1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched.h> 24 #include <linux/latencytop.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 * 49 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 50 */ 51 unsigned int sysctl_sched_latency = 6000000ULL; 52 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 53 54 /* 55 * The initial- and re-scaling of tunables is configurable 56 * 57 * Options are: 58 * 59 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 60 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 61 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 62 * 63 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 64 */ 65 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 66 67 /* 68 * Minimal preemption granularity for CPU-bound tasks: 69 * 70 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_min_granularity = 750000ULL; 73 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 74 75 /* 76 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 77 */ 78 static unsigned int sched_nr_latency = 8; 79 80 /* 81 * After fork, child runs first. If set to 0 (default) then 82 * parent will (try to) run first. 83 */ 84 unsigned int sysctl_sched_child_runs_first __read_mostly; 85 86 /* 87 * SCHED_OTHER wake-up granularity. 88 * 89 * This option delays the preemption effects of decoupled workloads 90 * and reduces their over-scheduling. Synchronous workloads will still 91 * have immediate wakeup/sleep latencies. 92 * 93 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 94 */ 95 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 96 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 97 98 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered cpu has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 #endif 109 110 #ifdef CONFIG_CFS_BANDWIDTH 111 /* 112 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 113 * each time a cfs_rq requests quota. 114 * 115 * Note: in the case that the slice exceeds the runtime remaining (either due 116 * to consumption or the quota being specified to be smaller than the slice) 117 * we will always only issue the remaining available time. 118 * 119 * (default: 5 msec, units: microseconds) 120 */ 121 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 122 #endif 123 124 /* 125 * The margin used when comparing utilization with CPU capacity: 126 * util * margin < capacity * 1024 127 * 128 * (default: ~20%) 129 */ 130 unsigned int capacity_margin = 1280; 131 132 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 133 { 134 lw->weight += inc; 135 lw->inv_weight = 0; 136 } 137 138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 139 { 140 lw->weight -= dec; 141 lw->inv_weight = 0; 142 } 143 144 static inline void update_load_set(struct load_weight *lw, unsigned long w) 145 { 146 lw->weight = w; 147 lw->inv_weight = 0; 148 } 149 150 /* 151 * Increase the granularity value when there are more CPUs, 152 * because with more CPUs the 'effective latency' as visible 153 * to users decreases. But the relationship is not linear, 154 * so pick a second-best guess by going with the log2 of the 155 * number of CPUs. 156 * 157 * This idea comes from the SD scheduler of Con Kolivas: 158 */ 159 static unsigned int get_update_sysctl_factor(void) 160 { 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 162 unsigned int factor; 163 164 switch (sysctl_sched_tunable_scaling) { 165 case SCHED_TUNABLESCALING_NONE: 166 factor = 1; 167 break; 168 case SCHED_TUNABLESCALING_LINEAR: 169 factor = cpus; 170 break; 171 case SCHED_TUNABLESCALING_LOG: 172 default: 173 factor = 1 + ilog2(cpus); 174 break; 175 } 176 177 return factor; 178 } 179 180 static void update_sysctl(void) 181 { 182 unsigned int factor = get_update_sysctl_factor(); 183 184 #define SET_SYSCTL(name) \ 185 (sysctl_##name = (factor) * normalized_sysctl_##name) 186 SET_SYSCTL(sched_min_granularity); 187 SET_SYSCTL(sched_latency); 188 SET_SYSCTL(sched_wakeup_granularity); 189 #undef SET_SYSCTL 190 } 191 192 void sched_init_granularity(void) 193 { 194 update_sysctl(); 195 } 196 197 #define WMULT_CONST (~0U) 198 #define WMULT_SHIFT 32 199 200 static void __update_inv_weight(struct load_weight *lw) 201 { 202 unsigned long w; 203 204 if (likely(lw->inv_weight)) 205 return; 206 207 w = scale_load_down(lw->weight); 208 209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 210 lw->inv_weight = 1; 211 else if (unlikely(!w)) 212 lw->inv_weight = WMULT_CONST; 213 else 214 lw->inv_weight = WMULT_CONST / w; 215 } 216 217 /* 218 * delta_exec * weight / lw.weight 219 * OR 220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 221 * 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 223 * we're guaranteed shift stays positive because inv_weight is guaranteed to 224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 225 * 226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 227 * weight/lw.weight <= 1, and therefore our shift will also be positive. 228 */ 229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 230 { 231 u64 fact = scale_load_down(weight); 232 int shift = WMULT_SHIFT; 233 234 __update_inv_weight(lw); 235 236 if (unlikely(fact >> 32)) { 237 while (fact >> 32) { 238 fact >>= 1; 239 shift--; 240 } 241 } 242 243 /* hint to use a 32x32->64 mul */ 244 fact = (u64)(u32)fact * lw->inv_weight; 245 246 while (fact >> 32) { 247 fact >>= 1; 248 shift--; 249 } 250 251 return mul_u64_u32_shr(delta_exec, fact, shift); 252 } 253 254 255 const struct sched_class fair_sched_class; 256 257 /************************************************************** 258 * CFS operations on generic schedulable entities: 259 */ 260 261 #ifdef CONFIG_FAIR_GROUP_SCHED 262 263 /* cpu runqueue to which this cfs_rq is attached */ 264 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 265 { 266 return cfs_rq->rq; 267 } 268 269 /* An entity is a task if it doesn't "own" a runqueue */ 270 #define entity_is_task(se) (!se->my_q) 271 272 static inline struct task_struct *task_of(struct sched_entity *se) 273 { 274 SCHED_WARN_ON(!entity_is_task(se)); 275 return container_of(se, struct task_struct, se); 276 } 277 278 /* Walk up scheduling entities hierarchy */ 279 #define for_each_sched_entity(se) \ 280 for (; se; se = se->parent) 281 282 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 283 { 284 return p->se.cfs_rq; 285 } 286 287 /* runqueue on which this entity is (to be) queued */ 288 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 289 { 290 return se->cfs_rq; 291 } 292 293 /* runqueue "owned" by this group */ 294 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 295 { 296 return grp->my_q; 297 } 298 299 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 300 { 301 if (!cfs_rq->on_list) { 302 struct rq *rq = rq_of(cfs_rq); 303 int cpu = cpu_of(rq); 304 /* 305 * Ensure we either appear before our parent (if already 306 * enqueued) or force our parent to appear after us when it is 307 * enqueued. The fact that we always enqueue bottom-up 308 * reduces this to two cases and a special case for the root 309 * cfs_rq. Furthermore, it also means that we will always reset 310 * tmp_alone_branch either when the branch is connected 311 * to a tree or when we reach the beg of the tree 312 */ 313 if (cfs_rq->tg->parent && 314 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 315 /* 316 * If parent is already on the list, we add the child 317 * just before. Thanks to circular linked property of 318 * the list, this means to put the child at the tail 319 * of the list that starts by parent. 320 */ 321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 322 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 323 /* 324 * The branch is now connected to its tree so we can 325 * reset tmp_alone_branch to the beginning of the 326 * list. 327 */ 328 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 329 } else if (!cfs_rq->tg->parent) { 330 /* 331 * cfs rq without parent should be put 332 * at the tail of the list. 333 */ 334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 335 &rq->leaf_cfs_rq_list); 336 /* 337 * We have reach the beg of a tree so we can reset 338 * tmp_alone_branch to the beginning of the list. 339 */ 340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 341 } else { 342 /* 343 * The parent has not already been added so we want to 344 * make sure that it will be put after us. 345 * tmp_alone_branch points to the beg of the branch 346 * where we will add parent. 347 */ 348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 349 rq->tmp_alone_branch); 350 /* 351 * update tmp_alone_branch to points to the new beg 352 * of the branch 353 */ 354 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 355 } 356 357 cfs_rq->on_list = 1; 358 } 359 } 360 361 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 362 { 363 if (cfs_rq->on_list) { 364 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 365 cfs_rq->on_list = 0; 366 } 367 } 368 369 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 370 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 371 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 372 373 /* Do the two (enqueued) entities belong to the same group ? */ 374 static inline struct cfs_rq * 375 is_same_group(struct sched_entity *se, struct sched_entity *pse) 376 { 377 if (se->cfs_rq == pse->cfs_rq) 378 return se->cfs_rq; 379 380 return NULL; 381 } 382 383 static inline struct sched_entity *parent_entity(struct sched_entity *se) 384 { 385 return se->parent; 386 } 387 388 static void 389 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 390 { 391 int se_depth, pse_depth; 392 393 /* 394 * preemption test can be made between sibling entities who are in the 395 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 396 * both tasks until we find their ancestors who are siblings of common 397 * parent. 398 */ 399 400 /* First walk up until both entities are at same depth */ 401 se_depth = (*se)->depth; 402 pse_depth = (*pse)->depth; 403 404 while (se_depth > pse_depth) { 405 se_depth--; 406 *se = parent_entity(*se); 407 } 408 409 while (pse_depth > se_depth) { 410 pse_depth--; 411 *pse = parent_entity(*pse); 412 } 413 414 while (!is_same_group(*se, *pse)) { 415 *se = parent_entity(*se); 416 *pse = parent_entity(*pse); 417 } 418 } 419 420 #else /* !CONFIG_FAIR_GROUP_SCHED */ 421 422 static inline struct task_struct *task_of(struct sched_entity *se) 423 { 424 return container_of(se, struct task_struct, se); 425 } 426 427 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 428 { 429 return container_of(cfs_rq, struct rq, cfs); 430 } 431 432 #define entity_is_task(se) 1 433 434 #define for_each_sched_entity(se) \ 435 for (; se; se = NULL) 436 437 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 438 { 439 return &task_rq(p)->cfs; 440 } 441 442 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 443 { 444 struct task_struct *p = task_of(se); 445 struct rq *rq = task_rq(p); 446 447 return &rq->cfs; 448 } 449 450 /* runqueue "owned" by this group */ 451 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 452 { 453 return NULL; 454 } 455 456 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 457 { 458 } 459 460 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 461 { 462 } 463 464 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 465 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 466 467 static inline struct sched_entity *parent_entity(struct sched_entity *se) 468 { 469 return NULL; 470 } 471 472 static inline void 473 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 474 { 475 } 476 477 #endif /* CONFIG_FAIR_GROUP_SCHED */ 478 479 static __always_inline 480 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 481 482 /************************************************************** 483 * Scheduling class tree data structure manipulation methods: 484 */ 485 486 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 487 { 488 s64 delta = (s64)(vruntime - max_vruntime); 489 if (delta > 0) 490 max_vruntime = vruntime; 491 492 return max_vruntime; 493 } 494 495 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 496 { 497 s64 delta = (s64)(vruntime - min_vruntime); 498 if (delta < 0) 499 min_vruntime = vruntime; 500 501 return min_vruntime; 502 } 503 504 static inline int entity_before(struct sched_entity *a, 505 struct sched_entity *b) 506 { 507 return (s64)(a->vruntime - b->vruntime) < 0; 508 } 509 510 static void update_min_vruntime(struct cfs_rq *cfs_rq) 511 { 512 struct sched_entity *curr = cfs_rq->curr; 513 514 u64 vruntime = cfs_rq->min_vruntime; 515 516 if (curr) { 517 if (curr->on_rq) 518 vruntime = curr->vruntime; 519 else 520 curr = NULL; 521 } 522 523 if (cfs_rq->rb_leftmost) { 524 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 525 struct sched_entity, 526 run_node); 527 528 if (!curr) 529 vruntime = se->vruntime; 530 else 531 vruntime = min_vruntime(vruntime, se->vruntime); 532 } 533 534 /* ensure we never gain time by being placed backwards. */ 535 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 536 #ifndef CONFIG_64BIT 537 smp_wmb(); 538 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 539 #endif 540 } 541 542 /* 543 * Enqueue an entity into the rb-tree: 544 */ 545 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 546 { 547 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 548 struct rb_node *parent = NULL; 549 struct sched_entity *entry; 550 int leftmost = 1; 551 552 /* 553 * Find the right place in the rbtree: 554 */ 555 while (*link) { 556 parent = *link; 557 entry = rb_entry(parent, struct sched_entity, run_node); 558 /* 559 * We dont care about collisions. Nodes with 560 * the same key stay together. 561 */ 562 if (entity_before(se, entry)) { 563 link = &parent->rb_left; 564 } else { 565 link = &parent->rb_right; 566 leftmost = 0; 567 } 568 } 569 570 /* 571 * Maintain a cache of leftmost tree entries (it is frequently 572 * used): 573 */ 574 if (leftmost) 575 cfs_rq->rb_leftmost = &se->run_node; 576 577 rb_link_node(&se->run_node, parent, link); 578 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 579 } 580 581 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 582 { 583 if (cfs_rq->rb_leftmost == &se->run_node) { 584 struct rb_node *next_node; 585 586 next_node = rb_next(&se->run_node); 587 cfs_rq->rb_leftmost = next_node; 588 } 589 590 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 591 } 592 593 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 594 { 595 struct rb_node *left = cfs_rq->rb_leftmost; 596 597 if (!left) 598 return NULL; 599 600 return rb_entry(left, struct sched_entity, run_node); 601 } 602 603 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 604 { 605 struct rb_node *next = rb_next(&se->run_node); 606 607 if (!next) 608 return NULL; 609 610 return rb_entry(next, struct sched_entity, run_node); 611 } 612 613 #ifdef CONFIG_SCHED_DEBUG 614 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 615 { 616 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 617 618 if (!last) 619 return NULL; 620 621 return rb_entry(last, struct sched_entity, run_node); 622 } 623 624 /************************************************************** 625 * Scheduling class statistics methods: 626 */ 627 628 int sched_proc_update_handler(struct ctl_table *table, int write, 629 void __user *buffer, size_t *lenp, 630 loff_t *ppos) 631 { 632 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 633 unsigned int factor = get_update_sysctl_factor(); 634 635 if (ret || !write) 636 return ret; 637 638 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 639 sysctl_sched_min_granularity); 640 641 #define WRT_SYSCTL(name) \ 642 (normalized_sysctl_##name = sysctl_##name / (factor)) 643 WRT_SYSCTL(sched_min_granularity); 644 WRT_SYSCTL(sched_latency); 645 WRT_SYSCTL(sched_wakeup_granularity); 646 #undef WRT_SYSCTL 647 648 return 0; 649 } 650 #endif 651 652 /* 653 * delta /= w 654 */ 655 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 656 { 657 if (unlikely(se->load.weight != NICE_0_LOAD)) 658 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 659 660 return delta; 661 } 662 663 /* 664 * The idea is to set a period in which each task runs once. 665 * 666 * When there are too many tasks (sched_nr_latency) we have to stretch 667 * this period because otherwise the slices get too small. 668 * 669 * p = (nr <= nl) ? l : l*nr/nl 670 */ 671 static u64 __sched_period(unsigned long nr_running) 672 { 673 if (unlikely(nr_running > sched_nr_latency)) 674 return nr_running * sysctl_sched_min_granularity; 675 else 676 return sysctl_sched_latency; 677 } 678 679 /* 680 * We calculate the wall-time slice from the period by taking a part 681 * proportional to the weight. 682 * 683 * s = p*P[w/rw] 684 */ 685 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 686 { 687 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 688 689 for_each_sched_entity(se) { 690 struct load_weight *load; 691 struct load_weight lw; 692 693 cfs_rq = cfs_rq_of(se); 694 load = &cfs_rq->load; 695 696 if (unlikely(!se->on_rq)) { 697 lw = cfs_rq->load; 698 699 update_load_add(&lw, se->load.weight); 700 load = &lw; 701 } 702 slice = __calc_delta(slice, se->load.weight, load); 703 } 704 return slice; 705 } 706 707 /* 708 * We calculate the vruntime slice of a to-be-inserted task. 709 * 710 * vs = s/w 711 */ 712 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 713 { 714 return calc_delta_fair(sched_slice(cfs_rq, se), se); 715 } 716 717 #ifdef CONFIG_SMP 718 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 719 static unsigned long task_h_load(struct task_struct *p); 720 721 /* 722 * We choose a half-life close to 1 scheduling period. 723 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 724 * dependent on this value. 725 */ 726 #define LOAD_AVG_PERIOD 32 727 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 728 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 729 730 /* Give new sched_entity start runnable values to heavy its load in infant time */ 731 void init_entity_runnable_average(struct sched_entity *se) 732 { 733 struct sched_avg *sa = &se->avg; 734 735 sa->last_update_time = 0; 736 /* 737 * sched_avg's period_contrib should be strictly less then 1024, so 738 * we give it 1023 to make sure it is almost a period (1024us), and 739 * will definitely be update (after enqueue). 740 */ 741 sa->period_contrib = 1023; 742 /* 743 * Tasks are intialized with full load to be seen as heavy tasks until 744 * they get a chance to stabilize to their real load level. 745 * Group entities are intialized with zero load to reflect the fact that 746 * nothing has been attached to the task group yet. 747 */ 748 if (entity_is_task(se)) 749 sa->load_avg = scale_load_down(se->load.weight); 750 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 751 /* 752 * At this point, util_avg won't be used in select_task_rq_fair anyway 753 */ 754 sa->util_avg = 0; 755 sa->util_sum = 0; 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 757 } 758 759 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 760 static void attach_entity_cfs_rq(struct sched_entity *se); 761 762 /* 763 * With new tasks being created, their initial util_avgs are extrapolated 764 * based on the cfs_rq's current util_avg: 765 * 766 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 767 * 768 * However, in many cases, the above util_avg does not give a desired 769 * value. Moreover, the sum of the util_avgs may be divergent, such 770 * as when the series is a harmonic series. 771 * 772 * To solve this problem, we also cap the util_avg of successive tasks to 773 * only 1/2 of the left utilization budget: 774 * 775 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 776 * 777 * where n denotes the nth task. 778 * 779 * For example, a simplest series from the beginning would be like: 780 * 781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 783 * 784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 785 * if util_avg > util_avg_cap. 786 */ 787 void post_init_entity_util_avg(struct sched_entity *se) 788 { 789 struct cfs_rq *cfs_rq = cfs_rq_of(se); 790 struct sched_avg *sa = &se->avg; 791 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 792 793 if (cap > 0) { 794 if (cfs_rq->avg.util_avg != 0) { 795 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 796 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 797 798 if (sa->util_avg > cap) 799 sa->util_avg = cap; 800 } else { 801 sa->util_avg = cap; 802 } 803 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 804 } 805 806 if (entity_is_task(se)) { 807 struct task_struct *p = task_of(se); 808 if (p->sched_class != &fair_sched_class) { 809 /* 810 * For !fair tasks do: 811 * 812 update_cfs_rq_load_avg(now, cfs_rq, false); 813 attach_entity_load_avg(cfs_rq, se); 814 switched_from_fair(rq, p); 815 * 816 * such that the next switched_to_fair() has the 817 * expected state. 818 */ 819 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 820 return; 821 } 822 } 823 824 attach_entity_cfs_rq(se); 825 } 826 827 #else /* !CONFIG_SMP */ 828 void init_entity_runnable_average(struct sched_entity *se) 829 { 830 } 831 void post_init_entity_util_avg(struct sched_entity *se) 832 { 833 } 834 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 835 { 836 } 837 #endif /* CONFIG_SMP */ 838 839 /* 840 * Update the current task's runtime statistics. 841 */ 842 static void update_curr(struct cfs_rq *cfs_rq) 843 { 844 struct sched_entity *curr = cfs_rq->curr; 845 u64 now = rq_clock_task(rq_of(cfs_rq)); 846 u64 delta_exec; 847 848 if (unlikely(!curr)) 849 return; 850 851 delta_exec = now - curr->exec_start; 852 if (unlikely((s64)delta_exec <= 0)) 853 return; 854 855 curr->exec_start = now; 856 857 schedstat_set(curr->statistics.exec_max, 858 max(delta_exec, curr->statistics.exec_max)); 859 860 curr->sum_exec_runtime += delta_exec; 861 schedstat_add(cfs_rq->exec_clock, delta_exec); 862 863 curr->vruntime += calc_delta_fair(delta_exec, curr); 864 update_min_vruntime(cfs_rq); 865 866 if (entity_is_task(curr)) { 867 struct task_struct *curtask = task_of(curr); 868 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 870 cpuacct_charge(curtask, delta_exec); 871 account_group_exec_runtime(curtask, delta_exec); 872 } 873 874 account_cfs_rq_runtime(cfs_rq, delta_exec); 875 } 876 877 static void update_curr_fair(struct rq *rq) 878 { 879 update_curr(cfs_rq_of(&rq->curr->se)); 880 } 881 882 static inline void 883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 884 { 885 u64 wait_start, prev_wait_start; 886 887 if (!schedstat_enabled()) 888 return; 889 890 wait_start = rq_clock(rq_of(cfs_rq)); 891 prev_wait_start = schedstat_val(se->statistics.wait_start); 892 893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 894 likely(wait_start > prev_wait_start)) 895 wait_start -= prev_wait_start; 896 897 schedstat_set(se->statistics.wait_start, wait_start); 898 } 899 900 static inline void 901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 902 { 903 struct task_struct *p; 904 u64 delta; 905 906 if (!schedstat_enabled()) 907 return; 908 909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 910 911 if (entity_is_task(se)) { 912 p = task_of(se); 913 if (task_on_rq_migrating(p)) { 914 /* 915 * Preserve migrating task's wait time so wait_start 916 * time stamp can be adjusted to accumulate wait time 917 * prior to migration. 918 */ 919 schedstat_set(se->statistics.wait_start, delta); 920 return; 921 } 922 trace_sched_stat_wait(p, delta); 923 } 924 925 schedstat_set(se->statistics.wait_max, 926 max(schedstat_val(se->statistics.wait_max), delta)); 927 schedstat_inc(se->statistics.wait_count); 928 schedstat_add(se->statistics.wait_sum, delta); 929 schedstat_set(se->statistics.wait_start, 0); 930 } 931 932 static inline void 933 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 934 { 935 struct task_struct *tsk = NULL; 936 u64 sleep_start, block_start; 937 938 if (!schedstat_enabled()) 939 return; 940 941 sleep_start = schedstat_val(se->statistics.sleep_start); 942 block_start = schedstat_val(se->statistics.block_start); 943 944 if (entity_is_task(se)) 945 tsk = task_of(se); 946 947 if (sleep_start) { 948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 949 950 if ((s64)delta < 0) 951 delta = 0; 952 953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 954 schedstat_set(se->statistics.sleep_max, delta); 955 956 schedstat_set(se->statistics.sleep_start, 0); 957 schedstat_add(se->statistics.sum_sleep_runtime, delta); 958 959 if (tsk) { 960 account_scheduler_latency(tsk, delta >> 10, 1); 961 trace_sched_stat_sleep(tsk, delta); 962 } 963 } 964 if (block_start) { 965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 966 967 if ((s64)delta < 0) 968 delta = 0; 969 970 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 971 schedstat_set(se->statistics.block_max, delta); 972 973 schedstat_set(se->statistics.block_start, 0); 974 schedstat_add(se->statistics.sum_sleep_runtime, delta); 975 976 if (tsk) { 977 if (tsk->in_iowait) { 978 schedstat_add(se->statistics.iowait_sum, delta); 979 schedstat_inc(se->statistics.iowait_count); 980 trace_sched_stat_iowait(tsk, delta); 981 } 982 983 trace_sched_stat_blocked(tsk, delta); 984 985 /* 986 * Blocking time is in units of nanosecs, so shift by 987 * 20 to get a milliseconds-range estimation of the 988 * amount of time that the task spent sleeping: 989 */ 990 if (unlikely(prof_on == SLEEP_PROFILING)) { 991 profile_hits(SLEEP_PROFILING, 992 (void *)get_wchan(tsk), 993 delta >> 20); 994 } 995 account_scheduler_latency(tsk, delta >> 10, 0); 996 } 997 } 998 } 999 1000 /* 1001 * Task is being enqueued - update stats: 1002 */ 1003 static inline void 1004 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1005 { 1006 if (!schedstat_enabled()) 1007 return; 1008 1009 /* 1010 * Are we enqueueing a waiting task? (for current tasks 1011 * a dequeue/enqueue event is a NOP) 1012 */ 1013 if (se != cfs_rq->curr) 1014 update_stats_wait_start(cfs_rq, se); 1015 1016 if (flags & ENQUEUE_WAKEUP) 1017 update_stats_enqueue_sleeper(cfs_rq, se); 1018 } 1019 1020 static inline void 1021 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1022 { 1023 1024 if (!schedstat_enabled()) 1025 return; 1026 1027 /* 1028 * Mark the end of the wait period if dequeueing a 1029 * waiting task: 1030 */ 1031 if (se != cfs_rq->curr) 1032 update_stats_wait_end(cfs_rq, se); 1033 1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1035 struct task_struct *tsk = task_of(se); 1036 1037 if (tsk->state & TASK_INTERRUPTIBLE) 1038 schedstat_set(se->statistics.sleep_start, 1039 rq_clock(rq_of(cfs_rq))); 1040 if (tsk->state & TASK_UNINTERRUPTIBLE) 1041 schedstat_set(se->statistics.block_start, 1042 rq_clock(rq_of(cfs_rq))); 1043 } 1044 } 1045 1046 /* 1047 * We are picking a new current task - update its stats: 1048 */ 1049 static inline void 1050 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1051 { 1052 /* 1053 * We are starting a new run period: 1054 */ 1055 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1056 } 1057 1058 /************************************************** 1059 * Scheduling class queueing methods: 1060 */ 1061 1062 #ifdef CONFIG_NUMA_BALANCING 1063 /* 1064 * Approximate time to scan a full NUMA task in ms. The task scan period is 1065 * calculated based on the tasks virtual memory size and 1066 * numa_balancing_scan_size. 1067 */ 1068 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1069 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1070 1071 /* Portion of address space to scan in MB */ 1072 unsigned int sysctl_numa_balancing_scan_size = 256; 1073 1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1075 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1076 1077 static unsigned int task_nr_scan_windows(struct task_struct *p) 1078 { 1079 unsigned long rss = 0; 1080 unsigned long nr_scan_pages; 1081 1082 /* 1083 * Calculations based on RSS as non-present and empty pages are skipped 1084 * by the PTE scanner and NUMA hinting faults should be trapped based 1085 * on resident pages 1086 */ 1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1088 rss = get_mm_rss(p->mm); 1089 if (!rss) 1090 rss = nr_scan_pages; 1091 1092 rss = round_up(rss, nr_scan_pages); 1093 return rss / nr_scan_pages; 1094 } 1095 1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1097 #define MAX_SCAN_WINDOW 2560 1098 1099 static unsigned int task_scan_min(struct task_struct *p) 1100 { 1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1102 unsigned int scan, floor; 1103 unsigned int windows = 1; 1104 1105 if (scan_size < MAX_SCAN_WINDOW) 1106 windows = MAX_SCAN_WINDOW / scan_size; 1107 floor = 1000 / windows; 1108 1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1110 return max_t(unsigned int, floor, scan); 1111 } 1112 1113 static unsigned int task_scan_max(struct task_struct *p) 1114 { 1115 unsigned int smin = task_scan_min(p); 1116 unsigned int smax; 1117 1118 /* Watch for min being lower than max due to floor calculations */ 1119 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1120 return max(smin, smax); 1121 } 1122 1123 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1124 { 1125 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1126 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1127 } 1128 1129 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1130 { 1131 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1132 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1133 } 1134 1135 struct numa_group { 1136 atomic_t refcount; 1137 1138 spinlock_t lock; /* nr_tasks, tasks */ 1139 int nr_tasks; 1140 pid_t gid; 1141 int active_nodes; 1142 1143 struct rcu_head rcu; 1144 unsigned long total_faults; 1145 unsigned long max_faults_cpu; 1146 /* 1147 * Faults_cpu is used to decide whether memory should move 1148 * towards the CPU. As a consequence, these stats are weighted 1149 * more by CPU use than by memory faults. 1150 */ 1151 unsigned long *faults_cpu; 1152 unsigned long faults[0]; 1153 }; 1154 1155 /* Shared or private faults. */ 1156 #define NR_NUMA_HINT_FAULT_TYPES 2 1157 1158 /* Memory and CPU locality */ 1159 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1160 1161 /* Averaged statistics, and temporary buffers. */ 1162 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1163 1164 pid_t task_numa_group_id(struct task_struct *p) 1165 { 1166 return p->numa_group ? p->numa_group->gid : 0; 1167 } 1168 1169 /* 1170 * The averaged statistics, shared & private, memory & cpu, 1171 * occupy the first half of the array. The second half of the 1172 * array is for current counters, which are averaged into the 1173 * first set by task_numa_placement. 1174 */ 1175 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1176 { 1177 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1178 } 1179 1180 static inline unsigned long task_faults(struct task_struct *p, int nid) 1181 { 1182 if (!p->numa_faults) 1183 return 0; 1184 1185 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1186 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1187 } 1188 1189 static inline unsigned long group_faults(struct task_struct *p, int nid) 1190 { 1191 if (!p->numa_group) 1192 return 0; 1193 1194 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1195 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1196 } 1197 1198 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1199 { 1200 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1201 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1202 } 1203 1204 /* 1205 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1206 * considered part of a numa group's pseudo-interleaving set. Migrations 1207 * between these nodes are slowed down, to allow things to settle down. 1208 */ 1209 #define ACTIVE_NODE_FRACTION 3 1210 1211 static bool numa_is_active_node(int nid, struct numa_group *ng) 1212 { 1213 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1214 } 1215 1216 /* Handle placement on systems where not all nodes are directly connected. */ 1217 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1218 int maxdist, bool task) 1219 { 1220 unsigned long score = 0; 1221 int node; 1222 1223 /* 1224 * All nodes are directly connected, and the same distance 1225 * from each other. No need for fancy placement algorithms. 1226 */ 1227 if (sched_numa_topology_type == NUMA_DIRECT) 1228 return 0; 1229 1230 /* 1231 * This code is called for each node, introducing N^2 complexity, 1232 * which should be ok given the number of nodes rarely exceeds 8. 1233 */ 1234 for_each_online_node(node) { 1235 unsigned long faults; 1236 int dist = node_distance(nid, node); 1237 1238 /* 1239 * The furthest away nodes in the system are not interesting 1240 * for placement; nid was already counted. 1241 */ 1242 if (dist == sched_max_numa_distance || node == nid) 1243 continue; 1244 1245 /* 1246 * On systems with a backplane NUMA topology, compare groups 1247 * of nodes, and move tasks towards the group with the most 1248 * memory accesses. When comparing two nodes at distance 1249 * "hoplimit", only nodes closer by than "hoplimit" are part 1250 * of each group. Skip other nodes. 1251 */ 1252 if (sched_numa_topology_type == NUMA_BACKPLANE && 1253 dist > maxdist) 1254 continue; 1255 1256 /* Add up the faults from nearby nodes. */ 1257 if (task) 1258 faults = task_faults(p, node); 1259 else 1260 faults = group_faults(p, node); 1261 1262 /* 1263 * On systems with a glueless mesh NUMA topology, there are 1264 * no fixed "groups of nodes". Instead, nodes that are not 1265 * directly connected bounce traffic through intermediate 1266 * nodes; a numa_group can occupy any set of nodes. 1267 * The further away a node is, the less the faults count. 1268 * This seems to result in good task placement. 1269 */ 1270 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1271 faults *= (sched_max_numa_distance - dist); 1272 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1273 } 1274 1275 score += faults; 1276 } 1277 1278 return score; 1279 } 1280 1281 /* 1282 * These return the fraction of accesses done by a particular task, or 1283 * task group, on a particular numa node. The group weight is given a 1284 * larger multiplier, in order to group tasks together that are almost 1285 * evenly spread out between numa nodes. 