xref: /linux/kernel/sched/fair.c (revision c22760885fd6f7161fabde8e7db63d7f085b125a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
64  * Applies only when SCHED_IDLE tasks compete with normal tasks.
65  *
66  * (default: 0.75 msec)
67  */
68 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
69 
70 /*
71  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
72  */
73 static unsigned int sched_nr_latency = 8;
74 
75 /*
76  * After fork, child runs first. If set to 0 (default) then
77  * parent will (try to) run first.
78  */
79 unsigned int sysctl_sched_child_runs_first __read_mostly;
80 
81 /*
82  * SCHED_OTHER wake-up granularity.
83  *
84  * This option delays the preemption effects of decoupled workloads
85  * and reduces their over-scheduling. Synchronous workloads will still
86  * have immediate wakeup/sleep latencies.
87  *
88  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
89  */
90 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
91 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
94 
95 int sched_thermal_decay_shift;
96 static int __init setup_sched_thermal_decay_shift(char *str)
97 {
98 	int _shift = 0;
99 
100 	if (kstrtoint(str, 0, &_shift))
101 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
102 
103 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
104 	return 1;
105 }
106 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
107 
108 #ifdef CONFIG_SMP
109 /*
110  * For asym packing, by default the lower numbered CPU has higher priority.
111  */
112 int __weak arch_asym_cpu_priority(int cpu)
113 {
114 	return -cpu;
115 }
116 
117 /*
118  * The margin used when comparing utilization with CPU capacity.
119  *
120  * (default: ~20%)
121  */
122 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
123 
124 /*
125  * The margin used when comparing CPU capacities.
126  * is 'cap1' noticeably greater than 'cap2'
127  *
128  * (default: ~5%)
129  */
130 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
131 #endif
132 
133 #ifdef CONFIG_CFS_BANDWIDTH
134 /*
135  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
136  * each time a cfs_rq requests quota.
137  *
138  * Note: in the case that the slice exceeds the runtime remaining (either due
139  * to consumption or the quota being specified to be smaller than the slice)
140  * we will always only issue the remaining available time.
141  *
142  * (default: 5 msec, units: microseconds)
143  */
144 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
145 #endif
146 
147 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
148 {
149 	lw->weight += inc;
150 	lw->inv_weight = 0;
151 }
152 
153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
154 {
155 	lw->weight -= dec;
156 	lw->inv_weight = 0;
157 }
158 
159 static inline void update_load_set(struct load_weight *lw, unsigned long w)
160 {
161 	lw->weight = w;
162 	lw->inv_weight = 0;
163 }
164 
165 /*
166  * Increase the granularity value when there are more CPUs,
167  * because with more CPUs the 'effective latency' as visible
168  * to users decreases. But the relationship is not linear,
169  * so pick a second-best guess by going with the log2 of the
170  * number of CPUs.
171  *
172  * This idea comes from the SD scheduler of Con Kolivas:
173  */
174 static unsigned int get_update_sysctl_factor(void)
175 {
176 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
177 	unsigned int factor;
178 
179 	switch (sysctl_sched_tunable_scaling) {
180 	case SCHED_TUNABLESCALING_NONE:
181 		factor = 1;
182 		break;
183 	case SCHED_TUNABLESCALING_LINEAR:
184 		factor = cpus;
185 		break;
186 	case SCHED_TUNABLESCALING_LOG:
187 	default:
188 		factor = 1 + ilog2(cpus);
189 		break;
190 	}
191 
192 	return factor;
193 }
194 
195 static void update_sysctl(void)
196 {
197 	unsigned int factor = get_update_sysctl_factor();
198 
199 #define SET_SYSCTL(name) \
200 	(sysctl_##name = (factor) * normalized_sysctl_##name)
201 	SET_SYSCTL(sched_min_granularity);
202 	SET_SYSCTL(sched_latency);
203 	SET_SYSCTL(sched_wakeup_granularity);
204 #undef SET_SYSCTL
205 }
206 
207 void __init sched_init_granularity(void)
208 {
209 	update_sysctl();
210 }
211 
212 #define WMULT_CONST	(~0U)
213 #define WMULT_SHIFT	32
214 
215 static void __update_inv_weight(struct load_weight *lw)
216 {
217 	unsigned long w;
218 
219 	if (likely(lw->inv_weight))
220 		return;
221 
222 	w = scale_load_down(lw->weight);
223 
224 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
225 		lw->inv_weight = 1;
226 	else if (unlikely(!w))
227 		lw->inv_weight = WMULT_CONST;
228 	else
229 		lw->inv_weight = WMULT_CONST / w;
230 }
231 
232 /*
233  * delta_exec * weight / lw.weight
234  *   OR
235  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
236  *
237  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
238  * we're guaranteed shift stays positive because inv_weight is guaranteed to
239  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
240  *
241  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
242  * weight/lw.weight <= 1, and therefore our shift will also be positive.
243  */
244 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
245 {
246 	u64 fact = scale_load_down(weight);
247 	u32 fact_hi = (u32)(fact >> 32);
248 	int shift = WMULT_SHIFT;
249 	int fs;
250 
251 	__update_inv_weight(lw);
252 
253 	if (unlikely(fact_hi)) {
254 		fs = fls(fact_hi);
255 		shift -= fs;
256 		fact >>= fs;
257 	}
258 
259 	fact = mul_u32_u32(fact, lw->inv_weight);
260 
261 	fact_hi = (u32)(fact >> 32);
262 	if (fact_hi) {
263 		fs = fls(fact_hi);
264 		shift -= fs;
265 		fact >>= fs;
266 	}
267 
268 	return mul_u64_u32_shr(delta_exec, fact, shift);
269 }
270 
271 
272 const struct sched_class fair_sched_class;
273 
274 /**************************************************************
275  * CFS operations on generic schedulable entities:
276  */
277 
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
285 {
286 	if (!path)
287 		return;
288 
289 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
290 		autogroup_path(cfs_rq->tg, path, len);
291 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
292 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
293 	else
294 		strlcpy(path, "(null)", len);
295 }
296 
297 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
298 {
299 	struct rq *rq = rq_of(cfs_rq);
300 	int cpu = cpu_of(rq);
301 
302 	if (cfs_rq->on_list)
303 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
304 
305 	cfs_rq->on_list = 1;
306 
307 	/*
308 	 * Ensure we either appear before our parent (if already
309 	 * enqueued) or force our parent to appear after us when it is
310 	 * enqueued. The fact that we always enqueue bottom-up
311 	 * reduces this to two cases and a special case for the root
312 	 * cfs_rq. Furthermore, it also means that we will always reset
313 	 * tmp_alone_branch either when the branch is connected
314 	 * to a tree or when we reach the top of the tree
315 	 */
316 	if (cfs_rq->tg->parent &&
317 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
318 		/*
319 		 * If parent is already on the list, we add the child
320 		 * just before. Thanks to circular linked property of
321 		 * the list, this means to put the child at the tail
322 		 * of the list that starts by parent.
323 		 */
324 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 		/*
327 		 * The branch is now connected to its tree so we can
328 		 * reset tmp_alone_branch to the beginning of the
329 		 * list.
330 		 */
331 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
332 		return true;
333 	}
334 
335 	if (!cfs_rq->tg->parent) {
336 		/*
337 		 * cfs rq without parent should be put
338 		 * at the tail of the list.
339 		 */
340 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
341 			&rq->leaf_cfs_rq_list);
342 		/*
343 		 * We have reach the top of a tree so we can reset
344 		 * tmp_alone_branch to the beginning of the list.
345 		 */
346 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 		return true;
348 	}
349 
350 	/*
351 	 * The parent has not already been added so we want to
352 	 * make sure that it will be put after us.
353 	 * tmp_alone_branch points to the begin of the branch
354 	 * where we will add parent.
355 	 */
356 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
357 	/*
358 	 * update tmp_alone_branch to points to the new begin
359 	 * of the branch
360 	 */
361 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
362 	return false;
363 }
364 
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366 {
367 	if (cfs_rq->on_list) {
368 		struct rq *rq = rq_of(cfs_rq);
369 
370 		/*
371 		 * With cfs_rq being unthrottled/throttled during an enqueue,
372 		 * it can happen the tmp_alone_branch points the a leaf that
373 		 * we finally want to del. In this case, tmp_alone_branch moves
374 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
375 		 * at the end of the enqueue.
376 		 */
377 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
378 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
379 
380 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
381 		cfs_rq->on_list = 0;
382 	}
383 }
384 
385 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
386 {
387 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
388 }
389 
390 /* Iterate thr' all leaf cfs_rq's on a runqueue */
391 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
392 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
393 				 leaf_cfs_rq_list)
394 
395 /* Do the two (enqueued) entities belong to the same group ? */
396 static inline struct cfs_rq *
397 is_same_group(struct sched_entity *se, struct sched_entity *pse)
398 {
399 	if (se->cfs_rq == pse->cfs_rq)
400 		return se->cfs_rq;
401 
402 	return NULL;
403 }
404 
405 static inline struct sched_entity *parent_entity(struct sched_entity *se)
406 {
407 	return se->parent;
408 }
409 
410 static void
411 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
412 {
413 	int se_depth, pse_depth;
414 
415 	/*
416 	 * preemption test can be made between sibling entities who are in the
417 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
418 	 * both tasks until we find their ancestors who are siblings of common
419 	 * parent.
420 	 */
421 
422 	/* First walk up until both entities are at same depth */
423 	se_depth = (*se)->depth;
424 	pse_depth = (*pse)->depth;
425 
426 	while (se_depth > pse_depth) {
427 		se_depth--;
428 		*se = parent_entity(*se);
429 	}
430 
431 	while (pse_depth > se_depth) {
432 		pse_depth--;
433 		*pse = parent_entity(*pse);
434 	}
435 
436 	while (!is_same_group(*se, *pse)) {
437 		*se = parent_entity(*se);
438 		*pse = parent_entity(*pse);
439 	}
440 }
441 
442 static int tg_is_idle(struct task_group *tg)
443 {
444 	return tg->idle > 0;
445 }
446 
447 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
448 {
449 	return cfs_rq->idle > 0;
450 }
451 
452 static int se_is_idle(struct sched_entity *se)
453 {
454 	if (entity_is_task(se))
455 		return task_has_idle_policy(task_of(se));
456 	return cfs_rq_is_idle(group_cfs_rq(se));
457 }
458 
459 #else	/* !CONFIG_FAIR_GROUP_SCHED */
460 
461 #define for_each_sched_entity(se) \
462 		for (; se; se = NULL)
463 
464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465 {
466 	if (path)
467 		strlcpy(path, "(null)", len);
468 }
469 
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 {
472 	return true;
473 }
474 
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476 {
477 }
478 
479 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480 {
481 }
482 
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
484 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
485 
486 static inline struct sched_entity *parent_entity(struct sched_entity *se)
487 {
488 	return NULL;
489 }
490 
491 static inline void
492 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493 {
494 }
495 
496 static inline int tg_is_idle(struct task_group *tg)
497 {
498 	return 0;
499 }
500 
501 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
502 {
503 	return 0;
504 }
505 
506 static int se_is_idle(struct sched_entity *se)
507 {
508 	return 0;
509 }
510 
511 #endif	/* CONFIG_FAIR_GROUP_SCHED */
512 
513 static __always_inline
514 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
515 
516 /**************************************************************
517  * Scheduling class tree data structure manipulation methods:
518  */
519 
520 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
521 {
522 	s64 delta = (s64)(vruntime - max_vruntime);
523 	if (delta > 0)
524 		max_vruntime = vruntime;
525 
526 	return max_vruntime;
527 }
528 
529 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
530 {
531 	s64 delta = (s64)(vruntime - min_vruntime);
532 	if (delta < 0)
533 		min_vruntime = vruntime;
534 
535 	return min_vruntime;
536 }
537 
538 static inline bool entity_before(struct sched_entity *a,
539 				struct sched_entity *b)
540 {
541 	return (s64)(a->vruntime - b->vruntime) < 0;
542 }
543 
544 #define __node_2_se(node) \
545 	rb_entry((node), struct sched_entity, run_node)
546 
547 static void update_min_vruntime(struct cfs_rq *cfs_rq)
548 {
549 	struct sched_entity *curr = cfs_rq->curr;
550 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
551 
552 	u64 vruntime = cfs_rq->min_vruntime;
553 
554 	if (curr) {
555 		if (curr->on_rq)
556 			vruntime = curr->vruntime;
557 		else
558 			curr = NULL;
559 	}
560 
561 	if (leftmost) { /* non-empty tree */
562 		struct sched_entity *se = __node_2_se(leftmost);
563 
564 		if (!curr)
565 			vruntime = se->vruntime;
566 		else
567 			vruntime = min_vruntime(vruntime, se->vruntime);
568 	}
569 
570 	/* ensure we never gain time by being placed backwards. */
571 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
572 #ifndef CONFIG_64BIT
573 	smp_wmb();
574 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
575 #endif
576 }
577 
578 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
579 {
580 	return entity_before(__node_2_se(a), __node_2_se(b));
581 }
582 
583 /*
584  * Enqueue an entity into the rb-tree:
585  */
586 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
589 }
590 
591 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
592 {
593 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595 
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
599 
600 	if (!left)
601 		return NULL;
602 
603 	return __node_2_se(left);
604 }
605 
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 	struct rb_node *next = rb_next(&se->run_node);
609 
610 	if (!next)
611 		return NULL;
612 
613 	return __node_2_se(next);
614 }
615 
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
620 
621 	if (!last)
622 		return NULL;
623 
624 	return __node_2_se(last);
625 }
626 
627 /**************************************************************
628  * Scheduling class statistics methods:
629  */
630 
631 int sched_update_scaling(void)
632 {
633 	unsigned int factor = get_update_sysctl_factor();
634 
635 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 					sysctl_sched_min_granularity);
637 
638 #define WRT_SYSCTL(name) \
639 	(normalized_sysctl_##name = sysctl_##name / (factor))
640 	WRT_SYSCTL(sched_min_granularity);
641 	WRT_SYSCTL(sched_latency);
642 	WRT_SYSCTL(sched_wakeup_granularity);
643 #undef WRT_SYSCTL
644 
645 	return 0;
646 }
647 #endif
648 
649 /*
650  * delta /= w
651  */
652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
653 {
654 	if (unlikely(se->load.weight != NICE_0_LOAD))
655 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
656 
657 	return delta;
658 }
659 
660 /*
661  * The idea is to set a period in which each task runs once.
662  *
663  * When there are too many tasks (sched_nr_latency) we have to stretch
664  * this period because otherwise the slices get too small.
665  *
666  * p = (nr <= nl) ? l : l*nr/nl
667  */
668 static u64 __sched_period(unsigned long nr_running)
669 {
670 	if (unlikely(nr_running > sched_nr_latency))
671 		return nr_running * sysctl_sched_min_granularity;
672 	else
673 		return sysctl_sched_latency;
674 }
675 
676 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
677 
678 /*
679  * We calculate the wall-time slice from the period by taking a part
680  * proportional to the weight.
681  *
682  * s = p*P[w/rw]
683  */
684 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 {
686 	unsigned int nr_running = cfs_rq->nr_running;
687 	struct sched_entity *init_se = se;
688 	unsigned int min_gran;
689 	u64 slice;
690 
691 	if (sched_feat(ALT_PERIOD))
692 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
693 
694 	slice = __sched_period(nr_running + !se->on_rq);
695 
696 	for_each_sched_entity(se) {
697 		struct load_weight *load;
698 		struct load_weight lw;
699 		struct cfs_rq *qcfs_rq;
700 
701 		qcfs_rq = cfs_rq_of(se);
702 		load = &qcfs_rq->load;
703 
704 		if (unlikely(!se->on_rq)) {
705 			lw = qcfs_rq->load;
706 
707 			update_load_add(&lw, se->load.weight);
708 			load = &lw;
709 		}
710 		slice = __calc_delta(slice, se->load.weight, load);
711 	}
712 
713 	if (sched_feat(BASE_SLICE)) {
714 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
715 			min_gran = sysctl_sched_idle_min_granularity;
716 		else
717 			min_gran = sysctl_sched_min_granularity;
718 
719 		slice = max_t(u64, slice, min_gran);
720 	}
721 
722 	return slice;
723 }
724 
725 /*
726  * We calculate the vruntime slice of a to-be-inserted task.
727  *
728  * vs = s/w
729  */
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 }
734 
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
737 
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
741 
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
744 {
745 	struct sched_avg *sa = &se->avg;
746 
747 	memset(sa, 0, sizeof(*sa));
748 
749 	/*
750 	 * Tasks are initialized with full load to be seen as heavy tasks until
751 	 * they get a chance to stabilize to their real load level.
752 	 * Group entities are initialized with zero load to reflect the fact that
753 	 * nothing has been attached to the task group yet.
754 	 */
755 	if (entity_is_task(se))
756 		sa->load_avg = scale_load_down(se->load.weight);
757 
758 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760 
761 static void attach_entity_cfs_rq(struct sched_entity *se);
762 
763 /*
764  * With new tasks being created, their initial util_avgs are extrapolated
765  * based on the cfs_rq's current util_avg:
766  *
767  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768  *
769  * However, in many cases, the above util_avg does not give a desired
770  * value. Moreover, the sum of the util_avgs may be divergent, such
771  * as when the series is a harmonic series.
772  *
773  * To solve this problem, we also cap the util_avg of successive tasks to
774  * only 1/2 of the left utilization budget:
775  *
776  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
777  *
778  * where n denotes the nth task and cpu_scale the CPU capacity.
779  *
780  * For example, for a CPU with 1024 of capacity, a simplest series from
781  * the beginning would be like:
782  *
783  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
784  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785  *
786  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787  * if util_avg > util_avg_cap.
788  */
789 void post_init_entity_util_avg(struct task_struct *p)
790 {
791 	struct sched_entity *se = &p->se;
792 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 	struct sched_avg *sa = &se->avg;
794 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
796 
797 	if (cap > 0) {
798 		if (cfs_rq->avg.util_avg != 0) {
799 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
800 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801 
802 			if (sa->util_avg > cap)
803 				sa->util_avg = cap;
804 		} else {
805 			sa->util_avg = cap;
806 		}
807 	}
808 
809 	sa->runnable_avg = sa->util_avg;
810 
811 	if (p->sched_class != &fair_sched_class) {
812 		/*
813 		 * For !fair tasks do:
814 		 *
815 		update_cfs_rq_load_avg(now, cfs_rq);
816 		attach_entity_load_avg(cfs_rq, se);
817 		switched_from_fair(rq, p);
818 		 *
819 		 * such that the next switched_to_fair() has the
820 		 * expected state.
821 		 */
822 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 		return;
824 	}
825 
826 	attach_entity_cfs_rq(se);
827 }
828 
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
837 {
838 }
839 #endif /* CONFIG_SMP */
840 
841 /*
842  * Update the current task's runtime statistics.
843  */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 	struct sched_entity *curr = cfs_rq->curr;
847 	u64 now = rq_clock_task(rq_of(cfs_rq));
848 	u64 delta_exec;
849 
850 	if (unlikely(!curr))
851 		return;
852 
853 	delta_exec = now - curr->exec_start;
854 	if (unlikely((s64)delta_exec <= 0))
855 		return;
856 
857 	curr->exec_start = now;
858 
859 	if (schedstat_enabled()) {
860 		struct sched_statistics *stats;
861 
862 		stats = __schedstats_from_se(curr);
863 		__schedstat_set(stats->exec_max,
864 				max(delta_exec, stats->exec_max));
865 	}
866 
867 	curr->sum_exec_runtime += delta_exec;
868 	schedstat_add(cfs_rq->exec_clock, delta_exec);
869 
870 	curr->vruntime += calc_delta_fair(delta_exec, curr);
871 	update_min_vruntime(cfs_rq);
872 
873 	if (entity_is_task(curr)) {
874 		struct task_struct *curtask = task_of(curr);
875 
876 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
877 		cgroup_account_cputime(curtask, delta_exec);
878 		account_group_exec_runtime(curtask, delta_exec);
879 	}
880 
881 	account_cfs_rq_runtime(cfs_rq, delta_exec);
882 }
883 
884 static void update_curr_fair(struct rq *rq)
885 {
886 	update_curr(cfs_rq_of(&rq->curr->se));
887 }
888 
889 static inline void
890 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
891 {
892 	struct sched_statistics *stats;
893 	struct task_struct *p = NULL;
894 
895 	if (!schedstat_enabled())
896 		return;
897 
898 	stats = __schedstats_from_se(se);
899 
900 	if (entity_is_task(se))
901 		p = task_of(se);
902 
903 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
904 }
905 
906 static inline void
907 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 	struct sched_statistics *stats;
910 	struct task_struct *p = NULL;
911 
912 	if (!schedstat_enabled())
913 		return;
914 
915 	stats = __schedstats_from_se(se);
916 
917 	/*
918 	 * When the sched_schedstat changes from 0 to 1, some sched se
919 	 * maybe already in the runqueue, the se->statistics.wait_start
920 	 * will be 0.So it will let the delta wrong. We need to avoid this
921 	 * scenario.
922 	 */
923 	if (unlikely(!schedstat_val(stats->wait_start)))
924 		return;
925 
926 	if (entity_is_task(se))
927 		p = task_of(se);
928 
929 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
930 }
931 
932 static inline void
933 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 	struct sched_statistics *stats;
936 	struct task_struct *tsk = NULL;
937 
938 	if (!schedstat_enabled())
939 		return;
940 
941 	stats = __schedstats_from_se(se);
942 
943 	if (entity_is_task(se))
944 		tsk = task_of(se);
945 
946 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
947 }
948 
949 /*
950  * Task is being enqueued - update stats:
951  */
952 static inline void
953 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
954 {
955 	if (!schedstat_enabled())
956 		return;
957 
958 	/*
959 	 * Are we enqueueing a waiting task? (for current tasks
960 	 * a dequeue/enqueue event is a NOP)
961 	 */
962 	if (se != cfs_rq->curr)
963 		update_stats_wait_start_fair(cfs_rq, se);
964 
965 	if (flags & ENQUEUE_WAKEUP)
966 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
967 }
968 
969 static inline void
970 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
971 {
972 
973 	if (!schedstat_enabled())
974 		return;
975 
976 	/*
977 	 * Mark the end of the wait period if dequeueing a
978 	 * waiting task:
979 	 */
980 	if (se != cfs_rq->curr)
981 		update_stats_wait_end_fair(cfs_rq, se);
982 
983 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
984 		struct task_struct *tsk = task_of(se);
985 		unsigned int state;
986 
987 		/* XXX racy against TTWU */
988 		state = READ_ONCE(tsk->__state);
989 		if (state & TASK_INTERRUPTIBLE)
990 			__schedstat_set(tsk->stats.sleep_start,
991 				      rq_clock(rq_of(cfs_rq)));
992 		if (state & TASK_UNINTERRUPTIBLE)
993 			__schedstat_set(tsk->stats.block_start,
994 				      rq_clock(rq_of(cfs_rq)));
995 	}
996 }
997 
998 /*
999  * We are picking a new current task - update its stats:
1000  */
1001 static inline void
1002 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1003 {
1004 	/*
1005 	 * We are starting a new run period:
1006 	 */
1007 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1008 }
1009 
1010 /**************************************************
1011  * Scheduling class queueing methods:
1012  */
1013 
1014 #ifdef CONFIG_NUMA_BALANCING
1015 /*
1016  * Approximate time to scan a full NUMA task in ms. The task scan period is
1017  * calculated based on the tasks virtual memory size and
1018  * numa_balancing_scan_size.
1019  */
1020 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1021 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1022 
1023 /* Portion of address space to scan in MB */
1024 unsigned int sysctl_numa_balancing_scan_size = 256;
1025 
1026 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1027 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1028 
1029 struct numa_group {
1030 	refcount_t refcount;
1031 
1032 	spinlock_t lock; /* nr_tasks, tasks */
1033 	int nr_tasks;
1034 	pid_t gid;
1035 	int active_nodes;
1036 
1037 	struct rcu_head rcu;
1038 	unsigned long total_faults;
1039 	unsigned long max_faults_cpu;
1040 	/*
1041 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1042 	 *
1043 	 * Faults_cpu is used to decide whether memory should move
1044 	 * towards the CPU. As a consequence, these stats are weighted
1045 	 * more by CPU use than by memory faults.
1046 	 */
1047 	unsigned long faults[];
1048 };
1049 
1050 /*
1051  * For functions that can be called in multiple contexts that permit reading
1052  * ->numa_group (see struct task_struct for locking rules).
1053  */
1054 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1055 {
1056 	return rcu_dereference_check(p->numa_group, p == current ||
1057 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1058 }
1059 
1060 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1061 {
1062 	return rcu_dereference_protected(p->numa_group, p == current);
1063 }
1064 
1065 static inline unsigned long group_faults_priv(struct numa_group *ng);
1066 static inline unsigned long group_faults_shared(struct numa_group *ng);
1067 
1068 static unsigned int task_nr_scan_windows(struct task_struct *p)
1069 {
1070 	unsigned long rss = 0;
1071 	unsigned long nr_scan_pages;
1072 
1073 	/*
1074 	 * Calculations based on RSS as non-present and empty pages are skipped
1075 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1076 	 * on resident pages
1077 	 */
1078 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1079 	rss = get_mm_rss(p->mm);
1080 	if (!rss)
1081 		rss = nr_scan_pages;
1082 
1083 	rss = round_up(rss, nr_scan_pages);
1084 	return rss / nr_scan_pages;
1085 }
1086 
1087 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1088 #define MAX_SCAN_WINDOW 2560
1089 
1090 static unsigned int task_scan_min(struct task_struct *p)
1091 {
1092 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1093 	unsigned int scan, floor;
1094 	unsigned int windows = 1;
1095 
1096 	if (scan_size < MAX_SCAN_WINDOW)
1097 		windows = MAX_SCAN_WINDOW / scan_size;
1098 	floor = 1000 / windows;
1099 
1100 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1101 	return max_t(unsigned int, floor, scan);
1102 }
1103 
1104 static unsigned int task_scan_start(struct task_struct *p)
1105 {
1106 	unsigned long smin = task_scan_min(p);
1107 	unsigned long period = smin;
1108 	struct numa_group *ng;
1109 
1110 	/* Scale the maximum scan period with the amount of shared memory. */
1111 	rcu_read_lock();
1112 	ng = rcu_dereference(p->numa_group);
1113 	if (ng) {
1114 		unsigned long shared = group_faults_shared(ng);
1115 		unsigned long private = group_faults_priv(ng);
1116 
1117 		period *= refcount_read(&ng->refcount);
1118 		period *= shared + 1;
1119 		period /= private + shared + 1;
1120 	}
1121 	rcu_read_unlock();
1122 
1123 	return max(smin, period);
1124 }
1125 
1126 static unsigned int task_scan_max(struct task_struct *p)
1127 {
1128 	unsigned long smin = task_scan_min(p);
1129 	unsigned long smax;
1130 	struct numa_group *ng;
1131 
1132 	/* Watch for min being lower than max due to floor calculations */
1133 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1134 
1135 	/* Scale the maximum scan period with the amount of shared memory. */
1136 	ng = deref_curr_numa_group(p);
1137 	if (ng) {
1138 		unsigned long shared = group_faults_shared(ng);
1139 		unsigned long private = group_faults_priv(ng);
1140 		unsigned long period = smax;
1141 
1142 		period *= refcount_read(&ng->refcount);
1143 		period *= shared + 1;
1144 		period /= private + shared + 1;
1145 
1146 		smax = max(smax, period);
1147 	}
1148 
1149 	return max(smin, smax);
1150 }
1151 
1152 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1153 {
1154 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1155 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1156 }
1157 
1158 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1159 {
1160 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1161 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1162 }
1163 
1164 /* Shared or private faults. */
1165 #define NR_NUMA_HINT_FAULT_TYPES 2
1166 
1167 /* Memory and CPU locality */
1168 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1169 
1170 /* Averaged statistics, and temporary buffers. */
1171 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1172 
1173 pid_t task_numa_group_id(struct task_struct *p)
1174 {
1175 	struct numa_group *ng;
1176 	pid_t gid = 0;
1177 
1178 	rcu_read_lock();
1179 	ng = rcu_dereference(p->numa_group);
1180 	if (ng)
1181 		gid = ng->gid;
1182 	rcu_read_unlock();
1183 
1184 	return gid;
1185 }
1186 
1187 /*
1188  * The averaged statistics, shared & private, memory & CPU,
1189  * occupy the first half of the array. The second half of the
1190  * array is for current counters, which are averaged into the
1191  * first set by task_numa_placement.
1192  */
1193 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1194 {
1195 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1196 }
1197 
1198 static inline unsigned long task_faults(struct task_struct *p, int nid)
1199 {
1200 	if (!p->numa_faults)
1201 		return 0;
1202 
1203 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1204 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1205 }
1206 
1207 static inline unsigned long group_faults(struct task_struct *p, int nid)
1208 {
1209 	struct numa_group *ng = deref_task_numa_group(p);
1210 
1211 	if (!ng)
1212 		return 0;
1213 
1214 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217 
1218 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1219 {
1220 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1221 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1222 }
1223 
1224 static inline unsigned long group_faults_priv(struct numa_group *ng)
1225 {
1226 	unsigned long faults = 0;
1227 	int node;
1228 
1229 	for_each_online_node(node) {
1230 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1231 	}
1232 
1233 	return faults;
1234 }
1235 
1236 static inline unsigned long group_faults_shared(struct numa_group *ng)
1237 {
1238 	unsigned long faults = 0;
1239 	int node;
1240 
1241 	for_each_online_node(node) {
1242 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1243 	}
1244 
1245 	return faults;
1246 }
1247 
1248 /*
1249  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1250  * considered part of a numa group's pseudo-interleaving set. Migrations
1251  * between these nodes are slowed down, to allow things to settle down.
1252  */
1253 #define ACTIVE_NODE_FRACTION 3
1254 
1255 static bool numa_is_active_node(int nid, struct numa_group *ng)
1256 {
1257 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1258 }
1259 
1260 /* Handle placement on systems where not all nodes are directly connected. */
1261 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1262 					int maxdist, bool task)
1263 {
1264 	unsigned long score = 0;
1265 	int node;
1266 
1267 	/*
1268 	 * All nodes are directly connected, and the same distance
1269 	 * from each other. No need for fancy placement algorithms.
1270 	 */
1271 	if (sched_numa_topology_type == NUMA_DIRECT)
1272 		return 0;
1273 
1274 	/*
1275 	 * This code is called for each node, introducing N^2 complexity,
1276 	 * which should be ok given the number of nodes rarely exceeds 8.
1277 	 */
1278 	for_each_online_node(node) {
1279 		unsigned long faults;
1280 		int dist = node_distance(nid, node);
1281 
1282 		/*
1283 		 * The furthest away nodes in the system are not interesting
1284 		 * for placement; nid was already counted.
1285 		 */
1286 		if (dist == sched_max_numa_distance || node == nid)
1287 			continue;
1288 
1289 		/*
1290 		 * On systems with a backplane NUMA topology, compare groups
1291 		 * of nodes, and move tasks towards the group with the most
1292 		 * memory accesses. When comparing two nodes at distance
1293 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1294 		 * of each group. Skip other nodes.
1295 		 */
1296 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1297 					dist >= maxdist)
1298 			continue;
1299 
1300 		/* Add up the faults from nearby nodes. */
1301 		if (task)
1302 			faults = task_faults(p, node);
1303 		else
1304 			faults = group_faults(p, node);
1305 
1306 		/*
1307 		 * On systems with a glueless mesh NUMA topology, there are
1308 		 * no fixed "groups of nodes". Instead, nodes that are not
1309 		 * directly connected bounce traffic through intermediate
1310 		 * nodes; a numa_group can occupy any set of nodes.
1311 		 * The further away a node is, the less the faults count.
1312 		 * This seems to result in good task placement.
1313 		 */
1314 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1315 			faults *= (sched_max_numa_distance - dist);
1316 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1317 		}
1318 
1319 		score += faults;
1320 	}
1321 
1322 	return score;
1323 }
1324 
1325 /*
1326  * These return the fraction of accesses done by a particular task, or
1327  * task group, on a particular numa node.  The group weight is given a
1328  * larger multiplier, in order to group tasks together that are almost
1329  * evenly spread out between numa nodes.
1330  */
1331 static inline unsigned long task_weight(struct task_struct *p, int nid,
1332 					int dist)
1333 {
1334 	unsigned long faults, total_faults;
1335 
1336 	if (!p->numa_faults)
1337 		return 0;
1338 
1339 	total_faults = p->total_numa_faults;
1340 
1341 	if (!total_faults)
1342 		return 0;
1343 
1344 	faults = task_faults(p, nid);
1345 	faults += score_nearby_nodes(p, nid, dist, true);
1346 
1347 	return 1000 * faults / total_faults;
1348 }
1349 
1350 static inline unsigned long group_weight(struct task_struct *p, int nid,
1351 					 int dist)
1352 {
1353 	struct numa_group *ng = deref_task_numa_group(p);
1354 	unsigned long faults, total_faults;
1355 
1356 	if (!ng)
1357 		return 0;
1358 
1359 	total_faults = ng->total_faults;
1360 
1361 	if (!total_faults)
1362 		return 0;
1363 
1364 	faults = group_faults(p, nid);
1365 	faults += score_nearby_nodes(p, nid, dist, false);
1366 
1367 	return 1000 * faults / total_faults;
1368 }
1369 
1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 				int src_nid, int dst_cpu)
1372 {
1373 	struct numa_group *ng = deref_curr_numa_group(p);
1374 	int dst_nid = cpu_to_node(dst_cpu);
1375 	int last_cpupid, this_cpupid;
1376 
1377 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1379 
1380 	/*
1381 	 * Allow first faults or private faults to migrate immediately early in
1382 	 * the lifetime of a task. The magic number 4 is based on waiting for
1383 	 * two full passes of the "multi-stage node selection" test that is
1384 	 * executed below.
1385 	 */
1386 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1387 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1388 		return true;
1389 
1390 	/*
1391 	 * Multi-stage node selection is used in conjunction with a periodic
1392 	 * migration fault to build a temporal task<->page relation. By using
1393 	 * a two-stage filter we remove short/unlikely relations.
1394 	 *
1395 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1396 	 * a task's usage of a particular page (n_p) per total usage of this
1397 	 * page (n_t) (in a given time-span) to a probability.
1398 	 *
1399 	 * Our periodic faults will sample this probability and getting the
1400 	 * same result twice in a row, given these samples are fully
1401 	 * independent, is then given by P(n)^2, provided our sample period
1402 	 * is sufficiently short compared to the usage pattern.
1403 	 *
1404 	 * This quadric squishes small probabilities, making it less likely we
1405 	 * act on an unlikely task<->page relation.
1406 	 */
1407 	if (!cpupid_pid_unset(last_cpupid) &&
1408 				cpupid_to_nid(last_cpupid) != dst_nid)
1409 		return false;
1410 
1411 	/* Always allow migrate on private faults */
1412 	if (cpupid_match_pid(p, last_cpupid))
1413 		return true;
1414 
1415 	/* A shared fault, but p->numa_group has not been set up yet. */
1416 	if (!ng)
1417 		return true;
1418 
1419 	/*
1420 	 * Destination node is much more heavily used than the source
1421 	 * node? Allow migration.
1422 	 */
1423 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1424 					ACTIVE_NODE_FRACTION)
1425 		return true;
1426 
1427 	/*
1428 	 * Distribute memory according to CPU & memory use on each node,
1429 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1430 	 *
1431 	 * faults_cpu(dst)   3   faults_cpu(src)
1432 	 * --------------- * - > ---------------
1433 	 * faults_mem(dst)   4   faults_mem(src)
1434 	 */
1435 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1436 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1437 }
1438 
1439 /*
1440  * 'numa_type' describes the node at the moment of load balancing.
1441  */
1442 enum numa_type {
1443 	/* The node has spare capacity that can be used to run more tasks.  */
1444 	node_has_spare = 0,
1445 	/*
1446 	 * The node is fully used and the tasks don't compete for more CPU
1447 	 * cycles. Nevertheless, some tasks might wait before running.
1448 	 */
1449 	node_fully_busy,
1450 	/*
1451 	 * The node is overloaded and can't provide expected CPU cycles to all
1452 	 * tasks.
1453 	 */
1454 	node_overloaded
1455 };
1456 
1457 /* Cached statistics for all CPUs within a node */
1458 struct numa_stats {
1459 	unsigned long load;
1460 	unsigned long runnable;
1461 	unsigned long util;
1462 	/* Total compute capacity of CPUs on a node */
1463 	unsigned long compute_capacity;
1464 	unsigned int nr_running;
1465 	unsigned int weight;
1466 	enum numa_type node_type;
1467 	int idle_cpu;
1468 };
1469 
1470 static inline bool is_core_idle(int cpu)
1471 {
1472 #ifdef CONFIG_SCHED_SMT
1473 	int sibling;
1474 
1475 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1476 		if (cpu == sibling)
1477 			continue;
1478 
1479 		if (!idle_cpu(sibling))
1480 			return false;
1481 	}
1482 #endif
1483 
1484 	return true;
1485 }
1486 
1487 struct task_numa_env {
1488 	struct task_struct *p;
1489 
1490 	int src_cpu, src_nid;
1491 	int dst_cpu, dst_nid;
1492 
1493 	struct numa_stats src_stats, dst_stats;
1494 
1495 	int imbalance_pct;
1496 	int dist;
1497 
1498 	struct task_struct *best_task;
1499 	long best_imp;
1500 	int best_cpu;
1501 };
1502 
1503 static unsigned long cpu_load(struct rq *rq);
1504 static unsigned long cpu_runnable(struct rq *rq);
1505 static unsigned long cpu_util(int cpu);
1506 static inline long adjust_numa_imbalance(int imbalance,
1507 					int dst_running, int dst_weight);
1508 
1509 static inline enum
1510 numa_type numa_classify(unsigned int imbalance_pct,
1511 			 struct numa_stats *ns)
1512 {
1513 	if ((ns->nr_running > ns->weight) &&
1514 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1515 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1516 		return node_overloaded;
1517 
1518 	if ((ns->nr_running < ns->weight) ||
1519 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1520 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1521 		return node_has_spare;
1522 
1523 	return node_fully_busy;
1524 }
1525 
1526 #ifdef CONFIG_SCHED_SMT
1527 /* Forward declarations of select_idle_sibling helpers */
1528 static inline bool test_idle_cores(int cpu, bool def);
1529 static inline int numa_idle_core(int idle_core, int cpu)
1530 {
1531 	if (!static_branch_likely(&sched_smt_present) ||
1532 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1533 		return idle_core;
1534 
1535 	/*
1536 	 * Prefer cores instead of packing HT siblings
1537 	 * and triggering future load balancing.
1538 	 */
1539 	if (is_core_idle(cpu))
1540 		idle_core = cpu;
1541 
1542 	return idle_core;
1543 }
1544 #else
1545 static inline int numa_idle_core(int idle_core, int cpu)
1546 {
1547 	return idle_core;
1548 }
1549 #endif
1550 
1551 /*
1552  * Gather all necessary information to make NUMA balancing placement
1553  * decisions that are compatible with standard load balancer. This
1554  * borrows code and logic from update_sg_lb_stats but sharing a
1555  * common implementation is impractical.
1556  */
1557 static void update_numa_stats(struct task_numa_env *env,
1558 			      struct numa_stats *ns, int nid,
1559 			      bool find_idle)
1560 {
1561 	int cpu, idle_core = -1;
1562 
1563 	memset(ns, 0, sizeof(*ns));
1564 	ns->idle_cpu = -1;
1565 
1566 	rcu_read_lock();
1567 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1568 		struct rq *rq = cpu_rq(cpu);
1569 
1570 		ns->load += cpu_load(rq);
1571 		ns->runnable += cpu_runnable(rq);
1572 		ns->util += cpu_util(cpu);
1573 		ns->nr_running += rq->cfs.h_nr_running;
1574 		ns->compute_capacity += capacity_of(cpu);
1575 
1576 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1577 			if (READ_ONCE(rq->numa_migrate_on) ||
1578 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1579 				continue;
1580 
1581 			if (ns->idle_cpu == -1)
1582 				ns->idle_cpu = cpu;
1583 
1584 			idle_core = numa_idle_core(idle_core, cpu);
1585 		}
1586 	}
1587 	rcu_read_unlock();
1588 
1589 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1590 
1591 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1592 
1593 	if (idle_core >= 0)
1594 		ns->idle_cpu = idle_core;
1595 }
1596 
1597 static void task_numa_assign(struct task_numa_env *env,
1598 			     struct task_struct *p, long imp)
1599 {
1600 	struct rq *rq = cpu_rq(env->dst_cpu);
1601 
1602 	/* Check if run-queue part of active NUMA balance. */
1603 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1604 		int cpu;
1605 		int start = env->dst_cpu;
1606 
1607 		/* Find alternative idle CPU. */
1608 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1609 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1610 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1611 				continue;
1612 			}
1613 
1614 			env->dst_cpu = cpu;
1615 			rq = cpu_rq(env->dst_cpu);
1616 			if (!xchg(&rq->numa_migrate_on, 1))
1617 				goto assign;
1618 		}
1619 
1620 		/* Failed to find an alternative idle CPU */
1621 		return;
1622 	}
1623 
1624 assign:
1625 	/*
1626 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1627 	 * found a better CPU to move/swap.
1628 	 */
1629 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1630 		rq = cpu_rq(env->best_cpu);
1631 		WRITE_ONCE(rq->numa_migrate_on, 0);
1632 	}
1633 
1634 	if (env->best_task)
1635 		put_task_struct(env->best_task);
1636 	if (p)
1637 		get_task_struct(p);
1638 
1639 	env->best_task = p;
1640 	env->best_imp = imp;
1641 	env->best_cpu = env->dst_cpu;
1642 }
1643 
1644 static bool load_too_imbalanced(long src_load, long dst_load,
1645 				struct task_numa_env *env)
1646 {
1647 	long imb, old_imb;
1648 	long orig_src_load, orig_dst_load;
1649 	long src_capacity, dst_capacity;
1650 
1651 	/*
1652 	 * The load is corrected for the CPU capacity available on each node.
1653 	 *
1654 	 * src_load        dst_load
1655 	 * ------------ vs ---------
1656 	 * src_capacity    dst_capacity
1657 	 */
1658 	src_capacity = env->src_stats.compute_capacity;
1659 	dst_capacity = env->dst_stats.compute_capacity;
1660 
1661 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1662 
1663 	orig_src_load = env->src_stats.load;
1664 	orig_dst_load = env->dst_stats.load;
1665 
1666 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1667 
1668 	/* Would this change make things worse? */
1669 	return (imb > old_imb);
1670 }
1671 
1672 /*
1673  * Maximum NUMA importance can be 1998 (2*999);
1674  * SMALLIMP @ 30 would be close to 1998/64.
1675  * Used to deter task migration.
1676  */
1677 #define SMALLIMP	30
1678 
1679 /*
1680  * This checks if the overall compute and NUMA accesses of the system would
1681  * be improved if the source tasks was migrated to the target dst_cpu taking
1682  * into account that it might be best if task running on the dst_cpu should
1683  * be exchanged with the source task
1684  */
1685 static bool task_numa_compare(struct task_numa_env *env,
1686 			      long taskimp, long groupimp, bool maymove)
1687 {
1688 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1689 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1690 	long imp = p_ng ? groupimp : taskimp;
1691 	struct task_struct *cur;
1692 	long src_load, dst_load;
1693 	int dist = env->dist;
1694 	long moveimp = imp;
1695 	long load;
1696 	bool stopsearch = false;
1697 
1698 	if (READ_ONCE(dst_rq->numa_migrate_on))
1699 		return false;
1700 
1701 	rcu_read_lock();
1702 	cur = rcu_dereference(dst_rq->curr);
1703 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1704 		cur = NULL;
1705 
1706 	/*
1707 	 * Because we have preemption enabled we can get migrated around and
1708 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1709 	 */
1710 	if (cur == env->p) {
1711 		stopsearch = true;
1712 		goto unlock;
1713 	}
1714 
1715 	if (!cur) {
1716 		if (maymove && moveimp >= env->best_imp)
1717 			goto assign;
1718 		else
1719 			goto unlock;
1720 	}
1721 
1722 	/* Skip this swap candidate if cannot move to the source cpu. */
1723 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1724 		goto unlock;
1725 
1726 	/*
1727 	 * Skip this swap candidate if it is not moving to its preferred
1728 	 * node and the best task is.
