1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 int sched_thermal_decay_shift; 82 static int __init setup_sched_thermal_decay_shift(char *str) 83 { 84 int _shift = 0; 85 86 if (kstrtoint(str, 0, &_shift)) 87 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 88 89 sched_thermal_decay_shift = clamp(_shift, 0, 10); 90 return 1; 91 } 92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 93 94 #ifdef CONFIG_SMP 95 /* 96 * For asym packing, by default the lower numbered CPU has higher priority. 97 */ 98 int __weak arch_asym_cpu_priority(int cpu) 99 { 100 return -cpu; 101 } 102 103 /* 104 * The margin used when comparing utilization with CPU capacity. 105 * 106 * (default: ~20%) 107 */ 108 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 109 110 /* 111 * The margin used when comparing CPU capacities. 112 * is 'cap1' noticeably greater than 'cap2' 113 * 114 * (default: ~5%) 115 */ 116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 117 #endif 118 119 #ifdef CONFIG_CFS_BANDWIDTH 120 /* 121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 122 * each time a cfs_rq requests quota. 123 * 124 * Note: in the case that the slice exceeds the runtime remaining (either due 125 * to consumption or the quota being specified to be smaller than the slice) 126 * we will always only issue the remaining available time. 127 * 128 * (default: 5 msec, units: microseconds) 129 */ 130 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 131 #endif 132 133 #ifdef CONFIG_NUMA_BALANCING 134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 136 #endif 137 138 #ifdef CONFIG_SYSCTL 139 static struct ctl_table sched_fair_sysctls[] = { 140 #ifdef CONFIG_CFS_BANDWIDTH 141 { 142 .procname = "sched_cfs_bandwidth_slice_us", 143 .data = &sysctl_sched_cfs_bandwidth_slice, 144 .maxlen = sizeof(unsigned int), 145 .mode = 0644, 146 .proc_handler = proc_dointvec_minmax, 147 .extra1 = SYSCTL_ONE, 148 }, 149 #endif 150 #ifdef CONFIG_NUMA_BALANCING 151 { 152 .procname = "numa_balancing_promote_rate_limit_MBps", 153 .data = &sysctl_numa_balancing_promote_rate_limit, 154 .maxlen = sizeof(unsigned int), 155 .mode = 0644, 156 .proc_handler = proc_dointvec_minmax, 157 .extra1 = SYSCTL_ZERO, 158 }, 159 #endif /* CONFIG_NUMA_BALANCING */ 160 {} 161 }; 162 163 static int __init sched_fair_sysctl_init(void) 164 { 165 register_sysctl_init("kernel", sched_fair_sysctls); 166 return 0; 167 } 168 late_initcall(sched_fair_sysctl_init); 169 #endif 170 171 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 172 { 173 lw->weight += inc; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 178 { 179 lw->weight -= dec; 180 lw->inv_weight = 0; 181 } 182 183 static inline void update_load_set(struct load_weight *lw, unsigned long w) 184 { 185 lw->weight = w; 186 lw->inv_weight = 0; 187 } 188 189 /* 190 * Increase the granularity value when there are more CPUs, 191 * because with more CPUs the 'effective latency' as visible 192 * to users decreases. But the relationship is not linear, 193 * so pick a second-best guess by going with the log2 of the 194 * number of CPUs. 195 * 196 * This idea comes from the SD scheduler of Con Kolivas: 197 */ 198 static unsigned int get_update_sysctl_factor(void) 199 { 200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 201 unsigned int factor; 202 203 switch (sysctl_sched_tunable_scaling) { 204 case SCHED_TUNABLESCALING_NONE: 205 factor = 1; 206 break; 207 case SCHED_TUNABLESCALING_LINEAR: 208 factor = cpus; 209 break; 210 case SCHED_TUNABLESCALING_LOG: 211 default: 212 factor = 1 + ilog2(cpus); 213 break; 214 } 215 216 return factor; 217 } 218 219 static void update_sysctl(void) 220 { 221 unsigned int factor = get_update_sysctl_factor(); 222 223 #define SET_SYSCTL(name) \ 224 (sysctl_##name = (factor) * normalized_sysctl_##name) 225 SET_SYSCTL(sched_base_slice); 226 #undef SET_SYSCTL 227 } 228 229 void __init sched_init_granularity(void) 230 { 231 update_sysctl(); 232 } 233 234 #define WMULT_CONST (~0U) 235 #define WMULT_SHIFT 32 236 237 static void __update_inv_weight(struct load_weight *lw) 238 { 239 unsigned long w; 240 241 if (likely(lw->inv_weight)) 242 return; 243 244 w = scale_load_down(lw->weight); 245 246 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 247 lw->inv_weight = 1; 248 else if (unlikely(!w)) 249 lw->inv_weight = WMULT_CONST; 250 else 251 lw->inv_weight = WMULT_CONST / w; 252 } 253 254 /* 255 * delta_exec * weight / lw.weight 256 * OR 257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 258 * 259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 260 * we're guaranteed shift stays positive because inv_weight is guaranteed to 261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 262 * 263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 264 * weight/lw.weight <= 1, and therefore our shift will also be positive. 265 */ 266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 267 { 268 u64 fact = scale_load_down(weight); 269 u32 fact_hi = (u32)(fact >> 32); 270 int shift = WMULT_SHIFT; 271 int fs; 272 273 __update_inv_weight(lw); 274 275 if (unlikely(fact_hi)) { 276 fs = fls(fact_hi); 277 shift -= fs; 278 fact >>= fs; 279 } 280 281 fact = mul_u32_u32(fact, lw->inv_weight); 282 283 fact_hi = (u32)(fact >> 32); 284 if (fact_hi) { 285 fs = fls(fact_hi); 286 shift -= fs; 287 fact >>= fs; 288 } 289 290 return mul_u64_u32_shr(delta_exec, fact, shift); 291 } 292 293 /* 294 * delta /= w 295 */ 296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 297 { 298 if (unlikely(se->load.weight != NICE_0_LOAD)) 299 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 300 301 return delta; 302 } 303 304 const struct sched_class fair_sched_class; 305 306 /************************************************************** 307 * CFS operations on generic schedulable entities: 308 */ 309 310 #ifdef CONFIG_FAIR_GROUP_SCHED 311 312 /* Walk up scheduling entities hierarchy */ 313 #define for_each_sched_entity(se) \ 314 for (; se; se = se->parent) 315 316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 317 { 318 struct rq *rq = rq_of(cfs_rq); 319 int cpu = cpu_of(rq); 320 321 if (cfs_rq->on_list) 322 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 323 324 cfs_rq->on_list = 1; 325 326 /* 327 * Ensure we either appear before our parent (if already 328 * enqueued) or force our parent to appear after us when it is 329 * enqueued. The fact that we always enqueue bottom-up 330 * reduces this to two cases and a special case for the root 331 * cfs_rq. Furthermore, it also means that we will always reset 332 * tmp_alone_branch either when the branch is connected 333 * to a tree or when we reach the top of the tree 334 */ 335 if (cfs_rq->tg->parent && 336 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 337 /* 338 * If parent is already on the list, we add the child 339 * just before. Thanks to circular linked property of 340 * the list, this means to put the child at the tail 341 * of the list that starts by parent. 342 */ 343 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 344 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 345 /* 346 * The branch is now connected to its tree so we can 347 * reset tmp_alone_branch to the beginning of the 348 * list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 if (!cfs_rq->tg->parent) { 355 /* 356 * cfs rq without parent should be put 357 * at the tail of the list. 358 */ 359 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 360 &rq->leaf_cfs_rq_list); 361 /* 362 * We have reach the top of a tree so we can reset 363 * tmp_alone_branch to the beginning of the list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 /* 370 * The parent has not already been added so we want to 371 * make sure that it will be put after us. 372 * tmp_alone_branch points to the begin of the branch 373 * where we will add parent. 374 */ 375 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 376 /* 377 * update tmp_alone_branch to points to the new begin 378 * of the branch 379 */ 380 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 381 return false; 382 } 383 384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 385 { 386 if (cfs_rq->on_list) { 387 struct rq *rq = rq_of(cfs_rq); 388 389 /* 390 * With cfs_rq being unthrottled/throttled during an enqueue, 391 * it can happen the tmp_alone_branch points the a leaf that 392 * we finally want to del. In this case, tmp_alone_branch moves 393 * to the prev element but it will point to rq->leaf_cfs_rq_list 394 * at the end of the enqueue. 395 */ 396 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 397 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 398 399 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 400 cfs_rq->on_list = 0; 401 } 402 } 403 404 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 405 { 406 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 407 } 408 409 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 411 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 412 leaf_cfs_rq_list) 413 414 /* Do the two (enqueued) entities belong to the same group ? */ 415 static inline struct cfs_rq * 416 is_same_group(struct sched_entity *se, struct sched_entity *pse) 417 { 418 if (se->cfs_rq == pse->cfs_rq) 419 return se->cfs_rq; 420 421 return NULL; 422 } 423 424 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 425 { 426 return se->parent; 427 } 428 429 static void 430 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 431 { 432 int se_depth, pse_depth; 433 434 /* 435 * preemption test can be made between sibling entities who are in the 436 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 437 * both tasks until we find their ancestors who are siblings of common 438 * parent. 439 */ 440 441 /* First walk up until both entities are at same depth */ 442 se_depth = (*se)->depth; 443 pse_depth = (*pse)->depth; 444 445 while (se_depth > pse_depth) { 446 se_depth--; 447 *se = parent_entity(*se); 448 } 449 450 while (pse_depth > se_depth) { 451 pse_depth--; 452 *pse = parent_entity(*pse); 453 } 454 455 while (!is_same_group(*se, *pse)) { 456 *se = parent_entity(*se); 457 *pse = parent_entity(*pse); 458 } 459 } 460 461 static int tg_is_idle(struct task_group *tg) 462 { 463 return tg->idle > 0; 464 } 465 466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 467 { 468 return cfs_rq->idle > 0; 469 } 470 471 static int se_is_idle(struct sched_entity *se) 472 { 473 if (entity_is_task(se)) 474 return task_has_idle_policy(task_of(se)); 475 return cfs_rq_is_idle(group_cfs_rq(se)); 476 } 477 478 #else /* !CONFIG_FAIR_GROUP_SCHED */ 479 480 #define for_each_sched_entity(se) \ 481 for (; se; se = NULL) 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 static inline int tg_is_idle(struct task_group *tg) 510 { 511 return 0; 512 } 513 514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 515 { 516 return 0; 517 } 518 519 static int se_is_idle(struct sched_entity *se) 520 { 521 return 0; 522 } 523 524 #endif /* CONFIG_FAIR_GROUP_SCHED */ 525 526 static __always_inline 527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 528 529 /************************************************************** 530 * Scheduling class tree data structure manipulation methods: 531 */ 532 533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 534 { 535 s64 delta = (s64)(vruntime - max_vruntime); 536 if (delta > 0) 537 max_vruntime = vruntime; 538 539 return max_vruntime; 540 } 541 542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 543 { 544 s64 delta = (s64)(vruntime - min_vruntime); 545 if (delta < 0) 546 min_vruntime = vruntime; 547 548 return min_vruntime; 549 } 550 551 static inline bool entity_before(const struct sched_entity *a, 552 const struct sched_entity *b) 553 { 554 /* 555 * Tiebreak on vruntime seems unnecessary since it can 556 * hardly happen. 557 */ 558 return (s64)(a->deadline - b->deadline) < 0; 559 } 560 561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 return (s64)(se->vruntime - cfs_rq->min_vruntime); 564 } 565 566 #define __node_2_se(node) \ 567 rb_entry((node), struct sched_entity, run_node) 568 569 /* 570 * Compute virtual time from the per-task service numbers: 571 * 572 * Fair schedulers conserve lag: 573 * 574 * \Sum lag_i = 0 575 * 576 * Where lag_i is given by: 577 * 578 * lag_i = S - s_i = w_i * (V - v_i) 579 * 580 * Where S is the ideal service time and V is it's virtual time counterpart. 581 * Therefore: 582 * 583 * \Sum lag_i = 0 584 * \Sum w_i * (V - v_i) = 0 585 * \Sum w_i * V - w_i * v_i = 0 586 * 587 * From which we can solve an expression for V in v_i (which we have in 588 * se->vruntime): 589 * 590 * \Sum v_i * w_i \Sum v_i * w_i 591 * V = -------------- = -------------- 592 * \Sum w_i W 593 * 594 * Specifically, this is the weighted average of all entity virtual runtimes. 595 * 596 * [[ NOTE: this is only equal to the ideal scheduler under the condition 597 * that join/leave operations happen at lag_i = 0, otherwise the 598 * virtual time has non-continguous motion equivalent to: 599 * 600 * V +-= lag_i / W 601 * 602 * Also see the comment in place_entity() that deals with this. ]] 603 * 604 * However, since v_i is u64, and the multiplcation could easily overflow 605 * transform it into a relative form that uses smaller quantities: 606 * 607 * Substitute: v_i == (v_i - v0) + v0 608 * 609 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 610 * V = ---------------------------- = --------------------- + v0 611 * W W 612 * 613 * Which we track using: 614 * 615 * v0 := cfs_rq->min_vruntime 616 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 617 * \Sum w_i := cfs_rq->avg_load 618 * 619 * Since min_vruntime is a monotonic increasing variable that closely tracks 620 * the per-task service, these deltas: (v_i - v), will be in the order of the 621 * maximal (virtual) lag induced in the system due to quantisation. 622 * 623 * Also, we use scale_load_down() to reduce the size. 624 * 625 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 626 */ 627 static void 628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 629 { 630 unsigned long weight = scale_load_down(se->load.weight); 631 s64 key = entity_key(cfs_rq, se); 632 633 cfs_rq->avg_vruntime += key * weight; 634 cfs_rq->avg_load += weight; 635 } 636 637 static void 638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 639 { 640 unsigned long weight = scale_load_down(se->load.weight); 641 s64 key = entity_key(cfs_rq, se); 642 643 cfs_rq->avg_vruntime -= key * weight; 644 cfs_rq->avg_load -= weight; 645 } 646 647 static inline 648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 649 { 650 /* 651 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 652 */ 653 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 654 } 655 656 /* 657 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 658 * For this to be so, the result of this function must have a left bias. 659 */ 660 u64 avg_vruntime(struct cfs_rq *cfs_rq) 661 { 662 struct sched_entity *curr = cfs_rq->curr; 663 s64 avg = cfs_rq->avg_vruntime; 664 long load = cfs_rq->avg_load; 665 666 if (curr && curr->on_rq) { 667 unsigned long weight = scale_load_down(curr->load.weight); 668 669 avg += entity_key(cfs_rq, curr) * weight; 670 load += weight; 671 } 672 673 if (load) { 674 /* sign flips effective floor / ceil */ 675 if (avg < 0) 676 avg -= (load - 1); 677 avg = div_s64(avg, load); 678 } 679 680 return cfs_rq->min_vruntime + avg; 681 } 682 683 /* 684 * lag_i = S - s_i = w_i * (V - v_i) 685 * 686 * However, since V is approximated by the weighted average of all entities it 687 * is possible -- by addition/removal/reweight to the tree -- to move V around 688 * and end up with a larger lag than we started with. 689 * 690 * Limit this to either double the slice length with a minimum of TICK_NSEC 691 * since that is the timing granularity. 692 * 693 * EEVDF gives the following limit for a steady state system: 694 * 695 * -r_max < lag < max(r_max, q) 696 * 697 * XXX could add max_slice to the augmented data to track this. 698 */ 699 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 700 { 701 s64 lag, limit; 702 703 SCHED_WARN_ON(!se->on_rq); 704 lag = avg_vruntime(cfs_rq) - se->vruntime; 705 706 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 707 se->vlag = clamp(lag, -limit, limit); 708 } 709 710 /* 711 * Entity is eligible once it received less service than it ought to have, 712 * eg. lag >= 0. 713 * 714 * lag_i = S - s_i = w_i*(V - v_i) 715 * 716 * lag_i >= 0 -> V >= v_i 717 * 718 * \Sum (v_i - v)*w_i 719 * V = ------------------ + v 720 * \Sum w_i 721 * 722 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 723 * 724 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 725 * to the loss in precision caused by the division. 726 */ 727 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 728 { 729 struct sched_entity *curr = cfs_rq->curr; 730 s64 avg = cfs_rq->avg_vruntime; 731 long load = cfs_rq->avg_load; 732 733 if (curr && curr->on_rq) { 734 unsigned long weight = scale_load_down(curr->load.weight); 735 736 avg += entity_key(cfs_rq, curr) * weight; 737 load += weight; 738 } 739 740 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 741 } 742 743 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 744 { 745 return vruntime_eligible(cfs_rq, se->vruntime); 746 } 747 748 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 749 { 750 u64 min_vruntime = cfs_rq->min_vruntime; 751 /* 752 * open coded max_vruntime() to allow updating avg_vruntime 753 */ 754 s64 delta = (s64)(vruntime - min_vruntime); 755 if (delta > 0) { 756 avg_vruntime_update(cfs_rq, delta); 757 min_vruntime = vruntime; 758 } 759 return min_vruntime; 760 } 761 762 static void update_min_vruntime(struct cfs_rq *cfs_rq) 763 { 764 struct sched_entity *se = __pick_root_entity(cfs_rq); 765 struct sched_entity *curr = cfs_rq->curr; 766 u64 vruntime = cfs_rq->min_vruntime; 767 768 if (curr) { 769 if (curr->on_rq) 770 vruntime = curr->vruntime; 771 else 772 curr = NULL; 773 } 774 775 if (se) { 776 if (!curr) 777 vruntime = se->min_vruntime; 778 else 779 vruntime = min_vruntime(vruntime, se->min_vruntime); 780 } 781 782 /* ensure we never gain time by being placed backwards. */ 783 u64_u32_store(cfs_rq->min_vruntime, 784 __update_min_vruntime(cfs_rq, vruntime)); 785 } 786 787 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 788 { 789 return entity_before(__node_2_se(a), __node_2_se(b)); 790 } 791 792 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 793 794 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 795 { 796 if (node) { 797 struct sched_entity *rse = __node_2_se(node); 798 if (vruntime_gt(min_vruntime, se, rse)) 799 se->min_vruntime = rse->min_vruntime; 800 } 801 } 802 803 /* 804 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 805 */ 806 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 807 { 808 u64 old_min_vruntime = se->min_vruntime; 809 struct rb_node *node = &se->run_node; 810 811 se->min_vruntime = se->vruntime; 812 __min_vruntime_update(se, node->rb_right); 813 __min_vruntime_update(se, node->rb_left); 814 815 return se->min_vruntime == old_min_vruntime; 816 } 817 818 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 819 run_node, min_vruntime, min_vruntime_update); 820 821 /* 822 * Enqueue an entity into the rb-tree: 823 */ 824 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 825 { 826 avg_vruntime_add(cfs_rq, se); 827 se->min_vruntime = se->vruntime; 828 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 829 __entity_less, &min_vruntime_cb); 830 } 831 832 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 833 { 834 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 835 &min_vruntime_cb); 836 avg_vruntime_sub(cfs_rq, se); 837 } 838 839 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 840 { 841 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 842 843 if (!root) 844 return NULL; 845 846 return __node_2_se(root); 847 } 848 849 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 850 { 851 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 852 853 if (!left) 854 return NULL; 855 856 return __node_2_se(left); 857 } 858 859 /* 860 * Earliest Eligible Virtual Deadline First 861 * 862 * In order to provide latency guarantees for different request sizes 863 * EEVDF selects the best runnable task from two criteria: 864 * 865 * 1) the task must be eligible (must be owed service) 866 * 867 * 2) from those tasks that meet 1), we select the one 868 * with the earliest virtual deadline. 869 * 870 * We can do this in O(log n) time due to an augmented RB-tree. The 871 * tree keeps the entries sorted on deadline, but also functions as a 872 * heap based on the vruntime by keeping: 873 * 874 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 875 * 876 * Which allows tree pruning through eligibility. 877 */ 878 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 881 struct sched_entity *se = __pick_first_entity(cfs_rq); 882 struct sched_entity *curr = cfs_rq->curr; 883 struct sched_entity *best = NULL; 884 885 /* 886 * We can safely skip eligibility check if there is only one entity 887 * in this cfs_rq, saving some cycles. 888 */ 889 if (cfs_rq->nr_running == 1) 890 return curr && curr->on_rq ? curr : se; 891 892 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 893 curr = NULL; 894 895 /* 896 * Once selected, run a task until it either becomes non-eligible or 897 * until it gets a new slice. See the HACK in set_next_entity(). 898 */ 899 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 900 return curr; 901 902 /* Pick the leftmost entity if it's eligible */ 903 if (se && entity_eligible(cfs_rq, se)) { 904 best = se; 905 goto found; 906 } 907 908 /* Heap search for the EEVD entity */ 909 while (node) { 910 struct rb_node *left = node->rb_left; 911 912 /* 913 * Eligible entities in left subtree are always better 914 * choices, since they have earlier deadlines. 915 */ 916 if (left && vruntime_eligible(cfs_rq, 917 __node_2_se(left)->min_vruntime)) { 918 node = left; 919 continue; 920 } 921 922 se = __node_2_se(node); 923 924 /* 925 * The left subtree either is empty or has no eligible 926 * entity, so check the current node since it is the one 927 * with earliest deadline that might be eligible. 928 */ 929 if (entity_eligible(cfs_rq, se)) { 930 best = se; 931 break; 932 } 933 934 node = node->rb_right; 935 } 936 found: 937 if (!best || (curr && entity_before(curr, best))) 938 best = curr; 939 940 return best; 941 } 942 943 #ifdef CONFIG_SCHED_DEBUG 944 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 945 { 946 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 947 948 if (!last) 949 return NULL; 950 951 return __node_2_se(last); 952 } 953 954 /************************************************************** 955 * Scheduling class statistics methods: 956 */ 957 #ifdef CONFIG_SMP 958 int sched_update_scaling(void) 959 { 960 unsigned int factor = get_update_sysctl_factor(); 961 962 #define WRT_SYSCTL(name) \ 963 (normalized_sysctl_##name = sysctl_##name / (factor)) 964 WRT_SYSCTL(sched_base_slice); 965 #undef WRT_SYSCTL 966 967 return 0; 968 } 969 #endif 970 #endif 971 972 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 973 974 /* 975 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 976 * this is probably good enough. 977 */ 978 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 979 { 980 if ((s64)(se->vruntime - se->deadline) < 0) 981 return; 982 983 /* 984 * For EEVDF the virtual time slope is determined by w_i (iow. 985 * nice) while the request time r_i is determined by 986 * sysctl_sched_base_slice. 987 */ 988 se->slice = sysctl_sched_base_slice; 989 990 /* 991 * EEVDF: vd_i = ve_i + r_i / w_i 992 */ 993 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 994 995 /* 996 * The task has consumed its request, reschedule. 997 */ 998 if (cfs_rq->nr_running > 1) { 999 resched_curr(rq_of(cfs_rq)); 1000 clear_buddies(cfs_rq, se); 1001 } 1002 } 1003 1004 #include "pelt.h" 1005 #ifdef CONFIG_SMP 1006 1007 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1008 static unsigned long task_h_load(struct task_struct *p); 1009 static unsigned long capacity_of(int cpu); 1010 1011 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1012 void init_entity_runnable_average(struct sched_entity *se) 1013 { 1014 struct sched_avg *sa = &se->avg; 1015 1016 memset(sa, 0, sizeof(*sa)); 1017 1018 /* 1019 * Tasks are initialized with full load to be seen as heavy tasks until 1020 * they get a chance to stabilize to their real load level. 1021 * Group entities are initialized with zero load to reflect the fact that 1022 * nothing has been attached to the task group yet. 1023 */ 1024 if (entity_is_task(se)) 1025 sa->load_avg = scale_load_down(se->load.weight); 1026 1027 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1028 } 1029 1030 /* 1031 * With new tasks being created, their initial util_avgs are extrapolated 1032 * based on the cfs_rq's current util_avg: 1033 * 1034 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1035 * 1036 * However, in many cases, the above util_avg does not give a desired 1037 * value. Moreover, the sum of the util_avgs may be divergent, such 1038 * as when the series is a harmonic series. 1039 * 1040 * To solve this problem, we also cap the util_avg of successive tasks to 1041 * only 1/2 of the left utilization budget: 1042 * 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1044 * 1045 * where n denotes the nth task and cpu_scale the CPU capacity. 1046 * 1047 * For example, for a CPU with 1024 of capacity, a simplest series from 1048 * the beginning would be like: 1049 * 1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1052 * 1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1054 * if util_avg > util_avg_cap. 1055 */ 1056 void post_init_entity_util_avg(struct task_struct *p) 1057 { 1058 struct sched_entity *se = &p->se; 1059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1060 struct sched_avg *sa = &se->avg; 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1063 1064 if (p->sched_class != &fair_sched_class) { 1065 /* 1066 * For !fair tasks do: 1067 * 1068 update_cfs_rq_load_avg(now, cfs_rq); 1069 attach_entity_load_avg(cfs_rq, se); 1070 switched_from_fair(rq, p); 1071 * 1072 * such that the next switched_to_fair() has the 1073 * expected state. 1074 */ 1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1076 return; 1077 } 1078 1079 if (cap > 0) { 1080 if (cfs_rq->avg.util_avg != 0) { 1081 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1083 1084 if (sa->util_avg > cap) 1085 sa->util_avg = cap; 1086 } else { 1087 sa->util_avg = cap; 1088 } 1089 } 1090 1091 sa->runnable_avg = sa->util_avg; 1092 } 1093 1094 #else /* !CONFIG_SMP */ 1095 void init_entity_runnable_average(struct sched_entity *se) 1096 { 1097 } 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 } 1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1102 { 1103 } 1104 #endif /* CONFIG_SMP */ 1105 1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1107 { 1108 u64 now = rq_clock_task(rq); 1109 s64 delta_exec; 1110 1111 delta_exec = now - curr->exec_start; 1112 if (unlikely(delta_exec <= 0)) 1113 return delta_exec; 1114 1115 curr->exec_start = now; 1116 curr->sum_exec_runtime += delta_exec; 1117 1118 if (schedstat_enabled()) { 1119 struct sched_statistics *stats; 1120 1121 stats = __schedstats_from_se(curr); 1122 __schedstat_set(stats->exec_max, 1123 max(delta_exec, stats->exec_max)); 1124 } 1125 1126 return delta_exec; 1127 } 1128 1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1130 { 1131 trace_sched_stat_runtime(p, delta_exec); 1132 account_group_exec_runtime(p, delta_exec); 1133 cgroup_account_cputime(p, delta_exec); 1134 if (p->dl_server) 1135 dl_server_update(p->dl_server, delta_exec); 1136 } 1137 1138 /* 1139 * Used by other classes to account runtime. 1140 */ 1141 s64 update_curr_common(struct rq *rq) 1142 { 1143 struct task_struct *curr = rq->curr; 1144 s64 delta_exec; 1145 1146 delta_exec = update_curr_se(rq, &curr->se); 1147 if (likely(delta_exec > 0)) 1148 update_curr_task(curr, delta_exec); 1149 1150 return delta_exec; 1151 } 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 s64 delta_exec; 1160 1161 if (unlikely(!curr)) 1162 return; 1163 1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr); 1165 if (unlikely(delta_exec <= 0)) 1166 return; 1167 1168 curr->vruntime += calc_delta_fair(delta_exec, curr); 1169 update_deadline(cfs_rq, curr); 1170 update_min_vruntime(cfs_rq); 1171 1172 if (entity_is_task(curr)) 1173 update_curr_task(task_of(curr), delta_exec); 1174 1175 account_cfs_rq_runtime(cfs_rq, delta_exec); 1176 } 1177 1178 static void update_curr_fair(struct rq *rq) 1179 { 1180 update_curr(cfs_rq_of(&rq->curr->se)); 1181 } 1182 1183 static inline void 1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1185 { 1186 struct sched_statistics *stats; 1187 struct task_struct *p = NULL; 1188 1189 if (!schedstat_enabled()) 1190 return; 1191 1192 stats = __schedstats_from_se(se); 1193 1194 if (entity_is_task(se)) 1195 p = task_of(se); 1196 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1198 } 1199 1200 static inline void 1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1202 { 1203 struct sched_statistics *stats; 1204 struct task_struct *p = NULL; 1205 1206 if (!schedstat_enabled()) 1207 return; 1208 1209 stats = __schedstats_from_se(se); 1210 1211 /* 1212 * When the sched_schedstat changes from 0 to 1, some sched se 1213 * maybe already in the runqueue, the se->statistics.wait_start 1214 * will be 0.So it will let the delta wrong. We need to avoid this 1215 * scenario. 1216 */ 1217 if (unlikely(!schedstat_val(stats->wait_start))) 1218 return; 1219 1220 if (entity_is_task(se)) 1221 p = task_of(se); 1222 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1224 } 1225 1226 static inline void 1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1228 { 1229 struct sched_statistics *stats; 1230 struct task_struct *tsk = NULL; 1231 1232 if (!schedstat_enabled()) 1233 return; 1234 1235 stats = __schedstats_from_se(se); 1236 1237 if (entity_is_task(se)) 1238 tsk = task_of(se); 1239 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1241 } 1242 1243 /* 1244 * Task is being enqueued - update stats: 1245 */ 1246 static inline void 1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1248 { 1249 if (!schedstat_enabled()) 1250 return; 1251 1252 /* 1253 * Are we enqueueing a waiting task? (for current tasks 1254 * a dequeue/enqueue event is a NOP) 1255 */ 1256 if (se != cfs_rq->curr) 1257 update_stats_wait_start_fair(cfs_rq, se); 1258 1259 if (flags & ENQUEUE_WAKEUP) 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1261 } 1262 1263 static inline void 1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1265 { 1266 1267 if (!schedstat_enabled()) 1268 return; 1269 1270 /* 1271 * Mark the end of the wait period if dequeueing a 1272 * waiting task: 1273 */ 1274 if (se != cfs_rq->curr) 1275 update_stats_wait_end_fair(cfs_rq, se); 1276 1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1278 struct task_struct *tsk = task_of(se); 1279 unsigned int state; 1280 1281 /* XXX racy against TTWU */ 1282 state = READ_ONCE(tsk->__state); 1283 if (state & TASK_INTERRUPTIBLE) 1284 __schedstat_set(tsk->stats.sleep_start, 1285 rq_clock(rq_of(cfs_rq))); 1286 if (state & TASK_UNINTERRUPTIBLE) 1287 __schedstat_set(tsk->stats.block_start, 1288 rq_clock(rq_of(cfs_rq))); 1289 } 1290 } 1291 1292 /* 1293 * We are picking a new current task - update its stats: 1294 */ 1295 static inline void 1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1297 { 1298 /* 1299 * We are starting a new run period: 1300 */ 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1302 } 1303 1304 /************************************************** 1305 * Scheduling class queueing methods: 1306 */ 1307 1308 static inline bool is_core_idle(int cpu) 1309 { 1310 #ifdef CONFIG_SCHED_SMT 1311 int sibling; 1312 1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1314 if (cpu == sibling) 1315 continue; 1316 1317 if (!idle_cpu(sibling)) 1318 return false; 1319 } 1320 #endif 1321 1322 return true; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 #define NUMA_IMBALANCE_MIN 2 1327 1328 static inline long 1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1330 { 1331 /* 1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1333 * threshold. Above this threshold, individual tasks may be contending 1334 * for both memory bandwidth and any shared HT resources. This is an 1335 * approximation as the number of running tasks may not be related to 1336 * the number of busy CPUs due to sched_setaffinity. 1337 */ 1338 if (dst_running > imb_numa_nr) 1339 return imbalance; 1340 1341 /* 1342 * Allow a small imbalance based on a simple pair of communicating 1343 * tasks that remain local when the destination is lightly loaded. 1344 */ 1345 if (imbalance <= NUMA_IMBALANCE_MIN) 1346 return 0; 1347 1348 return imbalance; 1349 } 1350 #endif /* CONFIG_NUMA */ 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 /* 1354 * Approximate time to scan a full NUMA task in ms. The task scan period is 1355 * calculated based on the tasks virtual memory size and 1356 * numa_balancing_scan_size. 1357 */ 1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1360 1361 /* Portion of address space to scan in MB */ 1362 unsigned int sysctl_numa_balancing_scan_size = 256; 1363 1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1365 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1366 1367 /* The page with hint page fault latency < threshold in ms is considered hot */ 1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1369 1370 struct numa_group { 1371 refcount_t refcount; 1372 1373 spinlock_t lock; /* nr_tasks, tasks */ 1374 int nr_tasks; 1375 pid_t gid; 1376 int active_nodes; 1377 1378 struct rcu_head rcu; 1379 unsigned long total_faults; 1380 unsigned long max_faults_cpu; 1381 /* 1382 * faults[] array is split into two regions: faults_mem and faults_cpu. 1383 * 1384 * Faults_cpu is used to decide whether memory should move 1385 * towards the CPU. As a consequence, these stats are weighted 1386 * more by CPU use than by memory faults. 1387 */ 1388 unsigned long faults[]; 1389 }; 1390 1391 /* 1392 * For functions that can be called in multiple contexts that permit reading 1393 * ->numa_group (see struct task_struct for locking rules). 1394 */ 1395 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1396 { 1397 return rcu_dereference_check(p->numa_group, p == current || 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1399 } 1400 1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1402 { 1403 return rcu_dereference_protected(p->numa_group, p == current); 1404 } 1405 1406 static inline unsigned long group_faults_priv(struct numa_group *ng); 1407 static inline unsigned long group_faults_shared(struct numa_group *ng); 1408 1409 static unsigned int task_nr_scan_windows(struct task_struct *p) 1410 { 1411 unsigned long rss = 0; 1412 unsigned long nr_scan_pages; 1413 1414 /* 1415 * Calculations based on RSS as non-present and empty pages are skipped 1416 * by the PTE scanner and NUMA hinting faults should be trapped based 1417 * on resident pages 1418 */ 1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1420 rss = get_mm_rss(p->mm); 1421 if (!rss) 1422 rss = nr_scan_pages; 1423 1424 rss = round_up(rss, nr_scan_pages); 1425 return rss / nr_scan_pages; 1426 } 1427 1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1429 #define MAX_SCAN_WINDOW 2560 1430 1431 static unsigned int task_scan_min(struct task_struct *p) 1432 { 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1434 unsigned int scan, floor; 1435 unsigned int windows = 1; 1436 1437 if (scan_size < MAX_SCAN_WINDOW) 1438 windows = MAX_SCAN_WINDOW / scan_size; 1439 floor = 1000 / windows; 1440 1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1442 return max_t(unsigned int, floor, scan); 1443 } 1444 1445 static unsigned int task_scan_start(struct task_struct *p) 1446 { 1447 unsigned long smin = task_scan_min(p); 1448 unsigned long period = smin; 1449 struct numa_group *ng; 1450 1451 /* Scale the maximum scan period with the amount of shared memory. */ 1452 rcu_read_lock(); 1453 ng = rcu_dereference(p->numa_group); 1454 if (ng) { 1455 unsigned long shared = group_faults_shared(ng); 1456 unsigned long private = group_faults_priv(ng); 1457 1458 period *= refcount_read(&ng->refcount); 1459 period *= shared + 1; 1460 period /= private + shared + 1; 1461 } 1462 rcu_read_unlock(); 1463 1464 return max(smin, period); 1465 } 1466 1467 static unsigned int task_scan_max(struct task_struct *p) 1468 { 1469 unsigned long smin = task_scan_min(p); 1470 unsigned long smax; 1471 struct numa_group *ng; 1472 1473 /* Watch for min being lower than max due to floor calculations */ 1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1475 1476 /* Scale the maximum scan period with the amount of shared memory. */ 1477 ng = deref_curr_numa_group(p); 1478 if (ng) { 1479 unsigned long shared = group_faults_shared(ng); 1480 unsigned long private = group_faults_priv(ng); 1481 unsigned long period = smax; 1482 1483 period *= refcount_read(&ng->refcount); 1484 period *= shared + 1; 1485 period /= private + shared + 1; 1486 1487 smax = max(smax, period); 1488 } 1489 1490 return max(smin, smax); 1491 } 1492 1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1494 { 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1497 } 1498 1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1500 { 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1503 } 1504 1505 /* Shared or private faults. */ 1506 #define NR_NUMA_HINT_FAULT_TYPES 2 1507 1508 /* Memory and CPU locality */ 1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1510 1511 /* Averaged statistics, and temporary buffers. */ 1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1513 1514 pid_t task_numa_group_id(struct task_struct *p) 1515 { 1516 struct numa_group *ng; 1517 pid_t gid = 0; 1518 1519 rcu_read_lock(); 1520 ng = rcu_dereference(p->numa_group); 1521 if (ng) 1522 gid = ng->gid; 1523 rcu_read_unlock(); 1524 1525 return gid; 1526 } 1527 1528 /* 1529 * The averaged statistics, shared & private, memory & CPU, 1530 * occupy the first half of the array. The second half of the 1531 * array is for current counters, which are averaged into the 1532 * first set by task_numa_placement. 1533 */ 1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1535 { 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1537 } 1538 1539 static inline unsigned long task_faults(struct task_struct *p, int nid) 1540 { 1541 if (!p->numa_faults) 1542 return 0; 1543 1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1546 } 1547 1548 static inline unsigned long group_faults(struct task_struct *p, int nid) 1549 { 1550 struct numa_group *ng = deref_task_numa_group(p); 1551 1552 if (!ng) 1553 return 0; 1554 1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1557 } 1558 1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1560 { 1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1563 } 1564 1565 static inline unsigned long group_faults_priv(struct numa_group *ng) 1566 { 1567 unsigned long faults = 0; 1568 int node; 1569 1570 for_each_online_node(node) { 1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1572 } 1573 1574 return faults; 1575 } 1576 1577 static inline unsigned long group_faults_shared(struct numa_group *ng) 1578 { 1579 unsigned long faults = 0; 1580 int node; 1581 1582 for_each_online_node(node) { 1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1584 } 1585 1586 return faults; 1587 } 1588 1589 /* 1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1591 * considered part of a numa group's pseudo-interleaving set. Migrations 1592 * between these nodes are slowed down, to allow things to settle down. 1593 */ 1594 #define ACTIVE_NODE_FRACTION 3 1595 1596 static bool numa_is_active_node(int nid, struct numa_group *ng) 1597 { 1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1599 } 1600 1601 /* Handle placement on systems where not all nodes are directly connected. */ 1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1603 int lim_dist, bool task) 1604 { 1605 unsigned long score = 0; 1606 int node, max_dist; 1607 1608 /* 1609 * All nodes are directly connected, and the same distance 1610 * from each other. No need for fancy placement algorithms. 1611 */ 1612 if (sched_numa_topology_type == NUMA_DIRECT) 1613 return 0; 1614 1615 /* sched_max_numa_distance may be changed in parallel. */ 1616 max_dist = READ_ONCE(sched_max_numa_distance); 1617 /* 1618 * This code is called for each node, introducing N^2 complexity, 1619 * which should be ok given the number of nodes rarely exceeds 8. 1620 */ 1621 for_each_online_node(node) { 1622 unsigned long faults; 1623 int dist = node_distance(nid, node); 1624 1625 /* 1626 * The furthest away nodes in the system are not interesting 1627 * for placement; nid was already counted. 1628 */ 1629 if (dist >= max_dist || node == nid) 1630 continue; 1631 1632 /* 1633 * On systems with a backplane NUMA topology, compare groups 1634 * of nodes, and move tasks towards the group with the most 1635 * memory accesses. When comparing two nodes at distance 1636 * "hoplimit", only nodes closer by than "hoplimit" are part 1637 * of each group. Skip other nodes. 1638 */ 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1640 continue; 1641 1642 /* Add up the faults from nearby nodes. */ 1643 if (task) 1644 faults = task_faults(p, node); 1645 else 1646 faults = group_faults(p, node); 1647 1648 /* 1649 * On systems with a glueless mesh NUMA topology, there are 1650 * no fixed "groups of nodes". Instead, nodes that are not 1651 * directly connected bounce traffic through intermediate 1652 * nodes; a numa_group can occupy any set of nodes. 1653 * The further away a node is, the less the faults count. 1654 * This seems to result in good task placement. 1655 */ 1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1657 faults *= (max_dist - dist); 1658 faults /= (max_dist - LOCAL_DISTANCE); 1659 } 1660 1661 score += faults; 1662 } 1663 1664 return score; 1665 } 1666 1667 /* 1668 * These return the fraction of accesses done by a particular task, or 1669 * task group, on a particular numa node. The group weight is given a 1670 * larger multiplier, in order to group tasks together that are almost 1671 * evenly spread out between numa nodes. 1672 */ 1673 static inline unsigned long task_weight(struct task_struct *p, int nid, 1674 int dist) 1675 { 1676 unsigned long faults, total_faults; 1677 1678 if (!p->numa_faults) 1679 return 0; 1680 1681 total_faults = p->total_numa_faults; 1682 1683 if (!total_faults) 1684 return 0; 1685 1686 faults = task_faults(p, nid); 1687 faults += score_nearby_nodes(p, nid, dist, true); 1688 1689 return 1000 * faults / total_faults; 1690 } 1691 1692 static inline unsigned long group_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 struct numa_group *ng = deref_task_numa_group(p); 1696 unsigned long faults, total_faults; 1697 1698 if (!ng) 1699 return 0; 1700 1701 total_faults = ng->total_faults; 1702 1703 if (!total_faults) 1704 return 0; 1705 1706 faults = group_faults(p, nid); 1707 faults += score_nearby_nodes(p, nid, dist, false); 1708 1709 return 1000 * faults / total_faults; 1710 } 1711 1712 /* 1713 * If memory tiering mode is enabled, cpupid of slow memory page is 1714 * used to record scan time instead of CPU and PID. When tiering mode 1715 * is disabled at run time, the scan time (in cpupid) will be 1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1717 * access out of array bound. 1718 */ 1719 static inline bool cpupid_valid(int cpupid) 1720 { 1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1722 } 1723 1724 /* 1725 * For memory tiering mode, if there are enough free pages (more than 1726 * enough watermark defined here) in fast memory node, to take full 1727 * advantage of fast memory capacity, all recently accessed slow 1728 * memory pages will be migrated to fast memory node without 1729 * considering hot threshold. 1730 */ 1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1732 { 1733 int z; 1734 unsigned long enough_wmark; 1735 1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1737 pgdat->node_present_pages >> 4); 1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1739 struct zone *zone = pgdat->node_zones + z; 1740 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 if (zone_watermark_ok(zone, 0, 1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1746 ZONE_MOVABLE, 0)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /* 1753 * For memory tiering mode, when page tables are scanned, the scan 1754 * time will be recorded in struct page in addition to make page 1755 * PROT_NONE for slow memory page. So when the page is accessed, in 1756 * hint page fault handler, the hint page fault latency is calculated 1757 * via, 1758 * 1759 * hint page fault latency = hint page fault time - scan time 1760 * 1761 * The smaller the hint page fault latency, the higher the possibility 1762 * for the page to be hot. 1763 */ 1764 static int numa_hint_fault_latency(struct folio *folio) 1765 { 1766 int last_time, time; 1767 1768 time = jiffies_to_msecs(jiffies); 1769 last_time = folio_xchg_access_time(folio, time); 1770 1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1772 } 1773 1774 /* 1775 * For memory tiering mode, too high promotion/demotion throughput may 1776 * hurt application latency. So we provide a mechanism to rate limit 1777 * the number of pages that are tried to be promoted. 1778 */ 1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1780 unsigned long rate_limit, int nr) 1781 { 1782 unsigned long nr_cand; 1783 unsigned int now, start; 1784 1785 now = jiffies_to_msecs(jiffies); 1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1788 start = pgdat->nbp_rl_start; 1789 if (now - start > MSEC_PER_SEC && 1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1791 pgdat->nbp_rl_nr_cand = nr_cand; 1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1793 return true; 1794 return false; 1795 } 1796 1797 #define NUMA_MIGRATION_ADJUST_STEPS 16 1798 1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1800 unsigned long rate_limit, 1801 unsigned int ref_th) 1802 { 1803 unsigned int now, start, th_period, unit_th, th; 1804 unsigned long nr_cand, ref_cand, diff_cand; 1805 1806 now = jiffies_to_msecs(jiffies); 1807 th_period = sysctl_numa_balancing_scan_period_max; 1808 start = pgdat->nbp_th_start; 1809 if (now - start > th_period && 1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1811 ref_cand = rate_limit * 1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1816 th = pgdat->nbp_threshold ? : ref_th; 1817 if (diff_cand > ref_cand * 11 / 10) 1818 th = max(th - unit_th, unit_th); 1819 else if (diff_cand < ref_cand * 9 / 10) 1820 th = min(th + unit_th, ref_th * 2); 1821 pgdat->nbp_th_nr_cand = nr_cand; 1822 pgdat->nbp_threshold = th; 1823 } 1824 } 1825 1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1827 int src_nid, int dst_cpu) 1828 { 1829 struct numa_group *ng = deref_curr_numa_group(p); 1830 int dst_nid = cpu_to_node(dst_cpu); 1831 int last_cpupid, this_cpupid; 1832 1833 /* 1834 * The pages in slow memory node should be migrated according 1835 * to hot/cold instead of private/shared. 1836 */ 1837 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1838 !node_is_toptier(src_nid)) { 1839 struct pglist_data *pgdat; 1840 unsigned long rate_limit; 1841 unsigned int latency, th, def_th; 1842 1843 pgdat = NODE_DATA(dst_nid); 1844 if (pgdat_free_space_enough(pgdat)) { 1845 /* workload changed, reset hot threshold */ 1846 pgdat->nbp_threshold = 0; 1847 return true; 1848 } 1849 1850 def_th = sysctl_numa_balancing_hot_threshold; 1851 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1852 (20 - PAGE_SHIFT); 1853 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1854 1855 th = pgdat->nbp_threshold ? : def_th; 1856 latency = numa_hint_fault_latency(folio); 1857 if (latency >= th) 1858 return false; 1859 1860 return !numa_promotion_rate_limit(pgdat, rate_limit, 1861 folio_nr_pages(folio)); 1862 } 1863 1864 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1865 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1866 1867 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1868 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1869 return false; 1870 1871 /* 1872 * Allow first faults or private faults to migrate immediately early in 1873 * the lifetime of a task. The magic number 4 is based on waiting for 1874 * two full passes of the "multi-stage node selection" test that is 1875 * executed below. 