xref: /linux/kernel/sched/fair.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  *
49  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
50  */
51 unsigned int sysctl_sched_latency			= 6000000ULL;
52 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
53 
54 /*
55  * The initial- and re-scaling of tunables is configurable
56  *
57  * Options are:
58  *
59  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
60  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
61  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62  *
63  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
64  */
65 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
66 
67 /*
68  * Minimal preemption granularity for CPU-bound tasks:
69  *
70  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
71  */
72 unsigned int sysctl_sched_min_granularity		= 750000ULL;
73 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
74 
75 /*
76  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
77  */
78 static unsigned int sched_nr_latency = 8;
79 
80 /*
81  * After fork, child runs first. If set to 0 (default) then
82  * parent will (try to) run first.
83  */
84 unsigned int sysctl_sched_child_runs_first __read_mostly;
85 
86 /*
87  * SCHED_OTHER wake-up granularity.
88  *
89  * This option delays the preemption effects of decoupled workloads
90  * and reduces their over-scheduling. Synchronous workloads will still
91  * have immediate wakeup/sleep latencies.
92  *
93  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
94  */
95 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
96 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
97 
98 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered cpu has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 #endif
109 
110 #ifdef CONFIG_CFS_BANDWIDTH
111 /*
112  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
113  * each time a cfs_rq requests quota.
114  *
115  * Note: in the case that the slice exceeds the runtime remaining (either due
116  * to consumption or the quota being specified to be smaller than the slice)
117  * we will always only issue the remaining available time.
118  *
119  * (default: 5 msec, units: microseconds)
120  */
121 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
122 #endif
123 
124 /*
125  * The margin used when comparing utilization with CPU capacity:
126  * util * margin < capacity * 1024
127  *
128  * (default: ~20%)
129  */
130 unsigned int capacity_margin				= 1280;
131 
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 	lw->weight += inc;
135 	lw->inv_weight = 0;
136 }
137 
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 	lw->weight -= dec;
141 	lw->inv_weight = 0;
142 }
143 
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 	lw->weight = w;
147 	lw->inv_weight = 0;
148 }
149 
150 /*
151  * Increase the granularity value when there are more CPUs,
152  * because with more CPUs the 'effective latency' as visible
153  * to users decreases. But the relationship is not linear,
154  * so pick a second-best guess by going with the log2 of the
155  * number of CPUs.
156  *
157  * This idea comes from the SD scheduler of Con Kolivas:
158  */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 	unsigned int factor;
163 
164 	switch (sysctl_sched_tunable_scaling) {
165 	case SCHED_TUNABLESCALING_NONE:
166 		factor = 1;
167 		break;
168 	case SCHED_TUNABLESCALING_LINEAR:
169 		factor = cpus;
170 		break;
171 	case SCHED_TUNABLESCALING_LOG:
172 	default:
173 		factor = 1 + ilog2(cpus);
174 		break;
175 	}
176 
177 	return factor;
178 }
179 
180 static void update_sysctl(void)
181 {
182 	unsigned int factor = get_update_sysctl_factor();
183 
184 #define SET_SYSCTL(name) \
185 	(sysctl_##name = (factor) * normalized_sysctl_##name)
186 	SET_SYSCTL(sched_min_granularity);
187 	SET_SYSCTL(sched_latency);
188 	SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191 
192 void sched_init_granularity(void)
193 {
194 	update_sysctl();
195 }
196 
197 #define WMULT_CONST	(~0U)
198 #define WMULT_SHIFT	32
199 
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 	unsigned long w;
203 
204 	if (likely(lw->inv_weight))
205 		return;
206 
207 	w = scale_load_down(lw->weight);
208 
209 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 		lw->inv_weight = 1;
211 	else if (unlikely(!w))
212 		lw->inv_weight = WMULT_CONST;
213 	else
214 		lw->inv_weight = WMULT_CONST / w;
215 }
216 
217 /*
218  * delta_exec * weight / lw.weight
219  *   OR
220  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221  *
222  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223  * we're guaranteed shift stays positive because inv_weight is guaranteed to
224  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225  *
226  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227  * weight/lw.weight <= 1, and therefore our shift will also be positive.
228  */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 	u64 fact = scale_load_down(weight);
232 	int shift = WMULT_SHIFT;
233 
234 	__update_inv_weight(lw);
235 
236 	if (unlikely(fact >> 32)) {
237 		while (fact >> 32) {
238 			fact >>= 1;
239 			shift--;
240 		}
241 	}
242 
243 	/* hint to use a 32x32->64 mul */
244 	fact = (u64)(u32)fact * lw->inv_weight;
245 
246 	while (fact >> 32) {
247 		fact >>= 1;
248 		shift--;
249 	}
250 
251 	return mul_u64_u32_shr(delta_exec, fact, shift);
252 }
253 
254 
255 const struct sched_class fair_sched_class;
256 
257 /**************************************************************
258  * CFS operations on generic schedulable entities:
259  */
260 
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 
263 /* cpu runqueue to which this cfs_rq is attached */
264 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
265 {
266 	return cfs_rq->rq;
267 }
268 
269 /* An entity is a task if it doesn't "own" a runqueue */
270 #define entity_is_task(se)	(!se->my_q)
271 
272 static inline struct task_struct *task_of(struct sched_entity *se)
273 {
274 	SCHED_WARN_ON(!entity_is_task(se));
275 	return container_of(se, struct task_struct, se);
276 }
277 
278 /* Walk up scheduling entities hierarchy */
279 #define for_each_sched_entity(se) \
280 		for (; se; se = se->parent)
281 
282 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
283 {
284 	return p->se.cfs_rq;
285 }
286 
287 /* runqueue on which this entity is (to be) queued */
288 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
289 {
290 	return se->cfs_rq;
291 }
292 
293 /* runqueue "owned" by this group */
294 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
295 {
296 	return grp->my_q;
297 }
298 
299 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
300 {
301 	if (!cfs_rq->on_list) {
302 		struct rq *rq = rq_of(cfs_rq);
303 		int cpu = cpu_of(rq);
304 		/*
305 		 * Ensure we either appear before our parent (if already
306 		 * enqueued) or force our parent to appear after us when it is
307 		 * enqueued. The fact that we always enqueue bottom-up
308 		 * reduces this to two cases and a special case for the root
309 		 * cfs_rq. Furthermore, it also means that we will always reset
310 		 * tmp_alone_branch either when the branch is connected
311 		 * to a tree or when we reach the beg of the tree
312 		 */
313 		if (cfs_rq->tg->parent &&
314 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
315 			/*
316 			 * If parent is already on the list, we add the child
317 			 * just before. Thanks to circular linked property of
318 			 * the list, this means to put the child at the tail
319 			 * of the list that starts by parent.
320 			 */
321 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
323 			/*
324 			 * The branch is now connected to its tree so we can
325 			 * reset tmp_alone_branch to the beginning of the
326 			 * list.
327 			 */
328 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
329 		} else if (!cfs_rq->tg->parent) {
330 			/*
331 			 * cfs rq without parent should be put
332 			 * at the tail of the list.
333 			 */
334 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				&rq->leaf_cfs_rq_list);
336 			/*
337 			 * We have reach the beg of a tree so we can reset
338 			 * tmp_alone_branch to the beginning of the list.
339 			 */
340 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 		} else {
342 			/*
343 			 * The parent has not already been added so we want to
344 			 * make sure that it will be put after us.
345 			 * tmp_alone_branch points to the beg of the branch
346 			 * where we will add parent.
347 			 */
348 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
349 				rq->tmp_alone_branch);
350 			/*
351 			 * update tmp_alone_branch to points to the new beg
352 			 * of the branch
353 			 */
354 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
355 		}
356 
357 		cfs_rq->on_list = 1;
358 	}
359 }
360 
361 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
362 {
363 	if (cfs_rq->on_list) {
364 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
365 		cfs_rq->on_list = 0;
366 	}
367 }
368 
369 /* Iterate thr' all leaf cfs_rq's on a runqueue */
370 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
371 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
372 
373 /* Do the two (enqueued) entities belong to the same group ? */
374 static inline struct cfs_rq *
375 is_same_group(struct sched_entity *se, struct sched_entity *pse)
376 {
377 	if (se->cfs_rq == pse->cfs_rq)
378 		return se->cfs_rq;
379 
380 	return NULL;
381 }
382 
383 static inline struct sched_entity *parent_entity(struct sched_entity *se)
384 {
385 	return se->parent;
386 }
387 
388 static void
389 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
390 {
391 	int se_depth, pse_depth;
392 
393 	/*
394 	 * preemption test can be made between sibling entities who are in the
395 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
396 	 * both tasks until we find their ancestors who are siblings of common
397 	 * parent.
398 	 */
399 
400 	/* First walk up until both entities are at same depth */
401 	se_depth = (*se)->depth;
402 	pse_depth = (*pse)->depth;
403 
404 	while (se_depth > pse_depth) {
405 		se_depth--;
406 		*se = parent_entity(*se);
407 	}
408 
409 	while (pse_depth > se_depth) {
410 		pse_depth--;
411 		*pse = parent_entity(*pse);
412 	}
413 
414 	while (!is_same_group(*se, *pse)) {
415 		*se = parent_entity(*se);
416 		*pse = parent_entity(*pse);
417 	}
418 }
419 
420 #else	/* !CONFIG_FAIR_GROUP_SCHED */
421 
422 static inline struct task_struct *task_of(struct sched_entity *se)
423 {
424 	return container_of(se, struct task_struct, se);
425 }
426 
427 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
428 {
429 	return container_of(cfs_rq, struct rq, cfs);
430 }
431 
432 #define entity_is_task(se)	1
433 
434 #define for_each_sched_entity(se) \
435 		for (; se; se = NULL)
436 
437 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
438 {
439 	return &task_rq(p)->cfs;
440 }
441 
442 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
443 {
444 	struct task_struct *p = task_of(se);
445 	struct rq *rq = task_rq(p);
446 
447 	return &rq->cfs;
448 }
449 
450 /* runqueue "owned" by this group */
451 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
452 {
453 	return NULL;
454 }
455 
456 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
457 {
458 }
459 
460 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
461 {
462 }
463 
464 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
465 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
466 
467 static inline struct sched_entity *parent_entity(struct sched_entity *se)
468 {
469 	return NULL;
470 }
471 
472 static inline void
473 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
474 {
475 }
476 
477 #endif	/* CONFIG_FAIR_GROUP_SCHED */
478 
479 static __always_inline
480 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
481 
482 /**************************************************************
483  * Scheduling class tree data structure manipulation methods:
484  */
485 
486 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
487 {
488 	s64 delta = (s64)(vruntime - max_vruntime);
489 	if (delta > 0)
490 		max_vruntime = vruntime;
491 
492 	return max_vruntime;
493 }
494 
495 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
496 {
497 	s64 delta = (s64)(vruntime - min_vruntime);
498 	if (delta < 0)
499 		min_vruntime = vruntime;
500 
501 	return min_vruntime;
502 }
503 
504 static inline int entity_before(struct sched_entity *a,
505 				struct sched_entity *b)
506 {
507 	return (s64)(a->vruntime - b->vruntime) < 0;
508 }
509 
510 static void update_min_vruntime(struct cfs_rq *cfs_rq)
511 {
512 	struct sched_entity *curr = cfs_rq->curr;
513 
514 	u64 vruntime = cfs_rq->min_vruntime;
515 
516 	if (curr) {
517 		if (curr->on_rq)
518 			vruntime = curr->vruntime;
519 		else
520 			curr = NULL;
521 	}
522 
523 	if (cfs_rq->rb_leftmost) {
524 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
525 						   struct sched_entity,
526 						   run_node);
527 
528 		if (!curr)
529 			vruntime = se->vruntime;
530 		else
531 			vruntime = min_vruntime(vruntime, se->vruntime);
532 	}
533 
534 	/* ensure we never gain time by being placed backwards. */
535 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
536 #ifndef CONFIG_64BIT
537 	smp_wmb();
538 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
539 #endif
540 }
541 
542 /*
543  * Enqueue an entity into the rb-tree:
544  */
545 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
546 {
547 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
548 	struct rb_node *parent = NULL;
549 	struct sched_entity *entry;
550 	int leftmost = 1;
551 
552 	/*
553 	 * Find the right place in the rbtree:
554 	 */
555 	while (*link) {
556 		parent = *link;
557 		entry = rb_entry(parent, struct sched_entity, run_node);
558 		/*
559 		 * We dont care about collisions. Nodes with
560 		 * the same key stay together.
561 		 */
562 		if (entity_before(se, entry)) {
563 			link = &parent->rb_left;
564 		} else {
565 			link = &parent->rb_right;
566 			leftmost = 0;
567 		}
568 	}
569 
570 	/*
571 	 * Maintain a cache of leftmost tree entries (it is frequently
572 	 * used):
573 	 */
574 	if (leftmost)
575 		cfs_rq->rb_leftmost = &se->run_node;
576 
577 	rb_link_node(&se->run_node, parent, link);
578 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
579 }
580 
581 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
582 {
583 	if (cfs_rq->rb_leftmost == &se->run_node) {
584 		struct rb_node *next_node;
585 
586 		next_node = rb_next(&se->run_node);
587 		cfs_rq->rb_leftmost = next_node;
588 	}
589 
590 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
591 }
592 
593 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
594 {
595 	struct rb_node *left = cfs_rq->rb_leftmost;
596 
597 	if (!left)
598 		return NULL;
599 
600 	return rb_entry(left, struct sched_entity, run_node);
601 }
602 
603 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
604 {
605 	struct rb_node *next = rb_next(&se->run_node);
606 
607 	if (!next)
608 		return NULL;
609 
610 	return rb_entry(next, struct sched_entity, run_node);
611 }
612 
613 #ifdef CONFIG_SCHED_DEBUG
614 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
615 {
616 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
617 
618 	if (!last)
619 		return NULL;
620 
621 	return rb_entry(last, struct sched_entity, run_node);
622 }
623 
624 /**************************************************************
625  * Scheduling class statistics methods:
626  */
627 
628 int sched_proc_update_handler(struct ctl_table *table, int write,
629 		void __user *buffer, size_t *lenp,
630 		loff_t *ppos)
631 {
632 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
633 	unsigned int factor = get_update_sysctl_factor();
634 
635 	if (ret || !write)
636 		return ret;
637 
638 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
639 					sysctl_sched_min_granularity);
640 
641 #define WRT_SYSCTL(name) \
642 	(normalized_sysctl_##name = sysctl_##name / (factor))
643 	WRT_SYSCTL(sched_min_granularity);
644 	WRT_SYSCTL(sched_latency);
645 	WRT_SYSCTL(sched_wakeup_granularity);
646 #undef WRT_SYSCTL
647 
648 	return 0;
649 }
650 #endif
651 
652 /*
653  * delta /= w
654  */
655 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
656 {
657 	if (unlikely(se->load.weight != NICE_0_LOAD))
658 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
659 
660 	return delta;
661 }
662 
663 /*
664  * The idea is to set a period in which each task runs once.
665  *
666  * When there are too many tasks (sched_nr_latency) we have to stretch
667  * this period because otherwise the slices get too small.
668  *
669  * p = (nr <= nl) ? l : l*nr/nl
670  */
671 static u64 __sched_period(unsigned long nr_running)
672 {
673 	if (unlikely(nr_running > sched_nr_latency))
674 		return nr_running * sysctl_sched_min_granularity;
675 	else
676 		return sysctl_sched_latency;
677 }
678 
679 /*
680  * We calculate the wall-time slice from the period by taking a part
681  * proportional to the weight.
682  *
683  * s = p*P[w/rw]
684  */
685 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
688 
689 	for_each_sched_entity(se) {
690 		struct load_weight *load;
691 		struct load_weight lw;
692 
693 		cfs_rq = cfs_rq_of(se);
694 		load = &cfs_rq->load;
695 
696 		if (unlikely(!se->on_rq)) {
697 			lw = cfs_rq->load;
698 
699 			update_load_add(&lw, se->load.weight);
700 			load = &lw;
701 		}
702 		slice = __calc_delta(slice, se->load.weight, load);
703 	}
704 	return slice;
705 }
706 
707 /*
708  * We calculate the vruntime slice of a to-be-inserted task.
709  *
710  * vs = s/w
711  */
712 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
713 {
714 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
715 }
716 
717 #ifdef CONFIG_SMP
718 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
719 static unsigned long task_h_load(struct task_struct *p);
720 
721 /*
722  * We choose a half-life close to 1 scheduling period.
723  * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
724  * dependent on this value.
725  */
726 #define LOAD_AVG_PERIOD 32
727 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
728 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
729 
730 /* Give new sched_entity start runnable values to heavy its load in infant time */
731 void init_entity_runnable_average(struct sched_entity *se)
732 {
733 	struct sched_avg *sa = &se->avg;
734 
735 	sa->last_update_time = 0;
736 	/*
737 	 * sched_avg's period_contrib should be strictly less then 1024, so
738 	 * we give it 1023 to make sure it is almost a period (1024us), and
739 	 * will definitely be update (after enqueue).
740 	 */
741 	sa->period_contrib = 1023;
742 	/*
743 	 * Tasks are intialized with full load to be seen as heavy tasks until
744 	 * they get a chance to stabilize to their real load level.
745 	 * Group entities are intialized with zero load to reflect the fact that
746 	 * nothing has been attached to the task group yet.
747 	 */
748 	if (entity_is_task(se))
749 		sa->load_avg = scale_load_down(se->load.weight);
750 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
751 	/*
752 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
753 	 */
754 	sa->util_avg = 0;
755 	sa->util_sum = 0;
756 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758 
759 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
760 static void attach_entity_cfs_rq(struct sched_entity *se);
761 
762 /*
763  * With new tasks being created, their initial util_avgs are extrapolated
764  * based on the cfs_rq's current util_avg:
765  *
766  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
767  *
768  * However, in many cases, the above util_avg does not give a desired
769  * value. Moreover, the sum of the util_avgs may be divergent, such
770  * as when the series is a harmonic series.
771  *
772  * To solve this problem, we also cap the util_avg of successive tasks to
773  * only 1/2 of the left utilization budget:
774  *
775  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
776  *
777  * where n denotes the nth task.
778  *
779  * For example, a simplest series from the beginning would be like:
780  *
781  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
782  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783  *
784  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785  * if util_avg > util_avg_cap.
786  */
787 void post_init_entity_util_avg(struct sched_entity *se)
788 {
789 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
790 	struct sched_avg *sa = &se->avg;
791 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
792 
793 	if (cap > 0) {
794 		if (cfs_rq->avg.util_avg != 0) {
795 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
796 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
797 
798 			if (sa->util_avg > cap)
799 				sa->util_avg = cap;
800 		} else {
801 			sa->util_avg = cap;
802 		}
803 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
804 	}
805 
806 	if (entity_is_task(se)) {
807 		struct task_struct *p = task_of(se);
808 		if (p->sched_class != &fair_sched_class) {
809 			/*
810 			 * For !fair tasks do:
811 			 *
812 			update_cfs_rq_load_avg(now, cfs_rq, false);
813 			attach_entity_load_avg(cfs_rq, se);
814 			switched_from_fair(rq, p);
815 			 *
816 			 * such that the next switched_to_fair() has the
817 			 * expected state.
818 			 */
819 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
820 			return;
821 		}
822 	}
823 
824 	attach_entity_cfs_rq(se);
825 }
826 
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
829 {
830 }
831 void post_init_entity_util_avg(struct sched_entity *se)
832 {
833 }
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
835 {
836 }
837 #endif /* CONFIG_SMP */
838 
839 /*
840  * Update the current task's runtime statistics.
841  */
842 static void update_curr(struct cfs_rq *cfs_rq)
843 {
844 	struct sched_entity *curr = cfs_rq->curr;
845 	u64 now = rq_clock_task(rq_of(cfs_rq));
846 	u64 delta_exec;
847 
848 	if (unlikely(!curr))
849 		return;
850 
851 	delta_exec = now - curr->exec_start;
852 	if (unlikely((s64)delta_exec <= 0))
853 		return;
854 
855 	curr->exec_start = now;
856 
857 	schedstat_set(curr->statistics.exec_max,
858 		      max(delta_exec, curr->statistics.exec_max));
859 
860 	curr->sum_exec_runtime += delta_exec;
861 	schedstat_add(cfs_rq->exec_clock, delta_exec);
862 
863 	curr->vruntime += calc_delta_fair(delta_exec, curr);
864 	update_min_vruntime(cfs_rq);
865 
866 	if (entity_is_task(curr)) {
867 		struct task_struct *curtask = task_of(curr);
868 
869 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 		cpuacct_charge(curtask, delta_exec);
871 		account_group_exec_runtime(curtask, delta_exec);
872 	}
873 
874 	account_cfs_rq_runtime(cfs_rq, delta_exec);
875 }
876 
877 static void update_curr_fair(struct rq *rq)
878 {
879 	update_curr(cfs_rq_of(&rq->curr->se));
880 }
881 
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884 {
885 	u64 wait_start, prev_wait_start;
886 
887 	if (!schedstat_enabled())
888 		return;
889 
890 	wait_start = rq_clock(rq_of(cfs_rq));
891 	prev_wait_start = schedstat_val(se->statistics.wait_start);
892 
893 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 	    likely(wait_start > prev_wait_start))
895 		wait_start -= prev_wait_start;
896 
897 	schedstat_set(se->statistics.wait_start, wait_start);
898 }
899 
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902 {
903 	struct task_struct *p;
904 	u64 delta;
905 
906 	if (!schedstat_enabled())
907 		return;
908 
909 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910 
911 	if (entity_is_task(se)) {
912 		p = task_of(se);
913 		if (task_on_rq_migrating(p)) {
914 			/*
915 			 * Preserve migrating task's wait time so wait_start
916 			 * time stamp can be adjusted to accumulate wait time
917 			 * prior to migration.
918 			 */
919 			schedstat_set(se->statistics.wait_start, delta);
920 			return;
921 		}
922 		trace_sched_stat_wait(p, delta);
923 	}
924 
925 	schedstat_set(se->statistics.wait_max,
926 		      max(schedstat_val(se->statistics.wait_max), delta));
927 	schedstat_inc(se->statistics.wait_count);
928 	schedstat_add(se->statistics.wait_sum, delta);
929 	schedstat_set(se->statistics.wait_start, 0);
930 }
931 
932 static inline void
933 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 	struct task_struct *tsk = NULL;
936 	u64 sleep_start, block_start;
937 
938 	if (!schedstat_enabled())
939 		return;
940 
941 	sleep_start = schedstat_val(se->statistics.sleep_start);
942 	block_start = schedstat_val(se->statistics.block_start);
943 
944 	if (entity_is_task(se))
945 		tsk = task_of(se);
946 
947 	if (sleep_start) {
948 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949 
950 		if ((s64)delta < 0)
951 			delta = 0;
952 
953 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 			schedstat_set(se->statistics.sleep_max, delta);
955 
956 		schedstat_set(se->statistics.sleep_start, 0);
957 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
958 
959 		if (tsk) {
960 			account_scheduler_latency(tsk, delta >> 10, 1);
961 			trace_sched_stat_sleep(tsk, delta);
962 		}
963 	}
964 	if (block_start) {
965 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966 
967 		if ((s64)delta < 0)
968 			delta = 0;
969 
970 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 			schedstat_set(se->statistics.block_max, delta);
972 
973 		schedstat_set(se->statistics.block_start, 0);
974 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
975 
976 		if (tsk) {
977 			if (tsk->in_iowait) {
978 				schedstat_add(se->statistics.iowait_sum, delta);
979 				schedstat_inc(se->statistics.iowait_count);
980 				trace_sched_stat_iowait(tsk, delta);
981 			}
982 
983 			trace_sched_stat_blocked(tsk, delta);
984 
985 			/*
986 			 * Blocking time is in units of nanosecs, so shift by
987 			 * 20 to get a milliseconds-range estimation of the
988 			 * amount of time that the task spent sleeping:
989 			 */
990 			if (unlikely(prof_on == SLEEP_PROFILING)) {
991 				profile_hits(SLEEP_PROFILING,
992 						(void *)get_wchan(tsk),
993 						delta >> 20);
994 			}
995 			account_scheduler_latency(tsk, delta >> 10, 0);
996 		}
997 	}
998 }
999 
1000 /*
1001  * Task is being enqueued - update stats:
1002  */
1003 static inline void
1004 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005 {
1006 	if (!schedstat_enabled())
1007 		return;
1008 
1009 	/*
1010 	 * Are we enqueueing a waiting task? (for current tasks
1011 	 * a dequeue/enqueue event is a NOP)
1012 	 */
1013 	if (se != cfs_rq->curr)
1014 		update_stats_wait_start(cfs_rq, se);
1015 
1016 	if (flags & ENQUEUE_WAKEUP)
1017 		update_stats_enqueue_sleeper(cfs_rq, se);
1018 }
1019 
1020 static inline void
1021 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022 {
1023 
1024 	if (!schedstat_enabled())
1025 		return;
1026 
1027 	/*
1028 	 * Mark the end of the wait period if dequeueing a
1029 	 * waiting task:
1030 	 */
1031 	if (se != cfs_rq->curr)
1032 		update_stats_wait_end(cfs_rq, se);
1033 
1034 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 		struct task_struct *tsk = task_of(se);
1036 
1037 		if (tsk->state & TASK_INTERRUPTIBLE)
1038 			schedstat_set(se->statistics.sleep_start,
1039 				      rq_clock(rq_of(cfs_rq)));
1040 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 			schedstat_set(se->statistics.block_start,
1042 				      rq_clock(rq_of(cfs_rq)));
1043 	}
1044 }
1045 
1046 /*
1047  * We are picking a new current task - update its stats:
1048  */
1049 static inline void
1050 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 {
1052 	/*
1053 	 * We are starting a new run period:
1054 	 */
1055 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056 }
1057 
1058 /**************************************************
1059  * Scheduling class queueing methods:
1060  */
1061 
1062 #ifdef CONFIG_NUMA_BALANCING
1063 /*
1064  * Approximate time to scan a full NUMA task in ms. The task scan period is
1065  * calculated based on the tasks virtual memory size and
1066  * numa_balancing_scan_size.
1067  */
1068 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070 
1071 /* Portion of address space to scan in MB */
1072 unsigned int sysctl_numa_balancing_scan_size = 256;
1073 
1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076 
1077 static unsigned int task_nr_scan_windows(struct task_struct *p)
1078 {
1079 	unsigned long rss = 0;
1080 	unsigned long nr_scan_pages;
1081 
1082 	/*
1083 	 * Calculations based on RSS as non-present and empty pages are skipped
1084 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1085 	 * on resident pages
1086 	 */
1087 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088 	rss = get_mm_rss(p->mm);
1089 	if (!rss)
1090 		rss = nr_scan_pages;
1091 
1092 	rss = round_up(rss, nr_scan_pages);
1093 	return rss / nr_scan_pages;
1094 }
1095 
1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097 #define MAX_SCAN_WINDOW 2560
1098 
1099 static unsigned int task_scan_min(struct task_struct *p)
1100 {
1101 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 	unsigned int scan, floor;
1103 	unsigned int windows = 1;
1104 
1105 	if (scan_size < MAX_SCAN_WINDOW)
1106 		windows = MAX_SCAN_WINDOW / scan_size;
1107 	floor = 1000 / windows;
1108 
1109 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110 	return max_t(unsigned int, floor, scan);
1111 }
1112 
1113 static unsigned int task_scan_max(struct task_struct *p)
1114 {
1115 	unsigned int smin = task_scan_min(p);
1116 	unsigned int smax;
1117 
1118 	/* Watch for min being lower than max due to floor calculations */
1119 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1120 	return max(smin, smax);
1121 }
1122 
1123 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1124 {
1125 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1126 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1127 }
1128 
1129 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1130 {
1131 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1132 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1133 }
1134 
1135 struct numa_group {
1136 	atomic_t refcount;
1137 
1138 	spinlock_t lock; /* nr_tasks, tasks */
1139 	int nr_tasks;
1140 	pid_t gid;
1141 	int active_nodes;
1142 
1143 	struct rcu_head rcu;
1144 	unsigned long total_faults;
1145 	unsigned long max_faults_cpu;
1146 	/*
1147 	 * Faults_cpu is used to decide whether memory should move
1148 	 * towards the CPU. As a consequence, these stats are weighted
1149 	 * more by CPU use than by memory faults.
1150 	 */
1151 	unsigned long *faults_cpu;
1152 	unsigned long faults[0];
1153 };
1154 
1155 /* Shared or private faults. */
1156 #define NR_NUMA_HINT_FAULT_TYPES 2
1157 
1158 /* Memory and CPU locality */
1159 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1160 
1161 /* Averaged statistics, and temporary buffers. */
1162 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1163 
1164 pid_t task_numa_group_id(struct task_struct *p)
1165 {
1166 	return p->numa_group ? p->numa_group->gid : 0;
1167 }
1168 
1169 /*
1170  * The averaged statistics, shared & private, memory & cpu,
1171  * occupy the first half of the array. The second half of the
1172  * array is for current counters, which are averaged into the
1173  * first set by task_numa_placement.
1174  */
1175 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1176 {
1177 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1178 }
1179 
1180 static inline unsigned long task_faults(struct task_struct *p, int nid)
1181 {
1182 	if (!p->numa_faults)
1183 		return 0;
1184 
1185 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1186 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1187 }
1188 
1189 static inline unsigned long group_faults(struct task_struct *p, int nid)
1190 {
1191 	if (!p->numa_group)
1192 		return 0;
1193 
1194 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1195 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1196 }
1197 
1198 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1199 {
1200 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1201 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1202 }
1203 
1204 /*
1205  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1206  * considered part of a numa group's pseudo-interleaving set. Migrations
1207  * between these nodes are slowed down, to allow things to settle down.
1208  */
1209 #define ACTIVE_NODE_FRACTION 3
1210 
1211 static bool numa_is_active_node(int nid, struct numa_group *ng)
1212 {
1213 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1214 }
1215 
1216 /* Handle placement on systems where not all nodes are directly connected. */
1217 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1218 					int maxdist, bool task)
1219 {
1220 	unsigned long score = 0;
1221 	int node;
1222 
1223 	/*
1224 	 * All nodes are directly connected, and the same distance
1225 	 * from each other. No need for fancy placement algorithms.
1226 	 */
1227 	if (sched_numa_topology_type == NUMA_DIRECT)
1228 		return 0;
1229 
1230 	/*
1231 	 * This code is called for each node, introducing N^2 complexity,
1232 	 * which should be ok given the number of nodes rarely exceeds 8.
1233 	 */
1234 	for_each_online_node(node) {
1235 		unsigned long faults;
1236 		int dist = node_distance(nid, node);
1237 
1238 		/*
1239 		 * The furthest away nodes in the system are not interesting
1240 		 * for placement; nid was already counted.
1241 		 */
1242 		if (dist == sched_max_numa_distance || node == nid)
1243 			continue;
1244 
1245 		/*
1246 		 * On systems with a backplane NUMA topology, compare groups
1247 		 * of nodes, and move tasks towards the group with the most
1248 		 * memory accesses. When comparing two nodes at distance
1249 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1250 		 * of each group. Skip other nodes.
1251 		 */
1252 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1253 					dist > maxdist)
1254 			continue;
1255 
1256 		/* Add up the faults from nearby nodes. */
1257 		if (task)
1258 			faults = task_faults(p, node);
1259 		else
1260 			faults = group_faults(p, node);
1261 
1262 		/*
1263 		 * On systems with a glueless mesh NUMA topology, there are
1264 		 * no fixed "groups of nodes". Instead, nodes that are not
1265 		 * directly connected bounce traffic through intermediate
1266 		 * nodes; a numa_group can occupy any set of nodes.
1267 		 * The further away a node is, the less the faults count.
1268 		 * This seems to result in good task placement.
1269 		 */
1270 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1271 			faults *= (sched_max_numa_distance - dist);
1272 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1273 		}
1274 
1275 		score += faults;
1276 	}
1277 
1278 	return score;
1279 }
1280 
1281 /*
1282  * These return the fraction of accesses done by a particular task, or
1283  * task group, on a particular numa node.  The group weight is given a
1284  * larger multiplier, in order to group tasks together that are almost
1285  * evenly spread out between numa nodes.
1286  */
1287 static inline unsigned long task_weight(struct task_struct *p, int nid,
1288 					int dist)
1289 {
1290 	unsigned long faults, total_faults;
1291 
1292 	if (!p->numa_faults)
1293 		return 0;
1294 
1295 	total_faults = p->total_numa_faults;
1296 
1297 	if (!total_faults)
1298 		return 0;
1299 
1300 	faults = task_faults(p, nid);
1301 	faults += score_nearby_nodes(p, nid, dist, true);
1302 
1303 	return 1000 * faults / total_faults;
1304 }
1305 
1306 static inline unsigned long group_weight(struct task_struct *p, int nid,
1307 					 int dist)
1308 {
1309 	unsigned long faults, total_faults;
1310 
1311 	if (!p->numa_group)
1312 		return 0;
1313 
1314 	total_faults = p->numa_group->total_faults;
1315 
1316 	if (!total_faults)
1317 		return 0;
1318 
1319 	faults = group_faults(p, nid);
1320 	faults += score_nearby_nodes(p, nid, dist, false);
1321 
1322 	return 1000 * faults / total_faults;
1323 }
1324 
1325 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1326 				int src_nid, int dst_cpu)
1327 {
1328 	struct numa_group *ng = p->numa_group;
1329 	int dst_nid = cpu_to_node(dst_cpu);
1330 	int last_cpupid, this_cpupid;
1331 
1332 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1333 
1334 	/*
1335 	 * Multi-stage node selection is used in conjunction with a periodic
1336 	 * migration fault to build a temporal task<->page relation. By using
1337 	 * a two-stage filter we remove short/unlikely relations.
1338 	 *
1339 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1340 	 * a task's usage of a particular page (n_p) per total usage of this
1341 	 * page (n_t) (in a given time-span) to a probability.
1342 	 *
1343 	 * Our periodic faults will sample this probability and getting the
1344 	 * same result twice in a row, given these samples are fully
1345 	 * independent, is then given by P(n)^2, provided our sample period
1346 	 * is sufficiently short compared to the usage pattern.
1347 	 *
1348 	 * This quadric squishes small probabilities, making it less likely we
1349 	 * act on an unlikely task<->page relation.
1350 	 */
1351 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1352 	if (!cpupid_pid_unset(last_cpupid) &&
1353 				cpupid_to_nid(last_cpupid) != dst_nid)
1354 		return false;
1355 
1356 	/* Always allow migrate on private faults */
1357 	if (cpupid_match_pid(p, last_cpupid))
1358 		return true;
1359 
1360 	/* A shared fault, but p->numa_group has not been set up yet. */
1361 	if (!ng)
1362 		return true;
1363 
1364 	/*
1365 	 * Destination node is much more heavily used than the source
1366 	 * node? Allow migration.
1367 	 */
1368 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1369 					ACTIVE_NODE_FRACTION)
1370 		return true;
1371 
1372 	/*
1373 	 * Distribute memory according to CPU & memory use on each node,
1374 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1375 	 *
1376 	 * faults_cpu(dst)   3   faults_cpu(src)
1377 	 * --------------- * - > ---------------
1378 	 * faults_mem(dst)   4   faults_mem(src)
1379 	 */
1380 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1381 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1382 }
1383 
1384 static unsigned long weighted_cpuload(const int cpu);
1385 static unsigned long source_load(int cpu, int type);
1386 static unsigned long target_load(int cpu, int type);
1387 static unsigned long capacity_of(int cpu);
1388 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1389 
1390 /* Cached statistics for all CPUs within a node */
1391 struct numa_stats {
1392 	unsigned long nr_running;
1393 	unsigned long load;
1394 
1395 	/* Total compute capacity of CPUs on a node */
1396 	unsigned long compute_capacity;
1397 
1398 	/* Approximate capacity in terms of runnable tasks on a node */
1399 	unsigned long task_capacity;
1400 	int has_free_capacity;
1401 };
1402 
1403 /*
1404  * XXX borrowed from update_sg_lb_stats
1405  */
1406 static void update_numa_stats(struct numa_stats *ns, int nid)
1407 {
1408 	int smt, cpu, cpus = 0;
1409 	unsigned long capacity;
1410 
1411 	memset(ns, 0, sizeof(*ns));
1412 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1413 		struct rq *rq = cpu_rq(cpu);
1414 
1415 		ns->nr_running += rq->nr_running;
1416 		ns->load += weighted_cpuload(cpu);
1417 		ns->compute_capacity += capacity_of(cpu);
1418 
1419 		cpus++;
1420 	}
1421 
1422 	/*
1423 	 * If we raced with hotplug and there are no CPUs left in our mask
1424 	 * the @ns structure is NULL'ed and task_numa_compare() will
1425 	 * not find this node attractive.
