xref: /linux/kernel/sched/fair.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 int sched_thermal_decay_shift;
82 static int __init setup_sched_thermal_decay_shift(char *str)
83 {
84 	int _shift = 0;
85 
86 	if (kstrtoint(str, 0, &_shift))
87 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88 
89 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
90 	return 1;
91 }
92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93 
94 #ifdef CONFIG_SMP
95 /*
96  * For asym packing, by default the lower numbered CPU has higher priority.
97  */
98 int __weak arch_asym_cpu_priority(int cpu)
99 {
100 	return -cpu;
101 }
102 
103 /*
104  * The margin used when comparing utilization with CPU capacity.
105  *
106  * (default: ~20%)
107  */
108 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
109 
110 /*
111  * The margin used when comparing CPU capacities.
112  * is 'cap1' noticeably greater than 'cap2'
113  *
114  * (default: ~5%)
115  */
116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
117 #endif
118 
119 #ifdef CONFIG_CFS_BANDWIDTH
120 /*
121  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122  * each time a cfs_rq requests quota.
123  *
124  * Note: in the case that the slice exceeds the runtime remaining (either due
125  * to consumption or the quota being specified to be smaller than the slice)
126  * we will always only issue the remaining available time.
127  *
128  * (default: 5 msec, units: microseconds)
129  */
130 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
131 #endif
132 
133 #ifdef CONFIG_NUMA_BALANCING
134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136 #endif
137 
138 #ifdef CONFIG_SYSCTL
139 static struct ctl_table sched_fair_sysctls[] = {
140 #ifdef CONFIG_CFS_BANDWIDTH
141 	{
142 		.procname       = "sched_cfs_bandwidth_slice_us",
143 		.data           = &sysctl_sched_cfs_bandwidth_slice,
144 		.maxlen         = sizeof(unsigned int),
145 		.mode           = 0644,
146 		.proc_handler   = proc_dointvec_minmax,
147 		.extra1         = SYSCTL_ONE,
148 	},
149 #endif
150 #ifdef CONFIG_NUMA_BALANCING
151 	{
152 		.procname	= "numa_balancing_promote_rate_limit_MBps",
153 		.data		= &sysctl_numa_balancing_promote_rate_limit,
154 		.maxlen		= sizeof(unsigned int),
155 		.mode		= 0644,
156 		.proc_handler	= proc_dointvec_minmax,
157 		.extra1		= SYSCTL_ZERO,
158 	},
159 #endif /* CONFIG_NUMA_BALANCING */
160 	{}
161 };
162 
163 static int __init sched_fair_sysctl_init(void)
164 {
165 	register_sysctl_init("kernel", sched_fair_sysctls);
166 	return 0;
167 }
168 late_initcall(sched_fair_sysctl_init);
169 #endif
170 
171 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172 {
173 	lw->weight += inc;
174 	lw->inv_weight = 0;
175 }
176 
177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178 {
179 	lw->weight -= dec;
180 	lw->inv_weight = 0;
181 }
182 
183 static inline void update_load_set(struct load_weight *lw, unsigned long w)
184 {
185 	lw->weight = w;
186 	lw->inv_weight = 0;
187 }
188 
189 /*
190  * Increase the granularity value when there are more CPUs,
191  * because with more CPUs the 'effective latency' as visible
192  * to users decreases. But the relationship is not linear,
193  * so pick a second-best guess by going with the log2 of the
194  * number of CPUs.
195  *
196  * This idea comes from the SD scheduler of Con Kolivas:
197  */
198 static unsigned int get_update_sysctl_factor(void)
199 {
200 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201 	unsigned int factor;
202 
203 	switch (sysctl_sched_tunable_scaling) {
204 	case SCHED_TUNABLESCALING_NONE:
205 		factor = 1;
206 		break;
207 	case SCHED_TUNABLESCALING_LINEAR:
208 		factor = cpus;
209 		break;
210 	case SCHED_TUNABLESCALING_LOG:
211 	default:
212 		factor = 1 + ilog2(cpus);
213 		break;
214 	}
215 
216 	return factor;
217 }
218 
219 static void update_sysctl(void)
220 {
221 	unsigned int factor = get_update_sysctl_factor();
222 
223 #define SET_SYSCTL(name) \
224 	(sysctl_##name = (factor) * normalized_sysctl_##name)
225 	SET_SYSCTL(sched_base_slice);
226 #undef SET_SYSCTL
227 }
228 
229 void __init sched_init_granularity(void)
230 {
231 	update_sysctl();
232 }
233 
234 #define WMULT_CONST	(~0U)
235 #define WMULT_SHIFT	32
236 
237 static void __update_inv_weight(struct load_weight *lw)
238 {
239 	unsigned long w;
240 
241 	if (likely(lw->inv_weight))
242 		return;
243 
244 	w = scale_load_down(lw->weight);
245 
246 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247 		lw->inv_weight = 1;
248 	else if (unlikely(!w))
249 		lw->inv_weight = WMULT_CONST;
250 	else
251 		lw->inv_weight = WMULT_CONST / w;
252 }
253 
254 /*
255  * delta_exec * weight / lw.weight
256  *   OR
257  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258  *
259  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
260  * we're guaranteed shift stays positive because inv_weight is guaranteed to
261  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262  *
263  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264  * weight/lw.weight <= 1, and therefore our shift will also be positive.
265  */
266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
267 {
268 	u64 fact = scale_load_down(weight);
269 	u32 fact_hi = (u32)(fact >> 32);
270 	int shift = WMULT_SHIFT;
271 	int fs;
272 
273 	__update_inv_weight(lw);
274 
275 	if (unlikely(fact_hi)) {
276 		fs = fls(fact_hi);
277 		shift -= fs;
278 		fact >>= fs;
279 	}
280 
281 	fact = mul_u32_u32(fact, lw->inv_weight);
282 
283 	fact_hi = (u32)(fact >> 32);
284 	if (fact_hi) {
285 		fs = fls(fact_hi);
286 		shift -= fs;
287 		fact >>= fs;
288 	}
289 
290 	return mul_u64_u32_shr(delta_exec, fact, shift);
291 }
292 
293 /*
294  * delta /= w
295  */
296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297 {
298 	if (unlikely(se->load.weight != NICE_0_LOAD))
299 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300 
301 	return delta;
302 }
303 
304 const struct sched_class fair_sched_class;
305 
306 /**************************************************************
307  * CFS operations on generic schedulable entities:
308  */
309 
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 
312 /* Walk up scheduling entities hierarchy */
313 #define for_each_sched_entity(se) \
314 		for (; se; se = se->parent)
315 
316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
317 {
318 	struct rq *rq = rq_of(cfs_rq);
319 	int cpu = cpu_of(rq);
320 
321 	if (cfs_rq->on_list)
322 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323 
324 	cfs_rq->on_list = 1;
325 
326 	/*
327 	 * Ensure we either appear before our parent (if already
328 	 * enqueued) or force our parent to appear after us when it is
329 	 * enqueued. The fact that we always enqueue bottom-up
330 	 * reduces this to two cases and a special case for the root
331 	 * cfs_rq. Furthermore, it also means that we will always reset
332 	 * tmp_alone_branch either when the branch is connected
333 	 * to a tree or when we reach the top of the tree
334 	 */
335 	if (cfs_rq->tg->parent &&
336 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
337 		/*
338 		 * If parent is already on the list, we add the child
339 		 * just before. Thanks to circular linked property of
340 		 * the list, this means to put the child at the tail
341 		 * of the list that starts by parent.
342 		 */
343 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345 		/*
346 		 * The branch is now connected to its tree so we can
347 		 * reset tmp_alone_branch to the beginning of the
348 		 * list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	if (!cfs_rq->tg->parent) {
355 		/*
356 		 * cfs rq without parent should be put
357 		 * at the tail of the list.
358 		 */
359 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360 			&rq->leaf_cfs_rq_list);
361 		/*
362 		 * We have reach the top of a tree so we can reset
363 		 * tmp_alone_branch to the beginning of the list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	/*
370 	 * The parent has not already been added so we want to
371 	 * make sure that it will be put after us.
372 	 * tmp_alone_branch points to the begin of the branch
373 	 * where we will add parent.
374 	 */
375 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376 	/*
377 	 * update tmp_alone_branch to points to the new begin
378 	 * of the branch
379 	 */
380 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
381 	return false;
382 }
383 
384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385 {
386 	if (cfs_rq->on_list) {
387 		struct rq *rq = rq_of(cfs_rq);
388 
389 		/*
390 		 * With cfs_rq being unthrottled/throttled during an enqueue,
391 		 * it can happen the tmp_alone_branch points the a leaf that
392 		 * we finally want to del. In this case, tmp_alone_branch moves
393 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
394 		 * at the end of the enqueue.
395 		 */
396 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398 
399 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 		cfs_rq->on_list = 0;
401 	}
402 }
403 
404 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405 {
406 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407 }
408 
409 /* Iterate thr' all leaf cfs_rq's on a runqueue */
410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
411 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
412 				 leaf_cfs_rq_list)
413 
414 /* Do the two (enqueued) entities belong to the same group ? */
415 static inline struct cfs_rq *
416 is_same_group(struct sched_entity *se, struct sched_entity *pse)
417 {
418 	if (se->cfs_rq == pse->cfs_rq)
419 		return se->cfs_rq;
420 
421 	return NULL;
422 }
423 
424 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
425 {
426 	return se->parent;
427 }
428 
429 static void
430 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431 {
432 	int se_depth, pse_depth;
433 
434 	/*
435 	 * preemption test can be made between sibling entities who are in the
436 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437 	 * both tasks until we find their ancestors who are siblings of common
438 	 * parent.
439 	 */
440 
441 	/* First walk up until both entities are at same depth */
442 	se_depth = (*se)->depth;
443 	pse_depth = (*pse)->depth;
444 
445 	while (se_depth > pse_depth) {
446 		se_depth--;
447 		*se = parent_entity(*se);
448 	}
449 
450 	while (pse_depth > se_depth) {
451 		pse_depth--;
452 		*pse = parent_entity(*pse);
453 	}
454 
455 	while (!is_same_group(*se, *pse)) {
456 		*se = parent_entity(*se);
457 		*pse = parent_entity(*pse);
458 	}
459 }
460 
461 static int tg_is_idle(struct task_group *tg)
462 {
463 	return tg->idle > 0;
464 }
465 
466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467 {
468 	return cfs_rq->idle > 0;
469 }
470 
471 static int se_is_idle(struct sched_entity *se)
472 {
473 	if (entity_is_task(se))
474 		return task_has_idle_policy(task_of(se));
475 	return cfs_rq_is_idle(group_cfs_rq(se));
476 }
477 
478 #else	/* !CONFIG_FAIR_GROUP_SCHED */
479 
480 #define for_each_sched_entity(se) \
481 		for (; se; se = NULL)
482 
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 	return true;
486 }
487 
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491 
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495 
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498 
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 	return NULL;
502 }
503 
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508 
509 static inline int tg_is_idle(struct task_group *tg)
510 {
511 	return 0;
512 }
513 
514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515 {
516 	return 0;
517 }
518 
519 static int se_is_idle(struct sched_entity *se)
520 {
521 	return 0;
522 }
523 
524 #endif	/* CONFIG_FAIR_GROUP_SCHED */
525 
526 static __always_inline
527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
528 
529 /**************************************************************
530  * Scheduling class tree data structure manipulation methods:
531  */
532 
533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
534 {
535 	s64 delta = (s64)(vruntime - max_vruntime);
536 	if (delta > 0)
537 		max_vruntime = vruntime;
538 
539 	return max_vruntime;
540 }
541 
542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
543 {
544 	s64 delta = (s64)(vruntime - min_vruntime);
545 	if (delta < 0)
546 		min_vruntime = vruntime;
547 
548 	return min_vruntime;
549 }
550 
551 static inline bool entity_before(const struct sched_entity *a,
552 				 const struct sched_entity *b)
553 {
554 	/*
555 	 * Tiebreak on vruntime seems unnecessary since it can
556 	 * hardly happen.
557 	 */
558 	return (s64)(a->deadline - b->deadline) < 0;
559 }
560 
561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
564 }
565 
566 #define __node_2_se(node) \
567 	rb_entry((node), struct sched_entity, run_node)
568 
569 /*
570  * Compute virtual time from the per-task service numbers:
571  *
572  * Fair schedulers conserve lag:
573  *
574  *   \Sum lag_i = 0
575  *
576  * Where lag_i is given by:
577  *
578  *   lag_i = S - s_i = w_i * (V - v_i)
579  *
580  * Where S is the ideal service time and V is it's virtual time counterpart.
581  * Therefore:
582  *
583  *   \Sum lag_i = 0
584  *   \Sum w_i * (V - v_i) = 0
585  *   \Sum w_i * V - w_i * v_i = 0
586  *
587  * From which we can solve an expression for V in v_i (which we have in
588  * se->vruntime):
589  *
590  *       \Sum v_i * w_i   \Sum v_i * w_i
591  *   V = -------------- = --------------
592  *          \Sum w_i            W
593  *
594  * Specifically, this is the weighted average of all entity virtual runtimes.
595  *
596  * [[ NOTE: this is only equal to the ideal scheduler under the condition
597  *          that join/leave operations happen at lag_i = 0, otherwise the
598  *          virtual time has non-continguous motion equivalent to:
599  *
600  *	      V +-= lag_i / W
601  *
602  *	    Also see the comment in place_entity() that deals with this. ]]
603  *
604  * However, since v_i is u64, and the multiplcation could easily overflow
605  * transform it into a relative form that uses smaller quantities:
606  *
607  * Substitute: v_i == (v_i - v0) + v0
608  *
609  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
610  * V = ---------------------------- = --------------------- + v0
611  *                  W                            W
612  *
613  * Which we track using:
614  *
615  *                    v0 := cfs_rq->min_vruntime
616  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
617  *              \Sum w_i := cfs_rq->avg_load
618  *
619  * Since min_vruntime is a monotonic increasing variable that closely tracks
620  * the per-task service, these deltas: (v_i - v), will be in the order of the
621  * maximal (virtual) lag induced in the system due to quantisation.
622  *
623  * Also, we use scale_load_down() to reduce the size.
624  *
625  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
626  */
627 static void
628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 	unsigned long weight = scale_load_down(se->load.weight);
631 	s64 key = entity_key(cfs_rq, se);
632 
633 	cfs_rq->avg_vruntime += key * weight;
634 	cfs_rq->avg_load += weight;
635 }
636 
637 static void
638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
639 {
640 	unsigned long weight = scale_load_down(se->load.weight);
641 	s64 key = entity_key(cfs_rq, se);
642 
643 	cfs_rq->avg_vruntime -= key * weight;
644 	cfs_rq->avg_load -= weight;
645 }
646 
647 static inline
648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
649 {
650 	/*
651 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
652 	 */
653 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
654 }
655 
656 /*
657  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
658  * For this to be so, the result of this function must have a left bias.
659  */
660 u64 avg_vruntime(struct cfs_rq *cfs_rq)
661 {
662 	struct sched_entity *curr = cfs_rq->curr;
663 	s64 avg = cfs_rq->avg_vruntime;
664 	long load = cfs_rq->avg_load;
665 
666 	if (curr && curr->on_rq) {
667 		unsigned long weight = scale_load_down(curr->load.weight);
668 
669 		avg += entity_key(cfs_rq, curr) * weight;
670 		load += weight;
671 	}
672 
673 	if (load) {
674 		/* sign flips effective floor / ceil */
675 		if (avg < 0)
676 			avg -= (load - 1);
677 		avg = div_s64(avg, load);
678 	}
679 
680 	return cfs_rq->min_vruntime + avg;
681 }
682 
683 /*
684  * lag_i = S - s_i = w_i * (V - v_i)
685  *
686  * However, since V is approximated by the weighted average of all entities it
687  * is possible -- by addition/removal/reweight to the tree -- to move V around
688  * and end up with a larger lag than we started with.
689  *
690  * Limit this to either double the slice length with a minimum of TICK_NSEC
691  * since that is the timing granularity.
692  *
693  * EEVDF gives the following limit for a steady state system:
694  *
695  *   -r_max < lag < max(r_max, q)
696  *
697  * XXX could add max_slice to the augmented data to track this.
698  */
699 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
700 {
701 	s64 lag, limit;
702 
703 	SCHED_WARN_ON(!se->on_rq);
704 	lag = avg_vruntime(cfs_rq) - se->vruntime;
705 
706 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
707 	se->vlag = clamp(lag, -limit, limit);
708 }
709 
710 /*
711  * Entity is eligible once it received less service than it ought to have,
712  * eg. lag >= 0.
713  *
714  * lag_i = S - s_i = w_i*(V - v_i)
715  *
716  * lag_i >= 0 -> V >= v_i
717  *
718  *     \Sum (v_i - v)*w_i
719  * V = ------------------ + v
720  *          \Sum w_i
721  *
722  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723  *
724  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
725  *       to the loss in precision caused by the division.
726  */
727 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728 {
729 	struct sched_entity *curr = cfs_rq->curr;
730 	s64 avg = cfs_rq->avg_vruntime;
731 	long load = cfs_rq->avg_load;
732 
733 	if (curr && curr->on_rq) {
734 		unsigned long weight = scale_load_down(curr->load.weight);
735 
736 		avg += entity_key(cfs_rq, curr) * weight;
737 		load += weight;
738 	}
739 
740 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
741 }
742 
743 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 	return vruntime_eligible(cfs_rq, se->vruntime);
746 }
747 
748 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749 {
750 	u64 min_vruntime = cfs_rq->min_vruntime;
751 	/*
752 	 * open coded max_vruntime() to allow updating avg_vruntime
753 	 */
754 	s64 delta = (s64)(vruntime - min_vruntime);
755 	if (delta > 0) {
756 		avg_vruntime_update(cfs_rq, delta);
757 		min_vruntime = vruntime;
758 	}
759 	return min_vruntime;
760 }
761 
762 static void update_min_vruntime(struct cfs_rq *cfs_rq)
763 {
764 	struct sched_entity *se = __pick_root_entity(cfs_rq);
765 	struct sched_entity *curr = cfs_rq->curr;
766 	u64 vruntime = cfs_rq->min_vruntime;
767 
768 	if (curr) {
769 		if (curr->on_rq)
770 			vruntime = curr->vruntime;
771 		else
772 			curr = NULL;
773 	}
774 
775 	if (se) {
776 		if (!curr)
777 			vruntime = se->min_vruntime;
778 		else
779 			vruntime = min_vruntime(vruntime, se->min_vruntime);
780 	}
781 
782 	/* ensure we never gain time by being placed backwards. */
783 	u64_u32_store(cfs_rq->min_vruntime,
784 		      __update_min_vruntime(cfs_rq, vruntime));
785 }
786 
787 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
788 {
789 	return entity_before(__node_2_se(a), __node_2_se(b));
790 }
791 
792 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
793 
794 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
795 {
796 	if (node) {
797 		struct sched_entity *rse = __node_2_se(node);
798 		if (vruntime_gt(min_vruntime, se, rse))
799 			se->min_vruntime = rse->min_vruntime;
800 	}
801 }
802 
803 /*
804  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
805  */
806 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
807 {
808 	u64 old_min_vruntime = se->min_vruntime;
809 	struct rb_node *node = &se->run_node;
810 
811 	se->min_vruntime = se->vruntime;
812 	__min_vruntime_update(se, node->rb_right);
813 	__min_vruntime_update(se, node->rb_left);
814 
815 	return se->min_vruntime == old_min_vruntime;
816 }
817 
818 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
819 		     run_node, min_vruntime, min_vruntime_update);
820 
821 /*
822  * Enqueue an entity into the rb-tree:
823  */
824 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825 {
826 	avg_vruntime_add(cfs_rq, se);
827 	se->min_vruntime = se->vruntime;
828 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
829 				__entity_less, &min_vruntime_cb);
830 }
831 
832 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
833 {
834 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
835 				  &min_vruntime_cb);
836 	avg_vruntime_sub(cfs_rq, se);
837 }
838 
839 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
840 {
841 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
842 
843 	if (!root)
844 		return NULL;
845 
846 	return __node_2_se(root);
847 }
848 
849 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
850 {
851 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
852 
853 	if (!left)
854 		return NULL;
855 
856 	return __node_2_se(left);
857 }
858 
859 /*
860  * Earliest Eligible Virtual Deadline First
861  *
862  * In order to provide latency guarantees for different request sizes
863  * EEVDF selects the best runnable task from two criteria:
864  *
865  *  1) the task must be eligible (must be owed service)
866  *
867  *  2) from those tasks that meet 1), we select the one
868  *     with the earliest virtual deadline.