1876 */ 1877 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1878 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1879 return true; 1880 1881 /* 1882 * Multi-stage node selection is used in conjunction with a periodic 1883 * migration fault to build a temporal task<->page relation. By using 1884 * a two-stage filter we remove short/unlikely relations. 1885 * 1886 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1887 * a task's usage of a particular page (n_p) per total usage of this 1888 * page (n_t) (in a given time-span) to a probability. 1889 * 1890 * Our periodic faults will sample this probability and getting the 1891 * same result twice in a row, given these samples are fully 1892 * independent, is then given by P(n)^2, provided our sample period 1893 * is sufficiently short compared to the usage pattern. 1894 * 1895 * This quadric squishes small probabilities, making it less likely we 1896 * act on an unlikely task<->page relation. 1897 */ 1898 if (!cpupid_pid_unset(last_cpupid) && 1899 cpupid_to_nid(last_cpupid) != dst_nid) 1900 return false; 1901 1902 /* Always allow migrate on private faults */ 1903 if (cpupid_match_pid(p, last_cpupid)) 1904 return true; 1905 1906 /* A shared fault, but p->numa_group has not been set up yet. */ 1907 if (!ng) 1908 return true; 1909 1910 /* 1911 * Destination node is much more heavily used than the source 1912 * node? Allow migration. 1913 */ 1914 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1915 ACTIVE_NODE_FRACTION) 1916 return true; 1917 1918 /* 1919 * Distribute memory according to CPU & memory use on each node, 1920 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1921 * 1922 * faults_cpu(dst) 3 faults_cpu(src) 1923 * --------------- * - > --------------- 1924 * faults_mem(dst) 4 faults_mem(src) 1925 */ 1926 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1927 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1928 } 1929 1930 /* 1931 * 'numa_type' describes the node at the moment of load balancing. 1932 */ 1933 enum numa_type { 1934 /* The node has spare capacity that can be used to run more tasks. */ 1935 node_has_spare = 0, 1936 /* 1937 * The node is fully used and the tasks don't compete for more CPU 1938 * cycles. Nevertheless, some tasks might wait before running. 1939 */ 1940 node_fully_busy, 1941 /* 1942 * The node is overloaded and can't provide expected CPU cycles to all 1943 * tasks. 1944 */ 1945 node_overloaded 1946 }; 1947 1948 /* Cached statistics for all CPUs within a node */ 1949 struct numa_stats { 1950 unsigned long load; 1951 unsigned long runnable; 1952 unsigned long util; 1953 /* Total compute capacity of CPUs on a node */ 1954 unsigned long compute_capacity; 1955 unsigned int nr_running; 1956 unsigned int weight; 1957 enum numa_type node_type; 1958 int idle_cpu; 1959 }; 1960 1961 struct task_numa_env { 1962 struct task_struct *p; 1963 1964 int src_cpu, src_nid; 1965 int dst_cpu, dst_nid; 1966 int imb_numa_nr; 1967 1968 struct numa_stats src_stats, dst_stats; 1969 1970 int imbalance_pct; 1971 int dist; 1972 1973 struct task_struct *best_task; 1974 long best_imp; 1975 int best_cpu; 1976 }; 1977 1978 static unsigned long cpu_load(struct rq *rq); 1979 static unsigned long cpu_runnable(struct rq *rq); 1980 1981 static inline enum 1982 numa_type numa_classify(unsigned int imbalance_pct, 1983 struct numa_stats *ns) 1984 { 1985 if ((ns->nr_running > ns->weight) && 1986 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1987 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1988 return node_overloaded; 1989 1990 if ((ns->nr_running < ns->weight) || 1991 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1992 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1993 return node_has_spare; 1994 1995 return node_fully_busy; 1996 } 1997 1998 #ifdef CONFIG_SCHED_SMT 1999 /* Forward declarations of select_idle_sibling helpers */ 2000 static inline bool test_idle_cores(int cpu); 2001 static inline int numa_idle_core(int idle_core, int cpu) 2002 { 2003 if (!static_branch_likely(&sched_smt_present) || 2004 idle_core >= 0 || !test_idle_cores(cpu)) 2005 return idle_core; 2006 2007 /* 2008 * Prefer cores instead of packing HT siblings 2009 * and triggering future load balancing. 2010 */ 2011 if (is_core_idle(cpu)) 2012 idle_core = cpu; 2013 2014 return idle_core; 2015 } 2016 #else 2017 static inline int numa_idle_core(int idle_core, int cpu) 2018 { 2019 return idle_core; 2020 } 2021 #endif 2022 2023 /* 2024 * Gather all necessary information to make NUMA balancing placement 2025 * decisions that are compatible with standard load balancer. This 2026 * borrows code and logic from update_sg_lb_stats but sharing a 2027 * common implementation is impractical. 2028 */ 2029 static void update_numa_stats(struct task_numa_env *env, 2030 struct numa_stats *ns, int nid, 2031 bool find_idle) 2032 { 2033 int cpu, idle_core = -1; 2034 2035 memset(ns, 0, sizeof(*ns)); 2036 ns->idle_cpu = -1; 2037 2038 rcu_read_lock(); 2039 for_each_cpu(cpu, cpumask_of_node(nid)) { 2040 struct rq *rq = cpu_rq(cpu); 2041 2042 ns->load += cpu_load(rq); 2043 ns->runnable += cpu_runnable(rq); 2044 ns->util += cpu_util_cfs(cpu); 2045 ns->nr_running += rq->cfs.h_nr_running; 2046 ns->compute_capacity += capacity_of(cpu); 2047 2048 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2049 if (READ_ONCE(rq->numa_migrate_on) || 2050 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2051 continue; 2052 2053 if (ns->idle_cpu == -1) 2054 ns->idle_cpu = cpu; 2055 2056 idle_core = numa_idle_core(idle_core, cpu); 2057 } 2058 } 2059 rcu_read_unlock(); 2060 2061 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2062 2063 ns->node_type = numa_classify(env->imbalance_pct, ns); 2064 2065 if (idle_core >= 0) 2066 ns->idle_cpu = idle_core; 2067 } 2068 2069 static void task_numa_assign(struct task_numa_env *env, 2070 struct task_struct *p, long imp) 2071 { 2072 struct rq *rq = cpu_rq(env->dst_cpu); 2073 2074 /* Check if run-queue part of active NUMA balance. */ 2075 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2076 int cpu; 2077 int start = env->dst_cpu; 2078 2079 /* Find alternative idle CPU. */ 2080 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2081 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2082 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2083 continue; 2084 } 2085 2086 env->dst_cpu = cpu; 2087 rq = cpu_rq(env->dst_cpu); 2088 if (!xchg(&rq->numa_migrate_on, 1)) 2089 goto assign; 2090 } 2091 2092 /* Failed to find an alternative idle CPU */ 2093 return; 2094 } 2095 2096 assign: 2097 /* 2098 * Clear previous best_cpu/rq numa-migrate flag, since task now 2099 * found a better CPU to move/swap. 2100 */ 2101 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2102 rq = cpu_rq(env->best_cpu); 2103 WRITE_ONCE(rq->numa_migrate_on, 0); 2104 } 2105 2106 if (env->best_task) 2107 put_task_struct(env->best_task); 2108 if (p) 2109 get_task_struct(p); 2110 2111 env->best_task = p; 2112 env->best_imp = imp; 2113 env->best_cpu = env->dst_cpu; 2114 } 2115 2116 static bool load_too_imbalanced(long src_load, long dst_load, 2117 struct task_numa_env *env) 2118 { 2119 long imb, old_imb; 2120 long orig_src_load, orig_dst_load; 2121 long src_capacity, dst_capacity; 2122 2123 /* 2124 * The load is corrected for the CPU capacity available on each node. 2125 * 2126 * src_load dst_load 2127 * ------------ vs --------- 2128 * src_capacity dst_capacity 2129 */ 2130 src_capacity = env->src_stats.compute_capacity; 2131 dst_capacity = env->dst_stats.compute_capacity; 2132 2133 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2134 2135 orig_src_load = env->src_stats.load; 2136 orig_dst_load = env->dst_stats.load; 2137 2138 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2139 2140 /* Would this change make things worse? */ 2141 return (imb > old_imb); 2142 } 2143 2144 /* 2145 * Maximum NUMA importance can be 1998 (2*999); 2146 * SMALLIMP @ 30 would be close to 1998/64. 2147 * Used to deter task migration. 2148 */ 2149 #define SMALLIMP 30 2150 2151 /* 2152 * This checks if the overall compute and NUMA accesses of the system would 2153 * be improved if the source tasks was migrated to the target dst_cpu taking 2154 * into account that it might be best if task running on the dst_cpu should 2155 * be exchanged with the source task 2156 */ 2157 static bool task_numa_compare(struct task_numa_env *env, 2158 long taskimp, long groupimp, bool maymove) 2159 { 2160 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2161 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2162 long imp = p_ng ? groupimp : taskimp; 2163 struct task_struct *cur; 2164 long src_load, dst_load; 2165 int dist = env->dist; 2166 long moveimp = imp; 2167 long load; 2168 bool stopsearch = false; 2169 2170 if (READ_ONCE(dst_rq->numa_migrate_on)) 2171 return false; 2172 2173 rcu_read_lock(); 2174 cur = rcu_dereference(dst_rq->curr); 2175 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2176 cur = NULL; 2177 2178 /* 2179 * Because we have preemption enabled we can get migrated around and 2180 * end try selecting ourselves (current == env->p) as a swap candidate. 2181 */ 2182 if (cur == env->p) { 2183 stopsearch = true; 2184 goto unlock; 2185 } 2186 2187 if (!cur) { 2188 if (maymove && moveimp >= env->best_imp) 2189 goto assign; 2190 else 2191 goto unlock; 2192 } 2193 2194 /* Skip this swap candidate if cannot move to the source cpu. */ 2195 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2196 goto unlock; 2197 2198 /* 2199 * Skip this swap candidate if it is not moving to its preferred 2200 * node and the best task is. 2201 */ 2202 if (env->best_task && 2203 env->best_task->numa_preferred_nid == env->src_nid && 2204 cur->numa_preferred_nid != env->src_nid) { 2205 goto unlock; 2206 } 2207 2208 /* 2209 * "imp" is the fault differential for the source task between the 2210 * source and destination node. Calculate the total differential for 2211 * the source task and potential destination task. The more negative 2212 * the value is, the more remote accesses that would be expected to 2213 * be incurred if the tasks were swapped. 2214 * 2215 * If dst and source tasks are in the same NUMA group, or not 2216 * in any group then look only at task weights. 2217 */ 2218 cur_ng = rcu_dereference(cur->numa_group); 2219 if (cur_ng == p_ng) { 2220 /* 2221 * Do not swap within a group or between tasks that have 2222 * no group if there is spare capacity. Swapping does 2223 * not address the load imbalance and helps one task at 2224 * the cost of punishing another. 2225 */ 2226 if (env->dst_stats.node_type == node_has_spare) 2227 goto unlock; 2228 2229 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2230 task_weight(cur, env->dst_nid, dist); 2231 /* 2232 * Add some hysteresis to prevent swapping the 2233 * tasks within a group over tiny differences. 2234 */ 2235 if (cur_ng) 2236 imp -= imp / 16; 2237 } else { 2238 /* 2239 * Compare the group weights. If a task is all by itself 2240 * (not part of a group), use the task weight instead. 2241 */ 2242 if (cur_ng && p_ng) 2243 imp += group_weight(cur, env->src_nid, dist) - 2244 group_weight(cur, env->dst_nid, dist); 2245 else 2246 imp += task_weight(cur, env->src_nid, dist) - 2247 task_weight(cur, env->dst_nid, dist); 2248 } 2249 2250 /* Discourage picking a task already on its preferred node */ 2251 if (cur->numa_preferred_nid == env->dst_nid) 2252 imp -= imp / 16; 2253 2254 /* 2255 * Encourage picking a task that moves to its preferred node. 2256 * This potentially makes imp larger than it's maximum of 2257 * 1998 (see SMALLIMP and task_weight for why) but in this 2258 * case, it does not matter. 2259 */ 2260 if (cur->numa_preferred_nid == env->src_nid) 2261 imp += imp / 8; 2262 2263 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2264 imp = moveimp; 2265 cur = NULL; 2266 goto assign; 2267 } 2268 2269 /* 2270 * Prefer swapping with a task moving to its preferred node over a 2271 * task that is not. 2272 */ 2273 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2274 env->best_task->numa_preferred_nid != env->src_nid) { 2275 goto assign; 2276 } 2277 2278 /* 2279 * If the NUMA importance is less than SMALLIMP, 2280 * task migration might only result in ping pong 2281 * of tasks and also hurt performance due to cache 2282 * misses. 2283 */ 2284 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2285 goto unlock; 2286 2287 /* 2288 * In the overloaded case, try and keep the load balanced. 2289 */ 2290 load = task_h_load(env->p) - task_h_load(cur); 2291 if (!load) 2292 goto assign; 2293 2294 dst_load = env->dst_stats.load + load; 2295 src_load = env->src_stats.load - load; 2296 2297 if (load_too_imbalanced(src_load, dst_load, env)) 2298 goto unlock; 2299 2300 assign: 2301 /* Evaluate an idle CPU for a task numa move. */ 2302 if (!cur) { 2303 int cpu = env->dst_stats.idle_cpu; 2304 2305 /* Nothing cached so current CPU went idle since the search. */ 2306 if (cpu < 0) 2307 cpu = env->dst_cpu; 2308 2309 /* 2310 * If the CPU is no longer truly idle and the previous best CPU 2311 * is, keep using it. 2312 */ 2313 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2314 idle_cpu(env->best_cpu)) { 2315 cpu = env->best_cpu; 2316 } 2317 2318 env->dst_cpu = cpu; 2319 } 2320 2321 task_numa_assign(env, cur, imp); 2322 2323 /* 2324 * If a move to idle is allowed because there is capacity or load 2325 * balance improves then stop the search. While a better swap 2326 * candidate may exist, a search is not free. 2327 */ 2328 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2329 stopsearch = true; 2330 2331 /* 2332 * If a swap candidate must be identified and the current best task 2333 * moves its preferred node then stop the search. 2334 */ 2335 if (!maymove && env->best_task && 2336 env->best_task->numa_preferred_nid == env->src_nid) { 2337 stopsearch = true; 2338 } 2339 unlock: 2340 rcu_read_unlock(); 2341 2342 return stopsearch; 2343 } 2344 2345 static void task_numa_find_cpu(struct task_numa_env *env, 2346 long taskimp, long groupimp) 2347 { 2348 bool maymove = false; 2349 int cpu; 2350 2351 /* 2352 * If dst node has spare capacity, then check if there is an 2353 * imbalance that would be overruled by the load balancer. 2354 */ 2355 if (env->dst_stats.node_type == node_has_spare) { 2356 unsigned int imbalance; 2357 int src_running, dst_running; 2358 2359 /* 2360 * Would movement cause an imbalance? Note that if src has 2361 * more running tasks that the imbalance is ignored as the 2362 * move improves the imbalance from the perspective of the 2363 * CPU load balancer. 2364 * */ 2365 src_running = env->src_stats.nr_running - 1; 2366 dst_running = env->dst_stats.nr_running + 1; 2367 imbalance = max(0, dst_running - src_running); 2368 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2369 env->imb_numa_nr); 2370 2371 /* Use idle CPU if there is no imbalance */ 2372 if (!imbalance) { 2373 maymove = true; 2374 if (env->dst_stats.idle_cpu >= 0) { 2375 env->dst_cpu = env->dst_stats.idle_cpu; 2376 task_numa_assign(env, NULL, 0); 2377 return; 2378 } 2379 } 2380 } else { 2381 long src_load, dst_load, load; 2382 /* 2383 * If the improvement from just moving env->p direction is better 2384 * than swapping tasks around, check if a move is possible. 2385 */ 2386 load = task_h_load(env->p); 2387 dst_load = env->dst_stats.load + load; 2388 src_load = env->src_stats.load - load; 2389 maymove = !load_too_imbalanced(src_load, dst_load, env); 2390 } 2391 2392 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2393 /* Skip this CPU if the source task cannot migrate */ 2394 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2395 continue; 2396 2397 env->dst_cpu = cpu; 2398 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2399 break; 2400 } 2401 } 2402 2403 static int task_numa_migrate(struct task_struct *p) 2404 { 2405 struct task_numa_env env = { 2406 .p = p, 2407 2408 .src_cpu = task_cpu(p), 2409 .src_nid = task_node(p), 2410 2411 .imbalance_pct = 112, 2412 2413 .best_task = NULL, 2414 .best_imp = 0, 2415 .best_cpu = -1, 2416 }; 2417 unsigned long taskweight, groupweight; 2418 struct sched_domain *sd; 2419 long taskimp, groupimp; 2420 struct numa_group *ng; 2421 struct rq *best_rq; 2422 int nid, ret, dist; 2423 2424 /* 2425 * Pick the lowest SD_NUMA domain, as that would have the smallest 2426 * imbalance and would be the first to start moving tasks about. 2427 * 2428 * And we want to avoid any moving of tasks about, as that would create 2429 * random movement of tasks -- counter the numa conditions we're trying 2430 * to satisfy here. 2431 */ 2432 rcu_read_lock(); 2433 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2434 if (sd) { 2435 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2436 env.imb_numa_nr = sd->imb_numa_nr; 2437 } 2438 rcu_read_unlock(); 2439 2440 /* 2441 * Cpusets can break the scheduler domain tree into smaller 2442 * balance domains, some of which do not cross NUMA boundaries. 2443 * Tasks that are "trapped" in such domains cannot be migrated 2444 * elsewhere, so there is no point in (re)trying. 2445 */ 2446 if (unlikely(!sd)) { 2447 sched_setnuma(p, task_node(p)); 2448 return -EINVAL; 2449 } 2450 2451 env.dst_nid = p->numa_preferred_nid; 2452 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2453 taskweight = task_weight(p, env.src_nid, dist); 2454 groupweight = group_weight(p, env.src_nid, dist); 2455 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2456 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2457 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2458 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2459 2460 /* Try to find a spot on the preferred nid. */ 2461 task_numa_find_cpu(&env, taskimp, groupimp); 2462 2463 /* 2464 * Look at other nodes in these cases: 2465 * - there is no space available on the preferred_nid 2466 * - the task is part of a numa_group that is interleaved across 2467 * multiple NUMA nodes; in order to better consolidate the group, 2468 * we need to check other locations. 2469 */ 2470 ng = deref_curr_numa_group(p); 2471 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2472 for_each_node_state(nid, N_CPU) { 2473 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2474 continue; 2475 2476 dist = node_distance(env.src_nid, env.dst_nid); 2477 if (sched_numa_topology_type == NUMA_BACKPLANE && 2478 dist != env.dist) { 2479 taskweight = task_weight(p, env.src_nid, dist); 2480 groupweight = group_weight(p, env.src_nid, dist); 2481 } 2482 2483 /* Only consider nodes where both task and groups benefit */ 2484 taskimp = task_weight(p, nid, dist) - taskweight; 2485 groupimp = group_weight(p, nid, dist) - groupweight; 2486 if (taskimp < 0 && groupimp < 0) 2487 continue; 2488 2489 env.dist = dist; 2490 env.dst_nid = nid; 2491 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2492 task_numa_find_cpu(&env, taskimp, groupimp); 2493 } 2494 } 2495 2496 /* 2497 * If the task is part of a workload that spans multiple NUMA nodes, 2498 * and is migrating into one of the workload's active nodes, remember 2499 * this node as the task's preferred numa node, so the workload can 2500 * settle down. 2501 * A task that migrated to a second choice node will be better off 2502 * trying for a better one later. Do not set the preferred node here. 2503 */ 2504 if (ng) { 2505 if (env.best_cpu == -1) 2506 nid = env.src_nid; 2507 else 2508 nid = cpu_to_node(env.best_cpu); 2509 2510 if (nid != p->numa_preferred_nid) 2511 sched_setnuma(p, nid); 2512 } 2513 2514 /* No better CPU than the current one was found. */ 2515 if (env.best_cpu == -1) { 2516 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2517 return -EAGAIN; 2518 } 2519 2520 best_rq = cpu_rq(env.best_cpu); 2521 if (env.best_task == NULL) { 2522 ret = migrate_task_to(p, env.best_cpu); 2523 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2524 if (ret != 0) 2525 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2526 return ret; 2527 } 2528 2529 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2530 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2531 2532 if (ret != 0) 2533 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2534 put_task_struct(env.best_task); 2535 return ret; 2536 } 2537 2538 /* Attempt to migrate a task to a CPU on the preferred node. */ 2539 static void numa_migrate_preferred(struct task_struct *p) 2540 { 2541 unsigned long interval = HZ; 2542 2543 /* This task has no NUMA fault statistics yet */ 2544 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2545 return; 2546 2547 /* Periodically retry migrating the task to the preferred node */ 2548 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2549 p->numa_migrate_retry = jiffies + interval; 2550 2551 /* Success if task is already running on preferred CPU */ 2552 if (task_node(p) == p->numa_preferred_nid) 2553 return; 2554 2555 /* Otherwise, try migrate to a CPU on the preferred node */ 2556 task_numa_migrate(p); 2557 } 2558 2559 /* 2560 * Find out how many nodes the workload is actively running on. Do this by 2561 * tracking the nodes from which NUMA hinting faults are triggered. This can 2562 * be different from the set of nodes where the workload's memory is currently 2563 * located. 2564 */ 2565 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2566 { 2567 unsigned long faults, max_faults = 0; 2568 int nid, active_nodes = 0; 2569 2570 for_each_node_state(nid, N_CPU) { 2571 faults = group_faults_cpu(numa_group, nid); 2572 if (faults > max_faults) 2573 max_faults = faults; 2574 } 2575 2576 for_each_node_state(nid, N_CPU) { 2577 faults = group_faults_cpu(numa_group, nid); 2578 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2579 active_nodes++; 2580 } 2581 2582 numa_group->max_faults_cpu = max_faults; 2583 numa_group->active_nodes = active_nodes; 2584 } 2585 2586 /* 2587 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2588 * increments. The more local the fault statistics are, the higher the scan 2589 * period will be for the next scan window. If local/(local+remote) ratio is 2590 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2591 * the scan period will decrease. Aim for 70% local accesses. 2592 */ 2593 #define NUMA_PERIOD_SLOTS 10 2594 #define NUMA_PERIOD_THRESHOLD 7 2595 2596 /* 2597 * Increase the scan period (slow down scanning) if the majority of 2598 * our memory is already on our local node, or if the majority of 2599 * the page accesses are shared with other processes. 2600 * Otherwise, decrease the scan period. 2601 */ 2602 static void update_task_scan_period(struct task_struct *p, 2603 unsigned long shared, unsigned long private) 2604 { 2605 unsigned int period_slot; 2606 int lr_ratio, ps_ratio; 2607 int diff; 2608 2609 unsigned long remote = p->numa_faults_locality[0]; 2610 unsigned long local = p->numa_faults_locality[1]; 2611 2612 /* 2613 * If there were no record hinting faults then either the task is 2614 * completely idle or all activity is in areas that are not of interest 2615 * to automatic numa balancing. Related to that, if there were failed 2616 * migration then it implies we are migrating too quickly or the local 2617 * node is overloaded. In either case, scan slower 2618 */ 2619 if (local + shared == 0 || p->numa_faults_locality[2]) { 2620 p->numa_scan_period = min(p->numa_scan_period_max, 2621 p->numa_scan_period << 1); 2622 2623 p->mm->numa_next_scan = jiffies + 2624 msecs_to_jiffies(p->numa_scan_period); 2625 2626 return; 2627 } 2628 2629 /* 2630 * Prepare to scale scan period relative to the current period. 2631 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2632 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2633 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2634 */ 2635 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2636 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2637 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2638 2639 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2640 /* 2641 * Most memory accesses are local. There is no need to 2642 * do fast NUMA scanning, since memory is already local. 2643 */ 2644 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2645 if (!slot) 2646 slot = 1; 2647 diff = slot * period_slot; 2648 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2649 /* 2650 * Most memory accesses are shared with other tasks. 2651 * There is no point in continuing fast NUMA scanning, 2652 * since other tasks may just move the memory elsewhere. 2653 */ 2654 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2655 if (!slot) 2656 slot = 1; 2657 diff = slot * period_slot; 2658 } else { 2659 /* 2660 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2661 * yet they are not on the local NUMA node. Speed up 2662 * NUMA scanning to get the memory moved over. 2663 */ 2664 int ratio = max(lr_ratio, ps_ratio); 2665 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2666 } 2667 2668 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2669 task_scan_min(p), task_scan_max(p)); 2670 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2671 } 2672 2673 /* 2674 * Get the fraction of time the task has been running since the last 2675 * NUMA placement cycle. The scheduler keeps similar statistics, but 2676 * decays those on a 32ms period, which is orders of magnitude off 2677 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2678 * stats only if the task is so new there are no NUMA statistics yet. 2679 */ 2680 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2681 { 2682 u64 runtime, delta, now; 2683 /* Use the start of this time slice to avoid calculations. */ 2684 now = p->se.exec_start; 2685 runtime = p->se.sum_exec_runtime; 2686 2687 if (p->last_task_numa_placement) { 2688 delta = runtime - p->last_sum_exec_runtime; 2689 *period = now - p->last_task_numa_placement; 2690 2691 /* Avoid time going backwards, prevent potential divide error: */ 2692 if (unlikely((s64)*period < 0)) 2693 *period = 0; 2694 } else { 2695 delta = p->se.avg.load_sum; 2696 *period = LOAD_AVG_MAX; 2697 } 2698 2699 p->last_sum_exec_runtime = runtime; 2700 p->last_task_numa_placement = now; 2701 2702 return delta; 2703 } 2704 2705 /* 2706 * Determine the preferred nid for a task in a numa_group. This needs to 2707 * be done in a way that produces consistent results with group_weight, 2708 * otherwise workloads might not converge. 2709 */ 2710 static int preferred_group_nid(struct task_struct *p, int nid) 2711 { 2712 nodemask_t nodes; 2713 int dist; 2714 2715 /* Direct connections between all NUMA nodes. */ 2716 if (sched_numa_topology_type == NUMA_DIRECT) 2717 return nid; 2718 2719 /* 2720 * On a system with glueless mesh NUMA topology, group_weight 2721 * scores nodes according to the number of NUMA hinting faults on 2722 * both the node itself, and on nearby nodes. 2723 */ 2724 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2725 unsigned long score, max_score = 0; 2726 int node, max_node = nid; 2727 2728 dist = sched_max_numa_distance; 2729 2730 for_each_node_state(node, N_CPU) { 2731 score = group_weight(p, node, dist); 2732 if (score > max_score) { 2733 max_score = score; 2734 max_node = node; 2735 } 2736 } 2737 return max_node; 2738 } 2739 2740 /* 2741 * Finding the preferred nid in a system with NUMA backplane 2742 * interconnect topology is more involved. The goal is to locate 2743 * tasks from numa_groups near each other in the system, and 2744 * untangle workloads from different sides of the system. This requires 2745 * searching down the hierarchy of node groups, recursively searching 2746 * inside the highest scoring group of nodes. The nodemask tricks 2747 * keep the complexity of the search down. 2748 */ 2749 nodes = node_states[N_CPU]; 2750 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2751 unsigned long max_faults = 0; 2752 nodemask_t max_group = NODE_MASK_NONE; 2753 int a, b; 2754 2755 /* Are there nodes at this distance from each other? */ 2756 if (!find_numa_distance(dist)) 2757 continue; 2758 2759 for_each_node_mask(a, nodes) { 2760 unsigned long faults = 0; 2761 nodemask_t this_group; 2762 nodes_clear(this_group); 2763 2764 /* Sum group's NUMA faults; includes a==b case. */ 2765 for_each_node_mask(b, nodes) { 2766 if (node_distance(a, b) < dist) { 2767 faults += group_faults(p, b); 2768 node_set(b, this_group); 2769 node_clear(b, nodes); 2770 } 2771 } 2772 2773 /* Remember the top group. */ 2774 if (faults > max_faults) { 2775 max_faults = faults; 2776 max_group = this_group; 2777 /* 2778 * subtle: at the smallest distance there is 2779 * just one node left in each "group", the 2780 * winner is the preferred nid. 2781 */ 2782 nid = a; 2783 } 2784 } 2785 /* Next round, evaluate the nodes within max_group. */ 2786 if (!max_faults) 2787 break; 2788 nodes = max_group; 2789 } 2790 return nid; 2791 } 2792 2793 static void task_numa_placement(struct task_struct *p) 2794 { 2795 int seq, nid, max_nid = NUMA_NO_NODE; 2796 unsigned long max_faults = 0; 2797 unsigned long fault_types[2] = { 0, 0 }; 2798 unsigned long total_faults; 2799 u64 runtime, period; 2800 spinlock_t *group_lock = NULL; 2801 struct numa_group *ng; 2802 2803 /* 2804 * The p->mm->numa_scan_seq field gets updated without 2805 * exclusive access. Use READ_ONCE() here to ensure 2806 * that the field is read in a single access: 2807 */ 2808 seq = READ_ONCE(p->mm->numa_scan_seq); 2809 if (p->numa_scan_seq == seq) 2810 return; 2811 p->numa_scan_seq = seq; 2812 p->numa_scan_period_max = task_scan_max(p); 2813 2814 total_faults = p->numa_faults_locality[0] + 2815 p->numa_faults_locality[1]; 2816 runtime = numa_get_avg_runtime(p, &period); 2817 2818 /* If the task is part of a group prevent parallel updates to group stats */ 2819 ng = deref_curr_numa_group(p); 2820 if (ng) { 2821 group_lock = &ng->lock; 2822 spin_lock_irq(group_lock); 2823 } 2824 2825 /* Find the node with the highest number of faults */ 2826 for_each_online_node(nid) { 2827 /* Keep track of the offsets in numa_faults array */ 2828 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2829 unsigned long faults = 0, group_faults = 0; 2830 int priv; 2831 2832 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2833 long diff, f_diff, f_weight; 2834 2835 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2836 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2837 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2838 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2839 2840 /* Decay existing window, copy faults since last scan */ 2841 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2842 fault_types[priv] += p->numa_faults[membuf_idx]; 2843 p->numa_faults[membuf_idx] = 0; 2844 2845 /* 2846 * Normalize the faults_from, so all tasks in a group 2847 * count according to CPU use, instead of by the raw 2848 * number of faults. Tasks with little runtime have 2849 * little over-all impact on throughput, and thus their 2850 * faults are less important. 2851 */ 2852 f_weight = div64_u64(runtime << 16, period + 1); 2853 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2854 (total_faults + 1); 2855 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2856 p->numa_faults[cpubuf_idx] = 0; 2857 2858 p->numa_faults[mem_idx] += diff; 2859 p->numa_faults[cpu_idx] += f_diff; 2860 faults += p->numa_faults[mem_idx]; 2861 p->total_numa_faults += diff; 2862 if (ng) { 2863 /* 2864 * safe because we can only change our own group 2865 * 2866 * mem_idx represents the offset for a given 2867 * nid and priv in a specific region because it 2868 * is at the beginning of the numa_faults array. 2869 */ 2870 ng->faults[mem_idx] += diff; 2871 ng->faults[cpu_idx] += f_diff; 2872 ng->total_faults += diff; 2873 group_faults += ng->faults[mem_idx]; 2874 } 2875 } 2876 2877 if (!ng) { 2878 if (faults > max_faults) { 2879 max_faults = faults; 2880 max_nid = nid; 2881 } 2882 } else if (group_faults > max_faults) { 2883 max_faults = group_faults; 2884 max_nid = nid; 2885 } 2886 } 2887 2888 /* Cannot migrate task to CPU-less node */ 2889 max_nid = numa_nearest_node(max_nid, N_CPU); 2890 2891 if (ng) { 2892 numa_group_count_active_nodes(ng); 2893 spin_unlock_irq(group_lock); 2894 max_nid = preferred_group_nid(p, max_nid); 2895 } 2896 2897 if (max_faults) { 2898 /* Set the new preferred node */ 2899 if (max_nid != p->numa_preferred_nid) 2900 sched_setnuma(p, max_nid); 2901 } 2902 2903 update_task_scan_period(p, fault_types[0], fault_types[1]); 2904 } 2905 2906 static inline int get_numa_group(struct numa_group *grp) 2907 { 2908 return refcount_inc_not_zero(&grp->refcount); 2909 } 2910 2911 static inline void put_numa_group(struct numa_group *grp) 2912 { 2913 if (refcount_dec_and_test(&grp->refcount)) 2914 kfree_rcu(grp, rcu); 2915 } 2916 2917 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2918 int *priv) 2919 { 2920 struct numa_group *grp, *my_grp; 2921 struct task_struct *tsk; 2922 bool join = false; 2923 int cpu = cpupid_to_cpu(cpupid); 2924 int i; 2925 2926 if (unlikely(!deref_curr_numa_group(p))) { 2927 unsigned int size = sizeof(struct numa_group) + 2928 NR_NUMA_HINT_FAULT_STATS * 2929 nr_node_ids * sizeof(unsigned long); 2930 2931 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2932 if (!grp) 2933 return; 2934 2935 refcount_set(&grp->refcount, 1); 2936 grp->active_nodes = 1; 2937 grp->max_faults_cpu = 0; 2938 spin_lock_init(&grp->lock); 2939 grp->gid = p->pid; 2940 2941 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2942 grp->faults[i] = p->numa_faults[i]; 2943 2944 grp->total_faults = p->total_numa_faults; 2945 2946 grp->nr_tasks++; 2947 rcu_assign_pointer(p->numa_group, grp); 2948 } 2949 2950 rcu_read_lock(); 2951 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2952 2953 if (!cpupid_match_pid(tsk, cpupid)) 2954 goto no_join; 2955 2956 grp = rcu_dereference(tsk->numa_group); 2957 if (!grp) 2958 goto no_join; 2959 2960 my_grp = deref_curr_numa_group(p); 2961 if (grp == my_grp) 2962 goto no_join; 2963 2964 /* 2965 * Only join the other group if its bigger; if we're the bigger group, 2966 * the other task will join us. 2967 */ 2968 if (my_grp->nr_tasks > grp->nr_tasks) 2969 goto no_join; 2970 2971 /* 2972 * Tie-break on the grp address. 2973 */ 2974 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2975 goto no_join; 2976 2977 /* Always join threads in the same process. */ 2978 if (tsk->mm == current->mm) 2979 join = true; 2980 2981 /* Simple filter to avoid false positives due to PID collisions */ 2982 if (flags & TNF_SHARED) 2983 join = true; 2984 2985 /* Update priv based on whether false sharing was detected */ 2986 *priv = !join; 2987 2988 if (join && !get_numa_group(grp)) 2989 goto no_join; 2990 2991 rcu_read_unlock(); 2992 2993 if (!join) 2994 return; 2995 2996 WARN_ON_ONCE(irqs_disabled()); 2997 double_lock_irq(&my_grp->lock, &grp->lock); 2998 2999 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3000 my_grp->faults[i] -= p->numa_faults[i]; 3001 grp->faults[i] += p->numa_faults[i]; 3002 } 3003 my_grp->total_faults -= p->total_numa_faults; 3004 grp->total_faults += p->total_numa_faults; 3005 3006 my_grp->nr_tasks--; 3007 grp->nr_tasks++; 3008 3009 spin_unlock(&my_grp->lock); 3010 spin_unlock_irq(&grp->lock); 3011 3012 rcu_assign_pointer(p->numa_group, grp); 3013 3014 put_numa_group(my_grp); 3015 return; 3016 3017 no_join: 3018 rcu_read_unlock(); 3019 return; 3020 } 3021 3022 /* 3023 * Get rid of NUMA statistics associated with a task (either current or dead). 3024 * If @final is set, the task is dead and has reached refcount zero, so we can 3025 * safely free all relevant data structures. Otherwise, there might be 3026 * concurrent reads from places like load balancing and procfs, and we should 3027 * reset the data back to default state without freeing ->numa_faults. 3028 */ 3029 void task_numa_free(struct task_struct *p, bool final) 3030 { 3031 /* safe: p either is current or is being freed by current */ 3032 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3033 unsigned long *numa_faults = p->numa_faults; 3034 unsigned long flags; 3035 int i; 3036 3037 if (!numa_faults) 3038 return; 3039 3040 if (grp) { 3041 spin_lock_irqsave(&grp->lock, flags); 3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3043 grp->faults[i] -= p->numa_faults[i]; 3044 grp->total_faults -= p->total_numa_faults; 3045 3046 grp->nr_tasks--; 3047 spin_unlock_irqrestore(&grp->lock, flags); 3048 RCU_INIT_POINTER(p->numa_group, NULL); 3049 put_numa_group(grp); 3050 } 3051 3052 if (final) { 3053 p->numa_faults = NULL; 3054 kfree(numa_faults); 3055 } else { 3056 p->total_numa_faults = 0; 3057 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3058 numa_faults[i] = 0; 3059 } 3060 } 3061 3062 /* 3063 * Got a PROT_NONE fault for a page on @node. 3064 */ 3065 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3066 { 3067 struct task_struct *p = current; 3068 bool migrated = flags & TNF_MIGRATED; 3069 int cpu_node = task_node(current); 3070 int local = !!(flags & TNF_FAULT_LOCAL); 3071 struct numa_group *ng; 3072 int priv; 3073 3074 if (!static_branch_likely(&sched_numa_balancing)) 3075 return; 3076 3077 /* for example, ksmd faulting in a user's mm */ 3078 if (!p->mm) 3079 return; 3080 3081 /* 3082 * NUMA faults statistics are unnecessary for the slow memory 3083 * node for memory tiering mode. 3084 */ 3085 if (!node_is_toptier(mem_node) && 3086 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3087 !cpupid_valid(last_cpupid))) 3088 return; 3089 3090 /* Allocate buffer to track faults on a per-node basis */ 3091 if (unlikely(!p->numa_faults)) { 3092 int size = sizeof(*p->numa_faults) * 3093 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3094 3095 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3096 if (!p->numa_faults) 3097 return; 3098 3099 p->total_numa_faults = 0; 3100 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3101 } 3102 3103 /* 3104 * First accesses are treated as private, otherwise consider accesses 3105 * to be private if the accessing pid has not changed 3106 */ 3107 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3108 priv = 1; 3109 } else { 3110 priv = cpupid_match_pid(p, last_cpupid); 3111 if (!priv && !(flags & TNF_NO_GROUP)) 3112 task_numa_group(p, last_cpupid, flags, &priv); 3113 } 3114 3115 /* 3116 * If a workload spans multiple NUMA nodes, a shared fault that 3117 * occurs wholly within the set of nodes that the workload is 3118 * actively using should be counted as local. This allows the 3119 * scan rate to slow down when a workload has settled down. 3120 */ 3121 ng = deref_curr_numa_group(p); 3122 if (!priv && !local && ng && ng->active_nodes > 1 && 3123 numa_is_active_node(cpu_node, ng) && 3124 numa_is_active_node(mem_node, ng)) 3125 local = 1; 3126 3127 /* 3128 * Retry to migrate task to preferred node periodically, in case it 3129 * previously failed, or the scheduler moved us. 3130 */ 3131 if (time_after(jiffies, p->numa_migrate_retry)) { 3132 task_numa_placement(p); 3133 numa_migrate_preferred(p); 3134 } 3135 3136 if (migrated) 3137 p->numa_pages_migrated += pages; 3138 if (flags & TNF_MIGRATE_FAIL) 3139 p->numa_faults_locality[2] += pages; 3140 3141 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3142 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3143 p->numa_faults_locality[local] += pages; 3144 } 3145 3146 static void reset_ptenuma_scan(struct task_struct *p) 3147 { 3148 /* 3149 * We only did a read acquisition of the mmap sem, so 3150 * p->mm->numa_scan_seq is written to without exclusive access 3151 * and the update is not guaranteed to be atomic. That's not 3152 * much of an issue though, since this is just used for 3153 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3154 * expensive, to avoid any form of compiler optimizations: 3155 */ 3156 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3157 p->mm->numa_scan_offset = 0; 3158 } 3159 3160 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3161 { 3162 unsigned long pids; 3163 /* 3164 * Allow unconditional access first two times, so that all the (pages) 3165 * of VMAs get prot_none fault introduced irrespective of accesses. 3166 * This is also done to avoid any side effect of task scanning 3167 * amplifying the unfairness of disjoint set of VMAs' access. 3168 */ 3169 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3170 return true; 3171 3172 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3173 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3174 return true; 3175 3176 /* 3177 * Complete a scan that has already started regardless of PID access, or 3178 * some VMAs may never be scanned in multi-threaded applications: 3179 */ 3180 if (mm->numa_scan_offset > vma->vm_start) { 3181 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3182 return true; 3183 } 3184 3185 return false; 3186 } 3187 3188 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3189 3190 /* 3191 * The expensive part of numa migration is done from task_work context. 3192 * Triggered from task_tick_numa(). 3193 */ 3194 static void task_numa_work(struct callback_head *work) 3195 { 3196 unsigned long migrate, next_scan, now = jiffies; 3197 struct task_struct *p = current; 3198 struct mm_struct *mm = p->mm; 3199 u64 runtime = p->se.sum_exec_runtime; 3200 struct vm_area_struct *vma; 3201 unsigned long start, end; 3202 unsigned long nr_pte_updates = 0; 3203 long pages, virtpages; 3204 struct vma_iterator vmi; 3205 bool vma_pids_skipped; 3206 bool vma_pids_forced = false; 3207 3208 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3209 3210 work->next = work; 3211 /* 3212 * Who cares about NUMA placement when they're dying. 3213 * 3214 * NOTE: make sure not to dereference p->mm before this check, 3215 * exit_task_work() happens _after_ exit_mm() so we could be called 3216 * without p->mm even though we still had it when we enqueued this 3217 * work. 3218 */ 3219 if (p->flags & PF_EXITING) 3220 return; 3221 3222 if (!mm->numa_next_scan) { 3223 mm->numa_next_scan = now + 3224 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3225 } 3226 3227 /* 3228 * Enforce maximal scan/migration frequency.. 3229 */ 3230 migrate = mm->numa_next_scan; 3231 if (time_before(now, migrate)) 3232 return; 3233 3234 if (p->numa_scan_period == 0) { 3235 p->numa_scan_period_max = task_scan_max(p); 3236 p->numa_scan_period = task_scan_start(p); 3237 } 3238 3239 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3240 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3241 return; 3242 3243 /* 3244 * Delay this task enough that another task of this mm will likely win 3245 * the next time around. 3246 */ 3247 p->node_stamp += 2 * TICK_NSEC; 3248 3249 pages = sysctl_numa_balancing_scan_size; 3250 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3251 virtpages = pages * 8; /* Scan up to this much virtual space */ 3252 if (!pages) 3253 return; 3254 3255 3256 if (!mmap_read_trylock(mm)) 3257 return; 3258 3259 /* 3260 * VMAs are skipped if the current PID has not trapped a fault within 3261 * the VMA recently. Allow scanning to be forced if there is no 3262 * suitable VMA remaining. 3263 */ 3264 vma_pids_skipped = false; 3265 3266 retry_pids: 3267 start = mm->numa_scan_offset; 3268 vma_iter_init(&vmi, mm, start); 3269 vma = vma_next(&vmi); 3270 if (!vma) { 3271 reset_ptenuma_scan(p); 3272 start = 0; 3273 vma_iter_set(&vmi, start); 3274 vma = vma_next(&vmi); 3275 } 3276 3277 do { 3278 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3279 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3280 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3281 continue; 3282 } 3283 3284 /* 3285 * Shared library pages mapped by multiple processes are not 3286 * migrated as it is expected they are cache replicated. Avoid 3287 * hinting faults in read-only file-backed mappings or the vdso 3288 * as migrating the pages will be of marginal benefit. 3289 */ 3290 if (!vma->vm_mm || 3291 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3292 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3293 continue; 3294 } 3295 3296 /* 3297 * Skip inaccessible VMAs to avoid any confusion between 3298 * PROT_NONE and NUMA hinting ptes 3299 */ 3300 if (!vma_is_accessible(vma)) { 3301 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3302 continue; 3303 } 3304 3305 /* Initialise new per-VMA NUMAB state. */ 3306 if (!vma->numab_state) { 3307 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3308 GFP_KERNEL); 3309 if (!vma->numab_state) 3310 continue; 3311 3312 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3313 3314 vma->numab_state->next_scan = now + 3315 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3316 3317 /* Reset happens after 4 times scan delay of scan start */ 3318 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3319 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3320 3321 /* 3322 * Ensure prev_scan_seq does not match numa_scan_seq, 3323 * to prevent VMAs being skipped prematurely on the 3324 * first scan: 3325 */ 3326 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3327 } 3328 3329 /* 3330 * Scanning the VMA's of short lived tasks add more overhead. So 3331 * delay the scan for new VMAs. 3332 */ 3333 if (mm->numa_scan_seq && time_before(jiffies, 3334 vma->numab_state->next_scan)) { 3335 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3336 continue; 3337 } 3338 3339 /* RESET access PIDs regularly for old VMAs. */ 3340 if (mm->numa_scan_seq && 3341 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3342 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3343 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3344 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3345 vma->numab_state->pids_active[1] = 0; 3346 } 3347 3348 /* Do not rescan VMAs twice within the same sequence. */ 3349 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3350 mm->numa_scan_offset = vma->vm_end; 3351 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3352 continue; 3353 } 3354 3355 /* 3356 * Do not scan the VMA if task has not accessed it, unless no other 3357 * VMA candidate exists. 3358 */ 3359 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3360 vma_pids_skipped = true; 3361 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3362 continue; 3363 } 3364 3365 do { 3366 start = max(start, vma->vm_start); 3367 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3368 end = min(end, vma->vm_end); 3369 nr_pte_updates = change_prot_numa(vma, start, end); 3370 3371 /* 3372 * Try to scan sysctl_numa_balancing_size worth of 3373 * hpages that have at least one present PTE that 3374 * is not already pte-numa. If the VMA contains 3375 * areas that are unused or already full of prot_numa 3376 * PTEs, scan up to virtpages, to skip through those 3377 * areas faster. 3378 */ 3379 if (nr_pte_updates) 3380 pages -= (end - start) >> PAGE_SHIFT; 3381 virtpages -= (end - start) >> PAGE_SHIFT; 3382 3383 start = end; 3384 if (pages <= 0 || virtpages <= 0) 3385 goto out; 3386 3387 cond_resched(); 3388 } while (end != vma->vm_end); 3389 3390 /* VMA scan is complete, do not scan until next sequence. */ 3391 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3392 3393 /* 3394 * Only force scan within one VMA at a time, to limit the 3395 * cost of scanning a potentially uninteresting VMA. 3396 */ 3397 if (vma_pids_forced) 3398 break; 3399 } for_each_vma(vmi, vma); 3400 3401 /* 3402 * If no VMAs are remaining and VMAs were skipped due to the PID 3403 * not accessing the VMA previously, then force a scan to ensure 3404 * forward progress: 3405 */ 3406 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3407 vma_pids_forced = true; 3408 goto retry_pids; 3409 } 3410 3411 out: 3412 /* 3413 * It is possible to reach the end of the VMA list but the last few 3414 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3415 * would find the !migratable VMA on the next scan but not reset the 3416 * scanner to the start so check it now. 3417 */ 3418 if (vma) 3419 mm->numa_scan_offset = start; 3420 else 3421 reset_ptenuma_scan(p); 3422 mmap_read_unlock(mm); 3423 3424 /* 3425 * Make sure tasks use at least 32x as much time to run other code 3426 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3427 * Usually update_task_scan_period slows down scanning enough; on an 3428 * overloaded system we need to limit overhead on a per task basis. 3429 */ 3430 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3431 u64 diff = p->se.sum_exec_runtime - runtime; 3432 p->node_stamp += 32 * diff; 3433 } 3434 } 3435 3436 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3437 { 3438 int mm_users = 0; 3439 struct mm_struct *mm = p->mm; 3440 3441 if (mm) { 3442 mm_users = atomic_read(&mm->mm_users); 3443 if (mm_users == 1) { 3444 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3445 mm->numa_scan_seq = 0; 3446 } 3447 } 3448 p->node_stamp = 0; 3449 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3450 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3451 p->numa_migrate_retry = 0; 3452 /* Protect against double add, see task_tick_numa and task_numa_work */ 3453 p->numa_work.next = &p->numa_work; 3454 p->numa_faults = NULL; 3455 p->numa_pages_migrated = 0; 3456 p->total_numa_faults = 0; 3457 RCU_INIT_POINTER(p->numa_group, NULL); 3458 p->last_task_numa_placement = 0; 3459 p->last_sum_exec_runtime = 0; 3460 3461 init_task_work(&p->numa_work, task_numa_work); 3462 3463 /* New address space, reset the preferred nid */ 3464 if (!