1426 	 *
1427 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1428 	 * imbalance and bail there.
1429 	 */
1430 	if (!cpus)
1431 		return;
1432 
1433 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1434 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1435 	capacity = cpus / smt; /* cores */
1436 
1437 	ns->task_capacity = min_t(unsigned, capacity,
1438 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1439 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1440 }
1441 
1442 struct task_numa_env {
1443 	struct task_struct *p;
1444 
1445 	int src_cpu, src_nid;
1446 	int dst_cpu, dst_nid;
1447 
1448 	struct numa_stats src_stats, dst_stats;
1449 
1450 	int imbalance_pct;
1451 	int dist;
1452 
1453 	struct task_struct *best_task;
1454 	long best_imp;
1455 	int best_cpu;
1456 };
1457 
1458 static void task_numa_assign(struct task_numa_env *env,
1459 			     struct task_struct *p, long imp)
1460 {
1461 	if (env->best_task)
1462 		put_task_struct(env->best_task);
1463 	if (p)
1464 		get_task_struct(p);
1465 
1466 	env->best_task = p;
1467 	env->best_imp = imp;
1468 	env->best_cpu = env->dst_cpu;
1469 }
1470 
1471 static bool load_too_imbalanced(long src_load, long dst_load,
1472 				struct task_numa_env *env)
1473 {
1474 	long imb, old_imb;
1475 	long orig_src_load, orig_dst_load;
1476 	long src_capacity, dst_capacity;
1477 
1478 	/*
1479 	 * The load is corrected for the CPU capacity available on each node.
1480 	 *
1481 	 * src_load        dst_load
1482 	 * ------------ vs ---------
1483 	 * src_capacity    dst_capacity
1484 	 */
1485 	src_capacity = env->src_stats.compute_capacity;
1486 	dst_capacity = env->dst_stats.compute_capacity;
1487 
1488 	/* We care about the slope of the imbalance, not the direction. */
1489 	if (dst_load < src_load)
1490 		swap(dst_load, src_load);
1491 
1492 	/* Is the difference below the threshold? */
1493 	imb = dst_load * src_capacity * 100 -
1494 	      src_load * dst_capacity * env->imbalance_pct;
1495 	if (imb <= 0)
1496 		return false;
1497 
1498 	/*
1499 	 * The imbalance is above the allowed threshold.
1500 	 * Compare it with the old imbalance.
1501 	 */
1502 	orig_src_load = env->src_stats.load;
1503 	orig_dst_load = env->dst_stats.load;
1504 
1505 	if (orig_dst_load < orig_src_load)
1506 		swap(orig_dst_load, orig_src_load);
1507 
1508 	old_imb = orig_dst_load * src_capacity * 100 -
1509 		  orig_src_load * dst_capacity * env->imbalance_pct;
1510 
1511 	/* Would this change make things worse? */
1512 	return (imb > old_imb);
1513 }
1514 
1515 /*
1516  * This checks if the overall compute and NUMA accesses of the system would
1517  * be improved if the source tasks was migrated to the target dst_cpu taking
1518  * into account that it might be best if task running on the dst_cpu should
1519  * be exchanged with the source task
1520  */
1521 static void task_numa_compare(struct task_numa_env *env,
1522 			      long taskimp, long groupimp)
1523 {
1524 	struct rq *src_rq = cpu_rq(env->src_cpu);
1525 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1526 	struct task_struct *cur;
1527 	long src_load, dst_load;
1528 	long load;
1529 	long imp = env->p->numa_group ? groupimp : taskimp;
1530 	long moveimp = imp;
1531 	int dist = env->dist;
1532 
1533 	rcu_read_lock();
1534 	cur = task_rcu_dereference(&dst_rq->curr);
1535 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1536 		cur = NULL;
1537 
1538 	/*
1539 	 * Because we have preemption enabled we can get migrated around and
1540 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1541 	 */
1542 	if (cur == env->p)
1543 		goto unlock;
1544 
1545 	/*
1546 	 * "imp" is the fault differential for the source task between the
1547 	 * source and destination node. Calculate the total differential for
1548 	 * the source task and potential destination task. The more negative
1549 	 * the value is, the more rmeote accesses that would be expected to
1550 	 * be incurred if the tasks were swapped.
1551 	 */
1552 	if (cur) {
1553 		/* Skip this swap candidate if cannot move to the source cpu */
1554 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1555 			goto unlock;
1556 
1557 		/*
1558 		 * If dst and source tasks are in the same NUMA group, or not
1559 		 * in any group then look only at task weights.
1560 		 */
1561 		if (cur->numa_group == env->p->numa_group) {
1562 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1563 			      task_weight(cur, env->dst_nid, dist);
1564 			/*
1565 			 * Add some hysteresis to prevent swapping the
1566 			 * tasks within a group over tiny differences.
1567 			 */
1568 			if (cur->numa_group)
1569 				imp -= imp/16;
1570 		} else {
1571 			/*
1572 			 * Compare the group weights. If a task is all by
1573 			 * itself (not part of a group), use the task weight
1574 			 * instead.
1575 			 */
1576 			if (cur->numa_group)
1577 				imp += group_weight(cur, env->src_nid, dist) -
1578 				       group_weight(cur, env->dst_nid, dist);
1579 			else
1580 				imp += task_weight(cur, env->src_nid, dist) -
1581 				       task_weight(cur, env->dst_nid, dist);
1582 		}
1583 	}
1584 
1585 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1586 		goto unlock;
1587 
1588 	if (!cur) {
1589 		/* Is there capacity at our destination? */
1590 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1591 		    !env->dst_stats.has_free_capacity)
1592 			goto unlock;
1593 
1594 		goto balance;
1595 	}
1596 
1597 	/* Balance doesn't matter much if we're running a task per cpu */
1598 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1599 			dst_rq->nr_running == 1)
1600 		goto assign;
1601 
1602 	/*
1603 	 * In the overloaded case, try and keep the load balanced.
1604 	 */
1605 balance:
1606 	load = task_h_load(env->p);
1607 	dst_load = env->dst_stats.load + load;
1608 	src_load = env->src_stats.load - load;
1609 
1610 	if (moveimp > imp && moveimp > env->best_imp) {
1611 		/*
1612 		 * If the improvement from just moving env->p direction is
1613 		 * better than swapping tasks around, check if a move is
1614 		 * possible. Store a slightly smaller score than moveimp,
1615 		 * so an actually idle CPU will win.
1616 		 */
1617 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1618 			imp = moveimp - 1;
1619 			cur = NULL;
1620 			goto assign;
1621 		}
1622 	}
1623 
1624 	if (imp <= env->best_imp)
1625 		goto unlock;
1626 
1627 	if (cur) {
1628 		load = task_h_load(cur);
1629 		dst_load -= load;
1630 		src_load += load;
1631 	}
1632 
1633 	if (load_too_imbalanced(src_load, dst_load, env))
1634 		goto unlock;
1635 
1636 	/*
1637 	 * One idle CPU per node is evaluated for a task numa move.
1638 	 * Call select_idle_sibling to maybe find a better one.
1639 	 */
1640 	if (!cur) {
1641 		/*
1642 		 * select_idle_siblings() uses an per-cpu cpumask that
1643 		 * can be used from IRQ context.
1644 		 */
1645 		local_irq_disable();
1646 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1647 						   env->dst_cpu);
1648 		local_irq_enable();
1649 	}
1650 
1651 assign:
1652 	task_numa_assign(env, cur, imp);
1653 unlock:
1654 	rcu_read_unlock();
1655 }
1656 
1657 static void task_numa_find_cpu(struct task_numa_env *env,
1658 				long taskimp, long groupimp)
1659 {
1660 	int cpu;
1661 
1662 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1663 		/* Skip this CPU if the source task cannot migrate */
1664 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1665 			continue;
1666 
1667 		env->dst_cpu = cpu;
1668 		task_numa_compare(env, taskimp, groupimp);
1669 	}
1670 }
1671 
1672 /* Only move tasks to a NUMA node less busy than the current node. */
1673 static bool numa_has_capacity(struct task_numa_env *env)
1674 {
1675 	struct numa_stats *src = &env->src_stats;
1676 	struct numa_stats *dst = &env->dst_stats;
1677 
1678 	if (src->has_free_capacity && !dst->has_free_capacity)
1679 		return false;
1680 
1681 	/*
1682 	 * Only consider a task move if the source has a higher load
1683 	 * than the destination, corrected for CPU capacity on each node.
1684 	 *
1685 	 *      src->load                dst->load
1686 	 * --------------------- vs ---------------------
1687 	 * src->compute_capacity    dst->compute_capacity
1688 	 */
1689 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1690 
1691 	    dst->load * src->compute_capacity * 100)
1692 		return true;
1693 
1694 	return false;
1695 }
1696 
1697 static int task_numa_migrate(struct task_struct *p)
1698 {
1699 	struct task_numa_env env = {
1700 		.p = p,
1701 
1702 		.src_cpu = task_cpu(p),
1703 		.src_nid = task_node(p),
1704 
1705 		.imbalance_pct = 112,
1706 
1707 		.best_task = NULL,
1708 		.best_imp = 0,
1709 		.best_cpu = -1,
1710 	};
1711 	struct sched_domain *sd;
1712 	unsigned long taskweight, groupweight;
1713 	int nid, ret, dist;
1714 	long taskimp, groupimp;
1715 
1716 	/*
1717 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1718 	 * imbalance and would be the first to start moving tasks about.
1719 	 *
1720 	 * And we want to avoid any moving of tasks about, as that would create
1721 	 * random movement of tasks -- counter the numa conditions we're trying
1722 	 * to satisfy here.
1723 	 */
1724 	rcu_read_lock();
1725 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1726 	if (sd)
1727 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1728 	rcu_read_unlock();
1729 
1730 	/*
1731 	 * Cpusets can break the scheduler domain tree into smaller
1732 	 * balance domains, some of which do not cross NUMA boundaries.
1733 	 * Tasks that are "trapped" in such domains cannot be migrated
1734 	 * elsewhere, so there is no point in (re)trying.
1735 	 */
1736 	if (unlikely(!sd)) {
1737 		p->numa_preferred_nid = task_node(p);
1738 		return -EINVAL;
1739 	}
1740 
1741 	env.dst_nid = p->numa_preferred_nid;
1742 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1743 	taskweight = task_weight(p, env.src_nid, dist);
1744 	groupweight = group_weight(p, env.src_nid, dist);
1745 	update_numa_stats(&env.src_stats, env.src_nid);
1746 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1747 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1748 	update_numa_stats(&env.dst_stats, env.dst_nid);
1749 
1750 	/* Try to find a spot on the preferred nid. */
1751 	if (numa_has_capacity(&env))
1752 		task_numa_find_cpu(&env, taskimp, groupimp);
1753 
1754 	/*
1755 	 * Look at other nodes in these cases:
1756 	 * - there is no space available on the preferred_nid
1757 	 * - the task is part of a numa_group that is interleaved across
1758 	 *   multiple NUMA nodes; in order to better consolidate the group,
1759 	 *   we need to check other locations.
1760 	 */
1761 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1762 		for_each_online_node(nid) {
1763 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1764 				continue;
1765 
1766 			dist = node_distance(env.src_nid, env.dst_nid);
1767 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1768 						dist != env.dist) {
1769 				taskweight = task_weight(p, env.src_nid, dist);
1770 				groupweight = group_weight(p, env.src_nid, dist);
1771 			}
1772 
1773 			/* Only consider nodes where both task and groups benefit */
1774 			taskimp = task_weight(p, nid, dist) - taskweight;
1775 			groupimp = group_weight(p, nid, dist) - groupweight;
1776 			if (taskimp < 0 && groupimp < 0)
1777 				continue;
1778 
1779 			env.dist = dist;
1780 			env.dst_nid = nid;
1781 			update_numa_stats(&env.dst_stats, env.dst_nid);
1782 			if (numa_has_capacity(&env))
1783 				task_numa_find_cpu(&env, taskimp, groupimp);
1784 		}
1785 	}
1786 
1787 	/*
1788 	 * If the task is part of a workload that spans multiple NUMA nodes,
1789 	 * and is migrating into one of the workload's active nodes, remember
1790 	 * this node as the task's preferred numa node, so the workload can
1791 	 * settle down.
1792 	 * A task that migrated to a second choice node will be better off
1793 	 * trying for a better one later. Do not set the preferred node here.
1794 	 */
1795 	if (p->numa_group) {
1796 		struct numa_group *ng = p->numa_group;
1797 
1798 		if (env.best_cpu == -1)
1799 			nid = env.src_nid;
1800 		else
1801 			nid = env.dst_nid;
1802 
1803 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1804 			sched_setnuma(p, env.dst_nid);
1805 	}
1806 
1807 	/* No better CPU than the current one was found. */
1808 	if (env.best_cpu == -1)
1809 		return -EAGAIN;
1810 
1811 	/*
1812 	 * Reset the scan period if the task is being rescheduled on an
1813 	 * alternative node to recheck if the tasks is now properly placed.
1814 	 */
1815 	p->numa_scan_period = task_scan_min(p);
1816 
1817 	if (env.best_task == NULL) {
1818 		ret = migrate_task_to(p, env.best_cpu);
1819 		if (ret != 0)
1820 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1821 		return ret;
1822 	}
1823 
1824 	ret = migrate_swap(p, env.best_task);
1825 	if (ret != 0)
1826 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1827 	put_task_struct(env.best_task);
1828 	return ret;
1829 }
1830 
1831 /* Attempt to migrate a task to a CPU on the preferred node. */
1832 static void numa_migrate_preferred(struct task_struct *p)
1833 {
1834 	unsigned long interval = HZ;
1835 
1836 	/* This task has no NUMA fault statistics yet */
1837 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1838 		return;
1839 
1840 	/* Periodically retry migrating the task to the preferred node */
1841 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1842 	p->numa_migrate_retry = jiffies + interval;
1843 
1844 	/* Success if task is already running on preferred CPU */
1845 	if (task_node(p) == p->numa_preferred_nid)
1846 		return;
1847 
1848 	/* Otherwise, try migrate to a CPU on the preferred node */
1849 	task_numa_migrate(p);
1850 }
1851 
1852 /*
1853  * Find out how many nodes on the workload is actively running on. Do this by
1854  * tracking the nodes from which NUMA hinting faults are triggered. This can
1855  * be different from the set of nodes where the workload's memory is currently
1856  * located.
1857  */
1858 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1859 {
1860 	unsigned long faults, max_faults = 0;
1861 	int nid, active_nodes = 0;
1862 
1863 	for_each_online_node(nid) {
1864 		faults = group_faults_cpu(numa_group, nid);
1865 		if (faults > max_faults)
1866 			max_faults = faults;
1867 	}
1868 
1869 	for_each_online_node(nid) {
1870 		faults = group_faults_cpu(numa_group, nid);
1871 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1872 			active_nodes++;
1873 	}
1874 
1875 	numa_group->max_faults_cpu = max_faults;
1876 	numa_group->active_nodes = active_nodes;
1877 }
1878 
1879 /*
1880  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1881  * increments. The more local the fault statistics are, the higher the scan
1882  * period will be for the next scan window. If local/(local+remote) ratio is
1883  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1884  * the scan period will decrease. Aim for 70% local accesses.
1885  */
1886 #define NUMA_PERIOD_SLOTS 10
1887 #define NUMA_PERIOD_THRESHOLD 7
1888 
1889 /*
1890  * Increase the scan period (slow down scanning) if the majority of
1891  * our memory is already on our local node, or if the majority of
1892  * the page accesses are shared with other processes.
1893  * Otherwise, decrease the scan period.
1894  */
1895 static void update_task_scan_period(struct task_struct *p,
1896 			unsigned long shared, unsigned long private)
1897 {
1898 	unsigned int period_slot;
1899 	int ratio;
1900 	int diff;
1901 
1902 	unsigned long remote = p->numa_faults_locality[0];
1903 	unsigned long local = p->numa_faults_locality[1];
1904 
1905 	/*
1906 	 * If there were no record hinting faults then either the task is
1907 	 * completely idle or all activity is areas that are not of interest
1908 	 * to automatic numa balancing. Related to that, if there were failed
1909 	 * migration then it implies we are migrating too quickly or the local
1910 	 * node is overloaded. In either case, scan slower
1911 	 */
1912 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1913 		p->numa_scan_period = min(p->numa_scan_period_max,
1914 			p->numa_scan_period << 1);
1915 
1916 		p->mm->numa_next_scan = jiffies +
1917 			msecs_to_jiffies(p->numa_scan_period);
1918 
1919 		return;
1920 	}
1921 
1922 	/*
1923 	 * Prepare to scale scan period relative to the current period.
1924 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1925 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1926 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1927 	 */
1928 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1929 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1930 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1931 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1932 		if (!slot)
1933 			slot = 1;
1934 		diff = slot * period_slot;
1935 	} else {
1936 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1937 
1938 		/*
1939 		 * Scale scan rate increases based on sharing. There is an
1940 		 * inverse relationship between the degree of sharing and
1941 		 * the adjustment made to the scanning period. Broadly
1942 		 * speaking the intent is that there is little point
1943 		 * scanning faster if shared accesses dominate as it may
1944 		 * simply bounce migrations uselessly
1945 		 */
1946 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1947 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1948 	}
1949 
1950 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1951 			task_scan_min(p), task_scan_max(p));
1952 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1953 }
1954 
1955 /*
1956  * Get the fraction of time the task has been running since the last
1957  * NUMA placement cycle. The scheduler keeps similar statistics, but
1958  * decays those on a 32ms period, which is orders of magnitude off
1959  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1960  * stats only if the task is so new there are no NUMA statistics yet.
1961  */
1962 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1963 {
1964 	u64 runtime, delta, now;
1965 	/* Use the start of this time slice to avoid calculations. */
1966 	now = p->se.exec_start;
1967 	runtime = p->se.sum_exec_runtime;
1968 
1969 	if (p->last_task_numa_placement) {
1970 		delta = runtime - p->last_sum_exec_runtime;
1971 		*period = now - p->last_task_numa_placement;
1972 	} else {
1973 		delta = p->se.avg.load_sum / p->se.load.weight;
1974 		*period = LOAD_AVG_MAX;
1975 	}
1976 
1977 	p->last_sum_exec_runtime = runtime;
1978 	p->last_task_numa_placement = now;
1979 
1980 	return delta;
1981 }
1982 
1983 /*
1984  * Determine the preferred nid for a task in a numa_group. This needs to
1985  * be done in a way that produces consistent results with group_weight,
1986  * otherwise workloads might not converge.
1987  */
1988 static int preferred_group_nid(struct task_struct *p, int nid)
1989 {
1990 	nodemask_t nodes;
1991 	int dist;
1992 
1993 	/* Direct connections between all NUMA nodes. */
1994 	if (sched_numa_topology_type == NUMA_DIRECT)
1995 		return nid;
1996 
1997 	/*
1998 	 * On a system with glueless mesh NUMA topology, group_weight
1999 	 * scores nodes according to the number of NUMA hinting faults on
2000 	 * both the node itself, and on nearby nodes.
2001 	 */
2002 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2003 		unsigned long score, max_score = 0;
2004 		int node, max_node = nid;
2005 
2006 		dist = sched_max_numa_distance;
2007 
2008 		for_each_online_node(node) {
2009 			score = group_weight(p, node, dist);
2010 			if (score > max_score) {
2011 				max_score = score;
2012 				max_node = node;
2013 			}
2014 		}
2015 		return max_node;
2016 	}
2017 
2018 	/*
2019 	 * Finding the preferred nid in a system with NUMA backplane
2020 	 * interconnect topology is more involved. The goal is to locate
2021 	 * tasks from numa_groups near each other in the system, and
2022 	 * untangle workloads from different sides of the system. This requires
2023 	 * searching down the hierarchy of node groups, recursively searching
2024 	 * inside the highest scoring group of nodes. The nodemask tricks
2025 	 * keep the complexity of the search down.
2026 	 */
2027 	nodes = node_online_map;
2028 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2029 		unsigned long max_faults = 0;
2030 		nodemask_t max_group = NODE_MASK_NONE;
2031 		int a, b;
2032 
2033 		/* Are there nodes at this distance from each other? */
2034 		if (!find_numa_distance(dist))
2035 			continue;
2036 
2037 		for_each_node_mask(a, nodes) {
2038 			unsigned long faults = 0;
2039 			nodemask_t this_group;
2040 			nodes_clear(this_group);
2041 
2042 			/* Sum group's NUMA faults; includes a==b case. */
2043 			for_each_node_mask(b, nodes) {
2044 				if (node_distance(a, b) < dist) {
2045 					faults += group_faults(p, b);
2046 					node_set(b, this_group);
2047 					node_clear(b, nodes);
2048 				}
2049 			}
2050 
2051 			/* Remember the top group. */
2052 			if (faults > max_faults) {
2053 				max_faults = faults;
2054 				max_group = this_group;
2055 				/*
2056 				 * subtle: at the smallest distance there is
2057 				 * just one node left in each "group", the
2058 				 * winner is the preferred nid.
2059 				 */
2060 				nid = a;
2061 			}
2062 		}
2063 		/* Next round, evaluate the nodes within max_group. */
2064 		if (!max_faults)
2065 			break;
2066 		nodes = max_group;
2067 	}
2068 	return nid;
2069 }
2070 
2071 static void task_numa_placement(struct task_struct *p)
2072 {
2073 	int seq, nid, max_nid = -1, max_group_nid = -1;
2074 	unsigned long max_faults = 0, max_group_faults = 0;
2075 	unsigned long fault_types[2] = { 0, 0 };
2076 	unsigned long total_faults;
2077 	u64 runtime, period;
2078 	spinlock_t *group_lock = NULL;
2079 
2080 	/*
2081 	 * The p->mm->numa_scan_seq field gets updated without
2082 	 * exclusive access. Use READ_ONCE() here to ensure
2083 	 * that the field is read in a single access:
2084 	 */
2085 	seq = READ_ONCE(p->mm->numa_scan_seq);
2086 	if (p->numa_scan_seq == seq)
2087 		return;
2088 	p->numa_scan_seq = seq;
2089 	p->numa_scan_period_max = task_scan_max(p);
2090 
2091 	total_faults = p->numa_faults_locality[0] +
2092 		       p->numa_faults_locality[1];
2093 	runtime = numa_get_avg_runtime(p, &period);
2094 
2095 	/* If the task is part of a group prevent parallel updates to group stats */
2096 	if (p->numa_group) {
2097 		group_lock = &p->numa_group->lock;
2098 		spin_lock_irq(group_lock);
2099 	}
2100 
2101 	/* Find the node with the highest number of faults */
2102 	for_each_online_node(nid) {
2103 		/* Keep track of the offsets in numa_faults array */
2104 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2105 		unsigned long faults = 0, group_faults = 0;
2106 		int priv;
2107 
2108 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2109 			long diff, f_diff, f_weight;
2110 
2111 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2112 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2113 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2114 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2115 
2116 			/* Decay existing window, copy faults since last scan */
2117 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2118 			fault_types[priv] += p->numa_faults[membuf_idx];
2119 			p->numa_faults[membuf_idx] = 0;
2120 
2121 			/*
2122 			 * Normalize the faults_from, so all tasks in a group
2123 			 * count according to CPU use, instead of by the raw
2124 			 * number of faults. Tasks with little runtime have
2125 			 * little over-all impact on throughput, and thus their
2126 			 * faults are less important.
2127 			 */
2128 			f_weight = div64_u64(runtime << 16, period + 1);
2129 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2130 				   (total_faults + 1);
2131 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2132 			p->numa_faults[cpubuf_idx] = 0;
2133 
2134 			p->numa_faults[mem_idx] += diff;
2135 			p->numa_faults[cpu_idx] += f_diff;
2136 			faults += p->numa_faults[mem_idx];
2137 			p->total_numa_faults += diff;
2138 			if (p->numa_group) {
2139 				/*
2140 				 * safe because we can only change our own group
2141 				 *
2142 				 * mem_idx represents the offset for a given
2143 				 * nid and priv in a specific region because it
2144 				 * is at the beginning of the numa_faults array.
2145 				 */
2146 				p->numa_group->faults[mem_idx] += diff;
2147 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2148 				p->numa_group->total_faults += diff;
2149 				group_faults += p->numa_group->faults[mem_idx];
2150 			}
2151 		}
2152 
2153 		if (faults > max_faults) {
2154 			max_faults = faults;
2155 			max_nid = nid;
2156 		}
2157 
2158 		if (group_faults > max_group_faults) {
2159 			max_group_faults = group_faults;
2160 			max_group_nid = nid;
2161 		}
2162 	}
2163 
2164 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2165 
2166 	if (p->numa_group) {
2167 		numa_group_count_active_nodes(p->numa_group);
2168 		spin_unlock_irq(group_lock);
2169 		max_nid = preferred_group_nid(p, max_group_nid);
2170 	}
2171 
2172 	if (max_faults) {
2173 		/* Set the new preferred node */
2174 		if (max_nid != p->numa_preferred_nid)
2175 			sched_setnuma(p, max_nid);
2176 
2177 		if (task_node(p) != p->numa_preferred_nid)
2178 			numa_migrate_preferred(p);
2179 	}
2180 }
2181 
2182 static inline int get_numa_group(struct numa_group *grp)
2183 {
2184 	return atomic_inc_not_zero(&grp->refcount);
2185 }
2186 
2187 static inline void put_numa_group(struct numa_group *grp)
2188 {
2189 	if (atomic_dec_and_test(&grp->refcount))
2190 		kfree_rcu(grp, rcu);
2191 }
2192 
2193 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2194 			int *priv)
2195 {
2196 	struct numa_group *grp, *my_grp;
2197 	struct task_struct *tsk;
2198 	bool join = false;
2199 	int cpu = cpupid_to_cpu(cpupid);
2200 	int i;
2201 
2202 	if (unlikely(!p->numa_group)) {
2203 		unsigned int size = sizeof(struct numa_group) +
2204 				    4*nr_node_ids*sizeof(unsigned long);
2205 
2206 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2207 		if (!grp)
2208 			return;
2209 
2210 		atomic_set(&grp->refcount, 1);
2211 		grp->active_nodes = 1;
2212 		grp->max_faults_cpu = 0;
2213 		spin_lock_init(&grp->lock);
2214 		grp->gid = p->pid;
2215 		/* Second half of the array tracks nids where faults happen */
2216 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2217 						nr_node_ids;
2218 
2219 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2220 			grp->faults[i] = p->numa_faults[i];
2221 
2222 		grp->total_faults = p->total_numa_faults;
2223 
2224 		grp->nr_tasks++;
2225 		rcu_assign_pointer(p->numa_group, grp);
2226 	}
2227 
2228 	rcu_read_lock();
2229 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2230 
2231 	if (!cpupid_match_pid(tsk, cpupid))
2232 		goto no_join;
2233 
2234 	grp = rcu_dereference(tsk->numa_group);
2235 	if (!grp)
2236 		goto no_join;
2237 
2238 	my_grp = p->numa_group;
2239 	if (grp == my_grp)
2240 		goto no_join;
2241 
2242 	/*
2243 	 * Only join the other group if its bigger; if we're the bigger group,
2244 	 * the other task will join us.
2245 	 */
2246 	if (my_grp->nr_tasks > grp->nr_tasks)
2247 		goto no_join;
2248 
2249 	/*
2250 	 * Tie-break on the grp address.
2251 	 */
2252 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2253 		goto no_join;
2254 
2255 	/* Always join threads in the same process. */
2256 	if (tsk->mm == current->mm)
2257 		join = true;
2258 
2259 	/* Simple filter to avoid false positives due to PID collisions */
2260 	if (flags & TNF_SHARED)
2261 		join = true;
2262 
2263 	/* Update priv based on whether false sharing was detected */
2264 	*priv = !join;
2265 
2266 	if (join && !get_numa_group(grp))
2267 		goto no_join;
2268 
2269 	rcu_read_unlock();
2270 
2271 	if (!join)
2272 		return;
2273 
2274 	BUG_ON(irqs_disabled());
2275 	double_lock_irq(&my_grp->lock, &grp->lock);
2276 
2277 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2278 		my_grp->faults[i] -= p->numa_faults[i];
2279 		grp->faults[i] += p->numa_faults[i];
2280 	}
2281 	my_grp->total_faults -= p->total_numa_faults;
2282 	grp->total_faults += p->total_numa_faults;
2283 
2284 	my_grp->nr_tasks--;
2285 	grp->nr_tasks++;
2286 
2287 	spin_unlock(&my_grp->lock);
2288 	spin_unlock_irq(&grp->lock);
2289 
2290 	rcu_assign_pointer(p->numa_group, grp);
2291 
2292 	put_numa_group(my_grp);
2293 	return;
2294 
2295 no_join:
2296 	rcu_read_unlock();
2297 	return;
2298 }
2299 
2300 void task_numa_free(struct task_struct *p)
2301 {
2302 	struct numa_group *grp = p->numa_group;
2303 	void *numa_faults = p->numa_faults;
2304 	unsigned long flags;
2305 	int i;
2306 
2307 	if (grp) {
2308 		spin_lock_irqsave(&grp->lock, flags);
2309 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2310 			grp->faults[i] -= p->numa_faults[i];
2311 		grp->total_faults -= p->total_numa_faults;
2312 
2313 		grp->nr_tasks--;
2314 		spin_unlock_irqrestore(&grp->lock, flags);
2315 		RCU_INIT_POINTER(p->numa_group, NULL);
2316 		put_numa_group(grp);
2317 	}
2318 
2319 	p->numa_faults = NULL;
2320 	kfree(numa_faults);
2321 }
2322 
2323 /*
2324  * Got a PROT_NONE fault for a page on @node.
2325  */
2326 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2327 {
2328 	struct task_struct *p = current;
2329 	bool migrated = flags & TNF_MIGRATED;
2330 	int cpu_node = task_node(current);
2331 	int local = !!(flags & TNF_FAULT_LOCAL);
2332 	struct numa_group *ng;
2333 	int priv;
2334 
2335 	if (!static_branch_likely(&sched_numa_balancing))
2336 		return;
2337 
2338 	/* for example, ksmd faulting in a user's mm */
2339 	if (!p->mm)
2340 		return;
2341 
2342 	/* Allocate buffer to track faults on a per-node basis */
2343 	if (unlikely(!p->numa_faults)) {
2344 		int size = sizeof(*p->numa_faults) *
2345 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2346 
2347 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2348 		if (!p->numa_faults)
2349 			return;
2350 
2351 		p->total_numa_faults = 0;
2352 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2353 	}
2354 
2355 	/*
2356 	 * First accesses are treated as private, otherwise consider accesses
2357 	 * to be private if the accessing pid has not changed
2358 	 */
2359 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2360 		priv = 1;
2361 	} else {
2362 		priv = cpupid_match_pid(p, last_cpupid);
2363 		if (!priv && !(flags & TNF_NO_GROUP))
2364 			task_numa_group(p, last_cpupid, flags, &priv);
2365 	}
2366 
2367 	/*
2368 	 * If a workload spans multiple NUMA nodes, a shared fault that
2369 	 * occurs wholly within the set of nodes that the workload is
2370 	 * actively using should be counted as local. This allows the
2371 	 * scan rate to slow down when a workload has settled down.
2372 	 */
2373 	ng = p->numa_group;
2374 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2375 				numa_is_active_node(cpu_node, ng) &&
2376 				numa_is_active_node(mem_node, ng))
2377 		local = 1;
2378 
2379 	task_numa_placement(p);
2380 
2381 	/*
2382 	 * Retry task to preferred node migration periodically, in case it
2383 	 * case it previously failed, or the scheduler moved us.
2384 	 */
2385 	if (time_after(jiffies, p->numa_migrate_retry))
2386 		numa_migrate_preferred(p);
2387 
2388 	if (migrated)
2389 		p->numa_pages_migrated += pages;
2390 	if (flags & TNF_MIGRATE_FAIL)
2391 		p->numa_faults_locality[2] += pages;
2392 
2393 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2394 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2395 	p->numa_faults_locality[local] += pages;
2396 }
2397 
2398 static void reset_ptenuma_scan(struct task_struct *p)
2399 {
2400 	/*
2401 	 * We only did a read acquisition of the mmap sem, so
2402 	 * p->mm->numa_scan_seq is written to without exclusive access
2403 	 * and the update is not guaranteed to be atomic. That's not
2404 	 * much of an issue though, since this is just used for
2405 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2406 	 * expensive, to avoid any form of compiler optimizations:
2407 	 */
2408 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2409 	p->mm->numa_scan_offset = 0;
2410 }
2411 
2412 /*
2413  * The expensive part of numa migration is done from task_work context.
2414  * Triggered from task_tick_numa().
2415  */
2416 void task_numa_work(struct callback_head *work)
2417 {
2418 	unsigned long migrate, next_scan, now = jiffies;
2419 	struct task_struct *p = current;
2420 	struct mm_struct *mm = p->mm;
2421 	u64 runtime = p->se.sum_exec_runtime;
2422 	struct vm_area_struct *vma;
2423 	unsigned long start, end;
2424 	unsigned long nr_pte_updates = 0;
2425 	long pages, virtpages;
2426 
2427 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2428 
2429 	work->next = work; /* protect against double add */
2430 	/*
2431 	 * Who cares about NUMA placement when they're dying.
2432 	 *
2433 	 * NOTE: make sure not to dereference p->mm before this check,
2434 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2435 	 * without p->mm even though we still had it when we enqueued this
2436 	 * work.
2437 	 */
2438 	if (p->flags & PF_EXITING)
2439 		return;
2440 
2441 	if (!mm->numa_next_scan) {
2442 		mm->numa_next_scan = now +
2443 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2444 	}
2445 
2446 	/*
2447 	 * Enforce maximal scan/migration frequency..
2448 	 */
2449 	migrate = mm->numa_next_scan;
2450 	if (time_before(now, migrate))
2451 		return;
2452 
2453 	if (p->numa_scan_period == 0) {
2454 		p->numa_scan_period_max = task_scan_max(p);
2455 		p->numa_scan_period = task_scan_min(p);
2456 	}
2457 
2458 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2459 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2460 		return;
2461 
2462 	/*
2463 	 * Delay this task enough that another task of this mm will likely win
2464 	 * the next time around.
2465 	 */
2466 	p->node_stamp += 2 * TICK_NSEC;
2467 
2468 	start = mm->numa_scan_offset;
2469 	pages = sysctl_numa_balancing_scan_size;
2470 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2471 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2472 	if (!pages)
2473 		return;
2474 
2475 
2476 	down_read(&mm->mmap_sem);
2477 	vma = find_vma(mm, start);
2478 	if (!vma) {
2479 		reset_ptenuma_scan(p);
2480 		start = 0;
2481 		vma = mm->mmap;
2482 	}
2483 	for (; vma; vma = vma->vm_next) {
2484 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2485 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2486 			continue;
2487 		}
2488 
2489 		/*
2490 		 * Shared library pages mapped by multiple processes are not
2491 		 * migrated as it is expected they are cache replicated. Avoid
2492 		 * hinting faults in read-only file-backed mappings or the vdso
2493 		 * as migrating the pages will be of marginal benefit.