1286 */ 1287 static inline unsigned long task_weight(struct task_struct *p, int nid, 1288 int dist) 1289 { 1290 unsigned long faults, total_faults; 1291 1292 if (!p->numa_faults) 1293 return 0; 1294 1295 total_faults = p->total_numa_faults; 1296 1297 if (!total_faults) 1298 return 0; 1299 1300 faults = task_faults(p, nid); 1301 faults += score_nearby_nodes(p, nid, dist, true); 1302 1303 return 1000 * faults / total_faults; 1304 } 1305 1306 static inline unsigned long group_weight(struct task_struct *p, int nid, 1307 int dist) 1308 { 1309 unsigned long faults, total_faults; 1310 1311 if (!p->numa_group) 1312 return 0; 1313 1314 total_faults = p->numa_group->total_faults; 1315 1316 if (!total_faults) 1317 return 0; 1318 1319 faults = group_faults(p, nid); 1320 faults += score_nearby_nodes(p, nid, dist, false); 1321 1322 return 1000 * faults / total_faults; 1323 } 1324 1325 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1326 int src_nid, int dst_cpu) 1327 { 1328 struct numa_group *ng = p->numa_group; 1329 int dst_nid = cpu_to_node(dst_cpu); 1330 int last_cpupid, this_cpupid; 1331 1332 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1333 1334 /* 1335 * Multi-stage node selection is used in conjunction with a periodic 1336 * migration fault to build a temporal task<->page relation. By using 1337 * a two-stage filter we remove short/unlikely relations. 1338 * 1339 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1340 * a task's usage of a particular page (n_p) per total usage of this 1341 * page (n_t) (in a given time-span) to a probability. 1342 * 1343 * Our periodic faults will sample this probability and getting the 1344 * same result twice in a row, given these samples are fully 1345 * independent, is then given by P(n)^2, provided our sample period 1346 * is sufficiently short compared to the usage pattern. 1347 * 1348 * This quadric squishes small probabilities, making it less likely we 1349 * act on an unlikely task<->page relation. 1350 */ 1351 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1352 if (!cpupid_pid_unset(last_cpupid) && 1353 cpupid_to_nid(last_cpupid) != dst_nid) 1354 return false; 1355 1356 /* Always allow migrate on private faults */ 1357 if (cpupid_match_pid(p, last_cpupid)) 1358 return true; 1359 1360 /* A shared fault, but p->numa_group has not been set up yet. */ 1361 if (!ng) 1362 return true; 1363 1364 /* 1365 * Destination node is much more heavily used than the source 1366 * node? Allow migration. 1367 */ 1368 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1369 ACTIVE_NODE_FRACTION) 1370 return true; 1371 1372 /* 1373 * Distribute memory according to CPU & memory use on each node, 1374 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1375 * 1376 * faults_cpu(dst) 3 faults_cpu(src) 1377 * --------------- * - > --------------- 1378 * faults_mem(dst) 4 faults_mem(src) 1379 */ 1380 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1381 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1382 } 1383 1384 static unsigned long weighted_cpuload(const int cpu); 1385 static unsigned long source_load(int cpu, int type); 1386 static unsigned long target_load(int cpu, int type); 1387 static unsigned long capacity_of(int cpu); 1388 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1389 1390 /* Cached statistics for all CPUs within a node */ 1391 struct numa_stats { 1392 unsigned long nr_running; 1393 unsigned long load; 1394 1395 /* Total compute capacity of CPUs on a node */ 1396 unsigned long compute_capacity; 1397 1398 /* Approximate capacity in terms of runnable tasks on a node */ 1399 unsigned long task_capacity; 1400 int has_free_capacity; 1401 }; 1402 1403 /* 1404 * XXX borrowed from update_sg_lb_stats 1405 */ 1406 static void update_numa_stats(struct numa_stats *ns, int nid) 1407 { 1408 int smt, cpu, cpus = 0; 1409 unsigned long capacity; 1410 1411 memset(ns, 0, sizeof(*ns)); 1412 for_each_cpu(cpu, cpumask_of_node(nid)) { 1413 struct rq *rq = cpu_rq(cpu); 1414 1415 ns->nr_running += rq->nr_running; 1416 ns->load += weighted_cpuload(cpu); 1417 ns->compute_capacity += capacity_of(cpu); 1418 1419 cpus++; 1420 } 1421 1422 /* 1423 * If we raced with hotplug and there are no CPUs left in our mask 1424 * the @ns structure is NULL'ed and task_numa_compare() will 1425 * not find this node attractive. 1426 * 1427 * We'll either bail at !has_free_capacity, or we'll detect a huge 1428 * imbalance and bail there. 1429 */ 1430 if (!cpus) 1431 return; 1432 1433 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1434 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1435 capacity = cpus / smt; /* cores */ 1436 1437 ns->task_capacity = min_t(unsigned, capacity, 1438 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1439 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1440 } 1441 1442 struct task_numa_env { 1443 struct task_struct *p; 1444 1445 int src_cpu, src_nid; 1446 int dst_cpu, dst_nid; 1447 1448 struct numa_stats src_stats, dst_stats; 1449 1450 int imbalance_pct; 1451 int dist; 1452 1453 struct task_struct *best_task; 1454 long best_imp; 1455 int best_cpu; 1456 }; 1457 1458 static void task_numa_assign(struct task_numa_env *env, 1459 struct task_struct *p, long imp) 1460 { 1461 if (env->best_task) 1462 put_task_struct(env->best_task); 1463 if (p) 1464 get_task_struct(p); 1465 1466 env->best_task = p; 1467 env->best_imp = imp; 1468 env->best_cpu = env->dst_cpu; 1469 } 1470 1471 static bool load_too_imbalanced(long src_load, long dst_load, 1472 struct task_numa_env *env) 1473 { 1474 long imb, old_imb; 1475 long orig_src_load, orig_dst_load; 1476 long src_capacity, dst_capacity; 1477 1478 /* 1479 * The load is corrected for the CPU capacity available on each node. 1480 * 1481 * src_load dst_load 1482 * ------------ vs --------- 1483 * src_capacity dst_capacity 1484 */ 1485 src_capacity = env->src_stats.compute_capacity; 1486 dst_capacity = env->dst_stats.compute_capacity; 1487 1488 /* We care about the slope of the imbalance, not the direction. */ 1489 if (dst_load < src_load) 1490 swap(dst_load, src_load); 1491 1492 /* Is the difference below the threshold? */ 1493 imb = dst_load * src_capacity * 100 - 1494 src_load * dst_capacity * env->imbalance_pct; 1495 if (imb <= 0) 1496 return false; 1497 1498 /* 1499 * The imbalance is above the allowed threshold. 1500 * Compare it with the old imbalance. 1501 */ 1502 orig_src_load = env->src_stats.load; 1503 orig_dst_load = env->dst_stats.load; 1504 1505 if (orig_dst_load < orig_src_load) 1506 swap(orig_dst_load, orig_src_load); 1507 1508 old_imb = orig_dst_load * src_capacity * 100 - 1509 orig_src_load * dst_capacity * env->imbalance_pct; 1510 1511 /* Would this change make things worse? */ 1512 return (imb > old_imb); 1513 } 1514 1515 /* 1516 * This checks if the overall compute and NUMA accesses of the system would 1517 * be improved if the source tasks was migrated to the target dst_cpu taking 1518 * into account that it might be best if task running on the dst_cpu should 1519 * be exchanged with the source task 1520 */ 1521 static void task_numa_compare(struct task_numa_env *env, 1522 long taskimp, long groupimp) 1523 { 1524 struct rq *src_rq = cpu_rq(env->src_cpu); 1525 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1526 struct task_struct *cur; 1527 long src_load, dst_load; 1528 long load; 1529 long imp = env->p->numa_group ? groupimp : taskimp; 1530 long moveimp = imp; 1531 int dist = env->dist; 1532 1533 rcu_read_lock(); 1534 cur = task_rcu_dereference(&dst_rq->curr); 1535 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1536 cur = NULL; 1537 1538 /* 1539 * Because we have preemption enabled we can get migrated around and 1540 * end try selecting ourselves (current == env->p) as a swap candidate. 1541 */ 1542 if (cur == env->p) 1543 goto unlock; 1544 1545 /* 1546 * "imp" is the fault differential for the source task between the 1547 * source and destination node. Calculate the total differential for 1548 * the source task and potential destination task. The more negative 1549 * the value is, the more rmeote accesses that would be expected to 1550 * be incurred if the tasks were swapped. 1551 */ 1552 if (cur) { 1553 /* Skip this swap candidate if cannot move to the source cpu */ 1554 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1555 goto unlock; 1556 1557 /* 1558 * If dst and source tasks are in the same NUMA group, or not 1559 * in any group then look only at task weights. 1560 */ 1561 if (cur->numa_group == env->p->numa_group) { 1562 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1563 task_weight(cur, env->dst_nid, dist); 1564 /* 1565 * Add some hysteresis to prevent swapping the 1566 * tasks within a group over tiny differences. 1567 */ 1568 if (cur->numa_group) 1569 imp -= imp/16; 1570 } else { 1571 /* 1572 * Compare the group weights. If a task is all by 1573 * itself (not part of a group), use the task weight 1574 * instead. 1575 */ 1576 if (cur->numa_group) 1577 imp += group_weight(cur, env->src_nid, dist) - 1578 group_weight(cur, env->dst_nid, dist); 1579 else 1580 imp += task_weight(cur, env->src_nid, dist) - 1581 task_weight(cur, env->dst_nid, dist); 1582 } 1583 } 1584 1585 if (imp <= env->best_imp && moveimp <= env->best_imp) 1586 goto unlock; 1587 1588 if (!cur) { 1589 /* Is there capacity at our destination? */ 1590 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1591 !env->dst_stats.has_free_capacity) 1592 goto unlock; 1593 1594 goto balance; 1595 } 1596 1597 /* Balance doesn't matter much if we're running a task per cpu */ 1598 if (imp > env->best_imp && src_rq->nr_running == 1 && 1599 dst_rq->nr_running == 1) 1600 goto assign; 1601 1602 /* 1603 * In the overloaded case, try and keep the load balanced. 1604 */ 1605 balance: 1606 load = task_h_load(env->p); 1607 dst_load = env->dst_stats.load + load; 1608 src_load = env->src_stats.load - load; 1609 1610 if (moveimp > imp && moveimp > env->best_imp) { 1611 /* 1612 * If the improvement from just moving env->p direction is 1613 * better than swapping tasks around, check if a move is 1614 * possible. Store a slightly smaller score than moveimp, 1615 * so an actually idle CPU will win. 1616 */ 1617 if (!load_too_imbalanced(src_load, dst_load, env)) { 1618 imp = moveimp - 1; 1619 cur = NULL; 1620 goto assign; 1621 } 1622 } 1623 1624 if (imp <= env->best_imp) 1625 goto unlock; 1626 1627 if (cur) { 1628 load = task_h_load(cur); 1629 dst_load -= load; 1630 src_load += load; 1631 } 1632 1633 if (load_too_imbalanced(src_load, dst_load, env)) 1634 goto unlock; 1635 1636 /* 1637 * One idle CPU per node is evaluated for a task numa move. 1638 * Call select_idle_sibling to maybe find a better one. 1639 */ 1640 if (!cur) { 1641 /* 1642 * select_idle_siblings() uses an per-cpu cpumask that 1643 * can be used from IRQ context. 1644 */ 1645 local_irq_disable(); 1646 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1647 env->dst_cpu); 1648 local_irq_enable(); 1649 } 1650 1651 assign: 1652 task_numa_assign(env, cur, imp); 1653 unlock: 1654 rcu_read_unlock(); 1655 } 1656 1657 static void task_numa_find_cpu(struct task_numa_env *env, 1658 long taskimp, long groupimp) 1659 { 1660 int cpu; 1661 1662 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1663 /* Skip this CPU if the source task cannot migrate */ 1664 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1665 continue; 1666 1667 env->dst_cpu = cpu; 1668 task_numa_compare(env, taskimp, groupimp); 1669 } 1670 } 1671 1672 /* Only move tasks to a NUMA node less busy than the current node. */ 1673 static bool numa_has_capacity(struct task_numa_env *env) 1674 { 1675 struct numa_stats *src = &env->src_stats; 1676 struct numa_stats *dst = &env->dst_stats; 1677 1678 if (src->has_free_capacity && !dst->has_free_capacity) 1679 return false; 1680 1681 /* 1682 * Only consider a task move if the source has a higher load 1683 * than the destination, corrected for CPU capacity on each node. 1684 * 1685 * src->load dst->load 1686 * --------------------- vs --------------------- 1687 * src->compute_capacity dst->compute_capacity 1688 */ 1689 if (src->load * dst->compute_capacity * env->imbalance_pct > 1690 1691 dst->load * src->compute_capacity * 100) 1692 return true; 1693 1694 return false; 1695 } 1696 1697 static int task_numa_migrate(struct task_struct *p) 1698 { 1699 struct task_numa_env env = { 1700 .p = p, 1701 1702 .src_cpu = task_cpu(p), 1703 .src_nid = task_node(p), 1704 1705 .imbalance_pct = 112, 1706 1707 .best_task = NULL, 1708 .best_imp = 0, 1709 .best_cpu = -1, 1710 }; 1711 struct sched_domain *sd; 1712 unsigned long taskweight, groupweight; 1713 int nid, ret, dist; 1714 long taskimp, groupimp; 1715 1716 /* 1717 * Pick the lowest SD_NUMA domain, as that would have the smallest 1718 * imbalance and would be the first to start moving tasks about. 1719 * 1720 * And we want to avoid any moving of tasks about, as that would create 1721 * random movement of tasks -- counter the numa conditions we're trying 1722 * to satisfy here. 1723 */ 1724 rcu_read_lock(); 1725 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1726 if (sd) 1727 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1728 rcu_read_unlock(); 1729 1730 /* 1731 * Cpusets can break the scheduler domain tree into smaller 1732 * balance domains, some of which do not cross NUMA boundaries. 1733 * Tasks that are "trapped" in such domains cannot be migrated 1734 * elsewhere, so there is no point in (re)trying. 1735 */ 1736 if (unlikely(!sd)) { 1737 p->numa_preferred_nid = task_node(p); 1738 return -EINVAL; 1739 } 1740 1741 env.dst_nid = p->numa_preferred_nid; 1742 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1743 taskweight = task_weight(p, env.src_nid, dist); 1744 groupweight = group_weight(p, env.src_nid, dist); 1745 update_numa_stats(&env.src_stats, env.src_nid); 1746 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1747 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1748 update_numa_stats(&env.dst_stats, env.dst_nid); 1749 1750 /* Try to find a spot on the preferred nid. */ 1751 if (numa_has_capacity(&env)) 1752 task_numa_find_cpu(&env, taskimp, groupimp); 1753 1754 /* 1755 * Look at other nodes in these cases: 1756 * - there is no space available on the preferred_nid 1757 * - the task is part of a numa_group that is interleaved across 1758 * multiple NUMA nodes; in order to better consolidate the group, 1759 * we need to check other locations. 1760 */ 1761 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1762 for_each_online_node(nid) { 1763 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1764 continue; 1765 1766 dist = node_distance(env.src_nid, env.dst_nid); 1767 if (sched_numa_topology_type == NUMA_BACKPLANE && 1768 dist != env.dist) { 1769 taskweight = task_weight(p, env.src_nid, dist); 1770 groupweight = group_weight(p, env.src_nid, dist); 1771 } 1772 1773 /* Only consider nodes where both task and groups benefit */ 1774 taskimp = task_weight(p, nid, dist) - taskweight; 1775 groupimp = group_weight(p, nid, dist) - groupweight; 1776 if (taskimp < 0 && groupimp < 0) 1777 continue; 1778 1779 env.dist = dist; 1780 env.dst_nid = nid; 1781 update_numa_stats(&env.dst_stats, env.dst_nid); 1782 if (numa_has_capacity(&env)) 1783 task_numa_find_cpu(&env, taskimp, groupimp); 1784 } 1785 } 1786 1787 /* 1788 * If the task is part of a workload that spans multiple NUMA nodes, 1789 * and is migrating into one of the workload's active nodes, remember 1790 * this node as the task's preferred numa node, so the workload can 1791 * settle down. 1792 * A task that migrated to a second choice node will be better off 1793 * trying for a better one later. Do not set the preferred node here. 1794 */ 1795 if (p->numa_group) { 1796 struct numa_group *ng = p->numa_group; 1797 1798 if (env.best_cpu == -1) 1799 nid = env.src_nid; 1800 else 1801 nid = env.dst_nid; 1802 1803 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1804 sched_setnuma(p, env.dst_nid); 1805 } 1806 1807 /* No better CPU than the current one was found. */ 1808 if (env.best_cpu == -1) 1809 return -EAGAIN; 1810 1811 /* 1812 * Reset the scan period if the task is being rescheduled on an 1813 * alternative node to recheck if the tasks is now properly placed. 1814 */ 1815 p->numa_scan_period = task_scan_min(p); 1816 1817 if (env.best_task == NULL) { 1818 ret = migrate_task_to(p, env.best_cpu); 1819 if (ret != 0) 1820 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1821 return ret; 1822 } 1823 1824 ret = migrate_swap(p, env.best_task); 1825 if (ret != 0) 1826 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1827 put_task_struct(env.best_task); 1828 return ret; 1829 } 1830 1831 /* Attempt to migrate a task to a CPU on the preferred node. */ 1832 static void numa_migrate_preferred(struct task_struct *p) 1833 { 1834 unsigned long interval = HZ; 1835 1836 /* This task has no NUMA fault statistics yet */ 1837 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1838 return; 1839 1840 /* Periodically retry migrating the task to the preferred node */ 1841 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1842 p->numa_migrate_retry = jiffies + interval; 1843 1844 /* Success if task is already running on preferred CPU */ 1845 if (task_node(p) == p->numa_preferred_nid) 1846 return; 1847 1848 /* Otherwise, try migrate to a CPU on the preferred node */ 1849 task_numa_migrate(p); 1850 } 1851 1852 /* 1853 * Find out how many nodes on the workload is actively running on. Do this by 1854 * tracking the nodes from which NUMA hinting faults are triggered. This can 1855 * be different from the set of nodes where the workload's memory is currently 1856 * located. 1857 */ 1858 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1859 { 1860 unsigned long faults, max_faults = 0; 1861 int nid, active_nodes = 0; 1862 1863 for_each_online_node(nid) { 1864 faults = group_faults_cpu(numa_group, nid); 1865 if (faults > max_faults) 1866 max_faults = faults; 1867 } 1868 1869 for_each_online_node(nid) { 1870 faults = group_faults_cpu(numa_group, nid); 1871 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1872 active_nodes++; 1873 } 1874 1875 numa_group->max_faults_cpu = max_faults; 1876 numa_group->active_nodes = active_nodes; 1877 } 1878 1879 /* 1880 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1881 * increments. The more local the fault statistics are, the higher the scan 1882 * period will be for the next scan window. If local/(local+remote) ratio is 1883 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1884 * the scan period will decrease. Aim for 70% local accesses. 1885 */ 1886 #define NUMA_PERIOD_SLOTS 10 1887 #define NUMA_PERIOD_THRESHOLD 7 1888 1889 /* 1890 * Increase the scan period (slow down scanning) if the majority of 1891 * our memory is already on our local node, or if the majority of 1892 * the page accesses are shared with other processes. 1893 * Otherwise, decrease the scan period. 1894 */ 1895 static void update_task_scan_period(struct task_struct *p, 1896 unsigned long shared, unsigned long private) 1897 { 1898 unsigned int period_slot; 1899 int ratio; 1900 int diff; 1901 1902 unsigned long remote = p->numa_faults_locality[0]; 1903 unsigned long local = p->numa_faults_locality[1]; 1904 1905 /* 1906 * If there were no record hinting faults then either the task is 1907 * completely idle or all activity is areas that are not of interest 1908 * to automatic numa balancing. Related to that, if there were failed 1909 * migration then it implies we are migrating too quickly or the local 1910 * node is overloaded. In either case, scan slower 1911 */ 1912 if (local + shared == 0 || p->numa_faults_locality[2]) { 1913 p->numa_scan_period = min(p->numa_scan_period_max, 1914 p->numa_scan_period << 1); 1915 1916 p->mm->numa_next_scan = jiffies + 1917 msecs_to_jiffies(p->numa_scan_period); 1918 1919 return; 1920 } 1921 1922 /* 1923 * Prepare to scale scan period relative to the current period. 1924 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1925 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1926 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1927 */ 1928 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1929 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1930 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1931 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1932 if (!slot) 1933 slot = 1; 1934 diff = slot * period_slot; 1935 } else { 1936 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1937 1938 /* 1939 * Scale scan rate increases based on sharing. There is an 1940 * inverse relationship between the degree of sharing and 1941 * the adjustment made to the scanning period. Broadly 1942 * speaking the intent is that there is little point 1943 * scanning faster if shared accesses dominate as it may 1944 * simply bounce migrations uselessly 1945 */ 1946 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1947 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1948 } 1949 1950 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1951 task_scan_min(p), task_scan_max(p)); 1952 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1953 } 1954 1955 /* 1956 * Get the fraction of time the task has been running since the last 1957 * NUMA placement cycle. The scheduler keeps similar statistics, but 1958 * decays those on a 32ms period, which is orders of magnitude off 1959 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1960 * stats only if the task is so new there are no NUMA statistics yet. 1961 */ 1962 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1963 { 1964 u64 runtime, delta, now; 1965 /* Use the start of this time slice to avoid calculations. */ 1966 now = p->se.exec_start; 1967 runtime = p->se.sum_exec_runtime; 1968 1969 if (p->last_task_numa_placement) { 1970 delta = runtime - p->last_sum_exec_runtime; 1971 *period = now - p->last_task_numa_placement; 1972 } else { 1973 delta = p->se.avg.load_sum / p->se.load.weight; 1974 *period = LOAD_AVG_MAX; 1975 } 1976 1977 p->last_sum_exec_runtime = runtime; 1978 p->last_task_numa_placement = now; 1979 1980 return delta; 1981 } 1982 1983 /* 1984 * Determine the preferred nid for a task in a numa_group. This needs to 1985 * be done in a way that produces consistent results with group_weight, 1986 * otherwise workloads might not converge. 1987 */ 1988 static int preferred_group_nid(struct task_struct *p, int nid) 1989 { 1990 nodemask_t nodes; 1991 int dist; 1992 1993 /* Direct connections between all NUMA nodes. */ 1994 if (sched_numa_topology_type == NUMA_DIRECT) 1995 return nid; 1996 1997 /* 1998 * On a system with glueless mesh NUMA topology, group_weight 1999 * scores nodes according to the number of NUMA hinting faults on 2000 * both the node itself, and on nearby nodes. 2001 */ 2002 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2003 unsigned long score, max_score = 0; 2004 int node, max_node = nid; 2005 2006 dist = sched_max_numa_distance; 2007 2008 for_each_online_node(node) { 2009 score = group_weight(p, node, dist); 2010 if (score > max_score) { 2011 max_score = score; 2012 max_node = node; 2013 } 2014 } 2015 return max_node; 2016 } 2017 2018 /* 2019 * Finding the preferred nid in a system with NUMA backplane 2020 * interconnect topology is more involved. The goal is to locate 2021 * tasks from numa_groups near each other in the system, and 2022 * untangle workloads from different sides of the system. This requires 2023 * searching down the hierarchy of node groups, recursively searching 2024 * inside the highest scoring group of nodes. The nodemask tricks 2025 * keep the complexity of the search down. 2026 */ 2027 nodes = node_online_map; 2028 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2029 unsigned long max_faults = 0; 2030 nodemask_t max_group = NODE_MASK_NONE; 2031 int a, b; 2032 2033 /* Are there nodes at this distance from each other? */ 2034 if (!find_numa_distance(dist)) 2035 continue; 2036 2037 for_each_node_mask(a, nodes) { 2038 unsigned long faults = 0; 2039 nodemask_t this_group; 2040 nodes_clear(this_group); 2041 2042 /* Sum group's NUMA faults; includes a==b case. */ 2043 for_each_node_mask(b, nodes) { 2044 if (node_distance(a, b) < dist) { 2045 faults += group_faults(p, b); 2046 node_set(b, this_group); 2047 node_clear(b, nodes); 2048 } 2049 } 2050 2051 /* Remember the top group. */ 2052 if (faults > max_faults) { 2053 max_faults = faults; 2054 max_group = this_group; 2055 /* 2056 * subtle: at the smallest distance there is 2057 * just one node left in each "group", the 2058 * winner is the preferred nid. 2059 */ 2060 nid = a; 2061 } 2062 } 2063 /* Next round, evaluate the nodes within max_group. */ 2064 if (!max_faults) 2065 break; 2066 nodes = max_group; 2067 } 2068 return nid; 2069 } 2070 2071 static void task_numa_placement(struct task_struct *p) 2072 { 2073 int seq, nid, max_nid = -1, max_group_nid = -1; 2074 unsigned long max_faults = 0, max_group_faults = 0; 2075 unsigned long fault_types[2] = { 0, 0 }; 2076 unsigned long total_faults; 2077 u64 runtime, period; 2078 spinlock_t *group_lock = NULL; 2079 2080 /* 2081 * The p->mm->numa_scan_seq field gets updated without 2082 * exclusive access. Use READ_ONCE() here to ensure 2083 * that the field is read in a single access: 2084 */ 2085 seq = READ_ONCE(p->mm->numa_scan_seq); 2086 if (p->numa_scan_seq == seq) 2087 return; 2088 p->numa_scan_seq = seq; 2089 p->numa_scan_period_max = task_scan_max(p); 2090 2091 total_faults = p->numa_faults_locality[0] + 2092 p->numa_faults_locality[1]; 2093 runtime = numa_get_avg_runtime(p, &period); 2094 2095 /* If the task is part of a group prevent parallel updates to group stats */ 2096 if (p->numa_group) { 2097 group_lock = &p->numa_group->lock; 2098 spin_lock_irq(group_lock); 2099 } 2100 2101 /* Find the node with the highest number of faults */ 2102 for_each_online_node(nid) { 2103 /* Keep track of the offsets in numa_faults array */ 2104 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2105 unsigned long faults = 0, group_faults = 0; 2106 int priv; 2107 2108 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2109 long diff, f_diff, f_weight; 2110 2111 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2112 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2113 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2114 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2115 2116 /* Decay existing window, copy faults since last scan */ 2117 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2118 fault_types[priv] += p->numa_faults[membuf_idx]; 2119 p->numa_faults[membuf_idx] = 0; 2120 2121 /* 2122 * Normalize the faults_from, so all tasks in a group 2123 * count according to CPU use, instead of by the raw 2124 * number of faults. Tasks with little runtime have 2125 * little over-all impact on throughput, and thus their 2126 * faults are less important. 2127 */ 2128 f_weight = div64_u64(runtime << 16, period + 1); 2129 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2130 (total_faults + 1); 2131 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2132 p->numa_faults[cpubuf_idx] = 0; 2133 2134 p->numa_faults[mem_idx] += diff; 2135 p->numa_faults[cpu_idx] += f_diff; 2136 faults += p->numa_faults[mem_idx]; 2137 p->total_numa_faults += diff; 2138 if (p->numa_group) { 2139 /* 2140 * safe because we can only change our own group 2141 * 2142 * mem_idx represents the offset for a given 2143 * nid and priv in a specific region because it 2144 * is at the beginning of the numa_faults array. 2145 */ 2146 p->numa_group->faults[mem_idx] += diff; 2147 p->numa_group->faults_cpu[mem_idx] += f_diff; 2148 p->numa_group->total_faults += diff; 2149 group_faults += p->numa_group->faults[mem_idx]; 2150 } 2151 } 2152 2153 if (faults > max_faults) { 2154 max_faults = faults; 2155 max_nid = nid; 2156 } 2157 2158 if (group_faults > max_group_faults) { 2159 max_group_faults = group_faults; 2160 max_group_nid = nid; 2161 } 2162 } 2163 2164 update_task_scan_period(p, fault_types[0], fault_types[1]); 2165 2166 if (p->numa_group) { 2167 numa_group_count_active_nodes(p->numa_group); 2168 spin_unlock_irq(group_lock); 2169 max_nid = preferred_group_nid(p, max_group_nid); 2170 } 2171 2172 if (max_faults) { 2173 /* Set the new preferred node */ 2174 if (max_nid != p->numa_preferred_nid) 2175 sched_setnuma(p, max_nid); 2176 2177 if (task_node(p) != p->numa_preferred_nid) 2178 numa_migrate_preferred(p); 2179 } 2180 } 2181 2182 static inline int get_numa_group(struct numa_group *grp) 2183 { 2184 return atomic_inc_not_zero(&grp->refcount); 2185 } 2186 2187 static inline void put_numa_group(struct numa_group *grp) 2188 { 2189 if (atomic_dec_and_test(&grp->refcount)) 2190 kfree_rcu(grp, rcu); 2191 } 2192 2193 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2194 int *priv) 2195 { 2196 struct numa_group *grp, *my_grp; 2197 struct task_struct *tsk; 2198 bool join = false; 2199 int cpu = cpupid_to_cpu(cpupid); 2200 int i; 2201 2202 if (unlikely(!p->numa_group)) { 2203 unsigned int size = sizeof(struct numa_group) + 2204 4*nr_node_ids*sizeof(unsigned long); 2205 2206 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2207 if (!grp) 2208 return; 2209 2210 atomic_set(&grp->refcount, 1); 2211 grp->active_nodes = 1; 2212 grp->max_faults_cpu = 0; 2213 spin_lock_init(&grp->lock); 2214 grp->gid = p->pid; 2215 /* Second half of the array tracks nids where faults happen */ 2216 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2217 nr_node_ids; 2218 2219 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2220 grp->faults[i] = p->numa_faults[i]; 2221 2222 grp->total_faults = p->total_numa_faults; 2223 2224 grp->nr_tasks++; 2225 rcu_assign_pointer(p->numa_group, grp); 2226 } 2227 2228 rcu_read_lock(); 2229 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2230 2231 if (!cpupid_match_pid(tsk, cpupid)) 2232 goto no_join; 2233 2234 grp = rcu_dereference(tsk->numa_group); 2235 if (!grp) 2236 goto no_join; 2237 2238 my_grp = p->numa_group; 2239 if (grp == my_grp) 2240 goto no_join; 2241 2242 /* 2243 * Only join the other group if its bigger; if we're the bigger group, 2244 * the other task will join us. 2245 */ 2246 if (my_grp->nr_tasks > grp->nr_tasks) 2247 goto no_join; 2248 2249 /* 2250 * Tie-break on the grp address. 2251 */ 2252 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2253 goto no_join; 2254 2255 /* Always join threads in the same process. */ 2256 if (tsk->mm == current->mm) 2257 join = true; 2258 2259 /* Simple filter to avoid false positives due to PID collisions */ 2260 if (flags & TNF_SHARED) 2261 join = true; 2262 2263 /* Update priv based on whether false sharing was detected */ 2264 *priv = !join; 2265 2266 if (join && !get_numa_group(grp)) 2267 goto no_join; 2268 2269 rcu_read_unlock(); 2270 2271 if (!join) 2272 return; 2273 2274 BUG_ON(irqs_disabled()); 2275 double_lock_irq(&my_grp->lock, &grp->lock); 2276 2277 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2278 my_grp->faults[i] -= p->numa_faults[i]; 2279 grp->faults[i] += p->numa_faults[i]; 2280 } 2281 my_grp->total_faults -= p->total_numa_faults; 2282 grp->total_faults += p->total_numa_faults; 2283 2284 my_grp->nr_tasks--; 2285 grp->nr_tasks++; 2286 2287 spin_unlock(&my_grp->lock); 2288 spin_unlock_irq(&grp->lock); 2289 2290 rcu_assign_pointer(p->numa_group, grp); 2291 2292 put_numa_group(my_grp); 2293 return; 2294 2295 no_join: 2296 rcu_read_unlock(); 2297 return; 2298 } 2299 2300 void task_numa_free(struct task_struct *p) 2301 { 2302 struct numa_group *grp = p->numa_group; 2303 void *numa_faults = p->numa_faults; 2304 unsigned long flags; 2305 int i; 2306 2307 if (grp) { 2308 spin_lock_irqsave(&grp->lock, flags); 2309 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2310 grp->faults[i] -= p->numa_faults[i]; 2311 grp->total_faults -= p->total_numa_faults; 2312 2313 grp->nr_tasks--; 2314 spin_unlock_irqrestore(&grp->lock, flags); 2315 RCU_INIT_POINTER(p->numa_group, NULL); 2316 put_numa_group(grp); 2317 } 2318 2319 p->numa_faults = NULL; 2320 kfree(numa_faults); 2321 } 2322 2323 /* 2324 * Got a PROT_NONE fault for a page on @node. 2325 */ 2326 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2327 { 2328 struct task_struct *p = current; 2329 bool migrated = flags & TNF_MIGRATED; 2330 int cpu_node = task_node(current); 2331 int local = !!(flags & TNF_FAULT_LOCAL); 2332 struct numa_group *ng; 2333 int priv; 2334 2335 if (!static_branch_likely(&sched_numa_balancing)) 2336 return; 2337 2338 /* for example, ksmd faulting in a user's mm */ 2339 if (!p->mm) 2340 return; 2341 2342 /* Allocate buffer to track faults on a per-node basis */ 2343 if (unlikely(!p->numa_faults)) { 2344 int size = sizeof(*p->numa_faults) * 2345 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2346 2347 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2348 if (!p->numa_faults) 2349 return; 2350 2351 p->total_numa_faults = 0; 2352 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2353 } 2354 2355 /* 2356 * First accesses are treated as private, otherwise consider accesses 2357 * to be private if the accessing pid has not changed 2358 */ 2359 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2360 priv = 1; 2361 } else { 2362 priv = cpupid_match_pid(p, last_cpupid); 2363 if (!priv && !(flags & TNF_NO_GROUP)) 2364 task_numa_group(p, last_cpupid, flags, &priv); 2365 } 2366 2367 /* 2368 * If a workload spans multiple NUMA nodes, a shared fault that 2369 * occurs wholly within the set of nodes that the workload is 2370 * actively using should be counted as local. This allows the 2371 * scan rate to slow down when a workload has settled down. 2372 */ 2373 ng = p->numa_group; 2374 if (!priv && !local && ng && ng->active_nodes > 1 && 2375 numa_is_active_node(cpu_node, ng) && 2376 numa_is_active_node(mem_node, ng)) 2377 local = 1; 2378 2379 task_numa_placement(p); 2380 2381 /* 2382 * Retry task to preferred node migration periodically, in case it 2383 * case it previously failed, or the scheduler moved us. 2384 */ 2385 if (time_after(jiffies, p->numa_migrate_retry)) 2386 numa_migrate_preferred(p); 2387 2388 if (migrated) 2389 p->numa_pages_migrated += pages; 2390 if (flags & TNF_MIGRATE_FAIL) 2391 p->numa_faults_locality[2] += pages; 2392 2393 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2394 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2395 p->numa_faults_locality[local] += pages; 2396 } 2397 2398 static void reset_ptenuma_scan(struct task_struct *p) 2399 { 2400 /* 2401 * We only did a read acquisition of the mmap sem, so 2402 * p->mm->numa_scan_seq is written to without exclusive access 2403 * and the update is not guaranteed to be atomic. That's not 2404 * much of an issue though, since this is just used for 2405 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2406 * expensive, to avoid any form of compiler optimizations: 2407 */ 2408 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2409 p->mm->numa_scan_offset = 0; 2410 } 2411 2412 /* 2413 * The expensive part of numa migration is done from task_work context. 