xref: /linux/kernel/sched/fair.c (revision c1fa617caeb005e7e3db60826cff6dddebb0363f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 int sched_thermal_decay_shift;
82 static int __init setup_sched_thermal_decay_shift(char *str)
83 {
84 	int _shift = 0;
85 
86 	if (kstrtoint(str, 0, &_shift))
87 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88 
89 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
90 	return 1;
91 }
92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93 
94 #ifdef CONFIG_SMP
95 /*
96  * For asym packing, by default the lower numbered CPU has higher priority.
97  */
98 int __weak arch_asym_cpu_priority(int cpu)
99 {
100 	return -cpu;
101 }
102 
103 /*
104  * The margin used when comparing utilization with CPU capacity.
105  *
106  * (default: ~20%)
107  */
108 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
109 
110 /*
111  * The margin used when comparing CPU capacities.
112  * is 'cap1' noticeably greater than 'cap2'
113  *
114  * (default: ~5%)
115  */
116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
117 #endif
118 
119 #ifdef CONFIG_CFS_BANDWIDTH
120 /*
121  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122  * each time a cfs_rq requests quota.
123  *
124  * Note: in the case that the slice exceeds the runtime remaining (either due
125  * to consumption or the quota being specified to be smaller than the slice)
126  * we will always only issue the remaining available time.
127  *
128  * (default: 5 msec, units: microseconds)
129  */
130 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
131 #endif
132 
133 #ifdef CONFIG_NUMA_BALANCING
134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136 #endif
137 
138 #ifdef CONFIG_SYSCTL
139 static struct ctl_table sched_fair_sysctls[] = {
140 #ifdef CONFIG_CFS_BANDWIDTH
141 	{
142 		.procname       = "sched_cfs_bandwidth_slice_us",
143 		.data           = &sysctl_sched_cfs_bandwidth_slice,
144 		.maxlen         = sizeof(unsigned int),
145 		.mode           = 0644,
146 		.proc_handler   = proc_dointvec_minmax,
147 		.extra1         = SYSCTL_ONE,
148 	},
149 #endif
150 #ifdef CONFIG_NUMA_BALANCING
151 	{
152 		.procname	= "numa_balancing_promote_rate_limit_MBps",
153 		.data		= &sysctl_numa_balancing_promote_rate_limit,
154 		.maxlen		= sizeof(unsigned int),
155 		.mode		= 0644,
156 		.proc_handler	= proc_dointvec_minmax,
157 		.extra1		= SYSCTL_ZERO,
158 	},
159 #endif /* CONFIG_NUMA_BALANCING */
160 	{}
161 };
162 
163 static int __init sched_fair_sysctl_init(void)
164 {
165 	register_sysctl_init("kernel", sched_fair_sysctls);
166 	return 0;
167 }
168 late_initcall(sched_fair_sysctl_init);
169 #endif
170 
171 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172 {
173 	lw->weight += inc;
174 	lw->inv_weight = 0;
175 }
176 
177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178 {
179 	lw->weight -= dec;
180 	lw->inv_weight = 0;
181 }
182 
183 static inline void update_load_set(struct load_weight *lw, unsigned long w)
184 {
185 	lw->weight = w;
186 	lw->inv_weight = 0;
187 }
188 
189 /*
190  * Increase the granularity value when there are more CPUs,
191  * because with more CPUs the 'effective latency' as visible
192  * to users decreases. But the relationship is not linear,
193  * so pick a second-best guess by going with the log2 of the
194  * number of CPUs.
195  *
196  * This idea comes from the SD scheduler of Con Kolivas:
197  */
198 static unsigned int get_update_sysctl_factor(void)
199 {
200 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201 	unsigned int factor;
202 
203 	switch (sysctl_sched_tunable_scaling) {
204 	case SCHED_TUNABLESCALING_NONE:
205 		factor = 1;
206 		break;
207 	case SCHED_TUNABLESCALING_LINEAR:
208 		factor = cpus;
209 		break;
210 	case SCHED_TUNABLESCALING_LOG:
211 	default:
212 		factor = 1 + ilog2(cpus);
213 		break;
214 	}
215 
216 	return factor;
217 }
218 
219 static void update_sysctl(void)
220 {
221 	unsigned int factor = get_update_sysctl_factor();
222 
223 #define SET_SYSCTL(name) \
224 	(sysctl_##name = (factor) * normalized_sysctl_##name)
225 	SET_SYSCTL(sched_base_slice);
226 #undef SET_SYSCTL
227 }
228 
229 void __init sched_init_granularity(void)
230 {
231 	update_sysctl();
232 }
233 
234 #define WMULT_CONST	(~0U)
235 #define WMULT_SHIFT	32
236 
237 static void __update_inv_weight(struct load_weight *lw)
238 {
239 	unsigned long w;
240 
241 	if (likely(lw->inv_weight))
242 		return;
243 
244 	w = scale_load_down(lw->weight);
245 
246 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247 		lw->inv_weight = 1;
248 	else if (unlikely(!w))
249 		lw->inv_weight = WMULT_CONST;
250 	else
251 		lw->inv_weight = WMULT_CONST / w;
252 }
253 
254 /*
255  * delta_exec * weight / lw.weight
256  *   OR
257  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258  *
259  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
260  * we're guaranteed shift stays positive because inv_weight is guaranteed to
261  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262  *
263  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264  * weight/lw.weight <= 1, and therefore our shift will also be positive.
265  */
266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
267 {
268 	u64 fact = scale_load_down(weight);
269 	u32 fact_hi = (u32)(fact >> 32);
270 	int shift = WMULT_SHIFT;
271 	int fs;
272 
273 	__update_inv_weight(lw);
274 
275 	if (unlikely(fact_hi)) {
276 		fs = fls(fact_hi);
277 		shift -= fs;
278 		fact >>= fs;
279 	}
280 
281 	fact = mul_u32_u32(fact, lw->inv_weight);
282 
283 	fact_hi = (u32)(fact >> 32);
284 	if (fact_hi) {
285 		fs = fls(fact_hi);
286 		shift -= fs;
287 		fact >>= fs;
288 	}
289 
290 	return mul_u64_u32_shr(delta_exec, fact, shift);
291 }
292 
293 /*
294  * delta /= w
295  */
296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297 {
298 	if (unlikely(se->load.weight != NICE_0_LOAD))
299 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300 
301 	return delta;
302 }
303 
304 const struct sched_class fair_sched_class;
305 
306 /**************************************************************
307  * CFS operations on generic schedulable entities:
308  */
309 
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 
312 /* Walk up scheduling entities hierarchy */
313 #define for_each_sched_entity(se) \
314 		for (; se; se = se->parent)
315 
316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
317 {
318 	struct rq *rq = rq_of(cfs_rq);
319 	int cpu = cpu_of(rq);
320 
321 	if (cfs_rq->on_list)
322 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323 
324 	cfs_rq->on_list = 1;
325 
326 	/*
327 	 * Ensure we either appear before our parent (if already
328 	 * enqueued) or force our parent to appear after us when it is
329 	 * enqueued. The fact that we always enqueue bottom-up
330 	 * reduces this to two cases and a special case for the root
331 	 * cfs_rq. Furthermore, it also means that we will always reset
332 	 * tmp_alone_branch either when the branch is connected
333 	 * to a tree or when we reach the top of the tree
334 	 */
335 	if (cfs_rq->tg->parent &&
336 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
337 		/*
338 		 * If parent is already on the list, we add the child
339 		 * just before. Thanks to circular linked property of
340 		 * the list, this means to put the child at the tail
341 		 * of the list that starts by parent.
342 		 */
343 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345 		/*
346 		 * The branch is now connected to its tree so we can
347 		 * reset tmp_alone_branch to the beginning of the
348 		 * list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	if (!cfs_rq->tg->parent) {
355 		/*
356 		 * cfs rq without parent should be put
357 		 * at the tail of the list.
358 		 */
359 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360 			&rq->leaf_cfs_rq_list);
361 		/*
362 		 * We have reach the top of a tree so we can reset
363 		 * tmp_alone_branch to the beginning of the list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	/*
370 	 * The parent has not already been added so we want to
371 	 * make sure that it will be put after us.
372 	 * tmp_alone_branch points to the begin of the branch
373 	 * where we will add parent.
374 	 */
375 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376 	/*
377 	 * update tmp_alone_branch to points to the new begin
378 	 * of the branch
379 	 */
380 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
381 	return false;
382 }
383 
384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385 {
386 	if (cfs_rq->on_list) {
387 		struct rq *rq = rq_of(cfs_rq);
388 
389 		/*
390 		 * With cfs_rq being unthrottled/throttled during an enqueue,
391 		 * it can happen the tmp_alone_branch points the a leaf that
392 		 * we finally want to del. In this case, tmp_alone_branch moves
393 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
394 		 * at the end of the enqueue.
395 		 */
396 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398 
399 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 		cfs_rq->on_list = 0;
401 	}
402 }
403 
404 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405 {
406 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407 }
408 
409 /* Iterate thr' all leaf cfs_rq's on a runqueue */
410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
411 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
412 				 leaf_cfs_rq_list)
413 
414 /* Do the two (enqueued) entities belong to the same group ? */
415 static inline struct cfs_rq *
416 is_same_group(struct sched_entity *se, struct sched_entity *pse)
417 {
418 	if (se->cfs_rq == pse->cfs_rq)
419 		return se->cfs_rq;
420 
421 	return NULL;
422 }
423 
424 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
425 {
426 	return se->parent;
427 }
428 
429 static void
430 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431 {
432 	int se_depth, pse_depth;
433 
434 	/*
435 	 * preemption test can be made between sibling entities who are in the
436 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437 	 * both tasks until we find their ancestors who are siblings of common
438 	 * parent.
439 	 */
440 
441 	/* First walk up until both entities are at same depth */
442 	se_depth = (*se)->depth;
443 	pse_depth = (*pse)->depth;
444 
445 	while (se_depth > pse_depth) {
446 		se_depth--;
447 		*se = parent_entity(*se);
448 	}
449 
450 	while (pse_depth > se_depth) {
451 		pse_depth--;
452 		*pse = parent_entity(*pse);
453 	}
454 
455 	while (!is_same_group(*se, *pse)) {
456 		*se = parent_entity(*se);
457 		*pse = parent_entity(*pse);
458 	}
459 }
460 
461 static int tg_is_idle(struct task_group *tg)
462 {
463 	return tg->idle > 0;
464 }
465 
466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467 {
468 	return cfs_rq->idle > 0;
469 }
470 
471 static int se_is_idle(struct sched_entity *se)
472 {
473 	if (entity_is_task(se))
474 		return task_has_idle_policy(task_of(se));
475 	return cfs_rq_is_idle(group_cfs_rq(se));
476 }
477 
478 #else	/* !CONFIG_FAIR_GROUP_SCHED */
479 
480 #define for_each_sched_entity(se) \
481 		for (; se; se = NULL)
482 
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 	return true;
486 }
487 
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491 
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495 
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498 
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 	return NULL;
502 }
503 
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508 
509 static inline int tg_is_idle(struct task_group *tg)
510 {
511 	return 0;
512 }
513 
514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515 {
516 	return 0;
517 }
518 
519 static int se_is_idle(struct sched_entity *se)
520 {
521 	return 0;
522 }
523 
524 #endif	/* CONFIG_FAIR_GROUP_SCHED */
525 
526 static __always_inline
527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
528 
529 /**************************************************************
530  * Scheduling class tree data structure manipulation methods:
531  */
532 
533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
534 {
535 	s64 delta = (s64)(vruntime - max_vruntime);
536 	if (delta > 0)
537 		max_vruntime = vruntime;
538 
539 	return max_vruntime;
540 }
541 
542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
543 {
544 	s64 delta = (s64)(vruntime - min_vruntime);
545 	if (delta < 0)
546 		min_vruntime = vruntime;
547 
548 	return min_vruntime;
549 }
550 
551 static inline bool entity_before(const struct sched_entity *a,
552 				 const struct sched_entity *b)
553 {
554 	/*
555 	 * Tiebreak on vruntime seems unnecessary since it can
556 	 * hardly happen.
557 	 */
558 	return (s64)(a->deadline - b->deadline) < 0;
559 }
560 
561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
564 }
565 
566 #define __node_2_se(node) \
567 	rb_entry((node), struct sched_entity, run_node)
568 
569 /*
570  * Compute virtual time from the per-task service numbers:
571  *
572  * Fair schedulers conserve lag:
573  *
574  *   \Sum lag_i = 0
575  *
576  * Where lag_i is given by:
577  *
578  *   lag_i = S - s_i = w_i * (V - v_i)
579  *
580  * Where S is the ideal service time and V is it's virtual time counterpart.
581  * Therefore:
582  *
583  *   \Sum lag_i = 0
584  *   \Sum w_i * (V - v_i) = 0
585  *   \Sum w_i * V - w_i * v_i = 0
586  *
587  * From which we can solve an expression for V in v_i (which we have in
588  * se->vruntime):
589  *
590  *       \Sum v_i * w_i   \Sum v_i * w_i
591  *   V = -------------- = --------------
592  *          \Sum w_i            W
593  *
594  * Specifically, this is the weighted average of all entity virtual runtimes.
595  *
596  * [[ NOTE: this is only equal to the ideal scheduler under the condition
597  *          that join/leave operations happen at lag_i = 0, otherwise the
598  *          virtual time has non-continguous motion equivalent to:
599  *
600  *	      V +-= lag_i / W
601  *
602  *	    Also see the comment in place_entity() that deals with this. ]]
603  *
604  * However, since v_i is u64, and the multiplcation could easily overflow
605  * transform it into a relative form that uses smaller quantities:
606  *
607  * Substitute: v_i == (v_i - v0) + v0
608  *
609  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
610  * V = ---------------------------- = --------------------- + v0
611  *                  W                            W
612  *
613  * Which we track using:
614  *
615  *                    v0 := cfs_rq->min_vruntime
616  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
617  *              \Sum w_i := cfs_rq->avg_load
618  *
619  * Since min_vruntime is a monotonic increasing variable that closely tracks
620  * the per-task service, these deltas: (v_i - v), will be in the order of the
621  * maximal (virtual) lag induced in the system due to quantisation.
622  *
623  * Also, we use scale_load_down() to reduce the size.
624  *
625  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
626  */
627 static void
628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 	unsigned long weight = scale_load_down(se->load.weight);
631 	s64 key = entity_key(cfs_rq, se);
632 
633 	cfs_rq->avg_vruntime += key * weight;
634 	cfs_rq->avg_load += weight;
635 }
636 
637 static void
638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
639 {
640 	unsigned long weight = scale_load_down(se->load.weight);
641 	s64 key = entity_key(cfs_rq, se);
642 
643 	cfs_rq->avg_vruntime -= key * weight;
644 	cfs_rq->avg_load -= weight;
645 }
646 
647 static inline
648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
649 {
650 	/*
651 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
652 	 */
653 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
654 }
655 
656 /*
657  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
658  * For this to be so, the result of this function must have a left bias.
659  */
660 u64 avg_vruntime(struct cfs_rq *cfs_rq)
661 {
662 	struct sched_entity *curr = cfs_rq->curr;
663 	s64 avg = cfs_rq->avg_vruntime;
664 	long load = cfs_rq->avg_load;
665 
666 	if (curr && curr->on_rq) {
667 		unsigned long weight = scale_load_down(curr->load.weight);
668 
669 		avg += entity_key(cfs_rq, curr) * weight;
670 		load += weight;
671 	}
672 
673 	if (load) {
674 		/* sign flips effective floor / ceil */
675 		if (avg < 0)
676 			avg -= (load - 1);
677 		avg = div_s64(avg, load);
678 	}
679 
680 	return cfs_rq->min_vruntime + avg;
681 }
682 
683 /*
684  * lag_i = S - s_i = w_i * (V - v_i)
685  *
686  * However, since V is approximated by the weighted average of all entities it
687  * is possible -- by addition/removal/reweight to the tree -- to move V around
688  * and end up with a larger lag than we started with.
689  *
690  * Limit this to either double the slice length with a minimum of TICK_NSEC
691  * since that is the timing granularity.
692  *
693  * EEVDF gives the following limit for a steady state system:
694  *
695  *   -r_max < lag < max(r_max, q)
696  *
697  * XXX could add max_slice to the augmented data to track this.
698  */
699 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
700 {
701 	s64 lag, limit;
702 
703 	SCHED_WARN_ON(!se->on_rq);
704 	lag = avg_vruntime(cfs_rq) - se->vruntime;
705 
706 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
707 	se->vlag = clamp(lag, -limit, limit);
708 }
709 
710 /*
711  * Entity is eligible once it received less service than it ought to have,
712  * eg. lag >= 0.
713  *
714  * lag_i = S - s_i = w_i*(V - v_i)
715  *
716  * lag_i >= 0 -> V >= v_i
717  *
718  *     \Sum (v_i - v)*w_i
719  * V = ------------------ + v
720  *          \Sum w_i
721  *
722  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723  *
724  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
725  *       to the loss in precision caused by the division.
726  */
727 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728 {
729 	struct sched_entity *curr = cfs_rq->curr;
730 	s64 avg = cfs_rq->avg_vruntime;
731 	long load = cfs_rq->avg_load;
732 
733 	if (curr && curr->on_rq) {
734 		unsigned long weight = scale_load_down(curr->load.weight);
735 
736 		avg += entity_key(cfs_rq, curr) * weight;
737 		load += weight;
738 	}
739 
740 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
741 }
742 
743 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 	return vruntime_eligible(cfs_rq, se->vruntime);
746 }
747 
748 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749 {
750 	u64 min_vruntime = cfs_rq->min_vruntime;
751 	/*
752 	 * open coded max_vruntime() to allow updating avg_vruntime
753 	 */
754 	s64 delta = (s64)(vruntime - min_vruntime);
755 	if (delta > 0) {
756 		avg_vruntime_update(cfs_rq, delta);
757 		min_vruntime = vruntime;
758 	}
759 	return min_vruntime;
760 }
761 
762 static void update_min_vruntime(struct cfs_rq *cfs_rq)
763 {
764 	struct sched_entity *se = __pick_root_entity(cfs_rq);
765 	struct sched_entity *curr = cfs_rq->curr;
766 	u64 vruntime = cfs_rq->min_vruntime;
767 
768 	if (curr) {
769 		if (curr->on_rq)
770 			vruntime = curr->vruntime;
771 		else
772 			curr = NULL;
773 	}
774 
775 	if (se) {
776 		if (!curr)
777 			vruntime = se->min_vruntime;
778 		else
779 			vruntime = min_vruntime(vruntime, se->min_vruntime);
780 	}
781 
782 	/* ensure we never gain time by being placed backwards. */
783 	u64_u32_store(cfs_rq->min_vruntime,
784 		      __update_min_vruntime(cfs_rq, vruntime));
785 }
786 
787 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
788 {
789 	return entity_before(__node_2_se(a), __node_2_se(b));
790 }
791 
792 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
793 
794 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
795 {
796 	if (node) {
797 		struct sched_entity *rse = __node_2_se(node);
798 		if (vruntime_gt(min_vruntime, se, rse))
799 			se->min_vruntime = rse->min_vruntime;
800 	}
801 }
802 
803 /*
804  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
805  */
806 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
807 {
808 	u64 old_min_vruntime = se->min_vruntime;
809 	struct rb_node *node = &se->run_node;
810 
811 	se->min_vruntime = se->vruntime;
812 	__min_vruntime_update(se, node->rb_right);
813 	__min_vruntime_update(se, node->rb_left);
814 
815 	return se->min_vruntime == old_min_vruntime;
816 }
817 
818 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
819 		     run_node, min_vruntime, min_vruntime_update);
820 
821 /*
822  * Enqueue an entity into the rb-tree:
823  */
824 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825 {
826 	avg_vruntime_add(cfs_rq, se);
827 	se->min_vruntime = se->vruntime;
828 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
829 				__entity_less, &min_vruntime_cb);
830 }
831 
832 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
833 {
834 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
835 				  &min_vruntime_cb);
836 	avg_vruntime_sub(cfs_rq, se);
837 }
838 
839 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
840 {
841 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
842 
843 	if (!root)
844 		return NULL;
845 
846 	return __node_2_se(root);
847 }
848 
849 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
850 {
851 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
852 
853 	if (!left)
854 		return NULL;
855 
856 	return __node_2_se(left);
857 }
858 
859 /*
860  * Earliest Eligible Virtual Deadline First
861  *
862  * In order to provide latency guarantees for different request sizes
863  * EEVDF selects the best runnable task from two criteria:
864  *
865  *  1) the task must be eligible (must be owed service)
866  *
867  *  2) from those tasks that meet 1), we select the one
868  *     with the earliest virtual deadline.
869  *
870  * We can do this in O(log n) time due to an augmented RB-tree. The
871  * tree keeps the entries sorted on deadline, but also functions as a
872  * heap based on the vruntime by keeping:
873  *
874  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
875  *
876  * Which allows tree pruning through eligibility.
877  */
878 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
881 	struct sched_entity *se = __pick_first_entity(cfs_rq);
882 	struct sched_entity *curr = cfs_rq->curr;
883 	struct sched_entity *best = NULL;
884 
885 	/*
886 	 * We can safely skip eligibility check if there is only one entity
887 	 * in this cfs_rq, saving some cycles.
888 	 */
889 	if (cfs_rq->nr_running == 1)
890 		return curr && curr->on_rq ? curr : se;
891 
892 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
893 		curr = NULL;
894 
895 	/*
896 	 * Once selected, run a task until it either becomes non-eligible or
897 	 * until it gets a new slice. See the HACK in set_next_entity().
898 	 */
899 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
900 		return curr;
901 
902 	/* Pick the leftmost entity if it's eligible */
903 	if (se && entity_eligible(cfs_rq, se)) {
904 		best = se;
905 		goto found;
906 	}
907 
908 	/* Heap search for the EEVD entity */
909 	while (node) {
910 		struct rb_node *left = node->rb_left;
911 
912 		/*
913 		 * Eligible entities in left subtree are always better
914 		 * choices, since they have earlier deadlines.
915 		 */
916 		if (left && vruntime_eligible(cfs_rq,
917 					__node_2_se(left)->min_vruntime)) {
918 			node = left;
919 			continue;
920 		}
921 
922 		se = __node_2_se(node);
923 
924 		/*
925 		 * The left subtree either is empty or has no eligible
926 		 * entity, so check the current node since it is the one
927 		 * with earliest deadline that might be eligible.
928 		 */
929 		if (entity_eligible(cfs_rq, se)) {
930 			best = se;
931 			break;
932 		}
933 
934 		node = node->rb_right;
935 	}
936 found:
937 	if (!best || (curr && entity_before(curr, best)))
938 		best = curr;
939 
940 	return best;
941 }
942 
943 #ifdef CONFIG_SCHED_DEBUG
944 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
945 {
946 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
947 
948 	if (!last)
949 		return NULL;
950 
951 	return __node_2_se(last);
952 }
953 
954 /**************************************************************
955  * Scheduling class statistics methods:
956  */
957 #ifdef CONFIG_SMP
958 int sched_update_scaling(void)
959 {
960 	unsigned int factor = get_update_sysctl_factor();
961 
962 #define WRT_SYSCTL(name) \
963 	(normalized_sysctl_##name = sysctl_##name / (factor))
964 	WRT_SYSCTL(sched_base_slice);
965 #undef WRT_SYSCTL
966 
967 	return 0;
968 }
969 #endif
970 #endif
971 
972 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
973 
974 /*
975  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
976  * this is probably good enough.
977  */
978 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
979 {
980 	if ((s64)(se->vruntime - se->deadline) < 0)
981 		return;
982 
983 	/*
984 	 * For EEVDF the virtual time slope is determined by w_i (iow.
985 	 * nice) while the request time r_i is determined by
986 	 * sysctl_sched_base_slice.
987 	 */
988 	se->slice = sysctl_sched_base_slice;
989 
990 	/*
991 	 * EEVDF: vd_i = ve_i + r_i / w_i
992 	 */
993 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
994 
995 	/*
996 	 * The task has consumed its request, reschedule.
997 	 */
998 	if (cfs_rq->nr_running > 1) {
999 		resched_curr(rq_of(cfs_rq));
1000 		clear_buddies(cfs_rq, se);
1001 	}
1002 }
1003 
1004 #include "pelt.h"
1005 #ifdef CONFIG_SMP
1006 
1007 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1008 static unsigned long task_h_load(struct task_struct *p);
1009 static unsigned long capacity_of(int cpu);
1010 
1011 /* Give new sched_entity start runnable values to heavy its load in infant time */
1012 void init_entity_runnable_average(struct sched_entity *se)
1013 {
1014 	struct sched_avg *sa = &se->avg;
1015 
1016 	memset(sa, 0, sizeof(*sa));
1017 
1018 	/*
1019 	 * Tasks are initialized with full load to be seen as heavy tasks until
1020 	 * they get a chance to stabilize to their real load level.
1021 	 * Group entities are initialized with zero load to reflect the fact that
1022 	 * nothing has been attached to the task group yet.
1023 	 */
1024 	if (entity_is_task(se))
1025 		sa->load_avg = scale_load_down(se->load.weight);
1026 
1027 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1028 }
1029 
1030 /*
1031  * With new tasks being created, their initial util_avgs are extrapolated
1032  * based on the cfs_rq's current util_avg:
1033  *
1034  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1035  *
1036  * However, in many cases, the above util_avg does not give a desired
1037  * value. Moreover, the sum of the util_avgs may be divergent, such
1038  * as when the series is a harmonic series.
1039  *
1040  * To solve this problem, we also cap the util_avg of successive tasks to
1041  * only 1/2 of the left utilization budget:
1042  *
1043  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044  *
1045  * where n denotes the nth task and cpu_scale the CPU capacity.
1046  *
1047  * For example, for a CPU with 1024 of capacity, a simplest series from
1048  * the beginning would be like:
1049  *
1050  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1051  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052  *
1053  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054  * if util_avg > util_avg_cap.
1055  */
1056 void post_init_entity_util_avg(struct task_struct *p)
1057 {
1058 	struct sched_entity *se = &p->se;
1059 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 	struct sched_avg *sa = &se->avg;
1061 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063 
1064 	if (p->sched_class != &fair_sched_class) {
1065 		/*
1066 		 * For !fair tasks do:
1067 		 *
1068 		update_cfs_rq_load_avg(now, cfs_rq);
1069 		attach_entity_load_avg(cfs_rq, se);
1070 		switched_from_fair(rq, p);
1071 		 *
1072 		 * such that the next switched_to_fair() has the
1073 		 * expected state.
1074 		 */
1075 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 		return;
1077 	}
1078 
1079 	if (cap > 0) {
1080 		if (cfs_rq->avg.util_avg != 0) {
1081 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1082 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083 
1084 			if (sa->util_avg > cap)
1085 				sa->util_avg = cap;
1086 		} else {
1087 			sa->util_avg = cap;
1088 		}
1089 	}
1090 
1091 	sa->runnable_avg = sa->util_avg;
1092 }
1093 
1094 #else /* !CONFIG_SMP */
1095 void init_entity_runnable_average(struct sched_entity *se)
1096 {
1097 }
1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 }
1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102 {
1103 }
1104 #endif /* CONFIG_SMP */
1105 
1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107 {
1108 	u64 now = rq_clock_task(rq);
1109 	s64 delta_exec;
1110 
1111 	delta_exec = now - curr->exec_start;
1112 	if (unlikely(delta_exec <= 0))
1113 		return delta_exec;
1114 
1115 	curr->exec_start = now;
1116 	curr->sum_exec_runtime += delta_exec;
1117 
1118 	if (schedstat_enabled()) {
1119 		struct sched_statistics *stats;
1120 
1121 		stats = __schedstats_from_se(curr);
1122 		__schedstat_set(stats->exec_max,
1123 				max(delta_exec, stats->exec_max));
1124 	}
1125 
1126 	return delta_exec;
1127 }
1128 
1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130 {
1131 	trace_sched_stat_runtime(p, delta_exec);
1132 	account_group_exec_runtime(p, delta_exec);
1133 	cgroup_account_cputime(p, delta_exec);
1134 	if (p->dl_server)
1135 		dl_server_update(p->dl_server, delta_exec);
1136 }
1137 
1138 /*
1139  * Used by other classes to account runtime.
1140  */
1141 s64 update_curr_common(struct rq *rq)
1142 {
1143 	struct task_struct *curr = rq->curr;
1144 	s64 delta_exec;
1145 
1146 	delta_exec = update_curr_se(rq, &curr->se);
1147 	if (likely(delta_exec > 0))
1148 		update_curr_task(curr, delta_exec);
1149 
1150 	return delta_exec;
1151 }
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	s64 delta_exec;
1160 
1161 	if (unlikely(!curr))
1162 		return;
1163 
1164 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 	if (unlikely(delta_exec <= 0))
1166 		return;
1167 
1168 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1169 	update_deadline(cfs_rq, curr);
1170 	update_min_vruntime(cfs_rq);
1171 
1172 	if (entity_is_task(curr))
1173 		update_curr_task(task_of(curr), delta_exec);
1174 
1175 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1176 }
1177 
1178 static void update_curr_fair(struct rq *rq)
1179 {
1180 	update_curr(cfs_rq_of(&rq->curr->se));
1181 }
1182 
1183 static inline void
1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185 {
1186 	struct sched_statistics *stats;
1187 	struct task_struct *p = NULL;
1188 
1189 	if (!schedstat_enabled())
1190 		return;
1191 
1192 	stats = __schedstats_from_se(se);
1193 
1194 	if (entity_is_task(se))
1195 		p = task_of(se);
1196 
1197 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198 }
1199 
1200 static inline void
1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202 {
1203 	struct sched_statistics *stats;
1204 	struct task_struct *p = NULL;
1205 
1206 	if (!schedstat_enabled())
1207 		return;
1208 
1209 	stats = __schedstats_from_se(se);
1210 
1211 	/*
1212 	 * When the sched_schedstat changes from 0 to 1, some sched se
1213 	 * maybe already in the runqueue, the se->statistics.wait_start
1214 	 * will be 0.So it will let the delta wrong. We need to avoid this
1215 	 * scenario.
1216 	 */
1217 	if (unlikely(!schedstat_val(stats->wait_start)))
1218 		return;
1219 
1220 	if (entity_is_task(se))
1221 		p = task_of(se);
1222 
1223 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224 }
1225 
1226 static inline void
1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228 {
1229 	struct sched_statistics *stats;
1230 	struct task_struct *tsk = NULL;
1231 
1232 	if (!schedstat_enabled())
1233 		return;
1234 
1235 	stats = __schedstats_from_se(se);
1236 
1237 	if (entity_is_task(se))
1238 		tsk = task_of(se);
1239 
1240 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241 }
1242 
1243 /*
1244  * Task is being enqueued - update stats:
1245  */
1246 static inline void
1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248 {
1249 	if (!schedstat_enabled())
1250 		return;
1251 
1252 	/*
1253 	 * Are we enqueueing a waiting task? (for current tasks
1254 	 * a dequeue/enqueue event is a NOP)
1255 	 */
1256 	if (se != cfs_rq->curr)
1257 		update_stats_wait_start_fair(cfs_rq, se);
1258 
1259 	if (flags & ENQUEUE_WAKEUP)
1260 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261 }
1262 
1263 static inline void
1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265 {
1266 
1267 	if (!schedstat_enabled())
1268 		return;
1269 
1270 	/*
1271 	 * Mark the end of the wait period if dequeueing a
1272 	 * waiting task:
1273 	 */
1274 	if (se != cfs_rq->curr)
1275 		update_stats_wait_end_fair(cfs_rq, se);
1276 
1277 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 		struct task_struct *tsk = task_of(se);
1279 		unsigned int state;
1280 
1281 		/* XXX racy against TTWU */
1282 		state = READ_ONCE(tsk->__state);
1283 		if (state & TASK_INTERRUPTIBLE)
1284 			__schedstat_set(tsk->stats.sleep_start,
1285 				      rq_clock(rq_of(cfs_rq)));
1286 		if (state & TASK_UNINTERRUPTIBLE)
1287 			__schedstat_set(tsk->stats.block_start,
1288 				      rq_clock(rq_of(cfs_rq)));
1289 	}
1290 }
1291 
1292 /*
1293  * We are picking a new current task - update its stats:
1294  */
1295 static inline void
1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297 {
1298 	/*
1299 	 * We are starting a new run period:
1300 	 */
1301 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302 }
1303 
1304 /**************************************************
1305  * Scheduling class queueing methods:
1306  */
1307 
1308 static inline bool is_core_idle(int cpu)
1309 {
1310 #ifdef CONFIG_SCHED_SMT
1311 	int sibling;
1312 
1313 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 		if (cpu == sibling)
1315 			continue;
1316 
1317 		if (!idle_cpu(sibling))
1318 			return false;
1319 	}
1320 #endif
1321 
1322 	return true;
1323 }
1324 
1325 #ifdef CONFIG_NUMA
1326 #define NUMA_IMBALANCE_MIN 2
1327 
1328 static inline long
1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330 {
1331 	/*
1332 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 	 * threshold. Above this threshold, individual tasks may be contending
1334 	 * for both memory bandwidth and any shared HT resources.  This is an
1335 	 * approximation as the number of running tasks may not be related to
1336 	 * the number of busy CPUs due to sched_setaffinity.
1337 	 */
1338 	if (dst_running > imb_numa_nr)
1339 		return imbalance;
1340 
1341 	/*
1342 	 * Allow a small imbalance based on a simple pair of communicating
1343 	 * tasks that remain local when the destination is lightly loaded.
1344 	 */
1345 	if (imbalance <= NUMA_IMBALANCE_MIN)
1346 		return 0;
1347 
1348 	return imbalance;
1349 }
1350 #endif /* CONFIG_NUMA */
1351 
1352 #ifdef CONFIG_NUMA_BALANCING
1353 /*
1354  * Approximate time to scan a full NUMA task in ms. The task scan period is
1355  * calculated based on the tasks virtual memory size and
1356  * numa_balancing_scan_size.
1357  */
1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360 
1361 /* Portion of address space to scan in MB */
1362 unsigned int sysctl_numa_balancing_scan_size = 256;
1363 
1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366 
1367 /* The page with hint page fault latency < threshold in ms is considered hot */
1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369 
1370 struct numa_group {
1371 	refcount_t refcount;
1372 
1373 	spinlock_t lock; /* nr_tasks, tasks */
1374 	int nr_tasks;
1375 	pid_t gid;
1376 	int active_nodes;
1377 
1378 	struct rcu_head rcu;
1379 	unsigned long total_faults;
1380 	unsigned long max_faults_cpu;
1381 	/*
1382 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 	 *
1384 	 * Faults_cpu is used to decide whether memory should move
1385 	 * towards the CPU. As a consequence, these stats are weighted
1386 	 * more by CPU use than by memory faults.
1387 	 */
1388 	unsigned long faults[];
1389 };
1390 
1391 /*
1392  * For functions that can be called in multiple contexts that permit reading
1393  * ->numa_group (see struct task_struct for locking rules).
1394  */
1395 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396 {
1397 	return rcu_dereference_check(p->numa_group, p == current ||
1398 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399 }
1400 
1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402 {
1403 	return rcu_dereference_protected(p->numa_group, p == current);
1404 }
1405 
1406 static inline unsigned long group_faults_priv(struct numa_group *ng);
1407 static inline unsigned long group_faults_shared(struct numa_group *ng);
1408 
1409 static unsigned int task_nr_scan_windows(struct task_struct *p)
1410 {
1411 	unsigned long rss = 0;
1412 	unsigned long nr_scan_pages;
1413 
1414 	/*
1415 	 * Calculations based on RSS as non-present and empty pages are skipped
1416 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 	 * on resident pages
1418 	 */
1419 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 	rss = get_mm_rss(p->mm);
1421 	if (!rss)
1422 		rss = nr_scan_pages;
1423 
1424 	rss = round_up(rss, nr_scan_pages);
1425 	return rss / nr_scan_pages;
1426 }
1427 
1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429 #define MAX_SCAN_WINDOW 2560
1430 
1431 static unsigned int task_scan_min(struct task_struct *p)
1432 {
1433 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434 	unsigned int scan, floor;
1435 	unsigned int windows = 1;
1436 
1437 	if (scan_size < MAX_SCAN_WINDOW)
1438 		windows = MAX_SCAN_WINDOW / scan_size;
1439 	floor = 1000 / windows;
1440 
1441 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 	return max_t(unsigned int, floor, scan);
1443 }
1444 
1445 static unsigned int task_scan_start(struct task_struct *p)
1446 {
1447 	unsigned long smin = task_scan_min(p);
1448 	unsigned long period = smin;
1449 	struct numa_group *ng;
1450 
1451 	/* Scale the maximum scan period with the amount of shared memory. */
1452 	rcu_read_lock();
1453 	ng = rcu_dereference(p->numa_group);
1454 	if (ng) {
1455 		unsigned long shared = group_faults_shared(ng);
1456 		unsigned long private = group_faults_priv(ng);
1457 
1458 		period *= refcount_read(&ng->refcount);
1459 		period *= shared + 1;
1460 		period /= private + shared + 1;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	return max(smin, period);
1465 }
1466 
1467 static unsigned int task_scan_max(struct task_struct *p)
1468 {
1469 	unsigned long smin = task_scan_min(p);
1470 	unsigned long smax;
1471 	struct numa_group *ng;
1472 
1473 	/* Watch for min being lower than max due to floor calculations */
1474 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475 
1476 	/* Scale the maximum scan period with the amount of shared memory. */
1477 	ng = deref_curr_numa_group(p);
1478 	if (ng) {
1479 		unsigned long shared = group_faults_shared(ng);
1480 		unsigned long private = group_faults_priv(ng);
1481 		unsigned long period = smax;
1482 
1483 		period *= refcount_read(&ng->refcount);
1484 		period *= shared + 1;
1485 		period /= private + shared + 1;
1486 
1487 		smax = max(smax, period);
1488 	}
1489 
1490 	return max(smin, smax);
1491 }
1492 
1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494 {
1495 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497 }
1498 
1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500 {
1501 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503 }
1504 
1505 /* Shared or private faults. */
1506 #define NR_NUMA_HINT_FAULT_TYPES 2
1507 
1508 /* Memory and CPU locality */
1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510 
1511 /* Averaged statistics, and temporary buffers. */
1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513 
1514 pid_t task_numa_group_id(struct task_struct *p)
1515 {
1516 	struct numa_group *ng;
1517 	pid_t gid = 0;
1518 
1519 	rcu_read_lock();
1520 	ng = rcu_dereference(p->numa_group);
1521 	if (ng)
1522 		gid = ng->gid;
1523 	rcu_read_unlock();
1524 
1525 	return gid;
1526 }
1527 
1528 /*
1529  * The averaged statistics, shared & private, memory & CPU,
1530  * occupy the first half of the array. The second half of the
1531  * array is for current counters, which are averaged into the
1532  * first set by task_numa_placement.
1533  */
1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535 {
1536 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537 }
1538 
1539 static inline unsigned long task_faults(struct task_struct *p, int nid)
1540 {
1541 	if (!p->numa_faults)
1542 		return 0;
1543 
1544 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546 }
1547 
1548 static inline unsigned long group_faults(struct task_struct *p, int nid)
1549 {
1550 	struct numa_group *ng = deref_task_numa_group(p);
1551 
1552 	if (!ng)
1553 		return 0;
1554 
1555 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557 }
1558 
1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560 {
1561 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563 }
1564 
1565 static inline unsigned long group_faults_priv(struct numa_group *ng)
1566 {
1567 	unsigned long faults = 0;
1568 	int node;
1569 
1570 	for_each_online_node(node) {
1571 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 	}
1573 
1574 	return faults;
1575 }
1576 
1577 static inline unsigned long group_faults_shared(struct numa_group *ng)
1578 {
1579 	unsigned long faults = 0;
1580 	int node;
1581 
1582 	for_each_online_node(node) {
1583 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 	}
1585 
1586 	return faults;
1587 }
1588 
1589 /*
1590  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591  * considered part of a numa group's pseudo-interleaving set. Migrations
1592  * between these nodes are slowed down, to allow things to settle down.
1593  */
1594 #define ACTIVE_NODE_FRACTION 3
1595 
1596 static bool numa_is_active_node(int nid, struct numa_group *ng)
1597 {
1598 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599 }
1600 
1601 /* Handle placement on systems where not all nodes are directly connected. */
1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603 					int lim_dist, bool task)
1604 {
1605 	unsigned long score = 0;
1606 	int node, max_dist;
1607 
1608 	/*
1609 	 * All nodes are directly connected, and the same distance
1610 	 * from each other. No need for fancy placement algorithms.
1611 	 */
1612 	if (sched_numa_topology_type == NUMA_DIRECT)
1613 		return 0;
1614 
1615 	/* sched_max_numa_distance may be changed in parallel. */
1616 	max_dist = READ_ONCE(sched_max_numa_distance);
1617 	/*
1618 	 * This code is called for each node, introducing N^2 complexity,
1619 	 * which should be ok given the number of nodes rarely exceeds 8.
1620 	 */
1621 	for_each_online_node(node) {
1622 		unsigned long faults;
1623 		int dist = node_distance(nid, node);
1624 
1625 		/*
1626 		 * The furthest away nodes in the system are not interesting
1627 		 * for placement; nid was already counted.
1628 		 */
1629 		if (dist >= max_dist || node == nid)
1630 			continue;
1631 
1632 		/*
1633 		 * On systems with a backplane NUMA topology, compare groups
1634 		 * of nodes, and move tasks towards the group with the most
1635 		 * memory accesses. When comparing two nodes at distance
1636 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 		 * of each group. Skip other nodes.
1638 		 */
1639 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640 			continue;
1641 
1642 		/* Add up the faults from nearby nodes. */
1643 		if (task)
1644 			faults = task_faults(p, node);
1645 		else
1646 			faults = group_faults(p, node);
1647 
1648 		/*
1649 		 * On systems with a glueless mesh NUMA topology, there are
1650 		 * no fixed "groups of nodes". Instead, nodes that are not
1651 		 * directly connected bounce traffic through intermediate
1652 		 * nodes; a numa_group can occupy any set of nodes.
1653 		 * The further away a node is, the less the faults count.
1654 		 * This seems to result in good task placement.
1655 		 */
1656 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657 			faults *= (max_dist - dist);
1658 			faults /= (max_dist - LOCAL_DISTANCE);
1659 		}
1660 
1661 		score += faults;
1662 	}
1663 
1664 	return score;
1665 }
1666 
1667 /*
1668  * These return the fraction of accesses done by a particular task, or
1669  * task group, on a particular numa node.  The group weight is given a
1670  * larger multiplier, in order to group tasks together that are almost
1671  * evenly spread out between numa nodes.
1672  */
1673 static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 					int dist)
1675 {
1676 	unsigned long faults, total_faults;
1677 
1678 	if (!p->numa_faults)
1679 		return 0;
1680 
1681 	total_faults = p->total_numa_faults;
1682 
1683 	if (!total_faults)
1684 		return 0;
1685 
1686 	faults = task_faults(p, nid);
1687 	faults += score_nearby_nodes(p, nid, dist, true);
1688 
1689 	return 1000 * faults / total_faults;
1690 }
1691 
1692 static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 					 int dist)
1694 {
1695 	struct numa_group *ng = deref_task_numa_group(p);
1696 	unsigned long faults, total_faults;
1697 
1698 	if (!ng)
1699 		return 0;
1700 
1701 	total_faults = ng->total_faults;
1702 
1703 	if (!total_faults)
1704 		return 0;
1705 
1706 	faults = group_faults(p, nid);
1707 	faults += score_nearby_nodes(p, nid, dist, false);
1708 
1709 	return 1000 * faults / total_faults;
1710 }
1711 
1712 /*
1713  * If memory tiering mode is enabled, cpupid of slow memory page is
1714  * used to record scan time instead of CPU and PID.  When tiering mode
1715  * is disabled at run time, the scan time (in cpupid) will be
1716  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1717  * access out of array bound.
1718  */
1719 static inline bool cpupid_valid(int cpupid)
1720 {
1721 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722 }
1723 
1724 /*
1725  * For memory tiering mode, if there are enough free pages (more than
1726  * enough watermark defined here) in fast memory node, to take full
1727  * advantage of fast memory capacity, all recently accessed slow
1728  * memory pages will be migrated to fast memory node without
1729  * considering hot threshold.
1730  */
1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732 {
1733 	int z;
1734 	unsigned long enough_wmark;
1735 
1736 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 			   pgdat->node_present_pages >> 4);
1738 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 		struct zone *zone = pgdat->node_zones + z;
1740 
1741 		if (!populated_zone(zone))
1742 			continue;
1743 
1744 		if (zone_watermark_ok(zone, 0,
1745 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746 				      ZONE_MOVABLE, 0))
1747 			return true;
1748 	}
1749 	return false;
1750 }
1751 
1752 /*
1753  * For memory tiering mode, when page tables are scanned, the scan
1754  * time will be recorded in struct page in addition to make page
1755  * PROT_NONE for slow memory page.  So when the page is accessed, in
1756  * hint page fault handler, the hint page fault latency is calculated
1757  * via,
1758  *
1759  *	hint page fault latency = hint page fault time - scan time
1760  *
1761  * The smaller the hint page fault latency, the higher the possibility
1762  * for the page to be hot.
1763  */
1764 static int numa_hint_fault_latency(struct folio *folio)
1765 {
1766 	int last_time, time;
1767 
1768 	time = jiffies_to_msecs(jiffies);
1769 	last_time = folio_xchg_access_time(folio, time);
1770 
1771 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772 }
1773 
1774 /*
1775  * For memory tiering mode, too high promotion/demotion throughput may
1776  * hurt application latency.  So we provide a mechanism to rate limit
1777  * the number of pages that are tried to be promoted.
1778  */
1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 				      unsigned long rate_limit, int nr)
1781 {
1782 	unsigned long nr_cand;
1783 	unsigned int now, start;
1784 
1785 	now = jiffies_to_msecs(jiffies);
1786 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 	start = pgdat->nbp_rl_start;
1789 	if (now - start > MSEC_PER_SEC &&
1790 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 		pgdat->nbp_rl_nr_cand = nr_cand;
1792 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 		return true;
1794 	return false;
1795 }
1796 
1797 #define NUMA_MIGRATION_ADJUST_STEPS	16
1798 
1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 					    unsigned long rate_limit,
1801 					    unsigned int ref_th)
1802 {
1803 	unsigned int now, start, th_period, unit_th, th;
1804 	unsigned long nr_cand, ref_cand, diff_cand;
1805 
1806 	now = jiffies_to_msecs(jiffies);
1807 	th_period = sysctl_numa_balancing_scan_period_max;
1808 	start = pgdat->nbp_th_start;
1809 	if (now - start > th_period &&
1810 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 		ref_cand = rate_limit *
1812 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 		th = pgdat->nbp_threshold ? : ref_th;
1817 		if (diff_cand > ref_cand * 11 / 10)
1818 			th = max(th - unit_th, unit_th);
1819 		else if (diff_cand < ref_cand * 9 / 10)
1820 			th = min(th + unit_th, ref_th * 2);
1821 		pgdat->nbp_th_nr_cand = nr_cand;
1822 		pgdat->nbp_threshold = th;
1823 	}
1824 }
1825 
1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827 				int src_nid, int dst_cpu)
1828 {
1829 	struct numa_group *ng = deref_curr_numa_group(p);
1830 	int dst_nid = cpu_to_node(dst_cpu);
1831 	int last_cpupid, this_cpupid;
1832 
1833 	/*
1834 	 * The pages in slow memory node should be migrated according
1835 	 * to hot/cold instead of private/shared.
1836 	 */
1837 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1838 	    !node_is_toptier(src_nid)) {
1839 		struct pglist_data *pgdat;
1840 		unsigned long rate_limit;
1841 		unsigned int latency, th, def_th;
1842 
1843 		pgdat = NODE_DATA(dst_nid);
1844 		if (pgdat_free_space_enough(pgdat)) {
1845 			/* workload changed, reset hot threshold */
1846 			pgdat->nbp_threshold = 0;
1847 			return true;
1848 		}
1849 
1850 		def_th = sysctl_numa_balancing_hot_threshold;
1851 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1852 			(20 - PAGE_SHIFT);
1853 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1854 
1855 		th = pgdat->nbp_threshold ? : def_th;
1856 		latency = numa_hint_fault_latency(folio);
1857 		if (latency >= th)
1858 			return false;
1859 
1860 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1861 						  folio_nr_pages(folio));
1862 	}
1863 
1864 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1865 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1866 
1867 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1868 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1869 		return false;
1870 
1871 	/*
1872 	 * Allow first faults or private faults to migrate immediately early in
1873 	 * the lifetime of a task. The magic number 4 is based on waiting for
1874 	 * two full passes of the "multi-stage node selection" test that is
1875 	 * executed below.
1876 	 */
1877 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1878 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1879 		return true;
1880 
1881 	/*
1882 	 * Multi-stage node selection is used in conjunction with a periodic
1883 	 * migration fault to build a temporal task<->page relation. By using
1884 	 * a two-stage filter we remove short/unlikely relations.
1885 	 *
1886 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1887 	 * a task's usage of a particular page (n_p) per total usage of this
1888 	 * page (n_t) (in a given time-span) to a probability.