2494 		 */
2495 		if (!vma->vm_mm ||
2496 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2497 			continue;
2498 
2499 		/*
2500 		 * Skip inaccessible VMAs to avoid any confusion between
2501 		 * PROT_NONE and NUMA hinting ptes
2502 		 */
2503 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2504 			continue;
2505 
2506 		do {
2507 			start = max(start, vma->vm_start);
2508 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2509 			end = min(end, vma->vm_end);
2510 			nr_pte_updates = change_prot_numa(vma, start, end);
2511 
2512 			/*
2513 			 * Try to scan sysctl_numa_balancing_size worth of
2514 			 * hpages that have at least one present PTE that
2515 			 * is not already pte-numa. If the VMA contains
2516 			 * areas that are unused or already full of prot_numa
2517 			 * PTEs, scan up to virtpages, to skip through those
2518 			 * areas faster.
2519 			 */
2520 			if (nr_pte_updates)
2521 				pages -= (end - start) >> PAGE_SHIFT;
2522 			virtpages -= (end - start) >> PAGE_SHIFT;
2523 
2524 			start = end;
2525 			if (pages <= 0 || virtpages <= 0)
2526 				goto out;
2527 
2528 			cond_resched();
2529 		} while (end != vma->vm_end);
2530 	}
2531 
2532 out:
2533 	/*
2534 	 * It is possible to reach the end of the VMA list but the last few
2535 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2536 	 * would find the !migratable VMA on the next scan but not reset the
2537 	 * scanner to the start so check it now.
2538 	 */
2539 	if (vma)
2540 		mm->numa_scan_offset = start;
2541 	else
2542 		reset_ptenuma_scan(p);
2543 	up_read(&mm->mmap_sem);
2544 
2545 	/*
2546 	 * Make sure tasks use at least 32x as much time to run other code
2547 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2548 	 * Usually update_task_scan_period slows down scanning enough; on an
2549 	 * overloaded system we need to limit overhead on a per task basis.
2550 	 */
2551 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2552 		u64 diff = p->se.sum_exec_runtime - runtime;
2553 		p->node_stamp += 32 * diff;
2554 	}
2555 }
2556 
2557 /*
2558  * Drive the periodic memory faults..
2559  */
2560 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2561 {
2562 	struct callback_head *work = &curr->numa_work;
2563 	u64 period, now;
2564 
2565 	/*
2566 	 * We don't care about NUMA placement if we don't have memory.
2567 	 */
2568 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2569 		return;
2570 
2571 	/*
2572 	 * Using runtime rather than walltime has the dual advantage that
2573 	 * we (mostly) drive the selection from busy threads and that the
2574 	 * task needs to have done some actual work before we bother with
2575 	 * NUMA placement.
2576 	 */
2577 	now = curr->se.sum_exec_runtime;
2578 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2579 
2580 	if (now > curr->node_stamp + period) {
2581 		if (!curr->node_stamp)
2582 			curr->numa_scan_period = task_scan_min(curr);
2583 		curr->node_stamp += period;
2584 
2585 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2586 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2587 			task_work_add(curr, work, true);
2588 		}
2589 	}
2590 }
2591 #else
2592 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2593 {
2594 }
2595 
2596 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2597 {
2598 }
2599 
2600 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2601 {
2602 }
2603 #endif /* CONFIG_NUMA_BALANCING */
2604 
2605 static void
2606 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2607 {
2608 	update_load_add(&cfs_rq->load, se->load.weight);
2609 	if (!parent_entity(se))
2610 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2611 #ifdef CONFIG_SMP
2612 	if (entity_is_task(se)) {
2613 		struct rq *rq = rq_of(cfs_rq);
2614 
2615 		account_numa_enqueue(rq, task_of(se));
2616 		list_add(&se->group_node, &rq->cfs_tasks);
2617 	}
2618 #endif
2619 	cfs_rq->nr_running++;
2620 }
2621 
2622 static void
2623 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2624 {
2625 	update_load_sub(&cfs_rq->load, se->load.weight);
2626 	if (!parent_entity(se))
2627 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2628 #ifdef CONFIG_SMP
2629 	if (entity_is_task(se)) {
2630 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2631 		list_del_init(&se->group_node);
2632 	}
2633 #endif
2634 	cfs_rq->nr_running--;
2635 }
2636 
2637 #ifdef CONFIG_FAIR_GROUP_SCHED
2638 # ifdef CONFIG_SMP
2639 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2640 {
2641 	long tg_weight, load, shares;
2642 
2643 	/*
2644 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2645 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2646 	 * the shares for small weight interactive tasks.
2647 	 */
2648 	load = scale_load_down(cfs_rq->load.weight);
2649 
2650 	tg_weight = atomic_long_read(&tg->load_avg);
2651 
2652 	/* Ensure tg_weight >= load */
2653 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2654 	tg_weight += load;
2655 
2656 	shares = (tg->shares * load);
2657 	if (tg_weight)
2658 		shares /= tg_weight;
2659 
2660 	/*
2661 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2662 	 * of a group with small tg->shares value. It is a floor value which is
2663 	 * assigned as a minimum load.weight to the sched_entity representing
2664 	 * the group on a CPU.
2665 	 *
2666 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2667 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2668 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2669 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2670 	 * instead of 0.
2671 	 */
2672 	if (shares < MIN_SHARES)
2673 		shares = MIN_SHARES;
2674 	if (shares > tg->shares)
2675 		shares = tg->shares;
2676 
2677 	return shares;
2678 }
2679 # else /* CONFIG_SMP */
2680 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2681 {
2682 	return tg->shares;
2683 }
2684 # endif /* CONFIG_SMP */
2685 
2686 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2687 			    unsigned long weight)
2688 {
2689 	if (se->on_rq) {
2690 		/* commit outstanding execution time */
2691 		if (cfs_rq->curr == se)
2692 			update_curr(cfs_rq);
2693 		account_entity_dequeue(cfs_rq, se);
2694 	}
2695 
2696 	update_load_set(&se->load, weight);
2697 
2698 	if (se->on_rq)
2699 		account_entity_enqueue(cfs_rq, se);
2700 }
2701 
2702 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2703 
2704 static void update_cfs_shares(struct sched_entity *se)
2705 {
2706 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2707 	struct task_group *tg;
2708 	long shares;
2709 
2710 	if (!cfs_rq)
2711 		return;
2712 
2713 	if (throttled_hierarchy(cfs_rq))
2714 		return;
2715 
2716 	tg = cfs_rq->tg;
2717 
2718 #ifndef CONFIG_SMP
2719 	if (likely(se->load.weight == tg->shares))
2720 		return;
2721 #endif
2722 	shares = calc_cfs_shares(cfs_rq, tg);
2723 
2724 	reweight_entity(cfs_rq_of(se), se, shares);
2725 }
2726 
2727 #else /* CONFIG_FAIR_GROUP_SCHED */
2728 static inline void update_cfs_shares(struct sched_entity *se)
2729 {
2730 }
2731 #endif /* CONFIG_FAIR_GROUP_SCHED */
2732 
2733 #ifdef CONFIG_SMP
2734 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2735 static const u32 runnable_avg_yN_inv[] = {
2736 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2737 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2738 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2739 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2740 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2741 	0x85aac367, 0x82cd8698,
2742 };
2743 
2744 /*
2745  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2746  * over-estimates when re-combining.
2747  */
2748 static const u32 runnable_avg_yN_sum[] = {
2749 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2750 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2751 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2752 };
2753 
2754 /*
2755  * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2756  * lower integers. See Documentation/scheduler/sched-avg.txt how these
2757  * were generated:
2758  */
2759 static const u32 __accumulated_sum_N32[] = {
2760 	    0, 23371, 35056, 40899, 43820, 45281,
2761 	46011, 46376, 46559, 46650, 46696, 46719,
2762 };
2763 
2764 /*
2765  * Approximate:
2766  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2767  */
2768 static __always_inline u64 decay_load(u64 val, u64 n)
2769 {
2770 	unsigned int local_n;
2771 
2772 	if (!n)
2773 		return val;
2774 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2775 		return 0;
2776 
2777 	/* after bounds checking we can collapse to 32-bit */
2778 	local_n = n;
2779 
2780 	/*
2781 	 * As y^PERIOD = 1/2, we can combine
2782 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2783 	 * With a look-up table which covers y^n (n<PERIOD)
2784 	 *
2785 	 * To achieve constant time decay_load.
2786 	 */
2787 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2788 		val >>= local_n / LOAD_AVG_PERIOD;
2789 		local_n %= LOAD_AVG_PERIOD;
2790 	}
2791 
2792 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2793 	return val;
2794 }
2795 
2796 /*
2797  * For updates fully spanning n periods, the contribution to runnable
2798  * average will be: \Sum 1024*y^n
2799  *
2800  * We can compute this reasonably efficiently by combining:
2801  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2802  */
2803 static u32 __compute_runnable_contrib(u64 n)
2804 {
2805 	u32 contrib = 0;
2806 
2807 	if (likely(n <= LOAD_AVG_PERIOD))
2808 		return runnable_avg_yN_sum[n];
2809 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2810 		return LOAD_AVG_MAX;
2811 
2812 	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2813 	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2814 	n %= LOAD_AVG_PERIOD;
2815 	contrib = decay_load(contrib, n);
2816 	return contrib + runnable_avg_yN_sum[n];
2817 }
2818 
2819 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2820 
2821 /*
2822  * We can represent the historical contribution to runnable average as the
2823  * coefficients of a geometric series.  To do this we sub-divide our runnable
2824  * history into segments of approximately 1ms (1024us); label the segment that
2825  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2826  *
2827  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2828  *      p0            p1           p2
2829  *     (now)       (~1ms ago)  (~2ms ago)
2830  *
2831  * Let u_i denote the fraction of p_i that the entity was runnable.
2832  *
2833  * We then designate the fractions u_i as our co-efficients, yielding the
2834  * following representation of historical load:
2835  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2836  *
2837  * We choose y based on the with of a reasonably scheduling period, fixing:
2838  *   y^32 = 0.5
2839  *
2840  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2841  * approximately half as much as the contribution to load within the last ms
2842  * (u_0).
2843  *
2844  * When a period "rolls over" and we have new u_0`, multiplying the previous
2845  * sum again by y is sufficient to update:
2846  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2847  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2848  */
2849 static __always_inline int
2850 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2851 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2852 {
2853 	u64 delta, scaled_delta, periods;
2854 	u32 contrib;
2855 	unsigned int delta_w, scaled_delta_w, decayed = 0;
2856 	unsigned long scale_freq, scale_cpu;
2857 
2858 	delta = now - sa->last_update_time;
2859 	/*
2860 	 * This should only happen when time goes backwards, which it
2861 	 * unfortunately does during sched clock init when we swap over to TSC.
2862 	 */
2863 	if ((s64)delta < 0) {
2864 		sa->last_update_time = now;
2865 		return 0;
2866 	}
2867 
2868 	/*
2869 	 * Use 1024ns as the unit of measurement since it's a reasonable
2870 	 * approximation of 1us and fast to compute.
2871 	 */
2872 	delta >>= 10;
2873 	if (!delta)
2874 		return 0;
2875 	sa->last_update_time = now;
2876 
2877 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2878 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2879 
2880 	/* delta_w is the amount already accumulated against our next period */
2881 	delta_w = sa->period_contrib;
2882 	if (delta + delta_w >= 1024) {
2883 		decayed = 1;
2884 
2885 		/* how much left for next period will start over, we don't know yet */
2886 		sa->period_contrib = 0;
2887 
2888 		/*
2889 		 * Now that we know we're crossing a period boundary, figure
2890 		 * out how much from delta we need to complete the current
2891 		 * period and accrue it.
2892 		 */
2893 		delta_w = 1024 - delta_w;
2894 		scaled_delta_w = cap_scale(delta_w, scale_freq);
2895 		if (weight) {
2896 			sa->load_sum += weight * scaled_delta_w;
2897 			if (cfs_rq) {
2898 				cfs_rq->runnable_load_sum +=
2899 						weight * scaled_delta_w;
2900 			}
2901 		}
2902 		if (running)
2903 			sa->util_sum += scaled_delta_w * scale_cpu;
2904 
2905 		delta -= delta_w;
2906 
2907 		/* Figure out how many additional periods this update spans */
2908 		periods = delta / 1024;
2909 		delta %= 1024;
2910 
2911 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2912 		if (cfs_rq) {
2913 			cfs_rq->runnable_load_sum =
2914 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2915 		}
2916 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2917 
2918 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2919 		contrib = __compute_runnable_contrib(periods);
2920 		contrib = cap_scale(contrib, scale_freq);
2921 		if (weight) {
2922 			sa->load_sum += weight * contrib;
2923 			if (cfs_rq)
2924 				cfs_rq->runnable_load_sum += weight * contrib;
2925 		}
2926 		if (running)
2927 			sa->util_sum += contrib * scale_cpu;
2928 	}
2929 
2930 	/* Remainder of delta accrued against u_0` */
2931 	scaled_delta = cap_scale(delta, scale_freq);
2932 	if (weight) {
2933 		sa->load_sum += weight * scaled_delta;
2934 		if (cfs_rq)
2935 			cfs_rq->runnable_load_sum += weight * scaled_delta;
2936 	}
2937 	if (running)
2938 		sa->util_sum += scaled_delta * scale_cpu;
2939 
2940 	sa->period_contrib += delta;
2941 
2942 	if (decayed) {
2943 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2944 		if (cfs_rq) {
2945 			cfs_rq->runnable_load_avg =
2946 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2947 		}
2948 		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2949 	}
2950 
2951 	return decayed;
2952 }
2953 
2954 /*
2955  * Signed add and clamp on underflow.
2956  *
2957  * Explicitly do a load-store to ensure the intermediate value never hits
2958  * memory. This allows lockless observations without ever seeing the negative
2959  * values.
2960  */
2961 #define add_positive(_ptr, _val) do {                           \
2962 	typeof(_ptr) ptr = (_ptr);                              \
2963 	typeof(_val) val = (_val);                              \
2964 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2965 								\
2966 	res = var + val;                                        \
2967 								\
2968 	if (val < 0 && res > var)                               \
2969 		res = 0;                                        \
2970 								\
2971 	WRITE_ONCE(*ptr, res);                                  \
2972 } while (0)
2973 
2974 #ifdef CONFIG_FAIR_GROUP_SCHED
2975 /**
2976  * update_tg_load_avg - update the tg's load avg
2977  * @cfs_rq: the cfs_rq whose avg changed
2978  * @force: update regardless of how small the difference
2979  *
2980  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2981  * However, because tg->load_avg is a global value there are performance
2982  * considerations.
2983  *
2984  * In order to avoid having to look at the other cfs_rq's, we use a
2985  * differential update where we store the last value we propagated. This in
2986  * turn allows skipping updates if the differential is 'small'.
2987  *
2988  * Updating tg's load_avg is necessary before update_cfs_share() (which is
2989  * done) and effective_load() (which is not done because it is too costly).
2990  */
2991 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2992 {
2993 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2994 
2995 	/*
2996 	 * No need to update load_avg for root_task_group as it is not used.
2997 	 */
2998 	if (cfs_rq->tg == &root_task_group)
2999 		return;
3000 
3001 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3002 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3003 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3004 	}
3005 }
3006 
3007 /*
3008  * Called within set_task_rq() right before setting a task's cpu. The
3009  * caller only guarantees p->pi_lock is held; no other assumptions,
3010  * including the state of rq->lock, should be made.
3011  */
3012 void set_task_rq_fair(struct sched_entity *se,
3013 		      struct cfs_rq *prev, struct cfs_rq *next)
3014 {
3015 	if (!sched_feat(ATTACH_AGE_LOAD))
3016 		return;
3017 
3018 	/*
3019 	 * We are supposed to update the task to "current" time, then its up to
3020 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3021 	 * getting what current time is, so simply throw away the out-of-date
3022 	 * time. This will result in the wakee task is less decayed, but giving
3023 	 * the wakee more load sounds not bad.
3024 	 */
3025 	if (se->avg.last_update_time && prev) {
3026 		u64 p_last_update_time;
3027 		u64 n_last_update_time;
3028 
3029 #ifndef CONFIG_64BIT
3030 		u64 p_last_update_time_copy;
3031 		u64 n_last_update_time_copy;
3032 
3033 		do {
3034 			p_last_update_time_copy = prev->load_last_update_time_copy;
3035 			n_last_update_time_copy = next->load_last_update_time_copy;
3036 
3037 			smp_rmb();
3038 
3039 			p_last_update_time = prev->avg.last_update_time;
3040 			n_last_update_time = next->avg.last_update_time;
3041 
3042 		} while (p_last_update_time != p_last_update_time_copy ||
3043 			 n_last_update_time != n_last_update_time_copy);
3044 #else
3045 		p_last_update_time = prev->avg.last_update_time;
3046 		n_last_update_time = next->avg.last_update_time;
3047 #endif
3048 		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3049 				  &se->avg, 0, 0, NULL);
3050 		se->avg.last_update_time = n_last_update_time;
3051 	}
3052 }
3053 
3054 /* Take into account change of utilization of a child task group */
3055 static inline void
3056 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3057 {
3058 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3059 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3060 
3061 	/* Nothing to update */
3062 	if (!delta)
3063 		return;
3064 
3065 	/* Set new sched_entity's utilization */
3066 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3067 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3068 
3069 	/* Update parent cfs_rq utilization */
3070 	add_positive(&cfs_rq->avg.util_avg, delta);
3071 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3072 }
3073 
3074 /* Take into account change of load of a child task group */
3075 static inline void
3076 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3077 {
3078 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3079 	long delta, load = gcfs_rq->avg.load_avg;
3080 
3081 	/*
3082 	 * If the load of group cfs_rq is null, the load of the
3083 	 * sched_entity will also be null so we can skip the formula
3084 	 */
3085 	if (load) {
3086 		long tg_load;
3087 
3088 		/* Get tg's load and ensure tg_load > 0 */
3089 		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3090 
3091 		/* Ensure tg_load >= load and updated with current load*/
3092 		tg_load -= gcfs_rq->tg_load_avg_contrib;
3093 		tg_load += load;
3094 
3095 		/*
3096 		 * We need to compute a correction term in the case that the
3097 		 * task group is consuming more CPU than a task of equal
3098 		 * weight. A task with a weight equals to tg->shares will have
3099 		 * a load less or equal to scale_load_down(tg->shares).
3100 		 * Similarly, the sched_entities that represent the task group
3101 		 * at parent level, can't have a load higher than
3102 		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3103 		 * load must be <= scale_load_down(tg->shares).
3104 		 */
3105 		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3106 			/* scale gcfs_rq's load into tg's shares*/
3107 			load *= scale_load_down(gcfs_rq->tg->shares);
3108 			load /= tg_load;
3109 		}
3110 	}
3111 
3112 	delta = load - se->avg.load_avg;
3113 
3114 	/* Nothing to update */
3115 	if (!delta)
3116 		return;
3117 
3118 	/* Set new sched_entity's load */
3119 	se->avg.load_avg = load;
3120 	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3121 
3122 	/* Update parent cfs_rq load */
3123 	add_positive(&cfs_rq->avg.load_avg, delta);
3124 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3125 
3126 	/*
3127 	 * If the sched_entity is already enqueued, we also have to update the
3128 	 * runnable load avg.
3129 	 */
3130 	if (se->on_rq) {
3131 		/* Update parent cfs_rq runnable_load_avg */
3132 		add_positive(&cfs_rq->runnable_load_avg, delta);
3133 		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3134 	}
3135 }
3136 
3137 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3138 {
3139 	cfs_rq->propagate_avg = 1;
3140 }
3141 
3142 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3143 {
3144 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3145 
3146 	if (!cfs_rq->propagate_avg)
3147 		return 0;
3148 
3149 	cfs_rq->propagate_avg = 0;
3150 	return 1;
3151 }
3152 
3153 /* Update task and its cfs_rq load average */
3154 static inline int propagate_entity_load_avg(struct sched_entity *se)
3155 {
3156 	struct cfs_rq *cfs_rq;
3157 
3158 	if (entity_is_task(se))
3159 		return 0;
3160 
3161 	if (!test_and_clear_tg_cfs_propagate(se))
3162 		return 0;
3163 
3164 	cfs_rq = cfs_rq_of(se);
3165 
3166 	set_tg_cfs_propagate(cfs_rq);
3167 
3168 	update_tg_cfs_util(cfs_rq, se);
3169 	update_tg_cfs_load(cfs_rq, se);
3170 
3171 	return 1;
3172 }
3173 
3174 #else /* CONFIG_FAIR_GROUP_SCHED */
3175 
3176 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3177 
3178 static inline int propagate_entity_load_avg(struct sched_entity *se)
3179 {
3180 	return 0;
3181 }
3182 
3183 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3184 
3185 #endif /* CONFIG_FAIR_GROUP_SCHED */
3186 
3187 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3188 {
3189 	if (&this_rq()->cfs == cfs_rq) {
3190 		/*
3191 		 * There are a few boundary cases this might miss but it should
3192 		 * get called often enough that that should (hopefully) not be
3193 		 * a real problem -- added to that it only calls on the local
3194 		 * CPU, so if we enqueue remotely we'll miss an update, but
3195 		 * the next tick/schedule should update.
3196 		 *
3197 		 * It will not get called when we go idle, because the idle
3198 		 * thread is a different class (!fair), nor will the utilization
3199 		 * number include things like RT tasks.
3200 		 *
3201 		 * As is, the util number is not freq-invariant (we'd have to
3202 		 * implement arch_scale_freq_capacity() for that).
3203 		 *
3204 		 * See cpu_util().
3205 		 */
3206 		cpufreq_update_util(rq_of(cfs_rq), 0);
3207 	}
3208 }
3209 
3210 /*
3211  * Unsigned subtract and clamp on underflow.
3212  *
3213  * Explicitly do a load-store to ensure the intermediate value never hits
3214  * memory. This allows lockless observations without ever seeing the negative
3215  * values.
3216  */
3217 #define sub_positive(_ptr, _val) do {				\
3218 	typeof(_ptr) ptr = (_ptr);				\
3219 	typeof(*ptr) val = (_val);				\
3220 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3221 	res = var - val;					\
3222 	if (res > var)						\
3223 		res = 0;					\
3224 	WRITE_ONCE(*ptr, res);					\
3225 } while (0)
3226 
3227 /**
3228  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3229  * @now: current time, as per cfs_rq_clock_task()
3230  * @cfs_rq: cfs_rq to update
3231  * @update_freq: should we call cfs_rq_util_change() or will the call do so
3232  *
3233  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3234  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3235  * post_init_entity_util_avg().
3236  *
3237  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3238  *
3239  * Returns true if the load decayed or we removed load.
3240  *
3241  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3242  * call update_tg_load_avg() when this function returns true.
3243  */
3244 static inline int
3245 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3246 {
3247 	struct sched_avg *sa = &cfs_rq->avg;
3248 	int decayed, removed_load = 0, removed_util = 0;
3249 
3250 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3251 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3252 		sub_positive(&sa->load_avg, r);
3253 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3254 		removed_load = 1;
3255 		set_tg_cfs_propagate(cfs_rq);
3256 	}
3257 
3258 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3259 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3260 		sub_positive(&sa->util_avg, r);
3261 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3262 		removed_util = 1;
3263 		set_tg_cfs_propagate(cfs_rq);
3264 	}
3265 
3266 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3267 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3268 
3269 #ifndef CONFIG_64BIT
3270 	smp_wmb();
3271 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3272 #endif
3273 
3274 	if (update_freq && (decayed || removed_util))
3275 		cfs_rq_util_change(cfs_rq);
3276 
3277 	return decayed || removed_load;
3278 }
3279 
3280 /*
3281  * Optional action to be done while updating the load average
3282  */
3283 #define UPDATE_TG	0x1
3284 #define SKIP_AGE_LOAD	0x2
3285 
3286 /* Update task and its cfs_rq load average */
3287 static inline void update_load_avg(struct sched_entity *se, int flags)
3288 {
3289 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3290 	u64 now = cfs_rq_clock_task(cfs_rq);
3291 	struct rq *rq = rq_of(cfs_rq);
3292 	int cpu = cpu_of(rq);
3293 	int decayed;
3294 
3295 	/*
3296 	 * Track task load average for carrying it to new CPU after migrated, and
3297 	 * track group sched_entity load average for task_h_load calc in migration
3298 	 */
3299 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3300 		__update_load_avg(now, cpu, &se->avg,
3301 			  se->on_rq * scale_load_down(se->load.weight),
3302 			  cfs_rq->curr == se, NULL);
3303 	}
3304 
3305 	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
3306 	decayed |= propagate_entity_load_avg(se);
3307 
3308 	if (decayed && (flags & UPDATE_TG))
3309 		update_tg_load_avg(cfs_rq, 0);
3310 }
3311 
3312 /**
3313  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3314  * @cfs_rq: cfs_rq to attach to
3315  * @se: sched_entity to attach
3316  *
3317  * Must call update_cfs_rq_load_avg() before this, since we rely on
3318  * cfs_rq->avg.last_update_time being current.
3319  */
3320 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3321 {
3322 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3323 	cfs_rq->avg.load_avg += se->avg.load_avg;
3324 	cfs_rq->avg.load_sum += se->avg.load_sum;
3325 	cfs_rq->avg.util_avg += se->avg.util_avg;
3326 	cfs_rq->avg.util_sum += se->avg.util_sum;
3327 	set_tg_cfs_propagate(cfs_rq);
3328 
3329 	cfs_rq_util_change(cfs_rq);
3330 }
3331 
3332 /**
3333  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3334  * @cfs_rq: cfs_rq to detach from
3335  * @se: sched_entity to detach
3336  *
3337  * Must call update_cfs_rq_load_avg() before this, since we rely on
3338  * cfs_rq->avg.last_update_time being current.
3339  */
3340 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3341 {
3342 
3343 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3344 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3345 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3346 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3347 	set_tg_cfs_propagate(cfs_rq);
3348 
3349 	cfs_rq_util_change(cfs_rq);
3350 }
3351 
3352 /* Add the load generated by se into cfs_rq's load average */
3353 static inline void
3354 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3355 {
3356 	struct sched_avg *sa = &se->avg;
3357 
3358 	cfs_rq->runnable_load_avg += sa->load_avg;
3359 	cfs_rq->runnable_load_sum += sa->load_sum;
3360 
3361 	if (!sa->last_update_time) {
3362 		attach_entity_load_avg(cfs_rq, se);
3363 		update_tg_load_avg(cfs_rq, 0);
3364 	}
3365 }
3366 
3367 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3368 static inline void
3369 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3370 {
3371 	cfs_rq->runnable_load_avg =
3372 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3373 	cfs_rq->runnable_load_sum =
3374 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3375 }
3376 
3377 #ifndef CONFIG_64BIT
3378 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3379 {
3380 	u64 last_update_time_copy;
3381 	u64 last_update_time;
3382 
3383 	do {
3384 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3385 		smp_rmb();
3386 		last_update_time = cfs_rq->avg.last_update_time;
3387 	} while (last_update_time != last_update_time_copy);
3388 
3389 	return last_update_time;
3390 }
3391 #else
3392 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3393 {
3394 	return cfs_rq->avg.last_update_time;
3395 }
3396 #endif
3397 
3398 /*
3399  * Synchronize entity load avg of dequeued entity without locking
3400  * the previous rq.
3401  */
3402 void sync_entity_load_avg(struct sched_entity *se)
3403 {
3404 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3405 	u64 last_update_time;
3406 
3407 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3408 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3409 }
3410 
3411 /*
3412  * Task first catches up with cfs_rq, and then subtract
3413  * itself from the cfs_rq (task must be off the queue now).
3414  */
3415 void remove_entity_load_avg(struct sched_entity *se)
3416 {
3417 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3418 
3419 	/*
3420 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3421 	 * post_init_entity_util_avg() which will have added things to the
3422 	 * cfs_rq, so we can remove unconditionally.
3423 	 *
3424 	 * Similarly for groups, they will have passed through
3425 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3426 	 * calls this.
3427 	 */
3428 
3429 	sync_entity_load_avg(se);
3430 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3431 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3432 }
3433 
3434 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3435 {
3436 	return cfs_rq->runnable_load_avg;
3437 }
3438 
3439 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3440 {
3441 	return cfs_rq->avg.load_avg;
3442 }
3443 
3444 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3445 
3446 #else /* CONFIG_SMP */
3447 
3448 static inline int
3449 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3450 {
3451 	return 0;
3452 }
3453 
3454 #define UPDATE_TG	0x0
3455 #define SKIP_AGE_LOAD	0x0
3456 
3457 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3458 {
3459 	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3460 }
3461 
3462 static inline void
3463 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3464 static inline void
3465 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3466 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3467 
3468 static inline void
3469 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3470 static inline void
3471 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3472 
3473 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3474 {
3475 	return 0;
3476 }
3477 
3478 #endif /* CONFIG_SMP */
3479 
3480 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3481 {
3482 #ifdef CONFIG_SCHED_DEBUG
3483 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3484 
3485 	if (d < 0)
3486 		d = -d;
3487 
3488 	if (d > 3*sysctl_sched_latency)
3489 		schedstat_inc(cfs_rq->nr_spread_over);
3490 #endif
3491 }
3492 
3493 static void
3494 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3495 {
3496 	u64 vruntime = cfs_rq->min_vruntime;
3497 
3498 	/*
3499 	 * The 'current' period is already promised to the current tasks,
3500 	 * however the extra weight of the new task will slow them down a
3501 	 * little, place the new task so that it fits in the slot that
3502 	 * stays open at the end.
3503 	 */
3504 	if (initial && sched_feat(START_DEBIT))
3505 		vruntime += sched_vslice(cfs_rq, se);
3506 
3507 	/* sleeps up to a single latency don't count. */
3508 	if (!initial) {
3509 		unsigned long thresh = sysctl_sched_latency;
3510 
3511 		/*
3512 		 * Halve their sleep time's effect, to allow
3513 		 * for a gentler effect of sleepers:
3514 		 */
3515 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3516 			thresh >>= 1;
3517 
3518 		vruntime -= thresh;
3519 	}
3520 
3521 	/* ensure we never gain time by being placed backwards. */
3522 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3523 }
3524 
3525 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3526 
3527 static inline void check_schedstat_required(void)
3528 {
3529 #ifdef CONFIG_SCHEDSTATS
3530 	if (schedstat_enabled())
3531 		return;
3532 
3533 	/* Force schedstat enabled if a dependent tracepoint is active */
3534 	if (trace_sched_stat_wait_enabled()    ||
3535 			trace_sched_stat_sleep_enabled()   ||
3536 			trace_sched_stat_iowait_enabled()  ||
3537 			trace_sched_stat_blocked_enabled() ||
3538 			trace_sched_stat_runtime_enabled())  {
3539 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3540 			     "stat_blocked and stat_runtime require the "
3541 			     "kernel parameter schedstats=enabled or "
3542 			     "kernel.sched_schedstats=1\n");
3543 	}
3544 #endif
3545 }
3546 
3547 
3548 /*
3549  * MIGRATION
3550  *
3551  *	dequeue
3552  *	  update_curr()
3553  *	    update_min_vruntime()
3554  *	  vruntime -= min_vruntime
3555  *
3556  *	enqueue
3557  *	  update_curr()
3558  *	    update_min_vruntime()
3559  *	  vruntime += min_vruntime
3560  *
3561  * this way the vruntime transition between RQs is done when both
3562  * min_vruntime are up-to-date.
3563  *
3564  * WAKEUP (remote)
3565  *
3566  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3567  *	  vruntime -= min_vruntime
3568  *
3569  *	enqueue
3570  *	  update_curr()
3571  *	    update_min_vruntime()
3572  *	  vruntime += min_vruntime
3573  *
3574  * this way we don't have the most up-to-date min_vruntime on the originating
3575  * CPU and an up-to-date min_vruntime on the destination CPU.
3576  */
3577 
3578 static void
3579 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3580 {
3581 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3582 	bool curr = cfs_rq->curr == se;
3583 
3584 	/*
3585 	 * If we're the current task, we must renormalise before calling
3586 	 * update_curr().
3587 	 */
3588 	if (renorm && curr)
3589 		se->vruntime += cfs_rq->min_vruntime;
3590 
3591 	update_curr(cfs_rq);
3592 
3593 	/*
3594 	 * Otherwise, renormalise after, such that we're placed at the current
3595 	 * moment in time, instead of some random moment in the past. Being
3596 	 * placed in the past could significantly boost this task to the
3597 	 * fairness detriment of existing tasks.
3598 	 */
3599 	if (renorm && !curr)
3600 		se->vruntime += cfs_rq->min_vruntime;
3601 
3602 	/*
3603 	 * When enqueuing a sched_entity, we must:
3604 	 *   - Update loads to have both entity and cfs_rq synced with now.
3605 	 *   - Add its load to cfs_rq->runnable_avg
3606 	 *   - For group_entity, update its weight to reflect the new share of
3607 	 *     its group cfs_rq
3608 	 *   - Add its new weight to cfs_rq->load.weight
3609 	 */
3610 	update_load_avg(se, UPDATE_TG);
3611 	enqueue_entity_load_avg(cfs_rq, se);
3612 	update_cfs_shares(se);
3613 	account_entity_enqueue(cfs_rq, se);
3614 
3615 	if (flags & ENQUEUE_WAKEUP)
3616 		place_entity(cfs_rq, se, 0);
3617 
3618 	check_schedstat_required();
3619 	update_stats_enqueue(cfs_rq, se, flags);
3620 	check_spread(cfs_rq, se);
3621 	if (!curr)
3622 		__enqueue_entity(cfs_rq, se);
3623 	se->on_rq = 1;
3624 
3625 	if (cfs_rq->nr_running == 1) {
3626 		list_add_leaf_cfs_rq(cfs_rq);
3627 		check_enqueue_throttle(cfs_rq);
3628 	}
3629 }
3630 
3631 static void __clear_buddies_last(struct sched_entity *se)
3632 {
3633 	for_each_sched_entity(se) {
3634 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3635 		if (cfs_rq->last != se)
3636 			break;
3637 
3638 		cfs_rq->last = NULL;
3639 	}
3640 }
3641 
3642 static void __clear_buddies_next(struct sched_entity *se)
3643 {
3644 	for_each_sched_entity(se) {
3645 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3646 		if (cfs_rq->next != se)
3647 			break;
3648 
3649 		cfs_rq->next = NULL;
3650 	}
3651 }
3652 
3653 static void __clear_buddies_skip(struct sched_entity *se)
3654 {
3655 	for_each_sched_entity(se) {
3656 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3657 		if (cfs_rq->skip != se)
3658 			break;
3659 
3660 		cfs_rq->skip = NULL;
3661 	}
3662 }
3663 
3664 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3665 {
3666 	if (cfs_rq->last == se)
3667 		__clear_buddies_last(se);
3668 
3669 	if (cfs_rq->next == se)
3670 		__clear_buddies_next(se);
3671 
3672 	if (cfs_rq->skip == se)
3673 		__clear_buddies_skip(se);
3674 }
3675 
3676 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3677 
3678 static void
3679 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3680 {
3681 	/*
3682 	 * Update run-time statistics of the 'current'.
3683 	 */
3684 	update_curr(cfs_rq);
3685 
3686 	/*
3687 	 * When dequeuing a sched_entity, we must:
3688 	 *   - Update loads to have both entity and cfs_rq synced with now.
3689 	 *   - Substract its load from the cfs_rq->runnable_avg.
3690 	 *   - Substract its previous weight from cfs_rq->load.weight.
3691 	 *   - For group entity, update its weight to reflect the new share
3692 	 *     of its group cfs_rq.