869  *
870  * We can do this in O(log n) time due to an augmented RB-tree. The
871  * tree keeps the entries sorted on deadline, but also functions as a
872  * heap based on the vruntime by keeping:
873  *
874  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
875  *
876  * Which allows tree pruning through eligibility.
877  */
878 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
881 	struct sched_entity *se = __pick_first_entity(cfs_rq);
882 	struct sched_entity *curr = cfs_rq->curr;
883 	struct sched_entity *best = NULL;
884 
885 	/*
886 	 * We can safely skip eligibility check if there is only one entity
887 	 * in this cfs_rq, saving some cycles.
888 	 */
889 	if (cfs_rq->nr_running == 1)
890 		return curr && curr->on_rq ? curr : se;
891 
892 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
893 		curr = NULL;
894 
895 	/*
896 	 * Once selected, run a task until it either becomes non-eligible or
897 	 * until it gets a new slice. See the HACK in set_next_entity().
898 	 */
899 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
900 		return curr;
901 
902 	/* Pick the leftmost entity if it's eligible */
903 	if (se && entity_eligible(cfs_rq, se)) {
904 		best = se;
905 		goto found;
906 	}
907 
908 	/* Heap search for the EEVD entity */
909 	while (node) {
910 		struct rb_node *left = node->rb_left;
911 
912 		/*
913 		 * Eligible entities in left subtree are always better
914 		 * choices, since they have earlier deadlines.
915 		 */
916 		if (left && vruntime_eligible(cfs_rq,
917 					__node_2_se(left)->min_vruntime)) {
918 			node = left;
919 			continue;
920 		}
921 
922 		se = __node_2_se(node);
923 
924 		/*
925 		 * The left subtree either is empty or has no eligible
926 		 * entity, so check the current node since it is the one
927 		 * with earliest deadline that might be eligible.
928 		 */
929 		if (entity_eligible(cfs_rq, se)) {
930 			best = se;
931 			break;
932 		}
933 
934 		node = node->rb_right;
935 	}
936 found:
937 	if (!best || (curr && entity_before(curr, best)))
938 		best = curr;
939 
940 	return best;
941 }
942 
943 #ifdef CONFIG_SCHED_DEBUG
944 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
945 {
946 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
947 
948 	if (!last)
949 		return NULL;
950 
951 	return __node_2_se(last);
952 }
953 
954 /**************************************************************
955  * Scheduling class statistics methods:
956  */
957 #ifdef CONFIG_SMP
958 int sched_update_scaling(void)
959 {
960 	unsigned int factor = get_update_sysctl_factor();
961 
962 #define WRT_SYSCTL(name) \
963 	(normalized_sysctl_##name = sysctl_##name / (factor))
964 	WRT_SYSCTL(sched_base_slice);
965 #undef WRT_SYSCTL
966 
967 	return 0;
968 }
969 #endif
970 #endif
971 
972 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
973 
974 /*
975  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
976  * this is probably good enough.
977  */
978 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
979 {
980 	if ((s64)(se->vruntime - se->deadline) < 0)
981 		return;
982 
983 	/*
984 	 * For EEVDF the virtual time slope is determined by w_i (iow.
985 	 * nice) while the request time r_i is determined by
986 	 * sysctl_sched_base_slice.
987 	 */
988 	se->slice = sysctl_sched_base_slice;
989 
990 	/*
991 	 * EEVDF: vd_i = ve_i + r_i / w_i
992 	 */
993 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
994 
995 	/*
996 	 * The task has consumed its request, reschedule.
997 	 */
998 	if (cfs_rq->nr_running > 1) {
999 		resched_curr(rq_of(cfs_rq));
1000 		clear_buddies(cfs_rq, se);
1001 	}
1002 }
1003 
1004 #include "pelt.h"
1005 #ifdef CONFIG_SMP
1006 
1007 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1008 static unsigned long task_h_load(struct task_struct *p);
1009 static unsigned long capacity_of(int cpu);
1010 
1011 /* Give new sched_entity start runnable values to heavy its load in infant time */
1012 void init_entity_runnable_average(struct sched_entity *se)
1013 {
1014 	struct sched_avg *sa = &se->avg;
1015 
1016 	memset(sa, 0, sizeof(*sa));
1017 
1018 	/*
1019 	 * Tasks are initialized with full load to be seen as heavy tasks until
1020 	 * they get a chance to stabilize to their real load level.
1021 	 * Group entities are initialized with zero load to reflect the fact that
1022 	 * nothing has been attached to the task group yet.
1023 	 */
1024 	if (entity_is_task(se))
1025 		sa->load_avg = scale_load_down(se->load.weight);
1026 
1027 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1028 }
1029 
1030 /*
1031  * With new tasks being created, their initial util_avgs are extrapolated
1032  * based on the cfs_rq's current util_avg:
1033  *
1034  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1035  *
1036  * However, in many cases, the above util_avg does not give a desired
1037  * value. Moreover, the sum of the util_avgs may be divergent, such
1038  * as when the series is a harmonic series.
1039  *
1040  * To solve this problem, we also cap the util_avg of successive tasks to
1041  * only 1/2 of the left utilization budget:
1042  *
1043  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044  *
1045  * where n denotes the nth task and cpu_scale the CPU capacity.
1046  *
1047  * For example, for a CPU with 1024 of capacity, a simplest series from
1048  * the beginning would be like:
1049  *
1050  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1051  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052  *
1053  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054  * if util_avg > util_avg_cap.
1055  */
1056 void post_init_entity_util_avg(struct task_struct *p)
1057 {
1058 	struct sched_entity *se = &p->se;
1059 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 	struct sched_avg *sa = &se->avg;
1061 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063 
1064 	if (p->sched_class != &fair_sched_class) {
1065 		/*
1066 		 * For !fair tasks do:
1067 		 *
1068 		update_cfs_rq_load_avg(now, cfs_rq);
1069 		attach_entity_load_avg(cfs_rq, se);
1070 		switched_from_fair(rq, p);
1071 		 *
1072 		 * such that the next switched_to_fair() has the
1073 		 * expected state.
1074 		 */
1075 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 		return;
1077 	}
1078 
1079 	if (cap > 0) {
1080 		if (cfs_rq->avg.util_avg != 0) {
1081 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1082 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083 
1084 			if (sa->util_avg > cap)
1085 				sa->util_avg = cap;
1086 		} else {
1087 			sa->util_avg = cap;
1088 		}
1089 	}
1090 
1091 	sa->runnable_avg = sa->util_avg;
1092 }
1093 
1094 #else /* !CONFIG_SMP */
1095 void init_entity_runnable_average(struct sched_entity *se)
1096 {
1097 }
1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 }
1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102 {
1103 }
1104 #endif /* CONFIG_SMP */
1105 
1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107 {
1108 	u64 now = rq_clock_task(rq);
1109 	s64 delta_exec;
1110 
1111 	delta_exec = now - curr->exec_start;
1112 	if (unlikely(delta_exec <= 0))
1113 		return delta_exec;
1114 
1115 	curr->exec_start = now;
1116 	curr->sum_exec_runtime += delta_exec;
1117 
1118 	if (schedstat_enabled()) {
1119 		struct sched_statistics *stats;
1120 
1121 		stats = __schedstats_from_se(curr);
1122 		__schedstat_set(stats->exec_max,
1123 				max(delta_exec, stats->exec_max));
1124 	}
1125 
1126 	return delta_exec;
1127 }
1128 
1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130 {
1131 	trace_sched_stat_runtime(p, delta_exec);
1132 	account_group_exec_runtime(p, delta_exec);
1133 	cgroup_account_cputime(p, delta_exec);
1134 	if (p->dl_server)
1135 		dl_server_update(p->dl_server, delta_exec);
1136 }
1137 
1138 /*
1139  * Used by other classes to account runtime.
1140  */
1141 s64 update_curr_common(struct rq *rq)
1142 {
1143 	struct task_struct *curr = rq->curr;
1144 	s64 delta_exec;
1145 
1146 	delta_exec = update_curr_se(rq, &curr->se);
1147 	if (likely(delta_exec > 0))
1148 		update_curr_task(curr, delta_exec);
1149 
1150 	return delta_exec;
1151 }
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	s64 delta_exec;
1160 
1161 	if (unlikely(!curr))
1162 		return;
1163 
1164 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 	if (unlikely(delta_exec <= 0))
1166 		return;
1167 
1168 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1169 	update_deadline(cfs_rq, curr);
1170 	update_min_vruntime(cfs_rq);
1171 
1172 	if (entity_is_task(curr))
1173 		update_curr_task(task_of(curr), delta_exec);
1174 
1175 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1176 }
1177 
1178 static void update_curr_fair(struct rq *rq)
1179 {
1180 	update_curr(cfs_rq_of(&rq->curr->se));
1181 }
1182 
1183 static inline void
1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185 {
1186 	struct sched_statistics *stats;
1187 	struct task_struct *p = NULL;
1188 
1189 	if (!schedstat_enabled())
1190 		return;
1191 
1192 	stats = __schedstats_from_se(se);
1193 
1194 	if (entity_is_task(se))
1195 		p = task_of(se);
1196 
1197 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198 }
1199 
1200 static inline void
1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202 {
1203 	struct sched_statistics *stats;
1204 	struct task_struct *p = NULL;
1205 
1206 	if (!schedstat_enabled())
1207 		return;
1208 
1209 	stats = __schedstats_from_se(se);
1210 
1211 	/*
1212 	 * When the sched_schedstat changes from 0 to 1, some sched se
1213 	 * maybe already in the runqueue, the se->statistics.wait_start
1214 	 * will be 0.So it will let the delta wrong. We need to avoid this
1215 	 * scenario.
1216 	 */
1217 	if (unlikely(!schedstat_val(stats->wait_start)))
1218 		return;
1219 
1220 	if (entity_is_task(se))
1221 		p = task_of(se);
1222 
1223 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224 }
1225 
1226 static inline void
1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228 {
1229 	struct sched_statistics *stats;
1230 	struct task_struct *tsk = NULL;
1231 
1232 	if (!schedstat_enabled())
1233 		return;
1234 
1235 	stats = __schedstats_from_se(se);
1236 
1237 	if (entity_is_task(se))
1238 		tsk = task_of(se);
1239 
1240 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241 }
1242 
1243 /*
1244  * Task is being enqueued - update stats:
1245  */
1246 static inline void
1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248 {
1249 	if (!schedstat_enabled())
1250 		return;
1251 
1252 	/*
1253 	 * Are we enqueueing a waiting task? (for current tasks
1254 	 * a dequeue/enqueue event is a NOP)
1255 	 */
1256 	if (se != cfs_rq->curr)
1257 		update_stats_wait_start_fair(cfs_rq, se);
1258 
1259 	if (flags & ENQUEUE_WAKEUP)
1260 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261 }
1262 
1263 static inline void
1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265 {
1266 
1267 	if (!schedstat_enabled())
1268 		return;
1269 
1270 	/*
1271 	 * Mark the end of the wait period if dequeueing a
1272 	 * waiting task:
1273 	 */
1274 	if (se != cfs_rq->curr)
1275 		update_stats_wait_end_fair(cfs_rq, se);
1276 
1277 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 		struct task_struct *tsk = task_of(se);
1279 		unsigned int state;
1280 
1281 		/* XXX racy against TTWU */
1282 		state = READ_ONCE(tsk->__state);
1283 		if (state & TASK_INTERRUPTIBLE)
1284 			__schedstat_set(tsk->stats.sleep_start,
1285 				      rq_clock(rq_of(cfs_rq)));
1286 		if (state & TASK_UNINTERRUPTIBLE)
1287 			__schedstat_set(tsk->stats.block_start,
1288 				      rq_clock(rq_of(cfs_rq)));
1289 	}
1290 }
1291 
1292 /*
1293  * We are picking a new current task - update its stats:
1294  */
1295 static inline void
1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297 {
1298 	/*
1299 	 * We are starting a new run period:
1300 	 */
1301 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302 }
1303 
1304 /**************************************************
1305  * Scheduling class queueing methods:
1306  */
1307 
1308 static inline bool is_core_idle(int cpu)
1309 {
1310 #ifdef CONFIG_SCHED_SMT
1311 	int sibling;
1312 
1313 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 		if (cpu == sibling)
1315 			continue;
1316 
1317 		if (!idle_cpu(sibling))
1318 			return false;
1319 	}
1320 #endif
1321 
1322 	return true;
1323 }
1324 
1325 #ifdef CONFIG_NUMA
1326 #define NUMA_IMBALANCE_MIN 2
1327 
1328 static inline long
1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330 {
1331 	/*
1332 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 	 * threshold. Above this threshold, individual tasks may be contending
1334 	 * for both memory bandwidth and any shared HT resources.  This is an
1335 	 * approximation as the number of running tasks may not be related to
1336 	 * the number of busy CPUs due to sched_setaffinity.
1337 	 */
1338 	if (dst_running > imb_numa_nr)
1339 		return imbalance;
1340 
1341 	/*
1342 	 * Allow a small imbalance based on a simple pair of communicating
1343 	 * tasks that remain local when the destination is lightly loaded.
1344 	 */
1345 	if (imbalance <= NUMA_IMBALANCE_MIN)
1346 		return 0;
1347 
1348 	return imbalance;
1349 }
1350 #endif /* CONFIG_NUMA */
1351 
1352 #ifdef CONFIG_NUMA_BALANCING
1353 /*
1354  * Approximate time to scan a full NUMA task in ms. The task scan period is
1355  * calculated based on the tasks virtual memory size and
1356  * numa_balancing_scan_size.
1357  */
1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360 
1361 /* Portion of address space to scan in MB */
1362 unsigned int sysctl_numa_balancing_scan_size = 256;
1363 
1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366 
1367 /* The page with hint page fault latency < threshold in ms is considered hot */
1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369 
1370 struct numa_group {
1371 	refcount_t refcount;
1372 
1373 	spinlock_t lock; /* nr_tasks, tasks */
1374 	int nr_tasks;
1375 	pid_t gid;
1376 	int active_nodes;
1377 
1378 	struct rcu_head rcu;
1379 	unsigned long total_faults;
1380 	unsigned long max_faults_cpu;
1381 	/*
1382 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 	 *
1384 	 * Faults_cpu is used to decide whether memory should move
1385 	 * towards the CPU. As a consequence, these stats are weighted
1386 	 * more by CPU use than by memory faults.
1387 	 */
1388 	unsigned long faults[];
1389 };
1390 
1391 /*
1392  * For functions that can be called in multiple contexts that permit reading
1393  * ->numa_group (see struct task_struct for locking rules).
1394  */
1395 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396 {
1397 	return rcu_dereference_check(p->numa_group, p == current ||
1398 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399 }
1400 
1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402 {
1403 	return rcu_dereference_protected(p->numa_group, p == current);
1404 }
1405 
1406 static inline unsigned long group_faults_priv(struct numa_group *ng);
1407 static inline unsigned long group_faults_shared(struct numa_group *ng);
1408 
1409 static unsigned int task_nr_scan_windows(struct task_struct *p)
1410 {
1411 	unsigned long rss = 0;
1412 	unsigned long nr_scan_pages;
1413 
1414 	/*
1415 	 * Calculations based on RSS as non-present and empty pages are skipped
1416 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 	 * on resident pages
1418 	 */
1419 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 	rss = get_mm_rss(p->mm);
1421 	if (!rss)
1422 		rss = nr_scan_pages;
1423 
1424 	rss = round_up(rss, nr_scan_pages);
1425 	return rss / nr_scan_pages;
1426 }
1427 
1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429 #define MAX_SCAN_WINDOW 2560
1430 
1431 static unsigned int task_scan_min(struct task_struct *p)
1432 {
1433 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434 	unsigned int scan, floor;
1435 	unsigned int windows = 1;
1436 
1437 	if (scan_size < MAX_SCAN_WINDOW)
1438 		windows = MAX_SCAN_WINDOW / scan_size;
1439 	floor = 1000 / windows;
1440 
1441 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 	return max_t(unsigned int, floor, scan);
1443 }
1444 
1445 static unsigned int task_scan_start(struct task_struct *p)
1446 {
1447 	unsigned long smin = task_scan_min(p);
1448 	unsigned long period = smin;
1449 	struct numa_group *ng;
1450 
1451 	/* Scale the maximum scan period with the amount of shared memory. */
1452 	rcu_read_lock();
1453 	ng = rcu_dereference(p->numa_group);
1454 	if (ng) {
1455 		unsigned long shared = group_faults_shared(ng);
1456 		unsigned long private = group_faults_priv(ng);
1457 
1458 		period *= refcount_read(&ng->refcount);
1459 		period *= shared + 1;
1460 		period /= private + shared + 1;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	return max(smin, period);
1465 }
1466 
1467 static unsigned int task_scan_max(struct task_struct *p)
1468 {
1469 	unsigned long smin = task_scan_min(p);
1470 	unsigned long smax;
1471 	struct numa_group *ng;
1472 
1473 	/* Watch for min being lower than max due to floor calculations */
1474 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475 
1476 	/* Scale the maximum scan period with the amount of shared memory. */
1477 	ng = deref_curr_numa_group(p);
1478 	if (ng) {
1479 		unsigned long shared = group_faults_shared(ng);
1480 		unsigned long private = group_faults_priv(ng);
1481 		unsigned long period = smax;
1482 
1483 		period *= refcount_read(&ng->refcount);
1484 		period *= shared + 1;
1485 		period /= private + shared + 1;
1486 
1487 		smax = max(smax, period);
1488 	}
1489 
1490 	return max(smin, smax);
1491 }
1492 
1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494 {
1495 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497 }
1498 
1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500 {
1501 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503 }
1504 
1505 /* Shared or private faults. */
1506 #define NR_NUMA_HINT_FAULT_TYPES 2
1507 
1508 /* Memory and CPU locality */
1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510 
1511 /* Averaged statistics, and temporary buffers. */
1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513 
1514 pid_t task_numa_group_id(struct task_struct *p)
1515 {
1516 	struct numa_group *ng;
1517 	pid_t gid = 0;
1518 
1519 	rcu_read_lock();
1520 	ng = rcu_dereference(p->numa_group);
1521 	if (ng)
1522 		gid = ng->gid;
1523 	rcu_read_unlock();
1524 
1525 	return gid;
1526 }
1527 
1528 /*
1529  * The averaged statistics, shared & private, memory & CPU,
1530  * occupy the first half of the array. The second half of the
1531  * array is for current counters, which are averaged into the
1532  * first set by task_numa_placement.
