1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static unsigned int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 } 306 } 307 308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 309 { 310 if (cfs_rq->on_list) { 311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 312 cfs_rq->on_list = 0; 313 } 314 } 315 316 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 319 320 /* Do the two (enqueued) entities belong to the same group ? */ 321 static inline struct cfs_rq * 322 is_same_group(struct sched_entity *se, struct sched_entity *pse) 323 { 324 if (se->cfs_rq == pse->cfs_rq) 325 return se->cfs_rq; 326 327 return NULL; 328 } 329 330 static inline struct sched_entity *parent_entity(struct sched_entity *se) 331 { 332 return se->parent; 333 } 334 335 static void 336 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 337 { 338 int se_depth, pse_depth; 339 340 /* 341 * preemption test can be made between sibling entities who are in the 342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 343 * both tasks until we find their ancestors who are siblings of common 344 * parent. 345 */ 346 347 /* First walk up until both entities are at same depth */ 348 se_depth = (*se)->depth; 349 pse_depth = (*pse)->depth; 350 351 while (se_depth > pse_depth) { 352 se_depth--; 353 *se = parent_entity(*se); 354 } 355 356 while (pse_depth > se_depth) { 357 pse_depth--; 358 *pse = parent_entity(*pse); 359 } 360 361 while (!is_same_group(*se, *pse)) { 362 *se = parent_entity(*se); 363 *pse = parent_entity(*pse); 364 } 365 } 366 367 #else /* !CONFIG_FAIR_GROUP_SCHED */ 368 369 static inline struct task_struct *task_of(struct sched_entity *se) 370 { 371 return container_of(se, struct task_struct, se); 372 } 373 374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 375 { 376 return container_of(cfs_rq, struct rq, cfs); 377 } 378 379 #define entity_is_task(se) 1 380 381 #define for_each_sched_entity(se) \ 382 for (; se; se = NULL) 383 384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 385 { 386 return &task_rq(p)->cfs; 387 } 388 389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 390 { 391 struct task_struct *p = task_of(se); 392 struct rq *rq = task_rq(p); 393 394 return &rq->cfs; 395 } 396 397 /* runqueue "owned" by this group */ 398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 399 { 400 return NULL; 401 } 402 403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 404 { 405 } 406 407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 413 414 static inline struct sched_entity *parent_entity(struct sched_entity *se) 415 { 416 return NULL; 417 } 418 419 static inline void 420 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 421 { 422 } 423 424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 425 426 static __always_inline 427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 428 429 /************************************************************** 430 * Scheduling class tree data structure manipulation methods: 431 */ 432 433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 434 { 435 s64 delta = (s64)(vruntime - max_vruntime); 436 if (delta > 0) 437 max_vruntime = vruntime; 438 439 return max_vruntime; 440 } 441 442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 443 { 444 s64 delta = (s64)(vruntime - min_vruntime); 445 if (delta < 0) 446 min_vruntime = vruntime; 447 448 return min_vruntime; 449 } 450 451 static inline int entity_before(struct sched_entity *a, 452 struct sched_entity *b) 453 { 454 return (s64)(a->vruntime - b->vruntime) < 0; 455 } 456 457 static void update_min_vruntime(struct cfs_rq *cfs_rq) 458 { 459 u64 vruntime = cfs_rq->min_vruntime; 460 461 if (cfs_rq->curr) 462 vruntime = cfs_rq->curr->vruntime; 463 464 if (cfs_rq->rb_leftmost) { 465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 466 struct sched_entity, 467 run_node); 468 469 if (!cfs_rq->curr) 470 vruntime = se->vruntime; 471 else 472 vruntime = min_vruntime(vruntime, se->vruntime); 473 } 474 475 /* ensure we never gain time by being placed backwards. */ 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 unsigned int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 597 { 598 if (unlikely(se->load.weight != NICE_0_LOAD)) 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 600 601 return delta; 602 } 603 604 /* 605 * The idea is to set a period in which each task runs once. 606 * 607 * When there are too many tasks (sched_nr_latency) we have to stretch 608 * this period because otherwise the slices get too small. 609 * 610 * p = (nr <= nl) ? l : l*nr/nl 611 */ 612 static u64 __sched_period(unsigned long nr_running) 613 { 614 if (unlikely(nr_running > sched_nr_latency)) 615 return nr_running * sysctl_sched_min_granularity; 616 else 617 return sysctl_sched_latency; 618 } 619 620 /* 621 * We calculate the wall-time slice from the period by taking a part 622 * proportional to the weight. 623 * 624 * s = p*P[w/rw] 625 */ 626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 627 { 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 629 630 for_each_sched_entity(se) { 631 struct load_weight *load; 632 struct load_weight lw; 633 634 cfs_rq = cfs_rq_of(se); 635 load = &cfs_rq->load; 636 637 if (unlikely(!se->on_rq)) { 638 lw = cfs_rq->load; 639 640 update_load_add(&lw, se->load.weight); 641 load = &lw; 642 } 643 slice = __calc_delta(slice, se->load.weight, load); 644 } 645 return slice; 646 } 647 648 /* 649 * We calculate the vruntime slice of a to-be-inserted task. 650 * 651 * vs = s/w 652 */ 653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 654 { 655 return calc_delta_fair(sched_slice(cfs_rq, se), se); 656 } 657 658 #ifdef CONFIG_SMP 659 static int select_idle_sibling(struct task_struct *p, int cpu); 660 static unsigned long task_h_load(struct task_struct *p); 661 662 /* 663 * We choose a half-life close to 1 scheduling period. 664 * Note: The tables below are dependent on this value. 665 */ 666 #define LOAD_AVG_PERIOD 32 667 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 668 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 669 670 /* Give new sched_entity start runnable values to heavy its load in infant time */ 671 void init_entity_runnable_average(struct sched_entity *se) 672 { 673 struct sched_avg *sa = &se->avg; 674 675 sa->last_update_time = 0; 676 /* 677 * sched_avg's period_contrib should be strictly less then 1024, so 678 * we give it 1023 to make sure it is almost a period (1024us), and 679 * will definitely be update (after enqueue). 680 */ 681 sa->period_contrib = 1023; 682 sa->load_avg = scale_load_down(se->load.weight); 683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE); 685 sa->util_sum = LOAD_AVG_MAX; 686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 687 } 688 689 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); 690 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq); 691 #else 692 void init_entity_runnable_average(struct sched_entity *se) 693 { 694 } 695 #endif 696 697 /* 698 * Update the current task's runtime statistics. 699 */ 700 static void update_curr(struct cfs_rq *cfs_rq) 701 { 702 struct sched_entity *curr = cfs_rq->curr; 703 u64 now = rq_clock_task(rq_of(cfs_rq)); 704 u64 delta_exec; 705 706 if (unlikely(!curr)) 707 return; 708 709 delta_exec = now - curr->exec_start; 710 if (unlikely((s64)delta_exec <= 0)) 711 return; 712 713 curr->exec_start = now; 714 715 schedstat_set(curr->statistics.exec_max, 716 max(delta_exec, curr->statistics.exec_max)); 717 718 curr->sum_exec_runtime += delta_exec; 719 schedstat_add(cfs_rq, exec_clock, delta_exec); 720 721 curr->vruntime += calc_delta_fair(delta_exec, curr); 722 update_min_vruntime(cfs_rq); 723 724 if (entity_is_task(curr)) { 725 struct task_struct *curtask = task_of(curr); 726 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 728 cpuacct_charge(curtask, delta_exec); 729 account_group_exec_runtime(curtask, delta_exec); 730 } 731 732 account_cfs_rq_runtime(cfs_rq, delta_exec); 733 } 734 735 static void update_curr_fair(struct rq *rq) 736 { 737 update_curr(cfs_rq_of(&rq->curr->se)); 738 } 739 740 static inline void 741 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 742 { 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 744 } 745 746 /* 747 * Task is being enqueued - update stats: 748 */ 749 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 750 { 751 /* 752 * Are we enqueueing a waiting task? (for current tasks 753 * a dequeue/enqueue event is a NOP) 754 */ 755 if (se != cfs_rq->curr) 756 update_stats_wait_start(cfs_rq, se); 757 } 758 759 static void 760 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 761 { 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 767 #ifdef CONFIG_SCHEDSTATS 768 if (entity_is_task(se)) { 769 trace_sched_stat_wait(task_of(se), 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 771 } 772 #endif 773 schedstat_set(se->statistics.wait_start, 0); 774 } 775 776 static inline void 777 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 778 { 779 /* 780 * Mark the end of the wait period if dequeueing a 781 * waiting task: 782 */ 783 if (se != cfs_rq->curr) 784 update_stats_wait_end(cfs_rq, se); 785 } 786 787 /* 788 * We are picking a new current task - update its stats: 789 */ 790 static inline void 791 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 792 { 793 /* 794 * We are starting a new run period: 795 */ 796 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 797 } 798 799 /************************************************** 800 * Scheduling class queueing methods: 801 */ 802 803 #ifdef CONFIG_NUMA_BALANCING 804 /* 805 * Approximate time to scan a full NUMA task in ms. The task scan period is 806 * calculated based on the tasks virtual memory size and 807 * numa_balancing_scan_size. 808 */ 809 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 810 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 811 812 /* Portion of address space to scan in MB */ 813 unsigned int sysctl_numa_balancing_scan_size = 256; 814 815 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 816 unsigned int sysctl_numa_balancing_scan_delay = 1000; 817 818 static unsigned int task_nr_scan_windows(struct task_struct *p) 819 { 820 unsigned long rss = 0; 821 unsigned long nr_scan_pages; 822 823 /* 824 * Calculations based on RSS as non-present and empty pages are skipped 825 * by the PTE scanner and NUMA hinting faults should be trapped based 826 * on resident pages 827 */ 828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 829 rss = get_mm_rss(p->mm); 830 if (!rss) 831 rss = nr_scan_pages; 832 833 rss = round_up(rss, nr_scan_pages); 834 return rss / nr_scan_pages; 835 } 836 837 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 838 #define MAX_SCAN_WINDOW 2560 839 840 static unsigned int task_scan_min(struct task_struct *p) 841 { 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 843 unsigned int scan, floor; 844 unsigned int windows = 1; 845 846 if (scan_size < MAX_SCAN_WINDOW) 847 windows = MAX_SCAN_WINDOW / scan_size; 848 floor = 1000 / windows; 849 850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 851 return max_t(unsigned int, floor, scan); 852 } 853 854 static unsigned int task_scan_max(struct task_struct *p) 855 { 856 unsigned int smin = task_scan_min(p); 857 unsigned int smax; 858 859 /* Watch for min being lower than max due to floor calculations */ 860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 861 return max(smin, smax); 862 } 863 864 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 865 { 866 rq->nr_numa_running += (p->numa_preferred_nid != -1); 867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 868 } 869 870 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 871 { 872 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 874 } 875 876 struct numa_group { 877 atomic_t refcount; 878 879 spinlock_t lock; /* nr_tasks, tasks */ 880 int nr_tasks; 881 pid_t gid; 882 883 struct rcu_head rcu; 884 nodemask_t active_nodes; 885 unsigned long total_faults; 886 /* 887 * Faults_cpu is used to decide whether memory should move 888 * towards the CPU. As a consequence, these stats are weighted 889 * more by CPU use than by memory faults. 890 */ 891 unsigned long *faults_cpu; 892 unsigned long faults[0]; 893 }; 894 895 /* Shared or private faults. */ 896 #define NR_NUMA_HINT_FAULT_TYPES 2 897 898 /* Memory and CPU locality */ 899 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 900 901 /* Averaged statistics, and temporary buffers. */ 902 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 903 904 pid_t task_numa_group_id(struct task_struct *p) 905 { 906 return p->numa_group ? p->numa_group->gid : 0; 907 } 908 909 /* 910 * The averaged statistics, shared & private, memory & cpu, 911 * occupy the first half of the array. The second half of the 912 * array is for current counters, which are averaged into the 913 * first set by task_numa_placement. 914 */ 915 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 916 { 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 918 } 919 920 static inline unsigned long task_faults(struct task_struct *p, int nid) 921 { 922 if (!p->numa_faults) 923 return 0; 924 925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 927 } 928 929 static inline unsigned long group_faults(struct task_struct *p, int nid) 930 { 931 if (!p->numa_group) 932 return 0; 933 934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 936 } 937 938 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 939 { 940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 942 } 943 944 /* Handle placement on systems where not all nodes are directly connected. */ 945 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 946 int maxdist, bool task) 947 { 948 unsigned long score = 0; 949 int node; 950 951 /* 952 * All nodes are directly connected, and the same distance 953 * from each other. No need for fancy placement algorithms. 954 */ 955 if (sched_numa_topology_type == NUMA_DIRECT) 956 return 0; 957 958 /* 959 * This code is called for each node, introducing N^2 complexity, 960 * which should be ok given the number of nodes rarely exceeds 8. 961 */ 962 for_each_online_node(node) { 963 unsigned long faults; 964 int dist = node_distance(nid, node); 965 966 /* 967 * The furthest away nodes in the system are not interesting 968 * for placement; nid was already counted. 969 */ 970 if (dist == sched_max_numa_distance || node == nid) 971 continue; 972 973 /* 974 * On systems with a backplane NUMA topology, compare groups 975 * of nodes, and move tasks towards the group with the most 976 * memory accesses. When comparing two nodes at distance 977 * "hoplimit", only nodes closer by than "hoplimit" are part 978 * of each group. Skip other nodes. 979 */ 980 if (sched_numa_topology_type == NUMA_BACKPLANE && 981 dist > maxdist) 982 continue; 983 984 /* Add up the faults from nearby nodes. */ 985 if (task) 986 faults = task_faults(p, node); 987 else 988 faults = group_faults(p, node); 989 990 /* 991 * On systems with a glueless mesh NUMA topology, there are 992 * no fixed "groups of nodes". Instead, nodes that are not 993 * directly connected bounce traffic through intermediate 994 * nodes; a numa_group can occupy any set of nodes. 995 * The further away a node is, the less the faults count. 996 * This seems to result in good task placement. 997 */ 998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 999 faults *= (sched_max_numa_distance - dist); 1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1001 } 1002 1003 score += faults; 1004 } 1005 1006 return score; 1007 } 1008 1009 /* 1010 * These return the fraction of accesses done by a particular task, or 1011 * task group, on a particular numa node. The group weight is given a 1012 * larger multiplier, in order to group tasks together that are almost 1013 * evenly spread out between numa nodes. 1014 */ 1015 static inline unsigned long task_weight(struct task_struct *p, int nid, 1016 int dist) 1017 { 1018 unsigned long faults, total_faults; 1019 1020 if (!p->numa_faults) 1021 return 0; 1022 1023 total_faults = p->total_numa_faults; 1024 1025 if (!total_faults) 1026 return 0; 1027 1028 faults = task_faults(p, nid); 1029 faults += score_nearby_nodes(p, nid, dist, true); 1030 1031 return 1000 * faults / total_faults; 1032 } 1033 1034 static inline unsigned long group_weight(struct task_struct *p, int nid, 1035 int dist) 1036 { 1037 unsigned long faults, total_faults; 1038 1039 if (!p->numa_group) 1040 return 0; 1041 1042 total_faults = p->numa_group->total_faults; 1043 1044 if (!total_faults) 1045 return 0; 1046 1047 faults = group_faults(p, nid); 1048 faults += score_nearby_nodes(p, nid, dist, false); 1049 1050 return 1000 * faults / total_faults; 1051 } 1052 1053 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1054 int src_nid, int dst_cpu) 1055 { 1056 struct numa_group *ng = p->numa_group; 1057 int dst_nid = cpu_to_node(dst_cpu); 1058 int last_cpupid, this_cpupid; 1059 1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1061 1062 /* 1063 * Multi-stage node selection is used in conjunction with a periodic 1064 * migration fault to build a temporal task<->page relation. By using 1065 * a two-stage filter we remove short/unlikely relations. 1066 * 1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1068 * a task's usage of a particular page (n_p) per total usage of this 1069 * page (n_t) (in a given time-span) to a probability. 1070 * 1071 * Our periodic faults will sample this probability and getting the 1072 * same result twice in a row, given these samples are fully 1073 * independent, is then given by P(n)^2, provided our sample period 1074 * is sufficiently short compared to the usage pattern. 1075 * 1076 * This quadric squishes small probabilities, making it less likely we 1077 * act on an unlikely task<->page relation. 1078 */ 1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1080 if (!cpupid_pid_unset(last_cpupid) && 1081 cpupid_to_nid(last_cpupid) != dst_nid) 1082 return false; 1083 1084 /* Always allow migrate on private faults */ 1085 if (cpupid_match_pid(p, last_cpupid)) 1086 return true; 1087 1088 /* A shared fault, but p->numa_group has not been set up yet. */ 1089 if (!ng) 1090 return true; 1091 1092 /* 1093 * Do not migrate if the destination is not a node that 1094 * is actively used by this numa group. 1095 */ 1096 if (!node_isset(dst_nid, ng->active_nodes)) 1097 return false; 1098 1099 /* 1100 * Source is a node that is not actively used by this 1101 * numa group, while the destination is. Migrate. 1102 */ 1103 if (!node_isset(src_nid, ng->active_nodes)) 1104 return true; 1105 1106 /* 1107 * Both source and destination are nodes in active 1108 * use by this numa group. Maximize memory bandwidth 1109 * by migrating from more heavily used groups, to less 1110 * heavily used ones, spreading the load around. 1111 * Use a 1/4 hysteresis to avoid spurious page movement. 1112 */ 1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1114 } 1115 1116 static unsigned long weighted_cpuload(const int cpu); 1117 static unsigned long source_load(int cpu, int type); 1118 static unsigned long target_load(int cpu, int type); 1119 static unsigned long capacity_of(int cpu); 1120 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1121 1122 /* Cached statistics for all CPUs within a node */ 1123 struct numa_stats { 1124 unsigned long nr_running; 1125 unsigned long load; 1126 1127 /* Total compute capacity of CPUs on a node */ 1128 unsigned long compute_capacity; 1129 1130 /* Approximate capacity in terms of runnable tasks on a node */ 1131 unsigned long task_capacity; 1132 int has_free_capacity; 1133 }; 1134 1135 /* 1136 * XXX borrowed from update_sg_lb_stats 1137 */ 1138 static void update_numa_stats(struct numa_stats *ns, int nid) 1139 { 1140 int smt, cpu, cpus = 0; 1141 unsigned long capacity; 1142 1143 memset(ns, 0, sizeof(*ns)); 1144 for_each_cpu(cpu, cpumask_of_node(nid)) { 1145 struct rq *rq = cpu_rq(cpu); 1146 1147 ns->nr_running += rq->nr_running; 1148 ns->load += weighted_cpuload(cpu); 1149 ns->compute_capacity += capacity_of(cpu); 1150 1151 cpus++; 1152 } 1153 1154 /* 1155 * If we raced with hotplug and there are no CPUs left in our mask 1156 * the @ns structure is NULL'ed and task_numa_compare() will 1157 * not find this node attractive. 1158 * 1159 * We'll either bail at !has_free_capacity, or we'll detect a huge 1160 * imbalance and bail there. 1161 */ 1162 if (!cpus) 1163 return; 1164 1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1167 capacity = cpus / smt; /* cores */ 1168 1169 ns->task_capacity = min_t(unsigned, capacity, 1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1172 } 1173 1174 struct task_numa_env { 1175 struct task_struct *p; 1176 1177 int src_cpu, src_nid; 1178 int dst_cpu, dst_nid; 1179 1180 struct numa_stats src_stats, dst_stats; 1181 1182 int imbalance_pct; 1183 int dist; 1184 1185 struct task_struct *best_task; 1186 long best_imp; 1187 int best_cpu; 1188 }; 1189 1190 static void task_numa_assign(struct task_numa_env *env, 1191 struct task_struct *p, long imp) 1192 { 1193 if (env->best_task) 1194 put_task_struct(env->best_task); 1195 if (p) 1196 get_task_struct(p); 1197 1198 env->best_task = p; 1199 env->best_imp = imp; 1200 env->best_cpu = env->dst_cpu; 1201 } 1202 1203 static bool load_too_imbalanced(long src_load, long dst_load, 1204 struct task_numa_env *env) 1205 { 1206 long imb, old_imb; 1207 long orig_src_load, orig_dst_load; 1208 long src_capacity, dst_capacity; 1209 1210 /* 1211 * The load is corrected for the CPU capacity available on each node. 1212 * 1213 * src_load dst_load 1214 * ------------ vs --------- 1215 * src_capacity dst_capacity 1216 */ 1217 src_capacity = env->src_stats.compute_capacity; 1218 dst_capacity = env->dst_stats.compute_capacity; 1219 1220 /* We care about the slope of the imbalance, not the direction. */ 1221 if (dst_load < src_load) 1222 swap(dst_load, src_load); 1223 1224 /* Is the difference below the threshold? */ 1225 imb = dst_load * src_capacity * 100 - 1226 src_load * dst_capacity * env->imbalance_pct; 1227 if (imb <= 0) 1228 return false; 1229 1230 /* 1231 * The imbalance is above the allowed threshold. 1232 * Compare it with the old imbalance. 1233 */ 1234 orig_src_load = env->src_stats.load; 1235 orig_dst_load = env->dst_stats.load; 1236 1237 if (orig_dst_load < orig_src_load) 1238 swap(orig_dst_load, orig_src_load); 1239 1240 old_imb = orig_dst_load * src_capacity * 100 - 1241 orig_src_load * dst_capacity * env->imbalance_pct; 1242 1243 /* Would this change make things worse? */ 1244 return (imb > old_imb); 1245 } 1246 1247 /* 1248 * This checks if the overall compute and NUMA accesses of the system would 1249 * be improved if the source tasks was migrated to the target dst_cpu taking 1250 * into account that it might be best if task running on the dst_cpu should 1251 * be exchanged with the source task 1252 */ 1253 static void task_numa_compare(struct task_numa_env *env, 1254 long taskimp, long groupimp) 1255 { 1256 struct rq *src_rq = cpu_rq(env->src_cpu); 1257 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1258 struct task_struct *cur; 1259 long src_load, dst_load; 1260 long load; 1261 long imp = env->p->numa_group ? groupimp : taskimp; 1262 long moveimp = imp; 1263 int dist = env->dist; 1264 1265 rcu_read_lock(); 1266 1267 raw_spin_lock_irq(&dst_rq->lock); 1268 cur = dst_rq->curr; 1269 /* 1270 * No need to move the exiting task, and this ensures that ->curr 1271 * wasn't reaped and thus get_task_struct() in task_numa_assign() 1272 * is safe under RCU read lock. 1273 * Note that rcu_read_lock() itself can't protect from the final 1274 * put_task_struct() after the last schedule(). 1275 */ 1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1277 cur = NULL; 1278 raw_spin_unlock_irq(&dst_rq->lock); 1279 1280 /* 1281 * Because we have preemption enabled we can get migrated around and 1282 * end try selecting ourselves (current == env->p) as a swap candidate. 1283 */ 1284 if (cur == env->p) 1285 goto unlock; 1286 1287 /* 1288 * "imp" is the fault differential for the source task between the 1289 * source and destination node. Calculate the total differential for 1290 * the source task and potential destination task. The more negative 1291 * the value is, the more rmeote accesses that would be expected to 1292 * be incurred if the tasks were swapped. 1293 */ 1294 if (cur) { 1295 /* Skip this swap candidate if cannot move to the source cpu */ 1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1297 goto unlock; 1298 1299 /* 1300 * If dst and source tasks are in the same NUMA group, or not 1301 * in any group then look only at task weights. 1302 */ 1303 if (cur->numa_group == env->p->numa_group) { 1304 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1305 task_weight(cur, env->dst_nid, dist); 1306 /* 1307 * Add some hysteresis to prevent swapping the 1308 * tasks within a group over tiny differences. 1309 */ 1310 if (cur->numa_group) 1311 imp -= imp/16; 1312 } else { 1313 /* 1314 * Compare the group weights. If a task is all by 1315 * itself (not part of a group), use the task weight 1316 * instead. 1317 */ 1318 if (cur->numa_group) 1319 imp += group_weight(cur, env->src_nid, dist) - 1320 group_weight(cur, env->dst_nid, dist); 1321 else 1322 imp += task_weight(cur, env->src_nid, dist) - 1323 task_weight(cur, env->dst_nid, dist); 1324 } 1325 } 1326 1327 if (imp <= env->best_imp && moveimp <= env->best_imp) 1328 goto unlock; 1329 1330 if (!cur) { 1331 /* Is there capacity at our destination? */ 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1333 !env->dst_stats.has_free_capacity) 1334 goto unlock; 1335 1336 goto balance; 1337 } 1338 1339 /* Balance doesn't matter much if we're running a task per cpu */ 1340 if (imp > env->best_imp && src_rq->nr_running == 1 && 1341 dst_rq->nr_running == 1) 1342 goto assign; 1343 1344 /* 1345 * In the overloaded case, try and keep the load balanced. 1346 */ 1347 balance: 1348 load = task_h_load(env->p); 1349 dst_load = env->dst_stats.load + load; 1350 src_load = env->src_stats.load - load; 1351 1352 if (moveimp > imp && moveimp > env->best_imp) { 1353 /* 1354 * If the improvement from just moving env->p direction is 1355 * better than swapping tasks around, check if a move is 1356 * possible. Store a slightly smaller score than moveimp, 1357 * so an actually idle CPU will win. 1358 */ 1359 if (!load_too_imbalanced(src_load, dst_load, env)) { 1360 imp = moveimp - 1; 1361 cur = NULL; 1362 goto assign; 1363 } 1364 } 1365 1366 if (imp <= env->best_imp) 1367 goto unlock; 1368 1369 if (cur) { 1370 load = task_h_load(cur); 1371 dst_load -= load; 1372 src_load += load; 1373 } 1374 1375 if (load_too_imbalanced(src_load, dst_load, env)) 1376 goto unlock; 1377 1378 /* 1379 * One idle CPU per node is evaluated for a task numa move. 1380 * Call select_idle_sibling to maybe find a better one. 1381 */ 1382 if (!cur) 1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1384 1385 assign: 1386 task_numa_assign(env, cur, imp); 1387 unlock: 1388 rcu_read_unlock(); 1389 } 1390 1391 static void task_numa_find_cpu(struct task_numa_env *env, 1392 long taskimp, long groupimp) 1393 { 1394 int cpu; 1395 1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1397 /* Skip this CPU if the source task cannot migrate */ 1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1399 continue; 1400 1401 env->dst_cpu = cpu; 1402 task_numa_compare(env, taskimp, groupimp); 1403 } 1404 } 1405 1406 /* Only move tasks to a NUMA node less busy than the current node. */ 1407 static bool numa_has_capacity(struct task_numa_env *env) 1408 { 1409 struct numa_stats *src = &env->src_stats; 1410 struct numa_stats *dst = &env->dst_stats; 1411 1412 if (src->has_free_capacity && !dst->has_free_capacity) 1413 return false; 1414 1415 /* 1416 * Only consider a task move if the source has a higher load 1417 * than the destination, corrected for CPU capacity on each node. 1418 * 1419 * src->load dst->load 1420 * --------------------- vs --------------------- 1421 * src->compute_capacity dst->compute_capacity 1422 */ 1423 if (src->load * dst->compute_capacity * env->imbalance_pct > 1424 1425 dst->load * src->compute_capacity * 100) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 static int task_numa_migrate(struct task_struct *p) 1432 { 1433 struct task_numa_env env = { 1434 .p = p, 1435 1436 .src_cpu = task_cpu(p), 1437 .src_nid = task_node(p), 1438 1439 .imbalance_pct = 112, 1440 1441 .best_task = NULL, 1442 .best_imp = 0, 1443 .best_cpu = -1 1444 }; 1445 struct sched_domain *sd; 1446 unsigned long taskweight, groupweight; 1447 int nid, ret, dist; 1448 long taskimp, groupimp; 1449 1450 /* 1451 * Pick the lowest SD_NUMA domain, as that would have the smallest 1452 * imbalance and would be the first to start moving tasks about. 