1889 	 *
1890 	 * Our periodic faults will sample this probability and getting the
1891 	 * same result twice in a row, given these samples are fully
1892 	 * independent, is then given by P(n)^2, provided our sample period
1893 	 * is sufficiently short compared to the usage pattern.
1894 	 *
1895 	 * This quadric squishes small probabilities, making it less likely we
1896 	 * act on an unlikely task<->page relation.
1897 	 */
1898 	if (!cpupid_pid_unset(last_cpupid) &&
1899 				cpupid_to_nid(last_cpupid) != dst_nid)
1900 		return false;
1901 
1902 	/* Always allow migrate on private faults */
1903 	if (cpupid_match_pid(p, last_cpupid))
1904 		return true;
1905 
1906 	/* A shared fault, but p->numa_group has not been set up yet. */
1907 	if (!ng)
1908 		return true;
1909 
1910 	/*
1911 	 * Destination node is much more heavily used than the source
1912 	 * node? Allow migration.
1913 	 */
1914 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1915 					ACTIVE_NODE_FRACTION)
1916 		return true;
1917 
1918 	/*
1919 	 * Distribute memory according to CPU & memory use on each node,
1920 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1921 	 *
1922 	 * faults_cpu(dst)   3   faults_cpu(src)
1923 	 * --------------- * - > ---------------
1924 	 * faults_mem(dst)   4   faults_mem(src)
1925 	 */
1926 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1927 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1928 }
1929 
1930 /*
1931  * 'numa_type' describes the node at the moment of load balancing.
1932  */
1933 enum numa_type {
1934 	/* The node has spare capacity that can be used to run more tasks.  */
1935 	node_has_spare = 0,
1936 	/*
1937 	 * The node is fully used and the tasks don't compete for more CPU
1938 	 * cycles. Nevertheless, some tasks might wait before running.
1939 	 */
1940 	node_fully_busy,
1941 	/*
1942 	 * The node is overloaded and can't provide expected CPU cycles to all
1943 	 * tasks.
1944 	 */
1945 	node_overloaded
1946 };
1947 
1948 /* Cached statistics for all CPUs within a node */
1949 struct numa_stats {
1950 	unsigned long load;
1951 	unsigned long runnable;
1952 	unsigned long util;
1953 	/* Total compute capacity of CPUs on a node */
1954 	unsigned long compute_capacity;
1955 	unsigned int nr_running;
1956 	unsigned int weight;
1957 	enum numa_type node_type;
1958 	int idle_cpu;
1959 };
1960 
1961 struct task_numa_env {
1962 	struct task_struct *p;
1963 
1964 	int src_cpu, src_nid;
1965 	int dst_cpu, dst_nid;
1966 	int imb_numa_nr;
1967 
1968 	struct numa_stats src_stats, dst_stats;
1969 
1970 	int imbalance_pct;
1971 	int dist;
1972 
1973 	struct task_struct *best_task;
1974 	long best_imp;
1975 	int best_cpu;
1976 };
1977 
1978 static unsigned long cpu_load(struct rq *rq);
1979 static unsigned long cpu_runnable(struct rq *rq);
1980 
1981 static inline enum
1982 numa_type numa_classify(unsigned int imbalance_pct,
1983 			 struct numa_stats *ns)
1984 {
1985 	if ((ns->nr_running > ns->weight) &&
1986 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1987 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1988 		return node_overloaded;
1989 
1990 	if ((ns->nr_running < ns->weight) ||
1991 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1992 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1993 		return node_has_spare;
1994 
1995 	return node_fully_busy;
1996 }
1997 
1998 #ifdef CONFIG_SCHED_SMT
1999 /* Forward declarations of select_idle_sibling helpers */
2000 static inline bool test_idle_cores(int cpu);
2001 static inline int numa_idle_core(int idle_core, int cpu)
2002 {
2003 	if (!static_branch_likely(&sched_smt_present) ||
2004 	    idle_core >= 0 || !test_idle_cores(cpu))
2005 		return idle_core;
2006 
2007 	/*
2008 	 * Prefer cores instead of packing HT siblings
2009 	 * and triggering future load balancing.
2010 	 */
2011 	if (is_core_idle(cpu))
2012 		idle_core = cpu;
2013 
2014 	return idle_core;
2015 }
2016 #else
2017 static inline int numa_idle_core(int idle_core, int cpu)
2018 {
2019 	return idle_core;
2020 }
2021 #endif
2022 
2023 /*
2024  * Gather all necessary information to make NUMA balancing placement
2025  * decisions that are compatible with standard load balancer. This
2026  * borrows code and logic from update_sg_lb_stats but sharing a
2027  * common implementation is impractical.
2028  */
2029 static void update_numa_stats(struct task_numa_env *env,
2030 			      struct numa_stats *ns, int nid,
2031 			      bool find_idle)
2032 {
2033 	int cpu, idle_core = -1;
2034 
2035 	memset(ns, 0, sizeof(*ns));
2036 	ns->idle_cpu = -1;
2037 
2038 	rcu_read_lock();
2039 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2040 		struct rq *rq = cpu_rq(cpu);
2041 
2042 		ns->load += cpu_load(rq);
2043 		ns->runnable += cpu_runnable(rq);
2044 		ns->util += cpu_util_cfs(cpu);
2045 		ns->nr_running += rq->cfs.h_nr_running;
2046 		ns->compute_capacity += capacity_of(cpu);
2047 
2048 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2049 			if (READ_ONCE(rq->numa_migrate_on) ||
2050 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2051 				continue;
2052 
2053 			if (ns->idle_cpu == -1)
2054 				ns->idle_cpu = cpu;
2055 
2056 			idle_core = numa_idle_core(idle_core, cpu);
2057 		}
2058 	}
2059 	rcu_read_unlock();
2060 
2061 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2062 
2063 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2064 
2065 	if (idle_core >= 0)
2066 		ns->idle_cpu = idle_core;
2067 }
2068 
2069 static void task_numa_assign(struct task_numa_env *env,
2070 			     struct task_struct *p, long imp)
2071 {
2072 	struct rq *rq = cpu_rq(env->dst_cpu);
2073 
2074 	/* Check if run-queue part of active NUMA balance. */
2075 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2076 		int cpu;
2077 		int start = env->dst_cpu;
2078 
2079 		/* Find alternative idle CPU. */
2080 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2081 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2082 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2083 				continue;
2084 			}
2085 
2086 			env->dst_cpu = cpu;
2087 			rq = cpu_rq(env->dst_cpu);
2088 			if (!xchg(&rq->numa_migrate_on, 1))
2089 				goto assign;
2090 		}
2091 
2092 		/* Failed to find an alternative idle CPU */
2093 		return;
2094 	}
2095 
2096 assign:
2097 	/*
2098 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2099 	 * found a better CPU to move/swap.
2100 	 */
2101 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2102 		rq = cpu_rq(env->best_cpu);
2103 		WRITE_ONCE(rq->numa_migrate_on, 0);
2104 	}
2105 
2106 	if (env->best_task)
2107 		put_task_struct(env->best_task);
2108 	if (p)
2109 		get_task_struct(p);
2110 
2111 	env->best_task = p;
2112 	env->best_imp = imp;
2113 	env->best_cpu = env->dst_cpu;
2114 }
2115 
2116 static bool load_too_imbalanced(long src_load, long dst_load,
2117 				struct task_numa_env *env)
2118 {
2119 	long imb, old_imb;
2120 	long orig_src_load, orig_dst_load;
2121 	long src_capacity, dst_capacity;
2122 
2123 	/*
2124 	 * The load is corrected for the CPU capacity available on each node.
2125 	 *
2126 	 * src_load        dst_load
2127 	 * ------------ vs ---------
2128 	 * src_capacity    dst_capacity
2129 	 */
2130 	src_capacity = env->src_stats.compute_capacity;
2131 	dst_capacity = env->dst_stats.compute_capacity;
2132 
2133 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2134 
2135 	orig_src_load = env->src_stats.load;
2136 	orig_dst_load = env->dst_stats.load;
2137 
2138 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2139 
2140 	/* Would this change make things worse? */
2141 	return (imb > old_imb);
2142 }
2143 
2144 /*
2145  * Maximum NUMA importance can be 1998 (2*999);
2146  * SMALLIMP @ 30 would be close to 1998/64.
2147  * Used to deter task migration.
2148  */
2149 #define SMALLIMP	30
2150 
2151 /*
2152  * This checks if the overall compute and NUMA accesses of the system would
2153  * be improved if the source tasks was migrated to the target dst_cpu taking
2154  * into account that it might be best if task running on the dst_cpu should
2155  * be exchanged with the source task
2156  */
2157 static bool task_numa_compare(struct task_numa_env *env,
2158 			      long taskimp, long groupimp, bool maymove)
2159 {
2160 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2161 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2162 	long imp = p_ng ? groupimp : taskimp;
2163 	struct task_struct *cur;
2164 	long src_load, dst_load;
2165 	int dist = env->dist;
2166 	long moveimp = imp;
2167 	long load;
2168 	bool stopsearch = false;
2169 
2170 	if (READ_ONCE(dst_rq->numa_migrate_on))
2171 		return false;
2172 
2173 	rcu_read_lock();
2174 	cur = rcu_dereference(dst_rq->curr);
2175 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2176 		cur = NULL;
2177 
2178 	/*
2179 	 * Because we have preemption enabled we can get migrated around and
2180 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2181 	 */
2182 	if (cur == env->p) {
2183 		stopsearch = true;
2184 		goto unlock;
2185 	}
2186 
2187 	if (!cur) {
2188 		if (maymove && moveimp >= env->best_imp)
2189 			goto assign;
2190 		else
2191 			goto unlock;
2192 	}
2193 
2194 	/* Skip this swap candidate if cannot move to the source cpu. */
2195 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2196 		goto unlock;
2197 
2198 	/*
2199 	 * Skip this swap candidate if it is not moving to its preferred
2200 	 * node and the best task is.
2201 	 */
2202 	if (env->best_task &&
2203 	    env->best_task->numa_preferred_nid == env->src_nid &&
2204 	    cur->numa_preferred_nid != env->src_nid) {
2205 		goto unlock;
2206 	}
2207 
2208 	/*
2209 	 * "imp" is the fault differential for the source task between the
2210 	 * source and destination node. Calculate the total differential for
2211 	 * the source task and potential destination task. The more negative
2212 	 * the value is, the more remote accesses that would be expected to
2213 	 * be incurred if the tasks were swapped.
2214 	 *
2215 	 * If dst and source tasks are in the same NUMA group, or not
2216 	 * in any group then look only at task weights.
2217 	 */
2218 	cur_ng = rcu_dereference(cur->numa_group);
2219 	if (cur_ng == p_ng) {
2220 		/*
2221 		 * Do not swap within a group or between tasks that have
2222 		 * no group if there is spare capacity. Swapping does
2223 		 * not address the load imbalance and helps one task at
2224 		 * the cost of punishing another.
2225 		 */
2226 		if (env->dst_stats.node_type == node_has_spare)
2227 			goto unlock;
2228 
2229 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2230 		      task_weight(cur, env->dst_nid, dist);
2231 		/*
2232 		 * Add some hysteresis to prevent swapping the
2233 		 * tasks within a group over tiny differences.
2234 		 */
2235 		if (cur_ng)
2236 			imp -= imp / 16;
2237 	} else {
2238 		/*
2239 		 * Compare the group weights. If a task is all by itself
2240 		 * (not part of a group), use the task weight instead.
2241 		 */
2242 		if (cur_ng && p_ng)
2243 			imp += group_weight(cur, env->src_nid, dist) -
2244 			       group_weight(cur, env->dst_nid, dist);
2245 		else
2246 			imp += task_weight(cur, env->src_nid, dist) -
2247 			       task_weight(cur, env->dst_nid, dist);
2248 	}
2249 
2250 	/* Discourage picking a task already on its preferred node */
2251 	if (cur->numa_preferred_nid == env->dst_nid)
2252 		imp -= imp / 16;
2253 
2254 	/*
2255 	 * Encourage picking a task that moves to its preferred node.
2256 	 * This potentially makes imp larger than it's maximum of
2257 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2258 	 * case, it does not matter.
2259 	 */
2260 	if (cur->numa_preferred_nid == env->src_nid)
2261 		imp += imp / 8;
2262 
2263 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2264 		imp = moveimp;
2265 		cur = NULL;
2266 		goto assign;
2267 	}
2268 
2269 	/*
2270 	 * Prefer swapping with a task moving to its preferred node over a
2271 	 * task that is not.
2272 	 */
2273 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2274 	    env->best_task->numa_preferred_nid != env->src_nid) {
2275 		goto assign;
2276 	}
2277 
2278 	/*
2279 	 * If the NUMA importance is less than SMALLIMP,
2280 	 * task migration might only result in ping pong
2281 	 * of tasks and also hurt performance due to cache
2282 	 * misses.
2283 	 */
2284 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2285 		goto unlock;
2286 
2287 	/*
2288 	 * In the overloaded case, try and keep the load balanced.
2289 	 */
2290 	load = task_h_load(env->p) - task_h_load(cur);
2291 	if (!load)
2292 		goto assign;
2293 
2294 	dst_load = env->dst_stats.load + load;
2295 	src_load = env->src_stats.load - load;
2296 
2297 	if (load_too_imbalanced(src_load, dst_load, env))
2298 		goto unlock;
2299 
2300 assign:
2301 	/* Evaluate an idle CPU for a task numa move. */
2302 	if (!cur) {
2303 		int cpu = env->dst_stats.idle_cpu;
2304 
2305 		/* Nothing cached so current CPU went idle since the search. */
2306 		if (cpu < 0)
2307 			cpu = env->dst_cpu;
2308 
2309 		/*
2310 		 * If the CPU is no longer truly idle and the previous best CPU
2311 		 * is, keep using it.
2312 		 */
2313 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2314 		    idle_cpu(env->best_cpu)) {
2315 			cpu = env->best_cpu;
2316 		}
2317 
2318 		env->dst_cpu = cpu;
2319 	}
2320 
2321 	task_numa_assign(env, cur, imp);
2322 
2323 	/*
2324 	 * If a move to idle is allowed because there is capacity or load
2325 	 * balance improves then stop the search. While a better swap
2326 	 * candidate may exist, a search is not free.
2327 	 */
2328 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2329 		stopsearch = true;
2330 
2331 	/*
2332 	 * If a swap candidate must be identified and the current best task
2333 	 * moves its preferred node then stop the search.
2334 	 */
2335 	if (!maymove && env->best_task &&
2336 	    env->best_task->numa_preferred_nid == env->src_nid) {
2337 		stopsearch = true;
2338 	}
2339 unlock:
2340 	rcu_read_unlock();
2341 
2342 	return stopsearch;
2343 }
2344 
2345 static void task_numa_find_cpu(struct task_numa_env *env,
2346 				long taskimp, long groupimp)
2347 {
2348 	bool maymove = false;
2349 	int cpu;
2350 
2351 	/*
2352 	 * If dst node has spare capacity, then check if there is an
2353 	 * imbalance that would be overruled by the load balancer.
2354 	 */
2355 	if (env->dst_stats.node_type == node_has_spare) {
2356 		unsigned int imbalance;
2357 		int src_running, dst_running;
2358 
2359 		/*
2360 		 * Would movement cause an imbalance? Note that if src has
2361 		 * more running tasks that the imbalance is ignored as the
2362 		 * move improves the imbalance from the perspective of the
2363 		 * CPU load balancer.
2364 		 * */
2365 		src_running = env->src_stats.nr_running - 1;
2366 		dst_running = env->dst_stats.nr_running + 1;
2367 		imbalance = max(0, dst_running - src_running);
2368 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2369 						  env->imb_numa_nr);
2370 
2371 		/* Use idle CPU if there is no imbalance */
2372 		if (!imbalance) {
2373 			maymove = true;
2374 			if (env->dst_stats.idle_cpu >= 0) {
2375 				env->dst_cpu = env->dst_stats.idle_cpu;
2376 				task_numa_assign(env, NULL, 0);
2377 				return;
2378 			}
2379 		}
2380 	} else {
2381 		long src_load, dst_load, load;
2382 		/*
2383 		 * If the improvement from just moving env->p direction is better
2384 		 * than swapping tasks around, check if a move is possible.
2385 		 */
2386 		load = task_h_load(env->p);
2387 		dst_load = env->dst_stats.load + load;
2388 		src_load = env->src_stats.load - load;
2389 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2390 	}
2391 
2392 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2393 		/* Skip this CPU if the source task cannot migrate */
2394 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2395 			continue;
2396 
2397 		env->dst_cpu = cpu;
2398 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2399 			break;
2400 	}
2401 }
2402 
2403 static int task_numa_migrate(struct task_struct *p)
2404 {
2405 	struct task_numa_env env = {
2406 		.p = p,
2407 
2408 		.src_cpu = task_cpu(p),
2409 		.src_nid = task_node(p),
2410 
2411 		.imbalance_pct = 112,
2412 
2413 		.best_task = NULL,
2414 		.best_imp = 0,
2415 		.best_cpu = -1,
2416 	};
2417 	unsigned long taskweight, groupweight;
2418 	struct sched_domain *sd;
2419 	long taskimp, groupimp;
2420 	struct numa_group *ng;
2421 	struct rq *best_rq;
2422 	int nid, ret, dist;
2423 
2424 	/*
2425 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2426 	 * imbalance and would be the first to start moving tasks about.
2427 	 *
2428 	 * And we want to avoid any moving of tasks about, as that would create
2429 	 * random movement of tasks -- counter the numa conditions we're trying
2430 	 * to satisfy here.
2431 	 */
2432 	rcu_read_lock();
2433 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2434 	if (sd) {
2435 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2436 		env.imb_numa_nr = sd->imb_numa_nr;
2437 	}
2438 	rcu_read_unlock();
2439 
2440 	/*
2441 	 * Cpusets can break the scheduler domain tree into smaller
2442 	 * balance domains, some of which do not cross NUMA boundaries.
2443 	 * Tasks that are "trapped" in such domains cannot be migrated
2444 	 * elsewhere, so there is no point in (re)trying.
2445 	 */
2446 	if (unlikely(!sd)) {
2447 		sched_setnuma(p, task_node(p));
2448 		return -EINVAL;
2449 	}
2450 
2451 	env.dst_nid = p->numa_preferred_nid;
2452 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2453 	taskweight = task_weight(p, env.src_nid, dist);
2454 	groupweight = group_weight(p, env.src_nid, dist);
2455 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2456 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2457 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2458 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2459 
2460 	/* Try to find a spot on the preferred nid. */
2461 	task_numa_find_cpu(&env, taskimp, groupimp);
2462 
2463 	/*
2464 	 * Look at other nodes in these cases:
2465 	 * - there is no space available on the preferred_nid
2466 	 * - the task is part of a numa_group that is interleaved across
2467 	 *   multiple NUMA nodes; in order to better consolidate the group,
2468 	 *   we need to check other locations.
2469 	 */
2470 	ng = deref_curr_numa_group(p);
2471 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2472 		for_each_node_state(nid, N_CPU) {
2473 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2474 				continue;
2475 
2476 			dist = node_distance(env.src_nid, env.dst_nid);
2477 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2478 						dist != env.dist) {
2479 				taskweight = task_weight(p, env.src_nid, dist);
2480 				groupweight = group_weight(p, env.src_nid, dist);
2481 			}
2482 
2483 			/* Only consider nodes where both task and groups benefit */
2484 			taskimp = task_weight(p, nid, dist) - taskweight;
2485 			groupimp = group_weight(p, nid, dist) - groupweight;
2486 			if (taskimp < 0 && groupimp < 0)
2487 				continue;
2488 
2489 			env.dist = dist;
2490 			env.dst_nid = nid;
2491 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2492 			task_numa_find_cpu(&env, taskimp, groupimp);
2493 		}
2494 	}
2495 
2496 	/*
2497 	 * If the task is part of a workload that spans multiple NUMA nodes,
2498 	 * and is migrating into one of the workload's active nodes, remember
2499 	 * this node as the task's preferred numa node, so the workload can
2500 	 * settle down.
2501 	 * A task that migrated to a second choice node will be better off
2502 	 * trying for a better one later. Do not set the preferred node here.
2503 	 */
2504 	if (ng) {
2505 		if (env.best_cpu == -1)
2506 			nid = env.src_nid;
2507 		else
2508 			nid = cpu_to_node(env.best_cpu);
2509 
2510 		if (nid != p->numa_preferred_nid)
2511 			sched_setnuma(p, nid);
2512 	}
2513 
2514 	/* No better CPU than the current one was found. */
2515 	if (env.best_cpu == -1) {
2516 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2517 		return -EAGAIN;
2518 	}
2519 
2520 	best_rq = cpu_rq(env.best_cpu);
2521 	if (env.best_task == NULL) {
2522 		ret = migrate_task_to(p, env.best_cpu);
2523 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2524 		if (ret != 0)
2525 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2526 		return ret;
2527 	}
2528 
2529 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2530 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2531 
2532 	if (ret != 0)
2533 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2534 	put_task_struct(env.best_task);
2535 	return ret;
2536 }
2537 
2538 /* Attempt to migrate a task to a CPU on the preferred node. */
2539 static void numa_migrate_preferred(struct task_struct *p)
2540 {
2541 	unsigned long interval = HZ;
2542 
2543 	/* This task has no NUMA fault statistics yet */
2544 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2545 		return;
2546 
2547 	/* Periodically retry migrating the task to the preferred node */
2548 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2549 	p->numa_migrate_retry = jiffies + interval;
2550 
2551 	/* Success if task is already running on preferred CPU */
2552 	if (task_node(p) == p->numa_preferred_nid)
2553 		return;
2554 
2555 	/* Otherwise, try migrate to a CPU on the preferred node */
2556 	task_numa_migrate(p);
2557 }
2558 
2559 /*
2560  * Find out how many nodes the workload is actively running on. Do this by
2561  * tracking the nodes from which NUMA hinting faults are triggered. This can
2562  * be different from the set of nodes where the workload's memory is currently
2563  * located.
2564  */
2565 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2566 {
2567 	unsigned long faults, max_faults = 0;
2568 	int nid, active_nodes = 0;
2569 
2570 	for_each_node_state(nid, N_CPU) {
2571 		faults = group_faults_cpu(numa_group, nid);
2572 		if (faults > max_faults)
2573 			max_faults = faults;
2574 	}
2575 
2576 	for_each_node_state(nid, N_CPU) {
2577 		faults = group_faults_cpu(numa_group, nid);
2578 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2579 			active_nodes++;
2580 	}
2581 
2582 	numa_group->max_faults_cpu = max_faults;
2583 	numa_group->active_nodes = active_nodes;
2584 }
2585 
2586 /*
2587  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2588  * increments. The more local the fault statistics are, the higher the scan
2589  * period will be for the next scan window. If local/(local+remote) ratio is
2590  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2591  * the scan period will decrease. Aim for 70% local accesses.
2592  */
2593 #define NUMA_PERIOD_SLOTS 10
2594 #define NUMA_PERIOD_THRESHOLD 7
2595 
2596 /*
2597  * Increase the scan period (slow down scanning) if the majority of
2598  * our memory is already on our local node, or if the majority of
2599  * the page accesses are shared with other processes.
2600  * Otherwise, decrease the scan period.
2601  */
2602 static void update_task_scan_period(struct task_struct *p,
2603 			unsigned long shared, unsigned long private)
2604 {
2605 	unsigned int period_slot;
2606 	int lr_ratio, ps_ratio;
2607 	int diff;
2608 
2609 	unsigned long remote = p->numa_faults_locality[0];
2610 	unsigned long local = p->numa_faults_locality[1];
2611 
2612 	/*
2613 	 * If there were no record hinting faults then either the task is
2614 	 * completely idle or all activity is in areas that are not of interest
2615 	 * to automatic numa balancing. Related to that, if there were failed
2616 	 * migration then it implies we are migrating too quickly or the local
2617 	 * node is overloaded. In either case, scan slower
2618 	 */
2619 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2620 		p->numa_scan_period = min(p->numa_scan_period_max,
2621 			p->numa_scan_period << 1);
2622 
2623 		p->mm->numa_next_scan = jiffies +
2624 			msecs_to_jiffies(p->numa_scan_period);
2625 
2626 		return;
2627 	}
2628 
2629 	/*
2630 	 * Prepare to scale scan period relative to the current period.
2631 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2632 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2633 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2634 	 */
2635 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2636 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2637 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2638 
2639 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2640 		/*
2641 		 * Most memory accesses are local. There is no need to
2642 		 * do fast NUMA scanning, since memory is already local.
2643 		 */
2644 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2645 		if (!slot)
2646 			slot = 1;
2647 		diff = slot * period_slot;
2648 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2649 		/*
2650 		 * Most memory accesses are shared with other tasks.
2651 		 * There is no point in continuing fast NUMA scanning,
2652 		 * since other tasks may just move the memory elsewhere.
2653 		 */
2654 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2655 		if (!slot)
2656 			slot = 1;
2657 		diff = slot * period_slot;
2658 	} else {
2659 		/*
2660 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2661 		 * yet they are not on the local NUMA node. Speed up
2662 		 * NUMA scanning to get the memory moved over.
2663 		 */
2664 		int ratio = max(lr_ratio, ps_ratio);
2665 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2666 	}
2667 
2668 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2669 			task_scan_min(p), task_scan_max(p));
2670 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2671 }
2672 
2673 /*
2674  * Get the fraction of time the task has been running since the last
2675  * NUMA placement cycle. The scheduler keeps similar statistics, but
2676  * decays those on a 32ms period, which is orders of magnitude off
2677  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2678  * stats only if the task is so new there are no NUMA statistics yet.
2679  */
2680 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2681 {
2682 	u64 runtime, delta, now;
2683 	/* Use the start of this time slice to avoid calculations. */
2684 	now = p->se.exec_start;
2685 	runtime = p->se.sum_exec_runtime;
2686 
2687 	if (p->last_task_numa_placement) {
2688 		delta = runtime - p->last_sum_exec_runtime;
2689 		*period = now - p->last_task_numa_placement;
2690 
2691 		/* Avoid time going backwards, prevent potential divide error: */
2692 		if (unlikely((s64)*period < 0))
2693 			*period = 0;
2694 	} else {
2695 		delta = p->se.avg.load_sum;
2696 		*period = LOAD_AVG_MAX;
2697 	}
2698 
2699 	p->last_sum_exec_runtime = runtime;
2700 	p->last_task_numa_placement = now;
2701 
2702 	return delta;
2703 }
2704 
2705 /*
2706  * Determine the preferred nid for a task in a numa_group. This needs to
2707  * be done in a way that produces consistent results with group_weight,
2708  * otherwise workloads might not converge.
2709  */
2710 static int preferred_group_nid(struct task_struct *p, int nid)
2711 {
2712 	nodemask_t nodes;
2713 	int dist;
2714 
2715 	/* Direct connections between all NUMA nodes. */
2716 	if (sched_numa_topology_type == NUMA_DIRECT)
2717 		return nid;
2718 
2719 	/*
2720 	 * On a system with glueless mesh NUMA topology, group_weight
2721 	 * scores nodes according to the number of NUMA hinting faults on
2722 	 * both the node itself, and on nearby nodes.
2723 	 */
2724 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2725 		unsigned long score, max_score = 0;
2726 		int node, max_node = nid;
2727 
2728 		dist = sched_max_numa_distance;
2729 
2730 		for_each_node_state(node, N_CPU) {
2731 			score = group_weight(p, node, dist);
2732 			if (score > max_score) {
2733 				max_score = score;
2734 				max_node = node;
2735 			}
2736 		}
2737 		return max_node;
2738 	}
2739 
2740 	/*
2741 	 * Finding the preferred nid in a system with NUMA backplane
2742 	 * interconnect topology is more involved. The goal is to locate
2743 	 * tasks from numa_groups near each other in the system, and
2744 	 * untangle workloads from different sides of the system. This requires
2745 	 * searching down the hierarchy of node groups, recursively searching
2746 	 * inside the highest scoring group of nodes. The nodemask tricks
2747 	 * keep the complexity of the search down.
2748 	 */
2749 	nodes = node_states[N_CPU];
2750 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2751 		unsigned long max_faults = 0;
2752 		nodemask_t max_group = NODE_MASK_NONE;
2753 		int a, b;
2754 
2755 		/* Are there nodes at this distance from each other? */
2756 		if (!find_numa_distance(dist))
2757 			continue;
2758 
2759 		for_each_node_mask(a, nodes) {
2760 			unsigned long faults = 0;
2761 			nodemask_t this_group;
2762 			nodes_clear(this_group);
2763 
2764 			/* Sum group's NUMA faults; includes a==b case. */
2765 			for_each_node_mask(b, nodes) {
2766 				if (node_distance(a, b) < dist) {
2767 					faults += group_faults(p, b);
2768 					node_set(b, this_group);
2769 					node_clear(b, nodes);
2770 				}
2771 			}
2772 
2773 			/* Remember the top group. */
2774 			if (faults > max_faults) {
2775 				max_faults = faults;
2776 				max_group = this_group;
2777 				/*
2778 				 * subtle: at the smallest distance there is
2779 				 * just one node left in each "group", the
2780 				 * winner is the preferred nid.
2781 				 */
2782 				nid = a;
2783 			}
2784 		}
2785 		/* Next round, evaluate the nodes within max_group. */
2786 		if (!max_faults)
2787 			break;
2788 		nodes = max_group;
2789 	}
2790 	return nid;
2791 }
2792 
2793 static void task_numa_placement(struct task_struct *p)
2794 {
2795 	int seq, nid, max_nid = NUMA_NO_NODE;
2796 	unsigned long max_faults = 0;
2797 	unsigned long fault_types[2] = { 0, 0 };
2798 	unsigned long total_faults;
2799 	u64 runtime, period;
2800 	spinlock_t *group_lock = NULL;
2801 	struct numa_group *ng;
2802 
2803 	/*
2804 	 * The p->mm->numa_scan_seq field gets updated without
2805 	 * exclusive access. Use READ_ONCE() here to ensure
2806 	 * that the field is read in a single access:
2807 	 */
2808 	seq = READ_ONCE(p->mm->numa_scan_seq);
2809 	if (p->numa_scan_seq == seq)
2810 		return;
2811 	p->numa_scan_seq = seq;
2812 	p->numa_scan_period_max = task_scan_max(p);
2813 
2814 	total_faults = p->numa_faults_locality[0] +
2815 		       p->numa_faults_locality[1];
2816 	runtime = numa_get_avg_runtime(p, &period);
2817 
2818 	/* If the task is part of a group prevent parallel updates to group stats */
2819 	ng = deref_curr_numa_group(p);
2820 	if (ng) {
2821 		group_lock = &ng->lock;
2822 		spin_lock_irq(group_lock);
2823 	}
2824 
2825 	/* Find the node with the highest number of faults */
2826 	for_each_online_node(nid) {
2827 		/* Keep track of the offsets in numa_faults array */
2828 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2829 		unsigned long faults = 0, group_faults = 0;
2830 		int priv;
2831 
2832 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2833 			long diff, f_diff, f_weight;
2834 
2835 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2836 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2837 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2838 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2839 
2840 			/* Decay existing window, copy faults since last scan */
2841 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2842 			fault_types[priv] += p->numa_faults[membuf_idx];
2843 			p->numa_faults[membuf_idx] = 0;
2844 
2845 			/*
2846 			 * Normalize the faults_from, so all tasks in a group
2847 			 * count according to CPU use, instead of by the raw
2848 			 * number of faults. Tasks with little runtime have
2849 			 * little over-all impact on throughput, and thus their
2850 			 * faults are less important.
2851 			 */
2852 			f_weight = div64_u64(runtime << 16, period + 1);
2853 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2854 				   (total_faults + 1);
2855 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2856 			p->numa_faults[cpubuf_idx] = 0;
2857 
2858 			p->numa_faults[mem_idx] += diff;
2859 			p->numa_faults[cpu_idx] += f_diff;
2860 			faults += p->numa_faults[mem_idx];
2861 			p->total_numa_faults += diff;
2862 			if (ng) {
2863 				/*
2864 				 * safe because we can only change our own group
2865 				 *
2866 				 * mem_idx represents the offset for a given
2867 				 * nid and priv in a specific region because it
2868 				 * is at the beginning of the numa_faults array.
2869 				 */
2870 				ng->faults[mem_idx] += diff;
2871 				ng->faults[cpu_idx] += f_diff;
2872 				ng->total_faults += diff;
2873 				group_faults += ng->faults[mem_idx];
2874 			}
2875 		}
2876 
2877 		if (!ng) {
2878 			if (faults > max_faults) {
2879 				max_faults = faults;
2880 				max_nid = nid;
2881 			}
2882 		} else if (group_faults > max_faults) {
2883 			max_faults = group_faults;
2884 			max_nid = nid;
2885 		}
2886 	}
2887 
2888 	/* Cannot migrate task to CPU-less node */
2889 	max_nid = numa_nearest_node(max_nid, N_CPU);
2890 
2891 	if (ng) {
2892 		numa_group_count_active_nodes(ng);
2893 		spin_unlock_irq(group_lock);
2894 		max_nid = preferred_group_nid(p, max_nid);
2895 	}
2896 
2897 	if (max_faults) {
2898 		/* Set the new preferred node */
2899 		if (max_nid != p->numa_preferred_nid)
2900 			sched_setnuma(p, max_nid);
2901 	}
2902 
2903 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2904 }
2905 
2906 static inline int get_numa_group(struct numa_group *grp)
2907 {
2908 	return refcount_inc_not_zero(&grp->refcount);
2909 }
2910 
2911 static inline void put_numa_group(struct numa_group *grp)
2912 {
2913 	if (refcount_dec_and_test(&grp->refcount))
2914 		kfree_rcu(grp, rcu);
2915 }
2916 
2917 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2918 			int *priv)
2919 {
2920 	struct numa_group *grp, *my_grp;
2921 	struct task_struct *tsk;
2922 	bool join = false;
2923 	int cpu = cpupid_to_cpu(cpupid);
2924 	int i;
2925 
2926 	if (unlikely(!deref_curr_numa_group(p))) {
2927 		unsigned int size = sizeof(struct numa_group) +
2928 				    NR_NUMA_HINT_FAULT_STATS *
2929 				    nr_node_ids * sizeof(unsigned long);
2930 
2931 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2932 		if (!grp)
2933 			return;
2934 
2935 		refcount_set(&grp->refcount, 1);
2936 		grp->active_nodes = 1;
2937 		grp->max_faults_cpu = 0;
2938 		spin_lock_init(&grp->lock);
2939 		grp->gid = p->pid;
2940 
2941 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2942 			grp->faults[i] = p->numa_faults[i];
2943 
2944 		grp->total_faults = p->total_numa_faults;
2945 
2946 		grp->nr_tasks++;
2947 		rcu_assign_pointer(p->numa_group, grp);
2948 	}
2949 
2950 	rcu_read_lock();
2951 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2952 
2953 	if (!cpupid_match_pid(tsk, cpupid))
2954 		goto no_join;
2955 
2956 	grp = rcu_dereference(tsk->numa_group);
2957 	if (!grp)
2958 		goto no_join;
2959 
2960 	my_grp = deref_curr_numa_group(p);
2961 	if (grp == my_grp)
2962 		goto no_join;
2963 
2964 	/*
2965 	 * Only join the other group if its bigger; if we're the bigger group,
2966 	 * the other task will join us.
2967 	 */
2968 	if (my_grp->nr_tasks > grp->nr_tasks)
2969 		goto no_join;
2970 
2971 	/*
2972 	 * Tie-break on the grp address.
2973 	 */
2974 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2975 		goto no_join;
2976 
2977 	/* Always join threads in the same process. */
2978 	if (tsk->mm == current->mm)
2979 		join = true;
2980 
2981 	/* Simple filter to avoid false positives due to PID collisions */
2982 	if (flags & TNF_SHARED)
2983 		join = true;
2984 
2985 	/* Update priv based on whether false sharing was detected */
2986 	*priv = !join;
2987 
2988 	if (join && !get_numa_group(grp))
2989 		goto no_join;
2990 
2991 	rcu_read_unlock();
2992 
2993 	if (!join)
2994 		return;
2995 
2996 	WARN_ON_ONCE(irqs_disabled());
2997 	double_lock_irq(&my_grp->lock, &grp->lock);
2998 
2999 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3000 		my_grp->faults[i] -= p->numa_faults[i];
3001 		grp->faults[i] += p->numa_faults[i];
3002 	}
3003 	my_grp->total_faults -= p->total_numa_faults;
3004 	grp->total_faults += p->total_numa_faults;
3005 
3006 	my_grp->nr_tasks--;
3007 	grp->nr_tasks++;
3008 
3009 	spin_unlock(&my_grp->lock);
3010 	spin_unlock_irq(&grp->lock);
3011 
3012 	rcu_assign_pointer(p->numa_group, grp);
3013 
3014 	put_numa_group(my_grp);
3015 	return;
3016 
3017 no_join:
3018 	rcu_read_unlock();
3019 	return;
3020 }
3021 
3022 /*
3023  * Get rid of NUMA statistics associated with a task (either current or dead).
3024  * If @final is set, the task is dead and has reached refcount zero, so we can
3025  * safely free all relevant data structures. Otherwise, there might be
3026  * concurrent reads from places like load balancing and procfs, and we should
3027  * reset the data back to default state without freeing ->numa_faults.
3028  */
3029 void task_numa_free(struct task_struct *p, bool final)
3030 {
3031 	/* safe: p either is current or is being freed by current */
3032 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3033 	unsigned long *numa_faults = p->numa_faults;
3034 	unsigned long flags;
3035 	int i;
3036 
3037 	if (!numa_faults)
3038 		return;
3039 
3040 	if (grp) {
3041 		spin_lock_irqsave(&grp->lock, flags);
3042 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3043 			grp->faults[i] -= p->numa_faults[i];
3044 		grp->total_faults -= p->total_numa_faults;
3045 
3046 		grp->nr_tasks--;
3047 		spin_unlock_irqrestore(&grp->lock, flags);
3048 		RCU_INIT_POINTER(p->numa_group, NULL);
3049 		put_numa_group(grp);
3050 	}
3051 
3052 	if (final) {
3053 		p->numa_faults = NULL;
3054 		kfree(numa_faults);
3055 	} else {
3056 		p->total_numa_faults = 0;
3057 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3058 			numa_faults[i] = 0;
3059 	}
3060 }
3061 
3062 /*
3063  * Got a PROT_NONE fault for a page on @node.
3064  */
3065 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3066 {
3067 	struct task_struct *p = current;
3068 	bool migrated = flags & TNF_MIGRATED;
3069 	int cpu_node = task_node(current);
3070 	int local = !!(flags & TNF_FAULT_LOCAL);
3071 	struct numa_group *ng;
3072 	int priv;
3073 
3074 	if (!static_branch_likely(&sched_numa_balancing))
3075 		return;
3076 
3077 	/* for example, ksmd faulting in a user's mm */
3078 	if (!p->mm)
3079 		return;
3080 
3081 	/*
3082 	 * NUMA faults statistics are unnecessary for the slow memory
3083 	 * node for memory tiering mode.
3084 	 */
3085 	if (!node_is_toptier(mem_node) &&
3086 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3087 	     !cpupid_valid(last_cpupid)))
3088 		return;
3089 
3090 	/* Allocate buffer to track faults on a per-node basis */
3091 	if (unlikely(!p->numa_faults)) {
3092 		int size = sizeof(*p->numa_faults) *
3093 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3094 
3095 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3096 		if (!p->numa_faults)
3097 			return;
3098 
3099 		p->total_numa_faults = 0;
3100 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3101 	}
3102 
3103 	/*
3104 	 * First accesses are treated as private, otherwise consider accesses
3105 	 * to be private if the accessing pid has not changed
3106 	 */
3107 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3108 		priv = 1;
3109 	} else {
3110 		priv = cpupid_match_pid(p, last_cpupid);
3111 		if (!priv && !(flags & TNF_NO_GROUP))
3112 			task_numa_group(p, last_cpupid, flags, &priv);
3113 	}
3114 
3115 	/*
3116 	 * If a workload spans multiple NUMA nodes, a shared fault that
3117 	 * occurs wholly within the set of nodes that the workload is
3118 	 * actively using should be counted as local. This allows the
3119 	 * scan rate to slow down when a workload has settled down.
3120 	 */
3121 	ng = deref_curr_numa_group(p);
3122 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3123 				numa_is_active_node(cpu_node, ng) &&
3124 				numa_is_active_node(mem_node, ng))
3125 		local = 1;
3126 
3127 	/*
3128 	 * Retry to migrate task to preferred node periodically, in case it
3129 	 * previously failed, or the scheduler moved us.
3130 	 */
3131 	if (time_after(jiffies, p->numa_migrate_retry)) {
3132 		task_numa_placement(p);
3133 		numa_migrate_preferred(p);
3134 	}
3135 
3136 	if (migrated)
3137 		p->numa_pages_migrated += pages;
3138 	if (flags & TNF_MIGRATE_FAIL)
3139 		p->numa_faults_locality[2] += pages;
3140 
3141 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3142 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3143 	p->numa_faults_locality[local] += pages;
3144 }
3145 
3146 static void reset_ptenuma_scan(struct task_struct *p)
3147 {
3148 	/*
3149 	 * We only did a read acquisition of the mmap sem, so
3150 	 * p->mm->numa_scan_seq is written to without exclusive access
3151 	 * and the update is not guaranteed to be atomic. That's not
3152 	 * much of an issue though, since this is just used for
3153 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3154 	 * expensive, to avoid any form of compiler optimizations:
3155 	 */
3156 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3157 	p->mm->numa_scan_offset = 0;
3158 }
3159 
3160 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3161 {
3162 	unsigned long pids;
3163 	/*
3164 	 * Allow unconditional access first two times, so that all the (pages)
3165 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3166 	 * This is also done to avoid any side effect of task scanning
3167 	 * amplifying the unfairness of disjoint set of VMAs' access.
3168 	 */
3169 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3170 		return true;
3171 
3172 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3173 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3174 		return true;
3175 
3176 	/*
3177 	 * Complete a scan that has already started regardless of PID access, or
3178 	 * some VMAs may never be scanned in multi-threaded applications:
3179 	 */
3180 	if (mm->numa_scan_offset > vma->vm_start) {
3181 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3182 		return true;
3183 	}
3184 
3185 	return false;
3186 }
3187 
3188 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3189 
3190 /*
3191  * The expensive part of numa migration is done from task_work context.
3192  * Triggered from task_tick_numa().
3193  */
3194 static void task_numa_work(struct callback_head *work)
3195 {
3196 	unsigned long migrate, next_scan, now = jiffies;
3197 	struct task_struct *p = current;
3198 	struct mm_struct *mm = p->mm;
3199 	u64 runtime = p->se.sum_exec_runtime;
3200 	struct vm_area_struct *vma;
3201 	unsigned long start, end;
3202 	unsigned long nr_pte_updates = 0;
3203 	long pages, virtpages;
3204 	struct vma_iterator vmi;
3205 	bool vma_pids_skipped;
3206 	bool vma_pids_forced = false;
3207 
3208 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3209 
3210 	work->next = work;
3211 	/*
3212 	 * Who cares about NUMA placement when they're dying.
3213 	 *
3214 	 * NOTE: make sure not to dereference p->mm before this check,
3215 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3216 	 * without p->mm even though we still had it when we enqueued this
3217 	 * work.
3218 	 */
3219 	if (p->flags & PF_EXITING)
3220 		return;
3221 
3222 	if (!mm->numa_next_scan) {
3223 		mm->numa_next_scan = now +
3224 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3225 	}
3226 
3227 	/*
3228 	 * Enforce maximal scan/migration frequency..
3229 	 */
3230 	migrate = mm->numa_next_scan;
3231 	if (time_before(now, migrate))
3232 		return;
3233 
3234 	if (p->numa_scan_period == 0) {
3235 		p->numa_scan_period_max = task_scan_max(p);
3236 		p->numa_scan_period = task_scan_start(p);
3237 	}
3238 
3239 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3240 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3241 		return;
3242 
3243 	/*
3244 	 * Delay this task enough that another task of this mm will likely win
3245 	 * the next time around.
3246 	 */
3247 	p->node_stamp += 2 * TICK_NSEC;
3248 
3249 	pages = sysctl_numa_balancing_scan_size;
3250 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3251 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3252 	if (!pages)
3253 		return;
3254 
3255 
3256 	if (!mmap_read_trylock(mm))
3257 		return;
3258 
3259 	/*
3260 	 * VMAs are skipped if the current PID has not trapped a fault within
3261 	 * the VMA recently. Allow scanning to be forced if there is no
3262 	 * suitable VMA remaining.
3263 	 */
3264 	vma_pids_skipped = false;
3265 
3266 retry_pids:
3267 	start = mm->numa_scan_offset;
3268 	vma_iter_init(&vmi, mm, start);
3269 	vma = vma_next(&vmi);
3270 	if (!vma) {
3271 		reset_ptenuma_scan(p);
3272 		start = 0;
3273 		vma_iter_set(&vmi, start);
3274 		vma = vma_next(&vmi);
3275 	}
3276 
3277 	do {
3278 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3279 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3280 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3281 			continue;
3282 		}
3283 
3284 		/*
3285 		 * Shared library pages mapped by multiple processes are not
3286 		 * migrated as it is expected they are cache replicated. Avoid
3287 		 * hinting faults in read-only file-backed mappings or the vdso
3288 		 * as migrating the pages will be of marginal benefit.
3289 		 */
3290 		if (!vma->vm_mm ||
3291 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3292 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3293 			continue;
3294 		}
3295 
3296 		/*
3297 		 * Skip inaccessible VMAs to avoid any confusion between
3298 		 * PROT_NONE and NUMA hinting ptes
3299 		 */
3300 		if (!vma_is_accessible(vma)) {
3301 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3302 			continue;
3303 		}
3304 
3305 		/* Initialise new per-VMA NUMAB state. */
3306 		if (!vma->numab_state) {
3307 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3308 				GFP_KERNEL);
3309 			if (!vma->numab_state)
3310 				continue;
3311 
3312 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3313 
3314 			vma->numab_state->next_scan = now +
3315 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3316 
3317 			/* Reset happens after 4 times scan delay of scan start */
3318 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3319 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3320 
3321 			/*
3322 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3323 			 * to prevent VMAs being skipped prematurely on the
3324 			 * first scan:
3325 			 */
3326 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3327 		}
3328 
3329 		/*
3330 		 * Scanning the VMA's of short lived tasks add more overhead. So
3331 		 * delay the scan for new VMAs.
3332 		 */
3333 		if (mm->numa_scan_seq && time_before(jiffies,
3334 						vma->numab_state->next_scan)) {
3335 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3336 			continue;
3337 		}
3338 
3339 		/* RESET access PIDs regularly for old VMAs. */
3340 		if (mm->numa_scan_seq &&
3341 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3342 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3343 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3344 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3345 			vma->numab_state->pids_active[1] = 0;
3346 		}
3347 
3348 		/* Do not rescan VMAs twice within the same sequence. */
3349 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3350 			mm->numa_scan_offset = vma->vm_end;
3351 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3352 			continue;
3353 		}
3354 
3355 		/*
3356 		 * Do not scan the VMA if task has not accessed it, unless no other
3357 		 * VMA candidate exists.
3358 		 */
3359 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3360 			vma_pids_skipped = true;
3361 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3362 			continue;
3363 		}
3364 
3365 		do {
3366 			start = max(start, vma->vm_start);
3367 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3368 			end = min(end, vma->vm_end);
3369 			nr_pte_updates = change_prot_numa(vma, start, end);
3370 
3371 			/*
3372 			 * Try to scan sysctl_numa_balancing_size worth of
3373 			 * hpages that have at least one present PTE that
3374 			 * is not already pte-numa. If the VMA contains
3375 			 * areas that are unused or already full of prot_numa
3376 			 * PTEs, scan up to virtpages, to skip through those
3377 			 * areas faster.
3378 			 */
3379 			if (nr_pte_updates)
3380 				pages -= (end - start) >> PAGE_SHIFT;
3381 			virtpages -= (end - start) >> PAGE_SHIFT;
3382 
3383 			start = end;
3384 			if (pages <= 0 || virtpages <= 0)
3385 				goto out;
3386 
3387 			cond_resched();
3388 		} while (end != vma->vm_end);
3389 
3390 		/* VMA scan is complete, do not scan until next sequence. */
3391 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3392 
3393 		/*
3394 		 * Only force scan within one VMA at a time, to limit the
3395 		 * cost of scanning a potentially uninteresting VMA.
3396 		 */
3397 		if (vma_pids_forced)
3398 			break;
3399 	} for_each_vma(vmi, vma);
3400 
3401 	/*
3402 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3403 	 * not accessing the VMA previously, then force a scan to ensure
3404 	 * forward progress:
3405 	 */
3406 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3407 		vma_pids_forced = true;
3408 		goto retry_pids;
3409 	}
3410 
3411 out:
3412 	/*
3413 	 * It is possible to reach the end of the VMA list but the last few
3414 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3415 	 * would find the !migratable VMA on the next scan but not reset the
3416 	 * scanner to the start so check it now.
