3992 } 3993 3994 if (!sds->group_imb) { 3995 /* 3996 * Don't want to pull so many tasks that a group would go idle. 3997 */ 3998 load_above_capacity = (sds->busiest_nr_running - 3999 sds->busiest_group_capacity); 4000 4001 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4002 4003 load_above_capacity /= sds->busiest->sgp->power; 4004 } 4005 4006 /* 4007 * We're trying to get all the cpus to the average_load, so we don't 4008 * want to push ourselves above the average load, nor do we wish to 4009 * reduce the max loaded cpu below the average load. At the same time, 4010 * we also don't want to reduce the group load below the group capacity 4011 * (so that we can implement power-savings policies etc). Thus we look 4012 * for the minimum possible imbalance. 4013 * Be careful of negative numbers as they'll appear as very large values 4014 * with unsigned longs. 4015 */ 4016 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 4017 4018 /* How much load to actually move to equalise the imbalance */ 4019 env->imbalance = min(max_pull * sds->busiest->sgp->power, 4020 (sds->avg_load - sds->this_load) * sds->this->sgp->power) 4021 / SCHED_POWER_SCALE; 4022 4023 /* 4024 * if *imbalance is less than the average load per runnable task 4025 * there is no guarantee that any tasks will be moved so we'll have 4026 * a think about bumping its value to force at least one task to be 4027 * moved 4028 */ 4029 if (env->imbalance < sds->busiest_load_per_task) 4030 return fix_small_imbalance(env, sds); 4031 4032 } 4033 4034 /******* find_busiest_group() helpers end here *********************/ 4035 4036 /** 4037 * find_busiest_group - Returns the busiest group within the sched_domain 4038 * if there is an imbalance. If there isn't an imbalance, and 4039 * the user has opted for power-savings, it returns a group whose 4040 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4041 * such a group exists. 4042 * 4043 * Also calculates the amount of weighted load which should be moved 4044 * to restore balance. 4045 * 4046 * @env: The load balancing environment. 4047 * @cpus: The set of CPUs under consideration for load-balancing. 4048 * @balance: Pointer to a variable indicating if this_cpu 4049 * is the appropriate cpu to perform load balancing at this_level. 4050 * 4051 * Returns: - the busiest group if imbalance exists. 4052 * - If no imbalance and user has opted for power-savings balance, 4053 * return the least loaded group whose CPUs can be 4054 * put to idle by rebalancing its tasks onto our group. 4055 */ 4056 static struct sched_group * 4057 find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance) 4058 { 4059 struct sd_lb_stats sds; 4060 4061 memset(&sds, 0, sizeof(sds)); 4062 4063 /* 4064 * Compute the various statistics relavent for load balancing at 4065 * this level. 4066 */ 4067 update_sd_lb_stats(env, cpus, balance, &sds); 4068 4069 /* 4070 * this_cpu is not the appropriate cpu to perform load balancing at 4071 * this level. 4072 */ 4073 if (!(*balance)) 4074 goto ret; 4075 4076 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 4077 check_asym_packing(env, &sds)) 4078 return sds.busiest; 4079 4080 /* There is no busy sibling group to pull tasks from */ 4081 if (!sds.busiest || sds.busiest_nr_running == 0) 4082 goto out_balanced; 4083 4084 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4085 4086 /* 4087 * If the busiest group is imbalanced the below checks don't 4088 * work because they assumes all things are equal, which typically 4089 * isn't true due to cpus_allowed constraints and the like. 4090 */ 4091 if (sds.group_imb) 4092 goto force_balance; 4093 4094 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4095 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity && 4096 !sds.busiest_has_capacity) 4097 goto force_balance; 4098 4099 /* 4100 * If the local group is more busy than the selected busiest group 4101 * don't try and pull any tasks. 4102 */ 4103 if (sds.this_load >= sds.max_load) 4104 goto out_balanced; 4105 4106 /* 4107 * Don't pull any tasks if this group is already above the domain 4108 * average load. 4109 */ 4110 if (sds.this_load >= sds.avg_load) 4111 goto out_balanced; 4112 4113 if (env->idle == CPU_IDLE) { 4114 /* 4115 * This cpu is idle. If the busiest group load doesn't 4116 * have more tasks than the number of available cpu's and 4117 * there is no imbalance between this and busiest group 4118 * wrt to idle cpu's, it is balanced. 4119 */ 4120 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && 4121 sds.busiest_nr_running <= sds.busiest_group_weight) 4122 goto out_balanced; 4123 } else { 4124 /* 4125 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 4126 * imbalance_pct to be conservative. 