1729 	 */
1730 	if (env->best_task &&
1731 	    env->best_task->numa_preferred_nid == env->src_nid &&
1732 	    cur->numa_preferred_nid != env->src_nid) {
1733 		goto unlock;
1734 	}
1735 
1736 	/*
1737 	 * "imp" is the fault differential for the source task between the
1738 	 * source and destination node. Calculate the total differential for
1739 	 * the source task and potential destination task. The more negative
1740 	 * the value is, the more remote accesses that would be expected to
1741 	 * be incurred if the tasks were swapped.
1742 	 *
1743 	 * If dst and source tasks are in the same NUMA group, or not
1744 	 * in any group then look only at task weights.
1745 	 */
1746 	cur_ng = rcu_dereference(cur->numa_group);
1747 	if (cur_ng == p_ng) {
1748 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1749 		      task_weight(cur, env->dst_nid, dist);
1750 		/*
1751 		 * Add some hysteresis to prevent swapping the
1752 		 * tasks within a group over tiny differences.
1753 		 */
1754 		if (cur_ng)
1755 			imp -= imp / 16;
1756 	} else {
1757 		/*
1758 		 * Compare the group weights. If a task is all by itself
1759 		 * (not part of a group), use the task weight instead.
1760 		 */
1761 		if (cur_ng && p_ng)
1762 			imp += group_weight(cur, env->src_nid, dist) -
1763 			       group_weight(cur, env->dst_nid, dist);
1764 		else
1765 			imp += task_weight(cur, env->src_nid, dist) -
1766 			       task_weight(cur, env->dst_nid, dist);
1767 	}
1768 
1769 	/* Discourage picking a task already on its preferred node */
1770 	if (cur->numa_preferred_nid == env->dst_nid)
1771 		imp -= imp / 16;
1772 
1773 	/*
1774 	 * Encourage picking a task that moves to its preferred node.
1775 	 * This potentially makes imp larger than it's maximum of
1776 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1777 	 * case, it does not matter.
1778 	 */
1779 	if (cur->numa_preferred_nid == env->src_nid)
1780 		imp += imp / 8;
1781 
1782 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1783 		imp = moveimp;
1784 		cur = NULL;
1785 		goto assign;
1786 	}
1787 
1788 	/*
1789 	 * Prefer swapping with a task moving to its preferred node over a
1790 	 * task that is not.
1791 	 */
1792 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1793 	    env->best_task->numa_preferred_nid != env->src_nid) {
1794 		goto assign;
1795 	}
1796 
1797 	/*
1798 	 * If the NUMA importance is less than SMALLIMP,
1799 	 * task migration might only result in ping pong
1800 	 * of tasks and also hurt performance due to cache
1801 	 * misses.
1802 	 */
1803 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1804 		goto unlock;
1805 
1806 	/*
1807 	 * In the overloaded case, try and keep the load balanced.
1808 	 */
1809 	load = task_h_load(env->p) - task_h_load(cur);
1810 	if (!load)
1811 		goto assign;
1812 
1813 	dst_load = env->dst_stats.load + load;
1814 	src_load = env->src_stats.load - load;
1815 
1816 	if (load_too_imbalanced(src_load, dst_load, env))
1817 		goto unlock;
1818 
1819 assign:
1820 	/* Evaluate an idle CPU for a task numa move. */
1821 	if (!cur) {
1822 		int cpu = env->dst_stats.idle_cpu;
1823 
1824 		/* Nothing cached so current CPU went idle since the search. */
1825 		if (cpu < 0)
1826 			cpu = env->dst_cpu;
1827 
1828 		/*
1829 		 * If the CPU is no longer truly idle and the previous best CPU
1830 		 * is, keep using it.
1831 		 */
1832 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1833 		    idle_cpu(env->best_cpu)) {
1834 			cpu = env->best_cpu;
1835 		}
1836 
1837 		env->dst_cpu = cpu;
1838 	}
1839 
1840 	task_numa_assign(env, cur, imp);
1841 
1842 	/*
1843 	 * If a move to idle is allowed because there is capacity or load
1844 	 * balance improves then stop the search. While a better swap
1845 	 * candidate may exist, a search is not free.
1846 	 */
1847 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1848 		stopsearch = true;
1849 
1850 	/*
1851 	 * If a swap candidate must be identified and the current best task
1852 	 * moves its preferred node then stop the search.
1853 	 */
1854 	if (!maymove && env->best_task &&
1855 	    env->best_task->numa_preferred_nid == env->src_nid) {
1856 		stopsearch = true;
1857 	}
1858 unlock:
1859 	rcu_read_unlock();
1860 
1861 	return stopsearch;
1862 }
1863 
1864 static void task_numa_find_cpu(struct task_numa_env *env,
1865 				long taskimp, long groupimp)
1866 {
1867 	bool maymove = false;
1868 	int cpu;
1869 
1870 	/*
1871 	 * If dst node has spare capacity, then check if there is an
1872 	 * imbalance that would be overruled by the load balancer.
1873 	 */
1874 	if (env->dst_stats.node_type == node_has_spare) {
1875 		unsigned int imbalance;
1876 		int src_running, dst_running;
1877 
1878 		/*
1879 		 * Would movement cause an imbalance? Note that if src has
1880 		 * more running tasks that the imbalance is ignored as the
1881 		 * move improves the imbalance from the perspective of the
1882 		 * CPU load balancer.
1883 		 * */
1884 		src_running = env->src_stats.nr_running - 1;
1885 		dst_running = env->dst_stats.nr_running + 1;
1886 		imbalance = max(0, dst_running - src_running);
1887 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1888 							env->dst_stats.weight);
1889 
1890 		/* Use idle CPU if there is no imbalance */
1891 		if (!imbalance) {
1892 			maymove = true;
1893 			if (env->dst_stats.idle_cpu >= 0) {
1894 				env->dst_cpu = env->dst_stats.idle_cpu;
1895 				task_numa_assign(env, NULL, 0);
1896 				return;
1897 			}
1898 		}
1899 	} else {
1900 		long src_load, dst_load, load;
1901 		/*
1902 		 * If the improvement from just moving env->p direction is better
1903 		 * than swapping tasks around, check if a move is possible.
1904 		 */
1905 		load = task_h_load(env->p);
1906 		dst_load = env->dst_stats.load + load;
1907 		src_load = env->src_stats.load - load;
1908 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1909 	}
1910 
1911 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1912 		/* Skip this CPU if the source task cannot migrate */
1913 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1914 			continue;
1915 
1916 		env->dst_cpu = cpu;
1917 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1918 			break;
1919 	}
1920 }
1921 
1922 static int task_numa_migrate(struct task_struct *p)
1923 {
1924 	struct task_numa_env env = {
1925 		.p = p,
1926 
1927 		.src_cpu = task_cpu(p),
1928 		.src_nid = task_node(p),
1929 
1930 		.imbalance_pct = 112,
1931 
1932 		.best_task = NULL,
1933 		.best_imp = 0,
1934 		.best_cpu = -1,
1935 	};
1936 	unsigned long taskweight, groupweight;
1937 	struct sched_domain *sd;
1938 	long taskimp, groupimp;
1939 	struct numa_group *ng;
1940 	struct rq *best_rq;
1941 	int nid, ret, dist;
1942 
1943 	/*
1944 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1945 	 * imbalance and would be the first to start moving tasks about.
1946 	 *
1947 	 * And we want to avoid any moving of tasks about, as that would create
1948 	 * random movement of tasks -- counter the numa conditions we're trying
1949 	 * to satisfy here.
1950 	 */
1951 	rcu_read_lock();
1952 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1953 	if (sd)
1954 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1955 	rcu_read_unlock();
1956 
1957 	/*
1958 	 * Cpusets can break the scheduler domain tree into smaller
1959 	 * balance domains, some of which do not cross NUMA boundaries.
1960 	 * Tasks that are "trapped" in such domains cannot be migrated
1961 	 * elsewhere, so there is no point in (re)trying.
1962 	 */
1963 	if (unlikely(!sd)) {
1964 		sched_setnuma(p, task_node(p));
1965 		return -EINVAL;
1966 	}
1967 
1968 	env.dst_nid = p->numa_preferred_nid;
1969 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1970 	taskweight = task_weight(p, env.src_nid, dist);
1971 	groupweight = group_weight(p, env.src_nid, dist);
1972 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1973 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1974 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1975 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1976 
1977 	/* Try to find a spot on the preferred nid. */
1978 	task_numa_find_cpu(&env, taskimp, groupimp);
1979 
1980 	/*
1981 	 * Look at other nodes in these cases:
1982 	 * - there is no space available on the preferred_nid
1983 	 * - the task is part of a numa_group that is interleaved across
1984 	 *   multiple NUMA nodes; in order to better consolidate the group,
1985 	 *   we need to check other locations.
1986 	 */
1987 	ng = deref_curr_numa_group(p);
1988 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1989 		for_each_online_node(nid) {
1990 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1991 				continue;
1992 
1993 			dist = node_distance(env.src_nid, env.dst_nid);
1994 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1995 						dist != env.dist) {
1996 				taskweight = task_weight(p, env.src_nid, dist);
1997 				groupweight = group_weight(p, env.src_nid, dist);
1998 			}
1999 
2000 			/* Only consider nodes where both task and groups benefit */
2001 			taskimp = task_weight(p, nid, dist) - taskweight;
2002 			groupimp = group_weight(p, nid, dist) - groupweight;
2003 			if (taskimp < 0 && groupimp < 0)
2004 				continue;
2005 
2006 			env.dist = dist;
2007 			env.dst_nid = nid;
2008 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2009 			task_numa_find_cpu(&env, taskimp, groupimp);
2010 		}
2011 	}
2012 
2013 	/*
2014 	 * If the task is part of a workload that spans multiple NUMA nodes,
2015 	 * and is migrating into one of the workload's active nodes, remember
2016 	 * this node as the task's preferred numa node, so the workload can
2017 	 * settle down.
2018 	 * A task that migrated to a second choice node will be better off
2019 	 * trying for a better one later. Do not set the preferred node here.
2020 	 */
2021 	if (ng) {
2022 		if (env.best_cpu == -1)
2023 			nid = env.src_nid;
2024 		else
2025 			nid = cpu_to_node(env.best_cpu);
2026 
2027 		if (nid != p->numa_preferred_nid)
2028 			sched_setnuma(p, nid);
2029 	}
2030 
2031 	/* No better CPU than the current one was found. */
2032 	if (env.best_cpu == -1) {
2033 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2034 		return -EAGAIN;
2035 	}
2036 
2037 	best_rq = cpu_rq(env.best_cpu);
2038 	if (env.best_task == NULL) {
2039 		ret = migrate_task_to(p, env.best_cpu);
2040 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2041 		if (ret != 0)
2042 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2043 		return ret;
2044 	}
2045 
2046 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2047 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2048 
2049 	if (ret != 0)
2050 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2051 	put_task_struct(env.best_task);
2052 	return ret;
2053 }
2054 
2055 /* Attempt to migrate a task to a CPU on the preferred node. */
2056 static void numa_migrate_preferred(struct task_struct *p)
2057 {
2058 	unsigned long interval = HZ;
2059 
2060 	/* This task has no NUMA fault statistics yet */
2061 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2062 		return;
2063 
2064 	/* Periodically retry migrating the task to the preferred node */
2065 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2066 	p->numa_migrate_retry = jiffies + interval;
2067 
2068 	/* Success if task is already running on preferred CPU */
2069 	if (task_node(p) == p->numa_preferred_nid)
2070 		return;
2071 
2072 	/* Otherwise, try migrate to a CPU on the preferred node */
2073 	task_numa_migrate(p);
2074 }
2075 
2076 /*
2077  * Find out how many nodes the workload is actively running on. Do this by
2078  * tracking the nodes from which NUMA hinting faults are triggered. This can
2079  * be different from the set of nodes where the workload's memory is currently
2080  * located.
2081  */
2082 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2083 {
2084 	unsigned long faults, max_faults = 0;
2085 	int nid, active_nodes = 0;
2086 
2087 	for_each_online_node(nid) {
2088 		faults = group_faults_cpu(numa_group, nid);
2089 		if (faults > max_faults)
2090 			max_faults = faults;
2091 	}
2092 
2093 	for_each_online_node(nid) {
2094 		faults = group_faults_cpu(numa_group, nid);
2095 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2096 			active_nodes++;
2097 	}
2098 
2099 	numa_group->max_faults_cpu = max_faults;
2100 	numa_group->active_nodes = active_nodes;
2101 }
2102 
2103 /*
2104  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2105  * increments. The more local the fault statistics are, the higher the scan
2106  * period will be for the next scan window. If local/(local+remote) ratio is
2107  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2108  * the scan period will decrease. Aim for 70% local accesses.
2109  */
2110 #define NUMA_PERIOD_SLOTS 10
2111 #define NUMA_PERIOD_THRESHOLD 7
2112 
2113 /*
2114  * Increase the scan period (slow down scanning) if the majority of
2115  * our memory is already on our local node, or if the majority of
2116  * the page accesses are shared with other processes.
2117  * Otherwise, decrease the scan period.
2118  */
2119 static void update_task_scan_period(struct task_struct *p,
2120 			unsigned long shared, unsigned long private)
2121 {
2122 	unsigned int period_slot;
2123 	int lr_ratio, ps_ratio;
2124 	int diff;
2125 
2126 	unsigned long remote = p->numa_faults_locality[0];
2127 	unsigned long local = p->numa_faults_locality[1];
2128 
2129 	/*
2130 	 * If there were no record hinting faults then either the task is
2131 	 * completely idle or all activity is in areas that are not of interest
2132 	 * to automatic numa balancing. Related to that, if there were failed
2133 	 * migration then it implies we are migrating too quickly or the local
2134 	 * node is overloaded. In either case, scan slower
2135 	 */
2136 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2137 		p->numa_scan_period = min(p->numa_scan_period_max,
2138 			p->numa_scan_period << 1);
2139 
2140 		p->mm->numa_next_scan = jiffies +
2141 			msecs_to_jiffies(p->numa_scan_period);
2142 
2143 		return;
2144 	}
2145 
2146 	/*
2147 	 * Prepare to scale scan period relative to the current period.
2148 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2149 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2150 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2151 	 */
2152 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2153 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2154 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2155 
2156 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2157 		/*
2158 		 * Most memory accesses are local. There is no need to
2159 		 * do fast NUMA scanning, since memory is already local.
2160 		 */
2161 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2162 		if (!slot)
2163 			slot = 1;
2164 		diff = slot * period_slot;
2165 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2166 		/*
2167 		 * Most memory accesses are shared with other tasks.
2168 		 * There is no point in continuing fast NUMA scanning,
2169 		 * since other tasks may just move the memory elsewhere.
2170 		 */
2171 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2172 		if (!slot)
2173 			slot = 1;
2174 		diff = slot * period_slot;
2175 	} else {
2176 		/*
2177 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2178 		 * yet they are not on the local NUMA node. Speed up
2179 		 * NUMA scanning to get the memory moved over.
2180 		 */
2181 		int ratio = max(lr_ratio, ps_ratio);
2182 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2183 	}
2184 
2185 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2186 			task_scan_min(p), task_scan_max(p));
2187 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2188 }
2189 
2190 /*
2191  * Get the fraction of time the task has been running since the last
2192  * NUMA placement cycle. The scheduler keeps similar statistics, but
2193  * decays those on a 32ms period, which is orders of magnitude off
2194  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2195  * stats only if the task is so new there are no NUMA statistics yet.
2196  */
2197 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2198 {
2199 	u64 runtime, delta, now;
2200 	/* Use the start of this time slice to avoid calculations. */
2201 	now = p->se.exec_start;
2202 	runtime = p->se.sum_exec_runtime;
2203 
2204 	if (p->last_task_numa_placement) {
2205 		delta = runtime - p->last_sum_exec_runtime;
2206 		*period = now - p->last_task_numa_placement;
2207 
2208 		/* Avoid time going backwards, prevent potential divide error: */
2209 		if (unlikely((s64)*period < 0))
2210 			*period = 0;
2211 	} else {
2212 		delta = p->se.avg.load_sum;
2213 		*period = LOAD_AVG_MAX;
2214 	}
2215 
2216 	p->last_sum_exec_runtime = runtime;
2217 	p->last_task_numa_placement = now;
2218 
2219 	return delta;
2220 }
2221 
2222 /*
2223  * Determine the preferred nid for a task in a numa_group. This needs to
2224  * be done in a way that produces consistent results with group_weight,
2225  * otherwise workloads might not converge.
2226  */
2227 static int preferred_group_nid(struct task_struct *p, int nid)
2228 {
2229 	nodemask_t nodes;
2230 	int dist;
2231 
2232 	/* Direct connections between all NUMA nodes. */
2233 	if (sched_numa_topology_type == NUMA_DIRECT)
2234 		return nid;
2235 
2236 	/*
2237 	 * On a system with glueless mesh NUMA topology, group_weight
2238 	 * scores nodes according to the number of NUMA hinting faults on
2239 	 * both the node itself, and on nearby nodes.
2240 	 */
2241 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2242 		unsigned long score, max_score = 0;
2243 		int node, max_node = nid;
2244 
2245 		dist = sched_max_numa_distance;
2246 
2247 		for_each_online_node(node) {
2248 			score = group_weight(p, node, dist);
2249 			if (score > max_score) {
2250 				max_score = score;
2251 				max_node = node;
2252 			}
2253 		}
2254 		return max_node;
2255 	}
2256 
2257 	/*
2258 	 * Finding the preferred nid in a system with NUMA backplane
2259 	 * interconnect topology is more involved. The goal is to locate
2260 	 * tasks from numa_groups near each other in the system, and
2261 	 * untangle workloads from different sides of the system. This requires
2262 	 * searching down the hierarchy of node groups, recursively searching
2263 	 * inside the highest scoring group of nodes. The nodemask tricks
2264 	 * keep the complexity of the search down.
2265 	 */
2266 	nodes = node_online_map;
2267 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2268 		unsigned long max_faults = 0;
2269 		nodemask_t max_group = NODE_MASK_NONE;
2270 		int a, b;
2271 
2272 		/* Are there nodes at this distance from each other? */
2273 		if (!find_numa_distance(dist))
2274 			continue;
2275 
2276 		for_each_node_mask(a, nodes) {
2277 			unsigned long faults = 0;
2278 			nodemask_t this_group;
2279 			nodes_clear(this_group);
2280 
2281 			/* Sum group's NUMA faults; includes a==b case. */
2282 			for_each_node_mask(b, nodes) {
2283 				if (node_distance(a, b) < dist) {
2284 					faults += group_faults(p, b);
2285 					node_set(b, this_group);
2286 					node_clear(b, nodes);
2287 				}
2288 			}
2289 
2290 			/* Remember the top group. */
2291 			if (faults > max_faults) {
2292 				max_faults = faults;
2293 				max_group = this_group;
2294 				/*
2295 				 * subtle: at the smallest distance there is
2296 				 * just one node left in each "group", the
2297 				 * winner is the preferred nid.
2298 				 */
2299 				nid = a;
2300 			}
2301 		}
2302 		/* Next round, evaluate the nodes within max_group. */
2303 		if (!max_faults)
2304 			break;
2305 		nodes = max_group;
2306 	}
2307 	return nid;
2308 }
2309 
2310 static void task_numa_placement(struct task_struct *p)
2311 {
2312 	int seq, nid, max_nid = NUMA_NO_NODE;
2313 	unsigned long max_faults = 0;
2314 	unsigned long fault_types[2] = { 0, 0 };
2315 	unsigned long total_faults;
2316 	u64 runtime, period;
2317 	spinlock_t *group_lock = NULL;
2318 	struct numa_group *ng;
2319 
2320 	/*
2321 	 * The p->mm->numa_scan_seq field gets updated without
2322 	 * exclusive access. Use READ_ONCE() here to ensure
2323 	 * that the field is read in a single access:
2324 	 */
2325 	seq = READ_ONCE(p->mm->numa_scan_seq);
2326 	if (p->numa_scan_seq == seq)
2327 		return;
2328 	p->numa_scan_seq = seq;
2329 	p->numa_scan_period_max = task_scan_max(p);
2330 
2331 	total_faults = p->numa_faults_locality[0] +
2332 		       p->numa_faults_locality[1];
2333 	runtime = numa_get_avg_runtime(p, &period);
2334 
2335 	/* If the task is part of a group prevent parallel updates to group stats */
2336 	ng = deref_curr_numa_group(p);
2337 	if (ng) {
2338 		group_lock = &ng->lock;
2339 		spin_lock_irq(group_lock);
2340 	}
2341 
2342 	/* Find the node with the highest number of faults */
2343 	for_each_online_node(nid) {
2344 		/* Keep track of the offsets in numa_faults array */
2345 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2346 		unsigned long faults = 0, group_faults = 0;
2347 		int priv;
2348 
2349 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2350 			long diff, f_diff, f_weight;
2351 
2352 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2353 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2354 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2355 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2356 
2357 			/* Decay existing window, copy faults since last scan */
2358 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2359 			fault_types[priv] += p->numa_faults[membuf_idx];
2360 			p->numa_faults[membuf_idx] = 0;
2361 
2362 			/*
2363 			 * Normalize the faults_from, so all tasks in a group
2364 			 * count according to CPU use, instead of by the raw
2365 			 * number of faults. Tasks with little runtime have
2366 			 * little over-all impact on throughput, and thus their
2367 			 * faults are less important.
2368 			 */
2369 			f_weight = div64_u64(runtime << 16, period + 1);
2370 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2371 				   (total_faults + 1);
2372 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2373 			p->numa_faults[cpubuf_idx] = 0;
2374 
2375 			p->numa_faults[mem_idx] += diff;
2376 			p->numa_faults[cpu_idx] += f_diff;
2377 			faults += p->numa_faults[mem_idx];
2378 			p->total_numa_faults += diff;
2379 			if (ng) {
2380 				/*
2381 				 * safe because we can only change our own group
2382 				 *
2383 				 * mem_idx represents the offset for a given
2384 				 * nid and priv in a specific region because it
2385 				 * is at the beginning of the numa_faults array.
2386 				 */
2387 				ng->faults[mem_idx] += diff;
2388 				ng->faults[cpu_idx] += f_diff;
2389 				ng->total_faults += diff;
2390 				group_faults += ng->faults[mem_idx];
2391 			}
2392 		}
2393 
2394 		if (!ng) {
2395 			if (faults > max_faults) {
2396 				max_faults = faults;
2397 				max_nid = nid;
2398 			}
2399 		} else if (group_faults > max_faults) {
2400 			max_faults = group_faults;
2401 			max_nid = nid;
2402 		}
2403 	}
2404 
2405 	if (ng) {
2406 		numa_group_count_active_nodes(ng);
2407 		spin_unlock_irq(group_lock);
2408 		max_nid = preferred_group_nid(p, max_nid);
2409 	}
2410 
2411 	if (max_faults) {
2412 		/* Set the new preferred node */
2413 		if (max_nid != p->numa_preferred_nid)
2414 			sched_setnuma(p, max_nid);
2415 	}
2416 
2417 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2418 }
2419 
2420 static inline int get_numa_group(struct numa_group *grp)
2421 {
2422 	return refcount_inc_not_zero(&grp->refcount);
2423 }
2424 
2425 static inline void put_numa_group(struct numa_group *grp)
2426 {
2427 	if (refcount_dec_and_test(&grp->refcount))
2428 		kfree_rcu(grp, rcu);
2429 }
2430 
2431 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2432 			int *priv)
2433 {
2434 	struct numa_group *grp, *my_grp;
2435 	struct task_struct *tsk;
2436 	bool join = false;
2437 	int cpu = cpupid_to_cpu(cpupid);
2438 	int i;
2439 
2440 	if (unlikely(!deref_curr_numa_group(p))) {
2441 		unsigned int size = sizeof(struct numa_group) +
2442 				    NR_NUMA_HINT_FAULT_STATS *
2443 				    nr_node_ids * sizeof(unsigned long);
2444 
2445 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2446 		if (!grp)
2447 			return;
2448 
2449 		refcount_set(&grp->refcount, 1);
2450 		grp->active_nodes = 1;
2451 		grp->max_faults_cpu = 0;
2452 		spin_lock_init(&grp->lock);
2453 		grp->gid = p->pid;
2454 
2455 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2456 			grp->faults[i] = p->numa_faults[i];
2457 
2458 		grp->total_faults = p->total_numa_faults;
2459 
2460 		grp->nr_tasks++;
2461 		rcu_assign_pointer(p->numa_group, grp);
2462 	}
2463 
2464 	rcu_read_lock();
2465 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2466 
2467 	if (!cpupid_match_pid(tsk, cpupid))
2468 		goto no_join;
2469 
2470 	grp = rcu_dereference(tsk->numa_group);
2471 	if (!grp)
2472 		goto no_join;
2473 
2474 	my_grp = deref_curr_numa_group(p);
2475 	if (grp == my_grp)
2476 		goto no_join;
2477 
2478 	/*
2479 	 * Only join the other group if its bigger; if we're the bigger group,
2480 	 * the other task will join us.
2481 	 */
2482 	if (my_grp->nr_tasks > grp->nr_tasks)
2483 		goto no_join;
2484 
2485 	/*
2486 	 * Tie-break on the grp address.
2487 	 */
2488 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2489 		goto no_join;
2490 
2491 	/* Always join threads in the same process. */
2492 	if (tsk->mm == current->mm)
2493 		join = true;
2494 
2495 	/* Simple filter to avoid false positives due to PID collisions */
2496 	if (flags & TNF_SHARED)
2497 		join = true;
2498 
2499 	/* Update priv based on whether false sharing was detected */
2500 	*priv = !join;
2501 
2502 	if (join && !get_numa_group(grp))
2503 		goto no_join;
2504 
2505 	rcu_read_unlock();
2506 
2507 	if (!join)
2508 		return;
2509 
2510 	BUG_ON(irqs_disabled());
2511 	double_lock_irq(&my_grp->lock, &grp->lock);
2512 
2513 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2514 		my_grp->faults[i] -= p->numa_faults[i];
2515 		grp->faults[i] += p->numa_faults[i];
2516 	}
2517 	my_grp->total_faults -= p->total_numa_faults;
2518 	grp->total_faults += p->total_numa_faults;
2519 
2520 	my_grp->nr_tasks--;
2521 	grp->nr_tasks++;
2522 
2523 	spin_unlock(&my_grp->lock);
2524 	spin_unlock_irq(&grp->lock);
2525 
2526 	rcu_assign_pointer(p->numa_group, grp);
2527 
2528 	put_numa_group(my_grp);
2529 	return;
2530 
2531 no_join:
2532 	rcu_read_unlock();
2533 	return;
2534 }
2535 
2536 /*
2537  * Get rid of NUMA statistics associated with a task (either current or dead).
2538  * If @final is set, the task is dead and has reached refcount zero, so we can
2539  * safely free all relevant data structures. Otherwise, there might be
2540  * concurrent reads from places like load balancing and procfs, and we should
2541  * reset the data back to default state without freeing ->numa_faults.
2542  */
2543 void task_numa_free(struct task_struct *p, bool final)
2544 {
2545 	/* safe: p either is current or is being freed by current */
2546 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2547 	unsigned long *numa_faults = p->numa_faults;
2548 	unsigned long flags;
2549 	int i;
2550 
2551 	if (!numa_faults)
2552 		return;
2553 
2554 	if (grp) {
2555 		spin_lock_irqsave(&grp->lock, flags);
2556 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2557 			grp->faults[i] -= p->numa_faults[i];
2558 		grp->total_faults -= p->total_numa_faults;
2559 
2560 		grp->nr_tasks--;
2561 		spin_unlock_irqrestore(&grp->lock, flags);
2562 		RCU_INIT_POINTER(p->numa_group, NULL);
2563 		put_numa_group(grp);
2564 	}
2565 
2566 	if (final) {
2567 		p->numa_faults = NULL;
2568 		kfree(numa_faults);
2569 	} else {
2570 		p->total_numa_faults = 0;
2571 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2572 			numa_faults[i] = 0;
2573 	}
2574 }
2575 
2576 /*
2577  * Got a PROT_NONE fault for a page on @node.
2578  */
2579 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2580 {
2581 	struct task_struct *p = current;
2582 	bool migrated = flags & TNF_MIGRATED;
2583 	int cpu_node = task_node(current);
2584 	int local = !!(flags & TNF_FAULT_LOCAL);
2585 	struct numa_group *ng;
2586 	int priv;
2587 
2588 	if (!static_branch_likely(&sched_numa_balancing))
2589 		return;
2590 
2591 	/* for example, ksmd faulting in a user's mm */
2592 	if (!p->mm)
2593 		return;
2594 
2595 	/* Allocate buffer to track faults on a per-node basis */
2596 	if (unlikely(!p->numa_faults)) {
2597 		int size = sizeof(*p->numa_faults) *
2598 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2599 
2600 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2601 		if (!p->numa_faults)
2602 			return;
2603 
2604 		p->total_numa_faults = 0;
2605 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2606 	}
2607 
2608 	/*
2609 	 * First accesses are treated as private, otherwise consider accesses
2610 	 * to be private if the accessing pid has not changed
2611 	 */
2612 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2613 		priv = 1;
2614 	} else {
2615 		priv = cpupid_match_pid(p, last_cpupid);
2616 		if (!priv && !(flags & TNF_NO_GROUP))
2617 			task_numa_group(p, last_cpupid, flags, &priv);
2618 	}
2619 
2620 	/*
2621 	 * If a workload spans multiple NUMA nodes, a shared fault that
2622 	 * occurs wholly within the set of nodes that the workload is
2623 	 * actively using should be counted as local. This allows the
2624 	 * scan rate to slow down when a workload has settled down.
2625 	 */
2626 	ng = deref_curr_numa_group(p);
2627 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2628 				numa_is_active_node(cpu_node, ng) &&
2629 				numa_is_active_node(mem_node, ng))
2630 		local = 1;
2631 
2632 	/*
2633 	 * Retry to migrate task to preferred node periodically, in case it
2634 	 * previously failed, or the scheduler moved us.
2635 	 */
2636 	if (time_after(jiffies, p->numa_migrate_retry)) {
2637 		task_numa_placement(p);
2638 		numa_migrate_preferred(p);
2639 	}
2640 
2641 	if (migrated)
2642 		p->numa_pages_migrated += pages;
2643 	if (flags & TNF_MIGRATE_FAIL)
2644 		p->numa_faults_locality[2] += pages;
2645 
2646 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2647 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2648 	p->numa_faults_locality[local] += pages;
2649 }
2650 
2651 static void reset_ptenuma_scan(struct task_struct *p)
2652 {
2653 	/*
2654 	 * We only did a read acquisition of the mmap sem, so
2655 	 * p->mm->numa_scan_seq is written to without exclusive access
2656 	 * and the update is not guaranteed to be atomic. That's not
2657 	 * much of an issue though, since this is just used for
2658 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2659 	 * expensive, to avoid any form of compiler optimizations:
2660 	 */
2661 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2662 	p->mm->numa_scan_offset = 0;
2663 }
2664 
2665 /*
2666  * The expensive part of numa migration is done from task_work context.
2667  * Triggered from task_tick_numa().
2668  */
2669 static void task_numa_work(struct callback_head *work)
2670 {
2671 	unsigned long migrate, next_scan, now = jiffies;
2672 	struct task_struct *p = current;
2673 	struct mm_struct *mm = p->mm;
2674 	u64 runtime = p->se.sum_exec_runtime;
2675 	struct vm_area_struct *vma;
2676 	unsigned long start, end;
2677 	unsigned long nr_pte_updates = 0;
2678 	long pages, virtpages;
2679 
2680 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2681 
2682 	work->next = work;
2683 	/*
2684 	 * Who cares about NUMA placement when they're dying.
2685 	 *
2686 	 * NOTE: make sure not to dereference p->mm before this check,
2687 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2688 	 * without p->mm even though we still had it when we enqueued this
2689 	 * work.
2690 	 */
2691 	if (p->flags & PF_EXITING)
2692 		return;
2693 
2694 	if (!mm->numa_next_scan) {
2695 		mm->numa_next_scan = now +
2696 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2697 	}
2698 
2699 	/*
2700 	 * Enforce maximal scan/migration frequency..
2701 	 */
2702 	migrate = mm->numa_next_scan;
2703 	if (time_before(now, migrate))
2704 		return;
2705 
2706 	if (p->numa_scan_period == 0) {
2707 		p->numa_scan_period_max = task_scan_max(p);
2708 		p->numa_scan_period = task_scan_start(p);
2709 	}
2710 
2711 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2712 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2713 		return;
2714 
2715 	/*
2716 	 * Delay this task enough that another task of this mm will likely win
2717 	 * the next time around.
2718 	 */
2719 	p->node_stamp += 2 * TICK_NSEC;
2720 
2721 	start = mm->numa_scan_offset;
2722 	pages = sysctl_numa_balancing_scan_size;
2723 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2724 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2725 	if (!pages)
2726 		return;
2727 
2728 
2729 	if (!mmap_read_trylock(mm))
2730 		return;
2731 	vma = find_vma(mm, start);
2732 	if (!vma) {
2733 		reset_ptenuma_scan(p);
2734 		start = 0;
2735 		vma = mm->mmap;
2736 	}
2737 	for (; vma; vma = vma->vm_next) {
2738 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2739 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2740 			continue;
2741 		}
2742 
2743 		/*
2744 		 * Shared library pages mapped by multiple processes are not
2745 		 * migrated as it is expected they are cache replicated. Avoid
2746 		 * hinting faults in read-only file-backed mappings or the vdso
2747 		 * as migrating the pages will be of marginal benefit.
2748 		 */
2749 		if (!vma->vm_mm ||
2750 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2751 			continue;
2752 
2753 		/*
2754 		 * Skip inaccessible VMAs to avoid any confusion between
2755 		 * PROT_NONE and NUMA hinting ptes
2756 		 */
2757 		if (!vma_is_accessible(vma))
2758 			continue;
2759 
2760 		do {
2761 			start = max(start, vma->vm_start);
2762 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2763 			end = min(end, vma->vm_end);
2764 			nr_pte_updates = change_prot_numa(vma, start, end);
2765 
2766 			/*
2767 			 * Try to scan sysctl_numa_balancing_size worth of
2768 			 * hpages that have at least one present PTE that
2769 			 * is not already pte-numa. If the VMA contains
2770 			 * areas that are unused or already full of prot_numa
2771 			 * PTEs, scan up to virtpages, to skip through those
2772 			 * areas faster.
2773 			 */
2774 			if (nr_pte_updates)
2775 				pages -= (end - start) >> PAGE_SHIFT;
2776 			virtpages -= (end - start) >> PAGE_SHIFT;
2777 
2778 			start = end;
2779 			if (pages <= 0 || virtpages <= 0)
2780 				goto out;
2781 
2782 			cond_resched();
2783 		} while (end != vma->vm_end);
2784 	}
2785 
2786 out:
2787 	/*
2788 	 * It is possible to reach the end of the VMA list but the last few
2789 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2790 	 * would find the !migratable VMA on the next scan but not reset the
2791 	 * scanner to the start so check it now.
2792 	 */
2793 	if (vma)
2794 		mm->numa_scan_offset = start;
2795 	else
2796 		reset_ptenuma_scan(p);
2797 	mmap_read_unlock(mm);
2798 
2799 	/*
2800 	 * Make sure tasks use at least 32x as much time to run other code
2801 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2802 	 * Usually update_task_scan_period slows down scanning enough; on an
2803 	 * overloaded system we need to limit overhead on a per task basis.
2804 	 */
2805 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2806 		u64 diff = p->se.sum_exec_runtime - runtime;
2807 		p->node_stamp += 32 * diff;
2808 	}
2809 }
2810 
2811 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2812 {
2813 	int mm_users = 0;
2814 	struct mm_struct *mm = p->mm;
2815 
2816 	if (mm) {
2817 		mm_users = atomic_read(&mm->mm_users);
2818 		if (mm_users == 1) {
2819 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2820 			mm->numa_scan_seq = 0;
2821 		}
2822 	}
2823 	p->node_stamp			= 0;
2824 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2825 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2826 	/* Protect against double add, see task_tick_numa and task_numa_work */
2827 	p->numa_work.next		= &p->numa_work;
2828 	p->numa_faults			= NULL;
2829 	RCU_INIT_POINTER(p->numa_group, NULL);
2830 	p->last_task_numa_placement	= 0;
2831 	p->last_sum_exec_runtime	= 0;
2832 
2833 	init_task_work(&p->numa_work, task_numa_work);
2834 
2835 	/* New address space, reset the preferred nid */
2836 	if (!(clone_flags & CLONE_VM)) {
2837 		p->numa_preferred_nid = NUMA_NO_NODE;
2838 		return;
2839 	}
2840 
2841 	/*
2842 	 * New thread, keep existing numa_preferred_nid which should be copied
2843 	 * already by arch_dup_task_struct but stagger when scans start.
2844 	 */
2845 	if (mm) {
2846 		unsigned int delay;
2847 
2848 		delay = min_t(unsigned int, task_scan_max(current),
2849 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2850 		delay += 2 * TICK_NSEC;
2851 		p->node_stamp = delay;
2852 	}
2853 }
2854 
2855 /*
2856  * Drive the periodic memory faults..
2857  */
2858 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2859 {
2860 	struct callback_head *work = &curr->numa_work;
2861 	u64 period, now;
2862 
2863 	/*
2864 	 * We don't care about NUMA placement if we don't have memory.
2865 	 */
2866 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2867 		return;
2868 
2869 	/*
2870 	 * Using runtime rather than walltime has the dual advantage that
2871 	 * we (mostly) drive the selection from busy threads and that the
2872 	 * task needs to have done some actual work before we bother with
2873 	 * NUMA placement.
2874 	 */
2875 	now = curr->se.sum_exec_runtime;
2876 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2877 
2878 	if (now > curr->node_stamp + period) {
2879 		if (!curr->node_stamp)
2880 			curr->numa_scan_period = task_scan_start(curr);
2881 		curr->node_stamp += period;
2882 
2883 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2884 			task_work_add(curr, work, TWA_RESUME);
2885 	}
2886 }
2887 
2888 static void update_scan_period(struct task_struct *p, int new_cpu)
2889 {
2890 	int src_nid = cpu_to_node(task_cpu(p));
2891 	int dst_nid = cpu_to_node(new_cpu);
2892 
2893 	if (!static_branch_likely(&sched_numa_balancing))
2894 		return;
2895 
2896 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2897 		return;
2898 
2899 	if (src_nid == dst_nid)
2900 		return;
2901 
2902 	/*
2903 	 * Allow resets if faults have been trapped before one scan
2904 	 * has completed. This is most likely due to a new task that
2905 	 * is pulled cross-node due to wakeups or load balancing.
2906 	 */
2907 	if (p->numa_scan_seq) {
2908 		/*
2909 		 * Avoid scan adjustments if moving to the preferred
2910 		 * node or if the task was not previously running on
2911 		 * the preferred node.
2912 		 */
2913 		if (dst_nid == p->numa_preferred_nid ||
2914 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2915 			src_nid != p->numa_preferred_nid))
2916 			return;
2917 	}
2918 
2919 	p->numa_scan_period = task_scan_start(p);
2920 }
2921 
2922 #else
2923 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2924 {
2925 }
2926 
2927 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2928 {
2929 }
2930 
2931 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2932 {
2933 }
2934 
2935 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2936 {
2937 }
2938 
2939 #endif /* CONFIG_NUMA_BALANCING */
2940 
2941 static void
2942 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2943 {
2944 	update_load_add(&cfs_rq->load, se->load.weight);
2945 #ifdef CONFIG_SMP
2946 	if (entity_is_task(se)) {
2947 		struct rq *rq = rq_of(cfs_rq);
2948 
2949 		account_numa_enqueue(rq, task_of(se));
2950 		list_add(&se->group_node, &rq->cfs_tasks);
2951 	}
2952 #endif
2953 	cfs_rq->nr_running++;
2954 	if (se_is_idle(se))
2955 		cfs_rq->idle_nr_running++;
2956 }
2957 
2958 static void
2959 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2960 {
2961 	update_load_sub(&cfs_rq->load, se->load.weight);
2962 #ifdef CONFIG_SMP
2963 	if (entity_is_task(se)) {
2964 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2965 		list_del_init(&se->group_node);
2966 	}
2967 #endif
2968 	cfs_rq->nr_running--;
2969 	if (se_is_idle(se))
2970 		cfs_rq->idle_nr_running--;
2971 }
2972 
2973 /*
2974  * Signed add and clamp on underflow.
2975  *
2976  * Explicitly do a load-store to ensure the intermediate value never hits
2977  * memory. This allows lockless observations without ever seeing the negative
2978  * values.
2979  */
2980 #define add_positive(_ptr, _val) do {                           \
2981 	typeof(_ptr) ptr = (_ptr);                              \
2982 	typeof(_val) val = (_val);                              \
2983 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2984 								\
2985 	res = var + val;                                        \
2986 								\
2987 	if (val < 0 && res > var)                               \
2988 		res = 0;                                        \
2989 								\
2990 	WRITE_ONCE(*ptr, res);                                  \
2991 } while (0)
2992 
2993 /*
2994  * Unsigned subtract and clamp on underflow.
2995  *
2996  * Explicitly do a load-store to ensure the intermediate value never hits
2997  * memory. This allows lockless observations without ever seeing the negative
2998  * values.
2999  */
3000 #define sub_positive(_ptr, _val) do {				\
3001 	typeof(_ptr) ptr = (_ptr);				\
3002 	typeof(*ptr) val = (_val);				\
3003 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3004 	res = var - val;					\
3005 	if (res > var)						\
3006 		res = 0;					\
3007 	WRITE_ONCE(*ptr, res);					\
3008 } while (0)
3009 
3010 /*
3011  * Remove and clamp on negative, from a local variable.
3012  *
3013  * A variant of sub_positive(), which does not use explicit load-store
3014  * and is thus optimized for local variable updates.
3015  */
3016 #define lsub_positive(_ptr, _val) do {				\
3017 	typeof(_ptr) ptr = (_ptr);				\
3018 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3019 } while (0)
3020 
3021 #ifdef CONFIG_SMP
3022 static inline void
3023 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3024 {
3025 	cfs_rq->avg.load_avg += se->avg.load_avg;
3026 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3027 }
3028 
3029 static inline void
3030 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3031 {
3032 	u32 divider = get_pelt_divider(&se->avg);
3033 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3034 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3035 }
3036 #else
3037 static inline void
3038 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3039 static inline void
3040 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3041 #endif
3042 
3043 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3044 			    unsigned long weight)
3045 {
3046 	if (se->on_rq) {
3047 		/* commit outstanding execution time */
3048 		if (cfs_rq->curr == se)
3049 			update_curr(cfs_rq);
3050 		update_load_sub(&cfs_rq->load, se->load.weight);
3051 	}
3052 	dequeue_load_avg(cfs_rq, se);
3053 
3054 	update_load_set(&se->load, weight);
3055 
3056 #ifdef CONFIG_SMP
3057 	do {
3058 		u32 divider = get_pelt_divider(&se->avg);
3059 
3060 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3061 	} while (0);
3062 #endif
3063 
3064 	enqueue_load_avg(cfs_rq, se);
3065 	if (se->on_rq)
3066 		update_load_add(&cfs_rq->load, se->load.weight);
3067 
3068 }
3069 
3070 void reweight_task(struct task_struct *p, int prio)
3071 {
3072 	struct sched_entity *se = &p->se;
3073 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3074 	struct load_weight *load = &se->load;
3075 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3076 
3077 	reweight_entity(cfs_rq, se, weight);
3078 	load->inv_weight = sched_prio_to_wmult[prio];
3079 }
3080 
3081 #ifdef CONFIG_FAIR_GROUP_SCHED
3082 #ifdef CONFIG_SMP
3083 /*
3084  * All this does is approximate the hierarchical proportion which includes that
3085  * global sum we all love to hate.