3693 	 */
3694 	update_load_avg(se, UPDATE_TG);
3695 	dequeue_entity_load_avg(cfs_rq, se);
3696 
3697 	update_stats_dequeue(cfs_rq, se, flags);
3698 
3699 	clear_buddies(cfs_rq, se);
3700 
3701 	if (se != cfs_rq->curr)
3702 		__dequeue_entity(cfs_rq, se);
3703 	se->on_rq = 0;
3704 	account_entity_dequeue(cfs_rq, se);
3705 
3706 	/*
3707 	 * Normalize after update_curr(); which will also have moved
3708 	 * min_vruntime if @se is the one holding it back. But before doing
3709 	 * update_min_vruntime() again, which will discount @se's position and
3710 	 * can move min_vruntime forward still more.
3711 	 */
3712 	if (!(flags & DEQUEUE_SLEEP))
3713 		se->vruntime -= cfs_rq->min_vruntime;
3714 
3715 	/* return excess runtime on last dequeue */
3716 	return_cfs_rq_runtime(cfs_rq);
3717 
3718 	update_cfs_shares(se);
3719 
3720 	/*
3721 	 * Now advance min_vruntime if @se was the entity holding it back,
3722 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3723 	 * put back on, and if we advance min_vruntime, we'll be placed back
3724 	 * further than we started -- ie. we'll be penalized.
3725 	 */
3726 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3727 		update_min_vruntime(cfs_rq);
3728 }
3729 
3730 /*
3731  * Preempt the current task with a newly woken task if needed:
3732  */
3733 static void
3734 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3735 {
3736 	unsigned long ideal_runtime, delta_exec;
3737 	struct sched_entity *se;
3738 	s64 delta;
3739 
3740 	ideal_runtime = sched_slice(cfs_rq, curr);
3741 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3742 	if (delta_exec > ideal_runtime) {
3743 		resched_curr(rq_of(cfs_rq));
3744 		/*
3745 		 * The current task ran long enough, ensure it doesn't get
3746 		 * re-elected due to buddy favours.
3747 		 */
3748 		clear_buddies(cfs_rq, curr);
3749 		return;
3750 	}
3751 
3752 	/*
3753 	 * Ensure that a task that missed wakeup preemption by a
3754 	 * narrow margin doesn't have to wait for a full slice.
3755 	 * This also mitigates buddy induced latencies under load.
3756 	 */
3757 	if (delta_exec < sysctl_sched_min_granularity)
3758 		return;
3759 
3760 	se = __pick_first_entity(cfs_rq);
3761 	delta = curr->vruntime - se->vruntime;
3762 
3763 	if (delta < 0)
3764 		return;
3765 
3766 	if (delta > ideal_runtime)
3767 		resched_curr(rq_of(cfs_rq));
3768 }
3769 
3770 static void
3771 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3772 {
3773 	/* 'current' is not kept within the tree. */
3774 	if (se->on_rq) {
3775 		/*
3776 		 * Any task has to be enqueued before it get to execute on
3777 		 * a CPU. So account for the time it spent waiting on the
3778 		 * runqueue.
3779 		 */
3780 		update_stats_wait_end(cfs_rq, se);
3781 		__dequeue_entity(cfs_rq, se);
3782 		update_load_avg(se, UPDATE_TG);
3783 	}
3784 
3785 	update_stats_curr_start(cfs_rq, se);
3786 	cfs_rq->curr = se;
3787 
3788 	/*
3789 	 * Track our maximum slice length, if the CPU's load is at
3790 	 * least twice that of our own weight (i.e. dont track it
3791 	 * when there are only lesser-weight tasks around):
3792 	 */
3793 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3794 		schedstat_set(se->statistics.slice_max,
3795 			max((u64)schedstat_val(se->statistics.slice_max),
3796 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3797 	}
3798 
3799 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3800 }
3801 
3802 static int
3803 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3804 
3805 /*
3806  * Pick the next process, keeping these things in mind, in this order:
3807  * 1) keep things fair between processes/task groups
3808  * 2) pick the "next" process, since someone really wants that to run
3809  * 3) pick the "last" process, for cache locality
3810  * 4) do not run the "skip" process, if something else is available
3811  */
3812 static struct sched_entity *
3813 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3814 {
3815 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3816 	struct sched_entity *se;
3817 
3818 	/*
3819 	 * If curr is set we have to see if its left of the leftmost entity
3820 	 * still in the tree, provided there was anything in the tree at all.
3821 	 */
3822 	if (!left || (curr && entity_before(curr, left)))
3823 		left = curr;
3824 
3825 	se = left; /* ideally we run the leftmost entity */
3826 
3827 	/*
3828 	 * Avoid running the skip buddy, if running something else can
3829 	 * be done without getting too unfair.
3830 	 */
3831 	if (cfs_rq->skip == se) {
3832 		struct sched_entity *second;
3833 
3834 		if (se == curr) {
3835 			second = __pick_first_entity(cfs_rq);
3836 		} else {
3837 			second = __pick_next_entity(se);
3838 			if (!second || (curr && entity_before(curr, second)))
3839 				second = curr;
3840 		}
3841 
3842 		if (second && wakeup_preempt_entity(second, left) < 1)
3843 			se = second;
3844 	}
3845 
3846 	/*
3847 	 * Prefer last buddy, try to return the CPU to a preempted task.
3848 	 */
3849 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3850 		se = cfs_rq->last;
3851 
3852 	/*
3853 	 * Someone really wants this to run. If it's not unfair, run it.
3854 	 */
3855 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3856 		se = cfs_rq->next;
3857 
3858 	clear_buddies(cfs_rq, se);
3859 
3860 	return se;
3861 }
3862 
3863 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3864 
3865 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3866 {
3867 	/*
3868 	 * If still on the runqueue then deactivate_task()
3869 	 * was not called and update_curr() has to be done:
3870 	 */
3871 	if (prev->on_rq)
3872 		update_curr(cfs_rq);
3873 
3874 	/* throttle cfs_rqs exceeding runtime */
3875 	check_cfs_rq_runtime(cfs_rq);
3876 
3877 	check_spread(cfs_rq, prev);
3878 
3879 	if (prev->on_rq) {
3880 		update_stats_wait_start(cfs_rq, prev);
3881 		/* Put 'current' back into the tree. */
3882 		__enqueue_entity(cfs_rq, prev);
3883 		/* in !on_rq case, update occurred at dequeue */
3884 		update_load_avg(prev, 0);
3885 	}
3886 	cfs_rq->curr = NULL;
3887 }
3888 
3889 static void
3890 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3891 {
3892 	/*
3893 	 * Update run-time statistics of the 'current'.
3894 	 */
3895 	update_curr(cfs_rq);
3896 
3897 	/*
3898 	 * Ensure that runnable average is periodically updated.
3899 	 */
3900 	update_load_avg(curr, UPDATE_TG);
3901 	update_cfs_shares(curr);
3902 
3903 #ifdef CONFIG_SCHED_HRTICK
3904 	/*
3905 	 * queued ticks are scheduled to match the slice, so don't bother
3906 	 * validating it and just reschedule.
3907 	 */
3908 	if (queued) {
3909 		resched_curr(rq_of(cfs_rq));
3910 		return;
3911 	}
3912 	/*
3913 	 * don't let the period tick interfere with the hrtick preemption
3914 	 */
3915 	if (!sched_feat(DOUBLE_TICK) &&
3916 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3917 		return;
3918 #endif
3919 
3920 	if (cfs_rq->nr_running > 1)
3921 		check_preempt_tick(cfs_rq, curr);
3922 }
3923 
3924 
3925 /**************************************************
3926  * CFS bandwidth control machinery
3927  */
3928 
3929 #ifdef CONFIG_CFS_BANDWIDTH
3930 
3931 #ifdef HAVE_JUMP_LABEL
3932 static struct static_key __cfs_bandwidth_used;
3933 
3934 static inline bool cfs_bandwidth_used(void)
3935 {
3936 	return static_key_false(&__cfs_bandwidth_used);
3937 }
3938 
3939 void cfs_bandwidth_usage_inc(void)
3940 {
3941 	static_key_slow_inc(&__cfs_bandwidth_used);
3942 }
3943 
3944 void cfs_bandwidth_usage_dec(void)
3945 {
3946 	static_key_slow_dec(&__cfs_bandwidth_used);
3947 }
3948 #else /* HAVE_JUMP_LABEL */
3949 static bool cfs_bandwidth_used(void)
3950 {
3951 	return true;
3952 }
3953 
3954 void cfs_bandwidth_usage_inc(void) {}
3955 void cfs_bandwidth_usage_dec(void) {}
3956 #endif /* HAVE_JUMP_LABEL */
3957 
3958 /*
3959  * default period for cfs group bandwidth.
3960  * default: 0.1s, units: nanoseconds
3961  */
3962 static inline u64 default_cfs_period(void)
3963 {
3964 	return 100000000ULL;
3965 }
3966 
3967 static inline u64 sched_cfs_bandwidth_slice(void)
3968 {
3969 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3970 }
3971 
3972 /*
3973  * Replenish runtime according to assigned quota and update expiration time.
3974  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3975  * additional synchronization around rq->lock.
3976  *
3977  * requires cfs_b->lock
3978  */
3979 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3980 {
3981 	u64 now;
3982 
3983 	if (cfs_b->quota == RUNTIME_INF)
3984 		return;
3985 
3986 	now = sched_clock_cpu(smp_processor_id());
3987 	cfs_b->runtime = cfs_b->quota;
3988 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3989 }
3990 
3991 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3992 {
3993 	return &tg->cfs_bandwidth;
3994 }
3995 
3996 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3997 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3998 {
3999 	if (unlikely(cfs_rq->throttle_count))
4000 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4001 
4002 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4003 }
4004 
4005 /* returns 0 on failure to allocate runtime */
4006 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4007 {
4008 	struct task_group *tg = cfs_rq->tg;
4009 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4010 	u64 amount = 0, min_amount, expires;
4011 
4012 	/* note: this is a positive sum as runtime_remaining <= 0 */
4013 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4014 
4015 	raw_spin_lock(&cfs_b->lock);
4016 	if (cfs_b->quota == RUNTIME_INF)
4017 		amount = min_amount;
4018 	else {
4019 		start_cfs_bandwidth(cfs_b);
4020 
4021 		if (cfs_b->runtime > 0) {
4022 			amount = min(cfs_b->runtime, min_amount);
4023 			cfs_b->runtime -= amount;
4024 			cfs_b->idle = 0;
4025 		}
4026 	}
4027 	expires = cfs_b->runtime_expires;
4028 	raw_spin_unlock(&cfs_b->lock);
4029 
4030 	cfs_rq->runtime_remaining += amount;
4031 	/*
4032 	 * we may have advanced our local expiration to account for allowed
4033 	 * spread between our sched_clock and the one on which runtime was
4034 	 * issued.
4035 	 */
4036 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4037 		cfs_rq->runtime_expires = expires;
4038 
4039 	return cfs_rq->runtime_remaining > 0;
4040 }
4041 
4042 /*
4043  * Note: This depends on the synchronization provided by sched_clock and the
4044  * fact that rq->clock snapshots this value.
4045  */
4046 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4047 {
4048 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4049 
4050 	/* if the deadline is ahead of our clock, nothing to do */
4051 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4052 		return;
4053 
4054 	if (cfs_rq->runtime_remaining < 0)
4055 		return;
4056 
4057 	/*
4058 	 * If the local deadline has passed we have to consider the
4059 	 * possibility that our sched_clock is 'fast' and the global deadline
4060 	 * has not truly expired.
4061 	 *
4062 	 * Fortunately we can check determine whether this the case by checking
4063 	 * whether the global deadline has advanced. It is valid to compare
4064 	 * cfs_b->runtime_expires without any locks since we only care about
4065 	 * exact equality, so a partial write will still work.
4066 	 */
4067 
4068 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4069 		/* extend local deadline, drift is bounded above by 2 ticks */
4070 		cfs_rq->runtime_expires += TICK_NSEC;
4071 	} else {
4072 		/* global deadline is ahead, expiration has passed */
4073 		cfs_rq->runtime_remaining = 0;
4074 	}
4075 }
4076 
4077 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4078 {
4079 	/* dock delta_exec before expiring quota (as it could span periods) */
4080 	cfs_rq->runtime_remaining -= delta_exec;
4081 	expire_cfs_rq_runtime(cfs_rq);
4082 
4083 	if (likely(cfs_rq->runtime_remaining > 0))
4084 		return;
4085 
4086 	/*
4087 	 * if we're unable to extend our runtime we resched so that the active
4088 	 * hierarchy can be throttled
4089 	 */
4090 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4091 		resched_curr(rq_of(cfs_rq));
4092 }
4093 
4094 static __always_inline
4095 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4096 {
4097 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4098 		return;
4099 
4100 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4101 }
4102 
4103 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4104 {
4105 	return cfs_bandwidth_used() && cfs_rq->throttled;
4106 }
4107 
4108 /* check whether cfs_rq, or any parent, is throttled */
4109 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4110 {
4111 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4112 }
4113 
4114 /*
4115  * Ensure that neither of the group entities corresponding to src_cpu or
4116  * dest_cpu are members of a throttled hierarchy when performing group
4117  * load-balance operations.
4118  */
4119 static inline int throttled_lb_pair(struct task_group *tg,
4120 				    int src_cpu, int dest_cpu)
4121 {
4122 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4123 
4124 	src_cfs_rq = tg->cfs_rq[src_cpu];
4125 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4126 
4127 	return throttled_hierarchy(src_cfs_rq) ||
4128 	       throttled_hierarchy(dest_cfs_rq);
4129 }
4130 
4131 /* updated child weight may affect parent so we have to do this bottom up */
4132 static int tg_unthrottle_up(struct task_group *tg, void *data)
4133 {
4134 	struct rq *rq = data;
4135 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4136 
4137 	cfs_rq->throttle_count--;
4138 	if (!cfs_rq->throttle_count) {
4139 		/* adjust cfs_rq_clock_task() */
4140 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4141 					     cfs_rq->throttled_clock_task;
4142 	}
4143 
4144 	return 0;
4145 }
4146 
4147 static int tg_throttle_down(struct task_group *tg, void *data)
4148 {
4149 	struct rq *rq = data;
4150 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4151 
4152 	/* group is entering throttled state, stop time */
4153 	if (!cfs_rq->throttle_count)
4154 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4155 	cfs_rq->throttle_count++;
4156 
4157 	return 0;
4158 }
4159 
4160 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4161 {
4162 	struct rq *rq = rq_of(cfs_rq);
4163 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4164 	struct sched_entity *se;
4165 	long task_delta, dequeue = 1;
4166 	bool empty;
4167 
4168 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4169 
4170 	/* freeze hierarchy runnable averages while throttled */
4171 	rcu_read_lock();
4172 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4173 	rcu_read_unlock();
4174 
4175 	task_delta = cfs_rq->h_nr_running;
4176 	for_each_sched_entity(se) {
4177 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4178 		/* throttled entity or throttle-on-deactivate */
4179 		if (!se->on_rq)
4180 			break;
4181 
4182 		if (dequeue)
4183 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4184 		qcfs_rq->h_nr_running -= task_delta;
4185 
4186 		if (qcfs_rq->load.weight)
4187 			dequeue = 0;
4188 	}
4189 
4190 	if (!se)
4191 		sub_nr_running(rq, task_delta);
4192 
4193 	cfs_rq->throttled = 1;
4194 	cfs_rq->throttled_clock = rq_clock(rq);
4195 	raw_spin_lock(&cfs_b->lock);
4196 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4197 
4198 	/*
4199 	 * Add to the _head_ of the list, so that an already-started
4200 	 * distribute_cfs_runtime will not see us
4201 	 */
4202 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4203 
4204 	/*
4205 	 * If we're the first throttled task, make sure the bandwidth
4206 	 * timer is running.
4207 	 */
4208 	if (empty)
4209 		start_cfs_bandwidth(cfs_b);
4210 
4211 	raw_spin_unlock(&cfs_b->lock);
4212 }
4213 
4214 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4215 {
4216 	struct rq *rq = rq_of(cfs_rq);
4217 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4218 	struct sched_entity *se;
4219 	int enqueue = 1;
4220 	long task_delta;
4221 
4222 	se = cfs_rq->tg->se[cpu_of(rq)];
4223 
4224 	cfs_rq->throttled = 0;
4225 
4226 	update_rq_clock(rq);
4227 
4228 	raw_spin_lock(&cfs_b->lock);
4229 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4230 	list_del_rcu(&cfs_rq->throttled_list);
4231 	raw_spin_unlock(&cfs_b->lock);
4232 
4233 	/* update hierarchical throttle state */
4234 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4235 
4236 	if (!cfs_rq->load.weight)
4237 		return;
4238 
4239 	task_delta = cfs_rq->h_nr_running;
4240 	for_each_sched_entity(se) {
4241 		if (se->on_rq)
4242 			enqueue = 0;
4243 
4244 		cfs_rq = cfs_rq_of(se);
4245 		if (enqueue)
4246 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4247 		cfs_rq->h_nr_running += task_delta;
4248 
4249 		if (cfs_rq_throttled(cfs_rq))
4250 			break;
4251 	}
4252 
4253 	if (!se)
4254 		add_nr_running(rq, task_delta);
4255 
4256 	/* determine whether we need to wake up potentially idle cpu */
4257 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4258 		resched_curr(rq);
4259 }
4260 
4261 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4262 		u64 remaining, u64 expires)
4263 {
4264 	struct cfs_rq *cfs_rq;
4265 	u64 runtime;
4266 	u64 starting_runtime = remaining;
4267 
4268 	rcu_read_lock();
4269 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4270 				throttled_list) {
4271 		struct rq *rq = rq_of(cfs_rq);
4272 
4273 		raw_spin_lock(&rq->lock);
4274 		if (!cfs_rq_throttled(cfs_rq))
4275 			goto next;
4276 
4277 		runtime = -cfs_rq->runtime_remaining + 1;
4278 		if (runtime > remaining)
4279 			runtime = remaining;
4280 		remaining -= runtime;
4281 
4282 		cfs_rq->runtime_remaining += runtime;
4283 		cfs_rq->runtime_expires = expires;
4284 
4285 		/* we check whether we're throttled above */
4286 		if (cfs_rq->runtime_remaining > 0)
4287 			unthrottle_cfs_rq(cfs_rq);
4288 
4289 next:
4290 		raw_spin_unlock(&rq->lock);
4291 
4292 		if (!remaining)
4293 			break;
4294 	}
4295 	rcu_read_unlock();
4296 
4297 	return starting_runtime - remaining;
4298 }
4299 
4300 /*
4301  * Responsible for refilling a task_group's bandwidth and unthrottling its
4302  * cfs_rqs as appropriate. If there has been no activity within the last
4303  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4304  * used to track this state.
4305  */
4306 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4307 {
4308 	u64 runtime, runtime_expires;
4309 	int throttled;
4310 
4311 	/* no need to continue the timer with no bandwidth constraint */
4312 	if (cfs_b->quota == RUNTIME_INF)
4313 		goto out_deactivate;
4314 
4315 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4316 	cfs_b->nr_periods += overrun;
4317 
4318 	/*
4319 	 * idle depends on !throttled (for the case of a large deficit), and if
4320 	 * we're going inactive then everything else can be deferred
4321 	 */
4322 	if (cfs_b->idle && !throttled)
4323 		goto out_deactivate;
4324 
4325 	__refill_cfs_bandwidth_runtime(cfs_b);
4326 
4327 	if (!throttled) {
4328 		/* mark as potentially idle for the upcoming period */
4329 		cfs_b->idle = 1;
4330 		return 0;
4331 	}
4332 
4333 	/* account preceding periods in which throttling occurred */
4334 	cfs_b->nr_throttled += overrun;
4335 
4336 	runtime_expires = cfs_b->runtime_expires;
4337 
4338 	/*
4339 	 * This check is repeated as we are holding onto the new bandwidth while
4340 	 * we unthrottle. This can potentially race with an unthrottled group
4341 	 * trying to acquire new bandwidth from the global pool. This can result
4342 	 * in us over-using our runtime if it is all used during this loop, but
4343 	 * only by limited amounts in that extreme case.
4344 	 */
4345 	while (throttled && cfs_b->runtime > 0) {
4346 		runtime = cfs_b->runtime;
4347 		raw_spin_unlock(&cfs_b->lock);
4348 		/* we can't nest cfs_b->lock while distributing bandwidth */
4349 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4350 						 runtime_expires);
4351 		raw_spin_lock(&cfs_b->lock);
4352 
4353 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4354 
4355 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4356 	}
4357 
4358 	/*
4359 	 * While we are ensured activity in the period following an
4360 	 * unthrottle, this also covers the case in which the new bandwidth is
4361 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4362 	 * timer to remain active while there are any throttled entities.)
4363 	 */
4364 	cfs_b->idle = 0;
4365 
4366 	return 0;
4367 
4368 out_deactivate:
4369 	return 1;
4370 }
4371 
4372 /* a cfs_rq won't donate quota below this amount */
4373 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4374 /* minimum remaining period time to redistribute slack quota */
4375 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4376 /* how long we wait to gather additional slack before distributing */
4377 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4378 
4379 /*
4380  * Are we near the end of the current quota period?
4381  *
4382  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4383  * hrtimer base being cleared by hrtimer_start. In the case of
4384  * migrate_hrtimers, base is never cleared, so we are fine.
4385  */
4386 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4387 {
4388 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4389 	u64 remaining;
4390 
4391 	/* if the call-back is running a quota refresh is already occurring */
4392 	if (hrtimer_callback_running(refresh_timer))
4393 		return 1;
4394 
4395 	/* is a quota refresh about to occur? */
4396 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4397 	if (remaining < min_expire)
4398 		return 1;
4399 
4400 	return 0;
4401 }
4402 
4403 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4404 {
4405 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4406 
4407 	/* if there's a quota refresh soon don't bother with slack */
4408 	if (runtime_refresh_within(cfs_b, min_left))
4409 		return;
4410 
4411 	hrtimer_start(&cfs_b->slack_timer,
4412 			ns_to_ktime(cfs_bandwidth_slack_period),
4413 			HRTIMER_MODE_REL);
4414 }
4415 
4416 /* we know any runtime found here is valid as update_curr() precedes return */
4417 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4418 {
4419 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4420 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4421 
4422 	if (slack_runtime <= 0)
4423 		return;
4424 
4425 	raw_spin_lock(&cfs_b->lock);
4426 	if (cfs_b->quota != RUNTIME_INF &&
4427 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4428 		cfs_b->runtime += slack_runtime;
4429 
4430 		/* we are under rq->lock, defer unthrottling using a timer */
4431 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4432 		    !list_empty(&cfs_b->throttled_cfs_rq))
4433 			start_cfs_slack_bandwidth(cfs_b);
4434 	}
4435 	raw_spin_unlock(&cfs_b->lock);
4436 
4437 	/* even if it's not valid for return we don't want to try again */
4438 	cfs_rq->runtime_remaining -= slack_runtime;
4439 }
4440 
4441 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4442 {
4443 	if (!cfs_bandwidth_used())
4444 		return;
4445 
4446 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4447 		return;
4448 
4449 	__return_cfs_rq_runtime(cfs_rq);
4450 }
4451 
4452 /*
4453  * This is done with a timer (instead of inline with bandwidth return) since
4454  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4455  */
4456 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4457 {
4458 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4459 	u64 expires;
4460 
4461 	/* confirm we're still not at a refresh boundary */
4462 	raw_spin_lock(&cfs_b->lock);
4463 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4464 		raw_spin_unlock(&cfs_b->lock);
4465 		return;
4466 	}
4467 
4468 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4469 		runtime = cfs_b->runtime;
4470 
4471 	expires = cfs_b->runtime_expires;
4472 	raw_spin_unlock(&cfs_b->lock);
4473 
4474 	if (!runtime)
4475 		return;
4476 
4477 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4478 
4479 	raw_spin_lock(&cfs_b->lock);
4480 	if (expires == cfs_b->runtime_expires)
4481 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4482 	raw_spin_unlock(&cfs_b->lock);
4483 }
4484 
4485 /*
4486  * When a group wakes up we want to make sure that its quota is not already
4487  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4488  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4489  */
4490 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4491 {
4492 	if (!cfs_bandwidth_used())
4493 		return;
4494 
4495 	/* an active group must be handled by the update_curr()->put() path */
4496 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4497 		return;
4498 
4499 	/* ensure the group is not already throttled */
4500 	if (cfs_rq_throttled(cfs_rq))
4501 		return;
4502 
4503 	/* update runtime allocation */
4504 	account_cfs_rq_runtime(cfs_rq, 0);
4505 	if (cfs_rq->runtime_remaining <= 0)
4506 		throttle_cfs_rq(cfs_rq);
4507 }
4508 
4509 static void sync_throttle(struct task_group *tg, int cpu)
4510 {
4511 	struct cfs_rq *pcfs_rq, *cfs_rq;
4512 
4513 	if (!cfs_bandwidth_used())
4514 		return;
4515 
4516 	if (!tg->parent)
4517 		return;
4518 
4519 	cfs_rq = tg->cfs_rq[cpu];
4520 	pcfs_rq = tg->parent->cfs_rq[cpu];
4521 
4522 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4523 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4524 }
4525 
4526 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4527 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4528 {
4529 	if (!cfs_bandwidth_used())
4530 		return false;
4531 
4532 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4533 		return false;
4534 
4535 	/*
4536 	 * it's possible for a throttled entity to be forced into a running
4537 	 * state (e.g. set_curr_task), in this case we're finished.
4538 	 */
4539 	if (cfs_rq_throttled(cfs_rq))
4540 		return true;
4541 
4542 	throttle_cfs_rq(cfs_rq);
4543 	return true;
4544 }
4545 
4546 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4547 {
4548 	struct cfs_bandwidth *cfs_b =
4549 		container_of(timer, struct cfs_bandwidth, slack_timer);
4550 
4551 	do_sched_cfs_slack_timer(cfs_b);
4552 
4553 	return HRTIMER_NORESTART;
4554 }
4555 
4556 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4557 {
4558 	struct cfs_bandwidth *cfs_b =
4559 		container_of(timer, struct cfs_bandwidth, period_timer);
4560 	int overrun;
4561 	int idle = 0;
4562 
4563 	raw_spin_lock(&cfs_b->lock);
4564 	for (;;) {
4565 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4566 		if (!overrun)
4567 			break;
4568 
4569 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4570 	}
4571 	if (idle)
4572 		cfs_b->period_active = 0;
4573 	raw_spin_unlock(&cfs_b->lock);
4574 
4575 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4576 }
4577 
4578 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4579 {
4580 	raw_spin_lock_init(&cfs_b->lock);
4581 	cfs_b->runtime = 0;
4582 	cfs_b->quota = RUNTIME_INF;
4583 	cfs_b->period = ns_to_ktime(default_cfs_period());
4584 
4585 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4586 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4587 	cfs_b->period_timer.function = sched_cfs_period_timer;
4588 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4589 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4590 }
4591 
4592 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4593 {
4594 	cfs_rq->runtime_enabled = 0;
4595 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4596 }
4597 
4598 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4599 {
4600 	lockdep_assert_held(&cfs_b->lock);
4601 
4602 	if (!cfs_b->period_active) {
4603 		cfs_b->period_active = 1;
4604 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4605 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4606 	}
4607 }
4608 
4609 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4610 {
4611 	/* init_cfs_bandwidth() was not called */
4612 	if (!cfs_b->throttled_cfs_rq.next)
4613 		return;
4614 
4615 	hrtimer_cancel(&cfs_b->period_timer);
4616 	hrtimer_cancel(&cfs_b->slack_timer);
4617 }
4618 
4619 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4620 {
4621 	struct cfs_rq *cfs_rq;
4622 
4623 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4624 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4625 
4626 		raw_spin_lock(&cfs_b->lock);
4627 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4628 		raw_spin_unlock(&cfs_b->lock);
4629 	}
4630 }
4631 
4632 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4633 {
4634 	struct cfs_rq *cfs_rq;
4635 
4636 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4637 		if (!cfs_rq->runtime_enabled)
4638 			continue;
4639 
4640 		/*
4641 		 * clock_task is not advancing so we just need to make sure
4642 		 * there's some valid quota amount
4643 		 */
4644 		cfs_rq->runtime_remaining = 1;
4645 		/*
4646 		 * Offline rq is schedulable till cpu is completely disabled
4647 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4648 		 */
4649 		cfs_rq->runtime_enabled = 0;
4650 
4651 		if (cfs_rq_throttled(cfs_rq))
4652 			unthrottle_cfs_rq(cfs_rq);
4653 	}
4654 }
4655 
4656 #else /* CONFIG_CFS_BANDWIDTH */
4657 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4658 {
4659 	return rq_clock_task(rq_of(cfs_rq));
4660 }
4661 
4662 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4663 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4664 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4665 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4666 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4667 
4668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4669 {
4670 	return 0;
4671 }
4672 
4673 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4674 {
4675 	return 0;
4676 }
4677 
4678 static inline int throttled_lb_pair(struct task_group *tg,
4679 				    int src_cpu, int dest_cpu)
4680 {
4681 	return 0;
4682 }
4683 
4684 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4685 
4686 #ifdef CONFIG_FAIR_GROUP_SCHED
4687 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4688 #endif
4689 
4690 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4691 {
4692 	return NULL;
4693 }
4694 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4695 static inline void update_runtime_enabled(struct rq *rq) {}
4696 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4697 
4698 #endif /* CONFIG_CFS_BANDWIDTH */
4699 
4700 /**************************************************
4701  * CFS operations on tasks:
4702  */
4703 
4704 #ifdef CONFIG_SCHED_HRTICK
4705 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4706 {
4707 	struct sched_entity *se = &p->se;
4708 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4709 
4710 	SCHED_WARN_ON(task_rq(p) != rq);
4711 
4712 	if (rq->cfs.h_nr_running > 1) {
4713 		u64 slice = sched_slice(cfs_rq, se);
4714 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4715 		s64 delta = slice - ran;
4716 
4717 		if (delta < 0) {
4718 			if (rq->curr == p)
4719 				resched_curr(rq);
4720 			return;
4721 		}
4722 		hrtick_start(rq, delta);
4723 	}
4724 }
4725 
4726 /*
4727  * called from enqueue/dequeue and updates the hrtick when the
4728  * current task is from our class and nr_running is low enough
4729  * to matter.
4730  */
4731 static void hrtick_update(struct rq *rq)
4732 {
4733 	struct task_struct *curr = rq->curr;
4734 
4735 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4736 		return;
4737 
4738 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4739 		hrtick_start_fair(rq, curr);
4740 }
4741 #else /* !CONFIG_SCHED_HRTICK */
4742 static inline void
4743 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4744 {
4745 }
4746 
4747 static inline void hrtick_update(struct rq *rq)
4748 {
4749 }
4750 #endif
4751 
4752 /*
4753  * The enqueue_task method is called before nr_running is
4754  * increased. Here we update the fair scheduling stats and
4755  * then put the task into the rbtree:
4756  */
4757 static void
4758 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4759 {
4760 	struct cfs_rq *cfs_rq;
4761 	struct sched_entity *se = &p->se;
4762 
4763 	/*
4764 	 * If in_iowait is set, the code below may not trigger any cpufreq
4765 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4766 	 * passed.
4767 	 */
4768 	if (p->in_iowait)
4769 		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4770 
4771 	for_each_sched_entity(se) {
4772 		if (se->on_rq)
4773 			break;
4774 		cfs_rq = cfs_rq_of(se);
4775 		enqueue_entity(cfs_rq, se, flags);
4776 
4777 		/*
4778 		 * end evaluation on encountering a throttled cfs_rq
4779 		 *
4780 		 * note: in the case of encountering a throttled cfs_rq we will
4781 		 * post the final h_nr_running increment below.
4782 		 */
4783 		if (cfs_rq_throttled(cfs_rq))
4784 			break;
4785 		cfs_rq->h_nr_running++;
4786 
4787 		flags = ENQUEUE_WAKEUP;
4788 	}
4789 
4790 	for_each_sched_entity(se) {
4791 		cfs_rq = cfs_rq_of(se);
4792 		cfs_rq->h_nr_running++;
4793 
4794 		if (cfs_rq_throttled(cfs_rq))
4795 			break;
4796 
4797 		update_load_avg(se, UPDATE_TG);
4798 		update_cfs_shares(se);
4799 	}
4800 
4801 	if (!se)
4802 		add_nr_running(rq, 1);
4803 
4804 	hrtick_update(rq);
4805 }
4806 
4807 static void set_next_buddy(struct sched_entity *se);
4808 
4809 /*
4810  * The dequeue_task method is called before nr_running is
4811  * decreased. We remove the task from the rbtree and
4812  * update the fair scheduling stats:
4813  */
4814 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4815 {
4816 	struct cfs_rq *cfs_rq;
4817 	struct sched_entity *se = &p->se;
4818 	int task_sleep = flags & DEQUEUE_SLEEP;
4819 
4820 	for_each_sched_entity(se) {
4821 		cfs_rq = cfs_rq_of(se);
4822 		dequeue_entity(cfs_rq, se, flags);
4823 
4824 		/*
4825 		 * end evaluation on encountering a throttled cfs_rq
4826 		 *
4827 		 * note: in the case of encountering a throttled cfs_rq we will
4828 		 * post the final h_nr_running decrement below.
4829 		*/
4830 		if (cfs_rq_throttled(cfs_rq))
4831 			break;
4832 		cfs_rq->h_nr_running--;
4833 
4834 		/* Don't dequeue parent if it has other entities besides us */
4835 		if (cfs_rq->load.weight) {
4836 			/* Avoid re-evaluating load for this entity: */
4837 			se = parent_entity(se);
4838 			/*
4839 			 * Bias pick_next to pick a task from this cfs_rq, as
4840 			 * p is sleeping when it is within its sched_slice.
4841 			 */
4842 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4843 				set_next_buddy(se);
4844 			break;
4845 		}
4846 		flags |= DEQUEUE_SLEEP;
4847 	}
4848 
4849 	for_each_sched_entity(se) {
4850 		cfs_rq = cfs_rq_of(se);
4851 		cfs_rq->h_nr_running--;
4852 
4853 		if (cfs_rq_throttled(cfs_rq))
4854 			break;
4855 
4856 		update_load_avg(se, UPDATE_TG);
4857 		update_cfs_shares(se);
4858 	}
4859 
4860 	if (!se)
4861 		sub_nr_running(rq, 1);
4862 
4863 	hrtick_update(rq);
4864 }
4865 
4866 #ifdef CONFIG_SMP
4867 
4868 /* Working cpumask for: load_balance, load_balance_newidle. */
4869 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4870 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4871 
4872 #ifdef CONFIG_NO_HZ_COMMON
4873 /*
4874  * per rq 'load' arrray crap; XXX kill this.
4875  */
4876 
4877 /*
4878  * The exact cpuload calculated at every tick would be:
4879  *
4880  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4881  *
4882  * If a cpu misses updates for n ticks (as it was idle) and update gets
4883  * called on the n+1-th tick when cpu may be busy, then we have:
4884  *
4885  *   load_n   = (1 - 1/2^i)^n * load_0
4886  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4887  *
4888  * decay_load_missed() below does efficient calculation of
4889  *
4890  *   load' = (1 - 1/2^i)^n * load
4891  *
4892  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4893  * This allows us to precompute the above in said factors, thereby allowing the
4894  * reduction of an arbitrary n in O(log_2 n) steps. (See also
4895  * fixed_power_int())
4896  *
4897  * The calculation is approximated on a 128 point scale.
4898  */
4899 #define DEGRADE_SHIFT		7
4900 
4901 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4902 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4903 	{   0,   0,  0,  0,  0,  0, 0, 0 },
4904 	{  64,  32,  8,  0,  0,  0, 0, 0 },
4905 	{  96,  72, 40, 12,  1,  0, 0, 0 },
4906 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4907 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4908 };
4909 
4910 /*
4911  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4912  * would be when CPU is idle and so we just decay the old load without
4913  * adding any new load.