(clone_flags & CLONE_VM)) { 3465 p->numa_preferred_nid = NUMA_NO_NODE; 3466 return; 3467 } 3468 3469 /* 3470 * New thread, keep existing numa_preferred_nid which should be copied 3471 * already by arch_dup_task_struct but stagger when scans start. 3472 */ 3473 if (mm) { 3474 unsigned int delay; 3475 3476 delay = min_t(unsigned int, task_scan_max(current), 3477 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3478 delay += 2 * TICK_NSEC; 3479 p->node_stamp = delay; 3480 } 3481 } 3482 3483 /* 3484 * Drive the periodic memory faults.. 3485 */ 3486 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3487 { 3488 struct callback_head *work = &curr->numa_work; 3489 u64 period, now; 3490 3491 /* 3492 * We don't care about NUMA placement if we don't have memory. 3493 */ 3494 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3495 return; 3496 3497 /* 3498 * Using runtime rather than walltime has the dual advantage that 3499 * we (mostly) drive the selection from busy threads and that the 3500 * task needs to have done some actual work before we bother with 3501 * NUMA placement. 3502 */ 3503 now = curr->se.sum_exec_runtime; 3504 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3505 3506 if (now > curr->node_stamp + period) { 3507 if (!curr->node_stamp) 3508 curr->numa_scan_period = task_scan_start(curr); 3509 curr->node_stamp += period; 3510 3511 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3512 task_work_add(curr, work, TWA_RESUME); 3513 } 3514 } 3515 3516 static void update_scan_period(struct task_struct *p, int new_cpu) 3517 { 3518 int src_nid = cpu_to_node(task_cpu(p)); 3519 int dst_nid = cpu_to_node(new_cpu); 3520 3521 if (!static_branch_likely(&sched_numa_balancing)) 3522 return; 3523 3524 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3525 return; 3526 3527 if (src_nid == dst_nid) 3528 return; 3529 3530 /* 3531 * Allow resets if faults have been trapped before one scan 3532 * has completed. This is most likely due to a new task that 3533 * is pulled cross-node due to wakeups or load balancing. 3534 */ 3535 if (p->numa_scan_seq) { 3536 /* 3537 * Avoid scan adjustments if moving to the preferred 3538 * node or if the task was not previously running on 3539 * the preferred node. 3540 */ 3541 if (dst_nid == p->numa_preferred_nid || 3542 (p->numa_preferred_nid != NUMA_NO_NODE && 3543 src_nid != p->numa_preferred_nid)) 3544 return; 3545 } 3546 3547 p->numa_scan_period = task_scan_start(p); 3548 } 3549 3550 #else 3551 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3552 { 3553 } 3554 3555 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3556 { 3557 } 3558 3559 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3560 { 3561 } 3562 3563 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3564 { 3565 } 3566 3567 #endif /* CONFIG_NUMA_BALANCING */ 3568 3569 static void 3570 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3571 { 3572 update_load_add(&cfs_rq->load, se->load.weight); 3573 #ifdef CONFIG_SMP 3574 if (entity_is_task(se)) { 3575 struct rq *rq = rq_of(cfs_rq); 3576 3577 account_numa_enqueue(rq, task_of(se)); 3578 list_add(&se->group_node, &rq->cfs_tasks); 3579 } 3580 #endif 3581 cfs_rq->nr_running++; 3582 if (se_is_idle(se)) 3583 cfs_rq->idle_nr_running++; 3584 } 3585 3586 static void 3587 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3588 { 3589 update_load_sub(&cfs_rq->load, se->load.weight); 3590 #ifdef CONFIG_SMP 3591 if (entity_is_task(se)) { 3592 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3593 list_del_init(&se->group_node); 3594 } 3595 #endif 3596 cfs_rq->nr_running--; 3597 if (se_is_idle(se)) 3598 cfs_rq->idle_nr_running--; 3599 } 3600 3601 /* 3602 * Signed add and clamp on underflow. 3603 * 3604 * Explicitly do a load-store to ensure the intermediate value never hits 3605 * memory. This allows lockless observations without ever seeing the negative 3606 * values. 3607 */ 3608 #define add_positive(_ptr, _val) do { \ 3609 typeof(_ptr) ptr = (_ptr); \ 3610 typeof(_val) val = (_val); \ 3611 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3612 \ 3613 res = var + val; \ 3614 \ 3615 if (val < 0 && res > var) \ 3616 res = 0; \ 3617 \ 3618 WRITE_ONCE(*ptr, res); \ 3619 } while (0) 3620 3621 /* 3622 * Unsigned subtract and clamp on underflow. 3623 * 3624 * Explicitly do a load-store to ensure the intermediate value never hits 3625 * memory. This allows lockless observations without ever seeing the negative 3626 * values. 3627 */ 3628 #define sub_positive(_ptr, _val) do { \ 3629 typeof(_ptr) ptr = (_ptr); \ 3630 typeof(*ptr) val = (_val); \ 3631 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3632 res = var - val; \ 3633 if (res > var) \ 3634 res = 0; \ 3635 WRITE_ONCE(*ptr, res); \ 3636 } while (0) 3637 3638 /* 3639 * Remove and clamp on negative, from a local variable. 3640 * 3641 * A variant of sub_positive(), which does not use explicit load-store 3642 * and is thus optimized for local variable updates. 3643 */ 3644 #define lsub_positive(_ptr, _val) do { \ 3645 typeof(_ptr) ptr = (_ptr); \ 3646 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3647 } while (0) 3648 3649 #ifdef CONFIG_SMP 3650 static inline void 3651 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3652 { 3653 cfs_rq->avg.load_avg += se->avg.load_avg; 3654 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3655 } 3656 3657 static inline void 3658 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3659 { 3660 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3661 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3662 /* See update_cfs_rq_load_avg() */ 3663 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3664 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3665 } 3666 #else 3667 static inline void 3668 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3669 static inline void 3670 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3671 #endif 3672 3673 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se, 3674 unsigned long weight) 3675 { 3676 unsigned long old_weight = se->load.weight; 3677 u64 avruntime = avg_vruntime(cfs_rq); 3678 s64 vlag, vslice; 3679 3680 /* 3681 * VRUNTIME 3682 * ======== 3683 * 3684 * COROLLARY #1: The virtual runtime of the entity needs to be 3685 * adjusted if re-weight at !0-lag point. 3686 * 3687 * Proof: For contradiction assume this is not true, so we can 3688 * re-weight without changing vruntime at !0-lag point. 3689 * 3690 * Weight VRuntime Avg-VRuntime 3691 * before w v V 3692 * after w' v' V' 3693 * 3694 * Since lag needs to be preserved through re-weight: 3695 * 3696 * lag = (V - v)*w = (V'- v')*w', where v = v' 3697 * ==> V' = (V - v)*w/w' + v (1) 3698 * 3699 * Let W be the total weight of the entities before reweight, 3700 * since V' is the new weighted average of entities: 3701 * 3702 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3703 * 3704 * by using (1) & (2) we obtain: 3705 * 3706 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3707 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3708 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3709 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3710 * 3711 * Since we are doing at !0-lag point which means V != v, we 3712 * can simplify (3): 3713 * 3714 * ==> W / (W + w' - w) = w / w' 3715 * ==> Ww' = Ww + ww' - ww 3716 * ==> W * (w' - w) = w * (w' - w) 3717 * ==> W = w (re-weight indicates w' != w) 3718 * 3719 * So the cfs_rq contains only one entity, hence vruntime of 3720 * the entity @v should always equal to the cfs_rq's weighted 3721 * average vruntime @V, which means we will always re-weight 3722 * at 0-lag point, thus breach assumption. Proof completed. 3723 * 3724 * 3725 * COROLLARY #2: Re-weight does NOT affect weighted average 3726 * vruntime of all the entities. 3727 * 3728 * Proof: According to corollary #1, Eq. (1) should be: 3729 * 3730 * (V - v)*w = (V' - v')*w' 3731 * ==> v' = V' - (V - v)*w/w' (4) 3732 * 3733 * According to the weighted average formula, we have: 3734 * 3735 * V' = (WV - wv + w'v') / (W - w + w') 3736 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3737 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3738 * = (WV + w'V' - Vw) / (W - w + w') 3739 * 3740 * ==> V'*(W - w + w') = WV + w'V' - Vw 3741 * ==> V' * (W - w) = (W - w) * V (5) 3742 * 3743 * If the entity is the only one in the cfs_rq, then reweight 3744 * always occurs at 0-lag point, so V won't change. Or else 3745 * there are other entities, hence W != w, then Eq. (5) turns 3746 * into V' = V. So V won't change in either case, proof done. 3747 * 3748 * 3749 * So according to corollary #1 & #2, the effect of re-weight 3750 * on vruntime should be: 3751 * 3752 * v' = V' - (V - v) * w / w' (4) 3753 * = V - (V - v) * w / w' 3754 * = V - vl * w / w' 3755 * = V - vl' 3756 */ 3757 if (avruntime != se->vruntime) { 3758 vlag = (s64)(avruntime - se->vruntime); 3759 vlag = div_s64(vlag * old_weight, weight); 3760 se->vruntime = avruntime - vlag; 3761 } 3762 3763 /* 3764 * DEADLINE 3765 * ======== 3766 * 3767 * When the weight changes, the virtual time slope changes and 3768 * we should adjust the relative virtual deadline accordingly. 3769 * 3770 * d' = v' + (d - v)*w/w' 3771 * = V' - (V - v)*w/w' + (d - v)*w/w' 3772 * = V - (V - v)*w/w' + (d - v)*w/w' 3773 * = V + (d - V)*w/w' 3774 */ 3775 vslice = (s64)(se->deadline - avruntime); 3776 vslice = div_s64(vslice * old_weight, weight); 3777 se->deadline = avruntime + vslice; 3778 } 3779 3780 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3781 unsigned long weight) 3782 { 3783 bool curr = cfs_rq->curr == se; 3784 3785 if (se->on_rq) { 3786 /* commit outstanding execution time */ 3787 if (curr) 3788 update_curr(cfs_rq); 3789 else 3790 __dequeue_entity(cfs_rq, se); 3791 update_load_sub(&cfs_rq->load, se->load.weight); 3792 } 3793 dequeue_load_avg(cfs_rq, se); 3794 3795 if (!se->on_rq) { 3796 /* 3797 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3798 * we need to scale se->vlag when w_i changes. 3799 */ 3800 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3801 } else { 3802 reweight_eevdf(cfs_rq, se, weight); 3803 } 3804 3805 update_load_set(&se->load, weight); 3806 3807 #ifdef CONFIG_SMP 3808 do { 3809 u32 divider = get_pelt_divider(&se->avg); 3810 3811 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3812 } while (0); 3813 #endif 3814 3815 enqueue_load_avg(cfs_rq, se); 3816 if (se->on_rq) { 3817 update_load_add(&cfs_rq->load, se->load.weight); 3818 if (!curr) 3819 __enqueue_entity(cfs_rq, se); 3820 3821 /* 3822 * The entity's vruntime has been adjusted, so let's check 3823 * whether the rq-wide min_vruntime needs updated too. Since 3824 * the calculations above require stable min_vruntime rather 3825 * than up-to-date one, we do the update at the end of the 3826 * reweight process. 3827 */ 3828 update_min_vruntime(cfs_rq); 3829 } 3830 } 3831 3832 void reweight_task(struct task_struct *p, int prio) 3833 { 3834 struct sched_entity *se = &p->se; 3835 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3836 struct load_weight *load = &se->load; 3837 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3838 3839 reweight_entity(cfs_rq, se, weight); 3840 load->inv_weight = sched_prio_to_wmult[prio]; 3841 } 3842 3843 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3844 3845 #ifdef CONFIG_FAIR_GROUP_SCHED 3846 #ifdef CONFIG_SMP 3847 /* 3848 * All this does is approximate the hierarchical proportion which includes that 3849 * global sum we all love to hate. 3850 * 3851 * That is, the weight of a group entity, is the proportional share of the 3852 * group weight based on the group runqueue weights. That is: 3853 * 3854 * tg->weight * grq->load.weight 3855 * ge->load.weight = ----------------------------- (1) 3856 * \Sum grq->load.weight 3857 * 3858 * Now, because computing that sum is prohibitively expensive to compute (been 3859 * there, done that) we approximate it with this average stuff. The average 3860 * moves slower and therefore the approximation is cheaper and more stable. 3861 * 3862 * So instead of the above, we substitute: 3863 * 3864 * grq->load.weight -> grq->avg.load_avg (2) 3865 * 3866 * which yields the following: 3867 * 3868 * tg->weight * grq->avg.load_avg 3869 * ge->load.weight = ------------------------------ (3) 3870 * tg->load_avg 3871 * 3872 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3873 * 3874 * That is shares_avg, and it is right (given the approximation (2)). 3875 * 3876 * The problem with it is that because the average is slow -- it was designed 3877 * to be exactly that of course -- this leads to transients in boundary 3878 * conditions. In specific, the case where the group was idle and we start the 3879 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3880 * yielding bad latency etc.. 3881 * 3882 * Now, in that special case (1) reduces to: 3883 * 3884 * tg->weight * grq->load.weight 3885 * ge->load.weight = ----------------------------- = tg->weight (4) 3886 * grp->load.weight 3887 * 3888 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3889 * 3890 * So what we do is modify our approximation (3) to approach (4) in the (near) 3891 * UP case, like: 3892 * 3893 * ge->load.weight = 3894 * 3895 * tg->weight * grq->load.weight 3896 * --------------------------------------------------- (5) 3897 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3898 * 3899 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3900 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3901 * 3902 * 3903 * tg->weight * grq->load.weight 3904 * ge->load.weight = ----------------------------- (6) 3905 * tg_load_avg' 3906 * 3907 * Where: 3908 * 3909 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3910 * max(grq->load.weight, grq->avg.load_avg) 3911 * 3912 * And that is shares_weight and is icky. In the (near) UP case it approaches 3913 * (4) while in the normal case it approaches (3). It consistently 3914 * overestimates the ge->load.weight and therefore: 3915 * 3916 * \Sum ge->load.weight >= tg->weight 3917 * 3918 * hence icky! 3919 */ 3920 static long calc_group_shares(struct cfs_rq *cfs_rq) 3921 { 3922 long tg_weight, tg_shares, load, shares; 3923 struct task_group *tg = cfs_rq->tg; 3924 3925 tg_shares = READ_ONCE(tg->shares); 3926 3927 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3928 3929 tg_weight = atomic_long_read(&tg->load_avg); 3930 3931 /* Ensure tg_weight >= load */ 3932 tg_weight -= cfs_rq->tg_load_avg_contrib; 3933 tg_weight += load; 3934 3935 shares = (tg_shares * load); 3936 if (tg_weight) 3937 shares /= tg_weight; 3938 3939 /* 3940 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3941 * of a group with small tg->shares value. It is a floor value which is 3942 * assigned as a minimum load.weight to the sched_entity representing 3943 * the group on a CPU. 3944 * 3945 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3946 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3947 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3948 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3949 * instead of 0. 3950 */ 3951 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3952 } 3953 #endif /* CONFIG_SMP */ 3954 3955 /* 3956 * Recomputes the group entity based on the current state of its group 3957 * runqueue. 3958 */ 3959 static void update_cfs_group(struct sched_entity *se) 3960 { 3961 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3962 long shares; 3963 3964 if (!gcfs_rq) 3965 return; 3966 3967 if (throttled_hierarchy(gcfs_rq)) 3968 return; 3969 3970 #ifndef CONFIG_SMP 3971 shares = READ_ONCE(gcfs_rq->tg->shares); 3972 #else 3973 shares = calc_group_shares(gcfs_rq); 3974 #endif 3975 if (unlikely(se->load.weight != shares)) 3976 reweight_entity(cfs_rq_of(se), se, shares); 3977 } 3978 3979 #else /* CONFIG_FAIR_GROUP_SCHED */ 3980 static inline void update_cfs_group(struct sched_entity *se) 3981 { 3982 } 3983 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3984 3985 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3986 { 3987 struct rq *rq = rq_of(cfs_rq); 3988 3989 if (&rq->cfs == cfs_rq) { 3990 /* 3991 * There are a few boundary cases this might miss but it should 3992 * get called often enough that that should (hopefully) not be 3993 * a real problem. 3994 * 3995 * It will not get called when we go idle, because the idle 3996 * thread is a different class (!fair), nor will the utilization 3997 * number include things like RT tasks. 3998 * 3999 * As is, the util number is not freq-invariant (we'd have to 4000 * implement arch_scale_freq_capacity() for that). 4001 * 4002 * See cpu_util_cfs(). 4003 */ 4004 cpufreq_update_util(rq, flags); 4005 } 4006 } 4007 4008 #ifdef CONFIG_SMP 4009 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4010 { 4011 if (sa->load_sum) 4012 return false; 4013 4014 if (sa->util_sum) 4015 return false; 4016 4017 if (sa->runnable_sum) 4018 return false; 4019 4020 /* 4021 * _avg must be null when _sum are null because _avg = _sum / divider 4022 * Make sure that rounding and/or propagation of PELT values never 4023 * break this. 4024 */ 4025 SCHED_WARN_ON(sa->load_avg || 4026 sa->util_avg || 4027 sa->runnable_avg); 4028 4029 return true; 4030 } 4031 4032 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4033 { 4034 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4035 cfs_rq->last_update_time_copy); 4036 } 4037 #ifdef CONFIG_FAIR_GROUP_SCHED 4038 /* 4039 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4040 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4041 * bottom-up, we only have to test whether the cfs_rq before us on the list 4042 * is our child. 4043 * If cfs_rq is not on the list, test whether a child needs its to be added to 4044 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4045 */ 4046 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4047 { 4048 struct cfs_rq *prev_cfs_rq; 4049 struct list_head *prev; 4050 4051 if (cfs_rq->on_list) { 4052 prev = cfs_rq->leaf_cfs_rq_list.prev; 4053 } else { 4054 struct rq *rq = rq_of(cfs_rq); 4055 4056 prev = rq->tmp_alone_branch; 4057 } 4058 4059 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4060 4061 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4062 } 4063 4064 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4065 { 4066 if (cfs_rq->load.weight) 4067 return false; 4068 4069 if (!load_avg_is_decayed(&cfs_rq->avg)) 4070 return false; 4071 4072 if (child_cfs_rq_on_list(cfs_rq)) 4073 return false; 4074 4075 return true; 4076 } 4077 4078 /** 4079 * update_tg_load_avg - update the tg's load avg 4080 * @cfs_rq: the cfs_rq whose avg changed 4081 * 4082 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4083 * However, because tg->load_avg is a global value there are performance 4084 * considerations. 4085 * 4086 * In order to avoid having to look at the other cfs_rq's, we use a 4087 * differential update where we store the last value we propagated. This in 4088 * turn allows skipping updates if the differential is 'small'. 4089 * 4090 * Updating tg's load_avg is necessary before update_cfs_share(). 4091 */ 4092 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4093 { 4094 long delta; 4095 u64 now; 4096 4097 /* 4098 * No need to update load_avg for root_task_group as it is not used. 4099 */ 4100 if (cfs_rq->tg == &root_task_group) 4101 return; 4102 4103 /* rq has been offline and doesn't contribute to the share anymore: */ 4104 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4105 return; 4106 4107 /* 4108 * For migration heavy workloads, access to tg->load_avg can be 4109 * unbound. Limit the update rate to at most once per ms. 4110 */ 4111 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4112 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4113 return; 4114 4115 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4116 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4117 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4118 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4119 cfs_rq->last_update_tg_load_avg = now; 4120 } 4121 } 4122 4123 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4124 { 4125 long delta; 4126 u64 now; 4127 4128 /* 4129 * No need to update load_avg for root_task_group, as it is not used. 4130 */ 4131 if (cfs_rq->tg == &root_task_group) 4132 return; 4133 4134 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4135 delta = 0 - cfs_rq->tg_load_avg_contrib; 4136 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4137 cfs_rq->tg_load_avg_contrib = 0; 4138 cfs_rq->last_update_tg_load_avg = now; 4139 } 4140 4141 /* CPU offline callback: */ 4142 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4143 { 4144 struct task_group *tg; 4145 4146 lockdep_assert_rq_held(rq); 4147 4148 /* 4149 * The rq clock has already been updated in 4150 * set_rq_offline(), so we should skip updating 4151 * the rq clock again in unthrottle_cfs_rq(). 4152 */ 4153 rq_clock_start_loop_update(rq); 4154 4155 rcu_read_lock(); 4156 list_for_each_entry_rcu(tg, &task_groups, list) { 4157 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4158 4159 clear_tg_load_avg(cfs_rq); 4160 } 4161 rcu_read_unlock(); 4162 4163 rq_clock_stop_loop_update(rq); 4164 } 4165 4166 /* 4167 * Called within set_task_rq() right before setting a task's CPU. The 4168 * caller only guarantees p->pi_lock is held; no other assumptions, 4169 * including the state of rq->lock, should be made. 4170 */ 4171 void set_task_rq_fair(struct sched_entity *se, 4172 struct cfs_rq *prev, struct cfs_rq *next) 4173 { 4174 u64 p_last_update_time; 4175 u64 n_last_update_time; 4176 4177 if (!sched_feat(ATTACH_AGE_LOAD)) 4178 return; 4179 4180 /* 4181 * We are supposed to update the task to "current" time, then its up to 4182 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4183 * getting what current time is, so simply throw away the out-of-date 4184 * time. This will result in the wakee task is less decayed, but giving 4185 * the wakee more load sounds not bad. 4186 */ 4187 if (!(se->avg.last_update_time && prev)) 4188 return; 4189 4190 p_last_update_time = cfs_rq_last_update_time(prev); 4191 n_last_update_time = cfs_rq_last_update_time(next); 4192 4193 __update_load_avg_blocked_se(p_last_update_time, se); 4194 se->avg.last_update_time = n_last_update_time; 4195 } 4196 4197 /* 4198 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4199 * propagate its contribution. The key to this propagation is the invariant 4200 * that for each group: 4201 * 4202 * ge->avg == grq->avg (1) 4203 * 4204 * _IFF_ we look at the pure running and runnable sums. Because they 4205 * represent the very same entity, just at different points in the hierarchy. 4206 * 4207 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4208 * and simply copies the running/runnable sum over (but still wrong, because 4209 * the group entity and group rq do not have their PELT windows aligned). 4210 * 4211 * However, update_tg_cfs_load() is more complex. So we have: 4212 * 4213 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4214 * 4215 * And since, like util, the runnable part should be directly transferable, 4216 * the following would _appear_ to be the straight forward approach: 4217 * 4218 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4219 * 4220 * And per (1) we have: 4221 * 4222 * ge->avg.runnable_avg == grq->avg.runnable_avg 4223 * 4224 * Which gives: 4225 * 4226 * ge->load.weight * grq->avg.load_avg 4227 * ge->avg.load_avg = ----------------------------------- (4) 4228 * grq->load.weight 4229 * 4230 * Except that is wrong! 4231 * 4232 * Because while for entities historical weight is not important and we 4233 * really only care about our future and therefore can consider a pure 4234 * runnable sum, runqueues can NOT do this. 4235 * 4236 * We specifically want runqueues to have a load_avg that includes 4237 * historical weights. Those represent the blocked load, the load we expect 4238 * to (shortly) return to us. This only works by keeping the weights as 4239 * integral part of the sum. We therefore cannot decompose as per (3). 4240 * 4241 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4242 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4243 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4244 * runnable section of these tasks overlap (or not). If they were to perfectly 4245 * align the rq as a whole would be runnable 2/3 of the time. If however we 4246 * always have at least 1 runnable task, the rq as a whole is always runnable. 4247 * 4248 * So we'll have to approximate.. :/ 4249 * 4250 * Given the constraint: 4251 * 4252 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4253 * 4254 * We can construct a rule that adds runnable to a rq by assuming minimal 4255 * overlap. 4256 * 4257 * On removal, we'll assume each task is equally runnable; which yields: 4258 * 4259 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4260 * 4261 * XXX: only do this for the part of runnable > running ? 4262 * 4263 */ 4264 static inline void 4265 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4266 { 4267 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4268 u32 new_sum, divider; 4269 4270 /* Nothing to update */ 4271 if (!delta_avg) 4272 return; 4273 4274 /* 4275 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4276 * See ___update_load_avg() for details. 4277 */ 4278 divider = get_pelt_divider(&cfs_rq->avg); 4279 4280 4281 /* Set new sched_entity's utilization */ 4282 se->avg.util_avg = gcfs_rq->avg.util_avg; 4283 new_sum = se->avg.util_avg * divider; 4284 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4285 se->avg.util_sum = new_sum; 4286 4287 /* Update parent cfs_rq utilization */ 4288 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4289 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4290 4291 /* See update_cfs_rq_load_avg() */ 4292 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4293 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4294 } 4295 4296 static inline void 4297 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4298 { 4299 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4300 u32 new_sum, divider; 4301 4302 /* Nothing to update */ 4303 if (!delta_avg) 4304 return; 4305 4306 /* 4307 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4308 * See ___update_load_avg() for details. 4309 */ 4310 divider = get_pelt_divider(&cfs_rq->avg); 4311 4312 /* Set new sched_entity's runnable */ 4313 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4314 new_sum = se->avg.runnable_avg * divider; 4315 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4316 se->avg.runnable_sum = new_sum; 4317 4318 /* Update parent cfs_rq runnable */ 4319 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4320 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4321 /* See update_cfs_rq_load_avg() */ 4322 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4323 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4324 } 4325 4326 static inline void 4327 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4328 { 4329 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4330 unsigned long load_avg; 4331 u64 load_sum = 0; 4332 s64 delta_sum; 4333 u32 divider; 4334 4335 if (!runnable_sum) 4336 return; 4337 4338 gcfs_rq->prop_runnable_sum = 0; 4339 4340 /* 4341 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4342 * See ___update_load_avg() for details. 4343 */ 4344 divider = get_pelt_divider(&cfs_rq->avg); 4345 4346 if (runnable_sum >= 0) { 4347 /* 4348 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4349 * the CPU is saturated running == runnable. 4350 */ 4351 runnable_sum += se->avg.load_sum; 4352 runnable_sum = min_t(long, runnable_sum, divider); 4353 } else { 4354 /* 4355 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4356 * assuming all tasks are equally runnable. 4357 */ 4358 if (scale_load_down(gcfs_rq->load.weight)) { 4359 load_sum = div_u64(gcfs_rq->avg.load_sum, 4360 scale_load_down(gcfs_rq->load.weight)); 4361 } 4362 4363 /* But make sure to not inflate se's runnable */ 4364 runnable_sum = min(se->avg.load_sum, load_sum); 4365 } 4366 4367 /* 4368 * runnable_sum can't be lower than running_sum 4369 * Rescale running sum to be in the same range as runnable sum 4370 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4371 * runnable_sum is in [0 : LOAD_AVG_MAX] 4372 */ 4373 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4374 runnable_sum = max(runnable_sum, running_sum); 4375 4376 load_sum = se_weight(se) * runnable_sum; 4377 load_avg = div_u64(load_sum, divider); 4378 4379 delta_avg = load_avg - se->avg.load_avg; 4380 if (!delta_avg) 4381 return; 4382 4383 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4384 4385 se->avg.load_sum = runnable_sum; 4386 se->avg.load_avg = load_avg; 4387 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4388 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4389 /* See update_cfs_rq_load_avg() */ 4390 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4391 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4392 } 4393 4394 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4395 { 4396 cfs_rq->propagate = 1; 4397 cfs_rq->prop_runnable_sum += runnable_sum; 4398 } 4399 4400 /* Update task and its cfs_rq load average */ 4401 static inline int propagate_entity_load_avg(struct sched_entity *se) 4402 { 4403 struct cfs_rq *cfs_rq, *gcfs_rq; 4404 4405 if (entity_is_task(se)) 4406 return 0; 4407 4408 gcfs_rq = group_cfs_rq(se); 4409 if (!gcfs_rq->propagate) 4410 return 0; 4411 4412 gcfs_rq->propagate = 0; 4413 4414 cfs_rq = cfs_rq_of(se); 4415 4416 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4417 4418 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4419 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4420 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4421 4422 trace_pelt_cfs_tp(cfs_rq); 4423 trace_pelt_se_tp(se); 4424 4425 return 1; 4426 } 4427 4428 /* 4429 * Check if we need to update the load and the utilization of a blocked 4430 * group_entity: 4431 */ 4432 static inline bool skip_blocked_update(struct sched_entity *se) 4433 { 4434 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4435 4436 /* 4437 * If sched_entity still have not zero load or utilization, we have to 4438 * decay it: 4439 */ 4440 if (se->avg.load_avg || se->avg.util_avg) 4441 return false; 4442 4443 /* 4444 * If there is a pending propagation, we have to update the load and 4445 * the utilization of the sched_entity: 4446 */ 4447 if (gcfs_rq->propagate) 4448 return false; 4449 4450 /* 4451 * Otherwise, the load and the utilization of the sched_entity is 4452 * already zero and there is no pending propagation, so it will be a 4453 * waste of time to try to decay it: 4454 */ 4455 return true; 4456 } 4457 4458 #else /* CONFIG_FAIR_GROUP_SCHED */ 4459 4460 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4461 4462 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4463 4464 static inline int propagate_entity_load_avg(struct sched_entity *se) 4465 { 4466 return 0; 4467 } 4468 4469 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4470 4471 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4472 4473 #ifdef CONFIG_NO_HZ_COMMON 4474 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4475 { 4476 u64 throttled = 0, now, lut; 4477 struct cfs_rq *cfs_rq; 4478 struct rq *rq; 4479 bool is_idle; 4480 4481 if (load_avg_is_decayed(&se->avg)) 4482 return; 4483 4484 cfs_rq = cfs_rq_of(se); 4485 rq = rq_of(cfs_rq); 4486 4487 rcu_read_lock(); 4488 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4489 rcu_read_unlock(); 4490 4491 /* 4492 * The lag estimation comes with a cost we don't want to pay all the 4493 * time. Hence, limiting to the case where the source CPU is idle and 4494 * we know we are at the greatest risk to have an outdated clock. 4495 */ 4496 if (!is_idle) 4497 return; 4498 4499 /* 4500 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4501 * 4502 * last_update_time (the cfs_rq's last_update_time) 4503 * = cfs_rq_clock_pelt()@cfs_rq_idle 4504 * = rq_clock_pelt()@cfs_rq_idle 4505 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4506 * 4507 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4508 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4509 * 4510 * rq_idle_lag (delta between now and rq's update) 4511 * = sched_clock_cpu() - rq_clock()@rq_idle 4512 * 4513 * We can then write: 4514 * 4515 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4516 * sched_clock_cpu() - rq_clock()@rq_idle 4517 * Where: 4518 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4519 * rq_clock()@rq_idle is rq->clock_idle 4520 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4521 * is cfs_rq->throttled_pelt_idle 4522 */ 4523 4524 #ifdef CONFIG_CFS_BANDWIDTH 4525 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4526 /* The clock has been stopped for throttling */ 4527 if (throttled == U64_MAX) 4528 return; 4529 #endif 4530 now = u64_u32_load(rq->clock_pelt_idle); 4531 /* 4532 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4533 * is observed the old clock_pelt_idle value and the new clock_idle, 4534 * which lead to an underestimation. The opposite would lead to an 4535 * overestimation. 4536 */ 4537 smp_rmb(); 4538 lut = cfs_rq_last_update_time(cfs_rq); 4539 4540 now -= throttled; 4541 if (now < lut) 4542 /* 4543 * cfs_rq->avg.last_update_time is more recent than our 4544 * estimation, let's use it. 4545 */ 4546 now = lut; 4547 else 4548 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4549 4550 __update_load_avg_blocked_se(now, se); 4551 } 4552 #else 4553 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4554 #endif 4555 4556 /** 4557 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4558 * @now: current time, as per cfs_rq_clock_pelt() 4559 * @cfs_rq: cfs_rq to update 4560 * 4561 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4562 * avg. The immediate corollary is that all (fair) tasks must be attached. 4563 * 4564 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4565 * 4566 * Return: true if the load decayed or we removed load. 4567 * 4568 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4569 * call update_tg_load_avg() when this function returns true. 4570 */ 4571 static inline int 4572 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4573 { 4574 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4575 struct sched_avg *sa = &cfs_rq->avg; 4576 int decayed = 0; 4577 4578 if (cfs_rq->removed.nr) { 4579 unsigned long r; 4580 u32 divider = get_pelt_divider(&cfs_rq->avg); 4581 4582 raw_spin_lock(&cfs_rq->removed.lock); 4583 swap(cfs_rq->removed.util_avg, removed_util); 4584 swap(cfs_rq->removed.load_avg, removed_load); 4585 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4586 cfs_rq->removed.nr = 0; 4587 raw_spin_unlock(&cfs_rq->removed.lock); 4588 4589 r = removed_load; 4590 sub_positive(&sa->load_avg, r); 4591 sub_positive(&sa->load_sum, r * divider); 4592 /* See sa->util_sum below */ 4593 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4594 4595 r = removed_util; 4596 sub_positive(&sa->util_avg, r); 4597 sub_positive(&sa->util_sum, r * divider); 4598 /* 4599 * Because of rounding, se->util_sum might ends up being +1 more than 4600 * cfs->util_sum. Although this is not a problem by itself, detaching 4601 * a lot of tasks with the rounding problem between 2 updates of 4602 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4603 * cfs_util_avg is not. 4604 * Check that util_sum is still above its lower bound for the new 4605 * util_avg. Given that period_contrib might have moved since the last 4606 * sync, we are only sure that util_sum must be above or equal to 4607 * util_avg * minimum possible divider 4608 */ 4609 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4610 4611 r = removed_runnable; 4612 sub_positive(&sa->runnable_avg, r); 4613 sub_positive(&sa->runnable_sum, r * divider); 4614 /* See sa->util_sum above */ 4615 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4616 sa->runnable_avg * PELT_MIN_DIVIDER); 4617 4618 /* 4619 * removed_runnable is the unweighted version of removed_load so we 4620 * can use it to estimate removed_load_sum. 4621 */ 4622 add_tg_cfs_propagate(cfs_rq, 4623 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4624 4625 decayed = 1; 4626 } 4627 4628 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4629 u64_u32_store_copy(sa->last_update_time, 4630 cfs_rq->last_update_time_copy, 4631 sa->last_update_time); 4632 return decayed; 4633 } 4634 4635 /** 4636 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4637 * @cfs_rq: cfs_rq to attach to 4638 * @se: sched_entity to attach 4639 * 4640 * Must call update_cfs_rq_load_avg() before this, since we rely on 4641 * cfs_rq->avg.last_update_time being current. 4642 */ 4643 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4644 { 4645 /* 4646 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4647 * See ___update_load_avg() for details. 4648 */ 4649 u32 divider = get_pelt_divider(&cfs_rq->avg); 4650 4651 /* 4652 * When we attach the @se to the @cfs_rq, we must align the decay 4653 * window because without that, really weird and wonderful things can 4654 * happen. 4655 * 4656 * XXX illustrate 4657 */ 4658 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4659 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4660 4661 /* 4662 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4663 * period_contrib. This isn't strictly correct, but since we're 4664 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4665 * _sum a little. 4666 */ 4667 se->avg.util_sum = se->avg.util_avg * divider; 4668 4669 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4670 4671 se->avg.load_sum = se->avg.load_avg * divider; 4672 if (se_weight(se) < se->avg.load_sum) 4673 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4674 else 4675 se->avg.load_sum = 1; 4676 4677 enqueue_load_avg(cfs_rq, se); 4678 cfs_rq->avg.util_avg += se->avg.util_avg; 4679 cfs_rq->avg.util_sum += se->avg.util_sum; 4680 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4681 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4682 4683 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4684 4685 cfs_rq_util_change(cfs_rq, 0); 4686 4687 trace_pelt_cfs_tp(cfs_rq); 4688 } 4689 4690 /** 4691 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4692 * @cfs_rq: cfs_rq to detach from 4693 * @se: sched_entity to detach 4694 * 4695 * Must call update_cfs_rq_load_avg() before this, since we rely on 4696 * cfs_rq->avg.last_update_time being current. 4697 */ 4698 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4699 { 4700 dequeue_load_avg(cfs_rq, se); 4701 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4702 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4703 /* See update_cfs_rq_load_avg() */ 4704 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4705 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4706 4707 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4708 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4709 /* See update_cfs_rq_load_avg() */ 4710 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4711 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4712 4713 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4714 4715 cfs_rq_util_change(cfs_rq, 0); 4716 4717 trace_pelt_cfs_tp(cfs_rq); 4718 } 4719 4720 /* 4721 * Optional action to be done while updating the load average 4722 */ 4723 #define UPDATE_TG 0x1 4724 #define SKIP_AGE_LOAD 0x2 4725 #define DO_ATTACH 0x4 4726 #define DO_DETACH 0x8 4727 4728 /* Update task and its cfs_rq load average */ 4729 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4730 { 4731 u64 now = cfs_rq_clock_pelt(cfs_rq); 4732 int decayed; 4733 4734 /* 4735 * Track task load average for carrying it to new CPU after migrated, and 4736 * track group sched_entity load average for task_h_load calc in migration 4737 */ 4738 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4739 __update_load_avg_se(now, cfs_rq, se); 4740 4741 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4742 decayed |= propagate_entity_load_avg(se); 4743 4744 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4745 4746 /* 4747 * DO_ATTACH means we're here from enqueue_entity(). 4748 * !last_update_time means we've passed through 4749 * migrate_task_rq_fair() indicating we migrated. 4750 * 4751 * IOW we're enqueueing a task on a new CPU. 4752 */ 4753 attach_entity_load_avg(cfs_rq, se); 4754 update_tg_load_avg(cfs_rq); 4755 4756 } else if (flags & DO_DETACH) { 4757 /* 4758 * DO_DETACH means we're here from dequeue_entity() 4759 * and we are migrating task out of the CPU. 4760 */ 4761 detach_entity_load_avg(cfs_rq, se); 4762 update_tg_load_avg(cfs_rq); 4763 } else if (decayed) { 4764 cfs_rq_util_change(cfs_rq, 0); 4765 4766 if (flags & UPDATE_TG) 4767 update_tg_load_avg(cfs_rq); 4768 } 4769 } 4770 4771 /* 4772 * Synchronize entity load avg of dequeued entity without locking 4773 * the previous rq. 4774 */ 4775 static void sync_entity_load_avg(struct sched_entity *se) 4776 { 4777 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4778 u64 last_update_time; 4779 4780 last_update_time = cfs_rq_last_update_time(cfs_rq); 4781 __update_load_avg_blocked_se(last_update_time, se); 4782 } 4783 4784 /* 4785 * Task first catches up with cfs_rq, and then subtract 4786 * itself from the cfs_rq (task must be off the queue now). 4787 */ 4788 static void remove_entity_load_avg(struct sched_entity *se) 4789 { 4790 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4791 unsigned long flags; 4792 4793 /* 4794 * tasks cannot exit without having gone through wake_up_new_task() -> 4795 * enqueue_task_fair() which will have added things to the cfs_rq, 4796 * so we can remove unconditionally. 4797 */ 4798 4799 sync_entity_load_avg(se); 4800 4801 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4802 ++cfs_rq->removed.nr; 4803 cfs_rq->removed.util_avg += se->avg.util_avg; 4804 cfs_rq->removed.load_avg += se->avg.load_avg; 4805 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4806 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4807 } 4808 4809 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4810 { 4811 return cfs_rq->avg.runnable_avg; 4812 } 4813 4814 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4815 { 4816 return cfs_rq->avg.load_avg; 4817 } 4818 4819 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4820 4821 static inline unsigned long task_util(struct task_struct *p) 4822 { 4823 return READ_ONCE(p->se.avg.util_avg); 4824 } 4825 4826 static inline unsigned long task_runnable(struct task_struct *p) 4827 { 4828 return READ_ONCE(p->se.avg.runnable_avg); 4829 } 4830 4831 static inline unsigned long _task_util_est(struct task_struct *p) 4832 { 4833 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4834 } 4835 4836 static inline unsigned long task_util_est(struct task_struct *p) 4837 { 4838 return max(task_util(p), _task_util_est(p)); 4839 } 4840 4841 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4842 struct task_struct *p) 4843 { 4844 unsigned int enqueued; 4845 4846 if (!sched_feat(UTIL_EST)) 4847 return; 4848 4849 /* Update root cfs_rq's estimated utilization */ 4850 enqueued = cfs_rq->avg.util_est; 4851 enqueued += _task_util_est(p); 4852 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4853 4854 trace_sched_util_est_cfs_tp(cfs_rq); 4855 } 4856 4857 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4858 struct task_struct *p) 4859 { 4860 unsigned int enqueued; 4861 4862 if (!sched_feat(UTIL_EST)) 4863 return; 4864 4865 /* Update root cfs_rq's estimated utilization */ 4866 enqueued = cfs_rq->avg.util_est; 4867 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4869 4870 trace_sched_util_est_cfs_tp(cfs_rq); 4871 } 4872 4873 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4874 4875 static inline void util_est_update(struct cfs_rq *cfs_rq, 4876 struct task_struct *p, 4877 bool task_sleep) 4878 { 4879 unsigned int ewma, dequeued, last_ewma_diff; 4880 4881 if (!sched_feat(UTIL_EST)) 4882 return; 4883 4884 /* 4885 * Skip update of task's estimated utilization when the task has not 4886 * yet completed an activation, e.g. being migrated. 4887 */ 4888 if (!task_sleep) 4889 return; 4890 4891 /* Get current estimate of utilization */ 4892 ewma = READ_ONCE(p->se.avg.util_est); 4893 4894 /* 4895 * If the PELT values haven't changed since enqueue time, 4896 * skip the util_est update. 4897 */ 4898 if (ewma & UTIL_AVG_UNCHANGED) 4899 return; 4900 4901 /* Get utilization at dequeue */ 4902 dequeued = task_util(p); 4903 4904 /* 4905 * Reset EWMA on utilization increases, the moving average is used only 4906 * to smooth utilization decreases. 4907 */ 4908 if (ewma <= dequeued) { 4909 ewma = dequeued; 4910 goto done; 4911 } 4912 4913 /* 4914 * Skip update of task's estimated utilization when its members are 4915 * already ~1% close to its last activation value. 4916 */ 4917 last_ewma_diff = ewma - dequeued; 4918 if (last_ewma_diff < UTIL_EST_MARGIN) 4919 goto done; 4920 4921 /* 4922 * To avoid overestimation of actual task utilization, skip updates if 4923 * we cannot grant there is idle time in this CPU. 4924 */ 4925 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4926 return; 4927 4928 /* 4929 * To avoid underestimate of task utilization, skip updates of EWMA if 4930 * we cannot grant that thread got all CPU time it wanted. 4931 */ 4932 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4933 goto done; 4934 4935 4936 /* 4937 * Update Task's estimated utilization 4938 * 4939 * When *p completes an activation we can consolidate another sample 4940 * of the task size. This is done by using this value to update the 4941 * Exponential Weighted Moving Average (EWMA): 4942 * 4943 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4944 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4945 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4946 * = w * ( -last_ewma_diff ) + ewma(t-1) 4947 * = w * (-last_ewma_diff + ewma(t-1) / w) 4948 * 4949 * Where 'w' is the weight of new samples, which is configured to be 4950 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4951 */ 4952 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4953 ewma -= last_ewma_diff; 4954 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4955 done: 4956 ewma |= UTIL_AVG_UNCHANGED; 4957 WRITE_ONCE(p->se.avg.util_est, ewma); 4958 4959 trace_sched_util_est_se_tp(&p->se); 4960 } 4961 4962 static inline int util_fits_cpu(unsigned long util, 4963 unsigned long uclamp_min, 4964 unsigned long uclamp_max, 4965 int cpu) 4966 { 4967 unsigned long capacity_orig, capacity_orig_thermal; 4968 unsigned long capacity = capacity_of(cpu); 4969 bool fits, uclamp_max_fits; 4970 4971 /* 4972 * Check if the real util fits without any uclamp boost/cap applied. 4973 */ 4974 fits = fits_capacity(util, capacity); 4975 4976 if (!uclamp_is_used()) 4977 return fits; 4978 4979 /* 4980 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4981 * uclamp_max. We only care about capacity pressure (by using 4982 * capacity_of()) for comparing against the real util. 4983 * 4984 * If a task is boosted to 1024 for example, we don't want a tiny 4985 * pressure to skew the check whether it fits a CPU or not. 4986 * 4987 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4988 * should fit a little cpu even if there's some pressure. 4989 * 4990 * Only exception is for thermal pressure since it has a direct impact 4991 * on available OPP of the system. 4992 * 4993 * We honour it for uclamp_min only as a drop in performance level 4994 * could result in not getting the requested minimum performance level. 4995 * 4996 * For uclamp_max, we can tolerate a drop in performance level as the 4997 * goal is to cap the task. So it's okay if it's getting less. 4998 */ 4999 capacity_orig = arch_scale_cpu_capacity(cpu); 5000 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 5001 5002 /* 5003 * We want to force a task to fit a cpu as implied by uclamp_max. 5004 * But we do have some corner cases to cater for.. 5005 * 5006 * 5007 * C=z 5008 * | ___ 5009 * | C=y | | 5010 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5011 * | C=x | | | | 5012 * | ___ | | | | 5013 * | | | | | | | (util somewhere in this region) 5014 * | | | | | | | 5015 * | | | | | | | 5016 * +---------------------------------------- 5017 * cpu0 cpu1 cpu2 5018 * 5019 * In the above example if a task is capped to a specific performance 5020 * point, y, then when: 5021 * 5022 * * util = 80% of x then it does not fit on cpu0 and should migrate 5023 * to cpu1 5024 * * util = 80% of y then it is forced to fit on cpu1 to honour 5025 * uclamp_max request. 