4127 */ 4128 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load) 4129 goto out_balanced; 4130 } 4131 4132 force_balance: 4133 /* Looks like there is an imbalance. Compute it */ 4134 calculate_imbalance(env, &sds); 4135 return sds.busiest; 4136 4137 out_balanced: 4138 ret: 4139 env->imbalance = 0; 4140 return NULL; 4141 } 4142 4143 /* 4144 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4145 */ 4146 static struct rq *find_busiest_queue(struct lb_env *env, 4147 struct sched_group *group, 4148 const struct cpumask *cpus) 4149 { 4150 struct rq *busiest = NULL, *rq; 4151 unsigned long max_load = 0; 4152 int i; 4153 4154 for_each_cpu(i, sched_group_cpus(group)) { 4155 unsigned long power = power_of(i); 4156 unsigned long capacity = DIV_ROUND_CLOSEST(power, 4157 SCHED_POWER_SCALE); 4158 unsigned long wl; 4159 4160 if (!capacity) 4161 capacity = fix_small_capacity(env->sd, group); 4162 4163 if (!cpumask_test_cpu(i, cpus)) 4164 continue; 4165 4166 rq = cpu_rq(i); 4167 wl = weighted_cpuload(i); 4168 4169 /* 4170 * When comparing with imbalance, use weighted_cpuload() 4171 * which is not scaled with the cpu power. 4172 */ 4173 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 4174 continue; 4175 4176 /* 4177 * For the load comparisons with the other cpu's, consider 4178 * the weighted_cpuload() scaled with the cpu power, so that 4179 * the load can be moved away from the cpu that is potentially 4180 * running at a lower capacity. 4181 */ 4182 wl = (wl * SCHED_POWER_SCALE) / power; 4183 4184 if (wl > max_load) { 4185 max_load = wl; 4186 busiest = rq; 4187 } 4188 } 4189 4190 return busiest; 4191 } 4192 4193 /* 4194 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 4195 * so long as it is large enough. 4196 */ 4197 #define MAX_PINNED_INTERVAL 512 4198 4199 /* Working cpumask for load_balance and load_balance_newidle. */ 4200 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 4201 4202 static int need_active_balance(struct lb_env *env) 4203 { 4204 struct sched_domain *sd = env->sd; 4205 4206 if (env->idle == CPU_NEWLY_IDLE) { 4207 4208 /* 4209 * ASYM_PACKING needs to force migrate tasks from busy but 4210 * higher numbered CPUs in order to pack all tasks in the 4211 * lowest numbered CPUs. 4212 */ 4213 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 4214 return 1; 4215 } 4216 4217 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 4218 } 4219 4220 static int active_load_balance_cpu_stop(void *data); 4221 4222 /* 4223 * Check this_cpu to ensure it is balanced within domain. Attempt to move 4224 * tasks if there is an imbalance. 4225 */ 4226 static int load_balance(int this_cpu, struct rq *this_rq, 4227 struct sched_domain *sd, enum cpu_idle_type idle, 4228 int *balance) 4229 { 4230 int ld_moved, active_balance = 0; 4231 struct sched_group *group; 4232 struct rq *busiest; 4233 unsigned long flags; 4234 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4235 4236 struct lb_env env = { 4237 .sd = sd, 4238 .dst_cpu = this_cpu, 4239 .dst_rq = this_rq, 4240 .idle = idle, 4241 .loop_break = sched_nr_migrate_break, 4242 }; 4243 4244 cpumask_copy(cpus, cpu_active_mask); 4245 4246 schedstat_inc(sd, lb_count[idle]); 4247 4248 redo: 4249 group = find_busiest_group(&env, cpus, balance); 4250 4251 if (*balance == 0) 4252 goto out_balanced; 4253 4254 if (!group) { 4255 schedstat_inc(sd, lb_nobusyg[idle]); 4256 goto out_balanced; 4257 } 4258 4259 busiest = find_busiest_queue(&env, group, cpus); 4260 if (!busiest) { 4261 schedstat_inc(sd, lb_nobusyq[idle]); 4262 goto out_balanced; 4263 } 4264 4265 BUG_ON(busiest == this_rq); 4266 4267 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 4268 4269 ld_moved = 0; 4270 if (busiest->nr_running > 1) { 4271 /* 4272 * Attempt to move tasks. If find_busiest_group has found 4273 * an imbalance but busiest->nr_running <= 1, the group is 4274 * still unbalanced. ld_moved simply stays zero, so it is 4275 * correctly treated as an imbalance. 4276 */ 4277 env.flags |= LBF_ALL_PINNED; 4278 env.src_cpu = busiest->cpu; 4279 env.src_rq = busiest; 4280 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 4281 4282 more_balance: 4283 local_irq_save(flags); 4284 double_rq_lock(this_rq, busiest); 4285 if (!env.loop) 4286 update_h_load(env.src_cpu); 4287 ld_moved += move_tasks(&env); 4288 double_rq_unlock(this_rq, busiest); 4289 local_irq_restore(flags); 4290 4291 if (env.flags & LBF_NEED_BREAK) { 4292 env.flags &= ~LBF_NEED_BREAK; 4293 goto more_balance; 4294 } 4295 4296 /* 4297 * some other cpu did the load balance for us. 4298 */ 4299 if (ld_moved && this_cpu != smp_processor_id()) 4300 resched_cpu(this_cpu); 4301 4302 /* All tasks on this runqueue were pinned by CPU affinity */ 4303 if (unlikely(env.flags & LBF_ALL_PINNED)) { 4304 cpumask_clear_cpu(cpu_of(busiest), cpus); 4305 if (!cpumask_empty(cpus)) 4306 goto redo; 4307 goto out_balanced; 4308 } 4309 } 4310 4311 if (!ld_moved) { 4312 schedstat_inc(sd, lb_failed[idle]); 4313 /* 4314 * Increment the failure counter only on periodic balance. 