1533  */
1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535 {
1536 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537 }
1538 
1539 static inline unsigned long task_faults(struct task_struct *p, int nid)
1540 {
1541 	if (!p->numa_faults)
1542 		return 0;
1543 
1544 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546 }
1547 
1548 static inline unsigned long group_faults(struct task_struct *p, int nid)
1549 {
1550 	struct numa_group *ng = deref_task_numa_group(p);
1551 
1552 	if (!ng)
1553 		return 0;
1554 
1555 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557 }
1558 
1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560 {
1561 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563 }
1564 
1565 static inline unsigned long group_faults_priv(struct numa_group *ng)
1566 {
1567 	unsigned long faults = 0;
1568 	int node;
1569 
1570 	for_each_online_node(node) {
1571 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 	}
1573 
1574 	return faults;
1575 }
1576 
1577 static inline unsigned long group_faults_shared(struct numa_group *ng)
1578 {
1579 	unsigned long faults = 0;
1580 	int node;
1581 
1582 	for_each_online_node(node) {
1583 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 	}
1585 
1586 	return faults;
1587 }
1588 
1589 /*
1590  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591  * considered part of a numa group's pseudo-interleaving set. Migrations
1592  * between these nodes are slowed down, to allow things to settle down.
1593  */
1594 #define ACTIVE_NODE_FRACTION 3
1595 
1596 static bool numa_is_active_node(int nid, struct numa_group *ng)
1597 {
1598 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599 }
1600 
1601 /* Handle placement on systems where not all nodes are directly connected. */
1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603 					int lim_dist, bool task)
1604 {
1605 	unsigned long score = 0;
1606 	int node, max_dist;
1607 
1608 	/*
1609 	 * All nodes are directly connected, and the same distance
1610 	 * from each other. No need for fancy placement algorithms.
1611 	 */
1612 	if (sched_numa_topology_type == NUMA_DIRECT)
1613 		return 0;
1614 
1615 	/* sched_max_numa_distance may be changed in parallel. */
1616 	max_dist = READ_ONCE(sched_max_numa_distance);
1617 	/*
1618 	 * This code is called for each node, introducing N^2 complexity,
1619 	 * which should be ok given the number of nodes rarely exceeds 8.
1620 	 */
1621 	for_each_online_node(node) {
1622 		unsigned long faults;
1623 		int dist = node_distance(nid, node);
1624 
1625 		/*
1626 		 * The furthest away nodes in the system are not interesting
1627 		 * for placement; nid was already counted.
1628 		 */
1629 		if (dist >= max_dist || node == nid)
1630 			continue;
1631 
1632 		/*
1633 		 * On systems with a backplane NUMA topology, compare groups
1634 		 * of nodes, and move tasks towards the group with the most
1635 		 * memory accesses. When comparing two nodes at distance
1636 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 		 * of each group. Skip other nodes.
1638 		 */
1639 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640 			continue;
1641 
1642 		/* Add up the faults from nearby nodes. */
1643 		if (task)
1644 			faults = task_faults(p, node);
1645 		else
1646 			faults = group_faults(p, node);
1647 
1648 		/*
1649 		 * On systems with a glueless mesh NUMA topology, there are
1650 		 * no fixed "groups of nodes". Instead, nodes that are not
1651 		 * directly connected bounce traffic through intermediate
1652 		 * nodes; a numa_group can occupy any set of nodes.
1653 		 * The further away a node is, the less the faults count.
1654 		 * This seems to result in good task placement.
1655 		 */
1656 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657 			faults *= (max_dist - dist);
1658 			faults /= (max_dist - LOCAL_DISTANCE);
1659 		}
1660 
1661 		score += faults;
1662 	}
1663 
1664 	return score;
1665 }
1666 
1667 /*
1668  * These return the fraction of accesses done by a particular task, or
1669  * task group, on a particular numa node.  The group weight is given a
1670  * larger multiplier, in order to group tasks together that are almost
1671  * evenly spread out between numa nodes.
1672  */
1673 static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 					int dist)
1675 {
1676 	unsigned long faults, total_faults;
1677 
1678 	if (!p->numa_faults)
1679 		return 0;
1680 
1681 	total_faults = p->total_numa_faults;
1682 
1683 	if (!total_faults)
1684 		return 0;
1685 
1686 	faults = task_faults(p, nid);
1687 	faults += score_nearby_nodes(p, nid, dist, true);
1688 
1689 	return 1000 * faults / total_faults;
1690 }
1691 
1692 static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 					 int dist)
1694 {
1695 	struct numa_group *ng = deref_task_numa_group(p);
1696 	unsigned long faults, total_faults;
1697 
1698 	if (!ng)
1699 		return 0;
1700 
1701 	total_faults = ng->total_faults;
1702 
1703 	if (!total_faults)
1704 		return 0;
1705 
1706 	faults = group_faults(p, nid);
1707 	faults += score_nearby_nodes(p, nid, dist, false);
1708 
1709 	return 1000 * faults / total_faults;
1710 }
1711 
1712 /*
1713  * If memory tiering mode is enabled, cpupid of slow memory page is
1714  * used to record scan time instead of CPU and PID.  When tiering mode
1715  * is disabled at run time, the scan time (in cpupid) will be
1716  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1717  * access out of array bound.
1718  */
1719 static inline bool cpupid_valid(int cpupid)
1720 {
1721 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722 }
1723 
1724 /*
1725  * For memory tiering mode, if there are enough free pages (more than
1726  * enough watermark defined here) in fast memory node, to take full
1727  * advantage of fast memory capacity, all recently accessed slow
1728  * memory pages will be migrated to fast memory node without
1729  * considering hot threshold.
1730  */
1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732 {
1733 	int z;
1734 	unsigned long enough_wmark;
1735 
1736 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 			   pgdat->node_present_pages >> 4);
1738 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 		struct zone *zone = pgdat->node_zones + z;
1740 
1741 		if (!populated_zone(zone))
1742 			continue;
1743 
1744 		if (zone_watermark_ok(zone, 0,
1745 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746 				      ZONE_MOVABLE, 0))
1747 			return true;
1748 	}
1749 	return false;
1750 }
1751 
1752 /*
1753  * For memory tiering mode, when page tables are scanned, the scan
1754  * time will be recorded in struct page in addition to make page
1755  * PROT_NONE for slow memory page.  So when the page is accessed, in
1756  * hint page fault handler, the hint page fault latency is calculated
1757  * via,
1758  *
1759  *	hint page fault latency = hint page fault time - scan time
1760  *
1761  * The smaller the hint page fault latency, the higher the possibility
1762  * for the page to be hot.
1763  */
1764 static int numa_hint_fault_latency(struct folio *folio)
1765 {
1766 	int last_time, time;
1767 
1768 	time = jiffies_to_msecs(jiffies);
1769 	last_time = folio_xchg_access_time(folio, time);
1770 
1771 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772 }
1773 
1774 /*
1775  * For memory tiering mode, too high promotion/demotion throughput may
1776  * hurt application latency.  So we provide a mechanism to rate limit
1777  * the number of pages that are tried to be promoted.
1778  */
1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 				      unsigned long rate_limit, int nr)
1781 {
1782 	unsigned long nr_cand;
1783 	unsigned int now, start;
1784 
1785 	now = jiffies_to_msecs(jiffies);
1786 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 	start = pgdat->nbp_rl_start;
1789 	if (now - start > MSEC_PER_SEC &&
1790 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 		pgdat->nbp_rl_nr_cand = nr_cand;
1792 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 		return true;
1794 	return false;
1795 }
1796 
1797 #define NUMA_MIGRATION_ADJUST_STEPS	16
1798 
1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 					    unsigned long rate_limit,
1801 					    unsigned int ref_th)
1802 {
1803 	unsigned int now, start, th_period, unit_th, th;
1804 	unsigned long nr_cand, ref_cand, diff_cand;
1805 
1806 	now = jiffies_to_msecs(jiffies);
1807 	th_period = sysctl_numa_balancing_scan_period_max;
1808 	start = pgdat->nbp_th_start;
1809 	if (now - start > th_period &&
1810 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 		ref_cand = rate_limit *
1812 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 		th = pgdat->nbp_threshold ? : ref_th;
1817 		if (diff_cand > ref_cand * 11 / 10)
1818 			th = max(th - unit_th, unit_th);
1819 		else if (diff_cand < ref_cand * 9 / 10)
1820 			th = min(th + unit_th, ref_th * 2);
1821 		pgdat->nbp_th_nr_cand = nr_cand;
1822 		pgdat->nbp_threshold = th;
1823 	}
1824 }
1825 
1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827 				int src_nid, int dst_cpu)
1828 {
1829 	struct numa_group *ng = deref_curr_numa_group(p);
1830 	int dst_nid = cpu_to_node(dst_cpu);
1831 	int last_cpupid, this_cpupid;
1832 
1833 	/*
1834 	 * The pages in slow memory node should be migrated according
1835 	 * to hot/cold instead of private/shared.
1836 	 */
1837 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1838 	    !node_is_toptier(src_nid)) {
1839 		struct pglist_data *pgdat;
1840 		unsigned long rate_limit;
1841 		unsigned int latency, th, def_th;
1842 
1843 		pgdat = NODE_DATA(dst_nid);
1844 		if (pgdat_free_space_enough(pgdat)) {
1845 			/* workload changed, reset hot threshold */
1846 			pgdat->nbp_threshold = 0;
1847 			return true;
1848 		}
1849 
1850 		def_th = sysctl_numa_balancing_hot_threshold;
1851 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1852 			(20 - PAGE_SHIFT);
1853 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1854 
1855 		th = pgdat->nbp_threshold ? : def_th;
1856 		latency = numa_hint_fault_latency(folio);
1857 		if (latency >= th)
1858 			return false;
1859 
1860 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1861 						  folio_nr_pages(folio));
1862 	}
1863 
1864 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1865 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1866 
1867 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1868 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1869 		return false;
1870 
1871 	/*
1872 	 * Allow first faults or private faults to migrate immediately early in
1873 	 * the lifetime of a task. The magic number 4 is based on waiting for
1874 	 * two full passes of the "multi-stage node selection" test that is
1875 	 * executed below.
1876 	 */
1877 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1878 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1879 		return true;
1880 
1881 	/*
1882 	 * Multi-stage node selection is used in conjunction with a periodic
1883 	 * migration fault to build a temporal task<->page relation. By using
1884 	 * a two-stage filter we remove short/unlikely relations.
1885 	 *
1886 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1887 	 * a task's usage of a particular page (n_p) per total usage of this
1888 	 * page (n_t) (in a given time-span) to a probability.
1889 	 *
1890 	 * Our periodic faults will sample this probability and getting the
1891 	 * same result twice in a row, given these samples are fully
1892 	 * independent, is then given by P(n)^2, provided our sample period
1893 	 * is sufficiently short compared to the usage pattern.
1894 	 *
1895 	 * This quadric squishes small probabilities, making it less likely we
1896 	 * act on an unlikely task<->page relation.
1897 	 */
1898 	if (!cpupid_pid_unset(last_cpupid) &&
1899 				cpupid_to_nid(last_cpupid) != dst_nid)
1900 		return false;
1901 
1902 	/* Always allow migrate on private faults */
1903 	if (cpupid_match_pid(p, last_cpupid))
1904 		return true;
1905 
1906 	/* A shared fault, but p->numa_group has not been set up yet. */
1907 	if (!ng)
1908 		return true;
1909 
1910 	/*
1911 	 * Destination node is much more heavily used than the source
1912 	 * node? Allow migration.
1913 	 */
1914 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1915 					ACTIVE_NODE_FRACTION)
1916 		return true;
1917 
1918 	/*
1919 	 * Distribute memory according to CPU & memory use on each node,
1920 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1921 	 *
1922 	 * faults_cpu(dst)   3   faults_cpu(src)
1923 	 * --------------- * - > ---------------
1924 	 * faults_mem(dst)   4   faults_mem(src)
1925 	 */
1926 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1927 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1928 }
1929 
1930 /*
1931  * 'numa_type' describes the node at the moment of load balancing.
1932  */
1933 enum numa_type {
1934 	/* The node has spare capacity that can be used to run more tasks.  */
1935 	node_has_spare = 0,
1936 	/*
1937 	 * The node is fully used and the tasks don't compete for more CPU
1938 	 * cycles. Nevertheless, some tasks might wait before running.
1939 	 */
1940 	node_fully_busy,
1941 	/*
1942 	 * The node is overloaded and can't provide expected CPU cycles to all
1943 	 * tasks.
1944 	 */
1945 	node_overloaded
1946 };
1947 
1948 /* Cached statistics for all CPUs within a node */
1949 struct numa_stats {
1950 	unsigned long load;
1951 	unsigned long runnable;
1952 	unsigned long util;
1953 	/* Total compute capacity of CPUs on a node */
1954 	unsigned long compute_capacity;
1955 	unsigned int nr_running;
1956 	unsigned int weight;
1957 	enum numa_type node_type;
1958 	int idle_cpu;
1959 };
1960 
1961 struct task_numa_env {
1962 	struct task_struct *p;
1963 
1964 	int src_cpu, src_nid;
1965 	int dst_cpu, dst_nid;
1966 	int imb_numa_nr;
1967 
1968 	struct numa_stats src_stats, dst_stats;
1969 
1970 	int imbalance_pct;
1971 	int dist;
1972 
1973 	struct task_struct *best_task;
1974 	long best_imp;
1975 	int best_cpu;
1976 };
1977 
1978 static unsigned long cpu_load(struct rq *rq);
1979 static unsigned long cpu_runnable(struct rq *rq);
1980 
1981 static inline enum
1982 numa_type numa_classify(unsigned int imbalance_pct,
1983 			 struct numa_stats *ns)
1984 {
1985 	if ((ns->nr_running > ns->weight) &&
1986 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1987 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1988 		return node_overloaded;
1989 
1990 	if ((ns->nr_running < ns->weight) ||
1991 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1992 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1993 		return node_has_spare;
1994 
1995 	return node_fully_busy;
1996 }
1997 
1998 #ifdef CONFIG_SCHED_SMT
1999 /* Forward declarations of select_idle_sibling helpers */
2000 static inline bool test_idle_cores(int cpu);
2001 static inline int numa_idle_core(int idle_core, int cpu)
2002 {
2003 	if (!static_branch_likely(&sched_smt_present) ||
2004 	    idle_core >= 0 || !test_idle_cores(cpu))
2005 		return idle_core;
2006 
2007 	/*
2008 	 * Prefer cores instead of packing HT siblings
2009 	 * and triggering future load balancing.
2010 	 */
2011 	if (is_core_idle(cpu))
2012 		idle_core = cpu;
2013 
2014 	return idle_core;
2015 }
2016 #else
2017 static inline int numa_idle_core(int idle_core, int cpu)
2018 {
2019 	return idle_core;
2020 }
2021 #endif
2022 
2023 /*
2024  * Gather all necessary information to make NUMA balancing placement
2025  * decisions that are compatible with standard load balancer. This
2026  * borrows code and logic from update_sg_lb_stats but sharing a
2027  * common implementation is impractical.
2028  */
2029 static void update_numa_stats(struct task_numa_env *env,
2030 			      struct numa_stats *ns, int nid,
2031 			      bool find_idle)
2032 {
2033 	int cpu, idle_core = -1;
2034 
2035 	memset(ns, 0, sizeof(*ns));
2036 	ns->idle_cpu = -1;
2037 
2038 	rcu_read_lock();
2039 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2040 		struct rq *rq = cpu_rq(cpu);
2041 
2042 		ns->load += cpu_load(rq);
2043 		ns->runnable += cpu_runnable(rq);
2044 		ns->util += cpu_util_cfs(cpu);
2045 		ns->nr_running += rq->cfs.h_nr_running;
2046 		ns->compute_capacity += capacity_of(cpu);
2047 
2048 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2049 			if (READ_ONCE(rq->numa_migrate_on) ||
2050 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2051 				continue;
2052 
2053 			if (ns->idle_cpu == -1)
2054 				ns->idle_cpu = cpu;
2055 
2056 			idle_core = numa_idle_core(idle_core, cpu);
2057 		}
2058 	}
2059 	rcu_read_unlock();
2060 
2061 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2062 
2063 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2064 
2065 	if (idle_core >= 0)
2066 		ns->idle_cpu = idle_core;
2067 }
2068 
2069 static void task_numa_assign(struct task_numa_env *env,
2070 			     struct task_struct *p, long imp)
2071 {
2072 	struct rq *rq = cpu_rq(env->dst_cpu);
2073 
2074 	/* Check if run-queue part of active NUMA balance. */
2075 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2076 		int cpu;
2077 		int start = env->dst_cpu;
2078 
2079 		/* Find alternative idle CPU. */
2080 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2081 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2082 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2083 				continue;
2084 			}
2085 
2086 			env->dst_cpu = cpu;
2087 			rq = cpu_rq(env->dst_cpu);
2088 			if (!xchg(&rq->numa_migrate_on, 1))
2089 				goto assign;
2090 		}
2091 
2092 		/* Failed to find an alternative idle CPU */
2093 		return;
2094 	}
2095 
2096 assign:
2097 	/*
2098 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2099 	 * found a better CPU to move/swap.