3417 	 */
3418 	if (vma)
3419 		mm->numa_scan_offset = start;
3420 	else
3421 		reset_ptenuma_scan(p);
3422 	mmap_read_unlock(mm);
3423 
3424 	/*
3425 	 * Make sure tasks use at least 32x as much time to run other code
3426 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3427 	 * Usually update_task_scan_period slows down scanning enough; on an
3428 	 * overloaded system we need to limit overhead on a per task basis.
3429 	 */
3430 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3431 		u64 diff = p->se.sum_exec_runtime - runtime;
3432 		p->node_stamp += 32 * diff;
3433 	}
3434 }
3435 
3436 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3437 {
3438 	int mm_users = 0;
3439 	struct mm_struct *mm = p->mm;
3440 
3441 	if (mm) {
3442 		mm_users = atomic_read(&mm->mm_users);
3443 		if (mm_users == 1) {
3444 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3445 			mm->numa_scan_seq = 0;
3446 		}
3447 	}
3448 	p->node_stamp			= 0;
3449 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3450 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3451 	p->numa_migrate_retry		= 0;
3452 	/* Protect against double add, see task_tick_numa and task_numa_work */
3453 	p->numa_work.next		= &p->numa_work;
3454 	p->numa_faults			= NULL;
3455 	p->numa_pages_migrated		= 0;
3456 	p->total_numa_faults		= 0;
3457 	RCU_INIT_POINTER(p->numa_group, NULL);
3458 	p->last_task_numa_placement	= 0;
3459 	p->last_sum_exec_runtime	= 0;
3460 
3461 	init_task_work(&p->numa_work, task_numa_work);
3462 
3463 	/* New address space, reset the preferred nid */
3464 	if (!(clone_flags & CLONE_VM)) {
3465 		p->numa_preferred_nid = NUMA_NO_NODE;
3466 		return;
3467 	}
3468 
3469 	/*
3470 	 * New thread, keep existing numa_preferred_nid which should be copied
3471 	 * already by arch_dup_task_struct but stagger when scans start.
3472 	 */
3473 	if (mm) {
3474 		unsigned int delay;
3475 
3476 		delay = min_t(unsigned int, task_scan_max(current),
3477 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3478 		delay += 2 * TICK_NSEC;
3479 		p->node_stamp = delay;
3480 	}
3481 }
3482 
3483 /*
3484  * Drive the periodic memory faults..
3485  */
3486 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3487 {
3488 	struct callback_head *work = &curr->numa_work;
3489 	u64 period, now;
3490 
3491 	/*
3492 	 * We don't care about NUMA placement if we don't have memory.
3493 	 */
3494 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3495 		return;
3496 
3497 	/*
3498 	 * Using runtime rather than walltime has the dual advantage that
3499 	 * we (mostly) drive the selection from busy threads and that the
3500 	 * task needs to have done some actual work before we bother with
3501 	 * NUMA placement.
3502 	 */
3503 	now = curr->se.sum_exec_runtime;
3504 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3505 
3506 	if (now > curr->node_stamp + period) {
3507 		if (!curr->node_stamp)
3508 			curr->numa_scan_period = task_scan_start(curr);
3509 		curr->node_stamp += period;
3510 
3511 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3512 			task_work_add(curr, work, TWA_RESUME);
3513 	}
3514 }
3515 
3516 static void update_scan_period(struct task_struct *p, int new_cpu)
3517 {
3518 	int src_nid = cpu_to_node(task_cpu(p));
3519 	int dst_nid = cpu_to_node(new_cpu);
3520 
3521 	if (!static_branch_likely(&sched_numa_balancing))
3522 		return;
3523 
3524 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3525 		return;
3526 
3527 	if (src_nid == dst_nid)
3528 		return;
3529 
3530 	/*
3531 	 * Allow resets if faults have been trapped before one scan
3532 	 * has completed. This is most likely due to a new task that
3533 	 * is pulled cross-node due to wakeups or load balancing.
3534 	 */
3535 	if (p->numa_scan_seq) {
3536 		/*
3537 		 * Avoid scan adjustments if moving to the preferred
3538 		 * node or if the task was not previously running on
3539 		 * the preferred node.
3540 		 */
3541 		if (dst_nid == p->numa_preferred_nid ||
3542 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3543 			src_nid != p->numa_preferred_nid))
3544 			return;
3545 	}
3546 
3547 	p->numa_scan_period = task_scan_start(p);
3548 }
3549 
3550 #else
3551 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3552 {
3553 }
3554 
3555 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3556 {
3557 }
3558 
3559 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3560 {
3561 }
3562 
3563 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3564 {
3565 }
3566 
3567 #endif /* CONFIG_NUMA_BALANCING */
3568 
3569 static void
3570 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3571 {
3572 	update_load_add(&cfs_rq->load, se->load.weight);
3573 #ifdef CONFIG_SMP
3574 	if (entity_is_task(se)) {
3575 		struct rq *rq = rq_of(cfs_rq);
3576 
3577 		account_numa_enqueue(rq, task_of(se));
3578 		list_add(&se->group_node, &rq->cfs_tasks);
3579 	}
3580 #endif
3581 	cfs_rq->nr_running++;
3582 	if (se_is_idle(se))
3583 		cfs_rq->idle_nr_running++;
3584 }
3585 
3586 static void
3587 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3588 {
3589 	update_load_sub(&cfs_rq->load, se->load.weight);
3590 #ifdef CONFIG_SMP
3591 	if (entity_is_task(se)) {
3592 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3593 		list_del_init(&se->group_node);
3594 	}
3595 #endif
3596 	cfs_rq->nr_running--;
3597 	if (se_is_idle(se))
3598 		cfs_rq->idle_nr_running--;
3599 }
3600 
3601 /*
3602  * Signed add and clamp on underflow.
3603  *
3604  * Explicitly do a load-store to ensure the intermediate value never hits
3605  * memory. This allows lockless observations without ever seeing the negative
3606  * values.
3607  */
3608 #define add_positive(_ptr, _val) do {                           \
3609 	typeof(_ptr) ptr = (_ptr);                              \
3610 	typeof(_val) val = (_val);                              \
3611 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3612 								\
3613 	res = var + val;                                        \
3614 								\
3615 	if (val < 0 && res > var)                               \
3616 		res = 0;                                        \
3617 								\
3618 	WRITE_ONCE(*ptr, res);                                  \
3619 } while (0)
3620 
3621 /*
3622  * Unsigned subtract and clamp on underflow.
3623  *
3624  * Explicitly do a load-store to ensure the intermediate value never hits
3625  * memory. This allows lockless observations without ever seeing the negative
3626  * values.
3627  */
3628 #define sub_positive(_ptr, _val) do {				\
3629 	typeof(_ptr) ptr = (_ptr);				\
3630 	typeof(*ptr) val = (_val);				\
3631 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3632 	res = var - val;					\
3633 	if (res > var)						\
3634 		res = 0;					\
3635 	WRITE_ONCE(*ptr, res);					\
3636 } while (0)
3637 
3638 /*
3639  * Remove and clamp on negative, from a local variable.
3640  *
3641  * A variant of sub_positive(), which does not use explicit load-store
3642  * and is thus optimized for local variable updates.
3643  */
3644 #define lsub_positive(_ptr, _val) do {				\
3645 	typeof(_ptr) ptr = (_ptr);				\
3646 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3647 } while (0)
3648 
3649 #ifdef CONFIG_SMP
3650 static inline void
3651 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3652 {
3653 	cfs_rq->avg.load_avg += se->avg.load_avg;
3654 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3655 }
3656 
3657 static inline void
3658 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3659 {
3660 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3661 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3662 	/* See update_cfs_rq_load_avg() */
3663 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3664 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3665 }
3666 #else
3667 static inline void
3668 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3669 static inline void
3670 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3671 #endif
3672 
3673 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3674 			   unsigned long weight)
3675 {
3676 	unsigned long old_weight = se->load.weight;
3677 	u64 avruntime = avg_vruntime(cfs_rq);
3678 	s64 vlag, vslice;
3679 
3680 	/*
3681 	 * VRUNTIME
3682 	 * ========
3683 	 *
3684 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3685 	 * adjusted if re-weight at !0-lag point.
3686 	 *
3687 	 * Proof: For contradiction assume this is not true, so we can
3688 	 * re-weight without changing vruntime at !0-lag point.
3689 	 *
3690 	 *             Weight	VRuntime   Avg-VRuntime
3691 	 *     before    w          v            V
3692 	 *      after    w'         v'           V'
3693 	 *
3694 	 * Since lag needs to be preserved through re-weight:
3695 	 *
3696 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3697 	 *	==>	V' = (V - v)*w/w' + v		(1)
3698 	 *
3699 	 * Let W be the total weight of the entities before reweight,
3700 	 * since V' is the new weighted average of entities:
3701 	 *
3702 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3703 	 *
3704 	 * by using (1) & (2) we obtain:
3705 	 *
3706 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3707 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3708 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3709 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3710 	 *
3711 	 * Since we are doing at !0-lag point which means V != v, we
3712 	 * can simplify (3):
3713 	 *
3714 	 *	==>	W / (W + w' - w) = w / w'
3715 	 *	==>	Ww' = Ww + ww' - ww
3716 	 *	==>	W * (w' - w) = w * (w' - w)
3717 	 *	==>	W = w	(re-weight indicates w' != w)
3718 	 *
3719 	 * So the cfs_rq contains only one entity, hence vruntime of
3720 	 * the entity @v should always equal to the cfs_rq's weighted
3721 	 * average vruntime @V, which means we will always re-weight
3722 	 * at 0-lag point, thus breach assumption. Proof completed.
3723 	 *
3724 	 *
3725 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3726 	 * vruntime of all the entities.
3727 	 *
3728 	 * Proof: According to corollary #1, Eq. (1) should be:
3729 	 *
3730 	 *	(V - v)*w = (V' - v')*w'
3731 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3732 	 *
3733 	 * According to the weighted average formula, we have:
3734 	 *
3735 	 *	V' = (WV - wv + w'v') / (W - w + w')
3736 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3737 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3738 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3739 	 *
3740 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3741 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3742 	 *
3743 	 * If the entity is the only one in the cfs_rq, then reweight
3744 	 * always occurs at 0-lag point, so V won't change. Or else
3745 	 * there are other entities, hence W != w, then Eq. (5) turns
3746 	 * into V' = V. So V won't change in either case, proof done.
3747 	 *
3748 	 *
3749 	 * So according to corollary #1 & #2, the effect of re-weight
3750 	 * on vruntime should be:
3751 	 *
3752 	 *	v' = V' - (V - v) * w / w'		(4)
3753 	 *	   = V  - (V - v) * w / w'
3754 	 *	   = V  - vl * w / w'
3755 	 *	   = V  - vl'
3756 	 */
3757 	if (avruntime != se->vruntime) {
3758 		vlag = (s64)(avruntime - se->vruntime);
3759 		vlag = div_s64(vlag * old_weight, weight);
3760 		se->vruntime = avruntime - vlag;
3761 	}
3762 
3763 	/*
3764 	 * DEADLINE
3765 	 * ========
3766 	 *
3767 	 * When the weight changes, the virtual time slope changes and
3768 	 * we should adjust the relative virtual deadline accordingly.
3769 	 *
3770 	 *	d' = v' + (d - v)*w/w'
3771 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3772 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3773 	 *	   = V  + (d - V)*w/w'
3774 	 */
3775 	vslice = (s64)(se->deadline - avruntime);
3776 	vslice = div_s64(vslice * old_weight, weight);
3777 	se->deadline = avruntime + vslice;
3778 }
3779 
3780 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3781 			    unsigned long weight)
3782 {
3783 	bool curr = cfs_rq->curr == se;
3784 
3785 	if (se->on_rq) {
3786 		/* commit outstanding execution time */
3787 		if (curr)
3788 			update_curr(cfs_rq);
3789 		else
3790 			__dequeue_entity(cfs_rq, se);
3791 		update_load_sub(&cfs_rq->load, se->load.weight);
3792 	}
3793 	dequeue_load_avg(cfs_rq, se);
3794 
3795 	if (!se->on_rq) {
3796 		/*
3797 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3798 		 * we need to scale se->vlag when w_i changes.
3799 		 */
3800 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3801 	} else {
3802 		reweight_eevdf(cfs_rq, se, weight);
3803 	}
3804 
3805 	update_load_set(&se->load, weight);
3806 
3807 #ifdef CONFIG_SMP
3808 	do {
3809 		u32 divider = get_pelt_divider(&se->avg);
3810 
3811 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3812 	} while (0);
3813 #endif
3814 
3815 	enqueue_load_avg(cfs_rq, se);
3816 	if (se->on_rq) {
3817 		update_load_add(&cfs_rq->load, se->load.weight);
3818 		if (!curr)
3819 			__enqueue_entity(cfs_rq, se);
3820 
3821 		/*
3822 		 * The entity's vruntime has been adjusted, so let's check
3823 		 * whether the rq-wide min_vruntime needs updated too. Since
3824 		 * the calculations above require stable min_vruntime rather
3825 		 * than up-to-date one, we do the update at the end of the
3826 		 * reweight process.
3827 		 */
3828 		update_min_vruntime(cfs_rq);
3829 	}
3830 }
3831 
3832 void reweight_task(struct task_struct *p, int prio)
3833 {
3834 	struct sched_entity *se = &p->se;
3835 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3836 	struct load_weight *load = &se->load;
3837 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3838 
3839 	reweight_entity(cfs_rq, se, weight);
3840 	load->inv_weight = sched_prio_to_wmult[prio];
3841 }
3842 
3843 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3844 
3845 #ifdef CONFIG_FAIR_GROUP_SCHED
3846 #ifdef CONFIG_SMP
3847 /*
3848  * All this does is approximate the hierarchical proportion which includes that
3849  * global sum we all love to hate.
3850  *
3851  * That is, the weight of a group entity, is the proportional share of the
3852  * group weight based on the group runqueue weights. That is:
3853  *
3854  *                     tg->weight * grq->load.weight
3855  *   ge->load.weight = -----------------------------               (1)
3856  *                       \Sum grq->load.weight
3857  *
3858  * Now, because computing that sum is prohibitively expensive to compute (been
3859  * there, done that) we approximate it with this average stuff. The average
3860  * moves slower and therefore the approximation is cheaper and more stable.
3861  *
3862  * So instead of the above, we substitute:
3863  *
3864  *   grq->load.weight -> grq->avg.load_avg                         (2)
3865  *
3866  * which yields the following:
3867  *
3868  *                     tg->weight * grq->avg.load_avg
3869  *   ge->load.weight = ------------------------------              (3)
3870  *                             tg->load_avg
3871  *
3872  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3873  *
3874  * That is shares_avg, and it is right (given the approximation (2)).
3875  *
3876  * The problem with it is that because the average is slow -- it was designed
3877  * to be exactly that of course -- this leads to transients in boundary
3878  * conditions. In specific, the case where the group was idle and we start the
3879  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3880  * yielding bad latency etc..
3881  *
3882  * Now, in that special case (1) reduces to:
3883  *
3884  *                     tg->weight * grq->load.weight
3885  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3886  *                         grp->load.weight
3887  *
3888  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3889  *
3890  * So what we do is modify our approximation (3) to approach (4) in the (near)
3891  * UP case, like:
3892  *
3893  *   ge->load.weight =
3894  *
3895  *              tg->weight * grq->load.weight
3896  *     ---------------------------------------------------         (5)
3897  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3898  *
3899  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3900  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3901  *
3902  *
3903  *                     tg->weight * grq->load.weight
3904  *   ge->load.weight = -----------------------------		   (6)
3905  *                             tg_load_avg'
3906  *
3907  * Where:
3908  *
3909  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3910  *                  max(grq->load.weight, grq->avg.load_avg)
3911  *
3912  * And that is shares_weight and is icky. In the (near) UP case it approaches
3913  * (4) while in the normal case it approaches (3). It consistently
3914  * overestimates the ge->load.weight and therefore:
3915  *
3916  *   \Sum ge->load.weight >= tg->weight
3917  *
3918  * hence icky!
3919  */
3920 static long calc_group_shares(struct cfs_rq *cfs_rq)
3921 {
3922 	long tg_weight, tg_shares, load, shares;
3923 	struct task_group *tg = cfs_rq->tg;
3924 
3925 	tg_shares = READ_ONCE(tg->shares);
3926 
3927 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3928 
3929 	tg_weight = atomic_long_read(&tg->load_avg);
3930 
3931 	/* Ensure tg_weight >= load */
3932 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3933 	tg_weight += load;
3934 
3935 	shares = (tg_shares * load);
3936 	if (tg_weight)
3937 		shares /= tg_weight;
3938 
3939 	/*
3940 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3941 	 * of a group with small tg->shares value. It is a floor value which is
3942 	 * assigned as a minimum load.weight to the sched_entity representing
3943 	 * the group on a CPU.
3944 	 *
3945 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3946 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3947 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3948 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3949 	 * instead of 0.
3950 	 */
3951 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3952 }
3953 #endif /* CONFIG_SMP */
3954 
3955 /*
3956  * Recomputes the group entity based on the current state of its group
3957  * runqueue.
3958  */
3959 static void update_cfs_group(struct sched_entity *se)
3960 {
3961 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3962 	long shares;
3963 
3964 	if (!gcfs_rq)
3965 		return;
3966 
3967 	if (throttled_hierarchy(gcfs_rq))
3968 		return;
3969 
3970 #ifndef CONFIG_SMP
3971 	shares = READ_ONCE(gcfs_rq->tg->shares);
3972 #else
3973 	shares = calc_group_shares(gcfs_rq);
3974 #endif
3975 	if (unlikely(se->load.weight != shares))
3976 		reweight_entity(cfs_rq_of(se), se, shares);
3977 }
3978 
3979 #else /* CONFIG_FAIR_GROUP_SCHED */
3980 static inline void update_cfs_group(struct sched_entity *se)
3981 {
3982 }
3983 #endif /* CONFIG_FAIR_GROUP_SCHED */
3984 
3985 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3986 {
3987 	struct rq *rq = rq_of(cfs_rq);
3988 
3989 	if (&rq->cfs == cfs_rq) {
3990 		/*
3991 		 * There are a few boundary cases this might miss but it should
3992 		 * get called often enough that that should (hopefully) not be
3993 		 * a real problem.
3994 		 *
3995 		 * It will not get called when we go idle, because the idle
3996 		 * thread is a different class (!fair), nor will the utilization
3997 		 * number include things like RT tasks.
3998 		 *
3999 		 * As is, the util number is not freq-invariant (we'd have to
4000 		 * implement arch_scale_freq_capacity() for that).
4001 		 *
4002 		 * See cpu_util_cfs().
4003 		 */
4004 		cpufreq_update_util(rq, flags);
4005 	}
4006 }
4007 
4008 #ifdef CONFIG_SMP
4009 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4010 {
4011 	if (sa->load_sum)
4012 		return false;
4013 
4014 	if (sa->util_sum)
4015 		return false;
4016 
4017 	if (sa->runnable_sum)
4018 		return false;
4019 
4020 	/*
4021 	 * _avg must be null when _sum are null because _avg = _sum / divider
4022 	 * Make sure that rounding and/or propagation of PELT values never
4023 	 * break this.
4024 	 */
4025 	SCHED_WARN_ON(sa->load_avg ||
4026 		      sa->util_avg ||
4027 		      sa->runnable_avg);
4028 
4029 	return true;
4030 }
4031 
4032 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4033 {
4034 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4035 				 cfs_rq->last_update_time_copy);
4036 }
4037 #ifdef CONFIG_FAIR_GROUP_SCHED
4038 /*
4039  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4040  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4041  * bottom-up, we only have to test whether the cfs_rq before us on the list
4042  * is our child.
4043  * If cfs_rq is not on the list, test whether a child needs its to be added to
4044  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4045  */
4046 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4047 {
4048 	struct cfs_rq *prev_cfs_rq;
4049 	struct list_head *prev;
4050 
4051 	if (cfs_rq->on_list) {
4052 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4053 	} else {
4054 		struct rq *rq = rq_of(cfs_rq);
4055 
4056 		prev = rq->tmp_alone_branch;
4057 	}
4058 
4059 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4060 
4061 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4062 }
4063 
4064 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4065 {
4066 	if (cfs_rq->load.weight)
4067 		return false;
4068 
4069 	if (!load_avg_is_decayed(&cfs_rq->avg))
4070 		return false;
4071 
4072 	if (child_cfs_rq_on_list(cfs_rq))
4073 		return false;
4074 
4075 	return true;
4076 }
4077 
4078 /**
4079  * update_tg_load_avg - update the tg's load avg
4080  * @cfs_rq: the cfs_rq whose avg changed
4081  *
4082  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4083  * However, because tg->load_avg is a global value there are performance
4084  * considerations.
4085  *
4086  * In order to avoid having to look at the other cfs_rq's, we use a
4087  * differential update where we store the last value we propagated. This in
4088  * turn allows skipping updates if the differential is 'small'.
4089  *
4090  * Updating tg's load_avg is necessary before update_cfs_share().
4091  */
4092 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4093 {
4094 	long delta;
4095 	u64 now;
4096 
4097 	/*
4098 	 * No need to update load_avg for root_task_group as it is not used.
4099 	 */
4100 	if (cfs_rq->tg == &root_task_group)
4101 		return;
4102 
4103 	/* rq has been offline and doesn't contribute to the share anymore: */
4104 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4105 		return;
4106 
4107 	/*
4108 	 * For migration heavy workloads, access to tg->load_avg can be
4109 	 * unbound. Limit the update rate to at most once per ms.
4110 	 */
4111 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4112 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4113 		return;
4114 
4115 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4116 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4117 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4118 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4119 		cfs_rq->last_update_tg_load_avg = now;
4120 	}
4121 }
4122 
4123 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4124 {
4125 	long delta;
4126 	u64 now;
4127 
4128 	/*
4129 	 * No need to update load_avg for root_task_group, as it is not used.
4130 	 */
4131 	if (cfs_rq->tg == &root_task_group)
4132 		return;
4133 
4134 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4135 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4136 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4137 	cfs_rq->tg_load_avg_contrib = 0;
4138 	cfs_rq->last_update_tg_load_avg = now;
4139 }
4140 
4141 /* CPU offline callback: */
4142 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4143 {
4144 	struct task_group *tg;
4145 
4146 	lockdep_assert_rq_held(rq);
4147 
4148 	/*
4149 	 * The rq clock has already been updated in
4150 	 * set_rq_offline(), so we should skip updating
4151 	 * the rq clock again in unthrottle_cfs_rq().
4152 	 */
4153 	rq_clock_start_loop_update(rq);
4154 
4155 	rcu_read_lock();
4156 	list_for_each_entry_rcu(tg, &task_groups, list) {
4157 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4158 
4159 		clear_tg_load_avg(cfs_rq);
4160 	}
4161 	rcu_read_unlock();
4162 
4163 	rq_clock_stop_loop_update(rq);
4164 }
4165 
4166 /*
4167  * Called within set_task_rq() right before setting a task's CPU. The
4168  * caller only guarantees p->pi_lock is held; no other assumptions,
4169  * including the state of rq->lock, should be made.
4170  */
4171 void set_task_rq_fair(struct sched_entity *se,
4172 		      struct cfs_rq *prev, struct cfs_rq *next)
4173 {
4174 	u64 p_last_update_time;
4175 	u64 n_last_update_time;
4176 
4177 	if (!sched_feat(ATTACH_AGE_LOAD))
4178 		return;
4179 
4180 	/*
4181 	 * We are supposed to update the task to "current" time, then its up to
4182 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4183 	 * getting what current time is, so simply throw away the out-of-date
4184 	 * time. This will result in the wakee task is less decayed, but giving
4185 	 * the wakee more load sounds not bad.
4186 	 */
4187 	if (!(se->avg.last_update_time && prev))
4188 		return;
4189 
4190 	p_last_update_time = cfs_rq_last_update_time(prev);
4191 	n_last_update_time = cfs_rq_last_update_time(next);
4192 
4193 	__update_load_avg_blocked_se(p_last_update_time, se);
4194 	se->avg.last_update_time = n_last_update_time;
4195 }
4196 
4197 /*
4198  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4199  * propagate its contribution. The key to this propagation is the invariant
4200  * that for each group:
4201  *
4202  *   ge->avg == grq->avg						(1)
4203  *
4204  * _IFF_ we look at the pure running and runnable sums. Because they
4205  * represent the very same entity, just at different points in the hierarchy.
4206  *
4207  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4208  * and simply copies the running/runnable sum over (but still wrong, because
4209  * the group entity and group rq do not have their PELT windows aligned).
4210  *
4211  * However, update_tg_cfs_load() is more complex. So we have:
4212  *
4213  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4214  *
4215  * And since, like util, the runnable part should be directly transferable,
4216  * the following would _appear_ to be the straight forward approach:
4217  *
4218  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4219  *
4220  * And per (1) we have:
4221  *
4222  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4223  *
4224  * Which gives:
4225  *
4226  *                      ge->load.weight * grq->avg.load_avg
4227  *   ge->avg.load_avg = -----------------------------------		(4)
4228  *                               grq->load.weight
4229  *
4230  * Except that is wrong!
4231  *
4232  * Because while for entities historical weight is not important and we
4233  * really only care about our future and therefore can consider a pure
4234  * runnable sum, runqueues can NOT do this.
4235  *
4236  * We specifically want runqueues to have a load_avg that includes
4237  * historical weights. Those represent the blocked load, the load we expect
4238  * to (shortly) return to us. This only works by keeping the weights as
4239  * integral part of the sum. We therefore cannot decompose as per (3).
4240  *
4241  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4242  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4243  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4244  * runnable section of these tasks overlap (or not). If they were to perfectly
4245  * align the rq as a whole would be runnable 2/3 of the time. If however we
4246  * always have at least 1 runnable task, the rq as a whole is always runnable.
4247  *
4248  * So we'll have to approximate.. :/
4249  *
4250  * Given the constraint:
4251  *
4252  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4253  *
4254  * We can construct a rule that adds runnable to a rq by assuming minimal
4255  * overlap.
4256  *
4257  * On removal, we'll assume each task is equally runnable; which yields:
4258  *
4259  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4260  *
4261  * XXX: only do this for the part of runnable > running ?
4262  *
4263  */
4264 static inline void
4265 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4266 {
4267 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4268 	u32 new_sum, divider;
4269 
4270 	/* Nothing to update */
4271 	if (!delta_avg)
4272 		return;
4273 
4274 	/*
4275 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4276 	 * See ___update_load_avg() for details.
4277 	 */
4278 	divider = get_pelt_divider(&cfs_rq->avg);
4279 
4280 
4281 	/* Set new sched_entity's utilization */
4282 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4283 	new_sum = se->avg.util_avg * divider;
4284 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4285 	se->avg.util_sum = new_sum;
4286 
4287 	/* Update parent cfs_rq utilization */
4288 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4289 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4290 
4291 	/* See update_cfs_rq_load_avg() */
4292 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4293 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4294 }
4295 
4296 static inline void
4297 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4298 {
4299 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4300 	u32 new_sum, divider;
4301 
4302 	/* Nothing to update */
4303 	if (!delta_avg)
4304 		return;
4305 
4306 	/*
4307 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4308 	 * See ___update_load_avg() for details.
4309 	 */
4310 	divider = get_pelt_divider(&cfs_rq->avg);
4311 
4312 	/* Set new sched_entity's runnable */
4313 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4314 	new_sum = se->avg.runnable_avg * divider;
4315 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4316 	se->avg.runnable_sum = new_sum;
4317 
4318 	/* Update parent cfs_rq runnable */
4319 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4320 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4321 	/* See update_cfs_rq_load_avg() */
4322 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4323 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4324 }
4325 
4326 static inline void
4327 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4328 {
4329 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4330 	unsigned long load_avg;
4331 	u64 load_sum = 0;
4332 	s64 delta_sum;
4333 	u32 divider;
4334 
4335 	if (!runnable_sum)
4336 		return;
4337 
4338 	gcfs_rq->prop_runnable_sum = 0;
4339 
4340 	/*
4341 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4342 	 * See ___update_load_avg() for details.
4343 	 */
4344 	divider = get_pelt_divider(&cfs_rq->avg);
4345 
4346 	if (runnable_sum >= 0) {
4347 		/*
4348 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4349 		 * the CPU is saturated running == runnable.
4350 		 */
4351 		runnable_sum += se->avg.load_sum;
4352 		runnable_sum = min_t(long, runnable_sum, divider);
4353 	} else {
4354 		/*
4355 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4356 		 * assuming all tasks are equally runnable.
4357 		 */
4358 		if (scale_load_down(gcfs_rq->load.weight)) {
4359 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4360 				scale_load_down(gcfs_rq->load.weight));
4361 		}
4362 
4363 		/* But make sure to not inflate se's runnable */
4364 		runnable_sum = min(se->avg.load_sum, load_sum);
4365 	}
4366 
4367 	/*
4368 	 * runnable_sum can't be lower than running_sum
4369 	 * Rescale running sum to be in the same range as runnable sum
4370 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4371 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4372 	 */
4373 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4374 	runnable_sum = max(runnable_sum, running_sum);
4375 
4376 	load_sum = se_weight(se) * runnable_sum;
4377 	load_avg = div_u64(load_sum, divider);
4378 
4379 	delta_avg = load_avg - se->avg.load_avg;
4380 	if (!delta_avg)
4381 		return;
4382 
4383 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4384 
4385 	se->avg.load_sum = runnable_sum;
4386 	se->avg.load_avg = load_avg;
4387 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4388 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4389 	/* See update_cfs_rq_load_avg() */
4390 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4391 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4392 }
4393 
4394 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4395 {
4396 	cfs_rq->propagate = 1;
4397 	cfs_rq->prop_runnable_sum += runnable_sum;
4398 }
4399 
4400 /* Update task and its cfs_rq load average */
4401 static inline int propagate_entity_load_avg(struct sched_entity *se)
4402 {
4403 	struct cfs_rq *cfs_rq, *gcfs_rq;
4404 
4405 	if (entity_is_task(se))
4406 		return 0;
4407 
4408 	gcfs_rq = group_cfs_rq(se);
4409 	if (!gcfs_rq->propagate)
4410 		return 0;
4411 
4412 	gcfs_rq->propagate = 0;
4413 
4414 	cfs_rq = cfs_rq_of(se);
4415 
4416 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4417 
4418 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4419 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4420 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4421 
4422 	trace_pelt_cfs_tp(cfs_rq);
4423 	trace_pelt_se_tp(se);
4424 
4425 	return 1;
4426 }
4427 
4428 /*
4429  * Check if we need to update the load and the utilization of a blocked
4430  * group_entity:
4431  */
4432 static inline bool skip_blocked_update(struct sched_entity *se)
4433 {
4434 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4435 
4436 	/*
4437 	 * If sched_entity still have not zero load or utilization, we have to
4438 	 * decay it:
4439 	 */
4440 	if (se->avg.load_avg || se->avg.util_avg)
4441 		return false;
4442 
4443 	/*
4444 	 * If there is a pending propagation, we have to update the load and
4445 	 * the utilization of the sched_entity:
4446 	 */
4447 	if (gcfs_rq->propagate)
4448 		return false;
4449 
4450 	/*
4451 	 * Otherwise, the load and the utilization of the sched_entity is
4452 	 * already zero and there is no pending propagation, so it will be a
4453 	 * waste of time to try to decay it:
4454 	 */
4455 	return true;
4456 }
4457 
4458 #else /* CONFIG_FAIR_GROUP_SCHED */
4459 
4460 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4461 
4462 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4463 
4464 static inline int propagate_entity_load_avg(struct sched_entity *se)
4465 {
4466 	return 0;
4467 }
4468 
4469 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4470 
4471 #endif /* CONFIG_FAIR_GROUP_SCHED */
4472 
4473 #ifdef CONFIG_NO_HZ_COMMON
4474 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4475 {
4476 	u64 throttled = 0, now, lut;
4477 	struct cfs_rq *cfs_rq;
4478 	struct rq *rq;
4479 	bool is_idle;
4480 
4481 	if (load_avg_is_decayed(&se->avg))
4482 		return;
4483 
4484 	cfs_rq = cfs_rq_of(se);
4485 	rq = rq_of(cfs_rq);
4486 
4487 	rcu_read_lock();
4488 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4489 	rcu_read_unlock();
4490 
4491 	/*
4492 	 * The lag estimation comes with a cost we don't want to pay all the
4493 	 * time. Hence, limiting to the case where the source CPU is idle and
4494 	 * we know we are at the greatest risk to have an outdated clock.
4495 	 */
4496 	if (!is_idle)
4497 		return;
4498 
4499 	/*
4500 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4501 	 *
4502 	 *   last_update_time (the cfs_rq's last_update_time)
4503 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4504 	 *      = rq_clock_pelt()@cfs_rq_idle
4505 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4506 	 *
4507 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4508 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4509 	 *
4510 	 *   rq_idle_lag (delta between now and rq's update)
4511 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4512 	 *
4513 	 * We can then write:
4514 	 *
4515 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4516 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4517 	 * Where:
4518 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4519 	 *      rq_clock()@rq_idle      is rq->clock_idle
4520 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4521 	 *                              is cfs_rq->throttled_pelt_idle
4522 	 */
4523 
4524 #ifdef CONFIG_CFS_BANDWIDTH
4525 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4526 	/* The clock has been stopped for throttling */
4527 	if (throttled == U64_MAX)
4528 		return;
4529 #endif
4530 	now = u64_u32_load(rq->clock_pelt_idle);
4531 	/*
4532 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4533 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4534 	 * which lead to an underestimation. The opposite would lead to an
4535 	 * overestimation.
4536 	 */
4537 	smp_rmb();
4538 	lut = cfs_rq_last_update_time(cfs_rq);
4539 
4540 	now -= throttled;
4541 	if (now < lut)
4542 		/*
4543 		 * cfs_rq->avg.last_update_time is more recent than our
4544 		 * estimation, let's use it.
4545 		 */
4546 		now = lut;
4547 	else
4548 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4549 
4550 	__update_load_avg_blocked_se(now, se);
4551 }
4552 #else
4553 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4554 #endif
4555 
4556 /**
4557  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4558  * @now: current time, as per cfs_rq_clock_pelt()
4559  * @cfs_rq: cfs_rq to update
4560  *
4561  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4562  * avg. The immediate corollary is that all (fair) tasks must be attached.
4563  *
4564  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4565  *
4566  * Return: true if the load decayed or we removed load.
4567  *
4568  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4569  * call update_tg_load_avg() when this function returns true.
4570  */
4571 static inline int
4572 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4573 {
4574 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4575 	struct sched_avg *sa = &cfs_rq->avg;
4576 	int decayed = 0;
4577 
4578 	if (cfs_rq->removed.nr) {
4579 		unsigned long r;
4580 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4581 
4582 		raw_spin_lock(&cfs_rq->removed.lock);
4583 		swap(cfs_rq->removed.util_avg, removed_util);
4584 		swap(cfs_rq->removed.load_avg, removed_load);
4585 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4586 		cfs_rq->removed.nr = 0;
4587 		raw_spin_unlock(&cfs_rq->removed.lock);
4588 
4589 		r = removed_load;
4590 		sub_positive(&sa->load_avg, r);
4591 		sub_positive(&sa->load_sum, r * divider);
4592 		/* See sa->util_sum below */
4593 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4594 
4595 		r = removed_util;
4596 		sub_positive(&sa->util_avg, r);
4597 		sub_positive(&sa->util_sum, r * divider);
4598 		/*
4599 		 * Because of rounding, se->util_sum might ends up being +1 more than
4600 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4601 		 * a lot of tasks with the rounding problem between 2 updates of
4602 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4603 		 * cfs_util_avg is not.
4604 		 * Check that util_sum is still above its lower bound for the new
4605 		 * util_avg. Given that period_contrib might have moved since the last
4606 		 * sync, we are only sure that util_sum must be above or equal to
4607 		 *    util_avg * minimum possible divider
4608 		 */
4609 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4610 
4611 		r = removed_runnable;
4612 		sub_positive(&sa->runnable_avg, r);
4613 		sub_positive(&sa->runnable_sum, r * divider);
4614 		/* See sa->util_sum above */
4615 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4616 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4617 
4618 		/*
4619 		 * removed_runnable is the unweighted version of removed_load so we
4620 		 * can use it to estimate removed_load_sum.
4621 		 */
4622 		add_tg_cfs_propagate(cfs_rq,
4623 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4624 
4625 		decayed = 1;
4626 	}
4627 
4628 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4629 	u64_u32_store_copy(sa->last_update_time,
4630 			   cfs_rq->last_update_time_copy,
4631 			   sa->last_update_time);
4632 	return decayed;
4633 }
4634 
4635 /**
4636  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4637  * @cfs_rq: cfs_rq to attach to
4638  * @se: sched_entity to attach
4639  *
4640  * Must call update_cfs_rq_load_avg() before this, since we rely on
4641  * cfs_rq->avg.last_update_time being current.
4642  */
4643 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4644 {
4645 	/*
4646 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4647 	 * See ___update_load_avg() for details.
4648 	 */
4649 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4650 
4651 	/*
4652 	 * When we attach the @se to the @cfs_rq, we must align the decay
4653 	 * window because without that, really weird and wonderful things can
4654 	 * happen.
4655 	 *
4656 	 * XXX illustrate
4657 	 */
4658 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4659 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4660 
4661 	/*
4662 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4663 	 * period_contrib. This isn't strictly correct, but since we're
4664 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4665 	 * _sum a little.
4666 	 */
4667 	se->avg.util_sum = se->avg.util_avg * divider;
4668 
4669 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4670 
4671 	se->avg.load_sum = se->avg.load_avg * divider;
4672 	if (se_weight(se) < se->avg.load_sum)
4673 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4674 	else
4675 		se->avg.load_sum = 1;
4676 
4677 	enqueue_load_avg(cfs_rq, se);
4678 	cfs_rq->avg.util_avg += se->avg.util_avg;
4679 	cfs_rq->avg.util_sum += se->avg.util_sum;
4680 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4681 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4682 
4683 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4684 
4685 	cfs_rq_util_change(cfs_rq, 0);
4686 
4687 	trace_pelt_cfs_tp(cfs_rq);
4688 }
4689 
4690 /**
4691  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4692  * @cfs_rq: cfs_rq to detach from
4693  * @se: sched_entity to detach
4694  *
4695  * Must call update_cfs_rq_load_avg() before this, since we rely on
4696  * cfs_rq->avg.last_update_time being current.
4697  */
4698 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4699 {
4700 	dequeue_load_avg(cfs_rq, se);
4701 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4702 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4703 	/* See update_cfs_rq_load_avg() */
4704 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4705 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4706 
4707 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4708 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4709 	/* See update_cfs_rq_load_avg() */
4710 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4711 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4712 
4713 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4714 
4715 	cfs_rq_util_change(cfs_rq, 0);
4716 
4717 	trace_pelt_cfs_tp(cfs_rq);
4718 }
4719 
4720 /*
4721  * Optional action to be done while updating the load average
4722  */
4723 #define UPDATE_TG	0x1
4724 #define SKIP_AGE_LOAD	0x2
4725 #define DO_ATTACH	0x4
4726 #define DO_DETACH	0x8
4727 
4728 /* Update task and its cfs_rq load average */
4729 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4730 {
4731 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4732 	int decayed;
4733 
4734 	/*
4735 	 * Track task load average for carrying it to new CPU after migrated, and
4736 	 * track group sched_entity load average for task_h_load calc in migration
4737 	 */
4738 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4739 		__update_load_avg_se(now, cfs_rq, se);
4740 
4741 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4742 	decayed |= propagate_entity_load_avg(se);
4743 
4744 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4745 
4746 		/*
4747 		 * DO_ATTACH means we're here from enqueue_entity().
4748 		 * !last_update_time means we've passed through
4749 		 * migrate_task_rq_fair() indicating we migrated.
4750 		 *
4751 		 * IOW we're enqueueing a task on a new CPU.
4752 		 */
4753 		attach_entity_load_avg(cfs_rq, se);
4754 		update_tg_load_avg(cfs_rq);
4755 
4756 	} else if (flags & DO_DETACH) {
4757 		/*
4758 		 * DO_DETACH means we're here from dequeue_entity()
4759 		 * and we are migrating task out of the CPU.
4760 		 */
4761 		detach_entity_load_avg(cfs_rq, se);
4762 		update_tg_load_avg(cfs_rq);
4763 	} else if (decayed) {
4764 		cfs_rq_util_change(cfs_rq, 0);
4765 
4766 		if (flags & UPDATE_TG)
4767 			update_tg_load_avg(cfs_rq);
4768 	}
4769 }
4770 
4771 /*
4772  * Synchronize entity load avg of dequeued entity without locking
4773  * the previous rq.
4774  */
4775 static void sync_entity_load_avg(struct sched_entity *se)
4776 {
4777 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 	u64 last_update_time;
4779 
4780 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4781 	__update_load_avg_blocked_se(last_update_time, se);
4782 }
4783 
4784 /*
4785  * Task first catches up with cfs_rq, and then subtract
4786  * itself from the cfs_rq (task must be off the queue now).
4787  */
4788 static void remove_entity_load_avg(struct sched_entity *se)
4789 {
4790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4791 	unsigned long flags;
4792 
4793 	/*
4794 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4795 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4796 	 * so we can remove unconditionally.
4797 	 */
4798 
4799 	sync_entity_load_avg(se);
4800 
4801 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4802 	++cfs_rq->removed.nr;
4803 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4804 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4805 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4806 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4807 }
4808 
4809 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4810 {
4811 	return cfs_rq->avg.runnable_avg;
4812 }
4813 
4814 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4815 {
4816 	return cfs_rq->avg.load_avg;
4817 }
4818 
4819 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4820 
4821 static inline unsigned long task_util(struct task_struct *p)
4822 {
4823 	return READ_ONCE(p->se.avg.util_avg);
4824 }
4825 
4826 static inline unsigned long task_runnable(struct task_struct *p)
4827 {
4828 	return READ_ONCE(p->se.avg.runnable_avg);
4829 }
4830 
4831 static inline unsigned long _task_util_est(struct task_struct *p)
4832 {
4833 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4834 }
4835 
4836 static inline unsigned long task_util_est(struct task_struct *p)
4837 {
4838 	return max(task_util(p), _task_util_est(p));
4839 }
4840 
4841 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4842 				    struct task_struct *p)
4843 {
4844 	unsigned int enqueued;
4845 
4846 	if (!sched_feat(UTIL_EST))
4847 		return;
4848 
4849 	/* Update root cfs_rq's estimated utilization */
4850 	enqueued  = cfs_rq->avg.util_est;
4851 	enqueued += _task_util_est(p);
4852 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4853 
4854 	trace_sched_util_est_cfs_tp(cfs_rq);
4855 }
4856 
4857 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4858 				    struct task_struct *p)
4859 {
4860 	unsigned int enqueued;
4861 
4862 	if (!sched_feat(UTIL_EST))
4863 		return;
4864 
4865 	/* Update root cfs_rq's estimated utilization */
4866 	enqueued  = cfs_rq->avg.util_est;
4867 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4868 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4869 
4870 	trace_sched_util_est_cfs_tp(cfs_rq);
4871 }
4872 
4873 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4874 
4875 static inline void util_est_update(struct cfs_rq *cfs_rq,
4876 				   struct task_struct *p,
4877 				   bool task_sleep)
4878 {
4879 	unsigned int ewma, dequeued, last_ewma_diff;
4880 
4881 	if (!sched_feat(UTIL_EST))
4882 		return;
4883 
4884 	/*
4885 	 * Skip update of task's estimated utilization when the task has not
4886 	 * yet completed an activation, e.g. being migrated.
4887 	 */
4888 	if (!task_sleep)
4889 		return;
4890 
4891 	/* Get current estimate of utilization */
4892 	ewma = READ_ONCE(p->se.avg.util_est);
4893 
4894 	/*
4895 	 * If the PELT values haven't changed since enqueue time,
4896 	 * skip the util_est update.
4897 	 */
4898 	if (ewma & UTIL_AVG_UNCHANGED)
4899 		return;
4900 
4901 	/* Get utilization at dequeue */
4902 	dequeued = task_util(p);
4903 
4904 	/*
4905 	 * Reset EWMA on utilization increases, the moving average is used only
4906 	 * to smooth utilization decreases.
4907 	 */
4908 	if (ewma <= dequeued) {
4909 		ewma = dequeued;
4910 		goto done;
4911 	}
4912 
4913 	/*
4914 	 * Skip update of task's estimated utilization when its members are
4915 	 * already ~1% close to its last activation value.
4916 	 */
4917 	last_ewma_diff = ewma - dequeued;
4918 	if (last_ewma_diff < UTIL_EST_MARGIN)
4919 		goto done;
4920 
4921 	/*
4922 	 * To avoid overestimation of actual task utilization, skip updates if
4923 	 * we cannot grant there is idle time in this CPU.
4924 	 */
4925 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4926 		return;
4927 
4928 	/*
4929 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4930 	 * we cannot grant that thread got all CPU time it wanted.
4931 	 */
4932 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4933 		goto done;
4934 
4935 
4936 	/*
4937 	 * Update Task's estimated utilization
4938 	 *
4939 	 * When *p completes an activation we can consolidate another sample
4940 	 * of the task size. This is done by using this value to update the
4941 	 * Exponential Weighted Moving Average (EWMA):
4942 	 *
4943 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4944 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4945 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4946 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4947 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4948 	 *
4949 	 * Where 'w' is the weight of new samples, which is configured to be
4950 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4951 	 */
4952 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4953 	ewma  -= last_ewma_diff;
4954 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4955 done:
4956 	ewma |= UTIL_AVG_UNCHANGED;
4957 	WRITE_ONCE(p->se.avg.util_est, ewma);
4958 
4959 	trace_sched_util_est_se_tp(&p->se);
4960 }
4961 
4962 static inline int util_fits_cpu(unsigned long util,
4963 				unsigned long uclamp_min,
4964 				unsigned long uclamp_max,
4965 				int cpu)
4966 {
4967 	unsigned long capacity_orig, capacity_orig_thermal;
4968 	unsigned long capacity = capacity_of(cpu);
4969 	bool fits, uclamp_max_fits;
4970 
4971 	/*
4972 	 * Check if the real util fits without any uclamp boost/cap applied.
4973 	 */
4974 	fits = fits_capacity(util, capacity);
4975 
4976 	if (!uclamp_is_used())
4977 		return fits;
4978 
4979 	/*
4980 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4981 	 * uclamp_max. We only care about capacity pressure (by using
4982 	 * capacity_of()) for comparing against the real util.
4983 	 *
4984 	 * If a task is boosted to 1024 for example, we don't want a tiny
4985 	 * pressure to skew the check whether it fits a CPU or not.
4986 	 *
4987 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4988 	 * should fit a little cpu even if there's some pressure.
4989 	 *
4990 	 * Only exception is for thermal pressure since it has a direct impact
4991 	 * on available OPP of the system.
4992 	 *
4993 	 * We honour it for uclamp_min only as a drop in performance level
4994 	 * could result in not getting the requested minimum performance level.
4995 	 *
4996 	 * For uclamp_max, we can tolerate a drop in performance level as the
4997 	 * goal is to cap the task. So it's okay if it's getting less.
4998 	 */
4999 	capacity_orig = arch_scale_cpu_capacity(cpu);
5000 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5001 
5002 	/*
5003 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5004 	 * But we do have some corner cases to cater for..
5005 	 *
5006 	 *
5007 	 *                                 C=z
5008 	 *   |                             ___
5009 	 *   |                  C=y       |   |
5010 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5011 	 *   |      C=x        |   |      |   |
5012 	 *   |      ___        |   |      |   |
5013 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5014 	 *   |     |   |       |   |      |   |
5015 	 *   |     |   |       |   |      |   |
5016 	 *   +----------------------------------------
5017 	 *         cpu0        cpu1       cpu2
5018 	 *
5019 	 *   In the above example if a task is capped to a specific performance
5020 	 *   point, y, then when:
5021 	 *
5022 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5023 	 *     to cpu1
5024 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5025 	 *     uclamp_max request.
5026 	 *
5027 	 *   which is what we're enforcing here. A task always fits if
5028 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5029 	 *   the normal upmigration rules should withhold still.
5030 	 *
5031 	 *   Only exception is when we are on max capacity, then we need to be
5032 	 *   careful not to block overutilized state. This is so because:
5033 	 *
5034 	 *     1. There's no concept of capping at max_capacity! We can't go
5035 	 *        beyond this performance level anyway.
5036 	 *     2. The system is being saturated when we're operating near
5037 	 *        max capacity, it doesn't make sense to block overutilized.
5038 	 */
5039 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5040 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5041 	fits = fits || uclamp_max_fits;
5042 
5043 	/*
5044 	 *
5045 	 *                                 C=z
5046 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5047 	 *   |                  C=y       |   |
5048 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5049 	 *   |      C=x        |   |      |   |
5050 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5051 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5052 	 *   |     |   |       |   |      |   |
5053 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5054 	 *   +----------------------------------------
5055 	 *         cpu0        cpu1       cpu2
5056 	 *
5057 	 * a) If util > uclamp_max, then we're capped, we don't care about
5058 	 *    actual fitness value here. We only care if uclamp_max fits
5059 	 *    capacity without taking margin/pressure into account.
5060 	 *    See comment above.
5061 	 *
5062 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5063 	 *    fits_capacity() rules apply. Except we need to ensure that we
5064 	 *    enforce we remain within uclamp_max, see comment above.