5026 * 5027 * which is what we're enforcing here. A task always fits if 5028 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5029 * the normal upmigration rules should withhold still. 5030 * 5031 * Only exception is when we are on max capacity, then we need to be 5032 * careful not to block overutilized state. This is so because: 5033 * 5034 * 1. There's no concept of capping at max_capacity! We can't go 5035 * beyond this performance level anyway. 5036 * 2. The system is being saturated when we're operating near 5037 * max capacity, it doesn't make sense to block overutilized. 5038 */ 5039 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5040 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5041 fits = fits || uclamp_max_fits; 5042 5043 /* 5044 * 5045 * C=z 5046 * | ___ (region a, capped, util >= uclamp_max) 5047 * | C=y | | 5048 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5049 * | C=x | | | | 5050 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5051 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5052 * | | | | | | | 5053 * | | | | | | | (region c, boosted, util < uclamp_min) 5054 * +---------------------------------------- 5055 * cpu0 cpu1 cpu2 5056 * 5057 * a) If util > uclamp_max, then we're capped, we don't care about 5058 * actual fitness value here. We only care if uclamp_max fits 5059 * capacity without taking margin/pressure into account. 5060 * See comment above. 5061 * 5062 * b) If uclamp_min <= util <= uclamp_max, then the normal 5063 * fits_capacity() rules apply. Except we need to ensure that we 5064 * enforce we remain within uclamp_max, see comment above. 5065 * 5066 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5067 * need to take into account the boosted value fits the CPU without 5068 * taking margin/pressure into account. 5069 * 5070 * Cases (a) and (b) are handled in the 'fits' variable already. We 5071 * just need to consider an extra check for case (c) after ensuring we 5072 * handle the case uclamp_min > uclamp_max. 5073 */ 5074 uclamp_min = min(uclamp_min, uclamp_max); 5075 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 5076 return -1; 5077 5078 return fits; 5079 } 5080 5081 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5082 { 5083 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5084 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5085 unsigned long util = task_util_est(p); 5086 /* 5087 * Return true only if the cpu fully fits the task requirements, which 5088 * include the utilization but also the performance hints. 5089 */ 5090 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5091 } 5092 5093 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5094 { 5095 if (!sched_asym_cpucap_active()) 5096 return; 5097 5098 if (!p || p->nr_cpus_allowed == 1) { 5099 rq->misfit_task_load = 0; 5100 return; 5101 } 5102 5103 if (task_fits_cpu(p, cpu_of(rq))) { 5104 rq->misfit_task_load = 0; 5105 return; 5106 } 5107 5108 /* 5109 * Make sure that misfit_task_load will not be null even if 5110 * task_h_load() returns 0. 5111 */ 5112 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5113 } 5114 5115 #else /* CONFIG_SMP */ 5116 5117 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5118 { 5119 return !cfs_rq->nr_running; 5120 } 5121 5122 #define UPDATE_TG 0x0 5123 #define SKIP_AGE_LOAD 0x0 5124 #define DO_ATTACH 0x0 5125 #define DO_DETACH 0x0 5126 5127 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5128 { 5129 cfs_rq_util_change(cfs_rq, 0); 5130 } 5131 5132 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5133 5134 static inline void 5135 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5136 static inline void 5137 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5138 5139 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5140 { 5141 return 0; 5142 } 5143 5144 static inline void 5145 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5146 5147 static inline void 5148 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5149 5150 static inline void 5151 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5152 bool task_sleep) {} 5153 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5154 5155 #endif /* CONFIG_SMP */ 5156 5157 static void 5158 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5159 { 5160 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5161 s64 lag = 0; 5162 5163 se->slice = sysctl_sched_base_slice; 5164 vslice = calc_delta_fair(se->slice, se); 5165 5166 /* 5167 * Due to how V is constructed as the weighted average of entities, 5168 * adding tasks with positive lag, or removing tasks with negative lag 5169 * will move 'time' backwards, this can screw around with the lag of 5170 * other tasks. 5171 * 5172 * EEVDF: placement strategy #1 / #2 5173 */ 5174 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5175 struct sched_entity *curr = cfs_rq->curr; 5176 unsigned long load; 5177 5178 lag = se->vlag; 5179 5180 /* 5181 * If we want to place a task and preserve lag, we have to 5182 * consider the effect of the new entity on the weighted 5183 * average and compensate for this, otherwise lag can quickly 5184 * evaporate. 5185 * 5186 * Lag is defined as: 5187 * 5188 * lag_i = S - s_i = w_i * (V - v_i) 5189 * 5190 * To avoid the 'w_i' term all over the place, we only track 5191 * the virtual lag: 5192 * 5193 * vl_i = V - v_i <=> v_i = V - vl_i 5194 * 5195 * And we take V to be the weighted average of all v: 5196 * 5197 * V = (\Sum w_j*v_j) / W 5198 * 5199 * Where W is: \Sum w_j 5200 * 5201 * Then, the weighted average after adding an entity with lag 5202 * vl_i is given by: 5203 * 5204 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5205 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5206 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5207 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5208 * = V - w_i*vl_i / (W + w_i) 5209 * 5210 * And the actual lag after adding an entity with vl_i is: 5211 * 5212 * vl'_i = V' - v_i 5213 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5214 * = vl_i - w_i*vl_i / (W + w_i) 5215 * 5216 * Which is strictly less than vl_i. So in order to preserve lag 5217 * we should inflate the lag before placement such that the 5218 * effective lag after placement comes out right. 5219 * 5220 * As such, invert the above relation for vl'_i to get the vl_i 5221 * we need to use such that the lag after placement is the lag 5222 * we computed before dequeue. 5223 * 5224 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5225 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5226 * 5227 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5228 * = W*vl_i 5229 * 5230 * vl_i = (W + w_i)*vl'_i / W 5231 */ 5232 load = cfs_rq->avg_load; 5233 if (curr && curr->on_rq) 5234 load += scale_load_down(curr->load.weight); 5235 5236 lag *= load + scale_load_down(se->load.weight); 5237 if (WARN_ON_ONCE(!load)) 5238 load = 1; 5239 lag = div_s64(lag, load); 5240 } 5241 5242 se->vruntime = vruntime - lag; 5243 5244 /* 5245 * When joining the competition; the exisiting tasks will be, 5246 * on average, halfway through their slice, as such start tasks 5247 * off with half a slice to ease into the competition. 5248 */ 5249 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5250 vslice /= 2; 5251 5252 /* 5253 * EEVDF: vd_i = ve_i + r_i/w_i 5254 */ 5255 se->deadline = se->vruntime + vslice; 5256 } 5257 5258 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5259 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5260 5261 static inline bool cfs_bandwidth_used(void); 5262 5263 static void 5264 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5265 { 5266 bool curr = cfs_rq->curr == se; 5267 5268 /* 5269 * If we're the current task, we must renormalise before calling 5270 * update_curr(). 5271 */ 5272 if (curr) 5273 place_entity(cfs_rq, se, flags); 5274 5275 update_curr(cfs_rq); 5276 5277 /* 5278 * When enqueuing a sched_entity, we must: 5279 * - Update loads to have both entity and cfs_rq synced with now. 5280 * - For group_entity, update its runnable_weight to reflect the new 5281 * h_nr_running of its group cfs_rq. 5282 * - For group_entity, update its weight to reflect the new share of 5283 * its group cfs_rq 5284 * - Add its new weight to cfs_rq->load.weight 5285 */ 5286 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5287 se_update_runnable(se); 5288 /* 5289 * XXX update_load_avg() above will have attached us to the pelt sum; 5290 * but update_cfs_group() here will re-adjust the weight and have to 5291 * undo/redo all that. Seems wasteful. 5292 */ 5293 update_cfs_group(se); 5294 5295 /* 5296 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5297 * we can place the entity. 5298 */ 5299 if (!curr) 5300 place_entity(cfs_rq, se, flags); 5301 5302 account_entity_enqueue(cfs_rq, se); 5303 5304 /* Entity has migrated, no longer consider this task hot */ 5305 if (flags & ENQUEUE_MIGRATED) 5306 se->exec_start = 0; 5307 5308 check_schedstat_required(); 5309 update_stats_enqueue_fair(cfs_rq, se, flags); 5310 if (!curr) 5311 __enqueue_entity(cfs_rq, se); 5312 se->on_rq = 1; 5313 5314 if (cfs_rq->nr_running == 1) { 5315 check_enqueue_throttle(cfs_rq); 5316 if (!throttled_hierarchy(cfs_rq)) { 5317 list_add_leaf_cfs_rq(cfs_rq); 5318 } else { 5319 #ifdef CONFIG_CFS_BANDWIDTH 5320 struct rq *rq = rq_of(cfs_rq); 5321 5322 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5323 cfs_rq->throttled_clock = rq_clock(rq); 5324 if (!cfs_rq->throttled_clock_self) 5325 cfs_rq->throttled_clock_self = rq_clock(rq); 5326 #endif 5327 } 5328 } 5329 } 5330 5331 static void __clear_buddies_next(struct sched_entity *se) 5332 { 5333 for_each_sched_entity(se) { 5334 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5335 if (cfs_rq->next != se) 5336 break; 5337 5338 cfs_rq->next = NULL; 5339 } 5340 } 5341 5342 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5343 { 5344 if (cfs_rq->next == se) 5345 __clear_buddies_next(se); 5346 } 5347 5348 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5349 5350 static void 5351 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5352 { 5353 int action = UPDATE_TG; 5354 5355 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5356 action |= DO_DETACH; 5357 5358 /* 5359 * Update run-time statistics of the 'current'. 5360 */ 5361 update_curr(cfs_rq); 5362 5363 /* 5364 * When dequeuing a sched_entity, we must: 5365 * - Update loads to have both entity and cfs_rq synced with now. 5366 * - For group_entity, update its runnable_weight to reflect the new 5367 * h_nr_running of its group cfs_rq. 5368 * - Subtract its previous weight from cfs_rq->load.weight. 5369 * - For group entity, update its weight to reflect the new share 5370 * of its group cfs_rq. 5371 */ 5372 update_load_avg(cfs_rq, se, action); 5373 se_update_runnable(se); 5374 5375 update_stats_dequeue_fair(cfs_rq, se, flags); 5376 5377 clear_buddies(cfs_rq, se); 5378 5379 update_entity_lag(cfs_rq, se); 5380 if (se != cfs_rq->curr) 5381 __dequeue_entity(cfs_rq, se); 5382 se->on_rq = 0; 5383 account_entity_dequeue(cfs_rq, se); 5384 5385 /* return excess runtime on last dequeue */ 5386 return_cfs_rq_runtime(cfs_rq); 5387 5388 update_cfs_group(se); 5389 5390 /* 5391 * Now advance min_vruntime if @se was the entity holding it back, 5392 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5393 * put back on, and if we advance min_vruntime, we'll be placed back 5394 * further than we started -- ie. we'll be penalized. 5395 */ 5396 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5397 update_min_vruntime(cfs_rq); 5398 5399 if (cfs_rq->nr_running == 0) 5400 update_idle_cfs_rq_clock_pelt(cfs_rq); 5401 } 5402 5403 static void 5404 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5405 { 5406 clear_buddies(cfs_rq, se); 5407 5408 /* 'current' is not kept within the tree. */ 5409 if (se->on_rq) { 5410 /* 5411 * Any task has to be enqueued before it get to execute on 5412 * a CPU. So account for the time it spent waiting on the 5413 * runqueue. 5414 */ 5415 update_stats_wait_end_fair(cfs_rq, se); 5416 __dequeue_entity(cfs_rq, se); 5417 update_load_avg(cfs_rq, se, UPDATE_TG); 5418 /* 5419 * HACK, stash a copy of deadline at the point of pick in vlag, 5420 * which isn't used until dequeue. 5421 */ 5422 se->vlag = se->deadline; 5423 } 5424 5425 update_stats_curr_start(cfs_rq, se); 5426 cfs_rq->curr = se; 5427 5428 /* 5429 * Track our maximum slice length, if the CPU's load is at 5430 * least twice that of our own weight (i.e. dont track it 5431 * when there are only lesser-weight tasks around): 5432 */ 5433 if (schedstat_enabled() && 5434 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5435 struct sched_statistics *stats; 5436 5437 stats = __schedstats_from_se(se); 5438 __schedstat_set(stats->slice_max, 5439 max((u64)stats->slice_max, 5440 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5441 } 5442 5443 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5444 } 5445 5446 /* 5447 * Pick the next process, keeping these things in mind, in this order: 5448 * 1) keep things fair between processes/task groups 5449 * 2) pick the "next" process, since someone really wants that to run 5450 * 3) pick the "last" process, for cache locality 5451 * 4) do not run the "skip" process, if something else is available 5452 */ 5453 static struct sched_entity * 5454 pick_next_entity(struct cfs_rq *cfs_rq) 5455 { 5456 /* 5457 * Enabling NEXT_BUDDY will affect latency but not fairness. 5458 */ 5459 if (sched_feat(NEXT_BUDDY) && 5460 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5461 return cfs_rq->next; 5462 5463 return pick_eevdf(cfs_rq); 5464 } 5465 5466 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5467 5468 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5469 { 5470 /* 5471 * If still on the runqueue then deactivate_task() 5472 * was not called and update_curr() has to be done: 5473 */ 5474 if (prev->on_rq) 5475 update_curr(cfs_rq); 5476 5477 /* throttle cfs_rqs exceeding runtime */ 5478 check_cfs_rq_runtime(cfs_rq); 5479 5480 if (prev->on_rq) { 5481 update_stats_wait_start_fair(cfs_rq, prev); 5482 /* Put 'current' back into the tree. */ 5483 __enqueue_entity(cfs_rq, prev); 5484 /* in !on_rq case, update occurred at dequeue */ 5485 update_load_avg(cfs_rq, prev, 0); 5486 } 5487 cfs_rq->curr = NULL; 5488 } 5489 5490 static void 5491 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5492 { 5493 /* 5494 * Update run-time statistics of the 'current'. 5495 */ 5496 update_curr(cfs_rq); 5497 5498 /* 5499 * Ensure that runnable average is periodically updated. 5500 */ 5501 update_load_avg(cfs_rq, curr, UPDATE_TG); 5502 update_cfs_group(curr); 5503 5504 #ifdef CONFIG_SCHED_HRTICK 5505 /* 5506 * queued ticks are scheduled to match the slice, so don't bother 5507 * validating it and just reschedule. 5508 */ 5509 if (queued) { 5510 resched_curr(rq_of(cfs_rq)); 5511 return; 5512 } 5513 /* 5514 * don't let the period tick interfere with the hrtick preemption 5515 */ 5516 if (!sched_feat(DOUBLE_TICK) && 5517 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5518 return; 5519 #endif 5520 } 5521 5522 5523 /************************************************** 5524 * CFS bandwidth control machinery 5525 */ 5526 5527 #ifdef CONFIG_CFS_BANDWIDTH 5528 5529 #ifdef CONFIG_JUMP_LABEL 5530 static struct static_key __cfs_bandwidth_used; 5531 5532 static inline bool cfs_bandwidth_used(void) 5533 { 5534 return static_key_false(&__cfs_bandwidth_used); 5535 } 5536 5537 void cfs_bandwidth_usage_inc(void) 5538 { 5539 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5540 } 5541 5542 void cfs_bandwidth_usage_dec(void) 5543 { 5544 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5545 } 5546 #else /* CONFIG_JUMP_LABEL */ 5547 static bool cfs_bandwidth_used(void) 5548 { 5549 return true; 5550 } 5551 5552 void cfs_bandwidth_usage_inc(void) {} 5553 void cfs_bandwidth_usage_dec(void) {} 5554 #endif /* CONFIG_JUMP_LABEL */ 5555 5556 /* 5557 * default period for cfs group bandwidth. 5558 * default: 0.1s, units: nanoseconds 5559 */ 5560 static inline u64 default_cfs_period(void) 5561 { 5562 return 100000000ULL; 5563 } 5564 5565 static inline u64 sched_cfs_bandwidth_slice(void) 5566 { 5567 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5568 } 5569 5570 /* 5571 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5572 * directly instead of rq->clock to avoid adding additional synchronization 5573 * around rq->lock. 5574 * 5575 * requires cfs_b->lock 5576 */ 5577 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5578 { 5579 s64 runtime; 5580 5581 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5582 return; 5583 5584 cfs_b->runtime += cfs_b->quota; 5585 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5586 if (runtime > 0) { 5587 cfs_b->burst_time += runtime; 5588 cfs_b->nr_burst++; 5589 } 5590 5591 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5592 cfs_b->runtime_snap = cfs_b->runtime; 5593 } 5594 5595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5596 { 5597 return &tg->cfs_bandwidth; 5598 } 5599 5600 /* returns 0 on failure to allocate runtime */ 5601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5602 struct cfs_rq *cfs_rq, u64 target_runtime) 5603 { 5604 u64 min_amount, amount = 0; 5605 5606 lockdep_assert_held(&cfs_b->lock); 5607 5608 /* note: this is a positive sum as runtime_remaining <= 0 */ 5609 min_amount = target_runtime - cfs_rq->runtime_remaining; 5610 5611 if (cfs_b->quota == RUNTIME_INF) 5612 amount = min_amount; 5613 else { 5614 start_cfs_bandwidth(cfs_b); 5615 5616 if (cfs_b->runtime > 0) { 5617 amount = min(cfs_b->runtime, min_amount); 5618 cfs_b->runtime -= amount; 5619 cfs_b->idle = 0; 5620 } 5621 } 5622 5623 cfs_rq->runtime_remaining += amount; 5624 5625 return cfs_rq->runtime_remaining > 0; 5626 } 5627 5628 /* returns 0 on failure to allocate runtime */ 5629 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5630 { 5631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5632 int ret; 5633 5634 raw_spin_lock(&cfs_b->lock); 5635 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5636 raw_spin_unlock(&cfs_b->lock); 5637 5638 return ret; 5639 } 5640 5641 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5642 { 5643 /* dock delta_exec before expiring quota (as it could span periods) */ 5644 cfs_rq->runtime_remaining -= delta_exec; 5645 5646 if (likely(cfs_rq->runtime_remaining > 0)) 5647 return; 5648 5649 if (cfs_rq->throttled) 5650 return; 5651 /* 5652 * if we're unable to extend our runtime we resched so that the active 5653 * hierarchy can be throttled 5654 */ 5655 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5656 resched_curr(rq_of(cfs_rq)); 5657 } 5658 5659 static __always_inline 5660 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5661 { 5662 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5663 return; 5664 5665 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5666 } 5667 5668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5669 { 5670 return cfs_bandwidth_used() && cfs_rq->throttled; 5671 } 5672 5673 /* check whether cfs_rq, or any parent, is throttled */ 5674 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5675 { 5676 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5677 } 5678 5679 /* 5680 * Ensure that neither of the group entities corresponding to src_cpu or 5681 * dest_cpu are members of a throttled hierarchy when performing group 5682 * load-balance operations. 5683 */ 5684 static inline int throttled_lb_pair(struct task_group *tg, 5685 int src_cpu, int dest_cpu) 5686 { 5687 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5688 5689 src_cfs_rq = tg->cfs_rq[src_cpu]; 5690 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5691 5692 return throttled_hierarchy(src_cfs_rq) || 5693 throttled_hierarchy(dest_cfs_rq); 5694 } 5695 5696 static int tg_unthrottle_up(struct task_group *tg, void *data) 5697 { 5698 struct rq *rq = data; 5699 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5700 5701 cfs_rq->throttle_count--; 5702 if (!cfs_rq->throttle_count) { 5703 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5704 cfs_rq->throttled_clock_pelt; 5705 5706 /* Add cfs_rq with load or one or more already running entities to the list */ 5707 if (!cfs_rq_is_decayed(cfs_rq)) 5708 list_add_leaf_cfs_rq(cfs_rq); 5709 5710 if (cfs_rq->throttled_clock_self) { 5711 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5712 5713 cfs_rq->throttled_clock_self = 0; 5714 5715 if (SCHED_WARN_ON((s64)delta < 0)) 5716 delta = 0; 5717 5718 cfs_rq->throttled_clock_self_time += delta; 5719 } 5720 } 5721 5722 return 0; 5723 } 5724 5725 static int tg_throttle_down(struct task_group *tg, void *data) 5726 { 5727 struct rq *rq = data; 5728 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5729 5730 /* group is entering throttled state, stop time */ 5731 if (!cfs_rq->throttle_count) { 5732 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5733 list_del_leaf_cfs_rq(cfs_rq); 5734 5735 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5736 if (cfs_rq->nr_running) 5737 cfs_rq->throttled_clock_self = rq_clock(rq); 5738 } 5739 cfs_rq->throttle_count++; 5740 5741 return 0; 5742 } 5743 5744 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5745 { 5746 struct rq *rq = rq_of(cfs_rq); 5747 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5748 struct sched_entity *se; 5749 long task_delta, idle_task_delta, dequeue = 1; 5750 5751 raw_spin_lock(&cfs_b->lock); 5752 /* This will start the period timer if necessary */ 5753 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5754 /* 5755 * We have raced with bandwidth becoming available, and if we 5756 * actually throttled the timer might not unthrottle us for an 5757 * entire period. We additionally needed to make sure that any 5758 * subsequent check_cfs_rq_runtime calls agree not to throttle 5759 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5760 * for 1ns of runtime rather than just check cfs_b. 5761 */ 5762 dequeue = 0; 5763 } else { 5764 list_add_tail_rcu(&cfs_rq->throttled_list, 5765 &cfs_b->throttled_cfs_rq); 5766 } 5767 raw_spin_unlock(&cfs_b->lock); 5768 5769 if (!dequeue) 5770 return false; /* Throttle no longer required. */ 5771 5772 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5773 5774 /* freeze hierarchy runnable averages while throttled */ 5775 rcu_read_lock(); 5776 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5777 rcu_read_unlock(); 5778 5779 task_delta = cfs_rq->h_nr_running; 5780 idle_task_delta = cfs_rq->idle_h_nr_running; 5781 for_each_sched_entity(se) { 5782 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5783 /* throttled entity or throttle-on-deactivate */ 5784 if (!se->on_rq) 5785 goto done; 5786 5787 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5788 5789 if (cfs_rq_is_idle(group_cfs_rq(se))) 5790 idle_task_delta = cfs_rq->h_nr_running; 5791 5792 qcfs_rq->h_nr_running -= task_delta; 5793 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5794 5795 if (qcfs_rq->load.weight) { 5796 /* Avoid re-evaluating load for this entity: */ 5797 se = parent_entity(se); 5798 break; 5799 } 5800 } 5801 5802 for_each_sched_entity(se) { 5803 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5804 /* throttled entity or throttle-on-deactivate */ 5805 if (!se->on_rq) 5806 goto done; 5807 5808 update_load_avg(qcfs_rq, se, 0); 5809 se_update_runnable(se); 5810 5811 if (cfs_rq_is_idle(group_cfs_rq(se))) 5812 idle_task_delta = cfs_rq->h_nr_running; 5813 5814 qcfs_rq->h_nr_running -= task_delta; 5815 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5816 } 5817 5818 /* At this point se is NULL and we are at root level*/ 5819 sub_nr_running(rq, task_delta); 5820 5821 done: 5822 /* 5823 * Note: distribution will already see us throttled via the 5824 * throttled-list. rq->lock protects completion. 5825 */ 5826 cfs_rq->throttled = 1; 5827 SCHED_WARN_ON(cfs_rq->throttled_clock); 5828 if (cfs_rq->nr_running) 5829 cfs_rq->throttled_clock = rq_clock(rq); 5830 return true; 5831 } 5832 5833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5834 { 5835 struct rq *rq = rq_of(cfs_rq); 5836 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5837 struct sched_entity *se; 5838 long task_delta, idle_task_delta; 5839 5840 se = cfs_rq->tg->se[cpu_of(rq)]; 5841 5842 cfs_rq->throttled = 0; 5843 5844 update_rq_clock(rq); 5845 5846 raw_spin_lock(&cfs_b->lock); 5847 if (cfs_rq->throttled_clock) { 5848 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5849 cfs_rq->throttled_clock = 0; 5850 } 5851 list_del_rcu(&cfs_rq->throttled_list); 5852 raw_spin_unlock(&cfs_b->lock); 5853 5854 /* update hierarchical throttle state */ 5855 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5856 5857 if (!cfs_rq->load.weight) { 5858 if (!cfs_rq->on_list) 5859 return; 5860 /* 5861 * Nothing to run but something to decay (on_list)? 5862 * Complete the branch. 5863 */ 5864 for_each_sched_entity(se) { 5865 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5866 break; 5867 } 5868 goto unthrottle_throttle; 5869 } 5870 5871 task_delta = cfs_rq->h_nr_running; 5872 idle_task_delta = cfs_rq->idle_h_nr_running; 5873 for_each_sched_entity(se) { 5874 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5875 5876 if (se->on_rq) 5877 break; 5878 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5879 5880 if (cfs_rq_is_idle(group_cfs_rq(se))) 5881 idle_task_delta = cfs_rq->h_nr_running; 5882 5883 qcfs_rq->h_nr_running += task_delta; 5884 qcfs_rq->idle_h_nr_running += idle_task_delta; 5885 5886 /* end evaluation on encountering a throttled cfs_rq */ 5887 if (cfs_rq_throttled(qcfs_rq)) 5888 goto unthrottle_throttle; 5889 } 5890 5891 for_each_sched_entity(se) { 5892 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5893 5894 update_load_avg(qcfs_rq, se, UPDATE_TG); 5895 se_update_runnable(se); 5896 5897 if (cfs_rq_is_idle(group_cfs_rq(se))) 5898 idle_task_delta = cfs_rq->h_nr_running; 5899 5900 qcfs_rq->h_nr_running += task_delta; 5901 qcfs_rq->idle_h_nr_running += idle_task_delta; 5902 5903 /* end evaluation on encountering a throttled cfs_rq */ 5904 if (cfs_rq_throttled(qcfs_rq)) 5905 goto unthrottle_throttle; 5906 } 5907 5908 /* At this point se is NULL and we are at root level*/ 5909 add_nr_running(rq, task_delta); 5910 5911 unthrottle_throttle: 5912 assert_list_leaf_cfs_rq(rq); 5913 5914 /* Determine whether we need to wake up potentially idle CPU: */ 5915 if (rq->curr == rq->idle && rq->cfs.nr_running) 5916 resched_curr(rq); 5917 } 5918 5919 #ifdef CONFIG_SMP 5920 static void __cfsb_csd_unthrottle(void *arg) 5921 { 5922 struct cfs_rq *cursor, *tmp; 5923 struct rq *rq = arg; 5924 struct rq_flags rf; 5925 5926 rq_lock(rq, &rf); 5927 5928 /* 5929 * Iterating over the list can trigger several call to 5930 * update_rq_clock() in unthrottle_cfs_rq(). 5931 * Do it once and skip the potential next ones. 5932 */ 5933 update_rq_clock(rq); 5934 rq_clock_start_loop_update(rq); 5935 5936 /* 5937 * Since we hold rq lock we're safe from concurrent manipulation of 5938 * the CSD list. However, this RCU critical section annotates the 5939 * fact that we pair with sched_free_group_rcu(), so that we cannot 5940 * race with group being freed in the window between removing it 5941 * from the list and advancing to the next entry in the list. 5942 */ 5943 rcu_read_lock(); 5944 5945 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5946 throttled_csd_list) { 5947 list_del_init(&cursor->throttled_csd_list); 5948 5949 if (cfs_rq_throttled(cursor)) 5950 unthrottle_cfs_rq(cursor); 5951 } 5952 5953 rcu_read_unlock(); 5954 5955 rq_clock_stop_loop_update(rq); 5956 rq_unlock(rq, &rf); 5957 } 5958 5959 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5960 { 5961 struct rq *rq = rq_of(cfs_rq); 5962 bool first; 5963 5964 if (rq == this_rq()) { 5965 unthrottle_cfs_rq(cfs_rq); 5966 return; 5967 } 5968 5969 /* Already enqueued */ 5970 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5971 return; 5972 5973 first = list_empty(&rq->cfsb_csd_list); 5974 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5975 if (first) 5976 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5977 } 5978 #else 5979 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5980 { 5981 unthrottle_cfs_rq(cfs_rq); 5982 } 5983 #endif 5984 5985 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5986 { 5987 lockdep_assert_rq_held(rq_of(cfs_rq)); 5988 5989 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5990 cfs_rq->runtime_remaining <= 0)) 5991 return; 5992 5993 __unthrottle_cfs_rq_async(cfs_rq); 5994 } 5995 5996 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5997 { 5998 int this_cpu = smp_processor_id(); 5999 u64 runtime, remaining = 1; 6000 bool throttled = false; 6001 struct cfs_rq *cfs_rq, *tmp; 6002 struct rq_flags rf; 6003 struct rq *rq; 6004 LIST_HEAD(local_unthrottle); 6005 6006 rcu_read_lock(); 6007 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6008 throttled_list) { 6009 rq = rq_of(cfs_rq); 6010 6011 if (!remaining) { 6012 throttled = true; 6013 break; 6014 } 6015 6016 rq_lock_irqsave(rq, &rf); 6017 if (!cfs_rq_throttled(cfs_rq)) 6018 goto next; 6019 6020 /* Already queued for async unthrottle */ 6021 if (!list_empty(&cfs_rq->throttled_csd_list)) 6022 goto next; 6023 6024 /* By the above checks, this should never be true */ 6025 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6026 6027 raw_spin_lock(&cfs_b->lock); 6028 runtime = -cfs_rq->runtime_remaining + 1; 6029 if (runtime > cfs_b->runtime) 6030 runtime = cfs_b->runtime; 6031 cfs_b->runtime -= runtime; 6032 remaining = cfs_b->runtime; 6033 raw_spin_unlock(&cfs_b->lock); 6034 6035 cfs_rq->runtime_remaining += runtime; 6036 6037 /* we check whether we're throttled above */ 6038 if (cfs_rq->runtime_remaining > 0) { 6039 if (cpu_of(rq) != this_cpu) { 6040 unthrottle_cfs_rq_async(cfs_rq); 6041 } else { 6042 /* 6043 * We currently only expect to be unthrottling 6044 * a single cfs_rq locally. 6045 */ 6046 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6047 list_add_tail(&cfs_rq->throttled_csd_list, 6048 &local_unthrottle); 6049 } 6050 } else { 6051 throttled = true; 6052 } 6053 6054 next: 6055 rq_unlock_irqrestore(rq, &rf); 6056 } 6057 6058 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6059 throttled_csd_list) { 6060 struct rq *rq = rq_of(cfs_rq); 6061 6062 rq_lock_irqsave(rq, &rf); 6063 6064 list_del_init(&cfs_rq->throttled_csd_list); 6065 6066 if (cfs_rq_throttled(cfs_rq)) 6067 unthrottle_cfs_rq(cfs_rq); 6068 6069 rq_unlock_irqrestore(rq, &rf); 6070 } 6071 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6072 6073 rcu_read_unlock(); 6074 6075 return throttled; 6076 } 6077 6078 /* 6079 * Responsible for refilling a task_group's bandwidth and unthrottling its 6080 * cfs_rqs as appropriate. If there has been no activity within the last 6081 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6082 * used to track this state. 6083 */ 6084 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6085 { 6086 int throttled; 6087 6088 /* no need to continue the timer with no bandwidth constraint */ 6089 if (cfs_b->quota == RUNTIME_INF) 6090 goto out_deactivate; 6091 6092 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6093 cfs_b->nr_periods += overrun; 6094 6095 /* Refill extra burst quota even if cfs_b->idle */ 6096 __refill_cfs_bandwidth_runtime(cfs_b); 6097 6098 /* 6099 * idle depends on !throttled (for the case of a large deficit), and if 6100 * we're going inactive then everything else can be deferred 6101 */ 6102 if (cfs_b->idle && !throttled) 6103 goto out_deactivate; 6104 6105 if (!throttled) { 6106 /* mark as potentially idle for the upcoming period */ 6107 cfs_b->idle = 1; 6108 return 0; 6109 } 6110 6111 /* account preceding periods in which throttling occurred */ 6112 cfs_b->nr_throttled += overrun; 6113 6114 /* 6115 * This check is repeated as we release cfs_b->lock while we unthrottle. 6116 */ 6117 while (throttled && cfs_b->runtime > 0) { 6118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6119 /* we can't nest cfs_b->lock while distributing bandwidth */ 6120 throttled = distribute_cfs_runtime(cfs_b); 6121 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6122 } 6123 6124 /* 6125 * While we are ensured activity in the period following an 6126 * unthrottle, this also covers the case in which the new bandwidth is 6127 * insufficient to cover the existing bandwidth deficit. (Forcing the 6128 * timer to remain active while there are any throttled entities.) 6129 */ 6130 cfs_b->idle = 0; 6131 6132 return 0; 6133 6134 out_deactivate: 6135 return 1; 6136 } 6137 6138 /* a cfs_rq won't donate quota below this amount */ 6139 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6140 /* minimum remaining period time to redistribute slack quota */ 6141 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6142 /* how long we wait to gather additional slack before distributing */ 6143 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6144 6145 /* 6146 * Are we near the end of the current quota period? 6147 * 6148 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6149 * hrtimer base being cleared by hrtimer_start. In the case of 6150 * migrate_hrtimers, base is never cleared, so we are fine. 6151 */ 6152 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6153 { 6154 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6155 s64 remaining; 6156 6157 /* if the call-back is running a quota refresh is already occurring */ 6158 if (hrtimer_callback_running(refresh_timer)) 6159 return 1; 6160 6161 /* is a quota refresh about to occur? */ 6162 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6163 if (remaining < (s64)min_expire) 6164 return 1; 6165 6166 return 0; 6167 } 6168 6169 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6170 { 6171 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6172 6173 /* if there's a quota refresh soon don't bother with slack */ 6174 if (runtime_refresh_within(cfs_b, min_left)) 6175 return; 6176 6177 /* don't push forwards an existing deferred unthrottle */ 6178 if (cfs_b->slack_started) 6179 return; 6180 cfs_b->slack_started = true; 6181 6182 hrtimer_start(&cfs_b->slack_timer, 6183 ns_to_ktime(cfs_bandwidth_slack_period), 6184 HRTIMER_MODE_REL); 6185 } 6186 6187 /* we know any runtime found here is valid as update_curr() precedes return */ 6188 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6189 { 6190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6191 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6192 6193 if (slack_runtime <= 0) 6194 return; 6195 6196 raw_spin_lock(&cfs_b->lock); 6197 if (cfs_b->quota != RUNTIME_INF) { 6198 cfs_b->runtime += slack_runtime; 6199 6200 /* we are under rq->lock, defer unthrottling using a timer */ 6201 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6202 !list_empty(&cfs_b->throttled_cfs_rq)) 6203 start_cfs_slack_bandwidth(cfs_b); 6204 } 6205 raw_spin_unlock(&cfs_b->lock); 6206 6207 /* even if it's not valid for return we don't want to try again */ 6208 cfs_rq->runtime_remaining -= slack_runtime; 6209 } 6210 6211 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6212 { 6213 if (!cfs_bandwidth_used()) 6214 return; 6215 6216 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6217 return; 6218 6219 __return_cfs_rq_runtime(cfs_rq); 6220 } 6221 6222 /* 6223 * This is done with a timer (instead of inline with bandwidth return) since 6224 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6225 */ 6226 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6227 { 6228 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6229 unsigned long flags; 6230 6231 /* confirm we're still not at a refresh boundary */ 6232 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6233 cfs_b->slack_started = false; 6234 6235 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6236 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6237 return; 6238 } 6239 6240 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6241 runtime = cfs_b->runtime; 6242 6243 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6244 6245 if (!runtime) 6246 return; 6247 6248 distribute_cfs_runtime(cfs_b); 6249 } 6250 6251 /* 6252 * When a group wakes up we want to make sure that its quota is not already 6253 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6254 * runtime as update_curr() throttling can not trigger until it's on-rq. 6255 */ 6256 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6257 { 6258 if (!cfs_bandwidth_used()) 6259 return; 6260 6261 /* an active group must be handled by the update_curr()->put() path */ 6262 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6263 return; 6264 6265 /* ensure the group is not already throttled */ 6266 if (cfs_rq_throttled(cfs_rq)) 6267 return; 6268 6269 /* update runtime allocation */ 6270 account_cfs_rq_runtime(cfs_rq, 0); 6271 if (cfs_rq->runtime_remaining <= 0) 6272 throttle_cfs_rq(cfs_rq); 6273 } 6274 6275 static void sync_throttle(struct task_group *tg, int cpu) 6276 { 6277 struct cfs_rq *pcfs_rq, *cfs_rq; 6278 6279 if (!cfs_bandwidth_used()) 6280 return; 6281 6282 if (!tg->parent) 6283 return; 6284 6285 cfs_rq = tg->cfs_rq[cpu]; 6286 pcfs_rq = tg->parent->cfs_rq[cpu]; 6287 6288 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6289 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6290 } 6291 6292 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6293 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6294 { 6295 if (!cfs_bandwidth_used()) 6296 return false; 6297 6298 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6299 return false; 6300 6301 /* 6302 * it's possible for a throttled entity to be forced into a running 6303 * state (e.g. set_curr_task), in this case we're finished. 6304 */ 6305 if (cfs_rq_throttled(cfs_rq)) 6306 return true; 6307 6308 return throttle_cfs_rq(cfs_rq); 6309 } 6310 6311 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6312 { 6313 struct cfs_bandwidth *cfs_b = 6314 container_of(timer, struct cfs_bandwidth, slack_timer); 6315 6316 do_sched_cfs_slack_timer(cfs_b); 6317 6318 return HRTIMER_NORESTART; 6319 } 6320 6321 extern const u64 max_cfs_quota_period; 6322 6323 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6324 { 6325 struct cfs_bandwidth *cfs_b = 6326 container_of(timer, struct cfs_bandwidth, period_timer); 6327 unsigned long flags; 6328 int overrun; 6329 int idle = 0; 6330 int count = 0; 6331 6332 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6333 for (;;) { 6334 overrun = hrtimer_forward_now(timer, cfs_b->period); 6335 if (!overrun) 6336 break; 6337 6338 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6339 6340 if (++count > 3) { 6341 u64 new, old = ktime_to_ns(cfs_b->period); 6342 6343 /* 6344 * Grow period by a factor of 2 to avoid losing precision. 6345 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6346 * to fail. 6347 */ 6348 new = old * 2; 6349 if (new < max_cfs_quota_period) { 6350 cfs_b->period = ns_to_ktime(new); 6351 cfs_b->quota *= 2; 6352 cfs_b->burst *= 2; 6353 6354 pr_warn_ratelimited( 6355 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6356 smp_processor_id(), 6357 div_u64(new, NSEC_PER_USEC), 6358 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6359 } else { 6360 pr_warn_ratelimited( 6361 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6362 smp_processor_id(), 6363 div_u64(old, NSEC_PER_USEC), 6364 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6365 } 6366 6367 /* reset count so we don't come right back in here */ 6368 count = 0; 6369 } 6370 } 6371 if (idle) 6372 cfs_b->period_active = 0; 6373 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6374 6375 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6376 } 6377 6378 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6379 { 6380 raw_spin_lock_init(&cfs_b->lock); 6381 cfs_b->runtime = 0; 6382 cfs_b->quota = RUNTIME_INF; 6383 cfs_b->period = ns_to_ktime(default_cfs_period()); 6384 cfs_b->burst = 0; 6385 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6386 6387 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6388 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6389 cfs_b->period_timer.function = sched_cfs_period_timer; 6390 6391 /* Add a random offset so that timers interleave */ 6392 hrtimer_set_expires(&cfs_b->period_timer, 6393 get_random_u32_below(cfs_b->period)); 6394 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6395 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6396 cfs_b->slack_started = false; 6397 } 6398 6399 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6400 { 6401 cfs_rq->runtime_enabled = 0; 6402 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6403 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6404 } 6405 6406 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6407 { 6408 lockdep_assert_held(&cfs_b->lock); 6409 6410 if (cfs_b->period_active) 6411 return; 6412 6413 cfs_b->period_active = 1; 6414 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6415 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6416 } 6417 6418 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6419 { 6420 int __maybe_unused i; 6421 6422 /* init_cfs_bandwidth() was not called */ 6423 if (!cfs_b->throttled_cfs_rq.next) 6424 return; 6425 6426 hrtimer_cancel(&cfs_b->period_timer); 6427 hrtimer_cancel(&cfs_b->slack_timer); 6428 6429 /* 6430 * It is possible that we still have some cfs_rq's pending on a CSD 6431 * list, though this race is very rare. In order for this to occur, we 6432 * must have raced with the last task leaving the group while there 6433 * exist throttled cfs_rq(s), and the period_timer must have queued the 6434 * CSD item but the remote cpu has not yet processed it. To handle this, 6435 * we can simply flush all pending CSD work inline here. We're 6436 * guaranteed at this point that no additional cfs_rq of this group can 6437 * join a CSD list. 6438 */ 6439 #ifdef CONFIG_SMP 6440 for_each_possible_cpu(i) { 6441 struct rq *rq = cpu_rq(i); 6442 unsigned long flags; 6443 6444 if (list_empty(&rq->cfsb_csd_list)) 6445 continue; 6446 6447 local_irq_save(flags); 6448 __cfsb_csd_unthrottle(rq); 6449 local_irq_restore(flags); 6450 } 6451 #endif 6452 } 6453 6454 /* 6455 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6456 * 6457 * The race is harmless, since modifying bandwidth settings of unhooked group 6458 * bits doesn't do much. 6459 */ 6460 6461 /* cpu online callback */ 6462 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6463 { 6464 struct task_group *tg; 6465 6466 lockdep_assert_rq_held(rq); 6467 6468 rcu_read_lock(); 6469 list_for_each_entry_rcu(tg, &task_groups, list) { 6470 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6471 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6472 6473 raw_spin_lock(&cfs_b->lock); 6474 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6475 raw_spin_unlock(&cfs_b->lock); 6476 } 6477 rcu_read_unlock(); 6478 } 6479 6480 /* cpu offline callback */ 6481 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6482 { 6483 struct task_group *tg; 6484 6485 lockdep_assert_rq_held(rq); 6486 6487 /* 6488 * The rq clock has already been updated in the 6489 * set_rq_offline(), so we should skip updating 6490 * the rq clock again in unthrottle_cfs_rq(). 6491 */ 6492 rq_clock_start_loop_update(rq); 6493 6494 rcu_read_lock(); 6495 list_for_each_entry_rcu(tg, &task_groups, list) { 6496 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6497 6498 if (!cfs_rq->runtime_enabled) 6499 continue; 6500 6501 /* 6502 * clock_task is not advancing so we just need to make sure 6503 * there's some valid quota amount 6504 */ 6505 cfs_rq->runtime_remaining = 1; 6506 /* 6507 * Offline rq is schedulable till CPU is completely disabled 6508 * in take_cpu_down(), so we prevent new cfs throttling here. 6509 */ 6510 cfs_rq->runtime_enabled = 0; 6511 6512 if (cfs_rq_throttled(cfs_rq)) 6513 unthrottle_cfs_rq(cfs_rq); 6514 } 6515 rcu_read_unlock(); 6516 6517 rq_clock_stop_loop_update(rq); 6518 } 6519 6520 bool cfs_task_bw_constrained(struct task_struct *p) 6521 { 6522 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6523 6524 if (!cfs_bandwidth_used()) 6525 return false; 6526 6527 if (cfs_rq->runtime_enabled || 6528 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6529 return true; 6530 6531 return false; 6532 } 6533 6534 #ifdef CONFIG_NO_HZ_FULL 6535 /* called from pick_next_task_fair() */ 6536 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6537 { 6538 int cpu = cpu_of(rq); 6539 6540 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6541 return; 6542 6543 if (!tick_nohz_full_cpu(cpu)) 6544 return; 6545 6546 if (rq->nr_running != 1) 6547 return; 6548 6549 /* 6550 * We know there is only one task runnable and we've just picked it. The 6551 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6552 * be otherwise able to stop the tick. Just need to check if we are using 6553 * bandwidth control. 6554 */ 6555 if (cfs_task_bw_constrained(p)) 6556 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6557 } 6558 #endif 6559 6560 #else /* CONFIG_CFS_BANDWIDTH */ 6561 6562 static inline bool cfs_bandwidth_used(void) 6563 { 6564 return false; 6565 } 6566 6567 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6568 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6569 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6570 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6571 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6572 6573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6574 { 6575 return 0; 6576 } 6577 6578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6579 { 6580 return 0; 6581 } 6582 6583 static inline int throttled_lb_pair(struct task_group *tg, 6584 int src_cpu, int dest_cpu) 6585 { 6586 return 0; 6587 } 6588 6589 #ifdef CONFIG_FAIR_GROUP_SCHED 6590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6591 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6592 #endif 6593 6594 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6595 { 6596 return NULL; 6597 } 6598 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6599 static inline void update_runtime_enabled(struct rq *rq) {} 6600 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6601 #ifdef CONFIG_CGROUP_SCHED 6602 bool cfs_task_bw_constrained(struct task_struct *p) 6603 { 6604 return false; 6605 } 6606 #endif 6607 #endif /* CONFIG_CFS_BANDWIDTH */ 6608 6609 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6610 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6611 #endif 6612 6613 /************************************************** 6614 * CFS operations on tasks: 6615 */ 6616 6617 #ifdef CONFIG_SCHED_HRTICK 6618 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6619 { 6620 struct sched_entity *se = &p->se; 6621 6622 SCHED_WARN_ON(task_rq(p) != rq); 6623 6624 if (rq->cfs.h_nr_running > 1) { 6625 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6626 u64 slice = se->slice; 6627 s64 delta = slice - ran; 6628 6629 if (delta < 0) { 6630 if (task_current(rq, p)) 6631 resched_curr(rq); 6632 return; 6633 } 6634 hrtick_start(rq, delta); 6635 } 6636 } 6637 6638 /* 6639 * called from enqueue/dequeue and updates the hrtick when the 6640 * current task is from our class and nr_running is low enough 6641 * to matter. 6642 */ 6643 static void hrtick_update(struct rq *rq) 6644 { 6645 struct task_struct *curr = rq->curr; 6646 6647 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6648 return; 6649 6650 hrtick_start_fair(rq, curr); 6651 } 6652 #else /* !CONFIG_SCHED_HRTICK */ 6653 static inline void 6654 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6655 { 6656 } 6657 6658 static inline void hrtick_update(struct rq *rq) 6659 { 6660 } 6661 #endif 6662 6663 #ifdef CONFIG_SMP 6664 static inline bool cpu_overutilized(int cpu) 6665 { 6666 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6667 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6668 6669 /* Return true only if the utilization doesn't fit CPU's capacity */ 6670 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6671 } 6672 6673 static inline void update_overutilized_status(struct rq *rq) 6674 { 6675 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6676 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6677 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6678 } 6679 } 6680 #else 6681 static inline void update_overutilized_status(struct rq *rq) { } 6682 #endif 6683 6684 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6685 static int sched_idle_rq(struct rq *rq) 6686 { 6687 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6688 rq->nr_running); 6689 } 6690 6691 #ifdef CONFIG_SMP 6692 static int sched_idle_cpu(int cpu) 6693 { 6694 return sched_idle_rq(cpu_rq(cpu)); 6695 } 6696 #endif 6697 6698 /* 6699 * The enqueue_task method is called before nr_running is 6700 * increased. Here we update the fair scheduling stats and 6701 * then put the task into the rbtree: 6702 */ 6703 static void 6704 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6705 { 6706 struct cfs_rq *cfs_rq; 6707 struct sched_entity *se = &p->se; 6708 int idle_h_nr_running = task_has_idle_policy(p); 6709 int task_new = !