2414 * Triggered from task_tick_numa(). 2415 */ 2416 void task_numa_work(struct callback_head *work) 2417 { 2418 unsigned long migrate, next_scan, now = jiffies; 2419 struct task_struct *p = current; 2420 struct mm_struct *mm = p->mm; 2421 u64 runtime = p->se.sum_exec_runtime; 2422 struct vm_area_struct *vma; 2423 unsigned long start, end; 2424 unsigned long nr_pte_updates = 0; 2425 long pages, virtpages; 2426 2427 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2428 2429 work->next = work; /* protect against double add */ 2430 /* 2431 * Who cares about NUMA placement when they're dying. 2432 * 2433 * NOTE: make sure not to dereference p->mm before this check, 2434 * exit_task_work() happens _after_ exit_mm() so we could be called 2435 * without p->mm even though we still had it when we enqueued this 2436 * work. 2437 */ 2438 if (p->flags & PF_EXITING) 2439 return; 2440 2441 if (!mm->numa_next_scan) { 2442 mm->numa_next_scan = now + 2443 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2444 } 2445 2446 /* 2447 * Enforce maximal scan/migration frequency.. 2448 */ 2449 migrate = mm->numa_next_scan; 2450 if (time_before(now, migrate)) 2451 return; 2452 2453 if (p->numa_scan_period == 0) { 2454 p->numa_scan_period_max = task_scan_max(p); 2455 p->numa_scan_period = task_scan_min(p); 2456 } 2457 2458 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2459 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2460 return; 2461 2462 /* 2463 * Delay this task enough that another task of this mm will likely win 2464 * the next time around. 2465 */ 2466 p->node_stamp += 2 * TICK_NSEC; 2467 2468 start = mm->numa_scan_offset; 2469 pages = sysctl_numa_balancing_scan_size; 2470 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2471 virtpages = pages * 8; /* Scan up to this much virtual space */ 2472 if (!pages) 2473 return; 2474 2475 2476 down_read(&mm->mmap_sem); 2477 vma = find_vma(mm, start); 2478 if (!vma) { 2479 reset_ptenuma_scan(p); 2480 start = 0; 2481 vma = mm->mmap; 2482 } 2483 for (; vma; vma = vma->vm_next) { 2484 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2485 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2486 continue; 2487 } 2488 2489 /* 2490 * Shared library pages mapped by multiple processes are not 2491 * migrated as it is expected they are cache replicated. Avoid 2492 * hinting faults in read-only file-backed mappings or the vdso 2493 * as migrating the pages will be of marginal benefit. 2494 */ 2495 if (!vma->vm_mm || 2496 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2497 continue; 2498 2499 /* 2500 * Skip inaccessible VMAs to avoid any confusion between 2501 * PROT_NONE and NUMA hinting ptes 2502 */ 2503 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2504 continue; 2505 2506 do { 2507 start = max(start, vma->vm_start); 2508 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2509 end = min(end, vma->vm_end); 2510 nr_pte_updates = change_prot_numa(vma, start, end); 2511 2512 /* 2513 * Try to scan sysctl_numa_balancing_size worth of 2514 * hpages that have at least one present PTE that 2515 * is not already pte-numa. If the VMA contains 2516 * areas that are unused or already full of prot_numa 2517 * PTEs, scan up to virtpages, to skip through those 2518 * areas faster. 2519 */ 2520 if (nr_pte_updates) 2521 pages -= (end - start) >> PAGE_SHIFT; 2522 virtpages -= (end - start) >> PAGE_SHIFT; 2523 2524 start = end; 2525 if (pages <= 0 || virtpages <= 0) 2526 goto out; 2527 2528 cond_resched(); 2529 } while (end != vma->vm_end); 2530 } 2531 2532 out: 2533 /* 2534 * It is possible to reach the end of the VMA list but the last few 2535 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2536 * would find the !migratable VMA on the next scan but not reset the 2537 * scanner to the start so check it now. 2538 */ 2539 if (vma) 2540 mm->numa_scan_offset = start; 2541 else 2542 reset_ptenuma_scan(p); 2543 up_read(&mm->mmap_sem); 2544 2545 /* 2546 * Make sure tasks use at least 32x as much time to run other code 2547 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2548 * Usually update_task_scan_period slows down scanning enough; on an 2549 * overloaded system we need to limit overhead on a per task basis. 2550 */ 2551 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2552 u64 diff = p->se.sum_exec_runtime - runtime; 2553 p->node_stamp += 32 * diff; 2554 } 2555 } 2556 2557 /* 2558 * Drive the periodic memory faults.. 2559 */ 2560 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2561 { 2562 struct callback_head *work = &curr->numa_work; 2563 u64 period, now; 2564 2565 /* 2566 * We don't care about NUMA placement if we don't have memory. 2567 */ 2568 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2569 return; 2570 2571 /* 2572 * Using runtime rather than walltime has the dual advantage that 2573 * we (mostly) drive the selection from busy threads and that the 2574 * task needs to have done some actual work before we bother with 2575 * NUMA placement. 2576 */ 2577 now = curr->se.sum_exec_runtime; 2578 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2579 2580 if (now > curr->node_stamp + period) { 2581 if (!curr->node_stamp) 2582 curr->numa_scan_period = task_scan_min(curr); 2583 curr->node_stamp += period; 2584 2585 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2586 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2587 task_work_add(curr, work, true); 2588 } 2589 } 2590 } 2591 #else 2592 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2593 { 2594 } 2595 2596 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2597 { 2598 } 2599 2600 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2601 { 2602 } 2603 #endif /* CONFIG_NUMA_BALANCING */ 2604 2605 static void 2606 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2607 { 2608 update_load_add(&cfs_rq->load, se->load.weight); 2609 if (!parent_entity(se)) 2610 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2611 #ifdef CONFIG_SMP 2612 if (entity_is_task(se)) { 2613 struct rq *rq = rq_of(cfs_rq); 2614 2615 account_numa_enqueue(rq, task_of(se)); 2616 list_add(&se->group_node, &rq->cfs_tasks); 2617 } 2618 #endif 2619 cfs_rq->nr_running++; 2620 } 2621 2622 static void 2623 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2624 { 2625 update_load_sub(&cfs_rq->load, se->load.weight); 2626 if (!parent_entity(se)) 2627 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2628 #ifdef CONFIG_SMP 2629 if (entity_is_task(se)) { 2630 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2631 list_del_init(&se->group_node); 2632 } 2633 #endif 2634 cfs_rq->nr_running--; 2635 } 2636 2637 #ifdef CONFIG_FAIR_GROUP_SCHED 2638 # ifdef CONFIG_SMP 2639 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2640 { 2641 long tg_weight, load, shares; 2642 2643 /* 2644 * This really should be: cfs_rq->avg.load_avg, but instead we use 2645 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2646 * the shares for small weight interactive tasks. 2647 */ 2648 load = scale_load_down(cfs_rq->load.weight); 2649 2650 tg_weight = atomic_long_read(&tg->load_avg); 2651 2652 /* Ensure tg_weight >= load */ 2653 tg_weight -= cfs_rq->tg_load_avg_contrib; 2654 tg_weight += load; 2655 2656 shares = (tg->shares * load); 2657 if (tg_weight) 2658 shares /= tg_weight; 2659 2660 /* 2661 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2662 * of a group with small tg->shares value. It is a floor value which is 2663 * assigned as a minimum load.weight to the sched_entity representing 2664 * the group on a CPU. 2665 * 2666 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2667 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2668 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2669 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2670 * instead of 0. 2671 */ 2672 if (shares < MIN_SHARES) 2673 shares = MIN_SHARES; 2674 if (shares > tg->shares) 2675 shares = tg->shares; 2676 2677 return shares; 2678 } 2679 # else /* CONFIG_SMP */ 2680 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2681 { 2682 return tg->shares; 2683 } 2684 # endif /* CONFIG_SMP */ 2685 2686 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2687 unsigned long weight) 2688 { 2689 if (se->on_rq) { 2690 /* commit outstanding execution time */ 2691 if (cfs_rq->curr == se) 2692 update_curr(cfs_rq); 2693 account_entity_dequeue(cfs_rq, se); 2694 } 2695 2696 update_load_set(&se->load, weight); 2697 2698 if (se->on_rq) 2699 account_entity_enqueue(cfs_rq, se); 2700 } 2701 2702 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2703 2704 static void update_cfs_shares(struct sched_entity *se) 2705 { 2706 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2707 struct task_group *tg; 2708 long shares; 2709 2710 if (!cfs_rq) 2711 return; 2712 2713 if (throttled_hierarchy(cfs_rq)) 2714 return; 2715 2716 tg = cfs_rq->tg; 2717 2718 #ifndef CONFIG_SMP 2719 if (likely(se->load.weight == tg->shares)) 2720 return; 2721 #endif 2722 shares = calc_cfs_shares(cfs_rq, tg); 2723 2724 reweight_entity(cfs_rq_of(se), se, shares); 2725 } 2726 2727 #else /* CONFIG_FAIR_GROUP_SCHED */ 2728 static inline void update_cfs_shares(struct sched_entity *se) 2729 { 2730 } 2731 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2732 2733 #ifdef CONFIG_SMP 2734 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2735 static const u32 runnable_avg_yN_inv[] = { 2736 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2737 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2738 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2739 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2740 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2741 0x85aac367, 0x82cd8698, 2742 }; 2743 2744 /* 2745 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2746 * over-estimates when re-combining. 2747 */ 2748 static const u32 runnable_avg_yN_sum[] = { 2749 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2750 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2751 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2752 }; 2753 2754 /* 2755 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to 2756 * lower integers. See Documentation/scheduler/sched-avg.txt how these 2757 * were generated: 2758 */ 2759 static const u32 __accumulated_sum_N32[] = { 2760 0, 23371, 35056, 40899, 43820, 45281, 2761 46011, 46376, 46559, 46650, 46696, 46719, 2762 }; 2763 2764 /* 2765 * Approximate: 2766 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2767 */ 2768 static __always_inline u64 decay_load(u64 val, u64 n) 2769 { 2770 unsigned int local_n; 2771 2772 if (!n) 2773 return val; 2774 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2775 return 0; 2776 2777 /* after bounds checking we can collapse to 32-bit */ 2778 local_n = n; 2779 2780 /* 2781 * As y^PERIOD = 1/2, we can combine 2782 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2783 * With a look-up table which covers y^n (n<PERIOD) 2784 * 2785 * To achieve constant time decay_load. 2786 */ 2787 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2788 val >>= local_n / LOAD_AVG_PERIOD; 2789 local_n %= LOAD_AVG_PERIOD; 2790 } 2791 2792 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2793 return val; 2794 } 2795 2796 /* 2797 * For updates fully spanning n periods, the contribution to runnable 2798 * average will be: \Sum 1024*y^n 2799 * 2800 * We can compute this reasonably efficiently by combining: 2801 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2802 */ 2803 static u32 __compute_runnable_contrib(u64 n) 2804 { 2805 u32 contrib = 0; 2806 2807 if (likely(n <= LOAD_AVG_PERIOD)) 2808 return runnable_avg_yN_sum[n]; 2809 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2810 return LOAD_AVG_MAX; 2811 2812 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ 2813 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; 2814 n %= LOAD_AVG_PERIOD; 2815 contrib = decay_load(contrib, n); 2816 return contrib + runnable_avg_yN_sum[n]; 2817 } 2818 2819 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2820 2821 /* 2822 * We can represent the historical contribution to runnable average as the 2823 * coefficients of a geometric series. To do this we sub-divide our runnable 2824 * history into segments of approximately 1ms (1024us); label the segment that 2825 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2826 * 2827 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2828 * p0 p1 p2 2829 * (now) (~1ms ago) (~2ms ago) 2830 * 2831 * Let u_i denote the fraction of p_i that the entity was runnable. 2832 * 2833 * We then designate the fractions u_i as our co-efficients, yielding the 2834 * following representation of historical load: 2835 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2836 * 2837 * We choose y based on the with of a reasonably scheduling period, fixing: 2838 * y^32 = 0.5 2839 * 2840 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2841 * approximately half as much as the contribution to load within the last ms 2842 * (u_0). 2843 * 2844 * When a period "rolls over" and we have new u_0`, multiplying the previous 2845 * sum again by y is sufficient to update: 2846 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2847 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2848 */ 2849 static __always_inline int 2850 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2851 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2852 { 2853 u64 delta, scaled_delta, periods; 2854 u32 contrib; 2855 unsigned int delta_w, scaled_delta_w, decayed = 0; 2856 unsigned long scale_freq, scale_cpu; 2857 2858 delta = now - sa->last_update_time; 2859 /* 2860 * This should only happen when time goes backwards, which it 2861 * unfortunately does during sched clock init when we swap over to TSC. 2862 */ 2863 if ((s64)delta < 0) { 2864 sa->last_update_time = now; 2865 return 0; 2866 } 2867 2868 /* 2869 * Use 1024ns as the unit of measurement since it's a reasonable 2870 * approximation of 1us and fast to compute. 2871 */ 2872 delta >>= 10; 2873 if (!delta) 2874 return 0; 2875 sa->last_update_time = now; 2876 2877 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2878 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2879 2880 /* delta_w is the amount already accumulated against our next period */ 2881 delta_w = sa->period_contrib; 2882 if (delta + delta_w >= 1024) { 2883 decayed = 1; 2884 2885 /* how much left for next period will start over, we don't know yet */ 2886 sa->period_contrib = 0; 2887 2888 /* 2889 * Now that we know we're crossing a period boundary, figure 2890 * out how much from delta we need to complete the current 2891 * period and accrue it. 2892 */ 2893 delta_w = 1024 - delta_w; 2894 scaled_delta_w = cap_scale(delta_w, scale_freq); 2895 if (weight) { 2896 sa->load_sum += weight * scaled_delta_w; 2897 if (cfs_rq) { 2898 cfs_rq->runnable_load_sum += 2899 weight * scaled_delta_w; 2900 } 2901 } 2902 if (running) 2903 sa->util_sum += scaled_delta_w * scale_cpu; 2904 2905 delta -= delta_w; 2906 2907 /* Figure out how many additional periods this update spans */ 2908 periods = delta / 1024; 2909 delta %= 1024; 2910 2911 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2912 if (cfs_rq) { 2913 cfs_rq->runnable_load_sum = 2914 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2915 } 2916 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2917 2918 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2919 contrib = __compute_runnable_contrib(periods); 2920 contrib = cap_scale(contrib, scale_freq); 2921 if (weight) { 2922 sa->load_sum += weight * contrib; 2923 if (cfs_rq) 2924 cfs_rq->runnable_load_sum += weight * contrib; 2925 } 2926 if (running) 2927 sa->util_sum += contrib * scale_cpu; 2928 } 2929 2930 /* Remainder of delta accrued against u_0` */ 2931 scaled_delta = cap_scale(delta, scale_freq); 2932 if (weight) { 2933 sa->load_sum += weight * scaled_delta; 2934 if (cfs_rq) 2935 cfs_rq->runnable_load_sum += weight * scaled_delta; 2936 } 2937 if (running) 2938 sa->util_sum += scaled_delta * scale_cpu; 2939 2940 sa->period_contrib += delta; 2941 2942 if (decayed) { 2943 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2944 if (cfs_rq) { 2945 cfs_rq->runnable_load_avg = 2946 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2947 } 2948 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2949 } 2950 2951 return decayed; 2952 } 2953 2954 /* 2955 * Signed add and clamp on underflow. 2956 * 2957 * Explicitly do a load-store to ensure the intermediate value never hits 2958 * memory. This allows lockless observations without ever seeing the negative 2959 * values. 2960 */ 2961 #define add_positive(_ptr, _val) do { \ 2962 typeof(_ptr) ptr = (_ptr); \ 2963 typeof(_val) val = (_val); \ 2964 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2965 \ 2966 res = var + val; \ 2967 \ 2968 if (val < 0 && res > var) \ 2969 res = 0; \ 2970 \ 2971 WRITE_ONCE(*ptr, res); \ 2972 } while (0) 2973 2974 #ifdef CONFIG_FAIR_GROUP_SCHED 2975 /** 2976 * update_tg_load_avg - update the tg's load avg 2977 * @cfs_rq: the cfs_rq whose avg changed 2978 * @force: update regardless of how small the difference 2979 * 2980 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 2981 * However, because tg->load_avg is a global value there are performance 2982 * considerations. 2983 * 2984 * In order to avoid having to look at the other cfs_rq's, we use a 2985 * differential update where we store the last value we propagated. This in 2986 * turn allows skipping updates if the differential is 'small'. 2987 * 2988 * Updating tg's load_avg is necessary before update_cfs_share() (which is 2989 * done) and effective_load() (which is not done because it is too costly). 2990 */ 2991 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2992 { 2993 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2994 2995 /* 2996 * No need to update load_avg for root_task_group as it is not used. 2997 */ 2998 if (cfs_rq->tg == &root_task_group) 2999 return; 3000 3001 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3002 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3003 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3004 } 3005 } 3006 3007 /* 3008 * Called within set_task_rq() right before setting a task's cpu. The 3009 * caller only guarantees p->pi_lock is held; no other assumptions, 3010 * including the state of rq->lock, should be made. 3011 */ 3012 void set_task_rq_fair(struct sched_entity *se, 3013 struct cfs_rq *prev, struct cfs_rq *next) 3014 { 3015 if (!sched_feat(ATTACH_AGE_LOAD)) 3016 return; 3017 3018 /* 3019 * We are supposed to update the task to "current" time, then its up to 3020 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3021 * getting what current time is, so simply throw away the out-of-date 3022 * time. This will result in the wakee task is less decayed, but giving 3023 * the wakee more load sounds not bad. 3024 */ 3025 if (se->avg.last_update_time && prev) { 3026 u64 p_last_update_time; 3027 u64 n_last_update_time; 3028 3029 #ifndef CONFIG_64BIT 3030 u64 p_last_update_time_copy; 3031 u64 n_last_update_time_copy; 3032 3033 do { 3034 p_last_update_time_copy = prev->load_last_update_time_copy; 3035 n_last_update_time_copy = next->load_last_update_time_copy; 3036 3037 smp_rmb(); 3038 3039 p_last_update_time = prev->avg.last_update_time; 3040 n_last_update_time = next->avg.last_update_time; 3041 3042 } while (p_last_update_time != p_last_update_time_copy || 3043 n_last_update_time != n_last_update_time_copy); 3044 #else 3045 p_last_update_time = prev->avg.last_update_time; 3046 n_last_update_time = next->avg.last_update_time; 3047 #endif 3048 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 3049 &se->avg, 0, 0, NULL); 3050 se->avg.last_update_time = n_last_update_time; 3051 } 3052 } 3053 3054 /* Take into account change of utilization of a child task group */ 3055 static inline void 3056 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se) 3057 { 3058 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3059 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3060 3061 /* Nothing to update */ 3062 if (!delta) 3063 return; 3064 3065 /* Set new sched_entity's utilization */ 3066 se->avg.util_avg = gcfs_rq->avg.util_avg; 3067 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3068 3069 /* Update parent cfs_rq utilization */ 3070 add_positive(&cfs_rq->avg.util_avg, delta); 3071 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3072 } 3073 3074 /* Take into account change of load of a child task group */ 3075 static inline void 3076 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se) 3077 { 3078 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3079 long delta, load = gcfs_rq->avg.load_avg; 3080 3081 /* 3082 * If the load of group cfs_rq is null, the load of the 3083 * sched_entity will also be null so we can skip the formula 3084 */ 3085 if (load) { 3086 long tg_load; 3087 3088 /* Get tg's load and ensure tg_load > 0 */ 3089 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1; 3090 3091 /* Ensure tg_load >= load and updated with current load*/ 3092 tg_load -= gcfs_rq->tg_load_avg_contrib; 3093 tg_load += load; 3094 3095 /* 3096 * We need to compute a correction term in the case that the 3097 * task group is consuming more CPU than a task of equal 3098 * weight. A task with a weight equals to tg->shares will have 3099 * a load less or equal to scale_load_down(tg->shares). 3100 * Similarly, the sched_entities that represent the task group 3101 * at parent level, can't have a load higher than 3102 * scale_load_down(tg->shares). And the Sum of sched_entities' 3103 * load must be <= scale_load_down(tg->shares). 3104 */ 3105 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) { 3106 /* scale gcfs_rq's load into tg's shares*/ 3107 load *= scale_load_down(gcfs_rq->tg->shares); 3108 load /= tg_load; 3109 } 3110 } 3111 3112 delta = load - se->avg.load_avg; 3113 3114 /* Nothing to update */ 3115 if (!delta) 3116 return; 3117 3118 /* Set new sched_entity's load */ 3119 se->avg.load_avg = load; 3120 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX; 3121 3122 /* Update parent cfs_rq load */ 3123 add_positive(&cfs_rq->avg.load_avg, delta); 3124 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX; 3125 3126 /* 3127 * If the sched_entity is already enqueued, we also have to update the 3128 * runnable load avg. 3129 */ 3130 if (se->on_rq) { 3131 /* Update parent cfs_rq runnable_load_avg */ 3132 add_positive(&cfs_rq->runnable_load_avg, delta); 3133 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX; 3134 } 3135 } 3136 3137 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) 3138 { 3139 cfs_rq->propagate_avg = 1; 3140 } 3141 3142 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se) 3143 { 3144 struct cfs_rq *cfs_rq = group_cfs_rq(se); 3145 3146 if (!cfs_rq->propagate_avg) 3147 return 0; 3148 3149 cfs_rq->propagate_avg = 0; 3150 return 1; 3151 } 3152 3153 /* Update task and its cfs_rq load average */ 3154 static inline int propagate_entity_load_avg(struct sched_entity *se) 3155 { 3156 struct cfs_rq *cfs_rq; 3157 3158 if (entity_is_task(se)) 3159 return 0; 3160 3161 if (!test_and_clear_tg_cfs_propagate(se)) 3162 return 0; 3163 3164 cfs_rq = cfs_rq_of(se); 3165 3166 set_tg_cfs_propagate(cfs_rq); 3167 3168 update_tg_cfs_util(cfs_rq, se); 3169 update_tg_cfs_load(cfs_rq, se); 3170 3171 return 1; 3172 } 3173 3174 #else /* CONFIG_FAIR_GROUP_SCHED */ 3175 3176 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3177 3178 static inline int propagate_entity_load_avg(struct sched_entity *se) 3179 { 3180 return 0; 3181 } 3182 3183 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {} 3184 3185 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3186 3187 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 3188 { 3189 if (&this_rq()->cfs == cfs_rq) { 3190 /* 3191 * There are a few boundary cases this might miss but it should 3192 * get called often enough that that should (hopefully) not be 3193 * a real problem -- added to that it only calls on the local 3194 * CPU, so if we enqueue remotely we'll miss an update, but 3195 * the next tick/schedule should update. 3196 * 3197 * It will not get called when we go idle, because the idle 3198 * thread is a different class (!fair), nor will the utilization 3199 * number include things like RT tasks. 3200 * 3201 * As is, the util number is not freq-invariant (we'd have to 3202 * implement arch_scale_freq_capacity() for that). 3203 * 3204 * See cpu_util(). 3205 */ 3206 cpufreq_update_util(rq_of(cfs_rq), 0); 3207 } 3208 } 3209 3210 /* 3211 * Unsigned subtract and clamp on underflow. 3212 * 3213 * Explicitly do a load-store to ensure the intermediate value never hits 3214 * memory. This allows lockless observations without ever seeing the negative 3215 * values. 3216 */ 3217 #define sub_positive(_ptr, _val) do { \ 3218 typeof(_ptr) ptr = (_ptr); \ 3219 typeof(*ptr) val = (_val); \ 3220 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3221 res = var - val; \ 3222 if (res > var) \ 3223 res = 0; \ 3224 WRITE_ONCE(*ptr, res); \ 3225 } while (0) 3226 3227 /** 3228 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3229 * @now: current time, as per cfs_rq_clock_task() 3230 * @cfs_rq: cfs_rq to update 3231 * @update_freq: should we call cfs_rq_util_change() or will the call do so 3232 * 3233 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3234 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3235 * post_init_entity_util_avg(). 3236 * 3237 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3238 * 3239 * Returns true if the load decayed or we removed load. 3240 * 3241 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3242 * call update_tg_load_avg() when this function returns true. 3243 */ 3244 static inline int 3245 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3246 { 3247 struct sched_avg *sa = &cfs_rq->avg; 3248 int decayed, removed_load = 0, removed_util = 0; 3249 3250 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 3251 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 3252 sub_positive(&sa->load_avg, r); 3253 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 3254 removed_load = 1; 3255 set_tg_cfs_propagate(cfs_rq); 3256 } 3257 3258 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 3259 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 3260 sub_positive(&sa->util_avg, r); 3261 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 3262 removed_util = 1; 3263 set_tg_cfs_propagate(cfs_rq); 3264 } 3265 3266 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3267 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 3268 3269 #ifndef CONFIG_64BIT 3270 smp_wmb(); 3271 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3272 #endif 3273 3274 if (update_freq && (decayed || removed_util)) 3275 cfs_rq_util_change(cfs_rq); 3276 3277 return decayed || removed_load; 3278 } 3279 3280 /* 3281 * Optional action to be done while updating the load average 3282 */ 3283 #define UPDATE_TG 0x1 3284 #define SKIP_AGE_LOAD 0x2 3285 3286 /* Update task and its cfs_rq load average */ 3287 static inline void update_load_avg(struct sched_entity *se, int flags) 3288 { 3289 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3290 u64 now = cfs_rq_clock_task(cfs_rq); 3291 struct rq *rq = rq_of(cfs_rq); 3292 int cpu = cpu_of(rq); 3293 int decayed; 3294 3295 /* 3296 * Track task load average for carrying it to new CPU after migrated, and 3297 * track group sched_entity load average for task_h_load calc in migration 3298 */ 3299 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) { 3300 __update_load_avg(now, cpu, &se->avg, 3301 se->on_rq * scale_load_down(se->load.weight), 3302 cfs_rq->curr == se, NULL); 3303 } 3304 3305 decayed = update_cfs_rq_load_avg(now, cfs_rq, true); 3306 decayed |= propagate_entity_load_avg(se); 3307 3308 if (decayed && (flags & UPDATE_TG)) 3309 update_tg_load_avg(cfs_rq, 0); 3310 } 3311 3312 /** 3313 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3314 * @cfs_rq: cfs_rq to attach to 3315 * @se: sched_entity to attach 3316 * 3317 * Must call update_cfs_rq_load_avg() before this, since we rely on 3318 * cfs_rq->avg.last_update_time being current. 3319 */ 3320 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3321 { 3322 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3323 cfs_rq->avg.load_avg += se->avg.load_avg; 3324 cfs_rq->avg.load_sum += se->avg.load_sum; 3325 cfs_rq->avg.util_avg += se->avg.util_avg; 3326 cfs_rq->avg.util_sum += se->avg.util_sum; 3327 set_tg_cfs_propagate(cfs_rq); 3328 3329 cfs_rq_util_change(cfs_rq); 3330 } 3331 3332 /** 3333 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3334 * @cfs_rq: cfs_rq to detach from 3335 * @se: sched_entity to detach 3336 * 3337 * Must call update_cfs_rq_load_avg() before this, since we rely on 3338 * cfs_rq->avg.last_update_time being current. 3339 */ 3340 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3341 { 3342 3343 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3344 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3345 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3346 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3347 set_tg_cfs_propagate(cfs_rq); 3348 3349 cfs_rq_util_change(cfs_rq); 3350 } 3351 3352 /* Add the load generated by se into cfs_rq's load average */ 3353 static inline void 3354 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3355 { 3356 struct sched_avg *sa = &se->avg; 3357 3358 cfs_rq->runnable_load_avg += sa->load_avg; 3359 cfs_rq->runnable_load_sum += sa->load_sum; 3360 3361 if (!sa->last_update_time) { 3362 attach_entity_load_avg(cfs_rq, se); 3363 update_tg_load_avg(cfs_rq, 0); 3364 } 3365 } 3366 3367 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3368 static inline void 3369 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3370 { 3371 cfs_rq->runnable_load_avg = 3372 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3373 cfs_rq->runnable_load_sum = 3374 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3375 } 3376 3377 #ifndef CONFIG_64BIT 3378 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3379 { 3380 u64 last_update_time_copy; 3381 u64 last_update_time; 3382 3383 do { 3384 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3385 smp_rmb(); 3386 last_update_time = cfs_rq->avg.last_update_time; 3387 } while (last_update_time != last_update_time_copy); 3388 3389 return last_update_time; 3390 } 3391 #else 3392 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3393 { 3394 return cfs_rq->avg.last_update_time; 3395 } 3396 #endif 3397 3398 /* 3399 * Synchronize entity load avg of dequeued entity without locking 3400 * the previous rq. 3401 */ 3402 void sync_entity_load_avg(struct sched_entity *se) 3403 { 3404 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3405 u64 last_update_time; 3406 3407 last_update_time = cfs_rq_last_update_time(cfs_rq); 3408 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3409 } 3410 3411 /* 3412 * Task first catches up with cfs_rq, and then subtract 3413 * itself from the cfs_rq (task must be off the queue now). 3414 */ 3415 void remove_entity_load_avg(struct sched_entity *se) 3416 { 3417 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3418 3419 /* 3420 * tasks cannot exit without having gone through wake_up_new_task() -> 3421 * post_init_entity_util_avg() which will have added things to the 3422 * cfs_rq, so we can remove unconditionally. 3423 * 3424 * Similarly for groups, they will have passed through 3425 * post_init_entity_util_avg() before unregister_sched_fair_group() 3426 * calls this. 3427 */ 3428 3429 sync_entity_load_avg(se); 3430 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3431 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3432 } 3433 3434 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3435 { 3436 return cfs_rq->runnable_load_avg; 3437 } 3438 3439 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3440 { 3441 return cfs_rq->avg.load_avg; 3442 } 3443 3444 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3445 3446 #else /* CONFIG_SMP */ 3447 3448 static inline int 3449 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3450 { 3451 return 0; 3452 } 3453 3454 #define UPDATE_TG 0x0 3455 #define SKIP_AGE_LOAD 0x0 3456 3457 static inline void update_load_avg(struct sched_entity *se, int not_used1) 3458 { 3459 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0); 3460 } 3461 3462 static inline void 3463 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3464 static inline void 3465 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3466 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3467 3468 static inline void 3469 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3470 static inline void 3471 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3472 3473 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3474 { 3475 return 0; 3476 } 3477 3478 #endif /* CONFIG_SMP */ 3479 3480 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3481 { 3482 #ifdef CONFIG_SCHED_DEBUG 3483 s64 d = se->vruntime - cfs_rq->min_vruntime; 3484 3485 if (d < 0) 3486 d = -d; 3487 3488 if (d > 3*sysctl_sched_latency) 3489 schedstat_inc(cfs_rq->nr_spread_over); 3490 #endif 3491 } 3492 3493 static void 3494 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3495 { 3496 u64 vruntime = cfs_rq->min_vruntime; 3497 3498 /* 3499 * The 'current' period is already promised to the current tasks, 3500 * however the extra weight of the new task will slow them down a 3501 * little, place the new task so that it fits in the slot that 3502 * stays open at the end. 3503 */ 3504 if (initial && sched_feat(START_DEBIT)) 3505 vruntime += sched_vslice(cfs_rq, se); 3506 3507 /* sleeps up to a single latency don't count. */ 3508 if (!initial) { 3509 unsigned long thresh = sysctl_sched_latency; 3510 3511 /* 3512 * Halve their sleep time's effect, to allow 3513 * for a gentler effect of sleepers: 3514 */ 3515 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3516 thresh >>= 1; 3517 3518 vruntime -= thresh; 3519 } 3520 3521 /* ensure we never gain time by being placed backwards. */ 3522 se->vruntime = max_vruntime(se->vruntime, vruntime); 3523 } 3524 3525 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3526 3527 static inline void check_schedstat_required(void) 3528 { 3529 #ifdef CONFIG_SCHEDSTATS 3530 if (schedstat_enabled()) 3531 return; 3532 3533 /* Force schedstat enabled if a dependent tracepoint is active */ 3534 if (trace_sched_stat_wait_enabled() || 3535 trace_sched_stat_sleep_enabled() || 3536 trace_sched_stat_iowait_enabled() || 3537 trace_sched_stat_blocked_enabled() || 3538 trace_sched_stat_runtime_enabled()) { 3539 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3540 "stat_blocked and stat_runtime require the " 3541 "kernel parameter schedstats=enabled or " 3542 "kernel.sched_schedstats=1\n"); 3543 } 3544 #endif 3545 } 3546 3547 3548 /* 3549 * MIGRATION 3550 * 3551 * dequeue 3552 * update_curr() 3553 * update_min_vruntime() 3554 * vruntime -= min_vruntime 3555 * 3556 * enqueue 3557 * update_curr() 3558 * update_min_vruntime() 3559 * vruntime += min_vruntime 3560 * 3561 * this way the vruntime transition between RQs is done when both 3562 * min_vruntime are up-to-date. 3563 * 3564 * WAKEUP (remote) 3565 * 3566 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3567 * vruntime -= min_vruntime 3568 * 3569 * enqueue 3570 * update_curr() 3571 * update_min_vruntime() 3572 * vruntime += min_vruntime 3573 * 3574 * this way we don't have the most up-to-date min_vruntime on the originating 3575 * CPU and an up-to-date min_vruntime on the destination CPU. 3576 */ 3577 3578 static void 3579 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3580 { 3581 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3582 bool curr = cfs_rq->curr == se; 3583 3584 /* 3585 * If we're the current task, we must renormalise before calling 3586 * update_curr(). 