4315 * We do not want newidle balance, which can be very 4316 * frequent, pollute the failure counter causing 4317 * excessive cache_hot migrations and active balances. 4318 */ 4319 if (idle != CPU_NEWLY_IDLE) 4320 sd->nr_balance_failed++; 4321 4322 if (need_active_balance(&env)) { 4323 raw_spin_lock_irqsave(&busiest->lock, flags); 4324 4325 /* don't kick the active_load_balance_cpu_stop, 4326 * if the curr task on busiest cpu can't be 4327 * moved to this_cpu 4328 */ 4329 if (!cpumask_test_cpu(this_cpu, 4330 tsk_cpus_allowed(busiest->curr))) { 4331 raw_spin_unlock_irqrestore(&busiest->lock, 4332 flags); 4333 env.flags |= LBF_ALL_PINNED; 4334 goto out_one_pinned; 4335 } 4336 4337 /* 4338 * ->active_balance synchronizes accesses to 4339 * ->active_balance_work. Once set, it's cleared 4340 * only after active load balance is finished. 4341 */ 4342 if (!busiest->active_balance) { 4343 busiest->active_balance = 1; 4344 busiest->push_cpu = this_cpu; 4345 active_balance = 1; 4346 } 4347 raw_spin_unlock_irqrestore(&busiest->lock, flags); 4348 4349 if (active_balance) { 4350 stop_one_cpu_nowait(cpu_of(busiest), 4351 active_load_balance_cpu_stop, busiest, 4352 &busiest->active_balance_work); 4353 } 4354 4355 /* 4356 * We've kicked active balancing, reset the failure 4357 * counter. 4358 */ 4359 sd->nr_balance_failed = sd->cache_nice_tries+1; 4360 } 4361 } else 4362 sd->nr_balance_failed = 0; 4363 4364 if (likely(!active_balance)) { 4365 /* We were unbalanced, so reset the balancing interval */ 4366 sd->balance_interval = sd->min_interval; 4367 } else { 4368 /* 4369 * If we've begun active balancing, start to back off. This 4370 * case may not be covered by the all_pinned logic if there 4371 * is only 1 task on the busy runqueue (because we don't call 4372 * move_tasks). 4373 */ 4374 if (sd->balance_interval < sd->max_interval) 4375 sd->balance_interval *= 2; 4376 } 4377 4378 goto out; 4379 4380 out_balanced: 4381 schedstat_inc(sd, lb_balanced[idle]); 4382 4383 sd->nr_balance_failed = 0; 4384 4385 out_one_pinned: 4386 /* tune up the balancing interval */ 4387 if (((env.flags & LBF_ALL_PINNED) && 4388 sd->balance_interval < MAX_PINNED_INTERVAL) || 4389 (sd->balance_interval < sd->max_interval)) 4390 sd->balance_interval *= 2; 4391 4392 ld_moved = 0; 4393 out: 4394 return ld_moved; 4395 } 4396 4397 /* 4398 * idle_balance is called by schedule() if this_cpu is about to become 4399 * idle. Attempts to pull tasks from other CPUs. 4400 */ 4401 void idle_balance(int this_cpu, struct rq *this_rq) 4402 { 4403 struct sched_domain *sd; 4404 int pulled_task = 0; 4405 unsigned long next_balance = jiffies + HZ; 4406 4407 this_rq->idle_stamp = this_rq->clock; 4408 4409 if (this_rq->avg_idle < sysctl_sched_migration_cost) 4410 return; 4411 4412 /* 4413 * Drop the rq->lock, but keep IRQ/preempt disabled. 4414 */ 4415 raw_spin_unlock(&this_rq->lock); 4416 4417 update_shares(this_cpu); 4418 rcu_read_lock(); 4419 for_each_domain(this_cpu, sd) { 4420 unsigned long interval; 4421 int balance = 1; 4422 4423 if (!(sd->flags & SD_LOAD_BALANCE)) 4424 continue; 4425 4426 if (sd->flags & SD_BALANCE_NEWIDLE) { 4427 /* If we've pulled tasks over stop searching: */ 4428 pulled_task = load_balance(this_cpu, this_rq, 4429 sd, CPU_NEWLY_IDLE, &balance); 4430 } 4431 4432 interval = msecs_to_jiffies(sd->balance_interval); 4433 if (time_after(next_balance, sd->last_balance + interval)) 4434 next_balance = sd->last_balance + interval; 4435 if (pulled_task) { 4436 this_rq->idle_stamp = 0; 4437 break; 4438 } 4439 } 4440 rcu_read_unlock(); 4441 4442 raw_spin_lock(&this_rq->lock); 4443 4444 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4445 /* 4446 * We are going idle. next_balance may be set based on 4447 * a busy processor. So reset next_balance. 4448 */ 4449 this_rq->next_balance = next_balance; 4450 } 4451 } 4452 4453 /* 4454 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 4455 * running tasks off the busiest CPU onto idle CPUs. It requires at 4456 * least 1 task to be running on each physical CPU where possible, and 4457 * avoids physical / logical imbalances. 