1453 * 1454 * And we want to avoid any moving of tasks about, as that would create 1455 * random movement of tasks -- counter the numa conditions we're trying 1456 * to satisfy here. 1457 */ 1458 rcu_read_lock(); 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1460 if (sd) 1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1462 rcu_read_unlock(); 1463 1464 /* 1465 * Cpusets can break the scheduler domain tree into smaller 1466 * balance domains, some of which do not cross NUMA boundaries. 1467 * Tasks that are "trapped" in such domains cannot be migrated 1468 * elsewhere, so there is no point in (re)trying. 1469 */ 1470 if (unlikely(!sd)) { 1471 p->numa_preferred_nid = task_node(p); 1472 return -EINVAL; 1473 } 1474 1475 env.dst_nid = p->numa_preferred_nid; 1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1477 taskweight = task_weight(p, env.src_nid, dist); 1478 groupweight = group_weight(p, env.src_nid, dist); 1479 update_numa_stats(&env.src_stats, env.src_nid); 1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1482 update_numa_stats(&env.dst_stats, env.dst_nid); 1483 1484 /* Try to find a spot on the preferred nid. */ 1485 if (numa_has_capacity(&env)) 1486 task_numa_find_cpu(&env, taskimp, groupimp); 1487 1488 /* 1489 * Look at other nodes in these cases: 1490 * - there is no space available on the preferred_nid 1491 * - the task is part of a numa_group that is interleaved across 1492 * multiple NUMA nodes; in order to better consolidate the group, 1493 * we need to check other locations. 1494 */ 1495 if (env.best_cpu == -1 || (p->numa_group && 1496 nodes_weight(p->numa_group->active_nodes) > 1)) { 1497 for_each_online_node(nid) { 1498 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1499 continue; 1500 1501 dist = node_distance(env.src_nid, env.dst_nid); 1502 if (sched_numa_topology_type == NUMA_BACKPLANE && 1503 dist != env.dist) { 1504 taskweight = task_weight(p, env.src_nid, dist); 1505 groupweight = group_weight(p, env.src_nid, dist); 1506 } 1507 1508 /* Only consider nodes where both task and groups benefit */ 1509 taskimp = task_weight(p, nid, dist) - taskweight; 1510 groupimp = group_weight(p, nid, dist) - groupweight; 1511 if (taskimp < 0 && groupimp < 0) 1512 continue; 1513 1514 env.dist = dist; 1515 env.dst_nid = nid; 1516 update_numa_stats(&env.dst_stats, env.dst_nid); 1517 if (numa_has_capacity(&env)) 1518 task_numa_find_cpu(&env, taskimp, groupimp); 1519 } 1520 } 1521 1522 /* 1523 * If the task is part of a workload that spans multiple NUMA nodes, 1524 * and is migrating into one of the workload's active nodes, remember 1525 * this node as the task's preferred numa node, so the workload can 1526 * settle down. 1527 * A task that migrated to a second choice node will be better off 1528 * trying for a better one later. Do not set the preferred node here. 1529 */ 1530 if (p->numa_group) { 1531 if (env.best_cpu == -1) 1532 nid = env.src_nid; 1533 else 1534 nid = env.dst_nid; 1535 1536 if (node_isset(nid, p->numa_group->active_nodes)) 1537 sched_setnuma(p, env.dst_nid); 1538 } 1539 1540 /* No better CPU than the current one was found. */ 1541 if (env.best_cpu == -1) 1542 return -EAGAIN; 1543 1544 /* 1545 * Reset the scan period if the task is being rescheduled on an 1546 * alternative node to recheck if the tasks is now properly placed. 1547 */ 1548 p->numa_scan_period = task_scan_min(p); 1549 1550 if (env.best_task == NULL) { 1551 ret = migrate_task_to(p, env.best_cpu); 1552 if (ret != 0) 1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1554 return ret; 1555 } 1556 1557 ret = migrate_swap(p, env.best_task); 1558 if (ret != 0) 1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1560 put_task_struct(env.best_task); 1561 return ret; 1562 } 1563 1564 /* Attempt to migrate a task to a CPU on the preferred node. */ 1565 static void numa_migrate_preferred(struct task_struct *p) 1566 { 1567 unsigned long interval = HZ; 1568 1569 /* This task has no NUMA fault statistics yet */ 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1571 return; 1572 1573 /* Periodically retry migrating the task to the preferred node */ 1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1575 p->numa_migrate_retry = jiffies + interval; 1576 1577 /* Success if task is already running on preferred CPU */ 1578 if (task_node(p) == p->numa_preferred_nid) 1579 return; 1580 1581 /* Otherwise, try migrate to a CPU on the preferred node */ 1582 task_numa_migrate(p); 1583 } 1584 1585 /* 1586 * Find the nodes on which the workload is actively running. We do this by 1587 * tracking the nodes from which NUMA hinting faults are triggered. This can 1588 * be different from the set of nodes where the workload's memory is currently 1589 * located. 1590 * 1591 * The bitmask is used to make smarter decisions on when to do NUMA page 1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1593 * are added when they cause over 6/16 of the maximum number of faults, but 1594 * only removed when they drop below 3/16. 1595 */ 1596 static void update_numa_active_node_mask(struct numa_group *numa_group) 1597 { 1598 unsigned long faults, max_faults = 0; 1599 int nid; 1600 1601 for_each_online_node(nid) { 1602 faults = group_faults_cpu(numa_group, nid); 1603 if (faults > max_faults) 1604 max_faults = faults; 1605 } 1606 1607 for_each_online_node(nid) { 1608 faults = group_faults_cpu(numa_group, nid); 1609 if (!node_isset(nid, numa_group->active_nodes)) { 1610 if (faults > max_faults * 6 / 16) 1611 node_set(nid, numa_group->active_nodes); 1612 } else if (faults < max_faults * 3 / 16) 1613 node_clear(nid, numa_group->active_nodes); 1614 } 1615 } 1616 1617 /* 1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1619 * increments. The more local the fault statistics are, the higher the scan 1620 * period will be for the next scan window. If local/(local+remote) ratio is 1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1622 * the scan period will decrease. Aim for 70% local accesses. 1623 */ 1624 #define NUMA_PERIOD_SLOTS 10 1625 #define NUMA_PERIOD_THRESHOLD 7 1626 1627 /* 1628 * Increase the scan period (slow down scanning) if the majority of 1629 * our memory is already on our local node, or if the majority of 1630 * the page accesses are shared with other processes. 1631 * Otherwise, decrease the scan period. 1632 */ 1633 static void update_task_scan_period(struct task_struct *p, 1634 unsigned long shared, unsigned long private) 1635 { 1636 unsigned int period_slot; 1637 int ratio; 1638 int diff; 1639 1640 unsigned long remote = p->numa_faults_locality[0]; 1641 unsigned long local = p->numa_faults_locality[1]; 1642 1643 /* 1644 * If there were no record hinting faults then either the task is 1645 * completely idle or all activity is areas that are not of interest 1646 * to automatic numa balancing. Related to that, if there were failed 1647 * migration then it implies we are migrating too quickly or the local 1648 * node is overloaded. In either case, scan slower 1649 */ 1650 if (local + shared == 0 || p->numa_faults_locality[2]) { 1651 p->numa_scan_period = min(p->numa_scan_period_max, 1652 p->numa_scan_period << 1); 1653 1654 p->mm->numa_next_scan = jiffies + 1655 msecs_to_jiffies(p->numa_scan_period); 1656 1657 return; 1658 } 1659 1660 /* 1661 * Prepare to scale scan period relative to the current period. 1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1665 */ 1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1668 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1669 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1670 if (!slot) 1671 slot = 1; 1672 diff = slot * period_slot; 1673 } else { 1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1675 1676 /* 1677 * Scale scan rate increases based on sharing. There is an 1678 * inverse relationship between the degree of sharing and 1679 * the adjustment made to the scanning period. Broadly 1680 * speaking the intent is that there is little point 1681 * scanning faster if shared accesses dominate as it may 1682 * simply bounce migrations uselessly 1683 */ 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1686 } 1687 1688 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1689 task_scan_min(p), task_scan_max(p)); 1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1691 } 1692 1693 /* 1694 * Get the fraction of time the task has been running since the last 1695 * NUMA placement cycle. The scheduler keeps similar statistics, but 1696 * decays those on a 32ms period, which is orders of magnitude off 1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1698 * stats only if the task is so new there are no NUMA statistics yet. 1699 */ 1700 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1701 { 1702 u64 runtime, delta, now; 1703 /* Use the start of this time slice to avoid calculations. */ 1704 now = p->se.exec_start; 1705 runtime = p->se.sum_exec_runtime; 1706 1707 if (p->last_task_numa_placement) { 1708 delta = runtime - p->last_sum_exec_runtime; 1709 *period = now - p->last_task_numa_placement; 1710 } else { 1711 delta = p->se.avg.load_sum / p->se.load.weight; 1712 *period = LOAD_AVG_MAX; 1713 } 1714 1715 p->last_sum_exec_runtime = runtime; 1716 p->last_task_numa_placement = now; 1717 1718 return delta; 1719 } 1720 1721 /* 1722 * Determine the preferred nid for a task in a numa_group. This needs to 1723 * be done in a way that produces consistent results with group_weight, 1724 * otherwise workloads might not converge. 1725 */ 1726 static int preferred_group_nid(struct task_struct *p, int nid) 1727 { 1728 nodemask_t nodes; 1729 int dist; 1730 1731 /* Direct connections between all NUMA nodes. */ 1732 if (sched_numa_topology_type == NUMA_DIRECT) 1733 return nid; 1734 1735 /* 1736 * On a system with glueless mesh NUMA topology, group_weight 1737 * scores nodes according to the number of NUMA hinting faults on 1738 * both the node itself, and on nearby nodes. 1739 */ 1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1741 unsigned long score, max_score = 0; 1742 int node, max_node = nid; 1743 1744 dist = sched_max_numa_distance; 1745 1746 for_each_online_node(node) { 1747 score = group_weight(p, node, dist); 1748 if (score > max_score) { 1749 max_score = score; 1750 max_node = node; 1751 } 1752 } 1753 return max_node; 1754 } 1755 1756 /* 1757 * Finding the preferred nid in a system with NUMA backplane 1758 * interconnect topology is more involved. The goal is to locate 1759 * tasks from numa_groups near each other in the system, and 1760 * untangle workloads from different sides of the system. This requires 1761 * searching down the hierarchy of node groups, recursively searching 1762 * inside the highest scoring group of nodes. The nodemask tricks 1763 * keep the complexity of the search down. 1764 */ 1765 nodes = node_online_map; 1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1767 unsigned long max_faults = 0; 1768 nodemask_t max_group = NODE_MASK_NONE; 1769 int a, b; 1770 1771 /* Are there nodes at this distance from each other? */ 1772 if (!find_numa_distance(dist)) 1773 continue; 1774 1775 for_each_node_mask(a, nodes) { 1776 unsigned long faults = 0; 1777 nodemask_t this_group; 1778 nodes_clear(this_group); 1779 1780 /* Sum group's NUMA faults; includes a==b case. */ 1781 for_each_node_mask(b, nodes) { 1782 if (node_distance(a, b) < dist) { 1783 faults += group_faults(p, b); 1784 node_set(b, this_group); 1785 node_clear(b, nodes); 1786 } 1787 } 1788 1789 /* Remember the top group. */ 1790 if (faults > max_faults) { 1791 max_faults = faults; 1792 max_group = this_group; 1793 /* 1794 * subtle: at the smallest distance there is 1795 * just one node left in each "group", the 1796 * winner is the preferred nid. 1797 */ 1798 nid = a; 1799 } 1800 } 1801 /* Next round, evaluate the nodes within max_group. */ 1802 if (!max_faults) 1803 break; 1804 nodes = max_group; 1805 } 1806 return nid; 1807 } 1808 1809 static void task_numa_placement(struct task_struct *p) 1810 { 1811 int seq, nid, max_nid = -1, max_group_nid = -1; 1812 unsigned long max_faults = 0, max_group_faults = 0; 1813 unsigned long fault_types[2] = { 0, 0 }; 1814 unsigned long total_faults; 1815 u64 runtime, period; 1816 spinlock_t *group_lock = NULL; 1817 1818 /* 1819 * The p->mm->numa_scan_seq field gets updated without 1820 * exclusive access. Use READ_ONCE() here to ensure 1821 * that the field is read in a single access: 1822 */ 1823 seq = READ_ONCE(p->mm->numa_scan_seq); 1824 if (p->numa_scan_seq == seq) 1825 return; 1826 p->numa_scan_seq = seq; 1827 p->numa_scan_period_max = task_scan_max(p); 1828 1829 total_faults = p->numa_faults_locality[0] + 1830 p->numa_faults_locality[1]; 1831 runtime = numa_get_avg_runtime(p, &period); 1832 1833 /* If the task is part of a group prevent parallel updates to group stats */ 1834 if (p->numa_group) { 1835 group_lock = &p->numa_group->lock; 1836 spin_lock_irq(group_lock); 1837 } 1838 1839 /* Find the node with the highest number of faults */ 1840 for_each_online_node(nid) { 1841 /* Keep track of the offsets in numa_faults array */ 1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1843 unsigned long faults = 0, group_faults = 0; 1844 int priv; 1845 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1847 long diff, f_diff, f_weight; 1848 1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1853 1854 /* Decay existing window, copy faults since last scan */ 1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1856 fault_types[priv] += p->numa_faults[membuf_idx]; 1857 p->numa_faults[membuf_idx] = 0; 1858 1859 /* 1860 * Normalize the faults_from, so all tasks in a group 1861 * count according to CPU use, instead of by the raw 1862 * number of faults. Tasks with little runtime have 1863 * little over-all impact on throughput, and thus their 1864 * faults are less important. 1865 */ 1866 f_weight = div64_u64(runtime << 16, period + 1); 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1868 (total_faults + 1); 1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1870 p->numa_faults[cpubuf_idx] = 0; 1871 1872 p->numa_faults[mem_idx] += diff; 1873 p->numa_faults[cpu_idx] += f_diff; 1874 faults += p->numa_faults[mem_idx]; 1875 p->total_numa_faults += diff; 1876 if (p->numa_group) { 1877 /* 1878 * safe because we can only change our own group 1879 * 1880 * mem_idx represents the offset for a given 1881 * nid and priv in a specific region because it 1882 * is at the beginning of the numa_faults array. 1883 */ 1884 p->numa_group->faults[mem_idx] += diff; 1885 p->numa_group->faults_cpu[mem_idx] += f_diff; 1886 p->numa_group->total_faults += diff; 1887 group_faults += p->numa_group->faults[mem_idx]; 1888 } 1889 } 1890 1891 if (faults > max_faults) { 1892 max_faults = faults; 1893 max_nid = nid; 1894 } 1895 1896 if (group_faults > max_group_faults) { 1897 max_group_faults = group_faults; 1898 max_group_nid = nid; 1899 } 1900 } 1901 1902 update_task_scan_period(p, fault_types[0], fault_types[1]); 1903 1904 if (p->numa_group) { 1905 update_numa_active_node_mask(p->numa_group); 1906 spin_unlock_irq(group_lock); 1907 max_nid = preferred_group_nid(p, max_group_nid); 1908 } 1909 1910 if (max_faults) { 1911 /* Set the new preferred node */ 1912 if (max_nid != p->numa_preferred_nid) 1913 sched_setnuma(p, max_nid); 1914 1915 if (task_node(p) != p->numa_preferred_nid) 1916 numa_migrate_preferred(p); 1917 } 1918 } 1919 1920 static inline int get_numa_group(struct numa_group *grp) 1921 { 1922 return atomic_inc_not_zero(&grp->refcount); 1923 } 1924 1925 static inline void put_numa_group(struct numa_group *grp) 1926 { 1927 if (atomic_dec_and_test(&grp->refcount)) 1928 kfree_rcu(grp, rcu); 1929 } 1930 1931 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1932 int *priv) 1933 { 1934 struct numa_group *grp, *my_grp; 1935 struct task_struct *tsk; 1936 bool join = false; 1937 int cpu = cpupid_to_cpu(cpupid); 1938 int i; 1939 1940 if (unlikely(!p->numa_group)) { 1941 unsigned int size = sizeof(struct numa_group) + 1942 4*nr_node_ids*sizeof(unsigned long); 1943 1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1945 if (!grp) 1946 return; 1947 1948 atomic_set(&grp->refcount, 1); 1949 spin_lock_init(&grp->lock); 1950 grp->gid = p->pid; 1951 /* Second half of the array tracks nids where faults happen */ 1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1953 nr_node_ids; 1954 1955 node_set(task_node(current), grp->active_nodes); 1956 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1958 grp->faults[i] = p->numa_faults[i]; 1959 1960 grp->total_faults = p->total_numa_faults; 1961 1962 grp->nr_tasks++; 1963 rcu_assign_pointer(p->numa_group, grp); 1964 } 1965 1966 rcu_read_lock(); 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr); 1968 1969 if (!cpupid_match_pid(tsk, cpupid)) 1970 goto no_join; 1971 1972 grp = rcu_dereference(tsk->numa_group); 1973 if (!grp) 1974 goto no_join; 1975 1976 my_grp = p->numa_group; 1977 if (grp == my_grp) 1978 goto no_join; 1979 1980 /* 1981 * Only join the other group if its bigger; if we're the bigger group, 1982 * the other task will join us. 1983 */ 1984 if (my_grp->nr_tasks > grp->nr_tasks) 1985 goto no_join; 1986 1987 /* 1988 * Tie-break on the grp address. 1989 */ 1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1991 goto no_join; 1992 1993 /* Always join threads in the same process. */ 1994 if (tsk->mm == current->mm) 1995 join = true; 1996 1997 /* Simple filter to avoid false positives due to PID collisions */ 1998 if (flags & TNF_SHARED) 1999 join = true; 2000 2001 /* Update priv based on whether false sharing was detected */ 2002 *priv = !join; 2003 2004 if (join && !get_numa_group(grp)) 2005 goto no_join; 2006 2007 rcu_read_unlock(); 2008 2009 if (!join) 2010 return; 2011 2012 BUG_ON(irqs_disabled()); 2013 double_lock_irq(&my_grp->lock, &grp->lock); 2014 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2016 my_grp->faults[i] -= p->numa_faults[i]; 2017 grp->faults[i] += p->numa_faults[i]; 2018 } 2019 my_grp->total_faults -= p->total_numa_faults; 2020 grp->total_faults += p->total_numa_faults; 2021 2022 my_grp->nr_tasks--; 2023 grp->nr_tasks++; 2024 2025 spin_unlock(&my_grp->lock); 2026 spin_unlock_irq(&grp->lock); 2027 2028 rcu_assign_pointer(p->numa_group, grp); 2029 2030 put_numa_group(my_grp); 2031 return; 2032 2033 no_join: 2034 rcu_read_unlock(); 2035 return; 2036 } 2037 2038 void task_numa_free(struct task_struct *p) 2039 { 2040 struct numa_group *grp = p->numa_group; 2041 void *numa_faults = p->numa_faults; 2042 unsigned long flags; 2043 int i; 2044 2045 if (grp) { 2046 spin_lock_irqsave(&grp->lock, flags); 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2048 grp->faults[i] -= p->numa_faults[i]; 2049 grp->total_faults -= p->total_numa_faults; 2050 2051 grp->nr_tasks--; 2052 spin_unlock_irqrestore(&grp->lock, flags); 2053 RCU_INIT_POINTER(p->numa_group, NULL); 2054 put_numa_group(grp); 2055 } 2056 2057 p->numa_faults = NULL; 2058 kfree(numa_faults); 2059 } 2060 2061 /* 2062 * Got a PROT_NONE fault for a page on @node. 2063 */ 2064 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2065 { 2066 struct task_struct *p = current; 2067 bool migrated = flags & TNF_MIGRATED; 2068 int cpu_node = task_node(current); 2069 int local = !!(flags & TNF_FAULT_LOCAL); 2070 int priv; 2071 2072 if (!numabalancing_enabled) 2073 return; 2074 2075 /* for example, ksmd faulting in a user's mm */ 2076 if (!p->mm) 2077 return; 2078 2079 /* Allocate buffer to track faults on a per-node basis */ 2080 if (unlikely(!p->numa_faults)) { 2081 int size = sizeof(*p->numa_faults) * 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2083 2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2085 if (!p->numa_faults) 2086 return; 2087 2088 p->total_numa_faults = 0; 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2090 } 2091 2092 /* 2093 * First accesses are treated as private, otherwise consider accesses 2094 * to be private if the accessing pid has not changed 2095 */ 2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2097 priv = 1; 2098 } else { 2099 priv = cpupid_match_pid(p, last_cpupid); 2100 if (!priv && !(flags & TNF_NO_GROUP)) 2101 task_numa_group(p, last_cpupid, flags, &priv); 2102 } 2103 2104 /* 2105 * If a workload spans multiple NUMA nodes, a shared fault that 2106 * occurs wholly within the set of nodes that the workload is 2107 * actively using should be counted as local. This allows the 2108 * scan rate to slow down when a workload has settled down. 2109 */ 2110 if (!priv && !local && p->numa_group && 2111 node_isset(cpu_node, p->numa_group->active_nodes) && 2112 node_isset(mem_node, p->numa_group->active_nodes)) 2113 local = 1; 2114 2115 task_numa_placement(p); 2116 2117 /* 2118 * Retry task to preferred node migration periodically, in case it 2119 * case it previously failed, or the scheduler moved us. 2120 */ 2121 if (time_after(jiffies, p->numa_migrate_retry)) 2122 numa_migrate_preferred(p); 2123 2124 if (migrated) 2125 p->numa_pages_migrated += pages; 2126 if (flags & TNF_MIGRATE_FAIL) 2127 p->numa_faults_locality[2] += pages; 2128 2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2131 p->numa_faults_locality[local] += pages; 2132 } 2133 2134 static void reset_ptenuma_scan(struct task_struct *p) 2135 { 2136 /* 2137 * We only did a read acquisition of the mmap sem, so 2138 * p->mm->numa_scan_seq is written to without exclusive access 2139 * and the update is not guaranteed to be atomic. That's not 2140 * much of an issue though, since this is just used for 2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2142 * expensive, to avoid any form of compiler optimizations: 2143 */ 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2145 p->mm->numa_scan_offset = 0; 2146 } 2147 2148 /* 2149 * The expensive part of numa migration is done from task_work context. 2150 * Triggered from task_tick_numa(). 2151 */ 2152 void task_numa_work(struct callback_head *work) 2153 { 2154 unsigned long migrate, next_scan, now = jiffies; 2155 struct task_struct *p = current; 2156 struct mm_struct *mm = p->mm; 2157 struct vm_area_struct *vma; 2158 unsigned long start, end; 2159 unsigned long nr_pte_updates = 0; 2160 long pages; 2161 2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2163 2164 work->next = work; /* protect against double add */ 2165 /* 2166 * Who cares about NUMA placement when they're dying. 2167 * 2168 * NOTE: make sure not to dereference p->mm before this check, 2169 * exit_task_work() happens _after_ exit_mm() so we could be called 2170 * without p->mm even though we still had it when we enqueued this 2171 * work. 2172 */ 2173 if (p->flags & PF_EXITING) 2174 return; 2175 2176 if (!mm->numa_next_scan) { 2177 mm->numa_next_scan = now + 2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2179 } 2180 2181 /* 2182 * Enforce maximal scan/migration frequency.. 2183 */ 2184 migrate = mm->numa_next_scan; 2185 if (time_before(now, migrate)) 2186 return; 2187 2188 if (p->numa_scan_period == 0) { 2189 p->numa_scan_period_max = task_scan_max(p); 2190 p->numa_scan_period = task_scan_min(p); 2191 } 2192 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2195 return; 2196 2197 /* 2198 * Delay this task enough that another task of this mm will likely win 2199 * the next time around. 2200 */ 2201 p->node_stamp += 2 * TICK_NSEC; 2202 2203 start = mm->numa_scan_offset; 2204 pages = sysctl_numa_balancing_scan_size; 2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2206 if (!pages) 2207 return; 2208 2209 down_read(&mm->mmap_sem); 2210 vma = find_vma(mm, start); 2211 if (!vma) { 2212 reset_ptenuma_scan(p); 2213 start = 0; 2214 vma = mm->mmap; 2215 } 2216 for (; vma; vma = vma->vm_next) { 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2219 continue; 2220 } 2221 2222 /* 2223 * Shared library pages mapped by multiple processes are not 2224 * migrated as it is expected they are cache replicated. Avoid 2225 * hinting faults in read-only file-backed mappings or the vdso 2226 * as migrating the pages will be of marginal benefit. 2227 */ 2228 if (!vma->vm_mm || 2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2230 continue; 2231 2232 /* 2233 * Skip inaccessible VMAs to avoid any confusion between 2234 * PROT_NONE and NUMA hinting ptes 2235 */ 2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2237 continue; 2238 2239 do { 2240 start = max(start, vma->vm_start); 2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2242 end = min(end, vma->vm_end); 2243 nr_pte_updates += change_prot_numa(vma, start, end); 2244 2245 /* 2246 * Scan sysctl_numa_balancing_scan_size but ensure that 2247 * at least one PTE is updated so that unused virtual 2248 * address space is quickly skipped. 2249 */ 2250 if (nr_pte_updates) 2251 pages -= (end - start) >> PAGE_SHIFT; 2252 2253 start = end; 2254 if (pages <= 0) 2255 goto out; 2256 2257 cond_resched(); 2258 } while (end != vma->vm_end); 2259 } 2260 2261 out: 2262 /* 2263 * It is possible to reach the end of the VMA list but the last few 2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2265 * would find the !migratable VMA on the next scan but not reset the 2266 * scanner to the start so check it now. 2267 */ 2268 if (vma) 2269 mm->numa_scan_offset = start; 2270 else 2271 reset_ptenuma_scan(p); 2272 up_read(&mm->mmap_sem); 2273 } 2274 2275 /* 2276 * Drive the periodic memory faults.. 2277 */ 2278 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2279 { 2280 struct callback_head *work = &curr->numa_work; 2281 u64 period, now; 2282 2283 /* 2284 * We don't care about NUMA placement if we don't have memory. 2285 */ 2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2287 return; 2288 2289 /* 2290 * Using runtime rather than walltime has the dual advantage that 2291 * we (mostly) drive the selection from busy threads and that the 2292 * task needs to have done some actual work before we bother with 2293 * NUMA placement. 2294 */ 2295 now = curr->se.sum_exec_runtime; 2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2297 2298 if (now - curr->node_stamp > period) { 2299 if (!curr->node_stamp) 2300 curr->numa_scan_period = task_scan_min(curr); 2301 curr->node_stamp += period; 2302 2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2305 task_work_add(curr, work, true); 2306 } 2307 } 2308 } 2309 #else 2310 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2311 { 2312 } 2313 2314 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2315 { 2316 } 2317 2318 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2319 { 2320 } 2321 #endif /* CONFIG_NUMA_BALANCING */ 2322 2323 static void 2324 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2325 { 2326 update_load_add(&cfs_rq->load, se->load.weight); 2327 if (!parent_entity(se)) 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2329 #ifdef CONFIG_SMP 2330 if (entity_is_task(se)) { 2331 struct rq *rq = rq_of(cfs_rq); 2332 2333 account_numa_enqueue(rq, task_of(se)); 2334 list_add(&se->group_node, &rq->cfs_tasks); 2335 } 2336 #endif 2337 cfs_rq->nr_running++; 2338 } 2339 2340 static void 2341 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2342 { 2343 update_load_sub(&cfs_rq->load, se->load.weight); 2344 if (!parent_entity(se)) 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2346 if (entity_is_task(se)) { 2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2348 list_del_init(&se->group_node); 2349 } 2350 cfs_rq->nr_running--; 2351 } 2352 2353 #ifdef CONFIG_FAIR_GROUP_SCHED 2354 # ifdef CONFIG_SMP 2355 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2356 { 2357 long tg_weight; 2358 2359 /* 2360 * Use this CPU's real-time load instead of the last load contribution 2361 * as the updating of the contribution is delayed, and we will use the 2362 * the real-time load to calc the share. See update_tg_load_avg(). 