4914  */
4915 static unsigned long
4916 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4917 {
4918 	int j = 0;
4919 
4920 	if (!missed_updates)
4921 		return load;
4922 
4923 	if (missed_updates >= degrade_zero_ticks[idx])
4924 		return 0;
4925 
4926 	if (idx == 1)
4927 		return load >> missed_updates;
4928 
4929 	while (missed_updates) {
4930 		if (missed_updates % 2)
4931 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4932 
4933 		missed_updates >>= 1;
4934 		j++;
4935 	}
4936 	return load;
4937 }
4938 #endif /* CONFIG_NO_HZ_COMMON */
4939 
4940 /**
4941  * __cpu_load_update - update the rq->cpu_load[] statistics
4942  * @this_rq: The rq to update statistics for
4943  * @this_load: The current load
4944  * @pending_updates: The number of missed updates
4945  *
4946  * Update rq->cpu_load[] statistics. This function is usually called every
4947  * scheduler tick (TICK_NSEC).
4948  *
4949  * This function computes a decaying average:
4950  *
4951  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4952  *
4953  * Because of NOHZ it might not get called on every tick which gives need for
4954  * the @pending_updates argument.
4955  *
4956  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4957  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4958  *             = A * (A * load[i]_n-2 + B) + B
4959  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4960  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4961  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4962  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4963  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4964  *
4965  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4966  * any change in load would have resulted in the tick being turned back on.
4967  *
4968  * For regular NOHZ, this reduces to:
4969  *
4970  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4971  *
4972  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4973  * term.
4974  */
4975 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4976 			    unsigned long pending_updates)
4977 {
4978 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4979 	int i, scale;
4980 
4981 	this_rq->nr_load_updates++;
4982 
4983 	/* Update our load: */
4984 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4985 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4986 		unsigned long old_load, new_load;
4987 
4988 		/* scale is effectively 1 << i now, and >> i divides by scale */
4989 
4990 		old_load = this_rq->cpu_load[i];
4991 #ifdef CONFIG_NO_HZ_COMMON
4992 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4993 		if (tickless_load) {
4994 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4995 			/*
4996 			 * old_load can never be a negative value because a
4997 			 * decayed tickless_load cannot be greater than the
4998 			 * original tickless_load.
4999 			 */
5000 			old_load += tickless_load;
5001 		}
5002 #endif
5003 		new_load = this_load;
5004 		/*
5005 		 * Round up the averaging division if load is increasing. This
5006 		 * prevents us from getting stuck on 9 if the load is 10, for
5007 		 * example.
5008 		 */
5009 		if (new_load > old_load)
5010 			new_load += scale - 1;
5011 
5012 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5013 	}
5014 
5015 	sched_avg_update(this_rq);
5016 }
5017 
5018 /* Used instead of source_load when we know the type == 0 */
5019 static unsigned long weighted_cpuload(const int cpu)
5020 {
5021 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5022 }
5023 
5024 #ifdef CONFIG_NO_HZ_COMMON
5025 /*
5026  * There is no sane way to deal with nohz on smp when using jiffies because the
5027  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5028  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5029  *
5030  * Therefore we need to avoid the delta approach from the regular tick when
5031  * possible since that would seriously skew the load calculation. This is why we
5032  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5033  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5034  * loop exit, nohz_idle_balance, nohz full exit...)
5035  *
5036  * This means we might still be one tick off for nohz periods.
5037  */
5038 
5039 static void cpu_load_update_nohz(struct rq *this_rq,
5040 				 unsigned long curr_jiffies,
5041 				 unsigned long load)
5042 {
5043 	unsigned long pending_updates;
5044 
5045 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5046 	if (pending_updates) {
5047 		this_rq->last_load_update_tick = curr_jiffies;
5048 		/*
5049 		 * In the regular NOHZ case, we were idle, this means load 0.
5050 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5051 		 * its weighted load.
5052 		 */
5053 		cpu_load_update(this_rq, load, pending_updates);
5054 	}
5055 }
5056 
5057 /*
5058  * Called from nohz_idle_balance() to update the load ratings before doing the
5059  * idle balance.
5060  */
5061 static void cpu_load_update_idle(struct rq *this_rq)
5062 {
5063 	/*
5064 	 * bail if there's load or we're actually up-to-date.
5065 	 */
5066 	if (weighted_cpuload(cpu_of(this_rq)))
5067 		return;
5068 
5069 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5070 }
5071 
5072 /*
5073  * Record CPU load on nohz entry so we know the tickless load to account
5074  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5075  * than other cpu_load[idx] but it should be fine as cpu_load readers
5076  * shouldn't rely into synchronized cpu_load[*] updates.
5077  */
5078 void cpu_load_update_nohz_start(void)
5079 {
5080 	struct rq *this_rq = this_rq();
5081 
5082 	/*
5083 	 * This is all lockless but should be fine. If weighted_cpuload changes
5084 	 * concurrently we'll exit nohz. And cpu_load write can race with
5085 	 * cpu_load_update_idle() but both updater would be writing the same.
5086 	 */
5087 	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5088 }
5089 
5090 /*
5091  * Account the tickless load in the end of a nohz frame.
5092  */
5093 void cpu_load_update_nohz_stop(void)
5094 {
5095 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5096 	struct rq *this_rq = this_rq();
5097 	unsigned long load;
5098 
5099 	if (curr_jiffies == this_rq->last_load_update_tick)
5100 		return;
5101 
5102 	load = weighted_cpuload(cpu_of(this_rq));
5103 	raw_spin_lock(&this_rq->lock);
5104 	update_rq_clock(this_rq);
5105 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5106 	raw_spin_unlock(&this_rq->lock);
5107 }
5108 #else /* !CONFIG_NO_HZ_COMMON */
5109 static inline void cpu_load_update_nohz(struct rq *this_rq,
5110 					unsigned long curr_jiffies,
5111 					unsigned long load) { }
5112 #endif /* CONFIG_NO_HZ_COMMON */
5113 
5114 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5115 {
5116 #ifdef CONFIG_NO_HZ_COMMON
5117 	/* See the mess around cpu_load_update_nohz(). */
5118 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5119 #endif
5120 	cpu_load_update(this_rq, load, 1);
5121 }
5122 
5123 /*
5124  * Called from scheduler_tick()
5125  */
5126 void cpu_load_update_active(struct rq *this_rq)
5127 {
5128 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5129 
5130 	if (tick_nohz_tick_stopped())
5131 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5132 	else
5133 		cpu_load_update_periodic(this_rq, load);
5134 }
5135 
5136 /*
5137  * Return a low guess at the load of a migration-source cpu weighted
5138  * according to the scheduling class and "nice" value.
5139  *
5140  * We want to under-estimate the load of migration sources, to
5141  * balance conservatively.
5142  */
5143 static unsigned long source_load(int cpu, int type)
5144 {
5145 	struct rq *rq = cpu_rq(cpu);
5146 	unsigned long total = weighted_cpuload(cpu);
5147 
5148 	if (type == 0 || !sched_feat(LB_BIAS))
5149 		return total;
5150 
5151 	return min(rq->cpu_load[type-1], total);
5152 }
5153 
5154 /*
5155  * Return a high guess at the load of a migration-target cpu weighted
5156  * according to the scheduling class and "nice" value.
5157  */
5158 static unsigned long target_load(int cpu, int type)
5159 {
5160 	struct rq *rq = cpu_rq(cpu);
5161 	unsigned long total = weighted_cpuload(cpu);
5162 
5163 	if (type == 0 || !sched_feat(LB_BIAS))
5164 		return total;
5165 
5166 	return max(rq->cpu_load[type-1], total);
5167 }
5168 
5169 static unsigned long capacity_of(int cpu)
5170 {
5171 	return cpu_rq(cpu)->cpu_capacity;
5172 }
5173 
5174 static unsigned long capacity_orig_of(int cpu)
5175 {
5176 	return cpu_rq(cpu)->cpu_capacity_orig;
5177 }
5178 
5179 static unsigned long cpu_avg_load_per_task(int cpu)
5180 {
5181 	struct rq *rq = cpu_rq(cpu);
5182 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5183 	unsigned long load_avg = weighted_cpuload(cpu);
5184 
5185 	if (nr_running)
5186 		return load_avg / nr_running;
5187 
5188 	return 0;
5189 }
5190 
5191 #ifdef CONFIG_FAIR_GROUP_SCHED
5192 /*
5193  * effective_load() calculates the load change as seen from the root_task_group
5194  *
5195  * Adding load to a group doesn't make a group heavier, but can cause movement
5196  * of group shares between cpus. Assuming the shares were perfectly aligned one
5197  * can calculate the shift in shares.
5198  *
5199  * Calculate the effective load difference if @wl is added (subtracted) to @tg
5200  * on this @cpu and results in a total addition (subtraction) of @wg to the
5201  * total group weight.
5202  *
5203  * Given a runqueue weight distribution (rw_i) we can compute a shares
5204  * distribution (s_i) using:
5205  *
5206  *   s_i = rw_i / \Sum rw_j						(1)
5207  *
5208  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5209  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5210  * shares distribution (s_i):
5211  *
5212  *   rw_i = {   2,   4,   1,   0 }
5213  *   s_i  = { 2/7, 4/7, 1/7,   0 }
5214  *
5215  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5216  * task used to run on and the CPU the waker is running on), we need to
5217  * compute the effect of waking a task on either CPU and, in case of a sync
5218  * wakeup, compute the effect of the current task going to sleep.
5219  *
5220  * So for a change of @wl to the local @cpu with an overall group weight change
5221  * of @wl we can compute the new shares distribution (s'_i) using:
5222  *
5223  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
5224  *
5225  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5226  * differences in waking a task to CPU 0. The additional task changes the
5227  * weight and shares distributions like:
5228  *
5229  *   rw'_i = {   3,   4,   1,   0 }
5230  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
5231  *
5232  * We can then compute the difference in effective weight by using:
5233  *
5234  *   dw_i = S * (s'_i - s_i)						(3)
5235  *
5236  * Where 'S' is the group weight as seen by its parent.
5237  *
5238  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5239  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5240  * 4/7) times the weight of the group.
5241  */
5242 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5243 {
5244 	struct sched_entity *se = tg->se[cpu];
5245 
5246 	if (!tg->parent)	/* the trivial, non-cgroup case */
5247 		return wl;
5248 
5249 	for_each_sched_entity(se) {
5250 		struct cfs_rq *cfs_rq = se->my_q;
5251 		long W, w = cfs_rq_load_avg(cfs_rq);
5252 
5253 		tg = cfs_rq->tg;
5254 
5255 		/*
5256 		 * W = @wg + \Sum rw_j
5257 		 */
5258 		W = wg + atomic_long_read(&tg->load_avg);
5259 
5260 		/* Ensure \Sum rw_j >= rw_i */
5261 		W -= cfs_rq->tg_load_avg_contrib;
5262 		W += w;
5263 
5264 		/*
5265 		 * w = rw_i + @wl
5266 		 */
5267 		w += wl;
5268 
5269 		/*
5270 		 * wl = S * s'_i; see (2)
5271 		 */
5272 		if (W > 0 && w < W)
5273 			wl = (w * (long)scale_load_down(tg->shares)) / W;
5274 		else
5275 			wl = scale_load_down(tg->shares);
5276 
5277 		/*
5278 		 * Per the above, wl is the new se->load.weight value; since
5279 		 * those are clipped to [MIN_SHARES, ...) do so now. See
5280 		 * calc_cfs_shares().
5281 		 */
5282 		if (wl < MIN_SHARES)
5283 			wl = MIN_SHARES;
5284 
5285 		/*
5286 		 * wl = dw_i = S * (s'_i - s_i); see (3)
5287 		 */
5288 		wl -= se->avg.load_avg;
5289 
5290 		/*
5291 		 * Recursively apply this logic to all parent groups to compute
5292 		 * the final effective load change on the root group. Since
5293 		 * only the @tg group gets extra weight, all parent groups can
5294 		 * only redistribute existing shares. @wl is the shift in shares
5295 		 * resulting from this level per the above.
5296 		 */
5297 		wg = 0;
5298 	}
5299 
5300 	return wl;
5301 }
5302 #else
5303 
5304 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5305 {
5306 	return wl;
5307 }
5308 
5309 #endif
5310 
5311 static void record_wakee(struct task_struct *p)
5312 {
5313 	/*
5314 	 * Only decay a single time; tasks that have less then 1 wakeup per
5315 	 * jiffy will not have built up many flips.
5316 	 */
5317 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5318 		current->wakee_flips >>= 1;
5319 		current->wakee_flip_decay_ts = jiffies;
5320 	}
5321 
5322 	if (current->last_wakee != p) {
5323 		current->last_wakee = p;
5324 		current->wakee_flips++;
5325 	}
5326 }
5327 
5328 /*
5329  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5330  *
5331  * A waker of many should wake a different task than the one last awakened
5332  * at a frequency roughly N times higher than one of its wakees.
5333  *
5334  * In order to determine whether we should let the load spread vs consolidating
5335  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5336  * partner, and a factor of lls_size higher frequency in the other.
5337  *
5338  * With both conditions met, we can be relatively sure that the relationship is
5339  * non-monogamous, with partner count exceeding socket size.
5340  *
5341  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5342  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5343  * socket size.
5344  */
5345 static int wake_wide(struct task_struct *p)
5346 {
5347 	unsigned int master = current->wakee_flips;
5348 	unsigned int slave = p->wakee_flips;
5349 	int factor = this_cpu_read(sd_llc_size);
5350 
5351 	if (master < slave)
5352 		swap(master, slave);
5353 	if (slave < factor || master < slave * factor)
5354 		return 0;
5355 	return 1;
5356 }
5357 
5358 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5359 		       int prev_cpu, int sync)
5360 {
5361 	s64 this_load, load;
5362 	s64 this_eff_load, prev_eff_load;
5363 	int idx, this_cpu;
5364 	struct task_group *tg;
5365 	unsigned long weight;
5366 	int balanced;
5367 
5368 	idx	  = sd->wake_idx;
5369 	this_cpu  = smp_processor_id();
5370 	load	  = source_load(prev_cpu, idx);
5371 	this_load = target_load(this_cpu, idx);
5372 
5373 	/*
5374 	 * If sync wakeup then subtract the (maximum possible)
5375 	 * effect of the currently running task from the load
5376 	 * of the current CPU:
5377 	 */
5378 	if (sync) {
5379 		tg = task_group(current);
5380 		weight = current->se.avg.load_avg;
5381 
5382 		this_load += effective_load(tg, this_cpu, -weight, -weight);
5383 		load += effective_load(tg, prev_cpu, 0, -weight);
5384 	}
5385 
5386 	tg = task_group(p);
5387 	weight = p->se.avg.load_avg;
5388 
5389 	/*
5390 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5391 	 * due to the sync cause above having dropped this_load to 0, we'll
5392 	 * always have an imbalance, but there's really nothing you can do
5393 	 * about that, so that's good too.
5394 	 *
5395 	 * Otherwise check if either cpus are near enough in load to allow this
5396 	 * task to be woken on this_cpu.
5397 	 */
5398 	this_eff_load = 100;
5399 	this_eff_load *= capacity_of(prev_cpu);
5400 
5401 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5402 	prev_eff_load *= capacity_of(this_cpu);
5403 
5404 	if (this_load > 0) {
5405 		this_eff_load *= this_load +
5406 			effective_load(tg, this_cpu, weight, weight);
5407 
5408 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5409 	}
5410 
5411 	balanced = this_eff_load <= prev_eff_load;
5412 
5413 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5414 
5415 	if (!balanced)
5416 		return 0;
5417 
5418 	schedstat_inc(sd->ttwu_move_affine);
5419 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5420 
5421 	return 1;
5422 }
5423 
5424 static inline int task_util(struct task_struct *p);
5425 static int cpu_util_wake(int cpu, struct task_struct *p);
5426 
5427 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5428 {
5429 	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5430 }
5431 
5432 /*
5433  * find_idlest_group finds and returns the least busy CPU group within the
5434  * domain.
5435  */
5436 static struct sched_group *
5437 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5438 		  int this_cpu, int sd_flag)
5439 {
5440 	struct sched_group *idlest = NULL, *group = sd->groups;
5441 	struct sched_group *most_spare_sg = NULL;
5442 	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5443 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5444 	unsigned long most_spare = 0, this_spare = 0;
5445 	int load_idx = sd->forkexec_idx;
5446 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5447 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5448 				(sd->imbalance_pct-100) / 100;
5449 
5450 	if (sd_flag & SD_BALANCE_WAKE)
5451 		load_idx = sd->wake_idx;
5452 
5453 	do {
5454 		unsigned long load, avg_load, runnable_load;
5455 		unsigned long spare_cap, max_spare_cap;
5456 		int local_group;
5457 		int i;
5458 
5459 		/* Skip over this group if it has no CPUs allowed */
5460 		if (!cpumask_intersects(sched_group_cpus(group),
5461 					tsk_cpus_allowed(p)))
5462 			continue;
5463 
5464 		local_group = cpumask_test_cpu(this_cpu,
5465 					       sched_group_cpus(group));
5466 
5467 		/*
5468 		 * Tally up the load of all CPUs in the group and find
5469 		 * the group containing the CPU with most spare capacity.
5470 		 */
5471 		avg_load = 0;
5472 		runnable_load = 0;
5473 		max_spare_cap = 0;
5474 
5475 		for_each_cpu(i, sched_group_cpus(group)) {
5476 			/* Bias balancing toward cpus of our domain */
5477 			if (local_group)
5478 				load = source_load(i, load_idx);
5479 			else
5480 				load = target_load(i, load_idx);
5481 
5482 			runnable_load += load;
5483 
5484 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5485 
5486 			spare_cap = capacity_spare_wake(i, p);
5487 
5488 			if (spare_cap > max_spare_cap)
5489 				max_spare_cap = spare_cap;
5490 		}
5491 
5492 		/* Adjust by relative CPU capacity of the group */
5493 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5494 					group->sgc->capacity;
5495 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5496 					group->sgc->capacity;
5497 
5498 		if (local_group) {
5499 			this_runnable_load = runnable_load;
5500 			this_avg_load = avg_load;
5501 			this_spare = max_spare_cap;
5502 		} else {
5503 			if (min_runnable_load > (runnable_load + imbalance)) {
5504 				/*
5505 				 * The runnable load is significantly smaller
5506 				 * so we can pick this new cpu
5507 				 */
5508 				min_runnable_load = runnable_load;
5509 				min_avg_load = avg_load;
5510 				idlest = group;
5511 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5512 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5513 				/*
5514 				 * The runnable loads are close so take the
5515 				 * blocked load into account through avg_load.
5516 				 */
5517 				min_avg_load = avg_load;
5518 				idlest = group;
5519 			}
5520 
5521 			if (most_spare < max_spare_cap) {
5522 				most_spare = max_spare_cap;
5523 				most_spare_sg = group;
5524 			}
5525 		}
5526 	} while (group = group->next, group != sd->groups);
5527 
5528 	/*
5529 	 * The cross-over point between using spare capacity or least load
5530 	 * is too conservative for high utilization tasks on partially
5531 	 * utilized systems if we require spare_capacity > task_util(p),
5532 	 * so we allow for some task stuffing by using
5533 	 * spare_capacity > task_util(p)/2.
5534 	 *
5535 	 * Spare capacity can't be used for fork because the utilization has
5536 	 * not been set yet, we must first select a rq to compute the initial
5537 	 * utilization.
5538 	 */
5539 	if (sd_flag & SD_BALANCE_FORK)
5540 		goto skip_spare;
5541 
5542 	if (this_spare > task_util(p) / 2 &&
5543 	    imbalance_scale*this_spare > 100*most_spare)
5544 		return NULL;
5545 
5546 	if (most_spare > task_util(p) / 2)
5547 		return most_spare_sg;
5548 
5549 skip_spare:
5550 	if (!idlest)
5551 		return NULL;
5552 
5553 	if (min_runnable_load > (this_runnable_load + imbalance))
5554 		return NULL;
5555 
5556 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5557 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5558 		return NULL;
5559 
5560 	return idlest;
5561 }
5562 
5563 /*
5564  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5565  */
5566 static int
5567 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5568 {
5569 	unsigned long load, min_load = ULONG_MAX;
5570 	unsigned int min_exit_latency = UINT_MAX;
5571 	u64 latest_idle_timestamp = 0;
5572 	int least_loaded_cpu = this_cpu;
5573 	int shallowest_idle_cpu = -1;
5574 	int i;
5575 
5576 	/* Check if we have any choice: */
5577 	if (group->group_weight == 1)
5578 		return cpumask_first(sched_group_cpus(group));
5579 
5580 	/* Traverse only the allowed CPUs */
5581 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5582 		if (idle_cpu(i)) {
5583 			struct rq *rq = cpu_rq(i);
5584 			struct cpuidle_state *idle = idle_get_state(rq);
5585 			if (idle && idle->exit_latency < min_exit_latency) {
5586 				/*
5587 				 * We give priority to a CPU whose idle state
5588 				 * has the smallest exit latency irrespective
5589 				 * of any idle timestamp.
5590 				 */
5591 				min_exit_latency = idle->exit_latency;
5592 				latest_idle_timestamp = rq->idle_stamp;
5593 				shallowest_idle_cpu = i;
5594 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5595 				   rq->idle_stamp > latest_idle_timestamp) {
5596 				/*
5597 				 * If equal or no active idle state, then
5598 				 * the most recently idled CPU might have
5599 				 * a warmer cache.
5600 				 */
5601 				latest_idle_timestamp = rq->idle_stamp;
5602 				shallowest_idle_cpu = i;
5603 			}
5604 		} else if (shallowest_idle_cpu == -1) {
5605 			load = weighted_cpuload(i);
5606 			if (load < min_load || (load == min_load && i == this_cpu)) {
5607 				min_load = load;
5608 				least_loaded_cpu = i;
5609 			}
5610 		}
5611 	}
5612 
5613 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5614 }
5615 
5616 /*
5617  * Implement a for_each_cpu() variant that starts the scan at a given cpu
5618  * (@start), and wraps around.
5619  *
5620  * This is used to scan for idle CPUs; such that not all CPUs looking for an
5621  * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5622  * through the LLC domain.
5623  *
5624  * Especially tbench is found sensitive to this.
5625  */
5626 
5627 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5628 {
5629 	int next;
5630 
5631 again:
5632 	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5633 
5634 	if (*wrapped) {
5635 		if (next >= start)
5636 			return nr_cpumask_bits;
5637 	} else {
5638 		if (next >= nr_cpumask_bits) {
5639 			*wrapped = 1;
5640 			n = -1;
5641 			goto again;
5642 		}
5643 	}
5644 
5645 	return next;
5646 }
5647 
5648 #define for_each_cpu_wrap(cpu, mask, start, wrap)				\
5649 	for ((wrap) = 0, (cpu) = (start)-1;					\
5650 		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
5651 		(cpu) < nr_cpumask_bits; )
5652 
5653 #ifdef CONFIG_SCHED_SMT
5654 
5655 static inline void set_idle_cores(int cpu, int val)
5656 {
5657 	struct sched_domain_shared *sds;
5658 
5659 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5660 	if (sds)
5661 		WRITE_ONCE(sds->has_idle_cores, val);
5662 }
5663 
5664 static inline bool test_idle_cores(int cpu, bool def)
5665 {
5666 	struct sched_domain_shared *sds;
5667 
5668 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5669 	if (sds)
5670 		return READ_ONCE(sds->has_idle_cores);
5671 
5672 	return def;
5673 }
5674 
5675 /*
5676  * Scans the local SMT mask to see if the entire core is idle, and records this
5677  * information in sd_llc_shared->has_idle_cores.
5678  *
5679  * Since SMT siblings share all cache levels, inspecting this limited remote
5680  * state should be fairly cheap.
5681  */
5682 void __update_idle_core(struct rq *rq)
5683 {
5684 	int core = cpu_of(rq);
5685 	int cpu;
5686 
5687 	rcu_read_lock();
5688 	if (test_idle_cores(core, true))
5689 		goto unlock;
5690 
5691 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5692 		if (cpu == core)
5693 			continue;
5694 
5695 		if (!idle_cpu(cpu))
5696 			goto unlock;
5697 	}
5698 
5699 	set_idle_cores(core, 1);
5700 unlock:
5701 	rcu_read_unlock();
5702 }
5703 
5704 /*
5705  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5706  * there are no idle cores left in the system; tracked through
5707  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5708  */
5709 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5710 {
5711 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5712 	int core, cpu, wrap;
5713 
5714 	if (!static_branch_likely(&sched_smt_present))
5715 		return -1;
5716 
5717 	if (!test_idle_cores(target, false))
5718 		return -1;
5719 
5720 	cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5721 
5722 	for_each_cpu_wrap(core, cpus, target, wrap) {
5723 		bool idle = true;
5724 
5725 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5726 			cpumask_clear_cpu(cpu, cpus);
5727 			if (!idle_cpu(cpu))
5728 				idle = false;
5729 		}
5730 
5731 		if (idle)
5732 			return core;
5733 	}
5734 
5735 	/*
5736 	 * Failed to find an idle core; stop looking for one.
5737 	 */
5738 	set_idle_cores(target, 0);
5739 
5740 	return -1;
5741 }
5742 
5743 /*
5744  * Scan the local SMT mask for idle CPUs.
5745  */
5746 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5747 {
5748 	int cpu;
5749 
5750 	if (!static_branch_likely(&sched_smt_present))
5751 		return -1;
5752 
5753 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5754 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5755 			continue;
5756 		if (idle_cpu(cpu))
5757 			return cpu;
5758 	}
5759 
5760 	return -1;
5761 }
5762 
5763 #else /* CONFIG_SCHED_SMT */
5764 
5765 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5766 {
5767 	return -1;
5768 }
5769 
5770 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5771 {
5772 	return -1;
5773 }
5774 
5775 #endif /* CONFIG_SCHED_SMT */
5776 
5777 /*
5778  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5779  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5780  * average idle time for this rq (as found in rq->avg_idle).
5781  */
5782 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5783 {
5784 	struct sched_domain *this_sd;
5785 	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5786 	u64 time, cost;
5787 	s64 delta;
5788 	int cpu, wrap;
5789 
5790 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5791 	if (!this_sd)
5792 		return -1;
5793 
5794 	avg_cost = this_sd->avg_scan_cost;
5795 
5796 	/*
5797 	 * Due to large variance we need a large fuzz factor; hackbench in
5798 	 * particularly is sensitive here.
5799 	 */
5800 	if ((avg_idle / 512) < avg_cost)
5801 		return -1;
5802 
5803 	time = local_clock();
5804 
5805 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5806 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5807 			continue;
5808 		if (idle_cpu(cpu))
5809 			break;
5810 	}
5811 
5812 	time = local_clock() - time;
5813 	cost = this_sd->avg_scan_cost;
5814 	delta = (s64)(time - cost) / 8;
5815 	this_sd->avg_scan_cost += delta;
5816 
5817 	return cpu;
5818 }
5819 
5820 /*
5821  * Try and locate an idle core/thread in the LLC cache domain.
5822  */
5823 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5824 {
5825 	struct sched_domain *sd;
5826 	int i;
5827 
5828 	if (idle_cpu(target))
5829 		return target;
5830 
5831 	/*
5832 	 * If the previous cpu is cache affine and idle, don't be stupid.
5833 	 */
5834 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5835 		return prev;
5836 
5837 	sd = rcu_dereference(per_cpu(sd_llc, target));
5838 	if (!sd)
5839 		return target;
5840 
5841 	i = select_idle_core(p, sd, target);
5842 	if ((unsigned)i < nr_cpumask_bits)
5843 		return i;
5844 
5845 	i = select_idle_cpu(p, sd, target);
5846 	if ((unsigned)i < nr_cpumask_bits)
5847 		return i;
5848 
5849 	i = select_idle_smt(p, sd, target);
5850 	if ((unsigned)i < nr_cpumask_bits)
5851 		return i;
5852 
5853 	return target;
5854 }
5855 
5856 /*
5857  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5858  * tasks. The unit of the return value must be the one of capacity so we can
5859  * compare the utilization with the capacity of the CPU that is available for
5860  * CFS task (ie cpu_capacity).
5861  *
5862  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5863  * recent utilization of currently non-runnable tasks on a CPU. It represents
5864  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5865  * capacity_orig is the cpu_capacity available at the highest frequency
5866  * (arch_scale_freq_capacity()).
5867  * The utilization of a CPU converges towards a sum equal to or less than the
5868  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5869  * the running time on this CPU scaled by capacity_curr.
5870  *
5871  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5872  * higher than capacity_orig because of unfortunate rounding in
5873  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5874  * the average stabilizes with the new running time. We need to check that the
5875  * utilization stays within the range of [0..capacity_orig] and cap it if
5876  * necessary. Without utilization capping, a group could be seen as overloaded
5877  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5878  * available capacity. We allow utilization to overshoot capacity_curr (but not
5879  * capacity_orig) as it useful for predicting the capacity required after task
5880  * migrations (scheduler-driven DVFS).
5881  */
5882 static int cpu_util(int cpu)
5883 {
5884 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5885 	unsigned long capacity = capacity_orig_of(cpu);
5886 
5887 	return (util >= capacity) ? capacity : util;
5888 }
5889 
5890 static inline int task_util(struct task_struct *p)
5891 {
5892 	return p->se.avg.util_avg;
5893 }
5894 
5895 /*
5896  * cpu_util_wake: Compute cpu utilization with any contributions from
5897  * the waking task p removed.
5898  */
5899 static int cpu_util_wake(int cpu, struct task_struct *p)
5900 {
5901 	unsigned long util, capacity;
5902 
5903 	/* Task has no contribution or is new */
5904 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5905 		return cpu_util(cpu);
5906 
5907 	capacity = capacity_orig_of(cpu);
5908 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5909 
5910 	return (util >= capacity) ? capacity : util;
5911 }
5912 
5913 /*
5914  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5915  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5916  *
5917  * In that case WAKE_AFFINE doesn't make sense and we'll let
5918  * BALANCE_WAKE sort things out.
5919  */
5920 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5921 {
5922 	long min_cap, max_cap;
5923 
5924 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5925 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5926 
5927 	/* Minimum capacity is close to max, no need to abort wake_affine */
5928 	if (max_cap - min_cap < max_cap >> 3)
5929 		return 0;
5930 
5931 	/* Bring task utilization in sync with prev_cpu */
5932 	sync_entity_load_avg(&p->se);
5933 
5934 	return min_cap * 1024 < task_util(p) * capacity_margin;
5935 }
5936 
5937 /*
5938  * select_task_rq_fair: Select target runqueue for the waking task in domains
5939  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5940  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5941  *
5942  * Balances load by selecting the idlest cpu in the idlest group, or under
5943  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5944  *
5945  * Returns the target cpu number.
5946  *
5947  * preempt must be disabled.
5948  */
5949 static int
5950 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5951 {
5952 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5953 	int cpu = smp_processor_id();
5954 	int new_cpu = prev_cpu;
5955 	int want_affine = 0;
5956 	int sync = wake_flags & WF_SYNC;
5957 
5958 	if (sd_flag & SD_BALANCE_WAKE) {
5959 		record_wakee(p);
5960 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5961 			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5962 	}
5963 
5964 	rcu_read_lock();
5965 	for_each_domain(cpu, tmp) {
5966 		if (!(tmp->flags & SD_LOAD_BALANCE))
5967 			break;
5968 
5969 		/*
5970 		 * If both cpu and prev_cpu are part of this domain,
5971 		 * cpu is a valid SD_WAKE_AFFINE target.
5972 		 */
5973 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5974 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5975 			affine_sd = tmp;
5976 			break;
5977 		}
5978 
5979 		if (tmp->flags & sd_flag)
5980 			sd = tmp;
5981 		else if (!want_affine)
5982 			break;
5983 	}
5984 
5985 	if (affine_sd) {
5986 		sd = NULL; /* Prefer wake_affine over balance flags */
5987 		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
5988 			new_cpu = cpu;
5989 	}
5990 
5991 	if (!sd) {
5992 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5993 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5994 
5995 	} else while (sd) {
5996 		struct sched_group *group;
5997 		int weight;
5998 
5999 		if (!(sd->flags & sd_flag)) {
6000 			sd = sd->child;
6001 			continue;
6002 		}
6003 
6004 		group = find_idlest_group(sd, p, cpu, sd_flag);
6005 		if (!group) {
6006 			sd = sd->child;
6007 			continue;
6008 		}
6009 
6010 		new_cpu = find_idlest_cpu(group, p, cpu);
6011 		if (new_cpu == -1 || new_cpu == cpu) {
6012 			/* Now try balancing at a lower domain level of cpu */
6013 			sd = sd->child;
6014 			continue;
6015 		}
6016 
6017 		/* Now try balancing at a lower domain level of new_cpu */
6018 		cpu = new_cpu;
6019 		weight = sd->span_weight;
6020 		sd = NULL;
6021 		for_each_domain(cpu, tmp) {
6022 			if (weight <= tmp->span_weight)
6023 				break;
6024 			if (tmp->flags & sd_flag)
6025 				sd = tmp;
6026 		}
6027 		/* while loop will break here if sd == NULL */
6028 	}
6029 	rcu_read_unlock();
6030 
6031 	return new_cpu;
6032 }
6033 
6034 /*
6035  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6036  * cfs_rq_of(p) references at time of call are still valid and identify the
6037  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6038  */
6039 static void migrate_task_rq_fair(struct task_struct *p)
6040 {
6041 	/*
6042 	 * As blocked tasks retain absolute vruntime the migration needs to
6043 	 * deal with this by subtracting the old and adding the new
6044 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6045 	 * the task on the new runqueue.
6046 	 */
6047 	if (p->state == TASK_WAKING) {
6048 		struct sched_entity *se = &p->se;
6049 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6050 		u64 min_vruntime;
6051 
6052 #ifndef CONFIG_64BIT
6053 		u64 min_vruntime_copy;
6054 
6055 		do {
6056 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6057 			smp_rmb();
6058 			min_vruntime = cfs_rq->min_vruntime;
6059 		} while (min_vruntime != min_vruntime_copy);
6060 #else
6061 		min_vruntime = cfs_rq->min_vruntime;
6062 #endif
6063 
6064 		se->vruntime -= min_vruntime;
6065 	}
6066 
6067 	/*
6068 	 * We are supposed to update the task to "current" time, then its up to date
6069 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6070 	 * what current time is, so simply throw away the out-of-date time. This
6071 	 * will result in the wakee task is less decayed, but giving the wakee more
6072 	 * load sounds not bad.
6073 	 */
6074 	remove_entity_load_avg(&p->se);
6075 
6076 	/* Tell new CPU we are migrated */
6077 	p->se.avg.last_update_time = 0;
6078 
6079 	/* We have migrated, no longer consider this task hot */
6080 	p->se.exec_start = 0;
6081 }
6082 
6083 static void task_dead_fair(struct task_struct *p)
6084 {
6085 	remove_entity_load_avg(&p->se);
6086 }
6087 #endif /* CONFIG_SMP */
6088 
6089 static unsigned long
6090 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6091 {
6092 	unsigned long gran = sysctl_sched_wakeup_granularity;
6093 
6094 	/*
6095 	 * Since its curr running now, convert the gran from real-time
6096 	 * to virtual-time in his units.
6097 	 *
6098 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6099 	 * they get preempted easier. That is, if 'se' < 'curr' then
6100 	 * the resulting gran will be larger, therefore penalizing the
6101 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6102 	 * be smaller, again penalizing the lighter task.
6103 	 *
6104 	 * This is especially important for buddies when the leftmost
6105 	 * task is higher priority than the buddy.
6106 	 */
6107 	return calc_delta_fair(gran, se);
6108 }
6109 
6110 /*
6111  * Should 'se' preempt 'curr'.