(flags & ENQUEUE_WAKEUP); 6710 6711 /* 6712 * The code below (indirectly) updates schedutil which looks at 6713 * the cfs_rq utilization to select a frequency. 6714 * Let's add the task's estimated utilization to the cfs_rq's 6715 * estimated utilization, before we update schedutil. 6716 */ 6717 util_est_enqueue(&rq->cfs, p); 6718 6719 /* 6720 * If in_iowait is set, the code below may not trigger any cpufreq 6721 * utilization updates, so do it here explicitly with the IOWAIT flag 6722 * passed. 6723 */ 6724 if (p->in_iowait) 6725 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6726 6727 for_each_sched_entity(se) { 6728 if (se->on_rq) 6729 break; 6730 cfs_rq = cfs_rq_of(se); 6731 enqueue_entity(cfs_rq, se, flags); 6732 6733 cfs_rq->h_nr_running++; 6734 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6735 6736 if (cfs_rq_is_idle(cfs_rq)) 6737 idle_h_nr_running = 1; 6738 6739 /* end evaluation on encountering a throttled cfs_rq */ 6740 if (cfs_rq_throttled(cfs_rq)) 6741 goto enqueue_throttle; 6742 6743 flags = ENQUEUE_WAKEUP; 6744 } 6745 6746 for_each_sched_entity(se) { 6747 cfs_rq = cfs_rq_of(se); 6748 6749 update_load_avg(cfs_rq, se, UPDATE_TG); 6750 se_update_runnable(se); 6751 update_cfs_group(se); 6752 6753 cfs_rq->h_nr_running++; 6754 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6755 6756 if (cfs_rq_is_idle(cfs_rq)) 6757 idle_h_nr_running = 1; 6758 6759 /* end evaluation on encountering a throttled cfs_rq */ 6760 if (cfs_rq_throttled(cfs_rq)) 6761 goto enqueue_throttle; 6762 } 6763 6764 /* At this point se is NULL and we are at root level*/ 6765 add_nr_running(rq, 1); 6766 6767 /* 6768 * Since new tasks are assigned an initial util_avg equal to 6769 * half of the spare capacity of their CPU, tiny tasks have the 6770 * ability to cross the overutilized threshold, which will 6771 * result in the load balancer ruining all the task placement 6772 * done by EAS. As a way to mitigate that effect, do not account 6773 * for the first enqueue operation of new tasks during the 6774 * overutilized flag detection. 6775 * 6776 * A better way of solving this problem would be to wait for 6777 * the PELT signals of tasks to converge before taking them 6778 * into account, but that is not straightforward to implement, 6779 * and the following generally works well enough in practice. 6780 */ 6781 if (!task_new) 6782 update_overutilized_status(rq); 6783 6784 enqueue_throttle: 6785 assert_list_leaf_cfs_rq(rq); 6786 6787 hrtick_update(rq); 6788 } 6789 6790 static void set_next_buddy(struct sched_entity *se); 6791 6792 /* 6793 * The dequeue_task method is called before nr_running is 6794 * decreased. We remove the task from the rbtree and 6795 * update the fair scheduling stats: 6796 */ 6797 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6798 { 6799 struct cfs_rq *cfs_rq; 6800 struct sched_entity *se = &p->se; 6801 int task_sleep = flags & DEQUEUE_SLEEP; 6802 int idle_h_nr_running = task_has_idle_policy(p); 6803 bool was_sched_idle = sched_idle_rq(rq); 6804 6805 util_est_dequeue(&rq->cfs, p); 6806 6807 for_each_sched_entity(se) { 6808 cfs_rq = cfs_rq_of(se); 6809 dequeue_entity(cfs_rq, se, flags); 6810 6811 cfs_rq->h_nr_running--; 6812 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6813 6814 if (cfs_rq_is_idle(cfs_rq)) 6815 idle_h_nr_running = 1; 6816 6817 /* end evaluation on encountering a throttled cfs_rq */ 6818 if (cfs_rq_throttled(cfs_rq)) 6819 goto dequeue_throttle; 6820 6821 /* Don't dequeue parent if it has other entities besides us */ 6822 if (cfs_rq->load.weight) { 6823 /* Avoid re-evaluating load for this entity: */ 6824 se = parent_entity(se); 6825 /* 6826 * Bias pick_next to pick a task from this cfs_rq, as 6827 * p is sleeping when it is within its sched_slice. 6828 */ 6829 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6830 set_next_buddy(se); 6831 break; 6832 } 6833 flags |= DEQUEUE_SLEEP; 6834 } 6835 6836 for_each_sched_entity(se) { 6837 cfs_rq = cfs_rq_of(se); 6838 6839 update_load_avg(cfs_rq, se, UPDATE_TG); 6840 se_update_runnable(se); 6841 update_cfs_group(se); 6842 6843 cfs_rq->h_nr_running--; 6844 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6845 6846 if (cfs_rq_is_idle(cfs_rq)) 6847 idle_h_nr_running = 1; 6848 6849 /* end evaluation on encountering a throttled cfs_rq */ 6850 if (cfs_rq_throttled(cfs_rq)) 6851 goto dequeue_throttle; 6852 6853 } 6854 6855 /* At this point se is NULL and we are at root level*/ 6856 sub_nr_running(rq, 1); 6857 6858 /* balance early to pull high priority tasks */ 6859 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6860 rq->next_balance = jiffies; 6861 6862 dequeue_throttle: 6863 util_est_update(&rq->cfs, p, task_sleep); 6864 hrtick_update(rq); 6865 } 6866 6867 #ifdef CONFIG_SMP 6868 6869 /* Working cpumask for: load_balance, load_balance_newidle. */ 6870 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6871 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6872 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6873 6874 #ifdef CONFIG_NO_HZ_COMMON 6875 6876 static struct { 6877 cpumask_var_t idle_cpus_mask; 6878 atomic_t nr_cpus; 6879 int has_blocked; /* Idle CPUS has blocked load */ 6880 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6881 unsigned long next_balance; /* in jiffy units */ 6882 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6883 } nohz ____cacheline_aligned; 6884 6885 #endif /* CONFIG_NO_HZ_COMMON */ 6886 6887 static unsigned long cpu_load(struct rq *rq) 6888 { 6889 return cfs_rq_load_avg(&rq->cfs); 6890 } 6891 6892 /* 6893 * cpu_load_without - compute CPU load without any contributions from *p 6894 * @cpu: the CPU which load is requested 6895 * @p: the task which load should be discounted 6896 * 6897 * The load of a CPU is defined by the load of tasks currently enqueued on that 6898 * CPU as well as tasks which are currently sleeping after an execution on that 6899 * CPU. 6900 * 6901 * This method returns the load of the specified CPU by discounting the load of 6902 * the specified task, whenever the task is currently contributing to the CPU 6903 * load. 6904 */ 6905 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6906 { 6907 struct cfs_rq *cfs_rq; 6908 unsigned int load; 6909 6910 /* Task has no contribution or is new */ 6911 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6912 return cpu_load(rq); 6913 6914 cfs_rq = &rq->cfs; 6915 load = READ_ONCE(cfs_rq->avg.load_avg); 6916 6917 /* Discount task's util from CPU's util */ 6918 lsub_positive(&load, task_h_load(p)); 6919 6920 return load; 6921 } 6922 6923 static unsigned long cpu_runnable(struct rq *rq) 6924 { 6925 return cfs_rq_runnable_avg(&rq->cfs); 6926 } 6927 6928 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6929 { 6930 struct cfs_rq *cfs_rq; 6931 unsigned int runnable; 6932 6933 /* Task has no contribution or is new */ 6934 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6935 return cpu_runnable(rq); 6936 6937 cfs_rq = &rq->cfs; 6938 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6939 6940 /* Discount task's runnable from CPU's runnable */ 6941 lsub_positive(&runnable, p->se.avg.runnable_avg); 6942 6943 return runnable; 6944 } 6945 6946 static unsigned long capacity_of(int cpu) 6947 { 6948 return cpu_rq(cpu)->cpu_capacity; 6949 } 6950 6951 static void record_wakee(struct task_struct *p) 6952 { 6953 /* 6954 * Only decay a single time; tasks that have less then 1 wakeup per 6955 * jiffy will not have built up many flips. 6956 */ 6957 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6958 current->wakee_flips >>= 1; 6959 current->wakee_flip_decay_ts = jiffies; 6960 } 6961 6962 if (current->last_wakee != p) { 6963 current->last_wakee = p; 6964 current->wakee_flips++; 6965 } 6966 } 6967 6968 /* 6969 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6970 * 6971 * A waker of many should wake a different task than the one last awakened 6972 * at a frequency roughly N times higher than one of its wakees. 6973 * 6974 * In order to determine whether we should let the load spread vs consolidating 6975 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6976 * partner, and a factor of lls_size higher frequency in the other. 6977 * 6978 * With both conditions met, we can be relatively sure that the relationship is 6979 * non-monogamous, with partner count exceeding socket size. 6980 * 6981 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6982 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6983 * socket size. 6984 */ 6985 static int wake_wide(struct task_struct *p) 6986 { 6987 unsigned int master = current->wakee_flips; 6988 unsigned int slave = p->wakee_flips; 6989 int factor = __this_cpu_read(sd_llc_size); 6990 6991 if (master < slave) 6992 swap(master, slave); 6993 if (slave < factor || master < slave * factor) 6994 return 0; 6995 return 1; 6996 } 6997 6998 /* 6999 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7000 * soonest. For the purpose of speed we only consider the waking and previous 7001 * CPU. 7002 * 7003 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7004 * cache-affine and is (or will be) idle. 7005 * 7006 * wake_affine_weight() - considers the weight to reflect the average 7007 * scheduling latency of the CPUs. This seems to work 7008 * for the overloaded case. 7009 */ 7010 static int 7011 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7012 { 7013 /* 7014 * If this_cpu is idle, it implies the wakeup is from interrupt 7015 * context. Only allow the move if cache is shared. Otherwise an 7016 * interrupt intensive workload could force all tasks onto one 7017 * node depending on the IO topology or IRQ affinity settings. 7018 * 7019 * If the prev_cpu is idle and cache affine then avoid a migration. 7020 * There is no guarantee that the cache hot data from an interrupt 7021 * is more important than cache hot data on the prev_cpu and from 7022 * a cpufreq perspective, it's better to have higher utilisation 7023 * on one CPU. 7024 */ 7025 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7026 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7027 7028 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7029 return this_cpu; 7030 7031 if (available_idle_cpu(prev_cpu)) 7032 return prev_cpu; 7033 7034 return nr_cpumask_bits; 7035 } 7036 7037 static int 7038 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7039 int this_cpu, int prev_cpu, int sync) 7040 { 7041 s64 this_eff_load, prev_eff_load; 7042 unsigned long task_load; 7043 7044 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7045 7046 if (sync) { 7047 unsigned long current_load = task_h_load(current); 7048 7049 if (current_load > this_eff_load) 7050 return this_cpu; 7051 7052 this_eff_load -= current_load; 7053 } 7054 7055 task_load = task_h_load(p); 7056 7057 this_eff_load += task_load; 7058 if (sched_feat(WA_BIAS)) 7059 this_eff_load *= 100; 7060 this_eff_load *= capacity_of(prev_cpu); 7061 7062 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7063 prev_eff_load -= task_load; 7064 if (sched_feat(WA_BIAS)) 7065 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7066 prev_eff_load *= capacity_of(this_cpu); 7067 7068 /* 7069 * If sync, adjust the weight of prev_eff_load such that if 7070 * prev_eff == this_eff that select_idle_sibling() will consider 7071 * stacking the wakee on top of the waker if no other CPU is 7072 * idle. 7073 */ 7074 if (sync) 7075 prev_eff_load += 1; 7076 7077 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7078 } 7079 7080 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7081 int this_cpu, int prev_cpu, int sync) 7082 { 7083 int target = nr_cpumask_bits; 7084 7085 if (sched_feat(WA_IDLE)) 7086 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7087 7088 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7089 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7090 7091 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7092 if (target != this_cpu) 7093 return prev_cpu; 7094 7095 schedstat_inc(sd->ttwu_move_affine); 7096 schedstat_inc(p->stats.nr_wakeups_affine); 7097 return target; 7098 } 7099 7100 static struct sched_group * 7101 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7102 7103 /* 7104 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7105 */ 7106 static int 7107 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7108 { 7109 unsigned long load, min_load = ULONG_MAX; 7110 unsigned int min_exit_latency = UINT_MAX; 7111 u64 latest_idle_timestamp = 0; 7112 int least_loaded_cpu = this_cpu; 7113 int shallowest_idle_cpu = -1; 7114 int i; 7115 7116 /* Check if we have any choice: */ 7117 if (group->group_weight == 1) 7118 return cpumask_first(sched_group_span(group)); 7119 7120 /* Traverse only the allowed CPUs */ 7121 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7122 struct rq *rq = cpu_rq(i); 7123 7124 if (!sched_core_cookie_match(rq, p)) 7125 continue; 7126 7127 if (sched_idle_cpu(i)) 7128 return i; 7129 7130 if (available_idle_cpu(i)) { 7131 struct cpuidle_state *idle = idle_get_state(rq); 7132 if (idle && idle->exit_latency < min_exit_latency) { 7133 /* 7134 * We give priority to a CPU whose idle state 7135 * has the smallest exit latency irrespective 7136 * of any idle timestamp. 7137 */ 7138 min_exit_latency = idle->exit_latency; 7139 latest_idle_timestamp = rq->idle_stamp; 7140 shallowest_idle_cpu = i; 7141 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7142 rq->idle_stamp > latest_idle_timestamp) { 7143 /* 7144 * If equal or no active idle state, then 7145 * the most recently idled CPU might have 7146 * a warmer cache. 7147 */ 7148 latest_idle_timestamp = rq->idle_stamp; 7149 shallowest_idle_cpu = i; 7150 } 7151 } else if (shallowest_idle_cpu == -1) { 7152 load = cpu_load(cpu_rq(i)); 7153 if (load < min_load) { 7154 min_load = load; 7155 least_loaded_cpu = i; 7156 } 7157 } 7158 } 7159 7160 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7161 } 7162 7163 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7164 int cpu, int prev_cpu, int sd_flag) 7165 { 7166 int new_cpu = cpu; 7167 7168 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7169 return prev_cpu; 7170 7171 /* 7172 * We need task's util for cpu_util_without, sync it up to 7173 * prev_cpu's last_update_time. 7174 */ 7175 if (!(sd_flag & SD_BALANCE_FORK)) 7176 sync_entity_load_avg(&p->se); 7177 7178 while (sd) { 7179 struct sched_group *group; 7180 struct sched_domain *tmp; 7181 int weight; 7182 7183 if (!(sd->flags & sd_flag)) { 7184 sd = sd->child; 7185 continue; 7186 } 7187 7188 group = find_idlest_group(sd, p, cpu); 7189 if (!group) { 7190 sd = sd->child; 7191 continue; 7192 } 7193 7194 new_cpu = find_idlest_group_cpu(group, p, cpu); 7195 if (new_cpu == cpu) { 7196 /* Now try balancing at a lower domain level of 'cpu': */ 7197 sd = sd->child; 7198 continue; 7199 } 7200 7201 /* Now try balancing at a lower domain level of 'new_cpu': */ 7202 cpu = new_cpu; 7203 weight = sd->span_weight; 7204 sd = NULL; 7205 for_each_domain(cpu, tmp) { 7206 if (weight <= tmp->span_weight) 7207 break; 7208 if (tmp->flags & sd_flag) 7209 sd = tmp; 7210 } 7211 } 7212 7213 return new_cpu; 7214 } 7215 7216 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7217 { 7218 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7219 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7220 return cpu; 7221 7222 return -1; 7223 } 7224 7225 #ifdef CONFIG_SCHED_SMT 7226 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7227 EXPORT_SYMBOL_GPL(sched_smt_present); 7228 7229 static inline void set_idle_cores(int cpu, int val) 7230 { 7231 struct sched_domain_shared *sds; 7232 7233 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7234 if (sds) 7235 WRITE_ONCE(sds->has_idle_cores, val); 7236 } 7237 7238 static inline bool test_idle_cores(int cpu) 7239 { 7240 struct sched_domain_shared *sds; 7241 7242 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7243 if (sds) 7244 return READ_ONCE(sds->has_idle_cores); 7245 7246 return false; 7247 } 7248 7249 /* 7250 * Scans the local SMT mask to see if the entire core is idle, and records this 7251 * information in sd_llc_shared->has_idle_cores. 7252 * 7253 * Since SMT siblings share all cache levels, inspecting this limited remote 7254 * state should be fairly cheap. 7255 */ 7256 void __update_idle_core(struct rq *rq) 7257 { 7258 int core = cpu_of(rq); 7259 int cpu; 7260 7261 rcu_read_lock(); 7262 if (test_idle_cores(core)) 7263 goto unlock; 7264 7265 for_each_cpu(cpu, cpu_smt_mask(core)) { 7266 if (cpu == core) 7267 continue; 7268 7269 if (!available_idle_cpu(cpu)) 7270 goto unlock; 7271 } 7272 7273 set_idle_cores(core, 1); 7274 unlock: 7275 rcu_read_unlock(); 7276 } 7277 7278 /* 7279 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7280 * there are no idle cores left in the system; tracked through 7281 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7282 */ 7283 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7284 { 7285 bool idle = true; 7286 int cpu; 7287 7288 for_each_cpu(cpu, cpu_smt_mask(core)) { 7289 if (!available_idle_cpu(cpu)) { 7290 idle = false; 7291 if (*idle_cpu == -1) { 7292 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7293 *idle_cpu = cpu; 7294 break; 7295 } 7296 continue; 7297 } 7298 break; 7299 } 7300 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7301 *idle_cpu = cpu; 7302 } 7303 7304 if (idle) 7305 return core; 7306 7307 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7308 return -1; 7309 } 7310 7311 /* 7312 * Scan the local SMT mask for idle CPUs. 7313 */ 7314 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7315 { 7316 int cpu; 7317 7318 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7319 if (cpu == target) 7320 continue; 7321 /* 7322 * Check if the CPU is in the LLC scheduling domain of @target. 7323 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7324 */ 7325 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7326 continue; 7327 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7328 return cpu; 7329 } 7330 7331 return -1; 7332 } 7333 7334 #else /* CONFIG_SCHED_SMT */ 7335 7336 static inline void set_idle_cores(int cpu, int val) 7337 { 7338 } 7339 7340 static inline bool test_idle_cores(int cpu) 7341 { 7342 return false; 7343 } 7344 7345 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7346 { 7347 return __select_idle_cpu(core, p); 7348 } 7349 7350 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7351 { 7352 return -1; 7353 } 7354 7355 #endif /* CONFIG_SCHED_SMT */ 7356 7357 /* 7358 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7359 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7360 * average idle time for this rq (as found in rq->avg_idle). 7361 */ 7362 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7363 { 7364 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7365 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7366 struct sched_domain_shared *sd_share; 7367 7368 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7369 7370 if (sched_feat(SIS_UTIL)) { 7371 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7372 if (sd_share) { 7373 /* because !--nr is the condition to stop scan */ 7374 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7375 /* overloaded LLC is unlikely to have idle cpu/core */ 7376 if (nr == 1) 7377 return -1; 7378 } 7379 } 7380 7381 if (static_branch_unlikely(&sched_cluster_active)) { 7382 struct sched_group *sg = sd->groups; 7383 7384 if (sg->flags & SD_CLUSTER) { 7385 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7386 if (!cpumask_test_cpu(cpu, cpus)) 7387 continue; 7388 7389 if (has_idle_core) { 7390 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7391 if ((unsigned int)i < nr_cpumask_bits) 7392 return i; 7393 } else { 7394 if (--nr <= 0) 7395 return -1; 7396 idle_cpu = __select_idle_cpu(cpu, p); 7397 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7398 return idle_cpu; 7399 } 7400 } 7401 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7402 } 7403 } 7404 7405 for_each_cpu_wrap(cpu, cpus, target + 1) { 7406 if (has_idle_core) { 7407 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7408 if ((unsigned int)i < nr_cpumask_bits) 7409 return i; 7410 7411 } else { 7412 if (--nr <= 0) 7413 return -1; 7414 idle_cpu = __select_idle_cpu(cpu, p); 7415 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7416 break; 7417 } 7418 } 7419 7420 if (has_idle_core) 7421 set_idle_cores(target, false); 7422 7423 return idle_cpu; 7424 } 7425 7426 /* 7427 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7428 * the task fits. If no CPU is big enough, but there are idle ones, try to 7429 * maximize capacity. 7430 */ 7431 static int 7432 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7433 { 7434 unsigned long task_util, util_min, util_max, best_cap = 0; 7435 int fits, best_fits = 0; 7436 int cpu, best_cpu = -1; 7437 struct cpumask *cpus; 7438 7439 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7440 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7441 7442 task_util = task_util_est(p); 7443 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7444 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7445 7446 for_each_cpu_wrap(cpu, cpus, target) { 7447 unsigned long cpu_cap = capacity_of(cpu); 7448 7449 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7450 continue; 7451 7452 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7453 7454 /* This CPU fits with all requirements */ 7455 if (fits > 0) 7456 return cpu; 7457 /* 7458 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7459 * Look for the CPU with best capacity. 7460 */ 7461 else if (fits < 0) 7462 cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu)); 7463 7464 /* 7465 * First, select CPU which fits better (-1 being better than 0). 7466 * Then, select the one with best capacity at same level. 7467 */ 7468 if ((fits < best_fits) || 7469 ((fits == best_fits) && (cpu_cap > best_cap))) { 7470 best_cap = cpu_cap; 7471 best_cpu = cpu; 7472 best_fits = fits; 7473 } 7474 } 7475 7476 return best_cpu; 7477 } 7478 7479 static inline bool asym_fits_cpu(unsigned long util, 7480 unsigned long util_min, 7481 unsigned long util_max, 7482 int cpu) 7483 { 7484 if (sched_asym_cpucap_active()) 7485 /* 7486 * Return true only if the cpu fully fits the task requirements 7487 * which include the utilization and the performance hints. 7488 */ 7489 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7490 7491 return true; 7492 } 7493 7494 /* 7495 * Try and locate an idle core/thread in the LLC cache domain. 7496 */ 7497 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7498 { 7499 bool has_idle_core = false; 7500 struct sched_domain *sd; 7501 unsigned long task_util, util_min, util_max; 7502 int i, recent_used_cpu, prev_aff = -1; 7503 7504 /* 7505 * On asymmetric system, update task utilization because we will check 7506 * that the task fits with cpu's capacity. 7507 */ 7508 if (sched_asym_cpucap_active()) { 7509 sync_entity_load_avg(&p->se); 7510 task_util = task_util_est(p); 7511 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7512 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7513 } 7514 7515 /* 7516 * per-cpu select_rq_mask usage 7517 */ 7518 lockdep_assert_irqs_disabled(); 7519 7520 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7521 asym_fits_cpu(task_util, util_min, util_max, target)) 7522 return target; 7523 7524 /* 7525 * If the previous CPU is cache affine and idle, don't be stupid: 7526 */ 7527 if (prev != target && cpus_share_cache(prev, target) && 7528 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7529 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7530 7531 if (!static_branch_unlikely(&sched_cluster_active) || 7532 cpus_share_resources(prev, target)) 7533 return prev; 7534 7535 prev_aff = prev; 7536 } 7537 7538 /* 7539 * Allow a per-cpu kthread to stack with the wakee if the 7540 * kworker thread and the tasks previous CPUs are the same. 7541 * The assumption is that the wakee queued work for the 7542 * per-cpu kthread that is now complete and the wakeup is 7543 * essentially a sync wakeup. An obvious example of this 7544 * pattern is IO completions. 7545 */ 7546 if (is_per_cpu_kthread(current) && 7547 in_task() && 7548 prev == smp_processor_id() && 7549 this_rq()->nr_running <= 1 && 7550 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7551 return prev; 7552 } 7553 7554 /* Check a recently used CPU as a potential idle candidate: */ 7555 recent_used_cpu = p->recent_used_cpu; 7556 p->recent_used_cpu = prev; 7557 if (recent_used_cpu != prev && 7558 recent_used_cpu != target && 7559 cpus_share_cache(recent_used_cpu, target) && 7560 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7561 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7562 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7563 7564 if (!static_branch_unlikely(&sched_cluster_active) || 7565 cpus_share_resources(recent_used_cpu, target)) 7566 return recent_used_cpu; 7567 7568 } else { 7569 recent_used_cpu = -1; 7570 } 7571 7572 /* 7573 * For asymmetric CPU capacity systems, our domain of interest is 7574 * sd_asym_cpucapacity rather than sd_llc. 7575 */ 7576 if (sched_asym_cpucap_active()) { 7577 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7578 /* 7579 * On an asymmetric CPU capacity system where an exclusive 7580 * cpuset defines a symmetric island (i.e. one unique 7581 * capacity_orig value through the cpuset), the key will be set 7582 * but the CPUs within that cpuset will not have a domain with 7583 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7584 * capacity path. 7585 */ 7586 if (sd) { 7587 i = select_idle_capacity(p, sd, target); 7588 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7589 } 7590 } 7591 7592 sd = rcu_dereference(per_cpu(sd_llc, target)); 7593 if (!sd) 7594 return target; 7595 7596 if (sched_smt_active()) { 7597 has_idle_core = test_idle_cores(target); 7598 7599 if (!has_idle_core && cpus_share_cache(prev, target)) { 7600 i = select_idle_smt(p, sd, prev); 7601 if ((unsigned int)i < nr_cpumask_bits) 7602 return i; 7603 } 7604 } 7605 7606 i = select_idle_cpu(p, sd, has_idle_core, target); 7607 if ((unsigned)i < nr_cpumask_bits) 7608 return i; 7609 7610 /* 7611 * For cluster machines which have lower sharing cache like L2 or 7612 * LLC Tag, we tend to find an idle CPU in the target's cluster 7613 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7614 * use them if possible when no idle CPU found in select_idle_cpu(). 7615 */ 7616 if ((unsigned int)prev_aff < nr_cpumask_bits) 7617 return prev_aff; 7618 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7619 return recent_used_cpu; 7620 7621 return target; 7622 } 7623 7624 /** 7625 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7626 * @cpu: the CPU to get the utilization for 7627 * @p: task for which the CPU utilization should be predicted or NULL 7628 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7629 * @boost: 1 to enable boosting, otherwise 0 7630 * 7631 * The unit of the return value must be the same as the one of CPU capacity 7632 * so that CPU utilization can be compared with CPU capacity. 7633 * 7634 * CPU utilization is the sum of running time of runnable tasks plus the 7635 * recent utilization of currently non-runnable tasks on that CPU. 7636 * It represents the amount of CPU capacity currently used by CFS tasks in 7637 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7638 * capacity at f_max. 7639 * 7640 * The estimated CPU utilization is defined as the maximum between CPU 7641 * utilization and sum of the estimated utilization of the currently 7642 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7643 * previously-executed tasks, which helps better deduce how busy a CPU will 7644 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7645 * of such a task would be significantly decayed at this point of time. 7646 * 7647 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7648 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7649 * utilization. Boosting is implemented in cpu_util() so that internal 7650 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7651 * latter via cpu_util_cfs_boost(). 7652 * 7653 * CPU utilization can be higher than the current CPU capacity 7654 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7655 * of rounding errors as well as task migrations or wakeups of new tasks. 7656 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7657 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7658 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7659 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7660 * though since this is useful for predicting the CPU capacity required 7661 * after task migrations (scheduler-driven DVFS). 7662 * 7663 * Return: (Boosted) (estimated) utilization for the specified CPU. 7664 */ 7665 static unsigned long 7666 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7667 { 7668 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7669 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7670 unsigned long runnable; 7671 7672 if (boost) { 7673 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7674 util = max(util, runnable); 7675 } 7676 7677 /* 7678 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7679 * contribution. If @p migrates from another CPU to @cpu add its 7680 * contribution. In all the other cases @cpu is not impacted by the 7681 * migration so its util_avg is already correct. 7682 */ 7683 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7684 lsub_positive(&util, task_util(p)); 7685 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7686 util += task_util(p); 7687 7688 if (sched_feat(UTIL_EST)) { 7689 unsigned long util_est; 7690 7691 util_est = READ_ONCE(cfs_rq->avg.util_est); 7692 7693 /* 7694 * During wake-up @p isn't enqueued yet and doesn't contribute 7695 * to any cpu_rq(cpu)->cfs.avg.util_est. 7696 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7697 * has been enqueued. 7698 * 7699 * During exec (@dst_cpu = -1) @p is enqueued and does 7700 * contribute to cpu_rq(cpu)->cfs.util_est. 7701 * Remove it to "simulate" cpu_util without @p's contribution. 7702 * 7703 * Despite the task_on_rq_queued(@p) check there is still a 7704 * small window for a possible race when an exec 7705 * select_task_rq_fair() races with LB's detach_task(). 7706 * 7707 * detach_task() 7708 * deactivate_task() 7709 * p->on_rq = TASK_ON_RQ_MIGRATING; 7710 * -------------------------------- A 7711 * dequeue_task() \ 7712 * dequeue_task_fair() + Race Time 7713 * util_est_dequeue() / 7714 * -------------------------------- B 7715 * 7716 * The additional check "current == p" is required to further 7717 * reduce the race window. 7718 */ 7719 if (dst_cpu == cpu) 7720 util_est += _task_util_est(p); 7721 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7722 lsub_positive(&util_est, _task_util_est(p)); 7723 7724 util = max(util, util_est); 7725 } 7726 7727 return min(util, arch_scale_cpu_capacity(cpu)); 7728 } 7729 7730 unsigned long cpu_util_cfs(int cpu) 7731 { 7732 return cpu_util(cpu, NULL, -1, 0); 7733 } 7734 7735 unsigned long cpu_util_cfs_boost(int cpu) 7736 { 7737 return cpu_util(cpu, NULL, -1, 1); 7738 } 7739 7740 /* 7741 * cpu_util_without: compute cpu utilization without any contributions from *p 7742 * @cpu: the CPU which utilization is requested 7743 * @p: the task which utilization should be discounted 7744 * 7745 * The utilization of a CPU is defined by the utilization of tasks currently 7746 * enqueued on that CPU as well as tasks which are currently sleeping after an 7747 * execution on that CPU. 7748 * 7749 * This method returns the utilization of the specified CPU by discounting the 7750 * utilization of the specified task, whenever the task is currently 7751 * contributing to the CPU utilization. 7752 */ 7753 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7754 { 7755 /* Task has no contribution or is new */ 7756 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7757 p = NULL; 7758 7759 return cpu_util(cpu, p, -1, 0); 7760 } 7761 7762 /* 7763 * energy_env - Utilization landscape for energy estimation. 7764 * @task_busy_time: Utilization contribution by the task for which we test the 7765 * placement. Given by eenv_task_busy_time(). 7766 * @pd_busy_time: Utilization of the whole perf domain without the task 7767 * contribution. Given by eenv_pd_busy_time(). 7768 * @cpu_cap: Maximum CPU capacity for the perf domain. 7769 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7770 */ 7771 struct energy_env { 7772 unsigned long task_busy_time; 7773 unsigned long pd_busy_time; 7774 unsigned long cpu_cap; 7775 unsigned long pd_cap; 7776 }; 7777 7778 /* 7779 * Compute the task busy time for compute_energy(). This time cannot be 7780 * injected directly into effective_cpu_util() because of the IRQ scaling. 7781 * The latter only makes sense with the most recent CPUs where the task has 7782 * run. 7783 */ 7784 static inline void eenv_task_busy_time(struct energy_env *eenv, 7785 struct task_struct *p, int prev_cpu) 7786 { 7787 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7788 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7789 7790 if (unlikely(irq >= max_cap)) 7791 busy_time = max_cap; 7792 else 7793 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7794 7795 eenv->task_busy_time = busy_time; 7796 } 7797 7798 /* 7799 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7800 * utilization for each @pd_cpus, it however doesn't take into account 7801 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7802 * scale the EM reported power consumption at the (eventually clamped) 7803 * cpu_capacity. 7804 * 7805 * The contribution of the task @p for which we want to estimate the 7806 * energy cost is removed (by cpu_util()) and must be calculated 7807 * separately (see eenv_task_busy_time). This ensures: 7808 * 7809 * - A stable PD utilization, no matter which CPU of that PD we want to place 7810 * the task on. 7811 * 7812 * - A fair comparison between CPUs as the task contribution (task_util()) 7813 * will always be the same no matter which CPU utilization we rely on 7814 * (util_avg or util_est). 7815 * 7816 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7817 * exceed @eenv->pd_cap. 7818 */ 7819 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7820 struct cpumask *pd_cpus, 7821 struct task_struct *p) 7822 { 7823 unsigned long busy_time = 0; 7824 int cpu; 7825 7826 for_each_cpu(cpu, pd_cpus) { 7827 unsigned long util = cpu_util(cpu, p, -1, 0); 7828 7829 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 7830 } 7831 7832 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7833 } 7834 7835 /* 7836 * Compute the maximum utilization for compute_energy() when the task @p 7837 * is placed on the cpu @dst_cpu. 7838 * 7839 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7840 * exceed @eenv->cpu_cap. 7841 */ 7842 static inline unsigned long 7843 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7844 struct task_struct *p, int dst_cpu) 7845 { 7846 unsigned long max_util = 0; 7847 int cpu; 7848 7849 for_each_cpu(cpu, pd_cpus) { 7850 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7851 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7852 unsigned long eff_util, min, max; 7853 7854 /* 7855 * Performance domain frequency: utilization clamping 7856 * must be considered since it affects the selection 7857 * of the performance domain frequency. 7858 * NOTE: in case RT tasks are running, by default the 7859 * FREQUENCY_UTIL's utilization can be max OPP. 7860 */ 7861 eff_util = effective_cpu_util(cpu, util, &min, &max); 7862 7863 /* Task's uclamp can modify min and max value */ 7864 if (tsk && uclamp_is_used()) { 7865 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 7866 7867 /* 7868 * If there is no active max uclamp constraint, 7869 * directly use task's one, otherwise keep max. 7870 */ 7871 if (uclamp_rq_is_idle(cpu_rq(cpu))) 7872 max = uclamp_eff_value(p, UCLAMP_MAX); 7873 else 7874 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 7875 } 7876 7877 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 7878 max_util = max(max_util, eff_util); 7879 } 7880 7881 return min(max_util, eenv->cpu_cap); 7882 } 7883 7884 /* 7885 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7886 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7887 * contribution is ignored. 7888 */ 7889 static inline unsigned long 7890 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7891 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7892 { 7893 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7894 unsigned long busy_time = eenv->pd_busy_time; 7895 unsigned long energy; 7896 7897 if (dst_cpu >= 0) 7898 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7899 7900 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7901 7902 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7903 7904 return energy; 7905 } 7906 7907 /* 7908 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7909 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7910 * spare capacity in each performance domain and uses it as a potential 7911 * candidate to execute the task. Then, it uses the Energy Model to figure 7912 * out which of the CPU candidates is the most energy-efficient. 7913 * 7914 * The rationale for this heuristic is as follows. In a performance domain, 7915 * all the most energy efficient CPU candidates (according to the Energy 7916 * Model) are those for which we'll request a low frequency. When there are 7917 * several CPUs for which the frequency request will be the same, we don't 7918 * have enough data to break the tie between them, because the Energy Model 7919 * only includes active power costs. With this model, if we assume that 7920 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7921 * the maximum spare capacity in a performance domain is guaranteed to be among 7922 * the best candidates of the performance domain. 7923 * 7924 * In practice, it could be preferable from an energy standpoint to pack 7925 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7926 * but that could also hurt our chances to go cluster idle, and we have no 7927 * ways to tell with the current Energy Model if this is actually a good 7928 * idea or not. So, find_energy_efficient_cpu() basically favors 7929 * cluster-packing, and spreading inside a cluster. That should at least be 7930 * a good thing for latency, and this is consistent with the idea that most 7931 * of the energy savings of EAS come from the asymmetry of the system, and 7932 * not so much from breaking the tie between identical CPUs. That's also the 7933 * reason why EAS is enabled in the topology code only for systems where 7934 * SD_ASYM_CPUCAPACITY is set. 7935 * 7936 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7937 * they don't have any useful utilization data yet and it's not possible to 7938 * forecast their impact on energy consumption. Consequently, they will be 7939 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7940 * to be energy-inefficient in some use-cases. The alternative would be to 7941 * bias new tasks towards specific types of CPUs first, or to try to infer 7942 * their util_avg from the parent task, but those heuristics could hurt 7943 * other use-cases too. So, until someone finds a better way to solve this, 7944 * let's keep things simple by re-using the existing slow path. 7945 */ 7946 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7947 { 7948 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7949 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7950 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7951 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7952 struct root_domain *rd = this_rq()->rd; 7953 int cpu, best_energy_cpu, target = -1; 7954 int prev_fits = -1, best_fits = -1; 7955 unsigned long best_thermal_cap = 0; 7956 unsigned long prev_thermal_cap = 0; 7957 struct sched_domain *sd; 7958 struct perf_domain *pd; 7959 struct energy_env eenv; 7960 7961 rcu_read_lock(); 7962 pd = rcu_dereference(rd->pd); 7963 if (!pd || READ_ONCE(rd->overutilized)) 7964 goto unlock; 7965 7966 /* 7967 * Energy-aware wake-up happens on the lowest sched_domain starting 7968 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7969 */ 7970 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7971 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7972 sd = sd->parent; 7973 if (!sd) 7974 goto unlock; 7975 7976 target = prev_cpu; 7977 7978 sync_entity_load_avg(&p->se); 7979 if (!task_util_est(p) && p_util_min == 0) 7980 goto unlock; 7981 7982 eenv_task_busy_time(&eenv, p, prev_cpu); 7983 7984 for (; pd; pd = pd->next) { 7985 unsigned long util_min = p_util_min, util_max = p_util_max; 7986 unsigned long cpu_cap, cpu_thermal_cap, util; 7987 long prev_spare_cap = -1, max_spare_cap = -1; 7988 unsigned long rq_util_min, rq_util_max; 7989 unsigned long cur_delta, base_energy; 7990 int max_spare_cap_cpu = -1; 7991 int fits, max_fits = -1; 7992 7993 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7994 7995 if (cpumask_empty(cpus)) 7996 continue; 7997 7998 /* Account thermal pressure for the energy estimation */ 7999 cpu = cpumask_first(cpus); 8000 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 8001 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 8002 8003 eenv.cpu_cap = cpu_thermal_cap; 8004 eenv.pd_cap = 0; 8005 8006 for_each_cpu(cpu, cpus) { 8007 struct rq *rq = cpu_rq(cpu); 8008 8009 eenv.pd_cap += cpu_thermal_cap; 8010 8011 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8012 continue; 8013 8014 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8015 continue; 8016 8017 util = cpu_util(cpu, p, cpu, 0); 8018 cpu_cap = capacity_of(cpu); 8019 8020 /* 8021 * Skip CPUs that cannot satisfy the capacity request. 8022 * IOW, placing the task there would make the CPU 8023 * overutilized. Take uclamp into account to see how 8024 * much capacity we can get out of the CPU; this is 8025 * aligned with sched_cpu_util(). 8026 */ 8027 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8028 /* 8029 * Open code uclamp_rq_util_with() except for 8030 * the clamp() part. Ie: apply max aggregation 8031 * only. util_fits_cpu() logic requires to 8032 * operate on non clamped util but must use the 8033 * max-aggregated uclamp_{min, max}. 8034 */ 8035 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8036 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8037 8038 util_min = max(rq_util_min, p_util_min); 8039 util_max = max(rq_util_max, p_util_max); 8040 } 8041 8042 fits = util_fits_cpu(util, util_min, util_max, cpu); 8043 if (!fits) 8044 continue; 8045 8046 lsub_positive(&cpu_cap, util); 8047 8048 if (cpu == prev_cpu) { 8049 /* Always use prev_cpu as a candidate. */ 8050 prev_spare_cap = cpu_cap; 8051 prev_fits = fits; 8052 } else if ((fits > max_fits) || 8053 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8054 /* 8055 * Find the CPU with the maximum spare capacity 8056 * among the remaining CPUs in the performance 8057 * domain. 8058 */ 8059 max_spare_cap = cpu_cap; 8060 max_spare_cap_cpu = cpu; 8061 max_fits = fits; 8062 } 8063 } 8064 8065 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8066 continue; 8067 8068 eenv_pd_busy_time(&eenv, cpus, p); 8069 /* Compute the 'base' energy of the pd, without @p */ 8070 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8071 8072 /* Evaluate the energy impact of using prev_cpu. */ 8073 if (prev_spare_cap > -1) { 8074 prev_delta = compute_energy(&eenv, pd, cpus, p, 8075 prev_cpu); 8076 /* CPU utilization has changed */ 8077 if (prev_delta < base_energy) 8078 goto unlock; 8079 prev_delta -= base_energy; 8080 prev_thermal_cap = cpu_thermal_cap; 8081 best_delta = min(best_delta, prev_delta); 8082 } 8083 8084 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8085 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8086 /* Current best energy cpu fits better */ 8087 if (max_fits < best_fits) 8088 continue; 8089 8090 /* 8091 * Both don't fit performance hint (i.e. uclamp_min) 8092 * but best energy cpu has better capacity. 8093 */ 8094 if ((max_fits < 0) && 8095 (cpu_thermal_cap <= best_thermal_cap)) 8096 continue; 8097 8098 cur_delta = compute_energy(&eenv, pd, cpus, p, 8099 max_spare_cap_cpu); 8100 /* CPU utilization has changed */ 8101 if (cur_delta < base_energy) 8102 goto unlock; 8103 cur_delta -= base_energy; 8104 8105 /* 8106 * Both fit for the task but best energy cpu has lower 8107 * energy impact. 8108 */ 8109 if ((max_fits > 0) && (best_fits > 0) && 8110 (cur_delta >= best_delta)) 8111 continue; 8112 8113 best_delta = cur_delta; 8114 best_energy_cpu = max_spare_cap_cpu; 8115 best_fits = max_fits; 8116 best_thermal_cap = cpu_thermal_cap; 8117 } 8118 } 8119 rcu_read_unlock(); 8120 8121 if ((best_fits > prev_fits) || 8122 ((best_fits > 0) && (best_delta < prev_delta)) || 8123 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 8124 target = best_energy_cpu; 8125 8126 return target; 8127 8128 unlock: 8129 rcu_read_unlock(); 8130 8131 return target; 8132 } 8133 8134 /* 8135 * select_task_rq_fair: Select target runqueue for the waking task in domains 8136 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8137 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8138 * 8139 * Balances load by selecting the idlest CPU in the idlest group, or under 8140 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8141 * 8142 * Returns the target CPU number. 8143 */ 8144 static int 8145 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8146 { 8147 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8148 struct sched_domain *tmp, *sd = NULL; 8149 int cpu = smp_processor_id(); 8150 int new_cpu = prev_cpu; 8151 int want_affine = 0; 8152 /* SD_flags and WF_flags share the first nibble */ 8153 int sd_flag = wake_flags & 0xF; 8154 8155 /* 8156 * required for stable ->cpus_allowed 8157 */ 8158 lockdep_assert_held(&p->pi_lock); 8159 if (wake_flags & WF_TTWU) { 8160 record_wakee(p); 8161 8162 if ((wake_flags & WF_CURRENT_CPU) && 8163 cpumask_test_cpu(cpu, p->cpus_ptr)) 8164 return cpu; 8165 8166 if (sched_energy_enabled()) { 8167 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8168 if (new_cpu >= 0) 8169 return new_cpu; 8170 new_cpu = prev_cpu; 8171 } 8172 8173 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8174 } 8175 8176 rcu_read_lock(); 8177 for_each_domain(cpu, tmp) { 8178 /* 8179 * If both 'cpu' and 'prev_cpu' are part of this domain, 8180 * cpu is a valid SD_WAKE_AFFINE target. 8181 */ 8182 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8183 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8184 if (cpu != prev_cpu) 8185 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8186 8187 sd = NULL; /* Prefer wake_affine over balance flags */ 8188 break; 8189 } 8190 8191 /* 8192 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8193 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8194 * will usually go to the fast path. 8195 */ 8196 if (tmp->flags & sd_flag) 8197 sd = tmp; 8198 else if (!want_affine) 8199 break; 8200 } 8201 8202 if (unlikely(sd)) { 8203 /* Slow path */ 8204 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8205 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8206 /* Fast path */ 8207 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8208 } 8209 rcu_read_unlock(); 8210 8211 return new_cpu; 8212 } 8213 8214 /* 8215 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8216 * cfs_rq_of(p) references at time of call are still valid and identify the 8217 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8218 */ 8219 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8220 { 8221 struct sched_entity *se = &p->se; 8222 8223 if (!task_on_rq_migrating(p)) { 8224 remove_entity_load_avg(se); 8225 8226 /* 8227 * Here, the task's PELT values have been updated according to 8228 * the current rq's clock. But if that clock hasn't been 8229 * updated in a while, a substantial idle time will be missed, 8230 * leading to an inflation after wake-up on the new rq. 8231 * 8232 * Estimate the missing time from the cfs_rq last_update_time 8233 * and update sched_avg to improve the PELT continuity after 8234 * migration. 