4458 */ 4459 static int active_load_balance_cpu_stop(void *data) 4460 { 4461 struct rq *busiest_rq = data; 4462 int busiest_cpu = cpu_of(busiest_rq); 4463 int target_cpu = busiest_rq->push_cpu; 4464 struct rq *target_rq = cpu_rq(target_cpu); 4465 struct sched_domain *sd; 4466 4467 raw_spin_lock_irq(&busiest_rq->lock); 4468 4469 /* make sure the requested cpu hasn't gone down in the meantime */ 4470 if (unlikely(busiest_cpu != smp_processor_id() || 4471 !busiest_rq->active_balance)) 4472 goto out_unlock; 4473 4474 /* Is there any task to move? */ 4475 if (busiest_rq->nr_running <= 1) 4476 goto out_unlock; 4477 4478 /* 4479 * This condition is "impossible", if it occurs 4480 * we need to fix it. Originally reported by 4481 * Bjorn Helgaas on a 128-cpu setup. 4482 */ 4483 BUG_ON(busiest_rq == target_rq); 4484 4485 /* move a task from busiest_rq to target_rq */ 4486 double_lock_balance(busiest_rq, target_rq); 4487 4488 /* Search for an sd spanning us and the target CPU. */ 4489 rcu_read_lock(); 4490 for_each_domain(target_cpu, sd) { 4491 if ((sd->flags & SD_LOAD_BALANCE) && 4492 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 4493 break; 4494 } 4495 4496 if (likely(sd)) { 4497 struct lb_env env = { 4498 .sd = sd, 4499 .dst_cpu = target_cpu, 4500 .dst_rq = target_rq, 4501 .src_cpu = busiest_rq->cpu, 4502 .src_rq = busiest_rq, 4503 .idle = CPU_IDLE, 4504 }; 4505 4506 schedstat_inc(sd, alb_count); 4507 4508 if (move_one_task(&env)) 4509 schedstat_inc(sd, alb_pushed); 4510 else 4511 schedstat_inc(sd, alb_failed); 4512 } 4513 rcu_read_unlock(); 4514 double_unlock_balance(busiest_rq, target_rq); 4515 out_unlock: 4516 busiest_rq->active_balance = 0; 4517 raw_spin_unlock_irq(&busiest_rq->lock); 4518 return 0; 4519 } 4520 4521 #ifdef CONFIG_NO_HZ 4522 /* 4523 * idle load balancing details 4524 * - When one of the busy CPUs notice that there may be an idle rebalancing 4525 * needed, they will kick the idle load balancer, which then does idle 4526 * load balancing for all the idle CPUs. 4527 */ 4528 static struct { 4529 cpumask_var_t idle_cpus_mask; 4530 atomic_t nr_cpus; 4531 unsigned long next_balance; /* in jiffy units */ 4532 } nohz ____cacheline_aligned; 4533 4534 static inline int find_new_ilb(int call_cpu) 4535 { 4536 int ilb = cpumask_first(nohz.idle_cpus_mask); 4537 4538 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 4539 return ilb; 4540 4541 return nr_cpu_ids; 4542 } 4543 4544 /* 4545 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 4546 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 4547 * CPU (if there is one). 4548 */ 4549 static void nohz_balancer_kick(int cpu) 4550 { 4551 int ilb_cpu; 4552 4553 nohz.next_balance++; 4554 4555 ilb_cpu = find_new_ilb(cpu); 4556 4557 if (ilb_cpu >= nr_cpu_ids) 4558 return; 4559 4560 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 4561 return; 4562 /* 4563 * Use smp_send_reschedule() instead of resched_cpu(). 4564 * This way we generate a sched IPI on the target cpu which 4565 * is idle. And the softirq performing nohz idle load balance 4566 * will be run before returning from the IPI. 4567 */ 4568 smp_send_reschedule(ilb_cpu); 4569 return; 4570 } 4571 4572 static inline void clear_nohz_tick_stopped(int cpu) 4573 { 4574 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 4575 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 4576 atomic_dec(&nohz.nr_cpus); 4577 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 4578 } 4579 } 4580 4581 static inline void set_cpu_sd_state_busy(void) 4582 { 4583 struct sched_domain *sd; 4584 int cpu = smp_processor_id(); 4585 4586 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4587 return; 4588 clear_bit(NOHZ_IDLE, nohz_flags(cpu)); 4589 4590 rcu_read_lock(); 4591 for_each_domain(cpu, sd) 4592 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 4593 rcu_read_unlock(); 4594 } 4595 4596 void set_cpu_sd_state_idle(void) 4597 { 4598 struct sched_domain *sd; 4599 int cpu = smp_processor_id(); 4600 4601 if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4602 return; 4603 set_bit(NOHZ_IDLE, nohz_flags(cpu)); 4604 4605 rcu_read_lock(); 4606 for_each_domain(cpu, sd) 4607 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 4608 rcu_read_unlock(); 4609 } 4610 4611 /* 4612 * This routine will record that this cpu is going idle with tick stopped. 4613 * This info will be used in performing idle load balancing in the future. 4614 */ 4615 void select_nohz_load_balancer(int stop_tick) 4616 { 4617 int cpu = smp_processor_id(); 4618 4619 /* 4620 * If this cpu is going down, then nothing needs to be done. 4621 */ 4622 if (!cpu_active(cpu)) 4623 return; 4624 4625 if (stop_tick) { 4626 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 4627 return; 4628 4629 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 4630 atomic_inc(&nohz.nr_cpus); 4631 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 4632 } 4633 return; 4634 } 4635 4636 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, 4637 unsigned long action, void *hcpu) 4638 { 4639 switch (action & ~CPU_TASKS_FROZEN) { 4640 case CPU_DYING: 4641 clear_nohz_tick_stopped(smp_processor_id()); 4642 return NOTIFY_OK; 4643 default: 4644 return NOTIFY_DONE; 4645 } 4646 } 4647 #endif 4648 4649 static DEFINE_SPINLOCK(balancing); 4650 4651 /* 4652 * Scale the max load_balance interval with the number of CPUs in the system. 