3086  *
3087  * That is, the weight of a group entity, is the proportional share of the
3088  * group weight based on the group runqueue weights. That is:
3089  *
3090  *                     tg->weight * grq->load.weight
3091  *   ge->load.weight = -----------------------------               (1)
3092  *                       \Sum grq->load.weight
3093  *
3094  * Now, because computing that sum is prohibitively expensive to compute (been
3095  * there, done that) we approximate it with this average stuff. The average
3096  * moves slower and therefore the approximation is cheaper and more stable.
3097  *
3098  * So instead of the above, we substitute:
3099  *
3100  *   grq->load.weight -> grq->avg.load_avg                         (2)
3101  *
3102  * which yields the following:
3103  *
3104  *                     tg->weight * grq->avg.load_avg
3105  *   ge->load.weight = ------------------------------              (3)
3106  *                             tg->load_avg
3107  *
3108  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3109  *
3110  * That is shares_avg, and it is right (given the approximation (2)).
3111  *
3112  * The problem with it is that because the average is slow -- it was designed
3113  * to be exactly that of course -- this leads to transients in boundary
3114  * conditions. In specific, the case where the group was idle and we start the
3115  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3116  * yielding bad latency etc..
3117  *
3118  * Now, in that special case (1) reduces to:
3119  *
3120  *                     tg->weight * grq->load.weight
3121  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3122  *                         grp->load.weight
3123  *
3124  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3125  *
3126  * So what we do is modify our approximation (3) to approach (4) in the (near)
3127  * UP case, like:
3128  *
3129  *   ge->load.weight =
3130  *
3131  *              tg->weight * grq->load.weight
3132  *     ---------------------------------------------------         (5)
3133  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3134  *
3135  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3136  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3137  *
3138  *
3139  *                     tg->weight * grq->load.weight
3140  *   ge->load.weight = -----------------------------		   (6)
3141  *                             tg_load_avg'
3142  *
3143  * Where:
3144  *
3145  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3146  *                  max(grq->load.weight, grq->avg.load_avg)
3147  *
3148  * And that is shares_weight and is icky. In the (near) UP case it approaches
3149  * (4) while in the normal case it approaches (3). It consistently
3150  * overestimates the ge->load.weight and therefore:
3151  *
3152  *   \Sum ge->load.weight >= tg->weight
3153  *
3154  * hence icky!
3155  */
3156 static long calc_group_shares(struct cfs_rq *cfs_rq)
3157 {
3158 	long tg_weight, tg_shares, load, shares;
3159 	struct task_group *tg = cfs_rq->tg;
3160 
3161 	tg_shares = READ_ONCE(tg->shares);
3162 
3163 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3164 
3165 	tg_weight = atomic_long_read(&tg->load_avg);
3166 
3167 	/* Ensure tg_weight >= load */
3168 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3169 	tg_weight += load;
3170 
3171 	shares = (tg_shares * load);
3172 	if (tg_weight)
3173 		shares /= tg_weight;
3174 
3175 	/*
3176 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3177 	 * of a group with small tg->shares value. It is a floor value which is
3178 	 * assigned as a minimum load.weight to the sched_entity representing
3179 	 * the group on a CPU.
3180 	 *
3181 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3182 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3183 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3184 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3185 	 * instead of 0.
3186 	 */
3187 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3188 }
3189 #endif /* CONFIG_SMP */
3190 
3191 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3192 
3193 /*
3194  * Recomputes the group entity based on the current state of its group
3195  * runqueue.
3196  */
3197 static void update_cfs_group(struct sched_entity *se)
3198 {
3199 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3200 	long shares;
3201 
3202 	if (!gcfs_rq)
3203 		return;
3204 
3205 	if (throttled_hierarchy(gcfs_rq))
3206 		return;
3207 
3208 #ifndef CONFIG_SMP
3209 	shares = READ_ONCE(gcfs_rq->tg->shares);
3210 
3211 	if (likely(se->load.weight == shares))
3212 		return;
3213 #else
3214 	shares   = calc_group_shares(gcfs_rq);
3215 #endif
3216 
3217 	reweight_entity(cfs_rq_of(se), se, shares);
3218 }
3219 
3220 #else /* CONFIG_FAIR_GROUP_SCHED */
3221 static inline void update_cfs_group(struct sched_entity *se)
3222 {
3223 }
3224 #endif /* CONFIG_FAIR_GROUP_SCHED */
3225 
3226 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3227 {
3228 	struct rq *rq = rq_of(cfs_rq);
3229 
3230 	if (&rq->cfs == cfs_rq) {
3231 		/*
3232 		 * There are a few boundary cases this might miss but it should
3233 		 * get called often enough that that should (hopefully) not be
3234 		 * a real problem.
3235 		 *
3236 		 * It will not get called when we go idle, because the idle
3237 		 * thread is a different class (!fair), nor will the utilization
3238 		 * number include things like RT tasks.
3239 		 *
3240 		 * As is, the util number is not freq-invariant (we'd have to
3241 		 * implement arch_scale_freq_capacity() for that).
3242 		 *
3243 		 * See cpu_util().
3244 		 */
3245 		cpufreq_update_util(rq, flags);
3246 	}
3247 }
3248 
3249 #ifdef CONFIG_SMP
3250 #ifdef CONFIG_FAIR_GROUP_SCHED
3251 /*
3252  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3253  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3254  * bottom-up, we only have to test whether the cfs_rq before us on the list
3255  * is our child.
3256  * If cfs_rq is not on the list, test whether a child needs its to be added to
3257  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3258  */
3259 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3260 {
3261 	struct cfs_rq *prev_cfs_rq;
3262 	struct list_head *prev;
3263 
3264 	if (cfs_rq->on_list) {
3265 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3266 	} else {
3267 		struct rq *rq = rq_of(cfs_rq);
3268 
3269 		prev = rq->tmp_alone_branch;
3270 	}
3271 
3272 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3273 
3274 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3275 }
3276 
3277 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3278 {
3279 	if (cfs_rq->load.weight)
3280 		return false;
3281 
3282 	if (cfs_rq->avg.load_sum)
3283 		return false;
3284 
3285 	if (cfs_rq->avg.util_sum)
3286 		return false;
3287 
3288 	if (cfs_rq->avg.runnable_sum)
3289 		return false;
3290 
3291 	if (child_cfs_rq_on_list(cfs_rq))
3292 		return false;
3293 
3294 	/*
3295 	 * _avg must be null when _sum are null because _avg = _sum / divider
3296 	 * Make sure that rounding and/or propagation of PELT values never
3297 	 * break this.
3298 	 */
3299 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3300 		      cfs_rq->avg.util_avg ||
3301 		      cfs_rq->avg.runnable_avg);
3302 
3303 	return true;
3304 }
3305 
3306 /**
3307  * update_tg_load_avg - update the tg's load avg
3308  * @cfs_rq: the cfs_rq whose avg changed
3309  *
3310  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3311  * However, because tg->load_avg is a global value there are performance
3312  * considerations.
3313  *
3314  * In order to avoid having to look at the other cfs_rq's, we use a
3315  * differential update where we store the last value we propagated. This in
3316  * turn allows skipping updates if the differential is 'small'.
3317  *
3318  * Updating tg's load_avg is necessary before update_cfs_share().
3319  */
3320 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3321 {
3322 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3323 
3324 	/*
3325 	 * No need to update load_avg for root_task_group as it is not used.
3326 	 */
3327 	if (cfs_rq->tg == &root_task_group)
3328 		return;
3329 
3330 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3331 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3332 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3333 	}
3334 }
3335 
3336 /*
3337  * Called within set_task_rq() right before setting a task's CPU. The
3338  * caller only guarantees p->pi_lock is held; no other assumptions,
3339  * including the state of rq->lock, should be made.
3340  */
3341 void set_task_rq_fair(struct sched_entity *se,
3342 		      struct cfs_rq *prev, struct cfs_rq *next)
3343 {
3344 	u64 p_last_update_time;
3345 	u64 n_last_update_time;
3346 
3347 	if (!sched_feat(ATTACH_AGE_LOAD))
3348 		return;
3349 
3350 	/*
3351 	 * We are supposed to update the task to "current" time, then its up to
3352 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3353 	 * getting what current time is, so simply throw away the out-of-date
3354 	 * time. This will result in the wakee task is less decayed, but giving
3355 	 * the wakee more load sounds not bad.
3356 	 */
3357 	if (!(se->avg.last_update_time && prev))
3358 		return;
3359 
3360 #ifndef CONFIG_64BIT
3361 	{
3362 		u64 p_last_update_time_copy;
3363 		u64 n_last_update_time_copy;
3364 
3365 		do {
3366 			p_last_update_time_copy = prev->load_last_update_time_copy;
3367 			n_last_update_time_copy = next->load_last_update_time_copy;
3368 
3369 			smp_rmb();
3370 
3371 			p_last_update_time = prev->avg.last_update_time;
3372 			n_last_update_time = next->avg.last_update_time;
3373 
3374 		} while (p_last_update_time != p_last_update_time_copy ||
3375 			 n_last_update_time != n_last_update_time_copy);
3376 	}
3377 #else
3378 	p_last_update_time = prev->avg.last_update_time;
3379 	n_last_update_time = next->avg.last_update_time;
3380 #endif
3381 	__update_load_avg_blocked_se(p_last_update_time, se);
3382 	se->avg.last_update_time = n_last_update_time;
3383 }
3384 
3385 
3386 /*
3387  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3388  * propagate its contribution. The key to this propagation is the invariant
3389  * that for each group:
3390  *
3391  *   ge->avg == grq->avg						(1)
3392  *
3393  * _IFF_ we look at the pure running and runnable sums. Because they
3394  * represent the very same entity, just at different points in the hierarchy.
3395  *
3396  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3397  * and simply copies the running/runnable sum over (but still wrong, because
3398  * the group entity and group rq do not have their PELT windows aligned).
3399  *
3400  * However, update_tg_cfs_load() is more complex. So we have:
3401  *
3402  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3403  *
3404  * And since, like util, the runnable part should be directly transferable,
3405  * the following would _appear_ to be the straight forward approach:
3406  *
3407  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3408  *
3409  * And per (1) we have:
3410  *
3411  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3412  *
3413  * Which gives:
3414  *
3415  *                      ge->load.weight * grq->avg.load_avg
3416  *   ge->avg.load_avg = -----------------------------------		(4)
3417  *                               grq->load.weight
3418  *
3419  * Except that is wrong!
3420  *
3421  * Because while for entities historical weight is not important and we
3422  * really only care about our future and therefore can consider a pure
3423  * runnable sum, runqueues can NOT do this.
3424  *
3425  * We specifically want runqueues to have a load_avg that includes
3426  * historical weights. Those represent the blocked load, the load we expect
3427  * to (shortly) return to us. This only works by keeping the weights as
3428  * integral part of the sum. We therefore cannot decompose as per (3).
3429  *
3430  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3431  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3432  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3433  * runnable section of these tasks overlap (or not). If they were to perfectly
3434  * align the rq as a whole would be runnable 2/3 of the time. If however we
3435  * always have at least 1 runnable task, the rq as a whole is always runnable.
3436  *
3437  * So we'll have to approximate.. :/
3438  *
3439  * Given the constraint:
3440  *
3441  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3442  *
3443  * We can construct a rule that adds runnable to a rq by assuming minimal
3444  * overlap.
3445  *
3446  * On removal, we'll assume each task is equally runnable; which yields:
3447  *
3448  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3449  *
3450  * XXX: only do this for the part of runnable > running ?
3451  *
3452  */
3453 
3454 static inline void
3455 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3456 {
3457 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3458 	u32 divider;
3459 
3460 	/* Nothing to update */
3461 	if (!delta)
3462 		return;
3463 
3464 	/*
3465 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3466 	 * See ___update_load_avg() for details.
3467 	 */
3468 	divider = get_pelt_divider(&cfs_rq->avg);
3469 
3470 	/* Set new sched_entity's utilization */
3471 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3472 	se->avg.util_sum = se->avg.util_avg * divider;
3473 
3474 	/* Update parent cfs_rq utilization */
3475 	add_positive(&cfs_rq->avg.util_avg, delta);
3476 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3477 }
3478 
3479 static inline void
3480 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3481 {
3482 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3483 	u32 divider;
3484 
3485 	/* Nothing to update */
3486 	if (!delta)
3487 		return;
3488 
3489 	/*
3490 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3491 	 * See ___update_load_avg() for details.
3492 	 */
3493 	divider = get_pelt_divider(&cfs_rq->avg);
3494 
3495 	/* Set new sched_entity's runnable */
3496 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3497 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3498 
3499 	/* Update parent cfs_rq runnable */
3500 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3501 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3502 }
3503 
3504 static inline void
3505 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3506 {
3507 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3508 	unsigned long load_avg;
3509 	u64 load_sum = 0;
3510 	u32 divider;
3511 
3512 	if (!runnable_sum)
3513 		return;
3514 
3515 	gcfs_rq->prop_runnable_sum = 0;
3516 
3517 	/*
3518 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3519 	 * See ___update_load_avg() for details.
3520 	 */
3521 	divider = get_pelt_divider(&cfs_rq->avg);
3522 
3523 	if (runnable_sum >= 0) {
3524 		/*
3525 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3526 		 * the CPU is saturated running == runnable.
3527 		 */
3528 		runnable_sum += se->avg.load_sum;
3529 		runnable_sum = min_t(long, runnable_sum, divider);
3530 	} else {
3531 		/*
3532 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3533 		 * assuming all tasks are equally runnable.
3534 		 */
3535 		if (scale_load_down(gcfs_rq->load.weight)) {
3536 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3537 				scale_load_down(gcfs_rq->load.weight));
3538 		}
3539 
3540 		/* But make sure to not inflate se's runnable */
3541 		runnable_sum = min(se->avg.load_sum, load_sum);
3542 	}
3543 
3544 	/*
3545 	 * runnable_sum can't be lower than running_sum
3546 	 * Rescale running sum to be in the same range as runnable sum
3547 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3548 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3549 	 */
3550 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3551 	runnable_sum = max(runnable_sum, running_sum);
3552 
3553 	load_sum = (s64)se_weight(se) * runnable_sum;
3554 	load_avg = div_s64(load_sum, divider);
3555 
3556 	se->avg.load_sum = runnable_sum;
3557 
3558 	delta = load_avg - se->avg.load_avg;
3559 	if (!delta)
3560 		return;
3561 
3562 	se->avg.load_avg = load_avg;
3563 
3564 	add_positive(&cfs_rq->avg.load_avg, delta);
3565 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3566 }
3567 
3568 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3569 {
3570 	cfs_rq->propagate = 1;
3571 	cfs_rq->prop_runnable_sum += runnable_sum;
3572 }
3573 
3574 /* Update task and its cfs_rq load average */
3575 static inline int propagate_entity_load_avg(struct sched_entity *se)
3576 {
3577 	struct cfs_rq *cfs_rq, *gcfs_rq;
3578 
3579 	if (entity_is_task(se))
3580 		return 0;
3581 
3582 	gcfs_rq = group_cfs_rq(se);
3583 	if (!gcfs_rq->propagate)
3584 		return 0;
3585 
3586 	gcfs_rq->propagate = 0;
3587 
3588 	cfs_rq = cfs_rq_of(se);
3589 
3590 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3591 
3592 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3593 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3594 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3595 
3596 	trace_pelt_cfs_tp(cfs_rq);
3597 	trace_pelt_se_tp(se);
3598 
3599 	return 1;
3600 }
3601 
3602 /*
3603  * Check if we need to update the load and the utilization of a blocked
3604  * group_entity:
3605  */
3606 static inline bool skip_blocked_update(struct sched_entity *se)
3607 {
3608 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3609 
3610 	/*
3611 	 * If sched_entity still have not zero load or utilization, we have to
3612 	 * decay it:
3613 	 */
3614 	if (se->avg.load_avg || se->avg.util_avg)
3615 		return false;
3616 
3617 	/*
3618 	 * If there is a pending propagation, we have to update the load and
3619 	 * the utilization of the sched_entity:
3620 	 */
3621 	if (gcfs_rq->propagate)
3622 		return false;
3623 
3624 	/*
3625 	 * Otherwise, the load and the utilization of the sched_entity is
3626 	 * already zero and there is no pending propagation, so it will be a
3627 	 * waste of time to try to decay it:
3628 	 */
3629 	return true;
3630 }
3631 
3632 #else /* CONFIG_FAIR_GROUP_SCHED */
3633 
3634 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3635 
3636 static inline int propagate_entity_load_avg(struct sched_entity *se)
3637 {
3638 	return 0;
3639 }
3640 
3641 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3642 
3643 #endif /* CONFIG_FAIR_GROUP_SCHED */
3644 
3645 /**
3646  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3647  * @now: current time, as per cfs_rq_clock_pelt()
3648  * @cfs_rq: cfs_rq to update
3649  *
3650  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3651  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3652  * post_init_entity_util_avg().
3653  *
3654  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3655  *
3656  * Returns true if the load decayed or we removed load.
3657  *
3658  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3659  * call update_tg_load_avg() when this function returns true.
3660  */
3661 static inline int
3662 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3663 {
3664 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3665 	struct sched_avg *sa = &cfs_rq->avg;
3666 	int decayed = 0;
3667 
3668 	if (cfs_rq->removed.nr) {
3669 		unsigned long r;
3670 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3671 
3672 		raw_spin_lock(&cfs_rq->removed.lock);
3673 		swap(cfs_rq->removed.util_avg, removed_util);
3674 		swap(cfs_rq->removed.load_avg, removed_load);
3675 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3676 		cfs_rq->removed.nr = 0;
3677 		raw_spin_unlock(&cfs_rq->removed.lock);
3678 
3679 		r = removed_load;
3680 		sub_positive(&sa->load_avg, r);
3681 		sa->load_sum = sa->load_avg * divider;
3682 
3683 		r = removed_util;
3684 		sub_positive(&sa->util_avg, r);
3685 		sa->util_sum = sa->util_avg * divider;
3686 
3687 		r = removed_runnable;
3688 		sub_positive(&sa->runnable_avg, r);
3689 		sa->runnable_sum = sa->runnable_avg * divider;
3690 
3691 		/*
3692 		 * removed_runnable is the unweighted version of removed_load so we
3693 		 * can use it to estimate removed_load_sum.
3694 		 */
3695 		add_tg_cfs_propagate(cfs_rq,
3696 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3697 
3698 		decayed = 1;
3699 	}
3700 
3701 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3702 
3703 #ifndef CONFIG_64BIT
3704 	smp_wmb();
3705 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3706 #endif
3707 
3708 	return decayed;
3709 }
3710 
3711 /**
3712  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3713  * @cfs_rq: cfs_rq to attach to
3714  * @se: sched_entity to attach
3715  *
3716  * Must call update_cfs_rq_load_avg() before this, since we rely on
3717  * cfs_rq->avg.last_update_time being current.
3718  */
3719 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3720 {
3721 	/*
3722 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3723 	 * See ___update_load_avg() for details.
3724 	 */
3725 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3726 
3727 	/*
3728 	 * When we attach the @se to the @cfs_rq, we must align the decay
3729 	 * window because without that, really weird and wonderful things can
3730 	 * happen.
3731 	 *
3732 	 * XXX illustrate
3733 	 */
3734 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3735 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3736 
3737 	/*
3738 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3739 	 * period_contrib. This isn't strictly correct, but since we're
3740 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3741 	 * _sum a little.
3742 	 */
3743 	se->avg.util_sum = se->avg.util_avg * divider;
3744 
3745 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3746 
3747 	se->avg.load_sum = divider;
3748 	if (se_weight(se)) {
3749 		se->avg.load_sum =
3750 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3751 	}
3752 
3753 	enqueue_load_avg(cfs_rq, se);
3754 	cfs_rq->avg.util_avg += se->avg.util_avg;
3755 	cfs_rq->avg.util_sum += se->avg.util_sum;
3756 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3757 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3758 
3759 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3760 
3761 	cfs_rq_util_change(cfs_rq, 0);
3762 
3763 	trace_pelt_cfs_tp(cfs_rq);
3764 }
3765 
3766 /**
3767  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3768  * @cfs_rq: cfs_rq to detach from
3769  * @se: sched_entity to detach
3770  *
3771  * Must call update_cfs_rq_load_avg() before this, since we rely on
3772  * cfs_rq->avg.last_update_time being current.
3773  */
3774 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3775 {
3776 	/*
3777 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3778 	 * See ___update_load_avg() for details.
3779 	 */
3780 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3781 
3782 	dequeue_load_avg(cfs_rq, se);
3783 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3784 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3785 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3786 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3787 
3788 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3789 
3790 	cfs_rq_util_change(cfs_rq, 0);
3791 
3792 	trace_pelt_cfs_tp(cfs_rq);
3793 }
3794 
3795 /*
3796  * Optional action to be done while updating the load average
3797  */
3798 #define UPDATE_TG	0x1
3799 #define SKIP_AGE_LOAD	0x2
3800 #define DO_ATTACH	0x4
3801 
3802 /* Update task and its cfs_rq load average */
3803 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3804 {
3805 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3806 	int decayed;
3807 
3808 	/*
3809 	 * Track task load average for carrying it to new CPU after migrated, and
3810 	 * track group sched_entity load average for task_h_load calc in migration
3811 	 */
3812 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3813 		__update_load_avg_se(now, cfs_rq, se);
3814 
3815 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3816 	decayed |= propagate_entity_load_avg(se);
3817 
3818 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3819 
3820 		/*
3821 		 * DO_ATTACH means we're here from enqueue_entity().
3822 		 * !last_update_time means we've passed through
3823 		 * migrate_task_rq_fair() indicating we migrated.
3824 		 *
3825 		 * IOW we're enqueueing a task on a new CPU.
3826 		 */
3827 		attach_entity_load_avg(cfs_rq, se);
3828 		update_tg_load_avg(cfs_rq);
3829 
3830 	} else if (decayed) {
3831 		cfs_rq_util_change(cfs_rq, 0);
3832 
3833 		if (flags & UPDATE_TG)
3834 			update_tg_load_avg(cfs_rq);
3835 	}
3836 }
3837 
3838 #ifndef CONFIG_64BIT
3839 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3840 {
3841 	u64 last_update_time_copy;
3842 	u64 last_update_time;
3843 
3844 	do {
3845 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3846 		smp_rmb();
3847 		last_update_time = cfs_rq->avg.last_update_time;
3848 	} while (last_update_time != last_update_time_copy);
3849 
3850 	return last_update_time;
3851 }
3852 #else
3853 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3854 {
3855 	return cfs_rq->avg.last_update_time;
3856 }
3857 #endif
3858 
3859 /*
3860  * Synchronize entity load avg of dequeued entity without locking
3861  * the previous rq.
3862  */
3863 static void sync_entity_load_avg(struct sched_entity *se)
3864 {
3865 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3866 	u64 last_update_time;
3867 
3868 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3869 	__update_load_avg_blocked_se(last_update_time, se);
3870 }
3871 
3872 /*
3873  * Task first catches up with cfs_rq, and then subtract
3874  * itself from the cfs_rq (task must be off the queue now).
3875  */
3876 static void remove_entity_load_avg(struct sched_entity *se)
3877 {
3878 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3879 	unsigned long flags;
3880 
3881 	/*
3882 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3883 	 * post_init_entity_util_avg() which will have added things to the
3884 	 * cfs_rq, so we can remove unconditionally.
3885 	 */
3886 
3887 	sync_entity_load_avg(se);
3888 
3889 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3890 	++cfs_rq->removed.nr;
3891 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3892 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3893 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3894 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3895 }
3896 
3897 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3898 {
3899 	return cfs_rq->avg.runnable_avg;
3900 }
3901 
3902 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3903 {
3904 	return cfs_rq->avg.load_avg;
3905 }
3906 
3907 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3908 
3909 static inline unsigned long task_util(struct task_struct *p)
3910 {
3911 	return READ_ONCE(p->se.avg.util_avg);
3912 }
3913 
3914 static inline unsigned long _task_util_est(struct task_struct *p)
3915 {
3916 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3917 
3918 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3919 }
3920 
3921 static inline unsigned long task_util_est(struct task_struct *p)
3922 {
3923 	return max(task_util(p), _task_util_est(p));
3924 }
3925 
3926 #ifdef CONFIG_UCLAMP_TASK
3927 static inline unsigned long uclamp_task_util(struct task_struct *p)
3928 {
3929 	return clamp(task_util_est(p),
3930 		     uclamp_eff_value(p, UCLAMP_MIN),
3931 		     uclamp_eff_value(p, UCLAMP_MAX));
3932 }
3933 #else
3934 static inline unsigned long uclamp_task_util(struct task_struct *p)
3935 {
3936 	return task_util_est(p);
3937 }
3938 #endif
3939 
3940 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3941 				    struct task_struct *p)
3942 {
3943 	unsigned int enqueued;
3944 
3945 	if (!sched_feat(UTIL_EST))
3946 		return;
3947 
3948 	/* Update root cfs_rq's estimated utilization */
3949 	enqueued  = cfs_rq->avg.util_est.enqueued;
3950 	enqueued += _task_util_est(p);
3951 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3952 
3953 	trace_sched_util_est_cfs_tp(cfs_rq);
3954 }
3955 
3956 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3957 				    struct task_struct *p)
3958 {
3959 	unsigned int enqueued;
3960 
3961 	if (!sched_feat(UTIL_EST))
3962 		return;
3963 
3964 	/* Update root cfs_rq's estimated utilization */
3965 	enqueued  = cfs_rq->avg.util_est.enqueued;
3966 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3967 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3968 
3969 	trace_sched_util_est_cfs_tp(cfs_rq);
3970 }
3971 
3972 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3973 
3974 /*
3975  * Check if a (signed) value is within a specified (unsigned) margin,
3976  * based on the observation that:
3977  *
3978  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3979  *
3980  * NOTE: this only works when value + margin < INT_MAX.
3981  */
3982 static inline bool within_margin(int value, int margin)
3983 {
3984 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3985 }
3986 
3987 static inline void util_est_update(struct cfs_rq *cfs_rq,
3988 				   struct task_struct *p,
3989 				   bool task_sleep)
3990 {
3991 	long last_ewma_diff, last_enqueued_diff;
3992 	struct util_est ue;
3993 
3994 	if (!sched_feat(UTIL_EST))
3995 		return;
3996 
3997 	/*
3998 	 * Skip update of task's estimated utilization when the task has not
3999 	 * yet completed an activation, e.g. being migrated.
4000 	 */
4001 	if (!task_sleep)
4002 		return;
4003 
4004 	/*
4005 	 * If the PELT values haven't changed since enqueue time,
4006 	 * skip the util_est update.
4007 	 */
4008 	ue = p->se.avg.util_est;
4009 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4010 		return;
4011 
4012 	last_enqueued_diff = ue.enqueued;
4013 
4014 	/*
4015 	 * Reset EWMA on utilization increases, the moving average is used only
4016 	 * to smooth utilization decreases.
4017 	 */
4018 	ue.enqueued = task_util(p);
4019 	if (sched_feat(UTIL_EST_FASTUP)) {
4020 		if (ue.ewma < ue.enqueued) {
4021 			ue.ewma = ue.enqueued;
4022 			goto done;
4023 		}
4024 	}
4025 
4026 	/*
4027 	 * Skip update of task's estimated utilization when its members are
4028 	 * already ~1% close to its last activation value.
4029 	 */
4030 	last_ewma_diff = ue.enqueued - ue.ewma;
4031 	last_enqueued_diff -= ue.enqueued;
4032 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4033 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4034 			goto done;
4035 
4036 		return;
4037 	}
4038 
4039 	/*
4040 	 * To avoid overestimation of actual task utilization, skip updates if
4041 	 * we cannot grant there is idle time in this CPU.
4042 	 */
4043 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4044 		return;
4045 
4046 	/*
4047 	 * Update Task's estimated utilization
4048 	 *
4049 	 * When *p completes an activation we can consolidate another sample
4050 	 * of the task size. This is done by storing the current PELT value
4051 	 * as ue.enqueued and by using this value to update the Exponential
4052 	 * Weighted Moving Average (EWMA):
4053 	 *
4054 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4055 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4056 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4057 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4058 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4059 	 *
4060 	 * Where 'w' is the weight of new samples, which is configured to be
4061 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4062 	 */
4063 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4064 	ue.ewma  += last_ewma_diff;
4065 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4066 done:
4067 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4068 	WRITE_ONCE(p->se.avg.util_est, ue);
4069 
4070 	trace_sched_util_est_se_tp(&p->se);
4071 }
4072 
4073 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4074 {
4075 	return fits_capacity(uclamp_task_util(p), capacity);
4076 }
4077 
4078 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4079 {
4080 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4081 		return;
4082 
4083 	if (!p || p->nr_cpus_allowed == 1) {
4084 		rq->misfit_task_load = 0;
4085 		return;
4086 	}
4087 
4088 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4089 		rq->misfit_task_load = 0;
4090 		return;
4091 	}
4092 
4093 	/*
4094 	 * Make sure that misfit_task_load will not be null even if
4095 	 * task_h_load() returns 0.
4096 	 */
4097 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4098 }
4099 
4100 #else /* CONFIG_SMP */
4101 
4102 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4103 {
4104 	return true;
4105 }
4106 
4107 #define UPDATE_TG	0x0
4108 #define SKIP_AGE_LOAD	0x0
4109 #define DO_ATTACH	0x0
4110 
4111 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4112 {
4113 	cfs_rq_util_change(cfs_rq, 0);
4114 }
4115 
4116 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4117 
4118 static inline void
4119 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4120 static inline void
4121 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4122 
4123 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4124 {
4125 	return 0;
4126 }
4127 
4128 static inline void
4129 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4130 
4131 static inline void
4132 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4133 
4134 static inline void
4135 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4136 		bool task_sleep) {}
4137 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4138 
4139 #endif /* CONFIG_SMP */
4140 
4141 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4142 {
4143 #ifdef CONFIG_SCHED_DEBUG
4144 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4145 
4146 	if (d < 0)
4147 		d = -d;
4148 
4149 	if (d > 3*sysctl_sched_latency)
4150 		schedstat_inc(cfs_rq->nr_spread_over);
4151 #endif
4152 }
4153 
4154 static void
4155 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4156 {
4157 	u64 vruntime = cfs_rq->min_vruntime;
4158 
4159 	/*
4160 	 * The 'current' period is already promised to the current tasks,
4161 	 * however the extra weight of the new task will slow them down a
4162 	 * little, place the new task so that it fits in the slot that
4163 	 * stays open at the end.
4164 	 */
4165 	if (initial && sched_feat(START_DEBIT))
4166 		vruntime += sched_vslice(cfs_rq, se);
4167 
4168 	/* sleeps up to a single latency don't count. */
4169 	if (!initial) {
4170 		unsigned long thresh;
4171 
4172 		if (se_is_idle(se))
4173 			thresh = sysctl_sched_min_granularity;
4174 		else
4175 			thresh = sysctl_sched_latency;
4176 
4177 		/*
4178 		 * Halve their sleep time's effect, to allow
4179 		 * for a gentler effect of sleepers:
4180 		 */
4181 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4182 			thresh >>= 1;
4183 
4184 		vruntime -= thresh;
4185 	}
4186 
4187 	/* ensure we never gain time by being placed backwards. */
4188 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4189 }
4190 
4191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4192 
4193 static inline bool cfs_bandwidth_used(void);
4194 
4195 /*
4196  * MIGRATION
4197  *
4198  *	dequeue
4199  *	  update_curr()
4200  *	    update_min_vruntime()
4201  *	  vruntime -= min_vruntime
4202  *
4203  *	enqueue
4204  *	  update_curr()
4205  *	    update_min_vruntime()
4206  *	  vruntime += min_vruntime
4207  *
4208  * this way the vruntime transition between RQs is done when both
4209  * min_vruntime are up-to-date.
4210  *
4211  * WAKEUP (remote)
4212  *
4213  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4214  *	  vruntime -= min_vruntime
4215  *
4216  *	enqueue
4217  *	  update_curr()
4218  *	    update_min_vruntime()
4219  *	  vruntime += min_vruntime
4220  *
4221  * this way we don't have the most up-to-date min_vruntime on the originating
4222  * CPU and an up-to-date min_vruntime on the destination CPU.
4223  */
4224 
4225 static void
4226 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4227 {
4228 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4229 	bool curr = cfs_rq->curr == se;
4230 
4231 	/*
4232 	 * If we're the current task, we must renormalise before calling
4233 	 * update_curr().
4234 	 */
4235 	if (renorm && curr)
4236 		se->vruntime += cfs_rq->min_vruntime;
4237 
4238 	update_curr(cfs_rq);
4239 
4240 	/*
4241 	 * Otherwise, renormalise after, such that we're placed at the current
4242 	 * moment in time, instead of some random moment in the past. Being
4243 	 * placed in the past could significantly boost this task to the
4244 	 * fairness detriment of existing tasks.
4245 	 */
4246 	if (renorm && !curr)
4247 		se->vruntime += cfs_rq->min_vruntime;
4248 
4249 	/*
4250 	 * When enqueuing a sched_entity, we must:
4251 	 *   - Update loads to have both entity and cfs_rq synced with now.
4252 	 *   - Add its load to cfs_rq->runnable_avg
4253 	 *   - For group_entity, update its weight to reflect the new share of
4254 	 *     its group cfs_rq
4255 	 *   - Add its new weight to cfs_rq->load.weight
4256 	 */
4257 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4258 	se_update_runnable(se);
4259 	update_cfs_group(se);
4260 	account_entity_enqueue(cfs_rq, se);
4261 
4262 	if (flags & ENQUEUE_WAKEUP)
4263 		place_entity(cfs_rq, se, 0);
4264 
4265 	check_schedstat_required();
4266 	update_stats_enqueue_fair(cfs_rq, se, flags);
4267 	check_spread(cfs_rq, se);
4268 	if (!curr)
4269 		__enqueue_entity(cfs_rq, se);
4270 	se->on_rq = 1;
4271 
4272 	/*
4273 	 * When bandwidth control is enabled, cfs might have been removed
4274 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4275 	 * add it unconditionally.
4276 	 */
4277 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4278 		list_add_leaf_cfs_rq(cfs_rq);
4279 
4280 	if (cfs_rq->nr_running == 1)
4281 		check_enqueue_throttle(cfs_rq);
4282 }
4283 
4284 static void __clear_buddies_last(struct sched_entity *se)
4285 {
4286 	for_each_sched_entity(se) {
4287 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4288 		if (cfs_rq->last != se)
4289 			break;
4290 
4291 		cfs_rq->last = NULL;
4292 	}
4293 }
4294 
4295 static void __clear_buddies_next(struct sched_entity *se)
4296 {
4297 	for_each_sched_entity(se) {
4298 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4299 		if (cfs_rq->next != se)
4300 			break;
4301 
4302 		cfs_rq->next = NULL;
4303 	}
4304 }
4305 
4306 static void __clear_buddies_skip(struct sched_entity *se)
4307 {
4308 	for_each_sched_entity(se) {
4309 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4310 		if (cfs_rq->skip != se)
4311 			break;
4312 
4313 		cfs_rq->skip = NULL;
4314 	}
4315 }
4316 
4317 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4318 {
4319 	if (cfs_rq->last == se)
4320 		__clear_buddies_last(se);
4321 
4322 	if (cfs_rq->next == se)
4323 		__clear_buddies_next(se);
4324 
4325 	if (cfs_rq->skip == se)
4326 		__clear_buddies_skip(se);
4327 }
4328 
4329 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4330 
4331 static void
4332 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4333 {
4334 	/*
4335 	 * Update run-time statistics of the 'current'.
4336 	 */
4337 	update_curr(cfs_rq);
4338 
4339 	/*
4340 	 * When dequeuing a sched_entity, we must:
4341 	 *   - Update loads to have both entity and cfs_rq synced with now.
4342 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4343 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4344 	 *   - For group entity, update its weight to reflect the new share
4345 	 *     of its group cfs_rq.
4346 	 */
4347 	update_load_avg(cfs_rq, se, UPDATE_TG);
4348 	se_update_runnable(se);
4349 
4350 	update_stats_dequeue_fair(cfs_rq, se, flags);
4351 
4352 	clear_buddies(cfs_rq, se);
4353 
4354 	if (se != cfs_rq->curr)
4355 		__dequeue_entity(cfs_rq, se);
4356 	se->on_rq = 0;
4357 	account_entity_dequeue(cfs_rq, se);
4358 
4359 	/*
4360 	 * Normalize after update_curr(); which will also have moved
4361 	 * min_vruntime if @se is the one holding it back. But before doing
4362 	 * update_min_vruntime() again, which will discount @se's position and
4363 	 * can move min_vruntime forward still more.
4364 	 */
4365 	if (!(flags & DEQUEUE_SLEEP))
4366 		se->vruntime -= cfs_rq->min_vruntime;
4367 
4368 	/* return excess runtime on last dequeue */
4369 	return_cfs_rq_runtime(cfs_rq);
4370 
4371 	update_cfs_group(se);
4372 
4373 	/*
4374 	 * Now advance min_vruntime if @se was the entity holding it back,
4375 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4376 	 * put back on, and if we advance min_vruntime, we'll be placed back
4377 	 * further than we started -- ie. we'll be penalized.
4378 	 */
4379 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4380 		update_min_vruntime(cfs_rq);
4381 }
4382 
4383 /*
4384  * Preempt the current task with a newly woken task if needed:
4385  */
4386 static void
4387 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4388 {
4389 	unsigned long ideal_runtime, delta_exec;
4390 	struct sched_entity *se;
4391 	s64 delta;
4392 
4393 	ideal_runtime = sched_slice(cfs_rq, curr);
4394 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4395 	if (delta_exec > ideal_runtime) {
4396 		resched_curr(rq_of(cfs_rq));
4397 		/*
4398 		 * The current task ran long enough, ensure it doesn't get
4399 		 * re-elected due to buddy favours.
4400 		 */
4401 		clear_buddies(cfs_rq, curr);
4402 		return;
4403 	}
4404 
4405 	/*
4406 	 * Ensure that a task that missed wakeup preemption by a
4407 	 * narrow margin doesn't have to wait for a full slice.
4408 	 * This also mitigates buddy induced latencies under load.
4409 	 */
4410 	if (delta_exec < sysctl_sched_min_granularity)
4411 		return;
4412 
4413 	se = __pick_first_entity(cfs_rq);
4414 	delta = curr->vruntime - se->vruntime;
4415 
4416 	if (delta < 0)
4417 		return;
4418 
4419 	if (delta > ideal_runtime)
4420 		resched_curr(rq_of(cfs_rq));
4421 }
4422 
4423 static void
4424 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4425 {
4426 	clear_buddies(cfs_rq, se);
4427 
4428 	/* 'current' is not kept within the tree. */
4429 	if (se->on_rq) {
4430 		/*
4431 		 * Any task has to be enqueued before it get to execute on
4432 		 * a CPU. So account for the time it spent waiting on the
4433 		 * runqueue.
4434 		 */
4435 		update_stats_wait_end_fair(cfs_rq, se);
4436 		__dequeue_entity(cfs_rq, se);
4437 		update_load_avg(cfs_rq, se, UPDATE_TG);
4438 	}
4439 
4440 	update_stats_curr_start(cfs_rq, se);
4441 	cfs_rq->curr = se;
4442 
4443 	/*
4444 	 * Track our maximum slice length, if the CPU's load is at
4445 	 * least twice that of our own weight (i.e. dont track it
4446 	 * when there are only lesser-weight tasks around):
4447 	 */
4448 	if (schedstat_enabled() &&
4449 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4450 		struct sched_statistics *stats;
4451 
4452 		stats = __schedstats_from_se(se);
4453 		__schedstat_set(stats->slice_max,
4454 				max((u64)stats->slice_max,
4455 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4456 	}
4457 
4458 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4459 }
4460 
4461 static int
4462 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4463 
4464 /*
4465  * Pick the next process, keeping these things in mind, in this order:
4466  * 1) keep things fair between processes/task groups
4467  * 2) pick the "next" process, since someone really wants that to run
4468  * 3) pick the "last" process, for cache locality
4469  * 4) do not run the "skip" process, if something else is available
4470  */
4471 static struct sched_entity *
4472 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4473 {
4474 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4475 	struct sched_entity *se;
4476 
4477 	/*
4478 	 * If curr is set we have to see if its left of the leftmost entity
4479 	 * still in the tree, provided there was anything in the tree at all.
4480 	 */
4481 	if (!left || (curr && entity_before(curr, left)))
4482 		left = curr;
4483 
4484 	se = left; /* ideally we run the leftmost entity */
4485 
4486 	/*
4487 	 * Avoid running the skip buddy, if running something else can
4488 	 * be done without getting too unfair.
4489 	 */
4490 	if (cfs_rq->skip && cfs_rq->skip == se) {
4491 		struct sched_entity *second;
4492 
4493 		if (se == curr) {
4494 			second = __pick_first_entity(cfs_rq);
4495 		} else {
4496 			second = __pick_next_entity(se);
4497 			if (!second || (curr && entity_before(curr, second)))
4498 				second = curr;
4499 		}
4500 
4501 		if (second && wakeup_preempt_entity(second, left) < 1)
4502 			se = second;
4503 	}
4504 
4505 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4506 		/*
4507 		 * Someone really wants this to run. If it's not unfair, run it.
4508 		 */
4509 		se = cfs_rq->next;
4510 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4511 		/*
4512 		 * Prefer last buddy, try to return the CPU to a preempted task.
4513 		 */
4514 		se = cfs_rq->last;
4515 	}
4516 
4517 	return se;
4518 }
4519 
4520 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4521 
4522 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4523 {
4524 	/*
4525 	 * If still on the runqueue then deactivate_task()
4526 	 * was not called and update_curr() has to be done:
4527 	 */
4528 	if (prev->on_rq)
4529 		update_curr(cfs_rq);
4530 
4531 	/* throttle cfs_rqs exceeding runtime */
4532 	check_cfs_rq_runtime(cfs_rq);
4533 
4534 	check_spread(cfs_rq, prev);
4535 
4536 	if (prev->on_rq) {
4537 		update_stats_wait_start_fair(cfs_rq, prev);
4538 		/* Put 'current' back into the tree. */
4539 		__enqueue_entity(cfs_rq, prev);
4540 		/* in !on_rq case, update occurred at dequeue */
4541 		update_load_avg(cfs_rq, prev, 0);
4542 	}
4543 	cfs_rq->curr = NULL;
4544 }
4545 
4546 static void
4547 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4548 {
4549 	/*
4550 	 * Update run-time statistics of the 'current'.
4551 	 */
4552 	update_curr(cfs_rq);
4553 
4554 	/*
4555 	 * Ensure that runnable average is periodically updated.
4556 	 */
4557 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4558 	update_cfs_group(curr);
4559 
4560 #ifdef CONFIG_SCHED_HRTICK
4561 	/*
4562 	 * queued ticks are scheduled to match the slice, so don't bother
4563 	 * validating it and just reschedule.
4564 	 */
4565 	if (queued) {
4566 		resched_curr(rq_of(cfs_rq));
4567 		return;
4568 	}
4569 	/*
4570 	 * don't let the period tick interfere with the hrtick preemption
4571 	 */
4572 	if (!sched_feat(DOUBLE_TICK) &&
4573 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4574 		return;
4575 #endif
4576 
4577 	if (cfs_rq->nr_running > 1)
4578 		check_preempt_tick(cfs_rq, curr);
4579 }
4580 
4581 
4582 /**************************************************
4583  * CFS bandwidth control machinery
4584  */
4585 
4586 #ifdef CONFIG_CFS_BANDWIDTH
4587 
4588 #ifdef CONFIG_JUMP_LABEL
4589 static struct static_key __cfs_bandwidth_used;
4590 
4591 static inline bool cfs_bandwidth_used(void)
4592 {
4593 	return static_key_false(&__cfs_bandwidth_used);
4594 }
4595 
4596 void cfs_bandwidth_usage_inc(void)
4597 {
4598 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4599 }
4600 
4601 void cfs_bandwidth_usage_dec(void)
4602 {
4603 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4604 }
4605 #else /* CONFIG_JUMP_LABEL */
4606 static bool cfs_bandwidth_used(void)
4607 {
4608 	return true;
4609 }
4610 
4611 void cfs_bandwidth_usage_inc(void) {}
4612 void cfs_bandwidth_usage_dec(void) {}
4613 #endif /* CONFIG_JUMP_LABEL */
4614 
4615 /*
4616  * default period for cfs group bandwidth.