3587 */ 3588 if (renorm && curr) 3589 se->vruntime += cfs_rq->min_vruntime; 3590 3591 update_curr(cfs_rq); 3592 3593 /* 3594 * Otherwise, renormalise after, such that we're placed at the current 3595 * moment in time, instead of some random moment in the past. Being 3596 * placed in the past could significantly boost this task to the 3597 * fairness detriment of existing tasks. 3598 */ 3599 if (renorm && !curr) 3600 se->vruntime += cfs_rq->min_vruntime; 3601 3602 /* 3603 * When enqueuing a sched_entity, we must: 3604 * - Update loads to have both entity and cfs_rq synced with now. 3605 * - Add its load to cfs_rq->runnable_avg 3606 * - For group_entity, update its weight to reflect the new share of 3607 * its group cfs_rq 3608 * - Add its new weight to cfs_rq->load.weight 3609 */ 3610 update_load_avg(se, UPDATE_TG); 3611 enqueue_entity_load_avg(cfs_rq, se); 3612 update_cfs_shares(se); 3613 account_entity_enqueue(cfs_rq, se); 3614 3615 if (flags & ENQUEUE_WAKEUP) 3616 place_entity(cfs_rq, se, 0); 3617 3618 check_schedstat_required(); 3619 update_stats_enqueue(cfs_rq, se, flags); 3620 check_spread(cfs_rq, se); 3621 if (!curr) 3622 __enqueue_entity(cfs_rq, se); 3623 se->on_rq = 1; 3624 3625 if (cfs_rq->nr_running == 1) { 3626 list_add_leaf_cfs_rq(cfs_rq); 3627 check_enqueue_throttle(cfs_rq); 3628 } 3629 } 3630 3631 static void __clear_buddies_last(struct sched_entity *se) 3632 { 3633 for_each_sched_entity(se) { 3634 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3635 if (cfs_rq->last != se) 3636 break; 3637 3638 cfs_rq->last = NULL; 3639 } 3640 } 3641 3642 static void __clear_buddies_next(struct sched_entity *se) 3643 { 3644 for_each_sched_entity(se) { 3645 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3646 if (cfs_rq->next != se) 3647 break; 3648 3649 cfs_rq->next = NULL; 3650 } 3651 } 3652 3653 static void __clear_buddies_skip(struct sched_entity *se) 3654 { 3655 for_each_sched_entity(se) { 3656 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3657 if (cfs_rq->skip != se) 3658 break; 3659 3660 cfs_rq->skip = NULL; 3661 } 3662 } 3663 3664 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3665 { 3666 if (cfs_rq->last == se) 3667 __clear_buddies_last(se); 3668 3669 if (cfs_rq->next == se) 3670 __clear_buddies_next(se); 3671 3672 if (cfs_rq->skip == se) 3673 __clear_buddies_skip(se); 3674 } 3675 3676 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3677 3678 static void 3679 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3680 { 3681 /* 3682 * Update run-time statistics of the 'current'. 3683 */ 3684 update_curr(cfs_rq); 3685 3686 /* 3687 * When dequeuing a sched_entity, we must: 3688 * - Update loads to have both entity and cfs_rq synced with now. 3689 * - Substract its load from the cfs_rq->runnable_avg. 3690 * - Substract its previous weight from cfs_rq->load.weight. 3691 * - For group entity, update its weight to reflect the new share 3692 * of its group cfs_rq. 3693 */ 3694 update_load_avg(se, UPDATE_TG); 3695 dequeue_entity_load_avg(cfs_rq, se); 3696 3697 update_stats_dequeue(cfs_rq, se, flags); 3698 3699 clear_buddies(cfs_rq, se); 3700 3701 if (se != cfs_rq->curr) 3702 __dequeue_entity(cfs_rq, se); 3703 se->on_rq = 0; 3704 account_entity_dequeue(cfs_rq, se); 3705 3706 /* 3707 * Normalize after update_curr(); which will also have moved 3708 * min_vruntime if @se is the one holding it back. But before doing 3709 * update_min_vruntime() again, which will discount @se's position and 3710 * can move min_vruntime forward still more. 3711 */ 3712 if (!(flags & DEQUEUE_SLEEP)) 3713 se->vruntime -= cfs_rq->min_vruntime; 3714 3715 /* return excess runtime on last dequeue */ 3716 return_cfs_rq_runtime(cfs_rq); 3717 3718 update_cfs_shares(se); 3719 3720 /* 3721 * Now advance min_vruntime if @se was the entity holding it back, 3722 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3723 * put back on, and if we advance min_vruntime, we'll be placed back 3724 * further than we started -- ie. we'll be penalized. 3725 */ 3726 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3727 update_min_vruntime(cfs_rq); 3728 } 3729 3730 /* 3731 * Preempt the current task with a newly woken task if needed: 3732 */ 3733 static void 3734 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3735 { 3736 unsigned long ideal_runtime, delta_exec; 3737 struct sched_entity *se; 3738 s64 delta; 3739 3740 ideal_runtime = sched_slice(cfs_rq, curr); 3741 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3742 if (delta_exec > ideal_runtime) { 3743 resched_curr(rq_of(cfs_rq)); 3744 /* 3745 * The current task ran long enough, ensure it doesn't get 3746 * re-elected due to buddy favours. 3747 */ 3748 clear_buddies(cfs_rq, curr); 3749 return; 3750 } 3751 3752 /* 3753 * Ensure that a task that missed wakeup preemption by a 3754 * narrow margin doesn't have to wait for a full slice. 3755 * This also mitigates buddy induced latencies under load. 3756 */ 3757 if (delta_exec < sysctl_sched_min_granularity) 3758 return; 3759 3760 se = __pick_first_entity(cfs_rq); 3761 delta = curr->vruntime - se->vruntime; 3762 3763 if (delta < 0) 3764 return; 3765 3766 if (delta > ideal_runtime) 3767 resched_curr(rq_of(cfs_rq)); 3768 } 3769 3770 static void 3771 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3772 { 3773 /* 'current' is not kept within the tree. */ 3774 if (se->on_rq) { 3775 /* 3776 * Any task has to be enqueued before it get to execute on 3777 * a CPU. So account for the time it spent waiting on the 3778 * runqueue. 3779 */ 3780 update_stats_wait_end(cfs_rq, se); 3781 __dequeue_entity(cfs_rq, se); 3782 update_load_avg(se, UPDATE_TG); 3783 } 3784 3785 update_stats_curr_start(cfs_rq, se); 3786 cfs_rq->curr = se; 3787 3788 /* 3789 * Track our maximum slice length, if the CPU's load is at 3790 * least twice that of our own weight (i.e. dont track it 3791 * when there are only lesser-weight tasks around): 3792 */ 3793 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3794 schedstat_set(se->statistics.slice_max, 3795 max((u64)schedstat_val(se->statistics.slice_max), 3796 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3797 } 3798 3799 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3800 } 3801 3802 static int 3803 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3804 3805 /* 3806 * Pick the next process, keeping these things in mind, in this order: 3807 * 1) keep things fair between processes/task groups 3808 * 2) pick the "next" process, since someone really wants that to run 3809 * 3) pick the "last" process, for cache locality 3810 * 4) do not run the "skip" process, if something else is available 3811 */ 3812 static struct sched_entity * 3813 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3814 { 3815 struct sched_entity *left = __pick_first_entity(cfs_rq); 3816 struct sched_entity *se; 3817 3818 /* 3819 * If curr is set we have to see if its left of the leftmost entity 3820 * still in the tree, provided there was anything in the tree at all. 3821 */ 3822 if (!left || (curr && entity_before(curr, left))) 3823 left = curr; 3824 3825 se = left; /* ideally we run the leftmost entity */ 3826 3827 /* 3828 * Avoid running the skip buddy, if running something else can 3829 * be done without getting too unfair. 3830 */ 3831 if (cfs_rq->skip == se) { 3832 struct sched_entity *second; 3833 3834 if (se == curr) { 3835 second = __pick_first_entity(cfs_rq); 3836 } else { 3837 second = __pick_next_entity(se); 3838 if (!second || (curr && entity_before(curr, second))) 3839 second = curr; 3840 } 3841 3842 if (second && wakeup_preempt_entity(second, left) < 1) 3843 se = second; 3844 } 3845 3846 /* 3847 * Prefer last buddy, try to return the CPU to a preempted task. 3848 */ 3849 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3850 se = cfs_rq->last; 3851 3852 /* 3853 * Someone really wants this to run. If it's not unfair, run it. 3854 */ 3855 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3856 se = cfs_rq->next; 3857 3858 clear_buddies(cfs_rq, se); 3859 3860 return se; 3861 } 3862 3863 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3864 3865 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3866 { 3867 /* 3868 * If still on the runqueue then deactivate_task() 3869 * was not called and update_curr() has to be done: 3870 */ 3871 if (prev->on_rq) 3872 update_curr(cfs_rq); 3873 3874 /* throttle cfs_rqs exceeding runtime */ 3875 check_cfs_rq_runtime(cfs_rq); 3876 3877 check_spread(cfs_rq, prev); 3878 3879 if (prev->on_rq) { 3880 update_stats_wait_start(cfs_rq, prev); 3881 /* Put 'current' back into the tree. */ 3882 __enqueue_entity(cfs_rq, prev); 3883 /* in !on_rq case, update occurred at dequeue */ 3884 update_load_avg(prev, 0); 3885 } 3886 cfs_rq->curr = NULL; 3887 } 3888 3889 static void 3890 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3891 { 3892 /* 3893 * Update run-time statistics of the 'current'. 3894 */ 3895 update_curr(cfs_rq); 3896 3897 /* 3898 * Ensure that runnable average is periodically updated. 3899 */ 3900 update_load_avg(curr, UPDATE_TG); 3901 update_cfs_shares(curr); 3902 3903 #ifdef CONFIG_SCHED_HRTICK 3904 /* 3905 * queued ticks are scheduled to match the slice, so don't bother 3906 * validating it and just reschedule. 3907 */ 3908 if (queued) { 3909 resched_curr(rq_of(cfs_rq)); 3910 return; 3911 } 3912 /* 3913 * don't let the period tick interfere with the hrtick preemption 3914 */ 3915 if (!sched_feat(DOUBLE_TICK) && 3916 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3917 return; 3918 #endif 3919 3920 if (cfs_rq->nr_running > 1) 3921 check_preempt_tick(cfs_rq, curr); 3922 } 3923 3924 3925 /************************************************** 3926 * CFS bandwidth control machinery 3927 */ 3928 3929 #ifdef CONFIG_CFS_BANDWIDTH 3930 3931 #ifdef HAVE_JUMP_LABEL 3932 static struct static_key __cfs_bandwidth_used; 3933 3934 static inline bool cfs_bandwidth_used(void) 3935 { 3936 return static_key_false(&__cfs_bandwidth_used); 3937 } 3938 3939 void cfs_bandwidth_usage_inc(void) 3940 { 3941 static_key_slow_inc(&__cfs_bandwidth_used); 3942 } 3943 3944 void cfs_bandwidth_usage_dec(void) 3945 { 3946 static_key_slow_dec(&__cfs_bandwidth_used); 3947 } 3948 #else /* HAVE_JUMP_LABEL */ 3949 static bool cfs_bandwidth_used(void) 3950 { 3951 return true; 3952 } 3953 3954 void cfs_bandwidth_usage_inc(void) {} 3955 void cfs_bandwidth_usage_dec(void) {} 3956 #endif /* HAVE_JUMP_LABEL */ 3957 3958 /* 3959 * default period for cfs group bandwidth. 3960 * default: 0.1s, units: nanoseconds 3961 */ 3962 static inline u64 default_cfs_period(void) 3963 { 3964 return 100000000ULL; 3965 } 3966 3967 static inline u64 sched_cfs_bandwidth_slice(void) 3968 { 3969 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3970 } 3971 3972 /* 3973 * Replenish runtime according to assigned quota and update expiration time. 3974 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3975 * additional synchronization around rq->lock. 3976 * 3977 * requires cfs_b->lock 3978 */ 3979 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3980 { 3981 u64 now; 3982 3983 if (cfs_b->quota == RUNTIME_INF) 3984 return; 3985 3986 now = sched_clock_cpu(smp_processor_id()); 3987 cfs_b->runtime = cfs_b->quota; 3988 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3989 } 3990 3991 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3992 { 3993 return &tg->cfs_bandwidth; 3994 } 3995 3996 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3997 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3998 { 3999 if (unlikely(cfs_rq->throttle_count)) 4000 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4001 4002 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4003 } 4004 4005 /* returns 0 on failure to allocate runtime */ 4006 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4007 { 4008 struct task_group *tg = cfs_rq->tg; 4009 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4010 u64 amount = 0, min_amount, expires; 4011 4012 /* note: this is a positive sum as runtime_remaining <= 0 */ 4013 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4014 4015 raw_spin_lock(&cfs_b->lock); 4016 if (cfs_b->quota == RUNTIME_INF) 4017 amount = min_amount; 4018 else { 4019 start_cfs_bandwidth(cfs_b); 4020 4021 if (cfs_b->runtime > 0) { 4022 amount = min(cfs_b->runtime, min_amount); 4023 cfs_b->runtime -= amount; 4024 cfs_b->idle = 0; 4025 } 4026 } 4027 expires = cfs_b->runtime_expires; 4028 raw_spin_unlock(&cfs_b->lock); 4029 4030 cfs_rq->runtime_remaining += amount; 4031 /* 4032 * we may have advanced our local expiration to account for allowed 4033 * spread between our sched_clock and the one on which runtime was 4034 * issued. 4035 */ 4036 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4037 cfs_rq->runtime_expires = expires; 4038 4039 return cfs_rq->runtime_remaining > 0; 4040 } 4041 4042 /* 4043 * Note: This depends on the synchronization provided by sched_clock and the 4044 * fact that rq->clock snapshots this value. 4045 */ 4046 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4047 { 4048 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4049 4050 /* if the deadline is ahead of our clock, nothing to do */ 4051 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4052 return; 4053 4054 if (cfs_rq->runtime_remaining < 0) 4055 return; 4056 4057 /* 4058 * If the local deadline has passed we have to consider the 4059 * possibility that our sched_clock is 'fast' and the global deadline 4060 * has not truly expired. 4061 * 4062 * Fortunately we can check determine whether this the case by checking 4063 * whether the global deadline has advanced. It is valid to compare 4064 * cfs_b->runtime_expires without any locks since we only care about 4065 * exact equality, so a partial write will still work. 4066 */ 4067 4068 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4069 /* extend local deadline, drift is bounded above by 2 ticks */ 4070 cfs_rq->runtime_expires += TICK_NSEC; 4071 } else { 4072 /* global deadline is ahead, expiration has passed */ 4073 cfs_rq->runtime_remaining = 0; 4074 } 4075 } 4076 4077 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4078 { 4079 /* dock delta_exec before expiring quota (as it could span periods) */ 4080 cfs_rq->runtime_remaining -= delta_exec; 4081 expire_cfs_rq_runtime(cfs_rq); 4082 4083 if (likely(cfs_rq->runtime_remaining > 0)) 4084 return; 4085 4086 /* 4087 * if we're unable to extend our runtime we resched so that the active 4088 * hierarchy can be throttled 4089 */ 4090 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4091 resched_curr(rq_of(cfs_rq)); 4092 } 4093 4094 static __always_inline 4095 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4096 { 4097 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4098 return; 4099 4100 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4101 } 4102 4103 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4104 { 4105 return cfs_bandwidth_used() && cfs_rq->throttled; 4106 } 4107 4108 /* check whether cfs_rq, or any parent, is throttled */ 4109 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4110 { 4111 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4112 } 4113 4114 /* 4115 * Ensure that neither of the group entities corresponding to src_cpu or 4116 * dest_cpu are members of a throttled hierarchy when performing group 4117 * load-balance operations. 4118 */ 4119 static inline int throttled_lb_pair(struct task_group *tg, 4120 int src_cpu, int dest_cpu) 4121 { 4122 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4123 4124 src_cfs_rq = tg->cfs_rq[src_cpu]; 4125 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4126 4127 return throttled_hierarchy(src_cfs_rq) || 4128 throttled_hierarchy(dest_cfs_rq); 4129 } 4130 4131 /* updated child weight may affect parent so we have to do this bottom up */ 4132 static int tg_unthrottle_up(struct task_group *tg, void *data) 4133 { 4134 struct rq *rq = data; 4135 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4136 4137 cfs_rq->throttle_count--; 4138 if (!cfs_rq->throttle_count) { 4139 /* adjust cfs_rq_clock_task() */ 4140 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4141 cfs_rq->throttled_clock_task; 4142 } 4143 4144 return 0; 4145 } 4146 4147 static int tg_throttle_down(struct task_group *tg, void *data) 4148 { 4149 struct rq *rq = data; 4150 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4151 4152 /* group is entering throttled state, stop time */ 4153 if (!cfs_rq->throttle_count) 4154 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4155 cfs_rq->throttle_count++; 4156 4157 return 0; 4158 } 4159 4160 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4161 { 4162 struct rq *rq = rq_of(cfs_rq); 4163 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4164 struct sched_entity *se; 4165 long task_delta, dequeue = 1; 4166 bool empty; 4167 4168 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4169 4170 /* freeze hierarchy runnable averages while throttled */ 4171 rcu_read_lock(); 4172 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4173 rcu_read_unlock(); 4174 4175 task_delta = cfs_rq->h_nr_running; 4176 for_each_sched_entity(se) { 4177 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4178 /* throttled entity or throttle-on-deactivate */ 4179 if (!se->on_rq) 4180 break; 4181 4182 if (dequeue) 4183 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4184 qcfs_rq->h_nr_running -= task_delta; 4185 4186 if (qcfs_rq->load.weight) 4187 dequeue = 0; 4188 } 4189 4190 if (!se) 4191 sub_nr_running(rq, task_delta); 4192 4193 cfs_rq->throttled = 1; 4194 cfs_rq->throttled_clock = rq_clock(rq); 4195 raw_spin_lock(&cfs_b->lock); 4196 empty = list_empty(&cfs_b->throttled_cfs_rq); 4197 4198 /* 4199 * Add to the _head_ of the list, so that an already-started 4200 * distribute_cfs_runtime will not see us 4201 */ 4202 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4203 4204 /* 4205 * If we're the first throttled task, make sure the bandwidth 4206 * timer is running. 4207 */ 4208 if (empty) 4209 start_cfs_bandwidth(cfs_b); 4210 4211 raw_spin_unlock(&cfs_b->lock); 4212 } 4213 4214 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4215 { 4216 struct rq *rq = rq_of(cfs_rq); 4217 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4218 struct sched_entity *se; 4219 int enqueue = 1; 4220 long task_delta; 4221 4222 se = cfs_rq->tg->se[cpu_of(rq)]; 4223 4224 cfs_rq->throttled = 0; 4225 4226 update_rq_clock(rq); 4227 4228 raw_spin_lock(&cfs_b->lock); 4229 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4230 list_del_rcu(&cfs_rq->throttled_list); 4231 raw_spin_unlock(&cfs_b->lock); 4232 4233 /* update hierarchical throttle state */ 4234 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4235 4236 if (!cfs_rq->load.weight) 4237 return; 4238 4239 task_delta = cfs_rq->h_nr_running; 4240 for_each_sched_entity(se) { 4241 if (se->on_rq) 4242 enqueue = 0; 4243 4244 cfs_rq = cfs_rq_of(se); 4245 if (enqueue) 4246 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4247 cfs_rq->h_nr_running += task_delta; 4248 4249 if (cfs_rq_throttled(cfs_rq)) 4250 break; 4251 } 4252 4253 if (!se) 4254 add_nr_running(rq, task_delta); 4255 4256 /* determine whether we need to wake up potentially idle cpu */ 4257 if (rq->curr == rq->idle && rq->cfs.nr_running) 4258 resched_curr(rq); 4259 } 4260 4261 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4262 u64 remaining, u64 expires) 4263 { 4264 struct cfs_rq *cfs_rq; 4265 u64 runtime; 4266 u64 starting_runtime = remaining; 4267 4268 rcu_read_lock(); 4269 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4270 throttled_list) { 4271 struct rq *rq = rq_of(cfs_rq); 4272 4273 raw_spin_lock(&rq->lock); 4274 if (!cfs_rq_throttled(cfs_rq)) 4275 goto next; 4276 4277 runtime = -cfs_rq->runtime_remaining + 1; 4278 if (runtime > remaining) 4279 runtime = remaining; 4280 remaining -= runtime; 4281 4282 cfs_rq->runtime_remaining += runtime; 4283 cfs_rq->runtime_expires = expires; 4284 4285 /* we check whether we're throttled above */ 4286 if (cfs_rq->runtime_remaining > 0) 4287 unthrottle_cfs_rq(cfs_rq); 4288 4289 next: 4290 raw_spin_unlock(&rq->lock); 4291 4292 if (!remaining) 4293 break; 4294 } 4295 rcu_read_unlock(); 4296 4297 return starting_runtime - remaining; 4298 } 4299 4300 /* 4301 * Responsible for refilling a task_group's bandwidth and unthrottling its 4302 * cfs_rqs as appropriate. If there has been no activity within the last 4303 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4304 * used to track this state. 4305 */ 4306 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4307 { 4308 u64 runtime, runtime_expires; 4309 int throttled; 4310 4311 /* no need to continue the timer with no bandwidth constraint */ 4312 if (cfs_b->quota == RUNTIME_INF) 4313 goto out_deactivate; 4314 4315 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4316 cfs_b->nr_periods += overrun; 4317 4318 /* 4319 * idle depends on !throttled (for the case of a large deficit), and if 4320 * we're going inactive then everything else can be deferred 4321 */ 4322 if (cfs_b->idle && !throttled) 4323 goto out_deactivate; 4324 4325 __refill_cfs_bandwidth_runtime(cfs_b); 4326 4327 if (!throttled) { 4328 /* mark as potentially idle for the upcoming period */ 4329 cfs_b->idle = 1; 4330 return 0; 4331 } 4332 4333 /* account preceding periods in which throttling occurred */ 4334 cfs_b->nr_throttled += overrun; 4335 4336 runtime_expires = cfs_b->runtime_expires; 4337 4338 /* 4339 * This check is repeated as we are holding onto the new bandwidth while 4340 * we unthrottle. This can potentially race with an unthrottled group 4341 * trying to acquire new bandwidth from the global pool. This can result 4342 * in us over-using our runtime if it is all used during this loop, but 4343 * only by limited amounts in that extreme case. 4344 */ 4345 while (throttled && cfs_b->runtime > 0) { 4346 runtime = cfs_b->runtime; 4347 raw_spin_unlock(&cfs_b->lock); 4348 /* we can't nest cfs_b->lock while distributing bandwidth */ 4349 runtime = distribute_cfs_runtime(cfs_b, runtime, 4350 runtime_expires); 4351 raw_spin_lock(&cfs_b->lock); 4352 4353 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4354 4355 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4356 } 4357 4358 /* 4359 * While we are ensured activity in the period following an 4360 * unthrottle, this also covers the case in which the new bandwidth is 4361 * insufficient to cover the existing bandwidth deficit. (Forcing the 4362 * timer to remain active while there are any throttled entities.) 4363 */ 4364 cfs_b->idle = 0; 4365 4366 return 0; 4367 4368 out_deactivate: 4369 return 1; 4370 } 4371 4372 /* a cfs_rq won't donate quota below this amount */ 4373 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4374 /* minimum remaining period time to redistribute slack quota */ 4375 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4376 /* how long we wait to gather additional slack before distributing */ 4377 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4378 4379 /* 4380 * Are we near the end of the current quota period? 4381 * 4382 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4383 * hrtimer base being cleared by hrtimer_start. In the case of 4384 * migrate_hrtimers, base is never cleared, so we are fine. 4385 */ 4386 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4387 { 4388 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4389 u64 remaining; 4390 4391 /* if the call-back is running a quota refresh is already occurring */ 4392 if (hrtimer_callback_running(refresh_timer)) 4393 return 1; 4394 4395 /* is a quota refresh about to occur? */ 4396 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4397 if (remaining < min_expire) 4398 return 1; 4399 4400 return 0; 4401 } 4402 4403 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4404 { 4405 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4406 4407 /* if there's a quota refresh soon don't bother with slack */ 4408 if (runtime_refresh_within(cfs_b, min_left)) 4409 return; 4410 4411 hrtimer_start(&cfs_b->slack_timer, 4412 ns_to_ktime(cfs_bandwidth_slack_period), 4413 HRTIMER_MODE_REL); 4414 } 4415 4416 /* we know any runtime found here is valid as update_curr() precedes return */ 4417 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4418 { 4419 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4420 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4421 4422 if (slack_runtime <= 0) 4423 return; 4424 4425 raw_spin_lock(&cfs_b->lock); 4426 if (cfs_b->quota != RUNTIME_INF && 4427 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4428 cfs_b->runtime += slack_runtime; 4429 4430 /* we are under rq->lock, defer unthrottling using a timer */ 4431 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4432 !list_empty(&cfs_b->throttled_cfs_rq)) 4433 start_cfs_slack_bandwidth(cfs_b); 4434 } 4435 raw_spin_unlock(&cfs_b->lock); 4436 4437 /* even if it's not valid for return we don't want to try again */ 4438 cfs_rq->runtime_remaining -= slack_runtime; 4439 } 4440 4441 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4442 { 4443 if (!cfs_bandwidth_used()) 4444 return; 4445 4446 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4447 return; 4448 4449 __return_cfs_rq_runtime(cfs_rq); 4450 } 4451 4452 /* 4453 * This is done with a timer (instead of inline with bandwidth return) since 4454 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4455 */ 4456 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4457 { 4458 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4459 u64 expires; 4460 4461 /* confirm we're still not at a refresh boundary */ 4462 raw_spin_lock(&cfs_b->lock); 4463 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4464 raw_spin_unlock(&cfs_b->lock); 4465 return; 4466 } 4467 4468 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4469 runtime = cfs_b->runtime; 4470 4471 expires = cfs_b->runtime_expires; 4472 raw_spin_unlock(&cfs_b->lock); 4473 4474 if (!runtime) 4475 return; 4476 4477 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4478 4479 raw_spin_lock(&cfs_b->lock); 4480 if (expires == cfs_b->runtime_expires) 4481 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4482 raw_spin_unlock(&cfs_b->lock); 4483 } 4484 4485 /* 4486 * When a group wakes up we want to make sure that its quota is not already 4487 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4488 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4489 */ 4490 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4491 { 4492 if (!cfs_bandwidth_used()) 4493 return; 4494 4495 /* an active group must be handled by the update_curr()->put() path */ 4496 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4497 return; 4498 4499 /* ensure the group is not already throttled */ 4500 if (cfs_rq_throttled(cfs_rq)) 4501 return; 4502 4503 /* update runtime allocation */ 4504 account_cfs_rq_runtime(cfs_rq, 0); 4505 if (cfs_rq->runtime_remaining <= 0) 4506 throttle_cfs_rq(cfs_rq); 4507 } 4508 4509 static void sync_throttle(struct task_group *tg, int cpu) 4510 { 4511 struct cfs_rq *pcfs_rq, *cfs_rq; 4512 4513 if (!cfs_bandwidth_used()) 4514 return; 4515 4516 if (!tg->parent) 4517 return; 4518 4519 cfs_rq = tg->cfs_rq[cpu]; 4520 pcfs_rq = tg->parent->cfs_rq[cpu]; 4521 4522 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4523 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4524 } 4525 4526 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4527 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4528 { 4529 if (!cfs_bandwidth_used()) 4530 return false; 4531 4532 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4533 return false; 4534 4535 /* 4536 * it's possible for a throttled entity to be forced into a running 4537 * state (e.g. set_curr_task), in this case we're finished. 4538 */ 4539 if (cfs_rq_throttled(cfs_rq)) 4540 return true; 4541 4542 throttle_cfs_rq(cfs_rq); 4543 return true; 4544 } 4545 4546 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4547 { 4548 struct cfs_bandwidth *cfs_b = 4549 container_of(timer, struct cfs_bandwidth, slack_timer); 4550 4551 do_sched_cfs_slack_timer(cfs_b); 4552 4553 return HRTIMER_NORESTART; 4554 } 4555 4556 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4557 { 4558 struct cfs_bandwidth *cfs_b = 4559 container_of(timer, struct cfs_bandwidth, period_timer); 4560 int overrun; 4561 int idle = 0; 4562 4563 raw_spin_lock(&cfs_b->lock); 4564 for (;;) { 4565 overrun = hrtimer_forward_now(timer, cfs_b->period); 4566 if (!overrun) 4567 break; 4568 4569 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4570 } 4571 if (idle) 4572 cfs_b->period_active = 0; 4573 raw_spin_unlock(&cfs_b->lock); 4574 4575 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4576 } 4577 4578 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4579 { 4580 raw_spin_lock_init(&cfs_b->lock); 4581 cfs_b->runtime = 0; 4582 cfs_b->quota = RUNTIME_INF; 4583 cfs_b->period = ns_to_ktime(default_cfs_period()); 4584 4585 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4586 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4587 cfs_b->period_timer.function = sched_cfs_period_timer; 4588 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4589 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4590 } 4591 4592 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4593 { 4594 cfs_rq->runtime_enabled = 0; 4595 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4596 } 4597 4598 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4599 { 4600 lockdep_assert_held(&cfs_b->lock); 4601 4602 if (!cfs_b->period_active) { 4603 cfs_b->period_active = 1; 4604 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4605 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4606 } 4607 } 4608 4609 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4610 { 4611 /* init_cfs_bandwidth() was not called */ 4612 if (!cfs_b->throttled_cfs_rq.next) 4613 return; 4614 4615 hrtimer_cancel(&cfs_b->period_timer); 4616 hrtimer_cancel(&cfs_b->slack_timer); 4617 } 4618 4619 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4620 { 4621 struct cfs_rq *cfs_rq; 4622 4623 for_each_leaf_cfs_rq(rq, cfs_rq) { 4624 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4625 4626 raw_spin_lock(&cfs_b->lock); 4627 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4628 raw_spin_unlock(&cfs_b->lock); 4629 } 4630 } 4631 4632 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4633 { 4634 struct cfs_rq *cfs_rq; 4635 4636 for_each_leaf_cfs_rq(rq, cfs_rq) { 4637 if (!cfs_rq->runtime_enabled) 4638 continue; 4639 4640 /* 4641 * clock_task is not advancing so we just need to make sure 4642 * there's some valid quota amount 4643 */ 4644 cfs_rq->runtime_remaining = 1; 4645 /* 4646 * Offline rq is schedulable till cpu is completely disabled 4647 * in take_cpu_down(), so we prevent new cfs throttling here. 4648 */ 4649 cfs_rq->runtime_enabled = 0; 4650 4651 if (cfs_rq_throttled(cfs_rq)) 4652 unthrottle_cfs_rq(cfs_rq); 4653 } 4654 } 4655 4656 #else /* CONFIG_CFS_BANDWIDTH */ 4657 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4658 { 4659 return rq_clock_task(rq_of(cfs_rq)); 4660 } 4661 4662 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4663 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4664 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4665 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4666 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4667 4668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4669 { 4670 return 0; 4671 } 4672 4673 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4674 { 4675 return 0; 4676 } 4677 4678 static inline int throttled_lb_pair(struct task_group *tg, 4679 int src_cpu, int dest_cpu) 4680 { 4681 return 0; 4682 } 4683 4684 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4685 4686 #ifdef CONFIG_FAIR_GROUP_SCHED 4687 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4688 #endif 4689 4690 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4691 { 4692 return NULL; 4693 } 4694 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4695 static inline void update_runtime_enabled(struct rq *rq) {} 4696 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4697 4698 #endif /* CONFIG_CFS_BANDWIDTH */ 4699 4700 /************************************************** 4701 * CFS operations on tasks: 4702 */ 4703 4704 #ifdef CONFIG_SCHED_HRTICK 4705 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4706 { 4707 struct sched_entity *se = &p->se; 4708 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4709 4710 SCHED_WARN_ON(task_rq(p) != rq); 4711 4712 if (rq->cfs.h_nr_running > 1) { 4713 u64 slice = sched_slice(cfs_rq, se); 4714 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4715 s64 delta = slice - ran; 4716 4717 if (delta < 0) { 4718 if (rq->curr == p) 4719 resched_curr(rq); 4720 return; 4721 } 4722 hrtick_start(rq, delta); 4723 } 4724 } 4725 4726 /* 4727 * called from enqueue/dequeue and updates the hrtick when the 4728 * current task is from our class and nr_running is low enough 4729 * to matter. 