4653 * This trades load-balance latency on larger machines for less cross talk. 4654 */ 4655 void update_max_interval(void) 4656 { 4657 max_load_balance_interval = HZ*num_online_cpus()/10; 4658 } 4659 4660 /* 4661 * It checks each scheduling domain to see if it is due to be balanced, 4662 * and initiates a balancing operation if so. 4663 * 4664 * Balancing parameters are set up in arch_init_sched_domains. 4665 */ 4666 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 4667 { 4668 int balance = 1; 4669 struct rq *rq = cpu_rq(cpu); 4670 unsigned long interval; 4671 struct sched_domain *sd; 4672 /* Earliest time when we have to do rebalance again */ 4673 unsigned long next_balance = jiffies + 60*HZ; 4674 int update_next_balance = 0; 4675 int need_serialize; 4676 4677 update_shares(cpu); 4678 4679 rcu_read_lock(); 4680 for_each_domain(cpu, sd) { 4681 if (!(sd->flags & SD_LOAD_BALANCE)) 4682 continue; 4683 4684 interval = sd->balance_interval; 4685 if (idle != CPU_IDLE) 4686 interval *= sd->busy_factor; 4687 4688 /* scale ms to jiffies */ 4689 interval = msecs_to_jiffies(interval); 4690 interval = clamp(interval, 1UL, max_load_balance_interval); 4691 4692 need_serialize = sd->flags & SD_SERIALIZE; 4693 4694 if (need_serialize) { 4695 if (!spin_trylock(&balancing)) 4696 goto out; 4697 } 4698 4699 if (time_after_eq(jiffies, sd->last_balance + interval)) { 4700 if (load_balance(cpu, rq, sd, idle, &balance)) { 4701 /* 4702 * We've pulled tasks over so either we're no 4703 * longer idle. 4704 */ 4705 idle = CPU_NOT_IDLE; 4706 } 4707 sd->last_balance = jiffies; 4708 } 4709 if (need_serialize) 4710 spin_unlock(&balancing); 4711 out: 4712 if (time_after(next_balance, sd->last_balance + interval)) { 4713 next_balance = sd->last_balance + interval; 4714 update_next_balance = 1; 4715 } 4716 4717 /* 4718 * Stop the load balance at this level. There is another 4719 * CPU in our sched group which is doing load balancing more 4720 * actively. 4721 */ 4722 if (!balance) 4723 break; 4724 } 4725 rcu_read_unlock(); 4726 4727 /* 4728 * next_balance will be updated only when there is a need. 4729 * When the cpu is attached to null domain for ex, it will not be 4730 * updated. 4731 */ 4732 if (likely(update_next_balance)) 4733 rq->next_balance = next_balance; 4734 } 4735 4736 #ifdef CONFIG_NO_HZ 4737 /* 4738 * In CONFIG_NO_HZ case, the idle balance kickee will do the 4739 * rebalancing for all the cpus for whom scheduler ticks are stopped. 4740 */ 4741 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 4742 { 4743 struct rq *this_rq = cpu_rq(this_cpu); 4744 struct rq *rq; 4745 int balance_cpu; 4746 4747 if (idle != CPU_IDLE || 4748 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 4749 goto end; 4750 4751 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 4752 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 4753 continue; 4754 4755 /* 4756 * If this cpu gets work to do, stop the load balancing 4757 * work being done for other cpus. Next load 4758 * balancing owner will pick it up. 4759 */ 4760 if (need_resched()) 4761 break; 4762 4763 raw_spin_lock_irq(&this_rq->lock); 4764 update_rq_clock(this_rq); 4765 update_idle_cpu_load(this_rq); 4766 raw_spin_unlock_irq(&this_rq->lock); 4767 4768 rebalance_domains(balance_cpu, CPU_IDLE); 4769 4770 rq = cpu_rq(balance_cpu); 4771 if (time_after(this_rq->next_balance, rq->next_balance)) 4772 this_rq->next_balance = rq->next_balance; 4773 } 4774 nohz.next_balance = this_rq->next_balance; 4775 end: 4776 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 4777 } 4778 4779 /* 4780 * Current heuristic for kicking the idle load balancer in the presence 4781 * of an idle cpu is the system. 4782 * - This rq has more than one task. 4783 * - At any scheduler domain level, this cpu's scheduler group has multiple 4784 * busy cpu's exceeding the group's power. 4785 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 4786 * domain span are idle. 4787 */ 4788 static inline int nohz_kick_needed(struct rq *rq, int cpu) 4789 { 4790 unsigned long now = jiffies; 4791 struct sched_domain *sd; 4792 4793 if (unlikely(idle_cpu(cpu))) 4794 return 0; 4795 4796 /* 4797 * We may be recently in ticked or tickless idle mode. At the first 4798 * busy tick after returning from idle, we will update the busy stats. 