2363 */ 2364 tg_weight = atomic_long_read(&tg->load_avg); 2365 tg_weight -= cfs_rq->tg_load_avg_contrib; 2366 tg_weight += cfs_rq->load.weight; 2367 2368 return tg_weight; 2369 } 2370 2371 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2372 { 2373 long tg_weight, load, shares; 2374 2375 tg_weight = calc_tg_weight(tg, cfs_rq); 2376 load = cfs_rq->load.weight; 2377 2378 shares = (tg->shares * load); 2379 if (tg_weight) 2380 shares /= tg_weight; 2381 2382 if (shares < MIN_SHARES) 2383 shares = MIN_SHARES; 2384 if (shares > tg->shares) 2385 shares = tg->shares; 2386 2387 return shares; 2388 } 2389 # else /* CONFIG_SMP */ 2390 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2391 { 2392 return tg->shares; 2393 } 2394 # endif /* CONFIG_SMP */ 2395 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2396 unsigned long weight) 2397 { 2398 if (se->on_rq) { 2399 /* commit outstanding execution time */ 2400 if (cfs_rq->curr == se) 2401 update_curr(cfs_rq); 2402 account_entity_dequeue(cfs_rq, se); 2403 } 2404 2405 update_load_set(&se->load, weight); 2406 2407 if (se->on_rq) 2408 account_entity_enqueue(cfs_rq, se); 2409 } 2410 2411 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2412 2413 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2414 { 2415 struct task_group *tg; 2416 struct sched_entity *se; 2417 long shares; 2418 2419 tg = cfs_rq->tg; 2420 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2421 if (!se || throttled_hierarchy(cfs_rq)) 2422 return; 2423 #ifndef CONFIG_SMP 2424 if (likely(se->load.weight == tg->shares)) 2425 return; 2426 #endif 2427 shares = calc_cfs_shares(cfs_rq, tg); 2428 2429 reweight_entity(cfs_rq_of(se), se, shares); 2430 } 2431 #else /* CONFIG_FAIR_GROUP_SCHED */ 2432 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2433 { 2434 } 2435 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2436 2437 #ifdef CONFIG_SMP 2438 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2439 static const u32 runnable_avg_yN_inv[] = { 2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2445 0x85aac367, 0x82cd8698, 2446 }; 2447 2448 /* 2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2450 * over-estimates when re-combining. 2451 */ 2452 static const u32 runnable_avg_yN_sum[] = { 2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2456 }; 2457 2458 /* 2459 * Approximate: 2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2461 */ 2462 static __always_inline u64 decay_load(u64 val, u64 n) 2463 { 2464 unsigned int local_n; 2465 2466 if (!n) 2467 return val; 2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2469 return 0; 2470 2471 /* after bounds checking we can collapse to 32-bit */ 2472 local_n = n; 2473 2474 /* 2475 * As y^PERIOD = 1/2, we can combine 2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2477 * With a look-up table which covers y^n (n<PERIOD) 2478 * 2479 * To achieve constant time decay_load. 2480 */ 2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2482 val >>= local_n / LOAD_AVG_PERIOD; 2483 local_n %= LOAD_AVG_PERIOD; 2484 } 2485 2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2487 return val; 2488 } 2489 2490 /* 2491 * For updates fully spanning n periods, the contribution to runnable 2492 * average will be: \Sum 1024*y^n 2493 * 2494 * We can compute this reasonably efficiently by combining: 2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2496 */ 2497 static u32 __compute_runnable_contrib(u64 n) 2498 { 2499 u32 contrib = 0; 2500 2501 if (likely(n <= LOAD_AVG_PERIOD)) 2502 return runnable_avg_yN_sum[n]; 2503 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2504 return LOAD_AVG_MAX; 2505 2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2507 do { 2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2510 2511 n -= LOAD_AVG_PERIOD; 2512 } while (n > LOAD_AVG_PERIOD); 2513 2514 contrib = decay_load(contrib, n); 2515 return contrib + runnable_avg_yN_sum[n]; 2516 } 2517 2518 /* 2519 * We can represent the historical contribution to runnable average as the 2520 * coefficients of a geometric series. To do this we sub-divide our runnable 2521 * history into segments of approximately 1ms (1024us); label the segment that 2522 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2523 * 2524 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2525 * p0 p1 p2 2526 * (now) (~1ms ago) (~2ms ago) 2527 * 2528 * Let u_i denote the fraction of p_i that the entity was runnable. 2529 * 2530 * We then designate the fractions u_i as our co-efficients, yielding the 2531 * following representation of historical load: 2532 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2533 * 2534 * We choose y based on the with of a reasonably scheduling period, fixing: 2535 * y^32 = 0.5 2536 * 2537 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2538 * approximately half as much as the contribution to load within the last ms 2539 * (u_0). 2540 * 2541 * When a period "rolls over" and we have new u_0`, multiplying the previous 2542 * sum again by y is sufficient to update: 2543 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2544 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2545 */ 2546 static __always_inline int 2547 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2548 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2549 { 2550 u64 delta, periods; 2551 u32 contrib; 2552 int delta_w, decayed = 0; 2553 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu); 2554 2555 delta = now - sa->last_update_time; 2556 /* 2557 * This should only happen when time goes backwards, which it 2558 * unfortunately does during sched clock init when we swap over to TSC. 2559 */ 2560 if ((s64)delta < 0) { 2561 sa->last_update_time = now; 2562 return 0; 2563 } 2564 2565 /* 2566 * Use 1024ns as the unit of measurement since it's a reasonable 2567 * approximation of 1us and fast to compute. 2568 */ 2569 delta >>= 10; 2570 if (!delta) 2571 return 0; 2572 sa->last_update_time = now; 2573 2574 /* delta_w is the amount already accumulated against our next period */ 2575 delta_w = sa->period_contrib; 2576 if (delta + delta_w >= 1024) { 2577 decayed = 1; 2578 2579 /* how much left for next period will start over, we don't know yet */ 2580 sa->period_contrib = 0; 2581 2582 /* 2583 * Now that we know we're crossing a period boundary, figure 2584 * out how much from delta we need to complete the current 2585 * period and accrue it. 2586 */ 2587 delta_w = 1024 - delta_w; 2588 if (weight) { 2589 sa->load_sum += weight * delta_w; 2590 if (cfs_rq) 2591 cfs_rq->runnable_load_sum += weight * delta_w; 2592 } 2593 if (running) 2594 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT; 2595 2596 delta -= delta_w; 2597 2598 /* Figure out how many additional periods this update spans */ 2599 periods = delta / 1024; 2600 delta %= 1024; 2601 2602 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2603 if (cfs_rq) { 2604 cfs_rq->runnable_load_sum = 2605 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2606 } 2607 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2608 2609 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2610 contrib = __compute_runnable_contrib(periods); 2611 if (weight) { 2612 sa->load_sum += weight * contrib; 2613 if (cfs_rq) 2614 cfs_rq->runnable_load_sum += weight * contrib; 2615 } 2616 if (running) 2617 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT; 2618 } 2619 2620 /* Remainder of delta accrued against u_0` */ 2621 if (weight) { 2622 sa->load_sum += weight * delta; 2623 if (cfs_rq) 2624 cfs_rq->runnable_load_sum += weight * delta; 2625 } 2626 if (running) 2627 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT; 2628 2629 sa->period_contrib += delta; 2630 2631 if (decayed) { 2632 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2633 if (cfs_rq) { 2634 cfs_rq->runnable_load_avg = 2635 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2636 } 2637 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX; 2638 } 2639 2640 return decayed; 2641 } 2642 2643 #ifdef CONFIG_FAIR_GROUP_SCHED 2644 /* 2645 * Updating tg's load_avg is necessary before update_cfs_share (which is done) 2646 * and effective_load (which is not done because it is too costly). 2647 */ 2648 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2649 { 2650 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2651 2652 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2653 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2654 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2655 } 2656 } 2657 2658 #else /* CONFIG_FAIR_GROUP_SCHED */ 2659 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2660 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2661 2662 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2663 2664 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ 2665 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 2666 { 2667 struct sched_avg *sa = &cfs_rq->avg; 2668 int decayed, removed = 0; 2669 2670 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 2671 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 2672 sa->load_avg = max_t(long, sa->load_avg - r, 0); 2673 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0); 2674 removed = 1; 2675 } 2676 2677 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 2678 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 2679 sa->util_avg = max_t(long, sa->util_avg - r, 0); 2680 sa->util_sum = max_t(s32, sa->util_sum - 2681 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0); 2682 } 2683 2684 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2685 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 2686 2687 #ifndef CONFIG_64BIT 2688 smp_wmb(); 2689 cfs_rq->load_last_update_time_copy = sa->last_update_time; 2690 #endif 2691 2692 return decayed || removed; 2693 } 2694 2695 /* Update task and its cfs_rq load average */ 2696 static inline void update_load_avg(struct sched_entity *se, int update_tg) 2697 { 2698 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2699 int cpu = cpu_of(rq_of(cfs_rq)); 2700 u64 now = cfs_rq_clock_task(cfs_rq); 2701 2702 /* 2703 * Track task load average for carrying it to new CPU after migrated, and 2704 * track group sched_entity load average for task_h_load calc in migration 2705 */ 2706 __update_load_avg(now, cpu, &se->avg, 2707 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL); 2708 2709 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg) 2710 update_tg_load_avg(cfs_rq, 0); 2711 } 2712 2713 /* Add the load generated by se into cfs_rq's load average */ 2714 static inline void 2715 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2716 { 2717 struct sched_avg *sa = &se->avg; 2718 u64 now = cfs_rq_clock_task(cfs_rq); 2719 int migrated = 0, decayed; 2720 2721 if (sa->last_update_time == 0) { 2722 sa->last_update_time = now; 2723 migrated = 1; 2724 } 2725 else { 2726 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2727 se->on_rq * scale_load_down(se->load.weight), 2728 cfs_rq->curr == se, NULL); 2729 } 2730 2731 decayed = update_cfs_rq_load_avg(now, cfs_rq); 2732 2733 cfs_rq->runnable_load_avg += sa->load_avg; 2734 cfs_rq->runnable_load_sum += sa->load_sum; 2735 2736 if (migrated) { 2737 cfs_rq->avg.load_avg += sa->load_avg; 2738 cfs_rq->avg.load_sum += sa->load_sum; 2739 cfs_rq->avg.util_avg += sa->util_avg; 2740 cfs_rq->avg.util_sum += sa->util_sum; 2741 } 2742 2743 if (decayed || migrated) 2744 update_tg_load_avg(cfs_rq, 0); 2745 } 2746 2747 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 2748 static inline void 2749 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2750 { 2751 update_load_avg(se, 1); 2752 2753 cfs_rq->runnable_load_avg = 2754 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 2755 cfs_rq->runnable_load_sum = 2756 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 2757 } 2758 2759 /* 2760 * Task first catches up with cfs_rq, and then subtract 2761 * itself from the cfs_rq (task must be off the queue now). 2762 */ 2763 void remove_entity_load_avg(struct sched_entity *se) 2764 { 2765 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2766 u64 last_update_time; 2767 2768 #ifndef CONFIG_64BIT 2769 u64 last_update_time_copy; 2770 2771 do { 2772 last_update_time_copy = cfs_rq->load_last_update_time_copy; 2773 smp_rmb(); 2774 last_update_time = cfs_rq->avg.last_update_time; 2775 } while (last_update_time != last_update_time_copy); 2776 #else 2777 last_update_time = cfs_rq->avg.last_update_time; 2778 #endif 2779 2780 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 2781 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 2782 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 2783 } 2784 2785 /* 2786 * Update the rq's load with the elapsed running time before entering 2787 * idle. if the last scheduled task is not a CFS task, idle_enter will 2788 * be the only way to update the runnable statistic. 2789 */ 2790 void idle_enter_fair(struct rq *this_rq) 2791 { 2792 } 2793 2794 /* 2795 * Update the rq's load with the elapsed idle time before a task is 2796 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2797 * be the only way to update the runnable statistic. 2798 */ 2799 void idle_exit_fair(struct rq *this_rq) 2800 { 2801 } 2802 2803 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 2804 { 2805 return cfs_rq->runnable_load_avg; 2806 } 2807 2808 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 2809 { 2810 return cfs_rq->avg.load_avg; 2811 } 2812 2813 static int idle_balance(struct rq *this_rq); 2814 2815 #else /* CONFIG_SMP */ 2816 2817 static inline void update_load_avg(struct sched_entity *se, int update_tg) {} 2818 static inline void 2819 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 2820 static inline void 2821 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 2822 static inline void remove_entity_load_avg(struct sched_entity *se) {} 2823 2824 static inline int idle_balance(struct rq *rq) 2825 { 2826 return 0; 2827 } 2828 2829 #endif /* CONFIG_SMP */ 2830 2831 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2832 { 2833 #ifdef CONFIG_SCHEDSTATS 2834 struct task_struct *tsk = NULL; 2835 2836 if (entity_is_task(se)) 2837 tsk = task_of(se); 2838 2839 if (se->statistics.sleep_start) { 2840 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2841 2842 if ((s64)delta < 0) 2843 delta = 0; 2844 2845 if (unlikely(delta > se->statistics.sleep_max)) 2846 se->statistics.sleep_max = delta; 2847 2848 se->statistics.sleep_start = 0; 2849 se->statistics.sum_sleep_runtime += delta; 2850 2851 if (tsk) { 2852 account_scheduler_latency(tsk, delta >> 10, 1); 2853 trace_sched_stat_sleep(tsk, delta); 2854 } 2855 } 2856 if (se->statistics.block_start) { 2857 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2858 2859 if ((s64)delta < 0) 2860 delta = 0; 2861 2862 if (unlikely(delta > se->statistics.block_max)) 2863 se->statistics.block_max = delta; 2864 2865 se->statistics.block_start = 0; 2866 se->statistics.sum_sleep_runtime += delta; 2867 2868 if (tsk) { 2869 if (tsk->in_iowait) { 2870 se->statistics.iowait_sum += delta; 2871 se->statistics.iowait_count++; 2872 trace_sched_stat_iowait(tsk, delta); 2873 } 2874 2875 trace_sched_stat_blocked(tsk, delta); 2876 2877 /* 2878 * Blocking time is in units of nanosecs, so shift by 2879 * 20 to get a milliseconds-range estimation of the 2880 * amount of time that the task spent sleeping: 2881 */ 2882 if (unlikely(prof_on == SLEEP_PROFILING)) { 2883 profile_hits(SLEEP_PROFILING, 2884 (void *)get_wchan(tsk), 2885 delta >> 20); 2886 } 2887 account_scheduler_latency(tsk, delta >> 10, 0); 2888 } 2889 } 2890 #endif 2891 } 2892 2893 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2894 { 2895 #ifdef CONFIG_SCHED_DEBUG 2896 s64 d = se->vruntime - cfs_rq->min_vruntime; 2897 2898 if (d < 0) 2899 d = -d; 2900 2901 if (d > 3*sysctl_sched_latency) 2902 schedstat_inc(cfs_rq, nr_spread_over); 2903 #endif 2904 } 2905 2906 static void 2907 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2908 { 2909 u64 vruntime = cfs_rq->min_vruntime; 2910 2911 /* 2912 * The 'current' period is already promised to the current tasks, 2913 * however the extra weight of the new task will slow them down a 2914 * little, place the new task so that it fits in the slot that 2915 * stays open at the end. 2916 */ 2917 if (initial && sched_feat(START_DEBIT)) 2918 vruntime += sched_vslice(cfs_rq, se); 2919 2920 /* sleeps up to a single latency don't count. */ 2921 if (!initial) { 2922 unsigned long thresh = sysctl_sched_latency; 2923 2924 /* 2925 * Halve their sleep time's effect, to allow 2926 * for a gentler effect of sleepers: 2927 */ 2928 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2929 thresh >>= 1; 2930 2931 vruntime -= thresh; 2932 } 2933 2934 /* ensure we never gain time by being placed backwards. */ 2935 se->vruntime = max_vruntime(se->vruntime, vruntime); 2936 } 2937 2938 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2939 2940 static void 2941 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2942 { 2943 /* 2944 * Update the normalized vruntime before updating min_vruntime 2945 * through calling update_curr(). 2946 */ 2947 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2948 se->vruntime += cfs_rq->min_vruntime; 2949 2950 /* 2951 * Update run-time statistics of the 'current'. 2952 */ 2953 update_curr(cfs_rq); 2954 enqueue_entity_load_avg(cfs_rq, se); 2955 account_entity_enqueue(cfs_rq, se); 2956 update_cfs_shares(cfs_rq); 2957 2958 if (flags & ENQUEUE_WAKEUP) { 2959 place_entity(cfs_rq, se, 0); 2960 enqueue_sleeper(cfs_rq, se); 2961 } 2962 2963 update_stats_enqueue(cfs_rq, se); 2964 check_spread(cfs_rq, se); 2965 if (se != cfs_rq->curr) 2966 __enqueue_entity(cfs_rq, se); 2967 se->on_rq = 1; 2968 2969 if (cfs_rq->nr_running == 1) { 2970 list_add_leaf_cfs_rq(cfs_rq); 2971 check_enqueue_throttle(cfs_rq); 2972 } 2973 } 2974 2975 static void __clear_buddies_last(struct sched_entity *se) 2976 { 2977 for_each_sched_entity(se) { 2978 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2979 if (cfs_rq->last != se) 2980 break; 2981 2982 cfs_rq->last = NULL; 2983 } 2984 } 2985 2986 static void __clear_buddies_next(struct sched_entity *se) 2987 { 2988 for_each_sched_entity(se) { 2989 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2990 if (cfs_rq->next != se) 2991 break; 2992 2993 cfs_rq->next = NULL; 2994 } 2995 } 2996 2997 static void __clear_buddies_skip(struct sched_entity *se) 2998 { 2999 for_each_sched_entity(se) { 3000 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3001 if (cfs_rq->skip != se) 3002 break; 3003 3004 cfs_rq->skip = NULL; 3005 } 3006 } 3007 3008 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3009 { 3010 if (cfs_rq->last == se) 3011 __clear_buddies_last(se); 3012 3013 if (cfs_rq->next == se) 3014 __clear_buddies_next(se); 3015 3016 if (cfs_rq->skip == se) 3017 __clear_buddies_skip(se); 3018 } 3019 3020 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3021 3022 static void 3023 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3024 { 3025 /* 3026 * Update run-time statistics of the 'current'. 3027 */ 3028 update_curr(cfs_rq); 3029 dequeue_entity_load_avg(cfs_rq, se); 3030 3031 update_stats_dequeue(cfs_rq, se); 3032 if (flags & DEQUEUE_SLEEP) { 3033 #ifdef CONFIG_SCHEDSTATS 3034 if (entity_is_task(se)) { 3035 struct task_struct *tsk = task_of(se); 3036 3037 if (tsk->state & TASK_INTERRUPTIBLE) 3038 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 3039 if (tsk->state & TASK_UNINTERRUPTIBLE) 3040 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 3041 } 3042 #endif 3043 } 3044 3045 clear_buddies(cfs_rq, se); 3046 3047 if (se != cfs_rq->curr) 3048 __dequeue_entity(cfs_rq, se); 3049 se->on_rq = 0; 3050 account_entity_dequeue(cfs_rq, se); 3051 3052 /* 3053 * Normalize the entity after updating the min_vruntime because the 3054 * update can refer to the ->curr item and we need to reflect this 3055 * movement in our normalized position. 3056 */ 3057 if (!(flags & DEQUEUE_SLEEP)) 3058 se->vruntime -= cfs_rq->min_vruntime; 3059 3060 /* return excess runtime on last dequeue */ 3061 return_cfs_rq_runtime(cfs_rq); 3062 3063 update_min_vruntime(cfs_rq); 3064 update_cfs_shares(cfs_rq); 3065 } 3066 3067 /* 3068 * Preempt the current task with a newly woken task if needed: 3069 */ 3070 static void 3071 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3072 { 3073 unsigned long ideal_runtime, delta_exec; 3074 struct sched_entity *se; 3075 s64 delta; 3076 3077 ideal_runtime = sched_slice(cfs_rq, curr); 3078 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3079 if (delta_exec > ideal_runtime) { 3080 resched_curr(rq_of(cfs_rq)); 3081 /* 3082 * The current task ran long enough, ensure it doesn't get 3083 * re-elected due to buddy favours. 3084 */ 3085 clear_buddies(cfs_rq, curr); 3086 return; 3087 } 3088 3089 /* 3090 * Ensure that a task that missed wakeup preemption by a 3091 * narrow margin doesn't have to wait for a full slice. 3092 * This also mitigates buddy induced latencies under load. 3093 */ 3094 if (delta_exec < sysctl_sched_min_granularity) 3095 return; 3096 3097 se = __pick_first_entity(cfs_rq); 3098 delta = curr->vruntime - se->vruntime; 3099 3100 if (delta < 0) 3101 return; 3102 3103 if (delta > ideal_runtime) 3104 resched_curr(rq_of(cfs_rq)); 3105 } 3106 3107 static void 3108 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3109 { 3110 /* 'current' is not kept within the tree. */ 3111 if (se->on_rq) { 3112 /* 3113 * Any task has to be enqueued before it get to execute on 3114 * a CPU. So account for the time it spent waiting on the 3115 * runqueue. 3116 */ 3117 update_stats_wait_end(cfs_rq, se); 3118 __dequeue_entity(cfs_rq, se); 3119 update_load_avg(se, 1); 3120 } 3121 3122 update_stats_curr_start(cfs_rq, se); 3123 cfs_rq->curr = se; 3124 #ifdef CONFIG_SCHEDSTATS 3125 /* 3126 * Track our maximum slice length, if the CPU's load is at 3127 * least twice that of our own weight (i.e. dont track it 3128 * when there are only lesser-weight tasks around): 3129 */ 3130 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3131 se->statistics.slice_max = max(se->statistics.slice_max, 3132 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3133 } 3134 #endif 3135 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3136 } 3137 3138 static int 3139 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3140 3141 /* 3142 * Pick the next process, keeping these things in mind, in this order: 3143 * 1) keep things fair between processes/task groups 3144 * 2) pick the "next" process, since someone really wants that to run 3145 * 3) pick the "last" process, for cache locality 3146 * 4) do not run the "skip" process, if something else is available 3147 */ 3148 static struct sched_entity * 3149 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3150 { 3151 struct sched_entity *left = __pick_first_entity(cfs_rq); 3152 struct sched_entity *se; 3153 3154 /* 3155 * If curr is set we have to see if its left of the leftmost entity 3156 * still in the tree, provided there was anything in the tree at all. 3157 */ 3158 if (!left || (curr && entity_before(curr, left))) 3159 left = curr; 3160 3161 se = left; /* ideally we run the leftmost entity */ 3162 3163 /* 3164 * Avoid running the skip buddy, if running something else can 3165 * be done without getting too unfair. 3166 */ 3167 if (cfs_rq->skip == se) { 3168 struct sched_entity *second; 3169 3170 if (se == curr) { 3171 second = __pick_first_entity(cfs_rq); 3172 } else { 3173 second = __pick_next_entity(se); 3174 if (!second || (curr && entity_before(curr, second))) 3175 second = curr; 3176 } 3177 3178 if (second && wakeup_preempt_entity(second, left) < 1) 3179 se = second; 3180 } 3181 3182 /* 3183 * Prefer last buddy, try to return the CPU to a preempted task. 3184 */ 3185 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3186 se = cfs_rq->last; 3187 3188 /* 3189 * Someone really wants this to run. If it's not unfair, run it. 3190 */ 3191 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3192 se = cfs_rq->next; 3193 3194 clear_buddies(cfs_rq, se); 3195 3196 return se; 3197 } 3198 3199 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3200 3201 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3202 { 3203 /* 3204 * If still on the runqueue then deactivate_task() 3205 * was not called and update_curr() has to be done: 3206 */ 3207 if (prev->on_rq) 3208 update_curr(cfs_rq); 3209 3210 /* throttle cfs_rqs exceeding runtime */ 3211 check_cfs_rq_runtime(cfs_rq); 3212 3213 check_spread(cfs_rq, prev); 3214 if (prev->on_rq) { 3215 update_stats_wait_start(cfs_rq, prev); 3216 /* Put 'current' back into the tree. */ 3217 __enqueue_entity(cfs_rq, prev); 3218 /* in !on_rq case, update occurred at dequeue */ 3219 update_load_avg(prev, 0); 3220 } 3221 cfs_rq->curr = NULL; 3222 } 3223 3224 static void 3225 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3226 { 3227 /* 3228 * Update run-time statistics of the 'current'. 3229 */ 3230 update_curr(cfs_rq); 3231 3232 /* 3233 * Ensure that runnable average is periodically updated. 3234 */ 3235 update_load_avg(curr, 1); 3236 update_cfs_shares(cfs_rq); 3237 3238 #ifdef CONFIG_SCHED_HRTICK 3239 /* 3240 * queued ticks are scheduled to match the slice, so don't bother 3241 * validating it and just reschedule. 3242 */ 3243 if (queued) { 3244 resched_curr(rq_of(cfs_rq)); 3245 return; 3246 } 3247 /* 3248 * don't let the period tick interfere with the hrtick preemption 3249 */ 3250 if (!sched_feat(DOUBLE_TICK) && 3251 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3252 return; 3253 #endif 3254 3255 if (cfs_rq->nr_running > 1) 3256 check_preempt_tick(cfs_rq, curr); 3257 } 3258 3259 3260 /************************************************** 3261 * CFS bandwidth control machinery 3262 */ 3263 3264 #ifdef CONFIG_CFS_BANDWIDTH 3265 3266 #ifdef HAVE_JUMP_LABEL 3267 static struct static_key __cfs_bandwidth_used; 3268 3269 static inline bool cfs_bandwidth_used(void) 3270 { 3271 return static_key_false(&__cfs_bandwidth_used); 3272 } 3273 3274 void cfs_bandwidth_usage_inc(void) 3275 { 3276 static_key_slow_inc(&__cfs_bandwidth_used); 3277 } 3278 3279 void cfs_bandwidth_usage_dec(void) 3280 { 3281 static_key_slow_dec(&__cfs_bandwidth_used); 3282 } 3283 #else /* HAVE_JUMP_LABEL */ 3284 static bool cfs_bandwidth_used(void) 3285 { 3286 return true; 3287 } 3288 3289 void cfs_bandwidth_usage_inc(void) {} 3290 void cfs_bandwidth_usage_dec(void) {} 3291 #endif /* HAVE_JUMP_LABEL */ 3292 3293 /* 3294 * default period for cfs group bandwidth. 3295 * default: 0.1s, units: nanoseconds 3296 */ 3297 static inline u64 default_cfs_period(void) 3298 { 3299 return 100000000ULL; 3300 } 3301 3302 static inline u64 sched_cfs_bandwidth_slice(void) 3303 { 3304 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3305 } 3306 3307 /* 3308 * Replenish runtime according to assigned quota and update expiration time. 3309 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3310 * additional synchronization around rq->lock. 3311 * 3312 * requires cfs_b->lock 3313 */ 3314 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3315 { 3316 u64 now; 3317 3318 if (cfs_b->quota == RUNTIME_INF) 3319 return; 3320 3321 now = sched_clock_cpu(smp_processor_id()); 3322 cfs_b->runtime = cfs_b->quota; 3323 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3324 } 3325 3326 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3327 { 3328 return &tg->cfs_bandwidth; 3329 } 3330 3331 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3332 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3333 { 3334 if (unlikely(cfs_rq->throttle_count)) 3335 return cfs_rq->throttled_clock_task; 3336 3337 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3338 } 3339 3340 /* returns 0 on failure to allocate runtime */ 3341 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3342 { 3343 struct task_group *tg = cfs_rq->tg; 3344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3345 u64 amount = 0, min_amount, expires; 3346 3347 /* note: this is a positive sum as runtime_remaining <= 0 */ 3348 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3349 3350 raw_spin_lock(&cfs_b->lock); 3351 if (cfs_b->quota == RUNTIME_INF) 3352 amount = min_amount; 3353 else { 3354 start_cfs_bandwidth(cfs_b); 3355 3356 if (cfs_b->runtime > 0) { 3357 amount = min(cfs_b->runtime, min_amount); 3358 cfs_b->runtime -= amount; 3359 cfs_b->idle = 0; 3360 } 3361 } 3362 expires = cfs_b->runtime_expires; 3363 raw_spin_unlock(&cfs_b->lock); 3364 3365 cfs_rq->runtime_remaining += amount; 3366 /* 3367 * we may have advanced our local expiration to account for allowed 3368 * spread between our sched_clock and the one on which runtime was 3369 * issued. 3370 */ 3371 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3372 cfs_rq->runtime_expires = expires; 3373 3374 return cfs_rq->runtime_remaining > 0; 3375 } 3376 3377 /* 3378 * Note: This depends on the synchronization provided by sched_clock and the 3379 * fact that rq->clock snapshots this value. 3380 */ 3381 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3382 { 3383 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3384 3385 /* if the deadline is ahead of our clock, nothing to do */ 3386 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3387 return; 3388 3389 if (cfs_rq->runtime_remaining < 0) 3390 return; 3391 3392 /* 3393 * If the local deadline has passed we have to consider the 3394 * possibility that our sched_clock is 'fast' and the global deadline 3395 * has not truly expired. 