5065 	 *
5066 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5067 	 *    need to take into account the boosted value fits the CPU without
5068 	 *    taking margin/pressure into account.
5069 	 *
5070 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5071 	 * just need to consider an extra check for case (c) after ensuring we
5072 	 * handle the case uclamp_min > uclamp_max.
5073 	 */
5074 	uclamp_min = min(uclamp_min, uclamp_max);
5075 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5076 		return -1;
5077 
5078 	return fits;
5079 }
5080 
5081 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5082 {
5083 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5084 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5085 	unsigned long util = task_util_est(p);
5086 	/*
5087 	 * Return true only if the cpu fully fits the task requirements, which
5088 	 * include the utilization but also the performance hints.
5089 	 */
5090 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5091 }
5092 
5093 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5094 {
5095 	if (!sched_asym_cpucap_active())
5096 		return;
5097 
5098 	if (!p || p->nr_cpus_allowed == 1) {
5099 		rq->misfit_task_load = 0;
5100 		return;
5101 	}
5102 
5103 	if (task_fits_cpu(p, cpu_of(rq))) {
5104 		rq->misfit_task_load = 0;
5105 		return;
5106 	}
5107 
5108 	/*
5109 	 * Make sure that misfit_task_load will not be null even if
5110 	 * task_h_load() returns 0.
5111 	 */
5112 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5113 }
5114 
5115 #else /* CONFIG_SMP */
5116 
5117 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5118 {
5119 	return !cfs_rq->nr_running;
5120 }
5121 
5122 #define UPDATE_TG	0x0
5123 #define SKIP_AGE_LOAD	0x0
5124 #define DO_ATTACH	0x0
5125 #define DO_DETACH	0x0
5126 
5127 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5128 {
5129 	cfs_rq_util_change(cfs_rq, 0);
5130 }
5131 
5132 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5133 
5134 static inline void
5135 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5136 static inline void
5137 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5138 
5139 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5140 {
5141 	return 0;
5142 }
5143 
5144 static inline void
5145 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5146 
5147 static inline void
5148 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5149 
5150 static inline void
5151 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5152 		bool task_sleep) {}
5153 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5154 
5155 #endif /* CONFIG_SMP */
5156 
5157 static void
5158 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5159 {
5160 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5161 	s64 lag = 0;
5162 
5163 	se->slice = sysctl_sched_base_slice;
5164 	vslice = calc_delta_fair(se->slice, se);
5165 
5166 	/*
5167 	 * Due to how V is constructed as the weighted average of entities,
5168 	 * adding tasks with positive lag, or removing tasks with negative lag
5169 	 * will move 'time' backwards, this can screw around with the lag of
5170 	 * other tasks.
5171 	 *
5172 	 * EEVDF: placement strategy #1 / #2
5173 	 */
5174 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5175 		struct sched_entity *curr = cfs_rq->curr;
5176 		unsigned long load;
5177 
5178 		lag = se->vlag;
5179 
5180 		/*
5181 		 * If we want to place a task and preserve lag, we have to
5182 		 * consider the effect of the new entity on the weighted
5183 		 * average and compensate for this, otherwise lag can quickly
5184 		 * evaporate.
5185 		 *
5186 		 * Lag is defined as:
5187 		 *
5188 		 *   lag_i = S - s_i = w_i * (V - v_i)
5189 		 *
5190 		 * To avoid the 'w_i' term all over the place, we only track
5191 		 * the virtual lag:
5192 		 *
5193 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5194 		 *
5195 		 * And we take V to be the weighted average of all v:
5196 		 *
5197 		 *   V = (\Sum w_j*v_j) / W
5198 		 *
5199 		 * Where W is: \Sum w_j
5200 		 *
5201 		 * Then, the weighted average after adding an entity with lag
5202 		 * vl_i is given by:
5203 		 *
5204 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5205 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5206 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5207 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5208 		 *      = V - w_i*vl_i / (W + w_i)
5209 		 *
5210 		 * And the actual lag after adding an entity with vl_i is:
5211 		 *
5212 		 *   vl'_i = V' - v_i
5213 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5214 		 *         = vl_i - w_i*vl_i / (W + w_i)
5215 		 *
5216 		 * Which is strictly less than vl_i. So in order to preserve lag
5217 		 * we should inflate the lag before placement such that the
5218 		 * effective lag after placement comes out right.
5219 		 *
5220 		 * As such, invert the above relation for vl'_i to get the vl_i
5221 		 * we need to use such that the lag after placement is the lag
5222 		 * we computed before dequeue.
5223 		 *
5224 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5225 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5226 		 *
5227 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5228 		 *                   = W*vl_i
5229 		 *
5230 		 *   vl_i = (W + w_i)*vl'_i / W
5231 		 */
5232 		load = cfs_rq->avg_load;
5233 		if (curr && curr->on_rq)
5234 			load += scale_load_down(curr->load.weight);
5235 
5236 		lag *= load + scale_load_down(se->load.weight);
5237 		if (WARN_ON_ONCE(!load))
5238 			load = 1;
5239 		lag = div_s64(lag, load);
5240 	}
5241 
5242 	se->vruntime = vruntime - lag;
5243 
5244 	/*
5245 	 * When joining the competition; the exisiting tasks will be,
5246 	 * on average, halfway through their slice, as such start tasks
5247 	 * off with half a slice to ease into the competition.
5248 	 */
5249 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5250 		vslice /= 2;
5251 
5252 	/*
5253 	 * EEVDF: vd_i = ve_i + r_i/w_i
5254 	 */
5255 	se->deadline = se->vruntime + vslice;
5256 }
5257 
5258 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5259 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5260 
5261 static inline bool cfs_bandwidth_used(void);
5262 
5263 static void
5264 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5265 {
5266 	bool curr = cfs_rq->curr == se;
5267 
5268 	/*
5269 	 * If we're the current task, we must renormalise before calling
5270 	 * update_curr().
5271 	 */
5272 	if (curr)
5273 		place_entity(cfs_rq, se, flags);
5274 
5275 	update_curr(cfs_rq);
5276 
5277 	/*
5278 	 * When enqueuing a sched_entity, we must:
5279 	 *   - Update loads to have both entity and cfs_rq synced with now.
5280 	 *   - For group_entity, update its runnable_weight to reflect the new
5281 	 *     h_nr_running of its group cfs_rq.
5282 	 *   - For group_entity, update its weight to reflect the new share of
5283 	 *     its group cfs_rq
5284 	 *   - Add its new weight to cfs_rq->load.weight
5285 	 */
5286 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5287 	se_update_runnable(se);
5288 	/*
5289 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5290 	 * but update_cfs_group() here will re-adjust the weight and have to
5291 	 * undo/redo all that. Seems wasteful.
5292 	 */
5293 	update_cfs_group(se);
5294 
5295 	/*
5296 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5297 	 * we can place the entity.
5298 	 */
5299 	if (!curr)
5300 		place_entity(cfs_rq, se, flags);
5301 
5302 	account_entity_enqueue(cfs_rq, se);
5303 
5304 	/* Entity has migrated, no longer consider this task hot */
5305 	if (flags & ENQUEUE_MIGRATED)
5306 		se->exec_start = 0;
5307 
5308 	check_schedstat_required();
5309 	update_stats_enqueue_fair(cfs_rq, se, flags);
5310 	if (!curr)
5311 		__enqueue_entity(cfs_rq, se);
5312 	se->on_rq = 1;
5313 
5314 	if (cfs_rq->nr_running == 1) {
5315 		check_enqueue_throttle(cfs_rq);
5316 		if (!throttled_hierarchy(cfs_rq)) {
5317 			list_add_leaf_cfs_rq(cfs_rq);
5318 		} else {
5319 #ifdef CONFIG_CFS_BANDWIDTH
5320 			struct rq *rq = rq_of(cfs_rq);
5321 
5322 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5323 				cfs_rq->throttled_clock = rq_clock(rq);
5324 			if (!cfs_rq->throttled_clock_self)
5325 				cfs_rq->throttled_clock_self = rq_clock(rq);
5326 #endif
5327 		}
5328 	}
5329 }
5330 
5331 static void __clear_buddies_next(struct sched_entity *se)
5332 {
5333 	for_each_sched_entity(se) {
5334 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5335 		if (cfs_rq->next != se)
5336 			break;
5337 
5338 		cfs_rq->next = NULL;
5339 	}
5340 }
5341 
5342 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5343 {
5344 	if (cfs_rq->next == se)
5345 		__clear_buddies_next(se);
5346 }
5347 
5348 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5349 
5350 static void
5351 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5352 {
5353 	int action = UPDATE_TG;
5354 
5355 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5356 		action |= DO_DETACH;
5357 
5358 	/*
5359 	 * Update run-time statistics of the 'current'.
5360 	 */
5361 	update_curr(cfs_rq);
5362 
5363 	/*
5364 	 * When dequeuing a sched_entity, we must:
5365 	 *   - Update loads to have both entity and cfs_rq synced with now.
5366 	 *   - For group_entity, update its runnable_weight to reflect the new
5367 	 *     h_nr_running of its group cfs_rq.
5368 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5369 	 *   - For group entity, update its weight to reflect the new share
5370 	 *     of its group cfs_rq.
5371 	 */
5372 	update_load_avg(cfs_rq, se, action);
5373 	se_update_runnable(se);
5374 
5375 	update_stats_dequeue_fair(cfs_rq, se, flags);
5376 
5377 	clear_buddies(cfs_rq, se);
5378 
5379 	update_entity_lag(cfs_rq, se);
5380 	if (se != cfs_rq->curr)
5381 		__dequeue_entity(cfs_rq, se);
5382 	se->on_rq = 0;
5383 	account_entity_dequeue(cfs_rq, se);
5384 
5385 	/* return excess runtime on last dequeue */
5386 	return_cfs_rq_runtime(cfs_rq);
5387 
5388 	update_cfs_group(se);
5389 
5390 	/*
5391 	 * Now advance min_vruntime if @se was the entity holding it back,
5392 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5393 	 * put back on, and if we advance min_vruntime, we'll be placed back
5394 	 * further than we started -- ie. we'll be penalized.
5395 	 */
5396 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5397 		update_min_vruntime(cfs_rq);
5398 
5399 	if (cfs_rq->nr_running == 0)
5400 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5401 }
5402 
5403 static void
5404 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5405 {
5406 	clear_buddies(cfs_rq, se);
5407 
5408 	/* 'current' is not kept within the tree. */
5409 	if (se->on_rq) {
5410 		/*
5411 		 * Any task has to be enqueued before it get to execute on
5412 		 * a CPU. So account for the time it spent waiting on the
5413 		 * runqueue.
5414 		 */
5415 		update_stats_wait_end_fair(cfs_rq, se);
5416 		__dequeue_entity(cfs_rq, se);
5417 		update_load_avg(cfs_rq, se, UPDATE_TG);
5418 		/*
5419 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5420 		 * which isn't used until dequeue.
5421 		 */
5422 		se->vlag = se->deadline;
5423 	}
5424 
5425 	update_stats_curr_start(cfs_rq, se);
5426 	cfs_rq->curr = se;
5427 
5428 	/*
5429 	 * Track our maximum slice length, if the CPU's load is at
5430 	 * least twice that of our own weight (i.e. dont track it
5431 	 * when there are only lesser-weight tasks around):
5432 	 */
5433 	if (schedstat_enabled() &&
5434 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5435 		struct sched_statistics *stats;
5436 
5437 		stats = __schedstats_from_se(se);
5438 		__schedstat_set(stats->slice_max,
5439 				max((u64)stats->slice_max,
5440 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5441 	}
5442 
5443 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5444 }
5445 
5446 /*
5447  * Pick the next process, keeping these things in mind, in this order:
5448  * 1) keep things fair between processes/task groups
5449  * 2) pick the "next" process, since someone really wants that to run
5450  * 3) pick the "last" process, for cache locality
5451  * 4) do not run the "skip" process, if something else is available
5452  */
5453 static struct sched_entity *
5454 pick_next_entity(struct cfs_rq *cfs_rq)
5455 {
5456 	/*
5457 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5458 	 */
5459 	if (sched_feat(NEXT_BUDDY) &&
5460 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5461 		return cfs_rq->next;
5462 
5463 	return pick_eevdf(cfs_rq);
5464 }
5465 
5466 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5467 
5468 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5469 {
5470 	/*
5471 	 * If still on the runqueue then deactivate_task()
5472 	 * was not called and update_curr() has to be done:
5473 	 */
5474 	if (prev->on_rq)
5475 		update_curr(cfs_rq);
5476 
5477 	/* throttle cfs_rqs exceeding runtime */
5478 	check_cfs_rq_runtime(cfs_rq);
5479 
5480 	if (prev->on_rq) {
5481 		update_stats_wait_start_fair(cfs_rq, prev);
5482 		/* Put 'current' back into the tree. */
5483 		__enqueue_entity(cfs_rq, prev);
5484 		/* in !on_rq case, update occurred at dequeue */
5485 		update_load_avg(cfs_rq, prev, 0);
5486 	}
5487 	cfs_rq->curr = NULL;
5488 }
5489 
5490 static void
5491 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5492 {
5493 	/*
5494 	 * Update run-time statistics of the 'current'.
5495 	 */
5496 	update_curr(cfs_rq);
5497 
5498 	/*
5499 	 * Ensure that runnable average is periodically updated.
5500 	 */
5501 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5502 	update_cfs_group(curr);
5503 
5504 #ifdef CONFIG_SCHED_HRTICK
5505 	/*
5506 	 * queued ticks are scheduled to match the slice, so don't bother
5507 	 * validating it and just reschedule.
5508 	 */
5509 	if (queued) {
5510 		resched_curr(rq_of(cfs_rq));
5511 		return;
5512 	}
5513 	/*
5514 	 * don't let the period tick interfere with the hrtick preemption
5515 	 */
5516 	if (!sched_feat(DOUBLE_TICK) &&
5517 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5518 		return;
5519 #endif
5520 }
5521 
5522 
5523 /**************************************************
5524  * CFS bandwidth control machinery
5525  */
5526 
5527 #ifdef CONFIG_CFS_BANDWIDTH
5528 
5529 #ifdef CONFIG_JUMP_LABEL
5530 static struct static_key __cfs_bandwidth_used;
5531 
5532 static inline bool cfs_bandwidth_used(void)
5533 {
5534 	return static_key_false(&__cfs_bandwidth_used);
5535 }
5536 
5537 void cfs_bandwidth_usage_inc(void)
5538 {
5539 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5540 }
5541 
5542 void cfs_bandwidth_usage_dec(void)
5543 {
5544 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5545 }
5546 #else /* CONFIG_JUMP_LABEL */
5547 static bool cfs_bandwidth_used(void)
5548 {
5549 	return true;
5550 }
5551 
5552 void cfs_bandwidth_usage_inc(void) {}
5553 void cfs_bandwidth_usage_dec(void) {}
5554 #endif /* CONFIG_JUMP_LABEL */
5555 
5556 /*
5557  * default period for cfs group bandwidth.
5558  * default: 0.1s, units: nanoseconds
5559  */
5560 static inline u64 default_cfs_period(void)
5561 {
5562 	return 100000000ULL;
5563 }
5564 
5565 static inline u64 sched_cfs_bandwidth_slice(void)
5566 {
5567 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5568 }
5569 
5570 /*
5571  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5572  * directly instead of rq->clock to avoid adding additional synchronization
5573  * around rq->lock.
5574  *
5575  * requires cfs_b->lock
5576  */
5577 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5578 {
5579 	s64 runtime;
5580 
5581 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5582 		return;
5583 
5584 	cfs_b->runtime += cfs_b->quota;
5585 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5586 	if (runtime > 0) {
5587 		cfs_b->burst_time += runtime;
5588 		cfs_b->nr_burst++;
5589 	}
5590 
5591 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5592 	cfs_b->runtime_snap = cfs_b->runtime;
5593 }
5594 
5595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5596 {
5597 	return &tg->cfs_bandwidth;
5598 }
5599 
5600 /* returns 0 on failure to allocate runtime */
5601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5602 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5603 {
5604 	u64 min_amount, amount = 0;
5605 
5606 	lockdep_assert_held(&cfs_b->lock);
5607 
5608 	/* note: this is a positive sum as runtime_remaining <= 0 */
5609 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5610 
5611 	if (cfs_b->quota == RUNTIME_INF)
5612 		amount = min_amount;
5613 	else {
5614 		start_cfs_bandwidth(cfs_b);
5615 
5616 		if (cfs_b->runtime > 0) {
5617 			amount = min(cfs_b->runtime, min_amount);
5618 			cfs_b->runtime -= amount;
5619 			cfs_b->idle = 0;
5620 		}
5621 	}
5622 
5623 	cfs_rq->runtime_remaining += amount;
5624 
5625 	return cfs_rq->runtime_remaining > 0;
5626 }
5627 
5628 /* returns 0 on failure to allocate runtime */
5629 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5630 {
5631 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5632 	int ret;
5633 
5634 	raw_spin_lock(&cfs_b->lock);
5635 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5636 	raw_spin_unlock(&cfs_b->lock);
5637 
5638 	return ret;
5639 }
5640 
5641 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5642 {
5643 	/* dock delta_exec before expiring quota (as it could span periods) */
5644 	cfs_rq->runtime_remaining -= delta_exec;
5645 
5646 	if (likely(cfs_rq->runtime_remaining > 0))
5647 		return;
5648 
5649 	if (cfs_rq->throttled)
5650 		return;
5651 	/*
5652 	 * if we're unable to extend our runtime we resched so that the active
5653 	 * hierarchy can be throttled
5654 	 */
5655 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5656 		resched_curr(rq_of(cfs_rq));
5657 }
5658 
5659 static __always_inline
5660 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5661 {
5662 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5663 		return;
5664 
5665 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5666 }
5667 
5668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5669 {
5670 	return cfs_bandwidth_used() && cfs_rq->throttled;
5671 }
5672 
5673 /* check whether cfs_rq, or any parent, is throttled */
5674 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5675 {
5676 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5677 }
5678 
5679 /*
5680  * Ensure that neither of the group entities corresponding to src_cpu or
5681  * dest_cpu are members of a throttled hierarchy when performing group
5682  * load-balance operations.
5683  */
5684 static inline int throttled_lb_pair(struct task_group *tg,
5685 				    int src_cpu, int dest_cpu)
5686 {
5687 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5688 
5689 	src_cfs_rq = tg->cfs_rq[src_cpu];
5690 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5691 
5692 	return throttled_hierarchy(src_cfs_rq) ||
5693 	       throttled_hierarchy(dest_cfs_rq);
5694 }
5695 
5696 static int tg_unthrottle_up(struct task_group *tg, void *data)
5697 {
5698 	struct rq *rq = data;
5699 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5700 
5701 	cfs_rq->throttle_count--;
5702 	if (!cfs_rq->throttle_count) {
5703 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5704 					     cfs_rq->throttled_clock_pelt;
5705 
5706 		/* Add cfs_rq with load or one or more already running entities to the list */
5707 		if (!cfs_rq_is_decayed(cfs_rq))
5708 			list_add_leaf_cfs_rq(cfs_rq);
5709 
5710 		if (cfs_rq->throttled_clock_self) {
5711 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5712 
5713 			cfs_rq->throttled_clock_self = 0;
5714 
5715 			if (SCHED_WARN_ON((s64)delta < 0))
5716 				delta = 0;
5717 
5718 			cfs_rq->throttled_clock_self_time += delta;
5719 		}
5720 	}
5721 
5722 	return 0;
5723 }
5724 
5725 static int tg_throttle_down(struct task_group *tg, void *data)
5726 {
5727 	struct rq *rq = data;
5728 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5729 
5730 	/* group is entering throttled state, stop time */
5731 	if (!cfs_rq->throttle_count) {
5732 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5733 		list_del_leaf_cfs_rq(cfs_rq);
5734 
5735 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5736 		if (cfs_rq->nr_running)
5737 			cfs_rq->throttled_clock_self = rq_clock(rq);
5738 	}
5739 	cfs_rq->throttle_count++;
5740 
5741 	return 0;
5742 }
5743 
5744 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5745 {
5746 	struct rq *rq = rq_of(cfs_rq);
5747 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5748 	struct sched_entity *se;
5749 	long task_delta, idle_task_delta, dequeue = 1;
5750 
5751 	raw_spin_lock(&cfs_b->lock);
5752 	/* This will start the period timer if necessary */
5753 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5754 		/*
5755 		 * We have raced with bandwidth becoming available, and if we
5756 		 * actually throttled the timer might not unthrottle us for an
5757 		 * entire period. We additionally needed to make sure that any
5758 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5759 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5760 		 * for 1ns of runtime rather than just check cfs_b.
5761 		 */
5762 		dequeue = 0;
5763 	} else {
5764 		list_add_tail_rcu(&cfs_rq->throttled_list,
5765 				  &cfs_b->throttled_cfs_rq);
5766 	}
5767 	raw_spin_unlock(&cfs_b->lock);
5768 
5769 	if (!dequeue)
5770 		return false;  /* Throttle no longer required. */
5771 
5772 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5773 
5774 	/* freeze hierarchy runnable averages while throttled */
5775 	rcu_read_lock();
5776 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5777 	rcu_read_unlock();
5778 
5779 	task_delta = cfs_rq->h_nr_running;
5780 	idle_task_delta = cfs_rq->idle_h_nr_running;
5781 	for_each_sched_entity(se) {
5782 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5783 		/* throttled entity or throttle-on-deactivate */
5784 		if (!se->on_rq)
5785 			goto done;
5786 
5787 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5788 
5789 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5790 			idle_task_delta = cfs_rq->h_nr_running;
5791 
5792 		qcfs_rq->h_nr_running -= task_delta;
5793 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5794 
5795 		if (qcfs_rq->load.weight) {
5796 			/* Avoid re-evaluating load for this entity: */
5797 			se = parent_entity(se);
5798 			break;
5799 		}
5800 	}
5801 
5802 	for_each_sched_entity(se) {
5803 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5804 		/* throttled entity or throttle-on-deactivate */
5805 		if (!se->on_rq)
5806 			goto done;
5807 
5808 		update_load_avg(qcfs_rq, se, 0);
5809 		se_update_runnable(se);
5810 
5811 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5812 			idle_task_delta = cfs_rq->h_nr_running;
5813 
5814 		qcfs_rq->h_nr_running -= task_delta;
5815 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5816 	}
5817 
5818 	/* At this point se is NULL and we are at root level*/
5819 	sub_nr_running(rq, task_delta);
5820 
5821 done:
5822 	/*
5823 	 * Note: distribution will already see us throttled via the
5824 	 * throttled-list.  rq->lock protects completion.
5825 	 */
5826 	cfs_rq->throttled = 1;
5827 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5828 	if (cfs_rq->nr_running)
5829 		cfs_rq->throttled_clock = rq_clock(rq);
5830 	return true;
5831 }
5832 
5833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5834 {
5835 	struct rq *rq = rq_of(cfs_rq);
5836 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5837 	struct sched_entity *se;
5838 	long task_delta, idle_task_delta;
5839 
5840 	se = cfs_rq->tg->se[cpu_of(rq)];
5841 
5842 	cfs_rq->throttled = 0;
5843 
5844 	update_rq_clock(rq);
5845 
5846 	raw_spin_lock(&cfs_b->lock);
5847 	if (cfs_rq->throttled_clock) {
5848 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5849 		cfs_rq->throttled_clock = 0;
5850 	}
5851 	list_del_rcu(&cfs_rq->throttled_list);
5852 	raw_spin_unlock(&cfs_b->lock);
5853 
5854 	/* update hierarchical throttle state */
5855 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5856 
5857 	if (!cfs_rq->load.weight) {
5858 		if (!cfs_rq->on_list)
5859 			return;
5860 		/*
5861 		 * Nothing to run but something to decay (on_list)?
5862 		 * Complete the branch.
5863 		 */
5864 		for_each_sched_entity(se) {
5865 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5866 				break;
5867 		}
5868 		goto unthrottle_throttle;
5869 	}
5870 
5871 	task_delta = cfs_rq->h_nr_running;
5872 	idle_task_delta = cfs_rq->idle_h_nr_running;
5873 	for_each_sched_entity(se) {
5874 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5875 
5876 		if (se->on_rq)
5877 			break;
5878 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5879 
5880 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5881 			idle_task_delta = cfs_rq->h_nr_running;
5882 
5883 		qcfs_rq->h_nr_running += task_delta;
5884 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5885 
5886 		/* end evaluation on encountering a throttled cfs_rq */
5887 		if (cfs_rq_throttled(qcfs_rq))
5888 			goto unthrottle_throttle;
5889 	}
5890 
5891 	for_each_sched_entity(se) {
5892 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5893 
5894 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5895 		se_update_runnable(se);
5896 
5897 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5898 			idle_task_delta = cfs_rq->h_nr_running;
5899 
5900 		qcfs_rq->h_nr_running += task_delta;
5901 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5902 
5903 		/* end evaluation on encountering a throttled cfs_rq */
5904 		if (cfs_rq_throttled(qcfs_rq))
5905 			goto unthrottle_throttle;
5906 	}
5907 
5908 	/* At this point se is NULL and we are at root level*/
5909 	add_nr_running(rq, task_delta);
5910 
5911 unthrottle_throttle:
5912 	assert_list_leaf_cfs_rq(rq);
5913 
5914 	/* Determine whether we need to wake up potentially idle CPU: */
5915 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5916 		resched_curr(rq);
5917 }
5918 
5919 #ifdef CONFIG_SMP
5920 static void __cfsb_csd_unthrottle(void *arg)
5921 {
5922 	struct cfs_rq *cursor, *tmp;
5923 	struct rq *rq = arg;
5924 	struct rq_flags rf;
5925 
5926 	rq_lock(rq, &rf);
5927 
5928 	/*
5929 	 * Iterating over the list can trigger several call to
5930 	 * update_rq_clock() in unthrottle_cfs_rq().
5931 	 * Do it once and skip the potential next ones.
5932 	 */
5933 	update_rq_clock(rq);
5934 	rq_clock_start_loop_update(rq);
5935 
5936 	/*
5937 	 * Since we hold rq lock we're safe from concurrent manipulation of
5938 	 * the CSD list. However, this RCU critical section annotates the
5939 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5940 	 * race with group being freed in the window between removing it
5941 	 * from the list and advancing to the next entry in the list.
5942 	 */
5943 	rcu_read_lock();
5944 
5945 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5946 				 throttled_csd_list) {
5947 		list_del_init(&cursor->throttled_csd_list);
5948 
5949 		if (cfs_rq_throttled(cursor))
5950 			unthrottle_cfs_rq(cursor);
5951 	}
5952 
5953 	rcu_read_unlock();
5954 
5955 	rq_clock_stop_loop_update(rq);
5956 	rq_unlock(rq, &rf);
5957 }
5958 
5959 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5960 {
5961 	struct rq *rq = rq_of(cfs_rq);
5962 	bool first;
5963 
5964 	if (rq == this_rq()) {
5965 		unthrottle_cfs_rq(cfs_rq);
5966 		return;
5967 	}
5968 
5969 	/* Already enqueued */
5970 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5971 		return;
5972 
5973 	first = list_empty(&rq->cfsb_csd_list);
5974 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5975 	if (first)
5976 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5977 }
5978 #else
5979 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5980 {
5981 	unthrottle_cfs_rq(cfs_rq);
5982 }
5983 #endif
5984 
5985 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5986 {
5987 	lockdep_assert_rq_held(rq_of(cfs_rq));
5988 
5989 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5990 	    cfs_rq->runtime_remaining <= 0))
5991 		return;
5992 
5993 	__unthrottle_cfs_rq_async(cfs_rq);
5994 }
5995 
5996 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5997 {
5998 	int this_cpu = smp_processor_id();
5999 	u64 runtime, remaining = 1;
6000 	bool throttled = false;
6001 	struct cfs_rq *cfs_rq, *tmp;
6002 	struct rq_flags rf;
6003 	struct rq *rq;
6004 	LIST_HEAD(local_unthrottle);
6005 
6006 	rcu_read_lock();
6007 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6008 				throttled_list) {
6009 		rq = rq_of(cfs_rq);
6010 
6011 		if (!remaining) {
6012 			throttled = true;
6013 			break;
6014 		}
6015 
6016 		rq_lock_irqsave(rq, &rf);
6017 		if (!cfs_rq_throttled(cfs_rq))
6018 			goto next;
6019 
6020 		/* Already queued for async unthrottle */
6021 		if (!list_empty(&cfs_rq->throttled_csd_list))
6022 			goto next;
6023 
6024 		/* By the above checks, this should never be true */
6025 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6026 
6027 		raw_spin_lock(&cfs_b->lock);
6028 		runtime = -cfs_rq->runtime_remaining + 1;
6029 		if (runtime > cfs_b->runtime)
6030 			runtime = cfs_b->runtime;
6031 		cfs_b->runtime -= runtime;
6032 		remaining = cfs_b->runtime;
6033 		raw_spin_unlock(&cfs_b->lock);
6034 
6035 		cfs_rq->runtime_remaining += runtime;
6036 
6037 		/* we check whether we're throttled above */
6038 		if (cfs_rq->runtime_remaining > 0) {
6039 			if (cpu_of(rq) != this_cpu) {
6040 				unthrottle_cfs_rq_async(cfs_rq);
6041 			} else {
6042 				/*
6043 				 * We currently only expect to be unthrottling
6044 				 * a single cfs_rq locally.
6045 				 */
6046 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6047 				list_add_tail(&cfs_rq->throttled_csd_list,
6048 					      &local_unthrottle);
6049 			}
6050 		} else {
6051 			throttled = true;
6052 		}
6053 
6054 next:
6055 		rq_unlock_irqrestore(rq, &rf);
6056 	}
6057 
6058 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6059 				 throttled_csd_list) {
6060 		struct rq *rq = rq_of(cfs_rq);
6061 
6062 		rq_lock_irqsave(rq, &rf);
6063 
6064 		list_del_init(&cfs_rq->throttled_csd_list);
6065 
6066 		if (cfs_rq_throttled(cfs_rq))
6067 			unthrottle_cfs_rq(cfs_rq);
6068 
6069 		rq_unlock_irqrestore(rq, &rf);
6070 	}
6071 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6072 
6073 	rcu_read_unlock();
6074 
6075 	return throttled;
6076 }
6077 
6078 /*
6079  * Responsible for refilling a task_group's bandwidth and unthrottling its
6080  * cfs_rqs as appropriate. If there has been no activity within the last
6081  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6082  * used to track this state.
6083  */
6084 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6085 {
6086 	int throttled;
6087 
6088 	/* no need to continue the timer with no bandwidth constraint */
6089 	if (cfs_b->quota == RUNTIME_INF)
6090 		goto out_deactivate;
6091 
6092 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6093 	cfs_b->nr_periods += overrun;
6094 
6095 	/* Refill extra burst quota even if cfs_b->idle */
6096 	__refill_cfs_bandwidth_runtime(cfs_b);
6097 
6098 	/*
6099 	 * idle depends on !throttled (for the case of a large deficit), and if
6100 	 * we're going inactive then everything else can be deferred
6101 	 */
6102 	if (cfs_b->idle && !throttled)
6103 		goto out_deactivate;
6104 
6105 	if (!throttled) {
6106 		/* mark as potentially idle for the upcoming period */
6107 		cfs_b->idle = 1;
6108 		return 0;
6109 	}
6110 
6111 	/* account preceding periods in which throttling occurred */
6112 	cfs_b->nr_throttled += overrun;
6113 
6114 	/*
6115 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6116 	 */
6117 	while (throttled && cfs_b->runtime > 0) {
6118 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6119 		/* we can't nest cfs_b->lock while distributing bandwidth */
6120 		throttled = distribute_cfs_runtime(cfs_b);
6121 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6122 	}
6123 
6124 	/*
6125 	 * While we are ensured activity in the period following an
6126 	 * unthrottle, this also covers the case in which the new bandwidth is
6127 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6128 	 * timer to remain active while there are any throttled entities.)
6129 	 */
6130 	cfs_b->idle = 0;
6131 
6132 	return 0;
6133 
6134 out_deactivate:
6135 	return 1;
6136 }
6137 
6138 /* a cfs_rq won't donate quota below this amount */
6139 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6140 /* minimum remaining period time to redistribute slack quota */
6141 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6142 /* how long we wait to gather additional slack before distributing */
6143 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6144 
6145 /*
6146  * Are we near the end of the current quota period?
6147  *
6148  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6149  * hrtimer base being cleared by hrtimer_start. In the case of
6150  * migrate_hrtimers, base is never cleared, so we are fine.
6151  */
6152 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6153 {
6154 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6155 	s64 remaining;
6156 
6157 	/* if the call-back is running a quota refresh is already occurring */
6158 	if (hrtimer_callback_running(refresh_timer))
6159 		return 1;
6160 
6161 	/* is a quota refresh about to occur? */
6162 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6163 	if (remaining < (s64)min_expire)
6164 		return 1;
6165 
6166 	return 0;
6167 }
6168 
6169 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6170 {
6171 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6172 
6173 	/* if there's a quota refresh soon don't bother with slack */
6174 	if (runtime_refresh_within(cfs_b, min_left))
6175 		return;
6176 
6177 	/* don't push forwards an existing deferred unthrottle */
6178 	if (cfs_b->slack_started)
6179 		return;
6180 	cfs_b->slack_started = true;
6181 
6182 	hrtimer_start(&cfs_b->slack_timer,
6183 			ns_to_ktime(cfs_bandwidth_slack_period),
6184 			HRTIMER_MODE_REL);
6185 }
6186 
6187 /* we know any runtime found here is valid as update_curr() precedes return */
6188 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6189 {
6190 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6191 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6192 
6193 	if (slack_runtime <= 0)
6194 		return;
6195 
6196 	raw_spin_lock(&cfs_b->lock);
6197 	if (cfs_b->quota != RUNTIME_INF) {
6198 		cfs_b->runtime += slack_runtime;
6199 
6200 		/* we are under rq->lock, defer unthrottling using a timer */
6201 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6202 		    !list_empty(&cfs_b->throttled_cfs_rq))
6203 			start_cfs_slack_bandwidth(cfs_b);
6204 	}
6205 	raw_spin_unlock(&cfs_b->lock);
6206 
6207 	/* even if it's not valid for return we don't want to try again */
6208 	cfs_rq->runtime_remaining -= slack_runtime;
6209 }
6210 
6211 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6212 {
6213 	if (!cfs_bandwidth_used())
6214 		return;
6215 
6216 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6217 		return;
6218 
6219 	__return_cfs_rq_runtime(cfs_rq);
6220 }
6221 
6222 /*
6223  * This is done with a timer (instead of inline with bandwidth return) since
6224  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6225  */
6226 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6227 {
6228 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6229 	unsigned long flags;
6230 
6231 	/* confirm we're still not at a refresh boundary */
6232 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6233 	cfs_b->slack_started = false;
6234 
6235 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6236 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6237 		return;
6238 	}
6239 
6240 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6241 		runtime = cfs_b->runtime;
6242 
6243 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6244 
6245 	if (!runtime)
6246 		return;
6247 
6248 	distribute_cfs_runtime(cfs_b);
6249 }
6250 
6251 /*
6252  * When a group wakes up we want to make sure that its quota is not already
6253  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6254  * runtime as update_curr() throttling can not trigger until it's on-rq.
6255  */
6256 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6257 {
6258 	if (!cfs_bandwidth_used())
6259 		return;
6260 
6261 	/* an active group must be handled by the update_curr()->put() path */
6262 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6263 		return;
6264 
6265 	/* ensure the group is not already throttled */
6266 	if (cfs_rq_throttled(cfs_rq))
6267 		return;
6268 
6269 	/* update runtime allocation */
6270 	account_cfs_rq_runtime(cfs_rq, 0);
6271 	if (cfs_rq->runtime_remaining <= 0)
6272 		throttle_cfs_rq(cfs_rq);
6273 }
6274 
6275 static void sync_throttle(struct task_group *tg, int cpu)
6276 {
6277 	struct cfs_rq *pcfs_rq, *cfs_rq;
6278 
6279 	if (!cfs_bandwidth_used())
6280 		return;
6281 
6282 	if (!tg->parent)
6283 		return;
6284 
6285 	cfs_rq = tg->cfs_rq[cpu];
6286 	pcfs_rq = tg->parent->cfs_rq[cpu];
6287 
6288 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6289 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6290 }
6291 
6292 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6293 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6294 {
6295 	if (!cfs_bandwidth_used())
6296 		return false;
6297 
6298 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6299 		return false;
6300 
6301 	/*
6302 	 * it's possible for a throttled entity to be forced into a running
6303 	 * state (e.g. set_curr_task), in this case we're finished.
6304 	 */
6305 	if (cfs_rq_throttled(cfs_rq))
6306 		return true;
6307 
6308 	return throttle_cfs_rq(cfs_rq);
6309 }
6310 
6311 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6312 {
6313 	struct cfs_bandwidth *cfs_b =
6314 		container_of(timer, struct cfs_bandwidth, slack_timer);
6315 
6316 	do_sched_cfs_slack_timer(cfs_b);
6317 
6318 	return HRTIMER_NORESTART;
6319 }
6320 
6321 extern const u64 max_cfs_quota_period;
6322 
6323 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6324 {
6325 	struct cfs_bandwidth *cfs_b =
6326 		container_of(timer, struct cfs_bandwidth, period_timer);
6327 	unsigned long flags;
6328 	int overrun;
6329 	int idle = 0;
6330 	int count = 0;
6331 
6332 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6333 	for (;;) {
6334 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6335 		if (!overrun)
6336 			break;
6337 
6338 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6339 
6340 		if (++count > 3) {
6341 			u64 new, old = ktime_to_ns(cfs_b->period);
6342 
6343 			/*
6344 			 * Grow period by a factor of 2 to avoid losing precision.
6345 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6346 			 * to fail.
6347 			 */
6348 			new = old * 2;
6349 			if (new < max_cfs_quota_period) {
6350 				cfs_b->period = ns_to_ktime(new);
6351 				cfs_b->quota *= 2;
6352 				cfs_b->burst *= 2;
6353 
6354 				pr_warn_ratelimited(
6355 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6356 					smp_processor_id(),
6357 					div_u64(new, NSEC_PER_USEC),
6358 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6359 			} else {
6360 				pr_warn_ratelimited(
6361 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6362 					smp_processor_id(),
6363 					div_u64(old, NSEC_PER_USEC),
6364 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6365 			}
6366 
6367 			/* reset count so we don't come right back in here */
6368 			count = 0;
6369 		}
6370 	}
6371 	if (idle)
6372 		cfs_b->period_active = 0;
6373 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6374 
6375 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6376 }
6377 
6378 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6379 {
6380 	raw_spin_lock_init(&cfs_b->lock);
6381 	cfs_b->runtime = 0;
6382 	cfs_b->quota = RUNTIME_INF;
6383 	cfs_b->period = ns_to_ktime(default_cfs_period());
6384 	cfs_b->burst = 0;
6385 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6386 
6387 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6388 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6389 	cfs_b->period_timer.function = sched_cfs_period_timer;
6390 
6391 	/* Add a random offset so that timers interleave */
6392 	hrtimer_set_expires(&cfs_b->period_timer,
6393 			    get_random_u32_below(cfs_b->period));
6394 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6395 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6396 	cfs_b->slack_started = false;
6397 }
6398 
6399 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6400 {
6401 	cfs_rq->runtime_enabled = 0;
6402 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6403 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6404 }
6405 
6406 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6407 {
6408 	lockdep_assert_held(&cfs_b->lock);
6409 
6410 	if (cfs_b->period_active)
6411 		return;
6412 
6413 	cfs_b->period_active = 1;
6414 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6415 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6416 }
6417 
6418 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6419 {
6420 	int __maybe_unused i;
6421 
6422 	/* init_cfs_bandwidth() was not called */
6423 	if (!cfs_b->throttled_cfs_rq.next)
6424 		return;
6425 
6426 	hrtimer_cancel(&cfs_b->period_timer);
6427 	hrtimer_cancel(&cfs_b->slack_timer);
6428 
6429 	/*
6430 	 * It is possible that we still have some cfs_rq's pending on a CSD
6431 	 * list, though this race is very rare. In order for this to occur, we
6432 	 * must have raced with the last task leaving the group while there
6433 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6434 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6435 	 * we can simply flush all pending CSD work inline here. We're
6436 	 * guaranteed at this point that no additional cfs_rq of this group can
6437 	 * join a CSD list.
6438 	 */
6439 #ifdef CONFIG_SMP
6440 	for_each_possible_cpu(i) {
6441 		struct rq *rq = cpu_rq(i);
6442 		unsigned long flags;
6443 
6444 		if (list_empty(&rq->cfsb_csd_list))
6445 			continue;
6446 
6447 		local_irq_save(flags);
6448 		__cfsb_csd_unthrottle(rq);
6449 		local_irq_restore(flags);
6450 	}
6451 #endif
6452 }
6453 
6454 /*
6455  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6456  *
6457  * The race is harmless, since modifying bandwidth settings of unhooked group
6458  * bits doesn't do much.
6459  */
6460 
6461 /* cpu online callback */
6462 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6463 {
6464 	struct task_group *tg;
6465 
6466 	lockdep_assert_rq_held(rq);
6467 
6468 	rcu_read_lock();
6469 	list_for_each_entry_rcu(tg, &task_groups, list) {
6470 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6471 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6472 
6473 		raw_spin_lock(&cfs_b->lock);
6474 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6475 		raw_spin_unlock(&cfs_b->lock);
6476 	}
6477 	rcu_read_unlock();
6478 }
6479 
6480 /* cpu offline callback */
6481 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6482 {
6483 	struct task_group *tg;
6484 
6485 	lockdep_assert_rq_held(rq);
6486 
6487 	/*
6488 	 * The rq clock has already been updated in the
6489 	 * set_rq_offline(), so we should skip updating
6490 	 * the rq clock again in unthrottle_cfs_rq().
6491 	 */
6492 	rq_clock_start_loop_update(rq);
6493 
6494 	rcu_read_lock();
6495 	list_for_each_entry_rcu(tg, &task_groups, list) {
6496 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6497 
6498 		if (!cfs_rq->runtime_enabled)
6499 			continue;
6500 
6501 		/*
6502 		 * clock_task is not advancing so we just need to make sure
6503 		 * there's some valid quota amount
6504 		 */
6505 		cfs_rq->runtime_remaining = 1;
6506 		/*
6507 		 * Offline rq is schedulable till CPU is completely disabled
6508 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6509 		 */
6510 		cfs_rq->runtime_enabled = 0;
6511 
6512 		if (cfs_rq_throttled(cfs_rq))
6513 			unthrottle_cfs_rq(cfs_rq);
6514 	}
6515 	rcu_read_unlock();
6516 
6517 	rq_clock_stop_loop_update(rq);
6518 }
6519 
6520 bool cfs_task_bw_constrained(struct task_struct *p)
6521 {
6522 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6523 
6524 	if (!cfs_bandwidth_used())
6525 		return false;
6526 
6527 	if (cfs_rq->runtime_enabled ||
6528 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6529 		return true;
6530 
6531 	return false;
6532 }
6533 
6534 #ifdef CONFIG_NO_HZ_FULL
6535 /* called from pick_next_task_fair() */
6536 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6537 {
6538 	int cpu = cpu_of(rq);
6539 
6540 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6541 		return;
6542 
6543 	if (!tick_nohz_full_cpu(cpu))
6544 		return;
6545 
6546 	if (rq->nr_running != 1)
6547 		return;
6548 
6549 	/*
6550 	 *  We know there is only one task runnable and we've just picked it. The
6551 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6552 	 *  be otherwise able to stop the tick. Just need to check if we are using
6553 	 *  bandwidth control.
6554 	 */
6555 	if (cfs_task_bw_constrained(p))
6556 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6557 }
6558 #endif
6559 
6560 #else /* CONFIG_CFS_BANDWIDTH */
6561 
6562 static inline bool cfs_bandwidth_used(void)
6563 {
6564 	return false;
6565 }
6566 
6567 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6568 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6569 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6570 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6571 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6572 
6573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6574 {
6575 	return 0;
6576 }
6577 
6578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6579 {
6580 	return 0;
6581 }
6582 
6583 static inline int throttled_lb_pair(struct task_group *tg,
6584 				    int src_cpu, int dest_cpu)
6585 {
6586 	return 0;
6587 }
6588 
6589 #ifdef CONFIG_FAIR_GROUP_SCHED
6590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6591 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6592 #endif
6593 
6594 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6595 {
6596 	return NULL;
6597 }
6598 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6599 static inline void update_runtime_enabled(struct rq *rq) {}
6600 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6601 #ifdef CONFIG_CGROUP_SCHED
6602 bool cfs_task_bw_constrained(struct task_struct *p)
6603 {
6604 	return false;
6605 }
6606 #endif
6607 #endif /* CONFIG_CFS_BANDWIDTH */
6608 
6609 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6610 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6611 #endif
6612 
6613 /**************************************************
6614  * CFS operations on tasks:
6615  */
6616 
6617 #ifdef CONFIG_SCHED_HRTICK
6618 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6619 {
6620 	struct sched_entity *se = &p->se;
6621 
6622 	SCHED_WARN_ON(task_rq(p) != rq);
6623 
6624 	if (rq->cfs.h_nr_running > 1) {
6625 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6626 		u64 slice = se->slice;
6627 		s64 delta = slice - ran;
6628 
6629 		if (delta < 0) {
6630 			if (task_current(rq, p))
6631 				resched_curr(rq);
6632 			return;
6633 		}
6634 		hrtick_start(rq, delta);
6635 	}
6636 }
6637 
6638 /*
6639  * called from enqueue/dequeue and updates the hrtick when the
6640  * current task is from our class and nr_running is low enough
6641  * to matter.
6642  */
6643 static void hrtick_update(struct rq *rq)
6644 {
6645 	struct task_struct *curr = rq->curr;
6646 
6647 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6648 		return;
6649 
6650 	hrtick_start_fair(rq, curr);
6651 }
6652 #else /* !CONFIG_SCHED_HRTICK */
6653 static inline void
6654 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6655 {
6656 }
6657 
6658 static inline void hrtick_update(struct rq *rq)
6659 {
6660 }
6661 #endif
6662 
6663 #ifdef CONFIG_SMP
6664 static inline bool cpu_overutilized(int cpu)
6665 {
6666 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6667 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6668 
6669 	/* Return true only if the utilization doesn't fit CPU's capacity */
6670 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6671 }
6672 
6673 static inline void update_overutilized_status(struct rq *rq)
6674 {
6675 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6676 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6677 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6678 	}
6679 }
6680 #else
6681 static inline void update_overutilized_status(struct rq *rq) { }
6682 #endif
6683 
6684 /* Runqueue only has SCHED_IDLE tasks enqueued */
6685 static int sched_idle_rq(struct rq *rq)
6686 {
6687 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6688 			rq->nr_running);
6689 }
6690 
6691 #ifdef CONFIG_SMP
6692 static int sched_idle_cpu(int cpu)
6693 {
6694 	return sched_idle_rq(cpu_rq(cpu));
6695 }
6696 #endif
6697 
6698 /*
6699  * The enqueue_task method is called before nr_running is
6700  * increased. Here we update the fair scheduling stats and
6701  * then put the task into the rbtree:
6702  */
6703 static void
6704 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6705 {
6706 	struct cfs_rq *cfs_rq;
6707 	struct sched_entity *se = &p->se;
6708 	int idle_h_nr_running = task_has_idle_policy(p);
6709 	int task_new = !(flags & ENQUEUE_WAKEUP);
6710 
6711 	/*
6712 	 * The code below (indirectly) updates schedutil which looks at
6713 	 * the cfs_rq utilization to select a frequency.
6714 	 * Let's add the task's estimated utilization to the cfs_rq's
6715 	 * estimated utilization, before we update schedutil.
6716 	 */
6717 	util_est_enqueue(&rq->cfs, p);
6718 
6719 	/*
6720 	 * If in_iowait is set, the code below may not trigger any cpufreq
6721 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6722 	 * passed.
6723 	 */
6724 	if (p->in_iowait)
6725 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6726 
6727 	for_each_sched_entity(se) {
6728 		if (se->on_rq)
6729 			break;
6730 		cfs_rq = cfs_rq_of(se);
6731 		enqueue_entity(cfs_rq, se, flags);
6732 
6733 		cfs_rq->h_nr_running++;
6734 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6735 
6736 		if (cfs_rq_is_idle(cfs_rq))
6737 			idle_h_nr_running = 1;
6738 
6739 		/* end evaluation on encountering a throttled cfs_rq */
6740 		if (cfs_rq_throttled(cfs_rq))
6741 			goto enqueue_throttle;
6742 
6743 		flags = ENQUEUE_WAKEUP;
6744 	}
6745 
6746 	for_each_sched_entity(se) {
6747 		cfs_rq = cfs_rq_of(se);
6748 
6749 		update_load_avg(cfs_rq, se, UPDATE_TG);
6750 		se_update_runnable(se);
6751 		update_cfs_group(se);
6752 
6753 		cfs_rq->h_nr_running++;
6754 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6755 
6756 		if (cfs_rq_is_idle(cfs_rq))
6757 			idle_h_nr_running = 1;
6758 
6759 		/* end evaluation on encountering a throttled cfs_rq */
6760 		if (cfs_rq_throttled(cfs_rq))
6761 			goto enqueue_throttle;
6762 	}
6763 
6764 	/* At this point se is NULL and we are at root level*/
6765 	add_nr_running(rq, 1);
6766 
6767 	/*
6768 	 * Since new tasks are assigned an initial util_avg equal to
6769 	 * half of the spare capacity of their CPU, tiny tasks have the
6770 	 * ability to cross the overutilized threshold, which will
6771 	 * result in the load balancer ruining all the task placement
6772 	 * done by EAS. As a way to mitigate that effect, do not account
6773 	 * for the first enqueue operation of new tasks during the
6774 	 * overutilized flag detection.