8235 */ 8236 migrate_se_pelt_lag(se); 8237 } 8238 8239 /* Tell new CPU we are migrated */ 8240 se->avg.last_update_time = 0; 8241 8242 update_scan_period(p, new_cpu); 8243 } 8244 8245 static void task_dead_fair(struct task_struct *p) 8246 { 8247 remove_entity_load_avg(&p->se); 8248 } 8249 8250 static int 8251 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8252 { 8253 if (rq->nr_running) 8254 return 1; 8255 8256 return newidle_balance(rq, rf) != 0; 8257 } 8258 #endif /* CONFIG_SMP */ 8259 8260 static void set_next_buddy(struct sched_entity *se) 8261 { 8262 for_each_sched_entity(se) { 8263 if (SCHED_WARN_ON(!se->on_rq)) 8264 return; 8265 if (se_is_idle(se)) 8266 return; 8267 cfs_rq_of(se)->next = se; 8268 } 8269 } 8270 8271 /* 8272 * Preempt the current task with a newly woken task if needed: 8273 */ 8274 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8275 { 8276 struct task_struct *curr = rq->curr; 8277 struct sched_entity *se = &curr->se, *pse = &p->se; 8278 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8279 int cse_is_idle, pse_is_idle; 8280 8281 if (unlikely(se == pse)) 8282 return; 8283 8284 /* 8285 * This is possible from callers such as attach_tasks(), in which we 8286 * unconditionally wakeup_preempt() after an enqueue (which may have 8287 * lead to a throttle). This both saves work and prevents false 8288 * next-buddy nomination below. 8289 */ 8290 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8291 return; 8292 8293 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8294 set_next_buddy(pse); 8295 } 8296 8297 /* 8298 * We can come here with TIF_NEED_RESCHED already set from new task 8299 * wake up path. 8300 * 8301 * Note: this also catches the edge-case of curr being in a throttled 8302 * group (e.g. via set_curr_task), since update_curr() (in the 8303 * enqueue of curr) will have resulted in resched being set. This 8304 * prevents us from potentially nominating it as a false LAST_BUDDY 8305 * below. 8306 */ 8307 if (test_tsk_need_resched(curr)) 8308 return; 8309 8310 /* Idle tasks are by definition preempted by non-idle tasks. */ 8311 if (unlikely(task_has_idle_policy(curr)) && 8312 likely(!task_has_idle_policy(p))) 8313 goto preempt; 8314 8315 /* 8316 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8317 * is driven by the tick): 8318 */ 8319 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8320 return; 8321 8322 find_matching_se(&se, &pse); 8323 WARN_ON_ONCE(!pse); 8324 8325 cse_is_idle = se_is_idle(se); 8326 pse_is_idle = se_is_idle(pse); 8327 8328 /* 8329 * Preempt an idle group in favor of a non-idle group (and don't preempt 8330 * in the inverse case). 8331 */ 8332 if (cse_is_idle && !pse_is_idle) 8333 goto preempt; 8334 if (cse_is_idle != pse_is_idle) 8335 return; 8336 8337 cfs_rq = cfs_rq_of(se); 8338 update_curr(cfs_rq); 8339 8340 /* 8341 * XXX pick_eevdf(cfs_rq) != se ? 8342 */ 8343 if (pick_eevdf(cfs_rq) == pse) 8344 goto preempt; 8345 8346 return; 8347 8348 preempt: 8349 resched_curr(rq); 8350 } 8351 8352 #ifdef CONFIG_SMP 8353 static struct task_struct *pick_task_fair(struct rq *rq) 8354 { 8355 struct sched_entity *se; 8356 struct cfs_rq *cfs_rq; 8357 8358 again: 8359 cfs_rq = &rq->cfs; 8360 if (!cfs_rq->nr_running) 8361 return NULL; 8362 8363 do { 8364 struct sched_entity *curr = cfs_rq->curr; 8365 8366 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8367 if (curr) { 8368 if (curr->on_rq) 8369 update_curr(cfs_rq); 8370 else 8371 curr = NULL; 8372 8373 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8374 goto again; 8375 } 8376 8377 se = pick_next_entity(cfs_rq); 8378 cfs_rq = group_cfs_rq(se); 8379 } while (cfs_rq); 8380 8381 return task_of(se); 8382 } 8383 #endif 8384 8385 struct task_struct * 8386 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8387 { 8388 struct cfs_rq *cfs_rq = &rq->cfs; 8389 struct sched_entity *se; 8390 struct task_struct *p; 8391 int new_tasks; 8392 8393 again: 8394 if (!sched_fair_runnable(rq)) 8395 goto idle; 8396 8397 #ifdef CONFIG_FAIR_GROUP_SCHED 8398 if (!prev || prev->sched_class != &fair_sched_class) 8399 goto simple; 8400 8401 /* 8402 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8403 * likely that a next task is from the same cgroup as the current. 8404 * 8405 * Therefore attempt to avoid putting and setting the entire cgroup 8406 * hierarchy, only change the part that actually changes. 8407 */ 8408 8409 do { 8410 struct sched_entity *curr = cfs_rq->curr; 8411 8412 /* 8413 * Since we got here without doing put_prev_entity() we also 8414 * have to consider cfs_rq->curr. If it is still a runnable 8415 * entity, update_curr() will update its vruntime, otherwise 8416 * forget we've ever seen it. 8417 */ 8418 if (curr) { 8419 if (curr->on_rq) 8420 update_curr(cfs_rq); 8421 else 8422 curr = NULL; 8423 8424 /* 8425 * This call to check_cfs_rq_runtime() will do the 8426 * throttle and dequeue its entity in the parent(s). 8427 * Therefore the nr_running test will indeed 8428 * be correct. 8429 */ 8430 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8431 cfs_rq = &rq->cfs; 8432 8433 if (!cfs_rq->nr_running) 8434 goto idle; 8435 8436 goto simple; 8437 } 8438 } 8439 8440 se = pick_next_entity(cfs_rq); 8441 cfs_rq = group_cfs_rq(se); 8442 } while (cfs_rq); 8443 8444 p = task_of(se); 8445 8446 /* 8447 * Since we haven't yet done put_prev_entity and if the selected task 8448 * is a different task than we started out with, try and touch the 8449 * least amount of cfs_rqs. 8450 */ 8451 if (prev != p) { 8452 struct sched_entity *pse = &prev->se; 8453 8454 while (!(cfs_rq = is_same_group(se, pse))) { 8455 int se_depth = se->depth; 8456 int pse_depth = pse->depth; 8457 8458 if (se_depth <= pse_depth) { 8459 put_prev_entity(cfs_rq_of(pse), pse); 8460 pse = parent_entity(pse); 8461 } 8462 if (se_depth >= pse_depth) { 8463 set_next_entity(cfs_rq_of(se), se); 8464 se = parent_entity(se); 8465 } 8466 } 8467 8468 put_prev_entity(cfs_rq, pse); 8469 set_next_entity(cfs_rq, se); 8470 } 8471 8472 goto done; 8473 simple: 8474 #endif 8475 if (prev) 8476 put_prev_task(rq, prev); 8477 8478 do { 8479 se = pick_next_entity(cfs_rq); 8480 set_next_entity(cfs_rq, se); 8481 cfs_rq = group_cfs_rq(se); 8482 } while (cfs_rq); 8483 8484 p = task_of(se); 8485 8486 done: __maybe_unused; 8487 #ifdef CONFIG_SMP 8488 /* 8489 * Move the next running task to the front of 8490 * the list, so our cfs_tasks list becomes MRU 8491 * one. 8492 */ 8493 list_move(&p->se.group_node, &rq->cfs_tasks); 8494 #endif 8495 8496 if (hrtick_enabled_fair(rq)) 8497 hrtick_start_fair(rq, p); 8498 8499 update_misfit_status(p, rq); 8500 sched_fair_update_stop_tick(rq, p); 8501 8502 return p; 8503 8504 idle: 8505 if (!rf) 8506 return NULL; 8507 8508 new_tasks = newidle_balance(rq, rf); 8509 8510 /* 8511 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8512 * possible for any higher priority task to appear. In that case we 8513 * must re-start the pick_next_entity() loop. 8514 */ 8515 if (new_tasks < 0) 8516 return RETRY_TASK; 8517 8518 if (new_tasks > 0) 8519 goto again; 8520 8521 /* 8522 * rq is about to be idle, check if we need to update the 8523 * lost_idle_time of clock_pelt 8524 */ 8525 update_idle_rq_clock_pelt(rq); 8526 8527 return NULL; 8528 } 8529 8530 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8531 { 8532 return pick_next_task_fair(rq, NULL, NULL); 8533 } 8534 8535 /* 8536 * Account for a descheduled task: 8537 */ 8538 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8539 { 8540 struct sched_entity *se = &prev->se; 8541 struct cfs_rq *cfs_rq; 8542 8543 for_each_sched_entity(se) { 8544 cfs_rq = cfs_rq_of(se); 8545 put_prev_entity(cfs_rq, se); 8546 } 8547 } 8548 8549 /* 8550 * sched_yield() is very simple 8551 */ 8552 static void yield_task_fair(struct rq *rq) 8553 { 8554 struct task_struct *curr = rq->curr; 8555 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8556 struct sched_entity *se = &curr->se; 8557 8558 /* 8559 * Are we the only task in the tree? 8560 */ 8561 if (unlikely(rq->nr_running == 1)) 8562 return; 8563 8564 clear_buddies(cfs_rq, se); 8565 8566 update_rq_clock(rq); 8567 /* 8568 * Update run-time statistics of the 'current'. 8569 */ 8570 update_curr(cfs_rq); 8571 /* 8572 * Tell update_rq_clock() that we've just updated, 8573 * so we don't do microscopic update in schedule() 8574 * and double the fastpath cost. 8575 */ 8576 rq_clock_skip_update(rq); 8577 8578 se->deadline += calc_delta_fair(se->slice, se); 8579 } 8580 8581 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8582 { 8583 struct sched_entity *se = &p->se; 8584 8585 /* throttled hierarchies are not runnable */ 8586 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8587 return false; 8588 8589 /* Tell the scheduler that we'd really like pse to run next. */ 8590 set_next_buddy(se); 8591 8592 yield_task_fair(rq); 8593 8594 return true; 8595 } 8596 8597 #ifdef CONFIG_SMP 8598 /************************************************** 8599 * Fair scheduling class load-balancing methods. 8600 * 8601 * BASICS 8602 * 8603 * The purpose of load-balancing is to achieve the same basic fairness the 8604 * per-CPU scheduler provides, namely provide a proportional amount of compute 8605 * time to each task. This is expressed in the following equation: 8606 * 8607 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8608 * 8609 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8610 * W_i,0 is defined as: 8611 * 8612 * W_i,0 = \Sum_j w_i,j (2) 8613 * 8614 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8615 * is derived from the nice value as per sched_prio_to_weight[]. 8616 * 8617 * The weight average is an exponential decay average of the instantaneous 8618 * weight: 8619 * 8620 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8621 * 8622 * C_i is the compute capacity of CPU i, typically it is the 8623 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8624 * can also include other factors [XXX]. 8625 * 8626 * To achieve this balance we define a measure of imbalance which follows 8627 * directly from (1): 8628 * 8629 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8630 * 8631 * We them move tasks around to minimize the imbalance. In the continuous 8632 * function space it is obvious this converges, in the discrete case we get 8633 * a few fun cases generally called infeasible weight scenarios. 8634 * 8635 * [XXX expand on: 8636 * - infeasible weights; 8637 * - local vs global optima in the discrete case. ] 8638 * 8639 * 8640 * SCHED DOMAINS 8641 * 8642 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8643 * for all i,j solution, we create a tree of CPUs that follows the hardware 8644 * topology where each level pairs two lower groups (or better). This results 8645 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8646 * tree to only the first of the previous level and we decrease the frequency 8647 * of load-balance at each level inv. proportional to the number of CPUs in 8648 * the groups. 8649 * 8650 * This yields: 8651 * 8652 * log_2 n 1 n 8653 * \Sum { --- * --- * 2^i } = O(n) (5) 8654 * i = 0 2^i 2^i 8655 * `- size of each group 8656 * | | `- number of CPUs doing load-balance 8657 * | `- freq 8658 * `- sum over all levels 8659 * 8660 * Coupled with a limit on how many tasks we can migrate every balance pass, 8661 * this makes (5) the runtime complexity of the balancer. 8662 * 8663 * An important property here is that each CPU is still (indirectly) connected 8664 * to every other CPU in at most O(log n) steps: 8665 * 8666 * The adjacency matrix of the resulting graph is given by: 8667 * 8668 * log_2 n 8669 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8670 * k = 0 8671 * 8672 * And you'll find that: 8673 * 8674 * A^(log_2 n)_i,j != 0 for all i,j (7) 8675 * 8676 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8677 * The task movement gives a factor of O(m), giving a convergence complexity 8678 * of: 8679 * 8680 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8681 * 8682 * 8683 * WORK CONSERVING 8684 * 8685 * In order to avoid CPUs going idle while there's still work to do, new idle 8686 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8687 * tree itself instead of relying on other CPUs to bring it work. 8688 * 8689 * This adds some complexity to both (5) and (8) but it reduces the total idle 8690 * time. 8691 * 8692 * [XXX more?] 8693 * 8694 * 8695 * CGROUPS 8696 * 8697 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8698 * 8699 * s_k,i 8700 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8701 * S_k 8702 * 8703 * Where 8704 * 8705 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8706 * 8707 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8708 * 8709 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8710 * property. 8711 * 8712 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8713 * rewrite all of this once again.] 8714 */ 8715 8716 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8717 8718 enum fbq_type { regular, remote, all }; 8719 8720 /* 8721 * 'group_type' describes the group of CPUs at the moment of load balancing. 8722 * 8723 * The enum is ordered by pulling priority, with the group with lowest priority 8724 * first so the group_type can simply be compared when selecting the busiest 8725 * group. See update_sd_pick_busiest(). 8726 */ 8727 enum group_type { 8728 /* The group has spare capacity that can be used to run more tasks. */ 8729 group_has_spare = 0, 8730 /* 8731 * The group is fully used and the tasks don't compete for more CPU 8732 * cycles. Nevertheless, some tasks might wait before running. 8733 */ 8734 group_fully_busy, 8735 /* 8736 * One task doesn't fit with CPU's capacity and must be migrated to a 8737 * more powerful CPU. 8738 */ 8739 group_misfit_task, 8740 /* 8741 * Balance SMT group that's fully busy. Can benefit from migration 8742 * a task on SMT with busy sibling to another CPU on idle core. 8743 */ 8744 group_smt_balance, 8745 /* 8746 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8747 * and the task should be migrated to it instead of running on the 8748 * current CPU. 8749 */ 8750 group_asym_packing, 8751 /* 8752 * The tasks' affinity constraints previously prevented the scheduler 8753 * from balancing the load across the system. 8754 */ 8755 group_imbalanced, 8756 /* 8757 * The CPU is overloaded and can't provide expected CPU cycles to all 8758 * tasks. 8759 */ 8760 group_overloaded 8761 }; 8762 8763 enum migration_type { 8764 migrate_load = 0, 8765 migrate_util, 8766 migrate_task, 8767 migrate_misfit 8768 }; 8769 8770 #define LBF_ALL_PINNED 0x01 8771 #define LBF_NEED_BREAK 0x02 8772 #define LBF_DST_PINNED 0x04 8773 #define LBF_SOME_PINNED 0x08 8774 #define LBF_ACTIVE_LB 0x10 8775 8776 struct lb_env { 8777 struct sched_domain *sd; 8778 8779 struct rq *src_rq; 8780 int src_cpu; 8781 8782 int dst_cpu; 8783 struct rq *dst_rq; 8784 8785 struct cpumask *dst_grpmask; 8786 int new_dst_cpu; 8787 enum cpu_idle_type idle; 8788 long imbalance; 8789 /* The set of CPUs under consideration for load-balancing */ 8790 struct cpumask *cpus; 8791 8792 unsigned int flags; 8793 8794 unsigned int loop; 8795 unsigned int loop_break; 8796 unsigned int loop_max; 8797 8798 enum fbq_type fbq_type; 8799 enum migration_type migration_type; 8800 struct list_head tasks; 8801 }; 8802 8803 /* 8804 * Is this task likely cache-hot: 8805 */ 8806 static int task_hot(struct task_struct *p, struct lb_env *env) 8807 { 8808 s64 delta; 8809 8810 lockdep_assert_rq_held(env->src_rq); 8811 8812 if (p->sched_class != &fair_sched_class) 8813 return 0; 8814 8815 if (unlikely(task_has_idle_policy(p))) 8816 return 0; 8817 8818 /* SMT siblings share cache */ 8819 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8820 return 0; 8821 8822 /* 8823 * Buddy candidates are cache hot: 8824 */ 8825 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8826 (&p->se == cfs_rq_of(&p->se)->next)) 8827 return 1; 8828 8829 if (sysctl_sched_migration_cost == -1) 8830 return 1; 8831 8832 /* 8833 * Don't migrate task if the task's cookie does not match 8834 * with the destination CPU's core cookie. 8835 */ 8836 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8837 return 1; 8838 8839 if (sysctl_sched_migration_cost == 0) 8840 return 0; 8841 8842 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8843 8844 return delta < (s64)sysctl_sched_migration_cost; 8845 } 8846 8847 #ifdef CONFIG_NUMA_BALANCING 8848 /* 8849 * Returns 1, if task migration degrades locality 8850 * Returns 0, if task migration improves locality i.e migration preferred. 8851 * Returns -1, if task migration is not affected by locality. 8852 */ 8853 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8854 { 8855 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8856 unsigned long src_weight, dst_weight; 8857 int src_nid, dst_nid, dist; 8858 8859 if (!static_branch_likely(&sched_numa_balancing)) 8860 return -1; 8861 8862 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8863 return -1; 8864 8865 src_nid = cpu_to_node(env->src_cpu); 8866 dst_nid = cpu_to_node(env->dst_cpu); 8867 8868 if (src_nid == dst_nid) 8869 return -1; 8870 8871 /* Migrating away from the preferred node is always bad. */ 8872 if (src_nid == p->numa_preferred_nid) { 8873 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8874 return 1; 8875 else 8876 return -1; 8877 } 8878 8879 /* Encourage migration to the preferred node. */ 8880 if (dst_nid == p->numa_preferred_nid) 8881 return 0; 8882 8883 /* Leaving a core idle is often worse than degrading locality. */ 8884 if (env->idle == CPU_IDLE) 8885 return -1; 8886 8887 dist = node_distance(src_nid, dst_nid); 8888 if (numa_group) { 8889 src_weight = group_weight(p, src_nid, dist); 8890 dst_weight = group_weight(p, dst_nid, dist); 8891 } else { 8892 src_weight = task_weight(p, src_nid, dist); 8893 dst_weight = task_weight(p, dst_nid, dist); 8894 } 8895 8896 return dst_weight < src_weight; 8897 } 8898 8899 #else 8900 static inline int migrate_degrades_locality(struct task_struct *p, 8901 struct lb_env *env) 8902 { 8903 return -1; 8904 } 8905 #endif 8906 8907 /* 8908 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8909 */ 8910 static 8911 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8912 { 8913 int tsk_cache_hot; 8914 8915 lockdep_assert_rq_held(env->src_rq); 8916 8917 /* 8918 * We do not migrate tasks that are: 8919 * 1) throttled_lb_pair, or 8920 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8921 * 3) running (obviously), or 8922 * 4) are cache-hot on their current CPU. 8923 */ 8924 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8925 return 0; 8926 8927 /* Disregard pcpu kthreads; they are where they need to be. */ 8928 if (kthread_is_per_cpu(p)) 8929 return 0; 8930 8931 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8932 int cpu; 8933 8934 schedstat_inc(p->stats.nr_failed_migrations_affine); 8935 8936 env->flags |= LBF_SOME_PINNED; 8937 8938 /* 8939 * Remember if this task can be migrated to any other CPU in 8940 * our sched_group. We may want to revisit it if we couldn't 8941 * meet load balance goals by pulling other tasks on src_cpu. 8942 * 8943 * Avoid computing new_dst_cpu 8944 * - for NEWLY_IDLE 8945 * - if we have already computed one in current iteration 8946 * - if it's an active balance 8947 */ 8948 if (env->idle == CPU_NEWLY_IDLE || 8949 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8950 return 0; 8951 8952 /* Prevent to re-select dst_cpu via env's CPUs: */ 8953 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8954 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8955 env->flags |= LBF_DST_PINNED; 8956 env->new_dst_cpu = cpu; 8957 break; 8958 } 8959 } 8960 8961 return 0; 8962 } 8963 8964 /* Record that we found at least one task that could run on dst_cpu */ 8965 env->flags &= ~LBF_ALL_PINNED; 8966 8967 if (task_on_cpu(env->src_rq, p)) { 8968 schedstat_inc(p->stats.nr_failed_migrations_running); 8969 return 0; 8970 } 8971 8972 /* 8973 * Aggressive migration if: 8974 * 1) active balance 8975 * 2) destination numa is preferred 8976 * 3) task is cache cold, or 8977 * 4) too many balance attempts have failed. 8978 */ 8979 if (env->flags & LBF_ACTIVE_LB) 8980 return 1; 8981 8982 tsk_cache_hot = migrate_degrades_locality(p, env); 8983 if (tsk_cache_hot == -1) 8984 tsk_cache_hot = task_hot(p, env); 8985 8986 if (tsk_cache_hot <= 0 || 8987 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8988 if (tsk_cache_hot == 1) { 8989 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8990 schedstat_inc(p->stats.nr_forced_migrations); 8991 } 8992 return 1; 8993 } 8994 8995 schedstat_inc(p->stats.nr_failed_migrations_hot); 8996 return 0; 8997 } 8998 8999 /* 9000 * detach_task() -- detach the task for the migration specified in env 9001 */ 9002 static void detach_task(struct task_struct *p, struct lb_env *env) 9003 { 9004 lockdep_assert_rq_held(env->src_rq); 9005 9006 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9007 set_task_cpu(p, env->dst_cpu); 9008 } 9009 9010 /* 9011 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9012 * part of active balancing operations within "domain". 9013 * 9014 * Returns a task if successful and NULL otherwise. 9015 */ 9016 static struct task_struct *detach_one_task(struct lb_env *env) 9017 { 9018 struct task_struct *p; 9019 9020 lockdep_assert_rq_held(env->src_rq); 9021 9022 list_for_each_entry_reverse(p, 9023 &env->src_rq->cfs_tasks, se.group_node) { 9024 if (!can_migrate_task(p, env)) 9025 continue; 9026 9027 detach_task(p, env); 9028 9029 /* 9030 * Right now, this is only the second place where 9031 * lb_gained[env->idle] is updated (other is detach_tasks) 9032 * so we can safely collect stats here rather than 9033 * inside detach_tasks(). 9034 */ 9035 schedstat_inc(env->sd->lb_gained[env->idle]); 9036 return p; 9037 } 9038 return NULL; 9039 } 9040 9041 /* 9042 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9043 * busiest_rq, as part of a balancing operation within domain "sd". 9044 * 9045 * Returns number of detached tasks if successful and 0 otherwise. 9046 */ 9047 static int detach_tasks(struct lb_env *env) 9048 { 9049 struct list_head *tasks = &env->src_rq->cfs_tasks; 9050 unsigned long util, load; 9051 struct task_struct *p; 9052 int detached = 0; 9053 9054 lockdep_assert_rq_held(env->src_rq); 9055 9056 /* 9057 * Source run queue has been emptied by another CPU, clear 9058 * LBF_ALL_PINNED flag as we will not test any task. 9059 */ 9060 if (env->src_rq->nr_running <= 1) { 9061 env->flags &= ~LBF_ALL_PINNED; 9062 return 0; 9063 } 9064 9065 if (env->imbalance <= 0) 9066 return 0; 9067 9068 while (!list_empty(tasks)) { 9069 /* 9070 * We don't want to steal all, otherwise we may be treated likewise, 9071 * which could at worst lead to a livelock crash. 9072 */ 9073 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 9074 break; 9075 9076 env->loop++; 9077 /* 9078 * We've more or less seen every task there is, call it quits 9079 * unless we haven't found any movable task yet. 9080 */ 9081 if (env->loop > env->loop_max && 9082 !(env->flags & LBF_ALL_PINNED)) 9083 break; 9084 9085 /* take a breather every nr_migrate tasks */ 9086 if (env->loop > env->loop_break) { 9087 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9088 env->flags |= LBF_NEED_BREAK; 9089 break; 9090 } 9091 9092 p = list_last_entry(tasks, struct task_struct, se.group_node); 9093 9094 if (!can_migrate_task(p, env)) 9095 goto next; 9096 9097 switch (env->migration_type) { 9098 case migrate_load: 9099 /* 9100 * Depending of the number of CPUs and tasks and the 9101 * cgroup hierarchy, task_h_load() can return a null 9102 * value. Make sure that env->imbalance decreases 9103 * otherwise detach_tasks() will stop only after 9104 * detaching up to loop_max tasks. 9105 */ 9106 load = max_t(unsigned long, task_h_load(p), 1); 9107 9108 if (sched_feat(LB_MIN) && 9109 load < 16 && !env->sd->nr_balance_failed) 9110 goto next; 9111 9112 /* 9113 * Make sure that we don't migrate too much load. 9114 * Nevertheless, let relax the constraint if 9115 * scheduler fails to find a good waiting task to 9116 * migrate. 9117 */ 9118 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9119 goto next; 9120 9121 env->imbalance -= load; 9122 break; 9123 9124 case migrate_util: 9125 util = task_util_est(p); 9126 9127 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9128 goto next; 9129 9130 env->imbalance -= util; 9131 break; 9132 9133 case migrate_task: 9134 env->imbalance--; 9135 break; 9136 9137 case migrate_misfit: 9138 /* This is not a misfit task */ 9139 if (task_fits_cpu(p, env->src_cpu)) 9140 goto next; 9141 9142 env->imbalance = 0; 9143 break; 9144 } 9145 9146 detach_task(p, env); 9147 list_add(&p->se.group_node, &env->tasks); 9148 9149 detached++; 9150 9151 #ifdef CONFIG_PREEMPTION 9152 /* 9153 * NEWIDLE balancing is a source of latency, so preemptible 9154 * kernels will stop after the first task is detached to minimize 9155 * the critical section. 9156 */ 9157 if (env->idle == CPU_NEWLY_IDLE) 9158 break; 9159 #endif 9160 9161 /* 9162 * We only want to steal up to the prescribed amount of 9163 * load/util/tasks. 9164 */ 9165 if (env->imbalance <= 0) 9166 break; 9167 9168 continue; 9169 next: 9170 list_move(&p->se.group_node, tasks); 9171 } 9172 9173 /* 9174 * Right now, this is one of only two places we collect this stat 9175 * so we can safely collect detach_one_task() stats here rather 9176 * than inside detach_one_task(). 9177 */ 9178 schedstat_add(env->sd->lb_gained[env->idle], detached); 9179 9180 return detached; 9181 } 9182 9183 /* 9184 * attach_task() -- attach the task detached by detach_task() to its new rq. 9185 */ 9186 static void attach_task(struct rq *rq, struct task_struct *p) 9187 { 9188 lockdep_assert_rq_held(rq); 9189 9190 WARN_ON_ONCE(task_rq(p) != rq); 9191 activate_task(rq, p, ENQUEUE_NOCLOCK); 9192 wakeup_preempt(rq, p, 0); 9193 } 9194 9195 /* 9196 * attach_one_task() -- attaches the task returned from detach_one_task() to 9197 * its new rq. 9198 */ 9199 static void attach_one_task(struct rq *rq, struct task_struct *p) 9200 { 9201 struct rq_flags rf; 9202 9203 rq_lock(rq, &rf); 9204 update_rq_clock(rq); 9205 attach_task(rq, p); 9206 rq_unlock(rq, &rf); 9207 } 9208 9209 /* 9210 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9211 * new rq. 9212 */ 9213 static void attach_tasks(struct lb_env *env) 9214 { 9215 struct list_head *tasks = &env->tasks; 9216 struct task_struct *p; 9217 struct rq_flags rf; 9218 9219 rq_lock(env->dst_rq, &rf); 9220 update_rq_clock(env->dst_rq); 9221 9222 while (!list_empty(tasks)) { 9223 p = list_first_entry(tasks, struct task_struct, se.group_node); 9224 list_del_init(&p->se.group_node); 9225 9226 attach_task(env->dst_rq, p); 9227 } 9228 9229 rq_unlock(env->dst_rq, &rf); 9230 } 9231 9232 #ifdef CONFIG_NO_HZ_COMMON 9233 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9234 { 9235 if (cfs_rq->avg.load_avg) 9236 return true; 9237 9238 if (cfs_rq->avg.util_avg) 9239 return true; 9240 9241 return false; 9242 } 9243 9244 static inline bool others_have_blocked(struct rq *rq) 9245 { 9246 if (cpu_util_rt(rq)) 9247 return true; 9248 9249 if (cpu_util_dl(rq)) 9250 return true; 9251 9252 if (thermal_load_avg(rq)) 9253 return true; 9254 9255 if (cpu_util_irq(rq)) 9256 return true; 9257 9258 return false; 9259 } 9260 9261 static inline void update_blocked_load_tick(struct rq *rq) 9262 { 9263 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9264 } 9265 9266 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9267 { 9268 if (!has_blocked) 9269 rq->has_blocked_load = 0; 9270 } 9271 #else 9272 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9273 static inline bool others_have_blocked(struct rq *rq) { return false; } 9274 static inline void update_blocked_load_tick(struct rq *rq) {} 9275 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9276 #endif 9277 9278 static bool __update_blocked_others(struct rq *rq, bool *done) 9279 { 9280 const struct sched_class *curr_class; 9281 u64 now = rq_clock_pelt(rq); 9282 unsigned long thermal_pressure; 9283 bool decayed; 9284 9285 /* 9286 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9287 * DL and IRQ signals have been updated before updating CFS. 9288 */ 9289 curr_class = rq->curr->sched_class; 9290 9291 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9292 9293 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9294 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9295 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9296 update_irq_load_avg(rq, 0); 9297 9298 if (others_have_blocked(rq)) 9299 *done = false; 9300 9301 return decayed; 9302 } 9303 9304 #ifdef CONFIG_FAIR_GROUP_SCHED 9305 9306 static bool __update_blocked_fair(struct rq *rq, bool *done) 9307 { 9308 struct cfs_rq *cfs_rq, *pos; 9309 bool decayed = false; 9310 int cpu = cpu_of(rq); 9311 9312 /* 9313 * Iterates the task_group tree in a bottom up fashion, see 9314 * list_add_leaf_cfs_rq() for details. 9315 */ 9316 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9317 struct sched_entity *se; 9318 9319 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9320 update_tg_load_avg(cfs_rq); 9321 9322 if (cfs_rq->nr_running == 0) 9323 update_idle_cfs_rq_clock_pelt(cfs_rq); 9324 9325 if (cfs_rq == &rq->cfs) 9326 decayed = true; 9327 } 9328 9329 /* Propagate pending load changes to the parent, if any: */ 9330 se = cfs_rq->tg->se[cpu]; 9331 if (se && !skip_blocked_update(se)) 9332 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9333 9334 /* 9335 * There can be a lot of idle CPU cgroups. Don't let fully 9336 * decayed cfs_rqs linger on the list. 9337 */ 9338 if (cfs_rq_is_decayed(cfs_rq)) 9339 list_del_leaf_cfs_rq(cfs_rq); 9340 9341 /* Don't need periodic decay once load/util_avg are null */ 9342 if (cfs_rq_has_blocked(cfs_rq)) 9343 *done = false; 9344 } 9345 9346 return decayed; 9347 } 9348 9349 /* 9350 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9351 * This needs to be done in a top-down fashion because the load of a child 9352 * group is a fraction of its parents load. 9353 */ 9354 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9355 { 9356 struct rq *rq = rq_of(cfs_rq); 9357 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9358 unsigned long now = jiffies; 9359 unsigned long load; 9360 9361 if (cfs_rq->last_h_load_update == now) 9362 return; 9363 9364 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9365 for_each_sched_entity(se) { 9366 cfs_rq = cfs_rq_of(se); 9367 WRITE_ONCE(cfs_rq->h_load_next, se); 9368 if (cfs_rq->last_h_load_update == now) 9369 break; 9370 } 9371 9372 if (!se) { 9373 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9374 cfs_rq->last_h_load_update = now; 9375 } 9376 9377 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9378 load = cfs_rq->h_load; 9379 load = div64_ul(load * se->avg.load_avg, 9380 cfs_rq_load_avg(cfs_rq) + 1); 9381 cfs_rq = group_cfs_rq(se); 9382 cfs_rq->h_load = load; 9383 cfs_rq->last_h_load_update = now; 9384 } 9385 } 9386 9387 static unsigned long task_h_load(struct task_struct *p) 9388 { 9389 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9390 9391 update_cfs_rq_h_load(cfs_rq); 9392 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9393 cfs_rq_load_avg(cfs_rq) + 1); 9394 } 9395 #else 9396 static bool __update_blocked_fair(struct rq *rq, bool *done) 9397 { 9398 struct cfs_rq *cfs_rq = &rq->cfs; 9399 bool decayed; 9400 9401 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9402 if (cfs_rq_has_blocked(cfs_rq)) 9403 *done = false; 9404 9405 return decayed; 9406 } 9407 9408 static unsigned long task_h_load(struct task_struct *p) 9409 { 9410 return p->se.avg.load_avg; 9411 } 9412 #endif 9413 9414 static void update_blocked_averages(int cpu) 9415 { 9416 bool decayed = false, done = true; 9417 struct rq *rq = cpu_rq(cpu); 9418 struct rq_flags rf; 9419 9420 rq_lock_irqsave(rq, &rf); 9421 update_blocked_load_tick(rq); 9422 update_rq_clock(rq); 9423 9424 decayed |= __update_blocked_others(rq, &done); 9425 decayed |= __update_blocked_fair(rq, &done); 9426 9427 update_blocked_load_status(rq, !done); 9428 if (decayed) 9429 cpufreq_update_util(rq, 0); 9430 rq_unlock_irqrestore(rq, &rf); 9431 } 9432 9433 /********** Helpers for find_busiest_group ************************/ 9434 9435 /* 9436 * sg_lb_stats - stats of a sched_group required for load_balancing 9437 */ 9438 struct sg_lb_stats { 9439 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9440 unsigned long group_load; /* Total load over the CPUs of the group */ 9441 unsigned long group_capacity; 9442 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9443 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9444 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9445 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9446 unsigned int idle_cpus; 9447 unsigned int group_weight; 9448 enum group_type group_type; 9449 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9450 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9451 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9452 #ifdef CONFIG_NUMA_BALANCING 9453 unsigned int nr_numa_running; 9454 unsigned int nr_preferred_running; 9455 #endif 9456 }; 9457 9458 /* 9459 * sd_lb_stats - Structure to store the statistics of a sched_domain 9460 * during load balancing. 9461 */ 9462 struct sd_lb_stats { 9463 struct sched_group *busiest; /* Busiest group in this sd */ 9464 struct sched_group *local; /* Local group in this sd */ 9465 unsigned long total_load; /* Total load of all groups in sd */ 9466 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9467 unsigned long avg_load; /* Average load across all groups in sd */ 9468 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9469 9470 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9471 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9472 }; 9473 9474 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9475 { 9476 /* 9477 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9478 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9479 * We must however set busiest_stat::group_type and 9480 * busiest_stat::idle_cpus to the worst busiest group because 9481 * update_sd_pick_busiest() reads these before assignment. 9482 */ 9483 *sds = (struct sd_lb_stats){ 9484 .busiest = NULL, 9485 .local = NULL, 9486 .total_load = 0UL, 9487 .total_capacity = 0UL, 9488 .busiest_stat = { 9489 .idle_cpus = UINT_MAX, 9490 .group_type = group_has_spare, 9491 }, 9492 }; 9493 } 9494 9495 static unsigned long scale_rt_capacity(int cpu) 9496 { 9497 struct rq *rq = cpu_rq(cpu); 9498 unsigned long max = arch_scale_cpu_capacity(cpu); 9499 unsigned long used, free; 9500 unsigned long irq; 9501 9502 irq = cpu_util_irq(rq); 9503 9504 if (unlikely(irq >= max)) 9505 return 1; 9506 9507 /* 9508 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9509 * (running and not running) with weights 0 and 1024 respectively. 9510 * avg_thermal.load_avg tracks thermal pressure and the weighted 9511 * average uses the actual delta max capacity(load). 9512 */ 9513 used = cpu_util_rt(rq); 9514 used += cpu_util_dl(rq); 9515 used += thermal_load_avg(rq); 9516 9517 if (unlikely(used >= max)) 9518 return 1; 9519 9520 free = max - used; 9521 9522 return scale_irq_capacity(free, irq, max); 9523 } 9524 9525 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9526 { 9527 unsigned long capacity = scale_rt_capacity(cpu); 9528 struct sched_group *sdg = sd->groups; 9529 9530 if (!capacity) 9531 capacity = 1; 9532 9533 cpu_rq(cpu)->cpu_capacity = capacity; 9534 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9535 9536 sdg->sgc->capacity = capacity; 9537 sdg->sgc->min_capacity = capacity; 9538 sdg->sgc->max_capacity = capacity; 9539 } 9540 9541 void update_group_capacity(struct sched_domain *sd, int cpu) 9542 { 9543 struct sched_domain *child = sd->child; 9544 struct sched_group *group, *sdg = sd->groups; 9545 unsigned long capacity, min_capacity, max_capacity; 9546 unsigned long interval; 9547 9548 interval = msecs_to_jiffies(sd->balance_interval); 9549 interval = clamp(interval, 1UL, max_load_balance_interval); 9550 sdg->sgc->next_update = jiffies + interval; 9551 9552 if (!child) { 9553 update_cpu_capacity(sd, cpu); 9554 return; 9555 } 9556 9557 capacity = 0; 9558 min_capacity = ULONG_MAX; 9559 max_capacity = 0; 9560 9561 if (child->flags & SD_OVERLAP) { 9562 /* 9563 * SD_OVERLAP domains cannot assume that child groups 9564 * span the current group. 9565 */ 9566 9567 for_each_cpu(cpu, sched_group_span(sdg)) { 9568 unsigned long cpu_cap = capacity_of(cpu); 9569 9570 capacity += cpu_cap; 9571 min_capacity = min(cpu_cap, min_capacity); 9572 max_capacity = max(cpu_cap, max_capacity); 9573 } 9574 } else { 9575 /* 9576 * !SD_OVERLAP domains can assume that child groups 9577 * span the current group. 9578 */ 9579 9580 group = child->groups; 9581 do { 9582 struct sched_group_capacity *sgc = group->sgc; 9583 9584 capacity += sgc->capacity; 9585 min_capacity = min(sgc->min_capacity, min_capacity); 9586 max_capacity = max(sgc->max_capacity, max_capacity); 9587 group = group->next; 9588 } while (group != child->groups); 9589 } 9590 9591 sdg->sgc->capacity = capacity; 9592 sdg->sgc->min_capacity = min_capacity; 9593 sdg->sgc->max_capacity = max_capacity; 9594 } 9595 9596 /* 9597 * Check whether the capacity of the rq has been noticeably reduced by side 9598 * activity. The imbalance_pct is used for the threshold. 9599 * Return true is the capacity is reduced 9600 */ 9601 static inline int 9602 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9603 { 9604 return ((rq->cpu_capacity * sd->imbalance_pct) < 9605 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9606 } 9607 9608 /* 9609 * Check whether a rq has a misfit task and if it looks like we can actually 9610 * help that task: we can migrate the task to a CPU of higher capacity, or 9611 * the task's current CPU is heavily pressured. 9612 */ 9613 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9614 { 9615 return rq->misfit_task_load && 9616 (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity || 9617 check_cpu_capacity(rq, sd)); 9618 } 9619 9620 /* 9621 * Group imbalance indicates (and tries to solve) the problem where balancing 9622 * groups is inadequate due to ->cpus_ptr constraints. 9623 * 9624 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9625 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9626 * Something like: 9627 * 9628 * { 0 1 2 3 } { 4 5 6 7 } 9629 * * * * * 9630 * 9631 * If we were to balance group-wise we'd place two tasks in the first group and 9632 * two tasks in the second group. Clearly this is undesired as it will overload 9633 * cpu 3 and leave one of the CPUs in the second group unused. 9634 * 9635 * The current solution to this issue is detecting the skew in the first group 9636 * by noticing the lower domain failed to reach balance and had difficulty 9637 * moving tasks due to affinity constraints. 9638 * 9639 * When this is so detected; this group becomes a candidate for busiest; see 9640 * update_sd_pick_busiest(). And calculate_imbalance() and 9641 * find_busiest_group() avoid some of the usual balance conditions to allow it 9642 * to create an effective group imbalance. 9643 * 9644 * This is a somewhat tricky proposition since the next run might not find the 9645 * group imbalance and decide the groups need to be balanced again. A most 9646 * subtle and fragile situation. 9647 */ 9648 9649 static inline int sg_imbalanced(struct sched_group *group) 9650 { 9651 return group->sgc->imbalance; 9652 } 9653 9654 /* 9655 * group_has_capacity returns true if the group has spare capacity that could 9656 * be used by some tasks. 9657 * We consider that a group has spare capacity if the number of task is 9658 * smaller than the number of CPUs or if the utilization is lower than the 9659 * available capacity for CFS tasks. 9660 * For the latter, we use a threshold to stabilize the state, to take into 9661 * account the variance of the tasks' load and to return true if the available 9662 * capacity in meaningful for the load balancer. 9663 * As an example, an available capacity of 1% can appear but it doesn't make 9664 * any benefit for the load balance. 9665 */ 9666 static inline bool 9667 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9668 { 9669 if (sgs->sum_nr_running < sgs->group_weight) 9670 return true; 9671 9672 if ((sgs->group_capacity * imbalance_pct) < 9673 (sgs->group_runnable * 100)) 9674 return false; 9675 9676 if ((sgs->group_capacity * 100) > 9677 (sgs->group_util * imbalance_pct)) 9678 return true; 9679 9680 return false; 9681 } 9682 9683 /* 9684 * group_is_overloaded returns true if the group has more tasks than it can 9685 * handle. 9686 * group_is_overloaded is not equals to !group_has_capacity because a group 9687 * with the exact right number of tasks, has no more spare capacity but is not 9688 * overloaded so both group_has_capacity and group_is_overloaded return 9689 * false. 9690 */ 9691 static inline bool 9692 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9693 { 9694 if (sgs->sum_nr_running <= sgs->group_weight) 9695 return false; 9696 9697 if ((sgs->group_capacity * 100) < 9698 (sgs->group_util * imbalance_pct)) 9699 return true; 9700 9701 if ((sgs->group_capacity * imbalance_pct) < 9702 (sgs->group_runnable * 100)) 9703 return true; 9704 9705 return false; 9706 } 9707 9708 static inline enum 9709 group_type group_classify(unsigned int imbalance_pct, 9710 struct sched_group *group, 9711 struct sg_lb_stats *sgs) 9712 { 9713 if (group_is_overloaded(imbalance_pct, sgs)) 9714 return group_overloaded; 9715 9716 if (sg_imbalanced(group)) 9717 return group_imbalanced; 9718 9719 if (sgs->group_asym_packing) 9720 return group_asym_packing; 9721 9722 if (sgs->group_smt_balance) 9723 return group_smt_balance; 9724 9725 if (sgs->group_misfit_task_load) 9726 return group_misfit_task; 9727 9728 if (!group_has_capacity(imbalance_pct, sgs)) 9729 return group_fully_busy; 9730 9731 return group_has_spare; 9732 } 9733 9734 /** 9735 * sched_use_asym_prio - Check whether asym_packing priority must be used 9736 * @sd: The scheduling domain of the load balancing 9737 * @cpu: A CPU 9738 * 9739 * Always use CPU priority when balancing load between SMT siblings. When 9740 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9741 * use CPU priority if the whole core is idle. 9742 * 9743 * Returns: True if the priority of @cpu must be followed. False otherwise. 9744 */ 9745 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9746 { 9747 if (!(sd->flags & SD_ASYM_PACKING)) 9748 return false; 9749 9750 if (!sched_smt_active()) 9751 return true; 9752 9753 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9754 } 9755 9756 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 9757 { 9758 /* 9759 * First check if @dst_cpu can do asym_packing load balance. Only do it 9760 * if it has higher priority than @src_cpu. 9761 */ 9762 return sched_use_asym_prio(sd, dst_cpu) && 9763 sched_asym_prefer(dst_cpu, src_cpu); 9764 } 9765 9766 /** 9767 * sched_group_asym - Check if the destination CPU can do asym_packing balance 9768 * @env: The load balancing environment 9769 * @sgs: Load-balancing statistics of the candidate busiest group 9770 * @group: The candidate busiest group 9771 * 9772 * @env::dst_cpu can do asym_packing if it has higher priority than the 9773 * preferred CPU of @group. 9774 * 9775 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9776 * otherwise. 9777 */ 9778 static inline bool 9779 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 9780 { 9781 /* 9782 * CPU priorities do not make sense for SMT cores with more than one 9783 * busy sibling. 9784 */ 9785 if ((group->flags & SD_SHARE_CPUCAPACITY) && 9786 (sgs->group_weight - sgs->idle_cpus != 1)) 9787 return false; 9788 9789 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 9790 } 9791 9792 /* One group has more than one SMT CPU while the other group does not */ 9793 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9794 struct sched_group *sg2) 9795 { 9796 if (!sg1 || !sg2) 9797 return false; 9798 9799 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9800 (sg2->flags & SD_SHARE_CPUCAPACITY); 9801 } 9802 9803 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9804 struct sched_group *group) 9805 { 9806 if (env->idle == CPU_NOT_IDLE) 9807 return false; 9808 9809 /* 9810 * For SMT source group, it is better to move a task 9811 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9812 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9813 * will not be on. 9814 */ 9815 if (group->flags & SD_SHARE_CPUCAPACITY && 9816 sgs->sum_h_nr_running > 1) 9817 return true; 9818 9819 return false; 9820 } 9821 9822 static inline long sibling_imbalance(struct lb_env *env, 9823 struct sd_lb_stats *sds, 9824 struct sg_lb_stats *busiest, 9825 struct sg_lb_stats *local) 9826 { 9827 int ncores_busiest, ncores_local; 9828 long imbalance; 9829 9830 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9831 return 0; 9832 9833 ncores_busiest = sds->busiest->cores; 9834 ncores_local = sds->local->cores; 9835 9836 if (ncores_busiest == ncores_local) { 9837 imbalance = busiest->sum_nr_running; 9838 lsub_positive(&imbalance, local->sum_nr_running); 9839 return imbalance; 9840 } 9841 9842 /* Balance such that nr_running/ncores ratio are same on both groups */ 9843 imbalance = ncores_local * busiest->sum_nr_running; 9844 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9845 /* Normalize imbalance and do rounding on normalization */ 9846 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9847 imbalance /= ncores_local + ncores_busiest; 9848 9849 /* Take advantage of resource in an empty sched group */ 9850 if (imbalance <= 1 && local->sum_nr_running == 0 && 9851 busiest->sum_nr_running > 1) 9852 imbalance = 2; 9853 9854 return imbalance; 9855 } 9856 9857 static inline bool 9858 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9859 { 9860 /* 9861 * When there is more than 1 task, the group_overloaded case already 9862 * takes care of cpu with reduced capacity 9863 */ 9864 if (rq->cfs.h_nr_running != 1) 9865 return false; 9866 9867 return check_cpu_capacity(rq, sd); 9868 } 9869 9870 /** 9871 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9872 * @env: The load balancing environment. 9873 * @sds: Load-balancing data with statistics of the local group. 9874 * @group: sched_group whose statistics are to be updated. 9875 * @sgs: variable to hold the statistics for this group. 9876 * @sg_status: Holds flag indicating the status of the sched_group 9877 */ 9878 static inline void update_sg_lb_stats(struct lb_env *env, 9879 struct sd_lb_stats *sds, 9880 struct sched_group *group, 9881 struct sg_lb_stats *sgs, 9882 int *sg_status) 9883 { 9884 int i, nr_running, local_group; 9885 9886 memset(sgs, 0, sizeof(*sgs)); 9887 9888 local_group = group == sds->local; 9889 9890 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9891 struct rq *rq = cpu_rq(i); 9892 unsigned long load = cpu_load(rq); 9893 9894 sgs->group_load += load; 9895 sgs->group_util += cpu_util_cfs(i); 9896 sgs->group_runnable += cpu_runnable(rq); 9897 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9898 9899 nr_running = rq->nr_running; 9900 sgs->sum_nr_running += nr_running; 9901 9902 if (nr_running > 1) 9903 *sg_status |= SG_OVERLOAD; 9904 9905 if (cpu_overutilized(i)) 9906 *sg_status |= SG_OVERUTILIZED; 9907 9908 #ifdef CONFIG_NUMA_BALANCING 9909 sgs->nr_numa_running += rq->nr_numa_running; 9910 sgs->nr_preferred_running += rq->nr_preferred_running; 9911 #endif 9912 /* 9913 * No need to call idle_cpu() if nr_running is not 0 9914 */ 9915 if (!nr_running && idle_cpu(i)) { 9916 sgs->idle_cpus++; 9917 /* Idle cpu can't have misfit task */ 9918 continue; 9919 } 9920 9921 if (local_group) 9922 continue; 9923 9924 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9925 /* Check for a misfit task on the cpu */ 9926 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9927 sgs->group_misfit_task_load = rq->misfit_task_load; 9928 *sg_status |= SG_OVERLOAD; 9929 } 9930 } else if ((env->idle != CPU_NOT_IDLE) && 9931 sched_reduced_capacity(rq, env->sd)) { 9932 /* Check for a task running on a CPU with reduced capacity */ 9933 if (sgs->group_misfit_task_load < load) 9934 sgs->group_misfit_task_load = load; 9935 } 9936 } 9937 9938 sgs->group_capacity = group->sgc->capacity; 9939 9940 sgs->group_weight = group->group_weight; 9941 9942 /* Check if dst CPU is idle and preferred to this group */ 9943 if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9944 sched_group_asym(env, sgs, group)) 9945 sgs->group_asym_packing = 1; 9946 9947 /* Check for loaded SMT group to be balanced to dst CPU */ 9948 if (!local_group && smt_balance(env, sgs, group)) 9949 sgs->group_smt_balance = 1; 9950 9951 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9952 9953 /* Computing avg_load makes sense only when group is overloaded */ 9954 if (sgs->group_type == group_overloaded) 9955 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9956 sgs->group_capacity; 9957 } 9958 9959 /** 9960 * update_sd_pick_busiest - return 1 on busiest group 9961 * @env: The load balancing environment. 