3396 * 3397 * Fortunately we can check determine whether this the case by checking 3398 * whether the global deadline has advanced. It is valid to compare 3399 * cfs_b->runtime_expires without any locks since we only care about 3400 * exact equality, so a partial write will still work. 3401 */ 3402 3403 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3404 /* extend local deadline, drift is bounded above by 2 ticks */ 3405 cfs_rq->runtime_expires += TICK_NSEC; 3406 } else { 3407 /* global deadline is ahead, expiration has passed */ 3408 cfs_rq->runtime_remaining = 0; 3409 } 3410 } 3411 3412 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3413 { 3414 /* dock delta_exec before expiring quota (as it could span periods) */ 3415 cfs_rq->runtime_remaining -= delta_exec; 3416 expire_cfs_rq_runtime(cfs_rq); 3417 3418 if (likely(cfs_rq->runtime_remaining > 0)) 3419 return; 3420 3421 /* 3422 * if we're unable to extend our runtime we resched so that the active 3423 * hierarchy can be throttled 3424 */ 3425 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3426 resched_curr(rq_of(cfs_rq)); 3427 } 3428 3429 static __always_inline 3430 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3431 { 3432 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3433 return; 3434 3435 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3436 } 3437 3438 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3439 { 3440 return cfs_bandwidth_used() && cfs_rq->throttled; 3441 } 3442 3443 /* check whether cfs_rq, or any parent, is throttled */ 3444 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3445 { 3446 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3447 } 3448 3449 /* 3450 * Ensure that neither of the group entities corresponding to src_cpu or 3451 * dest_cpu are members of a throttled hierarchy when performing group 3452 * load-balance operations. 3453 */ 3454 static inline int throttled_lb_pair(struct task_group *tg, 3455 int src_cpu, int dest_cpu) 3456 { 3457 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3458 3459 src_cfs_rq = tg->cfs_rq[src_cpu]; 3460 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3461 3462 return throttled_hierarchy(src_cfs_rq) || 3463 throttled_hierarchy(dest_cfs_rq); 3464 } 3465 3466 /* updated child weight may affect parent so we have to do this bottom up */ 3467 static int tg_unthrottle_up(struct task_group *tg, void *data) 3468 { 3469 struct rq *rq = data; 3470 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3471 3472 cfs_rq->throttle_count--; 3473 #ifdef CONFIG_SMP 3474 if (!cfs_rq->throttle_count) { 3475 /* adjust cfs_rq_clock_task() */ 3476 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3477 cfs_rq->throttled_clock_task; 3478 } 3479 #endif 3480 3481 return 0; 3482 } 3483 3484 static int tg_throttle_down(struct task_group *tg, void *data) 3485 { 3486 struct rq *rq = data; 3487 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3488 3489 /* group is entering throttled state, stop time */ 3490 if (!cfs_rq->throttle_count) 3491 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3492 cfs_rq->throttle_count++; 3493 3494 return 0; 3495 } 3496 3497 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3498 { 3499 struct rq *rq = rq_of(cfs_rq); 3500 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3501 struct sched_entity *se; 3502 long task_delta, dequeue = 1; 3503 bool empty; 3504 3505 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3506 3507 /* freeze hierarchy runnable averages while throttled */ 3508 rcu_read_lock(); 3509 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3510 rcu_read_unlock(); 3511 3512 task_delta = cfs_rq->h_nr_running; 3513 for_each_sched_entity(se) { 3514 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3515 /* throttled entity or throttle-on-deactivate */ 3516 if (!se->on_rq) 3517 break; 3518 3519 if (dequeue) 3520 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3521 qcfs_rq->h_nr_running -= task_delta; 3522 3523 if (qcfs_rq->load.weight) 3524 dequeue = 0; 3525 } 3526 3527 if (!se) 3528 sub_nr_running(rq, task_delta); 3529 3530 cfs_rq->throttled = 1; 3531 cfs_rq->throttled_clock = rq_clock(rq); 3532 raw_spin_lock(&cfs_b->lock); 3533 empty = list_empty(&cfs_b->throttled_cfs_rq); 3534 3535 /* 3536 * Add to the _head_ of the list, so that an already-started 3537 * distribute_cfs_runtime will not see us 3538 */ 3539 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3540 3541 /* 3542 * If we're the first throttled task, make sure the bandwidth 3543 * timer is running. 3544 */ 3545 if (empty) 3546 start_cfs_bandwidth(cfs_b); 3547 3548 raw_spin_unlock(&cfs_b->lock); 3549 } 3550 3551 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3552 { 3553 struct rq *rq = rq_of(cfs_rq); 3554 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3555 struct sched_entity *se; 3556 int enqueue = 1; 3557 long task_delta; 3558 3559 se = cfs_rq->tg->se[cpu_of(rq)]; 3560 3561 cfs_rq->throttled = 0; 3562 3563 update_rq_clock(rq); 3564 3565 raw_spin_lock(&cfs_b->lock); 3566 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3567 list_del_rcu(&cfs_rq->throttled_list); 3568 raw_spin_unlock(&cfs_b->lock); 3569 3570 /* update hierarchical throttle state */ 3571 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3572 3573 if (!cfs_rq->load.weight) 3574 return; 3575 3576 task_delta = cfs_rq->h_nr_running; 3577 for_each_sched_entity(se) { 3578 if (se->on_rq) 3579 enqueue = 0; 3580 3581 cfs_rq = cfs_rq_of(se); 3582 if (enqueue) 3583 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3584 cfs_rq->h_nr_running += task_delta; 3585 3586 if (cfs_rq_throttled(cfs_rq)) 3587 break; 3588 } 3589 3590 if (!se) 3591 add_nr_running(rq, task_delta); 3592 3593 /* determine whether we need to wake up potentially idle cpu */ 3594 if (rq->curr == rq->idle && rq->cfs.nr_running) 3595 resched_curr(rq); 3596 } 3597 3598 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3599 u64 remaining, u64 expires) 3600 { 3601 struct cfs_rq *cfs_rq; 3602 u64 runtime; 3603 u64 starting_runtime = remaining; 3604 3605 rcu_read_lock(); 3606 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3607 throttled_list) { 3608 struct rq *rq = rq_of(cfs_rq); 3609 3610 raw_spin_lock(&rq->lock); 3611 if (!cfs_rq_throttled(cfs_rq)) 3612 goto next; 3613 3614 runtime = -cfs_rq->runtime_remaining + 1; 3615 if (runtime > remaining) 3616 runtime = remaining; 3617 remaining -= runtime; 3618 3619 cfs_rq->runtime_remaining += runtime; 3620 cfs_rq->runtime_expires = expires; 3621 3622 /* we check whether we're throttled above */ 3623 if (cfs_rq->runtime_remaining > 0) 3624 unthrottle_cfs_rq(cfs_rq); 3625 3626 next: 3627 raw_spin_unlock(&rq->lock); 3628 3629 if (!remaining) 3630 break; 3631 } 3632 rcu_read_unlock(); 3633 3634 return starting_runtime - remaining; 3635 } 3636 3637 /* 3638 * Responsible for refilling a task_group's bandwidth and unthrottling its 3639 * cfs_rqs as appropriate. If there has been no activity within the last 3640 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3641 * used to track this state. 3642 */ 3643 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3644 { 3645 u64 runtime, runtime_expires; 3646 int throttled; 3647 3648 /* no need to continue the timer with no bandwidth constraint */ 3649 if (cfs_b->quota == RUNTIME_INF) 3650 goto out_deactivate; 3651 3652 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3653 cfs_b->nr_periods += overrun; 3654 3655 /* 3656 * idle depends on !throttled (for the case of a large deficit), and if 3657 * we're going inactive then everything else can be deferred 3658 */ 3659 if (cfs_b->idle && !throttled) 3660 goto out_deactivate; 3661 3662 __refill_cfs_bandwidth_runtime(cfs_b); 3663 3664 if (!throttled) { 3665 /* mark as potentially idle for the upcoming period */ 3666 cfs_b->idle = 1; 3667 return 0; 3668 } 3669 3670 /* account preceding periods in which throttling occurred */ 3671 cfs_b->nr_throttled += overrun; 3672 3673 runtime_expires = cfs_b->runtime_expires; 3674 3675 /* 3676 * This check is repeated as we are holding onto the new bandwidth while 3677 * we unthrottle. This can potentially race with an unthrottled group 3678 * trying to acquire new bandwidth from the global pool. This can result 3679 * in us over-using our runtime if it is all used during this loop, but 3680 * only by limited amounts in that extreme case. 3681 */ 3682 while (throttled && cfs_b->runtime > 0) { 3683 runtime = cfs_b->runtime; 3684 raw_spin_unlock(&cfs_b->lock); 3685 /* we can't nest cfs_b->lock while distributing bandwidth */ 3686 runtime = distribute_cfs_runtime(cfs_b, runtime, 3687 runtime_expires); 3688 raw_spin_lock(&cfs_b->lock); 3689 3690 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3691 3692 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3693 } 3694 3695 /* 3696 * While we are ensured activity in the period following an 3697 * unthrottle, this also covers the case in which the new bandwidth is 3698 * insufficient to cover the existing bandwidth deficit. (Forcing the 3699 * timer to remain active while there are any throttled entities.) 3700 */ 3701 cfs_b->idle = 0; 3702 3703 return 0; 3704 3705 out_deactivate: 3706 return 1; 3707 } 3708 3709 /* a cfs_rq won't donate quota below this amount */ 3710 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3711 /* minimum remaining period time to redistribute slack quota */ 3712 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3713 /* how long we wait to gather additional slack before distributing */ 3714 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3715 3716 /* 3717 * Are we near the end of the current quota period? 3718 * 3719 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3720 * hrtimer base being cleared by hrtimer_start. In the case of 3721 * migrate_hrtimers, base is never cleared, so we are fine. 3722 */ 3723 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3724 { 3725 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3726 u64 remaining; 3727 3728 /* if the call-back is running a quota refresh is already occurring */ 3729 if (hrtimer_callback_running(refresh_timer)) 3730 return 1; 3731 3732 /* is a quota refresh about to occur? */ 3733 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3734 if (remaining < min_expire) 3735 return 1; 3736 3737 return 0; 3738 } 3739 3740 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3741 { 3742 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3743 3744 /* if there's a quota refresh soon don't bother with slack */ 3745 if (runtime_refresh_within(cfs_b, min_left)) 3746 return; 3747 3748 hrtimer_start(&cfs_b->slack_timer, 3749 ns_to_ktime(cfs_bandwidth_slack_period), 3750 HRTIMER_MODE_REL); 3751 } 3752 3753 /* we know any runtime found here is valid as update_curr() precedes return */ 3754 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3755 { 3756 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3757 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3758 3759 if (slack_runtime <= 0) 3760 return; 3761 3762 raw_spin_lock(&cfs_b->lock); 3763 if (cfs_b->quota != RUNTIME_INF && 3764 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3765 cfs_b->runtime += slack_runtime; 3766 3767 /* we are under rq->lock, defer unthrottling using a timer */ 3768 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3769 !list_empty(&cfs_b->throttled_cfs_rq)) 3770 start_cfs_slack_bandwidth(cfs_b); 3771 } 3772 raw_spin_unlock(&cfs_b->lock); 3773 3774 /* even if it's not valid for return we don't want to try again */ 3775 cfs_rq->runtime_remaining -= slack_runtime; 3776 } 3777 3778 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3779 { 3780 if (!cfs_bandwidth_used()) 3781 return; 3782 3783 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3784 return; 3785 3786 __return_cfs_rq_runtime(cfs_rq); 3787 } 3788 3789 /* 3790 * This is done with a timer (instead of inline with bandwidth return) since 3791 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3792 */ 3793 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3794 { 3795 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3796 u64 expires; 3797 3798 /* confirm we're still not at a refresh boundary */ 3799 raw_spin_lock(&cfs_b->lock); 3800 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3801 raw_spin_unlock(&cfs_b->lock); 3802 return; 3803 } 3804 3805 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 3806 runtime = cfs_b->runtime; 3807 3808 expires = cfs_b->runtime_expires; 3809 raw_spin_unlock(&cfs_b->lock); 3810 3811 if (!runtime) 3812 return; 3813 3814 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3815 3816 raw_spin_lock(&cfs_b->lock); 3817 if (expires == cfs_b->runtime_expires) 3818 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3819 raw_spin_unlock(&cfs_b->lock); 3820 } 3821 3822 /* 3823 * When a group wakes up we want to make sure that its quota is not already 3824 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3825 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3826 */ 3827 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3828 { 3829 if (!cfs_bandwidth_used()) 3830 return; 3831 3832 /* an active group must be handled by the update_curr()->put() path */ 3833 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3834 return; 3835 3836 /* ensure the group is not already throttled */ 3837 if (cfs_rq_throttled(cfs_rq)) 3838 return; 3839 3840 /* update runtime allocation */ 3841 account_cfs_rq_runtime(cfs_rq, 0); 3842 if (cfs_rq->runtime_remaining <= 0) 3843 throttle_cfs_rq(cfs_rq); 3844 } 3845 3846 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3847 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3848 { 3849 if (!cfs_bandwidth_used()) 3850 return false; 3851 3852 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3853 return false; 3854 3855 /* 3856 * it's possible for a throttled entity to be forced into a running 3857 * state (e.g. set_curr_task), in this case we're finished. 3858 */ 3859 if (cfs_rq_throttled(cfs_rq)) 3860 return true; 3861 3862 throttle_cfs_rq(cfs_rq); 3863 return true; 3864 } 3865 3866 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3867 { 3868 struct cfs_bandwidth *cfs_b = 3869 container_of(timer, struct cfs_bandwidth, slack_timer); 3870 3871 do_sched_cfs_slack_timer(cfs_b); 3872 3873 return HRTIMER_NORESTART; 3874 } 3875 3876 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3877 { 3878 struct cfs_bandwidth *cfs_b = 3879 container_of(timer, struct cfs_bandwidth, period_timer); 3880 int overrun; 3881 int idle = 0; 3882 3883 raw_spin_lock(&cfs_b->lock); 3884 for (;;) { 3885 overrun = hrtimer_forward_now(timer, cfs_b->period); 3886 if (!overrun) 3887 break; 3888 3889 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3890 } 3891 if (idle) 3892 cfs_b->period_active = 0; 3893 raw_spin_unlock(&cfs_b->lock); 3894 3895 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3896 } 3897 3898 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3899 { 3900 raw_spin_lock_init(&cfs_b->lock); 3901 cfs_b->runtime = 0; 3902 cfs_b->quota = RUNTIME_INF; 3903 cfs_b->period = ns_to_ktime(default_cfs_period()); 3904 3905 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3906 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 3907 cfs_b->period_timer.function = sched_cfs_period_timer; 3908 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3909 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3910 } 3911 3912 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3913 { 3914 cfs_rq->runtime_enabled = 0; 3915 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3916 } 3917 3918 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3919 { 3920 lockdep_assert_held(&cfs_b->lock); 3921 3922 if (!cfs_b->period_active) { 3923 cfs_b->period_active = 1; 3924 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 3925 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 3926 } 3927 } 3928 3929 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3930 { 3931 /* init_cfs_bandwidth() was not called */ 3932 if (!cfs_b->throttled_cfs_rq.next) 3933 return; 3934 3935 hrtimer_cancel(&cfs_b->period_timer); 3936 hrtimer_cancel(&cfs_b->slack_timer); 3937 } 3938 3939 static void __maybe_unused update_runtime_enabled(struct rq *rq) 3940 { 3941 struct cfs_rq *cfs_rq; 3942 3943 for_each_leaf_cfs_rq(rq, cfs_rq) { 3944 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 3945 3946 raw_spin_lock(&cfs_b->lock); 3947 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 3948 raw_spin_unlock(&cfs_b->lock); 3949 } 3950 } 3951 3952 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3953 { 3954 struct cfs_rq *cfs_rq; 3955 3956 for_each_leaf_cfs_rq(rq, cfs_rq) { 3957 if (!cfs_rq->runtime_enabled) 3958 continue; 3959 3960 /* 3961 * clock_task is not advancing so we just need to make sure 3962 * there's some valid quota amount 3963 */ 3964 cfs_rq->runtime_remaining = 1; 3965 /* 3966 * Offline rq is schedulable till cpu is completely disabled 3967 * in take_cpu_down(), so we prevent new cfs throttling here. 3968 */ 3969 cfs_rq->runtime_enabled = 0; 3970 3971 if (cfs_rq_throttled(cfs_rq)) 3972 unthrottle_cfs_rq(cfs_rq); 3973 } 3974 } 3975 3976 #else /* CONFIG_CFS_BANDWIDTH */ 3977 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3978 { 3979 return rq_clock_task(rq_of(cfs_rq)); 3980 } 3981 3982 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3983 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 3984 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3985 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3986 3987 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3988 { 3989 return 0; 3990 } 3991 3992 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3993 { 3994 return 0; 3995 } 3996 3997 static inline int throttled_lb_pair(struct task_group *tg, 3998 int src_cpu, int dest_cpu) 3999 { 4000 return 0; 4001 } 4002 4003 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4004 4005 #ifdef CONFIG_FAIR_GROUP_SCHED 4006 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4007 #endif 4008 4009 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4010 { 4011 return NULL; 4012 } 4013 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4014 static inline void update_runtime_enabled(struct rq *rq) {} 4015 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4016 4017 #endif /* CONFIG_CFS_BANDWIDTH */ 4018 4019 /************************************************** 4020 * CFS operations on tasks: 4021 */ 4022 4023 #ifdef CONFIG_SCHED_HRTICK 4024 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4025 { 4026 struct sched_entity *se = &p->se; 4027 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4028 4029 WARN_ON(task_rq(p) != rq); 4030 4031 if (cfs_rq->nr_running > 1) { 4032 u64 slice = sched_slice(cfs_rq, se); 4033 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4034 s64 delta = slice - ran; 4035 4036 if (delta < 0) { 4037 if (rq->curr == p) 4038 resched_curr(rq); 4039 return; 4040 } 4041 hrtick_start(rq, delta); 4042 } 4043 } 4044 4045 /* 4046 * called from enqueue/dequeue and updates the hrtick when the 4047 * current task is from our class and nr_running is low enough 4048 * to matter. 4049 */ 4050 static void hrtick_update(struct rq *rq) 4051 { 4052 struct task_struct *curr = rq->curr; 4053 4054 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4055 return; 4056 4057 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4058 hrtick_start_fair(rq, curr); 4059 } 4060 #else /* !CONFIG_SCHED_HRTICK */ 4061 static inline void 4062 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4063 { 4064 } 4065 4066 static inline void hrtick_update(struct rq *rq) 4067 { 4068 } 4069 #endif 4070 4071 /* 4072 * The enqueue_task method is called before nr_running is 4073 * increased. Here we update the fair scheduling stats and 4074 * then put the task into the rbtree: 4075 */ 4076 static void 4077 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4078 { 4079 struct cfs_rq *cfs_rq; 4080 struct sched_entity *se = &p->se; 4081 4082 for_each_sched_entity(se) { 4083 if (se->on_rq) 4084 break; 4085 cfs_rq = cfs_rq_of(se); 4086 enqueue_entity(cfs_rq, se, flags); 4087 4088 /* 4089 * end evaluation on encountering a throttled cfs_rq 4090 * 4091 * note: in the case of encountering a throttled cfs_rq we will 4092 * post the final h_nr_running increment below. 4093 */ 4094 if (cfs_rq_throttled(cfs_rq)) 4095 break; 4096 cfs_rq->h_nr_running++; 4097 4098 flags = ENQUEUE_WAKEUP; 4099 } 4100 4101 for_each_sched_entity(se) { 4102 cfs_rq = cfs_rq_of(se); 4103 cfs_rq->h_nr_running++; 4104 4105 if (cfs_rq_throttled(cfs_rq)) 4106 break; 4107 4108 update_load_avg(se, 1); 4109 update_cfs_shares(cfs_rq); 4110 } 4111 4112 if (!se) 4113 add_nr_running(rq, 1); 4114 4115 hrtick_update(rq); 4116 } 4117 4118 static void set_next_buddy(struct sched_entity *se); 4119 4120 /* 4121 * The dequeue_task method is called before nr_running is 4122 * decreased. We remove the task from the rbtree and 4123 * update the fair scheduling stats: 4124 */ 4125 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4126 { 4127 struct cfs_rq *cfs_rq; 4128 struct sched_entity *se = &p->se; 4129 int task_sleep = flags & DEQUEUE_SLEEP; 4130 4131 for_each_sched_entity(se) { 4132 cfs_rq = cfs_rq_of(se); 4133 dequeue_entity(cfs_rq, se, flags); 4134 4135 /* 4136 * end evaluation on encountering a throttled cfs_rq 4137 * 4138 * note: in the case of encountering a throttled cfs_rq we will 4139 * post the final h_nr_running decrement below. 4140 */ 4141 if (cfs_rq_throttled(cfs_rq)) 4142 break; 4143 cfs_rq->h_nr_running--; 4144 4145 /* Don't dequeue parent if it has other entities besides us */ 4146 if (cfs_rq->load.weight) { 4147 /* 4148 * Bias pick_next to pick a task from this cfs_rq, as 4149 * p is sleeping when it is within its sched_slice. 4150 */ 4151 if (task_sleep && parent_entity(se)) 4152 set_next_buddy(parent_entity(se)); 4153 4154 /* avoid re-evaluating load for this entity */ 4155 se = parent_entity(se); 4156 break; 4157 } 4158 flags |= DEQUEUE_SLEEP; 4159 } 4160 4161 for_each_sched_entity(se) { 4162 cfs_rq = cfs_rq_of(se); 4163 cfs_rq->h_nr_running--; 4164 4165 if (cfs_rq_throttled(cfs_rq)) 4166 break; 4167 4168 update_load_avg(se, 1); 4169 update_cfs_shares(cfs_rq); 4170 } 4171 4172 if (!se) 4173 sub_nr_running(rq, 1); 4174 4175 hrtick_update(rq); 4176 } 4177 4178 #ifdef CONFIG_SMP 4179 4180 /* 4181 * per rq 'load' arrray crap; XXX kill this. 4182 */ 4183 4184 /* 4185 * The exact cpuload at various idx values, calculated at every tick would be 4186 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 4187 * 4188 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 4189 * on nth tick when cpu may be busy, then we have: 4190 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 4191 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 4192 * 4193 * decay_load_missed() below does efficient calculation of 4194 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 4195 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 4196 * 4197 * The calculation is approximated on a 128 point scale. 4198 * degrade_zero_ticks is the number of ticks after which load at any 4199 * particular idx is approximated to be zero. 4200 * degrade_factor is a precomputed table, a row for each load idx. 4201 * Each column corresponds to degradation factor for a power of two ticks, 4202 * based on 128 point scale. 4203 * Example: 4204 * row 2, col 3 (=12) says that the degradation at load idx 2 after 4205 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 4206 * 4207 * With this power of 2 load factors, we can degrade the load n times 4208 * by looking at 1 bits in n and doing as many mult/shift instead of 4209 * n mult/shifts needed by the exact degradation. 4210 */ 4211 #define DEGRADE_SHIFT 7 4212 static const unsigned char 4213 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4214 static const unsigned char 4215 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4216 {0, 0, 0, 0, 0, 0, 0, 0}, 4217 {64, 32, 8, 0, 0, 0, 0, 0}, 4218 {96, 72, 40, 12, 1, 0, 0}, 4219 {112, 98, 75, 43, 15, 1, 0}, 4220 {120, 112, 98, 76, 45, 16, 2} }; 4221 4222 /* 4223 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4224 * would be when CPU is idle and so we just decay the old load without 4225 * adding any new load. 4226 */ 4227 static unsigned long 4228 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4229 { 4230 int j = 0; 4231 4232 if (!missed_updates) 4233 return load; 4234 4235 if (missed_updates >= degrade_zero_ticks[idx]) 4236 return 0; 4237 4238 if (idx == 1) 4239 return load >> missed_updates; 4240 4241 while (missed_updates) { 4242 if (missed_updates % 2) 4243 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4244 4245 missed_updates >>= 1; 4246 j++; 4247 } 4248 return load; 4249 } 4250 4251 /* 4252 * Update rq->cpu_load[] statistics. This function is usually called every 4253 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 4254 * every tick. We fix it up based on jiffies. 4255 */ 4256 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 4257 unsigned long pending_updates) 4258 { 4259 int i, scale; 4260 4261 this_rq->nr_load_updates++; 4262 4263 /* Update our load: */ 4264 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4265 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4266 unsigned long old_load, new_load; 4267 4268 /* scale is effectively 1 << i now, and >> i divides by scale */ 4269 4270 old_load = this_rq->cpu_load[i]; 4271 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4272 new_load = this_load; 4273 /* 4274 * Round up the averaging division if load is increasing. This 4275 * prevents us from getting stuck on 9 if the load is 10, for 4276 * example. 4277 */ 4278 if (new_load > old_load) 4279 new_load += scale - 1; 4280 4281 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4282 } 4283 4284 sched_avg_update(this_rq); 4285 } 4286 4287 /* Used instead of source_load when we know the type == 0 */ 4288 static unsigned long weighted_cpuload(const int cpu) 4289 { 4290 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4291 } 4292 4293 #ifdef CONFIG_NO_HZ_COMMON 4294 /* 4295 * There is no sane way to deal with nohz on smp when using jiffies because the 4296 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4297 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4298 * 4299 * Therefore we cannot use the delta approach from the regular tick since that 4300 * would seriously skew the load calculation. However we'll make do for those 4301 * updates happening while idle (nohz_idle_balance) or coming out of idle 4302 * (tick_nohz_idle_exit). 4303 * 4304 * This means we might still be one tick off for nohz periods. 4305 */ 4306 4307 /* 4308 * Called from nohz_idle_balance() to update the load ratings before doing the 4309 * idle balance. 4310 */ 4311 static void update_idle_cpu_load(struct rq *this_rq) 4312 { 4313 unsigned long curr_jiffies = READ_ONCE(jiffies); 4314 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4315 unsigned long pending_updates; 4316 4317 /* 4318 * bail if there's load or we're actually up-to-date. 4319 */ 4320 if (load || curr_jiffies == this_rq->last_load_update_tick) 4321 return; 4322 4323 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4324 this_rq->last_load_update_tick = curr_jiffies; 4325 4326 __update_cpu_load(this_rq, load, pending_updates); 4327 } 4328 4329 /* 4330 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 4331 */ 4332 void update_cpu_load_nohz(void) 4333 { 4334 struct rq *this_rq = this_rq(); 4335 unsigned long curr_jiffies = READ_ONCE(jiffies); 4336 unsigned long pending_updates; 4337 4338 if (curr_jiffies == this_rq->last_load_update_tick) 4339 return; 4340 4341 raw_spin_lock(&this_rq->lock); 4342 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4343 if (pending_updates) { 4344 this_rq->last_load_update_tick = curr_jiffies; 4345 /* 4346 * We were idle, this means load 0, the current load might be 4347 * !0 due to remote wakeups and the sort. 4348 */ 4349 __update_cpu_load(this_rq, 0, pending_updates); 4350 } 4351 raw_spin_unlock(&this_rq->lock); 4352 } 4353 #endif /* CONFIG_NO_HZ */ 4354 4355 /* 4356 * Called from scheduler_tick() 4357 */ 4358 void update_cpu_load_active(struct rq *this_rq) 4359 { 4360 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4361 /* 4362 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 4363 */ 4364 this_rq->last_load_update_tick = jiffies; 4365 __update_cpu_load(this_rq, load, 1); 4366 } 4367 4368 /* 4369 * Return a low guess at the load of a migration-source cpu weighted 4370 * according to the scheduling class and "nice" value. 4371 * 4372 * We want to under-estimate the load of migration sources, to 4373 * balance conservatively. 