4799 */ 4800 set_cpu_sd_state_busy(); 4801 clear_nohz_tick_stopped(cpu); 4802 4803 /* 4804 * None are in tickless mode and hence no need for NOHZ idle load 4805 * balancing. 4806 */ 4807 if (likely(!atomic_read(&nohz.nr_cpus))) 4808 return 0; 4809 4810 if (time_before(now, nohz.next_balance)) 4811 return 0; 4812 4813 if (rq->nr_running >= 2) 4814 goto need_kick; 4815 4816 rcu_read_lock(); 4817 for_each_domain(cpu, sd) { 4818 struct sched_group *sg = sd->groups; 4819 struct sched_group_power *sgp = sg->sgp; 4820 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 4821 4822 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 4823 goto need_kick_unlock; 4824 4825 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 4826 && (cpumask_first_and(nohz.idle_cpus_mask, 4827 sched_domain_span(sd)) < cpu)) 4828 goto need_kick_unlock; 4829 4830 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 4831 break; 4832 } 4833 rcu_read_unlock(); 4834 return 0; 4835 4836 need_kick_unlock: 4837 rcu_read_unlock(); 4838 need_kick: 4839 return 1; 4840 } 4841 #else 4842 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 4843 #endif 4844 4845 /* 4846 * run_rebalance_domains is triggered when needed from the scheduler tick. 4847 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 4848 */ 4849 static void run_rebalance_domains(struct softirq_action *h) 4850 { 4851 int this_cpu = smp_processor_id(); 4852 struct rq *this_rq = cpu_rq(this_cpu); 4853 enum cpu_idle_type idle = this_rq->idle_balance ? 4854 CPU_IDLE : CPU_NOT_IDLE; 4855 4856 rebalance_domains(this_cpu, idle); 4857 4858 /* 4859 * If this cpu has a pending nohz_balance_kick, then do the 4860 * balancing on behalf of the other idle cpus whose ticks are 4861 * stopped. 4862 */ 4863 nohz_idle_balance(this_cpu, idle); 4864 } 4865 4866 static inline int on_null_domain(int cpu) 4867 { 4868 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 4869 } 4870 4871 /* 4872 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 4873 */ 4874 void trigger_load_balance(struct rq *rq, int cpu) 4875 { 4876 /* Don't need to rebalance while attached to NULL domain */ 4877 if (time_after_eq(jiffies, rq->next_balance) && 4878 likely(!on_null_domain(cpu))) 4879 raise_softirq(SCHED_SOFTIRQ); 4880 #ifdef CONFIG_NO_HZ 4881 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 4882 nohz_balancer_kick(cpu); 4883 #endif 4884 } 4885 4886 static void rq_online_fair(struct rq *rq) 4887 { 4888 update_sysctl(); 4889 } 4890 4891 static void rq_offline_fair(struct rq *rq) 4892 { 4893 update_sysctl(); 4894 } 4895 4896 #endif /* CONFIG_SMP */ 4897 4898 /* 4899 * scheduler tick hitting a task of our scheduling class: 4900 */ 4901 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 4902 { 4903 struct cfs_rq *cfs_rq; 4904 struct sched_entity *se = &curr->se; 4905 4906 for_each_sched_entity(se) { 4907 cfs_rq = cfs_rq_of(se); 4908 entity_tick(cfs_rq, se, queued); 4909 } 4910 } 4911 4912 /* 4913 * called on fork with the child task as argument from the parent's context 4914 * - child not yet on the tasklist 4915 * - preemption disabled 4916 */ 4917 static void task_fork_fair(struct task_struct *p) 4918 { 4919 struct cfs_rq *cfs_rq; 4920 struct sched_entity *se = &p->se, *curr; 4921 int this_cpu = smp_processor_id(); 4922 struct rq *rq = this_rq(); 4923 unsigned long flags; 4924 4925 raw_spin_lock_irqsave(&rq->lock, flags); 4926 4927 update_rq_clock(rq); 4928 4929 cfs_rq = task_cfs_rq(current); 4930 curr = cfs_rq->curr; 4931 4932 if (unlikely(task_cpu(p) != this_cpu)) { 4933 rcu_read_lock(); 4934 __set_task_cpu(p, this_cpu); 4935 rcu_read_unlock(); 4936 } 4937 4938 update_curr(cfs_rq); 4939 4940 if (curr) 4941 se->vruntime = curr->vruntime; 4942 place_entity(cfs_rq, se, 1); 4943 4944 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 4945 /* 4946 * Upon rescheduling, sched_class::put_prev_task() will place 4947 * 'current' within the tree based on its new key value. 4948 */ 4949 swap(curr->vruntime, se->vruntime); 4950 resched_task(rq->curr); 4951 } 4952 4953 se->vruntime -= cfs_rq->min_vruntime; 4954 4955 raw_spin_unlock_irqrestore(&rq->lock, flags); 4956 } 4957 4958 /* 4959 * Priority of the task has changed. Check to see if we preempt 4960 * the current task. 4961 */ 4962 static void 4963 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 4964 { 4965 if (!p->se.on_rq) 4966 return; 4967 4968 /* 4969 * Reschedule if we are currently running on this runqueue and 4970 * our priority decreased, or if we are not currently running on 4971 * this runqueue and our priority is higher than the current's 4972 */ 4973 if (rq->curr == p) { 4974 if (p->prio > oldprio) 4975 resched_task(rq->curr); 4976 } else 4977 check_preempt_curr(rq, p, 0); 4978 } 4979 4980 static void switched_from_fair(struct rq *rq, struct task_struct *p) 4981 { 4982 struct sched_entity *se = &p->se; 4983 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4984 4985 /* 4986 * Ensure the task's vruntime is normalized, so that when its 4987 * switched back to the fair class the enqueue_entity(.flags=0) will 4988 * do the right thing. 