6775 	 *
6776 	 * A better way of solving this problem would be to wait for
6777 	 * the PELT signals of tasks to converge before taking them
6778 	 * into account, but that is not straightforward to implement,
6779 	 * and the following generally works well enough in practice.
6780 	 */
6781 	if (!task_new)
6782 		update_overutilized_status(rq);
6783 
6784 enqueue_throttle:
6785 	assert_list_leaf_cfs_rq(rq);
6786 
6787 	hrtick_update(rq);
6788 }
6789 
6790 static void set_next_buddy(struct sched_entity *se);
6791 
6792 /*
6793  * The dequeue_task method is called before nr_running is
6794  * decreased. We remove the task from the rbtree and
6795  * update the fair scheduling stats:
6796  */
6797 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6798 {
6799 	struct cfs_rq *cfs_rq;
6800 	struct sched_entity *se = &p->se;
6801 	int task_sleep = flags & DEQUEUE_SLEEP;
6802 	int idle_h_nr_running = task_has_idle_policy(p);
6803 	bool was_sched_idle = sched_idle_rq(rq);
6804 
6805 	util_est_dequeue(&rq->cfs, p);
6806 
6807 	for_each_sched_entity(se) {
6808 		cfs_rq = cfs_rq_of(se);
6809 		dequeue_entity(cfs_rq, se, flags);
6810 
6811 		cfs_rq->h_nr_running--;
6812 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6813 
6814 		if (cfs_rq_is_idle(cfs_rq))
6815 			idle_h_nr_running = 1;
6816 
6817 		/* end evaluation on encountering a throttled cfs_rq */
6818 		if (cfs_rq_throttled(cfs_rq))
6819 			goto dequeue_throttle;
6820 
6821 		/* Don't dequeue parent if it has other entities besides us */
6822 		if (cfs_rq->load.weight) {
6823 			/* Avoid re-evaluating load for this entity: */
6824 			se = parent_entity(se);
6825 			/*
6826 			 * Bias pick_next to pick a task from this cfs_rq, as
6827 			 * p is sleeping when it is within its sched_slice.
6828 			 */
6829 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6830 				set_next_buddy(se);
6831 			break;
6832 		}
6833 		flags |= DEQUEUE_SLEEP;
6834 	}
6835 
6836 	for_each_sched_entity(se) {
6837 		cfs_rq = cfs_rq_of(se);
6838 
6839 		update_load_avg(cfs_rq, se, UPDATE_TG);
6840 		se_update_runnable(se);
6841 		update_cfs_group(se);
6842 
6843 		cfs_rq->h_nr_running--;
6844 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6845 
6846 		if (cfs_rq_is_idle(cfs_rq))
6847 			idle_h_nr_running = 1;
6848 
6849 		/* end evaluation on encountering a throttled cfs_rq */
6850 		if (cfs_rq_throttled(cfs_rq))
6851 			goto dequeue_throttle;
6852 
6853 	}
6854 
6855 	/* At this point se is NULL and we are at root level*/
6856 	sub_nr_running(rq, 1);
6857 
6858 	/* balance early to pull high priority tasks */
6859 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6860 		rq->next_balance = jiffies;
6861 
6862 dequeue_throttle:
6863 	util_est_update(&rq->cfs, p, task_sleep);
6864 	hrtick_update(rq);
6865 }
6866 
6867 #ifdef CONFIG_SMP
6868 
6869 /* Working cpumask for: load_balance, load_balance_newidle. */
6870 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6871 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6872 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6873 
6874 #ifdef CONFIG_NO_HZ_COMMON
6875 
6876 static struct {
6877 	cpumask_var_t idle_cpus_mask;
6878 	atomic_t nr_cpus;
6879 	int has_blocked;		/* Idle CPUS has blocked load */
6880 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6881 	unsigned long next_balance;     /* in jiffy units */
6882 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6883 } nohz ____cacheline_aligned;
6884 
6885 #endif /* CONFIG_NO_HZ_COMMON */
6886 
6887 static unsigned long cpu_load(struct rq *rq)
6888 {
6889 	return cfs_rq_load_avg(&rq->cfs);
6890 }
6891 
6892 /*
6893  * cpu_load_without - compute CPU load without any contributions from *p
6894  * @cpu: the CPU which load is requested
6895  * @p: the task which load should be discounted
6896  *
6897  * The load of a CPU is defined by the load of tasks currently enqueued on that
6898  * CPU as well as tasks which are currently sleeping after an execution on that
6899  * CPU.
6900  *
6901  * This method returns the load of the specified CPU by discounting the load of
6902  * the specified task, whenever the task is currently contributing to the CPU
6903  * load.
6904  */
6905 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6906 {
6907 	struct cfs_rq *cfs_rq;
6908 	unsigned int load;
6909 
6910 	/* Task has no contribution or is new */
6911 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6912 		return cpu_load(rq);
6913 
6914 	cfs_rq = &rq->cfs;
6915 	load = READ_ONCE(cfs_rq->avg.load_avg);
6916 
6917 	/* Discount task's util from CPU's util */
6918 	lsub_positive(&load, task_h_load(p));
6919 
6920 	return load;
6921 }
6922 
6923 static unsigned long cpu_runnable(struct rq *rq)
6924 {
6925 	return cfs_rq_runnable_avg(&rq->cfs);
6926 }
6927 
6928 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6929 {
6930 	struct cfs_rq *cfs_rq;
6931 	unsigned int runnable;
6932 
6933 	/* Task has no contribution or is new */
6934 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6935 		return cpu_runnable(rq);
6936 
6937 	cfs_rq = &rq->cfs;
6938 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6939 
6940 	/* Discount task's runnable from CPU's runnable */
6941 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6942 
6943 	return runnable;
6944 }
6945 
6946 static unsigned long capacity_of(int cpu)
6947 {
6948 	return cpu_rq(cpu)->cpu_capacity;
6949 }
6950 
6951 static void record_wakee(struct task_struct *p)
6952 {
6953 	/*
6954 	 * Only decay a single time; tasks that have less then 1 wakeup per
6955 	 * jiffy will not have built up many flips.
6956 	 */
6957 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6958 		current->wakee_flips >>= 1;
6959 		current->wakee_flip_decay_ts = jiffies;
6960 	}
6961 
6962 	if (current->last_wakee != p) {
6963 		current->last_wakee = p;
6964 		current->wakee_flips++;
6965 	}
6966 }
6967 
6968 /*
6969  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6970  *
6971  * A waker of many should wake a different task than the one last awakened
6972  * at a frequency roughly N times higher than one of its wakees.
6973  *
6974  * In order to determine whether we should let the load spread vs consolidating
6975  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6976  * partner, and a factor of lls_size higher frequency in the other.
6977  *
6978  * With both conditions met, we can be relatively sure that the relationship is
6979  * non-monogamous, with partner count exceeding socket size.
6980  *
6981  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6982  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6983  * socket size.
6984  */
6985 static int wake_wide(struct task_struct *p)
6986 {
6987 	unsigned int master = current->wakee_flips;
6988 	unsigned int slave = p->wakee_flips;
6989 	int factor = __this_cpu_read(sd_llc_size);
6990 
6991 	if (master < slave)
6992 		swap(master, slave);
6993 	if (slave < factor || master < slave * factor)
6994 		return 0;
6995 	return 1;
6996 }
6997 
6998 /*
6999  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7000  * soonest. For the purpose of speed we only consider the waking and previous
7001  * CPU.
7002  *
7003  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7004  *			cache-affine and is (or	will be) idle.
7005  *
7006  * wake_affine_weight() - considers the weight to reflect the average
7007  *			  scheduling latency of the CPUs. This seems to work
7008  *			  for the overloaded case.
7009  */
7010 static int
7011 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7012 {
7013 	/*
7014 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7015 	 * context. Only allow the move if cache is shared. Otherwise an
7016 	 * interrupt intensive workload could force all tasks onto one
7017 	 * node depending on the IO topology or IRQ affinity settings.
7018 	 *
7019 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7020 	 * There is no guarantee that the cache hot data from an interrupt
7021 	 * is more important than cache hot data on the prev_cpu and from
7022 	 * a cpufreq perspective, it's better to have higher utilisation
7023 	 * on one CPU.
7024 	 */
7025 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7026 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7027 
7028 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7029 		return this_cpu;
7030 
7031 	if (available_idle_cpu(prev_cpu))
7032 		return prev_cpu;
7033 
7034 	return nr_cpumask_bits;
7035 }
7036 
7037 static int
7038 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7039 		   int this_cpu, int prev_cpu, int sync)
7040 {
7041 	s64 this_eff_load, prev_eff_load;
7042 	unsigned long task_load;
7043 
7044 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7045 
7046 	if (sync) {
7047 		unsigned long current_load = task_h_load(current);
7048 
7049 		if (current_load > this_eff_load)
7050 			return this_cpu;
7051 
7052 		this_eff_load -= current_load;
7053 	}
7054 
7055 	task_load = task_h_load(p);
7056 
7057 	this_eff_load += task_load;
7058 	if (sched_feat(WA_BIAS))
7059 		this_eff_load *= 100;
7060 	this_eff_load *= capacity_of(prev_cpu);
7061 
7062 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7063 	prev_eff_load -= task_load;
7064 	if (sched_feat(WA_BIAS))
7065 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7066 	prev_eff_load *= capacity_of(this_cpu);
7067 
7068 	/*
7069 	 * If sync, adjust the weight of prev_eff_load such that if
7070 	 * prev_eff == this_eff that select_idle_sibling() will consider
7071 	 * stacking the wakee on top of the waker if no other CPU is
7072 	 * idle.
7073 	 */
7074 	if (sync)
7075 		prev_eff_load += 1;
7076 
7077 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7078 }
7079 
7080 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7081 		       int this_cpu, int prev_cpu, int sync)
7082 {
7083 	int target = nr_cpumask_bits;
7084 
7085 	if (sched_feat(WA_IDLE))
7086 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7087 
7088 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7089 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7090 
7091 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7092 	if (target != this_cpu)
7093 		return prev_cpu;
7094 
7095 	schedstat_inc(sd->ttwu_move_affine);
7096 	schedstat_inc(p->stats.nr_wakeups_affine);
7097 	return target;
7098 }
7099 
7100 static struct sched_group *
7101 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7102 
7103 /*
7104  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7105  */
7106 static int
7107 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7108 {
7109 	unsigned long load, min_load = ULONG_MAX;
7110 	unsigned int min_exit_latency = UINT_MAX;
7111 	u64 latest_idle_timestamp = 0;
7112 	int least_loaded_cpu = this_cpu;
7113 	int shallowest_idle_cpu = -1;
7114 	int i;
7115 
7116 	/* Check if we have any choice: */
7117 	if (group->group_weight == 1)
7118 		return cpumask_first(sched_group_span(group));
7119 
7120 	/* Traverse only the allowed CPUs */
7121 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7122 		struct rq *rq = cpu_rq(i);
7123 
7124 		if (!sched_core_cookie_match(rq, p))
7125 			continue;
7126 
7127 		if (sched_idle_cpu(i))
7128 			return i;
7129 
7130 		if (available_idle_cpu(i)) {
7131 			struct cpuidle_state *idle = idle_get_state(rq);
7132 			if (idle && idle->exit_latency < min_exit_latency) {
7133 				/*
7134 				 * We give priority to a CPU whose idle state
7135 				 * has the smallest exit latency irrespective
7136 				 * of any idle timestamp.
7137 				 */
7138 				min_exit_latency = idle->exit_latency;
7139 				latest_idle_timestamp = rq->idle_stamp;
7140 				shallowest_idle_cpu = i;
7141 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7142 				   rq->idle_stamp > latest_idle_timestamp) {
7143 				/*
7144 				 * If equal or no active idle state, then
7145 				 * the most recently idled CPU might have
7146 				 * a warmer cache.
7147 				 */
7148 				latest_idle_timestamp = rq->idle_stamp;
7149 				shallowest_idle_cpu = i;
7150 			}
7151 		} else if (shallowest_idle_cpu == -1) {
7152 			load = cpu_load(cpu_rq(i));
7153 			if (load < min_load) {
7154 				min_load = load;
7155 				least_loaded_cpu = i;
7156 			}
7157 		}
7158 	}
7159 
7160 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7161 }
7162 
7163 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7164 				  int cpu, int prev_cpu, int sd_flag)
7165 {
7166 	int new_cpu = cpu;
7167 
7168 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7169 		return prev_cpu;
7170 
7171 	/*
7172 	 * We need task's util for cpu_util_without, sync it up to
7173 	 * prev_cpu's last_update_time.
7174 	 */
7175 	if (!(sd_flag & SD_BALANCE_FORK))
7176 		sync_entity_load_avg(&p->se);
7177 
7178 	while (sd) {
7179 		struct sched_group *group;
7180 		struct sched_domain *tmp;
7181 		int weight;
7182 
7183 		if (!(sd->flags & sd_flag)) {
7184 			sd = sd->child;
7185 			continue;
7186 		}
7187 
7188 		group = find_idlest_group(sd, p, cpu);
7189 		if (!group) {
7190 			sd = sd->child;
7191 			continue;
7192 		}
7193 
7194 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7195 		if (new_cpu == cpu) {
7196 			/* Now try balancing at a lower domain level of 'cpu': */
7197 			sd = sd->child;
7198 			continue;
7199 		}
7200 
7201 		/* Now try balancing at a lower domain level of 'new_cpu': */
7202 		cpu = new_cpu;
7203 		weight = sd->span_weight;
7204 		sd = NULL;
7205 		for_each_domain(cpu, tmp) {
7206 			if (weight <= tmp->span_weight)
7207 				break;
7208 			if (tmp->flags & sd_flag)
7209 				sd = tmp;
7210 		}
7211 	}
7212 
7213 	return new_cpu;
7214 }
7215 
7216 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7217 {
7218 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7219 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7220 		return cpu;
7221 
7222 	return -1;
7223 }
7224 
7225 #ifdef CONFIG_SCHED_SMT
7226 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7227 EXPORT_SYMBOL_GPL(sched_smt_present);
7228 
7229 static inline void set_idle_cores(int cpu, int val)
7230 {
7231 	struct sched_domain_shared *sds;
7232 
7233 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7234 	if (sds)
7235 		WRITE_ONCE(sds->has_idle_cores, val);
7236 }
7237 
7238 static inline bool test_idle_cores(int cpu)
7239 {
7240 	struct sched_domain_shared *sds;
7241 
7242 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7243 	if (sds)
7244 		return READ_ONCE(sds->has_idle_cores);
7245 
7246 	return false;
7247 }
7248 
7249 /*
7250  * Scans the local SMT mask to see if the entire core is idle, and records this
7251  * information in sd_llc_shared->has_idle_cores.
7252  *
7253  * Since SMT siblings share all cache levels, inspecting this limited remote
7254  * state should be fairly cheap.
7255  */
7256 void __update_idle_core(struct rq *rq)
7257 {
7258 	int core = cpu_of(rq);
7259 	int cpu;
7260 
7261 	rcu_read_lock();
7262 	if (test_idle_cores(core))
7263 		goto unlock;
7264 
7265 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7266 		if (cpu == core)
7267 			continue;
7268 
7269 		if (!available_idle_cpu(cpu))
7270 			goto unlock;
7271 	}
7272 
7273 	set_idle_cores(core, 1);
7274 unlock:
7275 	rcu_read_unlock();
7276 }
7277 
7278 /*
7279  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7280  * there are no idle cores left in the system; tracked through
7281  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7282  */
7283 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7284 {
7285 	bool idle = true;
7286 	int cpu;
7287 
7288 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7289 		if (!available_idle_cpu(cpu)) {
7290 			idle = false;
7291 			if (*idle_cpu == -1) {
7292 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7293 					*idle_cpu = cpu;
7294 					break;
7295 				}
7296 				continue;
7297 			}
7298 			break;
7299 		}
7300 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7301 			*idle_cpu = cpu;
7302 	}
7303 
7304 	if (idle)
7305 		return core;
7306 
7307 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7308 	return -1;
7309 }
7310 
7311 /*
7312  * Scan the local SMT mask for idle CPUs.
7313  */
7314 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7315 {
7316 	int cpu;
7317 
7318 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7319 		if (cpu == target)
7320 			continue;
7321 		/*
7322 		 * Check if the CPU is in the LLC scheduling domain of @target.
7323 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7324 		 */
7325 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7326 			continue;
7327 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7328 			return cpu;
7329 	}
7330 
7331 	return -1;
7332 }
7333 
7334 #else /* CONFIG_SCHED_SMT */
7335 
7336 static inline void set_idle_cores(int cpu, int val)
7337 {
7338 }
7339 
7340 static inline bool test_idle_cores(int cpu)
7341 {
7342 	return false;
7343 }
7344 
7345 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7346 {
7347 	return __select_idle_cpu(core, p);
7348 }
7349 
7350 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7351 {
7352 	return -1;
7353 }
7354 
7355 #endif /* CONFIG_SCHED_SMT */
7356 
7357 /*
7358  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7359  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7360  * average idle time for this rq (as found in rq->avg_idle).
7361  */
7362 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7363 {
7364 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7365 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7366 	struct sched_domain_shared *sd_share;
7367 
7368 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7369 
7370 	if (sched_feat(SIS_UTIL)) {
7371 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7372 		if (sd_share) {
7373 			/* because !--nr is the condition to stop scan */
7374 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7375 			/* overloaded LLC is unlikely to have idle cpu/core */
7376 			if (nr == 1)
7377 				return -1;
7378 		}
7379 	}
7380 
7381 	if (static_branch_unlikely(&sched_cluster_active)) {
7382 		struct sched_group *sg = sd->groups;
7383 
7384 		if (sg->flags & SD_CLUSTER) {
7385 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7386 				if (!cpumask_test_cpu(cpu, cpus))
7387 					continue;
7388 
7389 				if (has_idle_core) {
7390 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7391 					if ((unsigned int)i < nr_cpumask_bits)
7392 						return i;
7393 				} else {
7394 					if (--nr <= 0)
7395 						return -1;
7396 					idle_cpu = __select_idle_cpu(cpu, p);
7397 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7398 						return idle_cpu;
7399 				}
7400 			}
7401 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7402 		}
7403 	}
7404 
7405 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7406 		if (has_idle_core) {
7407 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7408 			if ((unsigned int)i < nr_cpumask_bits)
7409 				return i;
7410 
7411 		} else {
7412 			if (--nr <= 0)
7413 				return -1;
7414 			idle_cpu = __select_idle_cpu(cpu, p);
7415 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7416 				break;
7417 		}
7418 	}
7419 
7420 	if (has_idle_core)
7421 		set_idle_cores(target, false);
7422 
7423 	return idle_cpu;
7424 }
7425 
7426 /*
7427  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7428  * the task fits. If no CPU is big enough, but there are idle ones, try to
7429  * maximize capacity.
7430  */
7431 static int
7432 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7433 {
7434 	unsigned long task_util, util_min, util_max, best_cap = 0;
7435 	int fits, best_fits = 0;
7436 	int cpu, best_cpu = -1;
7437 	struct cpumask *cpus;
7438 
7439 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7440 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7441 
7442 	task_util = task_util_est(p);
7443 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7444 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7445 
7446 	for_each_cpu_wrap(cpu, cpus, target) {
7447 		unsigned long cpu_cap = capacity_of(cpu);
7448 
7449 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7450 			continue;
7451 
7452 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7453 
7454 		/* This CPU fits with all requirements */
7455 		if (fits > 0)
7456 			return cpu;
7457 		/*
7458 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7459 		 * Look for the CPU with best capacity.
7460 		 */
7461 		else if (fits < 0)
7462 			cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
7463 
7464 		/*
7465 		 * First, select CPU which fits better (-1 being better than 0).
7466 		 * Then, select the one with best capacity at same level.
7467 		 */
7468 		if ((fits < best_fits) ||
7469 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7470 			best_cap = cpu_cap;
7471 			best_cpu = cpu;
7472 			best_fits = fits;
7473 		}
7474 	}
7475 
7476 	return best_cpu;
7477 }
7478 
7479 static inline bool asym_fits_cpu(unsigned long util,
7480 				 unsigned long util_min,
7481 				 unsigned long util_max,
7482 				 int cpu)
7483 {
7484 	if (sched_asym_cpucap_active())
7485 		/*
7486 		 * Return true only if the cpu fully fits the task requirements
7487 		 * which include the utilization and the performance hints.
7488 		 */
7489 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7490 
7491 	return true;
7492 }
7493 
7494 /*
7495  * Try and locate an idle core/thread in the LLC cache domain.
7496  */
7497 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7498 {
7499 	bool has_idle_core = false;
7500 	struct sched_domain *sd;
7501 	unsigned long task_util, util_min, util_max;
7502 	int i, recent_used_cpu, prev_aff = -1;
7503 
7504 	/*
7505 	 * On asymmetric system, update task utilization because we will check
7506 	 * that the task fits with cpu's capacity.
7507 	 */
7508 	if (sched_asym_cpucap_active()) {
7509 		sync_entity_load_avg(&p->se);
7510 		task_util = task_util_est(p);
7511 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7512 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7513 	}
7514 
7515 	/*
7516 	 * per-cpu select_rq_mask usage
7517 	 */
7518 	lockdep_assert_irqs_disabled();
7519 
7520 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7521 	    asym_fits_cpu(task_util, util_min, util_max, target))
7522 		return target;
7523 
7524 	/*
7525 	 * If the previous CPU is cache affine and idle, don't be stupid:
7526 	 */
7527 	if (prev != target && cpus_share_cache(prev, target) &&
7528 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7529 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7530 
7531 		if (!static_branch_unlikely(&sched_cluster_active) ||
7532 		    cpus_share_resources(prev, target))
7533 			return prev;
7534 
7535 		prev_aff = prev;
7536 	}
7537 
7538 	/*
7539 	 * Allow a per-cpu kthread to stack with the wakee if the
7540 	 * kworker thread and the tasks previous CPUs are the same.
7541 	 * The assumption is that the wakee queued work for the
7542 	 * per-cpu kthread that is now complete and the wakeup is
7543 	 * essentially a sync wakeup. An obvious example of this
7544 	 * pattern is IO completions.
7545 	 */
7546 	if (is_per_cpu_kthread(current) &&
7547 	    in_task() &&
7548 	    prev == smp_processor_id() &&
7549 	    this_rq()->nr_running <= 1 &&
7550 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7551 		return prev;
7552 	}
7553 
7554 	/* Check a recently used CPU as a potential idle candidate: */
7555 	recent_used_cpu = p->recent_used_cpu;
7556 	p->recent_used_cpu = prev;
7557 	if (recent_used_cpu != prev &&
7558 	    recent_used_cpu != target &&
7559 	    cpus_share_cache(recent_used_cpu, target) &&
7560 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7561 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7562 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7563 
7564 		if (!static_branch_unlikely(&sched_cluster_active) ||
7565 		    cpus_share_resources(recent_used_cpu, target))
7566 			return recent_used_cpu;
7567 
7568 	} else {
7569 		recent_used_cpu = -1;
7570 	}
7571 
7572 	/*
7573 	 * For asymmetric CPU capacity systems, our domain of interest is
7574 	 * sd_asym_cpucapacity rather than sd_llc.
7575 	 */
7576 	if (sched_asym_cpucap_active()) {
7577 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7578 		/*
7579 		 * On an asymmetric CPU capacity system where an exclusive
7580 		 * cpuset defines a symmetric island (i.e. one unique
7581 		 * capacity_orig value through the cpuset), the key will be set
7582 		 * but the CPUs within that cpuset will not have a domain with
7583 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7584 		 * capacity path.
7585 		 */
7586 		if (sd) {
7587 			i = select_idle_capacity(p, sd, target);
7588 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7589 		}
7590 	}
7591 
7592 	sd = rcu_dereference(per_cpu(sd_llc, target));
7593 	if (!sd)
7594 		return target;
7595 
7596 	if (sched_smt_active()) {
7597 		has_idle_core = test_idle_cores(target);
7598 
7599 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7600 			i = select_idle_smt(p, sd, prev);
7601 			if ((unsigned int)i < nr_cpumask_bits)
7602 				return i;
7603 		}
7604 	}
7605 
7606 	i = select_idle_cpu(p, sd, has_idle_core, target);
7607 	if ((unsigned)i < nr_cpumask_bits)
7608 		return i;
7609 
7610 	/*
7611 	 * For cluster machines which have lower sharing cache like L2 or
7612 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7613 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7614 	 * use them if possible when no idle CPU found in select_idle_cpu().
7615 	 */
7616 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7617 		return prev_aff;
7618 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7619 		return recent_used_cpu;
7620 
7621 	return target;
7622 }
7623 
7624 /**
7625  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7626  * @cpu: the CPU to get the utilization for
7627  * @p: task for which the CPU utilization should be predicted or NULL
7628  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7629  * @boost: 1 to enable boosting, otherwise 0
7630  *
7631  * The unit of the return value must be the same as the one of CPU capacity
7632  * so that CPU utilization can be compared with CPU capacity.
7633  *
7634  * CPU utilization is the sum of running time of runnable tasks plus the
7635  * recent utilization of currently non-runnable tasks on that CPU.
7636  * It represents the amount of CPU capacity currently used by CFS tasks in
7637  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7638  * capacity at f_max.
7639  *
7640  * The estimated CPU utilization is defined as the maximum between CPU
7641  * utilization and sum of the estimated utilization of the currently
7642  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7643  * previously-executed tasks, which helps better deduce how busy a CPU will
7644  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7645  * of such a task would be significantly decayed at this point of time.
7646  *
7647  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7648  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7649  * utilization. Boosting is implemented in cpu_util() so that internal
7650  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7651  * latter via cpu_util_cfs_boost().
7652  *
7653  * CPU utilization can be higher than the current CPU capacity
7654  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7655  * of rounding errors as well as task migrations or wakeups of new tasks.
7656  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7657  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7658  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7659  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7660  * though since this is useful for predicting the CPU capacity required
7661  * after task migrations (scheduler-driven DVFS).
7662  *
7663  * Return: (Boosted) (estimated) utilization for the specified CPU.
7664  */
7665 static unsigned long
7666 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7667 {
7668 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7669 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7670 	unsigned long runnable;
7671 
7672 	if (boost) {
7673 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7674 		util = max(util, runnable);
7675 	}
7676 
7677 	/*
7678 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7679 	 * contribution. If @p migrates from another CPU to @cpu add its
7680 	 * contribution. In all the other cases @cpu is not impacted by the
7681 	 * migration so its util_avg is already correct.
7682 	 */
7683 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7684 		lsub_positive(&util, task_util(p));
7685 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7686 		util += task_util(p);
7687 
7688 	if (sched_feat(UTIL_EST)) {
7689 		unsigned long util_est;
7690 
7691 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7692 
7693 		/*
7694 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7695 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7696 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7697 		 * has been enqueued.
7698 		 *
7699 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7700 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7701 		 * Remove it to "simulate" cpu_util without @p's contribution.
7702 		 *
7703 		 * Despite the task_on_rq_queued(@p) check there is still a
7704 		 * small window for a possible race when an exec
7705 		 * select_task_rq_fair() races with LB's detach_task().
7706 		 *
7707 		 *   detach_task()
7708 		 *     deactivate_task()
7709 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7710 		 *       -------------------------------- A
7711 		 *       dequeue_task()                    \
7712 		 *         dequeue_task_fair()              + Race Time
7713 		 *           util_est_dequeue()            /
7714 		 *       -------------------------------- B
7715 		 *
7716 		 * The additional check "current == p" is required to further
7717 		 * reduce the race window.
7718 		 */
7719 		if (dst_cpu == cpu)
7720 			util_est += _task_util_est(p);
7721 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7722 			lsub_positive(&util_est, _task_util_est(p));
7723 
7724 		util = max(util, util_est);
7725 	}
7726 
7727 	return min(util, arch_scale_cpu_capacity(cpu));
7728 }
7729 
7730 unsigned long cpu_util_cfs(int cpu)
7731 {
7732 	return cpu_util(cpu, NULL, -1, 0);
7733 }
7734 
7735 unsigned long cpu_util_cfs_boost(int cpu)
7736 {
7737 	return cpu_util(cpu, NULL, -1, 1);
7738 }
7739 
7740 /*
7741  * cpu_util_without: compute cpu utilization without any contributions from *p
7742  * @cpu: the CPU which utilization is requested
7743  * @p: the task which utilization should be discounted
7744  *
7745  * The utilization of a CPU is defined by the utilization of tasks currently
7746  * enqueued on that CPU as well as tasks which are currently sleeping after an
7747  * execution on that CPU.
7748  *
7749  * This method returns the utilization of the specified CPU by discounting the
7750  * utilization of the specified task, whenever the task is currently
7751  * contributing to the CPU utilization.
7752  */
7753 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7754 {
7755 	/* Task has no contribution or is new */
7756 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7757 		p = NULL;
7758 
7759 	return cpu_util(cpu, p, -1, 0);
7760 }
7761 
7762 /*
7763  * energy_env - Utilization landscape for energy estimation.
7764  * @task_busy_time: Utilization contribution by the task for which we test the
7765  *                  placement. Given by eenv_task_busy_time().
7766  * @pd_busy_time:   Utilization of the whole perf domain without the task
7767  *                  contribution. Given by eenv_pd_busy_time().
7768  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7769  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7770  */
7771 struct energy_env {
7772 	unsigned long task_busy_time;
7773 	unsigned long pd_busy_time;
7774 	unsigned long cpu_cap;
7775 	unsigned long pd_cap;
7776 };
7777 
7778 /*
7779  * Compute the task busy time for compute_energy(). This time cannot be
7780  * injected directly into effective_cpu_util() because of the IRQ scaling.
7781  * The latter only makes sense with the most recent CPUs where the task has
7782  * run.
7783  */
7784 static inline void eenv_task_busy_time(struct energy_env *eenv,
7785 				       struct task_struct *p, int prev_cpu)
7786 {
7787 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7788 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7789 
7790 	if (unlikely(irq >= max_cap))
7791 		busy_time = max_cap;
7792 	else
7793 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7794 
7795 	eenv->task_busy_time = busy_time;
7796 }
7797 
7798 /*
7799  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7800  * utilization for each @pd_cpus, it however doesn't take into account
7801  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7802  * scale the EM reported power consumption at the (eventually clamped)
7803  * cpu_capacity.
7804  *
7805  * The contribution of the task @p for which we want to estimate the
7806  * energy cost is removed (by cpu_util()) and must be calculated
7807  * separately (see eenv_task_busy_time). This ensures:
7808  *
7809  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7810  *     the task on.
7811  *
7812  *   - A fair comparison between CPUs as the task contribution (task_util())
7813  *     will always be the same no matter which CPU utilization we rely on
7814  *     (util_avg or util_est).
7815  *
7816  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7817  * exceed @eenv->pd_cap.
7818  */
7819 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7820 				     struct cpumask *pd_cpus,
7821 				     struct task_struct *p)
7822 {
7823 	unsigned long busy_time = 0;
7824 	int cpu;
7825 
7826 	for_each_cpu(cpu, pd_cpus) {
7827 		unsigned long util = cpu_util(cpu, p, -1, 0);
7828 
7829 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7830 	}
7831 
7832 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7833 }
7834 
7835 /*
7836  * Compute the maximum utilization for compute_energy() when the task @p
7837  * is placed on the cpu @dst_cpu.
7838  *
7839  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7840  * exceed @eenv->cpu_cap.
7841  */
7842 static inline unsigned long
7843 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7844 		 struct task_struct *p, int dst_cpu)
7845 {
7846 	unsigned long max_util = 0;
7847 	int cpu;
7848 
7849 	for_each_cpu(cpu, pd_cpus) {
7850 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7851 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7852 		unsigned long eff_util, min, max;
7853 
7854 		/*
7855 		 * Performance domain frequency: utilization clamping
7856 		 * must be considered since it affects the selection
7857 		 * of the performance domain frequency.
7858 		 * NOTE: in case RT tasks are running, by default the
7859 		 * FREQUENCY_UTIL's utilization can be max OPP.
7860 		 */
7861 		eff_util = effective_cpu_util(cpu, util, &min, &max);
7862 
7863 		/* Task's uclamp can modify min and max value */
7864 		if (tsk && uclamp_is_used()) {
7865 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7866 
7867 			/*
7868 			 * If there is no active max uclamp constraint,
7869 			 * directly use task's one, otherwise keep max.
7870 			 */
7871 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7872 				max = uclamp_eff_value(p, UCLAMP_MAX);
7873 			else
7874 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7875 		}
7876 
7877 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7878 		max_util = max(max_util, eff_util);
7879 	}
7880 
7881 	return min(max_util, eenv->cpu_cap);
7882 }
7883 
7884 /*
7885  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7886  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7887  * contribution is ignored.
7888  */
7889 static inline unsigned long
7890 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7891 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7892 {
7893 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7894 	unsigned long busy_time = eenv->pd_busy_time;
7895 	unsigned long energy;
7896 
7897 	if (dst_cpu >= 0)
7898 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7899 
7900 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7901 
7902 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7903 
7904 	return energy;
7905 }
7906 
7907 /*
7908  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7909  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7910  * spare capacity in each performance domain and uses it as a potential
7911  * candidate to execute the task. Then, it uses the Energy Model to figure
7912  * out which of the CPU candidates is the most energy-efficient.
7913  *
7914  * The rationale for this heuristic is as follows. In a performance domain,
7915  * all the most energy efficient CPU candidates (according to the Energy
7916  * Model) are those for which we'll request a low frequency. When there are
7917  * several CPUs for which the frequency request will be the same, we don't
7918  * have enough data to break the tie between them, because the Energy Model
7919  * only includes active power costs. With this model, if we assume that
7920  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7921  * the maximum spare capacity in a performance domain is guaranteed to be among
7922  * the best candidates of the performance domain.
7923  *
7924  * In practice, it could be preferable from an energy standpoint to pack
7925  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7926  * but that could also hurt our chances to go cluster idle, and we have no
7927  * ways to tell with the current Energy Model if this is actually a good
7928  * idea or not. So, find_energy_efficient_cpu() basically favors
7929  * cluster-packing, and spreading inside a cluster. That should at least be
7930  * a good thing for latency, and this is consistent with the idea that most
7931  * of the energy savings of EAS come from the asymmetry of the system, and
7932  * not so much from breaking the tie between identical CPUs. That's also the
7933  * reason why EAS is enabled in the topology code only for systems where
7934  * SD_ASYM_CPUCAPACITY is set.
7935  *
7936  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7937  * they don't have any useful utilization data yet and it's not possible to
7938  * forecast their impact on energy consumption. Consequently, they will be
7939  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7940  * to be energy-inefficient in some use-cases. The alternative would be to
7941  * bias new tasks towards specific types of CPUs first, or to try to infer
7942  * their util_avg from the parent task, but those heuristics could hurt
7943  * other use-cases too. So, until someone finds a better way to solve this,
7944  * let's keep things simple by re-using the existing slow path.
7945  */
7946 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7947 {
7948 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7949 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7950 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7951 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7952 	struct root_domain *rd = this_rq()->rd;
7953 	int cpu, best_energy_cpu, target = -1;
7954 	int prev_fits = -1, best_fits = -1;
7955 	unsigned long best_thermal_cap = 0;
7956 	unsigned long prev_thermal_cap = 0;
7957 	struct sched_domain *sd;
7958 	struct perf_domain *pd;
7959 	struct energy_env eenv;
7960 
7961 	rcu_read_lock();
7962 	pd = rcu_dereference(rd->pd);
7963 	if (!pd || READ_ONCE(rd->overutilized))
7964 		goto unlock;
7965 
7966 	/*
7967 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7968 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7969 	 */
7970 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7971 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7972 		sd = sd->parent;
7973 	if (!sd)
7974 		goto unlock;
7975 
7976 	target = prev_cpu;
7977 
7978 	sync_entity_load_avg(&p->se);
7979 	if (!task_util_est(p) && p_util_min == 0)
7980 		goto unlock;
7981 
7982 	eenv_task_busy_time(&eenv, p, prev_cpu);
7983 
7984 	for (; pd; pd = pd->next) {
7985 		unsigned long util_min = p_util_min, util_max = p_util_max;
7986 		unsigned long cpu_cap, cpu_thermal_cap, util;
7987 		long prev_spare_cap = -1, max_spare_cap = -1;
7988 		unsigned long rq_util_min, rq_util_max;
7989 		unsigned long cur_delta, base_energy;
7990 		int max_spare_cap_cpu = -1;
7991 		int fits, max_fits = -1;
7992 
7993 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7994 
7995 		if (cpumask_empty(cpus))
7996 			continue;
7997 
7998 		/* Account thermal pressure for the energy estimation */
7999 		cpu = cpumask_first(cpus);
8000 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8001 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8002 
8003 		eenv.cpu_cap = cpu_thermal_cap;
8004 		eenv.pd_cap = 0;
8005 
8006 		for_each_cpu(cpu, cpus) {
8007 			struct rq *rq = cpu_rq(cpu);
8008 
8009 			eenv.pd_cap += cpu_thermal_cap;
8010 
8011 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8012 				continue;
8013 
8014 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8015 				continue;
8016 
8017 			util = cpu_util(cpu, p, cpu, 0);
8018 			cpu_cap = capacity_of(cpu);
8019 
8020 			/*
8021 			 * Skip CPUs that cannot satisfy the capacity request.
8022 			 * IOW, placing the task there would make the CPU
8023 			 * overutilized. Take uclamp into account to see how
8024 			 * much capacity we can get out of the CPU; this is
8025 			 * aligned with sched_cpu_util().
8026 			 */
8027 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8028 				/*
8029 				 * Open code uclamp_rq_util_with() except for
8030 				 * the clamp() part. Ie: apply max aggregation
8031 				 * only. util_fits_cpu() logic requires to
8032 				 * operate on non clamped util but must use the
8033 				 * max-aggregated uclamp_{min, max}.
8034 				 */
8035 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8036 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8037 
8038 				util_min = max(rq_util_min, p_util_min);
8039 				util_max = max(rq_util_max, p_util_max);
8040 			}
8041 
8042 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8043 			if (!fits)
8044 				continue;
8045 
8046 			lsub_positive(&cpu_cap, util);
8047 
8048 			if (cpu == prev_cpu) {
8049 				/* Always use prev_cpu as a candidate. */
8050 				prev_spare_cap = cpu_cap;
8051 				prev_fits = fits;
8052 			} else if ((fits > max_fits) ||
8053 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8054 				/*
8055 				 * Find the CPU with the maximum spare capacity
8056 				 * among the remaining CPUs in the performance
8057 				 * domain.
8058 				 */
8059 				max_spare_cap = cpu_cap;
8060 				max_spare_cap_cpu = cpu;
8061 				max_fits = fits;
8062 			}
8063 		}
8064 
8065 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8066 			continue;
8067 
8068 		eenv_pd_busy_time(&eenv, cpus, p);
8069 		/* Compute the 'base' energy of the pd, without @p */
8070 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8071 
8072 		/* Evaluate the energy impact of using prev_cpu. */
8073 		if (prev_spare_cap > -1) {
8074 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8075 						    prev_cpu);
8076 			/* CPU utilization has changed */
8077 			if (prev_delta < base_energy)
8078 				goto unlock;
8079 			prev_delta -= base_energy;
8080 			prev_thermal_cap = cpu_thermal_cap;
8081 			best_delta = min(best_delta, prev_delta);
8082 		}
8083 
8084 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8085 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8086 			/* Current best energy cpu fits better */
8087 			if (max_fits < best_fits)
8088 				continue;
8089 
8090 			/*
8091 			 * Both don't fit performance hint (i.e. uclamp_min)
8092 			 * but best energy cpu has better capacity.
8093 			 */
8094 			if ((max_fits < 0) &&
8095 			    (cpu_thermal_cap <= best_thermal_cap))
8096 				continue;
8097 
8098 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8099 						   max_spare_cap_cpu);
8100 			/* CPU utilization has changed */
8101 			if (cur_delta < base_energy)
8102 				goto unlock;
8103 			cur_delta -= base_energy;
8104 
8105 			/*
8106 			 * Both fit for the task but best energy cpu has lower
8107 			 * energy impact.
8108 			 */
8109 			if ((max_fits > 0) && (best_fits > 0) &&
8110 			    (cur_delta >= best_delta))
8111 				continue;
8112 
8113 			best_delta = cur_delta;
8114 			best_energy_cpu = max_spare_cap_cpu;
8115 			best_fits = max_fits;
8116 			best_thermal_cap = cpu_thermal_cap;
8117 		}
8118 	}
8119 	rcu_read_unlock();
8120 
8121 	if ((best_fits > prev_fits) ||
8122 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8123 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8124 		target = best_energy_cpu;
8125 
8126 	return target;
8127 
8128 unlock:
8129 	rcu_read_unlock();
8130 
8131 	return target;
8132 }
8133 
8134 /*
8135  * select_task_rq_fair: Select target runqueue for the waking task in domains
8136  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8137  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8138  *
8139  * Balances load by selecting the idlest CPU in the idlest group, or under
8140  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8141  *
8142  * Returns the target CPU number.
8143  */
8144 static int
8145 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8146 {
8147 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8148 	struct sched_domain *tmp, *sd = NULL;
8149 	int cpu = smp_processor_id();
8150 	int new_cpu = prev_cpu;
8151 	int want_affine = 0;
8152 	/* SD_flags and WF_flags share the first nibble */
8153 	int sd_flag = wake_flags & 0xF;
8154 
8155 	/*
8156 	 * required for stable ->cpus_allowed
8157 	 */
8158 	lockdep_assert_held(&p->pi_lock);
8159 	if (wake_flags & WF_TTWU) {
8160 		record_wakee(p);
8161 
8162 		if ((wake_flags & WF_CURRENT_CPU) &&
8163 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8164 			return cpu;
8165 
8166 		if (sched_energy_enabled()) {
8167 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8168 			if (new_cpu >= 0)
8169 				return new_cpu;
8170 			new_cpu = prev_cpu;
8171 		}
8172 
8173 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8174 	}
8175 
8176 	rcu_read_lock();
8177 	for_each_domain(cpu, tmp) {
8178 		/*
8179 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8180 		 * cpu is a valid SD_WAKE_AFFINE target.
8181 		 */
8182 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8183 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8184 			if (cpu != prev_cpu)
8185 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8186 
8187 			sd = NULL; /* Prefer wake_affine over balance flags */
8188 			break;
8189 		}
8190 
8191 		/*
8192 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8193 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8194 		 * will usually go to the fast path.
8195 		 */
8196 		if (tmp->flags & sd_flag)
8197 			sd = tmp;
8198 		else if (!want_affine)
8199 			break;
8200 	}
8201 
8202 	if (unlikely(sd)) {
8203 		/* Slow path */
8204 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8205 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8206 		/* Fast path */
8207 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8208 	}
8209 	rcu_read_unlock();
8210 
8211 	return new_cpu;
8212 }
8213 
8214 /*
8215  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8216  * cfs_rq_of(p) references at time of call are still valid and identify the
8217  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8218  */
8219 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8220 {
8221 	struct sched_entity *se = &p->se;
8222 
8223 	if (!task_on_rq_migrating(p)) {
8224 		remove_entity_load_avg(se);
8225 
8226 		/*
8227 		 * Here, the task's PELT values have been updated according to
8228 		 * the current rq's clock. But if that clock hasn't been
8229 		 * updated in a while, a substantial idle time will be missed,
8230 		 * leading to an inflation after wake-up on the new rq.
8231 		 *
8232 		 * Estimate the missing time from the cfs_rq last_update_time
8233 		 * and update sched_avg to improve the PELT continuity after
8234 		 * migration.
8235 		 */
8236 		migrate_se_pelt_lag(se);
8237 	}
8238 
8239 	/* Tell new CPU we are migrated */
8240 	se->avg.last_update_time = 0;
8241 
8242 	update_scan_period(p, new_cpu);
8243 }
8244 
8245 static void task_dead_fair(struct task_struct *p)
8246 {
8247 	remove_entity_load_avg(&p->se);
8248 }
8249 
8250 static int
8251 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8252 {
8253 	if (rq->nr_running)
8254 		return 1;
8255 
8256 	return newidle_balance(rq, rf) != 0;
8257 }
8258 #endif /* CONFIG_SMP */
8259 
8260 static void set_next_buddy(struct sched_entity *se)
8261 {
8262 	for_each_sched_entity(se) {
8263 		if (SCHED_WARN_ON(!se->on_rq))
8264 			return;
8265 		if (se_is_idle(se))
8266 			return;
8267 		cfs_rq_of(se)->next = se;
8268 	}
8269 }
8270 
8271 /*
8272  * Preempt the current task with a newly woken task if needed:
8273  */
8274 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8275 {
8276 	struct task_struct *curr = rq->curr;
8277 	struct sched_entity *se = &curr->se, *pse = &p->se;
8278 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8279 	int cse_is_idle, pse_is_idle;
8280 
8281 	if (unlikely(se == pse))
8282 		return;
8283 
8284 	/*
8285 	 * This is possible from callers such as attach_tasks(), in which we
8286 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8287 	 * lead to a throttle).  This both saves work and prevents false
8288 	 * next-buddy nomination below.
8289 	 */
8290 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8291 		return;
8292 
8293 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8294 		set_next_buddy(pse);
8295 	}
8296 
8297 	/*
8298 	 * We can come here with TIF_NEED_RESCHED already set from new task
8299 	 * wake up path.
8300 	 *
8301 	 * Note: this also catches the edge-case of curr being in a throttled
8302 	 * group (e.g. via set_curr_task), since update_curr() (in the
8303 	 * enqueue of curr) will have resulted in resched being set.  This
8304 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8305 	 * below.
8306 	 */
8307 	if (test_tsk_need_resched(curr))
8308 		return;
8309 
8310 	/* Idle tasks are by definition preempted by non-idle tasks. */
8311 	if (unlikely(task_has_idle_policy(curr)) &&
8312 	    likely(!task_has_idle_policy(p)))
8313 		goto preempt;
8314 
8315 	/*
8316 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8317 	 * is driven by the tick):
8318 	 */
8319 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8320 		return;
8321 
8322 	find_matching_se(&se, &pse);
8323 	WARN_ON_ONCE(!pse);
8324 
8325 	cse_is_idle = se_is_idle(se);
8326 	pse_is_idle = se_is_idle(pse);
8327 
8328 	/*
8329 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8330 	 * in the inverse case).
8331 	 */
8332 	if (cse_is_idle && !pse_is_idle)
8333 		goto preempt;
8334 	if (cse_is_idle != pse_is_idle)
8335 		return;
8336 
8337 	cfs_rq = cfs_rq_of(se);
8338 	update_curr(cfs_rq);
8339 
8340 	/*
8341 	 * XXX pick_eevdf(cfs_rq) != se ?
8342 	 */
8343 	if (pick_eevdf(cfs_rq) == pse)
8344 		goto preempt;
8345 
8346 	return;
8347 
8348 preempt:
8349 	resched_curr(rq);
8350 }
8351 
8352 #ifdef CONFIG_SMP
8353 static struct task_struct *pick_task_fair(struct rq *rq)
8354 {
8355 	struct sched_entity *se;
8356 	struct cfs_rq *cfs_rq;
8357 
8358 again:
8359 	cfs_rq = &rq->cfs;
8360 	if (!cfs_rq->nr_running)
8361 		return NULL;
8362 
8363 	do {
8364 		struct sched_entity *curr = cfs_rq->curr;
8365 
8366 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8367 		if (curr) {
8368 			if (curr->on_rq)
8369 				update_curr(cfs_rq);
8370 			else
8371 				curr = NULL;
8372 
8373 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8374 				goto again;
8375 		}
8376 
8377 		se = pick_next_entity(cfs_rq);
8378 		cfs_rq = group_cfs_rq(se);
8379 	} while (cfs_rq);
8380 
8381 	return task_of(se);
8382 }
8383 #endif
8384 
8385 struct task_struct *
8386 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8387 {
8388 	struct cfs_rq *cfs_rq = &rq->cfs;
8389 	struct sched_entity *se;
8390 	struct task_struct *p;
8391 	int new_tasks;
8392 
8393 again:
8394 	if (!sched_fair_runnable(rq))
8395 		goto idle;
8396 
8397 #ifdef CONFIG_FAIR_GROUP_SCHED
8398 	if (!prev || prev->sched_class != &fair_sched_class)
8399 		goto simple;
8400 
8401 	/*
8402 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8403 	 * likely that a next task is from the same cgroup as the current.
8404 	 *
8405 	 * Therefore attempt to avoid putting and setting the entire cgroup
8406 	 * hierarchy, only change the part that actually changes.