4374 */ 4375 static unsigned long source_load(int cpu, int type) 4376 { 4377 struct rq *rq = cpu_rq(cpu); 4378 unsigned long total = weighted_cpuload(cpu); 4379 4380 if (type == 0 || !sched_feat(LB_BIAS)) 4381 return total; 4382 4383 return min(rq->cpu_load[type-1], total); 4384 } 4385 4386 /* 4387 * Return a high guess at the load of a migration-target cpu weighted 4388 * according to the scheduling class and "nice" value. 4389 */ 4390 static unsigned long target_load(int cpu, int type) 4391 { 4392 struct rq *rq = cpu_rq(cpu); 4393 unsigned long total = weighted_cpuload(cpu); 4394 4395 if (type == 0 || !sched_feat(LB_BIAS)) 4396 return total; 4397 4398 return max(rq->cpu_load[type-1], total); 4399 } 4400 4401 static unsigned long capacity_of(int cpu) 4402 { 4403 return cpu_rq(cpu)->cpu_capacity; 4404 } 4405 4406 static unsigned long capacity_orig_of(int cpu) 4407 { 4408 return cpu_rq(cpu)->cpu_capacity_orig; 4409 } 4410 4411 static unsigned long cpu_avg_load_per_task(int cpu) 4412 { 4413 struct rq *rq = cpu_rq(cpu); 4414 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4415 unsigned long load_avg = weighted_cpuload(cpu); 4416 4417 if (nr_running) 4418 return load_avg / nr_running; 4419 4420 return 0; 4421 } 4422 4423 static void record_wakee(struct task_struct *p) 4424 { 4425 /* 4426 * Rough decay (wiping) for cost saving, don't worry 4427 * about the boundary, really active task won't care 4428 * about the loss. 4429 */ 4430 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4431 current->wakee_flips >>= 1; 4432 current->wakee_flip_decay_ts = jiffies; 4433 } 4434 4435 if (current->last_wakee != p) { 4436 current->last_wakee = p; 4437 current->wakee_flips++; 4438 } 4439 } 4440 4441 static void task_waking_fair(struct task_struct *p) 4442 { 4443 struct sched_entity *se = &p->se; 4444 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4445 u64 min_vruntime; 4446 4447 #ifndef CONFIG_64BIT 4448 u64 min_vruntime_copy; 4449 4450 do { 4451 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4452 smp_rmb(); 4453 min_vruntime = cfs_rq->min_vruntime; 4454 } while (min_vruntime != min_vruntime_copy); 4455 #else 4456 min_vruntime = cfs_rq->min_vruntime; 4457 #endif 4458 4459 se->vruntime -= min_vruntime; 4460 record_wakee(p); 4461 } 4462 4463 #ifdef CONFIG_FAIR_GROUP_SCHED 4464 /* 4465 * effective_load() calculates the load change as seen from the root_task_group 4466 * 4467 * Adding load to a group doesn't make a group heavier, but can cause movement 4468 * of group shares between cpus. Assuming the shares were perfectly aligned one 4469 * can calculate the shift in shares. 4470 * 4471 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4472 * on this @cpu and results in a total addition (subtraction) of @wg to the 4473 * total group weight. 4474 * 4475 * Given a runqueue weight distribution (rw_i) we can compute a shares 4476 * distribution (s_i) using: 4477 * 4478 * s_i = rw_i / \Sum rw_j (1) 4479 * 4480 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4481 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4482 * shares distribution (s_i): 4483 * 4484 * rw_i = { 2, 4, 1, 0 } 4485 * s_i = { 2/7, 4/7, 1/7, 0 } 4486 * 4487 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4488 * task used to run on and the CPU the waker is running on), we need to 4489 * compute the effect of waking a task on either CPU and, in case of a sync 4490 * wakeup, compute the effect of the current task going to sleep. 4491 * 4492 * So for a change of @wl to the local @cpu with an overall group weight change 4493 * of @wl we can compute the new shares distribution (s'_i) using: 4494 * 4495 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4496 * 4497 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4498 * differences in waking a task to CPU 0. The additional task changes the 4499 * weight and shares distributions like: 4500 * 4501 * rw'_i = { 3, 4, 1, 0 } 4502 * s'_i = { 3/8, 4/8, 1/8, 0 } 4503 * 4504 * We can then compute the difference in effective weight by using: 4505 * 4506 * dw_i = S * (s'_i - s_i) (3) 4507 * 4508 * Where 'S' is the group weight as seen by its parent. 4509 * 4510 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4511 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4512 * 4/7) times the weight of the group. 4513 */ 4514 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4515 { 4516 struct sched_entity *se = tg->se[cpu]; 4517 4518 if (!tg->parent) /* the trivial, non-cgroup case */ 4519 return wl; 4520 4521 for_each_sched_entity(se) { 4522 long w, W; 4523 4524 tg = se->my_q->tg; 4525 4526 /* 4527 * W = @wg + \Sum rw_j 4528 */ 4529 W = wg + calc_tg_weight(tg, se->my_q); 4530 4531 /* 4532 * w = rw_i + @wl 4533 */ 4534 w = cfs_rq_load_avg(se->my_q) + wl; 4535 4536 /* 4537 * wl = S * s'_i; see (2) 4538 */ 4539 if (W > 0 && w < W) 4540 wl = (w * (long)tg->shares) / W; 4541 else 4542 wl = tg->shares; 4543 4544 /* 4545 * Per the above, wl is the new se->load.weight value; since 4546 * those are clipped to [MIN_SHARES, ...) do so now. See 4547 * calc_cfs_shares(). 4548 */ 4549 if (wl < MIN_SHARES) 4550 wl = MIN_SHARES; 4551 4552 /* 4553 * wl = dw_i = S * (s'_i - s_i); see (3) 4554 */ 4555 wl -= se->avg.load_avg; 4556 4557 /* 4558 * Recursively apply this logic to all parent groups to compute 4559 * the final effective load change on the root group. Since 4560 * only the @tg group gets extra weight, all parent groups can 4561 * only redistribute existing shares. @wl is the shift in shares 4562 * resulting from this level per the above. 4563 */ 4564 wg = 0; 4565 } 4566 4567 return wl; 4568 } 4569 #else 4570 4571 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4572 { 4573 return wl; 4574 } 4575 4576 #endif 4577 4578 /* 4579 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 4580 * A waker of many should wake a different task than the one last awakened 4581 * at a frequency roughly N times higher than one of its wakees. In order 4582 * to determine whether we should let the load spread vs consolodating to 4583 * shared cache, we look for a minimum 'flip' frequency of llc_size in one 4584 * partner, and a factor of lls_size higher frequency in the other. With 4585 * both conditions met, we can be relatively sure that the relationship is 4586 * non-monogamous, with partner count exceeding socket size. Waker/wakee 4587 * being client/server, worker/dispatcher, interrupt source or whatever is 4588 * irrelevant, spread criteria is apparent partner count exceeds socket size. 4589 */ 4590 static int wake_wide(struct task_struct *p) 4591 { 4592 unsigned int master = current->wakee_flips; 4593 unsigned int slave = p->wakee_flips; 4594 int factor = this_cpu_read(sd_llc_size); 4595 4596 if (master < slave) 4597 swap(master, slave); 4598 if (slave < factor || master < slave * factor) 4599 return 0; 4600 return 1; 4601 } 4602 4603 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4604 { 4605 s64 this_load, load; 4606 s64 this_eff_load, prev_eff_load; 4607 int idx, this_cpu, prev_cpu; 4608 struct task_group *tg; 4609 unsigned long weight; 4610 int balanced; 4611 4612 idx = sd->wake_idx; 4613 this_cpu = smp_processor_id(); 4614 prev_cpu = task_cpu(p); 4615 load = source_load(prev_cpu, idx); 4616 this_load = target_load(this_cpu, idx); 4617 4618 /* 4619 * If sync wakeup then subtract the (maximum possible) 4620 * effect of the currently running task from the load 4621 * of the current CPU: 4622 */ 4623 if (sync) { 4624 tg = task_group(current); 4625 weight = current->se.avg.load_avg; 4626 4627 this_load += effective_load(tg, this_cpu, -weight, -weight); 4628 load += effective_load(tg, prev_cpu, 0, -weight); 4629 } 4630 4631 tg = task_group(p); 4632 weight = p->se.avg.load_avg; 4633 4634 /* 4635 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4636 * due to the sync cause above having dropped this_load to 0, we'll 4637 * always have an imbalance, but there's really nothing you can do 4638 * about that, so that's good too. 4639 * 4640 * Otherwise check if either cpus are near enough in load to allow this 4641 * task to be woken on this_cpu. 4642 */ 4643 this_eff_load = 100; 4644 this_eff_load *= capacity_of(prev_cpu); 4645 4646 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4647 prev_eff_load *= capacity_of(this_cpu); 4648 4649 if (this_load > 0) { 4650 this_eff_load *= this_load + 4651 effective_load(tg, this_cpu, weight, weight); 4652 4653 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4654 } 4655 4656 balanced = this_eff_load <= prev_eff_load; 4657 4658 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4659 4660 if (!balanced) 4661 return 0; 4662 4663 schedstat_inc(sd, ttwu_move_affine); 4664 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4665 4666 return 1; 4667 } 4668 4669 /* 4670 * find_idlest_group finds and returns the least busy CPU group within the 4671 * domain. 4672 */ 4673 static struct sched_group * 4674 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4675 int this_cpu, int sd_flag) 4676 { 4677 struct sched_group *idlest = NULL, *group = sd->groups; 4678 unsigned long min_load = ULONG_MAX, this_load = 0; 4679 int load_idx = sd->forkexec_idx; 4680 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4681 4682 if (sd_flag & SD_BALANCE_WAKE) 4683 load_idx = sd->wake_idx; 4684 4685 do { 4686 unsigned long load, avg_load; 4687 int local_group; 4688 int i; 4689 4690 /* Skip over this group if it has no CPUs allowed */ 4691 if (!cpumask_intersects(sched_group_cpus(group), 4692 tsk_cpus_allowed(p))) 4693 continue; 4694 4695 local_group = cpumask_test_cpu(this_cpu, 4696 sched_group_cpus(group)); 4697 4698 /* Tally up the load of all CPUs in the group */ 4699 avg_load = 0; 4700 4701 for_each_cpu(i, sched_group_cpus(group)) { 4702 /* Bias balancing toward cpus of our domain */ 4703 if (local_group) 4704 load = source_load(i, load_idx); 4705 else 4706 load = target_load(i, load_idx); 4707 4708 avg_load += load; 4709 } 4710 4711 /* Adjust by relative CPU capacity of the group */ 4712 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4713 4714 if (local_group) { 4715 this_load = avg_load; 4716 } else if (avg_load < min_load) { 4717 min_load = avg_load; 4718 idlest = group; 4719 } 4720 } while (group = group->next, group != sd->groups); 4721 4722 if (!idlest || 100*this_load < imbalance*min_load) 4723 return NULL; 4724 return idlest; 4725 } 4726 4727 /* 4728 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4729 */ 4730 static int 4731 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4732 { 4733 unsigned long load, min_load = ULONG_MAX; 4734 unsigned int min_exit_latency = UINT_MAX; 4735 u64 latest_idle_timestamp = 0; 4736 int least_loaded_cpu = this_cpu; 4737 int shallowest_idle_cpu = -1; 4738 int i; 4739 4740 /* Traverse only the allowed CPUs */ 4741 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4742 if (idle_cpu(i)) { 4743 struct rq *rq = cpu_rq(i); 4744 struct cpuidle_state *idle = idle_get_state(rq); 4745 if (idle && idle->exit_latency < min_exit_latency) { 4746 /* 4747 * We give priority to a CPU whose idle state 4748 * has the smallest exit latency irrespective 4749 * of any idle timestamp. 4750 */ 4751 min_exit_latency = idle->exit_latency; 4752 latest_idle_timestamp = rq->idle_stamp; 4753 shallowest_idle_cpu = i; 4754 } else if ((!idle || idle->exit_latency == min_exit_latency) && 4755 rq->idle_stamp > latest_idle_timestamp) { 4756 /* 4757 * If equal or no active idle state, then 4758 * the most recently idled CPU might have 4759 * a warmer cache. 4760 */ 4761 latest_idle_timestamp = rq->idle_stamp; 4762 shallowest_idle_cpu = i; 4763 } 4764 } else if (shallowest_idle_cpu == -1) { 4765 load = weighted_cpuload(i); 4766 if (load < min_load || (load == min_load && i == this_cpu)) { 4767 min_load = load; 4768 least_loaded_cpu = i; 4769 } 4770 } 4771 } 4772 4773 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 4774 } 4775 4776 /* 4777 * Try and locate an idle CPU in the sched_domain. 4778 */ 4779 static int select_idle_sibling(struct task_struct *p, int target) 4780 { 4781 struct sched_domain *sd; 4782 struct sched_group *sg; 4783 int i = task_cpu(p); 4784 4785 if (idle_cpu(target)) 4786 return target; 4787 4788 /* 4789 * If the prevous cpu is cache affine and idle, don't be stupid. 4790 */ 4791 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4792 return i; 4793 4794 /* 4795 * Otherwise, iterate the domains and find an elegible idle cpu. 4796 */ 4797 sd = rcu_dereference(per_cpu(sd_llc, target)); 4798 for_each_lower_domain(sd) { 4799 sg = sd->groups; 4800 do { 4801 if (!cpumask_intersects(sched_group_cpus(sg), 4802 tsk_cpus_allowed(p))) 4803 goto next; 4804 4805 for_each_cpu(i, sched_group_cpus(sg)) { 4806 if (i == target || !idle_cpu(i)) 4807 goto next; 4808 } 4809 4810 target = cpumask_first_and(sched_group_cpus(sg), 4811 tsk_cpus_allowed(p)); 4812 goto done; 4813 next: 4814 sg = sg->next; 4815 } while (sg != sd->groups); 4816 } 4817 done: 4818 return target; 4819 } 4820 /* 4821 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS 4822 * tasks. The unit of the return value must be the one of capacity so we can 4823 * compare the usage with the capacity of the CPU that is available for CFS 4824 * task (ie cpu_capacity). 4825 * cfs.avg.util_avg is the sum of running time of runnable tasks on a 4826 * CPU. It represents the amount of utilization of a CPU in the range 4827 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full 4828 * capacity of the CPU because it's about the running time on this CPU. 4829 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE 4830 * because of unfortunate rounding in util_avg or just 4831 * after migrating tasks until the average stabilizes with the new running 4832 * time. So we need to check that the usage stays into the range 4833 * [0..cpu_capacity_orig] and cap if necessary. 4834 * Without capping the usage, a group could be seen as overloaded (CPU0 usage 4835 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity 4836 */ 4837 static int get_cpu_usage(int cpu) 4838 { 4839 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg; 4840 unsigned long capacity = capacity_orig_of(cpu); 4841 4842 if (usage >= SCHED_LOAD_SCALE) 4843 return capacity; 4844 4845 return (usage * capacity) >> SCHED_LOAD_SHIFT; 4846 } 4847 4848 /* 4849 * select_task_rq_fair: Select target runqueue for the waking task in domains 4850 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4851 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4852 * 4853 * Balances load by selecting the idlest cpu in the idlest group, or under 4854 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4855 * 4856 * Returns the target cpu number. 4857 * 4858 * preempt must be disabled. 4859 */ 4860 static int 4861 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4862 { 4863 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4864 int cpu = smp_processor_id(); 4865 int new_cpu = prev_cpu; 4866 int want_affine = 0; 4867 int sync = wake_flags & WF_SYNC; 4868 4869 if (sd_flag & SD_BALANCE_WAKE) 4870 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 4871 4872 rcu_read_lock(); 4873 for_each_domain(cpu, tmp) { 4874 if (!(tmp->flags & SD_LOAD_BALANCE)) 4875 break; 4876 4877 /* 4878 * If both cpu and prev_cpu are part of this domain, 4879 * cpu is a valid SD_WAKE_AFFINE target. 4880 */ 4881 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4882 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4883 affine_sd = tmp; 4884 break; 4885 } 4886 4887 if (tmp->flags & sd_flag) 4888 sd = tmp; 4889 else if (!want_affine) 4890 break; 4891 } 4892 4893 if (affine_sd) { 4894 sd = NULL; /* Prefer wake_affine over balance flags */ 4895 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4896 new_cpu = cpu; 4897 } 4898 4899 if (!sd) { 4900 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 4901 new_cpu = select_idle_sibling(p, new_cpu); 4902 4903 } else while (sd) { 4904 struct sched_group *group; 4905 int weight; 4906 4907 if (!(sd->flags & sd_flag)) { 4908 sd = sd->child; 4909 continue; 4910 } 4911 4912 group = find_idlest_group(sd, p, cpu, sd_flag); 4913 if (!group) { 4914 sd = sd->child; 4915 continue; 4916 } 4917 4918 new_cpu = find_idlest_cpu(group, p, cpu); 4919 if (new_cpu == -1 || new_cpu == cpu) { 4920 /* Now try balancing at a lower domain level of cpu */ 4921 sd = sd->child; 4922 continue; 4923 } 4924 4925 /* Now try balancing at a lower domain level of new_cpu */ 4926 cpu = new_cpu; 4927 weight = sd->span_weight; 4928 sd = NULL; 4929 for_each_domain(cpu, tmp) { 4930 if (weight <= tmp->span_weight) 4931 break; 4932 if (tmp->flags & sd_flag) 4933 sd = tmp; 4934 } 4935 /* while loop will break here if sd == NULL */ 4936 } 4937 rcu_read_unlock(); 4938 4939 return new_cpu; 4940 } 4941 4942 /* 4943 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4944 * cfs_rq_of(p) references at time of call are still valid and identify the 4945 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4946 * other assumptions, including the state of rq->lock, should be made. 4947 */ 4948 static void migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4949 { 4950 /* 4951 * We are supposed to update the task to "current" time, then its up to date 4952 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 4953 * what current time is, so simply throw away the out-of-date time. This 4954 * will result in the wakee task is less decayed, but giving the wakee more 4955 * load sounds not bad. 4956 */ 4957 remove_entity_load_avg(&p->se); 4958 4959 /* Tell new CPU we are migrated */ 4960 p->se.avg.last_update_time = 0; 4961 4962 /* We have migrated, no longer consider this task hot */ 4963 p->se.exec_start = 0; 4964 } 4965 4966 static void task_dead_fair(struct task_struct *p) 4967 { 4968 remove_entity_load_avg(&p->se); 4969 } 4970 #endif /* CONFIG_SMP */ 4971 4972 static unsigned long 4973 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4974 { 4975 unsigned long gran = sysctl_sched_wakeup_granularity; 4976 4977 /* 4978 * Since its curr running now, convert the gran from real-time 4979 * to virtual-time in his units. 4980 * 4981 * By using 'se' instead of 'curr' we penalize light tasks, so 4982 * they get preempted easier. That is, if 'se' < 'curr' then 4983 * the resulting gran will be larger, therefore penalizing the 4984 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4985 * be smaller, again penalizing the lighter task. 4986 * 4987 * This is especially important for buddies when the leftmost 4988 * task is higher priority than the buddy. 4989 */ 4990 return calc_delta_fair(gran, se); 4991 } 4992 4993 /* 4994 * Should 'se' preempt 'curr'. 4995 * 4996 * |s1 4997 * |s2 4998 * |s3 4999 * g 5000 * |<--->|c 5001 * 5002 * w(c, s1) = -1 5003 * w(c, s2) = 0 5004 * w(c, s3) = 1 5005 * 5006 */ 5007 static int 5008 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5009 { 5010 s64 gran, vdiff = curr->vruntime - se->vruntime; 5011 5012 if (vdiff <= 0) 5013 return -1; 5014 5015 gran = wakeup_gran(curr, se); 5016 if (vdiff > gran) 5017 return 1; 5018 5019 return 0; 5020 } 5021 5022 static void set_last_buddy(struct sched_entity *se) 5023 { 5024 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5025 return; 5026 5027 for_each_sched_entity(se) 5028 cfs_rq_of(se)->last = se; 5029 } 5030 5031 static void set_next_buddy(struct sched_entity *se) 5032 { 5033 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5034 return; 5035 5036 for_each_sched_entity(se) 5037 cfs_rq_of(se)->next = se; 5038 } 5039 5040 static void set_skip_buddy(struct sched_entity *se) 5041 { 5042 for_each_sched_entity(se) 5043 cfs_rq_of(se)->skip = se; 5044 } 5045 5046 /* 5047 * Preempt the current task with a newly woken task if needed: 5048 */ 5049 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5050 { 5051 struct task_struct *curr = rq->curr; 5052 struct sched_entity *se = &curr->se, *pse = &p->se; 5053 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5054 int scale = cfs_rq->nr_running >= sched_nr_latency; 5055 int next_buddy_marked = 0; 5056 5057 if (unlikely(se == pse)) 5058 return; 5059 5060 /* 5061 * This is possible from callers such as attach_tasks(), in which we 5062 * unconditionally check_prempt_curr() after an enqueue (which may have 5063 * lead to a throttle). This both saves work and prevents false 5064 * next-buddy nomination below. 5065 */ 5066 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5067 return; 5068 5069 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5070 set_next_buddy(pse); 5071 next_buddy_marked = 1; 5072 } 5073 5074 /* 5075 * We can come here with TIF_NEED_RESCHED already set from new task 5076 * wake up path. 5077 * 5078 * Note: this also catches the edge-case of curr being in a throttled 5079 * group (e.g. via set_curr_task), since update_curr() (in the 5080 * enqueue of curr) will have resulted in resched being set. This 5081 * prevents us from potentially nominating it as a false LAST_BUDDY 5082 * below. 5083 */ 5084 if (test_tsk_need_resched(curr)) 5085 return; 5086 5087 /* Idle tasks are by definition preempted by non-idle tasks. */ 5088 if (unlikely(curr->policy == SCHED_IDLE) && 5089 likely(p->policy != SCHED_IDLE)) 5090 goto preempt; 5091 5092 /* 5093 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5094 * is driven by the tick): 5095 */ 5096 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5097 return; 5098 5099 find_matching_se(&se, &pse); 5100 update_curr(cfs_rq_of(se)); 5101 BUG_ON(!pse); 5102 if (wakeup_preempt_entity(se, pse) == 1) { 5103 /* 5104 * Bias pick_next to pick the sched entity that is 5105 * triggering this preemption. 5106 */ 5107 if (!next_buddy_marked) 5108 set_next_buddy(pse); 5109 goto preempt; 5110 } 5111 5112 return; 5113 5114 preempt: 5115 resched_curr(rq); 5116 /* 5117 * Only set the backward buddy when the current task is still 5118 * on the rq. This can happen when a wakeup gets interleaved 5119 * with schedule on the ->pre_schedule() or idle_balance() 5120 * point, either of which can * drop the rq lock. 5121 * 5122 * Also, during early boot the idle thread is in the fair class, 5123 * for obvious reasons its a bad idea to schedule back to it. 5124 */ 5125 if (unlikely(!se->on_rq || curr == rq->idle)) 5126 return; 5127 5128 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5129 set_last_buddy(se); 5130 } 5131 5132 static struct task_struct * 5133 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 5134 { 5135 struct cfs_rq *cfs_rq = &rq->cfs; 5136 struct sched_entity *se; 5137 struct task_struct *p; 5138 int new_tasks; 5139 5140 again: 5141 #ifdef CONFIG_FAIR_GROUP_SCHED 5142 if (!cfs_rq->nr_running) 5143 goto idle; 5144 5145 if (prev->sched_class != &fair_sched_class) 5146 goto simple; 5147 5148 /* 5149 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5150 * likely that a next task is from the same cgroup as the current. 5151 * 5152 * Therefore attempt to avoid putting and setting the entire cgroup 5153 * hierarchy, only change the part that actually changes. 5154 */ 5155 5156 do { 5157 struct sched_entity *curr = cfs_rq->curr; 5158 5159 /* 5160 * Since we got here without doing put_prev_entity() we also 5161 * have to consider cfs_rq->curr. If it is still a runnable 5162 * entity, update_curr() will update its vruntime, otherwise 5163 * forget we've ever seen it. 5164 */ 5165 if (curr) { 5166 if (curr->on_rq) 5167 update_curr(cfs_rq); 5168 else 5169 curr = NULL; 5170 5171 /* 5172 * This call to check_cfs_rq_runtime() will do the 5173 * throttle and dequeue its entity in the parent(s). 5174 * Therefore the 'simple' nr_running test will indeed 5175 * be correct. 5176 */ 5177 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5178 goto simple; 5179 } 5180 5181 se = pick_next_entity(cfs_rq, curr); 5182 cfs_rq = group_cfs_rq(se); 5183 } while (cfs_rq); 5184 5185 p = task_of(se); 5186 5187 /* 5188 * Since we haven't yet done put_prev_entity and if the selected task 5189 * is a different task than we started out with, try and touch the 5190 * least amount of cfs_rqs. 5191 */ 5192 if (prev != p) { 5193 struct sched_entity *pse = &prev->se; 5194 5195 while (!(cfs_rq = is_same_group(se, pse))) { 5196 int se_depth = se->depth; 5197 int pse_depth = pse->depth; 5198 5199 if (se_depth <= pse_depth) { 5200 put_prev_entity(cfs_rq_of(pse), pse); 5201 pse = parent_entity(pse); 5202 } 5203 if (se_depth >= pse_depth) { 5204 set_next_entity(cfs_rq_of(se), se); 5205 se = parent_entity(se); 5206 } 5207 } 5208 5209 put_prev_entity(cfs_rq, pse); 5210 set_next_entity(cfs_rq, se); 5211 } 5212 5213 if (hrtick_enabled(rq)) 5214 hrtick_start_fair(rq, p); 5215 5216 return p; 5217 simple: 5218 cfs_rq = &rq->cfs; 5219 #endif 5220 5221 if (!cfs_rq->nr_running) 5222 goto idle; 5223 5224 put_prev_task(rq, prev); 5225 5226 do { 5227 se = pick_next_entity(cfs_rq, NULL); 5228 set_next_entity(cfs_rq, se); 5229 cfs_rq = group_cfs_rq(se); 5230 } while (cfs_rq); 5231 5232 p = task_of(se); 5233 5234 if (hrtick_enabled(rq)) 5235 hrtick_start_fair(rq, p); 5236 5237 return p; 5238 5239 idle: 5240 /* 5241 * This is OK, because current is on_cpu, which avoids it being picked 5242 * for load-balance and preemption/IRQs are still disabled avoiding 5243 * further scheduler activity on it and we're being very careful to 5244 * re-start the picking loop. 5245 */ 5246 lockdep_unpin_lock(&rq->lock); 5247 new_tasks = idle_balance(rq); 5248 lockdep_pin_lock(&rq->lock); 5249 /* 5250 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5251 * possible for any higher priority task to appear. In that case we 5252 * must re-start the pick_next_entity() loop. 5253 */ 5254 if (new_tasks < 0) 5255 return RETRY_TASK; 5256 5257 if (new_tasks > 0) 5258 goto again; 5259 5260 return NULL; 5261 } 5262 5263 /* 5264 * Account for a descheduled task: 5265 */ 5266 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5267 { 5268 struct sched_entity *se = &prev->se; 5269 struct cfs_rq *cfs_rq; 5270 5271 for_each_sched_entity(se) { 5272 cfs_rq = cfs_rq_of(se); 5273 put_prev_entity(cfs_rq, se); 5274 } 5275 } 5276 5277 /* 5278 * sched_yield() is very simple 5279 * 5280 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5281 */ 5282 static void yield_task_fair(struct rq *rq) 5283 { 5284 struct task_struct *curr = rq->curr; 5285 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5286 struct sched_entity *se = &curr->se; 5287 5288 /* 5289 * Are we the only task in the tree? 5290 */ 5291 if (unlikely(rq->nr_running == 1)) 5292 return; 5293 5294 clear_buddies(cfs_rq, se); 5295 5296 if (curr->policy != SCHED_BATCH) { 5297 update_rq_clock(rq); 5298 /* 5299 * Update run-time statistics of the 'current'. 5300 */ 5301 update_curr(cfs_rq); 5302 /* 5303 * Tell update_rq_clock() that we've just updated, 5304 * so we don't do microscopic update in schedule() 5305 * and double the fastpath cost. 5306 */ 5307 rq_clock_skip_update(rq, true); 5308 } 5309 5310 set_skip_buddy(se); 5311 } 5312 5313 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5314 { 5315 struct sched_entity *se = &p->se; 5316 5317 /* throttled hierarchies are not runnable */ 5318 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5319 return false; 5320 5321 /* Tell the scheduler that we'd really like pse to run next. */ 5322 set_next_buddy(se); 5323 5324 yield_task_fair(rq); 5325 5326 return true; 5327 } 5328 5329 #ifdef CONFIG_SMP 5330 /************************************************** 5331 * Fair scheduling class load-balancing methods. 5332 * 5333 * BASICS 5334 * 5335 * The purpose of load-balancing is to achieve the same basic fairness the 5336 * per-cpu scheduler provides, namely provide a proportional amount of compute 5337 * time to each task. This is expressed in the following equation: 5338 * 5339 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5340 * 5341 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5342 * W_i,0 is defined as: 5343 * 5344 * W_i,0 = \Sum_j w_i,j (2) 5345 * 5346 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5347 * is derived from the nice value as per prio_to_weight[]. 5348 * 5349 * The weight average is an exponential decay average of the instantaneous 5350 * weight: 5351 * 5352 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5353 * 5354 * C_i is the compute capacity of cpu i, typically it is the 5355 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5356 * can also include other factors [XXX]. 5357 * 5358 * To achieve this balance we define a measure of imbalance which follows 5359 * directly from (1): 5360 * 5361 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5362 * 5363 * We them move tasks around to minimize the imbalance. In the continuous 5364 * function space it is obvious this converges, in the discrete case we get 5365 * a few fun cases generally called infeasible weight scenarios. 