4989 * 4990 * If it was on_rq, then the dequeue_entity(.flags=0) will already 4991 * have normalized the vruntime, if it was !on_rq, then only when 4992 * the task is sleeping will it still have non-normalized vruntime. 4993 */ 4994 if (!se->on_rq && p->state != TASK_RUNNING) { 4995 /* 4996 * Fix up our vruntime so that the current sleep doesn't 4997 * cause 'unlimited' sleep bonus. 4998 */ 4999 place_entity(cfs_rq, se, 0); 5000 se->vruntime -= cfs_rq->min_vruntime; 5001 } 5002 } 5003 5004 /* 5005 * We switched to the sched_fair class. 5006 */ 5007 static void switched_to_fair(struct rq *rq, struct task_struct *p) 5008 { 5009 if (!p->se.on_rq) 5010 return; 5011 5012 /* 5013 * We were most likely switched from sched_rt, so 5014 * kick off the schedule if running, otherwise just see 5015 * if we can still preempt the current task. 5016 */ 5017 if (rq->curr == p) 5018 resched_task(rq->curr); 5019 else 5020 check_preempt_curr(rq, p, 0); 5021 } 5022 5023 /* Account for a task changing its policy or group. 5024 * 5025 * This routine is mostly called to set cfs_rq->curr field when a task 5026 * migrates between groups/classes. 5027 */ 5028 static void set_curr_task_fair(struct rq *rq) 5029 { 5030 struct sched_entity *se = &rq->curr->se; 5031 5032 for_each_sched_entity(se) { 5033 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5034 5035 set_next_entity(cfs_rq, se); 5036 /* ensure bandwidth has been allocated on our new cfs_rq */ 5037 account_cfs_rq_runtime(cfs_rq, 0); 5038 } 5039 } 5040 5041 void init_cfs_rq(struct cfs_rq *cfs_rq) 5042 { 5043 cfs_rq->tasks_timeline = RB_ROOT; 5044 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 5045 #ifndef CONFIG_64BIT 5046 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 5047 #endif 5048 } 5049 5050 #ifdef CONFIG_FAIR_GROUP_SCHED 5051 static void task_move_group_fair(struct task_struct *p, int on_rq) 5052 { 5053 /* 5054 * If the task was not on the rq at the time of this cgroup movement 5055 * it must have been asleep, sleeping tasks keep their ->vruntime 5056 * absolute on their old rq until wakeup (needed for the fair sleeper 5057 * bonus in place_entity()). 5058 * 5059 * If it was on the rq, we've just 'preempted' it, which does convert 5060 * ->vruntime to a relative base. 5061 * 5062 * Make sure both cases convert their relative position when migrating 5063 * to another cgroup's rq. This does somewhat interfere with the 5064 * fair sleeper stuff for the first placement, but who cares. 5065 */ 5066 /* 5067 * When !on_rq, vruntime of the task has usually NOT been normalized. 5068 * But there are some cases where it has already been normalized: 5069 * 5070 * - Moving a forked child which is waiting for being woken up by 5071 * wake_up_new_task(). 5072 * - Moving a task which has been woken up by try_to_wake_up() and 5073 * waiting for actually being woken up by sched_ttwu_pending(). 5074 * 5075 * To prevent boost or penalty in the new cfs_rq caused by delta 5076 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 5077 */ 5078 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 5079 on_rq = 1; 5080 5081 if (!on_rq) 5082 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 5083 set_task_rq(p, task_cpu(p)); 5084 if (!on_rq) 5085 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; 5086 } 5087 5088 void free_fair_sched_group(struct task_group *tg) 5089 { 5090 int i; 5091 5092 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5093 5094 for_each_possible_cpu(i) { 5095 if (tg->cfs_rq) 5096 kfree(tg->cfs_rq[i]); 5097 if (tg->se) 5098 kfree(tg->se[i]); 5099 } 5100 5101 kfree(tg->cfs_rq); 5102 kfree(tg->se); 5103 } 5104 5105 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5106 { 5107 struct cfs_rq *cfs_rq; 5108 struct sched_entity *se; 5109 int i; 5110 5111 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 5112 if (!tg->cfs_rq) 5113 goto err; 5114 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 5115 if (!tg->se) 5116 goto err; 5117 5118 tg->shares = NICE_0_LOAD; 5119 5120 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5121 5122 for_each_possible_cpu(i) { 5123 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 5124 GFP_KERNEL, cpu_to_node(i)); 5125 if (!cfs_rq) 5126 goto err; 5127 5128 se = kzalloc_node(sizeof(struct sched_entity), 5129 GFP_KERNEL, cpu_to_node(i)); 5130 if (!se) 5131 goto err_free_rq; 5132 5133 init_cfs_rq(cfs_rq); 5134 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 5135 } 5136 5137 return 1; 5138 5139 err_free_rq: 5140 kfree(cfs_rq); 5141 err: 5142 return 0; 5143 } 5144 5145 void unregister_fair_sched_group(struct task_group *tg, int cpu) 5146 { 5147 struct rq *rq = cpu_rq(cpu); 5148 unsigned long flags; 5149 5150 /* 5151 * Only empty task groups can be destroyed; so we can speculatively 5152 * check on_list without danger of it being re-added. 