8407 	 */
8408 
8409 	do {
8410 		struct sched_entity *curr = cfs_rq->curr;
8411 
8412 		/*
8413 		 * Since we got here without doing put_prev_entity() we also
8414 		 * have to consider cfs_rq->curr. If it is still a runnable
8415 		 * entity, update_curr() will update its vruntime, otherwise
8416 		 * forget we've ever seen it.
8417 		 */
8418 		if (curr) {
8419 			if (curr->on_rq)
8420 				update_curr(cfs_rq);
8421 			else
8422 				curr = NULL;
8423 
8424 			/*
8425 			 * This call to check_cfs_rq_runtime() will do the
8426 			 * throttle and dequeue its entity in the parent(s).
8427 			 * Therefore the nr_running test will indeed
8428 			 * be correct.
8429 			 */
8430 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8431 				cfs_rq = &rq->cfs;
8432 
8433 				if (!cfs_rq->nr_running)
8434 					goto idle;
8435 
8436 				goto simple;
8437 			}
8438 		}
8439 
8440 		se = pick_next_entity(cfs_rq);
8441 		cfs_rq = group_cfs_rq(se);
8442 	} while (cfs_rq);
8443 
8444 	p = task_of(se);
8445 
8446 	/*
8447 	 * Since we haven't yet done put_prev_entity and if the selected task
8448 	 * is a different task than we started out with, try and touch the
8449 	 * least amount of cfs_rqs.
8450 	 */
8451 	if (prev != p) {
8452 		struct sched_entity *pse = &prev->se;
8453 
8454 		while (!(cfs_rq = is_same_group(se, pse))) {
8455 			int se_depth = se->depth;
8456 			int pse_depth = pse->depth;
8457 
8458 			if (se_depth <= pse_depth) {
8459 				put_prev_entity(cfs_rq_of(pse), pse);
8460 				pse = parent_entity(pse);
8461 			}
8462 			if (se_depth >= pse_depth) {
8463 				set_next_entity(cfs_rq_of(se), se);
8464 				se = parent_entity(se);
8465 			}
8466 		}
8467 
8468 		put_prev_entity(cfs_rq, pse);
8469 		set_next_entity(cfs_rq, se);
8470 	}
8471 
8472 	goto done;
8473 simple:
8474 #endif
8475 	if (prev)
8476 		put_prev_task(rq, prev);
8477 
8478 	do {
8479 		se = pick_next_entity(cfs_rq);
8480 		set_next_entity(cfs_rq, se);
8481 		cfs_rq = group_cfs_rq(se);
8482 	} while (cfs_rq);
8483 
8484 	p = task_of(se);
8485 
8486 done: __maybe_unused;
8487 #ifdef CONFIG_SMP
8488 	/*
8489 	 * Move the next running task to the front of
8490 	 * the list, so our cfs_tasks list becomes MRU
8491 	 * one.
8492 	 */
8493 	list_move(&p->se.group_node, &rq->cfs_tasks);
8494 #endif
8495 
8496 	if (hrtick_enabled_fair(rq))
8497 		hrtick_start_fair(rq, p);
8498 
8499 	update_misfit_status(p, rq);
8500 	sched_fair_update_stop_tick(rq, p);
8501 
8502 	return p;
8503 
8504 idle:
8505 	if (!rf)
8506 		return NULL;
8507 
8508 	new_tasks = newidle_balance(rq, rf);
8509 
8510 	/*
8511 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8512 	 * possible for any higher priority task to appear. In that case we
8513 	 * must re-start the pick_next_entity() loop.
8514 	 */
8515 	if (new_tasks < 0)
8516 		return RETRY_TASK;
8517 
8518 	if (new_tasks > 0)
8519 		goto again;
8520 
8521 	/*
8522 	 * rq is about to be idle, check if we need to update the
8523 	 * lost_idle_time of clock_pelt
8524 	 */
8525 	update_idle_rq_clock_pelt(rq);
8526 
8527 	return NULL;
8528 }
8529 
8530 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8531 {
8532 	return pick_next_task_fair(rq, NULL, NULL);
8533 }
8534 
8535 /*
8536  * Account for a descheduled task:
8537  */
8538 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8539 {
8540 	struct sched_entity *se = &prev->se;
8541 	struct cfs_rq *cfs_rq;
8542 
8543 	for_each_sched_entity(se) {
8544 		cfs_rq = cfs_rq_of(se);
8545 		put_prev_entity(cfs_rq, se);
8546 	}
8547 }
8548 
8549 /*
8550  * sched_yield() is very simple
8551  */
8552 static void yield_task_fair(struct rq *rq)
8553 {
8554 	struct task_struct *curr = rq->curr;
8555 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8556 	struct sched_entity *se = &curr->se;
8557 
8558 	/*
8559 	 * Are we the only task in the tree?
8560 	 */
8561 	if (unlikely(rq->nr_running == 1))
8562 		return;
8563 
8564 	clear_buddies(cfs_rq, se);
8565 
8566 	update_rq_clock(rq);
8567 	/*
8568 	 * Update run-time statistics of the 'current'.
8569 	 */
8570 	update_curr(cfs_rq);
8571 	/*
8572 	 * Tell update_rq_clock() that we've just updated,
8573 	 * so we don't do microscopic update in schedule()
8574 	 * and double the fastpath cost.
8575 	 */
8576 	rq_clock_skip_update(rq);
8577 
8578 	se->deadline += calc_delta_fair(se->slice, se);
8579 }
8580 
8581 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8582 {
8583 	struct sched_entity *se = &p->se;
8584 
8585 	/* throttled hierarchies are not runnable */
8586 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8587 		return false;
8588 
8589 	/* Tell the scheduler that we'd really like pse to run next. */
8590 	set_next_buddy(se);
8591 
8592 	yield_task_fair(rq);
8593 
8594 	return true;
8595 }
8596 
8597 #ifdef CONFIG_SMP
8598 /**************************************************
8599  * Fair scheduling class load-balancing methods.
8600  *
8601  * BASICS
8602  *
8603  * The purpose of load-balancing is to achieve the same basic fairness the
8604  * per-CPU scheduler provides, namely provide a proportional amount of compute
8605  * time to each task. This is expressed in the following equation:
8606  *
8607  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8608  *
8609  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8610  * W_i,0 is defined as:
8611  *
8612  *   W_i,0 = \Sum_j w_i,j                                             (2)
8613  *
8614  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8615  * is derived from the nice value as per sched_prio_to_weight[].
8616  *
8617  * The weight average is an exponential decay average of the instantaneous
8618  * weight:
8619  *
8620  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8621  *
8622  * C_i is the compute capacity of CPU i, typically it is the
8623  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8624  * can also include other factors [XXX].
8625  *
8626  * To achieve this balance we define a measure of imbalance which follows
8627  * directly from (1):
8628  *
8629  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8630  *
8631  * We them move tasks around to minimize the imbalance. In the continuous
8632  * function space it is obvious this converges, in the discrete case we get
8633  * a few fun cases generally called infeasible weight scenarios.
8634  *
8635  * [XXX expand on:
8636  *     - infeasible weights;
8637  *     - local vs global optima in the discrete case. ]
8638  *
8639  *
8640  * SCHED DOMAINS
8641  *
8642  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8643  * for all i,j solution, we create a tree of CPUs that follows the hardware
8644  * topology where each level pairs two lower groups (or better). This results
8645  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8646  * tree to only the first of the previous level and we decrease the frequency
8647  * of load-balance at each level inv. proportional to the number of CPUs in
8648  * the groups.
8649  *
8650  * This yields:
8651  *
8652  *     log_2 n     1     n
8653  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8654  *     i = 0      2^i   2^i
8655  *                               `- size of each group
8656  *         |         |     `- number of CPUs doing load-balance
8657  *         |         `- freq
8658  *         `- sum over all levels
8659  *
8660  * Coupled with a limit on how many tasks we can migrate every balance pass,
8661  * this makes (5) the runtime complexity of the balancer.
8662  *
8663  * An important property here is that each CPU is still (indirectly) connected
8664  * to every other CPU in at most O(log n) steps:
8665  *
8666  * The adjacency matrix of the resulting graph is given by:
8667  *
8668  *             log_2 n
8669  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8670  *             k = 0
8671  *
8672  * And you'll find that:
8673  *
8674  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8675  *
8676  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8677  * The task movement gives a factor of O(m), giving a convergence complexity
8678  * of:
8679  *
8680  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8681  *
8682  *
8683  * WORK CONSERVING
8684  *
8685  * In order to avoid CPUs going idle while there's still work to do, new idle
8686  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8687  * tree itself instead of relying on other CPUs to bring it work.
8688  *
8689  * This adds some complexity to both (5) and (8) but it reduces the total idle
8690  * time.
8691  *
8692  * [XXX more?]
8693  *
8694  *
8695  * CGROUPS
8696  *
8697  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8698  *
8699  *                                s_k,i
8700  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8701  *                                 S_k
8702  *
8703  * Where
8704  *
8705  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8706  *
8707  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8708  *
8709  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8710  * property.
8711  *
8712  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8713  *      rewrite all of this once again.]
8714  */
8715 
8716 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8717 
8718 enum fbq_type { regular, remote, all };
8719 
8720 /*
8721  * 'group_type' describes the group of CPUs at the moment of load balancing.
8722  *
8723  * The enum is ordered by pulling priority, with the group with lowest priority
8724  * first so the group_type can simply be compared when selecting the busiest
8725  * group. See update_sd_pick_busiest().
8726  */
8727 enum group_type {
8728 	/* The group has spare capacity that can be used to run more tasks.  */
8729 	group_has_spare = 0,
8730 	/*
8731 	 * The group is fully used and the tasks don't compete for more CPU
8732 	 * cycles. Nevertheless, some tasks might wait before running.
8733 	 */
8734 	group_fully_busy,
8735 	/*
8736 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8737 	 * more powerful CPU.
8738 	 */
8739 	group_misfit_task,
8740 	/*
8741 	 * Balance SMT group that's fully busy. Can benefit from migration
8742 	 * a task on SMT with busy sibling to another CPU on idle core.
8743 	 */
8744 	group_smt_balance,
8745 	/*
8746 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8747 	 * and the task should be migrated to it instead of running on the
8748 	 * current CPU.
8749 	 */
8750 	group_asym_packing,
8751 	/*
8752 	 * The tasks' affinity constraints previously prevented the scheduler
8753 	 * from balancing the load across the system.
8754 	 */
8755 	group_imbalanced,
8756 	/*
8757 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8758 	 * tasks.
8759 	 */
8760 	group_overloaded
8761 };
8762 
8763 enum migration_type {
8764 	migrate_load = 0,
8765 	migrate_util,
8766 	migrate_task,
8767 	migrate_misfit
8768 };
8769 
8770 #define LBF_ALL_PINNED	0x01
8771 #define LBF_NEED_BREAK	0x02
8772 #define LBF_DST_PINNED  0x04
8773 #define LBF_SOME_PINNED	0x08
8774 #define LBF_ACTIVE_LB	0x10
8775 
8776 struct lb_env {
8777 	struct sched_domain	*sd;
8778 
8779 	struct rq		*src_rq;
8780 	int			src_cpu;
8781 
8782 	int			dst_cpu;
8783 	struct rq		*dst_rq;
8784 
8785 	struct cpumask		*dst_grpmask;
8786 	int			new_dst_cpu;
8787 	enum cpu_idle_type	idle;
8788 	long			imbalance;
8789 	/* The set of CPUs under consideration for load-balancing */
8790 	struct cpumask		*cpus;
8791 
8792 	unsigned int		flags;
8793 
8794 	unsigned int		loop;
8795 	unsigned int		loop_break;
8796 	unsigned int		loop_max;
8797 
8798 	enum fbq_type		fbq_type;
8799 	enum migration_type	migration_type;
8800 	struct list_head	tasks;
8801 };
8802 
8803 /*
8804  * Is this task likely cache-hot:
8805  */
8806 static int task_hot(struct task_struct *p, struct lb_env *env)
8807 {
8808 	s64 delta;
8809 
8810 	lockdep_assert_rq_held(env->src_rq);
8811 
8812 	if (p->sched_class != &fair_sched_class)
8813 		return 0;
8814 
8815 	if (unlikely(task_has_idle_policy(p)))
8816 		return 0;
8817 
8818 	/* SMT siblings share cache */
8819 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8820 		return 0;
8821 
8822 	/*
8823 	 * Buddy candidates are cache hot:
8824 	 */
8825 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8826 	    (&p->se == cfs_rq_of(&p->se)->next))
8827 		return 1;
8828 
8829 	if (sysctl_sched_migration_cost == -1)
8830 		return 1;
8831 
8832 	/*
8833 	 * Don't migrate task if the task's cookie does not match
8834 	 * with the destination CPU's core cookie.
8835 	 */
8836 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8837 		return 1;
8838 
8839 	if (sysctl_sched_migration_cost == 0)
8840 		return 0;
8841 
8842 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8843 
8844 	return delta < (s64)sysctl_sched_migration_cost;
8845 }
8846 
8847 #ifdef CONFIG_NUMA_BALANCING
8848 /*
8849  * Returns 1, if task migration degrades locality
8850  * Returns 0, if task migration improves locality i.e migration preferred.
8851  * Returns -1, if task migration is not affected by locality.
8852  */
8853 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8854 {
8855 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8856 	unsigned long src_weight, dst_weight;
8857 	int src_nid, dst_nid, dist;
8858 
8859 	if (!static_branch_likely(&sched_numa_balancing))
8860 		return -1;
8861 
8862 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8863 		return -1;
8864 
8865 	src_nid = cpu_to_node(env->src_cpu);
8866 	dst_nid = cpu_to_node(env->dst_cpu);
8867 
8868 	if (src_nid == dst_nid)
8869 		return -1;
8870 
8871 	/* Migrating away from the preferred node is always bad. */
8872 	if (src_nid == p->numa_preferred_nid) {
8873 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8874 			return 1;
8875 		else
8876 			return -1;
8877 	}
8878 
8879 	/* Encourage migration to the preferred node. */
8880 	if (dst_nid == p->numa_preferred_nid)
8881 		return 0;
8882 
8883 	/* Leaving a core idle is often worse than degrading locality. */
8884 	if (env->idle == CPU_IDLE)
8885 		return -1;
8886 
8887 	dist = node_distance(src_nid, dst_nid);
8888 	if (numa_group) {
8889 		src_weight = group_weight(p, src_nid, dist);
8890 		dst_weight = group_weight(p, dst_nid, dist);
8891 	} else {
8892 		src_weight = task_weight(p, src_nid, dist);
8893 		dst_weight = task_weight(p, dst_nid, dist);
8894 	}
8895 
8896 	return dst_weight < src_weight;
8897 }
8898 
8899 #else
8900 static inline int migrate_degrades_locality(struct task_struct *p,
8901 					     struct lb_env *env)
8902 {
8903 	return -1;
8904 }
8905 #endif
8906 
8907 /*
8908  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8909  */
8910 static
8911 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8912 {
8913 	int tsk_cache_hot;
8914 
8915 	lockdep_assert_rq_held(env->src_rq);
8916 
8917 	/*
8918 	 * We do not migrate tasks that are:
8919 	 * 1) throttled_lb_pair, or
8920 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8921 	 * 3) running (obviously), or
8922 	 * 4) are cache-hot on their current CPU.
8923 	 */
8924 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8925 		return 0;
8926 
8927 	/* Disregard pcpu kthreads; they are where they need to be. */
8928 	if (kthread_is_per_cpu(p))
8929 		return 0;
8930 
8931 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8932 		int cpu;
8933 
8934 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8935 
8936 		env->flags |= LBF_SOME_PINNED;
8937 
8938 		/*
8939 		 * Remember if this task can be migrated to any other CPU in
8940 		 * our sched_group. We may want to revisit it if we couldn't
8941 		 * meet load balance goals by pulling other tasks on src_cpu.
8942 		 *
8943 		 * Avoid computing new_dst_cpu
8944 		 * - for NEWLY_IDLE
8945 		 * - if we have already computed one in current iteration
8946 		 * - if it's an active balance
8947 		 */
8948 		if (env->idle == CPU_NEWLY_IDLE ||
8949 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8950 			return 0;
8951 
8952 		/* Prevent to re-select dst_cpu via env's CPUs: */
8953 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8954 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8955 				env->flags |= LBF_DST_PINNED;
8956 				env->new_dst_cpu = cpu;
8957 				break;
8958 			}
8959 		}
8960 
8961 		return 0;
8962 	}
8963 
8964 	/* Record that we found at least one task that could run on dst_cpu */
8965 	env->flags &= ~LBF_ALL_PINNED;
8966 
8967 	if (task_on_cpu(env->src_rq, p)) {
8968 		schedstat_inc(p->stats.nr_failed_migrations_running);
8969 		return 0;
8970 	}
8971 
8972 	/*
8973 	 * Aggressive migration if:
8974 	 * 1) active balance
8975 	 * 2) destination numa is preferred
8976 	 * 3) task is cache cold, or
8977 	 * 4) too many balance attempts have failed.
8978 	 */
8979 	if (env->flags & LBF_ACTIVE_LB)
8980 		return 1;
8981 
8982 	tsk_cache_hot = migrate_degrades_locality(p, env);
8983 	if (tsk_cache_hot == -1)
8984 		tsk_cache_hot = task_hot(p, env);
8985 
8986 	if (tsk_cache_hot <= 0 ||
8987 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8988 		if (tsk_cache_hot == 1) {
8989 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8990 			schedstat_inc(p->stats.nr_forced_migrations);
8991 		}
8992 		return 1;
8993 	}
8994 
8995 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8996 	return 0;
8997 }
8998 
8999 /*
9000  * detach_task() -- detach the task for the migration specified in env
9001  */
9002 static void detach_task(struct task_struct *p, struct lb_env *env)
9003 {
9004 	lockdep_assert_rq_held(env->src_rq);
9005 
9006 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9007 	set_task_cpu(p, env->dst_cpu);
9008 }
9009 
9010 /*
9011  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9012  * part of active balancing operations within "domain".
9013  *
9014  * Returns a task if successful and NULL otherwise.
9015  */
9016 static struct task_struct *detach_one_task(struct lb_env *env)
9017 {
9018 	struct task_struct *p;
9019 
9020 	lockdep_assert_rq_held(env->src_rq);
9021 
9022 	list_for_each_entry_reverse(p,
9023 			&env->src_rq->cfs_tasks, se.group_node) {
9024 		if (!can_migrate_task(p, env))
9025 			continue;
9026 
9027 		detach_task(p, env);
9028 
9029 		/*
9030 		 * Right now, this is only the second place where
9031 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9032 		 * so we can safely collect stats here rather than
9033 		 * inside detach_tasks().
9034 		 */
9035 		schedstat_inc(env->sd->lb_gained[env->idle]);
9036 		return p;
9037 	}
9038 	return NULL;
9039 }
9040 
9041 /*
9042  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9043  * busiest_rq, as part of a balancing operation within domain "sd".
9044  *
9045  * Returns number of detached tasks if successful and 0 otherwise.
9046  */
9047 static int detach_tasks(struct lb_env *env)
9048 {
9049 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9050 	unsigned long util, load;
9051 	struct task_struct *p;
9052 	int detached = 0;
9053 
9054 	lockdep_assert_rq_held(env->src_rq);
9055 
9056 	/*
9057 	 * Source run queue has been emptied by another CPU, clear
9058 	 * LBF_ALL_PINNED flag as we will not test any task.
9059 	 */
9060 	if (env->src_rq->nr_running <= 1) {
9061 		env->flags &= ~LBF_ALL_PINNED;
9062 		return 0;
9063 	}
9064 
9065 	if (env->imbalance <= 0)
9066 		return 0;
9067 
9068 	while (!list_empty(tasks)) {
9069 		/*
9070 		 * We don't want to steal all, otherwise we may be treated likewise,
9071 		 * which could at worst lead to a livelock crash.
9072 		 */
9073 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9074 			break;
9075 
9076 		env->loop++;
9077 		/*
9078 		 * We've more or less seen every task there is, call it quits
9079 		 * unless we haven't found any movable task yet.
9080 		 */
9081 		if (env->loop > env->loop_max &&
9082 		    !(env->flags & LBF_ALL_PINNED))
9083 			break;
9084 
9085 		/* take a breather every nr_migrate tasks */
9086 		if (env->loop > env->loop_break) {
9087 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9088 			env->flags |= LBF_NEED_BREAK;
9089 			break;
9090 		}
9091 
9092 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9093 
9094 		if (!can_migrate_task(p, env))
9095 			goto next;
9096 
9097 		switch (env->migration_type) {
9098 		case migrate_load:
9099 			/*
9100 			 * Depending of the number of CPUs and tasks and the
9101 			 * cgroup hierarchy, task_h_load() can return a null
9102 			 * value. Make sure that env->imbalance decreases
9103 			 * otherwise detach_tasks() will stop only after
9104 			 * detaching up to loop_max tasks.
9105 			 */
9106 			load = max_t(unsigned long, task_h_load(p), 1);
9107 
9108 			if (sched_feat(LB_MIN) &&
9109 			    load < 16 && !env->sd->nr_balance_failed)
9110 				goto next;
9111 
9112 			/*
9113 			 * Make sure that we don't migrate too much load.
9114 			 * Nevertheless, let relax the constraint if
9115 			 * scheduler fails to find a good waiting task to
9116 			 * migrate.
9117 			 */
9118 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9119 				goto next;
9120 
9121 			env->imbalance -= load;
9122 			break;
9123 
9124 		case migrate_util:
9125 			util = task_util_est(p);
9126 
9127 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9128 				goto next;
9129 
9130 			env->imbalance -= util;
9131 			break;
9132 
9133 		case migrate_task:
9134 			env->imbalance--;
9135 			break;
9136 
9137 		case migrate_misfit:
9138 			/* This is not a misfit task */
9139 			if (task_fits_cpu(p, env->src_cpu))
9140 				goto next;
9141 
9142 			env->imbalance = 0;
9143 			break;
9144 		}
9145 
9146 		detach_task(p, env);
9147 		list_add(&p->se.group_node, &env->tasks);
9148 
9149 		detached++;
9150 
9151 #ifdef CONFIG_PREEMPTION
9152 		/*
9153 		 * NEWIDLE balancing is a source of latency, so preemptible
9154 		 * kernels will stop after the first task is detached to minimize
9155 		 * the critical section.
9156 		 */
9157 		if (env->idle == CPU_NEWLY_IDLE)
9158 			break;
9159 #endif
9160 
9161 		/*
9162 		 * We only want to steal up to the prescribed amount of
9163 		 * load/util/tasks.
9164 		 */
9165 		if (env->imbalance <= 0)
9166 			break;
9167 
9168 		continue;
9169 next:
9170 		list_move(&p->se.group_node, tasks);
9171 	}
9172 
9173 	/*
9174 	 * Right now, this is one of only two places we collect this stat
9175 	 * so we can safely collect detach_one_task() stats here rather
9176 	 * than inside detach_one_task().
9177 	 */
9178 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9179 
9180 	return detached;
9181 }
9182 
9183 /*
9184  * attach_task() -- attach the task detached by detach_task() to its new rq.
9185  */
9186 static void attach_task(struct rq *rq, struct task_struct *p)
9187 {
9188 	lockdep_assert_rq_held(rq);
9189 
9190 	WARN_ON_ONCE(task_rq(p) != rq);
9191 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9192 	wakeup_preempt(rq, p, 0);
9193 }
9194 
9195 /*
9196  * attach_one_task() -- attaches the task returned from detach_one_task() to
9197  * its new rq.
9198  */
9199 static void attach_one_task(struct rq *rq, struct task_struct *p)
9200 {
9201 	struct rq_flags rf;
9202 
9203 	rq_lock(rq, &rf);
9204 	update_rq_clock(rq);
9205 	attach_task(rq, p);
9206 	rq_unlock(rq, &rf);
9207 }
9208 
9209 /*
9210  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9211  * new rq.
9212  */
9213 static void attach_tasks(struct lb_env *env)
9214 {
9215 	struct list_head *tasks = &env->tasks;
9216 	struct task_struct *p;
9217 	struct rq_flags rf;
9218 
9219 	rq_lock(env->dst_rq, &rf);
9220 	update_rq_clock(env->dst_rq);
9221 
9222 	while (!list_empty(tasks)) {
9223 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9224 		list_del_init(&p->se.group_node);
9225 
9226 		attach_task(env->dst_rq, p);
9227 	}
9228 
9229 	rq_unlock(env->dst_rq, &rf);
9230 }
9231 
9232 #ifdef CONFIG_NO_HZ_COMMON
9233 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9234 {
9235 	if (cfs_rq->avg.load_avg)
9236 		return true;
9237 
9238 	if (cfs_rq->avg.util_avg)
9239 		return true;
9240 
9241 	return false;
9242 }
9243 
9244 static inline bool others_have_blocked(struct rq *rq)
9245 {
9246 	if (cpu_util_rt(rq))
9247 		return true;
9248 
9249 	if (cpu_util_dl(rq))
9250 		return true;
9251 
9252 	if (thermal_load_avg(rq))
9253 		return true;
9254 
9255 	if (cpu_util_irq(rq))
9256 		return true;
9257 
9258 	return false;
9259 }
9260 
9261 static inline void update_blocked_load_tick(struct rq *rq)
9262 {
9263 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9264 }
9265 
9266 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9267 {
9268 	if (!has_blocked)
9269 		rq->has_blocked_load = 0;
9270 }
9271 #else
9272 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9273 static inline bool others_have_blocked(struct rq *rq) { return false; }
9274 static inline void update_blocked_load_tick(struct rq *rq) {}
9275 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9276 #endif
9277 
9278 static bool __update_blocked_others(struct rq *rq, bool *done)
9279 {
9280 	const struct sched_class *curr_class;
9281 	u64 now = rq_clock_pelt(rq);
9282 	unsigned long thermal_pressure;
9283 	bool decayed;
9284 
9285 	/*
9286 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9287 	 * DL and IRQ signals have been updated before updating CFS.
9288 	 */
9289 	curr_class = rq->curr->sched_class;
9290 
9291 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9292 
9293 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9294 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9295 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9296 		  update_irq_load_avg(rq, 0);
9297 
9298 	if (others_have_blocked(rq))
9299 		*done = false;
9300 
9301 	return decayed;
9302 }
9303 
9304 #ifdef CONFIG_FAIR_GROUP_SCHED
9305 
9306 static bool __update_blocked_fair(struct rq *rq, bool *done)
9307 {
9308 	struct cfs_rq *cfs_rq, *pos;
9309 	bool decayed = false;
9310 	int cpu = cpu_of(rq);
9311 
9312 	/*
9313 	 * Iterates the task_group tree in a bottom up fashion, see
9314 	 * list_add_leaf_cfs_rq() for details.
9315 	 */
9316 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9317 		struct sched_entity *se;
9318 
9319 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9320 			update_tg_load_avg(cfs_rq);
9321 
9322 			if (cfs_rq->nr_running == 0)
9323 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9324 
9325 			if (cfs_rq == &rq->cfs)
9326 				decayed = true;
9327 		}
9328 
9329 		/* Propagate pending load changes to the parent, if any: */
9330 		se = cfs_rq->tg->se[cpu];
9331 		if (se && !skip_blocked_update(se))
9332 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9333 
9334 		/*
9335 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9336 		 * decayed cfs_rqs linger on the list.
9337 		 */
9338 		if (cfs_rq_is_decayed(cfs_rq))
9339 			list_del_leaf_cfs_rq(cfs_rq);
9340 
9341 		/* Don't need periodic decay once load/util_avg are null */
9342 		if (cfs_rq_has_blocked(cfs_rq))
9343 			*done = false;
9344 	}
9345 
9346 	return decayed;
9347 }
9348 
9349 /*
9350  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9351  * This needs to be done in a top-down fashion because the load of a child
9352  * group is a fraction of its parents load.
9353  */
9354 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9355 {
9356 	struct rq *rq = rq_of(cfs_rq);
9357 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9358 	unsigned long now = jiffies;
9359 	unsigned long load;
9360 
9361 	if (cfs_rq->last_h_load_update == now)
9362 		return;
9363 
9364 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9365 	for_each_sched_entity(se) {
9366 		cfs_rq = cfs_rq_of(se);
9367 		WRITE_ONCE(cfs_rq->h_load_next, se);
9368 		if (cfs_rq->last_h_load_update == now)
9369 			break;
9370 	}
9371 
9372 	if (!se) {
9373 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9374 		cfs_rq->last_h_load_update = now;
9375 	}
9376 
9377 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9378 		load = cfs_rq->h_load;
9379 		load = div64_ul(load * se->avg.load_avg,
9380 			cfs_rq_load_avg(cfs_rq) + 1);
9381 		cfs_rq = group_cfs_rq(se);
9382 		cfs_rq->h_load = load;
9383 		cfs_rq->last_h_load_update = now;
9384 	}
9385 }
9386 
9387 static unsigned long task_h_load(struct task_struct *p)
9388 {
9389 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9390 
9391 	update_cfs_rq_h_load(cfs_rq);
9392 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9393 			cfs_rq_load_avg(cfs_rq) + 1);
9394 }
9395 #else
9396 static bool __update_blocked_fair(struct rq *rq, bool *done)
9397 {
9398 	struct cfs_rq *cfs_rq = &rq->cfs;
9399 	bool decayed;
9400 
9401 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9402 	if (cfs_rq_has_blocked(cfs_rq))
9403 		*done = false;
9404 
9405 	return decayed;
9406 }
9407 
9408 static unsigned long task_h_load(struct task_struct *p)
9409 {
9410 	return p->se.avg.load_avg;
9411 }
9412 #endif
9413 
9414 static void update_blocked_averages(int cpu)
9415 {
9416 	bool decayed = false, done = true;
9417 	struct rq *rq = cpu_rq(cpu);
9418 	struct rq_flags rf;
9419 
9420 	rq_lock_irqsave(rq, &rf);
9421 	update_blocked_load_tick(rq);
9422 	update_rq_clock(rq);
9423 
9424 	decayed |= __update_blocked_others(rq, &done);
9425 	decayed |= __update_blocked_fair(rq, &done);
9426 
9427 	update_blocked_load_status(rq, !done);
9428 	if (decayed)
9429 		cpufreq_update_util(rq, 0);
9430 	rq_unlock_irqrestore(rq, &rf);
9431 }
9432 
9433 /********** Helpers for find_busiest_group ************************/
9434 
9435 /*
9436  * sg_lb_stats - stats of a sched_group required for load_balancing
9437  */
9438 struct sg_lb_stats {
9439 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9440 	unsigned long group_load; /* Total load over the CPUs of the group */
9441 	unsigned long group_capacity;
9442 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9443 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9444 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9445 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9446 	unsigned int idle_cpus;
9447 	unsigned int group_weight;
9448 	enum group_type group_type;
9449 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9450 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9451 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9452 #ifdef CONFIG_NUMA_BALANCING
9453 	unsigned int nr_numa_running;
9454 	unsigned int nr_preferred_running;
9455 #endif
9456 };
9457 
9458 /*
9459  * sd_lb_stats - Structure to store the statistics of a sched_domain
9460  *		 during load balancing.
9461  */
9462 struct sd_lb_stats {
9463 	struct sched_group *busiest;	/* Busiest group in this sd */
9464 	struct sched_group *local;	/* Local group in this sd */
9465 	unsigned long total_load;	/* Total load of all groups in sd */
9466 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9467 	unsigned long avg_load;	/* Average load across all groups in sd */
9468 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9469 
9470 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9471 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9472 };
9473 
9474 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9475 {
9476 	/*
9477 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9478 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9479 	 * We must however set busiest_stat::group_type and
9480 	 * busiest_stat::idle_cpus to the worst busiest group because
9481 	 * update_sd_pick_busiest() reads these before assignment.
9482 	 */
9483 	*sds = (struct sd_lb_stats){
9484 		.busiest = NULL,
9485 		.local = NULL,
9486 		.total_load = 0UL,
9487 		.total_capacity = 0UL,
9488 		.busiest_stat = {
9489 			.idle_cpus = UINT_MAX,
9490 			.group_type = group_has_spare,
9491 		},
9492 	};
9493 }
9494 
9495 static unsigned long scale_rt_capacity(int cpu)
9496 {
9497 	struct rq *rq = cpu_rq(cpu);
9498 	unsigned long max = arch_scale_cpu_capacity(cpu);
9499 	unsigned long used, free;
9500 	unsigned long irq;
9501 
9502 	irq = cpu_util_irq(rq);
9503 
9504 	if (unlikely(irq >= max))
9505 		return 1;
9506 
9507 	/*
9508 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9509 	 * (running and not running) with weights 0 and 1024 respectively.
9510 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9511 	 * average uses the actual delta max capacity(load).
9512 	 */
9513 	used = cpu_util_rt(rq);
9514 	used += cpu_util_dl(rq);
9515 	used += thermal_load_avg(rq);
9516 
9517 	if (unlikely(used >= max))
9518 		return 1;
9519 
9520 	free = max - used;
9521 
9522 	return scale_irq_capacity(free, irq, max);
9523 }
9524 
9525 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9526 {
9527 	unsigned long capacity = scale_rt_capacity(cpu);
9528 	struct sched_group *sdg = sd->groups;
9529 
9530 	if (!capacity)
9531 		capacity = 1;
9532 
9533 	cpu_rq(cpu)->cpu_capacity = capacity;
9534 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9535 
9536 	sdg->sgc->capacity = capacity;
9537 	sdg->sgc->min_capacity = capacity;
9538 	sdg->sgc->max_capacity = capacity;
9539 }
9540 
9541 void update_group_capacity(struct sched_domain *sd, int cpu)
9542 {
9543 	struct sched_domain *child = sd->child;
9544 	struct sched_group *group, *sdg = sd->groups;
9545 	unsigned long capacity, min_capacity, max_capacity;
9546 	unsigned long interval;
9547 
9548 	interval = msecs_to_jiffies(sd->balance_interval);
9549 	interval = clamp(interval, 1UL, max_load_balance_interval);
9550 	sdg->sgc->next_update = jiffies + interval;
9551 
9552 	if (!child) {
9553 		update_cpu_capacity(sd, cpu);
9554 		return;
9555 	}
9556 
9557 	capacity = 0;
9558 	min_capacity = ULONG_MAX;
9559 	max_capacity = 0;
9560 
9561 	if (child->flags & SD_OVERLAP) {
9562 		/*
9563 		 * SD_OVERLAP domains cannot assume that child groups
9564 		 * span the current group.
9565 		 */
9566 
9567 		for_each_cpu(cpu, sched_group_span(sdg)) {
9568 			unsigned long cpu_cap = capacity_of(cpu);
9569 
9570 			capacity += cpu_cap;
9571 			min_capacity = min(cpu_cap, min_capacity);
9572 			max_capacity = max(cpu_cap, max_capacity);
9573 		}
9574 	} else  {
9575 		/*
9576 		 * !SD_OVERLAP domains can assume that child groups
9577 		 * span the current group.
9578 		 */
9579 
9580 		group = child->groups;
9581 		do {
9582 			struct sched_group_capacity *sgc = group->sgc;
9583 
9584 			capacity += sgc->capacity;
9585 			min_capacity = min(sgc->min_capacity, min_capacity);
9586 			max_capacity = max(sgc->max_capacity, max_capacity);
9587 			group = group->next;
9588 		} while (group != child->groups);
9589 	}
9590 
9591 	sdg->sgc->capacity = capacity;
9592 	sdg->sgc->min_capacity = min_capacity;
9593 	sdg->sgc->max_capacity = max_capacity;
9594 }
9595 
9596 /*
9597  * Check whether the capacity of the rq has been noticeably reduced by side
9598  * activity. The imbalance_pct is used for the threshold.
9599  * Return true is the capacity is reduced
9600  */
9601 static inline int
9602 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9603 {
9604 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9605 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9606 }
9607 
9608 /*
9609  * Check whether a rq has a misfit task and if it looks like we can actually
9610  * help that task: we can migrate the task to a CPU of higher capacity, or
9611  * the task's current CPU is heavily pressured.
9612  */
9613 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9614 {
9615 	return rq->misfit_task_load &&
9616 		(arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
9617 		 check_cpu_capacity(rq, sd));
9618 }
9619 
9620 /*
9621  * Group imbalance indicates (and tries to solve) the problem where balancing
9622  * groups is inadequate due to ->cpus_ptr constraints.
9623  *
9624  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9625  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9626  * Something like:
9627  *
9628  *	{ 0 1 2 3 } { 4 5 6 7 }
9629  *	        *     * * *
9630  *
9631  * If we were to balance group-wise we'd place two tasks in the first group and
9632  * two tasks in the second group. Clearly this is undesired as it will overload
9633  * cpu 3 and leave one of the CPUs in the second group unused.
9634  *
9635  * The current solution to this issue is detecting the skew in the first group
9636  * by noticing the lower domain failed to reach balance and had difficulty
9637  * moving tasks due to affinity constraints.
9638  *
9639  * When this is so detected; this group becomes a candidate for busiest; see
9640  * update_sd_pick_busiest(). And calculate_imbalance() and
9641  * find_busiest_group() avoid some of the usual balance conditions to allow it
9642  * to create an effective group imbalance.
9643  *
9644  * This is a somewhat tricky proposition since the next run might not find the
9645  * group imbalance and decide the groups need to be balanced again. A most
9646  * subtle and fragile situation.
9647  */
9648 
9649 static inline int sg_imbalanced(struct sched_group *group)
9650 {
9651 	return group->sgc->imbalance;
9652 }
9653 
9654 /*
9655  * group_has_capacity returns true if the group has spare capacity that could
9656  * be used by some tasks.
9657  * We consider that a group has spare capacity if the number of task is
9658  * smaller than the number of CPUs or if the utilization is lower than the
9659  * available capacity for CFS tasks.
9660  * For the latter, we use a threshold to stabilize the state, to take into
9661  * account the variance of the tasks' load and to return true if the available
9662  * capacity in meaningful for the load balancer.
9663  * As an example, an available capacity of 1% can appear but it doesn't make
9664  * any benefit for the load balance.
9665  */
9666 static inline bool
9667 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9668 {
9669 	if (sgs->sum_nr_running < sgs->group_weight)
9670 		return true;
9671 
9672 	if ((sgs->group_capacity * imbalance_pct) <
9673 			(sgs->group_runnable * 100))
9674 		return false;
9675 
9676 	if ((sgs->group_capacity * 100) >
9677 			(sgs->group_util * imbalance_pct))
9678 		return true;
9679 
9680 	return false;
9681 }
9682 
9683 /*
9684  *  group_is_overloaded returns true if the group has more tasks than it can
9685  *  handle.
9686  *  group_is_overloaded is not equals to !group_has_capacity because a group
9687  *  with the exact right number of tasks, has no more spare capacity but is not
9688  *  overloaded so both group_has_capacity and group_is_overloaded return
9689  *  false.
9690  */
9691 static inline bool
9692 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9693 {
9694 	if (sgs->sum_nr_running <= sgs->group_weight)
9695 		return false;
9696 
9697 	if ((sgs->group_capacity * 100) <
9698 			(sgs->group_util * imbalance_pct))
9699 		return true;
9700 
9701 	if ((sgs->group_capacity * imbalance_pct) <
9702 			(sgs->group_runnable * 100))
9703 		return true;
9704 
9705 	return false;
9706 }
9707 
9708 static inline enum
9709 group_type group_classify(unsigned int imbalance_pct,
9710 			  struct sched_group *group,
9711 			  struct sg_lb_stats *sgs)
9712 {
9713 	if (group_is_overloaded(imbalance_pct, sgs))
9714 		return group_overloaded;
9715 
9716 	if (sg_imbalanced(group))
9717 		return group_imbalanced;
9718 
9719 	if (sgs->group_asym_packing)
9720 		return group_asym_packing;
9721 
9722 	if (sgs->group_smt_balance)
9723 		return group_smt_balance;
9724 
9725 	if (sgs->group_misfit_task_load)
9726 		return group_misfit_task;
9727 
9728 	if (!group_has_capacity(imbalance_pct, sgs))
9729 		return group_fully_busy;
9730 
9731 	return group_has_spare;
9732 }
9733 
9734 /**
9735  * sched_use_asym_prio - Check whether asym_packing priority must be used
9736  * @sd:		The scheduling domain of the load balancing
9737  * @cpu:	A CPU
9738  *
9739  * Always use CPU priority when balancing load between SMT siblings. When
9740  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9741  * use CPU priority if the whole core is idle.
9742  *
9743  * Returns: True if the priority of @cpu must be followed. False otherwise.
9744  */
9745 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9746 {
9747 	if (!(sd->flags & SD_ASYM_PACKING))
9748 		return false;
9749 
9750 	if (!sched_smt_active())
9751 		return true;
9752 
9753 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9754 }
9755 
9756 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9757 {
9758 	/*
9759 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
9760 	 * if it has higher priority than @src_cpu.
9761 	 */
9762 	return sched_use_asym_prio(sd, dst_cpu) &&
9763 		sched_asym_prefer(dst_cpu, src_cpu);
9764 }
9765 
9766 /**
9767  * sched_group_asym - Check if the destination CPU can do asym_packing balance
9768  * @env:	The load balancing environment
9769  * @sgs:	Load-balancing statistics of the candidate busiest group
9770  * @group:	The candidate busiest group
9771  *
9772  * @env::dst_cpu can do asym_packing if it has higher priority than the
9773  * preferred CPU of @group.
9774  *
9775  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9776  * otherwise.
9777  */
9778 static inline bool
9779 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
9780 {
9781 	/*
9782 	 * CPU priorities do not make sense for SMT cores with more than one
9783 	 * busy sibling.
9784 	 */
9785 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9786 	    (sgs->group_weight - sgs->idle_cpus != 1))
9787 		return false;
9788 
9789 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
9790 }
9791 
9792 /* One group has more than one SMT CPU while the other group does not */
9793 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9794 				    struct sched_group *sg2)
9795 {
9796 	if (!sg1 || !sg2)
9797 		return false;
9798 
9799 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9800 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9801 }
9802 
9803 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9804 			       struct sched_group *group)
9805 {
9806 	if (env->idle == CPU_NOT_IDLE)
9807 		return false;
9808 
9809 	/*
9810 	 * For SMT source group, it is better to move a task
9811 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9812 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9813 	 * will not be on.
9814 	 */
9815 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9816 	    sgs->sum_h_nr_running > 1)
9817 		return true;
9818 
9819 	return false;
9820 }
9821 
9822 static inline long sibling_imbalance(struct lb_env *env,
9823 				    struct sd_lb_stats *sds,
9824 				    struct sg_lb_stats *busiest,
9825 				    struct sg_lb_stats *local)
9826 {
9827 	int ncores_busiest, ncores_local;
9828 	long imbalance;
9829 
9830 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9831 		return 0;
9832 
9833 	ncores_busiest = sds->busiest->cores;
9834 	ncores_local = sds->local->cores;
9835 
9836 	if (ncores_busiest == ncores_local) {
9837 		imbalance = busiest->sum_nr_running;
9838 		lsub_positive(&imbalance, local->sum_nr_running);
9839 		return imbalance;
9840 	}
9841 
9842 	/* Balance such that nr_running/ncores ratio are same on both groups */
9843 	imbalance = ncores_local * busiest->sum_nr_running;
9844 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9845 	/* Normalize imbalance and do rounding on normalization */
9846 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9847 	imbalance /= ncores_local + ncores_busiest;
9848 
9849 	/* Take advantage of resource in an empty sched group */
9850 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9851 	    busiest->sum_nr_running > 1)
9852 		imbalance = 2;
9853 
9854 	return imbalance;
9855 }
9856 
9857 static inline bool
9858 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9859 {
9860 	/*
9861 	 * When there is more than 1 task, the group_overloaded case already
9862 	 * takes care of cpu with reduced capacity
9863 	 */
9864 	if (rq->cfs.h_nr_running != 1)
9865 		return false;
9866 
9867 	return check_cpu_capacity(rq, sd);
9868 }
9869 
9870 /**
9871  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9872  * @env: The load balancing environment.
9873  * @sds: Load-balancing data with statistics of the local group.
9874  * @group: sched_group whose statistics are to be updated.
9875  * @sgs: variable to hold the statistics for this group.
9876  * @sg_status: Holds flag indicating the status of the sched_group
9877  */
9878 static inline void update_sg_lb_stats(struct lb_env *env,
9879 				      struct sd_lb_stats *sds,
9880 				      struct sched_group *group,
9881 				      struct sg_lb_stats *sgs,
9882 				      int *sg_status)
9883 {
9884 	int i, nr_running, local_group;
9885 
9886 	memset(sgs, 0, sizeof(*sgs));
9887 
9888 	local_group = group == sds->local;
9889 
9890 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9891 		struct rq *rq = cpu_rq(i);
9892 		unsigned long load = cpu_load(rq);
9893 
9894 		sgs->group_load += load;
9895 		sgs->group_util += cpu_util_cfs(i);
9896 		sgs->group_runnable += cpu_runnable(rq);
9897 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9898 
9899 		nr_running = rq->nr_running;
9900 		sgs->sum_nr_running += nr_running;
9901 
9902 		if (nr_running > 1)
9903 			*sg_status |= SG_OVERLOAD;
9904 
9905 		if (cpu_overutilized(i))
9906 			*sg_status |= SG_OVERUTILIZED;
9907 
9908 #ifdef CONFIG_NUMA_BALANCING
9909 		sgs->nr_numa_running += rq->nr_numa_running;
9910 		sgs->nr_preferred_running += rq->nr_preferred_running;
9911 #endif
9912 		/*
9913 		 * No need to call idle_cpu() if nr_running is not 0
9914 		 */
9915 		if (!nr_running && idle_cpu(i)) {
9916 			sgs->idle_cpus++;
9917 			/* Idle cpu can't have misfit task */
9918 			continue;
9919 		}
9920 
9921 		if (local_group)
9922 			continue;
9923 
9924 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9925 			/* Check for a misfit task on the cpu */
9926 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9927 				sgs->group_misfit_task_load = rq->misfit_task_load;
9928 				*sg_status |= SG_OVERLOAD;
9929 			}
9930 		} else if ((env->idle != CPU_NOT_IDLE) &&
9931 			   sched_reduced_capacity(rq, env->sd)) {
9932 			/* Check for a task running on a CPU with reduced capacity */
9933 			if (sgs->group_misfit_task_load < load)
9934 				sgs->group_misfit_task_load = load;
9935 		}
9936 	}
9937 
9938 	sgs->group_capacity = group->sgc->capacity;
9939 
9940 	sgs->group_weight = group->group_weight;
9941 
9942 	/* Check if dst CPU is idle and preferred to this group */
9943 	if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9944 	    sched_group_asym(env, sgs, group))
9945 		sgs->group_asym_packing = 1;
9946 
9947 	/* Check for loaded SMT group to be balanced to dst CPU */
9948 	if (!local_group && smt_balance(env, sgs, group))
9949 		sgs->group_smt_balance = 1;
9950 
9951 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9952 
9953 	/* Computing avg_load makes sense only when group is overloaded */
9954 	if (sgs->group_type == group_overloaded)
9955 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9956 				sgs->group_capacity;
9957 }
9958 
9959 /**
9960  * update_sd_pick_busiest - return 1 on busiest group
9961  * @env: The load balancing environment.
9962  * @sds: sched_domain statistics
9963  * @sg: sched_group candidate to be checked for being the busiest
9964  * @sgs: sched_group statistics
9965  *
9966  * Determine if @sg is a busier group than the previously selected
9967  * busiest group.
9968  *
9969  * Return: %true if @sg is a busier group than the previously selected
9970  * busiest group. %false otherwise.
9971  */
9972 static bool update_sd_pick_busiest(struct lb_env *env,
9973 				   struct sd_lb_stats *sds,
9974 				   struct sched_group *sg,
9975 				   struct sg_lb_stats *sgs)
9976 {
9977 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9978 
9979 	/* Make sure that there is at least one task to pull */
9980 	if (!sgs->sum_h_nr_running)
9981 		return false;
9982 
9983 	/*
9984 	 * Don't try to pull misfit tasks we can't help.
9985 	 * We can use max_capacity here as reduction in capacity on some
9986 	 * CPUs in the group should either be possible to resolve
9987 	 * internally or be covered by avg_load imbalance (eventually).
9988 	 */
9989 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9990 	    (sgs->group_type == group_misfit_task) &&
9991 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9992 	     sds->local_stat.group_type != group_has_spare))
9993 		return false;
9994 
9995 	if (sgs->group_type > busiest->group_type)
9996 		return true;
9997 
9998 	if (sgs->group_type < busiest->group_type)
9999 		return false;
10000 
10001 	/*
10002 	 * The candidate and the current busiest group are the same type of
10003 	 * group. Let check which one is the busiest according to the type.
10004 	 */
10005 
10006 	switch (sgs->group_type) {
10007 	case group_overloaded:
10008 		/* Select the overloaded group with highest avg_load. */
10009 		return sgs->avg_load > busiest->avg_load;
10010 
10011 	case group_imbalanced:
10012 		/*
10013 		 * Select the 1st imbalanced group as we don't have any way to
10014 		 * choose one more than another.
10015 		 */
10016 		return false;
10017 
10018 	case group_asym_packing:
10019 		/* Prefer to move from lowest priority CPU's work */
10020 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10021 
10022 	case group_misfit_task:
10023 		/*
10024 		 * If we have more than one misfit sg go with the biggest
10025 		 * misfit.