5366 * 5367 * [XXX expand on: 5368 * - infeasible weights; 5369 * - local vs global optima in the discrete case. ] 5370 * 5371 * 5372 * SCHED DOMAINS 5373 * 5374 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5375 * for all i,j solution, we create a tree of cpus that follows the hardware 5376 * topology where each level pairs two lower groups (or better). This results 5377 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5378 * tree to only the first of the previous level and we decrease the frequency 5379 * of load-balance at each level inv. proportional to the number of cpus in 5380 * the groups. 5381 * 5382 * This yields: 5383 * 5384 * log_2 n 1 n 5385 * \Sum { --- * --- * 2^i } = O(n) (5) 5386 * i = 0 2^i 2^i 5387 * `- size of each group 5388 * | | `- number of cpus doing load-balance 5389 * | `- freq 5390 * `- sum over all levels 5391 * 5392 * Coupled with a limit on how many tasks we can migrate every balance pass, 5393 * this makes (5) the runtime complexity of the balancer. 5394 * 5395 * An important property here is that each CPU is still (indirectly) connected 5396 * to every other cpu in at most O(log n) steps: 5397 * 5398 * The adjacency matrix of the resulting graph is given by: 5399 * 5400 * log_2 n 5401 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5402 * k = 0 5403 * 5404 * And you'll find that: 5405 * 5406 * A^(log_2 n)_i,j != 0 for all i,j (7) 5407 * 5408 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5409 * The task movement gives a factor of O(m), giving a convergence complexity 5410 * of: 5411 * 5412 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5413 * 5414 * 5415 * WORK CONSERVING 5416 * 5417 * In order to avoid CPUs going idle while there's still work to do, new idle 5418 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5419 * tree itself instead of relying on other CPUs to bring it work. 5420 * 5421 * This adds some complexity to both (5) and (8) but it reduces the total idle 5422 * time. 5423 * 5424 * [XXX more?] 5425 * 5426 * 5427 * CGROUPS 5428 * 5429 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5430 * 5431 * s_k,i 5432 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5433 * S_k 5434 * 5435 * Where 5436 * 5437 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5438 * 5439 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5440 * 5441 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5442 * property. 5443 * 5444 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5445 * rewrite all of this once again.] 5446 */ 5447 5448 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5449 5450 enum fbq_type { regular, remote, all }; 5451 5452 #define LBF_ALL_PINNED 0x01 5453 #define LBF_NEED_BREAK 0x02 5454 #define LBF_DST_PINNED 0x04 5455 #define LBF_SOME_PINNED 0x08 5456 5457 struct lb_env { 5458 struct sched_domain *sd; 5459 5460 struct rq *src_rq; 5461 int src_cpu; 5462 5463 int dst_cpu; 5464 struct rq *dst_rq; 5465 5466 struct cpumask *dst_grpmask; 5467 int new_dst_cpu; 5468 enum cpu_idle_type idle; 5469 long imbalance; 5470 /* The set of CPUs under consideration for load-balancing */ 5471 struct cpumask *cpus; 5472 5473 unsigned int flags; 5474 5475 unsigned int loop; 5476 unsigned int loop_break; 5477 unsigned int loop_max; 5478 5479 enum fbq_type fbq_type; 5480 struct list_head tasks; 5481 }; 5482 5483 /* 5484 * Is this task likely cache-hot: 5485 */ 5486 static int task_hot(struct task_struct *p, struct lb_env *env) 5487 { 5488 s64 delta; 5489 5490 lockdep_assert_held(&env->src_rq->lock); 5491 5492 if (p->sched_class != &fair_sched_class) 5493 return 0; 5494 5495 if (unlikely(p->policy == SCHED_IDLE)) 5496 return 0; 5497 5498 /* 5499 * Buddy candidates are cache hot: 5500 */ 5501 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5502 (&p->se == cfs_rq_of(&p->se)->next || 5503 &p->se == cfs_rq_of(&p->se)->last)) 5504 return 1; 5505 5506 if (sysctl_sched_migration_cost == -1) 5507 return 1; 5508 if (sysctl_sched_migration_cost == 0) 5509 return 0; 5510 5511 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5512 5513 return delta < (s64)sysctl_sched_migration_cost; 5514 } 5515 5516 #ifdef CONFIG_NUMA_BALANCING 5517 /* 5518 * Returns 1, if task migration degrades locality 5519 * Returns 0, if task migration improves locality i.e migration preferred. 5520 * Returns -1, if task migration is not affected by locality. 5521 */ 5522 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5523 { 5524 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5525 unsigned long src_faults, dst_faults; 5526 int src_nid, dst_nid; 5527 5528 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 5529 return -1; 5530 5531 if (!sched_feat(NUMA)) 5532 return -1; 5533 5534 src_nid = cpu_to_node(env->src_cpu); 5535 dst_nid = cpu_to_node(env->dst_cpu); 5536 5537 if (src_nid == dst_nid) 5538 return -1; 5539 5540 /* Migrating away from the preferred node is always bad. */ 5541 if (src_nid == p->numa_preferred_nid) { 5542 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 5543 return 1; 5544 else 5545 return -1; 5546 } 5547 5548 /* Encourage migration to the preferred node. */ 5549 if (dst_nid == p->numa_preferred_nid) 5550 return 0; 5551 5552 if (numa_group) { 5553 src_faults = group_faults(p, src_nid); 5554 dst_faults = group_faults(p, dst_nid); 5555 } else { 5556 src_faults = task_faults(p, src_nid); 5557 dst_faults = task_faults(p, dst_nid); 5558 } 5559 5560 return dst_faults < src_faults; 5561 } 5562 5563 #else 5564 static inline int migrate_degrades_locality(struct task_struct *p, 5565 struct lb_env *env) 5566 { 5567 return -1; 5568 } 5569 #endif 5570 5571 /* 5572 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5573 */ 5574 static 5575 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5576 { 5577 int tsk_cache_hot; 5578 5579 lockdep_assert_held(&env->src_rq->lock); 5580 5581 /* 5582 * We do not migrate tasks that are: 5583 * 1) throttled_lb_pair, or 5584 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5585 * 3) running (obviously), or 5586 * 4) are cache-hot on their current CPU. 5587 */ 5588 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5589 return 0; 5590 5591 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5592 int cpu; 5593 5594 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5595 5596 env->flags |= LBF_SOME_PINNED; 5597 5598 /* 5599 * Remember if this task can be migrated to any other cpu in 5600 * our sched_group. We may want to revisit it if we couldn't 5601 * meet load balance goals by pulling other tasks on src_cpu. 5602 * 5603 * Also avoid computing new_dst_cpu if we have already computed 5604 * one in current iteration. 5605 */ 5606 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5607 return 0; 5608 5609 /* Prevent to re-select dst_cpu via env's cpus */ 5610 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5611 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5612 env->flags |= LBF_DST_PINNED; 5613 env->new_dst_cpu = cpu; 5614 break; 5615 } 5616 } 5617 5618 return 0; 5619 } 5620 5621 /* Record that we found atleast one task that could run on dst_cpu */ 5622 env->flags &= ~LBF_ALL_PINNED; 5623 5624 if (task_running(env->src_rq, p)) { 5625 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5626 return 0; 5627 } 5628 5629 /* 5630 * Aggressive migration if: 5631 * 1) destination numa is preferred 5632 * 2) task is cache cold, or 5633 * 3) too many balance attempts have failed. 5634 */ 5635 tsk_cache_hot = migrate_degrades_locality(p, env); 5636 if (tsk_cache_hot == -1) 5637 tsk_cache_hot = task_hot(p, env); 5638 5639 if (tsk_cache_hot <= 0 || 5640 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5641 if (tsk_cache_hot == 1) { 5642 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5643 schedstat_inc(p, se.statistics.nr_forced_migrations); 5644 } 5645 return 1; 5646 } 5647 5648 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5649 return 0; 5650 } 5651 5652 /* 5653 * detach_task() -- detach the task for the migration specified in env 5654 */ 5655 static void detach_task(struct task_struct *p, struct lb_env *env) 5656 { 5657 lockdep_assert_held(&env->src_rq->lock); 5658 5659 deactivate_task(env->src_rq, p, 0); 5660 p->on_rq = TASK_ON_RQ_MIGRATING; 5661 set_task_cpu(p, env->dst_cpu); 5662 } 5663 5664 /* 5665 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 5666 * part of active balancing operations within "domain". 5667 * 5668 * Returns a task if successful and NULL otherwise. 5669 */ 5670 static struct task_struct *detach_one_task(struct lb_env *env) 5671 { 5672 struct task_struct *p, *n; 5673 5674 lockdep_assert_held(&env->src_rq->lock); 5675 5676 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5677 if (!can_migrate_task(p, env)) 5678 continue; 5679 5680 detach_task(p, env); 5681 5682 /* 5683 * Right now, this is only the second place where 5684 * lb_gained[env->idle] is updated (other is detach_tasks) 5685 * so we can safely collect stats here rather than 5686 * inside detach_tasks(). 5687 */ 5688 schedstat_inc(env->sd, lb_gained[env->idle]); 5689 return p; 5690 } 5691 return NULL; 5692 } 5693 5694 static const unsigned int sched_nr_migrate_break = 32; 5695 5696 /* 5697 * detach_tasks() -- tries to detach up to imbalance weighted load from 5698 * busiest_rq, as part of a balancing operation within domain "sd". 5699 * 5700 * Returns number of detached tasks if successful and 0 otherwise. 5701 */ 5702 static int detach_tasks(struct lb_env *env) 5703 { 5704 struct list_head *tasks = &env->src_rq->cfs_tasks; 5705 struct task_struct *p; 5706 unsigned long load; 5707 int detached = 0; 5708 5709 lockdep_assert_held(&env->src_rq->lock); 5710 5711 if (env->imbalance <= 0) 5712 return 0; 5713 5714 while (!list_empty(tasks)) { 5715 /* 5716 * We don't want to steal all, otherwise we may be treated likewise, 5717 * which could at worst lead to a livelock crash. 5718 */ 5719 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 5720 break; 5721 5722 p = list_first_entry(tasks, struct task_struct, se.group_node); 5723 5724 env->loop++; 5725 /* We've more or less seen every task there is, call it quits */ 5726 if (env->loop > env->loop_max) 5727 break; 5728 5729 /* take a breather every nr_migrate tasks */ 5730 if (env->loop > env->loop_break) { 5731 env->loop_break += sched_nr_migrate_break; 5732 env->flags |= LBF_NEED_BREAK; 5733 break; 5734 } 5735 5736 if (!can_migrate_task(p, env)) 5737 goto next; 5738 5739 load = task_h_load(p); 5740 5741 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5742 goto next; 5743 5744 if ((load / 2) > env->imbalance) 5745 goto next; 5746 5747 detach_task(p, env); 5748 list_add(&p->se.group_node, &env->tasks); 5749 5750 detached++; 5751 env->imbalance -= load; 5752 5753 #ifdef CONFIG_PREEMPT 5754 /* 5755 * NEWIDLE balancing is a source of latency, so preemptible 5756 * kernels will stop after the first task is detached to minimize 5757 * the critical section. 5758 */ 5759 if (env->idle == CPU_NEWLY_IDLE) 5760 break; 5761 #endif 5762 5763 /* 5764 * We only want to steal up to the prescribed amount of 5765 * weighted load. 5766 */ 5767 if (env->imbalance <= 0) 5768 break; 5769 5770 continue; 5771 next: 5772 list_move_tail(&p->se.group_node, tasks); 5773 } 5774 5775 /* 5776 * Right now, this is one of only two places we collect this stat 5777 * so we can safely collect detach_one_task() stats here rather 5778 * than inside detach_one_task(). 5779 */ 5780 schedstat_add(env->sd, lb_gained[env->idle], detached); 5781 5782 return detached; 5783 } 5784 5785 /* 5786 * attach_task() -- attach the task detached by detach_task() to its new rq. 5787 */ 5788 static void attach_task(struct rq *rq, struct task_struct *p) 5789 { 5790 lockdep_assert_held(&rq->lock); 5791 5792 BUG_ON(task_rq(p) != rq); 5793 p->on_rq = TASK_ON_RQ_QUEUED; 5794 activate_task(rq, p, 0); 5795 check_preempt_curr(rq, p, 0); 5796 } 5797 5798 /* 5799 * attach_one_task() -- attaches the task returned from detach_one_task() to 5800 * its new rq. 5801 */ 5802 static void attach_one_task(struct rq *rq, struct task_struct *p) 5803 { 5804 raw_spin_lock(&rq->lock); 5805 attach_task(rq, p); 5806 raw_spin_unlock(&rq->lock); 5807 } 5808 5809 /* 5810 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 5811 * new rq. 5812 */ 5813 static void attach_tasks(struct lb_env *env) 5814 { 5815 struct list_head *tasks = &env->tasks; 5816 struct task_struct *p; 5817 5818 raw_spin_lock(&env->dst_rq->lock); 5819 5820 while (!list_empty(tasks)) { 5821 p = list_first_entry(tasks, struct task_struct, se.group_node); 5822 list_del_init(&p->se.group_node); 5823 5824 attach_task(env->dst_rq, p); 5825 } 5826 5827 raw_spin_unlock(&env->dst_rq->lock); 5828 } 5829 5830 #ifdef CONFIG_FAIR_GROUP_SCHED 5831 static void update_blocked_averages(int cpu) 5832 { 5833 struct rq *rq = cpu_rq(cpu); 5834 struct cfs_rq *cfs_rq; 5835 unsigned long flags; 5836 5837 raw_spin_lock_irqsave(&rq->lock, flags); 5838 update_rq_clock(rq); 5839 5840 /* 5841 * Iterates the task_group tree in a bottom up fashion, see 5842 * list_add_leaf_cfs_rq() for details. 5843 */ 5844 for_each_leaf_cfs_rq(rq, cfs_rq) { 5845 /* throttled entities do not contribute to load */ 5846 if (throttled_hierarchy(cfs_rq)) 5847 continue; 5848 5849 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 5850 update_tg_load_avg(cfs_rq, 0); 5851 } 5852 raw_spin_unlock_irqrestore(&rq->lock, flags); 5853 } 5854 5855 /* 5856 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5857 * This needs to be done in a top-down fashion because the load of a child 5858 * group is a fraction of its parents load. 5859 */ 5860 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5861 { 5862 struct rq *rq = rq_of(cfs_rq); 5863 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5864 unsigned long now = jiffies; 5865 unsigned long load; 5866 5867 if (cfs_rq->last_h_load_update == now) 5868 return; 5869 5870 cfs_rq->h_load_next = NULL; 5871 for_each_sched_entity(se) { 5872 cfs_rq = cfs_rq_of(se); 5873 cfs_rq->h_load_next = se; 5874 if (cfs_rq->last_h_load_update == now) 5875 break; 5876 } 5877 5878 if (!se) { 5879 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 5880 cfs_rq->last_h_load_update = now; 5881 } 5882 5883 while ((se = cfs_rq->h_load_next) != NULL) { 5884 load = cfs_rq->h_load; 5885 load = div64_ul(load * se->avg.load_avg, 5886 cfs_rq_load_avg(cfs_rq) + 1); 5887 cfs_rq = group_cfs_rq(se); 5888 cfs_rq->h_load = load; 5889 cfs_rq->last_h_load_update = now; 5890 } 5891 } 5892 5893 static unsigned long task_h_load(struct task_struct *p) 5894 { 5895 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5896 5897 update_cfs_rq_h_load(cfs_rq); 5898 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 5899 cfs_rq_load_avg(cfs_rq) + 1); 5900 } 5901 #else 5902 static inline void update_blocked_averages(int cpu) 5903 { 5904 struct rq *rq = cpu_rq(cpu); 5905 struct cfs_rq *cfs_rq = &rq->cfs; 5906 unsigned long flags; 5907 5908 raw_spin_lock_irqsave(&rq->lock, flags); 5909 update_rq_clock(rq); 5910 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 5911 raw_spin_unlock_irqrestore(&rq->lock, flags); 5912 } 5913 5914 static unsigned long task_h_load(struct task_struct *p) 5915 { 5916 return p->se.avg.load_avg; 5917 } 5918 #endif 5919 5920 /********** Helpers for find_busiest_group ************************/ 5921 5922 enum group_type { 5923 group_other = 0, 5924 group_imbalanced, 5925 group_overloaded, 5926 }; 5927 5928 /* 5929 * sg_lb_stats - stats of a sched_group required for load_balancing 5930 */ 5931 struct sg_lb_stats { 5932 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5933 unsigned long group_load; /* Total load over the CPUs of the group */ 5934 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5935 unsigned long load_per_task; 5936 unsigned long group_capacity; 5937 unsigned long group_usage; /* Total usage of the group */ 5938 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5939 unsigned int idle_cpus; 5940 unsigned int group_weight; 5941 enum group_type group_type; 5942 int group_no_capacity; 5943 #ifdef CONFIG_NUMA_BALANCING 5944 unsigned int nr_numa_running; 5945 unsigned int nr_preferred_running; 5946 #endif 5947 }; 5948 5949 /* 5950 * sd_lb_stats - Structure to store the statistics of a sched_domain 5951 * during load balancing. 5952 */ 5953 struct sd_lb_stats { 5954 struct sched_group *busiest; /* Busiest group in this sd */ 5955 struct sched_group *local; /* Local group in this sd */ 5956 unsigned long total_load; /* Total load of all groups in sd */ 5957 unsigned long total_capacity; /* Total capacity of all groups in sd */ 5958 unsigned long avg_load; /* Average load across all groups in sd */ 5959 5960 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5961 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5962 }; 5963 5964 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5965 { 5966 /* 5967 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5968 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5969 * We must however clear busiest_stat::avg_load because 5970 * update_sd_pick_busiest() reads this before assignment. 5971 */ 5972 *sds = (struct sd_lb_stats){ 5973 .busiest = NULL, 5974 .local = NULL, 5975 .total_load = 0UL, 5976 .total_capacity = 0UL, 5977 .busiest_stat = { 5978 .avg_load = 0UL, 5979 .sum_nr_running = 0, 5980 .group_type = group_other, 5981 }, 5982 }; 5983 } 5984 5985 /** 5986 * get_sd_load_idx - Obtain the load index for a given sched domain. 5987 * @sd: The sched_domain whose load_idx is to be obtained. 5988 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5989 * 5990 * Return: The load index. 5991 */ 5992 static inline int get_sd_load_idx(struct sched_domain *sd, 5993 enum cpu_idle_type idle) 5994 { 5995 int load_idx; 5996 5997 switch (idle) { 5998 case CPU_NOT_IDLE: 5999 load_idx = sd->busy_idx; 6000 break; 6001 6002 case CPU_NEWLY_IDLE: 6003 load_idx = sd->newidle_idx; 6004 break; 6005 default: 6006 load_idx = sd->idle_idx; 6007 break; 6008 } 6009 6010 return load_idx; 6011 } 6012 6013 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) 6014 { 6015 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 6016 return sd->smt_gain / sd->span_weight; 6017 6018 return SCHED_CAPACITY_SCALE; 6019 } 6020 6021 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 6022 { 6023 return default_scale_cpu_capacity(sd, cpu); 6024 } 6025 6026 static unsigned long scale_rt_capacity(int cpu) 6027 { 6028 struct rq *rq = cpu_rq(cpu); 6029 u64 total, used, age_stamp, avg; 6030 s64 delta; 6031 6032 /* 6033 * Since we're reading these variables without serialization make sure 6034 * we read them once before doing sanity checks on them. 6035 */ 6036 age_stamp = READ_ONCE(rq->age_stamp); 6037 avg = READ_ONCE(rq->rt_avg); 6038 delta = __rq_clock_broken(rq) - age_stamp; 6039 6040 if (unlikely(delta < 0)) 6041 delta = 0; 6042 6043 total = sched_avg_period() + delta; 6044 6045 used = div_u64(avg, total); 6046 6047 if (likely(used < SCHED_CAPACITY_SCALE)) 6048 return SCHED_CAPACITY_SCALE - used; 6049 6050 return 1; 6051 } 6052 6053 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6054 { 6055 unsigned long capacity = SCHED_CAPACITY_SCALE; 6056 struct sched_group *sdg = sd->groups; 6057 6058 if (sched_feat(ARCH_CAPACITY)) 6059 capacity *= arch_scale_cpu_capacity(sd, cpu); 6060 else 6061 capacity *= default_scale_cpu_capacity(sd, cpu); 6062 6063 capacity >>= SCHED_CAPACITY_SHIFT; 6064 6065 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6066 6067 capacity *= scale_rt_capacity(cpu); 6068 capacity >>= SCHED_CAPACITY_SHIFT; 6069 6070 if (!capacity) 6071 capacity = 1; 6072 6073 cpu_rq(cpu)->cpu_capacity = capacity; 6074 sdg->sgc->capacity = capacity; 6075 } 6076 6077 void update_group_capacity(struct sched_domain *sd, int cpu) 6078 { 6079 struct sched_domain *child = sd->child; 6080 struct sched_group *group, *sdg = sd->groups; 6081 unsigned long capacity; 6082 unsigned long interval; 6083 6084 interval = msecs_to_jiffies(sd->balance_interval); 6085 interval = clamp(interval, 1UL, max_load_balance_interval); 6086 sdg->sgc->next_update = jiffies + interval; 6087 6088 if (!child) { 6089 update_cpu_capacity(sd, cpu); 6090 return; 6091 } 6092 6093 capacity = 0; 6094 6095 if (child->flags & SD_OVERLAP) { 6096 /* 6097 * SD_OVERLAP domains cannot assume that child groups 6098 * span the current group. 6099 */ 6100 6101 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6102 struct sched_group_capacity *sgc; 6103 struct rq *rq = cpu_rq(cpu); 6104 6105 /* 6106 * build_sched_domains() -> init_sched_groups_capacity() 6107 * gets here before we've attached the domains to the 6108 * runqueues. 6109 * 6110 * Use capacity_of(), which is set irrespective of domains 6111 * in update_cpu_capacity(). 6112 * 6113 * This avoids capacity from being 0 and 6114 * causing divide-by-zero issues on boot. 6115 */ 6116 if (unlikely(!rq->sd)) { 6117 capacity += capacity_of(cpu); 6118 continue; 6119 } 6120 6121 sgc = rq->sd->groups->sgc; 6122 capacity += sgc->capacity; 6123 } 6124 } else { 6125 /* 6126 * !SD_OVERLAP domains can assume that child groups 6127 * span the current group. 6128 */ 6129 6130 group = child->groups; 6131 do { 6132 capacity += group->sgc->capacity; 6133 group = group->next; 6134 } while (group != child->groups); 6135 } 6136 6137 sdg->sgc->capacity = capacity; 6138 } 6139 6140 /* 6141 * Check whether the capacity of the rq has been noticeably reduced by side 6142 * activity. The imbalance_pct is used for the threshold. 6143 * Return true is the capacity is reduced 6144 */ 6145 static inline int 6146 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6147 { 6148 return ((rq->cpu_capacity * sd->imbalance_pct) < 6149 (rq->cpu_capacity_orig * 100)); 6150 } 6151 6152 /* 6153 * Group imbalance indicates (and tries to solve) the problem where balancing 6154 * groups is inadequate due to tsk_cpus_allowed() constraints. 6155 * 6156 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6157 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6158 * Something like: 6159 * 6160 * { 0 1 2 3 } { 4 5 6 7 } 6161 * * * * * 6162 * 6163 * If we were to balance group-wise we'd place two tasks in the first group and 6164 * two tasks in the second group. Clearly this is undesired as it will overload 6165 * cpu 3 and leave one of the cpus in the second group unused. 6166 * 6167 * The current solution to this issue is detecting the skew in the first group 6168 * by noticing the lower domain failed to reach balance and had difficulty 6169 * moving tasks due to affinity constraints. 6170 * 6171 * When this is so detected; this group becomes a candidate for busiest; see 6172 * update_sd_pick_busiest(). And calculate_imbalance() and 6173 * find_busiest_group() avoid some of the usual balance conditions to allow it 6174 * to create an effective group imbalance. 6175 * 6176 * This is a somewhat tricky proposition since the next run might not find the 6177 * group imbalance and decide the groups need to be balanced again. A most 6178 * subtle and fragile situation. 6179 */ 6180 6181 static inline int sg_imbalanced(struct sched_group *group) 6182 { 6183 return group->sgc->imbalance; 6184 } 6185 6186 /* 6187 * group_has_capacity returns true if the group has spare capacity that could 6188 * be used by some tasks. 6189 * We consider that a group has spare capacity if the * number of task is 6190 * smaller than the number of CPUs or if the usage is lower than the available 6191 * capacity for CFS tasks. 6192 * For the latter, we use a threshold to stabilize the state, to take into 6193 * account the variance of the tasks' load and to return true if the available 6194 * capacity in meaningful for the load balancer. 6195 * As an example, an available capacity of 1% can appear but it doesn't make 6196 * any benefit for the load balance. 6197 */ 6198 static inline bool 6199 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6200 { 6201 if (sgs->sum_nr_running < sgs->group_weight) 6202 return true; 6203 6204 if ((sgs->group_capacity * 100) > 6205 (sgs->group_usage * env->sd->imbalance_pct)) 6206 return true; 6207 6208 return false; 6209 } 6210 6211 /* 6212 * group_is_overloaded returns true if the group has more tasks than it can 6213 * handle. 6214 * group_is_overloaded is not equals to !group_has_capacity because a group 6215 * with the exact right number of tasks, has no more spare capacity but is not 6216 * overloaded so both group_has_capacity and group_is_overloaded return 6217 * false. 6218 */ 6219 static inline bool 6220 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6221 { 6222 if (sgs->sum_nr_running <= sgs->group_weight) 6223 return false; 6224 6225 if ((sgs->group_capacity * 100) < 6226 (sgs->group_usage * env->sd->imbalance_pct)) 6227 return true; 6228 6229 return false; 6230 } 6231 6232 static enum group_type group_classify(struct lb_env *env, 6233 struct sched_group *group, 6234 struct sg_lb_stats *sgs) 6235 { 6236 if (sgs->group_no_capacity) 6237 return group_overloaded; 6238 6239 if (sg_imbalanced(group)) 6240 return group_imbalanced; 6241 6242 return group_other; 6243 } 6244 6245 /** 6246 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6247 * @env: The load balancing environment. 6248 * @group: sched_group whose statistics are to be updated. 6249 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6250 * @local_group: Does group contain this_cpu. 6251 * @sgs: variable to hold the statistics for this group. 6252 * @overload: Indicate more than one runnable task for any CPU. 6253 */ 6254 static inline void update_sg_lb_stats(struct lb_env *env, 6255 struct sched_group *group, int load_idx, 6256 int local_group, struct sg_lb_stats *sgs, 6257 bool *overload) 6258 { 6259 unsigned long load; 6260 int i; 6261 6262 memset(sgs, 0, sizeof(*sgs)); 6263 6264 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6265 struct rq *rq = cpu_rq(i); 6266 6267 /* Bias balancing toward cpus of our domain */ 6268 if (local_group) 6269 load = target_load(i, load_idx); 6270 else 6271 load = source_load(i, load_idx); 6272 6273 sgs->group_load += load; 6274 sgs->group_usage += get_cpu_usage(i); 6275 sgs->sum_nr_running += rq->cfs.h_nr_running; 6276 6277 if (rq->nr_running > 1) 6278 *overload = true; 6279 6280 #ifdef CONFIG_NUMA_BALANCING 6281 sgs->nr_numa_running += rq->nr_numa_running; 6282 sgs->nr_preferred_running += rq->nr_preferred_running; 6283 #endif 6284 sgs->sum_weighted_load += weighted_cpuload(i); 6285 if (idle_cpu(i)) 6286 sgs->idle_cpus++; 6287 } 6288 6289 /* Adjust by relative CPU capacity of the group */ 6290 sgs->group_capacity = group->sgc->capacity; 6291 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6292 6293 if (sgs->sum_nr_running) 6294 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6295 6296 sgs->group_weight = group->group_weight; 6297 6298 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6299 sgs->group_type = group_classify(env, group, sgs); 6300 } 6301 6302 /** 6303 * update_sd_pick_busiest - return 1 on busiest group 6304 * @env: The load balancing environment. 6305 * @sds: sched_domain statistics 6306 * @sg: sched_group candidate to be checked for being the busiest 6307 * @sgs: sched_group statistics 6308 * 6309 * Determine if @sg is a busier group than the previously selected 6310 * busiest group. 6311 * 6312 * Return: %true if @sg is a busier group than the previously selected 6313 * busiest group. %false otherwise. 6314 */ 6315 static bool update_sd_pick_busiest(struct lb_env *env, 6316 struct sd_lb_stats *sds, 6317 struct sched_group *sg, 6318 struct sg_lb_stats *sgs) 6319 { 6320 struct sg_lb_stats *busiest = &sds->busiest_stat; 6321 6322 if (sgs->group_type > busiest->group_type) 6323 return true; 6324 6325 if (sgs->group_type < busiest->group_type) 6326 return false; 6327 6328 if (sgs->avg_load <= busiest->avg_load) 6329 return false; 6330 6331 /* This is the busiest node in its class. */ 6332 if (!(env->sd->flags & SD_ASYM_PACKING)) 6333 return true; 6334 6335 /* 6336 * ASYM_PACKING needs to move all the work to the lowest 6337 * numbered CPUs in the group, therefore mark all groups 6338 * higher than ourself as busy. 6339 */ 6340 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6341 if (!sds->busiest) 6342 return true; 6343 6344 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 6345 return true; 6346 } 6347 6348 return false; 6349 } 6350 6351 #ifdef CONFIG_NUMA_BALANCING 6352 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6353 { 6354 if (sgs->sum_nr_running > sgs->nr_numa_running) 6355 return regular; 6356 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6357 return remote; 6358 return all; 6359 } 6360 6361 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6362 { 6363 if (rq->nr_running > rq->nr_numa_running) 6364 return regular; 6365 if (rq->nr_running > rq->nr_preferred_running) 6366 return remote; 6367 return all; 6368 } 6369 #else 6370 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6371 { 6372 return all; 6373 } 6374 6375 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6376 { 6377 return regular; 6378 } 6379 #endif /* CONFIG_NUMA_BALANCING */ 6380 6381 /** 6382 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6383 * @env: The load balancing environment. 