6112  *
6113  *             |s1
6114  *        |s2
6115  *   |s3
6116  *         g
6117  *      |<--->|c
6118  *
6119  *  w(c, s1) = -1
6120  *  w(c, s2) =  0
6121  *  w(c, s3) =  1
6122  *
6123  */
6124 static int
6125 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6126 {
6127 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6128 
6129 	if (vdiff <= 0)
6130 		return -1;
6131 
6132 	gran = wakeup_gran(curr, se);
6133 	if (vdiff > gran)
6134 		return 1;
6135 
6136 	return 0;
6137 }
6138 
6139 static void set_last_buddy(struct sched_entity *se)
6140 {
6141 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6142 		return;
6143 
6144 	for_each_sched_entity(se)
6145 		cfs_rq_of(se)->last = se;
6146 }
6147 
6148 static void set_next_buddy(struct sched_entity *se)
6149 {
6150 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6151 		return;
6152 
6153 	for_each_sched_entity(se)
6154 		cfs_rq_of(se)->next = se;
6155 }
6156 
6157 static void set_skip_buddy(struct sched_entity *se)
6158 {
6159 	for_each_sched_entity(se)
6160 		cfs_rq_of(se)->skip = se;
6161 }
6162 
6163 /*
6164  * Preempt the current task with a newly woken task if needed:
6165  */
6166 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6167 {
6168 	struct task_struct *curr = rq->curr;
6169 	struct sched_entity *se = &curr->se, *pse = &p->se;
6170 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6171 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6172 	int next_buddy_marked = 0;
6173 
6174 	if (unlikely(se == pse))
6175 		return;
6176 
6177 	/*
6178 	 * This is possible from callers such as attach_tasks(), in which we
6179 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6180 	 * lead to a throttle).  This both saves work and prevents false
6181 	 * next-buddy nomination below.
6182 	 */
6183 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6184 		return;
6185 
6186 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6187 		set_next_buddy(pse);
6188 		next_buddy_marked = 1;
6189 	}
6190 
6191 	/*
6192 	 * We can come here with TIF_NEED_RESCHED already set from new task
6193 	 * wake up path.
6194 	 *
6195 	 * Note: this also catches the edge-case of curr being in a throttled
6196 	 * group (e.g. via set_curr_task), since update_curr() (in the
6197 	 * enqueue of curr) will have resulted in resched being set.  This
6198 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6199 	 * below.
6200 	 */
6201 	if (test_tsk_need_resched(curr))
6202 		return;
6203 
6204 	/* Idle tasks are by definition preempted by non-idle tasks. */
6205 	if (unlikely(curr->policy == SCHED_IDLE) &&
6206 	    likely(p->policy != SCHED_IDLE))
6207 		goto preempt;
6208 
6209 	/*
6210 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6211 	 * is driven by the tick):
6212 	 */
6213 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6214 		return;
6215 
6216 	find_matching_se(&se, &pse);
6217 	update_curr(cfs_rq_of(se));
6218 	BUG_ON(!pse);
6219 	if (wakeup_preempt_entity(se, pse) == 1) {
6220 		/*
6221 		 * Bias pick_next to pick the sched entity that is
6222 		 * triggering this preemption.
6223 		 */
6224 		if (!next_buddy_marked)
6225 			set_next_buddy(pse);
6226 		goto preempt;
6227 	}
6228 
6229 	return;
6230 
6231 preempt:
6232 	resched_curr(rq);
6233 	/*
6234 	 * Only set the backward buddy when the current task is still
6235 	 * on the rq. This can happen when a wakeup gets interleaved
6236 	 * with schedule on the ->pre_schedule() or idle_balance()
6237 	 * point, either of which can * drop the rq lock.
6238 	 *
6239 	 * Also, during early boot the idle thread is in the fair class,
6240 	 * for obvious reasons its a bad idea to schedule back to it.
6241 	 */
6242 	if (unlikely(!se->on_rq || curr == rq->idle))
6243 		return;
6244 
6245 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6246 		set_last_buddy(se);
6247 }
6248 
6249 static struct task_struct *
6250 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6251 {
6252 	struct cfs_rq *cfs_rq = &rq->cfs;
6253 	struct sched_entity *se;
6254 	struct task_struct *p;
6255 	int new_tasks;
6256 
6257 again:
6258 #ifdef CONFIG_FAIR_GROUP_SCHED
6259 	if (!cfs_rq->nr_running)
6260 		goto idle;
6261 
6262 	if (prev->sched_class != &fair_sched_class)
6263 		goto simple;
6264 
6265 	/*
6266 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6267 	 * likely that a next task is from the same cgroup as the current.
6268 	 *
6269 	 * Therefore attempt to avoid putting and setting the entire cgroup
6270 	 * hierarchy, only change the part that actually changes.
6271 	 */
6272 
6273 	do {
6274 		struct sched_entity *curr = cfs_rq->curr;
6275 
6276 		/*
6277 		 * Since we got here without doing put_prev_entity() we also
6278 		 * have to consider cfs_rq->curr. If it is still a runnable
6279 		 * entity, update_curr() will update its vruntime, otherwise
6280 		 * forget we've ever seen it.
6281 		 */
6282 		if (curr) {
6283 			if (curr->on_rq)
6284 				update_curr(cfs_rq);
6285 			else
6286 				curr = NULL;
6287 
6288 			/*
6289 			 * This call to check_cfs_rq_runtime() will do the
6290 			 * throttle and dequeue its entity in the parent(s).
6291 			 * Therefore the 'simple' nr_running test will indeed
6292 			 * be correct.
6293 			 */
6294 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6295 				goto simple;
6296 		}
6297 
6298 		se = pick_next_entity(cfs_rq, curr);
6299 		cfs_rq = group_cfs_rq(se);
6300 	} while (cfs_rq);
6301 
6302 	p = task_of(se);
6303 
6304 	/*
6305 	 * Since we haven't yet done put_prev_entity and if the selected task
6306 	 * is a different task than we started out with, try and touch the
6307 	 * least amount of cfs_rqs.
6308 	 */
6309 	if (prev != p) {
6310 		struct sched_entity *pse = &prev->se;
6311 
6312 		while (!(cfs_rq = is_same_group(se, pse))) {
6313 			int se_depth = se->depth;
6314 			int pse_depth = pse->depth;
6315 
6316 			if (se_depth <= pse_depth) {
6317 				put_prev_entity(cfs_rq_of(pse), pse);
6318 				pse = parent_entity(pse);
6319 			}
6320 			if (se_depth >= pse_depth) {
6321 				set_next_entity(cfs_rq_of(se), se);
6322 				se = parent_entity(se);
6323 			}
6324 		}
6325 
6326 		put_prev_entity(cfs_rq, pse);
6327 		set_next_entity(cfs_rq, se);
6328 	}
6329 
6330 	if (hrtick_enabled(rq))
6331 		hrtick_start_fair(rq, p);
6332 
6333 	return p;
6334 simple:
6335 	cfs_rq = &rq->cfs;
6336 #endif
6337 
6338 	if (!cfs_rq->nr_running)
6339 		goto idle;
6340 
6341 	put_prev_task(rq, prev);
6342 
6343 	do {
6344 		se = pick_next_entity(cfs_rq, NULL);
6345 		set_next_entity(cfs_rq, se);
6346 		cfs_rq = group_cfs_rq(se);
6347 	} while (cfs_rq);
6348 
6349 	p = task_of(se);
6350 
6351 	if (hrtick_enabled(rq))
6352 		hrtick_start_fair(rq, p);
6353 
6354 	return p;
6355 
6356 idle:
6357 	new_tasks = idle_balance(rq, rf);
6358 
6359 	/*
6360 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6361 	 * possible for any higher priority task to appear. In that case we
6362 	 * must re-start the pick_next_entity() loop.
6363 	 */
6364 	if (new_tasks < 0)
6365 		return RETRY_TASK;
6366 
6367 	if (new_tasks > 0)
6368 		goto again;
6369 
6370 	return NULL;
6371 }
6372 
6373 /*
6374  * Account for a descheduled task:
6375  */
6376 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6377 {
6378 	struct sched_entity *se = &prev->se;
6379 	struct cfs_rq *cfs_rq;
6380 
6381 	for_each_sched_entity(se) {
6382 		cfs_rq = cfs_rq_of(se);
6383 		put_prev_entity(cfs_rq, se);
6384 	}
6385 }
6386 
6387 /*
6388  * sched_yield() is very simple
6389  *
6390  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6391  */
6392 static void yield_task_fair(struct rq *rq)
6393 {
6394 	struct task_struct *curr = rq->curr;
6395 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6396 	struct sched_entity *se = &curr->se;
6397 
6398 	/*
6399 	 * Are we the only task in the tree?
6400 	 */
6401 	if (unlikely(rq->nr_running == 1))
6402 		return;
6403 
6404 	clear_buddies(cfs_rq, se);
6405 
6406 	if (curr->policy != SCHED_BATCH) {
6407 		update_rq_clock(rq);
6408 		/*
6409 		 * Update run-time statistics of the 'current'.
6410 		 */
6411 		update_curr(cfs_rq);
6412 		/*
6413 		 * Tell update_rq_clock() that we've just updated,
6414 		 * so we don't do microscopic update in schedule()
6415 		 * and double the fastpath cost.
6416 		 */
6417 		rq_clock_skip_update(rq, true);
6418 	}
6419 
6420 	set_skip_buddy(se);
6421 }
6422 
6423 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6424 {
6425 	struct sched_entity *se = &p->se;
6426 
6427 	/* throttled hierarchies are not runnable */
6428 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6429 		return false;
6430 
6431 	/* Tell the scheduler that we'd really like pse to run next. */
6432 	set_next_buddy(se);
6433 
6434 	yield_task_fair(rq);
6435 
6436 	return true;
6437 }
6438 
6439 #ifdef CONFIG_SMP
6440 /**************************************************
6441  * Fair scheduling class load-balancing methods.
6442  *
6443  * BASICS
6444  *
6445  * The purpose of load-balancing is to achieve the same basic fairness the
6446  * per-cpu scheduler provides, namely provide a proportional amount of compute
6447  * time to each task. This is expressed in the following equation:
6448  *
6449  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6450  *
6451  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6452  * W_i,0 is defined as:
6453  *
6454  *   W_i,0 = \Sum_j w_i,j                                             (2)
6455  *
6456  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6457  * is derived from the nice value as per sched_prio_to_weight[].
6458  *
6459  * The weight average is an exponential decay average of the instantaneous
6460  * weight:
6461  *
6462  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6463  *
6464  * C_i is the compute capacity of cpu i, typically it is the
6465  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6466  * can also include other factors [XXX].
6467  *
6468  * To achieve this balance we define a measure of imbalance which follows
6469  * directly from (1):
6470  *
6471  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6472  *
6473  * We them move tasks around to minimize the imbalance. In the continuous
6474  * function space it is obvious this converges, in the discrete case we get
6475  * a few fun cases generally called infeasible weight scenarios.
6476  *
6477  * [XXX expand on:
6478  *     - infeasible weights;
6479  *     - local vs global optima in the discrete case. ]
6480  *
6481  *
6482  * SCHED DOMAINS
6483  *
6484  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6485  * for all i,j solution, we create a tree of cpus that follows the hardware
6486  * topology where each level pairs two lower groups (or better). This results
6487  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6488  * tree to only the first of the previous level and we decrease the frequency
6489  * of load-balance at each level inv. proportional to the number of cpus in
6490  * the groups.
6491  *
6492  * This yields:
6493  *
6494  *     log_2 n     1     n
6495  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6496  *     i = 0      2^i   2^i
6497  *                               `- size of each group
6498  *         |         |     `- number of cpus doing load-balance
6499  *         |         `- freq
6500  *         `- sum over all levels
6501  *
6502  * Coupled with a limit on how many tasks we can migrate every balance pass,
6503  * this makes (5) the runtime complexity of the balancer.
6504  *
6505  * An important property here is that each CPU is still (indirectly) connected
6506  * to every other cpu in at most O(log n) steps:
6507  *
6508  * The adjacency matrix of the resulting graph is given by:
6509  *
6510  *             log_2 n
6511  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6512  *             k = 0
6513  *
6514  * And you'll find that:
6515  *
6516  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6517  *
6518  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6519  * The task movement gives a factor of O(m), giving a convergence complexity
6520  * of:
6521  *
6522  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6523  *
6524  *
6525  * WORK CONSERVING
6526  *
6527  * In order to avoid CPUs going idle while there's still work to do, new idle
6528  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6529  * tree itself instead of relying on other CPUs to bring it work.
6530  *
6531  * This adds some complexity to both (5) and (8) but it reduces the total idle
6532  * time.
6533  *
6534  * [XXX more?]
6535  *
6536  *
6537  * CGROUPS
6538  *
6539  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6540  *
6541  *                                s_k,i
6542  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6543  *                                 S_k
6544  *
6545  * Where
6546  *
6547  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6548  *
6549  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6550  *
6551  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6552  * property.
6553  *
6554  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6555  *      rewrite all of this once again.]
6556  */
6557 
6558 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6559 
6560 enum fbq_type { regular, remote, all };
6561 
6562 #define LBF_ALL_PINNED	0x01
6563 #define LBF_NEED_BREAK	0x02
6564 #define LBF_DST_PINNED  0x04
6565 #define LBF_SOME_PINNED	0x08
6566 
6567 struct lb_env {
6568 	struct sched_domain	*sd;
6569 
6570 	struct rq		*src_rq;
6571 	int			src_cpu;
6572 
6573 	int			dst_cpu;
6574 	struct rq		*dst_rq;
6575 
6576 	struct cpumask		*dst_grpmask;
6577 	int			new_dst_cpu;
6578 	enum cpu_idle_type	idle;
6579 	long			imbalance;
6580 	/* The set of CPUs under consideration for load-balancing */
6581 	struct cpumask		*cpus;
6582 
6583 	unsigned int		flags;
6584 
6585 	unsigned int		loop;
6586 	unsigned int		loop_break;
6587 	unsigned int		loop_max;
6588 
6589 	enum fbq_type		fbq_type;
6590 	struct list_head	tasks;
6591 };
6592 
6593 /*
6594  * Is this task likely cache-hot:
6595  */
6596 static int task_hot(struct task_struct *p, struct lb_env *env)
6597 {
6598 	s64 delta;
6599 
6600 	lockdep_assert_held(&env->src_rq->lock);
6601 
6602 	if (p->sched_class != &fair_sched_class)
6603 		return 0;
6604 
6605 	if (unlikely(p->policy == SCHED_IDLE))
6606 		return 0;
6607 
6608 	/*
6609 	 * Buddy candidates are cache hot:
6610 	 */
6611 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6612 			(&p->se == cfs_rq_of(&p->se)->next ||
6613 			 &p->se == cfs_rq_of(&p->se)->last))
6614 		return 1;
6615 
6616 	if (sysctl_sched_migration_cost == -1)
6617 		return 1;
6618 	if (sysctl_sched_migration_cost == 0)
6619 		return 0;
6620 
6621 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6622 
6623 	return delta < (s64)sysctl_sched_migration_cost;
6624 }
6625 
6626 #ifdef CONFIG_NUMA_BALANCING
6627 /*
6628  * Returns 1, if task migration degrades locality
6629  * Returns 0, if task migration improves locality i.e migration preferred.
6630  * Returns -1, if task migration is not affected by locality.
6631  */
6632 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6633 {
6634 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6635 	unsigned long src_faults, dst_faults;
6636 	int src_nid, dst_nid;
6637 
6638 	if (!static_branch_likely(&sched_numa_balancing))
6639 		return -1;
6640 
6641 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6642 		return -1;
6643 
6644 	src_nid = cpu_to_node(env->src_cpu);
6645 	dst_nid = cpu_to_node(env->dst_cpu);
6646 
6647 	if (src_nid == dst_nid)
6648 		return -1;
6649 
6650 	/* Migrating away from the preferred node is always bad. */
6651 	if (src_nid == p->numa_preferred_nid) {
6652 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6653 			return 1;
6654 		else
6655 			return -1;
6656 	}
6657 
6658 	/* Encourage migration to the preferred node. */
6659 	if (dst_nid == p->numa_preferred_nid)
6660 		return 0;
6661 
6662 	if (numa_group) {
6663 		src_faults = group_faults(p, src_nid);
6664 		dst_faults = group_faults(p, dst_nid);
6665 	} else {
6666 		src_faults = task_faults(p, src_nid);
6667 		dst_faults = task_faults(p, dst_nid);
6668 	}
6669 
6670 	return dst_faults < src_faults;
6671 }
6672 
6673 #else
6674 static inline int migrate_degrades_locality(struct task_struct *p,
6675 					     struct lb_env *env)
6676 {
6677 	return -1;
6678 }
6679 #endif
6680 
6681 /*
6682  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6683  */
6684 static
6685 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6686 {
6687 	int tsk_cache_hot;
6688 
6689 	lockdep_assert_held(&env->src_rq->lock);
6690 
6691 	/*
6692 	 * We do not migrate tasks that are:
6693 	 * 1) throttled_lb_pair, or
6694 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6695 	 * 3) running (obviously), or
6696 	 * 4) are cache-hot on their current CPU.
6697 	 */
6698 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6699 		return 0;
6700 
6701 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6702 		int cpu;
6703 
6704 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6705 
6706 		env->flags |= LBF_SOME_PINNED;
6707 
6708 		/*
6709 		 * Remember if this task can be migrated to any other cpu in
6710 		 * our sched_group. We may want to revisit it if we couldn't
6711 		 * meet load balance goals by pulling other tasks on src_cpu.
6712 		 *
6713 		 * Also avoid computing new_dst_cpu if we have already computed
6714 		 * one in current iteration.
6715 		 */
6716 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6717 			return 0;
6718 
6719 		/* Prevent to re-select dst_cpu via env's cpus */
6720 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6721 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6722 				env->flags |= LBF_DST_PINNED;
6723 				env->new_dst_cpu = cpu;
6724 				break;
6725 			}
6726 		}
6727 
6728 		return 0;
6729 	}
6730 
6731 	/* Record that we found atleast one task that could run on dst_cpu */
6732 	env->flags &= ~LBF_ALL_PINNED;
6733 
6734 	if (task_running(env->src_rq, p)) {
6735 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6736 		return 0;
6737 	}
6738 
6739 	/*
6740 	 * Aggressive migration if:
6741 	 * 1) destination numa is preferred
6742 	 * 2) task is cache cold, or
6743 	 * 3) too many balance attempts have failed.
6744 	 */
6745 	tsk_cache_hot = migrate_degrades_locality(p, env);
6746 	if (tsk_cache_hot == -1)
6747 		tsk_cache_hot = task_hot(p, env);
6748 
6749 	if (tsk_cache_hot <= 0 ||
6750 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6751 		if (tsk_cache_hot == 1) {
6752 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6753 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6754 		}
6755 		return 1;
6756 	}
6757 
6758 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6759 	return 0;
6760 }
6761 
6762 /*
6763  * detach_task() -- detach the task for the migration specified in env
6764  */
6765 static void detach_task(struct task_struct *p, struct lb_env *env)
6766 {
6767 	lockdep_assert_held(&env->src_rq->lock);
6768 
6769 	p->on_rq = TASK_ON_RQ_MIGRATING;
6770 	deactivate_task(env->src_rq, p, 0);
6771 	set_task_cpu(p, env->dst_cpu);
6772 }
6773 
6774 /*
6775  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6776  * part of active balancing operations within "domain".
6777  *
6778  * Returns a task if successful and NULL otherwise.
6779  */
6780 static struct task_struct *detach_one_task(struct lb_env *env)
6781 {
6782 	struct task_struct *p, *n;
6783 
6784 	lockdep_assert_held(&env->src_rq->lock);
6785 
6786 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6787 		if (!can_migrate_task(p, env))
6788 			continue;
6789 
6790 		detach_task(p, env);
6791 
6792 		/*
6793 		 * Right now, this is only the second place where
6794 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6795 		 * so we can safely collect stats here rather than
6796 		 * inside detach_tasks().
6797 		 */
6798 		schedstat_inc(env->sd->lb_gained[env->idle]);
6799 		return p;
6800 	}
6801 	return NULL;
6802 }
6803 
6804 static const unsigned int sched_nr_migrate_break = 32;
6805 
6806 /*
6807  * detach_tasks() -- tries to detach up to imbalance weighted load from
6808  * busiest_rq, as part of a balancing operation within domain "sd".
6809  *
6810  * Returns number of detached tasks if successful and 0 otherwise.
6811  */
6812 static int detach_tasks(struct lb_env *env)
6813 {
6814 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6815 	struct task_struct *p;
6816 	unsigned long load;
6817 	int detached = 0;
6818 
6819 	lockdep_assert_held(&env->src_rq->lock);
6820 
6821 	if (env->imbalance <= 0)
6822 		return 0;
6823 
6824 	while (!list_empty(tasks)) {
6825 		/*
6826 		 * We don't want to steal all, otherwise we may be treated likewise,
6827 		 * which could at worst lead to a livelock crash.
6828 		 */
6829 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6830 			break;
6831 
6832 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6833 
6834 		env->loop++;
6835 		/* We've more or less seen every task there is, call it quits */
6836 		if (env->loop > env->loop_max)
6837 			break;
6838 
6839 		/* take a breather every nr_migrate tasks */
6840 		if (env->loop > env->loop_break) {
6841 			env->loop_break += sched_nr_migrate_break;
6842 			env->flags |= LBF_NEED_BREAK;
6843 			break;
6844 		}
6845 
6846 		if (!can_migrate_task(p, env))
6847 			goto next;
6848 
6849 		load = task_h_load(p);
6850 
6851 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6852 			goto next;
6853 
6854 		if ((load / 2) > env->imbalance)
6855 			goto next;
6856 
6857 		detach_task(p, env);
6858 		list_add(&p->se.group_node, &env->tasks);
6859 
6860 		detached++;
6861 		env->imbalance -= load;
6862 
6863 #ifdef CONFIG_PREEMPT
6864 		/*
6865 		 * NEWIDLE balancing is a source of latency, so preemptible
6866 		 * kernels will stop after the first task is detached to minimize
6867 		 * the critical section.
6868 		 */
6869 		if (env->idle == CPU_NEWLY_IDLE)
6870 			break;
6871 #endif
6872 
6873 		/*
6874 		 * We only want to steal up to the prescribed amount of
6875 		 * weighted load.
6876 		 */
6877 		if (env->imbalance <= 0)
6878 			break;
6879 
6880 		continue;
6881 next:
6882 		list_move_tail(&p->se.group_node, tasks);
6883 	}
6884 
6885 	/*
6886 	 * Right now, this is one of only two places we collect this stat
6887 	 * so we can safely collect detach_one_task() stats here rather
6888 	 * than inside detach_one_task().
6889 	 */
6890 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6891 
6892 	return detached;
6893 }
6894 
6895 /*
6896  * attach_task() -- attach the task detached by detach_task() to its new rq.
6897  */
6898 static void attach_task(struct rq *rq, struct task_struct *p)
6899 {
6900 	lockdep_assert_held(&rq->lock);
6901 
6902 	BUG_ON(task_rq(p) != rq);
6903 	activate_task(rq, p, 0);
6904 	p->on_rq = TASK_ON_RQ_QUEUED;
6905 	check_preempt_curr(rq, p, 0);
6906 }
6907 
6908 /*
6909  * attach_one_task() -- attaches the task returned from detach_one_task() to
6910  * its new rq.
6911  */
6912 static void attach_one_task(struct rq *rq, struct task_struct *p)
6913 {
6914 	raw_spin_lock(&rq->lock);
6915 	attach_task(rq, p);
6916 	raw_spin_unlock(&rq->lock);
6917 }
6918 
6919 /*
6920  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6921  * new rq.
6922  */
6923 static void attach_tasks(struct lb_env *env)
6924 {
6925 	struct list_head *tasks = &env->tasks;
6926 	struct task_struct *p;
6927 
6928 	raw_spin_lock(&env->dst_rq->lock);
6929 
6930 	while (!list_empty(tasks)) {
6931 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6932 		list_del_init(&p->se.group_node);
6933 
6934 		attach_task(env->dst_rq, p);
6935 	}
6936 
6937 	raw_spin_unlock(&env->dst_rq->lock);
6938 }
6939 
6940 #ifdef CONFIG_FAIR_GROUP_SCHED
6941 static void update_blocked_averages(int cpu)
6942 {
6943 	struct rq *rq = cpu_rq(cpu);
6944 	struct cfs_rq *cfs_rq;
6945 	unsigned long flags;
6946 
6947 	raw_spin_lock_irqsave(&rq->lock, flags);
6948 	update_rq_clock(rq);
6949 
6950 	/*
6951 	 * Iterates the task_group tree in a bottom up fashion, see
6952 	 * list_add_leaf_cfs_rq() for details.
6953 	 */
6954 	for_each_leaf_cfs_rq(rq, cfs_rq) {
6955 		/* throttled entities do not contribute to load */
6956 		if (throttled_hierarchy(cfs_rq))
6957 			continue;
6958 
6959 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6960 			update_tg_load_avg(cfs_rq, 0);
6961 
6962 		/* Propagate pending load changes to the parent */
6963 		if (cfs_rq->tg->se[cpu])
6964 			update_load_avg(cfs_rq->tg->se[cpu], 0);
6965 	}
6966 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6967 }
6968 
6969 /*
6970  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6971  * This needs to be done in a top-down fashion because the load of a child
6972  * group is a fraction of its parents load.
6973  */
6974 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6975 {
6976 	struct rq *rq = rq_of(cfs_rq);
6977 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6978 	unsigned long now = jiffies;
6979 	unsigned long load;
6980 
6981 	if (cfs_rq->last_h_load_update == now)
6982 		return;
6983 
6984 	cfs_rq->h_load_next = NULL;
6985 	for_each_sched_entity(se) {
6986 		cfs_rq = cfs_rq_of(se);
6987 		cfs_rq->h_load_next = se;
6988 		if (cfs_rq->last_h_load_update == now)
6989 			break;
6990 	}
6991 
6992 	if (!se) {
6993 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6994 		cfs_rq->last_h_load_update = now;
6995 	}
6996 
6997 	while ((se = cfs_rq->h_load_next) != NULL) {
6998 		load = cfs_rq->h_load;
6999 		load = div64_ul(load * se->avg.load_avg,
7000 			cfs_rq_load_avg(cfs_rq) + 1);
7001 		cfs_rq = group_cfs_rq(se);
7002 		cfs_rq->h_load = load;
7003 		cfs_rq->last_h_load_update = now;
7004 	}
7005 }
7006 
7007 static unsigned long task_h_load(struct task_struct *p)
7008 {
7009 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7010 
7011 	update_cfs_rq_h_load(cfs_rq);
7012 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7013 			cfs_rq_load_avg(cfs_rq) + 1);
7014 }
7015 #else
7016 static inline void update_blocked_averages(int cpu)
7017 {
7018 	struct rq *rq = cpu_rq(cpu);
7019 	struct cfs_rq *cfs_rq = &rq->cfs;
7020 	unsigned long flags;
7021 
7022 	raw_spin_lock_irqsave(&rq->lock, flags);
7023 	update_rq_clock(rq);
7024 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7025 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7026 }
7027 
7028 static unsigned long task_h_load(struct task_struct *p)
7029 {
7030 	return p->se.avg.load_avg;
7031 }
7032 #endif
7033 
7034 /********** Helpers for find_busiest_group ************************/
7035 
7036 enum group_type {
7037 	group_other = 0,
7038 	group_imbalanced,
7039 	group_overloaded,
7040 };
7041 
7042 /*
7043  * sg_lb_stats - stats of a sched_group required for load_balancing
7044  */
7045 struct sg_lb_stats {
7046 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7047 	unsigned long group_load; /* Total load over the CPUs of the group */
7048 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7049 	unsigned long load_per_task;
7050 	unsigned long group_capacity;
7051 	unsigned long group_util; /* Total utilization of the group */
7052 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7053 	unsigned int idle_cpus;
7054 	unsigned int group_weight;
7055 	enum group_type group_type;
7056 	int group_no_capacity;
7057 #ifdef CONFIG_NUMA_BALANCING
7058 	unsigned int nr_numa_running;
7059 	unsigned int nr_preferred_running;
7060 #endif
7061 };
7062 
7063 /*
7064  * sd_lb_stats - Structure to store the statistics of a sched_domain
7065  *		 during load balancing.
7066  */
7067 struct sd_lb_stats {
7068 	struct sched_group *busiest;	/* Busiest group in this sd */
7069 	struct sched_group *local;	/* Local group in this sd */
7070 	unsigned long total_load;	/* Total load of all groups in sd */
7071 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7072 	unsigned long avg_load;	/* Average load across all groups in sd */
7073 
7074 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7075 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7076 };
7077 
7078 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7079 {
7080 	/*
7081 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7082 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7083 	 * We must however clear busiest_stat::avg_load because
7084 	 * update_sd_pick_busiest() reads this before assignment.
7085 	 */
7086 	*sds = (struct sd_lb_stats){
7087 		.busiest = NULL,
7088 		.local = NULL,
7089 		.total_load = 0UL,
7090 		.total_capacity = 0UL,
7091 		.busiest_stat = {
7092 			.avg_load = 0UL,
7093 			.sum_nr_running = 0,
7094 			.group_type = group_other,
7095 		},
7096 	};
7097 }
7098 
7099 /**
7100  * get_sd_load_idx - Obtain the load index for a given sched domain.
7101  * @sd: The sched_domain whose load_idx is to be obtained.
7102  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7103  *
7104  * Return: The load index.
7105  */
7106 static inline int get_sd_load_idx(struct sched_domain *sd,
7107 					enum cpu_idle_type idle)
7108 {
7109 	int load_idx;
7110 
7111 	switch (idle) {
7112 	case CPU_NOT_IDLE:
7113 		load_idx = sd->busy_idx;
7114 		break;
7115 
7116 	case CPU_NEWLY_IDLE:
7117 		load_idx = sd->newidle_idx;
7118 		break;
7119 	default:
7120 		load_idx = sd->idle_idx;
7121 		break;
7122 	}
7123 
7124 	return load_idx;
7125 }
7126 
7127 static unsigned long scale_rt_capacity(int cpu)
7128 {
7129 	struct rq *rq = cpu_rq(cpu);
7130 	u64 total, used, age_stamp, avg;
7131 	s64 delta;
7132 
7133 	/*
7134 	 * Since we're reading these variables without serialization make sure
7135 	 * we read them once before doing sanity checks on them.
7136 	 */
7137 	age_stamp = READ_ONCE(rq->age_stamp);
7138 	avg = READ_ONCE(rq->rt_avg);
7139 	delta = __rq_clock_broken(rq) - age_stamp;
7140 
7141 	if (unlikely(delta < 0))
7142 		delta = 0;
7143 
7144 	total = sched_avg_period() + delta;
7145 
7146 	used = div_u64(avg, total);
7147 
7148 	if (likely(used < SCHED_CAPACITY_SCALE))
7149 		return SCHED_CAPACITY_SCALE - used;
7150 
7151 	return 1;
7152 }
7153 
7154 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7155 {
7156 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7157 	struct sched_group *sdg = sd->groups;
7158 
7159 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7160 
7161 	capacity *= scale_rt_capacity(cpu);
7162 	capacity >>= SCHED_CAPACITY_SHIFT;
7163 
7164 	if (!capacity)
7165 		capacity = 1;
7166 
7167 	cpu_rq(cpu)->cpu_capacity = capacity;
7168 	sdg->sgc->capacity = capacity;
7169 	sdg->sgc->min_capacity = capacity;
7170 }
7171 
7172 void update_group_capacity(struct sched_domain *sd, int cpu)
7173 {
7174 	struct sched_domain *child = sd->child;
7175 	struct sched_group *group, *sdg = sd->groups;
7176 	unsigned long capacity, min_capacity;
7177 	unsigned long interval;
7178 
7179 	interval = msecs_to_jiffies(sd->balance_interval);
7180 	interval = clamp(interval, 1UL, max_load_balance_interval);
7181 	sdg->sgc->next_update = jiffies + interval;
7182 
7183 	if (!child) {
7184 		update_cpu_capacity(sd, cpu);
7185 		return;
7186 	}
7187 
7188 	capacity = 0;
7189 	min_capacity = ULONG_MAX;
7190 
7191 	if (child->flags & SD_OVERLAP) {
7192 		/*
7193 		 * SD_OVERLAP domains cannot assume that child groups
7194 		 * span the current group.
7195 		 */
7196 
7197 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7198 			struct sched_group_capacity *sgc;
7199 			struct rq *rq = cpu_rq(cpu);
7200 
7201 			/*
7202 			 * build_sched_domains() -> init_sched_groups_capacity()
7203 			 * gets here before we've attached the domains to the
7204 			 * runqueues.
7205 			 *
7206 			 * Use capacity_of(), which is set irrespective of domains
7207 			 * in update_cpu_capacity().
7208 			 *
7209 			 * This avoids capacity from being 0 and
7210 			 * causing divide-by-zero issues on boot.
7211 			 */
7212 			if (unlikely(!rq->sd)) {
7213 				capacity += capacity_of(cpu);
7214 			} else {
7215 				sgc = rq->sd->groups->sgc;
7216 				capacity += sgc->capacity;
7217 			}
7218 
7219 			min_capacity = min(capacity, min_capacity);
7220 		}
7221 	} else  {
7222 		/*
7223 		 * !SD_OVERLAP domains can assume that child groups
7224 		 * span the current group.
7225 		 */
7226 
7227 		group = child->groups;
7228 		do {
7229 			struct sched_group_capacity *sgc = group->sgc;
7230 
7231 			capacity += sgc->capacity;
7232 			min_capacity = min(sgc->min_capacity, min_capacity);
7233 			group = group->next;
7234 		} while (group != child->groups);
7235 	}
7236 
7237 	sdg->sgc->capacity = capacity;
7238 	sdg->sgc->min_capacity = min_capacity;
7239 }
7240 
7241 /*
7242  * Check whether the capacity of the rq has been noticeably reduced by side
7243  * activity. The imbalance_pct is used for the threshold.
7244  * Return true is the capacity is reduced
7245  */
7246 static inline int
7247 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7248 {
7249 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7250 				(rq->cpu_capacity_orig * 100));
7251 }
7252 
7253 /*
7254  * Group imbalance indicates (and tries to solve) the problem where balancing
7255  * groups is inadequate due to tsk_cpus_allowed() constraints.
7256  *
7257  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7258  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7259  * Something like:
7260  *
7261  *	{ 0 1 2 3 } { 4 5 6 7 }
7262  *	        *     * * *
7263  *
7264  * If we were to balance group-wise we'd place two tasks in the first group and
7265  * two tasks in the second group. Clearly this is undesired as it will overload
7266  * cpu 3 and leave one of the cpus in the second group unused.
7267  *
7268  * The current solution to this issue is detecting the skew in the first group
7269  * by noticing the lower domain failed to reach balance and had difficulty
7270  * moving tasks due to affinity constraints.
7271  *
7272  * When this is so detected; this group becomes a candidate for busiest; see
7273  * update_sd_pick_busiest(). And calculate_imbalance() and
7274  * find_busiest_group() avoid some of the usual balance conditions to allow it
7275  * to create an effective group imbalance.
7276  *
7277  * This is a somewhat tricky proposition since the next run might not find the
7278  * group imbalance and decide the groups need to be balanced again. A most
7279  * subtle and fragile situation.
7280  */
7281 
7282 static inline int sg_imbalanced(struct sched_group *group)
7283 {
7284 	return group->sgc->imbalance;
7285 }
7286 
7287 /*
7288  * group_has_capacity returns true if the group has spare capacity that could
7289  * be used by some tasks.
7290  * We consider that a group has spare capacity if the  * number of task is
7291  * smaller than the number of CPUs or if the utilization is lower than the
7292  * available capacity for CFS tasks.