4730 */ 4731 static void hrtick_update(struct rq *rq) 4732 { 4733 struct task_struct *curr = rq->curr; 4734 4735 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4736 return; 4737 4738 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4739 hrtick_start_fair(rq, curr); 4740 } 4741 #else /* !CONFIG_SCHED_HRTICK */ 4742 static inline void 4743 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4744 { 4745 } 4746 4747 static inline void hrtick_update(struct rq *rq) 4748 { 4749 } 4750 #endif 4751 4752 /* 4753 * The enqueue_task method is called before nr_running is 4754 * increased. Here we update the fair scheduling stats and 4755 * then put the task into the rbtree: 4756 */ 4757 static void 4758 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4759 { 4760 struct cfs_rq *cfs_rq; 4761 struct sched_entity *se = &p->se; 4762 4763 /* 4764 * If in_iowait is set, the code below may not trigger any cpufreq 4765 * utilization updates, so do it here explicitly with the IOWAIT flag 4766 * passed. 4767 */ 4768 if (p->in_iowait) 4769 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT); 4770 4771 for_each_sched_entity(se) { 4772 if (se->on_rq) 4773 break; 4774 cfs_rq = cfs_rq_of(se); 4775 enqueue_entity(cfs_rq, se, flags); 4776 4777 /* 4778 * end evaluation on encountering a throttled cfs_rq 4779 * 4780 * note: in the case of encountering a throttled cfs_rq we will 4781 * post the final h_nr_running increment below. 4782 */ 4783 if (cfs_rq_throttled(cfs_rq)) 4784 break; 4785 cfs_rq->h_nr_running++; 4786 4787 flags = ENQUEUE_WAKEUP; 4788 } 4789 4790 for_each_sched_entity(se) { 4791 cfs_rq = cfs_rq_of(se); 4792 cfs_rq->h_nr_running++; 4793 4794 if (cfs_rq_throttled(cfs_rq)) 4795 break; 4796 4797 update_load_avg(se, UPDATE_TG); 4798 update_cfs_shares(se); 4799 } 4800 4801 if (!se) 4802 add_nr_running(rq, 1); 4803 4804 hrtick_update(rq); 4805 } 4806 4807 static void set_next_buddy(struct sched_entity *se); 4808 4809 /* 4810 * The dequeue_task method is called before nr_running is 4811 * decreased. We remove the task from the rbtree and 4812 * update the fair scheduling stats: 4813 */ 4814 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4815 { 4816 struct cfs_rq *cfs_rq; 4817 struct sched_entity *se = &p->se; 4818 int task_sleep = flags & DEQUEUE_SLEEP; 4819 4820 for_each_sched_entity(se) { 4821 cfs_rq = cfs_rq_of(se); 4822 dequeue_entity(cfs_rq, se, flags); 4823 4824 /* 4825 * end evaluation on encountering a throttled cfs_rq 4826 * 4827 * note: in the case of encountering a throttled cfs_rq we will 4828 * post the final h_nr_running decrement below. 4829 */ 4830 if (cfs_rq_throttled(cfs_rq)) 4831 break; 4832 cfs_rq->h_nr_running--; 4833 4834 /* Don't dequeue parent if it has other entities besides us */ 4835 if (cfs_rq->load.weight) { 4836 /* Avoid re-evaluating load for this entity: */ 4837 se = parent_entity(se); 4838 /* 4839 * Bias pick_next to pick a task from this cfs_rq, as 4840 * p is sleeping when it is within its sched_slice. 4841 */ 4842 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4843 set_next_buddy(se); 4844 break; 4845 } 4846 flags |= DEQUEUE_SLEEP; 4847 } 4848 4849 for_each_sched_entity(se) { 4850 cfs_rq = cfs_rq_of(se); 4851 cfs_rq->h_nr_running--; 4852 4853 if (cfs_rq_throttled(cfs_rq)) 4854 break; 4855 4856 update_load_avg(se, UPDATE_TG); 4857 update_cfs_shares(se); 4858 } 4859 4860 if (!se) 4861 sub_nr_running(rq, 1); 4862 4863 hrtick_update(rq); 4864 } 4865 4866 #ifdef CONFIG_SMP 4867 4868 /* Working cpumask for: load_balance, load_balance_newidle. */ 4869 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 4870 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 4871 4872 #ifdef CONFIG_NO_HZ_COMMON 4873 /* 4874 * per rq 'load' arrray crap; XXX kill this. 4875 */ 4876 4877 /* 4878 * The exact cpuload calculated at every tick would be: 4879 * 4880 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4881 * 4882 * If a cpu misses updates for n ticks (as it was idle) and update gets 4883 * called on the n+1-th tick when cpu may be busy, then we have: 4884 * 4885 * load_n = (1 - 1/2^i)^n * load_0 4886 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4887 * 4888 * decay_load_missed() below does efficient calculation of 4889 * 4890 * load' = (1 - 1/2^i)^n * load 4891 * 4892 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4893 * This allows us to precompute the above in said factors, thereby allowing the 4894 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4895 * fixed_power_int()) 4896 * 4897 * The calculation is approximated on a 128 point scale. 4898 */ 4899 #define DEGRADE_SHIFT 7 4900 4901 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4902 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4903 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4904 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4905 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4906 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4907 { 120, 112, 98, 76, 45, 16, 2, 0 } 4908 }; 4909 4910 /* 4911 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4912 * would be when CPU is idle and so we just decay the old load without 4913 * adding any new load. 4914 */ 4915 static unsigned long 4916 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4917 { 4918 int j = 0; 4919 4920 if (!missed_updates) 4921 return load; 4922 4923 if (missed_updates >= degrade_zero_ticks[idx]) 4924 return 0; 4925 4926 if (idx == 1) 4927 return load >> missed_updates; 4928 4929 while (missed_updates) { 4930 if (missed_updates % 2) 4931 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4932 4933 missed_updates >>= 1; 4934 j++; 4935 } 4936 return load; 4937 } 4938 #endif /* CONFIG_NO_HZ_COMMON */ 4939 4940 /** 4941 * __cpu_load_update - update the rq->cpu_load[] statistics 4942 * @this_rq: The rq to update statistics for 4943 * @this_load: The current load 4944 * @pending_updates: The number of missed updates 4945 * 4946 * Update rq->cpu_load[] statistics. This function is usually called every 4947 * scheduler tick (TICK_NSEC). 4948 * 4949 * This function computes a decaying average: 4950 * 4951 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4952 * 4953 * Because of NOHZ it might not get called on every tick which gives need for 4954 * the @pending_updates argument. 4955 * 4956 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4957 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4958 * = A * (A * load[i]_n-2 + B) + B 4959 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4960 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4961 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4962 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4963 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4964 * 4965 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4966 * any change in load would have resulted in the tick being turned back on. 4967 * 4968 * For regular NOHZ, this reduces to: 4969 * 4970 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4971 * 4972 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4973 * term. 4974 */ 4975 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 4976 unsigned long pending_updates) 4977 { 4978 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 4979 int i, scale; 4980 4981 this_rq->nr_load_updates++; 4982 4983 /* Update our load: */ 4984 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4985 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4986 unsigned long old_load, new_load; 4987 4988 /* scale is effectively 1 << i now, and >> i divides by scale */ 4989 4990 old_load = this_rq->cpu_load[i]; 4991 #ifdef CONFIG_NO_HZ_COMMON 4992 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4993 if (tickless_load) { 4994 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4995 /* 4996 * old_load can never be a negative value because a 4997 * decayed tickless_load cannot be greater than the 4998 * original tickless_load. 4999 */ 5000 old_load += tickless_load; 5001 } 5002 #endif 5003 new_load = this_load; 5004 /* 5005 * Round up the averaging division if load is increasing. This 5006 * prevents us from getting stuck on 9 if the load is 10, for 5007 * example. 5008 */ 5009 if (new_load > old_load) 5010 new_load += scale - 1; 5011 5012 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5013 } 5014 5015 sched_avg_update(this_rq); 5016 } 5017 5018 /* Used instead of source_load when we know the type == 0 */ 5019 static unsigned long weighted_cpuload(const int cpu) 5020 { 5021 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 5022 } 5023 5024 #ifdef CONFIG_NO_HZ_COMMON 5025 /* 5026 * There is no sane way to deal with nohz on smp when using jiffies because the 5027 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5028 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5029 * 5030 * Therefore we need to avoid the delta approach from the regular tick when 5031 * possible since that would seriously skew the load calculation. This is why we 5032 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5033 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5034 * loop exit, nohz_idle_balance, nohz full exit...) 5035 * 5036 * This means we might still be one tick off for nohz periods. 5037 */ 5038 5039 static void cpu_load_update_nohz(struct rq *this_rq, 5040 unsigned long curr_jiffies, 5041 unsigned long load) 5042 { 5043 unsigned long pending_updates; 5044 5045 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5046 if (pending_updates) { 5047 this_rq->last_load_update_tick = curr_jiffies; 5048 /* 5049 * In the regular NOHZ case, we were idle, this means load 0. 5050 * In the NOHZ_FULL case, we were non-idle, we should consider 5051 * its weighted load. 5052 */ 5053 cpu_load_update(this_rq, load, pending_updates); 5054 } 5055 } 5056 5057 /* 5058 * Called from nohz_idle_balance() to update the load ratings before doing the 5059 * idle balance. 5060 */ 5061 static void cpu_load_update_idle(struct rq *this_rq) 5062 { 5063 /* 5064 * bail if there's load or we're actually up-to-date. 5065 */ 5066 if (weighted_cpuload(cpu_of(this_rq))) 5067 return; 5068 5069 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5070 } 5071 5072 /* 5073 * Record CPU load on nohz entry so we know the tickless load to account 5074 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5075 * than other cpu_load[idx] but it should be fine as cpu_load readers 5076 * shouldn't rely into synchronized cpu_load[*] updates. 5077 */ 5078 void cpu_load_update_nohz_start(void) 5079 { 5080 struct rq *this_rq = this_rq(); 5081 5082 /* 5083 * This is all lockless but should be fine. If weighted_cpuload changes 5084 * concurrently we'll exit nohz. And cpu_load write can race with 5085 * cpu_load_update_idle() but both updater would be writing the same. 5086 */ 5087 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 5088 } 5089 5090 /* 5091 * Account the tickless load in the end of a nohz frame. 5092 */ 5093 void cpu_load_update_nohz_stop(void) 5094 { 5095 unsigned long curr_jiffies = READ_ONCE(jiffies); 5096 struct rq *this_rq = this_rq(); 5097 unsigned long load; 5098 5099 if (curr_jiffies == this_rq->last_load_update_tick) 5100 return; 5101 5102 load = weighted_cpuload(cpu_of(this_rq)); 5103 raw_spin_lock(&this_rq->lock); 5104 update_rq_clock(this_rq); 5105 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5106 raw_spin_unlock(&this_rq->lock); 5107 } 5108 #else /* !CONFIG_NO_HZ_COMMON */ 5109 static inline void cpu_load_update_nohz(struct rq *this_rq, 5110 unsigned long curr_jiffies, 5111 unsigned long load) { } 5112 #endif /* CONFIG_NO_HZ_COMMON */ 5113 5114 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5115 { 5116 #ifdef CONFIG_NO_HZ_COMMON 5117 /* See the mess around cpu_load_update_nohz(). */ 5118 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5119 #endif 5120 cpu_load_update(this_rq, load, 1); 5121 } 5122 5123 /* 5124 * Called from scheduler_tick() 5125 */ 5126 void cpu_load_update_active(struct rq *this_rq) 5127 { 5128 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 5129 5130 if (tick_nohz_tick_stopped()) 5131 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5132 else 5133 cpu_load_update_periodic(this_rq, load); 5134 } 5135 5136 /* 5137 * Return a low guess at the load of a migration-source cpu weighted 5138 * according to the scheduling class and "nice" value. 5139 * 5140 * We want to under-estimate the load of migration sources, to 5141 * balance conservatively. 5142 */ 5143 static unsigned long source_load(int cpu, int type) 5144 { 5145 struct rq *rq = cpu_rq(cpu); 5146 unsigned long total = weighted_cpuload(cpu); 5147 5148 if (type == 0 || !sched_feat(LB_BIAS)) 5149 return total; 5150 5151 return min(rq->cpu_load[type-1], total); 5152 } 5153 5154 /* 5155 * Return a high guess at the load of a migration-target cpu weighted 5156 * according to the scheduling class and "nice" value. 5157 */ 5158 static unsigned long target_load(int cpu, int type) 5159 { 5160 struct rq *rq = cpu_rq(cpu); 5161 unsigned long total = weighted_cpuload(cpu); 5162 5163 if (type == 0 || !sched_feat(LB_BIAS)) 5164 return total; 5165 5166 return max(rq->cpu_load[type-1], total); 5167 } 5168 5169 static unsigned long capacity_of(int cpu) 5170 { 5171 return cpu_rq(cpu)->cpu_capacity; 5172 } 5173 5174 static unsigned long capacity_orig_of(int cpu) 5175 { 5176 return cpu_rq(cpu)->cpu_capacity_orig; 5177 } 5178 5179 static unsigned long cpu_avg_load_per_task(int cpu) 5180 { 5181 struct rq *rq = cpu_rq(cpu); 5182 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5183 unsigned long load_avg = weighted_cpuload(cpu); 5184 5185 if (nr_running) 5186 return load_avg / nr_running; 5187 5188 return 0; 5189 } 5190 5191 #ifdef CONFIG_FAIR_GROUP_SCHED 5192 /* 5193 * effective_load() calculates the load change as seen from the root_task_group 5194 * 5195 * Adding load to a group doesn't make a group heavier, but can cause movement 5196 * of group shares between cpus. Assuming the shares were perfectly aligned one 5197 * can calculate the shift in shares. 5198 * 5199 * Calculate the effective load difference if @wl is added (subtracted) to @tg 5200 * on this @cpu and results in a total addition (subtraction) of @wg to the 5201 * total group weight. 5202 * 5203 * Given a runqueue weight distribution (rw_i) we can compute a shares 5204 * distribution (s_i) using: 5205 * 5206 * s_i = rw_i / \Sum rw_j (1) 5207 * 5208 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 5209 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 5210 * shares distribution (s_i): 5211 * 5212 * rw_i = { 2, 4, 1, 0 } 5213 * s_i = { 2/7, 4/7, 1/7, 0 } 5214 * 5215 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 5216 * task used to run on and the CPU the waker is running on), we need to 5217 * compute the effect of waking a task on either CPU and, in case of a sync 5218 * wakeup, compute the effect of the current task going to sleep. 5219 * 5220 * So for a change of @wl to the local @cpu with an overall group weight change 5221 * of @wl we can compute the new shares distribution (s'_i) using: 5222 * 5223 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 5224 * 5225 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 5226 * differences in waking a task to CPU 0. The additional task changes the 5227 * weight and shares distributions like: 5228 * 5229 * rw'_i = { 3, 4, 1, 0 } 5230 * s'_i = { 3/8, 4/8, 1/8, 0 } 5231 * 5232 * We can then compute the difference in effective weight by using: 5233 * 5234 * dw_i = S * (s'_i - s_i) (3) 5235 * 5236 * Where 'S' is the group weight as seen by its parent. 5237 * 5238 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 5239 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 5240 * 4/7) times the weight of the group. 5241 */ 5242 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5243 { 5244 struct sched_entity *se = tg->se[cpu]; 5245 5246 if (!tg->parent) /* the trivial, non-cgroup case */ 5247 return wl; 5248 5249 for_each_sched_entity(se) { 5250 struct cfs_rq *cfs_rq = se->my_q; 5251 long W, w = cfs_rq_load_avg(cfs_rq); 5252 5253 tg = cfs_rq->tg; 5254 5255 /* 5256 * W = @wg + \Sum rw_j 5257 */ 5258 W = wg + atomic_long_read(&tg->load_avg); 5259 5260 /* Ensure \Sum rw_j >= rw_i */ 5261 W -= cfs_rq->tg_load_avg_contrib; 5262 W += w; 5263 5264 /* 5265 * w = rw_i + @wl 5266 */ 5267 w += wl; 5268 5269 /* 5270 * wl = S * s'_i; see (2) 5271 */ 5272 if (W > 0 && w < W) 5273 wl = (w * (long)scale_load_down(tg->shares)) / W; 5274 else 5275 wl = scale_load_down(tg->shares); 5276 5277 /* 5278 * Per the above, wl is the new se->load.weight value; since 5279 * those are clipped to [MIN_SHARES, ...) do so now. See 5280 * calc_cfs_shares(). 5281 */ 5282 if (wl < MIN_SHARES) 5283 wl = MIN_SHARES; 5284 5285 /* 5286 * wl = dw_i = S * (s'_i - s_i); see (3) 5287 */ 5288 wl -= se->avg.load_avg; 5289 5290 /* 5291 * Recursively apply this logic to all parent groups to compute 5292 * the final effective load change on the root group. Since 5293 * only the @tg group gets extra weight, all parent groups can 5294 * only redistribute existing shares. @wl is the shift in shares 5295 * resulting from this level per the above. 5296 */ 5297 wg = 0; 5298 } 5299 5300 return wl; 5301 } 5302 #else 5303 5304 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5305 { 5306 return wl; 5307 } 5308 5309 #endif 5310 5311 static void record_wakee(struct task_struct *p) 5312 { 5313 /* 5314 * Only decay a single time; tasks that have less then 1 wakeup per 5315 * jiffy will not have built up many flips. 5316 */ 5317 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5318 current->wakee_flips >>= 1; 5319 current->wakee_flip_decay_ts = jiffies; 5320 } 5321 5322 if (current->last_wakee != p) { 5323 current->last_wakee = p; 5324 current->wakee_flips++; 5325 } 5326 } 5327 5328 /* 5329 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5330 * 5331 * A waker of many should wake a different task than the one last awakened 5332 * at a frequency roughly N times higher than one of its wakees. 5333 * 5334 * In order to determine whether we should let the load spread vs consolidating 5335 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5336 * partner, and a factor of lls_size higher frequency in the other. 5337 * 5338 * With both conditions met, we can be relatively sure that the relationship is 5339 * non-monogamous, with partner count exceeding socket size. 5340 * 5341 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5342 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5343 * socket size. 5344 */ 5345 static int wake_wide(struct task_struct *p) 5346 { 5347 unsigned int master = current->wakee_flips; 5348 unsigned int slave = p->wakee_flips; 5349 int factor = this_cpu_read(sd_llc_size); 5350 5351 if (master < slave) 5352 swap(master, slave); 5353 if (slave < factor || master < slave * factor) 5354 return 0; 5355 return 1; 5356 } 5357 5358 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5359 int prev_cpu, int sync) 5360 { 5361 s64 this_load, load; 5362 s64 this_eff_load, prev_eff_load; 5363 int idx, this_cpu; 5364 struct task_group *tg; 5365 unsigned long weight; 5366 int balanced; 5367 5368 idx = sd->wake_idx; 5369 this_cpu = smp_processor_id(); 5370 load = source_load(prev_cpu, idx); 5371 this_load = target_load(this_cpu, idx); 5372 5373 /* 5374 * If sync wakeup then subtract the (maximum possible) 5375 * effect of the currently running task from the load 5376 * of the current CPU: 5377 */ 5378 if (sync) { 5379 tg = task_group(current); 5380 weight = current->se.avg.load_avg; 5381 5382 this_load += effective_load(tg, this_cpu, -weight, -weight); 5383 load += effective_load(tg, prev_cpu, 0, -weight); 5384 } 5385 5386 tg = task_group(p); 5387 weight = p->se.avg.load_avg; 5388 5389 /* 5390 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5391 * due to the sync cause above having dropped this_load to 0, we'll 5392 * always have an imbalance, but there's really nothing you can do 5393 * about that, so that's good too. 5394 * 5395 * Otherwise check if either cpus are near enough in load to allow this 5396 * task to be woken on this_cpu. 5397 */ 5398 this_eff_load = 100; 5399 this_eff_load *= capacity_of(prev_cpu); 5400 5401 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5402 prev_eff_load *= capacity_of(this_cpu); 5403 5404 if (this_load > 0) { 5405 this_eff_load *= this_load + 5406 effective_load(tg, this_cpu, weight, weight); 5407 5408 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5409 } 5410 5411 balanced = this_eff_load <= prev_eff_load; 5412 5413 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5414 5415 if (!balanced) 5416 return 0; 5417 5418 schedstat_inc(sd->ttwu_move_affine); 5419 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5420 5421 return 1; 5422 } 5423 5424 static inline int task_util(struct task_struct *p); 5425 static int cpu_util_wake(int cpu, struct task_struct *p); 5426 5427 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5428 { 5429 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p); 5430 } 5431 5432 /* 5433 * find_idlest_group finds and returns the least busy CPU group within the 5434 * domain. 5435 */ 5436 static struct sched_group * 5437 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5438 int this_cpu, int sd_flag) 5439 { 5440 struct sched_group *idlest = NULL, *group = sd->groups; 5441 struct sched_group *most_spare_sg = NULL; 5442 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0; 5443 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0; 5444 unsigned long most_spare = 0, this_spare = 0; 5445 int load_idx = sd->forkexec_idx; 5446 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5447 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5448 (sd->imbalance_pct-100) / 100; 5449 5450 if (sd_flag & SD_BALANCE_WAKE) 5451 load_idx = sd->wake_idx; 5452 5453 do { 5454 unsigned long load, avg_load, runnable_load; 5455 unsigned long spare_cap, max_spare_cap; 5456 int local_group; 5457 int i; 5458 5459 /* Skip over this group if it has no CPUs allowed */ 5460 if (!cpumask_intersects(sched_group_cpus(group), 5461 tsk_cpus_allowed(p))) 5462 continue; 5463 5464 local_group = cpumask_test_cpu(this_cpu, 5465 sched_group_cpus(group)); 5466 5467 /* 5468 * Tally up the load of all CPUs in the group and find 5469 * the group containing the CPU with most spare capacity. 5470 */ 5471 avg_load = 0; 5472 runnable_load = 0; 5473 max_spare_cap = 0; 5474 5475 for_each_cpu(i, sched_group_cpus(group)) { 5476 /* Bias balancing toward cpus of our domain */ 5477 if (local_group) 5478 load = source_load(i, load_idx); 5479 else 5480 load = target_load(i, load_idx); 5481 5482 runnable_load += load; 5483 5484 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5485 5486 spare_cap = capacity_spare_wake(i, p); 5487 5488 if (spare_cap > max_spare_cap) 5489 max_spare_cap = spare_cap; 5490 } 5491 5492 /* Adjust by relative CPU capacity of the group */ 5493 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5494 group->sgc->capacity; 5495 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5496 group->sgc->capacity; 5497 5498 if (local_group) { 5499 this_runnable_load = runnable_load; 5500 this_avg_load = avg_load; 5501 this_spare = max_spare_cap; 5502 } else { 5503 if (min_runnable_load > (runnable_load + imbalance)) { 5504 /* 5505 * The runnable load is significantly smaller 5506 * so we can pick this new cpu 5507 */ 5508 min_runnable_load = runnable_load; 5509 min_avg_load = avg_load; 5510 idlest = group; 5511 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5512 (100*min_avg_load > imbalance_scale*avg_load)) { 5513 /* 5514 * The runnable loads are close so take the 5515 * blocked load into account through avg_load. 5516 */ 5517 min_avg_load = avg_load; 5518 idlest = group; 5519 } 5520 5521 if (most_spare < max_spare_cap) { 5522 most_spare = max_spare_cap; 5523 most_spare_sg = group; 5524 } 5525 } 5526 } while (group = group->next, group != sd->groups); 5527 5528 /* 5529 * The cross-over point between using spare capacity or least load 5530 * is too conservative for high utilization tasks on partially 5531 * utilized systems if we require spare_capacity > task_util(p), 5532 * so we allow for some task stuffing by using 5533 * spare_capacity > task_util(p)/2. 5534 * 5535 * Spare capacity can't be used for fork because the utilization has 5536 * not been set yet, we must first select a rq to compute the initial 5537 * utilization. 5538 */ 5539 if (sd_flag & SD_BALANCE_FORK) 5540 goto skip_spare; 5541 5542 if (this_spare > task_util(p) / 2 && 5543 imbalance_scale*this_spare > 100*most_spare) 5544 return NULL; 5545 5546 if (most_spare > task_util(p) / 2) 5547 return most_spare_sg; 5548 5549 skip_spare: 5550 if (!idlest) 5551 return NULL; 5552 5553 if (min_runnable_load > (this_runnable_load + imbalance)) 5554 return NULL; 5555 5556 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5557 (100*this_avg_load < imbalance_scale*min_avg_load)) 5558 return NULL; 5559 5560 return idlest; 5561 } 5562 5563 /* 5564 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5565 */ 5566 static int 5567 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5568 { 5569 unsigned long load, min_load = ULONG_MAX; 5570 unsigned int min_exit_latency = UINT_MAX; 5571 u64 latest_idle_timestamp = 0; 5572 int least_loaded_cpu = this_cpu; 5573 int shallowest_idle_cpu = -1; 5574 int i; 5575 5576 /* Check if we have any choice: */ 5577 if (group->group_weight == 1) 5578 return cpumask_first(sched_group_cpus(group)); 5579 5580 /* Traverse only the allowed CPUs */ 5581 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 5582 if (idle_cpu(i)) { 5583 struct rq *rq = cpu_rq(i); 5584 struct cpuidle_state *idle = idle_get_state(rq); 5585 if (idle && idle->exit_latency < min_exit_latency) { 5586 /* 5587 * We give priority to a CPU whose idle state 5588 * has the smallest exit latency irrespective 5589 * of any idle timestamp. 5590 */ 5591 min_exit_latency = idle->exit_latency; 5592 latest_idle_timestamp = rq->idle_stamp; 5593 shallowest_idle_cpu = i; 5594 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5595 rq->idle_stamp > latest_idle_timestamp) { 5596 /* 5597 * If equal or no active idle state, then 5598 * the most recently idled CPU might have 5599 * a warmer cache. 5600 */ 5601 latest_idle_timestamp = rq->idle_stamp; 5602 shallowest_idle_cpu = i; 5603 } 5604 } else if (shallowest_idle_cpu == -1) { 5605 load = weighted_cpuload(i); 5606 if (load < min_load || (load == min_load && i == this_cpu)) { 5607 min_load = load; 5608 least_loaded_cpu = i; 5609 } 5610 } 5611 } 5612 5613 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5614 } 5615 5616 /* 5617 * Implement a for_each_cpu() variant that starts the scan at a given cpu 5618 * (@start), and wraps around. 5619 * 5620 * This is used to scan for idle CPUs; such that not all CPUs looking for an 5621 * idle CPU find the same CPU. The down-side is that tasks tend to cycle 5622 * through the LLC domain. 5623 * 5624 * Especially tbench is found sensitive to this. 5625 */ 5626 5627 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped) 5628 { 5629 int next; 5630 5631 again: 5632 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1); 5633 5634 if (*wrapped) { 5635 if (next >= start) 5636 return nr_cpumask_bits; 5637 } else { 5638 if (next >= nr_cpumask_bits) { 5639 *wrapped = 1; 5640 n = -1; 5641 goto again; 5642 } 5643 } 5644 5645 return next; 5646 } 5647 5648 #define for_each_cpu_wrap(cpu, mask, start, wrap) \ 5649 for ((wrap) = 0, (cpu) = (start)-1; \ 5650 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \ 5651 (cpu) < nr_cpumask_bits; ) 5652 5653 #ifdef CONFIG_SCHED_SMT 5654 5655 static inline void set_idle_cores(int cpu, int val) 5656 { 5657 struct sched_domain_shared *sds; 5658 5659 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5660 if (sds) 5661 WRITE_ONCE(sds->has_idle_cores, val); 5662 } 5663 5664 static inline bool test_idle_cores(int cpu, bool def) 5665 { 5666 struct sched_domain_shared *sds; 5667 5668 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5669 if (sds) 5670 return READ_ONCE(sds->has_idle_cores); 5671 5672 return def; 5673 } 5674 5675 /* 5676 * Scans the local SMT mask to see if the entire core is idle, and records this 5677 * information in sd_llc_shared->has_idle_cores. 5678 * 5679 * Since SMT siblings share all cache levels, inspecting this limited remote 5680 * state should be fairly cheap. 5681 */ 5682 void __update_idle_core(struct rq *rq) 5683 { 5684 int core = cpu_of(rq); 5685 int cpu; 5686 5687 rcu_read_lock(); 5688 if (test_idle_cores(core, true)) 5689 goto unlock; 5690 5691 for_each_cpu(cpu, cpu_smt_mask(core)) { 5692 if (cpu == core) 5693 continue; 5694 5695 if (!idle_cpu(cpu)) 5696 goto unlock; 5697 } 5698 5699 set_idle_cores(core, 1); 5700 unlock: 5701 rcu_read_unlock(); 5702 } 5703 5704 /* 5705 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5706 * there are no idle cores left in the system; tracked through 5707 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5708 */ 5709 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5710 { 5711 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5712 int core, cpu, wrap; 5713 5714 if (!static_branch_likely(&sched_smt_present)) 5715 return -1; 5716 5717 if (!test_idle_cores(target, false)) 5718 return -1; 5719 5720 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p)); 5721 5722 for_each_cpu_wrap(core, cpus, target, wrap) { 5723 bool idle = true; 5724 5725 for_each_cpu(cpu, cpu_smt_mask(core)) { 5726 cpumask_clear_cpu(cpu, cpus); 5727 if (!idle_cpu(cpu)) 5728 idle = false; 5729 } 5730 5731 if (idle) 5732 return core; 5733 } 5734 5735 /* 5736 * Failed to find an idle core; stop looking for one. 5737 */ 5738 set_idle_cores(target, 0); 5739 5740 return -1; 5741 } 5742 5743 /* 5744 * Scan the local SMT mask for idle CPUs. 5745 */ 5746 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5747 { 5748 int cpu; 5749 5750 if (!static_branch_likely(&sched_smt_present)) 5751 return -1; 5752 5753 for_each_cpu(cpu, cpu_smt_mask(target)) { 5754 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 5755 continue; 5756 if (idle_cpu(cpu)) 5757 return cpu; 5758 } 5759 5760 return -1; 5761 } 5762 5763 #else /* CONFIG_SCHED_SMT */ 5764 5765 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5766 { 5767 return -1; 5768 } 5769 5770 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5771 { 5772 return -1; 5773 } 5774 5775 #endif /* CONFIG_SCHED_SMT */ 5776 5777 /* 5778 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5779 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5780 * average idle time for this rq (as found in rq->avg_idle). 5781 */ 5782 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5783 { 5784 struct sched_domain *this_sd; 5785 u64 avg_cost, avg_idle = this_rq()->avg_idle; 5786 u64 time, cost; 5787 s64 delta; 5788 int cpu, wrap; 5789 5790 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5791 if (!this_sd) 5792 return -1; 5793 5794 avg_cost = this_sd->avg_scan_cost; 5795 5796 /* 5797 * Due to large variance we need a large fuzz factor; hackbench in 5798 * particularly is sensitive here. 5799 */ 5800 if ((avg_idle / 512) < avg_cost) 5801 return -1; 5802 5803 time = local_clock(); 5804 5805 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) { 5806 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 5807 continue; 5808 if (idle_cpu(cpu)) 5809 break; 5810 } 5811 5812 time = local_clock() - time; 5813 cost = this_sd->avg_scan_cost; 5814 delta = (s64)(time - cost) / 8; 5815 this_sd->avg_scan_cost += delta; 5816 5817 return cpu; 5818 } 5819 5820 /* 5821 * Try and locate an idle core/thread in the LLC cache domain. 5822 */ 5823 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5824 { 5825 struct sched_domain *sd; 5826 int i; 5827 5828 if (idle_cpu(target)) 5829 return target; 5830 5831 /* 5832 * If the previous cpu is cache affine and idle, don't be stupid. 5833 */ 5834 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 5835 return prev; 5836 5837 sd = rcu_dereference(per_cpu(sd_llc, target)); 5838 if (!sd) 5839 return target; 5840 5841 i = select_idle_core(p, sd, target); 5842 if ((unsigned)i < nr_cpumask_bits) 5843 return i; 5844 5845 i = select_idle_cpu(p, sd, target); 5846 if ((unsigned)i < nr_cpumask_bits) 5847 return i; 5848 5849 i = select_idle_smt(p, sd, target); 5850 if ((unsigned)i < nr_cpumask_bits) 5851 return i; 5852 5853 return target; 5854 } 5855 5856 /* 5857 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5858 * tasks. The unit of the return value must be the one of capacity so we can 5859 * compare the utilization with the capacity of the CPU that is available for 5860 * CFS task (ie cpu_capacity). 5861 * 5862 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5863 * recent utilization of currently non-runnable tasks on a CPU. It represents 5864 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5865 * capacity_orig is the cpu_capacity available at the highest frequency 5866 * (arch_scale_freq_capacity()). 5867 * The utilization of a CPU converges towards a sum equal to or less than the 5868 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5869 * the running time on this CPU scaled by capacity_curr. 5870 * 5871 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5872 * higher than capacity_orig because of unfortunate rounding in 5873 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5874 * the average stabilizes with the new running time. We need to check that the 5875 * utilization stays within the range of [0..capacity_orig] and cap it if 5876 * necessary. Without utilization capping, a group could be seen as overloaded 5877 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5878 * available capacity. We allow utilization to overshoot capacity_curr (but not 5879 * capacity_orig) as it useful for predicting the capacity required after task 5880 * migrations (scheduler-driven DVFS). 5881 */ 5882 static int cpu_util(int cpu) 5883 { 5884 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5885 unsigned long capacity = capacity_orig_of(cpu); 5886 5887 return (util >= capacity) ? capacity : util; 5888 } 5889 5890 static inline int task_util(struct task_struct *p) 5891 { 5892 return p->se.avg.util_avg; 5893 } 5894 5895 /* 5896 * cpu_util_wake: Compute cpu utilization with any contributions from 5897 * the waking task p removed. 