6384 * @sds: variable to hold the statistics for this sched_domain. 6385 */ 6386 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6387 { 6388 struct sched_domain *child = env->sd->child; 6389 struct sched_group *sg = env->sd->groups; 6390 struct sg_lb_stats tmp_sgs; 6391 int load_idx, prefer_sibling = 0; 6392 bool overload = false; 6393 6394 if (child && child->flags & SD_PREFER_SIBLING) 6395 prefer_sibling = 1; 6396 6397 load_idx = get_sd_load_idx(env->sd, env->idle); 6398 6399 do { 6400 struct sg_lb_stats *sgs = &tmp_sgs; 6401 int local_group; 6402 6403 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6404 if (local_group) { 6405 sds->local = sg; 6406 sgs = &sds->local_stat; 6407 6408 if (env->idle != CPU_NEWLY_IDLE || 6409 time_after_eq(jiffies, sg->sgc->next_update)) 6410 update_group_capacity(env->sd, env->dst_cpu); 6411 } 6412 6413 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6414 &overload); 6415 6416 if (local_group) 6417 goto next_group; 6418 6419 /* 6420 * In case the child domain prefers tasks go to siblings 6421 * first, lower the sg capacity so that we'll try 6422 * and move all the excess tasks away. We lower the capacity 6423 * of a group only if the local group has the capacity to fit 6424 * these excess tasks. The extra check prevents the case where 6425 * you always pull from the heaviest group when it is already 6426 * under-utilized (possible with a large weight task outweighs 6427 * the tasks on the system). 6428 */ 6429 if (prefer_sibling && sds->local && 6430 group_has_capacity(env, &sds->local_stat) && 6431 (sgs->sum_nr_running > 1)) { 6432 sgs->group_no_capacity = 1; 6433 sgs->group_type = group_overloaded; 6434 } 6435 6436 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6437 sds->busiest = sg; 6438 sds->busiest_stat = *sgs; 6439 } 6440 6441 next_group: 6442 /* Now, start updating sd_lb_stats */ 6443 sds->total_load += sgs->group_load; 6444 sds->total_capacity += sgs->group_capacity; 6445 6446 sg = sg->next; 6447 } while (sg != env->sd->groups); 6448 6449 if (env->sd->flags & SD_NUMA) 6450 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6451 6452 if (!env->sd->parent) { 6453 /* update overload indicator if we are at root domain */ 6454 if (env->dst_rq->rd->overload != overload) 6455 env->dst_rq->rd->overload = overload; 6456 } 6457 6458 } 6459 6460 /** 6461 * check_asym_packing - Check to see if the group is packed into the 6462 * sched doman. 6463 * 6464 * This is primarily intended to used at the sibling level. Some 6465 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6466 * case of POWER7, it can move to lower SMT modes only when higher 6467 * threads are idle. When in lower SMT modes, the threads will 6468 * perform better since they share less core resources. Hence when we 6469 * have idle threads, we want them to be the higher ones. 6470 * 6471 * This packing function is run on idle threads. It checks to see if 6472 * the busiest CPU in this domain (core in the P7 case) has a higher 6473 * CPU number than the packing function is being run on. Here we are 6474 * assuming lower CPU number will be equivalent to lower a SMT thread 6475 * number. 6476 * 6477 * Return: 1 when packing is required and a task should be moved to 6478 * this CPU. The amount of the imbalance is returned in *imbalance. 6479 * 6480 * @env: The load balancing environment. 6481 * @sds: Statistics of the sched_domain which is to be packed 6482 */ 6483 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6484 { 6485 int busiest_cpu; 6486 6487 if (!(env->sd->flags & SD_ASYM_PACKING)) 6488 return 0; 6489 6490 if (!sds->busiest) 6491 return 0; 6492 6493 busiest_cpu = group_first_cpu(sds->busiest); 6494 if (env->dst_cpu > busiest_cpu) 6495 return 0; 6496 6497 env->imbalance = DIV_ROUND_CLOSEST( 6498 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6499 SCHED_CAPACITY_SCALE); 6500 6501 return 1; 6502 } 6503 6504 /** 6505 * fix_small_imbalance - Calculate the minor imbalance that exists 6506 * amongst the groups of a sched_domain, during 6507 * load balancing. 6508 * @env: The load balancing environment. 6509 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6510 */ 6511 static inline 6512 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6513 { 6514 unsigned long tmp, capa_now = 0, capa_move = 0; 6515 unsigned int imbn = 2; 6516 unsigned long scaled_busy_load_per_task; 6517 struct sg_lb_stats *local, *busiest; 6518 6519 local = &sds->local_stat; 6520 busiest = &sds->busiest_stat; 6521 6522 if (!local->sum_nr_running) 6523 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6524 else if (busiest->load_per_task > local->load_per_task) 6525 imbn = 1; 6526 6527 scaled_busy_load_per_task = 6528 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6529 busiest->group_capacity; 6530 6531 if (busiest->avg_load + scaled_busy_load_per_task >= 6532 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6533 env->imbalance = busiest->load_per_task; 6534 return; 6535 } 6536 6537 /* 6538 * OK, we don't have enough imbalance to justify moving tasks, 6539 * however we may be able to increase total CPU capacity used by 6540 * moving them. 6541 */ 6542 6543 capa_now += busiest->group_capacity * 6544 min(busiest->load_per_task, busiest->avg_load); 6545 capa_now += local->group_capacity * 6546 min(local->load_per_task, local->avg_load); 6547 capa_now /= SCHED_CAPACITY_SCALE; 6548 6549 /* Amount of load we'd subtract */ 6550 if (busiest->avg_load > scaled_busy_load_per_task) { 6551 capa_move += busiest->group_capacity * 6552 min(busiest->load_per_task, 6553 busiest->avg_load - scaled_busy_load_per_task); 6554 } 6555 6556 /* Amount of load we'd add */ 6557 if (busiest->avg_load * busiest->group_capacity < 6558 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6559 tmp = (busiest->avg_load * busiest->group_capacity) / 6560 local->group_capacity; 6561 } else { 6562 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6563 local->group_capacity; 6564 } 6565 capa_move += local->group_capacity * 6566 min(local->load_per_task, local->avg_load + tmp); 6567 capa_move /= SCHED_CAPACITY_SCALE; 6568 6569 /* Move if we gain throughput */ 6570 if (capa_move > capa_now) 6571 env->imbalance = busiest->load_per_task; 6572 } 6573 6574 /** 6575 * calculate_imbalance - Calculate the amount of imbalance present within the 6576 * groups of a given sched_domain during load balance. 6577 * @env: load balance environment 6578 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6579 */ 6580 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6581 { 6582 unsigned long max_pull, load_above_capacity = ~0UL; 6583 struct sg_lb_stats *local, *busiest; 6584 6585 local = &sds->local_stat; 6586 busiest = &sds->busiest_stat; 6587 6588 if (busiest->group_type == group_imbalanced) { 6589 /* 6590 * In the group_imb case we cannot rely on group-wide averages 6591 * to ensure cpu-load equilibrium, look at wider averages. XXX 6592 */ 6593 busiest->load_per_task = 6594 min(busiest->load_per_task, sds->avg_load); 6595 } 6596 6597 /* 6598 * In the presence of smp nice balancing, certain scenarios can have 6599 * max load less than avg load(as we skip the groups at or below 6600 * its cpu_capacity, while calculating max_load..) 6601 */ 6602 if (busiest->avg_load <= sds->avg_load || 6603 local->avg_load >= sds->avg_load) { 6604 env->imbalance = 0; 6605 return fix_small_imbalance(env, sds); 6606 } 6607 6608 /* 6609 * If there aren't any idle cpus, avoid creating some. 6610 */ 6611 if (busiest->group_type == group_overloaded && 6612 local->group_type == group_overloaded) { 6613 load_above_capacity = busiest->sum_nr_running * 6614 SCHED_LOAD_SCALE; 6615 if (load_above_capacity > busiest->group_capacity) 6616 load_above_capacity -= busiest->group_capacity; 6617 else 6618 load_above_capacity = ~0UL; 6619 } 6620 6621 /* 6622 * We're trying to get all the cpus to the average_load, so we don't 6623 * want to push ourselves above the average load, nor do we wish to 6624 * reduce the max loaded cpu below the average load. At the same time, 6625 * we also don't want to reduce the group load below the group capacity 6626 * (so that we can implement power-savings policies etc). Thus we look 6627 * for the minimum possible imbalance. 6628 */ 6629 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6630 6631 /* How much load to actually move to equalise the imbalance */ 6632 env->imbalance = min( 6633 max_pull * busiest->group_capacity, 6634 (sds->avg_load - local->avg_load) * local->group_capacity 6635 ) / SCHED_CAPACITY_SCALE; 6636 6637 /* 6638 * if *imbalance is less than the average load per runnable task 6639 * there is no guarantee that any tasks will be moved so we'll have 6640 * a think about bumping its value to force at least one task to be 6641 * moved 6642 */ 6643 if (env->imbalance < busiest->load_per_task) 6644 return fix_small_imbalance(env, sds); 6645 } 6646 6647 /******* find_busiest_group() helpers end here *********************/ 6648 6649 /** 6650 * find_busiest_group - Returns the busiest group within the sched_domain 6651 * if there is an imbalance. If there isn't an imbalance, and 6652 * the user has opted for power-savings, it returns a group whose 6653 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6654 * such a group exists. 6655 * 6656 * Also calculates the amount of weighted load which should be moved 6657 * to restore balance. 6658 * 6659 * @env: The load balancing environment. 6660 * 6661 * Return: - The busiest group if imbalance exists. 6662 * - If no imbalance and user has opted for power-savings balance, 6663 * return the least loaded group whose CPUs can be 6664 * put to idle by rebalancing its tasks onto our group. 6665 */ 6666 static struct sched_group *find_busiest_group(struct lb_env *env) 6667 { 6668 struct sg_lb_stats *local, *busiest; 6669 struct sd_lb_stats sds; 6670 6671 init_sd_lb_stats(&sds); 6672 6673 /* 6674 * Compute the various statistics relavent for load balancing at 6675 * this level. 6676 */ 6677 update_sd_lb_stats(env, &sds); 6678 local = &sds.local_stat; 6679 busiest = &sds.busiest_stat; 6680 6681 /* ASYM feature bypasses nice load balance check */ 6682 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6683 check_asym_packing(env, &sds)) 6684 return sds.busiest; 6685 6686 /* There is no busy sibling group to pull tasks from */ 6687 if (!sds.busiest || busiest->sum_nr_running == 0) 6688 goto out_balanced; 6689 6690 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6691 / sds.total_capacity; 6692 6693 /* 6694 * If the busiest group is imbalanced the below checks don't 6695 * work because they assume all things are equal, which typically 6696 * isn't true due to cpus_allowed constraints and the like. 6697 */ 6698 if (busiest->group_type == group_imbalanced) 6699 goto force_balance; 6700 6701 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6702 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 6703 busiest->group_no_capacity) 6704 goto force_balance; 6705 6706 /* 6707 * If the local group is busier than the selected busiest group 6708 * don't try and pull any tasks. 6709 */ 6710 if (local->avg_load >= busiest->avg_load) 6711 goto out_balanced; 6712 6713 /* 6714 * Don't pull any tasks if this group is already above the domain 6715 * average load. 6716 */ 6717 if (local->avg_load >= sds.avg_load) 6718 goto out_balanced; 6719 6720 if (env->idle == CPU_IDLE) { 6721 /* 6722 * This cpu is idle. If the busiest group is not overloaded 6723 * and there is no imbalance between this and busiest group 6724 * wrt idle cpus, it is balanced. The imbalance becomes 6725 * significant if the diff is greater than 1 otherwise we 6726 * might end up to just move the imbalance on another group 6727 */ 6728 if ((busiest->group_type != group_overloaded) && 6729 (local->idle_cpus <= (busiest->idle_cpus + 1))) 6730 goto out_balanced; 6731 } else { 6732 /* 6733 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6734 * imbalance_pct to be conservative. 6735 */ 6736 if (100 * busiest->avg_load <= 6737 env->sd->imbalance_pct * local->avg_load) 6738 goto out_balanced; 6739 } 6740 6741 force_balance: 6742 /* Looks like there is an imbalance. Compute it */ 6743 calculate_imbalance(env, &sds); 6744 return sds.busiest; 6745 6746 out_balanced: 6747 env->imbalance = 0; 6748 return NULL; 6749 } 6750 6751 /* 6752 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6753 */ 6754 static struct rq *find_busiest_queue(struct lb_env *env, 6755 struct sched_group *group) 6756 { 6757 struct rq *busiest = NULL, *rq; 6758 unsigned long busiest_load = 0, busiest_capacity = 1; 6759 int i; 6760 6761 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6762 unsigned long capacity, wl; 6763 enum fbq_type rt; 6764 6765 rq = cpu_rq(i); 6766 rt = fbq_classify_rq(rq); 6767 6768 /* 6769 * We classify groups/runqueues into three groups: 6770 * - regular: there are !numa tasks 6771 * - remote: there are numa tasks that run on the 'wrong' node 6772 * - all: there is no distinction 6773 * 6774 * In order to avoid migrating ideally placed numa tasks, 6775 * ignore those when there's better options. 6776 * 6777 * If we ignore the actual busiest queue to migrate another 6778 * task, the next balance pass can still reduce the busiest 6779 * queue by moving tasks around inside the node. 6780 * 6781 * If we cannot move enough load due to this classification 6782 * the next pass will adjust the group classification and 6783 * allow migration of more tasks. 6784 * 6785 * Both cases only affect the total convergence complexity. 6786 */ 6787 if (rt > env->fbq_type) 6788 continue; 6789 6790 capacity = capacity_of(i); 6791 6792 wl = weighted_cpuload(i); 6793 6794 /* 6795 * When comparing with imbalance, use weighted_cpuload() 6796 * which is not scaled with the cpu capacity. 6797 */ 6798 6799 if (rq->nr_running == 1 && wl > env->imbalance && 6800 !check_cpu_capacity(rq, env->sd)) 6801 continue; 6802 6803 /* 6804 * For the load comparisons with the other cpu's, consider 6805 * the weighted_cpuload() scaled with the cpu capacity, so 6806 * that the load can be moved away from the cpu that is 6807 * potentially running at a lower capacity. 6808 * 6809 * Thus we're looking for max(wl_i / capacity_i), crosswise 6810 * multiplication to rid ourselves of the division works out 6811 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 6812 * our previous maximum. 6813 */ 6814 if (wl * busiest_capacity > busiest_load * capacity) { 6815 busiest_load = wl; 6816 busiest_capacity = capacity; 6817 busiest = rq; 6818 } 6819 } 6820 6821 return busiest; 6822 } 6823 6824 /* 6825 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6826 * so long as it is large enough. 6827 */ 6828 #define MAX_PINNED_INTERVAL 512 6829 6830 /* Working cpumask for load_balance and load_balance_newidle. */ 6831 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6832 6833 static int need_active_balance(struct lb_env *env) 6834 { 6835 struct sched_domain *sd = env->sd; 6836 6837 if (env->idle == CPU_NEWLY_IDLE) { 6838 6839 /* 6840 * ASYM_PACKING needs to force migrate tasks from busy but 6841 * higher numbered CPUs in order to pack all tasks in the 6842 * lowest numbered CPUs. 6843 */ 6844 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6845 return 1; 6846 } 6847 6848 /* 6849 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 6850 * It's worth migrating the task if the src_cpu's capacity is reduced 6851 * because of other sched_class or IRQs if more capacity stays 6852 * available on dst_cpu. 6853 */ 6854 if ((env->idle != CPU_NOT_IDLE) && 6855 (env->src_rq->cfs.h_nr_running == 1)) { 6856 if ((check_cpu_capacity(env->src_rq, sd)) && 6857 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 6858 return 1; 6859 } 6860 6861 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6862 } 6863 6864 static int active_load_balance_cpu_stop(void *data); 6865 6866 static int should_we_balance(struct lb_env *env) 6867 { 6868 struct sched_group *sg = env->sd->groups; 6869 struct cpumask *sg_cpus, *sg_mask; 6870 int cpu, balance_cpu = -1; 6871 6872 /* 6873 * In the newly idle case, we will allow all the cpu's 6874 * to do the newly idle load balance. 6875 */ 6876 if (env->idle == CPU_NEWLY_IDLE) 6877 return 1; 6878 6879 sg_cpus = sched_group_cpus(sg); 6880 sg_mask = sched_group_mask(sg); 6881 /* Try to find first idle cpu */ 6882 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6883 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6884 continue; 6885 6886 balance_cpu = cpu; 6887 break; 6888 } 6889 6890 if (balance_cpu == -1) 6891 balance_cpu = group_balance_cpu(sg); 6892 6893 /* 6894 * First idle cpu or the first cpu(busiest) in this sched group 6895 * is eligible for doing load balancing at this and above domains. 6896 */ 6897 return balance_cpu == env->dst_cpu; 6898 } 6899 6900 /* 6901 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6902 * tasks if there is an imbalance. 6903 */ 6904 static int load_balance(int this_cpu, struct rq *this_rq, 6905 struct sched_domain *sd, enum cpu_idle_type idle, 6906 int *continue_balancing) 6907 { 6908 int ld_moved, cur_ld_moved, active_balance = 0; 6909 struct sched_domain *sd_parent = sd->parent; 6910 struct sched_group *group; 6911 struct rq *busiest; 6912 unsigned long flags; 6913 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 6914 6915 struct lb_env env = { 6916 .sd = sd, 6917 .dst_cpu = this_cpu, 6918 .dst_rq = this_rq, 6919 .dst_grpmask = sched_group_cpus(sd->groups), 6920 .idle = idle, 6921 .loop_break = sched_nr_migrate_break, 6922 .cpus = cpus, 6923 .fbq_type = all, 6924 .tasks = LIST_HEAD_INIT(env.tasks), 6925 }; 6926 6927 /* 6928 * For NEWLY_IDLE load_balancing, we don't need to consider 6929 * other cpus in our group 6930 */ 6931 if (idle == CPU_NEWLY_IDLE) 6932 env.dst_grpmask = NULL; 6933 6934 cpumask_copy(cpus, cpu_active_mask); 6935 6936 schedstat_inc(sd, lb_count[idle]); 6937 6938 redo: 6939 if (!should_we_balance(&env)) { 6940 *continue_balancing = 0; 6941 goto out_balanced; 6942 } 6943 6944 group = find_busiest_group(&env); 6945 if (!group) { 6946 schedstat_inc(sd, lb_nobusyg[idle]); 6947 goto out_balanced; 6948 } 6949 6950 busiest = find_busiest_queue(&env, group); 6951 if (!busiest) { 6952 schedstat_inc(sd, lb_nobusyq[idle]); 6953 goto out_balanced; 6954 } 6955 6956 BUG_ON(busiest == env.dst_rq); 6957 6958 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6959 6960 env.src_cpu = busiest->cpu; 6961 env.src_rq = busiest; 6962 6963 ld_moved = 0; 6964 if (busiest->nr_running > 1) { 6965 /* 6966 * Attempt to move tasks. If find_busiest_group has found 6967 * an imbalance but busiest->nr_running <= 1, the group is 6968 * still unbalanced. ld_moved simply stays zero, so it is 6969 * correctly treated as an imbalance. 6970 */ 6971 env.flags |= LBF_ALL_PINNED; 6972 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6973 6974 more_balance: 6975 raw_spin_lock_irqsave(&busiest->lock, flags); 6976 6977 /* 6978 * cur_ld_moved - load moved in current iteration 6979 * ld_moved - cumulative load moved across iterations 6980 */ 6981 cur_ld_moved = detach_tasks(&env); 6982 6983 /* 6984 * We've detached some tasks from busiest_rq. Every 6985 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 6986 * unlock busiest->lock, and we are able to be sure 6987 * that nobody can manipulate the tasks in parallel. 6988 * See task_rq_lock() family for the details. 6989 */ 6990 6991 raw_spin_unlock(&busiest->lock); 6992 6993 if (cur_ld_moved) { 6994 attach_tasks(&env); 6995 ld_moved += cur_ld_moved; 6996 } 6997 6998 local_irq_restore(flags); 6999 7000 if (env.flags & LBF_NEED_BREAK) { 7001 env.flags &= ~LBF_NEED_BREAK; 7002 goto more_balance; 7003 } 7004 7005 /* 7006 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7007 * us and move them to an alternate dst_cpu in our sched_group 7008 * where they can run. The upper limit on how many times we 7009 * iterate on same src_cpu is dependent on number of cpus in our 7010 * sched_group. 7011 * 7012 * This changes load balance semantics a bit on who can move 7013 * load to a given_cpu. In addition to the given_cpu itself 7014 * (or a ilb_cpu acting on its behalf where given_cpu is 7015 * nohz-idle), we now have balance_cpu in a position to move 7016 * load to given_cpu. In rare situations, this may cause 7017 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7018 * _independently_ and at _same_ time to move some load to 7019 * given_cpu) causing exceess load to be moved to given_cpu. 7020 * This however should not happen so much in practice and 7021 * moreover subsequent load balance cycles should correct the 7022 * excess load moved. 7023 */ 7024 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7025 7026 /* Prevent to re-select dst_cpu via env's cpus */ 7027 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7028 7029 env.dst_rq = cpu_rq(env.new_dst_cpu); 7030 env.dst_cpu = env.new_dst_cpu; 7031 env.flags &= ~LBF_DST_PINNED; 7032 env.loop = 0; 7033 env.loop_break = sched_nr_migrate_break; 7034 7035 /* 7036 * Go back to "more_balance" rather than "redo" since we 7037 * need to continue with same src_cpu. 7038 */ 7039 goto more_balance; 7040 } 7041 7042 /* 7043 * We failed to reach balance because of affinity. 7044 */ 7045 if (sd_parent) { 7046 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7047 7048 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7049 *group_imbalance = 1; 7050 } 7051 7052 /* All tasks on this runqueue were pinned by CPU affinity */ 7053 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7054 cpumask_clear_cpu(cpu_of(busiest), cpus); 7055 if (!cpumask_empty(cpus)) { 7056 env.loop = 0; 7057 env.loop_break = sched_nr_migrate_break; 7058 goto redo; 7059 } 7060 goto out_all_pinned; 7061 } 7062 } 7063 7064 if (!ld_moved) { 7065 schedstat_inc(sd, lb_failed[idle]); 7066 /* 7067 * Increment the failure counter only on periodic balance. 7068 * We do not want newidle balance, which can be very 7069 * frequent, pollute the failure counter causing 7070 * excessive cache_hot migrations and active balances. 7071 */ 7072 if (idle != CPU_NEWLY_IDLE) 7073 sd->nr_balance_failed++; 7074 7075 if (need_active_balance(&env)) { 7076 raw_spin_lock_irqsave(&busiest->lock, flags); 7077 7078 /* don't kick the active_load_balance_cpu_stop, 7079 * if the curr task on busiest cpu can't be 7080 * moved to this_cpu 7081 */ 7082 if (!cpumask_test_cpu(this_cpu, 7083 tsk_cpus_allowed(busiest->curr))) { 7084 raw_spin_unlock_irqrestore(&busiest->lock, 7085 flags); 7086 env.flags |= LBF_ALL_PINNED; 7087 goto out_one_pinned; 7088 } 7089 7090 /* 7091 * ->active_balance synchronizes accesses to 7092 * ->active_balance_work. Once set, it's cleared 7093 * only after active load balance is finished. 7094 */ 7095 if (!busiest->active_balance) { 7096 busiest->active_balance = 1; 7097 busiest->push_cpu = this_cpu; 7098 active_balance = 1; 7099 } 7100 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7101 7102 if (active_balance) { 7103 stop_one_cpu_nowait(cpu_of(busiest), 7104 active_load_balance_cpu_stop, busiest, 7105 &busiest->active_balance_work); 7106 } 7107 7108 /* 7109 * We've kicked active balancing, reset the failure 7110 * counter. 7111 */ 7112 sd->nr_balance_failed = sd->cache_nice_tries+1; 7113 } 7114 } else 7115 sd->nr_balance_failed = 0; 7116 7117 if (likely(!active_balance)) { 7118 /* We were unbalanced, so reset the balancing interval */ 7119 sd->balance_interval = sd->min_interval; 7120 } else { 7121 /* 7122 * If we've begun active balancing, start to back off. This 7123 * case may not be covered by the all_pinned logic if there 7124 * is only 1 task on the busy runqueue (because we don't call 7125 * detach_tasks). 7126 */ 7127 if (sd->balance_interval < sd->max_interval) 7128 sd->balance_interval *= 2; 7129 } 7130 7131 goto out; 7132 7133 out_balanced: 7134 /* 7135 * We reach balance although we may have faced some affinity 7136 * constraints. Clear the imbalance flag if it was set. 7137 */ 7138 if (sd_parent) { 7139 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7140 7141 if (*group_imbalance) 7142 *group_imbalance = 0; 7143 } 7144 7145 out_all_pinned: 7146 /* 7147 * We reach balance because all tasks are pinned at this level so 7148 * we can't migrate them. Let the imbalance flag set so parent level 7149 * can try to migrate them. 7150 */ 7151 schedstat_inc(sd, lb_balanced[idle]); 7152 7153 sd->nr_balance_failed = 0; 7154 7155 out_one_pinned: 7156 /* tune up the balancing interval */ 7157 if (((env.flags & LBF_ALL_PINNED) && 7158 sd->balance_interval < MAX_PINNED_INTERVAL) || 7159 (sd->balance_interval < sd->max_interval)) 7160 sd->balance_interval *= 2; 7161 7162 ld_moved = 0; 7163 out: 7164 return ld_moved; 7165 } 7166 7167 static inline unsigned long 7168 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7169 { 7170 unsigned long interval = sd->balance_interval; 7171 7172 if (cpu_busy) 7173 interval *= sd->busy_factor; 7174 7175 /* scale ms to jiffies */ 7176 interval = msecs_to_jiffies(interval); 7177 interval = clamp(interval, 1UL, max_load_balance_interval); 7178 7179 return interval; 7180 } 7181 7182 static inline void 7183 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7184 { 7185 unsigned long interval, next; 7186 7187 interval = get_sd_balance_interval(sd, cpu_busy); 7188 next = sd->last_balance + interval; 7189 7190 if (time_after(*next_balance, next)) 7191 *next_balance = next; 7192 } 7193 7194 /* 7195 * idle_balance is called by schedule() if this_cpu is about to become 7196 * idle. Attempts to pull tasks from other CPUs. 7197 */ 7198 static int idle_balance(struct rq *this_rq) 7199 { 7200 unsigned long next_balance = jiffies + HZ; 7201 int this_cpu = this_rq->cpu; 7202 struct sched_domain *sd; 7203 int pulled_task = 0; 7204 u64 curr_cost = 0; 7205 7206 idle_enter_fair(this_rq); 7207 7208 /* 7209 * We must set idle_stamp _before_ calling idle_balance(), such that we 7210 * measure the duration of idle_balance() as idle time. 7211 */ 7212 this_rq->idle_stamp = rq_clock(this_rq); 7213 7214 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7215 !this_rq->rd->overload) { 7216 rcu_read_lock(); 7217 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7218 if (sd) 7219 update_next_balance(sd, 0, &next_balance); 7220 rcu_read_unlock(); 7221 7222 goto out; 7223 } 7224 7225 raw_spin_unlock(&this_rq->lock); 7226 7227 update_blocked_averages(this_cpu); 7228 rcu_read_lock(); 7229 for_each_domain(this_cpu, sd) { 7230 int continue_balancing = 1; 7231 u64 t0, domain_cost; 7232 7233 if (!(sd->flags & SD_LOAD_BALANCE)) 7234 continue; 7235 7236 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7237 update_next_balance(sd, 0, &next_balance); 7238 break; 7239 } 7240 7241 if (sd->flags & SD_BALANCE_NEWIDLE) { 7242 t0 = sched_clock_cpu(this_cpu); 7243 7244 pulled_task = load_balance(this_cpu, this_rq, 7245 sd, CPU_NEWLY_IDLE, 7246 &continue_balancing); 7247 7248 domain_cost = sched_clock_cpu(this_cpu) - t0; 7249 if (domain_cost > sd->max_newidle_lb_cost) 7250 sd->max_newidle_lb_cost = domain_cost; 7251 7252 curr_cost += domain_cost; 7253 } 7254 7255 update_next_balance(sd, 0, &next_balance); 7256 7257 /* 7258 * Stop searching for tasks to pull if there are 7259 * now runnable tasks on this rq. 7260 */ 7261 if (pulled_task || this_rq->nr_running > 0) 7262 break; 7263 } 7264 rcu_read_unlock(); 7265 7266 raw_spin_lock(&this_rq->lock); 7267 7268 if (curr_cost > this_rq->max_idle_balance_cost) 7269 this_rq->max_idle_balance_cost = curr_cost; 7270 7271 /* 7272 * While browsing the domains, we released the rq lock, a task could 7273 * have been enqueued in the meantime. Since we're not going idle, 7274 * pretend we pulled a task. 7275 */ 7276 if (this_rq->cfs.h_nr_running && !pulled_task) 7277 pulled_task = 1; 7278 7279 out: 7280 /* Move the next balance forward */ 7281 if (time_after(this_rq->next_balance, next_balance)) 7282 this_rq->next_balance = next_balance; 7283 7284 /* Is there a task of a high priority class? */ 7285 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7286 pulled_task = -1; 7287 7288 if (pulled_task) { 7289 idle_exit_fair(this_rq); 7290 this_rq->idle_stamp = 0; 7291 } 7292 7293 return pulled_task; 7294 } 7295 7296 /* 7297 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7298 * running tasks off the busiest CPU onto idle CPUs. It requires at 7299 * least 1 task to be running on each physical CPU where possible, and 7300 * avoids physical / logical imbalances. 