2100 	 */
2101 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2102 		rq = cpu_rq(env->best_cpu);
2103 		WRITE_ONCE(rq->numa_migrate_on, 0);
2104 	}
2105 
2106 	if (env->best_task)
2107 		put_task_struct(env->best_task);
2108 	if (p)
2109 		get_task_struct(p);
2110 
2111 	env->best_task = p;
2112 	env->best_imp = imp;
2113 	env->best_cpu = env->dst_cpu;
2114 }
2115 
2116 static bool load_too_imbalanced(long src_load, long dst_load,
2117 				struct task_numa_env *env)
2118 {
2119 	long imb, old_imb;
2120 	long orig_src_load, orig_dst_load;
2121 	long src_capacity, dst_capacity;
2122 
2123 	/*
2124 	 * The load is corrected for the CPU capacity available on each node.
2125 	 *
2126 	 * src_load        dst_load
2127 	 * ------------ vs ---------
2128 	 * src_capacity    dst_capacity
2129 	 */
2130 	src_capacity = env->src_stats.compute_capacity;
2131 	dst_capacity = env->dst_stats.compute_capacity;
2132 
2133 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2134 
2135 	orig_src_load = env->src_stats.load;
2136 	orig_dst_load = env->dst_stats.load;
2137 
2138 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2139 
2140 	/* Would this change make things worse? */
2141 	return (imb > old_imb);
2142 }
2143 
2144 /*
2145  * Maximum NUMA importance can be 1998 (2*999);
2146  * SMALLIMP @ 30 would be close to 1998/64.
2147  * Used to deter task migration.
2148  */
2149 #define SMALLIMP	30
2150 
2151 /*
2152  * This checks if the overall compute and NUMA accesses of the system would
2153  * be improved if the source tasks was migrated to the target dst_cpu taking
2154  * into account that it might be best if task running on the dst_cpu should
2155  * be exchanged with the source task
2156  */
2157 static bool task_numa_compare(struct task_numa_env *env,
2158 			      long taskimp, long groupimp, bool maymove)
2159 {
2160 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2161 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2162 	long imp = p_ng ? groupimp : taskimp;
2163 	struct task_struct *cur;
2164 	long src_load, dst_load;
2165 	int dist = env->dist;
2166 	long moveimp = imp;
2167 	long load;
2168 	bool stopsearch = false;
2169 
2170 	if (READ_ONCE(dst_rq->numa_migrate_on))
2171 		return false;
2172 
2173 	rcu_read_lock();
2174 	cur = rcu_dereference(dst_rq->curr);
2175 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2176 		cur = NULL;
2177 
2178 	/*
2179 	 * Because we have preemption enabled we can get migrated around and
2180 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2181 	 */
2182 	if (cur == env->p) {
2183 		stopsearch = true;
2184 		goto unlock;
2185 	}
2186 
2187 	if (!cur) {
2188 		if (maymove && moveimp >= env->best_imp)
2189 			goto assign;
2190 		else
2191 			goto unlock;
2192 	}
2193 
2194 	/* Skip this swap candidate if cannot move to the source cpu. */
2195 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2196 		goto unlock;
2197 
2198 	/*
2199 	 * Skip this swap candidate if it is not moving to its preferred
2200 	 * node and the best task is.
2201 	 */
2202 	if (env->best_task &&
2203 	    env->best_task->numa_preferred_nid == env->src_nid &&
2204 	    cur->numa_preferred_nid != env->src_nid) {
2205 		goto unlock;
2206 	}
2207 
2208 	/*
2209 	 * "imp" is the fault differential for the source task between the
2210 	 * source and destination node. Calculate the total differential for
2211 	 * the source task and potential destination task. The more negative
2212 	 * the value is, the more remote accesses that would be expected to
2213 	 * be incurred if the tasks were swapped.
2214 	 *
2215 	 * If dst and source tasks are in the same NUMA group, or not
2216 	 * in any group then look only at task weights.
2217 	 */
2218 	cur_ng = rcu_dereference(cur->numa_group);
2219 	if (cur_ng == p_ng) {
2220 		/*
2221 		 * Do not swap within a group or between tasks that have
2222 		 * no group if there is spare capacity. Swapping does
2223 		 * not address the load imbalance and helps one task at
2224 		 * the cost of punishing another.
2225 		 */
2226 		if (env->dst_stats.node_type == node_has_spare)
2227 			goto unlock;
2228 
2229 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2230 		      task_weight(cur, env->dst_nid, dist);
2231 		/*
2232 		 * Add some hysteresis to prevent swapping the
2233 		 * tasks within a group over tiny differences.
2234 		 */
2235 		if (cur_ng)
2236 			imp -= imp / 16;
2237 	} else {
2238 		/*
2239 		 * Compare the group weights. If a task is all by itself
2240 		 * (not part of a group), use the task weight instead.
2241 		 */
2242 		if (cur_ng && p_ng)
2243 			imp += group_weight(cur, env->src_nid, dist) -
2244 			       group_weight(cur, env->dst_nid, dist);
2245 		else
2246 			imp += task_weight(cur, env->src_nid, dist) -
2247 			       task_weight(cur, env->dst_nid, dist);
2248 	}
2249 
2250 	/* Discourage picking a task already on its preferred node */
2251 	if (cur->numa_preferred_nid == env->dst_nid)
2252 		imp -= imp / 16;
2253 
2254 	/*
2255 	 * Encourage picking a task that moves to its preferred node.
2256 	 * This potentially makes imp larger than it's maximum of
2257 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2258 	 * case, it does not matter.
2259 	 */
2260 	if (cur->numa_preferred_nid == env->src_nid)
2261 		imp += imp / 8;
2262 
2263 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2264 		imp = moveimp;
2265 		cur = NULL;
2266 		goto assign;
2267 	}
2268 
2269 	/*
2270 	 * Prefer swapping with a task moving to its preferred node over a
2271 	 * task that is not.
2272 	 */
2273 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2274 	    env->best_task->numa_preferred_nid != env->src_nid) {
2275 		goto assign;
2276 	}
2277 
2278 	/*
2279 	 * If the NUMA importance is less than SMALLIMP,
2280 	 * task migration might only result in ping pong
2281 	 * of tasks and also hurt performance due to cache
2282 	 * misses.
2283 	 */
2284 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2285 		goto unlock;
2286 
2287 	/*
2288 	 * In the overloaded case, try and keep the load balanced.
2289 	 */
2290 	load = task_h_load(env->p) - task_h_load(cur);
2291 	if (!load)
2292 		goto assign;
2293 
2294 	dst_load = env->dst_stats.load + load;
2295 	src_load = env->src_stats.load - load;
2296 
2297 	if (load_too_imbalanced(src_load, dst_load, env))
2298 		goto unlock;
2299 
2300 assign:
2301 	/* Evaluate an idle CPU for a task numa move. */
2302 	if (!cur) {
2303 		int cpu = env->dst_stats.idle_cpu;
2304 
2305 		/* Nothing cached so current CPU went idle since the search. */
2306 		if (cpu < 0)
2307 			cpu = env->dst_cpu;
2308 
2309 		/*
2310 		 * If the CPU is no longer truly idle and the previous best CPU
2311 		 * is, keep using it.
2312 		 */
2313 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2314 		    idle_cpu(env->best_cpu)) {
2315 			cpu = env->best_cpu;
2316 		}
2317 
2318 		env->dst_cpu = cpu;
2319 	}
2320 
2321 	task_numa_assign(env, cur, imp);
2322 
2323 	/*
2324 	 * If a move to idle is allowed because there is capacity or load
2325 	 * balance improves then stop the search. While a better swap
2326 	 * candidate may exist, a search is not free.
2327 	 */
2328 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2329 		stopsearch = true;
2330 
2331 	/*
2332 	 * If a swap candidate must be identified and the current best task
2333 	 * moves its preferred node then stop the search.
2334 	 */
2335 	if (!maymove && env->best_task &&
2336 	    env->best_task->numa_preferred_nid == env->src_nid) {
2337 		stopsearch = true;
2338 	}
2339 unlock:
2340 	rcu_read_unlock();
2341 
2342 	return stopsearch;
2343 }
2344 
2345 static void task_numa_find_cpu(struct task_numa_env *env,
2346 				long taskimp, long groupimp)
2347 {
2348 	bool maymove = false;
2349 	int cpu;
2350 
2351 	/*
2352 	 * If dst node has spare capacity, then check if there is an
2353 	 * imbalance that would be overruled by the load balancer.
2354 	 */
2355 	if (env->dst_stats.node_type == node_has_spare) {
2356 		unsigned int imbalance;
2357 		int src_running, dst_running;
2358 
2359 		/*
2360 		 * Would movement cause an imbalance? Note that if src has
2361 		 * more running tasks that the imbalance is ignored as the
2362 		 * move improves the imbalance from the perspective of the
2363 		 * CPU load balancer.
2364 		 * */
2365 		src_running = env->src_stats.nr_running - 1;
2366 		dst_running = env->dst_stats.nr_running + 1;
2367 		imbalance = max(0, dst_running - src_running);
2368 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2369 						  env->imb_numa_nr);
2370 
2371 		/* Use idle CPU if there is no imbalance */
2372 		if (!imbalance) {
2373 			maymove = true;
2374 			if (env->dst_stats.idle_cpu >= 0) {
2375 				env->dst_cpu = env->dst_stats.idle_cpu;
2376 				task_numa_assign(env, NULL, 0);
2377 				return;
2378 			}
2379 		}
2380 	} else {
2381 		long src_load, dst_load, load;
2382 		/*
2383 		 * If the improvement from just moving env->p direction is better
2384 		 * than swapping tasks around, check if a move is possible.
2385 		 */
2386 		load = task_h_load(env->p);
2387 		dst_load = env->dst_stats.load + load;
2388 		src_load = env->src_stats.load - load;
2389 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2390 	}
2391 
2392 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2393 		/* Skip this CPU if the source task cannot migrate */
2394 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2395 			continue;
2396 
2397 		env->dst_cpu = cpu;
2398 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2399 			break;
2400 	}
2401 }
2402 
2403 static int task_numa_migrate(struct task_struct *p)
2404 {
2405 	struct task_numa_env env = {
2406 		.p = p,
2407 
2408 		.src_cpu = task_cpu(p),
2409 		.src_nid = task_node(p),
2410 
2411 		.imbalance_pct = 112,
2412 
2413 		.best_task = NULL,
2414 		.best_imp = 0,
2415 		.best_cpu = -1,
2416 	};
2417 	unsigned long taskweight, groupweight;
2418 	struct sched_domain *sd;
2419 	long taskimp, groupimp;
2420 	struct numa_group *ng;
2421 	struct rq *best_rq;
2422 	int nid, ret, dist;
2423 
2424 	/*
2425 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2426 	 * imbalance and would be the first to start moving tasks about.
2427 	 *
2428 	 * And we want to avoid any moving of tasks about, as that would create
2429 	 * random movement of tasks -- counter the numa conditions we're trying
2430 	 * to satisfy here.
2431 	 */
2432 	rcu_read_lock();
2433 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2434 	if (sd) {
2435 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2436 		env.imb_numa_nr = sd->imb_numa_nr;
2437 	}
2438 	rcu_read_unlock();
2439 
2440 	/*
2441 	 * Cpusets can break the scheduler domain tree into smaller
2442 	 * balance domains, some of which do not cross NUMA boundaries.
2443 	 * Tasks that are "trapped" in such domains cannot be migrated
2444 	 * elsewhere, so there is no point in (re)trying.
2445 	 */
2446 	if (unlikely(!sd)) {
2447 		sched_setnuma(p, task_node(p));
2448 		return -EINVAL;
2449 	}
2450 
2451 	env.dst_nid = p->numa_preferred_nid;
2452 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2453 	taskweight = task_weight(p, env.src_nid, dist);
2454 	groupweight = group_weight(p, env.src_nid, dist);
2455 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2456 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2457 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2458 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2459 
2460 	/* Try to find a spot on the preferred nid. */
2461 	task_numa_find_cpu(&env, taskimp, groupimp);
2462 
2463 	/*
2464 	 * Look at other nodes in these cases:
2465 	 * - there is no space available on the preferred_nid
2466 	 * - the task is part of a numa_group that is interleaved across
2467 	 *   multiple NUMA nodes; in order to better consolidate the group,
2468 	 *   we need to check other locations.
2469 	 */
2470 	ng = deref_curr_numa_group(p);
2471 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2472 		for_each_node_state(nid, N_CPU) {
2473 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2474 				continue;
2475 
2476 			dist = node_distance(env.src_nid, env.dst_nid);
2477 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2478 						dist != env.dist) {
2479 				taskweight = task_weight(p, env.src_nid, dist);
2480 				groupweight = group_weight(p, env.src_nid, dist);
2481 			}
2482 
2483 			/* Only consider nodes where both task and groups benefit */
2484 			taskimp = task_weight(p, nid, dist) - taskweight;
2485 			groupimp = group_weight(p, nid, dist) - groupweight;
2486 			if (taskimp < 0 && groupimp < 0)
2487 				continue;
2488 
2489 			env.dist = dist;
2490 			env.dst_nid = nid;
2491 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2492 			task_numa_find_cpu(&env, taskimp, groupimp);
2493 		}
2494 	}
2495 
2496 	/*
2497 	 * If the task is part of a workload that spans multiple NUMA nodes,
2498 	 * and is migrating into one of the workload's active nodes, remember
2499 	 * this node as the task's preferred numa node, so the workload can
2500 	 * settle down.
2501 	 * A task that migrated to a second choice node will be better off
2502 	 * trying for a better one later. Do not set the preferred node here.
2503 	 */
2504 	if (ng) {
2505 		if (env.best_cpu == -1)
2506 			nid = env.src_nid;
2507 		else
2508 			nid = cpu_to_node(env.best_cpu);
2509 
2510 		if (nid != p->numa_preferred_nid)
2511 			sched_setnuma(p, nid);
2512 	}
2513 
2514 	/* No better CPU than the current one was found. */
2515 	if (env.best_cpu == -1) {
2516 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2517 		return -EAGAIN;
2518 	}
2519 
2520 	best_rq = cpu_rq(env.best_cpu);
2521 	if (env.best_task == NULL) {
2522 		ret = migrate_task_to(p, env.best_cpu);
2523 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2524 		if (ret != 0)
2525 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2526 		return ret;
2527 	}
2528 
2529 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2530 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2531 
2532 	if (ret != 0)
2533 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2534 	put_task_struct(env.best_task);
2535 	return ret;
2536 }
2537 
2538 /* Attempt to migrate a task to a CPU on the preferred node. */
2539 static void numa_migrate_preferred(struct task_struct *p)
2540 {
2541 	unsigned long interval = HZ;
2542 
2543 	/* This task has no NUMA fault statistics yet */
2544 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2545 		return;
2546 
2547 	/* Periodically retry migrating the task to the preferred node */
2548 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2549 	p->numa_migrate_retry = jiffies + interval;
2550 
2551 	/* Success if task is already running on preferred CPU */
2552 	if (task_node(p) == p->numa_preferred_nid)
2553 		return;
2554 
2555 	/* Otherwise, try migrate to a CPU on the preferred node */
2556 	task_numa_migrate(p);
2557 }
2558 
2559 /*
2560  * Find out how many nodes the workload is actively running on. Do this by
2561  * tracking the nodes from which NUMA hinting faults are triggered. This can
2562  * be different from the set of nodes where the workload's memory is currently
2563  * located.
2564  */
2565 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2566 {
2567 	unsigned long faults, max_faults = 0;
2568 	int nid, active_nodes = 0;
2569 
2570 	for_each_node_state(nid, N_CPU) {
2571 		faults = group_faults_cpu(numa_group, nid);
2572 		if (faults > max_faults)
2573 			max_faults = faults;
2574 	}
2575 
2576 	for_each_node_state(nid, N_CPU) {
2577 		faults = group_faults_cpu(numa_group, nid);
2578 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2579 			active_nodes++;
2580 	}
2581 
2582 	numa_group->max_faults_cpu = max_faults;
2583 	numa_group->active_nodes = active_nodes;
2584 }
2585 
2586 /*
2587  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2588  * increments. The more local the fault statistics are, the higher the scan
2589  * period will be for the next scan window. If local/(local+remote) ratio is
2590  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2591  * the scan period will decrease. Aim for 70% local accesses.
2592  */
2593 #define NUMA_PERIOD_SLOTS 10
2594 #define NUMA_PERIOD_THRESHOLD 7
2595 
2596 /*
2597  * Increase the scan period (slow down scanning) if the majority of
2598  * our memory is already on our local node, or if the majority of
2599  * the page accesses are shared with other processes.
2600  * Otherwise, decrease the scan period.
2601  */
2602 static void update_task_scan_period(struct task_struct *p,
2603 			unsigned long shared, unsigned long private)
2604 {
2605 	unsigned int period_slot;
2606 	int lr_ratio, ps_ratio;
2607 	int diff;
2608 
2609 	unsigned long remote = p->numa_faults_locality[0];
2610 	unsigned long local = p->numa_faults_locality[1];
2611 
2612 	/*
2613 	 * If there were no record hinting faults then either the task is
2614 	 * completely idle or all activity is in areas that are not of interest
2615 	 * to automatic numa balancing. Related to that, if there were failed
2616 	 * migration then it implies we are migrating too quickly or the local
2617 	 * node is overloaded. In either case, scan slower
2618 	 */
2619 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2620 		p->numa_scan_period = min(p->numa_scan_period_max,
2621 			p->numa_scan_period << 1);
2622 
2623 		p->mm->numa_next_scan = jiffies +
2624 			msecs_to_jiffies(p->numa_scan_period);
2625 
2626 		return;
2627 	}
2628 
2629 	/*
2630 	 * Prepare to scale scan period relative to the current period.
2631 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2632 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2633 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2634 	 */
2635 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2636 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2637 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2638 
2639 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2640 		/*
2641 		 * Most memory accesses are local. There is no need to
2642 		 * do fast NUMA scanning, since memory is already local.
2643 		 */
2644 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2645 		if (!slot)
2646 			slot = 1;
2647 		diff = slot * period_slot;
2648 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2649 		/*
2650 		 * Most memory accesses are shared with other tasks.
2651 		 * There is no point in continuing fast NUMA scanning,
2652 		 * since other tasks may just move the memory elsewhere.
2653 		 */
2654 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2655 		if (!slot)
2656 			slot = 1;
2657 		diff = slot * period_slot;
2658 	} else {
2659 		/*
2660 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2661 		 * yet they are not on the local NUMA node. Speed up
2662 		 * NUMA scanning to get the memory moved over.
2663 		 */
2664 		int ratio = max(lr_ratio, ps_ratio);
2665 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2666 	}
2667 
2668 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2669 			task_scan_min(p), task_scan_max(p));
2670 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2671 }
2672 
2673 /*
2674  * Get the fraction of time the task has been running since the last
2675  * NUMA placement cycle. The scheduler keeps similar statistics, but
2676  * decays those on a 32ms period, which is orders of magnitude off
2677  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2678  * stats only if the task is so new there are no NUMA statistics yet.