9962 * @sds: sched_domain statistics 9963 * @sg: sched_group candidate to be checked for being the busiest 9964 * @sgs: sched_group statistics 9965 * 9966 * Determine if @sg is a busier group than the previously selected 9967 * busiest group. 9968 * 9969 * Return: %true if @sg is a busier group than the previously selected 9970 * busiest group. %false otherwise. 9971 */ 9972 static bool update_sd_pick_busiest(struct lb_env *env, 9973 struct sd_lb_stats *sds, 9974 struct sched_group *sg, 9975 struct sg_lb_stats *sgs) 9976 { 9977 struct sg_lb_stats *busiest = &sds->busiest_stat; 9978 9979 /* Make sure that there is at least one task to pull */ 9980 if (!sgs->sum_h_nr_running) 9981 return false; 9982 9983 /* 9984 * Don't try to pull misfit tasks we can't help. 9985 * We can use max_capacity here as reduction in capacity on some 9986 * CPUs in the group should either be possible to resolve 9987 * internally or be covered by avg_load imbalance (eventually). 9988 */ 9989 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9990 (sgs->group_type == group_misfit_task) && 9991 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9992 sds->local_stat.group_type != group_has_spare)) 9993 return false; 9994 9995 if (sgs->group_type > busiest->group_type) 9996 return true; 9997 9998 if (sgs->group_type < busiest->group_type) 9999 return false; 10000 10001 /* 10002 * The candidate and the current busiest group are the same type of 10003 * group. Let check which one is the busiest according to the type. 10004 */ 10005 10006 switch (sgs->group_type) { 10007 case group_overloaded: 10008 /* Select the overloaded group with highest avg_load. */ 10009 return sgs->avg_load > busiest->avg_load; 10010 10011 case group_imbalanced: 10012 /* 10013 * Select the 1st imbalanced group as we don't have any way to 10014 * choose one more than another. 10015 */ 10016 return false; 10017 10018 case group_asym_packing: 10019 /* Prefer to move from lowest priority CPU's work */ 10020 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10021 10022 case group_misfit_task: 10023 /* 10024 * If we have more than one misfit sg go with the biggest 10025 * misfit. 10026 */ 10027 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10028 10029 case group_smt_balance: 10030 /* 10031 * Check if we have spare CPUs on either SMT group to 10032 * choose has spare or fully busy handling. 10033 */ 10034 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10035 goto has_spare; 10036 10037 fallthrough; 10038 10039 case group_fully_busy: 10040 /* 10041 * Select the fully busy group with highest avg_load. In 10042 * theory, there is no need to pull task from such kind of 10043 * group because tasks have all compute capacity that they need 10044 * but we can still improve the overall throughput by reducing 10045 * contention when accessing shared HW resources. 10046 * 10047 * XXX for now avg_load is not computed and always 0 so we 10048 * select the 1st one, except if @sg is composed of SMT 10049 * siblings. 10050 */ 10051 10052 if (sgs->avg_load < busiest->avg_load) 10053 return false; 10054 10055 if (sgs->avg_load == busiest->avg_load) { 10056 /* 10057 * SMT sched groups need more help than non-SMT groups. 10058 * If @sg happens to also be SMT, either choice is good. 10059 */ 10060 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10061 return false; 10062 } 10063 10064 break; 10065 10066 case group_has_spare: 10067 /* 10068 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10069 * as we do not want to pull task off SMT core with one task 10070 * and make the core idle. 10071 */ 10072 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10073 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10074 return false; 10075 else 10076 return true; 10077 } 10078 has_spare: 10079 10080 /* 10081 * Select not overloaded group with lowest number of idle cpus 10082 * and highest number of running tasks. We could also compare 10083 * the spare capacity which is more stable but it can end up 10084 * that the group has less spare capacity but finally more idle 10085 * CPUs which means less opportunity to pull tasks. 10086 */ 10087 if (sgs->idle_cpus > busiest->idle_cpus) 10088 return false; 10089 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10090 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10091 return false; 10092 10093 break; 10094 } 10095 10096 /* 10097 * Candidate sg has no more than one task per CPU and has higher 10098 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10099 * throughput. Maximize throughput, power/energy consequences are not 10100 * considered. 10101 */ 10102 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10103 (sgs->group_type <= group_fully_busy) && 10104 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10105 return false; 10106 10107 return true; 10108 } 10109 10110 #ifdef CONFIG_NUMA_BALANCING 10111 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10112 { 10113 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10114 return regular; 10115 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10116 return remote; 10117 return all; 10118 } 10119 10120 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10121 { 10122 if (rq->nr_running > rq->nr_numa_running) 10123 return regular; 10124 if (rq->nr_running > rq->nr_preferred_running) 10125 return remote; 10126 return all; 10127 } 10128 #else 10129 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10130 { 10131 return all; 10132 } 10133 10134 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10135 { 10136 return regular; 10137 } 10138 #endif /* CONFIG_NUMA_BALANCING */ 10139 10140 10141 struct sg_lb_stats; 10142 10143 /* 10144 * task_running_on_cpu - return 1 if @p is running on @cpu. 10145 */ 10146 10147 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10148 { 10149 /* Task has no contribution or is new */ 10150 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10151 return 0; 10152 10153 if (task_on_rq_queued(p)) 10154 return 1; 10155 10156 return 0; 10157 } 10158 10159 /** 10160 * idle_cpu_without - would a given CPU be idle without p ? 10161 * @cpu: the processor on which idleness is tested. 10162 * @p: task which should be ignored. 10163 * 10164 * Return: 1 if the CPU would be idle. 0 otherwise. 10165 */ 10166 static int idle_cpu_without(int cpu, struct task_struct *p) 10167 { 10168 struct rq *rq = cpu_rq(cpu); 10169 10170 if (rq->curr != rq->idle && rq->curr != p) 10171 return 0; 10172 10173 /* 10174 * rq->nr_running can't be used but an updated version without the 10175 * impact of p on cpu must be used instead. The updated nr_running 10176 * be computed and tested before calling idle_cpu_without(). 10177 */ 10178 10179 if (rq->ttwu_pending) 10180 return 0; 10181 10182 return 1; 10183 } 10184 10185 /* 10186 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10187 * @sd: The sched_domain level to look for idlest group. 10188 * @group: sched_group whose statistics are to be updated. 10189 * @sgs: variable to hold the statistics for this group. 10190 * @p: The task for which we look for the idlest group/CPU. 10191 */ 10192 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10193 struct sched_group *group, 10194 struct sg_lb_stats *sgs, 10195 struct task_struct *p) 10196 { 10197 int i, nr_running; 10198 10199 memset(sgs, 0, sizeof(*sgs)); 10200 10201 /* Assume that task can't fit any CPU of the group */ 10202 if (sd->flags & SD_ASYM_CPUCAPACITY) 10203 sgs->group_misfit_task_load = 1; 10204 10205 for_each_cpu(i, sched_group_span(group)) { 10206 struct rq *rq = cpu_rq(i); 10207 unsigned int local; 10208 10209 sgs->group_load += cpu_load_without(rq, p); 10210 sgs->group_util += cpu_util_without(i, p); 10211 sgs->group_runnable += cpu_runnable_without(rq, p); 10212 local = task_running_on_cpu(i, p); 10213 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10214 10215 nr_running = rq->nr_running - local; 10216 sgs->sum_nr_running += nr_running; 10217 10218 /* 10219 * No need to call idle_cpu_without() if nr_running is not 0 10220 */ 10221 if (!nr_running && idle_cpu_without(i, p)) 10222 sgs->idle_cpus++; 10223 10224 /* Check if task fits in the CPU */ 10225 if (sd->flags & SD_ASYM_CPUCAPACITY && 10226 sgs->group_misfit_task_load && 10227 task_fits_cpu(p, i)) 10228 sgs->group_misfit_task_load = 0; 10229 10230 } 10231 10232 sgs->group_capacity = group->sgc->capacity; 10233 10234 sgs->group_weight = group->group_weight; 10235 10236 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10237 10238 /* 10239 * Computing avg_load makes sense only when group is fully busy or 10240 * overloaded 10241 */ 10242 if (sgs->group_type == group_fully_busy || 10243 sgs->group_type == group_overloaded) 10244 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10245 sgs->group_capacity; 10246 } 10247 10248 static bool update_pick_idlest(struct sched_group *idlest, 10249 struct sg_lb_stats *idlest_sgs, 10250 struct sched_group *group, 10251 struct sg_lb_stats *sgs) 10252 { 10253 if (sgs->group_type < idlest_sgs->group_type) 10254 return true; 10255 10256 if (sgs->group_type > idlest_sgs->group_type) 10257 return false; 10258 10259 /* 10260 * The candidate and the current idlest group are the same type of 10261 * group. Let check which one is the idlest according to the type. 10262 */ 10263 10264 switch (sgs->group_type) { 10265 case group_overloaded: 10266 case group_fully_busy: 10267 /* Select the group with lowest avg_load. */ 10268 if (idlest_sgs->avg_load <= sgs->avg_load) 10269 return false; 10270 break; 10271 10272 case group_imbalanced: 10273 case group_asym_packing: 10274 case group_smt_balance: 10275 /* Those types are not used in the slow wakeup path */ 10276 return false; 10277 10278 case group_misfit_task: 10279 /* Select group with the highest max capacity */ 10280 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10281 return false; 10282 break; 10283 10284 case group_has_spare: 10285 /* Select group with most idle CPUs */ 10286 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10287 return false; 10288 10289 /* Select group with lowest group_util */ 10290 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10291 idlest_sgs->group_util <= sgs->group_util) 10292 return false; 10293 10294 break; 10295 } 10296 10297 return true; 10298 } 10299 10300 /* 10301 * find_idlest_group() finds and returns the least busy CPU group within the 10302 * domain. 10303 * 10304 * Assumes p is allowed on at least one CPU in sd. 10305 */ 10306 static struct sched_group * 10307 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10308 { 10309 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10310 struct sg_lb_stats local_sgs, tmp_sgs; 10311 struct sg_lb_stats *sgs; 10312 unsigned long imbalance; 10313 struct sg_lb_stats idlest_sgs = { 10314 .avg_load = UINT_MAX, 10315 .group_type = group_overloaded, 10316 }; 10317 10318 do { 10319 int local_group; 10320 10321 /* Skip over this group if it has no CPUs allowed */ 10322 if (!cpumask_intersects(sched_group_span(group), 10323 p->cpus_ptr)) 10324 continue; 10325 10326 /* Skip over this group if no cookie matched */ 10327 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10328 continue; 10329 10330 local_group = cpumask_test_cpu(this_cpu, 10331 sched_group_span(group)); 10332 10333 if (local_group) { 10334 sgs = &local_sgs; 10335 local = group; 10336 } else { 10337 sgs = &tmp_sgs; 10338 } 10339 10340 update_sg_wakeup_stats(sd, group, sgs, p); 10341 10342 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10343 idlest = group; 10344 idlest_sgs = *sgs; 10345 } 10346 10347 } while (group = group->next, group != sd->groups); 10348 10349 10350 /* There is no idlest group to push tasks to */ 10351 if (!idlest) 10352 return NULL; 10353 10354 /* The local group has been skipped because of CPU affinity */ 10355 if (!local) 10356 return idlest; 10357 10358 /* 10359 * If the local group is idler than the selected idlest group 10360 * don't try and push the task. 10361 */ 10362 if (local_sgs.group_type < idlest_sgs.group_type) 10363 return NULL; 10364 10365 /* 10366 * If the local group is busier than the selected idlest group 10367 * try and push the task. 10368 */ 10369 if (local_sgs.group_type > idlest_sgs.group_type) 10370 return idlest; 10371 10372 switch (local_sgs.group_type) { 10373 case group_overloaded: 10374 case group_fully_busy: 10375 10376 /* Calculate allowed imbalance based on load */ 10377 imbalance = scale_load_down(NICE_0_LOAD) * 10378 (sd->imbalance_pct-100) / 100; 10379 10380 /* 10381 * When comparing groups across NUMA domains, it's possible for 10382 * the local domain to be very lightly loaded relative to the 10383 * remote domains but "imbalance" skews the comparison making 10384 * remote CPUs look much more favourable. When considering 10385 * cross-domain, add imbalance to the load on the remote node 10386 * and consider staying local. 10387 */ 10388 10389 if ((sd->flags & SD_NUMA) && 10390 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10391 return NULL; 10392 10393 /* 10394 * If the local group is less loaded than the selected 10395 * idlest group don't try and push any tasks. 10396 */ 10397 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10398 return NULL; 10399 10400 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10401 return NULL; 10402 break; 10403 10404 case group_imbalanced: 10405 case group_asym_packing: 10406 case group_smt_balance: 10407 /* Those type are not used in the slow wakeup path */ 10408 return NULL; 10409 10410 case group_misfit_task: 10411 /* Select group with the highest max capacity */ 10412 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10413 return NULL; 10414 break; 10415 10416 case group_has_spare: 10417 #ifdef CONFIG_NUMA 10418 if (sd->flags & SD_NUMA) { 10419 int imb_numa_nr = sd->imb_numa_nr; 10420 #ifdef CONFIG_NUMA_BALANCING 10421 int idlest_cpu; 10422 /* 10423 * If there is spare capacity at NUMA, try to select 10424 * the preferred node 10425 */ 10426 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10427 return NULL; 10428 10429 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10430 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10431 return idlest; 10432 #endif /* CONFIG_NUMA_BALANCING */ 10433 /* 10434 * Otherwise, keep the task close to the wakeup source 10435 * and improve locality if the number of running tasks 10436 * would remain below threshold where an imbalance is 10437 * allowed while accounting for the possibility the 10438 * task is pinned to a subset of CPUs. If there is a 10439 * real need of migration, periodic load balance will 10440 * take care of it. 10441 */ 10442 if (p->nr_cpus_allowed != NR_CPUS) { 10443 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10444 10445 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10446 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10447 } 10448 10449 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10450 if (!adjust_numa_imbalance(imbalance, 10451 local_sgs.sum_nr_running + 1, 10452 imb_numa_nr)) { 10453 return NULL; 10454 } 10455 } 10456 #endif /* CONFIG_NUMA */ 10457 10458 /* 10459 * Select group with highest number of idle CPUs. We could also 10460 * compare the utilization which is more stable but it can end 10461 * up that the group has less spare capacity but finally more 10462 * idle CPUs which means more opportunity to run task. 10463 */ 10464 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10465 return NULL; 10466 break; 10467 } 10468 10469 return idlest; 10470 } 10471 10472 static void update_idle_cpu_scan(struct lb_env *env, 10473 unsigned long sum_util) 10474 { 10475 struct sched_domain_shared *sd_share; 10476 int llc_weight, pct; 10477 u64 x, y, tmp; 10478 /* 10479 * Update the number of CPUs to scan in LLC domain, which could 10480 * be used as a hint in select_idle_cpu(). The update of sd_share 10481 * could be expensive because it is within a shared cache line. 10482 * So the write of this hint only occurs during periodic load 10483 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10484 * can fire way more frequently than the former. 10485 */ 10486 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10487 return; 10488 10489 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10490 if (env->sd->span_weight != llc_weight) 10491 return; 10492 10493 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10494 if (!sd_share) 10495 return; 10496 10497 /* 10498 * The number of CPUs to search drops as sum_util increases, when 10499 * sum_util hits 85% or above, the scan stops. 10500 * The reason to choose 85% as the threshold is because this is the 10501 * imbalance_pct(117) when a LLC sched group is overloaded. 10502 * 10503 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10504 * and y'= y / SCHED_CAPACITY_SCALE 10505 * 10506 * x is the ratio of sum_util compared to the CPU capacity: 10507 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10508 * y' is the ratio of CPUs to be scanned in the LLC domain, 10509 * and the number of CPUs to scan is calculated by: 10510 * 10511 * nr_scan = llc_weight * y' [2] 10512 * 10513 * When x hits the threshold of overloaded, AKA, when 10514 * x = 100 / pct, y drops to 0. According to [1], 10515 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10516 * 10517 * Scale x by SCHED_CAPACITY_SCALE: 10518 * x' = sum_util / llc_weight; [3] 10519 * 10520 * and finally [1] becomes: 10521 * y = SCHED_CAPACITY_SCALE - 10522 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10523 * 10524 */ 10525 /* equation [3] */ 10526 x = sum_util; 10527 do_div(x, llc_weight); 10528 10529 /* equation [4] */ 10530 pct = env->sd->imbalance_pct; 10531 tmp = x * x * pct * pct; 10532 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10533 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10534 y = SCHED_CAPACITY_SCALE - tmp; 10535 10536 /* equation [2] */ 10537 y *= llc_weight; 10538 do_div(y, SCHED_CAPACITY_SCALE); 10539 if ((int)y != sd_share->nr_idle_scan) 10540 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10541 } 10542 10543 /** 10544 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10545 * @env: The load balancing environment. 10546 * @sds: variable to hold the statistics for this sched_domain. 10547 */ 10548 10549 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10550 { 10551 struct sched_group *sg = env->sd->groups; 10552 struct sg_lb_stats *local = &sds->local_stat; 10553 struct sg_lb_stats tmp_sgs; 10554 unsigned long sum_util = 0; 10555 int sg_status = 0; 10556 10557 do { 10558 struct sg_lb_stats *sgs = &tmp_sgs; 10559 int local_group; 10560 10561 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10562 if (local_group) { 10563 sds->local = sg; 10564 sgs = local; 10565 10566 if (env->idle != CPU_NEWLY_IDLE || 10567 time_after_eq(jiffies, sg->sgc->next_update)) 10568 update_group_capacity(env->sd, env->dst_cpu); 10569 } 10570 10571 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10572 10573 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10574 sds->busiest = sg; 10575 sds->busiest_stat = *sgs; 10576 } 10577 10578 /* Now, start updating sd_lb_stats */ 10579 sds->total_load += sgs->group_load; 10580 sds->total_capacity += sgs->group_capacity; 10581 10582 sum_util += sgs->group_util; 10583 sg = sg->next; 10584 } while (sg != env->sd->groups); 10585 10586 /* 10587 * Indicate that the child domain of the busiest group prefers tasks 10588 * go to a child's sibling domains first. NB the flags of a sched group 10589 * are those of the child domain. 10590 */ 10591 if (sds->busiest) 10592 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10593 10594 10595 if (env->sd->flags & SD_NUMA) 10596 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10597 10598 if (!env->sd->parent) { 10599 struct root_domain *rd = env->dst_rq->rd; 10600 10601 /* update overload indicator if we are at root domain */ 10602 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10603 10604 /* Update over-utilization (tipping point, U >= 0) indicator */ 10605 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10606 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10607 } else if (sg_status & SG_OVERUTILIZED) { 10608 struct root_domain *rd = env->dst_rq->rd; 10609 10610 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10611 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10612 } 10613 10614 update_idle_cpu_scan(env, sum_util); 10615 } 10616 10617 /** 10618 * calculate_imbalance - Calculate the amount of imbalance present within the 10619 * groups of a given sched_domain during load balance. 10620 * @env: load balance environment 10621 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10622 */ 10623 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10624 { 10625 struct sg_lb_stats *local, *busiest; 10626 10627 local = &sds->local_stat; 10628 busiest = &sds->busiest_stat; 10629 10630 if (busiest->group_type == group_misfit_task) { 10631 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10632 /* Set imbalance to allow misfit tasks to be balanced. */ 10633 env->migration_type = migrate_misfit; 10634 env->imbalance = 1; 10635 } else { 10636 /* 10637 * Set load imbalance to allow moving task from cpu 10638 * with reduced capacity. 10639 */ 10640 env->migration_type = migrate_load; 10641 env->imbalance = busiest->group_misfit_task_load; 10642 } 10643 return; 10644 } 10645 10646 if (busiest->group_type == group_asym_packing) { 10647 /* 10648 * In case of asym capacity, we will try to migrate all load to 10649 * the preferred CPU. 10650 */ 10651 env->migration_type = migrate_task; 10652 env->imbalance = busiest->sum_h_nr_running; 10653 return; 10654 } 10655 10656 if (busiest->group_type == group_smt_balance) { 10657 /* Reduce number of tasks sharing CPU capacity */ 10658 env->migration_type = migrate_task; 10659 env->imbalance = 1; 10660 return; 10661 } 10662 10663 if (busiest->group_type == group_imbalanced) { 10664 /* 10665 * In the group_imb case we cannot rely on group-wide averages 10666 * to ensure CPU-load equilibrium, try to move any task to fix 10667 * the imbalance. The next load balance will take care of 10668 * balancing back the system. 10669 */ 10670 env->migration_type = migrate_task; 10671 env->imbalance = 1; 10672 return; 10673 } 10674 10675 /* 10676 * Try to use spare capacity of local group without overloading it or 10677 * emptying busiest. 10678 */ 10679 if (local->group_type == group_has_spare) { 10680 if ((busiest->group_type > group_fully_busy) && 10681 !(env->sd->flags & SD_SHARE_LLC)) { 10682 /* 10683 * If busiest is overloaded, try to fill spare 10684 * capacity. This might end up creating spare capacity 10685 * in busiest or busiest still being overloaded but 10686 * there is no simple way to directly compute the 10687 * amount of load to migrate in order to balance the 10688 * system. 10689 */ 10690 env->migration_type = migrate_util; 10691 env->imbalance = max(local->group_capacity, local->group_util) - 10692 local->group_util; 10693 10694 /* 10695 * In some cases, the group's utilization is max or even 10696 * higher than capacity because of migrations but the 10697 * local CPU is (newly) idle. There is at least one 10698 * waiting task in this overloaded busiest group. Let's 10699 * try to pull it. 10700 */ 10701 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10702 env->migration_type = migrate_task; 10703 env->imbalance = 1; 10704 } 10705 10706 return; 10707 } 10708 10709 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10710 /* 10711 * When prefer sibling, evenly spread running tasks on 10712 * groups. 10713 */ 10714 env->migration_type = migrate_task; 10715 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10716 } else { 10717 10718 /* 10719 * If there is no overload, we just want to even the number of 10720 * idle cpus. 10721 */ 10722 env->migration_type = migrate_task; 10723 env->imbalance = max_t(long, 0, 10724 (local->idle_cpus - busiest->idle_cpus)); 10725 } 10726 10727 #ifdef CONFIG_NUMA 10728 /* Consider allowing a small imbalance between NUMA groups */ 10729 if (env->sd->flags & SD_NUMA) { 10730 env->imbalance = adjust_numa_imbalance(env->imbalance, 10731 local->sum_nr_running + 1, 10732 env->sd->imb_numa_nr); 10733 } 10734 #endif 10735 10736 /* Number of tasks to move to restore balance */ 10737 env->imbalance >>= 1; 10738 10739 return; 10740 } 10741 10742 /* 10743 * Local is fully busy but has to take more load to relieve the 10744 * busiest group 10745 */ 10746 if (local->group_type < group_overloaded) { 10747 /* 10748 * Local will become overloaded so the avg_load metrics are 10749 * finally needed. 10750 */ 10751 10752 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10753 local->group_capacity; 10754 10755 /* 10756 * If the local group is more loaded than the selected 10757 * busiest group don't try to pull any tasks. 10758 */ 10759 if (local->avg_load >= busiest->avg_load) { 10760 env->imbalance = 0; 10761 return; 10762 } 10763 10764 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10765 sds->total_capacity; 10766 10767 /* 10768 * If the local group is more loaded than the average system 10769 * load, don't try to pull any tasks. 10770 */ 10771 if (local->avg_load >= sds->avg_load) { 10772 env->imbalance = 0; 10773 return; 10774 } 10775 10776 } 10777 10778 /* 10779 * Both group are or will become overloaded and we're trying to get all 10780 * the CPUs to the average_load, so we don't want to push ourselves 10781 * above the average load, nor do we wish to reduce the max loaded CPU 10782 * below the average load. At the same time, we also don't want to 10783 * reduce the group load below the group capacity. Thus we look for 10784 * the minimum possible imbalance. 10785 */ 10786 env->migration_type = migrate_load; 10787 env->imbalance = min( 10788 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10789 (sds->avg_load - local->avg_load) * local->group_capacity 10790 ) / SCHED_CAPACITY_SCALE; 10791 } 10792 10793 /******* find_busiest_group() helpers end here *********************/ 10794 10795 /* 10796 * Decision matrix according to the local and busiest group type: 10797 * 10798 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10799 * has_spare nr_idle balanced N/A N/A balanced balanced 10800 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10801 * misfit_task force N/A N/A N/A N/A N/A 10802 * asym_packing force force N/A N/A force force 10803 * imbalanced force force N/A N/A force force 10804 * overloaded force force N/A N/A force avg_load 10805 * 10806 * N/A : Not Applicable because already filtered while updating 10807 * statistics. 10808 * balanced : The system is balanced for these 2 groups. 10809 * force : Calculate the imbalance as load migration is probably needed. 10810 * avg_load : Only if imbalance is significant enough. 10811 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10812 * different in groups. 10813 */ 10814 10815 /** 10816 * find_busiest_group - Returns the busiest group within the sched_domain 10817 * if there is an imbalance. 10818 * @env: The load balancing environment. 10819 * 10820 * Also calculates the amount of runnable load which should be moved 10821 * to restore balance. 10822 * 10823 * Return: - The busiest group if imbalance exists. 10824 */ 10825 static struct sched_group *find_busiest_group(struct lb_env *env) 10826 { 10827 struct sg_lb_stats *local, *busiest; 10828 struct sd_lb_stats sds; 10829 10830 init_sd_lb_stats(&sds); 10831 10832 /* 10833 * Compute the various statistics relevant for load balancing at 10834 * this level. 10835 */ 10836 update_sd_lb_stats(env, &sds); 10837 10838 /* There is no busy sibling group to pull tasks from */ 10839 if (!sds.busiest) 10840 goto out_balanced; 10841 10842 busiest = &sds.busiest_stat; 10843 10844 /* Misfit tasks should be dealt with regardless of the avg load */ 10845 if (busiest->group_type == group_misfit_task) 10846 goto force_balance; 10847 10848 if (sched_energy_enabled()) { 10849 struct root_domain *rd = env->dst_rq->rd; 10850 10851 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10852 goto out_balanced; 10853 } 10854 10855 /* ASYM feature bypasses nice load balance check */ 10856 if (busiest->group_type == group_asym_packing) 10857 goto force_balance; 10858 10859 /* 10860 * If the busiest group is imbalanced the below checks don't 10861 * work because they assume all things are equal, which typically 10862 * isn't true due to cpus_ptr constraints and the like. 10863 */ 10864 if (busiest->group_type == group_imbalanced) 10865 goto force_balance; 10866 10867 local = &sds.local_stat; 10868 /* 10869 * If the local group is busier than the selected busiest group 10870 * don't try and pull any tasks. 10871 */ 10872 if (local->group_type > busiest->group_type) 10873 goto out_balanced; 10874 10875 /* 10876 * When groups are overloaded, use the avg_load to ensure fairness 10877 * between tasks. 10878 */ 10879 if (local->group_type == group_overloaded) { 10880 /* 10881 * If the local group is more loaded than the selected 10882 * busiest group don't try to pull any tasks. 10883 */ 10884 if (local->avg_load >= busiest->avg_load) 10885 goto out_balanced; 10886 10887 /* XXX broken for overlapping NUMA groups */ 10888 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10889 sds.total_capacity; 10890 10891 /* 10892 * Don't pull any tasks if this group is already above the 10893 * domain average load. 10894 */ 10895 if (local->avg_load >= sds.avg_load) 10896 goto out_balanced; 10897 10898 /* 10899 * If the busiest group is more loaded, use imbalance_pct to be 10900 * conservative. 10901 */ 10902 if (100 * busiest->avg_load <= 10903 env->sd->imbalance_pct * local->avg_load) 10904 goto out_balanced; 10905 } 10906 10907 /* 10908 * Try to move all excess tasks to a sibling domain of the busiest 10909 * group's child domain. 10910 */ 10911 if (sds.prefer_sibling && local->group_type == group_has_spare && 10912 sibling_imbalance(env, &sds, busiest, local) > 1) 10913 goto force_balance; 10914 10915 if (busiest->group_type != group_overloaded) { 10916 if (env->idle == CPU_NOT_IDLE) { 10917 /* 10918 * If the busiest group is not overloaded (and as a 10919 * result the local one too) but this CPU is already 10920 * busy, let another idle CPU try to pull task. 10921 */ 10922 goto out_balanced; 10923 } 10924 10925 if (busiest->group_type == group_smt_balance && 10926 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10927 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10928 goto force_balance; 10929 } 10930 10931 if (busiest->group_weight > 1 && 10932 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10933 /* 10934 * If the busiest group is not overloaded 10935 * and there is no imbalance between this and busiest 10936 * group wrt idle CPUs, it is balanced. The imbalance 10937 * becomes significant if the diff is greater than 1 10938 * otherwise we might end up to just move the imbalance 10939 * on another group. Of course this applies only if 10940 * there is more than 1 CPU per group. 10941 */ 10942 goto out_balanced; 10943 } 10944 10945 if (busiest->sum_h_nr_running == 1) { 10946 /* 10947 * busiest doesn't have any tasks waiting to run 10948 */ 10949 goto out_balanced; 10950 } 10951 } 10952 10953 force_balance: 10954 /* Looks like there is an imbalance. Compute it */ 10955 calculate_imbalance(env, &sds); 10956 return env->imbalance ? sds.busiest : NULL; 10957 10958 out_balanced: 10959 env->imbalance = 0; 10960 return NULL; 10961 } 10962 10963 /* 10964 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10965 */ 10966 static struct rq *find_busiest_queue(struct lb_env *env, 10967 struct sched_group *group) 10968 { 10969 struct rq *busiest = NULL, *rq; 10970 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10971 unsigned int busiest_nr = 0; 10972 int i; 10973 10974 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10975 unsigned long capacity, load, util; 10976 unsigned int nr_running; 10977 enum fbq_type rt; 10978 10979 rq = cpu_rq(i); 10980 rt = fbq_classify_rq(rq); 10981 10982 /* 10983 * We classify groups/runqueues into three groups: 10984 * - regular: there are !numa tasks 10985 * - remote: there are numa tasks that run on the 'wrong' node 10986 * - all: there is no distinction 10987 * 10988 * In order to avoid migrating ideally placed numa tasks, 10989 * ignore those when there's better options. 10990 * 10991 * If we ignore the actual busiest queue to migrate another 10992 * task, the next balance pass can still reduce the busiest 10993 * queue by moving tasks around inside the node. 10994 * 10995 * If we cannot move enough load due to this classification 10996 * the next pass will adjust the group classification and 10997 * allow migration of more tasks. 10998 * 10999 * Both cases only affect the total convergence complexity. 11000 */ 11001 if (rt > env->fbq_type) 11002 continue; 11003 11004 nr_running = rq->cfs.h_nr_running; 11005 if (!nr_running) 11006 continue; 11007 11008 capacity = capacity_of(i); 11009 11010 /* 11011 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11012 * eventually lead to active_balancing high->low capacity. 11013 * Higher per-CPU capacity is considered better than balancing 11014 * average load. 11015 */ 11016 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11017 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11018 nr_running == 1) 11019 continue; 11020 11021 /* 11022 * Make sure we only pull tasks from a CPU of lower priority 11023 * when balancing between SMT siblings. 11024 * 11025 * If balancing between cores, let lower priority CPUs help 11026 * SMT cores with more than one busy sibling. 11027 */ 11028 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11029 continue; 11030 11031 switch (env->migration_type) { 11032 case migrate_load: 11033 /* 11034 * When comparing with load imbalance, use cpu_load() 11035 * which is not scaled with the CPU capacity. 11036 */ 11037 load = cpu_load(rq); 11038 11039 if (nr_running == 1 && load > env->imbalance && 11040 !check_cpu_capacity(rq, env->sd)) 11041 break; 11042 11043 /* 11044 * For the load comparisons with the other CPUs, 11045 * consider the cpu_load() scaled with the CPU 11046 * capacity, so that the load can be moved away 11047 * from the CPU that is potentially running at a 11048 * lower capacity. 11049 * 11050 * Thus we're looking for max(load_i / capacity_i), 11051 * crosswise multiplication to rid ourselves of the 11052 * division works out to: 11053 * load_i * capacity_j > load_j * capacity_i; 11054 * where j is our previous maximum. 11055 */ 11056 if (load * busiest_capacity > busiest_load * capacity) { 11057 busiest_load = load; 11058 busiest_capacity = capacity; 11059 busiest = rq; 11060 } 11061 break; 11062 11063 case migrate_util: 11064 util = cpu_util_cfs_boost(i); 11065 11066 /* 11067 * Don't try to pull utilization from a CPU with one 11068 * running task. Whatever its utilization, we will fail 11069 * detach the task. 11070 */ 11071 if (nr_running <= 1) 11072 continue; 11073 11074 if (busiest_util < util) { 11075 busiest_util = util; 11076 busiest = rq; 11077 } 11078 break; 11079 11080 case migrate_task: 11081 if (busiest_nr < nr_running) { 11082 busiest_nr = nr_running; 11083 busiest = rq; 11084 } 11085 break; 11086 11087 case migrate_misfit: 11088 /* 11089 * For ASYM_CPUCAPACITY domains with misfit tasks we 11090 * simply seek the "biggest" misfit task. 11091 */ 11092 if (rq->misfit_task_load > busiest_load) { 11093 busiest_load = rq->misfit_task_load; 11094 busiest = rq; 11095 } 11096 11097 break; 11098 11099 } 11100 } 11101 11102 return busiest; 11103 } 11104 11105 /* 11106 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11107 * so long as it is large enough. 11108 */ 11109 #define MAX_PINNED_INTERVAL 512 11110 11111 static inline bool 11112 asym_active_balance(struct lb_env *env) 11113 { 11114 /* 11115 * ASYM_PACKING needs to force migrate tasks from busy but lower 11116 * priority CPUs in order to pack all tasks in the highest priority 11117 * CPUs. When done between cores, do it only if the whole core if the 11118 * whole core is idle. 11119 * 11120 * If @env::src_cpu is an SMT core with busy siblings, let 11121 * the lower priority @env::dst_cpu help it. Do not follow 11122 * CPU priority. 11123 */ 11124 return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) && 11125 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11126 !sched_use_asym_prio(env->sd, env->src_cpu)); 11127 } 11128 11129 static inline bool 11130 imbalanced_active_balance(struct lb_env *env) 11131 { 11132 struct sched_domain *sd = env->sd; 11133 11134 /* 11135 * The imbalanced case includes the case of pinned tasks preventing a fair 11136 * distribution of the load on the system but also the even distribution of the 11137 * threads on a system with spare capacity 11138 */ 11139 if ((env->migration_type == migrate_task) && 11140 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11141 return 1; 11142 11143 return 0; 11144 } 11145 11146 static int need_active_balance(struct lb_env *env) 11147 { 11148 struct sched_domain *sd = env->sd; 11149 11150 if (asym_active_balance(env)) 11151 return 1; 11152 11153 if (imbalanced_active_balance(env)) 11154 return 1; 11155 11156 /* 11157 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11158 * It's worth migrating the task if the src_cpu's capacity is reduced 11159 * because of other sched_class or IRQs if more capacity stays 11160 * available on dst_cpu. 11161 */ 11162 if ((env->idle != CPU_NOT_IDLE) && 11163 (env->src_rq->cfs.h_nr_running == 1)) { 11164 if ((check_cpu_capacity(env->src_rq, sd)) && 11165 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11166 return 1; 11167 } 11168 11169 if (env->migration_type == migrate_misfit) 11170 return 1; 11171 11172 return 0; 11173 } 11174 11175 static int active_load_balance_cpu_stop(void *data); 11176 11177 static int should_we_balance(struct lb_env *env) 11178 { 11179 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11180 struct sched_group *sg = env->sd->groups; 11181 int cpu, idle_smt = -1; 11182 11183 /* 11184 * Ensure the balancing environment is consistent; can happen 11185 * when the softirq triggers 'during' hotplug. 11186 */ 11187 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11188 return 0; 11189 11190 /* 11191 * In the newly idle case, we will allow all the CPUs 11192 * to do the newly idle load balance. 11193 * 11194 * However, we bail out if we already have tasks or a wakeup pending, 11195 * to optimize wakeup latency. 11196 */ 11197 if (env->idle == CPU_NEWLY_IDLE) { 11198 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11199 return 0; 11200 return 1; 11201 } 11202 11203 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11204 /* Try to find first idle CPU */ 11205 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11206 if (!idle_cpu(cpu)) 11207 continue; 11208 11209 /* 11210 * Don't balance to idle SMT in busy core right away when 11211 * balancing cores, but remember the first idle SMT CPU for 11212 * later consideration. Find CPU on an idle core first. 11213 */ 11214 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11215 if (idle_smt == -1) 11216 idle_smt = cpu; 11217 /* 11218 * If the core is not idle, and first SMT sibling which is 11219 * idle has been found, then its not needed to check other 11220 * SMT siblings for idleness: 11221 */ 11222 #ifdef CONFIG_SCHED_SMT 11223 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11224 #endif 11225 continue; 11226 } 11227 11228 /* 11229 * Are we the first idle core in a non-SMT domain or higher, 11230 * or the first idle CPU in a SMT domain? 11231 */ 11232 return cpu == env->dst_cpu; 11233 } 11234 11235 /* Are we the first idle CPU with busy siblings? */ 11236 if (idle_smt != -1) 11237 return idle_smt == env->dst_cpu; 11238 11239 /* Are we the first CPU of this group ? */ 11240 return group_balance_cpu(sg) == env->dst_cpu; 11241 } 11242 11243 /* 11244 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11245 * tasks if there is an imbalance. 11246 */ 11247 static int load_balance(int this_cpu, struct rq *this_rq, 11248 struct sched_domain *sd, enum cpu_idle_type idle, 11249 int *continue_balancing) 11250 { 11251 int ld_moved, cur_ld_moved, active_balance = 0; 11252 struct sched_domain *sd_parent = sd->parent; 11253 struct sched_group *group; 11254 struct rq *busiest; 11255 struct rq_flags rf; 11256 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11257 struct lb_env env = { 11258 .sd = sd, 11259 .dst_cpu = this_cpu, 11260 .dst_rq = this_rq, 11261 .dst_grpmask = group_balance_mask(sd->groups), 11262 .idle = idle, 11263 .loop_break = SCHED_NR_MIGRATE_BREAK, 11264 .cpus = cpus, 11265 .fbq_type = all, 11266 .tasks = LIST_HEAD_INIT(env.tasks), 11267 }; 11268 11269 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11270 11271 schedstat_inc(sd->lb_count[idle]); 11272 11273 redo: 11274 if (!should_we_balance(&env)) { 11275 *continue_balancing = 0; 11276 goto out_balanced; 11277 } 11278 11279 group = find_busiest_group(&env); 11280 if (!group) { 11281 schedstat_inc(sd->lb_nobusyg[idle]); 11282 goto out_balanced; 11283 } 11284 11285 busiest = find_busiest_queue(&env, group); 11286 if (!busiest) { 11287 schedstat_inc(sd->lb_nobusyq[idle]); 11288 goto out_balanced; 11289 } 11290 11291 WARN_ON_ONCE(busiest == env.dst_rq); 11292 11293 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11294 11295 env.src_cpu = busiest->cpu; 11296 env.src_rq = busiest; 11297 11298 ld_moved = 0; 11299 /* Clear this flag as soon as we find a pullable task */ 11300 env.flags |= LBF_ALL_PINNED; 11301 if (busiest->nr_running > 1) { 11302 /* 11303 * Attempt to move tasks. If find_busiest_group has found 11304 * an imbalance but busiest->nr_running <= 1, the group is 11305 * still unbalanced. ld_moved simply stays zero, so it is 11306 * correctly treated as an imbalance. 11307 */ 11308 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11309 11310 more_balance: 11311 rq_lock_irqsave(busiest, &rf); 11312 update_rq_clock(busiest); 11313 11314 /* 11315 * cur_ld_moved - load moved in current iteration 11316 * ld_moved - cumulative load moved across iterations 11317 */ 11318 cur_ld_moved = detach_tasks(&env); 11319 11320 /* 11321 * We've detached some tasks from busiest_rq. Every 11322 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11323 * unlock busiest->lock, and we are able to be sure 11324 * that nobody can manipulate the tasks in parallel. 11325 * See task_rq_lock() family for the details. 11326 */ 11327 11328 rq_unlock(busiest, &rf); 11329 11330 if (cur_ld_moved) { 11331 attach_tasks(&env); 11332 ld_moved += cur_ld_moved; 11333 } 11334 11335 local_irq_restore(rf.flags); 11336 11337 if (env.flags & LBF_NEED_BREAK) { 11338 env.flags &= ~LBF_NEED_BREAK; 11339 /* Stop if we tried all running tasks */ 11340 if (env.loop < busiest->nr_running) 11341 goto more_balance; 11342 } 11343 11344 /* 11345 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11346 * us and move them to an alternate dst_cpu in our sched_group 11347 * where they can run. The upper limit on how many times we 11348 * iterate on same src_cpu is dependent on number of CPUs in our 11349 * sched_group. 11350 * 11351 * This changes load balance semantics a bit on who can move 11352 * load to a given_cpu. In addition to the given_cpu itself 11353 * (or a ilb_cpu acting on its behalf where given_cpu is 11354 * nohz-idle), we now have balance_cpu in a position to move 11355 * load to given_cpu. In rare situations, this may cause 11356 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11357 * _independently_ and at _same_ time to move some load to 11358 * given_cpu) causing excess load to be moved to given_cpu. 11359 * This however should not happen so much in practice and 11360 * moreover subsequent load balance cycles should correct the 11361 * excess load moved. 11362 */ 11363 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11364 11365 /* Prevent to re-select dst_cpu via env's CPUs */ 11366 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11367 11368 env.dst_rq = cpu_rq(env.new_dst_cpu); 11369 env.dst_cpu = env.new_dst_cpu; 11370 env.flags &= ~LBF_DST_PINNED; 11371 env.loop = 0; 11372 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11373 11374 /* 11375 * Go back to "more_balance" rather than "redo" since we 11376 * need to continue with same src_cpu. 11377 */ 11378 goto more_balance; 11379 } 11380 11381 /* 11382 * We failed to reach balance because of affinity. 11383 */ 11384 if (sd_parent) { 11385 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11386 11387 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11388 *group_imbalance = 1; 11389 } 11390 11391 /* All tasks on this runqueue were pinned by CPU affinity */ 11392 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11393 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11394 /* 11395 * Attempting to continue load balancing at the current 11396 * sched_domain level only makes sense if there are 11397 * active CPUs remaining as possible busiest CPUs to 11398 * pull load from which are not contained within the 11399 * destination group that is receiving any migrated 11400 * load. 11401 */ 11402 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11403 env.loop = 0; 11404 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11405 goto redo; 11406 } 11407 goto out_all_pinned; 11408 } 11409 } 11410 11411 if (!ld_moved) { 11412 schedstat_inc(sd->lb_failed[idle]); 11413 /* 11414 * Increment the failure counter only on periodic balance. 11415 * We do not want newidle balance, which can be very 11416 * frequent, pollute the failure counter causing 11417 * excessive cache_hot migrations and active balances. 11418 */ 11419 if (idle != CPU_NEWLY_IDLE) 11420 sd->nr_balance_failed++; 11421 11422 if (need_active_balance(&env)) { 11423 unsigned long flags; 11424 11425 raw_spin_rq_lock_irqsave(busiest, flags); 11426 11427 /* 11428 * Don't kick the active_load_balance_cpu_stop, 11429 * if the curr task on busiest CPU can't be 11430 * moved to this_cpu: 11431 */ 11432 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11433 raw_spin_rq_unlock_irqrestore(busiest, flags); 11434 goto out_one_pinned; 11435 } 11436 11437 /* Record that we found at least one task that could run on this_cpu */ 11438 env.flags &= ~LBF_ALL_PINNED; 11439 11440 /* 11441 * ->active_balance synchronizes accesses to 11442 * ->active_balance_work. Once set, it's cleared 11443 * only after active load balance is finished. 11444 */ 11445 if (!busiest->active_balance) { 11446 busiest->active_balance = 1; 11447 busiest->push_cpu = this_cpu; 11448 active_balance = 1; 11449 } 11450 11451 preempt_disable(); 11452 raw_spin_rq_unlock_irqrestore(busiest, flags); 11453 if (active_balance) { 11454 stop_one_cpu_nowait(cpu_of(busiest), 11455 active_load_balance_cpu_stop, busiest, 11456 &busiest->active_balance_work); 11457 } 11458 preempt_enable(); 11459 } 11460 } else { 11461 sd->nr_balance_failed = 0; 11462 } 11463 11464 if (likely(!active_balance) || need_active_balance(&env)) { 11465 /* We were unbalanced, so reset the balancing interval */ 11466 sd->balance_interval = sd->min_interval; 11467 } 11468 11469 goto out; 11470 11471 out_balanced: 11472 /* 11473 * We reach balance although we may have faced some affinity 11474 * constraints. Clear the imbalance flag only if other tasks got 11475 * a chance to move and fix the imbalance. 11476 */ 11477 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11478 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11479 11480 if (*group_imbalance) 11481 *group_imbalance = 0; 11482 } 11483 11484 out_all_pinned: 11485 /* 11486 * We reach balance because all tasks are pinned at this level so 11487 * we can't migrate them. Let the imbalance flag set so parent level 11488 * can try to migrate them. 11489 */ 11490 schedstat_inc(sd->lb_balanced[idle]); 11491 11492 sd->nr_balance_failed = 0; 11493 11494 out_one_pinned: 11495 ld_moved = 0; 11496 11497 /* 11498 * newidle_balance() disregards balance intervals, so we could 11499 * repeatedly reach this code, which would lead to balance_interval 11500 * skyrocketing in a short amount of time. Skip the balance_interval 11501 * increase logic to avoid that. 11502 */ 11503 if (env.idle == CPU_NEWLY_IDLE) 11504 goto out; 11505 11506 /* tune up the balancing interval */ 11507 if ((env.flags & LBF_ALL_PINNED && 11508 sd->balance_interval < MAX_PINNED_INTERVAL) || 11509 sd->balance_interval < sd->max_interval) 11510 sd->balance_interval *= 2; 11511 out: 11512 return ld_moved; 11513 } 11514 11515 static inline unsigned long 11516 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11517 { 11518 unsigned long interval = sd->balance_interval; 11519 11520 if (cpu_busy) 11521 interval *= sd->busy_factor; 11522 11523 /* scale ms to jiffies */ 11524 interval = msecs_to_jiffies(interval); 11525 11526 /* 11527 * Reduce likelihood of busy balancing at higher domains racing with 11528 * balancing at lower domains by preventing their balancing periods 11529 * from being multiples of each other. 