4617  * default: 0.1s, units: nanoseconds
4618  */
4619 static inline u64 default_cfs_period(void)
4620 {
4621 	return 100000000ULL;
4622 }
4623 
4624 static inline u64 sched_cfs_bandwidth_slice(void)
4625 {
4626 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4627 }
4628 
4629 /*
4630  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4631  * directly instead of rq->clock to avoid adding additional synchronization
4632  * around rq->lock.
4633  *
4634  * requires cfs_b->lock
4635  */
4636 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4637 {
4638 	s64 runtime;
4639 
4640 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4641 		return;
4642 
4643 	cfs_b->runtime += cfs_b->quota;
4644 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4645 	if (runtime > 0) {
4646 		cfs_b->burst_time += runtime;
4647 		cfs_b->nr_burst++;
4648 	}
4649 
4650 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4651 	cfs_b->runtime_snap = cfs_b->runtime;
4652 }
4653 
4654 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4655 {
4656 	return &tg->cfs_bandwidth;
4657 }
4658 
4659 /* returns 0 on failure to allocate runtime */
4660 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4661 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4662 {
4663 	u64 min_amount, amount = 0;
4664 
4665 	lockdep_assert_held(&cfs_b->lock);
4666 
4667 	/* note: this is a positive sum as runtime_remaining <= 0 */
4668 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4669 
4670 	if (cfs_b->quota == RUNTIME_INF)
4671 		amount = min_amount;
4672 	else {
4673 		start_cfs_bandwidth(cfs_b);
4674 
4675 		if (cfs_b->runtime > 0) {
4676 			amount = min(cfs_b->runtime, min_amount);
4677 			cfs_b->runtime -= amount;
4678 			cfs_b->idle = 0;
4679 		}
4680 	}
4681 
4682 	cfs_rq->runtime_remaining += amount;
4683 
4684 	return cfs_rq->runtime_remaining > 0;
4685 }
4686 
4687 /* returns 0 on failure to allocate runtime */
4688 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4689 {
4690 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4691 	int ret;
4692 
4693 	raw_spin_lock(&cfs_b->lock);
4694 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4695 	raw_spin_unlock(&cfs_b->lock);
4696 
4697 	return ret;
4698 }
4699 
4700 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4701 {
4702 	/* dock delta_exec before expiring quota (as it could span periods) */
4703 	cfs_rq->runtime_remaining -= delta_exec;
4704 
4705 	if (likely(cfs_rq->runtime_remaining > 0))
4706 		return;
4707 
4708 	if (cfs_rq->throttled)
4709 		return;
4710 	/*
4711 	 * if we're unable to extend our runtime we resched so that the active
4712 	 * hierarchy can be throttled
4713 	 */
4714 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4715 		resched_curr(rq_of(cfs_rq));
4716 }
4717 
4718 static __always_inline
4719 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4720 {
4721 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4722 		return;
4723 
4724 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4725 }
4726 
4727 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4728 {
4729 	return cfs_bandwidth_used() && cfs_rq->throttled;
4730 }
4731 
4732 /* check whether cfs_rq, or any parent, is throttled */
4733 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4734 {
4735 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4736 }
4737 
4738 /*
4739  * Ensure that neither of the group entities corresponding to src_cpu or
4740  * dest_cpu are members of a throttled hierarchy when performing group
4741  * load-balance operations.
4742  */
4743 static inline int throttled_lb_pair(struct task_group *tg,
4744 				    int src_cpu, int dest_cpu)
4745 {
4746 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4747 
4748 	src_cfs_rq = tg->cfs_rq[src_cpu];
4749 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4750 
4751 	return throttled_hierarchy(src_cfs_rq) ||
4752 	       throttled_hierarchy(dest_cfs_rq);
4753 }
4754 
4755 static int tg_unthrottle_up(struct task_group *tg, void *data)
4756 {
4757 	struct rq *rq = data;
4758 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4759 
4760 	cfs_rq->throttle_count--;
4761 	if (!cfs_rq->throttle_count) {
4762 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4763 					     cfs_rq->throttled_clock_task;
4764 
4765 		/* Add cfs_rq with load or one or more already running entities to the list */
4766 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4767 			list_add_leaf_cfs_rq(cfs_rq);
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 static int tg_throttle_down(struct task_group *tg, void *data)
4774 {
4775 	struct rq *rq = data;
4776 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4777 
4778 	/* group is entering throttled state, stop time */
4779 	if (!cfs_rq->throttle_count) {
4780 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4781 		list_del_leaf_cfs_rq(cfs_rq);
4782 	}
4783 	cfs_rq->throttle_count++;
4784 
4785 	return 0;
4786 }
4787 
4788 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4789 {
4790 	struct rq *rq = rq_of(cfs_rq);
4791 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4792 	struct sched_entity *se;
4793 	long task_delta, idle_task_delta, dequeue = 1;
4794 
4795 	raw_spin_lock(&cfs_b->lock);
4796 	/* This will start the period timer if necessary */
4797 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4798 		/*
4799 		 * We have raced with bandwidth becoming available, and if we
4800 		 * actually throttled the timer might not unthrottle us for an
4801 		 * entire period. We additionally needed to make sure that any
4802 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4803 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4804 		 * for 1ns of runtime rather than just check cfs_b.
4805 		 */
4806 		dequeue = 0;
4807 	} else {
4808 		list_add_tail_rcu(&cfs_rq->throttled_list,
4809 				  &cfs_b->throttled_cfs_rq);
4810 	}
4811 	raw_spin_unlock(&cfs_b->lock);
4812 
4813 	if (!dequeue)
4814 		return false;  /* Throttle no longer required. */
4815 
4816 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4817 
4818 	/* freeze hierarchy runnable averages while throttled */
4819 	rcu_read_lock();
4820 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4821 	rcu_read_unlock();
4822 
4823 	task_delta = cfs_rq->h_nr_running;
4824 	idle_task_delta = cfs_rq->idle_h_nr_running;
4825 	for_each_sched_entity(se) {
4826 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4827 		/* throttled entity or throttle-on-deactivate */
4828 		if (!se->on_rq)
4829 			goto done;
4830 
4831 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4832 
4833 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4834 			idle_task_delta = cfs_rq->h_nr_running;
4835 
4836 		qcfs_rq->h_nr_running -= task_delta;
4837 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4838 
4839 		if (qcfs_rq->load.weight) {
4840 			/* Avoid re-evaluating load for this entity: */
4841 			se = parent_entity(se);
4842 			break;
4843 		}
4844 	}
4845 
4846 	for_each_sched_entity(se) {
4847 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4848 		/* throttled entity or throttle-on-deactivate */
4849 		if (!se->on_rq)
4850 			goto done;
4851 
4852 		update_load_avg(qcfs_rq, se, 0);
4853 		se_update_runnable(se);
4854 
4855 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4856 			idle_task_delta = cfs_rq->h_nr_running;
4857 
4858 		qcfs_rq->h_nr_running -= task_delta;
4859 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4860 	}
4861 
4862 	/* At this point se is NULL and we are at root level*/
4863 	sub_nr_running(rq, task_delta);
4864 
4865 done:
4866 	/*
4867 	 * Note: distribution will already see us throttled via the
4868 	 * throttled-list.  rq->lock protects completion.
4869 	 */
4870 	cfs_rq->throttled = 1;
4871 	cfs_rq->throttled_clock = rq_clock(rq);
4872 	return true;
4873 }
4874 
4875 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4876 {
4877 	struct rq *rq = rq_of(cfs_rq);
4878 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4879 	struct sched_entity *se;
4880 	long task_delta, idle_task_delta;
4881 
4882 	se = cfs_rq->tg->se[cpu_of(rq)];
4883 
4884 	cfs_rq->throttled = 0;
4885 
4886 	update_rq_clock(rq);
4887 
4888 	raw_spin_lock(&cfs_b->lock);
4889 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4890 	list_del_rcu(&cfs_rq->throttled_list);
4891 	raw_spin_unlock(&cfs_b->lock);
4892 
4893 	/* update hierarchical throttle state */
4894 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4895 
4896 	/* Nothing to run but something to decay (on_list)? Complete the branch */
4897 	if (!cfs_rq->load.weight) {
4898 		if (cfs_rq->on_list)
4899 			goto unthrottle_throttle;
4900 		return;
4901 	}
4902 
4903 	task_delta = cfs_rq->h_nr_running;
4904 	idle_task_delta = cfs_rq->idle_h_nr_running;
4905 	for_each_sched_entity(se) {
4906 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4907 
4908 		if (se->on_rq)
4909 			break;
4910 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4911 
4912 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4913 			idle_task_delta = cfs_rq->h_nr_running;
4914 
4915 		qcfs_rq->h_nr_running += task_delta;
4916 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4917 
4918 		/* end evaluation on encountering a throttled cfs_rq */
4919 		if (cfs_rq_throttled(qcfs_rq))
4920 			goto unthrottle_throttle;
4921 	}
4922 
4923 	for_each_sched_entity(se) {
4924 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4925 
4926 		update_load_avg(qcfs_rq, se, UPDATE_TG);
4927 		se_update_runnable(se);
4928 
4929 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4930 			idle_task_delta = cfs_rq->h_nr_running;
4931 
4932 		qcfs_rq->h_nr_running += task_delta;
4933 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4934 
4935 		/* end evaluation on encountering a throttled cfs_rq */
4936 		if (cfs_rq_throttled(qcfs_rq))
4937 			goto unthrottle_throttle;
4938 
4939 		/*
4940 		 * One parent has been throttled and cfs_rq removed from the
4941 		 * list. Add it back to not break the leaf list.
4942 		 */
4943 		if (throttled_hierarchy(qcfs_rq))
4944 			list_add_leaf_cfs_rq(qcfs_rq);
4945 	}
4946 
4947 	/* At this point se is NULL and we are at root level*/
4948 	add_nr_running(rq, task_delta);
4949 
4950 unthrottle_throttle:
4951 	/*
4952 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4953 	 * incomplete leaf list maintenance, resulting in triggering the
4954 	 * assertion below.
4955 	 */
4956 	for_each_sched_entity(se) {
4957 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4958 
4959 		if (list_add_leaf_cfs_rq(qcfs_rq))
4960 			break;
4961 	}
4962 
4963 	assert_list_leaf_cfs_rq(rq);
4964 
4965 	/* Determine whether we need to wake up potentially idle CPU: */
4966 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4967 		resched_curr(rq);
4968 }
4969 
4970 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4971 {
4972 	struct cfs_rq *cfs_rq;
4973 	u64 runtime, remaining = 1;
4974 
4975 	rcu_read_lock();
4976 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4977 				throttled_list) {
4978 		struct rq *rq = rq_of(cfs_rq);
4979 		struct rq_flags rf;
4980 
4981 		rq_lock_irqsave(rq, &rf);
4982 		if (!cfs_rq_throttled(cfs_rq))
4983 			goto next;
4984 
4985 		/* By the above check, this should never be true */
4986 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4987 
4988 		raw_spin_lock(&cfs_b->lock);
4989 		runtime = -cfs_rq->runtime_remaining + 1;
4990 		if (runtime > cfs_b->runtime)
4991 			runtime = cfs_b->runtime;
4992 		cfs_b->runtime -= runtime;
4993 		remaining = cfs_b->runtime;
4994 		raw_spin_unlock(&cfs_b->lock);
4995 
4996 		cfs_rq->runtime_remaining += runtime;
4997 
4998 		/* we check whether we're throttled above */
4999 		if (cfs_rq->runtime_remaining > 0)
5000 			unthrottle_cfs_rq(cfs_rq);
5001 
5002 next:
5003 		rq_unlock_irqrestore(rq, &rf);
5004 
5005 		if (!remaining)
5006 			break;
5007 	}
5008 	rcu_read_unlock();
5009 }
5010 
5011 /*
5012  * Responsible for refilling a task_group's bandwidth and unthrottling its
5013  * cfs_rqs as appropriate. If there has been no activity within the last
5014  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5015  * used to track this state.
5016  */
5017 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5018 {
5019 	int throttled;
5020 
5021 	/* no need to continue the timer with no bandwidth constraint */
5022 	if (cfs_b->quota == RUNTIME_INF)
5023 		goto out_deactivate;
5024 
5025 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5026 	cfs_b->nr_periods += overrun;
5027 
5028 	/* Refill extra burst quota even if cfs_b->idle */
5029 	__refill_cfs_bandwidth_runtime(cfs_b);
5030 
5031 	/*
5032 	 * idle depends on !throttled (for the case of a large deficit), and if
5033 	 * we're going inactive then everything else can be deferred
5034 	 */
5035 	if (cfs_b->idle && !throttled)
5036 		goto out_deactivate;
5037 
5038 	if (!throttled) {
5039 		/* mark as potentially idle for the upcoming period */
5040 		cfs_b->idle = 1;
5041 		return 0;
5042 	}
5043 
5044 	/* account preceding periods in which throttling occurred */
5045 	cfs_b->nr_throttled += overrun;
5046 
5047 	/*
5048 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5049 	 */
5050 	while (throttled && cfs_b->runtime > 0) {
5051 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5052 		/* we can't nest cfs_b->lock while distributing bandwidth */
5053 		distribute_cfs_runtime(cfs_b);
5054 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5055 
5056 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5057 	}
5058 
5059 	/*
5060 	 * While we are ensured activity in the period following an
5061 	 * unthrottle, this also covers the case in which the new bandwidth is
5062 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5063 	 * timer to remain active while there are any throttled entities.)
5064 	 */
5065 	cfs_b->idle = 0;
5066 
5067 	return 0;
5068 
5069 out_deactivate:
5070 	return 1;
5071 }
5072 
5073 /* a cfs_rq won't donate quota below this amount */
5074 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5075 /* minimum remaining period time to redistribute slack quota */
5076 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5077 /* how long we wait to gather additional slack before distributing */
5078 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5079 
5080 /*
5081  * Are we near the end of the current quota period?
5082  *
5083  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5084  * hrtimer base being cleared by hrtimer_start. In the case of
5085  * migrate_hrtimers, base is never cleared, so we are fine.
5086  */
5087 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5088 {
5089 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5090 	s64 remaining;
5091 
5092 	/* if the call-back is running a quota refresh is already occurring */
5093 	if (hrtimer_callback_running(refresh_timer))
5094 		return 1;
5095 
5096 	/* is a quota refresh about to occur? */
5097 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5098 	if (remaining < (s64)min_expire)
5099 		return 1;
5100 
5101 	return 0;
5102 }
5103 
5104 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5105 {
5106 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5107 
5108 	/* if there's a quota refresh soon don't bother with slack */
5109 	if (runtime_refresh_within(cfs_b, min_left))
5110 		return;
5111 
5112 	/* don't push forwards an existing deferred unthrottle */
5113 	if (cfs_b->slack_started)
5114 		return;
5115 	cfs_b->slack_started = true;
5116 
5117 	hrtimer_start(&cfs_b->slack_timer,
5118 			ns_to_ktime(cfs_bandwidth_slack_period),
5119 			HRTIMER_MODE_REL);
5120 }
5121 
5122 /* we know any runtime found here is valid as update_curr() precedes return */
5123 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5124 {
5125 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5126 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5127 
5128 	if (slack_runtime <= 0)
5129 		return;
5130 
5131 	raw_spin_lock(&cfs_b->lock);
5132 	if (cfs_b->quota != RUNTIME_INF) {
5133 		cfs_b->runtime += slack_runtime;
5134 
5135 		/* we are under rq->lock, defer unthrottling using a timer */
5136 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5137 		    !list_empty(&cfs_b->throttled_cfs_rq))
5138 			start_cfs_slack_bandwidth(cfs_b);
5139 	}
5140 	raw_spin_unlock(&cfs_b->lock);
5141 
5142 	/* even if it's not valid for return we don't want to try again */
5143 	cfs_rq->runtime_remaining -= slack_runtime;
5144 }
5145 
5146 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5147 {
5148 	if (!cfs_bandwidth_used())
5149 		return;
5150 
5151 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5152 		return;
5153 
5154 	__return_cfs_rq_runtime(cfs_rq);
5155 }
5156 
5157 /*
5158  * This is done with a timer (instead of inline with bandwidth return) since
5159  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5160  */
5161 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5162 {
5163 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5164 	unsigned long flags;
5165 
5166 	/* confirm we're still not at a refresh boundary */
5167 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5168 	cfs_b->slack_started = false;
5169 
5170 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5171 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5172 		return;
5173 	}
5174 
5175 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5176 		runtime = cfs_b->runtime;
5177 
5178 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5179 
5180 	if (!runtime)
5181 		return;
5182 
5183 	distribute_cfs_runtime(cfs_b);
5184 }
5185 
5186 /*
5187  * When a group wakes up we want to make sure that its quota is not already
5188  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5189  * runtime as update_curr() throttling can not trigger until it's on-rq.
5190  */
5191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5192 {
5193 	if (!cfs_bandwidth_used())
5194 		return;
5195 
5196 	/* an active group must be handled by the update_curr()->put() path */
5197 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5198 		return;
5199 
5200 	/* ensure the group is not already throttled */
5201 	if (cfs_rq_throttled(cfs_rq))
5202 		return;
5203 
5204 	/* update runtime allocation */
5205 	account_cfs_rq_runtime(cfs_rq, 0);
5206 	if (cfs_rq->runtime_remaining <= 0)
5207 		throttle_cfs_rq(cfs_rq);
5208 }
5209 
5210 static void sync_throttle(struct task_group *tg, int cpu)
5211 {
5212 	struct cfs_rq *pcfs_rq, *cfs_rq;
5213 
5214 	if (!cfs_bandwidth_used())
5215 		return;
5216 
5217 	if (!tg->parent)
5218 		return;
5219 
5220 	cfs_rq = tg->cfs_rq[cpu];
5221 	pcfs_rq = tg->parent->cfs_rq[cpu];
5222 
5223 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5224 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5225 }
5226 
5227 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5228 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5229 {
5230 	if (!cfs_bandwidth_used())
5231 		return false;
5232 
5233 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5234 		return false;
5235 
5236 	/*
5237 	 * it's possible for a throttled entity to be forced into a running
5238 	 * state (e.g. set_curr_task), in this case we're finished.
5239 	 */
5240 	if (cfs_rq_throttled(cfs_rq))
5241 		return true;
5242 
5243 	return throttle_cfs_rq(cfs_rq);
5244 }
5245 
5246 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5247 {
5248 	struct cfs_bandwidth *cfs_b =
5249 		container_of(timer, struct cfs_bandwidth, slack_timer);
5250 
5251 	do_sched_cfs_slack_timer(cfs_b);
5252 
5253 	return HRTIMER_NORESTART;
5254 }
5255 
5256 extern const u64 max_cfs_quota_period;
5257 
5258 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5259 {
5260 	struct cfs_bandwidth *cfs_b =
5261 		container_of(timer, struct cfs_bandwidth, period_timer);
5262 	unsigned long flags;
5263 	int overrun;
5264 	int idle = 0;
5265 	int count = 0;
5266 
5267 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5268 	for (;;) {
5269 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5270 		if (!overrun)
5271 			break;
5272 
5273 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5274 
5275 		if (++count > 3) {
5276 			u64 new, old = ktime_to_ns(cfs_b->period);
5277 
5278 			/*
5279 			 * Grow period by a factor of 2 to avoid losing precision.
5280 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5281 			 * to fail.
5282 			 */
5283 			new = old * 2;
5284 			if (new < max_cfs_quota_period) {
5285 				cfs_b->period = ns_to_ktime(new);
5286 				cfs_b->quota *= 2;
5287 				cfs_b->burst *= 2;
5288 
5289 				pr_warn_ratelimited(
5290 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5291 					smp_processor_id(),
5292 					div_u64(new, NSEC_PER_USEC),
5293 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5294 			} else {
5295 				pr_warn_ratelimited(
5296 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5297 					smp_processor_id(),
5298 					div_u64(old, NSEC_PER_USEC),
5299 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5300 			}
5301 
5302 			/* reset count so we don't come right back in here */
5303 			count = 0;
5304 		}
5305 	}
5306 	if (idle)
5307 		cfs_b->period_active = 0;
5308 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5309 
5310 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5311 }
5312 
5313 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5314 {
5315 	raw_spin_lock_init(&cfs_b->lock);
5316 	cfs_b->runtime = 0;
5317 	cfs_b->quota = RUNTIME_INF;
5318 	cfs_b->period = ns_to_ktime(default_cfs_period());
5319 	cfs_b->burst = 0;
5320 
5321 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5322 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5323 	cfs_b->period_timer.function = sched_cfs_period_timer;
5324 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5325 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5326 	cfs_b->slack_started = false;
5327 }
5328 
5329 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5330 {
5331 	cfs_rq->runtime_enabled = 0;
5332 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5333 }
5334 
5335 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5336 {
5337 	lockdep_assert_held(&cfs_b->lock);
5338 
5339 	if (cfs_b->period_active)
5340 		return;
5341 
5342 	cfs_b->period_active = 1;
5343 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5344 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5345 }
5346 
5347 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5348 {
5349 	/* init_cfs_bandwidth() was not called */
5350 	if (!cfs_b->throttled_cfs_rq.next)
5351 		return;
5352 
5353 	hrtimer_cancel(&cfs_b->period_timer);
5354 	hrtimer_cancel(&cfs_b->slack_timer);
5355 }
5356 
5357 /*
5358  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5359  *
5360  * The race is harmless, since modifying bandwidth settings of unhooked group
5361  * bits doesn't do much.
5362  */
5363 
5364 /* cpu online callback */
5365 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5366 {
5367 	struct task_group *tg;
5368 
5369 	lockdep_assert_rq_held(rq);
5370 
5371 	rcu_read_lock();
5372 	list_for_each_entry_rcu(tg, &task_groups, list) {
5373 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5374 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5375 
5376 		raw_spin_lock(&cfs_b->lock);
5377 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5378 		raw_spin_unlock(&cfs_b->lock);
5379 	}
5380 	rcu_read_unlock();
5381 }
5382 
5383 /* cpu offline callback */
5384 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5385 {
5386 	struct task_group *tg;
5387 
5388 	lockdep_assert_rq_held(rq);
5389 
5390 	rcu_read_lock();
5391 	list_for_each_entry_rcu(tg, &task_groups, list) {
5392 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5393 
5394 		if (!cfs_rq->runtime_enabled)
5395 			continue;
5396 
5397 		/*
5398 		 * clock_task is not advancing so we just need to make sure
5399 		 * there's some valid quota amount
5400 		 */
5401 		cfs_rq->runtime_remaining = 1;
5402 		/*
5403 		 * Offline rq is schedulable till CPU is completely disabled
5404 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5405 		 */
5406 		cfs_rq->runtime_enabled = 0;
5407 
5408 		if (cfs_rq_throttled(cfs_rq))
5409 			unthrottle_cfs_rq(cfs_rq);
5410 	}
5411 	rcu_read_unlock();
5412 }
5413 
5414 #else /* CONFIG_CFS_BANDWIDTH */
5415 
5416 static inline bool cfs_bandwidth_used(void)
5417 {
5418 	return false;
5419 }
5420 
5421 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5422 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5423 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5424 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5425 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5426 
5427 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5428 {
5429 	return 0;
5430 }
5431 
5432 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5433 {
5434 	return 0;
5435 }
5436 
5437 static inline int throttled_lb_pair(struct task_group *tg,
5438 				    int src_cpu, int dest_cpu)
5439 {
5440 	return 0;
5441 }
5442 
5443 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5444 
5445 #ifdef CONFIG_FAIR_GROUP_SCHED
5446 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5447 #endif
5448 
5449 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5450 {
5451 	return NULL;
5452 }
5453 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5454 static inline void update_runtime_enabled(struct rq *rq) {}
5455 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5456 
5457 #endif /* CONFIG_CFS_BANDWIDTH */
5458 
5459 /**************************************************
5460  * CFS operations on tasks:
5461  */
5462 
5463 #ifdef CONFIG_SCHED_HRTICK
5464 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5465 {
5466 	struct sched_entity *se = &p->se;
5467 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5468 
5469 	SCHED_WARN_ON(task_rq(p) != rq);
5470 
5471 	if (rq->cfs.h_nr_running > 1) {
5472 		u64 slice = sched_slice(cfs_rq, se);
5473 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5474 		s64 delta = slice - ran;
5475 
5476 		if (delta < 0) {
5477 			if (task_current(rq, p))
5478 				resched_curr(rq);
5479 			return;
5480 		}
5481 		hrtick_start(rq, delta);
5482 	}
5483 }
5484 
5485 /*
5486  * called from enqueue/dequeue and updates the hrtick when the
5487  * current task is from our class and nr_running is low enough
5488  * to matter.
5489  */
5490 static void hrtick_update(struct rq *rq)
5491 {
5492 	struct task_struct *curr = rq->curr;
5493 
5494 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5495 		return;
5496 
5497 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5498 		hrtick_start_fair(rq, curr);
5499 }
5500 #else /* !CONFIG_SCHED_HRTICK */
5501 static inline void
5502 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5503 {
5504 }
5505 
5506 static inline void hrtick_update(struct rq *rq)
5507 {
5508 }
5509 #endif
5510 
5511 #ifdef CONFIG_SMP
5512 static inline unsigned long cpu_util(int cpu);
5513 
5514 static inline bool cpu_overutilized(int cpu)
5515 {
5516 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5517 }
5518 
5519 static inline void update_overutilized_status(struct rq *rq)
5520 {
5521 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5522 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5523 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5524 	}
5525 }
5526 #else
5527 static inline void update_overutilized_status(struct rq *rq) { }
5528 #endif
5529 
5530 /* Runqueue only has SCHED_IDLE tasks enqueued */
5531 static int sched_idle_rq(struct rq *rq)
5532 {
5533 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5534 			rq->nr_running);
5535 }
5536 
5537 /*
5538  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5539  * of idle_nr_running, which does not consider idle descendants of normal
5540  * entities.
5541  */
5542 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5543 {
5544 	return cfs_rq->nr_running &&
5545 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5546 }
5547 
5548 #ifdef CONFIG_SMP
5549 static int sched_idle_cpu(int cpu)
5550 {
5551 	return sched_idle_rq(cpu_rq(cpu));
5552 }
5553 #endif
5554 
5555 /*
5556  * The enqueue_task method is called before nr_running is
5557  * increased. Here we update the fair scheduling stats and
5558  * then put the task into the rbtree:
5559  */
5560 static void
5561 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5562 {
5563 	struct cfs_rq *cfs_rq;
5564 	struct sched_entity *se = &p->se;
5565 	int idle_h_nr_running = task_has_idle_policy(p);
5566 	int task_new = !(flags & ENQUEUE_WAKEUP);
5567 
5568 	/*
5569 	 * The code below (indirectly) updates schedutil which looks at
5570 	 * the cfs_rq utilization to select a frequency.
5571 	 * Let's add the task's estimated utilization to the cfs_rq's
5572 	 * estimated utilization, before we update schedutil.
5573 	 */
5574 	util_est_enqueue(&rq->cfs, p);
5575 
5576 	/*
5577 	 * If in_iowait is set, the code below may not trigger any cpufreq
5578 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5579 	 * passed.
5580 	 */
5581 	if (p->in_iowait)
5582 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5583 
5584 	for_each_sched_entity(se) {
5585 		if (se->on_rq)
5586 			break;
5587 		cfs_rq = cfs_rq_of(se);
5588 		enqueue_entity(cfs_rq, se, flags);
5589 
5590 		cfs_rq->h_nr_running++;
5591 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5592 
5593 		if (cfs_rq_is_idle(cfs_rq))
5594 			idle_h_nr_running = 1;
5595 
5596 		/* end evaluation on encountering a throttled cfs_rq */
5597 		if (cfs_rq_throttled(cfs_rq))
5598 			goto enqueue_throttle;
5599 
5600 		flags = ENQUEUE_WAKEUP;
5601 	}
5602 
5603 	for_each_sched_entity(se) {
5604 		cfs_rq = cfs_rq_of(se);
5605 
5606 		update_load_avg(cfs_rq, se, UPDATE_TG);
5607 		se_update_runnable(se);
5608 		update_cfs_group(se);
5609 
5610 		cfs_rq->h_nr_running++;
5611 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5612 
5613 		if (cfs_rq_is_idle(cfs_rq))
5614 			idle_h_nr_running = 1;
5615 
5616 		/* end evaluation on encountering a throttled cfs_rq */
5617 		if (cfs_rq_throttled(cfs_rq))
5618 			goto enqueue_throttle;
5619 
5620                /*
5621                 * One parent has been throttled and cfs_rq removed from the
5622                 * list. Add it back to not break the leaf list.
5623                 */
5624                if (throttled_hierarchy(cfs_rq))
5625                        list_add_leaf_cfs_rq(cfs_rq);
5626 	}
5627 
5628 	/* At this point se is NULL and we are at root level*/
5629 	add_nr_running(rq, 1);
5630 
5631 	/*
5632 	 * Since new tasks are assigned an initial util_avg equal to
5633 	 * half of the spare capacity of their CPU, tiny tasks have the
5634 	 * ability to cross the overutilized threshold, which will
5635 	 * result in the load balancer ruining all the task placement
5636 	 * done by EAS. As a way to mitigate that effect, do not account
5637 	 * for the first enqueue operation of new tasks during the
5638 	 * overutilized flag detection.
5639 	 *
5640 	 * A better way of solving this problem would be to wait for
5641 	 * the PELT signals of tasks to converge before taking them
5642 	 * into account, but that is not straightforward to implement,
5643 	 * and the following generally works well enough in practice.
5644 	 */
5645 	if (!task_new)
5646 		update_overutilized_status(rq);
5647 
5648 enqueue_throttle:
5649 	if (cfs_bandwidth_used()) {
5650 		/*
5651 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5652 		 * breaks in the above iteration can result in incomplete
5653 		 * leaf list maintenance, resulting in triggering the assertion
5654 		 * below.
5655 		 */
5656 		for_each_sched_entity(se) {
5657 			cfs_rq = cfs_rq_of(se);
5658 
5659 			if (list_add_leaf_cfs_rq(cfs_rq))
5660 				break;
5661 		}
5662 	}
5663 
5664 	assert_list_leaf_cfs_rq(rq);
5665 
5666 	hrtick_update(rq);
5667 }
5668 
5669 static void set_next_buddy(struct sched_entity *se);
5670 
5671 /*
5672  * The dequeue_task method is called before nr_running is
5673  * decreased. We remove the task from the rbtree and
5674  * update the fair scheduling stats:
5675  */
5676 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5677 {
5678 	struct cfs_rq *cfs_rq;
5679 	struct sched_entity *se = &p->se;
5680 	int task_sleep = flags & DEQUEUE_SLEEP;
5681 	int idle_h_nr_running = task_has_idle_policy(p);
5682 	bool was_sched_idle = sched_idle_rq(rq);
5683 
5684 	util_est_dequeue(&rq->cfs, p);
5685 
5686 	for_each_sched_entity(se) {
5687 		cfs_rq = cfs_rq_of(se);
5688 		dequeue_entity(cfs_rq, se, flags);
5689 
5690 		cfs_rq->h_nr_running--;
5691 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5692 
5693 		if (cfs_rq_is_idle(cfs_rq))
5694 			idle_h_nr_running = 1;
5695 
5696 		/* end evaluation on encountering a throttled cfs_rq */
5697 		if (cfs_rq_throttled(cfs_rq))
5698 			goto dequeue_throttle;
5699 
5700 		/* Don't dequeue parent if it has other entities besides us */
5701 		if (cfs_rq->load.weight) {
5702 			/* Avoid re-evaluating load for this entity: */
5703 			se = parent_entity(se);
5704 			/*
5705 			 * Bias pick_next to pick a task from this cfs_rq, as
5706 			 * p is sleeping when it is within its sched_slice.
5707 			 */
5708 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5709 				set_next_buddy(se);
5710 			break;
5711 		}
5712 		flags |= DEQUEUE_SLEEP;
5713 	}
5714 
5715 	for_each_sched_entity(se) {
5716 		cfs_rq = cfs_rq_of(se);
5717 
5718 		update_load_avg(cfs_rq, se, UPDATE_TG);
5719 		se_update_runnable(se);
5720 		update_cfs_group(se);
5721 
5722 		cfs_rq->h_nr_running--;
5723 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5724 
5725 		if (cfs_rq_is_idle(cfs_rq))
5726 			idle_h_nr_running = 1;
5727 
5728 		/* end evaluation on encountering a throttled cfs_rq */
5729 		if (cfs_rq_throttled(cfs_rq))
5730 			goto dequeue_throttle;
5731 
5732 	}
5733 
5734 	/* At this point se is NULL and we are at root level*/
5735 	sub_nr_running(rq, 1);
5736 
5737 	/* balance early to pull high priority tasks */
5738 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5739 		rq->next_balance = jiffies;
5740 
5741 dequeue_throttle:
5742 	util_est_update(&rq->cfs, p, task_sleep);
5743 	hrtick_update(rq);
5744 }
5745 
5746 #ifdef CONFIG_SMP
5747 
5748 /* Working cpumask for: load_balance, load_balance_newidle. */
5749 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5750 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5751 
5752 #ifdef CONFIG_NO_HZ_COMMON
5753 
5754 static struct {
5755 	cpumask_var_t idle_cpus_mask;
5756 	atomic_t nr_cpus;
5757 	int has_blocked;		/* Idle CPUS has blocked load */
5758 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5759 	unsigned long next_balance;     /* in jiffy units */
5760 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5761 } nohz ____cacheline_aligned;
5762 
5763 #endif /* CONFIG_NO_HZ_COMMON */
5764 
5765 static unsigned long cpu_load(struct rq *rq)
5766 {
5767 	return cfs_rq_load_avg(&rq->cfs);
5768 }
5769 
5770 /*
5771  * cpu_load_without - compute CPU load without any contributions from *p
5772  * @cpu: the CPU which load is requested
5773  * @p: the task which load should be discounted
5774  *
5775  * The load of a CPU is defined by the load of tasks currently enqueued on that
5776  * CPU as well as tasks which are currently sleeping after an execution on that
5777  * CPU.
5778  *
5779  * This method returns the load of the specified CPU by discounting the load of
5780  * the specified task, whenever the task is currently contributing to the CPU
5781  * load.
5782  */
5783 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5784 {
5785 	struct cfs_rq *cfs_rq;
5786 	unsigned int load;
5787 
5788 	/* Task has no contribution or is new */
5789 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5790 		return cpu_load(rq);
5791 
5792 	cfs_rq = &rq->cfs;
5793 	load = READ_ONCE(cfs_rq->avg.load_avg);
5794 
5795 	/* Discount task's util from CPU's util */
5796 	lsub_positive(&load, task_h_load(p));
5797 
5798 	return load;
5799 }
5800 
5801 static unsigned long cpu_runnable(struct rq *rq)
5802 {
5803 	return cfs_rq_runnable_avg(&rq->cfs);
5804 }
5805 
5806 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5807 {
5808 	struct cfs_rq *cfs_rq;
5809 	unsigned int runnable;
5810 
5811 	/* Task has no contribution or is new */
5812 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5813 		return cpu_runnable(rq);
5814 
5815 	cfs_rq = &rq->cfs;
5816 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5817 
5818 	/* Discount task's runnable from CPU's runnable */
5819 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5820 
5821 	return runnable;
5822 }
5823 
5824 static unsigned long capacity_of(int cpu)
5825 {
5826 	return cpu_rq(cpu)->cpu_capacity;
5827 }
5828 
5829 static void record_wakee(struct task_struct *p)
5830 {
5831 	/*
5832 	 * Only decay a single time; tasks that have less then 1 wakeup per
5833 	 * jiffy will not have built up many flips.
5834 	 */
5835 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5836 		current->wakee_flips >>= 1;
5837 		current->wakee_flip_decay_ts = jiffies;
5838 	}
5839 
5840 	if (current->last_wakee != p) {
5841 		current->last_wakee = p;
5842 		current->wakee_flips++;
5843 	}
5844 }
5845 
5846 /*
5847  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5848  *
5849  * A waker of many should wake a different task than the one last awakened
5850  * at a frequency roughly N times higher than one of its wakees.
5851  *
5852  * In order to determine whether we should let the load spread vs consolidating
5853  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5854  * partner, and a factor of lls_size higher frequency in the other.
5855  *
5856  * With both conditions met, we can be relatively sure that the relationship is
5857  * non-monogamous, with partner count exceeding socket size.
5858  *
5859  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5860  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5861  * socket size.
5862  */
5863 static int wake_wide(struct task_struct *p)
5864 {
5865 	unsigned int master = current->wakee_flips;
5866 	unsigned int slave = p->wakee_flips;
5867 	int factor = __this_cpu_read(sd_llc_size);
5868 
5869 	if (master < slave)
5870 		swap(master, slave);
5871 	if (slave < factor || master < slave * factor)
5872 		return 0;
5873 	return 1;
5874 }
5875 
5876 /*
5877  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5878  * soonest. For the purpose of speed we only consider the waking and previous
5879  * CPU.
5880  *
5881  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5882  *			cache-affine and is (or	will be) idle.
5883  *
5884  * wake_affine_weight() - considers the weight to reflect the average
5885  *			  scheduling latency of the CPUs. This seems to work
5886  *			  for the overloaded case.
5887  */
5888 static int
5889 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5890 {
5891 	/*
5892 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5893 	 * context. Only allow the move if cache is shared. Otherwise an
5894 	 * interrupt intensive workload could force all tasks onto one
5895 	 * node depending on the IO topology or IRQ affinity settings.
5896 	 *
5897 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5898 	 * There is no guarantee that the cache hot data from an interrupt
5899 	 * is more important than cache hot data on the prev_cpu and from
5900 	 * a cpufreq perspective, it's better to have higher utilisation
5901 	 * on one CPU.
5902 	 */
5903 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5904 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5905 
5906 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5907 		return this_cpu;
5908 
5909 	if (available_idle_cpu(prev_cpu))
5910 		return prev_cpu;
5911 
5912 	return nr_cpumask_bits;
5913 }
5914 
5915 static int
5916 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5917 		   int this_cpu, int prev_cpu, int sync)
5918 {
5919 	s64 this_eff_load, prev_eff_load;
5920 	unsigned long task_load;
5921 
5922 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5923 
5924 	if (sync) {
5925 		unsigned long current_load = task_h_load(current);
5926 
5927 		if (current_load > this_eff_load)
5928 			return this_cpu;
5929 
5930 		this_eff_load -= current_load;
5931 	}
5932 
5933 	task_load = task_h_load(p);
5934 
5935 	this_eff_load += task_load;
5936 	if (sched_feat(WA_BIAS))
5937 		this_eff_load *= 100;
5938 	this_eff_load *= capacity_of(prev_cpu);
5939 
5940 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5941 	prev_eff_load -= task_load;
5942 	if (sched_feat(WA_BIAS))
5943 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5944 	prev_eff_load *= capacity_of(this_cpu);
5945 
5946 	/*
5947 	 * If sync, adjust the weight of prev_eff_load such that if
5948 	 * prev_eff == this_eff that select_idle_sibling() will consider
5949 	 * stacking the wakee on top of the waker if no other CPU is
5950 	 * idle.
5951 	 */
5952 	if (sync)
5953 		prev_eff_load += 1;
5954 
5955 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5956 }
5957 
5958 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5959 		       int this_cpu, int prev_cpu, int sync)
5960 {
5961 	int target = nr_cpumask_bits;
5962 
5963 	if (sched_feat(WA_IDLE))
5964 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5965 
5966 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5967 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5968 
5969 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
5970 	if (target == nr_cpumask_bits)
5971 		return prev_cpu;
5972 
5973 	schedstat_inc(sd->ttwu_move_affine);
5974 	schedstat_inc(p->stats.nr_wakeups_affine);
5975 	return target;
5976 }
5977 
5978 static struct sched_group *
5979 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5980 
5981 /*
5982  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5983  */
5984 static int
5985 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5986 {
5987 	unsigned long load, min_load = ULONG_MAX;
5988 	unsigned int min_exit_latency = UINT_MAX;
5989 	u64 latest_idle_timestamp = 0;
5990 	int least_loaded_cpu = this_cpu;
5991 	int shallowest_idle_cpu = -1;
5992 	int i;
5993 
5994 	/* Check if we have any choice: */
5995 	if (group->group_weight == 1)
5996 		return cpumask_first(sched_group_span(group));
5997 
5998 	/* Traverse only the allowed CPUs */
5999 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6000 		struct rq *rq = cpu_rq(i);
6001 
6002 		if (!sched_core_cookie_match(rq, p))
6003 			continue;
6004 
6005 		if (sched_idle_cpu(i))
6006 			return i;
6007 
6008 		if (available_idle_cpu(i)) {
6009 			struct cpuidle_state *idle = idle_get_state(rq);
6010 			if (idle && idle->exit_latency < min_exit_latency) {
6011 				/*
6012 				 * We give priority to a CPU whose idle state
6013 				 * has the smallest exit latency irrespective
6014 				 * of any idle timestamp.
6015 				 */
6016 				min_exit_latency = idle->exit_latency;
6017 				latest_idle_timestamp = rq->idle_stamp;
6018 				shallowest_idle_cpu = i;
6019 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6020 				   rq->idle_stamp > latest_idle_timestamp) {
6021 				/*
6022 				 * If equal or no active idle state, then
6023 				 * the most recently idled CPU might have
6024 				 * a warmer cache.
6025 				 */
6026 				latest_idle_timestamp = rq->idle_stamp;
6027 				shallowest_idle_cpu = i;
6028 			}
6029 		} else if (shallowest_idle_cpu == -1) {
6030 			load = cpu_load(cpu_rq(i));
6031 			if (load < min_load) {
6032 				min_load = load;
6033 				least_loaded_cpu = i;
6034 			}
6035 		}
6036 	}
6037 
6038 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6039 }
6040 
6041 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6042 				  int cpu, int prev_cpu, int sd_flag)
6043 {
6044 	int new_cpu = cpu;
6045 
6046 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6047 		return prev_cpu;
6048 
6049 	/*
6050 	 * We need task's util for cpu_util_without, sync it up to
6051 	 * prev_cpu's last_update_time.
6052 	 */
6053 	if (!(sd_flag & SD_BALANCE_FORK))
6054 		sync_entity_load_avg(&p->se);
6055 
6056 	while (sd) {
6057 		struct sched_group *group;
6058 		struct sched_domain *tmp;
6059 		int weight;
6060 
6061 		if (!(sd->flags & sd_flag)) {
6062 			sd = sd->child;
6063 			continue;
6064 		}
6065 
6066 		group = find_idlest_group(sd, p, cpu);
6067 		if (!group) {
6068 			sd = sd->child;
6069 			continue;
6070 		}
6071 
6072 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6073 		if (new_cpu == cpu) {
6074 			/* Now try balancing at a lower domain level of 'cpu': */
6075 			sd = sd->child;
6076 			continue;
6077 		}
6078 
6079 		/* Now try balancing at a lower domain level of 'new_cpu': */
6080 		cpu = new_cpu;
6081 		weight = sd->span_weight;
6082 		sd = NULL;
6083 		for_each_domain(cpu, tmp) {
6084 			if (weight <= tmp->span_weight)
6085 				break;
6086 			if (tmp->flags & sd_flag)
6087 				sd = tmp;
6088 		}
6089 	}
6090 
6091 	return new_cpu;
6092 }
6093 
6094 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6095 {
6096 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6097 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6098 		return cpu;
6099 
6100 	return -1;
6101 }
6102 
6103 #ifdef CONFIG_SCHED_SMT
6104 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6105 EXPORT_SYMBOL_GPL(sched_smt_present);
6106 
6107 static inline void set_idle_cores(int cpu, int val)
6108 {
6109 	struct sched_domain_shared *sds;
6110 
6111 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6112 	if (sds)
6113 		WRITE_ONCE(sds->has_idle_cores, val);
6114 }
6115 
6116 static inline bool test_idle_cores(int cpu, bool def)
6117 {
6118 	struct sched_domain_shared *sds;
6119 
6120 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6121 	if (sds)
6122 		return READ_ONCE(sds->has_idle_cores);
6123 
6124 	return def;
6125 }
6126 
6127 /*
6128  * Scans the local SMT mask to see if the entire core is idle, and records this
6129  * information in sd_llc_shared->has_idle_cores.