2679  */
2680 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2681 {
2682 	u64 runtime, delta, now;
2683 	/* Use the start of this time slice to avoid calculations. */
2684 	now = p->se.exec_start;
2685 	runtime = p->se.sum_exec_runtime;
2686 
2687 	if (p->last_task_numa_placement) {
2688 		delta = runtime - p->last_sum_exec_runtime;
2689 		*period = now - p->last_task_numa_placement;
2690 
2691 		/* Avoid time going backwards, prevent potential divide error: */
2692 		if (unlikely((s64)*period < 0))
2693 			*period = 0;
2694 	} else {
2695 		delta = p->se.avg.load_sum;
2696 		*period = LOAD_AVG_MAX;
2697 	}
2698 
2699 	p->last_sum_exec_runtime = runtime;
2700 	p->last_task_numa_placement = now;
2701 
2702 	return delta;
2703 }
2704 
2705 /*
2706  * Determine the preferred nid for a task in a numa_group. This needs to
2707  * be done in a way that produces consistent results with group_weight,
2708  * otherwise workloads might not converge.
2709  */
2710 static int preferred_group_nid(struct task_struct *p, int nid)
2711 {
2712 	nodemask_t nodes;
2713 	int dist;
2714 
2715 	/* Direct connections between all NUMA nodes. */
2716 	if (sched_numa_topology_type == NUMA_DIRECT)
2717 		return nid;
2718 
2719 	/*
2720 	 * On a system with glueless mesh NUMA topology, group_weight
2721 	 * scores nodes according to the number of NUMA hinting faults on
2722 	 * both the node itself, and on nearby nodes.
2723 	 */
2724 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2725 		unsigned long score, max_score = 0;
2726 		int node, max_node = nid;
2727 
2728 		dist = sched_max_numa_distance;
2729 
2730 		for_each_node_state(node, N_CPU) {
2731 			score = group_weight(p, node, dist);
2732 			if (score > max_score) {
2733 				max_score = score;
2734 				max_node = node;
2735 			}
2736 		}
2737 		return max_node;
2738 	}
2739 
2740 	/*
2741 	 * Finding the preferred nid in a system with NUMA backplane
2742 	 * interconnect topology is more involved. The goal is to locate
2743 	 * tasks from numa_groups near each other in the system, and
2744 	 * untangle workloads from different sides of the system. This requires
2745 	 * searching down the hierarchy of node groups, recursively searching
2746 	 * inside the highest scoring group of nodes. The nodemask tricks
2747 	 * keep the complexity of the search down.
2748 	 */
2749 	nodes = node_states[N_CPU];
2750 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2751 		unsigned long max_faults = 0;
2752 		nodemask_t max_group = NODE_MASK_NONE;
2753 		int a, b;
2754 
2755 		/* Are there nodes at this distance from each other? */
2756 		if (!find_numa_distance(dist))
2757 			continue;
2758 
2759 		for_each_node_mask(a, nodes) {
2760 			unsigned long faults = 0;
2761 			nodemask_t this_group;
2762 			nodes_clear(this_group);
2763 
2764 			/* Sum group's NUMA faults; includes a==b case. */
2765 			for_each_node_mask(b, nodes) {
2766 				if (node_distance(a, b) < dist) {
2767 					faults += group_faults(p, b);
2768 					node_set(b, this_group);
2769 					node_clear(b, nodes);
2770 				}
2771 			}
2772 
2773 			/* Remember the top group. */
2774 			if (faults > max_faults) {
2775 				max_faults = faults;
2776 				max_group = this_group;
2777 				/*
2778 				 * subtle: at the smallest distance there is
2779 				 * just one node left in each "group", the
2780 				 * winner is the preferred nid.
2781 				 */
2782 				nid = a;
2783 			}
2784 		}
2785 		/* Next round, evaluate the nodes within max_group. */
2786 		if (!max_faults)
2787 			break;
2788 		nodes = max_group;
2789 	}
2790 	return nid;
2791 }
2792 
2793 static void task_numa_placement(struct task_struct *p)
2794 {
2795 	int seq, nid, max_nid = NUMA_NO_NODE;
2796 	unsigned long max_faults = 0;
2797 	unsigned long fault_types[2] = { 0, 0 };
2798 	unsigned long total_faults;
2799 	u64 runtime, period;
2800 	spinlock_t *group_lock = NULL;
2801 	struct numa_group *ng;
2802 
2803 	/*
2804 	 * The p->mm->numa_scan_seq field gets updated without
2805 	 * exclusive access. Use READ_ONCE() here to ensure
2806 	 * that the field is read in a single access:
2807 	 */
2808 	seq = READ_ONCE(p->mm->numa_scan_seq);
2809 	if (p->numa_scan_seq == seq)
2810 		return;
2811 	p->numa_scan_seq = seq;
2812 	p->numa_scan_period_max = task_scan_max(p);
2813 
2814 	total_faults = p->numa_faults_locality[0] +
2815 		       p->numa_faults_locality[1];
2816 	runtime = numa_get_avg_runtime(p, &period);
2817 
2818 	/* If the task is part of a group prevent parallel updates to group stats */
2819 	ng = deref_curr_numa_group(p);
2820 	if (ng) {
2821 		group_lock = &ng->lock;
2822 		spin_lock_irq(group_lock);
2823 	}
2824 
2825 	/* Find the node with the highest number of faults */
2826 	for_each_online_node(nid) {
2827 		/* Keep track of the offsets in numa_faults array */
2828 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2829 		unsigned long faults = 0, group_faults = 0;
2830 		int priv;
2831 
2832 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2833 			long diff, f_diff, f_weight;
2834 
2835 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2836 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2837 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2838 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2839 
2840 			/* Decay existing window, copy faults since last scan */
2841 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2842 			fault_types[priv] += p->numa_faults[membuf_idx];
2843 			p->numa_faults[membuf_idx] = 0;
2844 
2845 			/*
2846 			 * Normalize the faults_from, so all tasks in a group
2847 			 * count according to CPU use, instead of by the raw
2848 			 * number of faults. Tasks with little runtime have
2849 			 * little over-all impact on throughput, and thus their
2850 			 * faults are less important.
2851 			 */
2852 			f_weight = div64_u64(runtime << 16, period + 1);
2853 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2854 				   (total_faults + 1);
2855 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2856 			p->numa_faults[cpubuf_idx] = 0;
2857 
2858 			p->numa_faults[mem_idx] += diff;
2859 			p->numa_faults[cpu_idx] += f_diff;
2860 			faults += p->numa_faults[mem_idx];
2861 			p->total_numa_faults += diff;
2862 			if (ng) {
2863 				/*
2864 				 * safe because we can only change our own group
2865 				 *
2866 				 * mem_idx represents the offset for a given
2867 				 * nid and priv in a specific region because it
2868 				 * is at the beginning of the numa_faults array.
2869 				 */
2870 				ng->faults[mem_idx] += diff;
2871 				ng->faults[cpu_idx] += f_diff;
2872 				ng->total_faults += diff;
2873 				group_faults += ng->faults[mem_idx];
2874 			}
2875 		}
2876 
2877 		if (!ng) {
2878 			if (faults > max_faults) {
2879 				max_faults = faults;
2880 				max_nid = nid;
2881 			}
2882 		} else if (group_faults > max_faults) {
2883 			max_faults = group_faults;
2884 			max_nid = nid;
2885 		}
2886 	}
2887 
2888 	/* Cannot migrate task to CPU-less node */
2889 	max_nid = numa_nearest_node(max_nid, N_CPU);
2890 
2891 	if (ng) {
2892 		numa_group_count_active_nodes(ng);
2893 		spin_unlock_irq(group_lock);
2894 		max_nid = preferred_group_nid(p, max_nid);
2895 	}
2896 
2897 	if (max_faults) {
2898 		/* Set the new preferred node */
2899 		if (max_nid != p->numa_preferred_nid)
2900 			sched_setnuma(p, max_nid);
2901 	}
2902 
2903 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2904 }
2905 
2906 static inline int get_numa_group(struct numa_group *grp)
2907 {
2908 	return refcount_inc_not_zero(&grp->refcount);
2909 }
2910 
2911 static inline void put_numa_group(struct numa_group *grp)
2912 {
2913 	if (refcount_dec_and_test(&grp->refcount))
2914 		kfree_rcu(grp, rcu);
2915 }
2916 
2917 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2918 			int *priv)
2919 {
2920 	struct numa_group *grp, *my_grp;
2921 	struct task_struct *tsk;
2922 	bool join = false;
2923 	int cpu = cpupid_to_cpu(cpupid);
2924 	int i;
2925 
2926 	if (unlikely(!deref_curr_numa_group(p))) {
2927 		unsigned int size = sizeof(struct numa_group) +
2928 				    NR_NUMA_HINT_FAULT_STATS *
2929 				    nr_node_ids * sizeof(unsigned long);
2930 
2931 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2932 		if (!grp)
2933 			return;
2934 
2935 		refcount_set(&grp->refcount, 1);
2936 		grp->active_nodes = 1;
2937 		grp->max_faults_cpu = 0;
2938 		spin_lock_init(&grp->lock);
2939 		grp->gid = p->pid;
2940 
2941 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2942 			grp->faults[i] = p->numa_faults[i];
2943 
2944 		grp->total_faults = p->total_numa_faults;
2945 
2946 		grp->nr_tasks++;
2947 		rcu_assign_pointer(p->numa_group, grp);
2948 	}
2949 
2950 	rcu_read_lock();
2951 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2952 
2953 	if (!cpupid_match_pid(tsk, cpupid))
2954 		goto no_join;
2955 
2956 	grp = rcu_dereference(tsk->numa_group);
2957 	if (!grp)
2958 		goto no_join;
2959 
2960 	my_grp = deref_curr_numa_group(p);
2961 	if (grp == my_grp)
2962 		goto no_join;
2963 
2964 	/*
2965 	 * Only join the other group if its bigger; if we're the bigger group,
2966 	 * the other task will join us.
2967 	 */
2968 	if (my_grp->nr_tasks > grp->nr_tasks)
2969 		goto no_join;
2970 
2971 	/*
2972 	 * Tie-break on the grp address.
2973 	 */
2974 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2975 		goto no_join;
2976 
2977 	/* Always join threads in the same process. */
2978 	if (tsk->mm == current->mm)
2979 		join = true;
2980 
2981 	/* Simple filter to avoid false positives due to PID collisions */
2982 	if (flags & TNF_SHARED)
2983 		join = true;
2984 
2985 	/* Update priv based on whether false sharing was detected */
2986 	*priv = !join;
2987 
2988 	if (join && !get_numa_group(grp))
2989 		goto no_join;
2990 
2991 	rcu_read_unlock();
2992 
2993 	if (!join)
2994 		return;
2995 
2996 	WARN_ON_ONCE(irqs_disabled());
2997 	double_lock_irq(&my_grp->lock, &grp->lock);
2998 
2999 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3000 		my_grp->faults[i] -= p->numa_faults[i];
3001 		grp->faults[i] += p->numa_faults[i];
3002 	}
3003 	my_grp->total_faults -= p->total_numa_faults;
3004 	grp->total_faults += p->total_numa_faults;
3005 
3006 	my_grp->nr_tasks--;
3007 	grp->nr_tasks++;
3008 
3009 	spin_unlock(&my_grp->lock);
3010 	spin_unlock_irq(&grp->lock);
3011 
3012 	rcu_assign_pointer(p->numa_group, grp);
3013 
3014 	put_numa_group(my_grp);
3015 	return;
3016 
3017 no_join:
3018 	rcu_read_unlock();
3019 	return;
3020 }
3021 
3022 /*
3023  * Get rid of NUMA statistics associated with a task (either current or dead).
3024  * If @final is set, the task is dead and has reached refcount zero, so we can
3025  * safely free all relevant data structures. Otherwise, there might be
3026  * concurrent reads from places like load balancing and procfs, and we should
3027  * reset the data back to default state without freeing ->numa_faults.
3028  */
3029 void task_numa_free(struct task_struct *p, bool final)
3030 {
3031 	/* safe: p either is current or is being freed by current */
3032 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3033 	unsigned long *numa_faults = p->numa_faults;
3034 	unsigned long flags;
3035 	int i;
3036 
3037 	if (!numa_faults)
3038 		return;
3039 
3040 	if (grp) {
3041 		spin_lock_irqsave(&grp->lock, flags);
3042 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3043 			grp->faults[i] -= p->numa_faults[i];
3044 		grp->total_faults -= p->total_numa_faults;
3045 
3046 		grp->nr_tasks--;
3047 		spin_unlock_irqrestore(&grp->lock, flags);
3048 		RCU_INIT_POINTER(p->numa_group, NULL);
3049 		put_numa_group(grp);
3050 	}
3051 
3052 	if (final) {
3053 		p->numa_faults = NULL;
3054 		kfree(numa_faults);
3055 	} else {
3056 		p->total_numa_faults = 0;
3057 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3058 			numa_faults[i] = 0;
3059 	}
3060 }
3061 
3062 /*
3063  * Got a PROT_NONE fault for a page on @node.
3064  */
3065 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3066 {
3067 	struct task_struct *p = current;
3068 	bool migrated = flags & TNF_MIGRATED;
3069 	int cpu_node = task_node(current);
3070 	int local = !!(flags & TNF_FAULT_LOCAL);
3071 	struct numa_group *ng;
3072 	int priv;
3073 
3074 	if (!static_branch_likely(&sched_numa_balancing))
3075 		return;
3076 
3077 	/* for example, ksmd faulting in a user's mm */
3078 	if (!p->mm)
3079 		return;
3080 
3081 	/*
3082 	 * NUMA faults statistics are unnecessary for the slow memory
3083 	 * node for memory tiering mode.
3084 	 */
3085 	if (!node_is_toptier(mem_node) &&
3086 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3087 	     !cpupid_valid(last_cpupid)))
3088 		return;
3089 
3090 	/* Allocate buffer to track faults on a per-node basis */
3091 	if (unlikely(!p->numa_faults)) {
3092 		int size = sizeof(*p->numa_faults) *
3093 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3094 
3095 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3096 		if (!p->numa_faults)
3097 			return;
3098 
3099 		p->total_numa_faults = 0;
3100 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3101 	}
3102 
3103 	/*
3104 	 * First accesses are treated as private, otherwise consider accesses
3105 	 * to be private if the accessing pid has not changed
3106 	 */
3107 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3108 		priv = 1;
3109 	} else {
3110 		priv = cpupid_match_pid(p, last_cpupid);
3111 		if (!priv && !(flags & TNF_NO_GROUP))
3112 			task_numa_group(p, last_cpupid, flags, &priv);
3113 	}
3114 
3115 	/*
3116 	 * If a workload spans multiple NUMA nodes, a shared fault that
3117 	 * occurs wholly within the set of nodes that the workload is
3118 	 * actively using should be counted as local. This allows the
3119 	 * scan rate to slow down when a workload has settled down.
3120 	 */
3121 	ng = deref_curr_numa_group(p);
3122 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3123 				numa_is_active_node(cpu_node, ng) &&
3124 				numa_is_active_node(mem_node, ng))
3125 		local = 1;
3126 
3127 	/*
3128 	 * Retry to migrate task to preferred node periodically, in case it
3129 	 * previously failed, or the scheduler moved us.
3130 	 */
3131 	if (time_after(jiffies, p->numa_migrate_retry)) {
3132 		task_numa_placement(p);
3133 		numa_migrate_preferred(p);
3134 	}
3135 
3136 	if (migrated)
3137 		p->numa_pages_migrated += pages;
3138 	if (flags & TNF_MIGRATE_FAIL)
3139 		p->numa_faults_locality[2] += pages;
3140 
3141 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3142 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3143 	p->numa_faults_locality[local] += pages;
3144 }
3145 
3146 static void reset_ptenuma_scan(struct task_struct *p)
3147 {
3148 	/*
3149 	 * We only did a read acquisition of the mmap sem, so
3150 	 * p->mm->numa_scan_seq is written to without exclusive access
3151 	 * and the update is not guaranteed to be atomic. That's not
3152 	 * much of an issue though, since this is just used for
3153 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3154 	 * expensive, to avoid any form of compiler optimizations:
3155 	 */
3156 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3157 	p->mm->numa_scan_offset = 0;
3158 }
3159 
3160 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3161 {
3162 	unsigned long pids;
3163 	/*
3164 	 * Allow unconditional access first two times, so that all the (pages)
3165 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3166 	 * This is also done to avoid any side effect of task scanning
3167 	 * amplifying the unfairness of disjoint set of VMAs' access.
3168 	 */
3169 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3170 		return true;
3171 
3172 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3173 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3174 		return true;
3175 
3176 	/*
3177 	 * Complete a scan that has already started regardless of PID access, or
3178 	 * some VMAs may never be scanned in multi-threaded applications:
3179 	 */
3180 	if (mm->numa_scan_offset > vma->vm_start) {
3181 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3182 		return true;
3183 	}
3184 
3185 	return false;
3186 }
3187 
3188 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3189 
3190 /*
3191  * The expensive part of numa migration is done from task_work context.
3192  * Triggered from task_tick_numa().
3193  */
3194 static void task_numa_work(struct callback_head *work)
3195 {
3196 	unsigned long migrate, next_scan, now = jiffies;
3197 	struct task_struct *p = current;
3198 	struct mm_struct *mm = p->mm;
3199 	u64 runtime = p->se.sum_exec_runtime;
3200 	struct vm_area_struct *vma;
3201 	unsigned long start, end;
3202 	unsigned long nr_pte_updates = 0;
3203 	long pages, virtpages;
3204 	struct vma_iterator vmi;
3205 	bool vma_pids_skipped;
3206 	bool vma_pids_forced = false;
3207 
3208 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3209 
3210 	work->next = work;
3211 	/*
3212 	 * Who cares about NUMA placement when they're dying.
3213 	 *
3214 	 * NOTE: make sure not to dereference p->mm before this check,
3215 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3216 	 * without p->mm even though we still had it when we enqueued this
3217 	 * work.
3218 	 */
3219 	if (p->flags & PF_EXITING)
3220 		return;
3221 
3222 	if (!mm->numa_next_scan) {
3223 		mm->numa_next_scan = now +
3224 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3225 	}
3226 
3227 	/*
3228 	 * Enforce maximal scan/migration frequency..
3229 	 */
3230 	migrate = mm->numa_next_scan;
3231 	if (time_before(now, migrate))
3232 		return;
3233 
3234 	if (p->numa_scan_period == 0) {
3235 		p->numa_scan_period_max = task_scan_max(p);
3236 		p->numa_scan_period = task_scan_start(p);
3237 	}
3238 
3239 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3240 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3241 		return;
3242 
3243 	/*
3244 	 * Delay this task enough that another task of this mm will likely win
3245 	 * the next time around.