7293  * For the latter, we use a threshold to stabilize the state, to take into
7294  * account the variance of the tasks' load and to return true if the available
7295  * capacity in meaningful for the load balancer.
7296  * As an example, an available capacity of 1% can appear but it doesn't make
7297  * any benefit for the load balance.
7298  */
7299 static inline bool
7300 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7301 {
7302 	if (sgs->sum_nr_running < sgs->group_weight)
7303 		return true;
7304 
7305 	if ((sgs->group_capacity * 100) >
7306 			(sgs->group_util * env->sd->imbalance_pct))
7307 		return true;
7308 
7309 	return false;
7310 }
7311 
7312 /*
7313  *  group_is_overloaded returns true if the group has more tasks than it can
7314  *  handle.
7315  *  group_is_overloaded is not equals to !group_has_capacity because a group
7316  *  with the exact right number of tasks, has no more spare capacity but is not
7317  *  overloaded so both group_has_capacity and group_is_overloaded return
7318  *  false.
7319  */
7320 static inline bool
7321 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7322 {
7323 	if (sgs->sum_nr_running <= sgs->group_weight)
7324 		return false;
7325 
7326 	if ((sgs->group_capacity * 100) <
7327 			(sgs->group_util * env->sd->imbalance_pct))
7328 		return true;
7329 
7330 	return false;
7331 }
7332 
7333 /*
7334  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7335  * per-CPU capacity than sched_group ref.
7336  */
7337 static inline bool
7338 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7339 {
7340 	return sg->sgc->min_capacity * capacity_margin <
7341 						ref->sgc->min_capacity * 1024;
7342 }
7343 
7344 static inline enum
7345 group_type group_classify(struct sched_group *group,
7346 			  struct sg_lb_stats *sgs)
7347 {
7348 	if (sgs->group_no_capacity)
7349 		return group_overloaded;
7350 
7351 	if (sg_imbalanced(group))
7352 		return group_imbalanced;
7353 
7354 	return group_other;
7355 }
7356 
7357 /**
7358  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7359  * @env: The load balancing environment.
7360  * @group: sched_group whose statistics are to be updated.
7361  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7362  * @local_group: Does group contain this_cpu.
7363  * @sgs: variable to hold the statistics for this group.
7364  * @overload: Indicate more than one runnable task for any CPU.
7365  */
7366 static inline void update_sg_lb_stats(struct lb_env *env,
7367 			struct sched_group *group, int load_idx,
7368 			int local_group, struct sg_lb_stats *sgs,
7369 			bool *overload)
7370 {
7371 	unsigned long load;
7372 	int i, nr_running;
7373 
7374 	memset(sgs, 0, sizeof(*sgs));
7375 
7376 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7377 		struct rq *rq = cpu_rq(i);
7378 
7379 		/* Bias balancing toward cpus of our domain */
7380 		if (local_group)
7381 			load = target_load(i, load_idx);
7382 		else
7383 			load = source_load(i, load_idx);
7384 
7385 		sgs->group_load += load;
7386 		sgs->group_util += cpu_util(i);
7387 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7388 
7389 		nr_running = rq->nr_running;
7390 		if (nr_running > 1)
7391 			*overload = true;
7392 
7393 #ifdef CONFIG_NUMA_BALANCING
7394 		sgs->nr_numa_running += rq->nr_numa_running;
7395 		sgs->nr_preferred_running += rq->nr_preferred_running;
7396 #endif
7397 		sgs->sum_weighted_load += weighted_cpuload(i);
7398 		/*
7399 		 * No need to call idle_cpu() if nr_running is not 0
7400 		 */
7401 		if (!nr_running && idle_cpu(i))
7402 			sgs->idle_cpus++;
7403 	}
7404 
7405 	/* Adjust by relative CPU capacity of the group */
7406 	sgs->group_capacity = group->sgc->capacity;
7407 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7408 
7409 	if (sgs->sum_nr_running)
7410 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7411 
7412 	sgs->group_weight = group->group_weight;
7413 
7414 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7415 	sgs->group_type = group_classify(group, sgs);
7416 }
7417 
7418 /**
7419  * update_sd_pick_busiest - return 1 on busiest group
7420  * @env: The load balancing environment.
7421  * @sds: sched_domain statistics
7422  * @sg: sched_group candidate to be checked for being the busiest
7423  * @sgs: sched_group statistics
7424  *
7425  * Determine if @sg is a busier group than the previously selected
7426  * busiest group.
7427  *
7428  * Return: %true if @sg is a busier group than the previously selected
7429  * busiest group. %false otherwise.
7430  */
7431 static bool update_sd_pick_busiest(struct lb_env *env,
7432 				   struct sd_lb_stats *sds,
7433 				   struct sched_group *sg,
7434 				   struct sg_lb_stats *sgs)
7435 {
7436 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7437 
7438 	if (sgs->group_type > busiest->group_type)
7439 		return true;
7440 
7441 	if (sgs->group_type < busiest->group_type)
7442 		return false;
7443 
7444 	if (sgs->avg_load <= busiest->avg_load)
7445 		return false;
7446 
7447 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7448 		goto asym_packing;
7449 
7450 	/*
7451 	 * Candidate sg has no more than one task per CPU and
7452 	 * has higher per-CPU capacity. Migrating tasks to less
7453 	 * capable CPUs may harm throughput. Maximize throughput,
7454 	 * power/energy consequences are not considered.
7455 	 */
7456 	if (sgs->sum_nr_running <= sgs->group_weight &&
7457 	    group_smaller_cpu_capacity(sds->local, sg))
7458 		return false;
7459 
7460 asym_packing:
7461 	/* This is the busiest node in its class. */
7462 	if (!(env->sd->flags & SD_ASYM_PACKING))
7463 		return true;
7464 
7465 	/* No ASYM_PACKING if target cpu is already busy */
7466 	if (env->idle == CPU_NOT_IDLE)
7467 		return true;
7468 	/*
7469 	 * ASYM_PACKING needs to move all the work to the highest
7470 	 * prority CPUs in the group, therefore mark all groups
7471 	 * of lower priority than ourself as busy.
7472 	 */
7473 	if (sgs->sum_nr_running &&
7474 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7475 		if (!sds->busiest)
7476 			return true;
7477 
7478 		/* Prefer to move from lowest priority cpu's work */
7479 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7480 				      sg->asym_prefer_cpu))
7481 			return true;
7482 	}
7483 
7484 	return false;
7485 }
7486 
7487 #ifdef CONFIG_NUMA_BALANCING
7488 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7489 {
7490 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7491 		return regular;
7492 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7493 		return remote;
7494 	return all;
7495 }
7496 
7497 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7498 {
7499 	if (rq->nr_running > rq->nr_numa_running)
7500 		return regular;
7501 	if (rq->nr_running > rq->nr_preferred_running)
7502 		return remote;
7503 	return all;
7504 }
7505 #else
7506 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7507 {
7508 	return all;
7509 }
7510 
7511 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7512 {
7513 	return regular;
7514 }
7515 #endif /* CONFIG_NUMA_BALANCING */
7516 
7517 /**
7518  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7519  * @env: The load balancing environment.
7520  * @sds: variable to hold the statistics for this sched_domain.
7521  */
7522 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7523 {
7524 	struct sched_domain *child = env->sd->child;
7525 	struct sched_group *sg = env->sd->groups;
7526 	struct sg_lb_stats tmp_sgs;
7527 	int load_idx, prefer_sibling = 0;
7528 	bool overload = false;
7529 
7530 	if (child && child->flags & SD_PREFER_SIBLING)
7531 		prefer_sibling = 1;
7532 
7533 	load_idx = get_sd_load_idx(env->sd, env->idle);
7534 
7535 	do {
7536 		struct sg_lb_stats *sgs = &tmp_sgs;
7537 		int local_group;
7538 
7539 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7540 		if (local_group) {
7541 			sds->local = sg;
7542 			sgs = &sds->local_stat;
7543 
7544 			if (env->idle != CPU_NEWLY_IDLE ||
7545 			    time_after_eq(jiffies, sg->sgc->next_update))
7546 				update_group_capacity(env->sd, env->dst_cpu);
7547 		}
7548 
7549 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7550 						&overload);
7551 
7552 		if (local_group)
7553 			goto next_group;
7554 
7555 		/*
7556 		 * In case the child domain prefers tasks go to siblings
7557 		 * first, lower the sg capacity so that we'll try
7558 		 * and move all the excess tasks away. We lower the capacity
7559 		 * of a group only if the local group has the capacity to fit
7560 		 * these excess tasks. The extra check prevents the case where
7561 		 * you always pull from the heaviest group when it is already
7562 		 * under-utilized (possible with a large weight task outweighs
7563 		 * the tasks on the system).
7564 		 */
7565 		if (prefer_sibling && sds->local &&
7566 		    group_has_capacity(env, &sds->local_stat) &&
7567 		    (sgs->sum_nr_running > 1)) {
7568 			sgs->group_no_capacity = 1;
7569 			sgs->group_type = group_classify(sg, sgs);
7570 		}
7571 
7572 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7573 			sds->busiest = sg;
7574 			sds->busiest_stat = *sgs;
7575 		}
7576 
7577 next_group:
7578 		/* Now, start updating sd_lb_stats */
7579 		sds->total_load += sgs->group_load;
7580 		sds->total_capacity += sgs->group_capacity;
7581 
7582 		sg = sg->next;
7583 	} while (sg != env->sd->groups);
7584 
7585 	if (env->sd->flags & SD_NUMA)
7586 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7587 
7588 	if (!env->sd->parent) {
7589 		/* update overload indicator if we are at root domain */
7590 		if (env->dst_rq->rd->overload != overload)
7591 			env->dst_rq->rd->overload = overload;
7592 	}
7593 
7594 }
7595 
7596 /**
7597  * check_asym_packing - Check to see if the group is packed into the
7598  *			sched doman.
7599  *
7600  * This is primarily intended to used at the sibling level.  Some
7601  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7602  * case of POWER7, it can move to lower SMT modes only when higher
7603  * threads are idle.  When in lower SMT modes, the threads will
7604  * perform better since they share less core resources.  Hence when we
7605  * have idle threads, we want them to be the higher ones.
7606  *
7607  * This packing function is run on idle threads.  It checks to see if
7608  * the busiest CPU in this domain (core in the P7 case) has a higher
7609  * CPU number than the packing function is being run on.  Here we are
7610  * assuming lower CPU number will be equivalent to lower a SMT thread
7611  * number.
7612  *
7613  * Return: 1 when packing is required and a task should be moved to
7614  * this CPU.  The amount of the imbalance is returned in *imbalance.
7615  *
7616  * @env: The load balancing environment.
7617  * @sds: Statistics of the sched_domain which is to be packed
7618  */
7619 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7620 {
7621 	int busiest_cpu;
7622 
7623 	if (!(env->sd->flags & SD_ASYM_PACKING))
7624 		return 0;
7625 
7626 	if (env->idle == CPU_NOT_IDLE)
7627 		return 0;
7628 
7629 	if (!sds->busiest)
7630 		return 0;
7631 
7632 	busiest_cpu = sds->busiest->asym_prefer_cpu;
7633 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7634 		return 0;
7635 
7636 	env->imbalance = DIV_ROUND_CLOSEST(
7637 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7638 		SCHED_CAPACITY_SCALE);
7639 
7640 	return 1;
7641 }
7642 
7643 /**
7644  * fix_small_imbalance - Calculate the minor imbalance that exists
7645  *			amongst the groups of a sched_domain, during
7646  *			load balancing.
7647  * @env: The load balancing environment.
7648  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7649  */
7650 static inline
7651 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7652 {
7653 	unsigned long tmp, capa_now = 0, capa_move = 0;
7654 	unsigned int imbn = 2;
7655 	unsigned long scaled_busy_load_per_task;
7656 	struct sg_lb_stats *local, *busiest;
7657 
7658 	local = &sds->local_stat;
7659 	busiest = &sds->busiest_stat;
7660 
7661 	if (!local->sum_nr_running)
7662 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7663 	else if (busiest->load_per_task > local->load_per_task)
7664 		imbn = 1;
7665 
7666 	scaled_busy_load_per_task =
7667 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7668 		busiest->group_capacity;
7669 
7670 	if (busiest->avg_load + scaled_busy_load_per_task >=
7671 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7672 		env->imbalance = busiest->load_per_task;
7673 		return;
7674 	}
7675 
7676 	/*
7677 	 * OK, we don't have enough imbalance to justify moving tasks,
7678 	 * however we may be able to increase total CPU capacity used by
7679 	 * moving them.
7680 	 */
7681 
7682 	capa_now += busiest->group_capacity *
7683 			min(busiest->load_per_task, busiest->avg_load);
7684 	capa_now += local->group_capacity *
7685 			min(local->load_per_task, local->avg_load);
7686 	capa_now /= SCHED_CAPACITY_SCALE;
7687 
7688 	/* Amount of load we'd subtract */
7689 	if (busiest->avg_load > scaled_busy_load_per_task) {
7690 		capa_move += busiest->group_capacity *
7691 			    min(busiest->load_per_task,
7692 				busiest->avg_load - scaled_busy_load_per_task);
7693 	}
7694 
7695 	/* Amount of load we'd add */
7696 	if (busiest->avg_load * busiest->group_capacity <
7697 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7698 		tmp = (busiest->avg_load * busiest->group_capacity) /
7699 		      local->group_capacity;
7700 	} else {
7701 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7702 		      local->group_capacity;
7703 	}
7704 	capa_move += local->group_capacity *
7705 		    min(local->load_per_task, local->avg_load + tmp);
7706 	capa_move /= SCHED_CAPACITY_SCALE;
7707 
7708 	/* Move if we gain throughput */
7709 	if (capa_move > capa_now)
7710 		env->imbalance = busiest->load_per_task;
7711 }
7712 
7713 /**
7714  * calculate_imbalance - Calculate the amount of imbalance present within the
7715  *			 groups of a given sched_domain during load balance.
7716  * @env: load balance environment
7717  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7718  */
7719 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7720 {
7721 	unsigned long max_pull, load_above_capacity = ~0UL;
7722 	struct sg_lb_stats *local, *busiest;
7723 
7724 	local = &sds->local_stat;
7725 	busiest = &sds->busiest_stat;
7726 
7727 	if (busiest->group_type == group_imbalanced) {
7728 		/*
7729 		 * In the group_imb case we cannot rely on group-wide averages
7730 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7731 		 */
7732 		busiest->load_per_task =
7733 			min(busiest->load_per_task, sds->avg_load);
7734 	}
7735 
7736 	/*
7737 	 * Avg load of busiest sg can be less and avg load of local sg can
7738 	 * be greater than avg load across all sgs of sd because avg load
7739 	 * factors in sg capacity and sgs with smaller group_type are
7740 	 * skipped when updating the busiest sg:
7741 	 */
7742 	if (busiest->avg_load <= sds->avg_load ||
7743 	    local->avg_load >= sds->avg_load) {
7744 		env->imbalance = 0;
7745 		return fix_small_imbalance(env, sds);
7746 	}
7747 
7748 	/*
7749 	 * If there aren't any idle cpus, avoid creating some.
7750 	 */
7751 	if (busiest->group_type == group_overloaded &&
7752 	    local->group_type   == group_overloaded) {
7753 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7754 		if (load_above_capacity > busiest->group_capacity) {
7755 			load_above_capacity -= busiest->group_capacity;
7756 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7757 			load_above_capacity /= busiest->group_capacity;
7758 		} else
7759 			load_above_capacity = ~0UL;
7760 	}
7761 
7762 	/*
7763 	 * We're trying to get all the cpus to the average_load, so we don't
7764 	 * want to push ourselves above the average load, nor do we wish to
7765 	 * reduce the max loaded cpu below the average load. At the same time,
7766 	 * we also don't want to reduce the group load below the group
7767 	 * capacity. Thus we look for the minimum possible imbalance.
7768 	 */
7769 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7770 
7771 	/* How much load to actually move to equalise the imbalance */
7772 	env->imbalance = min(
7773 		max_pull * busiest->group_capacity,
7774 		(sds->avg_load - local->avg_load) * local->group_capacity
7775 	) / SCHED_CAPACITY_SCALE;
7776 
7777 	/*
7778 	 * if *imbalance is less than the average load per runnable task
7779 	 * there is no guarantee that any tasks will be moved so we'll have
7780 	 * a think about bumping its value to force at least one task to be
7781 	 * moved
7782 	 */
7783 	if (env->imbalance < busiest->load_per_task)
7784 		return fix_small_imbalance(env, sds);
7785 }
7786 
7787 /******* find_busiest_group() helpers end here *********************/
7788 
7789 /**
7790  * find_busiest_group - Returns the busiest group within the sched_domain
7791  * if there is an imbalance.
7792  *
7793  * Also calculates the amount of weighted load which should be moved
7794  * to restore balance.
7795  *
7796  * @env: The load balancing environment.
7797  *
7798  * Return:	- The busiest group if imbalance exists.
7799  */
7800 static struct sched_group *find_busiest_group(struct lb_env *env)
7801 {
7802 	struct sg_lb_stats *local, *busiest;
7803 	struct sd_lb_stats sds;
7804 
7805 	init_sd_lb_stats(&sds);
7806 
7807 	/*
7808 	 * Compute the various statistics relavent for load balancing at
7809 	 * this level.
7810 	 */
7811 	update_sd_lb_stats(env, &sds);
7812 	local = &sds.local_stat;
7813 	busiest = &sds.busiest_stat;
7814 
7815 	/* ASYM feature bypasses nice load balance check */
7816 	if (check_asym_packing(env, &sds))
7817 		return sds.busiest;
7818 
7819 	/* There is no busy sibling group to pull tasks from */
7820 	if (!sds.busiest || busiest->sum_nr_running == 0)
7821 		goto out_balanced;
7822 
7823 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7824 						/ sds.total_capacity;
7825 
7826 	/*
7827 	 * If the busiest group is imbalanced the below checks don't
7828 	 * work because they assume all things are equal, which typically
7829 	 * isn't true due to cpus_allowed constraints and the like.
7830 	 */
7831 	if (busiest->group_type == group_imbalanced)
7832 		goto force_balance;
7833 
7834 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7835 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7836 	    busiest->group_no_capacity)
7837 		goto force_balance;
7838 
7839 	/*
7840 	 * If the local group is busier than the selected busiest group
7841 	 * don't try and pull any tasks.
7842 	 */
7843 	if (local->avg_load >= busiest->avg_load)
7844 		goto out_balanced;
7845 
7846 	/*
7847 	 * Don't pull any tasks if this group is already above the domain
7848 	 * average load.
7849 	 */
7850 	if (local->avg_load >= sds.avg_load)
7851 		goto out_balanced;
7852 
7853 	if (env->idle == CPU_IDLE) {
7854 		/*
7855 		 * This cpu is idle. If the busiest group is not overloaded
7856 		 * and there is no imbalance between this and busiest group
7857 		 * wrt idle cpus, it is balanced. The imbalance becomes
7858 		 * significant if the diff is greater than 1 otherwise we
7859 		 * might end up to just move the imbalance on another group
7860 		 */
7861 		if ((busiest->group_type != group_overloaded) &&
7862 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7863 			goto out_balanced;
7864 	} else {
7865 		/*
7866 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7867 		 * imbalance_pct to be conservative.
7868 		 */
7869 		if (100 * busiest->avg_load <=
7870 				env->sd->imbalance_pct * local->avg_load)
7871 			goto out_balanced;
7872 	}
7873 
7874 force_balance:
7875 	/* Looks like there is an imbalance. Compute it */
7876 	calculate_imbalance(env, &sds);
7877 	return sds.busiest;
7878 
7879 out_balanced:
7880 	env->imbalance = 0;
7881 	return NULL;
7882 }
7883 
7884 /*
7885  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7886  */
7887 static struct rq *find_busiest_queue(struct lb_env *env,
7888 				     struct sched_group *group)
7889 {
7890 	struct rq *busiest = NULL, *rq;
7891 	unsigned long busiest_load = 0, busiest_capacity = 1;
7892 	int i;
7893 
7894 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7895 		unsigned long capacity, wl;
7896 		enum fbq_type rt;
7897 
7898 		rq = cpu_rq(i);
7899 		rt = fbq_classify_rq(rq);
7900 
7901 		/*
7902 		 * We classify groups/runqueues into three groups:
7903 		 *  - regular: there are !numa tasks
7904 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7905 		 *  - all:     there is no distinction
7906 		 *
7907 		 * In order to avoid migrating ideally placed numa tasks,
7908 		 * ignore those when there's better options.
7909 		 *
7910 		 * If we ignore the actual busiest queue to migrate another
7911 		 * task, the next balance pass can still reduce the busiest
7912 		 * queue by moving tasks around inside the node.
7913 		 *
7914 		 * If we cannot move enough load due to this classification
7915 		 * the next pass will adjust the group classification and
7916 		 * allow migration of more tasks.
7917 		 *
7918 		 * Both cases only affect the total convergence complexity.
7919 		 */
7920 		if (rt > env->fbq_type)
7921 			continue;
7922 
7923 		capacity = capacity_of(i);
7924 
7925 		wl = weighted_cpuload(i);
7926 
7927 		/*
7928 		 * When comparing with imbalance, use weighted_cpuload()
7929 		 * which is not scaled with the cpu capacity.
7930 		 */
7931 
7932 		if (rq->nr_running == 1 && wl > env->imbalance &&
7933 		    !check_cpu_capacity(rq, env->sd))
7934 			continue;
7935 
7936 		/*
7937 		 * For the load comparisons with the other cpu's, consider
7938 		 * the weighted_cpuload() scaled with the cpu capacity, so
7939 		 * that the load can be moved away from the cpu that is
7940 		 * potentially running at a lower capacity.
7941 		 *
7942 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7943 		 * multiplication to rid ourselves of the division works out
7944 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7945 		 * our previous maximum.
7946 		 */
7947 		if (wl * busiest_capacity > busiest_load * capacity) {
7948 			busiest_load = wl;
7949 			busiest_capacity = capacity;
7950 			busiest = rq;
7951 		}
7952 	}
7953 
7954 	return busiest;
7955 }
7956 
7957 /*
7958  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7959  * so long as it is large enough.
7960  */
7961 #define MAX_PINNED_INTERVAL	512
7962 
7963 static int need_active_balance(struct lb_env *env)
7964 {
7965 	struct sched_domain *sd = env->sd;
7966 
7967 	if (env->idle == CPU_NEWLY_IDLE) {
7968 
7969 		/*
7970 		 * ASYM_PACKING needs to force migrate tasks from busy but
7971 		 * lower priority CPUs in order to pack all tasks in the
7972 		 * highest priority CPUs.
7973 		 */
7974 		if ((sd->flags & SD_ASYM_PACKING) &&
7975 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
7976 			return 1;
7977 	}
7978 
7979 	/*
7980 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7981 	 * It's worth migrating the task if the src_cpu's capacity is reduced
7982 	 * because of other sched_class or IRQs if more capacity stays
7983 	 * available on dst_cpu.
7984 	 */
7985 	if ((env->idle != CPU_NOT_IDLE) &&
7986 	    (env->src_rq->cfs.h_nr_running == 1)) {
7987 		if ((check_cpu_capacity(env->src_rq, sd)) &&
7988 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7989 			return 1;
7990 	}
7991 
7992 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7993 }
7994 
7995 static int active_load_balance_cpu_stop(void *data);
7996 
7997 static int should_we_balance(struct lb_env *env)
7998 {
7999 	struct sched_group *sg = env->sd->groups;
8000 	struct cpumask *sg_cpus, *sg_mask;
8001 	int cpu, balance_cpu = -1;
8002 
8003 	/*
8004 	 * In the newly idle case, we will allow all the cpu's
8005 	 * to do the newly idle load balance.
8006 	 */
8007 	if (env->idle == CPU_NEWLY_IDLE)
8008 		return 1;
8009 
8010 	sg_cpus = sched_group_cpus(sg);
8011 	sg_mask = sched_group_mask(sg);
8012 	/* Try to find first idle cpu */
8013 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8014 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8015 			continue;
8016 
8017 		balance_cpu = cpu;
8018 		break;
8019 	}
8020 
8021 	if (balance_cpu == -1)
8022 		balance_cpu = group_balance_cpu(sg);
8023 
8024 	/*
8025 	 * First idle cpu or the first cpu(busiest) in this sched group
8026 	 * is eligible for doing load balancing at this and above domains.
8027 	 */
8028 	return balance_cpu == env->dst_cpu;
8029 }
8030 
8031 /*
8032  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8033  * tasks if there is an imbalance.
8034  */
8035 static int load_balance(int this_cpu, struct rq *this_rq,
8036 			struct sched_domain *sd, enum cpu_idle_type idle,
8037 			int *continue_balancing)
8038 {
8039 	int ld_moved, cur_ld_moved, active_balance = 0;
8040 	struct sched_domain *sd_parent = sd->parent;
8041 	struct sched_group *group;
8042 	struct rq *busiest;
8043 	unsigned long flags;
8044 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8045 
8046 	struct lb_env env = {
8047 		.sd		= sd,
8048 		.dst_cpu	= this_cpu,
8049 		.dst_rq		= this_rq,
8050 		.dst_grpmask    = sched_group_cpus(sd->groups),
8051 		.idle		= idle,
8052 		.loop_break	= sched_nr_migrate_break,
8053 		.cpus		= cpus,
8054 		.fbq_type	= all,
8055 		.tasks		= LIST_HEAD_INIT(env.tasks),
8056 	};
8057 
8058 	/*
8059 	 * For NEWLY_IDLE load_balancing, we don't need to consider
8060 	 * other cpus in our group
8061 	 */
8062 	if (idle == CPU_NEWLY_IDLE)
8063 		env.dst_grpmask = NULL;
8064 
8065 	cpumask_copy(cpus, cpu_active_mask);
8066 
8067 	schedstat_inc(sd->lb_count[idle]);
8068 
8069 redo:
8070 	if (!should_we_balance(&env)) {
8071 		*continue_balancing = 0;
8072 		goto out_balanced;
8073 	}
8074 
8075 	group = find_busiest_group(&env);
8076 	if (!group) {
8077 		schedstat_inc(sd->lb_nobusyg[idle]);
8078 		goto out_balanced;
8079 	}
8080 
8081 	busiest = find_busiest_queue(&env, group);
8082 	if (!busiest) {
8083 		schedstat_inc(sd->lb_nobusyq[idle]);
8084 		goto out_balanced;
8085 	}
8086 
8087 	BUG_ON(busiest == env.dst_rq);
8088 
8089 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8090 
8091 	env.src_cpu = busiest->cpu;
8092 	env.src_rq = busiest;
8093 
8094 	ld_moved = 0;
8095 	if (busiest->nr_running > 1) {
8096 		/*
8097 		 * Attempt to move tasks. If find_busiest_group has found
8098 		 * an imbalance but busiest->nr_running <= 1, the group is
8099 		 * still unbalanced. ld_moved simply stays zero, so it is
8100 		 * correctly treated as an imbalance.
8101 		 */
8102 		env.flags |= LBF_ALL_PINNED;
8103 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8104 
8105 more_balance:
8106 		raw_spin_lock_irqsave(&busiest->lock, flags);
8107 		update_rq_clock(busiest);
8108 
8109 		/*
8110 		 * cur_ld_moved - load moved in current iteration
8111 		 * ld_moved     - cumulative load moved across iterations
8112 		 */
8113 		cur_ld_moved = detach_tasks(&env);
8114 
8115 		/*
8116 		 * We've detached some tasks from busiest_rq. Every
8117 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8118 		 * unlock busiest->lock, and we are able to be sure
8119 		 * that nobody can manipulate the tasks in parallel.
8120 		 * See task_rq_lock() family for the details.
8121 		 */
8122 
8123 		raw_spin_unlock(&busiest->lock);
8124 
8125 		if (cur_ld_moved) {
8126 			attach_tasks(&env);
8127 			ld_moved += cur_ld_moved;
8128 		}
8129 
8130 		local_irq_restore(flags);
8131 
8132 		if (env.flags & LBF_NEED_BREAK) {
8133 			env.flags &= ~LBF_NEED_BREAK;
8134 			goto more_balance;
8135 		}
8136 
8137 		/*
8138 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8139 		 * us and move them to an alternate dst_cpu in our sched_group
8140 		 * where they can run. The upper limit on how many times we
8141 		 * iterate on same src_cpu is dependent on number of cpus in our
8142 		 * sched_group.
8143 		 *
8144 		 * This changes load balance semantics a bit on who can move
8145 		 * load to a given_cpu. In addition to the given_cpu itself
8146 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8147 		 * nohz-idle), we now have balance_cpu in a position to move
8148 		 * load to given_cpu. In rare situations, this may cause
8149 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8150 		 * _independently_ and at _same_ time to move some load to
8151 		 * given_cpu) causing exceess load to be moved to given_cpu.
8152 		 * This however should not happen so much in practice and
8153 		 * moreover subsequent load balance cycles should correct the
8154 		 * excess load moved.
8155 		 */
8156 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8157 
8158 			/* Prevent to re-select dst_cpu via env's cpus */
8159 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8160 
8161 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8162 			env.dst_cpu	 = env.new_dst_cpu;
8163 			env.flags	&= ~LBF_DST_PINNED;
8164 			env.loop	 = 0;
8165 			env.loop_break	 = sched_nr_migrate_break;
8166 
8167 			/*
8168 			 * Go back to "more_balance" rather than "redo" since we
8169 			 * need to continue with same src_cpu.
8170 			 */
8171 			goto more_balance;
8172 		}
8173 
8174 		/*
8175 		 * We failed to reach balance because of affinity.
8176 		 */
8177 		if (sd_parent) {
8178 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8179 
8180 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8181 				*group_imbalance = 1;
8182 		}
8183 
8184 		/* All tasks on this runqueue were pinned by CPU affinity */
8185 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8186 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8187 			if (!cpumask_empty(cpus)) {
8188 				env.loop = 0;
8189 				env.loop_break = sched_nr_migrate_break;
8190 				goto redo;
8191 			}
8192 			goto out_all_pinned;
8193 		}
8194 	}
8195 
8196 	if (!ld_moved) {
8197 		schedstat_inc(sd->lb_failed[idle]);
8198 		/*
8199 		 * Increment the failure counter only on periodic balance.
8200 		 * We do not want newidle balance, which can be very
8201 		 * frequent, pollute the failure counter causing
8202 		 * excessive cache_hot migrations and active balances.
8203 		 */
8204 		if (idle != CPU_NEWLY_IDLE)
8205 			sd->nr_balance_failed++;
8206 
8207 		if (need_active_balance(&env)) {
8208 			raw_spin_lock_irqsave(&busiest->lock, flags);
8209 
8210 			/* don't kick the active_load_balance_cpu_stop,
8211 			 * if the curr task on busiest cpu can't be
8212 			 * moved to this_cpu
8213 			 */
8214 			if (!cpumask_test_cpu(this_cpu,
8215 					tsk_cpus_allowed(busiest->curr))) {
8216 				raw_spin_unlock_irqrestore(&busiest->lock,
8217 							    flags);
8218 				env.flags |= LBF_ALL_PINNED;
8219 				goto out_one_pinned;
8220 			}
8221 
8222 			/*
8223 			 * ->active_balance synchronizes accesses to
8224 			 * ->active_balance_work.  Once set, it's cleared
8225 			 * only after active load balance is finished.
8226 			 */
8227 			if (!busiest->active_balance) {
8228 				busiest->active_balance = 1;
8229 				busiest->push_cpu = this_cpu;
8230 				active_balance = 1;
8231 			}
8232 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8233 
8234 			if (active_balance) {
8235 				stop_one_cpu_nowait(cpu_of(busiest),
8236 					active_load_balance_cpu_stop, busiest,
8237 					&busiest->active_balance_work);
8238 			}
8239 
8240 			/* We've kicked active balancing, force task migration. */
8241 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8242 		}
8243 	} else
8244 		sd->nr_balance_failed = 0;
8245 
8246 	if (likely(!active_balance)) {
8247 		/* We were unbalanced, so reset the balancing interval */
8248 		sd->balance_interval = sd->min_interval;
8249 	} else {
8250 		/*
8251 		 * If we've begun active balancing, start to back off. This
8252 		 * case may not be covered by the all_pinned logic if there
8253 		 * is only 1 task on the busy runqueue (because we don't call
8254 		 * detach_tasks).
8255 		 */
8256 		if (sd->balance_interval < sd->max_interval)
8257 			sd->balance_interval *= 2;
8258 	}
8259 
8260 	goto out;
8261 
8262 out_balanced:
8263 	/*
8264 	 * We reach balance although we may have faced some affinity
8265 	 * constraints. Clear the imbalance flag if it was set.
8266 	 */
8267 	if (sd_parent) {
8268 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8269 
8270 		if (*group_imbalance)
8271 			*group_imbalance = 0;
8272 	}
8273 
8274 out_all_pinned:
8275 	/*
8276 	 * We reach balance because all tasks are pinned at this level so
8277 	 * we can't migrate them. Let the imbalance flag set so parent level
8278 	 * can try to migrate them.
8279 	 */
8280 	schedstat_inc(sd->lb_balanced[idle]);
8281 
8282 	sd->nr_balance_failed = 0;
8283 
8284 out_one_pinned:
8285 	/* tune up the balancing interval */
8286 	if (((env.flags & LBF_ALL_PINNED) &&
8287 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8288 			(sd->balance_interval < sd->max_interval))
8289 		sd->balance_interval *= 2;
8290 
8291 	ld_moved = 0;
8292 out:
8293 	return ld_moved;
8294 }
8295 
8296 static inline unsigned long
8297 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8298 {
8299 	unsigned long interval = sd->balance_interval;
8300 
8301 	if (cpu_busy)
8302 		interval *= sd->busy_factor;
8303 
8304 	/* scale ms to jiffies */
8305 	interval = msecs_to_jiffies(interval);
8306 	interval = clamp(interval, 1UL, max_load_balance_interval);
8307 
8308 	return interval;
8309 }
8310 
8311 static inline void
8312 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8313 {
8314 	unsigned long interval, next;
8315 
8316 	/* used by idle balance, so cpu_busy = 0 */
8317 	interval = get_sd_balance_interval(sd, 0);
8318 	next = sd->last_balance + interval;
8319 
8320 	if (time_after(*next_balance, next))
8321 		*next_balance = next;
8322 }
8323 
8324 /*
8325  * idle_balance is called by schedule() if this_cpu is about to become
8326  * idle. Attempts to pull tasks from other CPUs.
8327  */
8328 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8329 {
8330 	unsigned long next_balance = jiffies + HZ;
8331 	int this_cpu = this_rq->cpu;
8332 	struct sched_domain *sd;
8333 	int pulled_task = 0;
8334 	u64 curr_cost = 0;
8335 
8336 	/*
8337 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8338 	 * measure the duration of idle_balance() as idle time.
8339 	 */
8340 	this_rq->idle_stamp = rq_clock(this_rq);
8341 
8342 	/*
8343 	 * This is OK, because current is on_cpu, which avoids it being picked
8344 	 * for load-balance and preemption/IRQs are still disabled avoiding
8345 	 * further scheduler activity on it and we're being very careful to
8346 	 * re-start the picking loop.