6130  *
6131  * Since SMT siblings share all cache levels, inspecting this limited remote
6132  * state should be fairly cheap.
6133  */
6134 void __update_idle_core(struct rq *rq)
6135 {
6136 	int core = cpu_of(rq);
6137 	int cpu;
6138 
6139 	rcu_read_lock();
6140 	if (test_idle_cores(core, true))
6141 		goto unlock;
6142 
6143 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6144 		if (cpu == core)
6145 			continue;
6146 
6147 		if (!available_idle_cpu(cpu))
6148 			goto unlock;
6149 	}
6150 
6151 	set_idle_cores(core, 1);
6152 unlock:
6153 	rcu_read_unlock();
6154 }
6155 
6156 /*
6157  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6158  * there are no idle cores left in the system; tracked through
6159  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6160  */
6161 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6162 {
6163 	bool idle = true;
6164 	int cpu;
6165 
6166 	if (!static_branch_likely(&sched_smt_present))
6167 		return __select_idle_cpu(core, p);
6168 
6169 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6170 		if (!available_idle_cpu(cpu)) {
6171 			idle = false;
6172 			if (*idle_cpu == -1) {
6173 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6174 					*idle_cpu = cpu;
6175 					break;
6176 				}
6177 				continue;
6178 			}
6179 			break;
6180 		}
6181 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6182 			*idle_cpu = cpu;
6183 	}
6184 
6185 	if (idle)
6186 		return core;
6187 
6188 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6189 	return -1;
6190 }
6191 
6192 /*
6193  * Scan the local SMT mask for idle CPUs.
6194  */
6195 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6196 {
6197 	int cpu;
6198 
6199 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6200 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6201 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6202 			continue;
6203 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6204 			return cpu;
6205 	}
6206 
6207 	return -1;
6208 }
6209 
6210 #else /* CONFIG_SCHED_SMT */
6211 
6212 static inline void set_idle_cores(int cpu, int val)
6213 {
6214 }
6215 
6216 static inline bool test_idle_cores(int cpu, bool def)
6217 {
6218 	return def;
6219 }
6220 
6221 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6222 {
6223 	return __select_idle_cpu(core, p);
6224 }
6225 
6226 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6227 {
6228 	return -1;
6229 }
6230 
6231 #endif /* CONFIG_SCHED_SMT */
6232 
6233 /*
6234  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6235  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6236  * average idle time for this rq (as found in rq->avg_idle).
6237  */
6238 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6239 {
6240 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6241 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6242 	struct rq *this_rq = this_rq();
6243 	int this = smp_processor_id();
6244 	struct sched_domain *this_sd;
6245 	u64 time = 0;
6246 
6247 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6248 	if (!this_sd)
6249 		return -1;
6250 
6251 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6252 
6253 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6254 		u64 avg_cost, avg_idle, span_avg;
6255 		unsigned long now = jiffies;
6256 
6257 		/*
6258 		 * If we're busy, the assumption that the last idle period
6259 		 * predicts the future is flawed; age away the remaining
6260 		 * predicted idle time.
6261 		 */
6262 		if (unlikely(this_rq->wake_stamp < now)) {
6263 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6264 				this_rq->wake_stamp++;
6265 				this_rq->wake_avg_idle >>= 1;
6266 			}
6267 		}
6268 
6269 		avg_idle = this_rq->wake_avg_idle;
6270 		avg_cost = this_sd->avg_scan_cost + 1;
6271 
6272 		span_avg = sd->span_weight * avg_idle;
6273 		if (span_avg > 4*avg_cost)
6274 			nr = div_u64(span_avg, avg_cost);
6275 		else
6276 			nr = 4;
6277 
6278 		time = cpu_clock(this);
6279 	}
6280 
6281 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6282 		if (has_idle_core) {
6283 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6284 			if ((unsigned int)i < nr_cpumask_bits)
6285 				return i;
6286 
6287 		} else {
6288 			if (!--nr)
6289 				return -1;
6290 			idle_cpu = __select_idle_cpu(cpu, p);
6291 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6292 				break;
6293 		}
6294 	}
6295 
6296 	if (has_idle_core)
6297 		set_idle_cores(target, false);
6298 
6299 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6300 		time = cpu_clock(this) - time;
6301 
6302 		/*
6303 		 * Account for the scan cost of wakeups against the average
6304 		 * idle time.
6305 		 */
6306 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6307 
6308 		update_avg(&this_sd->avg_scan_cost, time);
6309 	}
6310 
6311 	return idle_cpu;
6312 }
6313 
6314 /*
6315  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6316  * the task fits. If no CPU is big enough, but there are idle ones, try to
6317  * maximize capacity.
6318  */
6319 static int
6320 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6321 {
6322 	unsigned long task_util, best_cap = 0;
6323 	int cpu, best_cpu = -1;
6324 	struct cpumask *cpus;
6325 
6326 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6327 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6328 
6329 	task_util = uclamp_task_util(p);
6330 
6331 	for_each_cpu_wrap(cpu, cpus, target) {
6332 		unsigned long cpu_cap = capacity_of(cpu);
6333 
6334 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6335 			continue;
6336 		if (fits_capacity(task_util, cpu_cap))
6337 			return cpu;
6338 
6339 		if (cpu_cap > best_cap) {
6340 			best_cap = cpu_cap;
6341 			best_cpu = cpu;
6342 		}
6343 	}
6344 
6345 	return best_cpu;
6346 }
6347 
6348 static inline bool asym_fits_capacity(int task_util, int cpu)
6349 {
6350 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6351 		return fits_capacity(task_util, capacity_of(cpu));
6352 
6353 	return true;
6354 }
6355 
6356 /*
6357  * Try and locate an idle core/thread in the LLC cache domain.
6358  */
6359 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6360 {
6361 	bool has_idle_core = false;
6362 	struct sched_domain *sd;
6363 	unsigned long task_util;
6364 	int i, recent_used_cpu;
6365 
6366 	/*
6367 	 * On asymmetric system, update task utilization because we will check
6368 	 * that the task fits with cpu's capacity.
6369 	 */
6370 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6371 		sync_entity_load_avg(&p->se);
6372 		task_util = uclamp_task_util(p);
6373 	}
6374 
6375 	/*
6376 	 * per-cpu select_idle_mask usage
6377 	 */
6378 	lockdep_assert_irqs_disabled();
6379 
6380 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6381 	    asym_fits_capacity(task_util, target))
6382 		return target;
6383 
6384 	/*
6385 	 * If the previous CPU is cache affine and idle, don't be stupid:
6386 	 */
6387 	if (prev != target && cpus_share_cache(prev, target) &&
6388 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6389 	    asym_fits_capacity(task_util, prev))
6390 		return prev;
6391 
6392 	/*
6393 	 * Allow a per-cpu kthread to stack with the wakee if the
6394 	 * kworker thread and the tasks previous CPUs are the same.
6395 	 * The assumption is that the wakee queued work for the
6396 	 * per-cpu kthread that is now complete and the wakeup is
6397 	 * essentially a sync wakeup. An obvious example of this
6398 	 * pattern is IO completions.
6399 	 */
6400 	if (is_per_cpu_kthread(current) &&
6401 	    prev == smp_processor_id() &&
6402 	    this_rq()->nr_running <= 1) {
6403 		return prev;
6404 	}
6405 
6406 	/* Check a recently used CPU as a potential idle candidate: */
6407 	recent_used_cpu = p->recent_used_cpu;
6408 	p->recent_used_cpu = prev;
6409 	if (recent_used_cpu != prev &&
6410 	    recent_used_cpu != target &&
6411 	    cpus_share_cache(recent_used_cpu, target) &&
6412 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6413 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6414 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6415 		return recent_used_cpu;
6416 	}
6417 
6418 	/*
6419 	 * For asymmetric CPU capacity systems, our domain of interest is
6420 	 * sd_asym_cpucapacity rather than sd_llc.
6421 	 */
6422 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6423 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6424 		/*
6425 		 * On an asymmetric CPU capacity system where an exclusive
6426 		 * cpuset defines a symmetric island (i.e. one unique
6427 		 * capacity_orig value through the cpuset), the key will be set
6428 		 * but the CPUs within that cpuset will not have a domain with
6429 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6430 		 * capacity path.
6431 		 */
6432 		if (sd) {
6433 			i = select_idle_capacity(p, sd, target);
6434 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6435 		}
6436 	}
6437 
6438 	sd = rcu_dereference(per_cpu(sd_llc, target));
6439 	if (!sd)
6440 		return target;
6441 
6442 	if (sched_smt_active()) {
6443 		has_idle_core = test_idle_cores(target, false);
6444 
6445 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6446 			i = select_idle_smt(p, sd, prev);
6447 			if ((unsigned int)i < nr_cpumask_bits)
6448 				return i;
6449 		}
6450 	}
6451 
6452 	i = select_idle_cpu(p, sd, has_idle_core, target);
6453 	if ((unsigned)i < nr_cpumask_bits)
6454 		return i;
6455 
6456 	return target;
6457 }
6458 
6459 /**
6460  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6461  * @cpu: the CPU to get the utilization of
6462  *
6463  * The unit of the return value must be the one of capacity so we can compare
6464  * the utilization with the capacity of the CPU that is available for CFS task
6465  * (ie cpu_capacity).
6466  *
6467  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6468  * recent utilization of currently non-runnable tasks on a CPU. It represents
6469  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6470  * capacity_orig is the cpu_capacity available at the highest frequency
6471  * (arch_scale_freq_capacity()).
6472  * The utilization of a CPU converges towards a sum equal to or less than the
6473  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6474  * the running time on this CPU scaled by capacity_curr.
6475  *
6476  * The estimated utilization of a CPU is defined to be the maximum between its
6477  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6478  * currently RUNNABLE on that CPU.
6479  * This allows to properly represent the expected utilization of a CPU which
6480  * has just got a big task running since a long sleep period. At the same time
6481  * however it preserves the benefits of the "blocked utilization" in
6482  * describing the potential for other tasks waking up on the same CPU.
6483  *
6484  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6485  * higher than capacity_orig because of unfortunate rounding in
6486  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6487  * the average stabilizes with the new running time. We need to check that the
6488  * utilization stays within the range of [0..capacity_orig] and cap it if
6489  * necessary. Without utilization capping, a group could be seen as overloaded
6490  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6491  * available capacity. We allow utilization to overshoot capacity_curr (but not
6492  * capacity_orig) as it useful for predicting the capacity required after task
6493  * migrations (scheduler-driven DVFS).
6494  *
6495  * Return: the (estimated) utilization for the specified CPU
6496  */
6497 static inline unsigned long cpu_util(int cpu)
6498 {
6499 	struct cfs_rq *cfs_rq;
6500 	unsigned int util;
6501 
6502 	cfs_rq = &cpu_rq(cpu)->cfs;
6503 	util = READ_ONCE(cfs_rq->avg.util_avg);
6504 
6505 	if (sched_feat(UTIL_EST))
6506 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6507 
6508 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6509 }
6510 
6511 /*
6512  * cpu_util_without: compute cpu utilization without any contributions from *p
6513  * @cpu: the CPU which utilization is requested
6514  * @p: the task which utilization should be discounted
6515  *
6516  * The utilization of a CPU is defined by the utilization of tasks currently
6517  * enqueued on that CPU as well as tasks which are currently sleeping after an
6518  * execution on that CPU.
6519  *
6520  * This method returns the utilization of the specified CPU by discounting the
6521  * utilization of the specified task, whenever the task is currently
6522  * contributing to the CPU utilization.
6523  */
6524 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6525 {
6526 	struct cfs_rq *cfs_rq;
6527 	unsigned int util;
6528 
6529 	/* Task has no contribution or is new */
6530 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6531 		return cpu_util(cpu);
6532 
6533 	cfs_rq = &cpu_rq(cpu)->cfs;
6534 	util = READ_ONCE(cfs_rq->avg.util_avg);
6535 
6536 	/* Discount task's util from CPU's util */
6537 	lsub_positive(&util, task_util(p));
6538 
6539 	/*
6540 	 * Covered cases:
6541 	 *
6542 	 * a) if *p is the only task sleeping on this CPU, then:
6543 	 *      cpu_util (== task_util) > util_est (== 0)
6544 	 *    and thus we return:
6545 	 *      cpu_util_without = (cpu_util - task_util) = 0
6546 	 *
6547 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6548 	 *    IDLE, then:
6549 	 *      cpu_util >= task_util
6550 	 *      cpu_util > util_est (== 0)
6551 	 *    and thus we discount *p's blocked utilization to return:
6552 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6553 	 *
6554 	 * c) if other tasks are RUNNABLE on that CPU and
6555 	 *      util_est > cpu_util
6556 	 *    then we use util_est since it returns a more restrictive
6557 	 *    estimation of the spare capacity on that CPU, by just
6558 	 *    considering the expected utilization of tasks already
6559 	 *    runnable on that CPU.
6560 	 *
6561 	 * Cases a) and b) are covered by the above code, while case c) is
6562 	 * covered by the following code when estimated utilization is
6563 	 * enabled.
6564 	 */
6565 	if (sched_feat(UTIL_EST)) {
6566 		unsigned int estimated =
6567 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6568 
6569 		/*
6570 		 * Despite the following checks we still have a small window
6571 		 * for a possible race, when an execl's select_task_rq_fair()
6572 		 * races with LB's detach_task():
6573 		 *
6574 		 *   detach_task()
6575 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6576 		 *     ---------------------------------- A
6577 		 *     deactivate_task()                   \
6578 		 *       dequeue_task()                     + RaceTime
6579 		 *         util_est_dequeue()              /
6580 		 *     ---------------------------------- B
6581 		 *
6582 		 * The additional check on "current == p" it's required to
6583 		 * properly fix the execl regression and it helps in further
6584 		 * reducing the chances for the above race.
6585 		 */
6586 		if (unlikely(task_on_rq_queued(p) || current == p))
6587 			lsub_positive(&estimated, _task_util_est(p));
6588 
6589 		util = max(util, estimated);
6590 	}
6591 
6592 	/*
6593 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6594 	 * clamp to the maximum CPU capacity to ensure consistency with
6595 	 * the cpu_util call.
6596 	 */
6597 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6598 }
6599 
6600 /*
6601  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6602  * to @dst_cpu.
6603  */
6604 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6605 {
6606 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6607 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6608 
6609 	/*
6610 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6611 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6612 	 * the other cases, @cpu is not impacted by the migration, so the
6613 	 * util_avg should already be correct.
6614 	 */
6615 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6616 		lsub_positive(&util, task_util(p));
6617 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6618 		util += task_util(p);
6619 
6620 	if (sched_feat(UTIL_EST)) {
6621 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6622 
6623 		/*
6624 		 * During wake-up, the task isn't enqueued yet and doesn't
6625 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6626 		 * so just add it (if needed) to "simulate" what will be
6627 		 * cpu_util() after the task has been enqueued.
6628 		 */
6629 		if (dst_cpu == cpu)
6630 			util_est += _task_util_est(p);
6631 
6632 		util = max(util, util_est);
6633 	}
6634 
6635 	return min(util, capacity_orig_of(cpu));
6636 }
6637 
6638 /*
6639  * compute_energy(): Estimates the energy that @pd would consume if @p was
6640  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6641  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6642  * to compute what would be the energy if we decided to actually migrate that
6643  * task.
6644  */
6645 static long
6646 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6647 {
6648 	struct cpumask *pd_mask = perf_domain_span(pd);
6649 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6650 	unsigned long max_util = 0, sum_util = 0;
6651 	unsigned long _cpu_cap = cpu_cap;
6652 	int cpu;
6653 
6654 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6655 
6656 	/*
6657 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6658 	 * of another rd if they belong to the same pd. So, account for the
6659 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6660 	 * instead of the rd span.
6661 	 *
6662 	 * If an entire pd is outside of the current rd, it will not appear in
6663 	 * its pd list and will not be accounted by compute_energy().
6664 	 */
6665 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6666 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6667 		unsigned long cpu_util, util_running = util_freq;
6668 		struct task_struct *tsk = NULL;
6669 
6670 		/*
6671 		 * When @p is placed on @cpu:
6672 		 *
6673 		 * util_running = max(cpu_util, cpu_util_est) +
6674 		 *		  max(task_util, _task_util_est)
6675 		 *
6676 		 * while cpu_util_next is: max(cpu_util + task_util,
6677 		 *			       cpu_util_est + _task_util_est)
6678 		 */
6679 		if (cpu == dst_cpu) {
6680 			tsk = p;
6681 			util_running =
6682 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6683 		}
6684 
6685 		/*
6686 		 * Busy time computation: utilization clamping is not
6687 		 * required since the ratio (sum_util / cpu_capacity)
6688 		 * is already enough to scale the EM reported power
6689 		 * consumption at the (eventually clamped) cpu_capacity.
6690 		 */
6691 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6692 					      ENERGY_UTIL, NULL);
6693 
6694 		sum_util += min(cpu_util, _cpu_cap);
6695 
6696 		/*
6697 		 * Performance domain frequency: utilization clamping
6698 		 * must be considered since it affects the selection
6699 		 * of the performance domain frequency.
6700 		 * NOTE: in case RT tasks are running, by default the
6701 		 * FREQUENCY_UTIL's utilization can be max OPP.
6702 		 */
6703 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6704 					      FREQUENCY_UTIL, tsk);
6705 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6706 	}
6707 
6708 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6709 }
6710 
6711 /*
6712  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6713  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6714  * spare capacity in each performance domain and uses it as a potential
6715  * candidate to execute the task. Then, it uses the Energy Model to figure
6716  * out which of the CPU candidates is the most energy-efficient.
6717  *
6718  * The rationale for this heuristic is as follows. In a performance domain,
6719  * all the most energy efficient CPU candidates (according to the Energy
6720  * Model) are those for which we'll request a low frequency. When there are
6721  * several CPUs for which the frequency request will be the same, we don't
6722  * have enough data to break the tie between them, because the Energy Model
6723  * only includes active power costs. With this model, if we assume that
6724  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6725  * the maximum spare capacity in a performance domain is guaranteed to be among
6726  * the best candidates of the performance domain.
6727  *
6728  * In practice, it could be preferable from an energy standpoint to pack
6729  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6730  * but that could also hurt our chances to go cluster idle, and we have no
6731  * ways to tell with the current Energy Model if this is actually a good
6732  * idea or not. So, find_energy_efficient_cpu() basically favors
6733  * cluster-packing, and spreading inside a cluster. That should at least be
6734  * a good thing for latency, and this is consistent with the idea that most
6735  * of the energy savings of EAS come from the asymmetry of the system, and
6736  * not so much from breaking the tie between identical CPUs. That's also the
6737  * reason why EAS is enabled in the topology code only for systems where
6738  * SD_ASYM_CPUCAPACITY is set.
6739  *
6740  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6741  * they don't have any useful utilization data yet and it's not possible to
6742  * forecast their impact on energy consumption. Consequently, they will be
6743  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6744  * to be energy-inefficient in some use-cases. The alternative would be to
6745  * bias new tasks towards specific types of CPUs first, or to try to infer
6746  * their util_avg from the parent task, but those heuristics could hurt
6747  * other use-cases too. So, until someone finds a better way to solve this,
6748  * let's keep things simple by re-using the existing slow path.
6749  */
6750 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6751 {
6752 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6753 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6754 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6755 	unsigned long cpu_cap, util, base_energy = 0;
6756 	struct sched_domain *sd;
6757 	struct perf_domain *pd;
6758 
6759 	rcu_read_lock();
6760 	pd = rcu_dereference(rd->pd);
6761 	if (!pd || READ_ONCE(rd->overutilized))
6762 		goto unlock;
6763 
6764 	/*
6765 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6766 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6767 	 */
6768 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6769 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6770 		sd = sd->parent;
6771 	if (!sd)
6772 		goto unlock;
6773 
6774 	target = prev_cpu;
6775 
6776 	sync_entity_load_avg(&p->se);
6777 	if (!task_util_est(p))
6778 		goto unlock;
6779 
6780 	for (; pd; pd = pd->next) {
6781 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6782 		bool compute_prev_delta = false;
6783 		unsigned long base_energy_pd;
6784 		int max_spare_cap_cpu = -1;
6785 
6786 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6787 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6788 				continue;
6789 
6790 			util = cpu_util_next(cpu, p, cpu);
6791 			cpu_cap = capacity_of(cpu);
6792 			spare_cap = cpu_cap;
6793 			lsub_positive(&spare_cap, util);
6794 
6795 			/*
6796 			 * Skip CPUs that cannot satisfy the capacity request.
6797 			 * IOW, placing the task there would make the CPU
6798 			 * overutilized. Take uclamp into account to see how
6799 			 * much capacity we can get out of the CPU; this is
6800 			 * aligned with sched_cpu_util().
6801 			 */
6802 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6803 			if (!fits_capacity(util, cpu_cap))
6804 				continue;
6805 
6806 			if (cpu == prev_cpu) {
6807 				/* Always use prev_cpu as a candidate. */
6808 				compute_prev_delta = true;
6809 			} else if (spare_cap > max_spare_cap) {
6810 				/*
6811 				 * Find the CPU with the maximum spare capacity
6812 				 * in the performance domain.
6813 				 */
6814 				max_spare_cap = spare_cap;
6815 				max_spare_cap_cpu = cpu;
6816 			}
6817 		}
6818 
6819 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6820 			continue;
6821 
6822 		/* Compute the 'base' energy of the pd, without @p */
6823 		base_energy_pd = compute_energy(p, -1, pd);
6824 		base_energy += base_energy_pd;
6825 
6826 		/* Evaluate the energy impact of using prev_cpu. */
6827 		if (compute_prev_delta) {
6828 			prev_delta = compute_energy(p, prev_cpu, pd);
6829 			if (prev_delta < base_energy_pd)
6830 				goto unlock;
6831 			prev_delta -= base_energy_pd;
6832 			best_delta = min(best_delta, prev_delta);
6833 		}
6834 
6835 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6836 		if (max_spare_cap_cpu >= 0) {
6837 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6838 			if (cur_delta < base_energy_pd)
6839 				goto unlock;
6840 			cur_delta -= base_energy_pd;
6841 			if (cur_delta < best_delta) {
6842 				best_delta = cur_delta;
6843 				best_energy_cpu = max_spare_cap_cpu;
6844 			}
6845 		}
6846 	}
6847 	rcu_read_unlock();
6848 
6849 	/*
6850 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6851 	 * least 6% of the energy used by prev_cpu.
6852 	 */
6853 	if ((prev_delta == ULONG_MAX) ||
6854 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6855 		target = best_energy_cpu;
6856 
6857 	return target;
6858 
6859 unlock:
6860 	rcu_read_unlock();
6861 
6862 	return target;
6863 }
6864 
6865 /*
6866  * select_task_rq_fair: Select target runqueue for the waking task in domains
6867  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6868  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6869  *
6870  * Balances load by selecting the idlest CPU in the idlest group, or under
6871  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6872  *
6873  * Returns the target CPU number.
6874  */
6875 static int
6876 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6877 {
6878 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6879 	struct sched_domain *tmp, *sd = NULL;
6880 	int cpu = smp_processor_id();
6881 	int new_cpu = prev_cpu;
6882 	int want_affine = 0;
6883 	/* SD_flags and WF_flags share the first nibble */
6884 	int sd_flag = wake_flags & 0xF;
6885 
6886 	/*
6887 	 * required for stable ->cpus_allowed
6888 	 */
6889 	lockdep_assert_held(&p->pi_lock);
6890 	if (wake_flags & WF_TTWU) {
6891 		record_wakee(p);
6892 
6893 		if (sched_energy_enabled()) {
6894 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6895 			if (new_cpu >= 0)
6896 				return new_cpu;
6897 			new_cpu = prev_cpu;
6898 		}
6899 
6900 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6901 	}
6902 
6903 	rcu_read_lock();
6904 	for_each_domain(cpu, tmp) {
6905 		/*
6906 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6907 		 * cpu is a valid SD_WAKE_AFFINE target.
6908 		 */
6909 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6910 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6911 			if (cpu != prev_cpu)
6912 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6913 
6914 			sd = NULL; /* Prefer wake_affine over balance flags */
6915 			break;
6916 		}
6917 
6918 		if (tmp->flags & sd_flag)
6919 			sd = tmp;
6920 		else if (!want_affine)
6921 			break;
6922 	}
6923 
6924 	if (unlikely(sd)) {
6925 		/* Slow path */
6926 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6927 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6928 		/* Fast path */
6929 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6930 	}
6931 	rcu_read_unlock();
6932 
6933 	return new_cpu;
6934 }
6935 
6936 static void detach_entity_cfs_rq(struct sched_entity *se);
6937 
6938 /*
6939  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6940  * cfs_rq_of(p) references at time of call are still valid and identify the
6941  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6942  */
6943 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6944 {
6945 	/*
6946 	 * As blocked tasks retain absolute vruntime the migration needs to
6947 	 * deal with this by subtracting the old and adding the new
6948 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6949 	 * the task on the new runqueue.
6950 	 */
6951 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6952 		struct sched_entity *se = &p->se;
6953 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6954 		u64 min_vruntime;
6955 
6956 #ifndef CONFIG_64BIT
6957 		u64 min_vruntime_copy;
6958 
6959 		do {
6960 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6961 			smp_rmb();
6962 			min_vruntime = cfs_rq->min_vruntime;
6963 		} while (min_vruntime != min_vruntime_copy);
6964 #else
6965 		min_vruntime = cfs_rq->min_vruntime;
6966 #endif
6967 
6968 		se->vruntime -= min_vruntime;
6969 	}
6970 
6971 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6972 		/*
6973 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6974 		 * rq->lock and can modify state directly.
6975 		 */
6976 		lockdep_assert_rq_held(task_rq(p));
6977 		detach_entity_cfs_rq(&p->se);
6978 
6979 	} else {
6980 		/*
6981 		 * We are supposed to update the task to "current" time, then
6982 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6983 		 * have difficulty in getting what current time is, so simply
6984 		 * throw away the out-of-date time. This will result in the
6985 		 * wakee task is less decayed, but giving the wakee more load
6986 		 * sounds not bad.
6987 		 */
6988 		remove_entity_load_avg(&p->se);
6989 	}
6990 
6991 	/* Tell new CPU we are migrated */
6992 	p->se.avg.last_update_time = 0;
6993 
6994 	/* We have migrated, no longer consider this task hot */
6995 	p->se.exec_start = 0;
6996 
6997 	update_scan_period(p, new_cpu);
6998 }
6999 
7000 static void task_dead_fair(struct task_struct *p)
7001 {
7002 	remove_entity_load_avg(&p->se);
7003 }
7004 
7005 static int
7006 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7007 {
7008 	if (rq->nr_running)
7009 		return 1;
7010 
7011 	return newidle_balance(rq, rf) != 0;
7012 }
7013 #endif /* CONFIG_SMP */
7014 
7015 static unsigned long wakeup_gran(struct sched_entity *se)
7016 {
7017 	unsigned long gran = sysctl_sched_wakeup_granularity;
7018 
7019 	/*
7020 	 * Since its curr running now, convert the gran from real-time
7021 	 * to virtual-time in his units.
7022 	 *
7023 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7024 	 * they get preempted easier. That is, if 'se' < 'curr' then
7025 	 * the resulting gran will be larger, therefore penalizing the
7026 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7027 	 * be smaller, again penalizing the lighter task.
7028 	 *
7029 	 * This is especially important for buddies when the leftmost
7030 	 * task is higher priority than the buddy.
7031 	 */
7032 	return calc_delta_fair(gran, se);
7033 }
7034 
7035 /*
7036  * Should 'se' preempt 'curr'.
7037  *
7038  *             |s1
7039  *        |s2
7040  *   |s3
7041  *         g
7042  *      |<--->|c
7043  *
7044  *  w(c, s1) = -1
7045  *  w(c, s2) =  0
7046  *  w(c, s3) =  1
7047  *
7048  */
7049 static int
7050 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7051 {
7052 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7053 
7054 	if (vdiff <= 0)
7055 		return -1;
7056 
7057 	gran = wakeup_gran(se);
7058 	if (vdiff > gran)
7059 		return 1;
7060 
7061 	return 0;
7062 }
7063 
7064 static void set_last_buddy(struct sched_entity *se)
7065 {
7066 	for_each_sched_entity(se) {
7067 		if (SCHED_WARN_ON(!se->on_rq))
7068 			return;
7069 		if (se_is_idle(se))
7070 			return;
7071 		cfs_rq_of(se)->last = se;
7072 	}
7073 }
7074 
7075 static void set_next_buddy(struct sched_entity *se)
7076 {
7077 	for_each_sched_entity(se) {
7078 		if (SCHED_WARN_ON(!se->on_rq))
7079 			return;
7080 		if (se_is_idle(se))
7081 			return;
7082 		cfs_rq_of(se)->next = se;
7083 	}
7084 }
7085 
7086 static void set_skip_buddy(struct sched_entity *se)
7087 {
7088 	for_each_sched_entity(se)
7089 		cfs_rq_of(se)->skip = se;
7090 }
7091 
7092 /*
7093  * Preempt the current task with a newly woken task if needed:
7094  */
7095 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7096 {
7097 	struct task_struct *curr = rq->curr;
7098 	struct sched_entity *se = &curr->se, *pse = &p->se;
7099 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7100 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7101 	int next_buddy_marked = 0;
7102 	int cse_is_idle, pse_is_idle;
7103 
7104 	if (unlikely(se == pse))
7105 		return;
7106 
7107 	/*
7108 	 * This is possible from callers such as attach_tasks(), in which we
7109 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7110 	 * lead to a throttle).  This both saves work and prevents false
7111 	 * next-buddy nomination below.
7112 	 */
7113 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7114 		return;
7115 
7116 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7117 		set_next_buddy(pse);
7118 		next_buddy_marked = 1;
7119 	}
7120 
7121 	/*
7122 	 * We can come here with TIF_NEED_RESCHED already set from new task
7123 	 * wake up path.
7124 	 *
7125 	 * Note: this also catches the edge-case of curr being in a throttled
7126 	 * group (e.g. via set_curr_task), since update_curr() (in the
7127 	 * enqueue of curr) will have resulted in resched being set.  This
7128 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7129 	 * below.
7130 	 */
7131 	if (test_tsk_need_resched(curr))
7132 		return;
7133 
7134 	/* Idle tasks are by definition preempted by non-idle tasks. */
7135 	if (unlikely(task_has_idle_policy(curr)) &&
7136 	    likely(!task_has_idle_policy(p)))
7137 		goto preempt;
7138 
7139 	/*
7140 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7141 	 * is driven by the tick):
7142 	 */
7143 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7144 		return;
7145 
7146 	find_matching_se(&se, &pse);
7147 	BUG_ON(!pse);
7148 
7149 	cse_is_idle = se_is_idle(se);
7150 	pse_is_idle = se_is_idle(pse);
7151 
7152 	/*
7153 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7154 	 * in the inverse case).
7155 	 */
7156 	if (cse_is_idle && !pse_is_idle)
7157 		goto preempt;
7158 	if (cse_is_idle != pse_is_idle)
7159 		return;
7160 
7161 	update_curr(cfs_rq_of(se));
7162 	if (wakeup_preempt_entity(se, pse) == 1) {
7163 		/*
7164 		 * Bias pick_next to pick the sched entity that is
7165 		 * triggering this preemption.
7166 		 */
7167 		if (!next_buddy_marked)
7168 			set_next_buddy(pse);
7169 		goto preempt;
7170 	}
7171 
7172 	return;
7173 
7174 preempt:
7175 	resched_curr(rq);
7176 	/*
7177 	 * Only set the backward buddy when the current task is still
7178 	 * on the rq. This can happen when a wakeup gets interleaved
7179 	 * with schedule on the ->pre_schedule() or idle_balance()
7180 	 * point, either of which can * drop the rq lock.
7181 	 *
7182 	 * Also, during early boot the idle thread is in the fair class,
7183 	 * for obvious reasons its a bad idea to schedule back to it.
7184 	 */
7185 	if (unlikely(!se->on_rq || curr == rq->idle))
7186 		return;
7187 
7188 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7189 		set_last_buddy(se);
7190 }
7191 
7192 #ifdef CONFIG_SMP
7193 static struct task_struct *pick_task_fair(struct rq *rq)
7194 {
7195 	struct sched_entity *se;
7196 	struct cfs_rq *cfs_rq;
7197 
7198 again:
7199 	cfs_rq = &rq->cfs;
7200 	if (!cfs_rq->nr_running)
7201 		return NULL;
7202 
7203 	do {
7204 		struct sched_entity *curr = cfs_rq->curr;
7205 
7206 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7207 		if (curr) {
7208 			if (curr->on_rq)
7209 				update_curr(cfs_rq);
7210 			else
7211 				curr = NULL;
7212 
7213 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7214 				goto again;
7215 		}
7216 
7217 		se = pick_next_entity(cfs_rq, curr);
7218 		cfs_rq = group_cfs_rq(se);
7219 	} while (cfs_rq);
7220 
7221 	return task_of(se);
7222 }
7223 #endif
7224 
7225 struct task_struct *
7226 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7227 {
7228 	struct cfs_rq *cfs_rq = &rq->cfs;
7229 	struct sched_entity *se;
7230 	struct task_struct *p;
7231 	int new_tasks;
7232 
7233 again:
7234 	if (!sched_fair_runnable(rq))
7235 		goto idle;
7236 
7237 #ifdef CONFIG_FAIR_GROUP_SCHED
7238 	if (!prev || prev->sched_class != &fair_sched_class)
7239 		goto simple;
7240 
7241 	/*
7242 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7243 	 * likely that a next task is from the same cgroup as the current.
7244 	 *
7245 	 * Therefore attempt to avoid putting and setting the entire cgroup
7246 	 * hierarchy, only change the part that actually changes.
7247 	 */
7248 
7249 	do {
7250 		struct sched_entity *curr = cfs_rq->curr;
7251 
7252 		/*
7253 		 * Since we got here without doing put_prev_entity() we also
7254 		 * have to consider cfs_rq->curr. If it is still a runnable
7255 		 * entity, update_curr() will update its vruntime, otherwise
7256 		 * forget we've ever seen it.
7257 		 */
7258 		if (curr) {
7259 			if (curr->on_rq)
7260 				update_curr(cfs_rq);
7261 			else
7262 				curr = NULL;
7263 
7264 			/*
7265 			 * This call to check_cfs_rq_runtime() will do the
7266 			 * throttle and dequeue its entity in the parent(s).
7267 			 * Therefore the nr_running test will indeed
7268 			 * be correct.
7269 			 */
7270 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7271 				cfs_rq = &rq->cfs;
7272 
7273 				if (!cfs_rq->nr_running)
7274 					goto idle;
7275 
7276 				goto simple;
7277 			}
7278 		}
7279 
7280 		se = pick_next_entity(cfs_rq, curr);
7281 		cfs_rq = group_cfs_rq(se);
7282 	} while (cfs_rq);
7283 
7284 	p = task_of(se);
7285 
7286 	/*
7287 	 * Since we haven't yet done put_prev_entity and if the selected task
7288 	 * is a different task than we started out with, try and touch the
7289 	 * least amount of cfs_rqs.
7290 	 */
7291 	if (prev != p) {
7292 		struct sched_entity *pse = &prev->se;
7293 
7294 		while (!(cfs_rq = is_same_group(se, pse))) {
7295 			int se_depth = se->depth;
7296 			int pse_depth = pse->depth;
7297 
7298 			if (se_depth <= pse_depth) {
7299 				put_prev_entity(cfs_rq_of(pse), pse);
7300 				pse = parent_entity(pse);
7301 			}
7302 			if (se_depth >= pse_depth) {
7303 				set_next_entity(cfs_rq_of(se), se);
7304 				se = parent_entity(se);
7305 			}
7306 		}
7307 
7308 		put_prev_entity(cfs_rq, pse);
7309 		set_next_entity(cfs_rq, se);
7310 	}
7311 
7312 	goto done;
7313 simple:
7314 #endif
7315 	if (prev)
7316 		put_prev_task(rq, prev);
7317 
7318 	do {
7319 		se = pick_next_entity(cfs_rq, NULL);
7320 		set_next_entity(cfs_rq, se);
7321 		cfs_rq = group_cfs_rq(se);
7322 	} while (cfs_rq);
7323 
7324 	p = task_of(se);
7325 
7326 done: __maybe_unused;
7327 #ifdef CONFIG_SMP
7328 	/*
7329 	 * Move the next running task to the front of
7330 	 * the list, so our cfs_tasks list becomes MRU
7331 	 * one.
7332 	 */
7333 	list_move(&p->se.group_node, &rq->cfs_tasks);
7334 #endif
7335 
7336 	if (hrtick_enabled_fair(rq))
7337 		hrtick_start_fair(rq, p);
7338 
7339 	update_misfit_status(p, rq);
7340 
7341 	return p;
7342 
7343 idle:
7344 	if (!rf)
7345 		return NULL;
7346 
7347 	new_tasks = newidle_balance(rq, rf);
7348 
7349 	/*
7350 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7351 	 * possible for any higher priority task to appear. In that case we
7352 	 * must re-start the pick_next_entity() loop.
7353 	 */
7354 	if (new_tasks < 0)
7355 		return RETRY_TASK;
7356 
7357 	if (new_tasks > 0)
7358 		goto again;
7359 
7360 	/*
7361 	 * rq is about to be idle, check if we need to update the
7362 	 * lost_idle_time of clock_pelt
7363 	 */
7364 	update_idle_rq_clock_pelt(rq);
7365 
7366 	return NULL;
7367 }
7368 
7369 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7370 {
7371 	return pick_next_task_fair(rq, NULL, NULL);
7372 }
7373 
7374 /*
7375  * Account for a descheduled task:
7376  */
7377 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7378 {
7379 	struct sched_entity *se = &prev->se;
7380 	struct cfs_rq *cfs_rq;
7381 
7382 	for_each_sched_entity(se) {
7383 		cfs_rq = cfs_rq_of(se);
7384 		put_prev_entity(cfs_rq, se);
7385 	}
7386 }
7387 
7388 /*
7389  * sched_yield() is very simple
7390  *
7391  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7392  */
7393 static void yield_task_fair(struct rq *rq)
7394 {
7395 	struct task_struct *curr = rq->curr;
7396 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7397 	struct sched_entity *se = &curr->se;
7398 
7399 	/*
7400 	 * Are we the only task in the tree?
7401 	 */
7402 	if (unlikely(rq->nr_running == 1))
7403 		return;
7404 
7405 	clear_buddies(cfs_rq, se);
7406 
7407 	if (curr->policy != SCHED_BATCH) {
7408 		update_rq_clock(rq);
7409 		/*
7410 		 * Update run-time statistics of the 'current'.
7411 		 */
7412 		update_curr(cfs_rq);
7413 		/*
7414 		 * Tell update_rq_clock() that we've just updated,
7415 		 * so we don't do microscopic update in schedule()
7416 		 * and double the fastpath cost.
7417 		 */
7418 		rq_clock_skip_update(rq);
7419 	}
7420 
7421 	set_skip_buddy(se);
7422 }
7423 
7424 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7425 {
7426 	struct sched_entity *se = &p->se;
7427 
7428 	/* throttled hierarchies are not runnable */
7429 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7430 		return false;
7431 
7432 	/* Tell the scheduler that we'd really like pse to run next. */
7433 	set_next_buddy(se);
7434 
7435 	yield_task_fair(rq);
7436 
7437 	return true;
7438 }
7439 
7440 #ifdef CONFIG_SMP
7441 /**************************************************
7442  * Fair scheduling class load-balancing methods.
7443  *
7444  * BASICS
7445  *
7446  * The purpose of load-balancing is to achieve the same basic fairness the
7447  * per-CPU scheduler provides, namely provide a proportional amount of compute
7448  * time to each task. This is expressed in the following equation:
7449  *
7450  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7451  *
7452  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7453  * W_i,0 is defined as:
7454  *
7455  *   W_i,0 = \Sum_j w_i,j                                             (2)
7456  *
7457  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7458  * is derived from the nice value as per sched_prio_to_weight[].
7459  *
7460  * The weight average is an exponential decay average of the instantaneous
7461  * weight:
7462  *
7463  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7464  *
7465  * C_i is the compute capacity of CPU i, typically it is the
7466  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7467  * can also include other factors [XXX].
7468  *
7469  * To achieve this balance we define a measure of imbalance which follows
7470  * directly from (1):
7471  *
7472  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7473  *
7474  * We them move tasks around to minimize the imbalance. In the continuous
7475  * function space it is obvious this converges, in the discrete case we get
7476  * a few fun cases generally called infeasible weight scenarios.
7477  *
7478  * [XXX expand on:
7479  *     - infeasible weights;
7480  *     - local vs global optima in the discrete case. ]
7481  *
7482  *
7483  * SCHED DOMAINS
7484  *
7485  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7486  * for all i,j solution, we create a tree of CPUs that follows the hardware
7487  * topology where each level pairs two lower groups (or better). This results
7488  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7489  * tree to only the first of the previous level and we decrease the frequency
7490  * of load-balance at each level inv. proportional to the number of CPUs in
7491  * the groups.
7492  *
7493  * This yields:
7494  *
7495  *     log_2 n     1     n
7496  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7497  *     i = 0      2^i   2^i
7498  *                               `- size of each group
7499  *         |         |     `- number of CPUs doing load-balance
7500  *         |         `- freq
7501  *         `- sum over all levels
7502  *
7503  * Coupled with a limit on how many tasks we can migrate every balance pass,
7504  * this makes (5) the runtime complexity of the balancer.
7505  *
7506  * An important property here is that each CPU is still (indirectly) connected
7507  * to every other CPU in at most O(log n) steps:
7508  *
7509  * The adjacency matrix of the resulting graph is given by:
7510  *
7511  *             log_2 n
7512  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7513  *             k = 0
7514  *
7515  * And you'll find that:
7516  *
7517  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7518  *
7519  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7520  * The task movement gives a factor of O(m), giving a convergence complexity
7521  * of:
7522  *
7523  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7524  *
7525  *
7526  * WORK CONSERVING
7527  *
7528  * In order to avoid CPUs going idle while there's still work to do, new idle
7529  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7530  * tree itself instead of relying on other CPUs to bring it work.
7531  *
7532  * This adds some complexity to both (5) and (8) but it reduces the total idle
7533  * time.
7534  *
7535  * [XXX more?]
7536  *
7537  *
7538  * CGROUPS
7539  *
7540  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7541  *
7542  *                                s_k,i
7543  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7544  *                                 S_k
7545  *
7546  * Where
7547  *
7548  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7549  *
7550  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7551  *
7552  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7553  * property.
7554  *
7555  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7556  *      rewrite all of this once again.]
7557  */
7558 
7559 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7560 
7561 enum fbq_type { regular, remote, all };
7562 
7563 /*
7564  * 'group_type' describes the group of CPUs at the moment of load balancing.
7565  *
7566  * The enum is ordered by pulling priority, with the group with lowest priority
7567  * first so the group_type can simply be compared when selecting the busiest
7568  * group. See update_sd_pick_busiest().
7569  */
7570 enum group_type {
7571 	/* The group has spare capacity that can be used to run more tasks.  */
7572 	group_has_spare = 0,
7573 	/*
7574 	 * The group is fully used and the tasks don't compete for more CPU
7575 	 * cycles. Nevertheless, some tasks might wait before running.
7576 	 */
7577 	group_fully_busy,
7578 	/*
7579 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7580 	 * and must be migrated to a more powerful CPU.
7581 	 */
7582 	group_misfit_task,
7583 	/*
7584 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7585 	 * and the task should be migrated to it instead of running on the
7586 	 * current CPU.
7587 	 */
7588 	group_asym_packing,
7589 	/*
7590 	 * The tasks' affinity constraints previously prevented the scheduler
7591 	 * from balancing the load across the system.
7592 	 */
7593 	group_imbalanced,
7594 	/*
7595 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7596 	 * tasks.