3246 	 */
3247 	p->node_stamp += 2 * TICK_NSEC;
3248 
3249 	pages = sysctl_numa_balancing_scan_size;
3250 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3251 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3252 	if (!pages)
3253 		return;
3254 
3255 
3256 	if (!mmap_read_trylock(mm))
3257 		return;
3258 
3259 	/*
3260 	 * VMAs are skipped if the current PID has not trapped a fault within
3261 	 * the VMA recently. Allow scanning to be forced if there is no
3262 	 * suitable VMA remaining.
3263 	 */
3264 	vma_pids_skipped = false;
3265 
3266 retry_pids:
3267 	start = mm->numa_scan_offset;
3268 	vma_iter_init(&vmi, mm, start);
3269 	vma = vma_next(&vmi);
3270 	if (!vma) {
3271 		reset_ptenuma_scan(p);
3272 		start = 0;
3273 		vma_iter_set(&vmi, start);
3274 		vma = vma_next(&vmi);
3275 	}
3276 
3277 	do {
3278 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3279 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3280 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3281 			continue;
3282 		}
3283 
3284 		/*
3285 		 * Shared library pages mapped by multiple processes are not
3286 		 * migrated as it is expected they are cache replicated. Avoid
3287 		 * hinting faults in read-only file-backed mappings or the vdso
3288 		 * as migrating the pages will be of marginal benefit.
3289 		 */
3290 		if (!vma->vm_mm ||
3291 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3292 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3293 			continue;
3294 		}
3295 
3296 		/*
3297 		 * Skip inaccessible VMAs to avoid any confusion between
3298 		 * PROT_NONE and NUMA hinting ptes
3299 		 */
3300 		if (!vma_is_accessible(vma)) {
3301 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3302 			continue;
3303 		}
3304 
3305 		/* Initialise new per-VMA NUMAB state. */
3306 		if (!vma->numab_state) {
3307 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3308 				GFP_KERNEL);
3309 			if (!vma->numab_state)
3310 				continue;
3311 
3312 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3313 
3314 			vma->numab_state->next_scan = now +
3315 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3316 
3317 			/* Reset happens after 4 times scan delay of scan start */
3318 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3319 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3320 
3321 			/*
3322 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3323 			 * to prevent VMAs being skipped prematurely on the
3324 			 * first scan:
3325 			 */
3326 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3327 		}
3328 
3329 		/*
3330 		 * Scanning the VMA's of short lived tasks add more overhead. So
3331 		 * delay the scan for new VMAs.
3332 		 */
3333 		if (mm->numa_scan_seq && time_before(jiffies,
3334 						vma->numab_state->next_scan)) {
3335 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3336 			continue;
3337 		}
3338 
3339 		/* RESET access PIDs regularly for old VMAs. */
3340 		if (mm->numa_scan_seq &&
3341 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3342 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3343 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3344 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3345 			vma->numab_state->pids_active[1] = 0;
3346 		}
3347 
3348 		/* Do not rescan VMAs twice within the same sequence. */
3349 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3350 			mm->numa_scan_offset = vma->vm_end;
3351 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3352 			continue;
3353 		}
3354 
3355 		/*
3356 		 * Do not scan the VMA if task has not accessed it, unless no other
3357 		 * VMA candidate exists.
3358 		 */
3359 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3360 			vma_pids_skipped = true;
3361 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3362 			continue;
3363 		}
3364 
3365 		do {
3366 			start = max(start, vma->vm_start);
3367 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3368 			end = min(end, vma->vm_end);
3369 			nr_pte_updates = change_prot_numa(vma, start, end);
3370 
3371 			/*
3372 			 * Try to scan sysctl_numa_balancing_size worth of
3373 			 * hpages that have at least one present PTE that
3374 			 * is not already pte-numa. If the VMA contains
3375 			 * areas that are unused or already full of prot_numa
3376 			 * PTEs, scan up to virtpages, to skip through those
3377 			 * areas faster.
3378 			 */
3379 			if (nr_pte_updates)
3380 				pages -= (end - start) >> PAGE_SHIFT;
3381 			virtpages -= (end - start) >> PAGE_SHIFT;
3382 
3383 			start = end;
3384 			if (pages <= 0 || virtpages <= 0)
3385 				goto out;
3386 
3387 			cond_resched();
3388 		} while (end != vma->vm_end);
3389 
3390 		/* VMA scan is complete, do not scan until next sequence. */
3391 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3392 
3393 		/*
3394 		 * Only force scan within one VMA at a time, to limit the
3395 		 * cost of scanning a potentially uninteresting VMA.
3396 		 */
3397 		if (vma_pids_forced)
3398 			break;
3399 	} for_each_vma(vmi, vma);
3400 
3401 	/*
3402 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3403 	 * not accessing the VMA previously, then force a scan to ensure
3404 	 * forward progress:
3405 	 */
3406 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3407 		vma_pids_forced = true;
3408 		goto retry_pids;
3409 	}
3410 
3411 out:
3412 	/*
3413 	 * It is possible to reach the end of the VMA list but the last few
3414 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3415 	 * would find the !migratable VMA on the next scan but not reset the
3416 	 * scanner to the start so check it now.
3417 	 */
3418 	if (vma)
3419 		mm->numa_scan_offset = start;
3420 	else
3421 		reset_ptenuma_scan(p);
3422 	mmap_read_unlock(mm);
3423 
3424 	/*
3425 	 * Make sure tasks use at least 32x as much time to run other code
3426 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3427 	 * Usually update_task_scan_period slows down scanning enough; on an
3428 	 * overloaded system we need to limit overhead on a per task basis.
3429 	 */
3430 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3431 		u64 diff = p->se.sum_exec_runtime - runtime;
3432 		p->node_stamp += 32 * diff;
3433 	}
3434 }
3435 
3436 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3437 {
3438 	int mm_users = 0;
3439 	struct mm_struct *mm = p->mm;
3440 
3441 	if (mm) {
3442 		mm_users = atomic_read(&mm->mm_users);
3443 		if (mm_users == 1) {
3444 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3445 			mm->numa_scan_seq = 0;
3446 		}
3447 	}
3448 	p->node_stamp			= 0;
3449 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3450 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3451 	p->numa_migrate_retry		= 0;
3452 	/* Protect against double add, see task_tick_numa and task_numa_work */
3453 	p->numa_work.next		= &p->numa_work;
3454 	p->numa_faults			= NULL;
3455 	p->numa_pages_migrated		= 0;
3456 	p->total_numa_faults		= 0;
3457 	RCU_INIT_POINTER(p->numa_group, NULL);
3458 	p->last_task_numa_placement	= 0;
3459 	p->last_sum_exec_runtime	= 0;
3460 
3461 	init_task_work(&p->numa_work, task_numa_work);
3462 
3463 	/* New address space, reset the preferred nid */
3464 	if (!(clone_flags & CLONE_VM)) {
3465 		p->numa_preferred_nid = NUMA_NO_NODE;
3466 		return;
3467 	}
3468 
3469 	/*
3470 	 * New thread, keep existing numa_preferred_nid which should be copied
3471 	 * already by arch_dup_task_struct but stagger when scans start.
3472 	 */
3473 	if (mm) {
3474 		unsigned int delay;
3475 
3476 		delay = min_t(unsigned int, task_scan_max(current),
3477 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3478 		delay += 2 * TICK_NSEC;
3479 		p->node_stamp = delay;
3480 	}
3481 }
3482 
3483 /*
3484  * Drive the periodic memory faults..
3485  */
3486 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3487 {
3488 	struct callback_head *work = &curr->numa_work;
3489 	u64 period, now;
3490 
3491 	/*
3492 	 * We don't care about NUMA placement if we don't have memory.
3493 	 */
3494 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3495 		return;
3496 
3497 	/*
3498 	 * Using runtime rather than walltime has the dual advantage that
3499 	 * we (mostly) drive the selection from busy threads and that the
3500 	 * task needs to have done some actual work before we bother with
3501 	 * NUMA placement.
3502 	 */
3503 	now = curr->se.sum_exec_runtime;
3504 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3505 
3506 	if (now > curr->node_stamp + period) {
3507 		if (!curr->node_stamp)
3508 			curr->numa_scan_period = task_scan_start(curr);
3509 		curr->node_stamp += period;
3510 
3511 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3512 			task_work_add(curr, work, TWA_RESUME);
3513 	}
3514 }
3515 
3516 static void update_scan_period(struct task_struct *p, int new_cpu)
3517 {
3518 	int src_nid = cpu_to_node(task_cpu(p));
3519 	int dst_nid = cpu_to_node(new_cpu);
3520 
3521 	if (!static_branch_likely(&sched_numa_balancing))
3522 		return;
3523 
3524 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3525 		return;
3526 
3527 	if (src_nid == dst_nid)
3528 		return;
3529 
3530 	/*
3531 	 * Allow resets if faults have been trapped before one scan
3532 	 * has completed. This is most likely due to a new task that
3533 	 * is pulled cross-node due to wakeups or load balancing.
3534 	 */
3535 	if (p->numa_scan_seq) {
3536 		/*
3537 		 * Avoid scan adjustments if moving to the preferred
3538 		 * node or if the task was not previously running on
3539 		 * the preferred node.
3540 		 */
3541 		if (dst_nid == p->numa_preferred_nid ||
3542 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3543 			src_nid != p->numa_preferred_nid))
3544 			return;
3545 	}
3546 
3547 	p->numa_scan_period = task_scan_start(p);
3548 }
3549 
3550 #else
3551 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3552 {
3553 }
3554 
3555 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3556 {
3557 }
3558 
3559 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3560 {
3561 }
3562 
3563 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3564 {
3565 }
3566 
3567 #endif /* CONFIG_NUMA_BALANCING */
3568 
3569 static void
3570 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3571 {
3572 	update_load_add(&cfs_rq->load, se->load.weight);
3573 #ifdef CONFIG_SMP
3574 	if (entity_is_task(se)) {
3575 		struct rq *rq = rq_of(cfs_rq);
3576 
3577 		account_numa_enqueue(rq, task_of(se));
3578 		list_add(&se->group_node, &rq->cfs_tasks);
3579 	}
3580 #endif
3581 	cfs_rq->nr_running++;
3582 	if (se_is_idle(se))
3583 		cfs_rq->idle_nr_running++;
3584 }
3585 
3586 static void
3587 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3588 {
3589 	update_load_sub(&cfs_rq->load, se->load.weight);
3590 #ifdef CONFIG_SMP
3591 	if (entity_is_task(se)) {
3592 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3593 		list_del_init(&se->group_node);
3594 	}
3595 #endif
3596 	cfs_rq->nr_running--;
3597 	if (se_is_idle(se))
3598 		cfs_rq->idle_nr_running--;
3599 }
3600 
3601 /*
3602  * Signed add and clamp on underflow.
3603  *
3604  * Explicitly do a load-store to ensure the intermediate value never hits
3605  * memory. This allows lockless observations without ever seeing the negative
3606  * values.
3607  */
3608 #define add_positive(_ptr, _val) do {                           \
3609 	typeof(_ptr) ptr = (_ptr);                              \
3610 	typeof(_val) val = (_val);                              \
3611 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3612 								\
3613 	res = var + val;                                        \
3614 								\
3615 	if (val < 0 && res > var)                               \
3616 		res = 0;                                        \
3617 								\
3618 	WRITE_ONCE(*ptr, res);                                  \
3619 } while (0)
3620 
3621 /*
3622  * Unsigned subtract and clamp on underflow.
3623  *
3624  * Explicitly do a load-store to ensure the intermediate value never hits
3625  * memory. This allows lockless observations without ever seeing the negative
3626  * values.
3627  */
3628 #define sub_positive(_ptr, _val) do {				\
3629 	typeof(_ptr) ptr = (_ptr);				\
3630 	typeof(*ptr) val = (_val);				\
3631 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3632 	res = var - val;					\
3633 	if (res > var)						\
3634 		res = 0;					\
3635 	WRITE_ONCE(*ptr, res);					\
3636 } while (0)
3637 
3638 /*
3639  * Remove and clamp on negative, from a local variable.
3640  *
3641  * A variant of sub_positive(), which does not use explicit load-store
3642  * and is thus optimized for local variable updates.
3643  */
3644 #define lsub_positive(_ptr, _val) do {				\
3645 	typeof(_ptr) ptr = (_ptr);				\
3646 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3647 } while (0)
3648 
3649 #ifdef CONFIG_SMP
3650 static inline void
3651 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3652 {
3653 	cfs_rq->avg.load_avg += se->avg.load_avg;
3654 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3655 }
3656 
3657 static inline void
3658 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3659 {
3660 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3661 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3662 	/* See update_cfs_rq_load_avg() */
3663 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3664 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3665 }
3666 #else
3667 static inline void
3668 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3669 static inline void
3670 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3671 #endif
3672 
3673 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3674 			   unsigned long weight)
3675 {
3676 	unsigned long old_weight = se->load.weight;
3677 	u64 avruntime = avg_vruntime(cfs_rq);
3678 	s64 vlag, vslice;
3679 
3680 	/*
3681 	 * VRUNTIME
3682 	 * ========
3683 	 *
3684 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3685 	 * adjusted if re-weight at !0-lag point.
3686 	 *
3687 	 * Proof: For contradiction assume this is not true, so we can
3688 	 * re-weight without changing vruntime at !0-lag point.
3689 	 *
3690 	 *             Weight	VRuntime   Avg-VRuntime
3691 	 *     before    w          v            V
3692 	 *      after    w'         v'           V'
3693 	 *
3694 	 * Since lag needs to be preserved through re-weight:
3695 	 *
3696 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3697 	 *	==>	V' = (V - v)*w/w' + v		(1)
3698 	 *
3699 	 * Let W be the total weight of the entities before reweight,
3700 	 * since V' is the new weighted average of entities:
3701 	 *
3702 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3703 	 *
3704 	 * by using (1) & (2) we obtain:
3705 	 *
3706 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3707 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3708 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3709 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3710 	 *
3711 	 * Since we are doing at !0-lag point which means V != v, we
3712 	 * can simplify (3):
3713 	 *
3714 	 *	==>	W / (W + w' - w) = w / w'
3715 	 *	==>	Ww' = Ww + ww' - ww
3716 	 *	==>	W * (w' - w) = w * (w' - w)
3717 	 *	==>	W = w	(re-weight indicates w' != w)
3718 	 *
3719 	 * So the cfs_rq contains only one entity, hence vruntime of
3720 	 * the entity @v should always equal to the cfs_rq's weighted
3721 	 * average vruntime @V, which means we will always re-weight
3722 	 * at 0-lag point, thus breach assumption. Proof completed.
3723 	 *
3724 	 *
3725 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3726 	 * vruntime of all the entities.
3727 	 *
3728 	 * Proof: According to corollary #1, Eq. (1) should be:
3729 	 *
3730 	 *	(V - v)*w = (V' - v')*w'
3731 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3732 	 *
3733 	 * According to the weighted average formula, we have:
3734 	 *
3735 	 *	V' = (WV - wv + w'v') / (W - w + w')
3736 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3737 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3738 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3739 	 *
3740 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3741 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3742 	 *
3743 	 * If the entity is the only one in the cfs_rq, then reweight
3744 	 * always occurs at 0-lag point, so V won't change. Or else
3745 	 * there are other entities, hence W != w, then Eq. (5) turns
3746 	 * into V' = V. So V won't change in either case, proof done.
3747 	 *
3748 	 *
3749 	 * So according to corollary #1 & #2, the effect of re-weight
3750 	 * on vruntime should be:
3751 	 *
3752 	 *	v' = V' - (V - v) * w / w'		(4)
3753 	 *	   = V  - (V - v) * w / w'
3754 	 *	   = V  - vl * w / w'
3755 	 *	   = V  - vl'
3756 	 */
3757 	if (avruntime != se->vruntime) {
3758 		vlag = (s64)(avruntime - se->vruntime);
3759 		vlag = div_s64(vlag * old_weight, weight);
3760 		se->vruntime = avruntime - vlag;
3761 	}
3762 
3763 	/*
3764 	 * DEADLINE
3765 	 * ========
3766 	 *
3767 	 * When the weight changes, the virtual time slope changes and
3768 	 * we should adjust the relative virtual deadline accordingly.
3769 	 *
3770 	 *	d' = v' + (d - v)*w/w'
3771 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3772 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3773 	 *	   = V  + (d - V)*w/w'
3774 	 */
3775 	vslice = (s64)(se->deadline - avruntime);
3776 	vslice = div_s64(vslice * old_weight, weight);
3777 	se->deadline = avruntime + vslice;
3778 }
3779 
3780 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3781 			    unsigned long weight)
3782 {
3783 	bool curr = cfs_rq->curr == se;
3784 
3785 	if (se->on_rq) {
3786 		/* commit outstanding execution time */
3787 		if (curr)
3788 			update_curr(cfs_rq);
3789 		else
3790 			__dequeue_entity(cfs_rq, se);
3791 		update_load_sub(&cfs_rq->load, se->load.weight);
3792 	}
3793 	dequeue_load_avg(cfs_rq, se);
3794 
3795 	if (!se->on_rq) {
3796 		/*
3797 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3798 		 * we need to scale se->vlag when w_i changes.
3799 		 */
3800 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3801 	} else {
3802 		reweight_eevdf(cfs_rq, se, weight);
3803 	}
3804 
3805 	update_load_set(&se->load, weight);
3806 
3807 #ifdef CONFIG_SMP
3808 	do {
3809 		u32 divider = get_pelt_divider(&se->avg);
3810 
3811 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3812 	} while (0);
3813 #endif
3814 
3815 	enqueue_load_avg(cfs_rq, se);
3816 	if (se->on_rq) {
3817 		update_load_add(&cfs_rq->load, se->load.weight);
3818 		if (!curr)
3819 			__enqueue_entity(cfs_rq, se);
3820 
3821 		/*
3822 		 * The entity's vruntime has been adjusted, so let's check
3823 		 * whether the rq-wide min_vruntime needs updated too. Since
3824 		 * the calculations above require stable min_vruntime rather
3825 		 * than up-to-date one, we do the update at the end of the
3826 		 * reweight process.
3827 		 */
3828 		update_min_vruntime(cfs_rq);
3829 	}
3830 }
3831 
3832 void reweight_task(struct task_struct *p, int prio)
3833 {
3834 	struct sched_entity *se = &p->se;
3835 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3836 	struct load_weight *load = &se->load;
3837 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3838 
3839 	reweight_entity(cfs_rq, se, weight);
3840 	load->inv_weight = sched_prio_to_wmult[prio];
3841 }
3842 
3843 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3844 
3845 #ifdef CONFIG_FAIR_GROUP_SCHED
3846 #ifdef CONFIG_SMP
3847 /*
3848  * All this does is approximate the hierarchical proportion which includes that
3849  * global sum we all love to hate.