5898 */ 5899 static int cpu_util_wake(int cpu, struct task_struct *p) 5900 { 5901 unsigned long util, capacity; 5902 5903 /* Task has no contribution or is new */ 5904 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 5905 return cpu_util(cpu); 5906 5907 capacity = capacity_orig_of(cpu); 5908 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 5909 5910 return (util >= capacity) ? capacity : util; 5911 } 5912 5913 /* 5914 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 5915 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 5916 * 5917 * In that case WAKE_AFFINE doesn't make sense and we'll let 5918 * BALANCE_WAKE sort things out. 5919 */ 5920 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 5921 { 5922 long min_cap, max_cap; 5923 5924 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 5925 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 5926 5927 /* Minimum capacity is close to max, no need to abort wake_affine */ 5928 if (max_cap - min_cap < max_cap >> 3) 5929 return 0; 5930 5931 /* Bring task utilization in sync with prev_cpu */ 5932 sync_entity_load_avg(&p->se); 5933 5934 return min_cap * 1024 < task_util(p) * capacity_margin; 5935 } 5936 5937 /* 5938 * select_task_rq_fair: Select target runqueue for the waking task in domains 5939 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5940 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5941 * 5942 * Balances load by selecting the idlest cpu in the idlest group, or under 5943 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5944 * 5945 * Returns the target cpu number. 5946 * 5947 * preempt must be disabled. 5948 */ 5949 static int 5950 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5951 { 5952 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5953 int cpu = smp_processor_id(); 5954 int new_cpu = prev_cpu; 5955 int want_affine = 0; 5956 int sync = wake_flags & WF_SYNC; 5957 5958 if (sd_flag & SD_BALANCE_WAKE) { 5959 record_wakee(p); 5960 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 5961 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 5962 } 5963 5964 rcu_read_lock(); 5965 for_each_domain(cpu, tmp) { 5966 if (!(tmp->flags & SD_LOAD_BALANCE)) 5967 break; 5968 5969 /* 5970 * If both cpu and prev_cpu are part of this domain, 5971 * cpu is a valid SD_WAKE_AFFINE target. 5972 */ 5973 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5974 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5975 affine_sd = tmp; 5976 break; 5977 } 5978 5979 if (tmp->flags & sd_flag) 5980 sd = tmp; 5981 else if (!want_affine) 5982 break; 5983 } 5984 5985 if (affine_sd) { 5986 sd = NULL; /* Prefer wake_affine over balance flags */ 5987 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync)) 5988 new_cpu = cpu; 5989 } 5990 5991 if (!sd) { 5992 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5993 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 5994 5995 } else while (sd) { 5996 struct sched_group *group; 5997 int weight; 5998 5999 if (!(sd->flags & sd_flag)) { 6000 sd = sd->child; 6001 continue; 6002 } 6003 6004 group = find_idlest_group(sd, p, cpu, sd_flag); 6005 if (!group) { 6006 sd = sd->child; 6007 continue; 6008 } 6009 6010 new_cpu = find_idlest_cpu(group, p, cpu); 6011 if (new_cpu == -1 || new_cpu == cpu) { 6012 /* Now try balancing at a lower domain level of cpu */ 6013 sd = sd->child; 6014 continue; 6015 } 6016 6017 /* Now try balancing at a lower domain level of new_cpu */ 6018 cpu = new_cpu; 6019 weight = sd->span_weight; 6020 sd = NULL; 6021 for_each_domain(cpu, tmp) { 6022 if (weight <= tmp->span_weight) 6023 break; 6024 if (tmp->flags & sd_flag) 6025 sd = tmp; 6026 } 6027 /* while loop will break here if sd == NULL */ 6028 } 6029 rcu_read_unlock(); 6030 6031 return new_cpu; 6032 } 6033 6034 /* 6035 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6036 * cfs_rq_of(p) references at time of call are still valid and identify the 6037 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6038 */ 6039 static void migrate_task_rq_fair(struct task_struct *p) 6040 { 6041 /* 6042 * As blocked tasks retain absolute vruntime the migration needs to 6043 * deal with this by subtracting the old and adding the new 6044 * min_vruntime -- the latter is done by enqueue_entity() when placing 6045 * the task on the new runqueue. 6046 */ 6047 if (p->state == TASK_WAKING) { 6048 struct sched_entity *se = &p->se; 6049 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6050 u64 min_vruntime; 6051 6052 #ifndef CONFIG_64BIT 6053 u64 min_vruntime_copy; 6054 6055 do { 6056 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6057 smp_rmb(); 6058 min_vruntime = cfs_rq->min_vruntime; 6059 } while (min_vruntime != min_vruntime_copy); 6060 #else 6061 min_vruntime = cfs_rq->min_vruntime; 6062 #endif 6063 6064 se->vruntime -= min_vruntime; 6065 } 6066 6067 /* 6068 * We are supposed to update the task to "current" time, then its up to date 6069 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 6070 * what current time is, so simply throw away the out-of-date time. This 6071 * will result in the wakee task is less decayed, but giving the wakee more 6072 * load sounds not bad. 6073 */ 6074 remove_entity_load_avg(&p->se); 6075 6076 /* Tell new CPU we are migrated */ 6077 p->se.avg.last_update_time = 0; 6078 6079 /* We have migrated, no longer consider this task hot */ 6080 p->se.exec_start = 0; 6081 } 6082 6083 static void task_dead_fair(struct task_struct *p) 6084 { 6085 remove_entity_load_avg(&p->se); 6086 } 6087 #endif /* CONFIG_SMP */ 6088 6089 static unsigned long 6090 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 6091 { 6092 unsigned long gran = sysctl_sched_wakeup_granularity; 6093 6094 /* 6095 * Since its curr running now, convert the gran from real-time 6096 * to virtual-time in his units. 6097 * 6098 * By using 'se' instead of 'curr' we penalize light tasks, so 6099 * they get preempted easier. That is, if 'se' < 'curr' then 6100 * the resulting gran will be larger, therefore penalizing the 6101 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6102 * be smaller, again penalizing the lighter task. 6103 * 6104 * This is especially important for buddies when the leftmost 6105 * task is higher priority than the buddy. 6106 */ 6107 return calc_delta_fair(gran, se); 6108 } 6109 6110 /* 6111 * Should 'se' preempt 'curr'. 6112 * 6113 * |s1 6114 * |s2 6115 * |s3 6116 * g 6117 * |<--->|c 6118 * 6119 * w(c, s1) = -1 6120 * w(c, s2) = 0 6121 * w(c, s3) = 1 6122 * 6123 */ 6124 static int 6125 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6126 { 6127 s64 gran, vdiff = curr->vruntime - se->vruntime; 6128 6129 if (vdiff <= 0) 6130 return -1; 6131 6132 gran = wakeup_gran(curr, se); 6133 if (vdiff > gran) 6134 return 1; 6135 6136 return 0; 6137 } 6138 6139 static void set_last_buddy(struct sched_entity *se) 6140 { 6141 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6142 return; 6143 6144 for_each_sched_entity(se) 6145 cfs_rq_of(se)->last = se; 6146 } 6147 6148 static void set_next_buddy(struct sched_entity *se) 6149 { 6150 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6151 return; 6152 6153 for_each_sched_entity(se) 6154 cfs_rq_of(se)->next = se; 6155 } 6156 6157 static void set_skip_buddy(struct sched_entity *se) 6158 { 6159 for_each_sched_entity(se) 6160 cfs_rq_of(se)->skip = se; 6161 } 6162 6163 /* 6164 * Preempt the current task with a newly woken task if needed: 6165 */ 6166 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6167 { 6168 struct task_struct *curr = rq->curr; 6169 struct sched_entity *se = &curr->se, *pse = &p->se; 6170 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6171 int scale = cfs_rq->nr_running >= sched_nr_latency; 6172 int next_buddy_marked = 0; 6173 6174 if (unlikely(se == pse)) 6175 return; 6176 6177 /* 6178 * This is possible from callers such as attach_tasks(), in which we 6179 * unconditionally check_prempt_curr() after an enqueue (which may have 6180 * lead to a throttle). This both saves work and prevents false 6181 * next-buddy nomination below. 6182 */ 6183 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6184 return; 6185 6186 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6187 set_next_buddy(pse); 6188 next_buddy_marked = 1; 6189 } 6190 6191 /* 6192 * We can come here with TIF_NEED_RESCHED already set from new task 6193 * wake up path. 6194 * 6195 * Note: this also catches the edge-case of curr being in a throttled 6196 * group (e.g. via set_curr_task), since update_curr() (in the 6197 * enqueue of curr) will have resulted in resched being set. This 6198 * prevents us from potentially nominating it as a false LAST_BUDDY 6199 * below. 6200 */ 6201 if (test_tsk_need_resched(curr)) 6202 return; 6203 6204 /* Idle tasks are by definition preempted by non-idle tasks. */ 6205 if (unlikely(curr->policy == SCHED_IDLE) && 6206 likely(p->policy != SCHED_IDLE)) 6207 goto preempt; 6208 6209 /* 6210 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6211 * is driven by the tick): 6212 */ 6213 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6214 return; 6215 6216 find_matching_se(&se, &pse); 6217 update_curr(cfs_rq_of(se)); 6218 BUG_ON(!pse); 6219 if (wakeup_preempt_entity(se, pse) == 1) { 6220 /* 6221 * Bias pick_next to pick the sched entity that is 6222 * triggering this preemption. 6223 */ 6224 if (!next_buddy_marked) 6225 set_next_buddy(pse); 6226 goto preempt; 6227 } 6228 6229 return; 6230 6231 preempt: 6232 resched_curr(rq); 6233 /* 6234 * Only set the backward buddy when the current task is still 6235 * on the rq. This can happen when a wakeup gets interleaved 6236 * with schedule on the ->pre_schedule() or idle_balance() 6237 * point, either of which can * drop the rq lock. 6238 * 6239 * Also, during early boot the idle thread is in the fair class, 6240 * for obvious reasons its a bad idea to schedule back to it. 6241 */ 6242 if (unlikely(!se->on_rq || curr == rq->idle)) 6243 return; 6244 6245 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6246 set_last_buddy(se); 6247 } 6248 6249 static struct task_struct * 6250 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6251 { 6252 struct cfs_rq *cfs_rq = &rq->cfs; 6253 struct sched_entity *se; 6254 struct task_struct *p; 6255 int new_tasks; 6256 6257 again: 6258 #ifdef CONFIG_FAIR_GROUP_SCHED 6259 if (!cfs_rq->nr_running) 6260 goto idle; 6261 6262 if (prev->sched_class != &fair_sched_class) 6263 goto simple; 6264 6265 /* 6266 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6267 * likely that a next task is from the same cgroup as the current. 6268 * 6269 * Therefore attempt to avoid putting and setting the entire cgroup 6270 * hierarchy, only change the part that actually changes. 6271 */ 6272 6273 do { 6274 struct sched_entity *curr = cfs_rq->curr; 6275 6276 /* 6277 * Since we got here without doing put_prev_entity() we also 6278 * have to consider cfs_rq->curr. If it is still a runnable 6279 * entity, update_curr() will update its vruntime, otherwise 6280 * forget we've ever seen it. 6281 */ 6282 if (curr) { 6283 if (curr->on_rq) 6284 update_curr(cfs_rq); 6285 else 6286 curr = NULL; 6287 6288 /* 6289 * This call to check_cfs_rq_runtime() will do the 6290 * throttle and dequeue its entity in the parent(s). 6291 * Therefore the 'simple' nr_running test will indeed 6292 * be correct. 6293 */ 6294 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 6295 goto simple; 6296 } 6297 6298 se = pick_next_entity(cfs_rq, curr); 6299 cfs_rq = group_cfs_rq(se); 6300 } while (cfs_rq); 6301 6302 p = task_of(se); 6303 6304 /* 6305 * Since we haven't yet done put_prev_entity and if the selected task 6306 * is a different task than we started out with, try and touch the 6307 * least amount of cfs_rqs. 6308 */ 6309 if (prev != p) { 6310 struct sched_entity *pse = &prev->se; 6311 6312 while (!(cfs_rq = is_same_group(se, pse))) { 6313 int se_depth = se->depth; 6314 int pse_depth = pse->depth; 6315 6316 if (se_depth <= pse_depth) { 6317 put_prev_entity(cfs_rq_of(pse), pse); 6318 pse = parent_entity(pse); 6319 } 6320 if (se_depth >= pse_depth) { 6321 set_next_entity(cfs_rq_of(se), se); 6322 se = parent_entity(se); 6323 } 6324 } 6325 6326 put_prev_entity(cfs_rq, pse); 6327 set_next_entity(cfs_rq, se); 6328 } 6329 6330 if (hrtick_enabled(rq)) 6331 hrtick_start_fair(rq, p); 6332 6333 return p; 6334 simple: 6335 cfs_rq = &rq->cfs; 6336 #endif 6337 6338 if (!cfs_rq->nr_running) 6339 goto idle; 6340 6341 put_prev_task(rq, prev); 6342 6343 do { 6344 se = pick_next_entity(cfs_rq, NULL); 6345 set_next_entity(cfs_rq, se); 6346 cfs_rq = group_cfs_rq(se); 6347 } while (cfs_rq); 6348 6349 p = task_of(se); 6350 6351 if (hrtick_enabled(rq)) 6352 hrtick_start_fair(rq, p); 6353 6354 return p; 6355 6356 idle: 6357 new_tasks = idle_balance(rq, rf); 6358 6359 /* 6360 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6361 * possible for any higher priority task to appear. In that case we 6362 * must re-start the pick_next_entity() loop. 6363 */ 6364 if (new_tasks < 0) 6365 return RETRY_TASK; 6366 6367 if (new_tasks > 0) 6368 goto again; 6369 6370 return NULL; 6371 } 6372 6373 /* 6374 * Account for a descheduled task: 6375 */ 6376 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6377 { 6378 struct sched_entity *se = &prev->se; 6379 struct cfs_rq *cfs_rq; 6380 6381 for_each_sched_entity(se) { 6382 cfs_rq = cfs_rq_of(se); 6383 put_prev_entity(cfs_rq, se); 6384 } 6385 } 6386 6387 /* 6388 * sched_yield() is very simple 6389 * 6390 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6391 */ 6392 static void yield_task_fair(struct rq *rq) 6393 { 6394 struct task_struct *curr = rq->curr; 6395 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6396 struct sched_entity *se = &curr->se; 6397 6398 /* 6399 * Are we the only task in the tree? 6400 */ 6401 if (unlikely(rq->nr_running == 1)) 6402 return; 6403 6404 clear_buddies(cfs_rq, se); 6405 6406 if (curr->policy != SCHED_BATCH) { 6407 update_rq_clock(rq); 6408 /* 6409 * Update run-time statistics of the 'current'. 6410 */ 6411 update_curr(cfs_rq); 6412 /* 6413 * Tell update_rq_clock() that we've just updated, 6414 * so we don't do microscopic update in schedule() 6415 * and double the fastpath cost. 6416 */ 6417 rq_clock_skip_update(rq, true); 6418 } 6419 6420 set_skip_buddy(se); 6421 } 6422 6423 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6424 { 6425 struct sched_entity *se = &p->se; 6426 6427 /* throttled hierarchies are not runnable */ 6428 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6429 return false; 6430 6431 /* Tell the scheduler that we'd really like pse to run next. */ 6432 set_next_buddy(se); 6433 6434 yield_task_fair(rq); 6435 6436 return true; 6437 } 6438 6439 #ifdef CONFIG_SMP 6440 /************************************************** 6441 * Fair scheduling class load-balancing methods. 6442 * 6443 * BASICS 6444 * 6445 * The purpose of load-balancing is to achieve the same basic fairness the 6446 * per-cpu scheduler provides, namely provide a proportional amount of compute 6447 * time to each task. This is expressed in the following equation: 6448 * 6449 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6450 * 6451 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6452 * W_i,0 is defined as: 6453 * 6454 * W_i,0 = \Sum_j w_i,j (2) 6455 * 6456 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6457 * is derived from the nice value as per sched_prio_to_weight[]. 6458 * 6459 * The weight average is an exponential decay average of the instantaneous 6460 * weight: 6461 * 6462 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6463 * 6464 * C_i is the compute capacity of cpu i, typically it is the 6465 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6466 * can also include other factors [XXX]. 6467 * 6468 * To achieve this balance we define a measure of imbalance which follows 6469 * directly from (1): 6470 * 6471 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6472 * 6473 * We them move tasks around to minimize the imbalance. In the continuous 6474 * function space it is obvious this converges, in the discrete case we get 6475 * a few fun cases generally called infeasible weight scenarios. 6476 * 6477 * [XXX expand on: 6478 * - infeasible weights; 6479 * - local vs global optima in the discrete case. ] 6480 * 6481 * 6482 * SCHED DOMAINS 6483 * 6484 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6485 * for all i,j solution, we create a tree of cpus that follows the hardware 6486 * topology where each level pairs two lower groups (or better). This results 6487 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6488 * tree to only the first of the previous level and we decrease the frequency 6489 * of load-balance at each level inv. proportional to the number of cpus in 6490 * the groups. 6491 * 6492 * This yields: 6493 * 6494 * log_2 n 1 n 6495 * \Sum { --- * --- * 2^i } = O(n) (5) 6496 * i = 0 2^i 2^i 6497 * `- size of each group 6498 * | | `- number of cpus doing load-balance 6499 * | `- freq 6500 * `- sum over all levels 6501 * 6502 * Coupled with a limit on how many tasks we can migrate every balance pass, 6503 * this makes (5) the runtime complexity of the balancer. 6504 * 6505 * An important property here is that each CPU is still (indirectly) connected 6506 * to every other cpu in at most O(log n) steps: 6507 * 6508 * The adjacency matrix of the resulting graph is given by: 6509 * 6510 * log_2 n 6511 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6512 * k = 0 6513 * 6514 * And you'll find that: 6515 * 6516 * A^(log_2 n)_i,j != 0 for all i,j (7) 6517 * 6518 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6519 * The task movement gives a factor of O(m), giving a convergence complexity 6520 * of: 6521 * 6522 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6523 * 6524 * 6525 * WORK CONSERVING 6526 * 6527 * In order to avoid CPUs going idle while there's still work to do, new idle 6528 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6529 * tree itself instead of relying on other CPUs to bring it work. 6530 * 6531 * This adds some complexity to both (5) and (8) but it reduces the total idle 6532 * time. 6533 * 6534 * [XXX more?] 6535 * 6536 * 6537 * CGROUPS 6538 * 6539 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6540 * 6541 * s_k,i 6542 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6543 * S_k 6544 * 6545 * Where 6546 * 6547 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6548 * 6549 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6550 * 6551 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6552 * property. 6553 * 6554 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6555 * rewrite all of this once again.] 6556 */ 6557 6558 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6559 6560 enum fbq_type { regular, remote, all }; 6561 6562 #define LBF_ALL_PINNED 0x01 6563 #define LBF_NEED_BREAK 0x02 6564 #define LBF_DST_PINNED 0x04 6565 #define LBF_SOME_PINNED 0x08 6566 6567 struct lb_env { 6568 struct sched_domain *sd; 6569 6570 struct rq *src_rq; 6571 int src_cpu; 6572 6573 int dst_cpu; 6574 struct rq *dst_rq; 6575 6576 struct cpumask *dst_grpmask; 6577 int new_dst_cpu; 6578 enum cpu_idle_type idle; 6579 long imbalance; 6580 /* The set of CPUs under consideration for load-balancing */ 6581 struct cpumask *cpus; 6582 6583 unsigned int flags; 6584 6585 unsigned int loop; 6586 unsigned int loop_break; 6587 unsigned int loop_max; 6588 6589 enum fbq_type fbq_type; 6590 struct list_head tasks; 6591 }; 6592 6593 /* 6594 * Is this task likely cache-hot: 6595 */ 6596 static int task_hot(struct task_struct *p, struct lb_env *env) 6597 { 6598 s64 delta; 6599 6600 lockdep_assert_held(&env->src_rq->lock); 6601 6602 if (p->sched_class != &fair_sched_class) 6603 return 0; 6604 6605 if (unlikely(p->policy == SCHED_IDLE)) 6606 return 0; 6607 6608 /* 6609 * Buddy candidates are cache hot: 6610 */ 6611 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6612 (&p->se == cfs_rq_of(&p->se)->next || 6613 &p->se == cfs_rq_of(&p->se)->last)) 6614 return 1; 6615 6616 if (sysctl_sched_migration_cost == -1) 6617 return 1; 6618 if (sysctl_sched_migration_cost == 0) 6619 return 0; 6620 6621 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6622 6623 return delta < (s64)sysctl_sched_migration_cost; 6624 } 6625 6626 #ifdef CONFIG_NUMA_BALANCING 6627 /* 6628 * Returns 1, if task migration degrades locality 6629 * Returns 0, if task migration improves locality i.e migration preferred. 6630 * Returns -1, if task migration is not affected by locality. 6631 */ 6632 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6633 { 6634 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6635 unsigned long src_faults, dst_faults; 6636 int src_nid, dst_nid; 6637 6638 if (!static_branch_likely(&sched_numa_balancing)) 6639 return -1; 6640 6641 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6642 return -1; 6643 6644 src_nid = cpu_to_node(env->src_cpu); 6645 dst_nid = cpu_to_node(env->dst_cpu); 6646 6647 if (src_nid == dst_nid) 6648 return -1; 6649 6650 /* Migrating away from the preferred node is always bad. */ 6651 if (src_nid == p->numa_preferred_nid) { 6652 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6653 return 1; 6654 else 6655 return -1; 6656 } 6657 6658 /* Encourage migration to the preferred node. */ 6659 if (dst_nid == p->numa_preferred_nid) 6660 return 0; 6661 6662 if (numa_group) { 6663 src_faults = group_faults(p, src_nid); 6664 dst_faults = group_faults(p, dst_nid); 6665 } else { 6666 src_faults = task_faults(p, src_nid); 6667 dst_faults = task_faults(p, dst_nid); 6668 } 6669 6670 return dst_faults < src_faults; 6671 } 6672 6673 #else 6674 static inline int migrate_degrades_locality(struct task_struct *p, 6675 struct lb_env *env) 6676 { 6677 return -1; 6678 } 6679 #endif 6680 6681 /* 6682 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6683 */ 6684 static 6685 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6686 { 6687 int tsk_cache_hot; 6688 6689 lockdep_assert_held(&env->src_rq->lock); 6690 6691 /* 6692 * We do not migrate tasks that are: 6693 * 1) throttled_lb_pair, or 6694 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6695 * 3) running (obviously), or 6696 * 4) are cache-hot on their current CPU. 6697 */ 6698 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6699 return 0; 6700 6701 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 6702 int cpu; 6703 6704 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6705 6706 env->flags |= LBF_SOME_PINNED; 6707 6708 /* 6709 * Remember if this task can be migrated to any other cpu in 6710 * our sched_group. We may want to revisit it if we couldn't 6711 * meet load balance goals by pulling other tasks on src_cpu. 6712 * 6713 * Also avoid computing new_dst_cpu if we have already computed 6714 * one in current iteration. 6715 */ 6716 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6717 return 0; 6718 6719 /* Prevent to re-select dst_cpu via env's cpus */ 6720 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6721 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 6722 env->flags |= LBF_DST_PINNED; 6723 env->new_dst_cpu = cpu; 6724 break; 6725 } 6726 } 6727 6728 return 0; 6729 } 6730 6731 /* Record that we found atleast one task that could run on dst_cpu */ 6732 env->flags &= ~LBF_ALL_PINNED; 6733 6734 if (task_running(env->src_rq, p)) { 6735 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 6736 return 0; 6737 } 6738 6739 /* 6740 * Aggressive migration if: 6741 * 1) destination numa is preferred 6742 * 2) task is cache cold, or 6743 * 3) too many balance attempts have failed. 6744 */ 6745 tsk_cache_hot = migrate_degrades_locality(p, env); 6746 if (tsk_cache_hot == -1) 6747 tsk_cache_hot = task_hot(p, env); 6748 6749 if (tsk_cache_hot <= 0 || 6750 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6751 if (tsk_cache_hot == 1) { 6752 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 6753 schedstat_inc(p->se.statistics.nr_forced_migrations); 6754 } 6755 return 1; 6756 } 6757 6758 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 6759 return 0; 6760 } 6761 6762 /* 6763 * detach_task() -- detach the task for the migration specified in env 6764 */ 6765 static void detach_task(struct task_struct *p, struct lb_env *env) 6766 { 6767 lockdep_assert_held(&env->src_rq->lock); 6768 6769 p->on_rq = TASK_ON_RQ_MIGRATING; 6770 deactivate_task(env->src_rq, p, 0); 6771 set_task_cpu(p, env->dst_cpu); 6772 } 6773 6774 /* 6775 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6776 * part of active balancing operations within "domain". 6777 * 6778 * Returns a task if successful and NULL otherwise. 6779 */ 6780 static struct task_struct *detach_one_task(struct lb_env *env) 6781 { 6782 struct task_struct *p, *n; 6783 6784 lockdep_assert_held(&env->src_rq->lock); 6785 6786 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6787 if (!can_migrate_task(p, env)) 6788 continue; 6789 6790 detach_task(p, env); 6791 6792 /* 6793 * Right now, this is only the second place where 6794 * lb_gained[env->idle] is updated (other is detach_tasks) 6795 * so we can safely collect stats here rather than 6796 * inside detach_tasks(). 6797 */ 6798 schedstat_inc(env->sd->lb_gained[env->idle]); 6799 return p; 6800 } 6801 return NULL; 6802 } 6803 6804 static const unsigned int sched_nr_migrate_break = 32; 6805 6806 /* 6807 * detach_tasks() -- tries to detach up to imbalance weighted load from 6808 * busiest_rq, as part of a balancing operation within domain "sd". 6809 * 6810 * Returns number of detached tasks if successful and 0 otherwise. 6811 */ 6812 static int detach_tasks(struct lb_env *env) 6813 { 6814 struct list_head *tasks = &env->src_rq->cfs_tasks; 6815 struct task_struct *p; 6816 unsigned long load; 6817 int detached = 0; 6818 6819 lockdep_assert_held(&env->src_rq->lock); 6820 6821 if (env->imbalance <= 0) 6822 return 0; 6823 6824 while (!list_empty(tasks)) { 6825 /* 6826 * We don't want to steal all, otherwise we may be treated likewise, 6827 * which could at worst lead to a livelock crash. 6828 */ 6829 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6830 break; 6831 6832 p = list_first_entry(tasks, struct task_struct, se.group_node); 6833 6834 env->loop++; 6835 /* We've more or less seen every task there is, call it quits */ 6836 if (env->loop > env->loop_max) 6837 break; 6838 6839 /* take a breather every nr_migrate tasks */ 6840 if (env->loop > env->loop_break) { 6841 env->loop_break += sched_nr_migrate_break; 6842 env->flags |= LBF_NEED_BREAK; 6843 break; 6844 } 6845 6846 if (!can_migrate_task(p, env)) 6847 goto next; 6848 6849 load = task_h_load(p); 6850 6851 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6852 goto next; 6853 6854 if ((load / 2) > env->imbalance) 6855 goto next; 6856 6857 detach_task(p, env); 6858 list_add(&p->se.group_node, &env->tasks); 6859 6860 detached++; 6861 env->imbalance -= load; 6862 6863 #ifdef CONFIG_PREEMPT 6864 /* 6865 * NEWIDLE balancing is a source of latency, so preemptible 6866 * kernels will stop after the first task is detached to minimize 6867 * the critical section. 6868 */ 6869 if (env->idle == CPU_NEWLY_IDLE) 6870 break; 6871 #endif 6872 6873 /* 6874 * We only want to steal up to the prescribed amount of 6875 * weighted load. 6876 */ 6877 if (env->imbalance <= 0) 6878 break; 6879 6880 continue; 6881 next: 6882 list_move_tail(&p->se.group_node, tasks); 6883 } 6884 6885 /* 6886 * Right now, this is one of only two places we collect this stat 6887 * so we can safely collect detach_one_task() stats here rather 6888 * than inside detach_one_task(). 6889 */ 6890 schedstat_add(env->sd->lb_gained[env->idle], detached); 6891 6892 return detached; 6893 } 6894 6895 /* 6896 * attach_task() -- attach the task detached by detach_task() to its new rq. 6897 */ 6898 static void attach_task(struct rq *rq, struct task_struct *p) 6899 { 6900 lockdep_assert_held(&rq->lock); 6901 6902 BUG_ON(task_rq(p) != rq); 6903 activate_task(rq, p, 0); 6904 p->on_rq = TASK_ON_RQ_QUEUED; 6905 check_preempt_curr(rq, p, 0); 6906 } 6907 6908 /* 6909 * attach_one_task() -- attaches the task returned from detach_one_task() to 6910 * its new rq. 6911 */ 6912 static void attach_one_task(struct rq *rq, struct task_struct *p) 6913 { 6914 raw_spin_lock(&rq->lock); 6915 attach_task(rq, p); 6916 raw_spin_unlock(&rq->lock); 6917 } 6918 6919 /* 6920 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6921 * new rq. 6922 */ 6923 static void attach_tasks(struct lb_env *env) 6924 { 6925 struct list_head *tasks = &env->tasks; 6926 struct task_struct *p; 6927 6928 raw_spin_lock(&env->dst_rq->lock); 6929 6930 while (!list_empty(tasks)) { 6931 p = list_first_entry(tasks, struct task_struct, se.group_node); 6932 list_del_init(&p->se.group_node); 6933 6934 attach_task(env->dst_rq, p); 6935 } 6936 6937 raw_spin_unlock(&env->dst_rq->lock); 6938 } 6939 6940 #ifdef CONFIG_FAIR_GROUP_SCHED 6941 static void update_blocked_averages(int cpu) 6942 { 6943 struct rq *rq = cpu_rq(cpu); 6944 struct cfs_rq *cfs_rq; 6945 unsigned long flags; 6946 6947 raw_spin_lock_irqsave(&rq->lock, flags); 6948 update_rq_clock(rq); 6949 6950 /* 6951 * Iterates the task_group tree in a bottom up fashion, see 6952 * list_add_leaf_cfs_rq() for details. 6953 */ 6954 for_each_leaf_cfs_rq(rq, cfs_rq) { 6955 /* throttled entities do not contribute to load */ 6956 if (throttled_hierarchy(cfs_rq)) 6957 continue; 6958 6959 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6960 update_tg_load_avg(cfs_rq, 0); 6961 6962 /* Propagate pending load changes to the parent */ 6963 if (cfs_rq->tg->se[cpu]) 6964 update_load_avg(cfs_rq->tg->se[cpu], 0); 6965 } 6966 raw_spin_unlock_irqrestore(&rq->lock, flags); 6967 } 6968 6969 /* 6970 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6971 * This needs to be done in a top-down fashion because the load of a child 6972 * group is a fraction of its parents load. 6973 */ 6974 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6975 { 6976 struct rq *rq = rq_of(cfs_rq); 6977 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6978 unsigned long now = jiffies; 6979 unsigned long load; 6980 6981 if (cfs_rq->last_h_load_update == now) 6982 return; 6983 6984 cfs_rq->h_load_next = NULL; 6985 for_each_sched_entity(se) { 6986 cfs_rq = cfs_rq_of(se); 6987 cfs_rq->h_load_next = se; 6988 if (cfs_rq->last_h_load_update == now) 6989 break; 6990 } 6991 6992 if (!se) { 6993 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6994 cfs_rq->last_h_load_update = now; 6995 } 6996 6997 while ((se = cfs_rq->h_load_next) != NULL) { 6998 load = cfs_rq->h_load; 6999 load = div64_ul(load * se->avg.load_avg, 7000 cfs_rq_load_avg(cfs_rq) + 1); 7001 cfs_rq = group_cfs_rq(se); 7002 cfs_rq->h_load = load; 7003 cfs_rq->last_h_load_update = now; 7004 } 7005 } 7006 7007 static unsigned long task_h_load(struct task_struct *p) 7008 { 7009 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7010 7011 update_cfs_rq_h_load(cfs_rq); 7012 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7013 cfs_rq_load_avg(cfs_rq) + 1); 7014 } 7015 #else 7016 static inline void update_blocked_averages(int cpu) 7017 { 7018 struct rq *rq = cpu_rq(cpu); 7019 struct cfs_rq *cfs_rq = &rq->cfs; 7020 unsigned long flags; 7021 7022 raw_spin_lock_irqsave(&rq->lock, flags); 7023 update_rq_clock(rq); 7024 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 7025 raw_spin_unlock_irqrestore(&rq->lock, flags); 7026 } 7027 7028 static unsigned long task_h_load(struct task_struct *p) 7029 { 7030 return p->se.avg.load_avg; 7031 } 7032 #endif 7033 7034 /********** Helpers for find_busiest_group ************************/ 7035 7036 enum group_type { 7037 group_other = 0, 7038 group_imbalanced, 7039 group_overloaded, 7040 }; 7041 7042 /* 7043 * sg_lb_stats - stats of a sched_group required for load_balancing 7044 */ 7045 struct sg_lb_stats { 7046 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7047 unsigned long group_load; /* Total load over the CPUs of the group */ 7048 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7049 unsigned long load_per_task; 7050 unsigned long group_capacity; 7051 unsigned long group_util; /* Total utilization of the group */ 7052 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7053 unsigned int idle_cpus; 7054 unsigned int group_weight; 7055 enum group_type group_type; 7056 int group_no_capacity; 7057 #ifdef CONFIG_NUMA_BALANCING 7058 unsigned int nr_numa_running; 7059 unsigned int nr_preferred_running; 7060 #endif 7061 }; 7062 7063 /* 7064 * sd_lb_stats - Structure to store the statistics of a sched_domain 7065 * during load balancing. 7066 */ 7067 struct sd_lb_stats { 7068 struct sched_group *busiest; /* Busiest group in this sd */ 7069 struct sched_group *local; /* Local group in this sd */ 7070 unsigned long total_load; /* Total load of all groups in sd */ 7071 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7072 unsigned long avg_load; /* Average load across all groups in sd */ 7073 7074 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7075 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7076 }; 7077 7078 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7079 { 7080 /* 7081 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7082 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7083 * We must however clear busiest_stat::avg_load because 7084 * update_sd_pick_busiest() reads this before assignment. 7085 */ 7086 *sds = (struct sd_lb_stats){ 7087 .busiest = NULL, 7088 .local = NULL, 7089 .total_load = 0UL, 7090 .total_capacity = 0UL, 7091 .busiest_stat = { 7092 .avg_load = 0UL, 7093 .sum_nr_running = 0, 7094 .group_type = group_other, 7095 }, 7096 }; 7097 } 7098 7099 /** 7100 * get_sd_load_idx - Obtain the load index for a given sched domain. 7101 * @sd: The sched_domain whose load_idx is to be obtained. 7102 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7103 * 7104 * Return: The load index. 