8347 	 */
8348 	rq_unpin_lock(this_rq, rf);
8349 
8350 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8351 	    !this_rq->rd->overload) {
8352 		rcu_read_lock();
8353 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8354 		if (sd)
8355 			update_next_balance(sd, &next_balance);
8356 		rcu_read_unlock();
8357 
8358 		goto out;
8359 	}
8360 
8361 	raw_spin_unlock(&this_rq->lock);
8362 
8363 	update_blocked_averages(this_cpu);
8364 	rcu_read_lock();
8365 	for_each_domain(this_cpu, sd) {
8366 		int continue_balancing = 1;
8367 		u64 t0, domain_cost;
8368 
8369 		if (!(sd->flags & SD_LOAD_BALANCE))
8370 			continue;
8371 
8372 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8373 			update_next_balance(sd, &next_balance);
8374 			break;
8375 		}
8376 
8377 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8378 			t0 = sched_clock_cpu(this_cpu);
8379 
8380 			pulled_task = load_balance(this_cpu, this_rq,
8381 						   sd, CPU_NEWLY_IDLE,
8382 						   &continue_balancing);
8383 
8384 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8385 			if (domain_cost > sd->max_newidle_lb_cost)
8386 				sd->max_newidle_lb_cost = domain_cost;
8387 
8388 			curr_cost += domain_cost;
8389 		}
8390 
8391 		update_next_balance(sd, &next_balance);
8392 
8393 		/*
8394 		 * Stop searching for tasks to pull if there are
8395 		 * now runnable tasks on this rq.
8396 		 */
8397 		if (pulled_task || this_rq->nr_running > 0)
8398 			break;
8399 	}
8400 	rcu_read_unlock();
8401 
8402 	raw_spin_lock(&this_rq->lock);
8403 
8404 	if (curr_cost > this_rq->max_idle_balance_cost)
8405 		this_rq->max_idle_balance_cost = curr_cost;
8406 
8407 	/*
8408 	 * While browsing the domains, we released the rq lock, a task could
8409 	 * have been enqueued in the meantime. Since we're not going idle,
8410 	 * pretend we pulled a task.
8411 	 */
8412 	if (this_rq->cfs.h_nr_running && !pulled_task)
8413 		pulled_task = 1;
8414 
8415 out:
8416 	/* Move the next balance forward */
8417 	if (time_after(this_rq->next_balance, next_balance))
8418 		this_rq->next_balance = next_balance;
8419 
8420 	/* Is there a task of a high priority class? */
8421 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8422 		pulled_task = -1;
8423 
8424 	if (pulled_task)
8425 		this_rq->idle_stamp = 0;
8426 
8427 	rq_repin_lock(this_rq, rf);
8428 
8429 	return pulled_task;
8430 }
8431 
8432 /*
8433  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8434  * running tasks off the busiest CPU onto idle CPUs. It requires at
8435  * least 1 task to be running on each physical CPU where possible, and
8436  * avoids physical / logical imbalances.
8437  */
8438 static int active_load_balance_cpu_stop(void *data)
8439 {
8440 	struct rq *busiest_rq = data;
8441 	int busiest_cpu = cpu_of(busiest_rq);
8442 	int target_cpu = busiest_rq->push_cpu;
8443 	struct rq *target_rq = cpu_rq(target_cpu);
8444 	struct sched_domain *sd;
8445 	struct task_struct *p = NULL;
8446 
8447 	raw_spin_lock_irq(&busiest_rq->lock);
8448 
8449 	/* make sure the requested cpu hasn't gone down in the meantime */
8450 	if (unlikely(busiest_cpu != smp_processor_id() ||
8451 		     !busiest_rq->active_balance))
8452 		goto out_unlock;
8453 
8454 	/* Is there any task to move? */
8455 	if (busiest_rq->nr_running <= 1)
8456 		goto out_unlock;
8457 
8458 	/*
8459 	 * This condition is "impossible", if it occurs
8460 	 * we need to fix it. Originally reported by
8461 	 * Bjorn Helgaas on a 128-cpu setup.
8462 	 */
8463 	BUG_ON(busiest_rq == target_rq);
8464 
8465 	/* Search for an sd spanning us and the target CPU. */
8466 	rcu_read_lock();
8467 	for_each_domain(target_cpu, sd) {
8468 		if ((sd->flags & SD_LOAD_BALANCE) &&
8469 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8470 				break;
8471 	}
8472 
8473 	if (likely(sd)) {
8474 		struct lb_env env = {
8475 			.sd		= sd,
8476 			.dst_cpu	= target_cpu,
8477 			.dst_rq		= target_rq,
8478 			.src_cpu	= busiest_rq->cpu,
8479 			.src_rq		= busiest_rq,
8480 			.idle		= CPU_IDLE,
8481 		};
8482 
8483 		schedstat_inc(sd->alb_count);
8484 		update_rq_clock(busiest_rq);
8485 
8486 		p = detach_one_task(&env);
8487 		if (p) {
8488 			schedstat_inc(sd->alb_pushed);
8489 			/* Active balancing done, reset the failure counter. */
8490 			sd->nr_balance_failed = 0;
8491 		} else {
8492 			schedstat_inc(sd->alb_failed);
8493 		}
8494 	}
8495 	rcu_read_unlock();
8496 out_unlock:
8497 	busiest_rq->active_balance = 0;
8498 	raw_spin_unlock(&busiest_rq->lock);
8499 
8500 	if (p)
8501 		attach_one_task(target_rq, p);
8502 
8503 	local_irq_enable();
8504 
8505 	return 0;
8506 }
8507 
8508 static inline int on_null_domain(struct rq *rq)
8509 {
8510 	return unlikely(!rcu_dereference_sched(rq->sd));
8511 }
8512 
8513 #ifdef CONFIG_NO_HZ_COMMON
8514 /*
8515  * idle load balancing details
8516  * - When one of the busy CPUs notice that there may be an idle rebalancing
8517  *   needed, they will kick the idle load balancer, which then does idle
8518  *   load balancing for all the idle CPUs.
8519  */
8520 static struct {
8521 	cpumask_var_t idle_cpus_mask;
8522 	atomic_t nr_cpus;
8523 	unsigned long next_balance;     /* in jiffy units */
8524 } nohz ____cacheline_aligned;
8525 
8526 static inline int find_new_ilb(void)
8527 {
8528 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8529 
8530 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8531 		return ilb;
8532 
8533 	return nr_cpu_ids;
8534 }
8535 
8536 /*
8537  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8538  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8539  * CPU (if there is one).
8540  */
8541 static void nohz_balancer_kick(void)
8542 {
8543 	int ilb_cpu;
8544 
8545 	nohz.next_balance++;
8546 
8547 	ilb_cpu = find_new_ilb();
8548 
8549 	if (ilb_cpu >= nr_cpu_ids)
8550 		return;
8551 
8552 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8553 		return;
8554 	/*
8555 	 * Use smp_send_reschedule() instead of resched_cpu().
8556 	 * This way we generate a sched IPI on the target cpu which
8557 	 * is idle. And the softirq performing nohz idle load balance
8558 	 * will be run before returning from the IPI.
8559 	 */
8560 	smp_send_reschedule(ilb_cpu);
8561 	return;
8562 }
8563 
8564 void nohz_balance_exit_idle(unsigned int cpu)
8565 {
8566 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8567 		/*
8568 		 * Completely isolated CPUs don't ever set, so we must test.
8569 		 */
8570 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8571 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8572 			atomic_dec(&nohz.nr_cpus);
8573 		}
8574 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8575 	}
8576 }
8577 
8578 static inline void set_cpu_sd_state_busy(void)
8579 {
8580 	struct sched_domain *sd;
8581 	int cpu = smp_processor_id();
8582 
8583 	rcu_read_lock();
8584 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8585 
8586 	if (!sd || !sd->nohz_idle)
8587 		goto unlock;
8588 	sd->nohz_idle = 0;
8589 
8590 	atomic_inc(&sd->shared->nr_busy_cpus);
8591 unlock:
8592 	rcu_read_unlock();
8593 }
8594 
8595 void set_cpu_sd_state_idle(void)
8596 {
8597 	struct sched_domain *sd;
8598 	int cpu = smp_processor_id();
8599 
8600 	rcu_read_lock();
8601 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8602 
8603 	if (!sd || sd->nohz_idle)
8604 		goto unlock;
8605 	sd->nohz_idle = 1;
8606 
8607 	atomic_dec(&sd->shared->nr_busy_cpus);
8608 unlock:
8609 	rcu_read_unlock();
8610 }
8611 
8612 /*
8613  * This routine will record that the cpu is going idle with tick stopped.
8614  * This info will be used in performing idle load balancing in the future.
8615  */
8616 void nohz_balance_enter_idle(int cpu)
8617 {
8618 	/*
8619 	 * If this cpu is going down, then nothing needs to be done.
8620 	 */
8621 	if (!cpu_active(cpu))
8622 		return;
8623 
8624 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8625 		return;
8626 
8627 	/*
8628 	 * If we're a completely isolated CPU, we don't play.
8629 	 */
8630 	if (on_null_domain(cpu_rq(cpu)))
8631 		return;
8632 
8633 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8634 	atomic_inc(&nohz.nr_cpus);
8635 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8636 }
8637 #endif
8638 
8639 static DEFINE_SPINLOCK(balancing);
8640 
8641 /*
8642  * Scale the max load_balance interval with the number of CPUs in the system.
8643  * This trades load-balance latency on larger machines for less cross talk.
8644  */
8645 void update_max_interval(void)
8646 {
8647 	max_load_balance_interval = HZ*num_online_cpus()/10;
8648 }
8649 
8650 /*
8651  * It checks each scheduling domain to see if it is due to be balanced,
8652  * and initiates a balancing operation if so.
8653  *
8654  * Balancing parameters are set up in init_sched_domains.
8655  */
8656 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8657 {
8658 	int continue_balancing = 1;
8659 	int cpu = rq->cpu;
8660 	unsigned long interval;
8661 	struct sched_domain *sd;
8662 	/* Earliest time when we have to do rebalance again */
8663 	unsigned long next_balance = jiffies + 60*HZ;
8664 	int update_next_balance = 0;
8665 	int need_serialize, need_decay = 0;
8666 	u64 max_cost = 0;
8667 
8668 	update_blocked_averages(cpu);
8669 
8670 	rcu_read_lock();
8671 	for_each_domain(cpu, sd) {
8672 		/*
8673 		 * Decay the newidle max times here because this is a regular
8674 		 * visit to all the domains. Decay ~1% per second.
8675 		 */
8676 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8677 			sd->max_newidle_lb_cost =
8678 				(sd->max_newidle_lb_cost * 253) / 256;
8679 			sd->next_decay_max_lb_cost = jiffies + HZ;
8680 			need_decay = 1;
8681 		}
8682 		max_cost += sd->max_newidle_lb_cost;
8683 
8684 		if (!(sd->flags & SD_LOAD_BALANCE))
8685 			continue;
8686 
8687 		/*
8688 		 * Stop the load balance at this level. There is another
8689 		 * CPU in our sched group which is doing load balancing more
8690 		 * actively.
8691 		 */
8692 		if (!continue_balancing) {
8693 			if (need_decay)
8694 				continue;
8695 			break;
8696 		}
8697 
8698 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8699 
8700 		need_serialize = sd->flags & SD_SERIALIZE;
8701 		if (need_serialize) {
8702 			if (!spin_trylock(&balancing))
8703 				goto out;
8704 		}
8705 
8706 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8707 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8708 				/*
8709 				 * The LBF_DST_PINNED logic could have changed
8710 				 * env->dst_cpu, so we can't know our idle
8711 				 * state even if we migrated tasks. Update it.
8712 				 */
8713 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8714 			}
8715 			sd->last_balance = jiffies;
8716 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8717 		}
8718 		if (need_serialize)
8719 			spin_unlock(&balancing);
8720 out:
8721 		if (time_after(next_balance, sd->last_balance + interval)) {
8722 			next_balance = sd->last_balance + interval;
8723 			update_next_balance = 1;
8724 		}
8725 	}
8726 	if (need_decay) {
8727 		/*
8728 		 * Ensure the rq-wide value also decays but keep it at a
8729 		 * reasonable floor to avoid funnies with rq->avg_idle.
8730 		 */
8731 		rq->max_idle_balance_cost =
8732 			max((u64)sysctl_sched_migration_cost, max_cost);
8733 	}
8734 	rcu_read_unlock();
8735 
8736 	/*
8737 	 * next_balance will be updated only when there is a need.
8738 	 * When the cpu is attached to null domain for ex, it will not be
8739 	 * updated.
8740 	 */
8741 	if (likely(update_next_balance)) {
8742 		rq->next_balance = next_balance;
8743 
8744 #ifdef CONFIG_NO_HZ_COMMON
8745 		/*
8746 		 * If this CPU has been elected to perform the nohz idle
8747 		 * balance. Other idle CPUs have already rebalanced with
8748 		 * nohz_idle_balance() and nohz.next_balance has been
8749 		 * updated accordingly. This CPU is now running the idle load
8750 		 * balance for itself and we need to update the
8751 		 * nohz.next_balance accordingly.
8752 		 */
8753 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8754 			nohz.next_balance = rq->next_balance;
8755 #endif
8756 	}
8757 }
8758 
8759 #ifdef CONFIG_NO_HZ_COMMON
8760 /*
8761  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8762  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8763  */
8764 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8765 {
8766 	int this_cpu = this_rq->cpu;
8767 	struct rq *rq;
8768 	int balance_cpu;
8769 	/* Earliest time when we have to do rebalance again */
8770 	unsigned long next_balance = jiffies + 60*HZ;
8771 	int update_next_balance = 0;
8772 
8773 	if (idle != CPU_IDLE ||
8774 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8775 		goto end;
8776 
8777 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8778 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8779 			continue;
8780 
8781 		/*
8782 		 * If this cpu gets work to do, stop the load balancing
8783 		 * work being done for other cpus. Next load
8784 		 * balancing owner will pick it up.
8785 		 */
8786 		if (need_resched())
8787 			break;
8788 
8789 		rq = cpu_rq(balance_cpu);
8790 
8791 		/*
8792 		 * If time for next balance is due,
8793 		 * do the balance.
8794 		 */
8795 		if (time_after_eq(jiffies, rq->next_balance)) {
8796 			raw_spin_lock_irq(&rq->lock);
8797 			update_rq_clock(rq);
8798 			cpu_load_update_idle(rq);
8799 			raw_spin_unlock_irq(&rq->lock);
8800 			rebalance_domains(rq, CPU_IDLE);
8801 		}
8802 
8803 		if (time_after(next_balance, rq->next_balance)) {
8804 			next_balance = rq->next_balance;
8805 			update_next_balance = 1;
8806 		}
8807 	}
8808 
8809 	/*
8810 	 * next_balance will be updated only when there is a need.
8811 	 * When the CPU is attached to null domain for ex, it will not be
8812 	 * updated.
8813 	 */
8814 	if (likely(update_next_balance))
8815 		nohz.next_balance = next_balance;
8816 end:
8817 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8818 }
8819 
8820 /*
8821  * Current heuristic for kicking the idle load balancer in the presence
8822  * of an idle cpu in the system.
8823  *   - This rq has more than one task.
8824  *   - This rq has at least one CFS task and the capacity of the CPU is
8825  *     significantly reduced because of RT tasks or IRQs.
8826  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8827  *     multiple busy cpu.
8828  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8829  *     domain span are idle.
8830  */
8831 static inline bool nohz_kick_needed(struct rq *rq)
8832 {
8833 	unsigned long now = jiffies;
8834 	struct sched_domain_shared *sds;
8835 	struct sched_domain *sd;
8836 	int nr_busy, i, cpu = rq->cpu;
8837 	bool kick = false;
8838 
8839 	if (unlikely(rq->idle_balance))
8840 		return false;
8841 
8842        /*
8843 	* We may be recently in ticked or tickless idle mode. At the first
8844 	* busy tick after returning from idle, we will update the busy stats.
8845 	*/
8846 	set_cpu_sd_state_busy();
8847 	nohz_balance_exit_idle(cpu);
8848 
8849 	/*
8850 	 * None are in tickless mode and hence no need for NOHZ idle load
8851 	 * balancing.
8852 	 */
8853 	if (likely(!atomic_read(&nohz.nr_cpus)))
8854 		return false;
8855 
8856 	if (time_before(now, nohz.next_balance))
8857 		return false;
8858 
8859 	if (rq->nr_running >= 2)
8860 		return true;
8861 
8862 	rcu_read_lock();
8863 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8864 	if (sds) {
8865 		/*
8866 		 * XXX: write a coherent comment on why we do this.
8867 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8868 		 */
8869 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8870 		if (nr_busy > 1) {
8871 			kick = true;
8872 			goto unlock;
8873 		}
8874 
8875 	}
8876 
8877 	sd = rcu_dereference(rq->sd);
8878 	if (sd) {
8879 		if ((rq->cfs.h_nr_running >= 1) &&
8880 				check_cpu_capacity(rq, sd)) {
8881 			kick = true;
8882 			goto unlock;
8883 		}
8884 	}
8885 
8886 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8887 	if (sd) {
8888 		for_each_cpu(i, sched_domain_span(sd)) {
8889 			if (i == cpu ||
8890 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8891 				continue;
8892 
8893 			if (sched_asym_prefer(i, cpu)) {
8894 				kick = true;
8895 				goto unlock;
8896 			}
8897 		}
8898 	}
8899 unlock:
8900 	rcu_read_unlock();
8901 	return kick;
8902 }
8903 #else
8904 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8905 #endif
8906 
8907 /*
8908  * run_rebalance_domains is triggered when needed from the scheduler tick.
8909  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8910  */
8911 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8912 {
8913 	struct rq *this_rq = this_rq();
8914 	enum cpu_idle_type idle = this_rq->idle_balance ?
8915 						CPU_IDLE : CPU_NOT_IDLE;
8916 
8917 	/*
8918 	 * If this cpu has a pending nohz_balance_kick, then do the
8919 	 * balancing on behalf of the other idle cpus whose ticks are
8920 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8921 	 * give the idle cpus a chance to load balance. Else we may
8922 	 * load balance only within the local sched_domain hierarchy
8923 	 * and abort nohz_idle_balance altogether if we pull some load.
8924 	 */
8925 	nohz_idle_balance(this_rq, idle);
8926 	rebalance_domains(this_rq, idle);
8927 }
8928 
8929 /*
8930  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8931  */
8932 void trigger_load_balance(struct rq *rq)
8933 {
8934 	/* Don't need to rebalance while attached to NULL domain */
8935 	if (unlikely(on_null_domain(rq)))
8936 		return;
8937 
8938 	if (time_after_eq(jiffies, rq->next_balance))
8939 		raise_softirq(SCHED_SOFTIRQ);
8940 #ifdef CONFIG_NO_HZ_COMMON
8941 	if (nohz_kick_needed(rq))
8942 		nohz_balancer_kick();
8943 #endif
8944 }
8945 
8946 static void rq_online_fair(struct rq *rq)
8947 {
8948 	update_sysctl();
8949 
8950 	update_runtime_enabled(rq);
8951 }
8952 
8953 static void rq_offline_fair(struct rq *rq)
8954 {
8955 	update_sysctl();
8956 
8957 	/* Ensure any throttled groups are reachable by pick_next_task */
8958 	unthrottle_offline_cfs_rqs(rq);
8959 }
8960 
8961 #endif /* CONFIG_SMP */
8962 
8963 /*
8964  * scheduler tick hitting a task of our scheduling class:
8965  */
8966 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8967 {
8968 	struct cfs_rq *cfs_rq;
8969 	struct sched_entity *se = &curr->se;
8970 
8971 	for_each_sched_entity(se) {
8972 		cfs_rq = cfs_rq_of(se);
8973 		entity_tick(cfs_rq, se, queued);
8974 	}
8975 
8976 	if (static_branch_unlikely(&sched_numa_balancing))
8977 		task_tick_numa(rq, curr);
8978 }
8979 
8980 /*
8981  * called on fork with the child task as argument from the parent's context
8982  *  - child not yet on the tasklist
8983  *  - preemption disabled
8984  */
8985 static void task_fork_fair(struct task_struct *p)
8986 {
8987 	struct cfs_rq *cfs_rq;
8988 	struct sched_entity *se = &p->se, *curr;
8989 	struct rq *rq = this_rq();
8990 
8991 	raw_spin_lock(&rq->lock);
8992 	update_rq_clock(rq);
8993 
8994 	cfs_rq = task_cfs_rq(current);
8995 	curr = cfs_rq->curr;
8996 	if (curr) {
8997 		update_curr(cfs_rq);
8998 		se->vruntime = curr->vruntime;
8999 	}
9000 	place_entity(cfs_rq, se, 1);
9001 
9002 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9003 		/*
9004 		 * Upon rescheduling, sched_class::put_prev_task() will place
9005 		 * 'current' within the tree based on its new key value.
9006 		 */
9007 		swap(curr->vruntime, se->vruntime);
9008 		resched_curr(rq);
9009 	}
9010 
9011 	se->vruntime -= cfs_rq->min_vruntime;
9012 	raw_spin_unlock(&rq->lock);
9013 }
9014 
9015 /*
9016  * Priority of the task has changed. Check to see if we preempt
9017  * the current task.
9018  */
9019 static void
9020 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9021 {
9022 	if (!task_on_rq_queued(p))
9023 		return;
9024 
9025 	/*
9026 	 * Reschedule if we are currently running on this runqueue and
9027 	 * our priority decreased, or if we are not currently running on
9028 	 * this runqueue and our priority is higher than the current's
9029 	 */
9030 	if (rq->curr == p) {
9031 		if (p->prio > oldprio)
9032 			resched_curr(rq);
9033 	} else
9034 		check_preempt_curr(rq, p, 0);
9035 }
9036 
9037 static inline bool vruntime_normalized(struct task_struct *p)
9038 {
9039 	struct sched_entity *se = &p->se;
9040 
9041 	/*
9042 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9043 	 * the dequeue_entity(.flags=0) will already have normalized the
9044 	 * vruntime.
9045 	 */
9046 	if (p->on_rq)
9047 		return true;
9048 
9049 	/*
9050 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9051 	 * But there are some cases where it has already been normalized:
9052 	 *
9053 	 * - A forked child which is waiting for being woken up by
9054 	 *   wake_up_new_task().
9055 	 * - A task which has been woken up by try_to_wake_up() and
9056 	 *   waiting for actually being woken up by sched_ttwu_pending().
9057 	 */
9058 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9059 		return true;
9060 
9061 	return false;
9062 }
9063 
9064 #ifdef CONFIG_FAIR_GROUP_SCHED
9065 /*
9066  * Propagate the changes of the sched_entity across the tg tree to make it
9067  * visible to the root
9068  */
9069 static void propagate_entity_cfs_rq(struct sched_entity *se)
9070 {
9071 	struct cfs_rq *cfs_rq;
9072 
9073 	/* Start to propagate at parent */
9074 	se = se->parent;
9075 
9076 	for_each_sched_entity(se) {
9077 		cfs_rq = cfs_rq_of(se);
9078 
9079 		if (cfs_rq_throttled(cfs_rq))
9080 			break;
9081 
9082 		update_load_avg(se, UPDATE_TG);
9083 	}
9084 }
9085 #else
9086 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9087 #endif
9088 
9089 static void detach_entity_cfs_rq(struct sched_entity *se)
9090 {
9091 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9092 
9093 	/* Catch up with the cfs_rq and remove our load when we leave */
9094 	update_load_avg(se, 0);
9095 	detach_entity_load_avg(cfs_rq, se);
9096 	update_tg_load_avg(cfs_rq, false);
9097 	propagate_entity_cfs_rq(se);
9098 }
9099 
9100 static void attach_entity_cfs_rq(struct sched_entity *se)
9101 {
9102 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9103 
9104 #ifdef CONFIG_FAIR_GROUP_SCHED
9105 	/*
9106 	 * Since the real-depth could have been changed (only FAIR
9107 	 * class maintain depth value), reset depth properly.
9108 	 */
9109 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9110 #endif
9111 
9112 	/* Synchronize entity with its cfs_rq */
9113 	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9114 	attach_entity_load_avg(cfs_rq, se);
9115 	update_tg_load_avg(cfs_rq, false);
9116 	propagate_entity_cfs_rq(se);
9117 }
9118 
9119 static void detach_task_cfs_rq(struct task_struct *p)
9120 {
9121 	struct sched_entity *se = &p->se;
9122 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9123 
9124 	if (!vruntime_normalized(p)) {
9125 		/*
9126 		 * Fix up our vruntime so that the current sleep doesn't
9127 		 * cause 'unlimited' sleep bonus.
9128 		 */
9129 		place_entity(cfs_rq, se, 0);
9130 		se->vruntime -= cfs_rq->min_vruntime;
9131 	}
9132 
9133 	detach_entity_cfs_rq(se);
9134 }
9135 
9136 static void attach_task_cfs_rq(struct task_struct *p)
9137 {
9138 	struct sched_entity *se = &p->se;
9139 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9140 
9141 	attach_entity_cfs_rq(se);
9142 
9143 	if (!vruntime_normalized(p))
9144 		se->vruntime += cfs_rq->min_vruntime;
9145 }
9146 
9147 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9148 {
9149 	detach_task_cfs_rq(p);
9150 }
9151 
9152 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9153 {
9154 	attach_task_cfs_rq(p);
9155 
9156 	if (task_on_rq_queued(p)) {
9157 		/*
9158 		 * We were most likely switched from sched_rt, so
9159 		 * kick off the schedule if running, otherwise just see
9160 		 * if we can still preempt the current task.
9161 		 */
9162 		if (rq->curr == p)
9163 			resched_curr(rq);
9164 		else
9165 			check_preempt_curr(rq, p, 0);
9166 	}
9167 }
9168 
9169 /* Account for a task changing its policy or group.
9170  *
9171  * This routine is mostly called to set cfs_rq->curr field when a task
9172  * migrates between groups/classes.
9173  */
9174 static void set_curr_task_fair(struct rq *rq)
9175 {
9176 	struct sched_entity *se = &rq->curr->se;
9177 
9178 	for_each_sched_entity(se) {
9179 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9180 
9181 		set_next_entity(cfs_rq, se);
9182 		/* ensure bandwidth has been allocated on our new cfs_rq */
9183 		account_cfs_rq_runtime(cfs_rq, 0);
9184 	}
9185 }
9186 
9187 void init_cfs_rq(struct cfs_rq *cfs_rq)
9188 {
9189 	cfs_rq->tasks_timeline = RB_ROOT;
9190 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9191 #ifndef CONFIG_64BIT
9192 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9193 #endif
9194 #ifdef CONFIG_SMP
9195 #ifdef CONFIG_FAIR_GROUP_SCHED
9196 	cfs_rq->propagate_avg = 0;
9197 #endif
9198 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9199 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9200 #endif
9201 }
9202 
9203 #ifdef CONFIG_FAIR_GROUP_SCHED
9204 static void task_set_group_fair(struct task_struct *p)
9205 {
9206 	struct sched_entity *se = &p->se;
9207 
9208 	set_task_rq(p, task_cpu(p));
9209 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9210 }
9211 
9212 static void task_move_group_fair(struct task_struct *p)
9213 {
9214 	detach_task_cfs_rq(p);
9215 	set_task_rq(p, task_cpu(p));
9216 
9217 #ifdef CONFIG_SMP
9218 	/* Tell se's cfs_rq has been changed -- migrated */
9219 	p->se.avg.last_update_time = 0;
9220 #endif
9221 	attach_task_cfs_rq(p);
9222 }
9223 
9224 static void task_change_group_fair(struct task_struct *p, int type)
9225 {
9226 	switch (type) {
9227 	case TASK_SET_GROUP:
9228 		task_set_group_fair(p);
9229 		break;
9230 
9231 	case TASK_MOVE_GROUP:
9232 		task_move_group_fair(p);
9233 		break;
9234 	}
9235 }
9236 
9237 void free_fair_sched_group(struct task_group *tg)
9238 {
9239 	int i;
9240 
9241 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9242 
9243 	for_each_possible_cpu(i) {
9244 		if (tg->cfs_rq)
9245 			kfree(tg->cfs_rq[i]);
9246 		if (tg->se)
9247 			kfree(tg->se[i]);
9248 	}
9249 
9250 	kfree(tg->cfs_rq);
9251 	kfree(tg->se);
9252 }
9253 
9254 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9255 {
9256 	struct sched_entity *se;
9257 	struct cfs_rq *cfs_rq;
9258 	int i;
9259 
9260 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9261 	if (!tg->cfs_rq)
9262 		goto err;
9263 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9264 	if (!tg->se)
9265 		goto err;
9266 
9267 	tg->shares = NICE_0_LOAD;
9268 
9269 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9270 
9271 	for_each_possible_cpu(i) {
9272 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9273 				      GFP_KERNEL, cpu_to_node(i));
9274 		if (!cfs_rq)
9275 			goto err;
9276 
9277 		se = kzalloc_node(sizeof(struct sched_entity),
9278 				  GFP_KERNEL, cpu_to_node(i));
9279 		if (!se)
9280 			goto err_free_rq;
9281 
9282 		init_cfs_rq(cfs_rq);
9283 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9284 		init_entity_runnable_average(se);
9285 	}
9286 
9287 	return 1;
9288 
9289 err_free_rq:
9290 	kfree(cfs_rq);
9291 err:
9292 	return 0;
9293 }
9294 
9295 void online_fair_sched_group(struct task_group *tg)
9296 {
9297 	struct sched_entity *se;
9298 	struct rq *rq;
9299 	int i;
9300 
9301 	for_each_possible_cpu(i) {
9302 		rq = cpu_rq(i);
9303 		se = tg->se[i];
9304 
9305 		raw_spin_lock_irq(&rq->lock);
9306 		update_rq_clock(rq);
9307 		attach_entity_cfs_rq(se);
9308 		sync_throttle(tg, i);
9309 		raw_spin_unlock_irq(&rq->lock);
9310 	}
9311 }
9312 
9313 void unregister_fair_sched_group(struct task_group *tg)
9314 {
9315 	unsigned long flags;
9316 	struct rq *rq;
9317 	int cpu;
9318 
9319 	for_each_possible_cpu(cpu) {
9320 		if (tg->se[cpu])
9321 			remove_entity_load_avg(tg->se[cpu]);
9322 
9323 		/*
9324 		 * Only empty task groups can be destroyed; so we can speculatively
9325 		 * check on_list without danger of it being re-added.
9326 		 */
9327 		if (!tg->cfs_rq[cpu]->on_list)
9328 			continue;
9329 
9330 		rq = cpu_rq(cpu);
9331 
9332 		raw_spin_lock_irqsave(&rq->lock, flags);
9333 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9334 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9335 	}
9336 }
9337 
9338 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9339 			struct sched_entity *se, int cpu,
9340 			struct sched_entity *parent)
9341 {
9342 	struct rq *rq = cpu_rq(cpu);
9343 
9344 	cfs_rq->tg = tg;
9345 	cfs_rq->rq = rq;
9346 	init_cfs_rq_runtime(cfs_rq);
9347 
9348 	tg->cfs_rq[cpu] = cfs_rq;
9349 	tg->se[cpu] = se;
9350 
9351 	/* se could be NULL for root_task_group */
9352 	if (!se)
9353 		return;
9354 
9355 	if (!parent) {
9356 		se->cfs_rq = &rq->cfs;
9357 		se->depth = 0;
9358 	} else {
9359 		se->cfs_rq = parent->my_q;
9360 		se->depth = parent->depth + 1;
9361 	}
9362 
9363 	se->my_q = cfs_rq;
9364 	/* guarantee group entities always have weight */
9365 	update_load_set(&se->load, NICE_0_LOAD);
9366 	se->parent = parent;
9367 }
9368 
9369 static DEFINE_MUTEX(shares_mutex);
9370 
9371 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9372 {
9373 	int i;
9374 	unsigned long flags;
9375 
9376 	/*
9377 	 * We can't change the weight of the root cgroup.
9378 	 */
9379 	if (!tg->se[0])
9380 		return -EINVAL;
9381 
9382 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9383 
9384 	mutex_lock(&shares_mutex);
9385 	if (tg->shares == shares)
9386 		goto done;
9387 
9388 	tg->shares = shares;
9389 	for_each_possible_cpu(i) {
9390 		struct rq *rq = cpu_rq(i);
9391 		struct sched_entity *se;
9392 
9393 		se = tg->se[i];
9394 		/* Propagate contribution to hierarchy */
9395 		raw_spin_lock_irqsave(&rq->lock, flags);
9396 
9397 		/* Possible calls to update_curr() need rq clock */
9398 		update_rq_clock(rq);
9399 		for_each_sched_entity(se) {
9400 			update_load_avg(se, UPDATE_TG);
9401 			update_cfs_shares(se);
9402 		}
9403 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9404 	}
9405 
9406 done:
9407 	mutex_unlock(&shares_mutex);
9408 	return 0;
9409 }
9410 #else /* CONFIG_FAIR_GROUP_SCHED */
9411 
9412 void free_fair_sched_group(struct task_group *tg) { }
9413 
9414 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9415 {
9416 	return 1;
9417 }
9418 
9419 void online_fair_sched_group(struct task_group *tg) { }
9420 
9421 void unregister_fair_sched_group(struct task_group *tg) { }
9422 
9423 #endif /* CONFIG_FAIR_GROUP_SCHED */
9424 
9425 
9426 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9427 {
9428 	struct sched_entity *se = &task->se;
9429 	unsigned int rr_interval = 0;
9430 
9431 	/*
9432 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9433 	 * idle runqueue:
9434 	 */
9435 	if (rq->cfs.load.weight)
9436 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9437 
9438 	return rr_interval;
9439 }
9440 
9441 /*
9442  * All the scheduling class methods:
9443  */
9444 const struct sched_class fair_sched_class = {
9445 	.next			= &idle_sched_class,
9446 	.enqueue_task		= enqueue_task_fair,
9447 	.dequeue_task		= dequeue_task_fair,
9448 	.yield_task		= yield_task_fair,
9449 	.yield_to_task		= yield_to_task_fair,
9450 
9451 	.check_preempt_curr	= check_preempt_wakeup,
9452 
9453 	.pick_next_task		= pick_next_task_fair,
9454 	.put_prev_task		= put_prev_task_fair,
9455 
9456 #ifdef CONFIG_SMP
9457 	.select_task_rq		= select_task_rq_fair,
9458 	.migrate_task_rq	= migrate_task_rq_fair,
9459 
9460 	.rq_online		= rq_online_fair,
9461 	.rq_offline		= rq_offline_fair,
9462 
9463 	.task_dead		= task_dead_fair,
9464 	.set_cpus_allowed	= set_cpus_allowed_common,
9465 #endif
9466 
9467 	.set_curr_task          = set_curr_task_fair,
9468 	.task_tick		= task_tick_fair,
9469 	.task_fork		= task_fork_fair,
9470 
9471 	.prio_changed		= prio_changed_fair,
9472 	.switched_from		= switched_from_fair,
9473 	.switched_to		= switched_to_fair,
9474 
9475 	.get_rr_interval	= get_rr_interval_fair,
9476 
9477 	.update_curr		= update_curr_fair,
9478 
9479 #ifdef CONFIG_FAIR_GROUP_SCHED
9480 	.task_change_group	= task_change_group_fair,
9481 #endif
9482 };
9483 
9484 #ifdef CONFIG_SCHED_DEBUG
9485 void print_cfs_stats(struct seq_file *m, int cpu)
9486 {
9487 	struct cfs_rq *cfs_rq;
9488 
9489 	rcu_read_lock();
9490 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9491 		print_cfs_rq(m, cpu, cfs_rq);
9492 	rcu_read_unlock();
9493 }
9494 
9495 #ifdef CONFIG_NUMA_BALANCING
9496 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9497 {
9498 	int node;
9499 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9500 
9501 	for_each_online_node(node) {
9502 		if (p->numa_faults) {
9503 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9504 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9505 		}
9506 		if (p->numa_group) {
9507 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9508 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9509 		}
9510 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9511 	}
9512 }
9513 #endif /* CONFIG_NUMA_BALANCING */
9514 #endif /* CONFIG_SCHED_DEBUG */
9515 
9516 __init void init_sched_fair_class(void)
9517 {
9518 #ifdef CONFIG_SMP
9519 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9520 
9521 #ifdef CONFIG_NO_HZ_COMMON
9522 	nohz.next_balance = jiffies;
9523 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9524 #endif
9525 #endif /* SMP */
9526 
9527 }
9528