3850  *
3851  * That is, the weight of a group entity, is the proportional share of the
3852  * group weight based on the group runqueue weights. That is:
3853  *
3854  *                     tg->weight * grq->load.weight
3855  *   ge->load.weight = -----------------------------               (1)
3856  *                       \Sum grq->load.weight
3857  *
3858  * Now, because computing that sum is prohibitively expensive to compute (been
3859  * there, done that) we approximate it with this average stuff. The average
3860  * moves slower and therefore the approximation is cheaper and more stable.
3861  *
3862  * So instead of the above, we substitute:
3863  *
3864  *   grq->load.weight -> grq->avg.load_avg                         (2)
3865  *
3866  * which yields the following:
3867  *
3868  *                     tg->weight * grq->avg.load_avg
3869  *   ge->load.weight = ------------------------------              (3)
3870  *                             tg->load_avg
3871  *
3872  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3873  *
3874  * That is shares_avg, and it is right (given the approximation (2)).
3875  *
3876  * The problem with it is that because the average is slow -- it was designed
3877  * to be exactly that of course -- this leads to transients in boundary
3878  * conditions. In specific, the case where the group was idle and we start the
3879  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3880  * yielding bad latency etc..
3881  *
3882  * Now, in that special case (1) reduces to:
3883  *
3884  *                     tg->weight * grq->load.weight
3885  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3886  *                         grp->load.weight
3887  *
3888  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3889  *
3890  * So what we do is modify our approximation (3) to approach (4) in the (near)
3891  * UP case, like:
3892  *
3893  *   ge->load.weight =
3894  *
3895  *              tg->weight * grq->load.weight
3896  *     ---------------------------------------------------         (5)
3897  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3898  *
3899  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3900  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3901  *
3902  *
3903  *                     tg->weight * grq->load.weight
3904  *   ge->load.weight = -----------------------------		   (6)
3905  *                             tg_load_avg'
3906  *
3907  * Where:
3908  *
3909  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3910  *                  max(grq->load.weight, grq->avg.load_avg)
3911  *
3912  * And that is shares_weight and is icky. In the (near) UP case it approaches
3913  * (4) while in the normal case it approaches (3). It consistently
3914  * overestimates the ge->load.weight and therefore:
3915  *
3916  *   \Sum ge->load.weight >= tg->weight
3917  *
3918  * hence icky!
3919  */
3920 static long calc_group_shares(struct cfs_rq *cfs_rq)
3921 {
3922 	long tg_weight, tg_shares, load, shares;
3923 	struct task_group *tg = cfs_rq->tg;
3924 
3925 	tg_shares = READ_ONCE(tg->shares);
3926 
3927 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3928 
3929 	tg_weight = atomic_long_read(&tg->load_avg);
3930 
3931 	/* Ensure tg_weight >= load */
3932 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3933 	tg_weight += load;
3934 
3935 	shares = (tg_shares * load);
3936 	if (tg_weight)
3937 		shares /= tg_weight;
3938 
3939 	/*
3940 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3941 	 * of a group with small tg->shares value. It is a floor value which is
3942 	 * assigned as a minimum load.weight to the sched_entity representing
3943 	 * the group on a CPU.
3944 	 *
3945 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3946 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3947 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3948 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3949 	 * instead of 0.
3950 	 */
3951 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3952 }
3953 #endif /* CONFIG_SMP */
3954 
3955 /*
3956  * Recomputes the group entity based on the current state of its group
3957  * runqueue.
3958  */
3959 static void update_cfs_group(struct sched_entity *se)
3960 {
3961 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3962 	long shares;
3963 
3964 	if (!gcfs_rq)
3965 		return;
3966 
3967 	if (throttled_hierarchy(gcfs_rq))
3968 		return;
3969 
3970 #ifndef CONFIG_SMP
3971 	shares = READ_ONCE(gcfs_rq->tg->shares);
3972 #else
3973 	shares = calc_group_shares(gcfs_rq);
3974 #endif
3975 	if (unlikely(se->load.weight != shares))
3976 		reweight_entity(cfs_rq_of(se), se, shares);
3977 }
3978 
3979 #else /* CONFIG_FAIR_GROUP_SCHED */
3980 static inline void update_cfs_group(struct sched_entity *se)
3981 {
3982 }
3983 #endif /* CONFIG_FAIR_GROUP_SCHED */
3984 
3985 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3986 {
3987 	struct rq *rq = rq_of(cfs_rq);
3988 
3989 	if (&rq->cfs == cfs_rq) {
3990 		/*
3991 		 * There are a few boundary cases this might miss but it should
3992 		 * get called often enough that that should (hopefully) not be
3993 		 * a real problem.
3994 		 *
3995 		 * It will not get called when we go idle, because the idle
3996 		 * thread is a different class (!fair), nor will the utilization
3997 		 * number include things like RT tasks.
3998 		 *
3999 		 * As is, the util number is not freq-invariant (we'd have to
4000 		 * implement arch_scale_freq_capacity() for that).
4001 		 *
4002 		 * See cpu_util_cfs().
4003 		 */
4004 		cpufreq_update_util(rq, flags);
4005 	}
4006 }
4007 
4008 #ifdef CONFIG_SMP
4009 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4010 {
4011 	if (sa->load_sum)
4012 		return false;
4013 
4014 	if (sa->util_sum)
4015 		return false;
4016 
4017 	if (sa->runnable_sum)
4018 		return false;
4019 
4020 	/*
4021 	 * _avg must be null when _sum are null because _avg = _sum / divider
4022 	 * Make sure that rounding and/or propagation of PELT values never
4023 	 * break this.
4024 	 */
4025 	SCHED_WARN_ON(sa->load_avg ||
4026 		      sa->util_avg ||
4027 		      sa->runnable_avg);
4028 
4029 	return true;
4030 }
4031 
4032 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4033 {
4034 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4035 				 cfs_rq->last_update_time_copy);
4036 }
4037 #ifdef CONFIG_FAIR_GROUP_SCHED
4038 /*
4039  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4040  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4041  * bottom-up, we only have to test whether the cfs_rq before us on the list
4042  * is our child.
4043  * If cfs_rq is not on the list, test whether a child needs its to be added to
4044  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4045  */
4046 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4047 {
4048 	struct cfs_rq *prev_cfs_rq;
4049 	struct list_head *prev;
4050 
4051 	if (cfs_rq->on_list) {
4052 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4053 	} else {
4054 		struct rq *rq = rq_of(cfs_rq);
4055 
4056 		prev = rq->tmp_alone_branch;
4057 	}
4058 
4059 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4060 
4061 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4062 }
4063 
4064 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4065 {
4066 	if (cfs_rq->load.weight)
4067 		return false;
4068 
4069 	if (!load_avg_is_decayed(&cfs_rq->avg))
4070 		return false;
4071 
4072 	if (child_cfs_rq_on_list(cfs_rq))
4073 		return false;
4074 
4075 	return true;
4076 }
4077 
4078 /**
4079  * update_tg_load_avg - update the tg's load avg
4080  * @cfs_rq: the cfs_rq whose avg changed
4081  *
4082  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4083  * However, because tg->load_avg is a global value there are performance
4084  * considerations.
4085  *
4086  * In order to avoid having to look at the other cfs_rq's, we use a
4087  * differential update where we store the last value we propagated. This in
4088  * turn allows skipping updates if the differential is 'small'.
4089  *
4090  * Updating tg's load_avg is necessary before update_cfs_share().
4091  */
4092 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4093 {
4094 	long delta;
4095 	u64 now;
4096 
4097 	/*
4098 	 * No need to update load_avg for root_task_group as it is not used.
4099 	 */
4100 	if (cfs_rq->tg == &root_task_group)
4101 		return;
4102 
4103 	/* rq has been offline and doesn't contribute to the share anymore: */
4104 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4105 		return;
4106 
4107 	/*
4108 	 * For migration heavy workloads, access to tg->load_avg can be
4109 	 * unbound. Limit the update rate to at most once per ms.
4110 	 */
4111 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4112 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4113 		return;
4114 
4115 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4116 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4117 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4118 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4119 		cfs_rq->last_update_tg_load_avg = now;
4120 	}
4121 }
4122 
4123 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4124 {
4125 	long delta;
4126 	u64 now;
4127 
4128 	/*
4129 	 * No need to update load_avg for root_task_group, as it is not used.
4130 	 */
4131 	if (cfs_rq->tg == &root_task_group)
4132 		return;
4133 
4134 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4135 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4136 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4137 	cfs_rq->tg_load_avg_contrib = 0;
4138 	cfs_rq->last_update_tg_load_avg = now;
4139 }
4140 
4141 /* CPU offline callback: */
4142 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4143 {
4144 	struct task_group *tg;
4145 
4146 	lockdep_assert_rq_held(rq);
4147 
4148 	/*
4149 	 * The rq clock has already been updated in
4150 	 * set_rq_offline(), so we should skip updating
4151 	 * the rq clock again in unthrottle_cfs_rq().
4152 	 */
4153 	rq_clock_start_loop_update(rq);
4154 
4155 	rcu_read_lock();
4156 	list_for_each_entry_rcu(tg, &task_groups, list) {
4157 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4158 
4159 		clear_tg_load_avg(cfs_rq);
4160 	}
4161 	rcu_read_unlock();
4162 
4163 	rq_clock_stop_loop_update(rq);
4164 }
4165 
4166 /*
4167  * Called within set_task_rq() right before setting a task's CPU. The
4168  * caller only guarantees p->pi_lock is held; no other assumptions,
4169  * including the state of rq->lock, should be made.
4170  */
4171 void set_task_rq_fair(struct sched_entity *se,
4172 		      struct cfs_rq *prev, struct cfs_rq *next)
4173 {
4174 	u64 p_last_update_time;
4175 	u64 n_last_update_time;
4176 
4177 	if (!sched_feat(ATTACH_AGE_LOAD))
4178 		return;
4179 
4180 	/*
4181 	 * We are supposed to update the task to "current" time, then its up to
4182 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4183 	 * getting what current time is, so simply throw away the out-of-date
4184 	 * time. This will result in the wakee task is less decayed, but giving
4185 	 * the wakee more load sounds not bad.
4186 	 */
4187 	if (!(se->avg.last_update_time && prev))
4188 		return;
4189 
4190 	p_last_update_time = cfs_rq_last_update_time(prev);
4191 	n_last_update_time = cfs_rq_last_update_time(next);
4192 
4193 	__update_load_avg_blocked_se(p_last_update_time, se);
4194 	se->avg.last_update_time = n_last_update_time;
4195 }
4196 
4197 /*
4198  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4199  * propagate its contribution. The key to this propagation is the invariant
4200  * that for each group:
4201  *
4202  *   ge->avg == grq->avg						(1)
4203  *
4204  * _IFF_ we look at the pure running and runnable sums. Because they
4205  * represent the very same entity, just at different points in the hierarchy.
4206  *
4207  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4208  * and simply copies the running/runnable sum over (but still wrong, because
4209  * the group entity and group rq do not have their PELT windows aligned).
4210  *
4211  * However, update_tg_cfs_load() is more complex. So we have:
4212  *
4213  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4214  *
4215  * And since, like util, the runnable part should be directly transferable,
4216  * the following would _appear_ to be the straight forward approach:
4217  *
4218  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4219  *
4220  * And per (1) we have:
4221  *
4222  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4223  *
4224  * Which gives:
4225  *
4226  *                      ge->load.weight * grq->avg.load_avg
4227  *   ge->avg.load_avg = -----------------------------------		(4)
4228  *                               grq->load.weight
4229  *
4230  * Except that is wrong!
4231  *
4232  * Because while for entities historical weight is not important and we
4233  * really only care about our future and therefore can consider a pure
4234  * runnable sum, runqueues can NOT do this.
4235  *
4236  * We specifically want runqueues to have a load_avg that includes
4237  * historical weights. Those represent the blocked load, the load we expect
4238  * to (shortly) return to us. This only works by keeping the weights as
4239  * integral part of the sum. We therefore cannot decompose as per (3).
4240  *
4241  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4242  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4243  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4244  * runnable section of these tasks overlap (or not). If they were to perfectly
4245  * align the rq as a whole would be runnable 2/3 of the time. If however we
4246  * always have at least 1 runnable task, the rq as a whole is always runnable.
4247  *
4248  * So we'll have to approximate.. :/
4249  *
4250  * Given the constraint:
4251  *
4252  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4253  *
4254  * We can construct a rule that adds runnable to a rq by assuming minimal
4255  * overlap.
4256  *
4257  * On removal, we'll assume each task is equally runnable; which yields:
4258  *
4259  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4260  *
4261  * XXX: only do this for the part of runnable > running ?
4262  *
4263  */
4264 static inline void
4265 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4266 {
4267 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4268 	u32 new_sum, divider;
4269 
4270 	/* Nothing to update */
4271 	if (!delta_avg)
4272 		return;
4273 
4274 	/*
4275 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4276 	 * See ___update_load_avg() for details.
4277 	 */
4278 	divider = get_pelt_divider(&cfs_rq->avg);
4279 
4280 
4281 	/* Set new sched_entity's utilization */
4282 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4283 	new_sum = se->avg.util_avg * divider;
4284 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4285 	se->avg.util_sum = new_sum;
4286 
4287 	/* Update parent cfs_rq utilization */
4288 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4289 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4290 
4291 	/* See update_cfs_rq_load_avg() */
4292 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4293 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4294 }
4295 
4296 static inline void
4297 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4298 {
4299 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4300 	u32 new_sum, divider;
4301 
4302 	/* Nothing to update */
4303 	if (!delta_avg)
4304 		return;
4305 
4306 	/*
4307 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4308 	 * See ___update_load_avg() for details.
4309 	 */
4310 	divider = get_pelt_divider(&cfs_rq->avg);
4311 
4312 	/* Set new sched_entity's runnable */
4313 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4314 	new_sum = se->avg.runnable_avg * divider;
4315 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4316 	se->avg.runnable_sum = new_sum;
4317 
4318 	/* Update parent cfs_rq runnable */
4319 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4320 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4321 	/* See update_cfs_rq_load_avg() */
4322 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4323 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4324 }
4325 
4326 static inline void
4327 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4328 {
4329 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4330 	unsigned long load_avg;
4331 	u64 load_sum = 0;
4332 	s64 delta_sum;
4333 	u32 divider;
4334 
4335 	if (!runnable_sum)
4336 		return;
4337 
4338 	gcfs_rq->prop_runnable_sum = 0;
4339 
4340 	/*
4341 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4342 	 * See ___update_load_avg() for details.
4343 	 */
4344 	divider = get_pelt_divider(&cfs_rq->avg);
4345 
4346 	if (runnable_sum >= 0) {
4347 		/*
4348 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4349 		 * the CPU is saturated running == runnable.
4350 		 */
4351 		runnable_sum += se->avg.load_sum;
4352 		runnable_sum = min_t(long, runnable_sum, divider);
4353 	} else {
4354 		/*
4355 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4356 		 * assuming all tasks are equally runnable.
4357 		 */
4358 		if (scale_load_down(gcfs_rq->load.weight)) {
4359 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4360 				scale_load_down(gcfs_rq->load.weight));
4361 		}
4362 
4363 		/* But make sure to not inflate se's runnable */
4364 		runnable_sum = min(se->avg.load_sum, load_sum);
4365 	}
4366 
4367 	/*
4368 	 * runnable_sum can't be lower than running_sum
4369 	 * Rescale running sum to be in the same range as runnable sum
4370 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4371 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4372 	 */
4373 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4374 	runnable_sum = max(runnable_sum, running_sum);
4375 
4376 	load_sum = se_weight(se) * runnable_sum;
4377 	load_avg = div_u64(load_sum, divider);
4378 
4379 	delta_avg = load_avg - se->avg.load_avg;
4380 	if (!delta_avg)
4381 		return;
4382 
4383 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4384 
4385 	se->avg.load_sum = runnable_sum;
4386 	se->avg.load_avg = load_avg;
4387 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4388 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4389 	/* See update_cfs_rq_load_avg() */
4390 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4391 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4392 }
4393 
4394 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4395 {
4396 	cfs_rq->propagate = 1;
4397 	cfs_rq->prop_runnable_sum += runnable_sum;
4398 }
4399 
4400 /* Update task and its cfs_rq load average */
4401 static inline int propagate_entity_load_avg(struct sched_entity *se)
4402 {
4403 	struct cfs_rq *cfs_rq, *gcfs_rq;
4404 
4405 	if (entity_is_task(se))
4406 		return 0;
4407 
4408 	gcfs_rq = group_cfs_rq(se);
4409 	if (!gcfs_rq->propagate)
4410 		return 0;
4411 
4412 	gcfs_rq->propagate = 0;
4413 
4414 	cfs_rq = cfs_rq_of(se);
4415 
4416 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4417 
4418 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4419 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4420 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4421 
4422 	trace_pelt_cfs_tp(cfs_rq);
4423 	trace_pelt_se_tp(se);
4424 
4425 	return 1;
4426 }
4427 
4428 /*
4429  * Check if we need to update the load and the utilization of a blocked
4430  * group_entity:
4431  */
4432 static inline bool skip_blocked_update(struct sched_entity *se)
4433 {
4434 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4435 
4436 	/*
4437 	 * If sched_entity still have not zero load or utilization, we have to
4438 	 * decay it:
4439 	 */
4440 	if (se->avg.load_avg || se->avg.util_avg)
4441 		return false;
4442 
4443 	/*
4444 	 * If there is a pending propagation, we have to update the load and
4445 	 * the utilization of the sched_entity:
4446 	 */
4447 	if (gcfs_rq->propagate)
4448 		return false;
4449 
4450 	/*
4451 	 * Otherwise, the load and the utilization of the sched_entity is
4452 	 * already zero and there is no pending propagation, so it will be a
4453 	 * waste of time to try to decay it:
4454 	 */
4455 	return true;
4456 }
4457 
4458 #else /* CONFIG_FAIR_GROUP_SCHED */
4459 
4460 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4461 
4462 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4463 
4464 static inline int propagate_entity_load_avg(struct sched_entity *se)
4465 {
4466 	return 0;
4467 }
4468 
4469 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4470 
4471 #endif /* CONFIG_FAIR_GROUP_SCHED */
4472 
4473 #ifdef CONFIG_NO_HZ_COMMON
4474 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4475 {
4476 	u64 throttled = 0, now, lut;
4477 	struct cfs_rq *cfs_rq;
4478 	struct rq *rq;
4479 	bool is_idle;
4480 
4481 	if (load_avg_is_decayed(&se->avg))
4482 		return;
4483 
4484 	cfs_rq = cfs_rq_of(se);
4485 	rq = rq_of(cfs_rq);
4486 
4487 	rcu_read_lock();
4488 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4489 	rcu_read_unlock();
4490 
4491 	/*
4492 	 * The lag estimation comes with a cost we don't want to pay all the
4493 	 * time. Hence, limiting to the case where the source CPU is idle and
4494 	 * we know we are at the greatest risk to have an outdated clock.