10026 		 */
10027 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10028 
10029 	case group_smt_balance:
10030 		/*
10031 		 * Check if we have spare CPUs on either SMT group to
10032 		 * choose has spare or fully busy handling.
10033 		 */
10034 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10035 			goto has_spare;
10036 
10037 		fallthrough;
10038 
10039 	case group_fully_busy:
10040 		/*
10041 		 * Select the fully busy group with highest avg_load. In
10042 		 * theory, there is no need to pull task from such kind of
10043 		 * group because tasks have all compute capacity that they need
10044 		 * but we can still improve the overall throughput by reducing
10045 		 * contention when accessing shared HW resources.
10046 		 *
10047 		 * XXX for now avg_load is not computed and always 0 so we
10048 		 * select the 1st one, except if @sg is composed of SMT
10049 		 * siblings.
10050 		 */
10051 
10052 		if (sgs->avg_load < busiest->avg_load)
10053 			return false;
10054 
10055 		if (sgs->avg_load == busiest->avg_load) {
10056 			/*
10057 			 * SMT sched groups need more help than non-SMT groups.
10058 			 * If @sg happens to also be SMT, either choice is good.
10059 			 */
10060 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10061 				return false;
10062 		}
10063 
10064 		break;
10065 
10066 	case group_has_spare:
10067 		/*
10068 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10069 		 * as we do not want to pull task off SMT core with one task
10070 		 * and make the core idle.
10071 		 */
10072 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10073 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10074 				return false;
10075 			else
10076 				return true;
10077 		}
10078 has_spare:
10079 
10080 		/*
10081 		 * Select not overloaded group with lowest number of idle cpus
10082 		 * and highest number of running tasks. We could also compare
10083 		 * the spare capacity which is more stable but it can end up
10084 		 * that the group has less spare capacity but finally more idle
10085 		 * CPUs which means less opportunity to pull tasks.
10086 		 */
10087 		if (sgs->idle_cpus > busiest->idle_cpus)
10088 			return false;
10089 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10090 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10091 			return false;
10092 
10093 		break;
10094 	}
10095 
10096 	/*
10097 	 * Candidate sg has no more than one task per CPU and has higher
10098 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10099 	 * throughput. Maximize throughput, power/energy consequences are not
10100 	 * considered.
10101 	 */
10102 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10103 	    (sgs->group_type <= group_fully_busy) &&
10104 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10105 		return false;
10106 
10107 	return true;
10108 }
10109 
10110 #ifdef CONFIG_NUMA_BALANCING
10111 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10112 {
10113 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10114 		return regular;
10115 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10116 		return remote;
10117 	return all;
10118 }
10119 
10120 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10121 {
10122 	if (rq->nr_running > rq->nr_numa_running)
10123 		return regular;
10124 	if (rq->nr_running > rq->nr_preferred_running)
10125 		return remote;
10126 	return all;
10127 }
10128 #else
10129 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10130 {
10131 	return all;
10132 }
10133 
10134 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10135 {
10136 	return regular;
10137 }
10138 #endif /* CONFIG_NUMA_BALANCING */
10139 
10140 
10141 struct sg_lb_stats;
10142 
10143 /*
10144  * task_running_on_cpu - return 1 if @p is running on @cpu.
10145  */
10146 
10147 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10148 {
10149 	/* Task has no contribution or is new */
10150 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10151 		return 0;
10152 
10153 	if (task_on_rq_queued(p))
10154 		return 1;
10155 
10156 	return 0;
10157 }
10158 
10159 /**
10160  * idle_cpu_without - would a given CPU be idle without p ?
10161  * @cpu: the processor on which idleness is tested.
10162  * @p: task which should be ignored.
10163  *
10164  * Return: 1 if the CPU would be idle. 0 otherwise.
10165  */
10166 static int idle_cpu_without(int cpu, struct task_struct *p)
10167 {
10168 	struct rq *rq = cpu_rq(cpu);
10169 
10170 	if (rq->curr != rq->idle && rq->curr != p)
10171 		return 0;
10172 
10173 	/*
10174 	 * rq->nr_running can't be used but an updated version without the
10175 	 * impact of p on cpu must be used instead. The updated nr_running
10176 	 * be computed and tested before calling idle_cpu_without().
10177 	 */
10178 
10179 	if (rq->ttwu_pending)
10180 		return 0;
10181 
10182 	return 1;
10183 }
10184 
10185 /*
10186  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10187  * @sd: The sched_domain level to look for idlest group.
10188  * @group: sched_group whose statistics are to be updated.
10189  * @sgs: variable to hold the statistics for this group.
10190  * @p: The task for which we look for the idlest group/CPU.
10191  */
10192 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10193 					  struct sched_group *group,
10194 					  struct sg_lb_stats *sgs,
10195 					  struct task_struct *p)
10196 {
10197 	int i, nr_running;
10198 
10199 	memset(sgs, 0, sizeof(*sgs));
10200 
10201 	/* Assume that task can't fit any CPU of the group */
10202 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10203 		sgs->group_misfit_task_load = 1;
10204 
10205 	for_each_cpu(i, sched_group_span(group)) {
10206 		struct rq *rq = cpu_rq(i);
10207 		unsigned int local;
10208 
10209 		sgs->group_load += cpu_load_without(rq, p);
10210 		sgs->group_util += cpu_util_without(i, p);
10211 		sgs->group_runnable += cpu_runnable_without(rq, p);
10212 		local = task_running_on_cpu(i, p);
10213 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10214 
10215 		nr_running = rq->nr_running - local;
10216 		sgs->sum_nr_running += nr_running;
10217 
10218 		/*
10219 		 * No need to call idle_cpu_without() if nr_running is not 0
10220 		 */
10221 		if (!nr_running && idle_cpu_without(i, p))
10222 			sgs->idle_cpus++;
10223 
10224 		/* Check if task fits in the CPU */
10225 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10226 		    sgs->group_misfit_task_load &&
10227 		    task_fits_cpu(p, i))
10228 			sgs->group_misfit_task_load = 0;
10229 
10230 	}
10231 
10232 	sgs->group_capacity = group->sgc->capacity;
10233 
10234 	sgs->group_weight = group->group_weight;
10235 
10236 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10237 
10238 	/*
10239 	 * Computing avg_load makes sense only when group is fully busy or
10240 	 * overloaded
10241 	 */
10242 	if (sgs->group_type == group_fully_busy ||
10243 		sgs->group_type == group_overloaded)
10244 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10245 				sgs->group_capacity;
10246 }
10247 
10248 static bool update_pick_idlest(struct sched_group *idlest,
10249 			       struct sg_lb_stats *idlest_sgs,
10250 			       struct sched_group *group,
10251 			       struct sg_lb_stats *sgs)
10252 {
10253 	if (sgs->group_type < idlest_sgs->group_type)
10254 		return true;
10255 
10256 	if (sgs->group_type > idlest_sgs->group_type)
10257 		return false;
10258 
10259 	/*
10260 	 * The candidate and the current idlest group are the same type of
10261 	 * group. Let check which one is the idlest according to the type.
10262 	 */
10263 
10264 	switch (sgs->group_type) {
10265 	case group_overloaded:
10266 	case group_fully_busy:
10267 		/* Select the group with lowest avg_load. */
10268 		if (idlest_sgs->avg_load <= sgs->avg_load)
10269 			return false;
10270 		break;
10271 
10272 	case group_imbalanced:
10273 	case group_asym_packing:
10274 	case group_smt_balance:
10275 		/* Those types are not used in the slow wakeup path */
10276 		return false;
10277 
10278 	case group_misfit_task:
10279 		/* Select group with the highest max capacity */
10280 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10281 			return false;
10282 		break;
10283 
10284 	case group_has_spare:
10285 		/* Select group with most idle CPUs */
10286 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10287 			return false;
10288 
10289 		/* Select group with lowest group_util */
10290 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10291 			idlest_sgs->group_util <= sgs->group_util)
10292 			return false;
10293 
10294 		break;
10295 	}
10296 
10297 	return true;
10298 }
10299 
10300 /*
10301  * find_idlest_group() finds and returns the least busy CPU group within the
10302  * domain.
10303  *
10304  * Assumes p is allowed on at least one CPU in sd.
10305  */
10306 static struct sched_group *
10307 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10308 {
10309 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10310 	struct sg_lb_stats local_sgs, tmp_sgs;
10311 	struct sg_lb_stats *sgs;
10312 	unsigned long imbalance;
10313 	struct sg_lb_stats idlest_sgs = {
10314 			.avg_load = UINT_MAX,
10315 			.group_type = group_overloaded,
10316 	};
10317 
10318 	do {
10319 		int local_group;
10320 
10321 		/* Skip over this group if it has no CPUs allowed */
10322 		if (!cpumask_intersects(sched_group_span(group),
10323 					p->cpus_ptr))
10324 			continue;
10325 
10326 		/* Skip over this group if no cookie matched */
10327 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10328 			continue;
10329 
10330 		local_group = cpumask_test_cpu(this_cpu,
10331 					       sched_group_span(group));
10332 
10333 		if (local_group) {
10334 			sgs = &local_sgs;
10335 			local = group;
10336 		} else {
10337 			sgs = &tmp_sgs;
10338 		}
10339 
10340 		update_sg_wakeup_stats(sd, group, sgs, p);
10341 
10342 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10343 			idlest = group;
10344 			idlest_sgs = *sgs;
10345 		}
10346 
10347 	} while (group = group->next, group != sd->groups);
10348 
10349 
10350 	/* There is no idlest group to push tasks to */
10351 	if (!idlest)
10352 		return NULL;
10353 
10354 	/* The local group has been skipped because of CPU affinity */
10355 	if (!local)
10356 		return idlest;
10357 
10358 	/*
10359 	 * If the local group is idler than the selected idlest group
10360 	 * don't try and push the task.
10361 	 */
10362 	if (local_sgs.group_type < idlest_sgs.group_type)
10363 		return NULL;
10364 
10365 	/*
10366 	 * If the local group is busier than the selected idlest group
10367 	 * try and push the task.
10368 	 */
10369 	if (local_sgs.group_type > idlest_sgs.group_type)
10370 		return idlest;
10371 
10372 	switch (local_sgs.group_type) {
10373 	case group_overloaded:
10374 	case group_fully_busy:
10375 
10376 		/* Calculate allowed imbalance based on load */
10377 		imbalance = scale_load_down(NICE_0_LOAD) *
10378 				(sd->imbalance_pct-100) / 100;
10379 
10380 		/*
10381 		 * When comparing groups across NUMA domains, it's possible for
10382 		 * the local domain to be very lightly loaded relative to the
10383 		 * remote domains but "imbalance" skews the comparison making
10384 		 * remote CPUs look much more favourable. When considering
10385 		 * cross-domain, add imbalance to the load on the remote node
10386 		 * and consider staying local.
10387 		 */
10388 
10389 		if ((sd->flags & SD_NUMA) &&
10390 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10391 			return NULL;
10392 
10393 		/*
10394 		 * If the local group is less loaded than the selected
10395 		 * idlest group don't try and push any tasks.
10396 		 */
10397 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10398 			return NULL;
10399 
10400 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10401 			return NULL;
10402 		break;
10403 
10404 	case group_imbalanced:
10405 	case group_asym_packing:
10406 	case group_smt_balance:
10407 		/* Those type are not used in the slow wakeup path */
10408 		return NULL;
10409 
10410 	case group_misfit_task:
10411 		/* Select group with the highest max capacity */
10412 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10413 			return NULL;
10414 		break;
10415 
10416 	case group_has_spare:
10417 #ifdef CONFIG_NUMA
10418 		if (sd->flags & SD_NUMA) {
10419 			int imb_numa_nr = sd->imb_numa_nr;
10420 #ifdef CONFIG_NUMA_BALANCING
10421 			int idlest_cpu;
10422 			/*
10423 			 * If there is spare capacity at NUMA, try to select
10424 			 * the preferred node
10425 			 */
10426 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10427 				return NULL;
10428 
10429 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10430 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10431 				return idlest;
10432 #endif /* CONFIG_NUMA_BALANCING */
10433 			/*
10434 			 * Otherwise, keep the task close to the wakeup source
10435 			 * and improve locality if the number of running tasks
10436 			 * would remain below threshold where an imbalance is
10437 			 * allowed while accounting for the possibility the
10438 			 * task is pinned to a subset of CPUs. If there is a
10439 			 * real need of migration, periodic load balance will
10440 			 * take care of it.
10441 			 */
10442 			if (p->nr_cpus_allowed != NR_CPUS) {
10443 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10444 
10445 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10446 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10447 			}
10448 
10449 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10450 			if (!adjust_numa_imbalance(imbalance,
10451 						   local_sgs.sum_nr_running + 1,
10452 						   imb_numa_nr)) {
10453 				return NULL;
10454 			}
10455 		}
10456 #endif /* CONFIG_NUMA */
10457 
10458 		/*
10459 		 * Select group with highest number of idle CPUs. We could also
10460 		 * compare the utilization which is more stable but it can end
10461 		 * up that the group has less spare capacity but finally more
10462 		 * idle CPUs which means more opportunity to run task.
10463 		 */
10464 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10465 			return NULL;
10466 		break;
10467 	}
10468 
10469 	return idlest;
10470 }
10471 
10472 static void update_idle_cpu_scan(struct lb_env *env,
10473 				 unsigned long sum_util)
10474 {
10475 	struct sched_domain_shared *sd_share;
10476 	int llc_weight, pct;
10477 	u64 x, y, tmp;
10478 	/*
10479 	 * Update the number of CPUs to scan in LLC domain, which could
10480 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10481 	 * could be expensive because it is within a shared cache line.
10482 	 * So the write of this hint only occurs during periodic load
10483 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10484 	 * can fire way more frequently than the former.
10485 	 */
10486 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10487 		return;
10488 
10489 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10490 	if (env->sd->span_weight != llc_weight)
10491 		return;
10492 
10493 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10494 	if (!sd_share)
10495 		return;
10496 
10497 	/*
10498 	 * The number of CPUs to search drops as sum_util increases, when
10499 	 * sum_util hits 85% or above, the scan stops.
10500 	 * The reason to choose 85% as the threshold is because this is the
10501 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10502 	 *
10503 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10504 	 * and y'= y / SCHED_CAPACITY_SCALE
10505 	 *
10506 	 * x is the ratio of sum_util compared to the CPU capacity:
10507 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10508 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10509 	 * and the number of CPUs to scan is calculated by:
10510 	 *
10511 	 * nr_scan = llc_weight * y'                                    [2]
10512 	 *
10513 	 * When x hits the threshold of overloaded, AKA, when
10514 	 * x = 100 / pct, y drops to 0. According to [1],
10515 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10516 	 *
10517 	 * Scale x by SCHED_CAPACITY_SCALE:
10518 	 * x' = sum_util / llc_weight;                                  [3]
10519 	 *
10520 	 * and finally [1] becomes:
10521 	 * y = SCHED_CAPACITY_SCALE -
10522 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10523 	 *
10524 	 */
10525 	/* equation [3] */
10526 	x = sum_util;
10527 	do_div(x, llc_weight);
10528 
10529 	/* equation [4] */
10530 	pct = env->sd->imbalance_pct;
10531 	tmp = x * x * pct * pct;
10532 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10533 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10534 	y = SCHED_CAPACITY_SCALE - tmp;
10535 
10536 	/* equation [2] */
10537 	y *= llc_weight;
10538 	do_div(y, SCHED_CAPACITY_SCALE);
10539 	if ((int)y != sd_share->nr_idle_scan)
10540 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10541 }
10542 
10543 /**
10544  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10545  * @env: The load balancing environment.
10546  * @sds: variable to hold the statistics for this sched_domain.
10547  */
10548 
10549 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10550 {
10551 	struct sched_group *sg = env->sd->groups;
10552 	struct sg_lb_stats *local = &sds->local_stat;
10553 	struct sg_lb_stats tmp_sgs;
10554 	unsigned long sum_util = 0;
10555 	int sg_status = 0;
10556 
10557 	do {
10558 		struct sg_lb_stats *sgs = &tmp_sgs;
10559 		int local_group;
10560 
10561 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10562 		if (local_group) {
10563 			sds->local = sg;
10564 			sgs = local;
10565 
10566 			if (env->idle != CPU_NEWLY_IDLE ||
10567 			    time_after_eq(jiffies, sg->sgc->next_update))
10568 				update_group_capacity(env->sd, env->dst_cpu);
10569 		}
10570 
10571 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10572 
10573 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10574 			sds->busiest = sg;
10575 			sds->busiest_stat = *sgs;
10576 		}
10577 
10578 		/* Now, start updating sd_lb_stats */
10579 		sds->total_load += sgs->group_load;
10580 		sds->total_capacity += sgs->group_capacity;
10581 
10582 		sum_util += sgs->group_util;
10583 		sg = sg->next;
10584 	} while (sg != env->sd->groups);
10585 
10586 	/*
10587 	 * Indicate that the child domain of the busiest group prefers tasks
10588 	 * go to a child's sibling domains first. NB the flags of a sched group
10589 	 * are those of the child domain.
10590 	 */
10591 	if (sds->busiest)
10592 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10593 
10594 
10595 	if (env->sd->flags & SD_NUMA)
10596 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10597 
10598 	if (!env->sd->parent) {
10599 		struct root_domain *rd = env->dst_rq->rd;
10600 
10601 		/* update overload indicator if we are at root domain */
10602 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10603 
10604 		/* Update over-utilization (tipping point, U >= 0) indicator */
10605 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10606 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10607 	} else if (sg_status & SG_OVERUTILIZED) {
10608 		struct root_domain *rd = env->dst_rq->rd;
10609 
10610 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10611 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10612 	}
10613 
10614 	update_idle_cpu_scan(env, sum_util);
10615 }
10616 
10617 /**
10618  * calculate_imbalance - Calculate the amount of imbalance present within the
10619  *			 groups of a given sched_domain during load balance.
10620  * @env: load balance environment
10621  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10622  */
10623 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10624 {
10625 	struct sg_lb_stats *local, *busiest;
10626 
10627 	local = &sds->local_stat;
10628 	busiest = &sds->busiest_stat;
10629 
10630 	if (busiest->group_type == group_misfit_task) {
10631 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10632 			/* Set imbalance to allow misfit tasks to be balanced. */
10633 			env->migration_type = migrate_misfit;
10634 			env->imbalance = 1;
10635 		} else {
10636 			/*
10637 			 * Set load imbalance to allow moving task from cpu
10638 			 * with reduced capacity.
10639 			 */
10640 			env->migration_type = migrate_load;
10641 			env->imbalance = busiest->group_misfit_task_load;
10642 		}
10643 		return;
10644 	}
10645 
10646 	if (busiest->group_type == group_asym_packing) {
10647 		/*
10648 		 * In case of asym capacity, we will try to migrate all load to
10649 		 * the preferred CPU.
10650 		 */
10651 		env->migration_type = migrate_task;
10652 		env->imbalance = busiest->sum_h_nr_running;
10653 		return;
10654 	}
10655 
10656 	if (busiest->group_type == group_smt_balance) {
10657 		/* Reduce number of tasks sharing CPU capacity */
10658 		env->migration_type = migrate_task;
10659 		env->imbalance = 1;
10660 		return;
10661 	}
10662 
10663 	if (busiest->group_type == group_imbalanced) {
10664 		/*
10665 		 * In the group_imb case we cannot rely on group-wide averages
10666 		 * to ensure CPU-load equilibrium, try to move any task to fix
10667 		 * the imbalance. The next load balance will take care of
10668 		 * balancing back the system.
10669 		 */
10670 		env->migration_type = migrate_task;
10671 		env->imbalance = 1;
10672 		return;
10673 	}
10674 
10675 	/*
10676 	 * Try to use spare capacity of local group without overloading it or
10677 	 * emptying busiest.
10678 	 */
10679 	if (local->group_type == group_has_spare) {
10680 		if ((busiest->group_type > group_fully_busy) &&
10681 		    !(env->sd->flags & SD_SHARE_LLC)) {
10682 			/*
10683 			 * If busiest is overloaded, try to fill spare
10684 			 * capacity. This might end up creating spare capacity
10685 			 * in busiest or busiest still being overloaded but
10686 			 * there is no simple way to directly compute the
10687 			 * amount of load to migrate in order to balance the
10688 			 * system.
10689 			 */
10690 			env->migration_type = migrate_util;
10691 			env->imbalance = max(local->group_capacity, local->group_util) -
10692 					 local->group_util;
10693 
10694 			/*
10695 			 * In some cases, the group's utilization is max or even
10696 			 * higher than capacity because of migrations but the
10697 			 * local CPU is (newly) idle. There is at least one
10698 			 * waiting task in this overloaded busiest group. Let's
10699 			 * try to pull it.
10700 			 */
10701 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10702 				env->migration_type = migrate_task;
10703 				env->imbalance = 1;
10704 			}
10705 
10706 			return;
10707 		}
10708 
10709 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10710 			/*
10711 			 * When prefer sibling, evenly spread running tasks on
10712 			 * groups.
10713 			 */
10714 			env->migration_type = migrate_task;
10715 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10716 		} else {
10717 
10718 			/*
10719 			 * If there is no overload, we just want to even the number of
10720 			 * idle cpus.
10721 			 */
10722 			env->migration_type = migrate_task;
10723 			env->imbalance = max_t(long, 0,
10724 					       (local->idle_cpus - busiest->idle_cpus));
10725 		}
10726 
10727 #ifdef CONFIG_NUMA
10728 		/* Consider allowing a small imbalance between NUMA groups */
10729 		if (env->sd->flags & SD_NUMA) {
10730 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10731 							       local->sum_nr_running + 1,
10732 							       env->sd->imb_numa_nr);
10733 		}
10734 #endif
10735 
10736 		/* Number of tasks to move to restore balance */
10737 		env->imbalance >>= 1;
10738 
10739 		return;
10740 	}
10741 
10742 	/*
10743 	 * Local is fully busy but has to take more load to relieve the
10744 	 * busiest group
10745 	 */
10746 	if (local->group_type < group_overloaded) {
10747 		/*
10748 		 * Local will become overloaded so the avg_load metrics are
10749 		 * finally needed.
10750 		 */
10751 
10752 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10753 				  local->group_capacity;
10754 
10755 		/*
10756 		 * If the local group is more loaded than the selected
10757 		 * busiest group don't try to pull any tasks.
10758 		 */
10759 		if (local->avg_load >= busiest->avg_load) {
10760 			env->imbalance = 0;
10761 			return;
10762 		}
10763 
10764 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10765 				sds->total_capacity;
10766 
10767 		/*
10768 		 * If the local group is more loaded than the average system
10769 		 * load, don't try to pull any tasks.
10770 		 */
10771 		if (local->avg_load >= sds->avg_load) {
10772 			env->imbalance = 0;
10773 			return;
10774 		}
10775 
10776 	}
10777 
10778 	/*
10779 	 * Both group are or will become overloaded and we're trying to get all
10780 	 * the CPUs to the average_load, so we don't want to push ourselves
10781 	 * above the average load, nor do we wish to reduce the max loaded CPU
10782 	 * below the average load. At the same time, we also don't want to
10783 	 * reduce the group load below the group capacity. Thus we look for
10784 	 * the minimum possible imbalance.
10785 	 */
10786 	env->migration_type = migrate_load;
10787 	env->imbalance = min(
10788 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10789 		(sds->avg_load - local->avg_load) * local->group_capacity
10790 	) / SCHED_CAPACITY_SCALE;
10791 }
10792 
10793 /******* find_busiest_group() helpers end here *********************/
10794 
10795 /*
10796  * Decision matrix according to the local and busiest group type:
10797  *
10798  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10799  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10800  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10801  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10802  * asym_packing     force     force      N/A    N/A  force      force
10803  * imbalanced       force     force      N/A    N/A  force      force
10804  * overloaded       force     force      N/A    N/A  force      avg_load
10805  *
10806  * N/A :      Not Applicable because already filtered while updating
10807  *            statistics.
10808  * balanced : The system is balanced for these 2 groups.
10809  * force :    Calculate the imbalance as load migration is probably needed.
10810  * avg_load : Only if imbalance is significant enough.
10811  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10812  *            different in groups.
10813  */
10814 
10815 /**
10816  * find_busiest_group - Returns the busiest group within the sched_domain
10817  * if there is an imbalance.
10818  * @env: The load balancing environment.
10819  *
10820  * Also calculates the amount of runnable load which should be moved
10821  * to restore balance.
10822  *
10823  * Return:	- The busiest group if imbalance exists.
10824  */
10825 static struct sched_group *find_busiest_group(struct lb_env *env)
10826 {
10827 	struct sg_lb_stats *local, *busiest;
10828 	struct sd_lb_stats sds;
10829 
10830 	init_sd_lb_stats(&sds);
10831 
10832 	/*
10833 	 * Compute the various statistics relevant for load balancing at
10834 	 * this level.
10835 	 */
10836 	update_sd_lb_stats(env, &sds);
10837 
10838 	/* There is no busy sibling group to pull tasks from */
10839 	if (!sds.busiest)
10840 		goto out_balanced;
10841 
10842 	busiest = &sds.busiest_stat;
10843 
10844 	/* Misfit tasks should be dealt with regardless of the avg load */
10845 	if (busiest->group_type == group_misfit_task)
10846 		goto force_balance;
10847 
10848 	if (sched_energy_enabled()) {
10849 		struct root_domain *rd = env->dst_rq->rd;
10850 
10851 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10852 			goto out_balanced;
10853 	}
10854 
10855 	/* ASYM feature bypasses nice load balance check */
10856 	if (busiest->group_type == group_asym_packing)
10857 		goto force_balance;
10858 
10859 	/*
10860 	 * If the busiest group is imbalanced the below checks don't
10861 	 * work because they assume all things are equal, which typically
10862 	 * isn't true due to cpus_ptr constraints and the like.
10863 	 */
10864 	if (busiest->group_type == group_imbalanced)
10865 		goto force_balance;
10866 
10867 	local = &sds.local_stat;
10868 	/*
10869 	 * If the local group is busier than the selected busiest group
10870 	 * don't try and pull any tasks.
10871 	 */
10872 	if (local->group_type > busiest->group_type)
10873 		goto out_balanced;
10874 
10875 	/*
10876 	 * When groups are overloaded, use the avg_load to ensure fairness
10877 	 * between tasks.
10878 	 */
10879 	if (local->group_type == group_overloaded) {
10880 		/*
10881 		 * If the local group is more loaded than the selected
10882 		 * busiest group don't try to pull any tasks.
10883 		 */
10884 		if (local->avg_load >= busiest->avg_load)
10885 			goto out_balanced;
10886 
10887 		/* XXX broken for overlapping NUMA groups */
10888 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10889 				sds.total_capacity;
10890 
10891 		/*
10892 		 * Don't pull any tasks if this group is already above the
10893 		 * domain average load.
10894 		 */
10895 		if (local->avg_load >= sds.avg_load)
10896 			goto out_balanced;
10897 
10898 		/*
10899 		 * If the busiest group is more loaded, use imbalance_pct to be
10900 		 * conservative.
10901 		 */
10902 		if (100 * busiest->avg_load <=
10903 				env->sd->imbalance_pct * local->avg_load)
10904 			goto out_balanced;
10905 	}
10906 
10907 	/*
10908 	 * Try to move all excess tasks to a sibling domain of the busiest
10909 	 * group's child domain.
10910 	 */
10911 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10912 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10913 		goto force_balance;
10914 
10915 	if (busiest->group_type != group_overloaded) {
10916 		if (env->idle == CPU_NOT_IDLE) {
10917 			/*
10918 			 * If the busiest group is not overloaded (and as a
10919 			 * result the local one too) but this CPU is already
10920 			 * busy, let another idle CPU try to pull task.
10921 			 */
10922 			goto out_balanced;
10923 		}
10924 
10925 		if (busiest->group_type == group_smt_balance &&
10926 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10927 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10928 			goto force_balance;
10929 		}
10930 
10931 		if (busiest->group_weight > 1 &&
10932 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10933 			/*
10934 			 * If the busiest group is not overloaded
10935 			 * and there is no imbalance between this and busiest
10936 			 * group wrt idle CPUs, it is balanced. The imbalance
10937 			 * becomes significant if the diff is greater than 1
10938 			 * otherwise we might end up to just move the imbalance
10939 			 * on another group. Of course this applies only if
10940 			 * there is more than 1 CPU per group.
10941 			 */
10942 			goto out_balanced;
10943 		}
10944 
10945 		if (busiest->sum_h_nr_running == 1) {
10946 			/*
10947 			 * busiest doesn't have any tasks waiting to run
10948 			 */
10949 			goto out_balanced;
10950 		}
10951 	}
10952 
10953 force_balance:
10954 	/* Looks like there is an imbalance. Compute it */
10955 	calculate_imbalance(env, &sds);
10956 	return env->imbalance ? sds.busiest : NULL;
10957 
10958 out_balanced:
10959 	env->imbalance = 0;
10960 	return NULL;
10961 }
10962 
10963 /*
10964  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10965  */
10966 static struct rq *find_busiest_queue(struct lb_env *env,
10967 				     struct sched_group *group)
10968 {
10969 	struct rq *busiest = NULL, *rq;
10970 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10971 	unsigned int busiest_nr = 0;
10972 	int i;
10973 
10974 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10975 		unsigned long capacity, load, util;
10976 		unsigned int nr_running;
10977 		enum fbq_type rt;
10978 
10979 		rq = cpu_rq(i);
10980 		rt = fbq_classify_rq(rq);
10981 
10982 		/*
10983 		 * We classify groups/runqueues into three groups:
10984 		 *  - regular: there are !numa tasks
10985 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10986 		 *  - all:     there is no distinction
10987 		 *
10988 		 * In order to avoid migrating ideally placed numa tasks,
10989 		 * ignore those when there's better options.
10990 		 *
10991 		 * If we ignore the actual busiest queue to migrate another
10992 		 * task, the next balance pass can still reduce the busiest
10993 		 * queue by moving tasks around inside the node.
10994 		 *
10995 		 * If we cannot move enough load due to this classification
10996 		 * the next pass will adjust the group classification and
10997 		 * allow migration of more tasks.
10998 		 *
10999 		 * Both cases only affect the total convergence complexity.
11000 		 */
11001 		if (rt > env->fbq_type)
11002 			continue;
11003 
11004 		nr_running = rq->cfs.h_nr_running;
11005 		if (!nr_running)
11006 			continue;
11007 
11008 		capacity = capacity_of(i);
11009 
11010 		/*
11011 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11012 		 * eventually lead to active_balancing high->low capacity.
11013 		 * Higher per-CPU capacity is considered better than balancing
11014 		 * average load.
11015 		 */
11016 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11017 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11018 		    nr_running == 1)
11019 			continue;
11020 
11021 		/*
11022 		 * Make sure we only pull tasks from a CPU of lower priority
11023 		 * when balancing between SMT siblings.
11024 		 *
11025 		 * If balancing between cores, let lower priority CPUs help
11026 		 * SMT cores with more than one busy sibling.
11027 		 */
11028 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11029 			continue;
11030 
11031 		switch (env->migration_type) {
11032 		case migrate_load:
11033 			/*
11034 			 * When comparing with load imbalance, use cpu_load()
11035 			 * which is not scaled with the CPU capacity.
11036 			 */
11037 			load = cpu_load(rq);
11038 
11039 			if (nr_running == 1 && load > env->imbalance &&
11040 			    !check_cpu_capacity(rq, env->sd))
11041 				break;
11042 
11043 			/*
11044 			 * For the load comparisons with the other CPUs,
11045 			 * consider the cpu_load() scaled with the CPU
11046 			 * capacity, so that the load can be moved away
11047 			 * from the CPU that is potentially running at a
11048 			 * lower capacity.
11049 			 *
11050 			 * Thus we're looking for max(load_i / capacity_i),
11051 			 * crosswise multiplication to rid ourselves of the
11052 			 * division works out to:
11053 			 * load_i * capacity_j > load_j * capacity_i;
11054 			 * where j is our previous maximum.
11055 			 */
11056 			if (load * busiest_capacity > busiest_load * capacity) {
11057 				busiest_load = load;
11058 				busiest_capacity = capacity;
11059 				busiest = rq;
11060 			}
11061 			break;
11062 
11063 		case migrate_util:
11064 			util = cpu_util_cfs_boost(i);
11065 
11066 			/*
11067 			 * Don't try to pull utilization from a CPU with one
11068 			 * running task. Whatever its utilization, we will fail
11069 			 * detach the task.
11070 			 */
11071 			if (nr_running <= 1)
11072 				continue;
11073 
11074 			if (busiest_util < util) {
11075 				busiest_util = util;
11076 				busiest = rq;
11077 			}
11078 			break;
11079 
11080 		case migrate_task:
11081 			if (busiest_nr < nr_running) {
11082 				busiest_nr = nr_running;
11083 				busiest = rq;
11084 			}
11085 			break;
11086 
11087 		case migrate_misfit:
11088 			/*
11089 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11090 			 * simply seek the "biggest" misfit task.
11091 			 */
11092 			if (rq->misfit_task_load > busiest_load) {
11093 				busiest_load = rq->misfit_task_load;
11094 				busiest = rq;
11095 			}
11096 
11097 			break;
11098 
11099 		}
11100 	}
11101 
11102 	return busiest;
11103 }
11104 
11105 /*
11106  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11107  * so long as it is large enough.
11108  */
11109 #define MAX_PINNED_INTERVAL	512
11110 
11111 static inline bool
11112 asym_active_balance(struct lb_env *env)
11113 {
11114 	/*
11115 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11116 	 * priority CPUs in order to pack all tasks in the highest priority
11117 	 * CPUs. When done between cores, do it only if the whole core if the
11118 	 * whole core is idle.
11119 	 *
11120 	 * If @env::src_cpu is an SMT core with busy siblings, let
11121 	 * the lower priority @env::dst_cpu help it. Do not follow
11122 	 * CPU priority.
11123 	 */
11124 	return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11125 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11126 		!sched_use_asym_prio(env->sd, env->src_cpu));
11127 }
11128 
11129 static inline bool
11130 imbalanced_active_balance(struct lb_env *env)
11131 {
11132 	struct sched_domain *sd = env->sd;
11133 
11134 	/*
11135 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11136 	 * distribution of the load on the system but also the even distribution of the
11137 	 * threads on a system with spare capacity
11138 	 */
11139 	if ((env->migration_type == migrate_task) &&
11140 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11141 		return 1;
11142 
11143 	return 0;
11144 }
11145 
11146 static int need_active_balance(struct lb_env *env)
11147 {
11148 	struct sched_domain *sd = env->sd;
11149 
11150 	if (asym_active_balance(env))
11151 		return 1;
11152 
11153 	if (imbalanced_active_balance(env))
11154 		return 1;
11155 
11156 	/*
11157 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11158 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11159 	 * because of other sched_class or IRQs if more capacity stays
11160 	 * available on dst_cpu.
11161 	 */
11162 	if ((env->idle != CPU_NOT_IDLE) &&
11163 	    (env->src_rq->cfs.h_nr_running == 1)) {
11164 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11165 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11166 			return 1;
11167 	}
11168 
11169 	if (env->migration_type == migrate_misfit)
11170 		return 1;
11171 
11172 	return 0;
11173 }
11174 
11175 static int active_load_balance_cpu_stop(void *data);
11176 
11177 static int should_we_balance(struct lb_env *env)
11178 {
11179 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11180 	struct sched_group *sg = env->sd->groups;
11181 	int cpu, idle_smt = -1;
11182 
11183 	/*
11184 	 * Ensure the balancing environment is consistent; can happen
11185 	 * when the softirq triggers 'during' hotplug.
11186 	 */
11187 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11188 		return 0;
11189 
11190 	/*
11191 	 * In the newly idle case, we will allow all the CPUs
11192 	 * to do the newly idle load balance.
11193 	 *
11194 	 * However, we bail out if we already have tasks or a wakeup pending,
11195 	 * to optimize wakeup latency.
11196 	 */
11197 	if (env->idle == CPU_NEWLY_IDLE) {
11198 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11199 			return 0;
11200 		return 1;
11201 	}
11202 
11203 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11204 	/* Try to find first idle CPU */
11205 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11206 		if (!idle_cpu(cpu))
11207 			continue;
11208 
11209 		/*
11210 		 * Don't balance to idle SMT in busy core right away when
11211 		 * balancing cores, but remember the first idle SMT CPU for
11212 		 * later consideration.  Find CPU on an idle core first.
11213 		 */
11214 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11215 			if (idle_smt == -1)
11216 				idle_smt = cpu;
11217 			/*
11218 			 * If the core is not idle, and first SMT sibling which is
11219 			 * idle has been found, then its not needed to check other
11220 			 * SMT siblings for idleness:
11221 			 */
11222 #ifdef CONFIG_SCHED_SMT
11223 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11224 #endif
11225 			continue;
11226 		}
11227 
11228 		/*
11229 		 * Are we the first idle core in a non-SMT domain or higher,
11230 		 * or the first idle CPU in a SMT domain?
11231 		 */
11232 		return cpu == env->dst_cpu;
11233 	}
11234 
11235 	/* Are we the first idle CPU with busy siblings? */
11236 	if (idle_smt != -1)
11237 		return idle_smt == env->dst_cpu;
11238 
11239 	/* Are we the first CPU of this group ? */
11240 	return group_balance_cpu(sg) == env->dst_cpu;
11241 }
11242 
11243 /*
11244  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11245  * tasks if there is an imbalance.
11246  */
11247 static int load_balance(int this_cpu, struct rq *this_rq,
11248 			struct sched_domain *sd, enum cpu_idle_type idle,
11249 			int *continue_balancing)
11250 {
11251 	int ld_moved, cur_ld_moved, active_balance = 0;
11252 	struct sched_domain *sd_parent = sd->parent;
11253 	struct sched_group *group;
11254 	struct rq *busiest;
11255 	struct rq_flags rf;
11256 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11257 	struct lb_env env = {
11258 		.sd		= sd,
11259 		.dst_cpu	= this_cpu,
11260 		.dst_rq		= this_rq,
11261 		.dst_grpmask    = group_balance_mask(sd->groups),
11262 		.idle		= idle,
11263 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11264 		.cpus		= cpus,
11265 		.fbq_type	= all,
11266 		.tasks		= LIST_HEAD_INIT(env.tasks),
11267 	};
11268 
11269 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11270 
11271 	schedstat_inc(sd->lb_count[idle]);
11272 
11273 redo:
11274 	if (!should_we_balance(&env)) {
11275 		*continue_balancing = 0;
11276 		goto out_balanced;
11277 	}
11278 
11279 	group = find_busiest_group(&env);
11280 	if (!group) {
11281 		schedstat_inc(sd->lb_nobusyg[idle]);
11282 		goto out_balanced;
11283 	}
11284 
11285 	busiest = find_busiest_queue(&env, group);
11286 	if (!busiest) {
11287 		schedstat_inc(sd->lb_nobusyq[idle]);
11288 		goto out_balanced;
11289 	}
11290 
11291 	WARN_ON_ONCE(busiest == env.dst_rq);
11292 
11293 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11294 
11295 	env.src_cpu = busiest->cpu;
11296 	env.src_rq = busiest;
11297 
11298 	ld_moved = 0;
11299 	/* Clear this flag as soon as we find a pullable task */
11300 	env.flags |= LBF_ALL_PINNED;
11301 	if (busiest->nr_running > 1) {
11302 		/*
11303 		 * Attempt to move tasks. If find_busiest_group has found
11304 		 * an imbalance but busiest->nr_running <= 1, the group is
11305 		 * still unbalanced. ld_moved simply stays zero, so it is
11306 		 * correctly treated as an imbalance.
11307 		 */
11308 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11309 
11310 more_balance:
11311 		rq_lock_irqsave(busiest, &rf);
11312 		update_rq_clock(busiest);
11313 
11314 		/*
11315 		 * cur_ld_moved - load moved in current iteration
11316 		 * ld_moved     - cumulative load moved across iterations
11317 		 */
11318 		cur_ld_moved = detach_tasks(&env);
11319 
11320 		/*
11321 		 * We've detached some tasks from busiest_rq. Every
11322 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11323 		 * unlock busiest->lock, and we are able to be sure
11324 		 * that nobody can manipulate the tasks in parallel.
11325 		 * See task_rq_lock() family for the details.
11326 		 */
11327 
11328 		rq_unlock(busiest, &rf);
11329 
11330 		if (cur_ld_moved) {
11331 			attach_tasks(&env);
11332 			ld_moved += cur_ld_moved;
11333 		}
11334 
11335 		local_irq_restore(rf.flags);
11336 
11337 		if (env.flags & LBF_NEED_BREAK) {
11338 			env.flags &= ~LBF_NEED_BREAK;
11339 			/* Stop if we tried all running tasks */
11340 			if (env.loop < busiest->nr_running)
11341 				goto more_balance;
11342 		}
11343 
11344 		/*
11345 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11346 		 * us and move them to an alternate dst_cpu in our sched_group
11347 		 * where they can run. The upper limit on how many times we
11348 		 * iterate on same src_cpu is dependent on number of CPUs in our
11349 		 * sched_group.
11350 		 *
11351 		 * This changes load balance semantics a bit on who can move
11352 		 * load to a given_cpu. In addition to the given_cpu itself
11353 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11354 		 * nohz-idle), we now have balance_cpu in a position to move
11355 		 * load to given_cpu. In rare situations, this may cause
11356 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11357 		 * _independently_ and at _same_ time to move some load to
11358 		 * given_cpu) causing excess load to be moved to given_cpu.
11359 		 * This however should not happen so much in practice and
11360 		 * moreover subsequent load balance cycles should correct the
11361 		 * excess load moved.
11362 		 */
11363 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11364 
11365 			/* Prevent to re-select dst_cpu via env's CPUs */
11366 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11367 
11368 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11369 			env.dst_cpu	 = env.new_dst_cpu;
11370 			env.flags	&= ~LBF_DST_PINNED;
11371 			env.loop	 = 0;
11372 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11373 
11374 			/*
11375 			 * Go back to "more_balance" rather than "redo" since we
11376 			 * need to continue with same src_cpu.
11377 			 */
11378 			goto more_balance;
11379 		}
11380 
11381 		/*
11382 		 * We failed to reach balance because of affinity.
11383 		 */
11384 		if (sd_parent) {
11385 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11386 
11387 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11388 				*group_imbalance = 1;
11389 		}
11390 
11391 		/* All tasks on this runqueue were pinned by CPU affinity */
11392 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11393 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11394 			/*
11395 			 * Attempting to continue load balancing at the current
11396 			 * sched_domain level only makes sense if there are
11397 			 * active CPUs remaining as possible busiest CPUs to
11398 			 * pull load from which are not contained within the
11399 			 * destination group that is receiving any migrated
11400 			 * load.
11401 			 */
11402 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11403 				env.loop = 0;
11404 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11405 				goto redo;
11406 			}
11407 			goto out_all_pinned;
11408 		}
11409 	}
11410 
11411 	if (!ld_moved) {
11412 		schedstat_inc(sd->lb_failed[idle]);
11413 		/*
11414 		 * Increment the failure counter only on periodic balance.
11415 		 * We do not want newidle balance, which can be very
11416 		 * frequent, pollute the failure counter causing
11417 		 * excessive cache_hot migrations and active balances.
11418 		 */
11419 		if (idle != CPU_NEWLY_IDLE)
11420 			sd->nr_balance_failed++;
11421 
11422 		if (need_active_balance(&env)) {
11423 			unsigned long flags;
11424 
11425 			raw_spin_rq_lock_irqsave(busiest, flags);
11426 
11427 			/*
11428 			 * Don't kick the active_load_balance_cpu_stop,
11429 			 * if the curr task on busiest CPU can't be
11430 			 * moved to this_cpu:
11431 			 */
11432 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11433 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11434 				goto out_one_pinned;
11435 			}
11436 
11437 			/* Record that we found at least one task that could run on this_cpu */
11438 			env.flags &= ~LBF_ALL_PINNED;
11439 
11440 			/*
11441 			 * ->active_balance synchronizes accesses to
11442 			 * ->active_balance_work.  Once set, it's cleared
11443 			 * only after active load balance is finished.
11444 			 */
11445 			if (!busiest->active_balance) {
11446 				busiest->active_balance = 1;
11447 				busiest->push_cpu = this_cpu;
11448 				active_balance = 1;
11449 			}
11450 
11451 			preempt_disable();
11452 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11453 			if (active_balance) {
11454 				stop_one_cpu_nowait(cpu_of(busiest),
11455 					active_load_balance_cpu_stop, busiest,
11456 					&busiest->active_balance_work);
11457 			}
11458 			preempt_enable();
11459 		}
11460 	} else {
11461 		sd->nr_balance_failed = 0;
11462 	}
11463 
11464 	if (likely(!active_balance) || need_active_balance(&env)) {
11465 		/* We were unbalanced, so reset the balancing interval */
11466 		sd->balance_interval = sd->min_interval;
11467 	}
11468 
11469 	goto out;
11470 
11471 out_balanced:
11472 	/*
11473 	 * We reach balance although we may have faced some affinity
11474 	 * constraints. Clear the imbalance flag only if other tasks got
11475 	 * a chance to move and fix the imbalance.
11476 	 */
11477 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11478 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11479 
11480 		if (*group_imbalance)
11481 			*group_imbalance = 0;
11482 	}
11483 
11484 out_all_pinned:
11485 	/*
11486 	 * We reach balance because all tasks are pinned at this level so
11487 	 * we can't migrate them. Let the imbalance flag set so parent level
11488 	 * can try to migrate them.
11489 	 */
11490 	schedstat_inc(sd->lb_balanced[idle]);
11491 
11492 	sd->nr_balance_failed = 0;
11493 
11494 out_one_pinned:
11495 	ld_moved = 0;
11496 
11497 	/*
11498 	 * newidle_balance() disregards balance intervals, so we could
11499 	 * repeatedly reach this code, which would lead to balance_interval
11500 	 * skyrocketing in a short amount of time. Skip the balance_interval
11501 	 * increase logic to avoid that.
11502 	 */
11503 	if (env.idle == CPU_NEWLY_IDLE)
11504 		goto out;
11505 
11506 	/* tune up the balancing interval */
11507 	if ((env.flags & LBF_ALL_PINNED &&
11508 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11509 	    sd->balance_interval < sd->max_interval)
11510 		sd->balance_interval *= 2;
11511 out:
11512 	return ld_moved;
11513 }
11514 
11515 static inline unsigned long
11516 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11517 {
11518 	unsigned long interval = sd->balance_interval;
11519 
11520 	if (cpu_busy)
11521 		interval *= sd->busy_factor;
11522 
11523 	/* scale ms to jiffies */
11524 	interval = msecs_to_jiffies(interval);
11525 
11526 	/*
11527 	 * Reduce likelihood of busy balancing at higher domains racing with
11528 	 * balancing at lower domains by preventing their balancing periods
11529 	 * from being multiples of each other.
11530 	 */
11531 	if (cpu_busy)
11532 		interval -= 1;
11533 
11534 	interval = clamp(interval, 1UL, max_load_balance_interval);
11535 
11536 	return interval;
11537 }
11538 
11539 static inline void
11540 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11541 {
11542 	unsigned long interval, next;
11543 
11544 	/* used by idle balance, so cpu_busy = 0 */
11545 	interval = get_sd_balance_interval(sd, 0);
11546 	next = sd->last_balance + interval;
11547 
11548 	if (time_after(*next_balance, next))
11549 		*next_balance = next;
11550 }
11551 
11552 /*
11553  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11554  * running tasks off the busiest CPU onto idle CPUs. It requires at
11555  * least 1 task to be running on each physical CPU where possible, and
11556  * avoids physical / logical imbalances.
11557  */
11558 static int active_load_balance_cpu_stop(void *data)
11559 {
11560 	struct rq *busiest_rq = data;
11561 	int busiest_cpu = cpu_of(busiest_rq);
11562 	int target_cpu = busiest_rq->push_cpu;
11563 	struct rq *target_rq = cpu_rq(target_cpu);
11564 	struct sched_domain *sd;
11565 	struct task_struct *p = NULL;
11566 	struct rq_flags rf;
11567 
11568 	rq_lock_irq(busiest_rq, &rf);
11569 	/*
11570 	 * Between queueing the stop-work and running it is a hole in which
11571 	 * CPUs can become inactive. We should not move tasks from or to
11572 	 * inactive CPUs.
11573 	 */
11574 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11575 		goto out_unlock;
11576 
11577 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11578 	if (unlikely(busiest_cpu != smp_processor_id() ||
11579 		     !busiest_rq->active_balance))
11580 		goto out_unlock;
11581 
11582 	/* Is there any task to move? */
11583 	if (busiest_rq->nr_running <= 1)
11584 		goto out_unlock;
11585 
11586 	/*
11587 	 * This condition is "impossible", if it occurs
11588 	 * we need to fix it. Originally reported by
11589 	 * Bjorn Helgaas on a 128-CPU setup.