7105 */ 7106 static inline int get_sd_load_idx(struct sched_domain *sd, 7107 enum cpu_idle_type idle) 7108 { 7109 int load_idx; 7110 7111 switch (idle) { 7112 case CPU_NOT_IDLE: 7113 load_idx = sd->busy_idx; 7114 break; 7115 7116 case CPU_NEWLY_IDLE: 7117 load_idx = sd->newidle_idx; 7118 break; 7119 default: 7120 load_idx = sd->idle_idx; 7121 break; 7122 } 7123 7124 return load_idx; 7125 } 7126 7127 static unsigned long scale_rt_capacity(int cpu) 7128 { 7129 struct rq *rq = cpu_rq(cpu); 7130 u64 total, used, age_stamp, avg; 7131 s64 delta; 7132 7133 /* 7134 * Since we're reading these variables without serialization make sure 7135 * we read them once before doing sanity checks on them. 7136 */ 7137 age_stamp = READ_ONCE(rq->age_stamp); 7138 avg = READ_ONCE(rq->rt_avg); 7139 delta = __rq_clock_broken(rq) - age_stamp; 7140 7141 if (unlikely(delta < 0)) 7142 delta = 0; 7143 7144 total = sched_avg_period() + delta; 7145 7146 used = div_u64(avg, total); 7147 7148 if (likely(used < SCHED_CAPACITY_SCALE)) 7149 return SCHED_CAPACITY_SCALE - used; 7150 7151 return 1; 7152 } 7153 7154 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7155 { 7156 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7157 struct sched_group *sdg = sd->groups; 7158 7159 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7160 7161 capacity *= scale_rt_capacity(cpu); 7162 capacity >>= SCHED_CAPACITY_SHIFT; 7163 7164 if (!capacity) 7165 capacity = 1; 7166 7167 cpu_rq(cpu)->cpu_capacity = capacity; 7168 sdg->sgc->capacity = capacity; 7169 sdg->sgc->min_capacity = capacity; 7170 } 7171 7172 void update_group_capacity(struct sched_domain *sd, int cpu) 7173 { 7174 struct sched_domain *child = sd->child; 7175 struct sched_group *group, *sdg = sd->groups; 7176 unsigned long capacity, min_capacity; 7177 unsigned long interval; 7178 7179 interval = msecs_to_jiffies(sd->balance_interval); 7180 interval = clamp(interval, 1UL, max_load_balance_interval); 7181 sdg->sgc->next_update = jiffies + interval; 7182 7183 if (!child) { 7184 update_cpu_capacity(sd, cpu); 7185 return; 7186 } 7187 7188 capacity = 0; 7189 min_capacity = ULONG_MAX; 7190 7191 if (child->flags & SD_OVERLAP) { 7192 /* 7193 * SD_OVERLAP domains cannot assume that child groups 7194 * span the current group. 7195 */ 7196 7197 for_each_cpu(cpu, sched_group_cpus(sdg)) { 7198 struct sched_group_capacity *sgc; 7199 struct rq *rq = cpu_rq(cpu); 7200 7201 /* 7202 * build_sched_domains() -> init_sched_groups_capacity() 7203 * gets here before we've attached the domains to the 7204 * runqueues. 7205 * 7206 * Use capacity_of(), which is set irrespective of domains 7207 * in update_cpu_capacity(). 7208 * 7209 * This avoids capacity from being 0 and 7210 * causing divide-by-zero issues on boot. 7211 */ 7212 if (unlikely(!rq->sd)) { 7213 capacity += capacity_of(cpu); 7214 } else { 7215 sgc = rq->sd->groups->sgc; 7216 capacity += sgc->capacity; 7217 } 7218 7219 min_capacity = min(capacity, min_capacity); 7220 } 7221 } else { 7222 /* 7223 * !SD_OVERLAP domains can assume that child groups 7224 * span the current group. 7225 */ 7226 7227 group = child->groups; 7228 do { 7229 struct sched_group_capacity *sgc = group->sgc; 7230 7231 capacity += sgc->capacity; 7232 min_capacity = min(sgc->min_capacity, min_capacity); 7233 group = group->next; 7234 } while (group != child->groups); 7235 } 7236 7237 sdg->sgc->capacity = capacity; 7238 sdg->sgc->min_capacity = min_capacity; 7239 } 7240 7241 /* 7242 * Check whether the capacity of the rq has been noticeably reduced by side 7243 * activity. The imbalance_pct is used for the threshold. 7244 * Return true is the capacity is reduced 7245 */ 7246 static inline int 7247 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7248 { 7249 return ((rq->cpu_capacity * sd->imbalance_pct) < 7250 (rq->cpu_capacity_orig * 100)); 7251 } 7252 7253 /* 7254 * Group imbalance indicates (and tries to solve) the problem where balancing 7255 * groups is inadequate due to tsk_cpus_allowed() constraints. 7256 * 7257 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7258 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7259 * Something like: 7260 * 7261 * { 0 1 2 3 } { 4 5 6 7 } 7262 * * * * * 7263 * 7264 * If we were to balance group-wise we'd place two tasks in the first group and 7265 * two tasks in the second group. Clearly this is undesired as it will overload 7266 * cpu 3 and leave one of the cpus in the second group unused. 7267 * 7268 * The current solution to this issue is detecting the skew in the first group 7269 * by noticing the lower domain failed to reach balance and had difficulty 7270 * moving tasks due to affinity constraints. 7271 * 7272 * When this is so detected; this group becomes a candidate for busiest; see 7273 * update_sd_pick_busiest(). And calculate_imbalance() and 7274 * find_busiest_group() avoid some of the usual balance conditions to allow it 7275 * to create an effective group imbalance. 7276 * 7277 * This is a somewhat tricky proposition since the next run might not find the 7278 * group imbalance and decide the groups need to be balanced again. A most 7279 * subtle and fragile situation. 7280 */ 7281 7282 static inline int sg_imbalanced(struct sched_group *group) 7283 { 7284 return group->sgc->imbalance; 7285 } 7286 7287 /* 7288 * group_has_capacity returns true if the group has spare capacity that could 7289 * be used by some tasks. 7290 * We consider that a group has spare capacity if the * number of task is 7291 * smaller than the number of CPUs or if the utilization is lower than the 7292 * available capacity for CFS tasks. 7293 * For the latter, we use a threshold to stabilize the state, to take into 7294 * account the variance of the tasks' load and to return true if the available 7295 * capacity in meaningful for the load balancer. 7296 * As an example, an available capacity of 1% can appear but it doesn't make 7297 * any benefit for the load balance. 7298 */ 7299 static inline bool 7300 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7301 { 7302 if (sgs->sum_nr_running < sgs->group_weight) 7303 return true; 7304 7305 if ((sgs->group_capacity * 100) > 7306 (sgs->group_util * env->sd->imbalance_pct)) 7307 return true; 7308 7309 return false; 7310 } 7311 7312 /* 7313 * group_is_overloaded returns true if the group has more tasks than it can 7314 * handle. 7315 * group_is_overloaded is not equals to !group_has_capacity because a group 7316 * with the exact right number of tasks, has no more spare capacity but is not 7317 * overloaded so both group_has_capacity and group_is_overloaded return 7318 * false. 7319 */ 7320 static inline bool 7321 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7322 { 7323 if (sgs->sum_nr_running <= sgs->group_weight) 7324 return false; 7325 7326 if ((sgs->group_capacity * 100) < 7327 (sgs->group_util * env->sd->imbalance_pct)) 7328 return true; 7329 7330 return false; 7331 } 7332 7333 /* 7334 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7335 * per-CPU capacity than sched_group ref. 7336 */ 7337 static inline bool 7338 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7339 { 7340 return sg->sgc->min_capacity * capacity_margin < 7341 ref->sgc->min_capacity * 1024; 7342 } 7343 7344 static inline enum 7345 group_type group_classify(struct sched_group *group, 7346 struct sg_lb_stats *sgs) 7347 { 7348 if (sgs->group_no_capacity) 7349 return group_overloaded; 7350 7351 if (sg_imbalanced(group)) 7352 return group_imbalanced; 7353 7354 return group_other; 7355 } 7356 7357 /** 7358 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7359 * @env: The load balancing environment. 7360 * @group: sched_group whose statistics are to be updated. 7361 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7362 * @local_group: Does group contain this_cpu. 7363 * @sgs: variable to hold the statistics for this group. 7364 * @overload: Indicate more than one runnable task for any CPU. 7365 */ 7366 static inline void update_sg_lb_stats(struct lb_env *env, 7367 struct sched_group *group, int load_idx, 7368 int local_group, struct sg_lb_stats *sgs, 7369 bool *overload) 7370 { 7371 unsigned long load; 7372 int i, nr_running; 7373 7374 memset(sgs, 0, sizeof(*sgs)); 7375 7376 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7377 struct rq *rq = cpu_rq(i); 7378 7379 /* Bias balancing toward cpus of our domain */ 7380 if (local_group) 7381 load = target_load(i, load_idx); 7382 else 7383 load = source_load(i, load_idx); 7384 7385 sgs->group_load += load; 7386 sgs->group_util += cpu_util(i); 7387 sgs->sum_nr_running += rq->cfs.h_nr_running; 7388 7389 nr_running = rq->nr_running; 7390 if (nr_running > 1) 7391 *overload = true; 7392 7393 #ifdef CONFIG_NUMA_BALANCING 7394 sgs->nr_numa_running += rq->nr_numa_running; 7395 sgs->nr_preferred_running += rq->nr_preferred_running; 7396 #endif 7397 sgs->sum_weighted_load += weighted_cpuload(i); 7398 /* 7399 * No need to call idle_cpu() if nr_running is not 0 7400 */ 7401 if (!nr_running && idle_cpu(i)) 7402 sgs->idle_cpus++; 7403 } 7404 7405 /* Adjust by relative CPU capacity of the group */ 7406 sgs->group_capacity = group->sgc->capacity; 7407 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7408 7409 if (sgs->sum_nr_running) 7410 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7411 7412 sgs->group_weight = group->group_weight; 7413 7414 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7415 sgs->group_type = group_classify(group, sgs); 7416 } 7417 7418 /** 7419 * update_sd_pick_busiest - return 1 on busiest group 7420 * @env: The load balancing environment. 7421 * @sds: sched_domain statistics 7422 * @sg: sched_group candidate to be checked for being the busiest 7423 * @sgs: sched_group statistics 7424 * 7425 * Determine if @sg is a busier group than the previously selected 7426 * busiest group. 7427 * 7428 * Return: %true if @sg is a busier group than the previously selected 7429 * busiest group. %false otherwise. 7430 */ 7431 static bool update_sd_pick_busiest(struct lb_env *env, 7432 struct sd_lb_stats *sds, 7433 struct sched_group *sg, 7434 struct sg_lb_stats *sgs) 7435 { 7436 struct sg_lb_stats *busiest = &sds->busiest_stat; 7437 7438 if (sgs->group_type > busiest->group_type) 7439 return true; 7440 7441 if (sgs->group_type < busiest->group_type) 7442 return false; 7443 7444 if (sgs->avg_load <= busiest->avg_load) 7445 return false; 7446 7447 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7448 goto asym_packing; 7449 7450 /* 7451 * Candidate sg has no more than one task per CPU and 7452 * has higher per-CPU capacity. Migrating tasks to less 7453 * capable CPUs may harm throughput. Maximize throughput, 7454 * power/energy consequences are not considered. 7455 */ 7456 if (sgs->sum_nr_running <= sgs->group_weight && 7457 group_smaller_cpu_capacity(sds->local, sg)) 7458 return false; 7459 7460 asym_packing: 7461 /* This is the busiest node in its class. */ 7462 if (!(env->sd->flags & SD_ASYM_PACKING)) 7463 return true; 7464 7465 /* No ASYM_PACKING if target cpu is already busy */ 7466 if (env->idle == CPU_NOT_IDLE) 7467 return true; 7468 /* 7469 * ASYM_PACKING needs to move all the work to the highest 7470 * prority CPUs in the group, therefore mark all groups 7471 * of lower priority than ourself as busy. 7472 */ 7473 if (sgs->sum_nr_running && 7474 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7475 if (!sds->busiest) 7476 return true; 7477 7478 /* Prefer to move from lowest priority cpu's work */ 7479 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7480 sg->asym_prefer_cpu)) 7481 return true; 7482 } 7483 7484 return false; 7485 } 7486 7487 #ifdef CONFIG_NUMA_BALANCING 7488 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7489 { 7490 if (sgs->sum_nr_running > sgs->nr_numa_running) 7491 return regular; 7492 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7493 return remote; 7494 return all; 7495 } 7496 7497 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7498 { 7499 if (rq->nr_running > rq->nr_numa_running) 7500 return regular; 7501 if (rq->nr_running > rq->nr_preferred_running) 7502 return remote; 7503 return all; 7504 } 7505 #else 7506 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7507 { 7508 return all; 7509 } 7510 7511 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7512 { 7513 return regular; 7514 } 7515 #endif /* CONFIG_NUMA_BALANCING */ 7516 7517 /** 7518 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7519 * @env: The load balancing environment. 7520 * @sds: variable to hold the statistics for this sched_domain. 7521 */ 7522 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7523 { 7524 struct sched_domain *child = env->sd->child; 7525 struct sched_group *sg = env->sd->groups; 7526 struct sg_lb_stats tmp_sgs; 7527 int load_idx, prefer_sibling = 0; 7528 bool overload = false; 7529 7530 if (child && child->flags & SD_PREFER_SIBLING) 7531 prefer_sibling = 1; 7532 7533 load_idx = get_sd_load_idx(env->sd, env->idle); 7534 7535 do { 7536 struct sg_lb_stats *sgs = &tmp_sgs; 7537 int local_group; 7538 7539 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 7540 if (local_group) { 7541 sds->local = sg; 7542 sgs = &sds->local_stat; 7543 7544 if (env->idle != CPU_NEWLY_IDLE || 7545 time_after_eq(jiffies, sg->sgc->next_update)) 7546 update_group_capacity(env->sd, env->dst_cpu); 7547 } 7548 7549 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7550 &overload); 7551 7552 if (local_group) 7553 goto next_group; 7554 7555 /* 7556 * In case the child domain prefers tasks go to siblings 7557 * first, lower the sg capacity so that we'll try 7558 * and move all the excess tasks away. We lower the capacity 7559 * of a group only if the local group has the capacity to fit 7560 * these excess tasks. The extra check prevents the case where 7561 * you always pull from the heaviest group when it is already 7562 * under-utilized (possible with a large weight task outweighs 7563 * the tasks on the system). 7564 */ 7565 if (prefer_sibling && sds->local && 7566 group_has_capacity(env, &sds->local_stat) && 7567 (sgs->sum_nr_running > 1)) { 7568 sgs->group_no_capacity = 1; 7569 sgs->group_type = group_classify(sg, sgs); 7570 } 7571 7572 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7573 sds->busiest = sg; 7574 sds->busiest_stat = *sgs; 7575 } 7576 7577 next_group: 7578 /* Now, start updating sd_lb_stats */ 7579 sds->total_load += sgs->group_load; 7580 sds->total_capacity += sgs->group_capacity; 7581 7582 sg = sg->next; 7583 } while (sg != env->sd->groups); 7584 7585 if (env->sd->flags & SD_NUMA) 7586 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7587 7588 if (!env->sd->parent) { 7589 /* update overload indicator if we are at root domain */ 7590 if (env->dst_rq->rd->overload != overload) 7591 env->dst_rq->rd->overload = overload; 7592 } 7593 7594 } 7595 7596 /** 7597 * check_asym_packing - Check to see if the group is packed into the 7598 * sched doman. 7599 * 7600 * This is primarily intended to used at the sibling level. Some 7601 * cores like POWER7 prefer to use lower numbered SMT threads. In the 7602 * case of POWER7, it can move to lower SMT modes only when higher 7603 * threads are idle. When in lower SMT modes, the threads will 7604 * perform better since they share less core resources. Hence when we 7605 * have idle threads, we want them to be the higher ones. 7606 * 7607 * This packing function is run on idle threads. It checks to see if 7608 * the busiest CPU in this domain (core in the P7 case) has a higher 7609 * CPU number than the packing function is being run on. Here we are 7610 * assuming lower CPU number will be equivalent to lower a SMT thread 7611 * number. 7612 * 7613 * Return: 1 when packing is required and a task should be moved to 7614 * this CPU. The amount of the imbalance is returned in *imbalance. 7615 * 7616 * @env: The load balancing environment. 7617 * @sds: Statistics of the sched_domain which is to be packed 7618 */ 7619 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 7620 { 7621 int busiest_cpu; 7622 7623 if (!(env->sd->flags & SD_ASYM_PACKING)) 7624 return 0; 7625 7626 if (env->idle == CPU_NOT_IDLE) 7627 return 0; 7628 7629 if (!sds->busiest) 7630 return 0; 7631 7632 busiest_cpu = sds->busiest->asym_prefer_cpu; 7633 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 7634 return 0; 7635 7636 env->imbalance = DIV_ROUND_CLOSEST( 7637 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 7638 SCHED_CAPACITY_SCALE); 7639 7640 return 1; 7641 } 7642 7643 /** 7644 * fix_small_imbalance - Calculate the minor imbalance that exists 7645 * amongst the groups of a sched_domain, during 7646 * load balancing. 7647 * @env: The load balancing environment. 7648 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7649 */ 7650 static inline 7651 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7652 { 7653 unsigned long tmp, capa_now = 0, capa_move = 0; 7654 unsigned int imbn = 2; 7655 unsigned long scaled_busy_load_per_task; 7656 struct sg_lb_stats *local, *busiest; 7657 7658 local = &sds->local_stat; 7659 busiest = &sds->busiest_stat; 7660 7661 if (!local->sum_nr_running) 7662 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7663 else if (busiest->load_per_task > local->load_per_task) 7664 imbn = 1; 7665 7666 scaled_busy_load_per_task = 7667 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7668 busiest->group_capacity; 7669 7670 if (busiest->avg_load + scaled_busy_load_per_task >= 7671 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7672 env->imbalance = busiest->load_per_task; 7673 return; 7674 } 7675 7676 /* 7677 * OK, we don't have enough imbalance to justify moving tasks, 7678 * however we may be able to increase total CPU capacity used by 7679 * moving them. 7680 */ 7681 7682 capa_now += busiest->group_capacity * 7683 min(busiest->load_per_task, busiest->avg_load); 7684 capa_now += local->group_capacity * 7685 min(local->load_per_task, local->avg_load); 7686 capa_now /= SCHED_CAPACITY_SCALE; 7687 7688 /* Amount of load we'd subtract */ 7689 if (busiest->avg_load > scaled_busy_load_per_task) { 7690 capa_move += busiest->group_capacity * 7691 min(busiest->load_per_task, 7692 busiest->avg_load - scaled_busy_load_per_task); 7693 } 7694 7695 /* Amount of load we'd add */ 7696 if (busiest->avg_load * busiest->group_capacity < 7697 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7698 tmp = (busiest->avg_load * busiest->group_capacity) / 7699 local->group_capacity; 7700 } else { 7701 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7702 local->group_capacity; 7703 } 7704 capa_move += local->group_capacity * 7705 min(local->load_per_task, local->avg_load + tmp); 7706 capa_move /= SCHED_CAPACITY_SCALE; 7707 7708 /* Move if we gain throughput */ 7709 if (capa_move > capa_now) 7710 env->imbalance = busiest->load_per_task; 7711 } 7712 7713 /** 7714 * calculate_imbalance - Calculate the amount of imbalance present within the 7715 * groups of a given sched_domain during load balance. 7716 * @env: load balance environment 7717 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7718 */ 7719 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7720 { 7721 unsigned long max_pull, load_above_capacity = ~0UL; 7722 struct sg_lb_stats *local, *busiest; 7723 7724 local = &sds->local_stat; 7725 busiest = &sds->busiest_stat; 7726 7727 if (busiest->group_type == group_imbalanced) { 7728 /* 7729 * In the group_imb case we cannot rely on group-wide averages 7730 * to ensure cpu-load equilibrium, look at wider averages. XXX 7731 */ 7732 busiest->load_per_task = 7733 min(busiest->load_per_task, sds->avg_load); 7734 } 7735 7736 /* 7737 * Avg load of busiest sg can be less and avg load of local sg can 7738 * be greater than avg load across all sgs of sd because avg load 7739 * factors in sg capacity and sgs with smaller group_type are 7740 * skipped when updating the busiest sg: 7741 */ 7742 if (busiest->avg_load <= sds->avg_load || 7743 local->avg_load >= sds->avg_load) { 7744 env->imbalance = 0; 7745 return fix_small_imbalance(env, sds); 7746 } 7747 7748 /* 7749 * If there aren't any idle cpus, avoid creating some. 7750 */ 7751 if (busiest->group_type == group_overloaded && 7752 local->group_type == group_overloaded) { 7753 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7754 if (load_above_capacity > busiest->group_capacity) { 7755 load_above_capacity -= busiest->group_capacity; 7756 load_above_capacity *= scale_load_down(NICE_0_LOAD); 7757 load_above_capacity /= busiest->group_capacity; 7758 } else 7759 load_above_capacity = ~0UL; 7760 } 7761 7762 /* 7763 * We're trying to get all the cpus to the average_load, so we don't 7764 * want to push ourselves above the average load, nor do we wish to 7765 * reduce the max loaded cpu below the average load. At the same time, 7766 * we also don't want to reduce the group load below the group 7767 * capacity. Thus we look for the minimum possible imbalance. 7768 */ 7769 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7770 7771 /* How much load to actually move to equalise the imbalance */ 7772 env->imbalance = min( 7773 max_pull * busiest->group_capacity, 7774 (sds->avg_load - local->avg_load) * local->group_capacity 7775 ) / SCHED_CAPACITY_SCALE; 7776 7777 /* 7778 * if *imbalance is less than the average load per runnable task 7779 * there is no guarantee that any tasks will be moved so we'll have 7780 * a think about bumping its value to force at least one task to be 7781 * moved 7782 */ 7783 if (env->imbalance < busiest->load_per_task) 7784 return fix_small_imbalance(env, sds); 7785 } 7786 7787 /******* find_busiest_group() helpers end here *********************/ 7788 7789 /** 7790 * find_busiest_group - Returns the busiest group within the sched_domain 7791 * if there is an imbalance. 7792 * 7793 * Also calculates the amount of weighted load which should be moved 7794 * to restore balance. 7795 * 7796 * @env: The load balancing environment. 7797 * 7798 * Return: - The busiest group if imbalance exists. 7799 */ 7800 static struct sched_group *find_busiest_group(struct lb_env *env) 7801 { 7802 struct sg_lb_stats *local, *busiest; 7803 struct sd_lb_stats sds; 7804 7805 init_sd_lb_stats(&sds); 7806 7807 /* 7808 * Compute the various statistics relavent for load balancing at 7809 * this level. 7810 */ 7811 update_sd_lb_stats(env, &sds); 7812 local = &sds.local_stat; 7813 busiest = &sds.busiest_stat; 7814 7815 /* ASYM feature bypasses nice load balance check */ 7816 if (check_asym_packing(env, &sds)) 7817 return sds.busiest; 7818 7819 /* There is no busy sibling group to pull tasks from */ 7820 if (!sds.busiest || busiest->sum_nr_running == 0) 7821 goto out_balanced; 7822 7823 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7824 / sds.total_capacity; 7825 7826 /* 7827 * If the busiest group is imbalanced the below checks don't 7828 * work because they assume all things are equal, which typically 7829 * isn't true due to cpus_allowed constraints and the like. 7830 */ 7831 if (busiest->group_type == group_imbalanced) 7832 goto force_balance; 7833 7834 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7835 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7836 busiest->group_no_capacity) 7837 goto force_balance; 7838 7839 /* 7840 * If the local group is busier than the selected busiest group 7841 * don't try and pull any tasks. 7842 */ 7843 if (local->avg_load >= busiest->avg_load) 7844 goto out_balanced; 7845 7846 /* 7847 * Don't pull any tasks if this group is already above the domain 7848 * average load. 7849 */ 7850 if (local->avg_load >= sds.avg_load) 7851 goto out_balanced; 7852 7853 if (env->idle == CPU_IDLE) { 7854 /* 7855 * This cpu is idle. If the busiest group is not overloaded 7856 * and there is no imbalance between this and busiest group 7857 * wrt idle cpus, it is balanced. The imbalance becomes 7858 * significant if the diff is greater than 1 otherwise we 7859 * might end up to just move the imbalance on another group 7860 */ 7861 if ((busiest->group_type != group_overloaded) && 7862 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7863 goto out_balanced; 7864 } else { 7865 /* 7866 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7867 * imbalance_pct to be conservative. 7868 */ 7869 if (100 * busiest->avg_load <= 7870 env->sd->imbalance_pct * local->avg_load) 7871 goto out_balanced; 7872 } 7873 7874 force_balance: 7875 /* Looks like there is an imbalance. Compute it */ 7876 calculate_imbalance(env, &sds); 7877 return sds.busiest; 7878 7879 out_balanced: 7880 env->imbalance = 0; 7881 return NULL; 7882 } 7883 7884 /* 7885 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7886 */ 7887 static struct rq *find_busiest_queue(struct lb_env *env, 7888 struct sched_group *group) 7889 { 7890 struct rq *busiest = NULL, *rq; 7891 unsigned long busiest_load = 0, busiest_capacity = 1; 7892 int i; 7893 7894 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7895 unsigned long capacity, wl; 7896 enum fbq_type rt; 7897 7898 rq = cpu_rq(i); 7899 rt = fbq_classify_rq(rq); 7900 7901 /* 7902 * We classify groups/runqueues into three groups: 7903 * - regular: there are !numa tasks 7904 * - remote: there are numa tasks that run on the 'wrong' node 7905 * - all: there is no distinction 7906 * 7907 * In order to avoid migrating ideally placed numa tasks, 7908 * ignore those when there's better options. 7909 * 7910 * If we ignore the actual busiest queue to migrate another 7911 * task, the next balance pass can still reduce the busiest 7912 * queue by moving tasks around inside the node. 7913 * 7914 * If we cannot move enough load due to this classification 7915 * the next pass will adjust the group classification and 7916 * allow migration of more tasks. 7917 * 7918 * Both cases only affect the total convergence complexity. 7919 */ 7920 if (rt > env->fbq_type) 7921 continue; 7922 7923 capacity = capacity_of(i); 7924 7925 wl = weighted_cpuload(i); 7926 7927 /* 7928 * When comparing with imbalance, use weighted_cpuload() 7929 * which is not scaled with the cpu capacity. 7930 */ 7931 7932 if (rq->nr_running == 1 && wl > env->imbalance && 7933 !check_cpu_capacity(rq, env->sd)) 7934 continue; 7935 7936 /* 7937 * For the load comparisons with the other cpu's, consider 7938 * the weighted_cpuload() scaled with the cpu capacity, so 7939 * that the load can be moved away from the cpu that is 7940 * potentially running at a lower capacity. 7941 * 7942 * Thus we're looking for max(wl_i / capacity_i), crosswise 7943 * multiplication to rid ourselves of the division works out 7944 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7945 * our previous maximum. 7946 */ 7947 if (wl * busiest_capacity > busiest_load * capacity) { 7948 busiest_load = wl; 7949 busiest_capacity = capacity; 7950 busiest = rq; 7951 } 7952 } 7953 7954 return busiest; 7955 } 7956 7957 /* 7958 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7959 * so long as it is large enough. 7960 */ 7961 #define MAX_PINNED_INTERVAL 512 7962 7963 static int need_active_balance(struct lb_env *env) 7964 { 7965 struct sched_domain *sd = env->sd; 7966 7967 if (env->idle == CPU_NEWLY_IDLE) { 7968 7969 /* 7970 * ASYM_PACKING needs to force migrate tasks from busy but 7971 * lower priority CPUs in order to pack all tasks in the 7972 * highest priority CPUs. 7973 */ 7974 if ((sd->flags & SD_ASYM_PACKING) && 7975 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 7976 return 1; 7977 } 7978 7979 /* 7980 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7981 * It's worth migrating the task if the src_cpu's capacity is reduced 7982 * because of other sched_class or IRQs if more capacity stays 7983 * available on dst_cpu. 7984 */ 7985 if ((env->idle != CPU_NOT_IDLE) && 7986 (env->src_rq->cfs.h_nr_running == 1)) { 7987 if ((check_cpu_capacity(env->src_rq, sd)) && 7988 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7989 return 1; 7990 } 7991 7992 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7993 } 7994 7995 static int active_load_balance_cpu_stop(void *data); 7996 7997 static int should_we_balance(struct lb_env *env) 7998 { 7999 struct sched_group *sg = env->sd->groups; 8000 struct cpumask *sg_cpus, *sg_mask; 8001 int cpu, balance_cpu = -1; 8002 8003 /* 8004 * In the newly idle case, we will allow all the cpu's 8005 * to do the newly idle load balance. 8006 */ 8007 if (env->idle == CPU_NEWLY_IDLE) 8008 return 1; 8009 8010 sg_cpus = sched_group_cpus(sg); 8011 sg_mask = sched_group_mask(sg); 8012 /* Try to find first idle cpu */ 8013 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 8014 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 8015 continue; 8016 8017 balance_cpu = cpu; 8018 break; 8019 } 8020 8021 if (balance_cpu == -1) 8022 balance_cpu = group_balance_cpu(sg); 8023 8024 /* 8025 * First idle cpu or the first cpu(busiest) in this sched group 8026 * is eligible for doing load balancing at this and above domains. 8027 */ 8028 return balance_cpu == env->dst_cpu; 8029 } 8030 8031 /* 8032 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8033 * tasks if there is an imbalance. 8034 */ 8035 static int load_balance(int this_cpu, struct rq *this_rq, 8036 struct sched_domain *sd, enum cpu_idle_type idle, 8037 int *continue_balancing) 8038 { 8039 int ld_moved, cur_ld_moved, active_balance = 0; 8040 struct sched_domain *sd_parent = sd->parent; 8041 struct sched_group *group; 8042 struct rq *busiest; 8043 unsigned long flags; 8044 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8045 8046 struct lb_env env = { 8047 .sd = sd, 8048 .dst_cpu = this_cpu, 8049 .dst_rq = this_rq, 8050 .dst_grpmask = sched_group_cpus(sd->groups), 8051 .idle = idle, 8052 .loop_break = sched_nr_migrate_break, 8053 .cpus = cpus, 8054 .fbq_type = all, 8055 .tasks = LIST_HEAD_INIT(env.tasks), 8056 }; 8057 8058 /* 8059 * For NEWLY_IDLE load_balancing, we don't need to consider 8060 * other cpus in our group 8061 */ 8062 if (idle == CPU_NEWLY_IDLE) 8063 env.dst_grpmask = NULL; 8064 8065 cpumask_copy(cpus, cpu_active_mask); 8066 8067 schedstat_inc(sd->lb_count[idle]); 8068 8069 redo: 8070 if (!should_we_balance(&env)) { 8071 *continue_balancing = 0; 8072 goto out_balanced; 8073 } 8074 8075 group = find_busiest_group(&env); 8076 if (!group) { 8077 schedstat_inc(sd->lb_nobusyg[idle]); 8078 goto out_balanced; 8079 } 8080 8081 busiest = find_busiest_queue(&env, group); 8082 if (!busiest) { 8083 schedstat_inc(sd->lb_nobusyq[idle]); 8084 goto out_balanced; 8085 } 8086 8087 BUG_ON(busiest == env.dst_rq); 8088 8089 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8090 8091 env.src_cpu = busiest->cpu; 8092 env.src_rq = busiest; 8093 8094 ld_moved = 0; 8095 if (busiest->nr_running > 1) { 8096 /* 8097 * Attempt to move tasks. If find_busiest_group has found 8098 * an imbalance but busiest->nr_running <= 1, the group is 8099 * still unbalanced. ld_moved simply stays zero, so it is 8100 * correctly treated as an imbalance. 8101 */ 8102 env.flags |= LBF_ALL_PINNED; 8103 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8104 8105 more_balance: 8106 raw_spin_lock_irqsave(&busiest->lock, flags); 8107 update_rq_clock(busiest); 8108 8109 /* 8110 * cur_ld_moved - load moved in current iteration 8111 * ld_moved - cumulative load moved across iterations 8112 */ 8113 cur_ld_moved = detach_tasks(&env); 8114 8115 /* 8116 * We've detached some tasks from busiest_rq. Every 8117 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8118 * unlock busiest->lock, and we are able to be sure 8119 * that nobody can manipulate the tasks in parallel. 8120 * See task_rq_lock() family for the details. 8121 */ 8122 8123 raw_spin_unlock(&busiest->lock); 8124 8125 if (cur_ld_moved) { 8126 attach_tasks(&env); 8127 ld_moved += cur_ld_moved; 8128 } 8129 8130 local_irq_restore(flags); 8131 8132 if (env.flags & LBF_NEED_BREAK) { 8133 env.flags &= ~LBF_NEED_BREAK; 8134 goto more_balance; 8135 } 8136 8137 /* 8138 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8139 * us and move them to an alternate dst_cpu in our sched_group 8140 * where they can run. The upper limit on how many times we 8141 * iterate on same src_cpu is dependent on number of cpus in our 8142 * sched_group. 8143 * 8144 * This changes load balance semantics a bit on who can move 8145 * load to a given_cpu. In addition to the given_cpu itself 8146 * (or a ilb_cpu acting on its behalf where given_cpu is 8147 * nohz-idle), we now have balance_cpu in a position to move 8148 * load to given_cpu. In rare situations, this may cause 8149 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8150 * _independently_ and at _same_ time to move some load to 8151 * given_cpu) causing exceess load to be moved to given_cpu. 8152 * This however should not happen so much in practice and 8153 * moreover subsequent load balance cycles should correct the 8154 * excess load moved. 8155 */ 8156 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8157 8158 /* Prevent to re-select dst_cpu via env's cpus */ 8159 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8160 8161 env.dst_rq = cpu_rq(env.new_dst_cpu); 8162 env.dst_cpu = env.new_dst_cpu; 8163 env.flags &= ~LBF_DST_PINNED; 8164 env.loop = 0; 8165 env.loop_break = sched_nr_migrate_break; 8166 8167 /* 8168 * Go back to "more_balance" rather than "redo" since we 8169 * need to continue with same src_cpu. 8170 */ 8171 goto more_balance; 8172 } 8173 8174 /* 8175 * We failed to reach balance because of affinity. 8176 */ 8177 if (sd_parent) { 8178 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8179 8180 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8181 *group_imbalance = 1; 8182 } 8183 8184 /* All tasks on this runqueue were pinned by CPU affinity */ 8185 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8186 cpumask_clear_cpu(cpu_of(busiest), cpus); 8187 if (!cpumask_empty(cpus)) { 8188 env.loop = 0; 8189 env.loop_break = sched_nr_migrate_break; 8190 goto redo; 8191 } 8192 goto out_all_pinned; 8193 } 8194 } 8195 8196 if (!ld_moved) { 8197 schedstat_inc(sd->lb_failed[idle]); 8198 /* 8199 * Increment the failure counter only on periodic balance. 8200 * We do not want newidle balance, which can be very 8201 * frequent, pollute the failure counter causing 8202 * excessive cache_hot migrations and active balances. 8203 */ 8204 if (idle != CPU_NEWLY_IDLE) 8205 sd->nr_balance_failed++; 8206 8207 if (need_active_balance(&env)) { 8208 raw_spin_lock_irqsave(&busiest->lock, flags); 8209 8210 /* don't kick the active_load_balance_cpu_stop, 8211 * if the curr task on busiest cpu can't be 8212 * moved to this_cpu 8213 */ 8214 if (!cpumask_test_cpu(this_cpu, 8215 tsk_cpus_allowed(busiest->curr))) { 8216 raw_spin_unlock_irqrestore(&busiest->lock, 8217 flags); 8218 env.flags |= LBF_ALL_PINNED; 8219 goto out_one_pinned; 8220 } 8221 8222 /* 8223 * ->active_balance synchronizes accesses to 8224 * ->active_balance_work. Once set, it's cleared 8225 * only after active load balance is finished. 8226 */ 8227 if (!busiest->active_balance) { 8228 busiest->active_balance = 1; 8229 busiest->push_cpu = this_cpu; 8230 active_balance = 1; 8231 } 8232 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8233 8234 if (active_balance) { 8235 stop_one_cpu_nowait(cpu_of(busiest), 8236 active_load_balance_cpu_stop, busiest, 8237 &busiest->active_balance_work); 8238 } 8239 8240 /* We've kicked active balancing, force task migration. */ 8241 sd->nr_balance_failed = sd->cache_nice_tries+1; 8242 } 8243 } else 8244 sd->nr_balance_failed = 0; 8245 8246 if (likely(!active_balance)) { 8247 /* We were unbalanced, so reset the balancing interval */ 8248 sd->balance_interval = sd->min_interval; 8249 } else { 8250 /* 8251 * If we've begun active balancing, start to back off. This 8252 * case may not be covered by the all_pinned logic if there 8253 * is only 1 task on the busy runqueue (because we don't call 8254 * detach_tasks). 