7301 */ 7302 static int active_load_balance_cpu_stop(void *data) 7303 { 7304 struct rq *busiest_rq = data; 7305 int busiest_cpu = cpu_of(busiest_rq); 7306 int target_cpu = busiest_rq->push_cpu; 7307 struct rq *target_rq = cpu_rq(target_cpu); 7308 struct sched_domain *sd; 7309 struct task_struct *p = NULL; 7310 7311 raw_spin_lock_irq(&busiest_rq->lock); 7312 7313 /* make sure the requested cpu hasn't gone down in the meantime */ 7314 if (unlikely(busiest_cpu != smp_processor_id() || 7315 !busiest_rq->active_balance)) 7316 goto out_unlock; 7317 7318 /* Is there any task to move? */ 7319 if (busiest_rq->nr_running <= 1) 7320 goto out_unlock; 7321 7322 /* 7323 * This condition is "impossible", if it occurs 7324 * we need to fix it. Originally reported by 7325 * Bjorn Helgaas on a 128-cpu setup. 7326 */ 7327 BUG_ON(busiest_rq == target_rq); 7328 7329 /* Search for an sd spanning us and the target CPU. */ 7330 rcu_read_lock(); 7331 for_each_domain(target_cpu, sd) { 7332 if ((sd->flags & SD_LOAD_BALANCE) && 7333 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7334 break; 7335 } 7336 7337 if (likely(sd)) { 7338 struct lb_env env = { 7339 .sd = sd, 7340 .dst_cpu = target_cpu, 7341 .dst_rq = target_rq, 7342 .src_cpu = busiest_rq->cpu, 7343 .src_rq = busiest_rq, 7344 .idle = CPU_IDLE, 7345 }; 7346 7347 schedstat_inc(sd, alb_count); 7348 7349 p = detach_one_task(&env); 7350 if (p) 7351 schedstat_inc(sd, alb_pushed); 7352 else 7353 schedstat_inc(sd, alb_failed); 7354 } 7355 rcu_read_unlock(); 7356 out_unlock: 7357 busiest_rq->active_balance = 0; 7358 raw_spin_unlock(&busiest_rq->lock); 7359 7360 if (p) 7361 attach_one_task(target_rq, p); 7362 7363 local_irq_enable(); 7364 7365 return 0; 7366 } 7367 7368 static inline int on_null_domain(struct rq *rq) 7369 { 7370 return unlikely(!rcu_dereference_sched(rq->sd)); 7371 } 7372 7373 #ifdef CONFIG_NO_HZ_COMMON 7374 /* 7375 * idle load balancing details 7376 * - When one of the busy CPUs notice that there may be an idle rebalancing 7377 * needed, they will kick the idle load balancer, which then does idle 7378 * load balancing for all the idle CPUs. 7379 */ 7380 static struct { 7381 cpumask_var_t idle_cpus_mask; 7382 atomic_t nr_cpus; 7383 unsigned long next_balance; /* in jiffy units */ 7384 } nohz ____cacheline_aligned; 7385 7386 static inline int find_new_ilb(void) 7387 { 7388 int ilb = cpumask_first(nohz.idle_cpus_mask); 7389 7390 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7391 return ilb; 7392 7393 return nr_cpu_ids; 7394 } 7395 7396 /* 7397 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7398 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7399 * CPU (if there is one). 7400 */ 7401 static void nohz_balancer_kick(void) 7402 { 7403 int ilb_cpu; 7404 7405 nohz.next_balance++; 7406 7407 ilb_cpu = find_new_ilb(); 7408 7409 if (ilb_cpu >= nr_cpu_ids) 7410 return; 7411 7412 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7413 return; 7414 /* 7415 * Use smp_send_reschedule() instead of resched_cpu(). 7416 * This way we generate a sched IPI on the target cpu which 7417 * is idle. And the softirq performing nohz idle load balance 7418 * will be run before returning from the IPI. 7419 */ 7420 smp_send_reschedule(ilb_cpu); 7421 return; 7422 } 7423 7424 static inline void nohz_balance_exit_idle(int cpu) 7425 { 7426 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7427 /* 7428 * Completely isolated CPUs don't ever set, so we must test. 7429 */ 7430 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7431 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7432 atomic_dec(&nohz.nr_cpus); 7433 } 7434 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7435 } 7436 } 7437 7438 static inline void set_cpu_sd_state_busy(void) 7439 { 7440 struct sched_domain *sd; 7441 int cpu = smp_processor_id(); 7442 7443 rcu_read_lock(); 7444 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7445 7446 if (!sd || !sd->nohz_idle) 7447 goto unlock; 7448 sd->nohz_idle = 0; 7449 7450 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7451 unlock: 7452 rcu_read_unlock(); 7453 } 7454 7455 void set_cpu_sd_state_idle(void) 7456 { 7457 struct sched_domain *sd; 7458 int cpu = smp_processor_id(); 7459 7460 rcu_read_lock(); 7461 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7462 7463 if (!sd || sd->nohz_idle) 7464 goto unlock; 7465 sd->nohz_idle = 1; 7466 7467 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7468 unlock: 7469 rcu_read_unlock(); 7470 } 7471 7472 /* 7473 * This routine will record that the cpu is going idle with tick stopped. 7474 * This info will be used in performing idle load balancing in the future. 7475 */ 7476 void nohz_balance_enter_idle(int cpu) 7477 { 7478 /* 7479 * If this cpu is going down, then nothing needs to be done. 7480 */ 7481 if (!cpu_active(cpu)) 7482 return; 7483 7484 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7485 return; 7486 7487 /* 7488 * If we're a completely isolated CPU, we don't play. 7489 */ 7490 if (on_null_domain(cpu_rq(cpu))) 7491 return; 7492 7493 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7494 atomic_inc(&nohz.nr_cpus); 7495 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7496 } 7497 7498 static int sched_ilb_notifier(struct notifier_block *nfb, 7499 unsigned long action, void *hcpu) 7500 { 7501 switch (action & ~CPU_TASKS_FROZEN) { 7502 case CPU_DYING: 7503 nohz_balance_exit_idle(smp_processor_id()); 7504 return NOTIFY_OK; 7505 default: 7506 return NOTIFY_DONE; 7507 } 7508 } 7509 #endif 7510 7511 static DEFINE_SPINLOCK(balancing); 7512 7513 /* 7514 * Scale the max load_balance interval with the number of CPUs in the system. 7515 * This trades load-balance latency on larger machines for less cross talk. 7516 */ 7517 void update_max_interval(void) 7518 { 7519 max_load_balance_interval = HZ*num_online_cpus()/10; 7520 } 7521 7522 /* 7523 * It checks each scheduling domain to see if it is due to be balanced, 7524 * and initiates a balancing operation if so. 7525 * 7526 * Balancing parameters are set up in init_sched_domains. 7527 */ 7528 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7529 { 7530 int continue_balancing = 1; 7531 int cpu = rq->cpu; 7532 unsigned long interval; 7533 struct sched_domain *sd; 7534 /* Earliest time when we have to do rebalance again */ 7535 unsigned long next_balance = jiffies + 60*HZ; 7536 int update_next_balance = 0; 7537 int need_serialize, need_decay = 0; 7538 u64 max_cost = 0; 7539 7540 update_blocked_averages(cpu); 7541 7542 rcu_read_lock(); 7543 for_each_domain(cpu, sd) { 7544 /* 7545 * Decay the newidle max times here because this is a regular 7546 * visit to all the domains. Decay ~1% per second. 7547 */ 7548 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7549 sd->max_newidle_lb_cost = 7550 (sd->max_newidle_lb_cost * 253) / 256; 7551 sd->next_decay_max_lb_cost = jiffies + HZ; 7552 need_decay = 1; 7553 } 7554 max_cost += sd->max_newidle_lb_cost; 7555 7556 if (!(sd->flags & SD_LOAD_BALANCE)) 7557 continue; 7558 7559 /* 7560 * Stop the load balance at this level. There is another 7561 * CPU in our sched group which is doing load balancing more 7562 * actively. 7563 */ 7564 if (!continue_balancing) { 7565 if (need_decay) 7566 continue; 7567 break; 7568 } 7569 7570 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7571 7572 need_serialize = sd->flags & SD_SERIALIZE; 7573 if (need_serialize) { 7574 if (!spin_trylock(&balancing)) 7575 goto out; 7576 } 7577 7578 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7579 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7580 /* 7581 * The LBF_DST_PINNED logic could have changed 7582 * env->dst_cpu, so we can't know our idle 7583 * state even if we migrated tasks. Update it. 7584 */ 7585 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7586 } 7587 sd->last_balance = jiffies; 7588 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7589 } 7590 if (need_serialize) 7591 spin_unlock(&balancing); 7592 out: 7593 if (time_after(next_balance, sd->last_balance + interval)) { 7594 next_balance = sd->last_balance + interval; 7595 update_next_balance = 1; 7596 } 7597 } 7598 if (need_decay) { 7599 /* 7600 * Ensure the rq-wide value also decays but keep it at a 7601 * reasonable floor to avoid funnies with rq->avg_idle. 7602 */ 7603 rq->max_idle_balance_cost = 7604 max((u64)sysctl_sched_migration_cost, max_cost); 7605 } 7606 rcu_read_unlock(); 7607 7608 /* 7609 * next_balance will be updated only when there is a need. 7610 * When the cpu is attached to null domain for ex, it will not be 7611 * updated. 7612 */ 7613 if (likely(update_next_balance)) 7614 rq->next_balance = next_balance; 7615 } 7616 7617 #ifdef CONFIG_NO_HZ_COMMON 7618 /* 7619 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7620 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7621 */ 7622 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7623 { 7624 int this_cpu = this_rq->cpu; 7625 struct rq *rq; 7626 int balance_cpu; 7627 7628 if (idle != CPU_IDLE || 7629 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7630 goto end; 7631 7632 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7633 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7634 continue; 7635 7636 /* 7637 * If this cpu gets work to do, stop the load balancing 7638 * work being done for other cpus. Next load 7639 * balancing owner will pick it up. 7640 */ 7641 if (need_resched()) 7642 break; 7643 7644 rq = cpu_rq(balance_cpu); 7645 7646 /* 7647 * If time for next balance is due, 7648 * do the balance. 7649 */ 7650 if (time_after_eq(jiffies, rq->next_balance)) { 7651 raw_spin_lock_irq(&rq->lock); 7652 update_rq_clock(rq); 7653 update_idle_cpu_load(rq); 7654 raw_spin_unlock_irq(&rq->lock); 7655 rebalance_domains(rq, CPU_IDLE); 7656 } 7657 7658 if (time_after(this_rq->next_balance, rq->next_balance)) 7659 this_rq->next_balance = rq->next_balance; 7660 } 7661 nohz.next_balance = this_rq->next_balance; 7662 end: 7663 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7664 } 7665 7666 /* 7667 * Current heuristic for kicking the idle load balancer in the presence 7668 * of an idle cpu in the system. 7669 * - This rq has more than one task. 7670 * - This rq has at least one CFS task and the capacity of the CPU is 7671 * significantly reduced because of RT tasks or IRQs. 7672 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 7673 * multiple busy cpu. 7674 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7675 * domain span are idle. 7676 */ 7677 static inline bool nohz_kick_needed(struct rq *rq) 7678 { 7679 unsigned long now = jiffies; 7680 struct sched_domain *sd; 7681 struct sched_group_capacity *sgc; 7682 int nr_busy, cpu = rq->cpu; 7683 bool kick = false; 7684 7685 if (unlikely(rq->idle_balance)) 7686 return false; 7687 7688 /* 7689 * We may be recently in ticked or tickless idle mode. At the first 7690 * busy tick after returning from idle, we will update the busy stats. 7691 */ 7692 set_cpu_sd_state_busy(); 7693 nohz_balance_exit_idle(cpu); 7694 7695 /* 7696 * None are in tickless mode and hence no need for NOHZ idle load 7697 * balancing. 7698 */ 7699 if (likely(!atomic_read(&nohz.nr_cpus))) 7700 return false; 7701 7702 if (time_before(now, nohz.next_balance)) 7703 return false; 7704 7705 if (rq->nr_running >= 2) 7706 return true; 7707 7708 rcu_read_lock(); 7709 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7710 if (sd) { 7711 sgc = sd->groups->sgc; 7712 nr_busy = atomic_read(&sgc->nr_busy_cpus); 7713 7714 if (nr_busy > 1) { 7715 kick = true; 7716 goto unlock; 7717 } 7718 7719 } 7720 7721 sd = rcu_dereference(rq->sd); 7722 if (sd) { 7723 if ((rq->cfs.h_nr_running >= 1) && 7724 check_cpu_capacity(rq, sd)) { 7725 kick = true; 7726 goto unlock; 7727 } 7728 } 7729 7730 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7731 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7732 sched_domain_span(sd)) < cpu)) { 7733 kick = true; 7734 goto unlock; 7735 } 7736 7737 unlock: 7738 rcu_read_unlock(); 7739 return kick; 7740 } 7741 #else 7742 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7743 #endif 7744 7745 /* 7746 * run_rebalance_domains is triggered when needed from the scheduler tick. 7747 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7748 */ 7749 static void run_rebalance_domains(struct softirq_action *h) 7750 { 7751 struct rq *this_rq = this_rq(); 7752 enum cpu_idle_type idle = this_rq->idle_balance ? 7753 CPU_IDLE : CPU_NOT_IDLE; 7754 7755 /* 7756 * If this cpu has a pending nohz_balance_kick, then do the 7757 * balancing on behalf of the other idle cpus whose ticks are 7758 * stopped. Do nohz_idle_balance *before* rebalance_domains to 7759 * give the idle cpus a chance to load balance. Else we may 7760 * load balance only within the local sched_domain hierarchy 7761 * and abort nohz_idle_balance altogether if we pull some load. 7762 */ 7763 nohz_idle_balance(this_rq, idle); 7764 rebalance_domains(this_rq, idle); 7765 } 7766 7767 /* 7768 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7769 */ 7770 void trigger_load_balance(struct rq *rq) 7771 { 7772 /* Don't need to rebalance while attached to NULL domain */ 7773 if (unlikely(on_null_domain(rq))) 7774 return; 7775 7776 if (time_after_eq(jiffies, rq->next_balance)) 7777 raise_softirq(SCHED_SOFTIRQ); 7778 #ifdef CONFIG_NO_HZ_COMMON 7779 if (nohz_kick_needed(rq)) 7780 nohz_balancer_kick(); 7781 #endif 7782 } 7783 7784 static void rq_online_fair(struct rq *rq) 7785 { 7786 update_sysctl(); 7787 7788 update_runtime_enabled(rq); 7789 } 7790 7791 static void rq_offline_fair(struct rq *rq) 7792 { 7793 update_sysctl(); 7794 7795 /* Ensure any throttled groups are reachable by pick_next_task */ 7796 unthrottle_offline_cfs_rqs(rq); 7797 } 7798 7799 #endif /* CONFIG_SMP */ 7800 7801 /* 7802 * scheduler tick hitting a task of our scheduling class: 7803 */ 7804 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7805 { 7806 struct cfs_rq *cfs_rq; 7807 struct sched_entity *se = &curr->se; 7808 7809 for_each_sched_entity(se) { 7810 cfs_rq = cfs_rq_of(se); 7811 entity_tick(cfs_rq, se, queued); 7812 } 7813 7814 if (numabalancing_enabled) 7815 task_tick_numa(rq, curr); 7816 } 7817 7818 /* 7819 * called on fork with the child task as argument from the parent's context 7820 * - child not yet on the tasklist 7821 * - preemption disabled 7822 */ 7823 static void task_fork_fair(struct task_struct *p) 7824 { 7825 struct cfs_rq *cfs_rq; 7826 struct sched_entity *se = &p->se, *curr; 7827 int this_cpu = smp_processor_id(); 7828 struct rq *rq = this_rq(); 7829 unsigned long flags; 7830 7831 raw_spin_lock_irqsave(&rq->lock, flags); 7832 7833 update_rq_clock(rq); 7834 7835 cfs_rq = task_cfs_rq(current); 7836 curr = cfs_rq->curr; 7837 7838 /* 7839 * Not only the cpu but also the task_group of the parent might have 7840 * been changed after parent->se.parent,cfs_rq were copied to 7841 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7842 * of child point to valid ones. 7843 */ 7844 rcu_read_lock(); 7845 __set_task_cpu(p, this_cpu); 7846 rcu_read_unlock(); 7847 7848 update_curr(cfs_rq); 7849 7850 if (curr) 7851 se->vruntime = curr->vruntime; 7852 place_entity(cfs_rq, se, 1); 7853 7854 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7855 /* 7856 * Upon rescheduling, sched_class::put_prev_task() will place 7857 * 'current' within the tree based on its new key value. 7858 */ 7859 swap(curr->vruntime, se->vruntime); 7860 resched_curr(rq); 7861 } 7862 7863 se->vruntime -= cfs_rq->min_vruntime; 7864 7865 raw_spin_unlock_irqrestore(&rq->lock, flags); 7866 } 7867 7868 /* 7869 * Priority of the task has changed. Check to see if we preempt 7870 * the current task. 7871 */ 7872 static void 7873 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7874 { 7875 if (!task_on_rq_queued(p)) 7876 return; 7877 7878 /* 7879 * Reschedule if we are currently running on this runqueue and 7880 * our priority decreased, or if we are not currently running on 7881 * this runqueue and our priority is higher than the current's 7882 */ 7883 if (rq->curr == p) { 7884 if (p->prio > oldprio) 7885 resched_curr(rq); 7886 } else 7887 check_preempt_curr(rq, p, 0); 7888 } 7889 7890 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7891 { 7892 struct sched_entity *se = &p->se; 7893 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7894 7895 /* 7896 * Ensure the task's vruntime is normalized, so that when it's 7897 * switched back to the fair class the enqueue_entity(.flags=0) will 7898 * do the right thing. 7899 * 7900 * If it's queued, then the dequeue_entity(.flags=0) will already 7901 * have normalized the vruntime, if it's !queued, then only when 7902 * the task is sleeping will it still have non-normalized vruntime. 7903 */ 7904 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { 7905 /* 7906 * Fix up our vruntime so that the current sleep doesn't 7907 * cause 'unlimited' sleep bonus. 7908 */ 7909 place_entity(cfs_rq, se, 0); 7910 se->vruntime -= cfs_rq->min_vruntime; 7911 } 7912 7913 #ifdef CONFIG_SMP 7914 /* Catch up with the cfs_rq and remove our load when we leave */ 7915 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg, 7916 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL); 7917 7918 cfs_rq->avg.load_avg = 7919 max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0); 7920 cfs_rq->avg.load_sum = 7921 max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0); 7922 cfs_rq->avg.util_avg = 7923 max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0); 7924 cfs_rq->avg.util_sum = 7925 max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0); 7926 #endif 7927 } 7928 7929 /* 7930 * We switched to the sched_fair class. 7931 */ 7932 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7933 { 7934 struct sched_entity *se = &p->se; 7935 7936 #ifdef CONFIG_FAIR_GROUP_SCHED 7937 /* 7938 * Since the real-depth could have been changed (only FAIR 7939 * class maintain depth value), reset depth properly. 7940 */ 7941 se->depth = se->parent ? se->parent->depth + 1 : 0; 7942 #endif 7943 7944 if (!task_on_rq_queued(p)) { 7945 7946 /* 7947 * Ensure the task has a non-normalized vruntime when it is switched 7948 * back to the fair class with !queued, so that enqueue_entity() at 7949 * wake-up time will do the right thing. 7950 * 7951 * If it's queued, then the enqueue_entity(.flags=0) makes the task 7952 * has non-normalized vruntime, if it's !queued, then it still has 7953 * normalized vruntime. 7954 */ 7955 if (p->state != TASK_RUNNING) 7956 se->vruntime += cfs_rq_of(se)->min_vruntime; 7957 return; 7958 } 7959 7960 /* 7961 * We were most likely switched from sched_rt, so 7962 * kick off the schedule if running, otherwise just see 7963 * if we can still preempt the current task. 7964 */ 7965 if (rq->curr == p) 7966 resched_curr(rq); 7967 else 7968 check_preempt_curr(rq, p, 0); 7969 } 7970 7971 /* Account for a task changing its policy or group. 7972 * 7973 * This routine is mostly called to set cfs_rq->curr field when a task 7974 * migrates between groups/classes. 7975 */ 7976 static void set_curr_task_fair(struct rq *rq) 7977 { 7978 struct sched_entity *se = &rq->curr->se; 7979 7980 for_each_sched_entity(se) { 7981 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7982 7983 set_next_entity(cfs_rq, se); 7984 /* ensure bandwidth has been allocated on our new cfs_rq */ 7985 account_cfs_rq_runtime(cfs_rq, 0); 7986 } 7987 } 7988 7989 void init_cfs_rq(struct cfs_rq *cfs_rq) 7990 { 7991 cfs_rq->tasks_timeline = RB_ROOT; 7992 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7993 #ifndef CONFIG_64BIT 7994 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7995 #endif 7996 #ifdef CONFIG_SMP 7997 atomic_long_set(&cfs_rq->removed_load_avg, 0); 7998 atomic_long_set(&cfs_rq->removed_util_avg, 0); 7999 #endif 8000 } 8001 8002 #ifdef CONFIG_FAIR_GROUP_SCHED 8003 static void task_move_group_fair(struct task_struct *p, int queued) 8004 { 8005 struct sched_entity *se = &p->se; 8006 struct cfs_rq *cfs_rq; 8007 8008 /* 8009 * If the task was not on the rq at the time of this cgroup movement 8010 * it must have been asleep, sleeping tasks keep their ->vruntime 8011 * absolute on their old rq until wakeup (needed for the fair sleeper 8012 * bonus in place_entity()). 8013 * 8014 * If it was on the rq, we've just 'preempted' it, which does convert 8015 * ->vruntime to a relative base. 8016 * 8017 * Make sure both cases convert their relative position when migrating 8018 * to another cgroup's rq. This does somewhat interfere with the 8019 * fair sleeper stuff for the first placement, but who cares. 8020 */ 8021 /* 8022 * When !queued, vruntime of the task has usually NOT been normalized. 8023 * But there are some cases where it has already been normalized: 8024 * 8025 * - Moving a forked child which is waiting for being woken up by 8026 * wake_up_new_task(). 8027 * - Moving a task which has been woken up by try_to_wake_up() and 8028 * waiting for actually being woken up by sched_ttwu_pending(). 8029 * 8030 * To prevent boost or penalty in the new cfs_rq caused by delta 8031 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 8032 */ 8033 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 8034 queued = 1; 8035 8036 if (!queued) 8037 se->vruntime -= cfs_rq_of(se)->min_vruntime; 8038 set_task_rq(p, task_cpu(p)); 8039 se->depth = se->parent ? se->parent->depth + 1 : 0; 8040 if (!queued) { 8041 cfs_rq = cfs_rq_of(se); 8042 se->vruntime += cfs_rq->min_vruntime; 8043 8044 #ifdef CONFIG_SMP 8045 /* Virtually synchronize task with its new cfs_rq */ 8046 p->se.avg.last_update_time = cfs_rq->avg.last_update_time; 8047 cfs_rq->avg.load_avg += p->se.avg.load_avg; 8048 cfs_rq->avg.load_sum += p->se.avg.load_sum; 8049 cfs_rq->avg.util_avg += p->se.avg.util_avg; 8050 cfs_rq->avg.util_sum += p->se.avg.util_sum; 8051 #endif 8052 } 8053 } 8054 8055 void free_fair_sched_group(struct task_group *tg) 8056 { 8057 int i; 8058 8059 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8060 8061 for_each_possible_cpu(i) { 8062 if (tg->cfs_rq) 8063 kfree(tg->cfs_rq[i]); 8064 if (tg->se) { 8065 if (tg->se[i]) 8066 remove_entity_load_avg(tg->se[i]); 8067 kfree(tg->se[i]); 8068 } 8069 } 8070 8071 kfree(tg->cfs_rq); 8072 kfree(tg->se); 8073 } 8074 8075 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8076 { 8077 struct cfs_rq *cfs_rq; 8078 struct sched_entity *se; 8079 int i; 8080 8081 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8082 if (!tg->cfs_rq) 8083 goto err; 8084 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8085 if (!tg->se) 8086 goto err; 8087 8088 tg->shares = NICE_0_LOAD; 8089 8090 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8091 8092 for_each_possible_cpu(i) { 8093 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8094 GFP_KERNEL, cpu_to_node(i)); 8095 if (!cfs_rq) 8096 goto err; 8097 8098 se = kzalloc_node(sizeof(struct sched_entity), 8099 GFP_KERNEL, cpu_to_node(i)); 8100 if (!se) 8101 goto err_free_rq; 8102 8103 init_cfs_rq(cfs_rq); 8104 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8105 init_entity_runnable_average(se); 8106 } 8107 8108 return 1; 8109 8110 err_free_rq: 8111 kfree(cfs_rq); 8112 err: 8113 return 0; 8114 } 8115 8116 void unregister_fair_sched_group(struct task_group *tg, int cpu) 8117 { 8118 struct rq *rq = cpu_rq(cpu); 8119 unsigned long flags; 8120 8121 /* 8122 * Only empty task groups can be destroyed; so we can speculatively 8123 * check on_list without danger of it being re-added. 8124 */ 8125 if (!tg->cfs_rq[cpu]->on_list) 8126 return; 8127 8128 raw_spin_lock_irqsave(&rq->lock, flags); 8129 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8130 raw_spin_unlock_irqrestore(&rq->lock, flags); 8131 } 8132 8133 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8134 struct sched_entity *se, int cpu, 8135 struct sched_entity *parent) 8136 { 8137 struct rq *rq = cpu_rq(cpu); 8138 8139 cfs_rq->tg = tg; 8140 cfs_rq->rq = rq; 8141 init_cfs_rq_runtime(cfs_rq); 8142 8143 tg->cfs_rq[cpu] = cfs_rq; 8144 tg->se[cpu] = se; 8145 8146 /* se could be NULL for root_task_group */ 8147 if (!se) 8148 return; 8149 8150 if (!parent) { 8151 se->cfs_rq = &rq->cfs; 8152 se->depth = 0; 8153 } else { 8154 se->cfs_rq = parent->my_q; 8155 se->depth = parent->depth + 1; 8156 } 8157 8158 se->my_q = cfs_rq; 8159 /* guarantee group entities always have weight */ 8160 update_load_set(&se->load, NICE_0_LOAD); 8161 se->parent = parent; 8162 } 8163 8164 static DEFINE_MUTEX(shares_mutex); 8165 8166 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8167 { 8168 int i; 8169 unsigned long flags; 8170 8171 /* 8172 * We can't change the weight of the root cgroup. 8173 */ 8174 if (!tg->se[0]) 8175 return -EINVAL; 8176 8177 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8178 8179 mutex_lock(&shares_mutex); 8180 if (tg->shares == shares) 8181 goto done; 8182 8183 tg->shares = shares; 8184 for_each_possible_cpu(i) { 8185 struct rq *rq = cpu_rq(i); 8186 struct sched_entity *se; 8187 8188 se = tg->se[i]; 8189 /* Propagate contribution to hierarchy */ 8190 raw_spin_lock_irqsave(&rq->lock, flags); 8191 8192 /* Possible calls to update_curr() need rq clock */ 8193 update_rq_clock(rq); 8194 for_each_sched_entity(se) 8195 update_cfs_shares(group_cfs_rq(se)); 8196 raw_spin_unlock_irqrestore(&rq->lock, flags); 8197 } 8198 8199 done: 8200 mutex_unlock(&shares_mutex); 8201 return 0; 8202 } 8203 #else /* CONFIG_FAIR_GROUP_SCHED */ 8204 8205 void free_fair_sched_group(struct task_group *tg) { } 8206 8207 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8208 { 8209 return 1; 8210 } 8211 8212 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 8213 8214 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8215 8216 8217 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8218 { 8219 struct sched_entity *se = &task->se; 8220 unsigned int rr_interval = 0; 8221 8222 /* 8223 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8224 * idle runqueue: 8225 */ 8226 if (rq->cfs.load.weight) 8227 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8228 8229 return rr_interval; 8230 } 8231 8232 /* 8233 * All the scheduling class methods: 8234 */ 8235 const struct sched_class fair_sched_class = { 8236 .next = &idle_sched_class, 8237 .enqueue_task = enqueue_task_fair, 8238 .dequeue_task = dequeue_task_fair, 8239 .yield_task = yield_task_fair, 8240 .yield_to_task = yield_to_task_fair, 8241 8242 .check_preempt_curr = check_preempt_wakeup, 8243 8244 .pick_next_task = pick_next_task_fair, 8245 .put_prev_task = put_prev_task_fair, 8246 8247 #ifdef CONFIG_SMP 8248 .select_task_rq = select_task_rq_fair, 8249 .migrate_task_rq = migrate_task_rq_fair, 8250 8251 .rq_online = rq_online_fair, 8252 .rq_offline = rq_offline_fair, 8253 8254 .task_waking = task_waking_fair, 8255 .task_dead = task_dead_fair, 8256 .set_cpus_allowed = set_cpus_allowed_common, 8257 #endif 8258 8259 .set_curr_task = set_curr_task_fair, 8260 .task_tick = task_tick_fair, 8261 .task_fork = task_fork_fair, 8262 8263 .prio_changed = prio_changed_fair, 8264 .switched_from = switched_from_fair, 8265 .switched_to = switched_to_fair, 8266 8267 .get_rr_interval = get_rr_interval_fair, 8268 8269 .update_curr = update_curr_fair, 8270 8271 #ifdef CONFIG_FAIR_GROUP_SCHED 8272 .task_move_group = task_move_group_fair, 8273 #endif 8274 }; 8275 8276 #ifdef CONFIG_SCHED_DEBUG 8277 void print_cfs_stats(struct seq_file *m, int cpu) 8278 { 8279 struct cfs_rq *cfs_rq; 8280 8281 rcu_read_lock(); 8282 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8283 print_cfs_rq(m, cpu, cfs_rq); 8284 rcu_read_unlock(); 8285 } 8286 8287 #ifdef CONFIG_NUMA_BALANCING 8288 void show_numa_stats(struct task_struct *p, struct seq_file *m) 8289 { 8290 int node; 8291 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 8292 8293 for_each_online_node(node) { 8294 if (p->numa_faults) { 8295 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 8296 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 8297 } 8298 if (p->numa_group) { 8299 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 8300 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 8301 } 8302 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 8303 } 8304 } 8305 #endif /* CONFIG_NUMA_BALANCING */ 8306 #endif /* CONFIG_SCHED_DEBUG */ 8307 8308 __init void init_sched_fair_class(void) 8309 { 8310 #ifdef CONFIG_SMP 8311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8312 8313 #ifdef CONFIG_NO_HZ_COMMON 8314 nohz.next_balance = jiffies; 8315 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8316 cpu_notifier(sched_ilb_notifier, 0); 8317 #endif 8318 #endif /* SMP */ 8319 8320 } 8321