7597 	 */
7598 	group_overloaded
7599 };
7600 
7601 enum migration_type {
7602 	migrate_load = 0,
7603 	migrate_util,
7604 	migrate_task,
7605 	migrate_misfit
7606 };
7607 
7608 #define LBF_ALL_PINNED	0x01
7609 #define LBF_NEED_BREAK	0x02
7610 #define LBF_DST_PINNED  0x04
7611 #define LBF_SOME_PINNED	0x08
7612 #define LBF_ACTIVE_LB	0x10
7613 
7614 struct lb_env {
7615 	struct sched_domain	*sd;
7616 
7617 	struct rq		*src_rq;
7618 	int			src_cpu;
7619 
7620 	int			dst_cpu;
7621 	struct rq		*dst_rq;
7622 
7623 	struct cpumask		*dst_grpmask;
7624 	int			new_dst_cpu;
7625 	enum cpu_idle_type	idle;
7626 	long			imbalance;
7627 	/* The set of CPUs under consideration for load-balancing */
7628 	struct cpumask		*cpus;
7629 
7630 	unsigned int		flags;
7631 
7632 	unsigned int		loop;
7633 	unsigned int		loop_break;
7634 	unsigned int		loop_max;
7635 
7636 	enum fbq_type		fbq_type;
7637 	enum migration_type	migration_type;
7638 	struct list_head	tasks;
7639 };
7640 
7641 /*
7642  * Is this task likely cache-hot:
7643  */
7644 static int task_hot(struct task_struct *p, struct lb_env *env)
7645 {
7646 	s64 delta;
7647 
7648 	lockdep_assert_rq_held(env->src_rq);
7649 
7650 	if (p->sched_class != &fair_sched_class)
7651 		return 0;
7652 
7653 	if (unlikely(task_has_idle_policy(p)))
7654 		return 0;
7655 
7656 	/* SMT siblings share cache */
7657 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7658 		return 0;
7659 
7660 	/*
7661 	 * Buddy candidates are cache hot:
7662 	 */
7663 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7664 			(&p->se == cfs_rq_of(&p->se)->next ||
7665 			 &p->se == cfs_rq_of(&p->se)->last))
7666 		return 1;
7667 
7668 	if (sysctl_sched_migration_cost == -1)
7669 		return 1;
7670 
7671 	/*
7672 	 * Don't migrate task if the task's cookie does not match
7673 	 * with the destination CPU's core cookie.
7674 	 */
7675 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7676 		return 1;
7677 
7678 	if (sysctl_sched_migration_cost == 0)
7679 		return 0;
7680 
7681 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7682 
7683 	return delta < (s64)sysctl_sched_migration_cost;
7684 }
7685 
7686 #ifdef CONFIG_NUMA_BALANCING
7687 /*
7688  * Returns 1, if task migration degrades locality
7689  * Returns 0, if task migration improves locality i.e migration preferred.
7690  * Returns -1, if task migration is not affected by locality.
7691  */
7692 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7693 {
7694 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7695 	unsigned long src_weight, dst_weight;
7696 	int src_nid, dst_nid, dist;
7697 
7698 	if (!static_branch_likely(&sched_numa_balancing))
7699 		return -1;
7700 
7701 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7702 		return -1;
7703 
7704 	src_nid = cpu_to_node(env->src_cpu);
7705 	dst_nid = cpu_to_node(env->dst_cpu);
7706 
7707 	if (src_nid == dst_nid)
7708 		return -1;
7709 
7710 	/* Migrating away from the preferred node is always bad. */
7711 	if (src_nid == p->numa_preferred_nid) {
7712 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7713 			return 1;
7714 		else
7715 			return -1;
7716 	}
7717 
7718 	/* Encourage migration to the preferred node. */
7719 	if (dst_nid == p->numa_preferred_nid)
7720 		return 0;
7721 
7722 	/* Leaving a core idle is often worse than degrading locality. */
7723 	if (env->idle == CPU_IDLE)
7724 		return -1;
7725 
7726 	dist = node_distance(src_nid, dst_nid);
7727 	if (numa_group) {
7728 		src_weight = group_weight(p, src_nid, dist);
7729 		dst_weight = group_weight(p, dst_nid, dist);
7730 	} else {
7731 		src_weight = task_weight(p, src_nid, dist);
7732 		dst_weight = task_weight(p, dst_nid, dist);
7733 	}
7734 
7735 	return dst_weight < src_weight;
7736 }
7737 
7738 #else
7739 static inline int migrate_degrades_locality(struct task_struct *p,
7740 					     struct lb_env *env)
7741 {
7742 	return -1;
7743 }
7744 #endif
7745 
7746 /*
7747  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7748  */
7749 static
7750 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7751 {
7752 	int tsk_cache_hot;
7753 
7754 	lockdep_assert_rq_held(env->src_rq);
7755 
7756 	/*
7757 	 * We do not migrate tasks that are:
7758 	 * 1) throttled_lb_pair, or
7759 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7760 	 * 3) running (obviously), or
7761 	 * 4) are cache-hot on their current CPU.
7762 	 */
7763 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7764 		return 0;
7765 
7766 	/* Disregard pcpu kthreads; they are where they need to be. */
7767 	if (kthread_is_per_cpu(p))
7768 		return 0;
7769 
7770 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7771 		int cpu;
7772 
7773 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7774 
7775 		env->flags |= LBF_SOME_PINNED;
7776 
7777 		/*
7778 		 * Remember if this task can be migrated to any other CPU in
7779 		 * our sched_group. We may want to revisit it if we couldn't
7780 		 * meet load balance goals by pulling other tasks on src_cpu.
7781 		 *
7782 		 * Avoid computing new_dst_cpu
7783 		 * - for NEWLY_IDLE
7784 		 * - if we have already computed one in current iteration
7785 		 * - if it's an active balance
7786 		 */
7787 		if (env->idle == CPU_NEWLY_IDLE ||
7788 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7789 			return 0;
7790 
7791 		/* Prevent to re-select dst_cpu via env's CPUs: */
7792 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7793 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7794 				env->flags |= LBF_DST_PINNED;
7795 				env->new_dst_cpu = cpu;
7796 				break;
7797 			}
7798 		}
7799 
7800 		return 0;
7801 	}
7802 
7803 	/* Record that we found at least one task that could run on dst_cpu */
7804 	env->flags &= ~LBF_ALL_PINNED;
7805 
7806 	if (task_running(env->src_rq, p)) {
7807 		schedstat_inc(p->stats.nr_failed_migrations_running);
7808 		return 0;
7809 	}
7810 
7811 	/*
7812 	 * Aggressive migration if:
7813 	 * 1) active balance
7814 	 * 2) destination numa is preferred
7815 	 * 3) task is cache cold, or
7816 	 * 4) too many balance attempts have failed.
7817 	 */
7818 	if (env->flags & LBF_ACTIVE_LB)
7819 		return 1;
7820 
7821 	tsk_cache_hot = migrate_degrades_locality(p, env);
7822 	if (tsk_cache_hot == -1)
7823 		tsk_cache_hot = task_hot(p, env);
7824 
7825 	if (tsk_cache_hot <= 0 ||
7826 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7827 		if (tsk_cache_hot == 1) {
7828 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7829 			schedstat_inc(p->stats.nr_forced_migrations);
7830 		}
7831 		return 1;
7832 	}
7833 
7834 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7835 	return 0;
7836 }
7837 
7838 /*
7839  * detach_task() -- detach the task for the migration specified in env
7840  */
7841 static void detach_task(struct task_struct *p, struct lb_env *env)
7842 {
7843 	lockdep_assert_rq_held(env->src_rq);
7844 
7845 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7846 	set_task_cpu(p, env->dst_cpu);
7847 }
7848 
7849 /*
7850  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7851  * part of active balancing operations within "domain".
7852  *
7853  * Returns a task if successful and NULL otherwise.
7854  */
7855 static struct task_struct *detach_one_task(struct lb_env *env)
7856 {
7857 	struct task_struct *p;
7858 
7859 	lockdep_assert_rq_held(env->src_rq);
7860 
7861 	list_for_each_entry_reverse(p,
7862 			&env->src_rq->cfs_tasks, se.group_node) {
7863 		if (!can_migrate_task(p, env))
7864 			continue;
7865 
7866 		detach_task(p, env);
7867 
7868 		/*
7869 		 * Right now, this is only the second place where
7870 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7871 		 * so we can safely collect stats here rather than
7872 		 * inside detach_tasks().
7873 		 */
7874 		schedstat_inc(env->sd->lb_gained[env->idle]);
7875 		return p;
7876 	}
7877 	return NULL;
7878 }
7879 
7880 static const unsigned int sched_nr_migrate_break = 32;
7881 
7882 /*
7883  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7884  * busiest_rq, as part of a balancing operation within domain "sd".
7885  *
7886  * Returns number of detached tasks if successful and 0 otherwise.
7887  */
7888 static int detach_tasks(struct lb_env *env)
7889 {
7890 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7891 	unsigned long util, load;
7892 	struct task_struct *p;
7893 	int detached = 0;
7894 
7895 	lockdep_assert_rq_held(env->src_rq);
7896 
7897 	/*
7898 	 * Source run queue has been emptied by another CPU, clear
7899 	 * LBF_ALL_PINNED flag as we will not test any task.
7900 	 */
7901 	if (env->src_rq->nr_running <= 1) {
7902 		env->flags &= ~LBF_ALL_PINNED;
7903 		return 0;
7904 	}
7905 
7906 	if (env->imbalance <= 0)
7907 		return 0;
7908 
7909 	while (!list_empty(tasks)) {
7910 		/*
7911 		 * We don't want to steal all, otherwise we may be treated likewise,
7912 		 * which could at worst lead to a livelock crash.
7913 		 */
7914 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7915 			break;
7916 
7917 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7918 
7919 		env->loop++;
7920 		/* We've more or less seen every task there is, call it quits */
7921 		if (env->loop > env->loop_max)
7922 			break;
7923 
7924 		/* take a breather every nr_migrate tasks */
7925 		if (env->loop > env->loop_break) {
7926 			env->loop_break += sched_nr_migrate_break;
7927 			env->flags |= LBF_NEED_BREAK;
7928 			break;
7929 		}
7930 
7931 		if (!can_migrate_task(p, env))
7932 			goto next;
7933 
7934 		switch (env->migration_type) {
7935 		case migrate_load:
7936 			/*
7937 			 * Depending of the number of CPUs and tasks and the
7938 			 * cgroup hierarchy, task_h_load() can return a null
7939 			 * value. Make sure that env->imbalance decreases
7940 			 * otherwise detach_tasks() will stop only after
7941 			 * detaching up to loop_max tasks.
7942 			 */
7943 			load = max_t(unsigned long, task_h_load(p), 1);
7944 
7945 			if (sched_feat(LB_MIN) &&
7946 			    load < 16 && !env->sd->nr_balance_failed)
7947 				goto next;
7948 
7949 			/*
7950 			 * Make sure that we don't migrate too much load.
7951 			 * Nevertheless, let relax the constraint if
7952 			 * scheduler fails to find a good waiting task to
7953 			 * migrate.
7954 			 */
7955 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7956 				goto next;
7957 
7958 			env->imbalance -= load;
7959 			break;
7960 
7961 		case migrate_util:
7962 			util = task_util_est(p);
7963 
7964 			if (util > env->imbalance)
7965 				goto next;
7966 
7967 			env->imbalance -= util;
7968 			break;
7969 
7970 		case migrate_task:
7971 			env->imbalance--;
7972 			break;
7973 
7974 		case migrate_misfit:
7975 			/* This is not a misfit task */
7976 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7977 				goto next;
7978 
7979 			env->imbalance = 0;
7980 			break;
7981 		}
7982 
7983 		detach_task(p, env);
7984 		list_add(&p->se.group_node, &env->tasks);
7985 
7986 		detached++;
7987 
7988 #ifdef CONFIG_PREEMPTION
7989 		/*
7990 		 * NEWIDLE balancing is a source of latency, so preemptible
7991 		 * kernels will stop after the first task is detached to minimize
7992 		 * the critical section.
7993 		 */
7994 		if (env->idle == CPU_NEWLY_IDLE)
7995 			break;
7996 #endif
7997 
7998 		/*
7999 		 * We only want to steal up to the prescribed amount of
8000 		 * load/util/tasks.
8001 		 */
8002 		if (env->imbalance <= 0)
8003 			break;
8004 
8005 		continue;
8006 next:
8007 		list_move(&p->se.group_node, tasks);
8008 	}
8009 
8010 	/*
8011 	 * Right now, this is one of only two places we collect this stat
8012 	 * so we can safely collect detach_one_task() stats here rather
8013 	 * than inside detach_one_task().
8014 	 */
8015 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8016 
8017 	return detached;
8018 }
8019 
8020 /*
8021  * attach_task() -- attach the task detached by detach_task() to its new rq.
8022  */
8023 static void attach_task(struct rq *rq, struct task_struct *p)
8024 {
8025 	lockdep_assert_rq_held(rq);
8026 
8027 	BUG_ON(task_rq(p) != rq);
8028 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8029 	check_preempt_curr(rq, p, 0);
8030 }
8031 
8032 /*
8033  * attach_one_task() -- attaches the task returned from detach_one_task() to
8034  * its new rq.
8035  */
8036 static void attach_one_task(struct rq *rq, struct task_struct *p)
8037 {
8038 	struct rq_flags rf;
8039 
8040 	rq_lock(rq, &rf);
8041 	update_rq_clock(rq);
8042 	attach_task(rq, p);
8043 	rq_unlock(rq, &rf);
8044 }
8045 
8046 /*
8047  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8048  * new rq.
8049  */
8050 static void attach_tasks(struct lb_env *env)
8051 {
8052 	struct list_head *tasks = &env->tasks;
8053 	struct task_struct *p;
8054 	struct rq_flags rf;
8055 
8056 	rq_lock(env->dst_rq, &rf);
8057 	update_rq_clock(env->dst_rq);
8058 
8059 	while (!list_empty(tasks)) {
8060 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8061 		list_del_init(&p->se.group_node);
8062 
8063 		attach_task(env->dst_rq, p);
8064 	}
8065 
8066 	rq_unlock(env->dst_rq, &rf);
8067 }
8068 
8069 #ifdef CONFIG_NO_HZ_COMMON
8070 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8071 {
8072 	if (cfs_rq->avg.load_avg)
8073 		return true;
8074 
8075 	if (cfs_rq->avg.util_avg)
8076 		return true;
8077 
8078 	return false;
8079 }
8080 
8081 static inline bool others_have_blocked(struct rq *rq)
8082 {
8083 	if (READ_ONCE(rq->avg_rt.util_avg))
8084 		return true;
8085 
8086 	if (READ_ONCE(rq->avg_dl.util_avg))
8087 		return true;
8088 
8089 	if (thermal_load_avg(rq))
8090 		return true;
8091 
8092 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8093 	if (READ_ONCE(rq->avg_irq.util_avg))
8094 		return true;
8095 #endif
8096 
8097 	return false;
8098 }
8099 
8100 static inline void update_blocked_load_tick(struct rq *rq)
8101 {
8102 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8103 }
8104 
8105 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8106 {
8107 	if (!has_blocked)
8108 		rq->has_blocked_load = 0;
8109 }
8110 #else
8111 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8112 static inline bool others_have_blocked(struct rq *rq) { return false; }
8113 static inline void update_blocked_load_tick(struct rq *rq) {}
8114 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8115 #endif
8116 
8117 static bool __update_blocked_others(struct rq *rq, bool *done)
8118 {
8119 	const struct sched_class *curr_class;
8120 	u64 now = rq_clock_pelt(rq);
8121 	unsigned long thermal_pressure;
8122 	bool decayed;
8123 
8124 	/*
8125 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8126 	 * DL and IRQ signals have been updated before updating CFS.
8127 	 */
8128 	curr_class = rq->curr->sched_class;
8129 
8130 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8131 
8132 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8133 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8134 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8135 		  update_irq_load_avg(rq, 0);
8136 
8137 	if (others_have_blocked(rq))
8138 		*done = false;
8139 
8140 	return decayed;
8141 }
8142 
8143 #ifdef CONFIG_FAIR_GROUP_SCHED
8144 
8145 static bool __update_blocked_fair(struct rq *rq, bool *done)
8146 {
8147 	struct cfs_rq *cfs_rq, *pos;
8148 	bool decayed = false;
8149 	int cpu = cpu_of(rq);
8150 
8151 	/*
8152 	 * Iterates the task_group tree in a bottom up fashion, see
8153 	 * list_add_leaf_cfs_rq() for details.
8154 	 */
8155 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8156 		struct sched_entity *se;
8157 
8158 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8159 			update_tg_load_avg(cfs_rq);
8160 
8161 			if (cfs_rq == &rq->cfs)
8162 				decayed = true;
8163 		}
8164 
8165 		/* Propagate pending load changes to the parent, if any: */
8166 		se = cfs_rq->tg->se[cpu];
8167 		if (se && !skip_blocked_update(se))
8168 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8169 
8170 		/*
8171 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8172 		 * decayed cfs_rqs linger on the list.
8173 		 */
8174 		if (cfs_rq_is_decayed(cfs_rq))
8175 			list_del_leaf_cfs_rq(cfs_rq);
8176 
8177 		/* Don't need periodic decay once load/util_avg are null */
8178 		if (cfs_rq_has_blocked(cfs_rq))
8179 			*done = false;
8180 	}
8181 
8182 	return decayed;
8183 }
8184 
8185 /*
8186  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8187  * This needs to be done in a top-down fashion because the load of a child
8188  * group is a fraction of its parents load.
8189  */
8190 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8191 {
8192 	struct rq *rq = rq_of(cfs_rq);
8193 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8194 	unsigned long now = jiffies;
8195 	unsigned long load;
8196 
8197 	if (cfs_rq->last_h_load_update == now)
8198 		return;
8199 
8200 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8201 	for_each_sched_entity(se) {
8202 		cfs_rq = cfs_rq_of(se);
8203 		WRITE_ONCE(cfs_rq->h_load_next, se);
8204 		if (cfs_rq->last_h_load_update == now)
8205 			break;
8206 	}
8207 
8208 	if (!se) {
8209 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8210 		cfs_rq->last_h_load_update = now;
8211 	}
8212 
8213 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8214 		load = cfs_rq->h_load;
8215 		load = div64_ul(load * se->avg.load_avg,
8216 			cfs_rq_load_avg(cfs_rq) + 1);
8217 		cfs_rq = group_cfs_rq(se);
8218 		cfs_rq->h_load = load;
8219 		cfs_rq->last_h_load_update = now;
8220 	}
8221 }
8222 
8223 static unsigned long task_h_load(struct task_struct *p)
8224 {
8225 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8226 
8227 	update_cfs_rq_h_load(cfs_rq);
8228 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8229 			cfs_rq_load_avg(cfs_rq) + 1);
8230 }
8231 #else
8232 static bool __update_blocked_fair(struct rq *rq, bool *done)
8233 {
8234 	struct cfs_rq *cfs_rq = &rq->cfs;
8235 	bool decayed;
8236 
8237 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8238 	if (cfs_rq_has_blocked(cfs_rq))
8239 		*done = false;
8240 
8241 	return decayed;
8242 }
8243 
8244 static unsigned long task_h_load(struct task_struct *p)
8245 {
8246 	return p->se.avg.load_avg;
8247 }
8248 #endif
8249 
8250 static void update_blocked_averages(int cpu)
8251 {
8252 	bool decayed = false, done = true;
8253 	struct rq *rq = cpu_rq(cpu);
8254 	struct rq_flags rf;
8255 
8256 	rq_lock_irqsave(rq, &rf);
8257 	update_blocked_load_tick(rq);
8258 	update_rq_clock(rq);
8259 
8260 	decayed |= __update_blocked_others(rq, &done);
8261 	decayed |= __update_blocked_fair(rq, &done);
8262 
8263 	update_blocked_load_status(rq, !done);
8264 	if (decayed)
8265 		cpufreq_update_util(rq, 0);
8266 	rq_unlock_irqrestore(rq, &rf);
8267 }
8268 
8269 /********** Helpers for find_busiest_group ************************/
8270 
8271 /*
8272  * sg_lb_stats - stats of a sched_group required for load_balancing
8273  */
8274 struct sg_lb_stats {
8275 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8276 	unsigned long group_load; /* Total load over the CPUs of the group */
8277 	unsigned long group_capacity;
8278 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8279 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8280 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8281 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8282 	unsigned int idle_cpus;
8283 	unsigned int group_weight;
8284 	enum group_type group_type;
8285 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8286 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8287 #ifdef CONFIG_NUMA_BALANCING
8288 	unsigned int nr_numa_running;
8289 	unsigned int nr_preferred_running;
8290 #endif
8291 };
8292 
8293 /*
8294  * sd_lb_stats - Structure to store the statistics of a sched_domain
8295  *		 during load balancing.
8296  */
8297 struct sd_lb_stats {
8298 	struct sched_group *busiest;	/* Busiest group in this sd */
8299 	struct sched_group *local;	/* Local group in this sd */
8300 	unsigned long total_load;	/* Total load of all groups in sd */
8301 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8302 	unsigned long avg_load;	/* Average load across all groups in sd */
8303 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8304 
8305 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8306 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8307 };
8308 
8309 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8310 {
8311 	/*
8312 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8313 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8314 	 * We must however set busiest_stat::group_type and
8315 	 * busiest_stat::idle_cpus to the worst busiest group because
8316 	 * update_sd_pick_busiest() reads these before assignment.
8317 	 */
8318 	*sds = (struct sd_lb_stats){
8319 		.busiest = NULL,
8320 		.local = NULL,
8321 		.total_load = 0UL,
8322 		.total_capacity = 0UL,
8323 		.busiest_stat = {
8324 			.idle_cpus = UINT_MAX,
8325 			.group_type = group_has_spare,
8326 		},
8327 	};
8328 }
8329 
8330 static unsigned long scale_rt_capacity(int cpu)
8331 {
8332 	struct rq *rq = cpu_rq(cpu);
8333 	unsigned long max = arch_scale_cpu_capacity(cpu);
8334 	unsigned long used, free;
8335 	unsigned long irq;
8336 
8337 	irq = cpu_util_irq(rq);
8338 
8339 	if (unlikely(irq >= max))
8340 		return 1;
8341 
8342 	/*
8343 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8344 	 * (running and not running) with weights 0 and 1024 respectively.
8345 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8346 	 * average uses the actual delta max capacity(load).
8347 	 */
8348 	used = READ_ONCE(rq->avg_rt.util_avg);
8349 	used += READ_ONCE(rq->avg_dl.util_avg);
8350 	used += thermal_load_avg(rq);
8351 
8352 	if (unlikely(used >= max))
8353 		return 1;
8354 
8355 	free = max - used;
8356 
8357 	return scale_irq_capacity(free, irq, max);
8358 }
8359 
8360 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8361 {
8362 	unsigned long capacity = scale_rt_capacity(cpu);
8363 	struct sched_group *sdg = sd->groups;
8364 
8365 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8366 
8367 	if (!capacity)
8368 		capacity = 1;
8369 
8370 	cpu_rq(cpu)->cpu_capacity = capacity;
8371 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8372 
8373 	sdg->sgc->capacity = capacity;
8374 	sdg->sgc->min_capacity = capacity;
8375 	sdg->sgc->max_capacity = capacity;
8376 }
8377 
8378 void update_group_capacity(struct sched_domain *sd, int cpu)
8379 {
8380 	struct sched_domain *child = sd->child;
8381 	struct sched_group *group, *sdg = sd->groups;
8382 	unsigned long capacity, min_capacity, max_capacity;
8383 	unsigned long interval;
8384 
8385 	interval = msecs_to_jiffies(sd->balance_interval);
8386 	interval = clamp(interval, 1UL, max_load_balance_interval);
8387 	sdg->sgc->next_update = jiffies + interval;
8388 
8389 	if (!child) {
8390 		update_cpu_capacity(sd, cpu);
8391 		return;
8392 	}
8393 
8394 	capacity = 0;
8395 	min_capacity = ULONG_MAX;
8396 	max_capacity = 0;
8397 
8398 	if (child->flags & SD_OVERLAP) {
8399 		/*
8400 		 * SD_OVERLAP domains cannot assume that child groups
8401 		 * span the current group.
8402 		 */
8403 
8404 		for_each_cpu(cpu, sched_group_span(sdg)) {
8405 			unsigned long cpu_cap = capacity_of(cpu);
8406 
8407 			capacity += cpu_cap;
8408 			min_capacity = min(cpu_cap, min_capacity);
8409 			max_capacity = max(cpu_cap, max_capacity);
8410 		}
8411 	} else  {
8412 		/*
8413 		 * !SD_OVERLAP domains can assume that child groups
8414 		 * span the current group.
8415 		 */
8416 
8417 		group = child->groups;
8418 		do {
8419 			struct sched_group_capacity *sgc = group->sgc;
8420 
8421 			capacity += sgc->capacity;
8422 			min_capacity = min(sgc->min_capacity, min_capacity);
8423 			max_capacity = max(sgc->max_capacity, max_capacity);
8424 			group = group->next;
8425 		} while (group != child->groups);
8426 	}
8427 
8428 	sdg->sgc->capacity = capacity;
8429 	sdg->sgc->min_capacity = min_capacity;
8430 	sdg->sgc->max_capacity = max_capacity;
8431 }
8432 
8433 /*
8434  * Check whether the capacity of the rq has been noticeably reduced by side
8435  * activity. The imbalance_pct is used for the threshold.
8436  * Return true is the capacity is reduced
8437  */
8438 static inline int
8439 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8440 {
8441 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8442 				(rq->cpu_capacity_orig * 100));
8443 }
8444 
8445 /*
8446  * Check whether a rq has a misfit task and if it looks like we can actually
8447  * help that task: we can migrate the task to a CPU of higher capacity, or
8448  * the task's current CPU is heavily pressured.
8449  */
8450 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8451 {
8452 	return rq->misfit_task_load &&
8453 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8454 		 check_cpu_capacity(rq, sd));
8455 }
8456 
8457 /*
8458  * Group imbalance indicates (and tries to solve) the problem where balancing
8459  * groups is inadequate due to ->cpus_ptr constraints.
8460  *
8461  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8462  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8463  * Something like:
8464  *
8465  *	{ 0 1 2 3 } { 4 5 6 7 }
8466  *	        *     * * *
8467  *
8468  * If we were to balance group-wise we'd place two tasks in the first group and
8469  * two tasks in the second group. Clearly this is undesired as it will overload
8470  * cpu 3 and leave one of the CPUs in the second group unused.
8471  *
8472  * The current solution to this issue is detecting the skew in the first group
8473  * by noticing the lower domain failed to reach balance and had difficulty
8474  * moving tasks due to affinity constraints.
8475  *
8476  * When this is so detected; this group becomes a candidate for busiest; see
8477  * update_sd_pick_busiest(). And calculate_imbalance() and
8478  * find_busiest_group() avoid some of the usual balance conditions to allow it
8479  * to create an effective group imbalance.
8480  *
8481  * This is a somewhat tricky proposition since the next run might not find the
8482  * group imbalance and decide the groups need to be balanced again. A most
8483  * subtle and fragile situation.
8484  */
8485 
8486 static inline int sg_imbalanced(struct sched_group *group)
8487 {
8488 	return group->sgc->imbalance;
8489 }
8490 
8491 /*
8492  * group_has_capacity returns true if the group has spare capacity that could
8493  * be used by some tasks.
8494  * We consider that a group has spare capacity if the  * number of task is
8495  * smaller than the number of CPUs or if the utilization is lower than the
8496  * available capacity for CFS tasks.
8497  * For the latter, we use a threshold to stabilize the state, to take into
8498  * account the variance of the tasks' load and to return true if the available
8499  * capacity in meaningful for the load balancer.
8500  * As an example, an available capacity of 1% can appear but it doesn't make
8501  * any benefit for the load balance.
8502  */
8503 static inline bool
8504 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8505 {
8506 	if (sgs->sum_nr_running < sgs->group_weight)
8507 		return true;
8508 
8509 	if ((sgs->group_capacity * imbalance_pct) <
8510 			(sgs->group_runnable * 100))
8511 		return false;
8512 
8513 	if ((sgs->group_capacity * 100) >
8514 			(sgs->group_util * imbalance_pct))
8515 		return true;
8516 
8517 	return false;
8518 }
8519 
8520 /*
8521  *  group_is_overloaded returns true if the group has more tasks than it can
8522  *  handle.
8523  *  group_is_overloaded is not equals to !group_has_capacity because a group
8524  *  with the exact right number of tasks, has no more spare capacity but is not
8525  *  overloaded so both group_has_capacity and group_is_overloaded return
8526  *  false.
8527  */
8528 static inline bool
8529 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8530 {
8531 	if (sgs->sum_nr_running <= sgs->group_weight)
8532 		return false;
8533 
8534 	if ((sgs->group_capacity * 100) <
8535 			(sgs->group_util * imbalance_pct))
8536 		return true;
8537 
8538 	if ((sgs->group_capacity * imbalance_pct) <
8539 			(sgs->group_runnable * 100))
8540 		return true;
8541 
8542 	return false;
8543 }
8544 
8545 static inline enum
8546 group_type group_classify(unsigned int imbalance_pct,
8547 			  struct sched_group *group,
8548 			  struct sg_lb_stats *sgs)
8549 {
8550 	if (group_is_overloaded(imbalance_pct, sgs))
8551 		return group_overloaded;
8552 
8553 	if (sg_imbalanced(group))
8554 		return group_imbalanced;
8555 
8556 	if (sgs->group_asym_packing)
8557 		return group_asym_packing;
8558 
8559 	if (sgs->group_misfit_task_load)
8560 		return group_misfit_task;
8561 
8562 	if (!group_has_capacity(imbalance_pct, sgs))
8563 		return group_fully_busy;
8564 
8565 	return group_has_spare;
8566 }
8567 
8568 /**
8569  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8570  * @dst_cpu:	Destination CPU of the load balancing
8571  * @sds:	Load-balancing data with statistics of the local group
8572  * @sgs:	Load-balancing statistics of the candidate busiest group
8573  * @sg:		The candidate busiest group
8574  *
8575  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8576  * if @dst_cpu can pull tasks.
8577  *
8578  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8579  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8580  * only if @dst_cpu has higher priority.
8581  *
8582  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8583  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8584  * Bigger imbalances in the number of busy CPUs will be dealt with in
8585  * update_sd_pick_busiest().
8586  *
8587  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8588  * of @dst_cpu are idle and @sg has lower priority.
8589  */
8590 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8591 				    struct sg_lb_stats *sgs,
8592 				    struct sched_group *sg)
8593 {
8594 #ifdef CONFIG_SCHED_SMT
8595 	bool local_is_smt, sg_is_smt;
8596 	int sg_busy_cpus;
8597 
8598 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8599 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8600 
8601 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8602 
8603 	if (!local_is_smt) {
8604 		/*
8605 		 * If we are here, @dst_cpu is idle and does not have SMT
8606 		 * siblings. Pull tasks if candidate group has two or more
8607 		 * busy CPUs.
8608 		 */
8609 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8610 			return true;
8611 
8612 		/*
8613 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8614 		 * siblings and only one is busy. In such case, @dst_cpu
8615 		 * can help if it has higher priority and is idle (i.e.,
8616 		 * it has no running tasks).
8617 		 */
8618 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8619 	}
8620 
8621 	/* @dst_cpu has SMT siblings. */
8622 
8623 	if (sg_is_smt) {
8624 		int local_busy_cpus = sds->local->group_weight -
8625 				      sds->local_stat.idle_cpus;
8626 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8627 
8628 		if (busy_cpus_delta == 1)
8629 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8630 
8631 		return false;
8632 	}
8633 
8634 	/*
8635 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8636 	 * up with more than one busy SMT sibling and only pull tasks if there
8637 	 * are not busy CPUs (i.e., no CPU has running tasks).
8638 	 */
8639 	if (!sds->local_stat.sum_nr_running)
8640 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8641 
8642 	return false;
8643 #else
8644 	/* Always return false so that callers deal with non-SMT cases. */
8645 	return false;
8646 #endif
8647 }
8648 
8649 static inline bool
8650 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8651 	   struct sched_group *group)
8652 {
8653 	/* Only do SMT checks if either local or candidate have SMT siblings */
8654 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8655 	    (group->flags & SD_SHARE_CPUCAPACITY))
8656 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8657 
8658 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8659 }
8660 
8661 /**
8662  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8663  * @env: The load balancing environment.
8664  * @group: sched_group whose statistics are to be updated.
8665  * @sgs: variable to hold the statistics for this group.
8666  * @sg_status: Holds flag indicating the status of the sched_group
8667  */
8668 static inline void update_sg_lb_stats(struct lb_env *env,
8669 				      struct sd_lb_stats *sds,
8670 				      struct sched_group *group,
8671 				      struct sg_lb_stats *sgs,
8672 				      int *sg_status)
8673 {
8674 	int i, nr_running, local_group;
8675 
8676 	memset(sgs, 0, sizeof(*sgs));
8677 
8678 	local_group = group == sds->local;
8679 
8680 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8681 		struct rq *rq = cpu_rq(i);
8682 
8683 		sgs->group_load += cpu_load(rq);
8684 		sgs->group_util += cpu_util(i);
8685 		sgs->group_runnable += cpu_runnable(rq);
8686 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8687 
8688 		nr_running = rq->nr_running;
8689 		sgs->sum_nr_running += nr_running;
8690 
8691 		if (nr_running > 1)
8692 			*sg_status |= SG_OVERLOAD;
8693 
8694 		if (cpu_overutilized(i))
8695 			*sg_status |= SG_OVERUTILIZED;
8696 
8697 #ifdef CONFIG_NUMA_BALANCING
8698 		sgs->nr_numa_running += rq->nr_numa_running;
8699 		sgs->nr_preferred_running += rq->nr_preferred_running;
8700 #endif
8701 		/*
8702 		 * No need to call idle_cpu() if nr_running is not 0
8703 		 */
8704 		if (!nr_running && idle_cpu(i)) {
8705 			sgs->idle_cpus++;
8706 			/* Idle cpu can't have misfit task */
8707 			continue;
8708 		}
8709 
8710 		if (local_group)
8711 			continue;
8712 
8713 		/* Check for a misfit task on the cpu */
8714 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8715 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8716 			sgs->group_misfit_task_load = rq->misfit_task_load;
8717 			*sg_status |= SG_OVERLOAD;
8718 		}
8719 	}
8720 
8721 	sgs->group_capacity = group->sgc->capacity;
8722 
8723 	sgs->group_weight = group->group_weight;
8724 
8725 	/* Check if dst CPU is idle and preferred to this group */
8726 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8727 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8728 	    sched_asym(env, sds, sgs, group)) {
8729 		sgs->group_asym_packing = 1;
8730 	}
8731 
8732 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8733 
8734 	/* Computing avg_load makes sense only when group is overloaded */
8735 	if (sgs->group_type == group_overloaded)
8736 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8737 				sgs->group_capacity;
8738 }
8739 
8740 /**
8741  * update_sd_pick_busiest - return 1 on busiest group
8742  * @env: The load balancing environment.
8743  * @sds: sched_domain statistics
8744  * @sg: sched_group candidate to be checked for being the busiest
8745  * @sgs: sched_group statistics
8746  *
8747  * Determine if @sg is a busier group than the previously selected
8748  * busiest group.
8749  *
8750  * Return: %true if @sg is a busier group than the previously selected
8751  * busiest group. %false otherwise.
8752  */
8753 static bool update_sd_pick_busiest(struct lb_env *env,
8754 				   struct sd_lb_stats *sds,
8755 				   struct sched_group *sg,
8756 				   struct sg_lb_stats *sgs)
8757 {
8758 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8759 
8760 	/* Make sure that there is at least one task to pull */
8761 	if (!sgs->sum_h_nr_running)
8762 		return false;
8763 
8764 	/*
8765 	 * Don't try to pull misfit tasks we can't help.
8766 	 * We can use max_capacity here as reduction in capacity on some
8767 	 * CPUs in the group should either be possible to resolve
8768 	 * internally or be covered by avg_load imbalance (eventually).
8769 	 */
8770 	if (sgs->group_type == group_misfit_task &&
8771 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8772 	     sds->local_stat.group_type != group_has_spare))
8773 		return false;
8774 
8775 	if (sgs->group_type > busiest->group_type)
8776 		return true;
8777 
8778 	if (sgs->group_type < busiest->group_type)
8779 		return false;
8780 
8781 	/*
8782 	 * The candidate and the current busiest group are the same type of
8783 	 * group. Let check which one is the busiest according to the type.
8784 	 */
8785 
8786 	switch (sgs->group_type) {
8787 	case group_overloaded:
8788 		/* Select the overloaded group with highest avg_load. */
8789 		if (sgs->avg_load <= busiest->avg_load)
8790 			return false;
8791 		break;
8792 
8793 	case group_imbalanced:
8794 		/*
8795 		 * Select the 1st imbalanced group as we don't have any way to
8796 		 * choose one more than another.
8797 		 */
8798 		return false;
8799 
8800 	case group_asym_packing:
8801 		/* Prefer to move from lowest priority CPU's work */
8802 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8803 			return false;
8804 		break;
8805 
8806 	case group_misfit_task:
8807 		/*
8808 		 * If we have more than one misfit sg go with the biggest
8809 		 * misfit.
8810 		 */
8811 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8812 			return false;
8813 		break;
8814 
8815 	case group_fully_busy:
8816 		/*
8817 		 * Select the fully busy group with highest avg_load. In
8818 		 * theory, there is no need to pull task from such kind of
8819 		 * group because tasks have all compute capacity that they need
8820 		 * but we can still improve the overall throughput by reducing
8821 		 * contention when accessing shared HW resources.
8822 		 *
8823 		 * XXX for now avg_load is not computed and always 0 so we
8824 		 * select the 1st one.
8825 		 */
8826 		if (sgs->avg_load <= busiest->avg_load)
8827 			return false;
8828 		break;
8829 
8830 	case group_has_spare:
8831 		/*
8832 		 * Select not overloaded group with lowest number of idle cpus
8833 		 * and highest number of running tasks. We could also compare
8834 		 * the spare capacity which is more stable but it can end up
8835 		 * that the group has less spare capacity but finally more idle
8836 		 * CPUs which means less opportunity to pull tasks.
8837 		 */
8838 		if (sgs->idle_cpus > busiest->idle_cpus)
8839 			return false;
8840 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8841 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8842 			return false;
8843 
8844 		break;
8845 	}
8846 
8847 	/*
8848 	 * Candidate sg has no more than one task per CPU and has higher
8849 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8850 	 * throughput. Maximize throughput, power/energy consequences are not
8851 	 * considered.
8852 	 */
8853 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8854 	    (sgs->group_type <= group_fully_busy) &&
8855 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8856 		return false;
8857 
8858 	return true;
8859 }
8860 
8861 #ifdef CONFIG_NUMA_BALANCING
8862 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8863 {
8864 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8865 		return regular;
8866 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8867 		return remote;
8868 	return all;
8869 }
8870 
8871 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8872 {
8873 	if (rq->nr_running > rq->nr_numa_running)
8874 		return regular;
8875 	if (rq->nr_running > rq->nr_preferred_running)
8876 		return remote;
8877 	return all;
8878 }
8879 #else
8880 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8881 {
8882 	return all;
8883 }
8884 
8885 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8886 {
8887 	return regular;
8888 }
8889 #endif /* CONFIG_NUMA_BALANCING */
8890 
8891 
8892 struct sg_lb_stats;
8893 
8894 /*
8895  * task_running_on_cpu - return 1 if @p is running on @cpu.
8896  */
8897 
8898 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8899 {
8900 	/* Task has no contribution or is new */
8901 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8902 		return 0;
8903 
8904 	if (task_on_rq_queued(p))
8905 		return 1;
8906 
8907 	return 0;
8908 }
8909 
8910 /**
8911  * idle_cpu_without - would a given CPU be idle without p ?
8912  * @cpu: the processor on which idleness is tested.
8913  * @p: task which should be ignored.
8914  *
8915  * Return: 1 if the CPU would be idle. 0 otherwise.
8916  */
8917 static int idle_cpu_without(int cpu, struct task_struct *p)
8918 {
8919 	struct rq *rq = cpu_rq(cpu);
8920 
8921 	if (rq->curr != rq->idle && rq->curr != p)
8922 		return 0;
8923 
8924 	/*
8925 	 * rq->nr_running can't be used but an updated version without the
8926 	 * impact of p on cpu must be used instead. The updated nr_running
8927 	 * be computed and tested before calling idle_cpu_without().
8928 	 */
8929 
8930 #ifdef CONFIG_SMP
8931 	if (rq->ttwu_pending)
8932 		return 0;
8933 #endif
8934 
8935 	return 1;
8936 }
8937 
8938 /*
8939  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8940  * @sd: The sched_domain level to look for idlest group.
8941  * @group: sched_group whose statistics are to be updated.
8942  * @sgs: variable to hold the statistics for this group.
8943  * @p: The task for which we look for the idlest group/CPU.
8944  */
8945 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8946 					  struct sched_group *group,
8947 					  struct sg_lb_stats *sgs,
8948 					  struct task_struct *p)
8949 {
8950 	int i, nr_running;
8951 
8952 	memset(sgs, 0, sizeof(*sgs));
8953 
8954 	for_each_cpu(i, sched_group_span(group)) {
8955 		struct rq *rq = cpu_rq(i);
8956 		unsigned int local;
8957 
8958 		sgs->group_load += cpu_load_without(rq, p);
8959 		sgs->group_util += cpu_util_without(i, p);
8960 		sgs->group_runnable += cpu_runnable_without(rq, p);
8961 		local = task_running_on_cpu(i, p);
8962 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8963 
8964 		nr_running = rq->nr_running - local;
8965 		sgs->sum_nr_running += nr_running;
8966 
8967 		/*
8968 		 * No need to call idle_cpu_without() if nr_running is not 0
8969 		 */
8970 		if (!nr_running && idle_cpu_without(i, p))
8971 			sgs->idle_cpus++;
8972 
8973 	}
8974 
8975 	/* Check if task fits in the group */
8976 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8977 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8978 		sgs->group_misfit_task_load = 1;
8979 	}
8980 
8981 	sgs->group_capacity = group->sgc->capacity;
8982 
8983 	sgs->group_weight = group->group_weight;
8984 
8985 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8986 
8987 	/*
8988 	 * Computing avg_load makes sense only when group is fully busy or
8989 	 * overloaded
8990 	 */
8991 	if (sgs->group_type == group_fully_busy ||
8992 		sgs->group_type == group_overloaded)
8993 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8994 				sgs->group_capacity;
8995 }
8996 
8997 static bool update_pick_idlest(struct sched_group *idlest,
8998 			       struct sg_lb_stats *idlest_sgs,
8999 			       struct sched_group *group,
9000 			       struct sg_lb_stats *sgs)
9001 {
9002 	if (sgs->group_type < idlest_sgs->group_type)
9003 		return true;
9004 
9005 	if (sgs->group_type > idlest_sgs->group_type)
9006 		return false;
9007 
9008 	/*
9009 	 * The candidate and the current idlest group are the same type of
9010 	 * group. Let check which one is the idlest according to the type.
9011 	 */
9012 
9013 	switch (sgs->group_type) {
9014 	case group_overloaded:
9015 	case group_fully_busy:
9016 		/* Select the group with lowest avg_load. */
9017 		if (idlest_sgs->avg_load <= sgs->avg_load)
9018 			return false;
9019 		break;
9020 
9021 	case group_imbalanced:
9022 	case group_asym_packing:
9023 		/* Those types are not used in the slow wakeup path */
9024 		return false;
9025 
9026 	case group_misfit_task:
9027 		/* Select group with the highest max capacity */
9028 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9029 			return false;
9030 		break;
9031 
9032 	case group_has_spare:
9033 		/* Select group with most idle CPUs */
9034 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9035 			return false;
9036 
9037 		/* Select group with lowest group_util */
9038 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9039 			idlest_sgs->group_util <= sgs->group_util)
9040 			return false;
9041 
9042 		break;
9043 	}
9044 
9045 	return true;
9046 }
9047 
9048 /*
9049  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9050  * This is an approximation as the number of running tasks may not be
9051  * related to the number of busy CPUs due to sched_setaffinity.