5153 */ 5154 if (!tg->cfs_rq[cpu]->on_list) 5155 return; 5156 5157 raw_spin_lock_irqsave(&rq->lock, flags); 5158 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 5159 raw_spin_unlock_irqrestore(&rq->lock, flags); 5160 } 5161 5162 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 5163 struct sched_entity *se, int cpu, 5164 struct sched_entity *parent) 5165 { 5166 struct rq *rq = cpu_rq(cpu); 5167 5168 cfs_rq->tg = tg; 5169 cfs_rq->rq = rq; 5170 #ifdef CONFIG_SMP 5171 /* allow initial update_cfs_load() to truncate */ 5172 cfs_rq->load_stamp = 1; 5173 #endif 5174 init_cfs_rq_runtime(cfs_rq); 5175 5176 tg->cfs_rq[cpu] = cfs_rq; 5177 tg->se[cpu] = se; 5178 5179 /* se could be NULL for root_task_group */ 5180 if (!se) 5181 return; 5182 5183 if (!parent) 5184 se->cfs_rq = &rq->cfs; 5185 else 5186 se->cfs_rq = parent->my_q; 5187 5188 se->my_q = cfs_rq; 5189 update_load_set(&se->load, 0); 5190 se->parent = parent; 5191 } 5192 5193 static DEFINE_MUTEX(shares_mutex); 5194 5195 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 5196 { 5197 int i; 5198 unsigned long flags; 5199 5200 /* 5201 * We can't change the weight of the root cgroup. 5202 */ 5203 if (!tg->se[0]) 5204 return -EINVAL; 5205 5206 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 5207 5208 mutex_lock(&shares_mutex); 5209 if (tg->shares == shares) 5210 goto done; 5211 5212 tg->shares = shares; 5213 for_each_possible_cpu(i) { 5214 struct rq *rq = cpu_rq(i); 5215 struct sched_entity *se; 5216 5217 se = tg->se[i]; 5218 /* Propagate contribution to hierarchy */ 5219 raw_spin_lock_irqsave(&rq->lock, flags); 5220 for_each_sched_entity(se) 5221 update_cfs_shares(group_cfs_rq(se)); 5222 raw_spin_unlock_irqrestore(&rq->lock, flags); 5223 } 5224 5225 done: 5226 mutex_unlock(&shares_mutex); 5227 return 0; 5228 } 5229 #else /* CONFIG_FAIR_GROUP_SCHED */ 5230 5231 void free_fair_sched_group(struct task_group *tg) { } 5232 5233 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5234 { 5235 return 1; 5236 } 5237 5238 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 5239 5240 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5241 5242 5243 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 5244 { 5245 struct sched_entity *se = &task->se; 5246 unsigned int rr_interval = 0; 5247 5248 /* 5249 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 5250 * idle runqueue: 5251 */ 5252 if (rq->cfs.load.weight) 5253 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 5254 5255 return rr_interval; 5256 } 5257 5258 /* 5259 * All the scheduling class methods: 5260 */ 5261 const struct sched_class fair_sched_class = { 5262 .next = &idle_sched_class, 5263 .enqueue_task = enqueue_task_fair, 5264 .dequeue_task = dequeue_task_fair, 5265 .yield_task = yield_task_fair, 5266 .yield_to_task = yield_to_task_fair, 5267 5268 .check_preempt_curr = check_preempt_wakeup, 5269 5270 .pick_next_task = pick_next_task_fair, 5271 .put_prev_task = put_prev_task_fair, 5272 5273 #ifdef CONFIG_SMP 5274 .select_task_rq = select_task_rq_fair, 5275 5276 .rq_online = rq_online_fair, 5277 .rq_offline = rq_offline_fair, 5278 5279 .task_waking = task_waking_fair, 5280 #endif 5281 5282 .set_curr_task = set_curr_task_fair, 5283 .task_tick = task_tick_fair, 5284 .task_fork = task_fork_fair, 5285 5286 .prio_changed = prio_changed_fair, 5287 .switched_from = switched_from_fair, 5288 .switched_to = switched_to_fair, 5289 5290 .get_rr_interval = get_rr_interval_fair, 5291 5292 #ifdef CONFIG_FAIR_GROUP_SCHED 5293 .task_move_group = task_move_group_fair, 5294 #endif 5295 }; 5296 5297 #ifdef CONFIG_SCHED_DEBUG 5298 void print_cfs_stats(struct seq_file *m, int cpu) 5299 { 5300 struct cfs_rq *cfs_rq; 5301 5302 rcu_read_lock(); 5303 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 5304 print_cfs_rq(m, cpu, cfs_rq); 5305 rcu_read_unlock(); 5306 } 5307 #endif 5308 5309 __init void init_sched_fair_class(void) 5310 { 5311 #ifdef CONFIG_SMP 5312 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 5313 5314 #ifdef CONFIG_NO_HZ 5315 nohz.next_balance = jiffies; 5316 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 5317 cpu_notifier(sched_ilb_notifier, 0); 5318 #endif 5319 #endif /* SMP */ 5320 5321 } 5322