11590 	 */
11591 	WARN_ON_ONCE(busiest_rq == target_rq);
11592 
11593 	/* Search for an sd spanning us and the target CPU. */
11594 	rcu_read_lock();
11595 	for_each_domain(target_cpu, sd) {
11596 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11597 			break;
11598 	}
11599 
11600 	if (likely(sd)) {
11601 		struct lb_env env = {
11602 			.sd		= sd,
11603 			.dst_cpu	= target_cpu,
11604 			.dst_rq		= target_rq,
11605 			.src_cpu	= busiest_rq->cpu,
11606 			.src_rq		= busiest_rq,
11607 			.idle		= CPU_IDLE,
11608 			.flags		= LBF_ACTIVE_LB,
11609 		};
11610 
11611 		schedstat_inc(sd->alb_count);
11612 		update_rq_clock(busiest_rq);
11613 
11614 		p = detach_one_task(&env);
11615 		if (p) {
11616 			schedstat_inc(sd->alb_pushed);
11617 			/* Active balancing done, reset the failure counter. */
11618 			sd->nr_balance_failed = 0;
11619 		} else {
11620 			schedstat_inc(sd->alb_failed);
11621 		}
11622 	}
11623 	rcu_read_unlock();
11624 out_unlock:
11625 	busiest_rq->active_balance = 0;
11626 	rq_unlock(busiest_rq, &rf);
11627 
11628 	if (p)
11629 		attach_one_task(target_rq, p);
11630 
11631 	local_irq_enable();
11632 
11633 	return 0;
11634 }
11635 
11636 static DEFINE_SPINLOCK(balancing);
11637 
11638 /*
11639  * Scale the max load_balance interval with the number of CPUs in the system.
11640  * This trades load-balance latency on larger machines for less cross talk.
11641  */
11642 void update_max_interval(void)
11643 {
11644 	max_load_balance_interval = HZ*num_online_cpus()/10;
11645 }
11646 
11647 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11648 {
11649 	if (cost > sd->max_newidle_lb_cost) {
11650 		/*
11651 		 * Track max cost of a domain to make sure to not delay the
11652 		 * next wakeup on the CPU.
11653 		 */
11654 		sd->max_newidle_lb_cost = cost;
11655 		sd->last_decay_max_lb_cost = jiffies;
11656 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11657 		/*
11658 		 * Decay the newidle max times by ~1% per second to ensure that
11659 		 * it is not outdated and the current max cost is actually
11660 		 * shorter.
11661 		 */
11662 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11663 		sd->last_decay_max_lb_cost = jiffies;
11664 
11665 		return true;
11666 	}
11667 
11668 	return false;
11669 }
11670 
11671 /*
11672  * It checks each scheduling domain to see if it is due to be balanced,
11673  * and initiates a balancing operation if so.
11674  *
11675  * Balancing parameters are set up in init_sched_domains.
11676  */
11677 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11678 {
11679 	int continue_balancing = 1;
11680 	int cpu = rq->cpu;
11681 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11682 	unsigned long interval;
11683 	struct sched_domain *sd;
11684 	/* Earliest time when we have to do rebalance again */
11685 	unsigned long next_balance = jiffies + 60*HZ;
11686 	int update_next_balance = 0;
11687 	int need_serialize, need_decay = 0;
11688 	u64 max_cost = 0;
11689 
11690 	rcu_read_lock();
11691 	for_each_domain(cpu, sd) {
11692 		/*
11693 		 * Decay the newidle max times here because this is a regular
11694 		 * visit to all the domains.
11695 		 */
11696 		need_decay = update_newidle_cost(sd, 0);
11697 		max_cost += sd->max_newidle_lb_cost;
11698 
11699 		/*
11700 		 * Stop the load balance at this level. There is another
11701 		 * CPU in our sched group which is doing load balancing more
11702 		 * actively.
11703 		 */
11704 		if (!continue_balancing) {
11705 			if (need_decay)
11706 				continue;
11707 			break;
11708 		}
11709 
11710 		interval = get_sd_balance_interval(sd, busy);
11711 
11712 		need_serialize = sd->flags & SD_SERIALIZE;
11713 		if (need_serialize) {
11714 			if (!spin_trylock(&balancing))
11715 				goto out;
11716 		}
11717 
11718 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11719 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11720 				/*
11721 				 * The LBF_DST_PINNED logic could have changed
11722 				 * env->dst_cpu, so we can't know our idle
11723 				 * state even if we migrated tasks. Update it.
11724 				 */
11725 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11726 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11727 			}
11728 			sd->last_balance = jiffies;
11729 			interval = get_sd_balance_interval(sd, busy);
11730 		}
11731 		if (need_serialize)
11732 			spin_unlock(&balancing);
11733 out:
11734 		if (time_after(next_balance, sd->last_balance + interval)) {
11735 			next_balance = sd->last_balance + interval;
11736 			update_next_balance = 1;
11737 		}
11738 	}
11739 	if (need_decay) {
11740 		/*
11741 		 * Ensure the rq-wide value also decays but keep it at a
11742 		 * reasonable floor to avoid funnies with rq->avg_idle.
11743 		 */
11744 		rq->max_idle_balance_cost =
11745 			max((u64)sysctl_sched_migration_cost, max_cost);
11746 	}
11747 	rcu_read_unlock();
11748 
11749 	/*
11750 	 * next_balance will be updated only when there is a need.
11751 	 * When the cpu is attached to null domain for ex, it will not be
11752 	 * updated.
11753 	 */
11754 	if (likely(update_next_balance))
11755 		rq->next_balance = next_balance;
11756 
11757 }
11758 
11759 static inline int on_null_domain(struct rq *rq)
11760 {
11761 	return unlikely(!rcu_dereference_sched(rq->sd));
11762 }
11763 
11764 #ifdef CONFIG_NO_HZ_COMMON
11765 /*
11766  * NOHZ idle load balancing (ILB) details:
11767  *
11768  * - When one of the busy CPUs notices that there may be an idle rebalancing
11769  *   needed, they will kick the idle load balancer, which then does idle
11770  *   load balancing for all the idle CPUs.
11771  *
11772  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11773  *   anywhere yet.
11774  */
11775 static inline int find_new_ilb(void)
11776 {
11777 	const struct cpumask *hk_mask;
11778 	int ilb_cpu;
11779 
11780 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11781 
11782 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11783 
11784 		if (ilb_cpu == smp_processor_id())
11785 			continue;
11786 
11787 		if (idle_cpu(ilb_cpu))
11788 			return ilb_cpu;
11789 	}
11790 
11791 	return -1;
11792 }
11793 
11794 /*
11795  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11796  * SMP function call (IPI).
11797  *
11798  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11799  */
11800 static void kick_ilb(unsigned int flags)
11801 {
11802 	int ilb_cpu;
11803 
11804 	/*
11805 	 * Increase nohz.next_balance only when if full ilb is triggered but
11806 	 * not if we only update stats.
11807 	 */
11808 	if (flags & NOHZ_BALANCE_KICK)
11809 		nohz.next_balance = jiffies+1;
11810 
11811 	ilb_cpu = find_new_ilb();
11812 	if (ilb_cpu < 0)
11813 		return;
11814 
11815 	/*
11816 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11817 	 * the first flag owns it; cleared by nohz_csd_func().
11818 	 */
11819 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11820 	if (flags & NOHZ_KICK_MASK)
11821 		return;
11822 
11823 	/*
11824 	 * This way we generate an IPI on the target CPU which
11825 	 * is idle, and the softirq performing NOHZ idle load balancing
11826 	 * will be run before returning from the IPI.
11827 	 */
11828 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11829 }
11830 
11831 /*
11832  * Current decision point for kicking the idle load balancer in the presence
11833  * of idle CPUs in the system.
11834  */
11835 static void nohz_balancer_kick(struct rq *rq)
11836 {
11837 	unsigned long now = jiffies;
11838 	struct sched_domain_shared *sds;
11839 	struct sched_domain *sd;
11840 	int nr_busy, i, cpu = rq->cpu;
11841 	unsigned int flags = 0;
11842 
11843 	if (unlikely(rq->idle_balance))
11844 		return;
11845 
11846 	/*
11847 	 * We may be recently in ticked or tickless idle mode. At the first
11848 	 * busy tick after returning from idle, we will update the busy stats.
11849 	 */
11850 	nohz_balance_exit_idle(rq);
11851 
11852 	/*
11853 	 * None are in tickless mode and hence no need for NOHZ idle load
11854 	 * balancing:
11855 	 */
11856 	if (likely(!atomic_read(&nohz.nr_cpus)))
11857 		return;
11858 
11859 	if (READ_ONCE(nohz.has_blocked) &&
11860 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11861 		flags = NOHZ_STATS_KICK;
11862 
11863 	if (time_before(now, nohz.next_balance))
11864 		goto out;
11865 
11866 	if (rq->nr_running >= 2) {
11867 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11868 		goto out;
11869 	}
11870 
11871 	rcu_read_lock();
11872 
11873 	sd = rcu_dereference(rq->sd);
11874 	if (sd) {
11875 		/*
11876 		 * If there's a runnable CFS task and the current CPU has reduced
11877 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11878 		 */
11879 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11880 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11881 			goto unlock;
11882 		}
11883 	}
11884 
11885 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11886 	if (sd) {
11887 		/*
11888 		 * When ASYM_PACKING; see if there's a more preferred CPU
11889 		 * currently idle; in which case, kick the ILB to move tasks
11890 		 * around.
11891 		 *
11892 		 * When balancing betwen cores, all the SMT siblings of the
11893 		 * preferred CPU must be idle.
11894 		 */
11895 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11896 			if (sched_asym(sd, i, cpu)) {
11897 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11898 				goto unlock;
11899 			}
11900 		}
11901 	}
11902 
11903 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11904 	if (sd) {
11905 		/*
11906 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11907 		 * to run the misfit task on.
11908 		 */
11909 		if (check_misfit_status(rq, sd)) {
11910 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11911 			goto unlock;
11912 		}
11913 
11914 		/*
11915 		 * For asymmetric systems, we do not want to nicely balance
11916 		 * cache use, instead we want to embrace asymmetry and only
11917 		 * ensure tasks have enough CPU capacity.
11918 		 *
11919 		 * Skip the LLC logic because it's not relevant in that case.
11920 		 */
11921 		goto unlock;
11922 	}
11923 
11924 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11925 	if (sds) {
11926 		/*
11927 		 * If there is an imbalance between LLC domains (IOW we could
11928 		 * increase the overall cache utilization), we need a less-loaded LLC
11929 		 * domain to pull some load from. Likewise, we may need to spread
11930 		 * load within the current LLC domain (e.g. packed SMT cores but
11931 		 * other CPUs are idle). We can't really know from here how busy
11932 		 * the others are - so just get a NOHZ balance going if it looks
11933 		 * like this LLC domain has tasks we could move.
11934 		 */
11935 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11936 		if (nr_busy > 1) {
11937 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11938 			goto unlock;
11939 		}
11940 	}
11941 unlock:
11942 	rcu_read_unlock();
11943 out:
11944 	if (READ_ONCE(nohz.needs_update))
11945 		flags |= NOHZ_NEXT_KICK;
11946 
11947 	if (flags)
11948 		kick_ilb(flags);
11949 }
11950 
11951 static void set_cpu_sd_state_busy(int cpu)
11952 {
11953 	struct sched_domain *sd;
11954 
11955 	rcu_read_lock();
11956 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11957 
11958 	if (!sd || !sd->nohz_idle)
11959 		goto unlock;
11960 	sd->nohz_idle = 0;
11961 
11962 	atomic_inc(&sd->shared->nr_busy_cpus);
11963 unlock:
11964 	rcu_read_unlock();
11965 }
11966 
11967 void nohz_balance_exit_idle(struct rq *rq)
11968 {
11969 	SCHED_WARN_ON(rq != this_rq());
11970 
11971 	if (likely(!rq->nohz_tick_stopped))
11972 		return;
11973 
11974 	rq->nohz_tick_stopped = 0;
11975 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11976 	atomic_dec(&nohz.nr_cpus);
11977 
11978 	set_cpu_sd_state_busy(rq->cpu);
11979 }
11980 
11981 static void set_cpu_sd_state_idle(int cpu)
11982 {
11983 	struct sched_domain *sd;
11984 
11985 	rcu_read_lock();
11986 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11987 
11988 	if (!sd || sd->nohz_idle)
11989 		goto unlock;
11990 	sd->nohz_idle = 1;
11991 
11992 	atomic_dec(&sd->shared->nr_busy_cpus);
11993 unlock:
11994 	rcu_read_unlock();
11995 }
11996 
11997 /*
11998  * This routine will record that the CPU is going idle with tick stopped.
11999  * This info will be used in performing idle load balancing in the future.
12000  */
12001 void nohz_balance_enter_idle(int cpu)
12002 {
12003 	struct rq *rq = cpu_rq(cpu);
12004 
12005 	SCHED_WARN_ON(cpu != smp_processor_id());
12006 
12007 	/* If this CPU is going down, then nothing needs to be done: */
12008 	if (!cpu_active(cpu))
12009 		return;
12010 
12011 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12012 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12013 		return;
12014 
12015 	/*
12016 	 * Can be set safely without rq->lock held
12017 	 * If a clear happens, it will have evaluated last additions because
12018 	 * rq->lock is held during the check and the clear
12019 	 */
12020 	rq->has_blocked_load = 1;
12021 
12022 	/*
12023 	 * The tick is still stopped but load could have been added in the
12024 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12025 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12026 	 * of nohz.has_blocked can only happen after checking the new load
12027 	 */
12028 	if (rq->nohz_tick_stopped)
12029 		goto out;
12030 
12031 	/* If we're a completely isolated CPU, we don't play: */
12032 	if (on_null_domain(rq))
12033 		return;
12034 
12035 	rq->nohz_tick_stopped = 1;
12036 
12037 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12038 	atomic_inc(&nohz.nr_cpus);
12039 
12040 	/*
12041 	 * Ensures that if nohz_idle_balance() fails to observe our
12042 	 * @idle_cpus_mask store, it must observe the @has_blocked
12043 	 * and @needs_update stores.
12044 	 */
12045 	smp_mb__after_atomic();
12046 
12047 	set_cpu_sd_state_idle(cpu);
12048 
12049 	WRITE_ONCE(nohz.needs_update, 1);
12050 out:
12051 	/*
12052 	 * Each time a cpu enter idle, we assume that it has blocked load and
12053 	 * enable the periodic update of the load of idle cpus
12054 	 */
12055 	WRITE_ONCE(nohz.has_blocked, 1);
12056 }
12057 
12058 static bool update_nohz_stats(struct rq *rq)
12059 {
12060 	unsigned int cpu = rq->cpu;
12061 
12062 	if (!rq->has_blocked_load)
12063 		return false;
12064 
12065 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12066 		return false;
12067 
12068 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12069 		return true;
12070 
12071 	update_blocked_averages(cpu);
12072 
12073 	return rq->has_blocked_load;
12074 }
12075 
12076 /*
12077  * Internal function that runs load balance for all idle cpus. The load balance
12078  * can be a simple update of blocked load or a complete load balance with
12079  * tasks movement depending of flags.
12080  */
12081 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12082 {
12083 	/* Earliest time when we have to do rebalance again */
12084 	unsigned long now = jiffies;
12085 	unsigned long next_balance = now + 60*HZ;
12086 	bool has_blocked_load = false;
12087 	int update_next_balance = 0;
12088 	int this_cpu = this_rq->cpu;
12089 	int balance_cpu;
12090 	struct rq *rq;
12091 
12092 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12093 
12094 	/*
12095 	 * We assume there will be no idle load after this update and clear
12096 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12097 	 * set the has_blocked flag and trigger another update of idle load.
12098 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12099 	 * setting the flag, we are sure to not clear the state and not
12100 	 * check the load of an idle cpu.
12101 	 *
12102 	 * Same applies to idle_cpus_mask vs needs_update.
12103 	 */
12104 	if (flags & NOHZ_STATS_KICK)
12105 		WRITE_ONCE(nohz.has_blocked, 0);
12106 	if (flags & NOHZ_NEXT_KICK)
12107 		WRITE_ONCE(nohz.needs_update, 0);
12108 
12109 	/*
12110 	 * Ensures that if we miss the CPU, we must see the has_blocked
12111 	 * store from nohz_balance_enter_idle().
12112 	 */
12113 	smp_mb();
12114 
12115 	/*
12116 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12117 	 * chance for other idle cpu to pull load.
12118 	 */
12119 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12120 		if (!idle_cpu(balance_cpu))
12121 			continue;
12122 
12123 		/*
12124 		 * If this CPU gets work to do, stop the load balancing
12125 		 * work being done for other CPUs. Next load
12126 		 * balancing owner will pick it up.
12127 		 */
12128 		if (need_resched()) {
12129 			if (flags & NOHZ_STATS_KICK)
12130 				has_blocked_load = true;
12131 			if (flags & NOHZ_NEXT_KICK)
12132 				WRITE_ONCE(nohz.needs_update, 1);
12133 			goto abort;
12134 		}
12135 
12136 		rq = cpu_rq(balance_cpu);
12137 
12138 		if (flags & NOHZ_STATS_KICK)
12139 			has_blocked_load |= update_nohz_stats(rq);
12140 
12141 		/*
12142 		 * If time for next balance is due,
12143 		 * do the balance.
12144 		 */
12145 		if (time_after_eq(jiffies, rq->next_balance)) {
12146 			struct rq_flags rf;
12147 
12148 			rq_lock_irqsave(rq, &rf);
12149 			update_rq_clock(rq);
12150 			rq_unlock_irqrestore(rq, &rf);
12151 
12152 			if (flags & NOHZ_BALANCE_KICK)
12153 				rebalance_domains(rq, CPU_IDLE);
12154 		}
12155 
12156 		if (time_after(next_balance, rq->next_balance)) {
12157 			next_balance = rq->next_balance;
12158 			update_next_balance = 1;
12159 		}
12160 	}
12161 
12162 	/*
12163 	 * next_balance will be updated only when there is a need.
12164 	 * When the CPU is attached to null domain for ex, it will not be
12165 	 * updated.
12166 	 */
12167 	if (likely(update_next_balance))
12168 		nohz.next_balance = next_balance;
12169 
12170 	if (flags & NOHZ_STATS_KICK)
12171 		WRITE_ONCE(nohz.next_blocked,
12172 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12173 
12174 abort:
12175 	/* There is still blocked load, enable periodic update */
12176 	if (has_blocked_load)
12177 		WRITE_ONCE(nohz.has_blocked, 1);
12178 }
12179 
12180 /*
12181  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12182  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12183  */
12184 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12185 {
12186 	unsigned int flags = this_rq->nohz_idle_balance;
12187 
12188 	if (!flags)
12189 		return false;
12190 
12191 	this_rq->nohz_idle_balance = 0;
12192 
12193 	if (idle != CPU_IDLE)
12194 		return false;
12195 
12196 	_nohz_idle_balance(this_rq, flags);
12197 
12198 	return true;
12199 }
12200 
12201 /*
12202  * Check if we need to directly run the ILB for updating blocked load before
12203  * entering idle state. Here we run ILB directly without issuing IPIs.
12204  *
12205  * Note that when this function is called, the tick may not yet be stopped on
12206  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12207  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12208  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12209  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12210  * called from this function on (this) CPU that's not yet in the mask. That's
12211  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12212  * updating the blocked load of already idle CPUs without waking up one of
12213  * those idle CPUs and outside the preempt disable / irq off phase of the local
12214  * cpu about to enter idle, because it can take a long time.
12215  */
12216 void nohz_run_idle_balance(int cpu)
12217 {
12218 	unsigned int flags;
12219 
12220 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12221 
12222 	/*
12223 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12224 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12225 	 */
12226 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12227 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12228 }
12229 
12230 static void nohz_newidle_balance(struct rq *this_rq)
12231 {
12232 	int this_cpu = this_rq->cpu;
12233 
12234 	/*
12235 	 * This CPU doesn't want to be disturbed by scheduler
12236 	 * housekeeping
12237 	 */
12238 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12239 		return;
12240 
12241 	/* Will wake up very soon. No time for doing anything else*/
12242 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12243 		return;
12244 
12245 	/* Don't need to update blocked load of idle CPUs*/
12246 	if (!READ_ONCE(nohz.has_blocked) ||
12247 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12248 		return;
12249 
12250 	/*
12251 	 * Set the need to trigger ILB in order to update blocked load
12252 	 * before entering idle state.
12253 	 */
12254 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12255 }
12256 
12257 #else /* !CONFIG_NO_HZ_COMMON */
12258 static inline void nohz_balancer_kick(struct rq *rq) { }
12259 
12260 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12261 {
12262 	return false;
12263 }
12264 
12265 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12266 #endif /* CONFIG_NO_HZ_COMMON */
12267 
12268 /*
12269  * newidle_balance is called by schedule() if this_cpu is about to become
12270  * idle. Attempts to pull tasks from other CPUs.
12271  *
12272  * Returns:
12273  *   < 0 - we released the lock and there are !fair tasks present
12274  *     0 - failed, no new tasks
12275  *   > 0 - success, new (fair) tasks present
12276  */
12277 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12278 {
12279 	unsigned long next_balance = jiffies + HZ;
12280 	int this_cpu = this_rq->cpu;
12281 	u64 t0, t1, curr_cost = 0;
12282 	struct sched_domain *sd;
12283 	int pulled_task = 0;
12284 
12285 	update_misfit_status(NULL, this_rq);
12286 
12287 	/*
12288 	 * There is a task waiting to run. No need to search for one.
12289 	 * Return 0; the task will be enqueued when switching to idle.
12290 	 */
12291 	if (this_rq->ttwu_pending)
12292 		return 0;
12293 
12294 	/*
12295 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12296 	 * measure the duration of idle_balance() as idle time.
12297 	 */
12298 	this_rq->idle_stamp = rq_clock(this_rq);
12299 
12300 	/*
12301 	 * Do not pull tasks towards !active CPUs...
12302 	 */
12303 	if (!cpu_active(this_cpu))
12304 		return 0;
12305 
12306 	/*
12307 	 * This is OK, because current is on_cpu, which avoids it being picked
12308 	 * for load-balance and preemption/IRQs are still disabled avoiding
12309 	 * further scheduler activity on it and we're being very careful to
12310 	 * re-start the picking loop.
12311 	 */
12312 	rq_unpin_lock(this_rq, rf);
12313 
12314 	rcu_read_lock();
12315 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12316 
12317 	if (!READ_ONCE(this_rq->rd->overload) ||
12318 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12319 
12320 		if (sd)
12321 			update_next_balance(sd, &next_balance);
12322 		rcu_read_unlock();
12323 
12324 		goto out;
12325 	}
12326 	rcu_read_unlock();
12327 
12328 	raw_spin_rq_unlock(this_rq);
12329 
12330 	t0 = sched_clock_cpu(this_cpu);
12331 	update_blocked_averages(this_cpu);
12332 
12333 	rcu_read_lock();
12334 	for_each_domain(this_cpu, sd) {
12335 		int continue_balancing = 1;
12336 		u64 domain_cost;
12337 
12338 		update_next_balance(sd, &next_balance);
12339 
12340 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12341 			break;
12342 
12343 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12344 
12345 			pulled_task = load_balance(this_cpu, this_rq,
12346 						   sd, CPU_NEWLY_IDLE,
12347 						   &continue_balancing);
12348 
12349 			t1 = sched_clock_cpu(this_cpu);
12350 			domain_cost = t1 - t0;
12351 			update_newidle_cost(sd, domain_cost);
12352 
12353 			curr_cost += domain_cost;
12354 			t0 = t1;
12355 		}
12356 
12357 		/*
12358 		 * Stop searching for tasks to pull if there are
12359 		 * now runnable tasks on this rq.
12360 		 */
12361 		if (pulled_task || this_rq->nr_running > 0 ||
12362 		    this_rq->ttwu_pending)
12363 			break;
12364 	}
12365 	rcu_read_unlock();
12366 
12367 	raw_spin_rq_lock(this_rq);
12368 
12369 	if (curr_cost > this_rq->max_idle_balance_cost)
12370 		this_rq->max_idle_balance_cost = curr_cost;
12371 
12372 	/*
12373 	 * While browsing the domains, we released the rq lock, a task could
12374 	 * have been enqueued in the meantime. Since we're not going idle,
12375 	 * pretend we pulled a task.
12376 	 */
12377 	if (this_rq->cfs.h_nr_running && !pulled_task)
12378 		pulled_task = 1;
12379 
12380 	/* Is there a task of a high priority class? */
12381 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12382 		pulled_task = -1;
12383 
12384 out:
12385 	/* Move the next balance forward */
12386 	if (time_after(this_rq->next_balance, next_balance))
12387 		this_rq->next_balance = next_balance;
12388 
12389 	if (pulled_task)
12390 		this_rq->idle_stamp = 0;
12391 	else
12392 		nohz_newidle_balance(this_rq);
12393 
12394 	rq_repin_lock(this_rq, rf);
12395 
12396 	return pulled_task;
12397 }
12398 
12399 /*
12400  * run_rebalance_domains is triggered when needed from the scheduler tick.
12401  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12402  */
12403 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12404 {
12405 	struct rq *this_rq = this_rq();
12406 	enum cpu_idle_type idle = this_rq->idle_balance ?
12407 						CPU_IDLE : CPU_NOT_IDLE;
12408 
12409 	/*
12410 	 * If this CPU has a pending nohz_balance_kick, then do the
12411 	 * balancing on behalf of the other idle CPUs whose ticks are
12412 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12413 	 * give the idle CPUs a chance to load balance. Else we may
12414 	 * load balance only within the local sched_domain hierarchy
12415 	 * and abort nohz_idle_balance altogether if we pull some load.
12416 	 */
12417 	if (nohz_idle_balance(this_rq, idle))
12418 		return;
12419 
12420 	/* normal load balance */
12421 	update_blocked_averages(this_rq->cpu);
12422 	rebalance_domains(this_rq, idle);
12423 }
12424 
12425 /*
12426  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12427  */
12428 void trigger_load_balance(struct rq *rq)
12429 {
12430 	/*
12431 	 * Don't need to rebalance while attached to NULL domain or
12432 	 * runqueue CPU is not active
12433 	 */
12434 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12435 		return;
12436 
12437 	if (time_after_eq(jiffies, rq->next_balance))
12438 		raise_softirq(SCHED_SOFTIRQ);
12439 
12440 	nohz_balancer_kick(rq);
12441 }
12442 
12443 static void rq_online_fair(struct rq *rq)
12444 {
12445 	update_sysctl();
12446 
12447 	update_runtime_enabled(rq);
12448 }
12449 
12450 static void rq_offline_fair(struct rq *rq)
12451 {
12452 	update_sysctl();
12453 
12454 	/* Ensure any throttled groups are reachable by pick_next_task */
12455 	unthrottle_offline_cfs_rqs(rq);
12456 
12457 	/* Ensure that we remove rq contribution to group share: */
12458 	clear_tg_offline_cfs_rqs(rq);
12459 }
12460 
12461 #endif /* CONFIG_SMP */
12462 
12463 #ifdef CONFIG_SCHED_CORE
12464 static inline bool
12465 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12466 {
12467 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12468 	u64 slice = se->slice;
12469 
12470 	return (rtime * min_nr_tasks > slice);
12471 }
12472 
12473 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12474 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12475 {
12476 	if (!sched_core_enabled(rq))
12477 		return;
12478 
12479 	/*
12480 	 * If runqueue has only one task which used up its slice and
12481 	 * if the sibling is forced idle, then trigger schedule to
12482 	 * give forced idle task a chance.
12483 	 *
12484 	 * sched_slice() considers only this active rq and it gets the
12485 	 * whole slice. But during force idle, we have siblings acting
12486 	 * like a single runqueue and hence we need to consider runnable
12487 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12488 	 * go through the forced idle rq, but that would be a perf hit.
12489 	 * We can assume that the forced idle CPU has at least
12490 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12491 	 * if we need to give up the CPU.
12492 	 */
12493 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12494 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12495 		resched_curr(rq);
12496 }
12497 
12498 /*
12499  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12500  */
12501 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12502 			 bool forceidle)
12503 {
12504 	for_each_sched_entity(se) {
12505 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12506 
12507 		if (forceidle) {
12508 			if (cfs_rq->forceidle_seq == fi_seq)
12509 				break;
12510 			cfs_rq->forceidle_seq = fi_seq;
12511 		}
12512 
12513 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12514 	}
12515 }
12516 
12517 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12518 {
12519 	struct sched_entity *se = &p->se;
12520 
12521 	if (p->sched_class != &fair_sched_class)
12522 		return;
12523 
12524 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12525 }
12526 
12527 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12528 			bool in_fi)
12529 {
12530 	struct rq *rq = task_rq(a);
12531 	const struct sched_entity *sea = &a->se;
12532 	const struct sched_entity *seb = &b->se;
12533 	struct cfs_rq *cfs_rqa;
12534 	struct cfs_rq *cfs_rqb;
12535 	s64 delta;
12536 
12537 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12538 
12539 #ifdef CONFIG_FAIR_GROUP_SCHED
12540 	/*
12541 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12542 	 * are immediate siblings.
12543 	 */
12544 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12545 		int sea_depth = sea->depth;
12546 		int seb_depth = seb->depth;
12547 
12548 		if (sea_depth >= seb_depth)
12549 			sea = parent_entity(sea);
12550 		if (sea_depth <= seb_depth)
12551 			seb = parent_entity(seb);
12552 	}
12553 
12554 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12555 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12556 
12557 	cfs_rqa = sea->cfs_rq;
12558 	cfs_rqb = seb->cfs_rq;
12559 #else
12560 	cfs_rqa = &task_rq(a)->cfs;
12561 	cfs_rqb = &task_rq(b)->cfs;
12562 #endif
12563 
12564 	/*
12565 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12566 	 * min_vruntime_fi, which would have been updated in prior calls
12567 	 * to se_fi_update().
12568 	 */
12569 	delta = (s64)(sea->vruntime - seb->vruntime) +
12570 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12571 
12572 	return delta > 0;
12573 }
12574 
12575 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12576 {
12577 	struct cfs_rq *cfs_rq;
12578 
12579 #ifdef CONFIG_FAIR_GROUP_SCHED
12580 	cfs_rq = task_group(p)->cfs_rq[cpu];
12581 #else
12582 	cfs_rq = &cpu_rq(cpu)->cfs;
12583 #endif
12584 	return throttled_hierarchy(cfs_rq);
12585 }
12586 #else
12587 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12588 #endif
12589 
12590 /*
12591  * scheduler tick hitting a task of our scheduling class.
12592  *
12593  * NOTE: This function can be called remotely by the tick offload that
12594  * goes along full dynticks. Therefore no local assumption can be made
12595  * and everything must be accessed through the @rq and @curr passed in
12596  * parameters.
12597  */
12598 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12599 {
12600 	struct cfs_rq *cfs_rq;
12601 	struct sched_entity *se = &curr->se;
12602 
12603 	for_each_sched_entity(se) {
12604 		cfs_rq = cfs_rq_of(se);
12605 		entity_tick(cfs_rq, se, queued);
12606 	}
12607 
12608 	if (static_branch_unlikely(&sched_numa_balancing))
12609 		task_tick_numa(rq, curr);
12610 
12611 	update_misfit_status(curr, rq);
12612 	update_overutilized_status(task_rq(curr));
12613 
12614 	task_tick_core(rq, curr);
12615 }
12616 
12617 /*
12618  * called on fork with the child task as argument from the parent's context
12619  *  - child not yet on the tasklist
12620  *  - preemption disabled
12621  */
12622 static void task_fork_fair(struct task_struct *p)
12623 {
12624 	struct sched_entity *se = &p->se, *curr;
12625 	struct cfs_rq *cfs_rq;
12626 	struct rq *rq = this_rq();
12627 	struct rq_flags rf;
12628 
12629 	rq_lock(rq, &rf);
12630 	update_rq_clock(rq);
12631 
12632 	cfs_rq = task_cfs_rq(current);
12633 	curr = cfs_rq->curr;
12634 	if (curr)
12635 		update_curr(cfs_rq);
12636 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12637 	rq_unlock(rq, &rf);
12638 }
12639 
12640 /*
12641  * Priority of the task has changed. Check to see if we preempt
12642  * the current task.
12643  */
12644 static void
12645 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12646 {
12647 	if (!task_on_rq_queued(p))
12648 		return;
12649 
12650 	if (rq->cfs.nr_running == 1)
12651 		return;
12652 
12653 	/*
12654 	 * Reschedule if we are currently running on this runqueue and
12655 	 * our priority decreased, or if we are not currently running on
12656 	 * this runqueue and our priority is higher than the current's
12657 	 */
12658 	if (task_current(rq, p)) {
12659 		if (p->prio > oldprio)
12660 			resched_curr(rq);
12661 	} else
12662 		wakeup_preempt(rq, p, 0);
12663 }
12664 
12665 #ifdef CONFIG_FAIR_GROUP_SCHED
12666 /*
12667  * Propagate the changes of the sched_entity across the tg tree to make it
12668  * visible to the root
12669  */
12670 static void propagate_entity_cfs_rq(struct sched_entity *se)
12671 {
12672 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12673 
12674 	if (cfs_rq_throttled(cfs_rq))
12675 		return;
12676 
12677 	if (!throttled_hierarchy(cfs_rq))
12678 		list_add_leaf_cfs_rq(cfs_rq);
12679 
12680 	/* Start to propagate at parent */
12681 	se = se->parent;
12682 
12683 	for_each_sched_entity(se) {
12684 		cfs_rq = cfs_rq_of(se);
12685 
12686 		update_load_avg(cfs_rq, se, UPDATE_TG);
12687 
12688 		if (cfs_rq_throttled(cfs_rq))
12689 			break;
12690 
12691 		if (!throttled_hierarchy(cfs_rq))
12692 			list_add_leaf_cfs_rq(cfs_rq);
12693 	}
12694 }
12695 #else
12696 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12697 #endif
12698 
12699 static void detach_entity_cfs_rq(struct sched_entity *se)
12700 {
12701 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12702 
12703 #ifdef CONFIG_SMP
12704 	/*
12705 	 * In case the task sched_avg hasn't been attached:
12706 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12707 	 * - A task which has been woken up by try_to_wake_up() but is
12708 	 *   waiting for actually being woken up by sched_ttwu_pending().
12709 	 */
12710 	if (!se->avg.last_update_time)
12711 		return;
12712 #endif
12713 
12714 	/* Catch up with the cfs_rq and remove our load when we leave */
12715 	update_load_avg(cfs_rq, se, 0);
12716 	detach_entity_load_avg(cfs_rq, se);
12717 	update_tg_load_avg(cfs_rq);
12718 	propagate_entity_cfs_rq(se);
12719 }
12720 
12721 static void attach_entity_cfs_rq(struct sched_entity *se)
12722 {
12723 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12724 
12725 	/* Synchronize entity with its cfs_rq */
12726 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12727 	attach_entity_load_avg(cfs_rq, se);
12728 	update_tg_load_avg(cfs_rq);
12729 	propagate_entity_cfs_rq(se);
12730 }
12731 
12732 static void detach_task_cfs_rq(struct task_struct *p)
12733 {
12734 	struct sched_entity *se = &p->se;
12735 
12736 	detach_entity_cfs_rq(se);
12737 }
12738 
12739 static void attach_task_cfs_rq(struct task_struct *p)
12740 {
12741 	struct sched_entity *se = &p->se;
12742 
12743 	attach_entity_cfs_rq(se);
12744 }
12745 
12746 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12747 {
12748 	detach_task_cfs_rq(p);
12749 }
12750 
12751 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12752 {
12753 	attach_task_cfs_rq(p);
12754 
12755 	if (task_on_rq_queued(p)) {
12756 		/*
12757 		 * We were most likely switched from sched_rt, so
12758 		 * kick off the schedule if running, otherwise just see
12759 		 * if we can still preempt the current task.
12760 		 */
12761 		if (task_current(rq, p))
12762 			resched_curr(rq);
12763 		else
12764 			wakeup_preempt(rq, p, 0);
12765 	}
12766 }
12767 
12768 /* Account for a task changing its policy or group.
12769  *
12770  * This routine is mostly called to set cfs_rq->curr field when a task
12771  * migrates between groups/classes.
12772  */
12773 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12774 {
12775 	struct sched_entity *se = &p->se;
12776 
12777 #ifdef CONFIG_SMP
12778 	if (task_on_rq_queued(p)) {
12779 		/*
12780 		 * Move the next running task to the front of the list, so our
12781 		 * cfs_tasks list becomes MRU one.
12782 		 */
12783 		list_move(&se->group_node, &rq->cfs_tasks);
12784 	}
12785 #endif
12786 
12787 	for_each_sched_entity(se) {
12788 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12789 
12790 		set_next_entity(cfs_rq, se);
12791 		/* ensure bandwidth has been allocated on our new cfs_rq */
12792 		account_cfs_rq_runtime(cfs_rq, 0);
12793 	}
12794 }
12795 
12796 void init_cfs_rq(struct cfs_rq *cfs_rq)
12797 {
12798 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12799 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12800 #ifdef CONFIG_SMP
12801 	raw_spin_lock_init(&cfs_rq->removed.lock);
12802 #endif
12803 }
12804 
12805 #ifdef CONFIG_FAIR_GROUP_SCHED
12806 static void task_change_group_fair(struct task_struct *p)
12807 {
12808 	/*
12809 	 * We couldn't detach or attach a forked task which
12810 	 * hasn't been woken up by wake_up_new_task().
12811 	 */
12812 	if (READ_ONCE(p->__state) == TASK_NEW)
12813 		return;
12814 
12815 	detach_task_cfs_rq(p);
12816 
12817 #ifdef CONFIG_SMP
12818 	/* Tell se's cfs_rq has been changed -- migrated */
12819 	p->se.avg.last_update_time = 0;
12820 #endif
12821 	set_task_rq(p, task_cpu(p));
12822 	attach_task_cfs_rq(p);
12823 }
12824 
12825 void free_fair_sched_group(struct task_group *tg)
12826 {
12827 	int i;
12828 
12829 	for_each_possible_cpu(i) {
12830 		if (tg->cfs_rq)
12831 			kfree(tg->cfs_rq[i]);
12832 		if (tg->se)
12833 			kfree(tg->se[i]);
12834 	}
12835 
12836 	kfree(tg->cfs_rq);
12837 	kfree(tg->se);
12838 }
12839 
12840 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12841 {
12842 	struct sched_entity *se;
12843 	struct cfs_rq *cfs_rq;
12844 	int i;
12845 
12846 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12847 	if (!tg->cfs_rq)
12848 		goto err;
12849 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12850 	if (!tg->se)
12851 		goto err;
12852 
12853 	tg->shares = NICE_0_LOAD;
12854 
12855 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12856 
12857 	for_each_possible_cpu(i) {
12858 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12859 				      GFP_KERNEL, cpu_to_node(i));
12860 		if (!cfs_rq)
12861 			goto err;
12862 
12863 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12864 				  GFP_KERNEL, cpu_to_node(i));
12865 		if (!se)
12866 			goto err_free_rq;
12867 
12868 		init_cfs_rq(cfs_rq);
12869 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12870 		init_entity_runnable_average(se);
12871 	}
12872 
12873 	return 1;
12874 
12875 err_free_rq:
12876 	kfree(cfs_rq);
12877 err:
12878 	return 0;
12879 }
12880 
12881 void online_fair_sched_group(struct task_group *tg)
12882 {
12883 	struct sched_entity *se;
12884 	struct rq_flags rf;
12885 	struct rq *rq;
12886 	int i;
12887 
12888 	for_each_possible_cpu(i) {
12889 		rq = cpu_rq(i);
12890 		se = tg->se[i];
12891 		rq_lock_irq(rq, &rf);
12892 		update_rq_clock(rq);
12893 		attach_entity_cfs_rq(se);
12894 		sync_throttle(tg, i);
12895 		rq_unlock_irq(rq, &rf);
12896 	}
12897 }
12898 
12899 void unregister_fair_sched_group(struct task_group *tg)
12900 {
12901 	unsigned long flags;
12902 	struct rq *rq;
12903 	int cpu;
12904 
12905 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12906 
12907 	for_each_possible_cpu(cpu) {
12908 		if (tg->se[cpu])
12909 			remove_entity_load_avg(tg->se[cpu]);
12910 
12911 		/*
12912 		 * Only empty task groups can be destroyed; so we can speculatively
12913 		 * check on_list without danger of it being re-added.
12914 		 */
12915 		if (!tg->cfs_rq[cpu]->on_list)
12916 			continue;
12917 
12918 		rq = cpu_rq(cpu);
12919 
12920 		raw_spin_rq_lock_irqsave(rq, flags);
12921 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12922 		raw_spin_rq_unlock_irqrestore(rq, flags);
12923 	}
12924 }
12925 
12926 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12927 			struct sched_entity *se, int cpu,
12928 			struct sched_entity *parent)
12929 {
12930 	struct rq *rq = cpu_rq(cpu);
12931 
12932 	cfs_rq->tg = tg;
12933 	cfs_rq->rq = rq;
12934 	init_cfs_rq_runtime(cfs_rq);
12935 
12936 	tg->cfs_rq[cpu] = cfs_rq;
12937 	tg->se[cpu] = se;
12938 
12939 	/* se could be NULL for root_task_group */
12940 	if (!se)
12941 		return;
12942 
12943 	if (!parent) {
12944 		se->cfs_rq = &rq->cfs;
12945 		se->depth = 0;
12946 	} else {
12947 		se->cfs_rq = parent->my_q;
12948 		se->depth = parent->depth + 1;
12949 	}
12950 
12951 	se->my_q = cfs_rq;
12952 	/* guarantee group entities always have weight */
12953 	update_load_set(&se->load, NICE_0_LOAD);
12954 	se->parent = parent;
12955 }
12956 
12957 static DEFINE_MUTEX(shares_mutex);
12958 
12959 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12960 {
12961 	int i;
12962 
12963 	lockdep_assert_held(&shares_mutex);
12964 
12965 	/*
12966 	 * We can't change the weight of the root cgroup.
12967 	 */
12968 	if (!tg->se[0])
12969 		return -EINVAL;
12970 
12971 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12972 
12973 	if (tg->shares == shares)
12974 		return 0;
12975 
12976 	tg->shares = shares;
12977 	for_each_possible_cpu(i) {
12978 		struct rq *rq = cpu_rq(i);
12979 		struct sched_entity *se = tg->se[i];
12980 		struct rq_flags rf;
12981 
12982 		/* Propagate contribution to hierarchy */
12983 		rq_lock_irqsave(rq, &rf);
12984 		update_rq_clock(rq);
12985 		for_each_sched_entity(se) {
12986 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12987 			update_cfs_group(se);
12988 		}
12989 		rq_unlock_irqrestore(rq, &rf);
12990 	}
12991 
12992 	return 0;
12993 }
12994 
12995 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12996 {
12997 	int ret;
12998 
12999 	mutex_lock(&shares_mutex);
13000 	if (tg_is_idle(tg))
13001 		ret = -EINVAL;
13002 	else
13003 		ret = __sched_group_set_shares(tg, shares);
13004 	mutex_unlock(&shares_mutex);
13005 
13006 	return ret;
13007 }
13008 
13009 int sched_group_set_idle(struct task_group *tg, long idle)
13010 {
13011 	int i;
13012 
13013 	if (tg == &root_task_group)
13014 		return -EINVAL;
13015 
13016 	if (idle < 0 || idle > 1)
13017 		return -EINVAL;
13018 
13019 	mutex_lock(&shares_mutex);
13020 
13021 	if (tg->idle == idle) {
13022 		mutex_unlock(&shares_mutex);
13023 		return 0;
13024 	}
13025 
13026 	tg->idle = idle;
13027 
13028 	for_each_possible_cpu(i) {
13029 		struct rq *rq = cpu_rq(i);
13030 		struct sched_entity *se = tg->se[i];
13031 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13032 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13033 		long idle_task_delta;
13034 		struct rq_flags rf;
13035 
13036 		rq_lock_irqsave(rq, &rf);
13037 
13038 		grp_cfs_rq->idle = idle;
13039 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13040 			goto next_cpu;
13041 
13042 		if (se->on_rq) {
13043 			parent_cfs_rq = cfs_rq_of(se);
13044 			if (cfs_rq_is_idle(grp_cfs_rq))
13045 				parent_cfs_rq->idle_nr_running++;
13046 			else
13047 				parent_cfs_rq->idle_nr_running--;
13048 		}
13049 
13050 		idle_task_delta = grp_cfs_rq->h_nr_running -
13051 				  grp_cfs_rq->idle_h_nr_running;
13052 		if (!cfs_rq_is_idle(grp_cfs_rq))
13053 			idle_task_delta *= -1;
13054 
13055 		for_each_sched_entity(se) {
13056 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13057 
13058 			if (!se->on_rq)
13059 				break;
13060 
13061 			cfs_rq->idle_h_nr_running += idle_task_delta;
13062 
13063 			/* Already accounted at parent level and above. */
13064 			if (cfs_rq_is_idle(cfs_rq))
13065 				break;
13066 		}
13067 
13068 next_cpu:
13069 		rq_unlock_irqrestore(rq, &rf);
13070 	}
13071 
13072 	/* Idle groups have minimum weight. */
13073 	if (tg_is_idle(tg))
13074 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13075 	else
13076 		__sched_group_set_shares(tg, NICE_0_LOAD);
13077 
13078 	mutex_unlock(&shares_mutex);
13079 	return 0;
13080 }
13081 
13082 #endif /* CONFIG_FAIR_GROUP_SCHED */
13083 
13084 
13085 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13086 {
13087 	struct sched_entity *se = &task->se;
13088 	unsigned int rr_interval = 0;
13089 
13090 	/*
13091 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13092 	 * idle runqueue:
13093 	 */
13094 	if (rq->cfs.load.weight)
13095 		rr_interval = NS_TO_JIFFIES(se->slice);
13096 
13097 	return rr_interval;
13098 }
13099 
13100 /*
13101  * All the scheduling class methods:
13102  */
13103 DEFINE_SCHED_CLASS(fair) = {
13104 
13105 	.enqueue_task		= enqueue_task_fair,
13106 	.dequeue_task		= dequeue_task_fair,
13107 	.yield_task		= yield_task_fair,
13108 	.yield_to_task		= yield_to_task_fair,
13109 
13110 	.wakeup_preempt		= check_preempt_wakeup_fair,
13111 
13112 	.pick_next_task		= __pick_next_task_fair,
13113 	.put_prev_task		= put_prev_task_fair,
13114 	.set_next_task          = set_next_task_fair,
13115 
13116 #ifdef CONFIG_SMP
13117 	.balance		= balance_fair,
13118 	.pick_task		= pick_task_fair,
13119 	.select_task_rq		= select_task_rq_fair,
13120 	.migrate_task_rq	= migrate_task_rq_fair,
13121 
13122 	.rq_online		= rq_online_fair,
13123 	.rq_offline		= rq_offline_fair,
13124 
13125 	.task_dead		= task_dead_fair,
13126 	.set_cpus_allowed	= set_cpus_allowed_common,
13127 #endif
13128 
13129 	.task_tick		= task_tick_fair,
13130 	.task_fork		= task_fork_fair,
13131 
13132 	.prio_changed		= prio_changed_fair,
13133 	.switched_from		= switched_from_fair,
13134 	.switched_to		= switched_to_fair,
13135 
13136 	.get_rr_interval	= get_rr_interval_fair,
13137 
13138 	.update_curr		= update_curr_fair,
13139 
13140 #ifdef CONFIG_FAIR_GROUP_SCHED
13141 	.task_change_group	= task_change_group_fair,
13142 #endif
13143 
13144 #ifdef CONFIG_SCHED_CORE
13145 	.task_is_throttled	= task_is_throttled_fair,
13146 #endif
13147 
13148 #ifdef CONFIG_UCLAMP_TASK
13149 	.uclamp_enabled		= 1,
13150 #endif
13151 };
13152 
13153 #ifdef CONFIG_SCHED_DEBUG
13154 void print_cfs_stats(struct seq_file *m, int cpu)
13155 {
13156 	struct cfs_rq *cfs_rq, *pos;
13157 
13158 	rcu_read_lock();
13159 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13160 		print_cfs_rq(m, cpu, cfs_rq);
13161 	rcu_read_unlock();
13162 }
13163 
13164 #ifdef CONFIG_NUMA_BALANCING
13165 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13166 {
13167 	int node;
13168 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13169 	struct numa_group *ng;
13170 
13171 	rcu_read_lock();
13172 	ng = rcu_dereference(p->numa_group);
13173 	for_each_online_node(node) {
13174 		if (p->numa_faults) {
13175 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13176 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13177 		}
13178 		if (ng) {
13179 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13180 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13181 		}
13182 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13183 	}
13184 	rcu_read_unlock();
13185 }
13186 #endif /* CONFIG_NUMA_BALANCING */
13187 #endif /* CONFIG_SCHED_DEBUG */
13188 
13189 __init void init_sched_fair_class(void)
13190 {
13191 #ifdef CONFIG_SMP
13192 	int i;
13193 
13194 	for_each_possible_cpu(i) {
13195 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13196 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13197 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13198 					GFP_KERNEL, cpu_to_node(i));
13199 
13200 #ifdef CONFIG_CFS_BANDWIDTH
13201 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13202 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13203 #endif
13204 	}
13205 
13206 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13207 
13208 #ifdef CONFIG_NO_HZ_COMMON
13209 	nohz.next_balance = jiffies;
13210 	nohz.next_blocked = jiffies;
13211 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13212 #endif
13213 #endif /* SMP */
13214 
13215 }
13216