9052  */
9053 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9054 {
9055 	return (dst_running < (dst_weight >> 2));
9056 }
9057 
9058 /*
9059  * find_idlest_group() finds and returns the least busy CPU group within the
9060  * domain.
9061  *
9062  * Assumes p is allowed on at least one CPU in sd.
9063  */
9064 static struct sched_group *
9065 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9066 {
9067 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9068 	struct sg_lb_stats local_sgs, tmp_sgs;
9069 	struct sg_lb_stats *sgs;
9070 	unsigned long imbalance;
9071 	struct sg_lb_stats idlest_sgs = {
9072 			.avg_load = UINT_MAX,
9073 			.group_type = group_overloaded,
9074 	};
9075 
9076 	do {
9077 		int local_group;
9078 
9079 		/* Skip over this group if it has no CPUs allowed */
9080 		if (!cpumask_intersects(sched_group_span(group),
9081 					p->cpus_ptr))
9082 			continue;
9083 
9084 		/* Skip over this group if no cookie matched */
9085 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9086 			continue;
9087 
9088 		local_group = cpumask_test_cpu(this_cpu,
9089 					       sched_group_span(group));
9090 
9091 		if (local_group) {
9092 			sgs = &local_sgs;
9093 			local = group;
9094 		} else {
9095 			sgs = &tmp_sgs;
9096 		}
9097 
9098 		update_sg_wakeup_stats(sd, group, sgs, p);
9099 
9100 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9101 			idlest = group;
9102 			idlest_sgs = *sgs;
9103 		}
9104 
9105 	} while (group = group->next, group != sd->groups);
9106 
9107 
9108 	/* There is no idlest group to push tasks to */
9109 	if (!idlest)
9110 		return NULL;
9111 
9112 	/* The local group has been skipped because of CPU affinity */
9113 	if (!local)
9114 		return idlest;
9115 
9116 	/*
9117 	 * If the local group is idler than the selected idlest group
9118 	 * don't try and push the task.
9119 	 */
9120 	if (local_sgs.group_type < idlest_sgs.group_type)
9121 		return NULL;
9122 
9123 	/*
9124 	 * If the local group is busier than the selected idlest group
9125 	 * try and push the task.
9126 	 */
9127 	if (local_sgs.group_type > idlest_sgs.group_type)
9128 		return idlest;
9129 
9130 	switch (local_sgs.group_type) {
9131 	case group_overloaded:
9132 	case group_fully_busy:
9133 
9134 		/* Calculate allowed imbalance based on load */
9135 		imbalance = scale_load_down(NICE_0_LOAD) *
9136 				(sd->imbalance_pct-100) / 100;
9137 
9138 		/*
9139 		 * When comparing groups across NUMA domains, it's possible for
9140 		 * the local domain to be very lightly loaded relative to the
9141 		 * remote domains but "imbalance" skews the comparison making
9142 		 * remote CPUs look much more favourable. When considering
9143 		 * cross-domain, add imbalance to the load on the remote node
9144 		 * and consider staying local.
9145 		 */
9146 
9147 		if ((sd->flags & SD_NUMA) &&
9148 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9149 			return NULL;
9150 
9151 		/*
9152 		 * If the local group is less loaded than the selected
9153 		 * idlest group don't try and push any tasks.
9154 		 */
9155 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9156 			return NULL;
9157 
9158 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9159 			return NULL;
9160 		break;
9161 
9162 	case group_imbalanced:
9163 	case group_asym_packing:
9164 		/* Those type are not used in the slow wakeup path */
9165 		return NULL;
9166 
9167 	case group_misfit_task:
9168 		/* Select group with the highest max capacity */
9169 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9170 			return NULL;
9171 		break;
9172 
9173 	case group_has_spare:
9174 		if (sd->flags & SD_NUMA) {
9175 #ifdef CONFIG_NUMA_BALANCING
9176 			int idlest_cpu;
9177 			/*
9178 			 * If there is spare capacity at NUMA, try to select
9179 			 * the preferred node
9180 			 */
9181 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9182 				return NULL;
9183 
9184 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9185 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9186 				return idlest;
9187 #endif
9188 			/*
9189 			 * Otherwise, keep the task on this node to stay close
9190 			 * its wakeup source and improve locality. If there is
9191 			 * a real need of migration, periodic load balance will
9192 			 * take care of it.
9193 			 */
9194 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9195 				return NULL;
9196 		}
9197 
9198 		/*
9199 		 * Select group with highest number of idle CPUs. We could also
9200 		 * compare the utilization which is more stable but it can end
9201 		 * up that the group has less spare capacity but finally more
9202 		 * idle CPUs which means more opportunity to run task.
9203 		 */
9204 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9205 			return NULL;
9206 		break;
9207 	}
9208 
9209 	return idlest;
9210 }
9211 
9212 /**
9213  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9214  * @env: The load balancing environment.
9215  * @sds: variable to hold the statistics for this sched_domain.
9216  */
9217 
9218 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9219 {
9220 	struct sched_domain *child = env->sd->child;
9221 	struct sched_group *sg = env->sd->groups;
9222 	struct sg_lb_stats *local = &sds->local_stat;
9223 	struct sg_lb_stats tmp_sgs;
9224 	int sg_status = 0;
9225 
9226 	do {
9227 		struct sg_lb_stats *sgs = &tmp_sgs;
9228 		int local_group;
9229 
9230 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9231 		if (local_group) {
9232 			sds->local = sg;
9233 			sgs = local;
9234 
9235 			if (env->idle != CPU_NEWLY_IDLE ||
9236 			    time_after_eq(jiffies, sg->sgc->next_update))
9237 				update_group_capacity(env->sd, env->dst_cpu);
9238 		}
9239 
9240 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9241 
9242 		if (local_group)
9243 			goto next_group;
9244 
9245 
9246 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9247 			sds->busiest = sg;
9248 			sds->busiest_stat = *sgs;
9249 		}
9250 
9251 next_group:
9252 		/* Now, start updating sd_lb_stats */
9253 		sds->total_load += sgs->group_load;
9254 		sds->total_capacity += sgs->group_capacity;
9255 
9256 		sg = sg->next;
9257 	} while (sg != env->sd->groups);
9258 
9259 	/* Tag domain that child domain prefers tasks go to siblings first */
9260 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9261 
9262 
9263 	if (env->sd->flags & SD_NUMA)
9264 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9265 
9266 	if (!env->sd->parent) {
9267 		struct root_domain *rd = env->dst_rq->rd;
9268 
9269 		/* update overload indicator if we are at root domain */
9270 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9271 
9272 		/* Update over-utilization (tipping point, U >= 0) indicator */
9273 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9274 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9275 	} else if (sg_status & SG_OVERUTILIZED) {
9276 		struct root_domain *rd = env->dst_rq->rd;
9277 
9278 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9279 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9280 	}
9281 }
9282 
9283 #define NUMA_IMBALANCE_MIN 2
9284 
9285 static inline long adjust_numa_imbalance(int imbalance,
9286 				int dst_running, int dst_weight)
9287 {
9288 	if (!allow_numa_imbalance(dst_running, dst_weight))
9289 		return imbalance;
9290 
9291 	/*
9292 	 * Allow a small imbalance based on a simple pair of communicating
9293 	 * tasks that remain local when the destination is lightly loaded.
9294 	 */
9295 	if (imbalance <= NUMA_IMBALANCE_MIN)
9296 		return 0;
9297 
9298 	return imbalance;
9299 }
9300 
9301 /**
9302  * calculate_imbalance - Calculate the amount of imbalance present within the
9303  *			 groups of a given sched_domain during load balance.
9304  * @env: load balance environment
9305  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9306  */
9307 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9308 {
9309 	struct sg_lb_stats *local, *busiest;
9310 
9311 	local = &sds->local_stat;
9312 	busiest = &sds->busiest_stat;
9313 
9314 	if (busiest->group_type == group_misfit_task) {
9315 		/* Set imbalance to allow misfit tasks to be balanced. */
9316 		env->migration_type = migrate_misfit;
9317 		env->imbalance = 1;
9318 		return;
9319 	}
9320 
9321 	if (busiest->group_type == group_asym_packing) {
9322 		/*
9323 		 * In case of asym capacity, we will try to migrate all load to
9324 		 * the preferred CPU.
9325 		 */
9326 		env->migration_type = migrate_task;
9327 		env->imbalance = busiest->sum_h_nr_running;
9328 		return;
9329 	}
9330 
9331 	if (busiest->group_type == group_imbalanced) {
9332 		/*
9333 		 * In the group_imb case we cannot rely on group-wide averages
9334 		 * to ensure CPU-load equilibrium, try to move any task to fix
9335 		 * the imbalance. The next load balance will take care of
9336 		 * balancing back the system.
9337 		 */
9338 		env->migration_type = migrate_task;
9339 		env->imbalance = 1;
9340 		return;
9341 	}
9342 
9343 	/*
9344 	 * Try to use spare capacity of local group without overloading it or
9345 	 * emptying busiest.
9346 	 */
9347 	if (local->group_type == group_has_spare) {
9348 		if ((busiest->group_type > group_fully_busy) &&
9349 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9350 			/*
9351 			 * If busiest is overloaded, try to fill spare
9352 			 * capacity. This might end up creating spare capacity
9353 			 * in busiest or busiest still being overloaded but
9354 			 * there is no simple way to directly compute the
9355 			 * amount of load to migrate in order to balance the
9356 			 * system.
9357 			 */
9358 			env->migration_type = migrate_util;
9359 			env->imbalance = max(local->group_capacity, local->group_util) -
9360 					 local->group_util;
9361 
9362 			/*
9363 			 * In some cases, the group's utilization is max or even
9364 			 * higher than capacity because of migrations but the
9365 			 * local CPU is (newly) idle. There is at least one
9366 			 * waiting task in this overloaded busiest group. Let's
9367 			 * try to pull it.
9368 			 */
9369 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9370 				env->migration_type = migrate_task;
9371 				env->imbalance = 1;
9372 			}
9373 
9374 			return;
9375 		}
9376 
9377 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9378 			unsigned int nr_diff = busiest->sum_nr_running;
9379 			/*
9380 			 * When prefer sibling, evenly spread running tasks on
9381 			 * groups.
9382 			 */
9383 			env->migration_type = migrate_task;
9384 			lsub_positive(&nr_diff, local->sum_nr_running);
9385 			env->imbalance = nr_diff >> 1;
9386 		} else {
9387 
9388 			/*
9389 			 * If there is no overload, we just want to even the number of
9390 			 * idle cpus.
9391 			 */
9392 			env->migration_type = migrate_task;
9393 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9394 						 busiest->idle_cpus) >> 1);
9395 		}
9396 
9397 		/* Consider allowing a small imbalance between NUMA groups */
9398 		if (env->sd->flags & SD_NUMA) {
9399 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9400 				busiest->sum_nr_running, busiest->group_weight);
9401 		}
9402 
9403 		return;
9404 	}
9405 
9406 	/*
9407 	 * Local is fully busy but has to take more load to relieve the
9408 	 * busiest group
9409 	 */
9410 	if (local->group_type < group_overloaded) {
9411 		/*
9412 		 * Local will become overloaded so the avg_load metrics are
9413 		 * finally needed.
9414 		 */
9415 
9416 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9417 				  local->group_capacity;
9418 
9419 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9420 				sds->total_capacity;
9421 		/*
9422 		 * If the local group is more loaded than the selected
9423 		 * busiest group don't try to pull any tasks.
9424 		 */
9425 		if (local->avg_load >= busiest->avg_load) {
9426 			env->imbalance = 0;
9427 			return;
9428 		}
9429 	}
9430 
9431 	/*
9432 	 * Both group are or will become overloaded and we're trying to get all
9433 	 * the CPUs to the average_load, so we don't want to push ourselves
9434 	 * above the average load, nor do we wish to reduce the max loaded CPU
9435 	 * below the average load. At the same time, we also don't want to
9436 	 * reduce the group load below the group capacity. Thus we look for
9437 	 * the minimum possible imbalance.
9438 	 */
9439 	env->migration_type = migrate_load;
9440 	env->imbalance = min(
9441 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9442 		(sds->avg_load - local->avg_load) * local->group_capacity
9443 	) / SCHED_CAPACITY_SCALE;
9444 }
9445 
9446 /******* find_busiest_group() helpers end here *********************/
9447 
9448 /*
9449  * Decision matrix according to the local and busiest group type:
9450  *
9451  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9452  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9453  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9454  * misfit_task      force     N/A        N/A    N/A  force      force
9455  * asym_packing     force     force      N/A    N/A  force      force
9456  * imbalanced       force     force      N/A    N/A  force      force
9457  * overloaded       force     force      N/A    N/A  force      avg_load
9458  *
9459  * N/A :      Not Applicable because already filtered while updating
9460  *            statistics.
9461  * balanced : The system is balanced for these 2 groups.
9462  * force :    Calculate the imbalance as load migration is probably needed.
9463  * avg_load : Only if imbalance is significant enough.
9464  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9465  *            different in groups.
9466  */
9467 
9468 /**
9469  * find_busiest_group - Returns the busiest group within the sched_domain
9470  * if there is an imbalance.
9471  *
9472  * Also calculates the amount of runnable load which should be moved
9473  * to restore balance.
9474  *
9475  * @env: The load balancing environment.
9476  *
9477  * Return:	- The busiest group if imbalance exists.
9478  */
9479 static struct sched_group *find_busiest_group(struct lb_env *env)
9480 {
9481 	struct sg_lb_stats *local, *busiest;
9482 	struct sd_lb_stats sds;
9483 
9484 	init_sd_lb_stats(&sds);
9485 
9486 	/*
9487 	 * Compute the various statistics relevant for load balancing at
9488 	 * this level.
9489 	 */
9490 	update_sd_lb_stats(env, &sds);
9491 
9492 	if (sched_energy_enabled()) {
9493 		struct root_domain *rd = env->dst_rq->rd;
9494 
9495 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9496 			goto out_balanced;
9497 	}
9498 
9499 	local = &sds.local_stat;
9500 	busiest = &sds.busiest_stat;
9501 
9502 	/* There is no busy sibling group to pull tasks from */
9503 	if (!sds.busiest)
9504 		goto out_balanced;
9505 
9506 	/* Misfit tasks should be dealt with regardless of the avg load */
9507 	if (busiest->group_type == group_misfit_task)
9508 		goto force_balance;
9509 
9510 	/* ASYM feature bypasses nice load balance check */
9511 	if (busiest->group_type == group_asym_packing)
9512 		goto force_balance;
9513 
9514 	/*
9515 	 * If the busiest group is imbalanced the below checks don't
9516 	 * work because they assume all things are equal, which typically
9517 	 * isn't true due to cpus_ptr constraints and the like.
9518 	 */
9519 	if (busiest->group_type == group_imbalanced)
9520 		goto force_balance;
9521 
9522 	/*
9523 	 * If the local group is busier than the selected busiest group
9524 	 * don't try and pull any tasks.
9525 	 */
9526 	if (local->group_type > busiest->group_type)
9527 		goto out_balanced;
9528 
9529 	/*
9530 	 * When groups are overloaded, use the avg_load to ensure fairness
9531 	 * between tasks.
9532 	 */
9533 	if (local->group_type == group_overloaded) {
9534 		/*
9535 		 * If the local group is more loaded than the selected
9536 		 * busiest group don't try to pull any tasks.
9537 		 */
9538 		if (local->avg_load >= busiest->avg_load)
9539 			goto out_balanced;
9540 
9541 		/* XXX broken for overlapping NUMA groups */
9542 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9543 				sds.total_capacity;
9544 
9545 		/*
9546 		 * Don't pull any tasks if this group is already above the
9547 		 * domain average load.
9548 		 */
9549 		if (local->avg_load >= sds.avg_load)
9550 			goto out_balanced;
9551 
9552 		/*
9553 		 * If the busiest group is more loaded, use imbalance_pct to be
9554 		 * conservative.
9555 		 */
9556 		if (100 * busiest->avg_load <=
9557 				env->sd->imbalance_pct * local->avg_load)
9558 			goto out_balanced;
9559 	}
9560 
9561 	/* Try to move all excess tasks to child's sibling domain */
9562 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9563 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9564 		goto force_balance;
9565 
9566 	if (busiest->group_type != group_overloaded) {
9567 		if (env->idle == CPU_NOT_IDLE)
9568 			/*
9569 			 * If the busiest group is not overloaded (and as a
9570 			 * result the local one too) but this CPU is already
9571 			 * busy, let another idle CPU try to pull task.
9572 			 */
9573 			goto out_balanced;
9574 
9575 		if (busiest->group_weight > 1 &&
9576 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9577 			/*
9578 			 * If the busiest group is not overloaded
9579 			 * and there is no imbalance between this and busiest
9580 			 * group wrt idle CPUs, it is balanced. The imbalance
9581 			 * becomes significant if the diff is greater than 1
9582 			 * otherwise we might end up to just move the imbalance
9583 			 * on another group. Of course this applies only if
9584 			 * there is more than 1 CPU per group.
9585 			 */
9586 			goto out_balanced;
9587 
9588 		if (busiest->sum_h_nr_running == 1)
9589 			/*
9590 			 * busiest doesn't have any tasks waiting to run
9591 			 */
9592 			goto out_balanced;
9593 	}
9594 
9595 force_balance:
9596 	/* Looks like there is an imbalance. Compute it */
9597 	calculate_imbalance(env, &sds);
9598 	return env->imbalance ? sds.busiest : NULL;
9599 
9600 out_balanced:
9601 	env->imbalance = 0;
9602 	return NULL;
9603 }
9604 
9605 /*
9606  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9607  */
9608 static struct rq *find_busiest_queue(struct lb_env *env,
9609 				     struct sched_group *group)
9610 {
9611 	struct rq *busiest = NULL, *rq;
9612 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9613 	unsigned int busiest_nr = 0;
9614 	int i;
9615 
9616 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9617 		unsigned long capacity, load, util;
9618 		unsigned int nr_running;
9619 		enum fbq_type rt;
9620 
9621 		rq = cpu_rq(i);
9622 		rt = fbq_classify_rq(rq);
9623 
9624 		/*
9625 		 * We classify groups/runqueues into three groups:
9626 		 *  - regular: there are !numa tasks
9627 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9628 		 *  - all:     there is no distinction
9629 		 *
9630 		 * In order to avoid migrating ideally placed numa tasks,
9631 		 * ignore those when there's better options.
9632 		 *
9633 		 * If we ignore the actual busiest queue to migrate another
9634 		 * task, the next balance pass can still reduce the busiest
9635 		 * queue by moving tasks around inside the node.
9636 		 *
9637 		 * If we cannot move enough load due to this classification
9638 		 * the next pass will adjust the group classification and
9639 		 * allow migration of more tasks.
9640 		 *
9641 		 * Both cases only affect the total convergence complexity.
9642 		 */
9643 		if (rt > env->fbq_type)
9644 			continue;
9645 
9646 		nr_running = rq->cfs.h_nr_running;
9647 		if (!nr_running)
9648 			continue;
9649 
9650 		capacity = capacity_of(i);
9651 
9652 		/*
9653 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9654 		 * eventually lead to active_balancing high->low capacity.
9655 		 * Higher per-CPU capacity is considered better than balancing
9656 		 * average load.
9657 		 */
9658 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9659 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9660 		    nr_running == 1)
9661 			continue;
9662 
9663 		/* Make sure we only pull tasks from a CPU of lower priority */
9664 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9665 		    sched_asym_prefer(i, env->dst_cpu) &&
9666 		    nr_running == 1)
9667 			continue;
9668 
9669 		switch (env->migration_type) {
9670 		case migrate_load:
9671 			/*
9672 			 * When comparing with load imbalance, use cpu_load()
9673 			 * which is not scaled with the CPU capacity.
9674 			 */
9675 			load = cpu_load(rq);
9676 
9677 			if (nr_running == 1 && load > env->imbalance &&
9678 			    !check_cpu_capacity(rq, env->sd))
9679 				break;
9680 
9681 			/*
9682 			 * For the load comparisons with the other CPUs,
9683 			 * consider the cpu_load() scaled with the CPU
9684 			 * capacity, so that the load can be moved away
9685 			 * from the CPU that is potentially running at a
9686 			 * lower capacity.
9687 			 *
9688 			 * Thus we're looking for max(load_i / capacity_i),
9689 			 * crosswise multiplication to rid ourselves of the
9690 			 * division works out to:
9691 			 * load_i * capacity_j > load_j * capacity_i;
9692 			 * where j is our previous maximum.
9693 			 */
9694 			if (load * busiest_capacity > busiest_load * capacity) {
9695 				busiest_load = load;
9696 				busiest_capacity = capacity;
9697 				busiest = rq;
9698 			}
9699 			break;
9700 
9701 		case migrate_util:
9702 			util = cpu_util(cpu_of(rq));
9703 
9704 			/*
9705 			 * Don't try to pull utilization from a CPU with one
9706 			 * running task. Whatever its utilization, we will fail
9707 			 * detach the task.
9708 			 */
9709 			if (nr_running <= 1)
9710 				continue;
9711 
9712 			if (busiest_util < util) {
9713 				busiest_util = util;
9714 				busiest = rq;
9715 			}
9716 			break;
9717 
9718 		case migrate_task:
9719 			if (busiest_nr < nr_running) {
9720 				busiest_nr = nr_running;
9721 				busiest = rq;
9722 			}
9723 			break;
9724 
9725 		case migrate_misfit:
9726 			/*
9727 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9728 			 * simply seek the "biggest" misfit task.
9729 			 */
9730 			if (rq->misfit_task_load > busiest_load) {
9731 				busiest_load = rq->misfit_task_load;
9732 				busiest = rq;
9733 			}
9734 
9735 			break;
9736 
9737 		}
9738 	}
9739 
9740 	return busiest;
9741 }
9742 
9743 /*
9744  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9745  * so long as it is large enough.
9746  */
9747 #define MAX_PINNED_INTERVAL	512
9748 
9749 static inline bool
9750 asym_active_balance(struct lb_env *env)
9751 {
9752 	/*
9753 	 * ASYM_PACKING needs to force migrate tasks from busy but
9754 	 * lower priority CPUs in order to pack all tasks in the
9755 	 * highest priority CPUs.
9756 	 */
9757 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9758 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9759 }
9760 
9761 static inline bool
9762 imbalanced_active_balance(struct lb_env *env)
9763 {
9764 	struct sched_domain *sd = env->sd;
9765 
9766 	/*
9767 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9768 	 * distribution of the load on the system but also the even distribution of the
9769 	 * threads on a system with spare capacity
9770 	 */
9771 	if ((env->migration_type == migrate_task) &&
9772 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9773 		return 1;
9774 
9775 	return 0;
9776 }
9777 
9778 static int need_active_balance(struct lb_env *env)
9779 {
9780 	struct sched_domain *sd = env->sd;
9781 
9782 	if (asym_active_balance(env))
9783 		return 1;
9784 
9785 	if (imbalanced_active_balance(env))
9786 		return 1;
9787 
9788 	/*
9789 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9790 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9791 	 * because of other sched_class or IRQs if more capacity stays
9792 	 * available on dst_cpu.
9793 	 */
9794 	if ((env->idle != CPU_NOT_IDLE) &&
9795 	    (env->src_rq->cfs.h_nr_running == 1)) {
9796 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9797 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9798 			return 1;
9799 	}
9800 
9801 	if (env->migration_type == migrate_misfit)
9802 		return 1;
9803 
9804 	return 0;
9805 }
9806 
9807 static int active_load_balance_cpu_stop(void *data);
9808 
9809 static int should_we_balance(struct lb_env *env)
9810 {
9811 	struct sched_group *sg = env->sd->groups;
9812 	int cpu;
9813 
9814 	/*
9815 	 * Ensure the balancing environment is consistent; can happen
9816 	 * when the softirq triggers 'during' hotplug.
9817 	 */
9818 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9819 		return 0;
9820 
9821 	/*
9822 	 * In the newly idle case, we will allow all the CPUs
9823 	 * to do the newly idle load balance.
9824 	 */
9825 	if (env->idle == CPU_NEWLY_IDLE)
9826 		return 1;
9827 
9828 	/* Try to find first idle CPU */
9829 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9830 		if (!idle_cpu(cpu))
9831 			continue;
9832 
9833 		/* Are we the first idle CPU? */
9834 		return cpu == env->dst_cpu;
9835 	}
9836 
9837 	/* Are we the first CPU of this group ? */
9838 	return group_balance_cpu(sg) == env->dst_cpu;
9839 }
9840 
9841 /*
9842  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9843  * tasks if there is an imbalance.
9844  */
9845 static int load_balance(int this_cpu, struct rq *this_rq,
9846 			struct sched_domain *sd, enum cpu_idle_type idle,
9847 			int *continue_balancing)
9848 {
9849 	int ld_moved, cur_ld_moved, active_balance = 0;
9850 	struct sched_domain *sd_parent = sd->parent;
9851 	struct sched_group *group;
9852 	struct rq *busiest;
9853 	struct rq_flags rf;
9854 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9855 
9856 	struct lb_env env = {
9857 		.sd		= sd,
9858 		.dst_cpu	= this_cpu,
9859 		.dst_rq		= this_rq,
9860 		.dst_grpmask    = sched_group_span(sd->groups),
9861 		.idle		= idle,
9862 		.loop_break	= sched_nr_migrate_break,
9863 		.cpus		= cpus,
9864 		.fbq_type	= all,
9865 		.tasks		= LIST_HEAD_INIT(env.tasks),
9866 	};
9867 
9868 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9869 
9870 	schedstat_inc(sd->lb_count[idle]);
9871 
9872 redo:
9873 	if (!should_we_balance(&env)) {
9874 		*continue_balancing = 0;
9875 		goto out_balanced;
9876 	}
9877 
9878 	group = find_busiest_group(&env);
9879 	if (!group) {
9880 		schedstat_inc(sd->lb_nobusyg[idle]);
9881 		goto out_balanced;
9882 	}
9883 
9884 	busiest = find_busiest_queue(&env, group);
9885 	if (!busiest) {
9886 		schedstat_inc(sd->lb_nobusyq[idle]);
9887 		goto out_balanced;
9888 	}
9889 
9890 	BUG_ON(busiest == env.dst_rq);
9891 
9892 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9893 
9894 	env.src_cpu = busiest->cpu;
9895 	env.src_rq = busiest;
9896 
9897 	ld_moved = 0;
9898 	/* Clear this flag as soon as we find a pullable task */
9899 	env.flags |= LBF_ALL_PINNED;
9900 	if (busiest->nr_running > 1) {
9901 		/*
9902 		 * Attempt to move tasks. If find_busiest_group has found
9903 		 * an imbalance but busiest->nr_running <= 1, the group is
9904 		 * still unbalanced. ld_moved simply stays zero, so it is
9905 		 * correctly treated as an imbalance.
9906 		 */
9907 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9908 
9909 more_balance:
9910 		rq_lock_irqsave(busiest, &rf);
9911 		update_rq_clock(busiest);
9912 
9913 		/*
9914 		 * cur_ld_moved - load moved in current iteration
9915 		 * ld_moved     - cumulative load moved across iterations
9916 		 */
9917 		cur_ld_moved = detach_tasks(&env);
9918 
9919 		/*
9920 		 * We've detached some tasks from busiest_rq. Every
9921 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9922 		 * unlock busiest->lock, and we are able to be sure
9923 		 * that nobody can manipulate the tasks in parallel.
9924 		 * See task_rq_lock() family for the details.
9925 		 */
9926 
9927 		rq_unlock(busiest, &rf);
9928 
9929 		if (cur_ld_moved) {
9930 			attach_tasks(&env);
9931 			ld_moved += cur_ld_moved;
9932 		}
9933 
9934 		local_irq_restore(rf.flags);
9935 
9936 		if (env.flags & LBF_NEED_BREAK) {
9937 			env.flags &= ~LBF_NEED_BREAK;
9938 			goto more_balance;
9939 		}
9940 
9941 		/*
9942 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9943 		 * us and move them to an alternate dst_cpu in our sched_group
9944 		 * where they can run. The upper limit on how many times we
9945 		 * iterate on same src_cpu is dependent on number of CPUs in our
9946 		 * sched_group.
9947 		 *
9948 		 * This changes load balance semantics a bit on who can move
9949 		 * load to a given_cpu. In addition to the given_cpu itself
9950 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9951 		 * nohz-idle), we now have balance_cpu in a position to move
9952 		 * load to given_cpu. In rare situations, this may cause
9953 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9954 		 * _independently_ and at _same_ time to move some load to
9955 		 * given_cpu) causing excess load to be moved to given_cpu.
9956 		 * This however should not happen so much in practice and
9957 		 * moreover subsequent load balance cycles should correct the
9958 		 * excess load moved.
9959 		 */
9960 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9961 
9962 			/* Prevent to re-select dst_cpu via env's CPUs */
9963 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9964 
9965 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9966 			env.dst_cpu	 = env.new_dst_cpu;
9967 			env.flags	&= ~LBF_DST_PINNED;
9968 			env.loop	 = 0;
9969 			env.loop_break	 = sched_nr_migrate_break;
9970 
9971 			/*
9972 			 * Go back to "more_balance" rather than "redo" since we
9973 			 * need to continue with same src_cpu.
9974 			 */
9975 			goto more_balance;
9976 		}
9977 
9978 		/*
9979 		 * We failed to reach balance because of affinity.
9980 		 */
9981 		if (sd_parent) {
9982 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9983 
9984 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9985 				*group_imbalance = 1;
9986 		}
9987 
9988 		/* All tasks on this runqueue were pinned by CPU affinity */
9989 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9990 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9991 			/*
9992 			 * Attempting to continue load balancing at the current
9993 			 * sched_domain level only makes sense if there are
9994 			 * active CPUs remaining as possible busiest CPUs to
9995 			 * pull load from which are not contained within the
9996 			 * destination group that is receiving any migrated
9997 			 * load.
9998 			 */
9999 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10000 				env.loop = 0;
10001 				env.loop_break = sched_nr_migrate_break;
10002 				goto redo;
10003 			}
10004 			goto out_all_pinned;
10005 		}
10006 	}
10007 
10008 	if (!ld_moved) {
10009 		schedstat_inc(sd->lb_failed[idle]);
10010 		/*
10011 		 * Increment the failure counter only on periodic balance.
10012 		 * We do not want newidle balance, which can be very
10013 		 * frequent, pollute the failure counter causing
10014 		 * excessive cache_hot migrations and active balances.
10015 		 */
10016 		if (idle != CPU_NEWLY_IDLE)
10017 			sd->nr_balance_failed++;
10018 
10019 		if (need_active_balance(&env)) {
10020 			unsigned long flags;
10021 
10022 			raw_spin_rq_lock_irqsave(busiest, flags);
10023 
10024 			/*
10025 			 * Don't kick the active_load_balance_cpu_stop,
10026 			 * if the curr task on busiest CPU can't be
10027 			 * moved to this_cpu:
10028 			 */
10029 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10030 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10031 				goto out_one_pinned;
10032 			}
10033 
10034 			/* Record that we found at least one task that could run on this_cpu */
10035 			env.flags &= ~LBF_ALL_PINNED;
10036 
10037 			/*
10038 			 * ->active_balance synchronizes accesses to
10039 			 * ->active_balance_work.  Once set, it's cleared
10040 			 * only after active load balance is finished.
10041 			 */
10042 			if (!busiest->active_balance) {
10043 				busiest->active_balance = 1;
10044 				busiest->push_cpu = this_cpu;
10045 				active_balance = 1;
10046 			}
10047 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10048 
10049 			if (active_balance) {
10050 				stop_one_cpu_nowait(cpu_of(busiest),
10051 					active_load_balance_cpu_stop, busiest,
10052 					&busiest->active_balance_work);
10053 			}
10054 		}
10055 	} else {
10056 		sd->nr_balance_failed = 0;
10057 	}
10058 
10059 	if (likely(!active_balance) || need_active_balance(&env)) {
10060 		/* We were unbalanced, so reset the balancing interval */
10061 		sd->balance_interval = sd->min_interval;
10062 	}
10063 
10064 	goto out;
10065 
10066 out_balanced:
10067 	/*
10068 	 * We reach balance although we may have faced some affinity
10069 	 * constraints. Clear the imbalance flag only if other tasks got
10070 	 * a chance to move and fix the imbalance.
10071 	 */
10072 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10073 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10074 
10075 		if (*group_imbalance)
10076 			*group_imbalance = 0;
10077 	}
10078 
10079 out_all_pinned:
10080 	/*
10081 	 * We reach balance because all tasks are pinned at this level so
10082 	 * we can't migrate them. Let the imbalance flag set so parent level
10083 	 * can try to migrate them.
10084 	 */
10085 	schedstat_inc(sd->lb_balanced[idle]);
10086 
10087 	sd->nr_balance_failed = 0;
10088 
10089 out_one_pinned:
10090 	ld_moved = 0;
10091 
10092 	/*
10093 	 * newidle_balance() disregards balance intervals, so we could
10094 	 * repeatedly reach this code, which would lead to balance_interval
10095 	 * skyrocketing in a short amount of time. Skip the balance_interval
10096 	 * increase logic to avoid that.
10097 	 */
10098 	if (env.idle == CPU_NEWLY_IDLE)
10099 		goto out;
10100 
10101 	/* tune up the balancing interval */
10102 	if ((env.flags & LBF_ALL_PINNED &&
10103 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10104 	    sd->balance_interval < sd->max_interval)
10105 		sd->balance_interval *= 2;
10106 out:
10107 	return ld_moved;
10108 }
10109 
10110 static inline unsigned long
10111 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10112 {
10113 	unsigned long interval = sd->balance_interval;
10114 
10115 	if (cpu_busy)
10116 		interval *= sd->busy_factor;
10117 
10118 	/* scale ms to jiffies */
10119 	interval = msecs_to_jiffies(interval);
10120 
10121 	/*
10122 	 * Reduce likelihood of busy balancing at higher domains racing with
10123 	 * balancing at lower domains by preventing their balancing periods
10124 	 * from being multiples of each other.
10125 	 */
10126 	if (cpu_busy)
10127 		interval -= 1;
10128 
10129 	interval = clamp(interval, 1UL, max_load_balance_interval);
10130 
10131 	return interval;
10132 }
10133 
10134 static inline void
10135 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10136 {
10137 	unsigned long interval, next;
10138 
10139 	/* used by idle balance, so cpu_busy = 0 */
10140 	interval = get_sd_balance_interval(sd, 0);
10141 	next = sd->last_balance + interval;
10142 
10143 	if (time_after(*next_balance, next))
10144 		*next_balance = next;
10145 }
10146 
10147 /*
10148  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10149  * running tasks off the busiest CPU onto idle CPUs. It requires at
10150  * least 1 task to be running on each physical CPU where possible, and
10151  * avoids physical / logical imbalances.
10152  */
10153 static int active_load_balance_cpu_stop(void *data)
10154 {
10155 	struct rq *busiest_rq = data;
10156 	int busiest_cpu = cpu_of(busiest_rq);
10157 	int target_cpu = busiest_rq->push_cpu;
10158 	struct rq *target_rq = cpu_rq(target_cpu);
10159 	struct sched_domain *sd;
10160 	struct task_struct *p = NULL;
10161 	struct rq_flags rf;
10162 
10163 	rq_lock_irq(busiest_rq, &rf);
10164 	/*
10165 	 * Between queueing the stop-work and running it is a hole in which
10166 	 * CPUs can become inactive. We should not move tasks from or to
10167 	 * inactive CPUs.
10168 	 */
10169 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10170 		goto out_unlock;
10171 
10172 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10173 	if (unlikely(busiest_cpu != smp_processor_id() ||
10174 		     !busiest_rq->active_balance))
10175 		goto out_unlock;
10176 
10177 	/* Is there any task to move? */
10178 	if (busiest_rq->nr_running <= 1)
10179 		goto out_unlock;
10180 
10181 	/*
10182 	 * This condition is "impossible", if it occurs
10183 	 * we need to fix it. Originally reported by
10184 	 * Bjorn Helgaas on a 128-CPU setup.
10185 	 */
10186 	BUG_ON(busiest_rq == target_rq);
10187 
10188 	/* Search for an sd spanning us and the target CPU. */
10189 	rcu_read_lock();
10190 	for_each_domain(target_cpu, sd) {
10191 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10192 			break;
10193 	}
10194 
10195 	if (likely(sd)) {
10196 		struct lb_env env = {
10197 			.sd		= sd,
10198 			.dst_cpu	= target_cpu,
10199 			.dst_rq		= target_rq,
10200 			.src_cpu	= busiest_rq->cpu,
10201 			.src_rq		= busiest_rq,
10202 			.idle		= CPU_IDLE,
10203 			.flags		= LBF_ACTIVE_LB,
10204 		};
10205 
10206 		schedstat_inc(sd->alb_count);
10207 		update_rq_clock(busiest_rq);
10208 
10209 		p = detach_one_task(&env);
10210 		if (p) {
10211 			schedstat_inc(sd->alb_pushed);
10212 			/* Active balancing done, reset the failure counter. */
10213 			sd->nr_balance_failed = 0;
10214 		} else {
10215 			schedstat_inc(sd->alb_failed);
10216 		}
10217 	}
10218 	rcu_read_unlock();
10219 out_unlock:
10220 	busiest_rq->active_balance = 0;
10221 	rq_unlock(busiest_rq, &rf);
10222 
10223 	if (p)
10224 		attach_one_task(target_rq, p);
10225 
10226 	local_irq_enable();
10227 
10228 	return 0;
10229 }
10230 
10231 static DEFINE_SPINLOCK(balancing);
10232 
10233 /*
10234  * Scale the max load_balance interval with the number of CPUs in the system.
10235  * This trades load-balance latency on larger machines for less cross talk.
10236  */
10237 void update_max_interval(void)
10238 {
10239 	max_load_balance_interval = HZ*num_online_cpus()/10;
10240 }
10241 
10242 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10243 {
10244 	if (cost > sd->max_newidle_lb_cost) {
10245 		/*
10246 		 * Track max cost of a domain to make sure to not delay the
10247 		 * next wakeup on the CPU.
10248 		 */
10249 		sd->max_newidle_lb_cost = cost;
10250 		sd->last_decay_max_lb_cost = jiffies;
10251 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10252 		/*
10253 		 * Decay the newidle max times by ~1% per second to ensure that
10254 		 * it is not outdated and the current max cost is actually
10255 		 * shorter.
10256 		 */
10257 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10258 		sd->last_decay_max_lb_cost = jiffies;
10259 
10260 		return true;
10261 	}
10262 
10263 	return false;
10264 }
10265 
10266 /*
10267  * It checks each scheduling domain to see if it is due to be balanced,
10268  * and initiates a balancing operation if so.
10269  *
10270  * Balancing parameters are set up in init_sched_domains.
10271  */
10272 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10273 {
10274 	int continue_balancing = 1;
10275 	int cpu = rq->cpu;
10276 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10277 	unsigned long interval;
10278 	struct sched_domain *sd;
10279 	/* Earliest time when we have to do rebalance again */
10280 	unsigned long next_balance = jiffies + 60*HZ;
10281 	int update_next_balance = 0;
10282 	int need_serialize, need_decay = 0;
10283 	u64 max_cost = 0;
10284 
10285 	rcu_read_lock();
10286 	for_each_domain(cpu, sd) {
10287 		/*
10288 		 * Decay the newidle max times here because this is a regular
10289 		 * visit to all the domains.
10290 		 */
10291 		need_decay = update_newidle_cost(sd, 0);
10292 		max_cost += sd->max_newidle_lb_cost;
10293 
10294 		/*
10295 		 * Stop the load balance at this level. There is another
10296 		 * CPU in our sched group which is doing load balancing more
10297 		 * actively.
10298 		 */
10299 		if (!continue_balancing) {
10300 			if (need_decay)
10301 				continue;
10302 			break;
10303 		}
10304 
10305 		interval = get_sd_balance_interval(sd, busy);
10306 
10307 		need_serialize = sd->flags & SD_SERIALIZE;
10308 		if (need_serialize) {
10309 			if (!spin_trylock(&balancing))
10310 				goto out;
10311 		}
10312 
10313 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10314 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10315 				/*
10316 				 * The LBF_DST_PINNED logic could have changed
10317 				 * env->dst_cpu, so we can't know our idle
10318 				 * state even if we migrated tasks. Update it.
10319 				 */
10320 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10321 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10322 			}
10323 			sd->last_balance = jiffies;
10324 			interval = get_sd_balance_interval(sd, busy);
10325 		}
10326 		if (need_serialize)
10327 			spin_unlock(&balancing);
10328 out:
10329 		if (time_after(next_balance, sd->last_balance + interval)) {
10330 			next_balance = sd->last_balance + interval;
10331 			update_next_balance = 1;
10332 		}
10333 	}
10334 	if (need_decay) {
10335 		/*
10336 		 * Ensure the rq-wide value also decays but keep it at a
10337 		 * reasonable floor to avoid funnies with rq->avg_idle.
10338 		 */
10339 		rq->max_idle_balance_cost =
10340 			max((u64)sysctl_sched_migration_cost, max_cost);
10341 	}
10342 	rcu_read_unlock();
10343 
10344 	/*
10345 	 * next_balance will be updated only when there is a need.
10346 	 * When the cpu is attached to null domain for ex, it will not be
10347 	 * updated.
10348 	 */
10349 	if (likely(update_next_balance))
10350 		rq->next_balance = next_balance;
10351 
10352 }
10353 
10354 static inline int on_null_domain(struct rq *rq)
10355 {
10356 	return unlikely(!rcu_dereference_sched(rq->sd));
10357 }
10358 
10359 #ifdef CONFIG_NO_HZ_COMMON
10360 /*
10361  * idle load balancing details
10362  * - When one of the busy CPUs notice that there may be an idle rebalancing
10363  *   needed, they will kick the idle load balancer, which then does idle
10364  *   load balancing for all the idle CPUs.
10365  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10366  *   anywhere yet.
10367  */
10368 
10369 static inline int find_new_ilb(void)
10370 {
10371 	int ilb;
10372 	const struct cpumask *hk_mask;
10373 
10374 	hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10375 
10376 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10377 
10378 		if (ilb == smp_processor_id())
10379 			continue;
10380 
10381 		if (idle_cpu(ilb))
10382 			return ilb;
10383 	}
10384 
10385 	return nr_cpu_ids;
10386 }
10387 
10388 /*
10389  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10390  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10391  */
10392 static void kick_ilb(unsigned int flags)
10393 {
10394 	int ilb_cpu;
10395 
10396 	/*
10397 	 * Increase nohz.next_balance only when if full ilb is triggered but
10398 	 * not if we only update stats.
10399 	 */
10400 	if (flags & NOHZ_BALANCE_KICK)
10401 		nohz.next_balance = jiffies+1;
10402 
10403 	ilb_cpu = find_new_ilb();
10404 
10405 	if (ilb_cpu >= nr_cpu_ids)
10406 		return;
10407 
10408 	/*
10409 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10410 	 * the first flag owns it; cleared by nohz_csd_func().
10411 	 */
10412 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10413 	if (flags & NOHZ_KICK_MASK)
10414 		return;
10415 
10416 	/*
10417 	 * This way we generate an IPI on the target CPU which
10418 	 * is idle. And the softirq performing nohz idle load balance
10419 	 * will be run before returning from the IPI.
10420 	 */
10421 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10422 }
10423 
10424 /*
10425  * Current decision point for kicking the idle load balancer in the presence
10426  * of idle CPUs in the system.
10427  */
10428 static void nohz_balancer_kick(struct rq *rq)
10429 {
10430 	unsigned long now = jiffies;
10431 	struct sched_domain_shared *sds;
10432 	struct sched_domain *sd;
10433 	int nr_busy, i, cpu = rq->cpu;
10434 	unsigned int flags = 0;
10435 
10436 	if (unlikely(rq->idle_balance))
10437 		return;
10438 
10439 	/*
10440 	 * We may be recently in ticked or tickless idle mode. At the first
10441 	 * busy tick after returning from idle, we will update the busy stats.
10442 	 */
10443 	nohz_balance_exit_idle(rq);
10444 
10445 	/*
10446 	 * None are in tickless mode and hence no need for NOHZ idle load
10447 	 * balancing.