8255 */ 8256 if (sd->balance_interval < sd->max_interval) 8257 sd->balance_interval *= 2; 8258 } 8259 8260 goto out; 8261 8262 out_balanced: 8263 /* 8264 * We reach balance although we may have faced some affinity 8265 * constraints. Clear the imbalance flag if it was set. 8266 */ 8267 if (sd_parent) { 8268 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8269 8270 if (*group_imbalance) 8271 *group_imbalance = 0; 8272 } 8273 8274 out_all_pinned: 8275 /* 8276 * We reach balance because all tasks are pinned at this level so 8277 * we can't migrate them. Let the imbalance flag set so parent level 8278 * can try to migrate them. 8279 */ 8280 schedstat_inc(sd->lb_balanced[idle]); 8281 8282 sd->nr_balance_failed = 0; 8283 8284 out_one_pinned: 8285 /* tune up the balancing interval */ 8286 if (((env.flags & LBF_ALL_PINNED) && 8287 sd->balance_interval < MAX_PINNED_INTERVAL) || 8288 (sd->balance_interval < sd->max_interval)) 8289 sd->balance_interval *= 2; 8290 8291 ld_moved = 0; 8292 out: 8293 return ld_moved; 8294 } 8295 8296 static inline unsigned long 8297 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8298 { 8299 unsigned long interval = sd->balance_interval; 8300 8301 if (cpu_busy) 8302 interval *= sd->busy_factor; 8303 8304 /* scale ms to jiffies */ 8305 interval = msecs_to_jiffies(interval); 8306 interval = clamp(interval, 1UL, max_load_balance_interval); 8307 8308 return interval; 8309 } 8310 8311 static inline void 8312 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8313 { 8314 unsigned long interval, next; 8315 8316 /* used by idle balance, so cpu_busy = 0 */ 8317 interval = get_sd_balance_interval(sd, 0); 8318 next = sd->last_balance + interval; 8319 8320 if (time_after(*next_balance, next)) 8321 *next_balance = next; 8322 } 8323 8324 /* 8325 * idle_balance is called by schedule() if this_cpu is about to become 8326 * idle. Attempts to pull tasks from other CPUs. 8327 */ 8328 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8329 { 8330 unsigned long next_balance = jiffies + HZ; 8331 int this_cpu = this_rq->cpu; 8332 struct sched_domain *sd; 8333 int pulled_task = 0; 8334 u64 curr_cost = 0; 8335 8336 /* 8337 * We must set idle_stamp _before_ calling idle_balance(), such that we 8338 * measure the duration of idle_balance() as idle time. 8339 */ 8340 this_rq->idle_stamp = rq_clock(this_rq); 8341 8342 /* 8343 * This is OK, because current is on_cpu, which avoids it being picked 8344 * for load-balance and preemption/IRQs are still disabled avoiding 8345 * further scheduler activity on it and we're being very careful to 8346 * re-start the picking loop. 8347 */ 8348 rq_unpin_lock(this_rq, rf); 8349 8350 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8351 !this_rq->rd->overload) { 8352 rcu_read_lock(); 8353 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8354 if (sd) 8355 update_next_balance(sd, &next_balance); 8356 rcu_read_unlock(); 8357 8358 goto out; 8359 } 8360 8361 raw_spin_unlock(&this_rq->lock); 8362 8363 update_blocked_averages(this_cpu); 8364 rcu_read_lock(); 8365 for_each_domain(this_cpu, sd) { 8366 int continue_balancing = 1; 8367 u64 t0, domain_cost; 8368 8369 if (!(sd->flags & SD_LOAD_BALANCE)) 8370 continue; 8371 8372 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8373 update_next_balance(sd, &next_balance); 8374 break; 8375 } 8376 8377 if (sd->flags & SD_BALANCE_NEWIDLE) { 8378 t0 = sched_clock_cpu(this_cpu); 8379 8380 pulled_task = load_balance(this_cpu, this_rq, 8381 sd, CPU_NEWLY_IDLE, 8382 &continue_balancing); 8383 8384 domain_cost = sched_clock_cpu(this_cpu) - t0; 8385 if (domain_cost > sd->max_newidle_lb_cost) 8386 sd->max_newidle_lb_cost = domain_cost; 8387 8388 curr_cost += domain_cost; 8389 } 8390 8391 update_next_balance(sd, &next_balance); 8392 8393 /* 8394 * Stop searching for tasks to pull if there are 8395 * now runnable tasks on this rq. 8396 */ 8397 if (pulled_task || this_rq->nr_running > 0) 8398 break; 8399 } 8400 rcu_read_unlock(); 8401 8402 raw_spin_lock(&this_rq->lock); 8403 8404 if (curr_cost > this_rq->max_idle_balance_cost) 8405 this_rq->max_idle_balance_cost = curr_cost; 8406 8407 /* 8408 * While browsing the domains, we released the rq lock, a task could 8409 * have been enqueued in the meantime. Since we're not going idle, 8410 * pretend we pulled a task. 8411 */ 8412 if (this_rq->cfs.h_nr_running && !pulled_task) 8413 pulled_task = 1; 8414 8415 out: 8416 /* Move the next balance forward */ 8417 if (time_after(this_rq->next_balance, next_balance)) 8418 this_rq->next_balance = next_balance; 8419 8420 /* Is there a task of a high priority class? */ 8421 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8422 pulled_task = -1; 8423 8424 if (pulled_task) 8425 this_rq->idle_stamp = 0; 8426 8427 rq_repin_lock(this_rq, rf); 8428 8429 return pulled_task; 8430 } 8431 8432 /* 8433 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8434 * running tasks off the busiest CPU onto idle CPUs. It requires at 8435 * least 1 task to be running on each physical CPU where possible, and 8436 * avoids physical / logical imbalances. 8437 */ 8438 static int active_load_balance_cpu_stop(void *data) 8439 { 8440 struct rq *busiest_rq = data; 8441 int busiest_cpu = cpu_of(busiest_rq); 8442 int target_cpu = busiest_rq->push_cpu; 8443 struct rq *target_rq = cpu_rq(target_cpu); 8444 struct sched_domain *sd; 8445 struct task_struct *p = NULL; 8446 8447 raw_spin_lock_irq(&busiest_rq->lock); 8448 8449 /* make sure the requested cpu hasn't gone down in the meantime */ 8450 if (unlikely(busiest_cpu != smp_processor_id() || 8451 !busiest_rq->active_balance)) 8452 goto out_unlock; 8453 8454 /* Is there any task to move? */ 8455 if (busiest_rq->nr_running <= 1) 8456 goto out_unlock; 8457 8458 /* 8459 * This condition is "impossible", if it occurs 8460 * we need to fix it. Originally reported by 8461 * Bjorn Helgaas on a 128-cpu setup. 8462 */ 8463 BUG_ON(busiest_rq == target_rq); 8464 8465 /* Search for an sd spanning us and the target CPU. */ 8466 rcu_read_lock(); 8467 for_each_domain(target_cpu, sd) { 8468 if ((sd->flags & SD_LOAD_BALANCE) && 8469 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8470 break; 8471 } 8472 8473 if (likely(sd)) { 8474 struct lb_env env = { 8475 .sd = sd, 8476 .dst_cpu = target_cpu, 8477 .dst_rq = target_rq, 8478 .src_cpu = busiest_rq->cpu, 8479 .src_rq = busiest_rq, 8480 .idle = CPU_IDLE, 8481 }; 8482 8483 schedstat_inc(sd->alb_count); 8484 update_rq_clock(busiest_rq); 8485 8486 p = detach_one_task(&env); 8487 if (p) { 8488 schedstat_inc(sd->alb_pushed); 8489 /* Active balancing done, reset the failure counter. */ 8490 sd->nr_balance_failed = 0; 8491 } else { 8492 schedstat_inc(sd->alb_failed); 8493 } 8494 } 8495 rcu_read_unlock(); 8496 out_unlock: 8497 busiest_rq->active_balance = 0; 8498 raw_spin_unlock(&busiest_rq->lock); 8499 8500 if (p) 8501 attach_one_task(target_rq, p); 8502 8503 local_irq_enable(); 8504 8505 return 0; 8506 } 8507 8508 static inline int on_null_domain(struct rq *rq) 8509 { 8510 return unlikely(!rcu_dereference_sched(rq->sd)); 8511 } 8512 8513 #ifdef CONFIG_NO_HZ_COMMON 8514 /* 8515 * idle load balancing details 8516 * - When one of the busy CPUs notice that there may be an idle rebalancing 8517 * needed, they will kick the idle load balancer, which then does idle 8518 * load balancing for all the idle CPUs. 8519 */ 8520 static struct { 8521 cpumask_var_t idle_cpus_mask; 8522 atomic_t nr_cpus; 8523 unsigned long next_balance; /* in jiffy units */ 8524 } nohz ____cacheline_aligned; 8525 8526 static inline int find_new_ilb(void) 8527 { 8528 int ilb = cpumask_first(nohz.idle_cpus_mask); 8529 8530 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8531 return ilb; 8532 8533 return nr_cpu_ids; 8534 } 8535 8536 /* 8537 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8538 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8539 * CPU (if there is one). 8540 */ 8541 static void nohz_balancer_kick(void) 8542 { 8543 int ilb_cpu; 8544 8545 nohz.next_balance++; 8546 8547 ilb_cpu = find_new_ilb(); 8548 8549 if (ilb_cpu >= nr_cpu_ids) 8550 return; 8551 8552 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 8553 return; 8554 /* 8555 * Use smp_send_reschedule() instead of resched_cpu(). 8556 * This way we generate a sched IPI on the target cpu which 8557 * is idle. And the softirq performing nohz idle load balance 8558 * will be run before returning from the IPI. 8559 */ 8560 smp_send_reschedule(ilb_cpu); 8561 return; 8562 } 8563 8564 void nohz_balance_exit_idle(unsigned int cpu) 8565 { 8566 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 8567 /* 8568 * Completely isolated CPUs don't ever set, so we must test. 8569 */ 8570 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 8571 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 8572 atomic_dec(&nohz.nr_cpus); 8573 } 8574 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8575 } 8576 } 8577 8578 static inline void set_cpu_sd_state_busy(void) 8579 { 8580 struct sched_domain *sd; 8581 int cpu = smp_processor_id(); 8582 8583 rcu_read_lock(); 8584 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8585 8586 if (!sd || !sd->nohz_idle) 8587 goto unlock; 8588 sd->nohz_idle = 0; 8589 8590 atomic_inc(&sd->shared->nr_busy_cpus); 8591 unlock: 8592 rcu_read_unlock(); 8593 } 8594 8595 void set_cpu_sd_state_idle(void) 8596 { 8597 struct sched_domain *sd; 8598 int cpu = smp_processor_id(); 8599 8600 rcu_read_lock(); 8601 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8602 8603 if (!sd || sd->nohz_idle) 8604 goto unlock; 8605 sd->nohz_idle = 1; 8606 8607 atomic_dec(&sd->shared->nr_busy_cpus); 8608 unlock: 8609 rcu_read_unlock(); 8610 } 8611 8612 /* 8613 * This routine will record that the cpu is going idle with tick stopped. 8614 * This info will be used in performing idle load balancing in the future. 8615 */ 8616 void nohz_balance_enter_idle(int cpu) 8617 { 8618 /* 8619 * If this cpu is going down, then nothing needs to be done. 8620 */ 8621 if (!cpu_active(cpu)) 8622 return; 8623 8624 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 8625 return; 8626 8627 /* 8628 * If we're a completely isolated CPU, we don't play. 8629 */ 8630 if (on_null_domain(cpu_rq(cpu))) 8631 return; 8632 8633 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 8634 atomic_inc(&nohz.nr_cpus); 8635 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8636 } 8637 #endif 8638 8639 static DEFINE_SPINLOCK(balancing); 8640 8641 /* 8642 * Scale the max load_balance interval with the number of CPUs in the system. 8643 * This trades load-balance latency on larger machines for less cross talk. 8644 */ 8645 void update_max_interval(void) 8646 { 8647 max_load_balance_interval = HZ*num_online_cpus()/10; 8648 } 8649 8650 /* 8651 * It checks each scheduling domain to see if it is due to be balanced, 8652 * and initiates a balancing operation if so. 8653 * 8654 * Balancing parameters are set up in init_sched_domains. 8655 */ 8656 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8657 { 8658 int continue_balancing = 1; 8659 int cpu = rq->cpu; 8660 unsigned long interval; 8661 struct sched_domain *sd; 8662 /* Earliest time when we have to do rebalance again */ 8663 unsigned long next_balance = jiffies + 60*HZ; 8664 int update_next_balance = 0; 8665 int need_serialize, need_decay = 0; 8666 u64 max_cost = 0; 8667 8668 update_blocked_averages(cpu); 8669 8670 rcu_read_lock(); 8671 for_each_domain(cpu, sd) { 8672 /* 8673 * Decay the newidle max times here because this is a regular 8674 * visit to all the domains. Decay ~1% per second. 8675 */ 8676 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8677 sd->max_newidle_lb_cost = 8678 (sd->max_newidle_lb_cost * 253) / 256; 8679 sd->next_decay_max_lb_cost = jiffies + HZ; 8680 need_decay = 1; 8681 } 8682 max_cost += sd->max_newidle_lb_cost; 8683 8684 if (!(sd->flags & SD_LOAD_BALANCE)) 8685 continue; 8686 8687 /* 8688 * Stop the load balance at this level. There is another 8689 * CPU in our sched group which is doing load balancing more 8690 * actively. 8691 */ 8692 if (!continue_balancing) { 8693 if (need_decay) 8694 continue; 8695 break; 8696 } 8697 8698 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8699 8700 need_serialize = sd->flags & SD_SERIALIZE; 8701 if (need_serialize) { 8702 if (!spin_trylock(&balancing)) 8703 goto out; 8704 } 8705 8706 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8707 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8708 /* 8709 * The LBF_DST_PINNED logic could have changed 8710 * env->dst_cpu, so we can't know our idle 8711 * state even if we migrated tasks. Update it. 8712 */ 8713 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8714 } 8715 sd->last_balance = jiffies; 8716 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8717 } 8718 if (need_serialize) 8719 spin_unlock(&balancing); 8720 out: 8721 if (time_after(next_balance, sd->last_balance + interval)) { 8722 next_balance = sd->last_balance + interval; 8723 update_next_balance = 1; 8724 } 8725 } 8726 if (need_decay) { 8727 /* 8728 * Ensure the rq-wide value also decays but keep it at a 8729 * reasonable floor to avoid funnies with rq->avg_idle. 8730 */ 8731 rq->max_idle_balance_cost = 8732 max((u64)sysctl_sched_migration_cost, max_cost); 8733 } 8734 rcu_read_unlock(); 8735 8736 /* 8737 * next_balance will be updated only when there is a need. 8738 * When the cpu is attached to null domain for ex, it will not be 8739 * updated. 8740 */ 8741 if (likely(update_next_balance)) { 8742 rq->next_balance = next_balance; 8743 8744 #ifdef CONFIG_NO_HZ_COMMON 8745 /* 8746 * If this CPU has been elected to perform the nohz idle 8747 * balance. Other idle CPUs have already rebalanced with 8748 * nohz_idle_balance() and nohz.next_balance has been 8749 * updated accordingly. This CPU is now running the idle load 8750 * balance for itself and we need to update the 8751 * nohz.next_balance accordingly. 8752 */ 8753 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8754 nohz.next_balance = rq->next_balance; 8755 #endif 8756 } 8757 } 8758 8759 #ifdef CONFIG_NO_HZ_COMMON 8760 /* 8761 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8762 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8763 */ 8764 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8765 { 8766 int this_cpu = this_rq->cpu; 8767 struct rq *rq; 8768 int balance_cpu; 8769 /* Earliest time when we have to do rebalance again */ 8770 unsigned long next_balance = jiffies + 60*HZ; 8771 int update_next_balance = 0; 8772 8773 if (idle != CPU_IDLE || 8774 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8775 goto end; 8776 8777 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8778 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8779 continue; 8780 8781 /* 8782 * If this cpu gets work to do, stop the load balancing 8783 * work being done for other cpus. Next load 8784 * balancing owner will pick it up. 8785 */ 8786 if (need_resched()) 8787 break; 8788 8789 rq = cpu_rq(balance_cpu); 8790 8791 /* 8792 * If time for next balance is due, 8793 * do the balance. 8794 */ 8795 if (time_after_eq(jiffies, rq->next_balance)) { 8796 raw_spin_lock_irq(&rq->lock); 8797 update_rq_clock(rq); 8798 cpu_load_update_idle(rq); 8799 raw_spin_unlock_irq(&rq->lock); 8800 rebalance_domains(rq, CPU_IDLE); 8801 } 8802 8803 if (time_after(next_balance, rq->next_balance)) { 8804 next_balance = rq->next_balance; 8805 update_next_balance = 1; 8806 } 8807 } 8808 8809 /* 8810 * next_balance will be updated only when there is a need. 8811 * When the CPU is attached to null domain for ex, it will not be 8812 * updated. 8813 */ 8814 if (likely(update_next_balance)) 8815 nohz.next_balance = next_balance; 8816 end: 8817 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8818 } 8819 8820 /* 8821 * Current heuristic for kicking the idle load balancer in the presence 8822 * of an idle cpu in the system. 8823 * - This rq has more than one task. 8824 * - This rq has at least one CFS task and the capacity of the CPU is 8825 * significantly reduced because of RT tasks or IRQs. 8826 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8827 * multiple busy cpu. 8828 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8829 * domain span are idle. 8830 */ 8831 static inline bool nohz_kick_needed(struct rq *rq) 8832 { 8833 unsigned long now = jiffies; 8834 struct sched_domain_shared *sds; 8835 struct sched_domain *sd; 8836 int nr_busy, i, cpu = rq->cpu; 8837 bool kick = false; 8838 8839 if (unlikely(rq->idle_balance)) 8840 return false; 8841 8842 /* 8843 * We may be recently in ticked or tickless idle mode. At the first 8844 * busy tick after returning from idle, we will update the busy stats. 8845 */ 8846 set_cpu_sd_state_busy(); 8847 nohz_balance_exit_idle(cpu); 8848 8849 /* 8850 * None are in tickless mode and hence no need for NOHZ idle load 8851 * balancing. 8852 */ 8853 if (likely(!atomic_read(&nohz.nr_cpus))) 8854 return false; 8855 8856 if (time_before(now, nohz.next_balance)) 8857 return false; 8858 8859 if (rq->nr_running >= 2) 8860 return true; 8861 8862 rcu_read_lock(); 8863 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 8864 if (sds) { 8865 /* 8866 * XXX: write a coherent comment on why we do this. 8867 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 8868 */ 8869 nr_busy = atomic_read(&sds->nr_busy_cpus); 8870 if (nr_busy > 1) { 8871 kick = true; 8872 goto unlock; 8873 } 8874 8875 } 8876 8877 sd = rcu_dereference(rq->sd); 8878 if (sd) { 8879 if ((rq->cfs.h_nr_running >= 1) && 8880 check_cpu_capacity(rq, sd)) { 8881 kick = true; 8882 goto unlock; 8883 } 8884 } 8885 8886 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8887 if (sd) { 8888 for_each_cpu(i, sched_domain_span(sd)) { 8889 if (i == cpu || 8890 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 8891 continue; 8892 8893 if (sched_asym_prefer(i, cpu)) { 8894 kick = true; 8895 goto unlock; 8896 } 8897 } 8898 } 8899 unlock: 8900 rcu_read_unlock(); 8901 return kick; 8902 } 8903 #else 8904 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8905 #endif 8906 8907 /* 8908 * run_rebalance_domains is triggered when needed from the scheduler tick. 8909 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8910 */ 8911 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 8912 { 8913 struct rq *this_rq = this_rq(); 8914 enum cpu_idle_type idle = this_rq->idle_balance ? 8915 CPU_IDLE : CPU_NOT_IDLE; 8916 8917 /* 8918 * If this cpu has a pending nohz_balance_kick, then do the 8919 * balancing on behalf of the other idle cpus whose ticks are 8920 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8921 * give the idle cpus a chance to load balance. Else we may 8922 * load balance only within the local sched_domain hierarchy 8923 * and abort nohz_idle_balance altogether if we pull some load. 8924 */ 8925 nohz_idle_balance(this_rq, idle); 8926 rebalance_domains(this_rq, idle); 8927 } 8928 8929 /* 8930 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8931 */ 8932 void trigger_load_balance(struct rq *rq) 8933 { 8934 /* Don't need to rebalance while attached to NULL domain */ 8935 if (unlikely(on_null_domain(rq))) 8936 return; 8937 8938 if (time_after_eq(jiffies, rq->next_balance)) 8939 raise_softirq(SCHED_SOFTIRQ); 8940 #ifdef CONFIG_NO_HZ_COMMON 8941 if (nohz_kick_needed(rq)) 8942 nohz_balancer_kick(); 8943 #endif 8944 } 8945 8946 static void rq_online_fair(struct rq *rq) 8947 { 8948 update_sysctl(); 8949 8950 update_runtime_enabled(rq); 8951 } 8952 8953 static void rq_offline_fair(struct rq *rq) 8954 { 8955 update_sysctl(); 8956 8957 /* Ensure any throttled groups are reachable by pick_next_task */ 8958 unthrottle_offline_cfs_rqs(rq); 8959 } 8960 8961 #endif /* CONFIG_SMP */ 8962 8963 /* 8964 * scheduler tick hitting a task of our scheduling class: 8965 */ 8966 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8967 { 8968 struct cfs_rq *cfs_rq; 8969 struct sched_entity *se = &curr->se; 8970 8971 for_each_sched_entity(se) { 8972 cfs_rq = cfs_rq_of(se); 8973 entity_tick(cfs_rq, se, queued); 8974 } 8975 8976 if (static_branch_unlikely(&sched_numa_balancing)) 8977 task_tick_numa(rq, curr); 8978 } 8979 8980 /* 8981 * called on fork with the child task as argument from the parent's context 8982 * - child not yet on the tasklist 8983 * - preemption disabled 8984 */ 8985 static void task_fork_fair(struct task_struct *p) 8986 { 8987 struct cfs_rq *cfs_rq; 8988 struct sched_entity *se = &p->se, *curr; 8989 struct rq *rq = this_rq(); 8990 8991 raw_spin_lock(&rq->lock); 8992 update_rq_clock(rq); 8993 8994 cfs_rq = task_cfs_rq(current); 8995 curr = cfs_rq->curr; 8996 if (curr) { 8997 update_curr(cfs_rq); 8998 se->vruntime = curr->vruntime; 8999 } 9000 place_entity(cfs_rq, se, 1); 9001 9002 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9003 /* 9004 * Upon rescheduling, sched_class::put_prev_task() will place 9005 * 'current' within the tree based on its new key value. 9006 */ 9007 swap(curr->vruntime, se->vruntime); 9008 resched_curr(rq); 9009 } 9010 9011 se->vruntime -= cfs_rq->min_vruntime; 9012 raw_spin_unlock(&rq->lock); 9013 } 9014 9015 /* 9016 * Priority of the task has changed. Check to see if we preempt 9017 * the current task. 9018 */ 9019 static void 9020 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9021 { 9022 if (!task_on_rq_queued(p)) 9023 return; 9024 9025 /* 9026 * Reschedule if we are currently running on this runqueue and 9027 * our priority decreased, or if we are not currently running on 9028 * this runqueue and our priority is higher than the current's 9029 */ 9030 if (rq->curr == p) { 9031 if (p->prio > oldprio) 9032 resched_curr(rq); 9033 } else 9034 check_preempt_curr(rq, p, 0); 9035 } 9036 9037 static inline bool vruntime_normalized(struct task_struct *p) 9038 { 9039 struct sched_entity *se = &p->se; 9040 9041 /* 9042 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9043 * the dequeue_entity(.flags=0) will already have normalized the 9044 * vruntime. 9045 */ 9046 if (p->on_rq) 9047 return true; 9048 9049 /* 9050 * When !on_rq, vruntime of the task has usually NOT been normalized. 9051 * But there are some cases where it has already been normalized: 9052 * 9053 * - A forked child which is waiting for being woken up by 9054 * wake_up_new_task(). 9055 * - A task which has been woken up by try_to_wake_up() and 9056 * waiting for actually being woken up by sched_ttwu_pending(). 9057 */ 9058 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9059 return true; 9060 9061 return false; 9062 } 9063 9064 #ifdef CONFIG_FAIR_GROUP_SCHED 9065 /* 9066 * Propagate the changes of the sched_entity across the tg tree to make it 9067 * visible to the root 9068 */ 9069 static void propagate_entity_cfs_rq(struct sched_entity *se) 9070 { 9071 struct cfs_rq *cfs_rq; 9072 9073 /* Start to propagate at parent */ 9074 se = se->parent; 9075 9076 for_each_sched_entity(se) { 9077 cfs_rq = cfs_rq_of(se); 9078 9079 if (cfs_rq_throttled(cfs_rq)) 9080 break; 9081 9082 update_load_avg(se, UPDATE_TG); 9083 } 9084 } 9085 #else 9086 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9087 #endif 9088 9089 static void detach_entity_cfs_rq(struct sched_entity *se) 9090 { 9091 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9092 9093 /* Catch up with the cfs_rq and remove our load when we leave */ 9094 update_load_avg(se, 0); 9095 detach_entity_load_avg(cfs_rq, se); 9096 update_tg_load_avg(cfs_rq, false); 9097 propagate_entity_cfs_rq(se); 9098 } 9099 9100 static void attach_entity_cfs_rq(struct sched_entity *se) 9101 { 9102 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9103 9104 #ifdef CONFIG_FAIR_GROUP_SCHED 9105 /* 9106 * Since the real-depth could have been changed (only FAIR 9107 * class maintain depth value), reset depth properly. 9108 */ 9109 se->depth = se->parent ? se->parent->depth + 1 : 0; 9110 #endif 9111 9112 /* Synchronize entity with its cfs_rq */ 9113 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9114 attach_entity_load_avg(cfs_rq, se); 9115 update_tg_load_avg(cfs_rq, false); 9116 propagate_entity_cfs_rq(se); 9117 } 9118 9119 static void detach_task_cfs_rq(struct task_struct *p) 9120 { 9121 struct sched_entity *se = &p->se; 9122 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9123 9124 if (!vruntime_normalized(p)) { 9125 /* 9126 * Fix up our vruntime so that the current sleep doesn't 9127 * cause 'unlimited' sleep bonus. 9128 */ 9129 place_entity(cfs_rq, se, 0); 9130 se->vruntime -= cfs_rq->min_vruntime; 9131 } 9132 9133 detach_entity_cfs_rq(se); 9134 } 9135 9136 static void attach_task_cfs_rq(struct task_struct *p) 9137 { 9138 struct sched_entity *se = &p->se; 9139 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9140 9141 attach_entity_cfs_rq(se); 9142 9143 if (!vruntime_normalized(p)) 9144 se->vruntime += cfs_rq->min_vruntime; 9145 } 9146 9147 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9148 { 9149 detach_task_cfs_rq(p); 9150 } 9151 9152 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9153 { 9154 attach_task_cfs_rq(p); 9155 9156 if (task_on_rq_queued(p)) { 9157 /* 9158 * We were most likely switched from sched_rt, so 9159 * kick off the schedule if running, otherwise just see 9160 * if we can still preempt the current task. 9161 */ 9162 if (rq->curr == p) 9163 resched_curr(rq); 9164 else 9165 check_preempt_curr(rq, p, 0); 9166 } 9167 } 9168 9169 /* Account for a task changing its policy or group. 9170 * 9171 * This routine is mostly called to set cfs_rq->curr field when a task 9172 * migrates between groups/classes. 9173 */ 9174 static void set_curr_task_fair(struct rq *rq) 9175 { 9176 struct sched_entity *se = &rq->curr->se; 9177 9178 for_each_sched_entity(se) { 9179 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9180 9181 set_next_entity(cfs_rq, se); 9182 /* ensure bandwidth has been allocated on our new cfs_rq */ 9183 account_cfs_rq_runtime(cfs_rq, 0); 9184 } 9185 } 9186 9187 void init_cfs_rq(struct cfs_rq *cfs_rq) 9188 { 9189 cfs_rq->tasks_timeline = RB_ROOT; 9190 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9191 #ifndef CONFIG_64BIT 9192 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9193 #endif 9194 #ifdef CONFIG_SMP 9195 #ifdef CONFIG_FAIR_GROUP_SCHED 9196 cfs_rq->propagate_avg = 0; 9197 #endif 9198 atomic_long_set(&cfs_rq->removed_load_avg, 0); 9199 atomic_long_set(&cfs_rq->removed_util_avg, 0); 9200 #endif 9201 } 9202 9203 #ifdef CONFIG_FAIR_GROUP_SCHED 9204 static void task_set_group_fair(struct task_struct *p) 9205 { 9206 struct sched_entity *se = &p->se; 9207 9208 set_task_rq(p, task_cpu(p)); 9209 se->depth = se->parent ? se->parent->depth + 1 : 0; 9210 } 9211 9212 static void task_move_group_fair(struct task_struct *p) 9213 { 9214 detach_task_cfs_rq(p); 9215 set_task_rq(p, task_cpu(p)); 9216 9217 #ifdef CONFIG_SMP 9218 /* Tell se's cfs_rq has been changed -- migrated */ 9219 p->se.avg.last_update_time = 0; 9220 #endif 9221 attach_task_cfs_rq(p); 9222 } 9223 9224 static void task_change_group_fair(struct task_struct *p, int type) 9225 { 9226 switch (type) { 9227 case TASK_SET_GROUP: 9228 task_set_group_fair(p); 9229 break; 9230 9231 case TASK_MOVE_GROUP: 9232 task_move_group_fair(p); 9233 break; 9234 } 9235 } 9236 9237 void free_fair_sched_group(struct task_group *tg) 9238 { 9239 int i; 9240 9241 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9242 9243 for_each_possible_cpu(i) { 9244 if (tg->cfs_rq) 9245 kfree(tg->cfs_rq[i]); 9246 if (tg->se) 9247 kfree(tg->se[i]); 9248 } 9249 9250 kfree(tg->cfs_rq); 9251 kfree(tg->se); 9252 } 9253 9254 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9255 { 9256 struct sched_entity *se; 9257 struct cfs_rq *cfs_rq; 9258 int i; 9259 9260 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9261 if (!tg->cfs_rq) 9262 goto err; 9263 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9264 if (!tg->se) 9265 goto err; 9266 9267 tg->shares = NICE_0_LOAD; 9268 9269 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9270 9271 for_each_possible_cpu(i) { 9272 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9273 GFP_KERNEL, cpu_to_node(i)); 9274 if (!cfs_rq) 9275 goto err; 9276 9277 se = kzalloc_node(sizeof(struct sched_entity), 9278 GFP_KERNEL, cpu_to_node(i)); 9279 if (!se) 9280 goto err_free_rq; 9281 9282 init_cfs_rq(cfs_rq); 9283 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9284 init_entity_runnable_average(se); 9285 } 9286 9287 return 1; 9288 9289 err_free_rq: 9290 kfree(cfs_rq); 9291 err: 9292 return 0; 9293 } 9294 9295 void online_fair_sched_group(struct task_group *tg) 9296 { 9297 struct sched_entity *se; 9298 struct rq *rq; 9299 int i; 9300 9301 for_each_possible_cpu(i) { 9302 rq = cpu_rq(i); 9303 se = tg->se[i]; 9304 9305 raw_spin_lock_irq(&rq->lock); 9306 update_rq_clock(rq); 9307 attach_entity_cfs_rq(se); 9308 sync_throttle(tg, i); 9309 raw_spin_unlock_irq(&rq->lock); 9310 } 9311 } 9312 9313 void unregister_fair_sched_group(struct task_group *tg) 9314 { 9315 unsigned long flags; 9316 struct rq *rq; 9317 int cpu; 9318 9319 for_each_possible_cpu(cpu) { 9320 if (tg->se[cpu]) 9321 remove_entity_load_avg(tg->se[cpu]); 9322 9323 /* 9324 * Only empty task groups can be destroyed; so we can speculatively 9325 * check on_list without danger of it being re-added. 9326 */ 9327 if (!tg->cfs_rq[cpu]->on_list) 9328 continue; 9329 9330 rq = cpu_rq(cpu); 9331 9332 raw_spin_lock_irqsave(&rq->lock, flags); 9333 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9334 raw_spin_unlock_irqrestore(&rq->lock, flags); 9335 } 9336 } 9337 9338 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9339 struct sched_entity *se, int cpu, 9340 struct sched_entity *parent) 9341 { 9342 struct rq *rq = cpu_rq(cpu); 9343 9344 cfs_rq->tg = tg; 9345 cfs_rq->rq = rq; 9346 init_cfs_rq_runtime(cfs_rq); 9347 9348 tg->cfs_rq[cpu] = cfs_rq; 9349 tg->se[cpu] = se; 9350 9351 /* se could be NULL for root_task_group */ 9352 if (!se) 9353 return; 9354 9355 if (!parent) { 9356 se->cfs_rq = &rq->cfs; 9357 se->depth = 0; 9358 } else { 9359 se->cfs_rq = parent->my_q; 9360 se->depth = parent->depth + 1; 9361 } 9362 9363 se->my_q = cfs_rq; 9364 /* guarantee group entities always have weight */ 9365 update_load_set(&se->load, NICE_0_LOAD); 9366 se->parent = parent; 9367 } 9368 9369 static DEFINE_MUTEX(shares_mutex); 9370 9371 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9372 { 9373 int i; 9374 unsigned long flags; 9375 9376 /* 9377 * We can't change the weight of the root cgroup. 9378 */ 9379 if (!tg->se[0]) 9380 return -EINVAL; 9381 9382 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9383 9384 mutex_lock(&shares_mutex); 9385 if (tg->shares == shares) 9386 goto done; 9387 9388 tg->shares = shares; 9389 for_each_possible_cpu(i) { 9390 struct rq *rq = cpu_rq(i); 9391 struct sched_entity *se; 9392 9393 se = tg->se[i]; 9394 /* Propagate contribution to hierarchy */ 9395 raw_spin_lock_irqsave(&rq->lock, flags); 9396 9397 /* Possible calls to update_curr() need rq clock */ 9398 update_rq_clock(rq); 9399 for_each_sched_entity(se) { 9400 update_load_avg(se, UPDATE_TG); 9401 update_cfs_shares(se); 9402 } 9403 raw_spin_unlock_irqrestore(&rq->lock, flags); 9404 } 9405 9406 done: 9407 mutex_unlock(&shares_mutex); 9408 return 0; 9409 } 9410 #else /* CONFIG_FAIR_GROUP_SCHED */ 9411 9412 void free_fair_sched_group(struct task_group *tg) { } 9413 9414 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9415 { 9416 return 1; 9417 } 9418 9419 void online_fair_sched_group(struct task_group *tg) { } 9420 9421 void unregister_fair_sched_group(struct task_group *tg) { } 9422 9423 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9424 9425 9426 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9427 { 9428 struct sched_entity *se = &task->se; 9429 unsigned int rr_interval = 0; 9430 9431 /* 9432 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9433 * idle runqueue: 9434 */ 9435 if (rq->cfs.load.weight) 9436 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9437 9438 return rr_interval; 9439 } 9440 9441 /* 9442 * All the scheduling class methods: 9443 */ 9444 const struct sched_class fair_sched_class = { 9445 .next = &idle_sched_class, 9446 .enqueue_task = enqueue_task_fair, 9447 .dequeue_task = dequeue_task_fair, 9448 .yield_task = yield_task_fair, 9449 .yield_to_task = yield_to_task_fair, 9450 9451 .check_preempt_curr = check_preempt_wakeup, 9452 9453 .pick_next_task = pick_next_task_fair, 9454 .put_prev_task = put_prev_task_fair, 9455 9456 #ifdef CONFIG_SMP 9457 .select_task_rq = select_task_rq_fair, 9458 .migrate_task_rq = migrate_task_rq_fair, 9459 9460 .rq_online = rq_online_fair, 9461 .rq_offline = rq_offline_fair, 9462 9463 .task_dead = task_dead_fair, 9464 .set_cpus_allowed = set_cpus_allowed_common, 9465 #endif 9466 9467 .set_curr_task = set_curr_task_fair, 9468 .task_tick = task_tick_fair, 9469 .task_fork = task_fork_fair, 9470 9471 .prio_changed = prio_changed_fair, 9472 .switched_from = switched_from_fair, 9473 .switched_to = switched_to_fair, 9474 9475 .get_rr_interval = get_rr_interval_fair, 9476 9477 .update_curr = update_curr_fair, 9478 9479 #ifdef CONFIG_FAIR_GROUP_SCHED 9480 .task_change_group = task_change_group_fair, 9481 #endif 9482 }; 9483 9484 #ifdef CONFIG_SCHED_DEBUG 9485 void print_cfs_stats(struct seq_file *m, int cpu) 9486 { 9487 struct cfs_rq *cfs_rq; 9488 9489 rcu_read_lock(); 9490 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 9491 print_cfs_rq(m, cpu, cfs_rq); 9492 rcu_read_unlock(); 9493 } 9494 9495 #ifdef CONFIG_NUMA_BALANCING 9496 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9497 { 9498 int node; 9499 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9500 9501 for_each_online_node(node) { 9502 if (p->numa_faults) { 9503 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9504 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9505 } 9506 if (p->numa_group) { 9507 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9508 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9509 } 9510 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9511 } 9512 } 9513 #endif /* CONFIG_NUMA_BALANCING */ 9514 #endif /* CONFIG_SCHED_DEBUG */ 9515 9516 __init void init_sched_fair_class(void) 9517 { 9518 #ifdef CONFIG_SMP 9519 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9520 9521 #ifdef CONFIG_NO_HZ_COMMON 9522 nohz.next_balance = jiffies; 9523 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9524 #endif 9525 #endif /* SMP */ 9526 9527 } 9528