11530 */ 11531 if (cpu_busy) 11532 interval -= 1; 11533 11534 interval = clamp(interval, 1UL, max_load_balance_interval); 11535 11536 return interval; 11537 } 11538 11539 static inline void 11540 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11541 { 11542 unsigned long interval, next; 11543 11544 /* used by idle balance, so cpu_busy = 0 */ 11545 interval = get_sd_balance_interval(sd, 0); 11546 next = sd->last_balance + interval; 11547 11548 if (time_after(*next_balance, next)) 11549 *next_balance = next; 11550 } 11551 11552 /* 11553 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11554 * running tasks off the busiest CPU onto idle CPUs. It requires at 11555 * least 1 task to be running on each physical CPU where possible, and 11556 * avoids physical / logical imbalances. 11557 */ 11558 static int active_load_balance_cpu_stop(void *data) 11559 { 11560 struct rq *busiest_rq = data; 11561 int busiest_cpu = cpu_of(busiest_rq); 11562 int target_cpu = busiest_rq->push_cpu; 11563 struct rq *target_rq = cpu_rq(target_cpu); 11564 struct sched_domain *sd; 11565 struct task_struct *p = NULL; 11566 struct rq_flags rf; 11567 11568 rq_lock_irq(busiest_rq, &rf); 11569 /* 11570 * Between queueing the stop-work and running it is a hole in which 11571 * CPUs can become inactive. We should not move tasks from or to 11572 * inactive CPUs. 11573 */ 11574 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11575 goto out_unlock; 11576 11577 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11578 if (unlikely(busiest_cpu != smp_processor_id() || 11579 !busiest_rq->active_balance)) 11580 goto out_unlock; 11581 11582 /* Is there any task to move? */ 11583 if (busiest_rq->nr_running <= 1) 11584 goto out_unlock; 11585 11586 /* 11587 * This condition is "impossible", if it occurs 11588 * we need to fix it. Originally reported by 11589 * Bjorn Helgaas on a 128-CPU setup. 11590 */ 11591 WARN_ON_ONCE(busiest_rq == target_rq); 11592 11593 /* Search for an sd spanning us and the target CPU. */ 11594 rcu_read_lock(); 11595 for_each_domain(target_cpu, sd) { 11596 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11597 break; 11598 } 11599 11600 if (likely(sd)) { 11601 struct lb_env env = { 11602 .sd = sd, 11603 .dst_cpu = target_cpu, 11604 .dst_rq = target_rq, 11605 .src_cpu = busiest_rq->cpu, 11606 .src_rq = busiest_rq, 11607 .idle = CPU_IDLE, 11608 .flags = LBF_ACTIVE_LB, 11609 }; 11610 11611 schedstat_inc(sd->alb_count); 11612 update_rq_clock(busiest_rq); 11613 11614 p = detach_one_task(&env); 11615 if (p) { 11616 schedstat_inc(sd->alb_pushed); 11617 /* Active balancing done, reset the failure counter. */ 11618 sd->nr_balance_failed = 0; 11619 } else { 11620 schedstat_inc(sd->alb_failed); 11621 } 11622 } 11623 rcu_read_unlock(); 11624 out_unlock: 11625 busiest_rq->active_balance = 0; 11626 rq_unlock(busiest_rq, &rf); 11627 11628 if (p) 11629 attach_one_task(target_rq, p); 11630 11631 local_irq_enable(); 11632 11633 return 0; 11634 } 11635 11636 static DEFINE_SPINLOCK(balancing); 11637 11638 /* 11639 * Scale the max load_balance interval with the number of CPUs in the system. 11640 * This trades load-balance latency on larger machines for less cross talk. 11641 */ 11642 void update_max_interval(void) 11643 { 11644 max_load_balance_interval = HZ*num_online_cpus()/10; 11645 } 11646 11647 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11648 { 11649 if (cost > sd->max_newidle_lb_cost) { 11650 /* 11651 * Track max cost of a domain to make sure to not delay the 11652 * next wakeup on the CPU. 11653 */ 11654 sd->max_newidle_lb_cost = cost; 11655 sd->last_decay_max_lb_cost = jiffies; 11656 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11657 /* 11658 * Decay the newidle max times by ~1% per second to ensure that 11659 * it is not outdated and the current max cost is actually 11660 * shorter. 11661 */ 11662 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11663 sd->last_decay_max_lb_cost = jiffies; 11664 11665 return true; 11666 } 11667 11668 return false; 11669 } 11670 11671 /* 11672 * It checks each scheduling domain to see if it is due to be balanced, 11673 * and initiates a balancing operation if so. 11674 * 11675 * Balancing parameters are set up in init_sched_domains. 11676 */ 11677 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11678 { 11679 int continue_balancing = 1; 11680 int cpu = rq->cpu; 11681 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11682 unsigned long interval; 11683 struct sched_domain *sd; 11684 /* Earliest time when we have to do rebalance again */ 11685 unsigned long next_balance = jiffies + 60*HZ; 11686 int update_next_balance = 0; 11687 int need_serialize, need_decay = 0; 11688 u64 max_cost = 0; 11689 11690 rcu_read_lock(); 11691 for_each_domain(cpu, sd) { 11692 /* 11693 * Decay the newidle max times here because this is a regular 11694 * visit to all the domains. 11695 */ 11696 need_decay = update_newidle_cost(sd, 0); 11697 max_cost += sd->max_newidle_lb_cost; 11698 11699 /* 11700 * Stop the load balance at this level. There is another 11701 * CPU in our sched group which is doing load balancing more 11702 * actively. 11703 */ 11704 if (!continue_balancing) { 11705 if (need_decay) 11706 continue; 11707 break; 11708 } 11709 11710 interval = get_sd_balance_interval(sd, busy); 11711 11712 need_serialize = sd->flags & SD_SERIALIZE; 11713 if (need_serialize) { 11714 if (!spin_trylock(&balancing)) 11715 goto out; 11716 } 11717 11718 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11719 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11720 /* 11721 * The LBF_DST_PINNED logic could have changed 11722 * env->dst_cpu, so we can't know our idle 11723 * state even if we migrated tasks. Update it. 11724 */ 11725 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11726 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11727 } 11728 sd->last_balance = jiffies; 11729 interval = get_sd_balance_interval(sd, busy); 11730 } 11731 if (need_serialize) 11732 spin_unlock(&balancing); 11733 out: 11734 if (time_after(next_balance, sd->last_balance + interval)) { 11735 next_balance = sd->last_balance + interval; 11736 update_next_balance = 1; 11737 } 11738 } 11739 if (need_decay) { 11740 /* 11741 * Ensure the rq-wide value also decays but keep it at a 11742 * reasonable floor to avoid funnies with rq->avg_idle. 11743 */ 11744 rq->max_idle_balance_cost = 11745 max((u64)sysctl_sched_migration_cost, max_cost); 11746 } 11747 rcu_read_unlock(); 11748 11749 /* 11750 * next_balance will be updated only when there is a need. 11751 * When the cpu is attached to null domain for ex, it will not be 11752 * updated. 11753 */ 11754 if (likely(update_next_balance)) 11755 rq->next_balance = next_balance; 11756 11757 } 11758 11759 static inline int on_null_domain(struct rq *rq) 11760 { 11761 return unlikely(!rcu_dereference_sched(rq->sd)); 11762 } 11763 11764 #ifdef CONFIG_NO_HZ_COMMON 11765 /* 11766 * NOHZ idle load balancing (ILB) details: 11767 * 11768 * - When one of the busy CPUs notices that there may be an idle rebalancing 11769 * needed, they will kick the idle load balancer, which then does idle 11770 * load balancing for all the idle CPUs. 11771 * 11772 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11773 * anywhere yet. 11774 */ 11775 static inline int find_new_ilb(void) 11776 { 11777 const struct cpumask *hk_mask; 11778 int ilb_cpu; 11779 11780 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11781 11782 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11783 11784 if (ilb_cpu == smp_processor_id()) 11785 continue; 11786 11787 if (idle_cpu(ilb_cpu)) 11788 return ilb_cpu; 11789 } 11790 11791 return -1; 11792 } 11793 11794 /* 11795 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11796 * SMP function call (IPI). 11797 * 11798 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11799 */ 11800 static void kick_ilb(unsigned int flags) 11801 { 11802 int ilb_cpu; 11803 11804 /* 11805 * Increase nohz.next_balance only when if full ilb is triggered but 11806 * not if we only update stats. 11807 */ 11808 if (flags & NOHZ_BALANCE_KICK) 11809 nohz.next_balance = jiffies+1; 11810 11811 ilb_cpu = find_new_ilb(); 11812 if (ilb_cpu < 0) 11813 return; 11814 11815 /* 11816 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11817 * the first flag owns it; cleared by nohz_csd_func(). 11818 */ 11819 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11820 if (flags & NOHZ_KICK_MASK) 11821 return; 11822 11823 /* 11824 * This way we generate an IPI on the target CPU which 11825 * is idle, and the softirq performing NOHZ idle load balancing 11826 * will be run before returning from the IPI. 11827 */ 11828 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11829 } 11830 11831 /* 11832 * Current decision point for kicking the idle load balancer in the presence 11833 * of idle CPUs in the system. 11834 */ 11835 static void nohz_balancer_kick(struct rq *rq) 11836 { 11837 unsigned long now = jiffies; 11838 struct sched_domain_shared *sds; 11839 struct sched_domain *sd; 11840 int nr_busy, i, cpu = rq->cpu; 11841 unsigned int flags = 0; 11842 11843 if (unlikely(rq->idle_balance)) 11844 return; 11845 11846 /* 11847 * We may be recently in ticked or tickless idle mode. At the first 11848 * busy tick after returning from idle, we will update the busy stats. 11849 */ 11850 nohz_balance_exit_idle(rq); 11851 11852 /* 11853 * None are in tickless mode and hence no need for NOHZ idle load 11854 * balancing: 11855 */ 11856 if (likely(!atomic_read(&nohz.nr_cpus))) 11857 return; 11858 11859 if (READ_ONCE(nohz.has_blocked) && 11860 time_after(now, READ_ONCE(nohz.next_blocked))) 11861 flags = NOHZ_STATS_KICK; 11862 11863 if (time_before(now, nohz.next_balance)) 11864 goto out; 11865 11866 if (rq->nr_running >= 2) { 11867 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11868 goto out; 11869 } 11870 11871 rcu_read_lock(); 11872 11873 sd = rcu_dereference(rq->sd); 11874 if (sd) { 11875 /* 11876 * If there's a runnable CFS task and the current CPU has reduced 11877 * capacity, kick the ILB to see if there's a better CPU to run on: 11878 */ 11879 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11880 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11881 goto unlock; 11882 } 11883 } 11884 11885 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11886 if (sd) { 11887 /* 11888 * When ASYM_PACKING; see if there's a more preferred CPU 11889 * currently idle; in which case, kick the ILB to move tasks 11890 * around. 11891 * 11892 * When balancing betwen cores, all the SMT siblings of the 11893 * preferred CPU must be idle. 11894 */ 11895 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11896 if (sched_asym(sd, i, cpu)) { 11897 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11898 goto unlock; 11899 } 11900 } 11901 } 11902 11903 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11904 if (sd) { 11905 /* 11906 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11907 * to run the misfit task on. 11908 */ 11909 if (check_misfit_status(rq, sd)) { 11910 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11911 goto unlock; 11912 } 11913 11914 /* 11915 * For asymmetric systems, we do not want to nicely balance 11916 * cache use, instead we want to embrace asymmetry and only 11917 * ensure tasks have enough CPU capacity. 11918 * 11919 * Skip the LLC logic because it's not relevant in that case. 11920 */ 11921 goto unlock; 11922 } 11923 11924 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11925 if (sds) { 11926 /* 11927 * If there is an imbalance between LLC domains (IOW we could 11928 * increase the overall cache utilization), we need a less-loaded LLC 11929 * domain to pull some load from. Likewise, we may need to spread 11930 * load within the current LLC domain (e.g. packed SMT cores but 11931 * other CPUs are idle). We can't really know from here how busy 11932 * the others are - so just get a NOHZ balance going if it looks 11933 * like this LLC domain has tasks we could move. 11934 */ 11935 nr_busy = atomic_read(&sds->nr_busy_cpus); 11936 if (nr_busy > 1) { 11937 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11938 goto unlock; 11939 } 11940 } 11941 unlock: 11942 rcu_read_unlock(); 11943 out: 11944 if (READ_ONCE(nohz.needs_update)) 11945 flags |= NOHZ_NEXT_KICK; 11946 11947 if (flags) 11948 kick_ilb(flags); 11949 } 11950 11951 static void set_cpu_sd_state_busy(int cpu) 11952 { 11953 struct sched_domain *sd; 11954 11955 rcu_read_lock(); 11956 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11957 11958 if (!sd || !sd->nohz_idle) 11959 goto unlock; 11960 sd->nohz_idle = 0; 11961 11962 atomic_inc(&sd->shared->nr_busy_cpus); 11963 unlock: 11964 rcu_read_unlock(); 11965 } 11966 11967 void nohz_balance_exit_idle(struct rq *rq) 11968 { 11969 SCHED_WARN_ON(rq != this_rq()); 11970 11971 if (likely(!rq->nohz_tick_stopped)) 11972 return; 11973 11974 rq->nohz_tick_stopped = 0; 11975 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11976 atomic_dec(&nohz.nr_cpus); 11977 11978 set_cpu_sd_state_busy(rq->cpu); 11979 } 11980 11981 static void set_cpu_sd_state_idle(int cpu) 11982 { 11983 struct sched_domain *sd; 11984 11985 rcu_read_lock(); 11986 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11987 11988 if (!sd || sd->nohz_idle) 11989 goto unlock; 11990 sd->nohz_idle = 1; 11991 11992 atomic_dec(&sd->shared->nr_busy_cpus); 11993 unlock: 11994 rcu_read_unlock(); 11995 } 11996 11997 /* 11998 * This routine will record that the CPU is going idle with tick stopped. 11999 * This info will be used in performing idle load balancing in the future. 12000 */ 12001 void nohz_balance_enter_idle(int cpu) 12002 { 12003 struct rq *rq = cpu_rq(cpu); 12004 12005 SCHED_WARN_ON(cpu != smp_processor_id()); 12006 12007 /* If this CPU is going down, then nothing needs to be done: */ 12008 if (!cpu_active(cpu)) 12009 return; 12010 12011 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12012 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12013 return; 12014 12015 /* 12016 * Can be set safely without rq->lock held 12017 * If a clear happens, it will have evaluated last additions because 12018 * rq->lock is held during the check and the clear 12019 */ 12020 rq->has_blocked_load = 1; 12021 12022 /* 12023 * The tick is still stopped but load could have been added in the 12024 * meantime. We set the nohz.has_blocked flag to trig a check of the 12025 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12026 * of nohz.has_blocked can only happen after checking the new load 12027 */ 12028 if (rq->nohz_tick_stopped) 12029 goto out; 12030 12031 /* If we're a completely isolated CPU, we don't play: */ 12032 if (on_null_domain(rq)) 12033 return; 12034 12035 rq->nohz_tick_stopped = 1; 12036 12037 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12038 atomic_inc(&nohz.nr_cpus); 12039 12040 /* 12041 * Ensures that if nohz_idle_balance() fails to observe our 12042 * @idle_cpus_mask store, it must observe the @has_blocked 12043 * and @needs_update stores. 12044 */ 12045 smp_mb__after_atomic(); 12046 12047 set_cpu_sd_state_idle(cpu); 12048 12049 WRITE_ONCE(nohz.needs_update, 1); 12050 out: 12051 /* 12052 * Each time a cpu enter idle, we assume that it has blocked load and 12053 * enable the periodic update of the load of idle cpus 12054 */ 12055 WRITE_ONCE(nohz.has_blocked, 1); 12056 } 12057 12058 static bool update_nohz_stats(struct rq *rq) 12059 { 12060 unsigned int cpu = rq->cpu; 12061 12062 if (!rq->has_blocked_load) 12063 return false; 12064 12065 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12066 return false; 12067 12068 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12069 return true; 12070 12071 update_blocked_averages(cpu); 12072 12073 return rq->has_blocked_load; 12074 } 12075 12076 /* 12077 * Internal function that runs load balance for all idle cpus. The load balance 12078 * can be a simple update of blocked load or a complete load balance with 12079 * tasks movement depending of flags. 12080 */ 12081 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12082 { 12083 /* Earliest time when we have to do rebalance again */ 12084 unsigned long now = jiffies; 12085 unsigned long next_balance = now + 60*HZ; 12086 bool has_blocked_load = false; 12087 int update_next_balance = 0; 12088 int this_cpu = this_rq->cpu; 12089 int balance_cpu; 12090 struct rq *rq; 12091 12092 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12093 12094 /* 12095 * We assume there will be no idle load after this update and clear 12096 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12097 * set the has_blocked flag and trigger another update of idle load. 12098 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12099 * setting the flag, we are sure to not clear the state and not 12100 * check the load of an idle cpu. 12101 * 12102 * Same applies to idle_cpus_mask vs needs_update. 12103 */ 12104 if (flags & NOHZ_STATS_KICK) 12105 WRITE_ONCE(nohz.has_blocked, 0); 12106 if (flags & NOHZ_NEXT_KICK) 12107 WRITE_ONCE(nohz.needs_update, 0); 12108 12109 /* 12110 * Ensures that if we miss the CPU, we must see the has_blocked 12111 * store from nohz_balance_enter_idle(). 12112 */ 12113 smp_mb(); 12114 12115 /* 12116 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12117 * chance for other idle cpu to pull load. 12118 */ 12119 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12120 if (!idle_cpu(balance_cpu)) 12121 continue; 12122 12123 /* 12124 * If this CPU gets work to do, stop the load balancing 12125 * work being done for other CPUs. Next load 12126 * balancing owner will pick it up. 12127 */ 12128 if (need_resched()) { 12129 if (flags & NOHZ_STATS_KICK) 12130 has_blocked_load = true; 12131 if (flags & NOHZ_NEXT_KICK) 12132 WRITE_ONCE(nohz.needs_update, 1); 12133 goto abort; 12134 } 12135 12136 rq = cpu_rq(balance_cpu); 12137 12138 if (flags & NOHZ_STATS_KICK) 12139 has_blocked_load |= update_nohz_stats(rq); 12140 12141 /* 12142 * If time for next balance is due, 12143 * do the balance. 12144 */ 12145 if (time_after_eq(jiffies, rq->next_balance)) { 12146 struct rq_flags rf; 12147 12148 rq_lock_irqsave(rq, &rf); 12149 update_rq_clock(rq); 12150 rq_unlock_irqrestore(rq, &rf); 12151 12152 if (flags & NOHZ_BALANCE_KICK) 12153 rebalance_domains(rq, CPU_IDLE); 12154 } 12155 12156 if (time_after(next_balance, rq->next_balance)) { 12157 next_balance = rq->next_balance; 12158 update_next_balance = 1; 12159 } 12160 } 12161 12162 /* 12163 * next_balance will be updated only when there is a need. 12164 * When the CPU is attached to null domain for ex, it will not be 12165 * updated. 12166 */ 12167 if (likely(update_next_balance)) 12168 nohz.next_balance = next_balance; 12169 12170 if (flags & NOHZ_STATS_KICK) 12171 WRITE_ONCE(nohz.next_blocked, 12172 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12173 12174 abort: 12175 /* There is still blocked load, enable periodic update */ 12176 if (has_blocked_load) 12177 WRITE_ONCE(nohz.has_blocked, 1); 12178 } 12179 12180 /* 12181 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12182 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12183 */ 12184 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12185 { 12186 unsigned int flags = this_rq->nohz_idle_balance; 12187 12188 if (!flags) 12189 return false; 12190 12191 this_rq->nohz_idle_balance = 0; 12192 12193 if (idle != CPU_IDLE) 12194 return false; 12195 12196 _nohz_idle_balance(this_rq, flags); 12197 12198 return true; 12199 } 12200 12201 /* 12202 * Check if we need to directly run the ILB for updating blocked load before 12203 * entering idle state. Here we run ILB directly without issuing IPIs. 12204 * 12205 * Note that when this function is called, the tick may not yet be stopped on 12206 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12207 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12208 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12209 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12210 * called from this function on (this) CPU that's not yet in the mask. That's 12211 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12212 * updating the blocked load of already idle CPUs without waking up one of 12213 * those idle CPUs and outside the preempt disable / irq off phase of the local 12214 * cpu about to enter idle, because it can take a long time. 12215 */ 12216 void nohz_run_idle_balance(int cpu) 12217 { 12218 unsigned int flags; 12219 12220 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12221 12222 /* 12223 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12224 * (ie NOHZ_STATS_KICK set) and will do the same. 12225 */ 12226 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12227 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12228 } 12229 12230 static void nohz_newidle_balance(struct rq *this_rq) 12231 { 12232 int this_cpu = this_rq->cpu; 12233 12234 /* 12235 * This CPU doesn't want to be disturbed by scheduler 12236 * housekeeping 12237 */ 12238 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12239 return; 12240 12241 /* Will wake up very soon. No time for doing anything else*/ 12242 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12243 return; 12244 12245 /* Don't need to update blocked load of idle CPUs*/ 12246 if (!READ_ONCE(nohz.has_blocked) || 12247 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12248 return; 12249 12250 /* 12251 * Set the need to trigger ILB in order to update blocked load 12252 * before entering idle state. 12253 */ 12254 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12255 } 12256 12257 #else /* !CONFIG_NO_HZ_COMMON */ 12258 static inline void nohz_balancer_kick(struct rq *rq) { } 12259 12260 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12261 { 12262 return false; 12263 } 12264 12265 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12266 #endif /* CONFIG_NO_HZ_COMMON */ 12267 12268 /* 12269 * newidle_balance is called by schedule() if this_cpu is about to become 12270 * idle. Attempts to pull tasks from other CPUs. 12271 * 12272 * Returns: 12273 * < 0 - we released the lock and there are !fair tasks present 12274 * 0 - failed, no new tasks 12275 * > 0 - success, new (fair) tasks present 12276 */ 12277 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12278 { 12279 unsigned long next_balance = jiffies + HZ; 12280 int this_cpu = this_rq->cpu; 12281 u64 t0, t1, curr_cost = 0; 12282 struct sched_domain *sd; 12283 int pulled_task = 0; 12284 12285 update_misfit_status(NULL, this_rq); 12286 12287 /* 12288 * There is a task waiting to run. No need to search for one. 12289 * Return 0; the task will be enqueued when switching to idle. 12290 */ 12291 if (this_rq->ttwu_pending) 12292 return 0; 12293 12294 /* 12295 * We must set idle_stamp _before_ calling idle_balance(), such that we 12296 * measure the duration of idle_balance() as idle time. 12297 */ 12298 this_rq->idle_stamp = rq_clock(this_rq); 12299 12300 /* 12301 * Do not pull tasks towards !active CPUs... 12302 */ 12303 if (!cpu_active(this_cpu)) 12304 return 0; 12305 12306 /* 12307 * This is OK, because current is on_cpu, which avoids it being picked 12308 * for load-balance and preemption/IRQs are still disabled avoiding 12309 * further scheduler activity on it and we're being very careful to 12310 * re-start the picking loop. 12311 */ 12312 rq_unpin_lock(this_rq, rf); 12313 12314 rcu_read_lock(); 12315 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12316 12317 if (!READ_ONCE(this_rq->rd->overload) || 12318 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12319 12320 if (sd) 12321 update_next_balance(sd, &next_balance); 12322 rcu_read_unlock(); 12323 12324 goto out; 12325 } 12326 rcu_read_unlock(); 12327 12328 raw_spin_rq_unlock(this_rq); 12329 12330 t0 = sched_clock_cpu(this_cpu); 12331 update_blocked_averages(this_cpu); 12332 12333 rcu_read_lock(); 12334 for_each_domain(this_cpu, sd) { 12335 int continue_balancing = 1; 12336 u64 domain_cost; 12337 12338 update_next_balance(sd, &next_balance); 12339 12340 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12341 break; 12342 12343 if (sd->flags & SD_BALANCE_NEWIDLE) { 12344 12345 pulled_task = load_balance(this_cpu, this_rq, 12346 sd, CPU_NEWLY_IDLE, 12347 &continue_balancing); 12348 12349 t1 = sched_clock_cpu(this_cpu); 12350 domain_cost = t1 - t0; 12351 update_newidle_cost(sd, domain_cost); 12352 12353 curr_cost += domain_cost; 12354 t0 = t1; 12355 } 12356 12357 /* 12358 * Stop searching for tasks to pull if there are 12359 * now runnable tasks on this rq. 12360 */ 12361 if (pulled_task || this_rq->nr_running > 0 || 12362 this_rq->ttwu_pending) 12363 break; 12364 } 12365 rcu_read_unlock(); 12366 12367 raw_spin_rq_lock(this_rq); 12368 12369 if (curr_cost > this_rq->max_idle_balance_cost) 12370 this_rq->max_idle_balance_cost = curr_cost; 12371 12372 /* 12373 * While browsing the domains, we released the rq lock, a task could 12374 * have been enqueued in the meantime. Since we're not going idle, 12375 * pretend we pulled a task. 12376 */ 12377 if (this_rq->cfs.h_nr_running && !pulled_task) 12378 pulled_task = 1; 12379 12380 /* Is there a task of a high priority class? */ 12381 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12382 pulled_task = -1; 12383 12384 out: 12385 /* Move the next balance forward */ 12386 if (time_after(this_rq->next_balance, next_balance)) 12387 this_rq->next_balance = next_balance; 12388 12389 if (pulled_task) 12390 this_rq->idle_stamp = 0; 12391 else 12392 nohz_newidle_balance(this_rq); 12393 12394 rq_repin_lock(this_rq, rf); 12395 12396 return pulled_task; 12397 } 12398 12399 /* 12400 * run_rebalance_domains is triggered when needed from the scheduler tick. 12401 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12402 */ 12403 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12404 { 12405 struct rq *this_rq = this_rq(); 12406 enum cpu_idle_type idle = this_rq->idle_balance ? 12407 CPU_IDLE : CPU_NOT_IDLE; 12408 12409 /* 12410 * If this CPU has a pending nohz_balance_kick, then do the 12411 * balancing on behalf of the other idle CPUs whose ticks are 12412 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12413 * give the idle CPUs a chance to load balance. Else we may 12414 * load balance only within the local sched_domain hierarchy 12415 * and abort nohz_idle_balance altogether if we pull some load. 12416 */ 12417 if (nohz_idle_balance(this_rq, idle)) 12418 return; 12419 12420 /* normal load balance */ 12421 update_blocked_averages(this_rq->cpu); 12422 rebalance_domains(this_rq, idle); 12423 } 12424 12425 /* 12426 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12427 */ 12428 void trigger_load_balance(struct rq *rq) 12429 { 12430 /* 12431 * Don't need to rebalance while attached to NULL domain or 12432 * runqueue CPU is not active 12433 */ 12434 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12435 return; 12436 12437 if (time_after_eq(jiffies, rq->next_balance)) 12438 raise_softirq(SCHED_SOFTIRQ); 12439 12440 nohz_balancer_kick(rq); 12441 } 12442 12443 static void rq_online_fair(struct rq *rq) 12444 { 12445 update_sysctl(); 12446 12447 update_runtime_enabled(rq); 12448 } 12449 12450 static void rq_offline_fair(struct rq *rq) 12451 { 12452 update_sysctl(); 12453 12454 /* Ensure any throttled groups are reachable by pick_next_task */ 12455 unthrottle_offline_cfs_rqs(rq); 12456 12457 /* Ensure that we remove rq contribution to group share: */ 12458 clear_tg_offline_cfs_rqs(rq); 12459 } 12460 12461 #endif /* CONFIG_SMP */ 12462 12463 #ifdef CONFIG_SCHED_CORE 12464 static inline bool 12465 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12466 { 12467 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12468 u64 slice = se->slice; 12469 12470 return (rtime * min_nr_tasks > slice); 12471 } 12472 12473 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12474 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12475 { 12476 if (!sched_core_enabled(rq)) 12477 return; 12478 12479 /* 12480 * If runqueue has only one task which used up its slice and 12481 * if the sibling is forced idle, then trigger schedule to 12482 * give forced idle task a chance. 12483 * 12484 * sched_slice() considers only this active rq and it gets the 12485 * whole slice. But during force idle, we have siblings acting 12486 * like a single runqueue and hence we need to consider runnable 12487 * tasks on this CPU and the forced idle CPU. Ideally, we should 12488 * go through the forced idle rq, but that would be a perf hit. 12489 * We can assume that the forced idle CPU has at least 12490 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12491 * if we need to give up the CPU. 12492 */ 12493 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12494 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12495 resched_curr(rq); 12496 } 12497 12498 /* 12499 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12500 */ 12501 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12502 bool forceidle) 12503 { 12504 for_each_sched_entity(se) { 12505 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12506 12507 if (forceidle) { 12508 if (cfs_rq->forceidle_seq == fi_seq) 12509 break; 12510 cfs_rq->forceidle_seq = fi_seq; 12511 } 12512 12513 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12514 } 12515 } 12516 12517 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12518 { 12519 struct sched_entity *se = &p->se; 12520 12521 if (p->sched_class != &fair_sched_class) 12522 return; 12523 12524 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12525 } 12526 12527 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12528 bool in_fi) 12529 { 12530 struct rq *rq = task_rq(a); 12531 const struct sched_entity *sea = &a->se; 12532 const struct sched_entity *seb = &b->se; 12533 struct cfs_rq *cfs_rqa; 12534 struct cfs_rq *cfs_rqb; 12535 s64 delta; 12536 12537 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12538 12539 #ifdef CONFIG_FAIR_GROUP_SCHED 12540 /* 12541 * Find an se in the hierarchy for tasks a and b, such that the se's 12542 * are immediate siblings. 12543 */ 12544 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12545 int sea_depth = sea->depth; 12546 int seb_depth = seb->depth; 12547 12548 if (sea_depth >= seb_depth) 12549 sea = parent_entity(sea); 12550 if (sea_depth <= seb_depth) 12551 seb = parent_entity(seb); 12552 } 12553 12554 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12555 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12556 12557 cfs_rqa = sea->cfs_rq; 12558 cfs_rqb = seb->cfs_rq; 12559 #else 12560 cfs_rqa = &task_rq(a)->cfs; 12561 cfs_rqb = &task_rq(b)->cfs; 12562 #endif 12563 12564 /* 12565 * Find delta after normalizing se's vruntime with its cfs_rq's 12566 * min_vruntime_fi, which would have been updated in prior calls 12567 * to se_fi_update(). 12568 */ 12569 delta = (s64)(sea->vruntime - seb->vruntime) + 12570 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12571 12572 return delta > 0; 12573 } 12574 12575 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12576 { 12577 struct cfs_rq *cfs_rq; 12578 12579 #ifdef CONFIG_FAIR_GROUP_SCHED 12580 cfs_rq = task_group(p)->cfs_rq[cpu]; 12581 #else 12582 cfs_rq = &cpu_rq(cpu)->cfs; 12583 #endif 12584 return throttled_hierarchy(cfs_rq); 12585 } 12586 #else 12587 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12588 #endif 12589 12590 /* 12591 * scheduler tick hitting a task of our scheduling class. 12592 * 12593 * NOTE: This function can be called remotely by the tick offload that 12594 * goes along full dynticks. Therefore no local assumption can be made 12595 * and everything must be accessed through the @rq and @curr passed in 12596 * parameters. 12597 */ 12598 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12599 { 12600 struct cfs_rq *cfs_rq; 12601 struct sched_entity *se = &curr->se; 12602 12603 for_each_sched_entity(se) { 12604 cfs_rq = cfs_rq_of(se); 12605 entity_tick(cfs_rq, se, queued); 12606 } 12607 12608 if (static_branch_unlikely(&sched_numa_balancing)) 12609 task_tick_numa(rq, curr); 12610 12611 update_misfit_status(curr, rq); 12612 update_overutilized_status(task_rq(curr)); 12613 12614 task_tick_core(rq, curr); 12615 } 12616 12617 /* 12618 * called on fork with the child task as argument from the parent's context 12619 * - child not yet on the tasklist 12620 * - preemption disabled 12621 */ 12622 static void task_fork_fair(struct task_struct *p) 12623 { 12624 struct sched_entity *se = &p->se, *curr; 12625 struct cfs_rq *cfs_rq; 12626 struct rq *rq = this_rq(); 12627 struct rq_flags rf; 12628 12629 rq_lock(rq, &rf); 12630 update_rq_clock(rq); 12631 12632 cfs_rq = task_cfs_rq(current); 12633 curr = cfs_rq->curr; 12634 if (curr) 12635 update_curr(cfs_rq); 12636 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12637 rq_unlock(rq, &rf); 12638 } 12639 12640 /* 12641 * Priority of the task has changed. Check to see if we preempt 12642 * the current task. 12643 */ 12644 static void 12645 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12646 { 12647 if (!task_on_rq_queued(p)) 12648 return; 12649 12650 if (rq->cfs.nr_running == 1) 12651 return; 12652 12653 /* 12654 * Reschedule if we are currently running on this runqueue and 12655 * our priority decreased, or if we are not currently running on 12656 * this runqueue and our priority is higher than the current's 12657 */ 12658 if (task_current(rq, p)) { 12659 if (p->prio > oldprio) 12660 resched_curr(rq); 12661 } else 12662 wakeup_preempt(rq, p, 0); 12663 } 12664 12665 #ifdef CONFIG_FAIR_GROUP_SCHED 12666 /* 12667 * Propagate the changes of the sched_entity across the tg tree to make it 12668 * visible to the root 12669 */ 12670 static void propagate_entity_cfs_rq(struct sched_entity *se) 12671 { 12672 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12673 12674 if (cfs_rq_throttled(cfs_rq)) 12675 return; 12676 12677 if (!throttled_hierarchy(cfs_rq)) 12678 list_add_leaf_cfs_rq(cfs_rq); 12679 12680 /* Start to propagate at parent */ 12681 se = se->parent; 12682 12683 for_each_sched_entity(se) { 12684 cfs_rq = cfs_rq_of(se); 12685 12686 update_load_avg(cfs_rq, se, UPDATE_TG); 12687 12688 if (cfs_rq_throttled(cfs_rq)) 12689 break; 12690 12691 if (!throttled_hierarchy(cfs_rq)) 12692 list_add_leaf_cfs_rq(cfs_rq); 12693 } 12694 } 12695 #else 12696 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12697 #endif 12698 12699 static void detach_entity_cfs_rq(struct sched_entity *se) 12700 { 12701 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12702 12703 #ifdef CONFIG_SMP 12704 /* 12705 * In case the task sched_avg hasn't been attached: 12706 * - A forked task which hasn't been woken up by wake_up_new_task(). 12707 * - A task which has been woken up by try_to_wake_up() but is 12708 * waiting for actually being woken up by sched_ttwu_pending(). 12709 */ 12710 if (!se->avg.last_update_time) 12711 return; 12712 #endif 12713 12714 /* Catch up with the cfs_rq and remove our load when we leave */ 12715 update_load_avg(cfs_rq, se, 0); 12716 detach_entity_load_avg(cfs_rq, se); 12717 update_tg_load_avg(cfs_rq); 12718 propagate_entity_cfs_rq(se); 12719 } 12720 12721 static void attach_entity_cfs_rq(struct sched_entity *se) 12722 { 12723 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12724 12725 /* Synchronize entity with its cfs_rq */ 12726 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12727 attach_entity_load_avg(cfs_rq, se); 12728 update_tg_load_avg(cfs_rq); 12729 propagate_entity_cfs_rq(se); 12730 } 12731 12732 static void detach_task_cfs_rq(struct task_struct *p) 12733 { 12734 struct sched_entity *se = &p->se; 12735 12736 detach_entity_cfs_rq(se); 12737 } 12738 12739 static void attach_task_cfs_rq(struct task_struct *p) 12740 { 12741 struct sched_entity *se = &p->se; 12742 12743 attach_entity_cfs_rq(se); 12744 } 12745 12746 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12747 { 12748 detach_task_cfs_rq(p); 12749 } 12750 12751 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12752 { 12753 attach_task_cfs_rq(p); 12754 12755 if (task_on_rq_queued(p)) { 12756 /* 12757 * We were most likely switched from sched_rt, so 12758 * kick off the schedule if running, otherwise just see 12759 * if we can still preempt the current task. 12760 */ 12761 if (task_current(rq, p)) 12762 resched_curr(rq); 12763 else 12764 wakeup_preempt(rq, p, 0); 12765 } 12766 } 12767 12768 /* Account for a task changing its policy or group. 12769 * 12770 * This routine is mostly called to set cfs_rq->curr field when a task 12771 * migrates between groups/classes. 12772 */ 12773 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12774 { 12775 struct sched_entity *se = &p->se; 12776 12777 #ifdef CONFIG_SMP 12778 if (task_on_rq_queued(p)) { 12779 /* 12780 * Move the next running task to the front of the list, so our 12781 * cfs_tasks list becomes MRU one. 12782 */ 12783 list_move(&se->group_node, &rq->cfs_tasks); 12784 } 12785 #endif 12786 12787 for_each_sched_entity(se) { 12788 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12789 12790 set_next_entity(cfs_rq, se); 12791 /* ensure bandwidth has been allocated on our new cfs_rq */ 12792 account_cfs_rq_runtime(cfs_rq, 0); 12793 } 12794 } 12795 12796 void init_cfs_rq(struct cfs_rq *cfs_rq) 12797 { 12798 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12799 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12800 #ifdef CONFIG_SMP 12801 raw_spin_lock_init(&cfs_rq->removed.lock); 12802 #endif 12803 } 12804 12805 #ifdef CONFIG_FAIR_GROUP_SCHED 12806 static void task_change_group_fair(struct task_struct *p) 12807 { 12808 /* 12809 * We couldn't detach or attach a forked task which 12810 * hasn't been woken up by wake_up_new_task(). 12811 */ 12812 if (READ_ONCE(p->__state) == TASK_NEW) 12813 return; 12814 12815 detach_task_cfs_rq(p); 12816 12817 #ifdef CONFIG_SMP 12818 /* Tell se's cfs_rq has been changed -- migrated */ 12819 p->se.avg.last_update_time = 0; 12820 #endif 12821 set_task_rq(p, task_cpu(p)); 12822 attach_task_cfs_rq(p); 12823 } 12824 12825 void free_fair_sched_group(struct task_group *tg) 12826 { 12827 int i; 12828 12829 for_each_possible_cpu(i) { 12830 if (tg->cfs_rq) 12831 kfree(tg->cfs_rq[i]); 12832 if (tg->se) 12833 kfree(tg->se[i]); 12834 } 12835 12836 kfree(tg->cfs_rq); 12837 kfree(tg->se); 12838 } 12839 12840 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12841 { 12842 struct sched_entity *se; 12843 struct cfs_rq *cfs_rq; 12844 int i; 12845 12846 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12847 if (!tg->cfs_rq) 12848 goto err; 12849 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12850 if (!tg->se) 12851 goto err; 12852 12853 tg->shares = NICE_0_LOAD; 12854 12855 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12856 12857 for_each_possible_cpu(i) { 12858 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12859 GFP_KERNEL, cpu_to_node(i)); 12860 if (!cfs_rq) 12861 goto err; 12862 12863 se = kzalloc_node(sizeof(struct sched_entity_stats), 12864 GFP_KERNEL, cpu_to_node(i)); 12865 if (!se) 12866 goto err_free_rq; 12867 12868 init_cfs_rq(cfs_rq); 12869 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12870 init_entity_runnable_average(se); 12871 } 12872 12873 return 1; 12874 12875 err_free_rq: 12876 kfree(cfs_rq); 12877 err: 12878 return 0; 12879 } 12880 12881 void online_fair_sched_group(struct task_group *tg) 12882 { 12883 struct sched_entity *se; 12884 struct rq_flags rf; 12885 struct rq *rq; 12886 int i; 12887 12888 for_each_possible_cpu(i) { 12889 rq = cpu_rq(i); 12890 se = tg->se[i]; 12891 rq_lock_irq(rq, &rf); 12892 update_rq_clock(rq); 12893 attach_entity_cfs_rq(se); 12894 sync_throttle(tg, i); 12895 rq_unlock_irq(rq, &rf); 12896 } 12897 } 12898 12899 void unregister_fair_sched_group(struct task_group *tg) 12900 { 12901 unsigned long flags; 12902 struct rq *rq; 12903 int cpu; 12904 12905 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12906 12907 for_each_possible_cpu(cpu) { 12908 if (tg->se[cpu]) 12909 remove_entity_load_avg(tg->se[cpu]); 12910 12911 /* 12912 * Only empty task groups can be destroyed; so we can speculatively 12913 * check on_list without danger of it being re-added. 12914 */ 12915 if (!tg->cfs_rq[cpu]->on_list) 12916 continue; 12917 12918 rq = cpu_rq(cpu); 12919 12920 raw_spin_rq_lock_irqsave(rq, flags); 12921 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12922 raw_spin_rq_unlock_irqrestore(rq, flags); 12923 } 12924 } 12925 12926 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12927 struct sched_entity *se, int cpu, 12928 struct sched_entity *parent) 12929 { 12930 struct rq *rq = cpu_rq(cpu); 12931 12932 cfs_rq->tg = tg; 12933 cfs_rq->rq = rq; 12934 init_cfs_rq_runtime(cfs_rq); 12935 12936 tg->cfs_rq[cpu] = cfs_rq; 12937 tg->se[cpu] = se; 12938 12939 /* se could be NULL for root_task_group */ 12940 if (!se) 12941 return; 12942 12943 if (!parent) { 12944 se->cfs_rq = &rq->cfs; 12945 se->depth = 0; 12946 } else { 12947 se->cfs_rq = parent->my_q; 12948 se->depth = parent->depth + 1; 12949 } 12950 12951 se->my_q = cfs_rq; 12952 /* guarantee group entities always have weight */ 12953 update_load_set(&se->load, NICE_0_LOAD); 12954 se->parent = parent; 12955 } 12956 12957 static DEFINE_MUTEX(shares_mutex); 12958 12959 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12960 { 12961 int i; 12962 12963 lockdep_assert_held(&shares_mutex); 12964 12965 /* 12966 * We can't change the weight of the root cgroup. 12967 */ 12968 if (!tg->se[0]) 12969 return -EINVAL; 12970 12971 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12972 12973 if (tg->shares == shares) 12974 return 0; 12975 12976 tg->shares = shares; 12977 for_each_possible_cpu(i) { 12978 struct rq *rq = cpu_rq(i); 12979 struct sched_entity *se = tg->se[i]; 12980 struct rq_flags rf; 12981 12982 /* Propagate contribution to hierarchy */ 12983 rq_lock_irqsave(rq, &rf); 12984 update_rq_clock(rq); 12985 for_each_sched_entity(se) { 12986 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12987 update_cfs_group(se); 12988 } 12989 rq_unlock_irqrestore(rq, &rf); 12990 } 12991 12992 return 0; 12993 } 12994 12995 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12996 { 12997 int ret; 12998 12999 mutex_lock(&shares_mutex); 13000 if (tg_is_idle(tg)) 13001 ret = -EINVAL; 13002 else 13003 ret = __sched_group_set_shares(tg, shares); 13004 mutex_unlock(&shares_mutex); 13005 13006 return ret; 13007 } 13008 13009 int sched_group_set_idle(struct task_group *tg, long idle) 13010 { 13011 int i; 13012 13013 if (tg == &root_task_group) 13014 return -EINVAL; 13015 13016 if (idle < 0 || idle > 1) 13017 return -EINVAL; 13018 13019 mutex_lock(&shares_mutex); 13020 13021 if (tg->idle == idle) { 13022 mutex_unlock(&shares_mutex); 13023 return 0; 13024 } 13025 13026 tg->idle = idle; 13027 13028 for_each_possible_cpu(i) { 13029 struct rq *rq = cpu_rq(i); 13030 struct sched_entity *se = tg->se[i]; 13031 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13032 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13033 long idle_task_delta; 13034 struct rq_flags rf; 13035 13036 rq_lock_irqsave(rq, &rf); 13037 13038 grp_cfs_rq->idle = idle; 13039 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13040 goto next_cpu; 13041 13042 if (se->on_rq) { 13043 parent_cfs_rq = cfs_rq_of(se); 13044 if (cfs_rq_is_idle(grp_cfs_rq)) 13045 parent_cfs_rq->idle_nr_running++; 13046 else 13047 parent_cfs_rq->idle_nr_running--; 13048 } 13049 13050 idle_task_delta = grp_cfs_rq->h_nr_running - 13051 grp_cfs_rq->idle_h_nr_running; 13052 if (!cfs_rq_is_idle(grp_cfs_rq)) 13053 idle_task_delta *= -1; 13054 13055 for_each_sched_entity(se) { 13056 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13057 13058 if (!se->on_rq) 13059 break; 13060 13061 cfs_rq->idle_h_nr_running += idle_task_delta; 13062 13063 /* Already accounted at parent level and above. */ 13064 if (cfs_rq_is_idle(cfs_rq)) 13065 break; 13066 } 13067 13068 next_cpu: 13069 rq_unlock_irqrestore(rq, &rf); 13070 } 13071 13072 /* Idle groups have minimum weight. */ 13073 if (tg_is_idle(tg)) 13074 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13075 else 13076 __sched_group_set_shares(tg, NICE_0_LOAD); 13077 13078 mutex_unlock(&shares_mutex); 13079 return 0; 13080 } 13081 13082 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13083 13084 13085 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13086 { 13087 struct sched_entity *se = &task->se; 13088 unsigned int rr_interval = 0; 13089 13090 /* 13091 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13092 * idle runqueue: 13093 */ 13094 if (rq->cfs.load.weight) 13095 rr_interval = NS_TO_JIFFIES(se->slice); 13096 13097 return rr_interval; 13098 } 13099 13100 /* 13101 * All the scheduling class methods: 13102 */ 13103 DEFINE_SCHED_CLASS(fair) = { 13104 13105 .enqueue_task = enqueue_task_fair, 13106 .dequeue_task = dequeue_task_fair, 13107 .yield_task = yield_task_fair, 13108 .yield_to_task = yield_to_task_fair, 13109 13110 .wakeup_preempt = check_preempt_wakeup_fair, 13111 13112 .pick_next_task = __pick_next_task_fair, 13113 .put_prev_task = put_prev_task_fair, 13114 .set_next_task = set_next_task_fair, 13115 13116 #ifdef CONFIG_SMP 13117 .balance = balance_fair, 13118 .pick_task = pick_task_fair, 13119 .select_task_rq = select_task_rq_fair, 13120 .migrate_task_rq = migrate_task_rq_fair, 13121 13122 .rq_online = rq_online_fair, 13123 .rq_offline = rq_offline_fair, 13124 13125 .task_dead = task_dead_fair, 13126 .set_cpus_allowed = set_cpus_allowed_common, 13127 #endif 13128 13129 .task_tick = task_tick_fair, 13130 .task_fork = task_fork_fair, 13131 13132 .prio_changed = prio_changed_fair, 13133 .switched_from = switched_from_fair, 13134 .switched_to = switched_to_fair, 13135 13136 .get_rr_interval = get_rr_interval_fair, 13137 13138 .update_curr = update_curr_fair, 13139 13140 #ifdef CONFIG_FAIR_GROUP_SCHED 13141 .task_change_group = task_change_group_fair, 13142 #endif 13143 13144 #ifdef CONFIG_SCHED_CORE 13145 .task_is_throttled = task_is_throttled_fair, 13146 #endif 13147 13148 #ifdef CONFIG_UCLAMP_TASK 13149 .uclamp_enabled = 1, 13150 #endif 13151 }; 13152 13153 #ifdef CONFIG_SCHED_DEBUG 13154 void print_cfs_stats(struct seq_file *m, int cpu) 13155 { 13156 struct cfs_rq *cfs_rq, *pos; 13157 13158 rcu_read_lock(); 13159 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13160 print_cfs_rq(m, cpu, cfs_rq); 13161 rcu_read_unlock(); 13162 } 13163 13164 #ifdef CONFIG_NUMA_BALANCING 13165 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13166 { 13167 int node; 13168 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13169 struct numa_group *ng; 13170 13171 rcu_read_lock(); 13172 ng = rcu_dereference(p->numa_group); 13173 for_each_online_node(node) { 13174 if (p->numa_faults) { 13175 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13176 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13177 } 13178 if (ng) { 13179 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13180 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13181 } 13182 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13183 } 13184 rcu_read_unlock(); 13185 } 13186 #endif /* CONFIG_NUMA_BALANCING */ 13187 #endif /* CONFIG_SCHED_DEBUG */ 13188 13189 __init void init_sched_fair_class(void) 13190 { 13191 #ifdef CONFIG_SMP 13192 int i; 13193 13194 for_each_possible_cpu(i) { 13195 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13196 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13197 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13198 GFP_KERNEL, cpu_to_node(i)); 13199 13200 #ifdef CONFIG_CFS_BANDWIDTH 13201 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13202 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13203 #endif 13204 } 13205 13206 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13207 13208 #ifdef CONFIG_NO_HZ_COMMON 13209 nohz.next_balance = jiffies; 13210 nohz.next_blocked = jiffies; 13211 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13212 #endif 13213 #endif /* SMP */ 13214 13215 } 13216