10448 	 */
10449 	if (likely(!atomic_read(&nohz.nr_cpus)))
10450 		return;
10451 
10452 	if (READ_ONCE(nohz.has_blocked) &&
10453 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10454 		flags = NOHZ_STATS_KICK;
10455 
10456 	if (time_before(now, nohz.next_balance))
10457 		goto out;
10458 
10459 	if (rq->nr_running >= 2) {
10460 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10461 		goto out;
10462 	}
10463 
10464 	rcu_read_lock();
10465 
10466 	sd = rcu_dereference(rq->sd);
10467 	if (sd) {
10468 		/*
10469 		 * If there's a CFS task and the current CPU has reduced
10470 		 * capacity; kick the ILB to see if there's a better CPU to run
10471 		 * on.
10472 		 */
10473 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10474 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10475 			goto unlock;
10476 		}
10477 	}
10478 
10479 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10480 	if (sd) {
10481 		/*
10482 		 * When ASYM_PACKING; see if there's a more preferred CPU
10483 		 * currently idle; in which case, kick the ILB to move tasks
10484 		 * around.
10485 		 */
10486 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10487 			if (sched_asym_prefer(i, cpu)) {
10488 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10489 				goto unlock;
10490 			}
10491 		}
10492 	}
10493 
10494 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10495 	if (sd) {
10496 		/*
10497 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10498 		 * to run the misfit task on.
10499 		 */
10500 		if (check_misfit_status(rq, sd)) {
10501 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10502 			goto unlock;
10503 		}
10504 
10505 		/*
10506 		 * For asymmetric systems, we do not want to nicely balance
10507 		 * cache use, instead we want to embrace asymmetry and only
10508 		 * ensure tasks have enough CPU capacity.
10509 		 *
10510 		 * Skip the LLC logic because it's not relevant in that case.
10511 		 */
10512 		goto unlock;
10513 	}
10514 
10515 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10516 	if (sds) {
10517 		/*
10518 		 * If there is an imbalance between LLC domains (IOW we could
10519 		 * increase the overall cache use), we need some less-loaded LLC
10520 		 * domain to pull some load. Likewise, we may need to spread
10521 		 * load within the current LLC domain (e.g. packed SMT cores but
10522 		 * other CPUs are idle). We can't really know from here how busy
10523 		 * the others are - so just get a nohz balance going if it looks
10524 		 * like this LLC domain has tasks we could move.
10525 		 */
10526 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10527 		if (nr_busy > 1) {
10528 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10529 			goto unlock;
10530 		}
10531 	}
10532 unlock:
10533 	rcu_read_unlock();
10534 out:
10535 	if (READ_ONCE(nohz.needs_update))
10536 		flags |= NOHZ_NEXT_KICK;
10537 
10538 	if (flags)
10539 		kick_ilb(flags);
10540 }
10541 
10542 static void set_cpu_sd_state_busy(int cpu)
10543 {
10544 	struct sched_domain *sd;
10545 
10546 	rcu_read_lock();
10547 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10548 
10549 	if (!sd || !sd->nohz_idle)
10550 		goto unlock;
10551 	sd->nohz_idle = 0;
10552 
10553 	atomic_inc(&sd->shared->nr_busy_cpus);
10554 unlock:
10555 	rcu_read_unlock();
10556 }
10557 
10558 void nohz_balance_exit_idle(struct rq *rq)
10559 {
10560 	SCHED_WARN_ON(rq != this_rq());
10561 
10562 	if (likely(!rq->nohz_tick_stopped))
10563 		return;
10564 
10565 	rq->nohz_tick_stopped = 0;
10566 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10567 	atomic_dec(&nohz.nr_cpus);
10568 
10569 	set_cpu_sd_state_busy(rq->cpu);
10570 }
10571 
10572 static void set_cpu_sd_state_idle(int cpu)
10573 {
10574 	struct sched_domain *sd;
10575 
10576 	rcu_read_lock();
10577 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10578 
10579 	if (!sd || sd->nohz_idle)
10580 		goto unlock;
10581 	sd->nohz_idle = 1;
10582 
10583 	atomic_dec(&sd->shared->nr_busy_cpus);
10584 unlock:
10585 	rcu_read_unlock();
10586 }
10587 
10588 /*
10589  * This routine will record that the CPU is going idle with tick stopped.
10590  * This info will be used in performing idle load balancing in the future.
10591  */
10592 void nohz_balance_enter_idle(int cpu)
10593 {
10594 	struct rq *rq = cpu_rq(cpu);
10595 
10596 	SCHED_WARN_ON(cpu != smp_processor_id());
10597 
10598 	/* If this CPU is going down, then nothing needs to be done: */
10599 	if (!cpu_active(cpu))
10600 		return;
10601 
10602 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10603 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10604 		return;
10605 
10606 	/*
10607 	 * Can be set safely without rq->lock held
10608 	 * If a clear happens, it will have evaluated last additions because
10609 	 * rq->lock is held during the check and the clear
10610 	 */
10611 	rq->has_blocked_load = 1;
10612 
10613 	/*
10614 	 * The tick is still stopped but load could have been added in the
10615 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10616 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10617 	 * of nohz.has_blocked can only happen after checking the new load
10618 	 */
10619 	if (rq->nohz_tick_stopped)
10620 		goto out;
10621 
10622 	/* If we're a completely isolated CPU, we don't play: */
10623 	if (on_null_domain(rq))
10624 		return;
10625 
10626 	rq->nohz_tick_stopped = 1;
10627 
10628 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10629 	atomic_inc(&nohz.nr_cpus);
10630 
10631 	/*
10632 	 * Ensures that if nohz_idle_balance() fails to observe our
10633 	 * @idle_cpus_mask store, it must observe the @has_blocked
10634 	 * and @needs_update stores.
10635 	 */
10636 	smp_mb__after_atomic();
10637 
10638 	set_cpu_sd_state_idle(cpu);
10639 
10640 	WRITE_ONCE(nohz.needs_update, 1);
10641 out:
10642 	/*
10643 	 * Each time a cpu enter idle, we assume that it has blocked load and
10644 	 * enable the periodic update of the load of idle cpus
10645 	 */
10646 	WRITE_ONCE(nohz.has_blocked, 1);
10647 }
10648 
10649 static bool update_nohz_stats(struct rq *rq)
10650 {
10651 	unsigned int cpu = rq->cpu;
10652 
10653 	if (!rq->has_blocked_load)
10654 		return false;
10655 
10656 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10657 		return false;
10658 
10659 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10660 		return true;
10661 
10662 	update_blocked_averages(cpu);
10663 
10664 	return rq->has_blocked_load;
10665 }
10666 
10667 /*
10668  * Internal function that runs load balance for all idle cpus. The load balance
10669  * can be a simple update of blocked load or a complete load balance with
10670  * tasks movement depending of flags.
10671  */
10672 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10673 			       enum cpu_idle_type idle)
10674 {
10675 	/* Earliest time when we have to do rebalance again */
10676 	unsigned long now = jiffies;
10677 	unsigned long next_balance = now + 60*HZ;
10678 	bool has_blocked_load = false;
10679 	int update_next_balance = 0;
10680 	int this_cpu = this_rq->cpu;
10681 	int balance_cpu;
10682 	struct rq *rq;
10683 
10684 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10685 
10686 	/*
10687 	 * We assume there will be no idle load after this update and clear
10688 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10689 	 * set the has_blocked flag and trigger another update of idle load.
10690 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10691 	 * setting the flag, we are sure to not clear the state and not
10692 	 * check the load of an idle cpu.
10693 	 *
10694 	 * Same applies to idle_cpus_mask vs needs_update.
10695 	 */
10696 	if (flags & NOHZ_STATS_KICK)
10697 		WRITE_ONCE(nohz.has_blocked, 0);
10698 	if (flags & NOHZ_NEXT_KICK)
10699 		WRITE_ONCE(nohz.needs_update, 0);
10700 
10701 	/*
10702 	 * Ensures that if we miss the CPU, we must see the has_blocked
10703 	 * store from nohz_balance_enter_idle().
10704 	 */
10705 	smp_mb();
10706 
10707 	/*
10708 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10709 	 * chance for other idle cpu to pull load.
10710 	 */
10711 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10712 		if (!idle_cpu(balance_cpu))
10713 			continue;
10714 
10715 		/*
10716 		 * If this CPU gets work to do, stop the load balancing
10717 		 * work being done for other CPUs. Next load
10718 		 * balancing owner will pick it up.
10719 		 */
10720 		if (need_resched()) {
10721 			if (flags & NOHZ_STATS_KICK)
10722 				has_blocked_load = true;
10723 			if (flags & NOHZ_NEXT_KICK)
10724 				WRITE_ONCE(nohz.needs_update, 1);
10725 			goto abort;
10726 		}
10727 
10728 		rq = cpu_rq(balance_cpu);
10729 
10730 		if (flags & NOHZ_STATS_KICK)
10731 			has_blocked_load |= update_nohz_stats(rq);
10732 
10733 		/*
10734 		 * If time for next balance is due,
10735 		 * do the balance.
10736 		 */
10737 		if (time_after_eq(jiffies, rq->next_balance)) {
10738 			struct rq_flags rf;
10739 
10740 			rq_lock_irqsave(rq, &rf);
10741 			update_rq_clock(rq);
10742 			rq_unlock_irqrestore(rq, &rf);
10743 
10744 			if (flags & NOHZ_BALANCE_KICK)
10745 				rebalance_domains(rq, CPU_IDLE);
10746 		}
10747 
10748 		if (time_after(next_balance, rq->next_balance)) {
10749 			next_balance = rq->next_balance;
10750 			update_next_balance = 1;
10751 		}
10752 	}
10753 
10754 	/*
10755 	 * next_balance will be updated only when there is a need.
10756 	 * When the CPU is attached to null domain for ex, it will not be
10757 	 * updated.
10758 	 */
10759 	if (likely(update_next_balance))
10760 		nohz.next_balance = next_balance;
10761 
10762 	if (flags & NOHZ_STATS_KICK)
10763 		WRITE_ONCE(nohz.next_blocked,
10764 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10765 
10766 abort:
10767 	/* There is still blocked load, enable periodic update */
10768 	if (has_blocked_load)
10769 		WRITE_ONCE(nohz.has_blocked, 1);
10770 }
10771 
10772 /*
10773  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10774  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10775  */
10776 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10777 {
10778 	unsigned int flags = this_rq->nohz_idle_balance;
10779 
10780 	if (!flags)
10781 		return false;
10782 
10783 	this_rq->nohz_idle_balance = 0;
10784 
10785 	if (idle != CPU_IDLE)
10786 		return false;
10787 
10788 	_nohz_idle_balance(this_rq, flags, idle);
10789 
10790 	return true;
10791 }
10792 
10793 /*
10794  * Check if we need to run the ILB for updating blocked load before entering
10795  * idle state.
10796  */
10797 void nohz_run_idle_balance(int cpu)
10798 {
10799 	unsigned int flags;
10800 
10801 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10802 
10803 	/*
10804 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10805 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10806 	 */
10807 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10808 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10809 }
10810 
10811 static void nohz_newidle_balance(struct rq *this_rq)
10812 {
10813 	int this_cpu = this_rq->cpu;
10814 
10815 	/*
10816 	 * This CPU doesn't want to be disturbed by scheduler
10817 	 * housekeeping
10818 	 */
10819 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10820 		return;
10821 
10822 	/* Will wake up very soon. No time for doing anything else*/
10823 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10824 		return;
10825 
10826 	/* Don't need to update blocked load of idle CPUs*/
10827 	if (!READ_ONCE(nohz.has_blocked) ||
10828 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10829 		return;
10830 
10831 	/*
10832 	 * Set the need to trigger ILB in order to update blocked load
10833 	 * before entering idle state.
10834 	 */
10835 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10836 }
10837 
10838 #else /* !CONFIG_NO_HZ_COMMON */
10839 static inline void nohz_balancer_kick(struct rq *rq) { }
10840 
10841 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10842 {
10843 	return false;
10844 }
10845 
10846 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10847 #endif /* CONFIG_NO_HZ_COMMON */
10848 
10849 /*
10850  * newidle_balance is called by schedule() if this_cpu is about to become
10851  * idle. Attempts to pull tasks from other CPUs.
10852  *
10853  * Returns:
10854  *   < 0 - we released the lock and there are !fair tasks present
10855  *     0 - failed, no new tasks
10856  *   > 0 - success, new (fair) tasks present
10857  */
10858 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10859 {
10860 	unsigned long next_balance = jiffies + HZ;
10861 	int this_cpu = this_rq->cpu;
10862 	u64 t0, t1, curr_cost = 0;
10863 	struct sched_domain *sd;
10864 	int pulled_task = 0;
10865 
10866 	update_misfit_status(NULL, this_rq);
10867 
10868 	/*
10869 	 * There is a task waiting to run. No need to search for one.
10870 	 * Return 0; the task will be enqueued when switching to idle.
10871 	 */
10872 	if (this_rq->ttwu_pending)
10873 		return 0;
10874 
10875 	/*
10876 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10877 	 * measure the duration of idle_balance() as idle time.
10878 	 */
10879 	this_rq->idle_stamp = rq_clock(this_rq);
10880 
10881 	/*
10882 	 * Do not pull tasks towards !active CPUs...
10883 	 */
10884 	if (!cpu_active(this_cpu))
10885 		return 0;
10886 
10887 	/*
10888 	 * This is OK, because current is on_cpu, which avoids it being picked
10889 	 * for load-balance and preemption/IRQs are still disabled avoiding
10890 	 * further scheduler activity on it and we're being very careful to
10891 	 * re-start the picking loop.
10892 	 */
10893 	rq_unpin_lock(this_rq, rf);
10894 
10895 	rcu_read_lock();
10896 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
10897 
10898 	if (!READ_ONCE(this_rq->rd->overload) ||
10899 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
10900 
10901 		if (sd)
10902 			update_next_balance(sd, &next_balance);
10903 		rcu_read_unlock();
10904 
10905 		goto out;
10906 	}
10907 	rcu_read_unlock();
10908 
10909 	raw_spin_rq_unlock(this_rq);
10910 
10911 	t0 = sched_clock_cpu(this_cpu);
10912 	update_blocked_averages(this_cpu);
10913 
10914 	rcu_read_lock();
10915 	for_each_domain(this_cpu, sd) {
10916 		int continue_balancing = 1;
10917 		u64 domain_cost;
10918 
10919 		update_next_balance(sd, &next_balance);
10920 
10921 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
10922 			break;
10923 
10924 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10925 
10926 			pulled_task = load_balance(this_cpu, this_rq,
10927 						   sd, CPU_NEWLY_IDLE,
10928 						   &continue_balancing);
10929 
10930 			t1 = sched_clock_cpu(this_cpu);
10931 			domain_cost = t1 - t0;
10932 			update_newidle_cost(sd, domain_cost);
10933 
10934 			curr_cost += domain_cost;
10935 			t0 = t1;
10936 		}
10937 
10938 		/*
10939 		 * Stop searching for tasks to pull if there are
10940 		 * now runnable tasks on this rq.
10941 		 */
10942 		if (pulled_task || this_rq->nr_running > 0 ||
10943 		    this_rq->ttwu_pending)
10944 			break;
10945 	}
10946 	rcu_read_unlock();
10947 
10948 	raw_spin_rq_lock(this_rq);
10949 
10950 	if (curr_cost > this_rq->max_idle_balance_cost)
10951 		this_rq->max_idle_balance_cost = curr_cost;
10952 
10953 	/*
10954 	 * While browsing the domains, we released the rq lock, a task could
10955 	 * have been enqueued in the meantime. Since we're not going idle,
10956 	 * pretend we pulled a task.
10957 	 */
10958 	if (this_rq->cfs.h_nr_running && !pulled_task)
10959 		pulled_task = 1;
10960 
10961 	/* Is there a task of a high priority class? */
10962 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10963 		pulled_task = -1;
10964 
10965 out:
10966 	/* Move the next balance forward */
10967 	if (time_after(this_rq->next_balance, next_balance))
10968 		this_rq->next_balance = next_balance;
10969 
10970 	if (pulled_task)
10971 		this_rq->idle_stamp = 0;
10972 	else
10973 		nohz_newidle_balance(this_rq);
10974 
10975 	rq_repin_lock(this_rq, rf);
10976 
10977 	return pulled_task;
10978 }
10979 
10980 /*
10981  * run_rebalance_domains is triggered when needed from the scheduler tick.
10982  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10983  */
10984 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10985 {
10986 	struct rq *this_rq = this_rq();
10987 	enum cpu_idle_type idle = this_rq->idle_balance ?
10988 						CPU_IDLE : CPU_NOT_IDLE;
10989 
10990 	/*
10991 	 * If this CPU has a pending nohz_balance_kick, then do the
10992 	 * balancing on behalf of the other idle CPUs whose ticks are
10993 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10994 	 * give the idle CPUs a chance to load balance. Else we may
10995 	 * load balance only within the local sched_domain hierarchy
10996 	 * and abort nohz_idle_balance altogether if we pull some load.
10997 	 */
10998 	if (nohz_idle_balance(this_rq, idle))
10999 		return;
11000 
11001 	/* normal load balance */
11002 	update_blocked_averages(this_rq->cpu);
11003 	rebalance_domains(this_rq, idle);
11004 }
11005 
11006 /*
11007  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11008  */
11009 void trigger_load_balance(struct rq *rq)
11010 {
11011 	/*
11012 	 * Don't need to rebalance while attached to NULL domain or
11013 	 * runqueue CPU is not active
11014 	 */
11015 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11016 		return;
11017 
11018 	if (time_after_eq(jiffies, rq->next_balance))
11019 		raise_softirq(SCHED_SOFTIRQ);
11020 
11021 	nohz_balancer_kick(rq);
11022 }
11023 
11024 static void rq_online_fair(struct rq *rq)
11025 {
11026 	update_sysctl();
11027 
11028 	update_runtime_enabled(rq);
11029 }
11030 
11031 static void rq_offline_fair(struct rq *rq)
11032 {
11033 	update_sysctl();
11034 
11035 	/* Ensure any throttled groups are reachable by pick_next_task */
11036 	unthrottle_offline_cfs_rqs(rq);
11037 }
11038 
11039 #endif /* CONFIG_SMP */
11040 
11041 #ifdef CONFIG_SCHED_CORE
11042 static inline bool
11043 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11044 {
11045 	u64 slice = sched_slice(cfs_rq_of(se), se);
11046 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11047 
11048 	return (rtime * min_nr_tasks > slice);
11049 }
11050 
11051 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11052 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11053 {
11054 	if (!sched_core_enabled(rq))
11055 		return;
11056 
11057 	/*
11058 	 * If runqueue has only one task which used up its slice and
11059 	 * if the sibling is forced idle, then trigger schedule to
11060 	 * give forced idle task a chance.
11061 	 *
11062 	 * sched_slice() considers only this active rq and it gets the
11063 	 * whole slice. But during force idle, we have siblings acting
11064 	 * like a single runqueue and hence we need to consider runnable
11065 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11066 	 * go through the forced idle rq, but that would be a perf hit.
11067 	 * We can assume that the forced idle CPU has at least
11068 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11069 	 * if we need to give up the CPU.
11070 	 */
11071 	if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
11072 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11073 		resched_curr(rq);
11074 }
11075 
11076 /*
11077  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11078  */
11079 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11080 {
11081 	for_each_sched_entity(se) {
11082 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11083 
11084 		if (forceidle) {
11085 			if (cfs_rq->forceidle_seq == fi_seq)
11086 				break;
11087 			cfs_rq->forceidle_seq = fi_seq;
11088 		}
11089 
11090 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11091 	}
11092 }
11093 
11094 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11095 {
11096 	struct sched_entity *se = &p->se;
11097 
11098 	if (p->sched_class != &fair_sched_class)
11099 		return;
11100 
11101 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11102 }
11103 
11104 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11105 {
11106 	struct rq *rq = task_rq(a);
11107 	struct sched_entity *sea = &a->se;
11108 	struct sched_entity *seb = &b->se;
11109 	struct cfs_rq *cfs_rqa;
11110 	struct cfs_rq *cfs_rqb;
11111 	s64 delta;
11112 
11113 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11114 
11115 #ifdef CONFIG_FAIR_GROUP_SCHED
11116 	/*
11117 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11118 	 * are immediate siblings.
11119 	 */
11120 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11121 		int sea_depth = sea->depth;
11122 		int seb_depth = seb->depth;
11123 
11124 		if (sea_depth >= seb_depth)
11125 			sea = parent_entity(sea);
11126 		if (sea_depth <= seb_depth)
11127 			seb = parent_entity(seb);
11128 	}
11129 
11130 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11131 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11132 
11133 	cfs_rqa = sea->cfs_rq;
11134 	cfs_rqb = seb->cfs_rq;
11135 #else
11136 	cfs_rqa = &task_rq(a)->cfs;
11137 	cfs_rqb = &task_rq(b)->cfs;
11138 #endif
11139 
11140 	/*
11141 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11142 	 * min_vruntime_fi, which would have been updated in prior calls
11143 	 * to se_fi_update().
11144 	 */
11145 	delta = (s64)(sea->vruntime - seb->vruntime) +
11146 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11147 
11148 	return delta > 0;
11149 }
11150 #else
11151 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11152 #endif
11153 
11154 /*
11155  * scheduler tick hitting a task of our scheduling class.
11156  *
11157  * NOTE: This function can be called remotely by the tick offload that
11158  * goes along full dynticks. Therefore no local assumption can be made
11159  * and everything must be accessed through the @rq and @curr passed in
11160  * parameters.
11161  */
11162 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11163 {
11164 	struct cfs_rq *cfs_rq;
11165 	struct sched_entity *se = &curr->se;
11166 
11167 	for_each_sched_entity(se) {
11168 		cfs_rq = cfs_rq_of(se);
11169 		entity_tick(cfs_rq, se, queued);
11170 	}
11171 
11172 	if (static_branch_unlikely(&sched_numa_balancing))
11173 		task_tick_numa(rq, curr);
11174 
11175 	update_misfit_status(curr, rq);
11176 	update_overutilized_status(task_rq(curr));
11177 
11178 	task_tick_core(rq, curr);
11179 }
11180 
11181 /*
11182  * called on fork with the child task as argument from the parent's context
11183  *  - child not yet on the tasklist
11184  *  - preemption disabled
11185  */
11186 static void task_fork_fair(struct task_struct *p)
11187 {
11188 	struct cfs_rq *cfs_rq;
11189 	struct sched_entity *se = &p->se, *curr;
11190 	struct rq *rq = this_rq();
11191 	struct rq_flags rf;
11192 
11193 	rq_lock(rq, &rf);
11194 	update_rq_clock(rq);
11195 
11196 	cfs_rq = task_cfs_rq(current);
11197 	curr = cfs_rq->curr;
11198 	if (curr) {
11199 		update_curr(cfs_rq);
11200 		se->vruntime = curr->vruntime;
11201 	}
11202 	place_entity(cfs_rq, se, 1);
11203 
11204 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11205 		/*
11206 		 * Upon rescheduling, sched_class::put_prev_task() will place
11207 		 * 'current' within the tree based on its new key value.
11208 		 */
11209 		swap(curr->vruntime, se->vruntime);
11210 		resched_curr(rq);
11211 	}
11212 
11213 	se->vruntime -= cfs_rq->min_vruntime;
11214 	rq_unlock(rq, &rf);
11215 }
11216 
11217 /*
11218  * Priority of the task has changed. Check to see if we preempt
11219  * the current task.
11220  */
11221 static void
11222 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11223 {
11224 	if (!task_on_rq_queued(p))
11225 		return;
11226 
11227 	if (rq->cfs.nr_running == 1)
11228 		return;
11229 
11230 	/*
11231 	 * Reschedule if we are currently running on this runqueue and
11232 	 * our priority decreased, or if we are not currently running on
11233 	 * this runqueue and our priority is higher than the current's
11234 	 */
11235 	if (task_current(rq, p)) {
11236 		if (p->prio > oldprio)
11237 			resched_curr(rq);
11238 	} else
11239 		check_preempt_curr(rq, p, 0);
11240 }
11241 
11242 static inline bool vruntime_normalized(struct task_struct *p)
11243 {
11244 	struct sched_entity *se = &p->se;
11245 
11246 	/*
11247 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11248 	 * the dequeue_entity(.flags=0) will already have normalized the
11249 	 * vruntime.
11250 	 */
11251 	if (p->on_rq)
11252 		return true;
11253 
11254 	/*
11255 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11256 	 * But there are some cases where it has already been normalized:
11257 	 *
11258 	 * - A forked child which is waiting for being woken up by
11259 	 *   wake_up_new_task().
11260 	 * - A task which has been woken up by try_to_wake_up() and
11261 	 *   waiting for actually being woken up by sched_ttwu_pending().
11262 	 */
11263 	if (!se->sum_exec_runtime ||
11264 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11265 		return true;
11266 
11267 	return false;
11268 }
11269 
11270 #ifdef CONFIG_FAIR_GROUP_SCHED
11271 /*
11272  * Propagate the changes of the sched_entity across the tg tree to make it
11273  * visible to the root
11274  */
11275 static void propagate_entity_cfs_rq(struct sched_entity *se)
11276 {
11277 	struct cfs_rq *cfs_rq;
11278 
11279 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11280 
11281 	/* Start to propagate at parent */
11282 	se = se->parent;
11283 
11284 	for_each_sched_entity(se) {
11285 		cfs_rq = cfs_rq_of(se);
11286 
11287 		if (!cfs_rq_throttled(cfs_rq)){
11288 			update_load_avg(cfs_rq, se, UPDATE_TG);
11289 			list_add_leaf_cfs_rq(cfs_rq);
11290 			continue;
11291 		}
11292 
11293 		if (list_add_leaf_cfs_rq(cfs_rq))
11294 			break;
11295 	}
11296 }
11297 #else
11298 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11299 #endif
11300 
11301 static void detach_entity_cfs_rq(struct sched_entity *se)
11302 {
11303 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11304 
11305 	/* Catch up with the cfs_rq and remove our load when we leave */
11306 	update_load_avg(cfs_rq, se, 0);
11307 	detach_entity_load_avg(cfs_rq, se);
11308 	update_tg_load_avg(cfs_rq);
11309 	propagate_entity_cfs_rq(se);
11310 }
11311 
11312 static void attach_entity_cfs_rq(struct sched_entity *se)
11313 {
11314 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11315 
11316 #ifdef CONFIG_FAIR_GROUP_SCHED
11317 	/*
11318 	 * Since the real-depth could have been changed (only FAIR
11319 	 * class maintain depth value), reset depth properly.
11320 	 */
11321 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11322 #endif
11323 
11324 	/* Synchronize entity with its cfs_rq */
11325 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11326 	attach_entity_load_avg(cfs_rq, se);
11327 	update_tg_load_avg(cfs_rq);
11328 	propagate_entity_cfs_rq(se);
11329 }
11330 
11331 static void detach_task_cfs_rq(struct task_struct *p)
11332 {
11333 	struct sched_entity *se = &p->se;
11334 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11335 
11336 	if (!vruntime_normalized(p)) {
11337 		/*
11338 		 * Fix up our vruntime so that the current sleep doesn't
11339 		 * cause 'unlimited' sleep bonus.
11340 		 */
11341 		place_entity(cfs_rq, se, 0);
11342 		se->vruntime -= cfs_rq->min_vruntime;
11343 	}
11344 
11345 	detach_entity_cfs_rq(se);
11346 }
11347 
11348 static void attach_task_cfs_rq(struct task_struct *p)
11349 {
11350 	struct sched_entity *se = &p->se;
11351 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11352 
11353 	attach_entity_cfs_rq(se);
11354 
11355 	if (!vruntime_normalized(p))
11356 		se->vruntime += cfs_rq->min_vruntime;
11357 }
11358 
11359 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11360 {
11361 	detach_task_cfs_rq(p);
11362 }
11363 
11364 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11365 {
11366 	attach_task_cfs_rq(p);
11367 
11368 	if (task_on_rq_queued(p)) {
11369 		/*
11370 		 * We were most likely switched from sched_rt, so
11371 		 * kick off the schedule if running, otherwise just see
11372 		 * if we can still preempt the current task.
11373 		 */
11374 		if (task_current(rq, p))
11375 			resched_curr(rq);
11376 		else
11377 			check_preempt_curr(rq, p, 0);
11378 	}
11379 }
11380 
11381 /* Account for a task changing its policy or group.
11382  *
11383  * This routine is mostly called to set cfs_rq->curr field when a task
11384  * migrates between groups/classes.
11385  */
11386 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11387 {
11388 	struct sched_entity *se = &p->se;
11389 
11390 #ifdef CONFIG_SMP
11391 	if (task_on_rq_queued(p)) {
11392 		/*
11393 		 * Move the next running task to the front of the list, so our
11394 		 * cfs_tasks list becomes MRU one.
11395 		 */
11396 		list_move(&se->group_node, &rq->cfs_tasks);
11397 	}
11398 #endif
11399 
11400 	for_each_sched_entity(se) {
11401 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11402 
11403 		set_next_entity(cfs_rq, se);
11404 		/* ensure bandwidth has been allocated on our new cfs_rq */
11405 		account_cfs_rq_runtime(cfs_rq, 0);
11406 	}
11407 }
11408 
11409 void init_cfs_rq(struct cfs_rq *cfs_rq)
11410 {
11411 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11412 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11413 #ifndef CONFIG_64BIT
11414 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11415 #endif
11416 #ifdef CONFIG_SMP
11417 	raw_spin_lock_init(&cfs_rq->removed.lock);
11418 #endif
11419 }
11420 
11421 #ifdef CONFIG_FAIR_GROUP_SCHED
11422 static void task_set_group_fair(struct task_struct *p)
11423 {
11424 	struct sched_entity *se = &p->se;
11425 
11426 	set_task_rq(p, task_cpu(p));
11427 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11428 }
11429 
11430 static void task_move_group_fair(struct task_struct *p)
11431 {
11432 	detach_task_cfs_rq(p);
11433 	set_task_rq(p, task_cpu(p));
11434 
11435 #ifdef CONFIG_SMP
11436 	/* Tell se's cfs_rq has been changed -- migrated */
11437 	p->se.avg.last_update_time = 0;
11438 #endif
11439 	attach_task_cfs_rq(p);
11440 }
11441 
11442 static void task_change_group_fair(struct task_struct *p, int type)
11443 {
11444 	switch (type) {
11445 	case TASK_SET_GROUP:
11446 		task_set_group_fair(p);
11447 		break;
11448 
11449 	case TASK_MOVE_GROUP:
11450 		task_move_group_fair(p);
11451 		break;
11452 	}
11453 }
11454 
11455 void free_fair_sched_group(struct task_group *tg)
11456 {
11457 	int i;
11458 
11459 	for_each_possible_cpu(i) {
11460 		if (tg->cfs_rq)
11461 			kfree(tg->cfs_rq[i]);
11462 		if (tg->se)
11463 			kfree(tg->se[i]);
11464 	}
11465 
11466 	kfree(tg->cfs_rq);
11467 	kfree(tg->se);
11468 }
11469 
11470 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11471 {
11472 	struct sched_entity *se;
11473 	struct cfs_rq *cfs_rq;
11474 	int i;
11475 
11476 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11477 	if (!tg->cfs_rq)
11478 		goto err;
11479 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11480 	if (!tg->se)
11481 		goto err;
11482 
11483 	tg->shares = NICE_0_LOAD;
11484 
11485 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11486 
11487 	for_each_possible_cpu(i) {
11488 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11489 				      GFP_KERNEL, cpu_to_node(i));
11490 		if (!cfs_rq)
11491 			goto err;
11492 
11493 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11494 				  GFP_KERNEL, cpu_to_node(i));
11495 		if (!se)
11496 			goto err_free_rq;
11497 
11498 		init_cfs_rq(cfs_rq);
11499 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11500 		init_entity_runnable_average(se);
11501 	}
11502 
11503 	return 1;
11504 
11505 err_free_rq:
11506 	kfree(cfs_rq);
11507 err:
11508 	return 0;
11509 }
11510 
11511 void online_fair_sched_group(struct task_group *tg)
11512 {
11513 	struct sched_entity *se;
11514 	struct rq_flags rf;
11515 	struct rq *rq;
11516 	int i;
11517 
11518 	for_each_possible_cpu(i) {
11519 		rq = cpu_rq(i);
11520 		se = tg->se[i];
11521 		rq_lock_irq(rq, &rf);
11522 		update_rq_clock(rq);
11523 		attach_entity_cfs_rq(se);
11524 		sync_throttle(tg, i);
11525 		rq_unlock_irq(rq, &rf);
11526 	}
11527 }
11528 
11529 void unregister_fair_sched_group(struct task_group *tg)
11530 {
11531 	unsigned long flags;
11532 	struct rq *rq;
11533 	int cpu;
11534 
11535 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11536 
11537 	for_each_possible_cpu(cpu) {
11538 		if (tg->se[cpu])
11539 			remove_entity_load_avg(tg->se[cpu]);
11540 
11541 		/*
11542 		 * Only empty task groups can be destroyed; so we can speculatively
11543 		 * check on_list without danger of it being re-added.
11544 		 */
11545 		if (!tg->cfs_rq[cpu]->on_list)
11546 			continue;
11547 
11548 		rq = cpu_rq(cpu);
11549 
11550 		raw_spin_rq_lock_irqsave(rq, flags);
11551 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11552 		raw_spin_rq_unlock_irqrestore(rq, flags);
11553 	}
11554 }
11555 
11556 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11557 			struct sched_entity *se, int cpu,
11558 			struct sched_entity *parent)
11559 {
11560 	struct rq *rq = cpu_rq(cpu);
11561 
11562 	cfs_rq->tg = tg;
11563 	cfs_rq->rq = rq;
11564 	init_cfs_rq_runtime(cfs_rq);
11565 
11566 	tg->cfs_rq[cpu] = cfs_rq;
11567 	tg->se[cpu] = se;
11568 
11569 	/* se could be NULL for root_task_group */
11570 	if (!se)
11571 		return;
11572 
11573 	if (!parent) {
11574 		se->cfs_rq = &rq->cfs;
11575 		se->depth = 0;
11576 	} else {
11577 		se->cfs_rq = parent->my_q;
11578 		se->depth = parent->depth + 1;
11579 	}
11580 
11581 	se->my_q = cfs_rq;
11582 	/* guarantee group entities always have weight */
11583 	update_load_set(&se->load, NICE_0_LOAD);
11584 	se->parent = parent;
11585 }
11586 
11587 static DEFINE_MUTEX(shares_mutex);
11588 
11589 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11590 {
11591 	int i;
11592 
11593 	lockdep_assert_held(&shares_mutex);
11594 
11595 	/*
11596 	 * We can't change the weight of the root cgroup.
11597 	 */
11598 	if (!tg->se[0])
11599 		return -EINVAL;
11600 
11601 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11602 
11603 	if (tg->shares == shares)
11604 		return 0;
11605 
11606 	tg->shares = shares;
11607 	for_each_possible_cpu(i) {
11608 		struct rq *rq = cpu_rq(i);
11609 		struct sched_entity *se = tg->se[i];
11610 		struct rq_flags rf;
11611 
11612 		/* Propagate contribution to hierarchy */
11613 		rq_lock_irqsave(rq, &rf);
11614 		update_rq_clock(rq);
11615 		for_each_sched_entity(se) {
11616 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11617 			update_cfs_group(se);
11618 		}
11619 		rq_unlock_irqrestore(rq, &rf);
11620 	}
11621 
11622 	return 0;
11623 }
11624 
11625 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11626 {
11627 	int ret;
11628 
11629 	mutex_lock(&shares_mutex);
11630 	if (tg_is_idle(tg))
11631 		ret = -EINVAL;
11632 	else
11633 		ret = __sched_group_set_shares(tg, shares);
11634 	mutex_unlock(&shares_mutex);
11635 
11636 	return ret;
11637 }
11638 
11639 int sched_group_set_idle(struct task_group *tg, long idle)
11640 {
11641 	int i;
11642 
11643 	if (tg == &root_task_group)
11644 		return -EINVAL;
11645 
11646 	if (idle < 0 || idle > 1)
11647 		return -EINVAL;
11648 
11649 	mutex_lock(&shares_mutex);
11650 
11651 	if (tg->idle == idle) {
11652 		mutex_unlock(&shares_mutex);
11653 		return 0;
11654 	}
11655 
11656 	tg->idle = idle;
11657 
11658 	for_each_possible_cpu(i) {
11659 		struct rq *rq = cpu_rq(i);
11660 		struct sched_entity *se = tg->se[i];
11661 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11662 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11663 		long idle_task_delta;
11664 		struct rq_flags rf;
11665 
11666 		rq_lock_irqsave(rq, &rf);
11667 
11668 		grp_cfs_rq->idle = idle;
11669 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11670 			goto next_cpu;
11671 
11672 		if (se->on_rq) {
11673 			parent_cfs_rq = cfs_rq_of(se);
11674 			if (cfs_rq_is_idle(grp_cfs_rq))
11675 				parent_cfs_rq->idle_nr_running++;
11676 			else
11677 				parent_cfs_rq->idle_nr_running--;
11678 		}
11679 
11680 		idle_task_delta = grp_cfs_rq->h_nr_running -
11681 				  grp_cfs_rq->idle_h_nr_running;
11682 		if (!cfs_rq_is_idle(grp_cfs_rq))
11683 			idle_task_delta *= -1;
11684 
11685 		for_each_sched_entity(se) {
11686 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11687 
11688 			if (!se->on_rq)
11689 				break;
11690 
11691 			cfs_rq->idle_h_nr_running += idle_task_delta;
11692 
11693 			/* Already accounted at parent level and above. */
11694 			if (cfs_rq_is_idle(cfs_rq))
11695 				break;
11696 		}
11697 
11698 next_cpu:
11699 		rq_unlock_irqrestore(rq, &rf);
11700 	}
11701 
11702 	/* Idle groups have minimum weight. */
11703 	if (tg_is_idle(tg))
11704 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11705 	else
11706 		__sched_group_set_shares(tg, NICE_0_LOAD);
11707 
11708 	mutex_unlock(&shares_mutex);
11709 	return 0;
11710 }
11711 
11712 #else /* CONFIG_FAIR_GROUP_SCHED */
11713 
11714 void free_fair_sched_group(struct task_group *tg) { }
11715 
11716 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11717 {
11718 	return 1;
11719 }
11720 
11721 void online_fair_sched_group(struct task_group *tg) { }
11722 
11723 void unregister_fair_sched_group(struct task_group *tg) { }
11724 
11725 #endif /* CONFIG_FAIR_GROUP_SCHED */
11726 
11727 
11728 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11729 {
11730 	struct sched_entity *se = &task->se;
11731 	unsigned int rr_interval = 0;
11732 
11733 	/*
11734 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11735 	 * idle runqueue:
11736 	 */
11737 	if (rq->cfs.load.weight)
11738 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11739 
11740 	return rr_interval;
11741 }
11742 
11743 /*
11744  * All the scheduling class methods:
11745  */
11746 DEFINE_SCHED_CLASS(fair) = {
11747 
11748 	.enqueue_task		= enqueue_task_fair,
11749 	.dequeue_task		= dequeue_task_fair,
11750 	.yield_task		= yield_task_fair,
11751 	.yield_to_task		= yield_to_task_fair,
11752 
11753 	.check_preempt_curr	= check_preempt_wakeup,
11754 
11755 	.pick_next_task		= __pick_next_task_fair,
11756 	.put_prev_task		= put_prev_task_fair,
11757 	.set_next_task          = set_next_task_fair,
11758 
11759 #ifdef CONFIG_SMP
11760 	.balance		= balance_fair,
11761 	.pick_task		= pick_task_fair,
11762 	.select_task_rq		= select_task_rq_fair,
11763 	.migrate_task_rq	= migrate_task_rq_fair,
11764 
11765 	.rq_online		= rq_online_fair,
11766 	.rq_offline		= rq_offline_fair,
11767 
11768 	.task_dead		= task_dead_fair,
11769 	.set_cpus_allowed	= set_cpus_allowed_common,
11770 #endif
11771 
11772 	.task_tick		= task_tick_fair,
11773 	.task_fork		= task_fork_fair,
11774 
11775 	.prio_changed		= prio_changed_fair,
11776 	.switched_from		= switched_from_fair,
11777 	.switched_to		= switched_to_fair,
11778 
11779 	.get_rr_interval	= get_rr_interval_fair,
11780 
11781 	.update_curr		= update_curr_fair,
11782 
11783 #ifdef CONFIG_FAIR_GROUP_SCHED
11784 	.task_change_group	= task_change_group_fair,
11785 #endif
11786 
11787 #ifdef CONFIG_UCLAMP_TASK
11788 	.uclamp_enabled		= 1,
11789 #endif
11790 };
11791 
11792 #ifdef CONFIG_SCHED_DEBUG
11793 void print_cfs_stats(struct seq_file *m, int cpu)
11794 {
11795 	struct cfs_rq *cfs_rq, *pos;
11796 
11797 	rcu_read_lock();
11798 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11799 		print_cfs_rq(m, cpu, cfs_rq);
11800 	rcu_read_unlock();
11801 }
11802 
11803 #ifdef CONFIG_NUMA_BALANCING
11804 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11805 {
11806 	int node;
11807 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11808 	struct numa_group *ng;
11809 
11810 	rcu_read_lock();
11811 	ng = rcu_dereference(p->numa_group);
11812 	for_each_online_node(node) {
11813 		if (p->numa_faults) {
11814 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11815 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11816 		}
11817 		if (ng) {
11818 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11819 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11820 		}
11821 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11822 	}
11823 	rcu_read_unlock();
11824 }
11825 #endif /* CONFIG_NUMA_BALANCING */
11826 #endif /* CONFIG_SCHED_DEBUG */
11827 
11828 __init void init_sched_fair_class(void)
11829 {
11830 #ifdef CONFIG_SMP
11831 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11832 
11833 #ifdef CONFIG_NO_HZ_COMMON
11834 	nohz.next_balance = jiffies;
11835 	nohz.next_blocked = jiffies;
11836 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11837 #endif
11838 #endif /* SMP */
11839 
11840 }
11841 
11842 /*
11843  * Helper functions to facilitate extracting info from tracepoints.
11844  */
11845 
11846 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11847 {
11848 #ifdef CONFIG_SMP
11849 	return cfs_rq ? &cfs_rq->avg : NULL;
11850 #else
11851 	return NULL;
11852 #endif
11853 }
11854 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11855 
11856 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11857 {
11858 	if (!cfs_rq) {
11859 		if (str)
11860 			strlcpy(str, "(null)", len);
11861 		else
11862 			return NULL;
11863 	}
11864 
11865 	cfs_rq_tg_path(cfs_rq, str, len);
11866 	return str;
11867 }
11868 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11869 
11870 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11871 {
11872 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11873 }
11874 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11875 
11876 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11877 {
11878 #ifdef CONFIG_SMP
11879 	return rq ? &rq->avg_rt : NULL;
11880 #else
11881 	return NULL;
11882 #endif
11883 }
11884 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11885 
11886 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11887 {
11888 #ifdef CONFIG_SMP
11889 	return rq ? &rq->avg_dl : NULL;
11890 #else
11891 	return NULL;
11892 #endif
11893 }
11894 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11895 
11896 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11897 {
11898 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11899 	return rq ? &rq->avg_irq : NULL;
11900 #else
11901 	return NULL;
11902 #endif
11903 }
11904 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11905 
11906 int sched_trace_rq_cpu(struct rq *rq)
11907 {
11908 	return rq ? cpu_of(rq) : -1;
11909 }
11910 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11911 
11912 int sched_trace_rq_cpu_capacity(struct rq *rq)
11913 {
11914 	return rq ?
11915 #ifdef CONFIG_SMP
11916 		rq->cpu_capacity
11917 #else
11918 		SCHED_CAPACITY_SCALE
11919 #endif
11920 		: -1;
11921 }
11922 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11923 
11924 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11925 {
11926 #ifdef CONFIG_SMP
11927 	return rd ? rd->span : NULL;
11928 #else
11929 	return NULL;
11930 #endif
11931 }
11932 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11933 
11934 int sched_trace_rq_nr_running(struct rq *rq)
11935 {
11936         return rq ? rq->nr_running : -1;
11937 }
11938 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11939