4495 	 */
4496 	if (!is_idle)
4497 		return;
4498 
4499 	/*
4500 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4501 	 *
4502 	 *   last_update_time (the cfs_rq's last_update_time)
4503 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4504 	 *      = rq_clock_pelt()@cfs_rq_idle
4505 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4506 	 *
4507 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4508 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4509 	 *
4510 	 *   rq_idle_lag (delta between now and rq's update)
4511 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4512 	 *
4513 	 * We can then write:
4514 	 *
4515 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4516 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4517 	 * Where:
4518 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4519 	 *      rq_clock()@rq_idle      is rq->clock_idle
4520 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4521 	 *                              is cfs_rq->throttled_pelt_idle
4522 	 */
4523 
4524 #ifdef CONFIG_CFS_BANDWIDTH
4525 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4526 	/* The clock has been stopped for throttling */
4527 	if (throttled == U64_MAX)
4528 		return;
4529 #endif
4530 	now = u64_u32_load(rq->clock_pelt_idle);
4531 	/*
4532 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4533 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4534 	 * which lead to an underestimation. The opposite would lead to an
4535 	 * overestimation.
4536 	 */
4537 	smp_rmb();
4538 	lut = cfs_rq_last_update_time(cfs_rq);
4539 
4540 	now -= throttled;
4541 	if (now < lut)
4542 		/*
4543 		 * cfs_rq->avg.last_update_time is more recent than our
4544 		 * estimation, let's use it.
4545 		 */
4546 		now = lut;
4547 	else
4548 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4549 
4550 	__update_load_avg_blocked_se(now, se);
4551 }
4552 #else
4553 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4554 #endif
4555 
4556 /**
4557  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4558  * @now: current time, as per cfs_rq_clock_pelt()
4559  * @cfs_rq: cfs_rq to update
4560  *
4561  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4562  * avg. The immediate corollary is that all (fair) tasks must be attached.
4563  *
4564  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4565  *
4566  * Return: true if the load decayed or we removed load.
4567  *
4568  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4569  * call update_tg_load_avg() when this function returns true.
4570  */
4571 static inline int
4572 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4573 {
4574 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4575 	struct sched_avg *sa = &cfs_rq->avg;
4576 	int decayed = 0;
4577 
4578 	if (cfs_rq->removed.nr) {
4579 		unsigned long r;
4580 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4581 
4582 		raw_spin_lock(&cfs_rq->removed.lock);
4583 		swap(cfs_rq->removed.util_avg, removed_util);
4584 		swap(cfs_rq->removed.load_avg, removed_load);
4585 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4586 		cfs_rq->removed.nr = 0;
4587 		raw_spin_unlock(&cfs_rq->removed.lock);
4588 
4589 		r = removed_load;
4590 		sub_positive(&sa->load_avg, r);
4591 		sub_positive(&sa->load_sum, r * divider);
4592 		/* See sa->util_sum below */
4593 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4594 
4595 		r = removed_util;
4596 		sub_positive(&sa->util_avg, r);
4597 		sub_positive(&sa->util_sum, r * divider);
4598 		/*
4599 		 * Because of rounding, se->util_sum might ends up being +1 more than
4600 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4601 		 * a lot of tasks with the rounding problem between 2 updates of
4602 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4603 		 * cfs_util_avg is not.
4604 		 * Check that util_sum is still above its lower bound for the new
4605 		 * util_avg. Given that period_contrib might have moved since the last
4606 		 * sync, we are only sure that util_sum must be above or equal to
4607 		 *    util_avg * minimum possible divider
4608 		 */
4609 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4610 
4611 		r = removed_runnable;
4612 		sub_positive(&sa->runnable_avg, r);
4613 		sub_positive(&sa->runnable_sum, r * divider);
4614 		/* See sa->util_sum above */
4615 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4616 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4617 
4618 		/*
4619 		 * removed_runnable is the unweighted version of removed_load so we
4620 		 * can use it to estimate removed_load_sum.
4621 		 */
4622 		add_tg_cfs_propagate(cfs_rq,
4623 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4624 
4625 		decayed = 1;
4626 	}
4627 
4628 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4629 	u64_u32_store_copy(sa->last_update_time,
4630 			   cfs_rq->last_update_time_copy,
4631 			   sa->last_update_time);
4632 	return decayed;
4633 }
4634 
4635 /**
4636  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4637  * @cfs_rq: cfs_rq to attach to
4638  * @se: sched_entity to attach
4639  *
4640  * Must call update_cfs_rq_load_avg() before this, since we rely on
4641  * cfs_rq->avg.last_update_time being current.
4642  */
4643 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4644 {
4645 	/*
4646 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4647 	 * See ___update_load_avg() for details.
4648 	 */
4649 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4650 
4651 	/*
4652 	 * When we attach the @se to the @cfs_rq, we must align the decay
4653 	 * window because without that, really weird and wonderful things can
4654 	 * happen.
4655 	 *
4656 	 * XXX illustrate
4657 	 */
4658 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4659 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4660 
4661 	/*
4662 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4663 	 * period_contrib. This isn't strictly correct, but since we're
4664 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4665 	 * _sum a little.
4666 	 */
4667 	se->avg.util_sum = se->avg.util_avg * divider;
4668 
4669 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4670 
4671 	se->avg.load_sum = se->avg.load_avg * divider;
4672 	if (se_weight(se) < se->avg.load_sum)
4673 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4674 	else
4675 		se->avg.load_sum = 1;
4676 
4677 	enqueue_load_avg(cfs_rq, se);
4678 	cfs_rq->avg.util_avg += se->avg.util_avg;
4679 	cfs_rq->avg.util_sum += se->avg.util_sum;
4680 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4681 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4682 
4683 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4684 
4685 	cfs_rq_util_change(cfs_rq, 0);
4686 
4687 	trace_pelt_cfs_tp(cfs_rq);
4688 }
4689 
4690 /**
4691  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4692  * @cfs_rq: cfs_rq to detach from
4693  * @se: sched_entity to detach
4694  *
4695  * Must call update_cfs_rq_load_avg() before this, since we rely on
4696  * cfs_rq->avg.last_update_time being current.
4697  */
4698 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4699 {
4700 	dequeue_load_avg(cfs_rq, se);
4701 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4702 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4703 	/* See update_cfs_rq_load_avg() */
4704 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4705 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4706 
4707 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4708 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4709 	/* See update_cfs_rq_load_avg() */
4710 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4711 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4712 
4713 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4714 
4715 	cfs_rq_util_change(cfs_rq, 0);
4716 
4717 	trace_pelt_cfs_tp(cfs_rq);
4718 }
4719 
4720 /*
4721  * Optional action to be done while updating the load average
4722  */
4723 #define UPDATE_TG	0x1
4724 #define SKIP_AGE_LOAD	0x2
4725 #define DO_ATTACH	0x4
4726 #define DO_DETACH	0x8
4727 
4728 /* Update task and its cfs_rq load average */
4729 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4730 {
4731 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4732 	int decayed;
4733 
4734 	/*
4735 	 * Track task load average for carrying it to new CPU after migrated, and
4736 	 * track group sched_entity load average for task_h_load calc in migration
4737 	 */
4738 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4739 		__update_load_avg_se(now, cfs_rq, se);
4740 
4741 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4742 	decayed |= propagate_entity_load_avg(se);
4743 
4744 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4745 
4746 		/*
4747 		 * DO_ATTACH means we're here from enqueue_entity().
4748 		 * !last_update_time means we've passed through
4749 		 * migrate_task_rq_fair() indicating we migrated.
4750 		 *
4751 		 * IOW we're enqueueing a task on a new CPU.
4752 		 */
4753 		attach_entity_load_avg(cfs_rq, se);
4754 		update_tg_load_avg(cfs_rq);
4755 
4756 	} else if (flags & DO_DETACH) {
4757 		/*
4758 		 * DO_DETACH means we're here from dequeue_entity()
4759 		 * and we are migrating task out of the CPU.
4760 		 */
4761 		detach_entity_load_avg(cfs_rq, se);
4762 		update_tg_load_avg(cfs_rq);
4763 	} else if (decayed) {
4764 		cfs_rq_util_change(cfs_rq, 0);
4765 
4766 		if (flags & UPDATE_TG)
4767 			update_tg_load_avg(cfs_rq);
4768 	}
4769 }
4770 
4771 /*
4772  * Synchronize entity load avg of dequeued entity without locking
4773  * the previous rq.
4774  */
4775 static void sync_entity_load_avg(struct sched_entity *se)
4776 {
4777 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 	u64 last_update_time;
4779 
4780 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4781 	__update_load_avg_blocked_se(last_update_time, se);
4782 }
4783 
4784 /*
4785  * Task first catches up with cfs_rq, and then subtract
4786  * itself from the cfs_rq (task must be off the queue now).
4787  */
4788 static void remove_entity_load_avg(struct sched_entity *se)
4789 {
4790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4791 	unsigned long flags;
4792 
4793 	/*
4794 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4795 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4796 	 * so we can remove unconditionally.
4797 	 */
4798 
4799 	sync_entity_load_avg(se);
4800 
4801 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4802 	++cfs_rq->removed.nr;
4803 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4804 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4805 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4806 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4807 }
4808 
4809 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4810 {
4811 	return cfs_rq->avg.runnable_avg;
4812 }
4813 
4814 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4815 {
4816 	return cfs_rq->avg.load_avg;
4817 }
4818 
4819 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4820 
4821 static inline unsigned long task_util(struct task_struct *p)
4822 {
4823 	return READ_ONCE(p->se.avg.util_avg);
4824 }
4825 
4826 static inline unsigned long task_runnable(struct task_struct *p)
4827 {
4828 	return READ_ONCE(p->se.avg.runnable_avg);
4829 }
4830 
4831 static inline unsigned long _task_util_est(struct task_struct *p)
4832 {
4833 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4834 }
4835 
4836 static inline unsigned long task_util_est(struct task_struct *p)
4837 {
4838 	return max(task_util(p), _task_util_est(p));
4839 }
4840 
4841 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4842 				    struct task_struct *p)
4843 {
4844 	unsigned int enqueued;
4845 
4846 	if (!sched_feat(UTIL_EST))
4847 		return;
4848 
4849 	/* Update root cfs_rq's estimated utilization */
4850 	enqueued  = cfs_rq->avg.util_est;
4851 	enqueued += _task_util_est(p);
4852 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4853 
4854 	trace_sched_util_est_cfs_tp(cfs_rq);
4855 }
4856 
4857 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4858 				    struct task_struct *p)
4859 {
4860 	unsigned int enqueued;
4861 
4862 	if (!sched_feat(UTIL_EST))
4863 		return;
4864 
4865 	/* Update root cfs_rq's estimated utilization */
4866 	enqueued  = cfs_rq->avg.util_est;
4867 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4868 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4869 
4870 	trace_sched_util_est_cfs_tp(cfs_rq);
4871 }
4872 
4873 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4874 
4875 static inline void util_est_update(struct cfs_rq *cfs_rq,
4876 				   struct task_struct *p,
4877 				   bool task_sleep)
4878 {
4879 	unsigned int ewma, dequeued, last_ewma_diff;
4880 
4881 	if (!sched_feat(UTIL_EST))
4882 		return;
4883 
4884 	/*
4885 	 * Skip update of task's estimated utilization when the task has not
4886 	 * yet completed an activation, e.g. being migrated.
4887 	 */
4888 	if (!task_sleep)
4889 		return;
4890 
4891 	/* Get current estimate of utilization */
4892 	ewma = READ_ONCE(p->se.avg.util_est);
4893 
4894 	/*
4895 	 * If the PELT values haven't changed since enqueue time,
4896 	 * skip the util_est update.
4897 	 */
4898 	if (ewma & UTIL_AVG_UNCHANGED)
4899 		return;
4900 
4901 	/* Get utilization at dequeue */
4902 	dequeued = task_util(p);
4903 
4904 	/*
4905 	 * Reset EWMA on utilization increases, the moving average is used only
4906 	 * to smooth utilization decreases.
4907 	 */
4908 	if (ewma <= dequeued) {
4909 		ewma = dequeued;
4910 		goto done;
4911 	}
4912 
4913 	/*
4914 	 * Skip update of task's estimated utilization when its members are
4915 	 * already ~1% close to its last activation value.
4916 	 */
4917 	last_ewma_diff = ewma - dequeued;
4918 	if (last_ewma_diff < UTIL_EST_MARGIN)
4919 		goto done;
4920 
4921 	/*
4922 	 * To avoid overestimation of actual task utilization, skip updates if
4923 	 * we cannot grant there is idle time in this CPU.
4924 	 */
4925 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4926 		return;
4927 
4928 	/*
4929 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4930 	 * we cannot grant that thread got all CPU time it wanted.
4931 	 */
4932 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4933 		goto done;
4934 
4935 
4936 	/*
4937 	 * Update Task's estimated utilization
4938 	 *
4939 	 * When *p completes an activation we can consolidate another sample
4940 	 * of the task size. This is done by using this value to update the
4941 	 * Exponential Weighted Moving Average (EWMA):
4942 	 *
4943 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4944 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4945 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4946 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4947 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4948 	 *
4949 	 * Where 'w' is the weight of new samples, which is configured to be
4950 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4951 	 */
4952 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4953 	ewma  -= last_ewma_diff;
4954 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4955 done:
4956 	ewma |= UTIL_AVG_UNCHANGED;
4957 	WRITE_ONCE(p->se.avg.util_est, ewma);
4958 
4959 	trace_sched_util_est_se_tp(&p->se);
4960 }
4961 
4962 static inline int util_fits_cpu(unsigned long util,
4963 				unsigned long uclamp_min,
4964 				unsigned long uclamp_max,
4965 				int cpu)
4966 {
4967 	unsigned long capacity_orig, capacity_orig_thermal;
4968 	unsigned long capacity = capacity_of(cpu);
4969 	bool fits, uclamp_max_fits;
4970 
4971 	/*
4972 	 * Check if the real util fits without any uclamp boost/cap applied.
4973 	 */
4974 	fits = fits_capacity(util, capacity);
4975 
4976 	if (!uclamp_is_used())
4977 		return fits;
4978 
4979 	/*
4980 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4981 	 * uclamp_max. We only care about capacity pressure (by using
4982 	 * capacity_of()) for comparing against the real util.
4983 	 *
4984 	 * If a task is boosted to 1024 for example, we don't want a tiny
4985 	 * pressure to skew the check whether it fits a CPU or not.
4986 	 *
4987 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4988 	 * should fit a little cpu even if there's some pressure.
4989 	 *
4990 	 * Only exception is for thermal pressure since it has a direct impact
4991 	 * on available OPP of the system.
4992 	 *
4993 	 * We honour it for uclamp_min only as a drop in performance level
4994 	 * could result in not getting the requested minimum performance level.
4995 	 *
4996 	 * For uclamp_max, we can tolerate a drop in performance level as the
4997 	 * goal is to cap the task. So it's okay if it's getting less.
4998 	 */
4999 	capacity_orig = arch_scale_cpu_capacity(cpu);
5000 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5001 
5002 	/*
5003 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5004 	 * But we do have some corner cases to cater for..
5005 	 *
5006 	 *
5007 	 *                                 C=z
5008 	 *   |                             ___
5009 	 *   |                  C=y       |   |
5010 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5011 	 *   |      C=x        |   |      |   |
5012 	 *   |      ___        |   |      |   |
5013 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5014 	 *   |     |   |       |   |      |   |
5015 	 *   |     |   |       |   |      |   |
5016 	 *   +----------------------------------------
5017 	 *         cpu0        cpu1       cpu2
5018 	 *
5019 	 *   In the above example if a task is capped to a specific performance
5020 	 *   point, y, then when:
5021 	 *
5022 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5023 	 *     to cpu1
5024 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5025 	 *     uclamp_max request.
5026 	 *
5027 	 *   which is what we're enforcing here. A task always fits if
5028 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5029 	 *   the normal upmigration rules should withhold still.
5030 	 *
5031 	 *   Only exception is when we are on max capacity, then we need to be
5032 	 *   careful not to block overutilized state. This is so because:
5033 	 *
5034 	 *     1. There's no concept of capping at max_capacity! We can't go
5035 	 *        beyond this performance level anyway.
5036 	 *     2. The system is being saturated when we're operating near
5037 	 *        max capacity, it doesn't make sense to block overutilized.
5038 	 */
5039 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5040 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5041 	fits = fits || uclamp_max_fits;
5042 
5043 	/*
5044 	 *
5045 	 *                                 C=z
5046 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5047 	 *   |                  C=y       |   |
5048 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5049 	 *   |      C=x        |   |      |   |
5050 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5051 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5052 	 *   |     |   |       |   |      |   |
5053 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5054 	 *   +----------------------------------------
5055 	 *         cpu0        cpu1       cpu2
5056 	 *
5057 	 * a) If util > uclamp_max, then we're capped, we don't care about
5058 	 *    actual fitness value here. We only care if uclamp_max fits
5059 	 *    capacity without taking margin/pressure into account.
5060 	 *    See comment above.
5061 	 *
5062 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5063 	 *    fits_capacity() rules apply. Except we need to ensure that we
5064 	 *    enforce we remain within uclamp_max, see comment above.
5065 	 *
5066 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5067 	 *    need to take into account the boosted value fits the CPU without
5068 	 *    taking margin/pressure into account.
5069 	 *
5070 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5071 	 * just need to consider an extra check for case (c) after ensuring we
5072 	 * handle the case uclamp_min > uclamp_max.
5073 	 */
5074 	uclamp_min = min(uclamp_min, uclamp_max);
5075 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5076 		return -1;
5077 
5078 	return fits;
5079 }
5080 
5081 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5082 {
5083 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5084 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5085 	unsigned long util = task_util_est(p);
5086 	/*
5087 	 * Return true only if the cpu fully fits the task requirements, which
5088 	 * include the utilization but also the performance hints.
5089 	 */
5090 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5091 }
5092 
5093 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5094 {
5095 	if (!sched_asym_cpucap_active())
5096 		return;
5097 
5098 	if (!p || p->nr_cpus_allowed == 1) {
5099 		rq->misfit_task_load = 0;
5100 		return;
5101 	}
5102 
5103 	if (task_fits_cpu(p, cpu_of(rq))) {
5104 		rq->misfit_task_load = 0;
5105 		return;
5106 	}
5107 
5108 	/*
5109 	 * Make sure that misfit_task_load will not be null even if
5110 	 * task_h_load() returns 0.
5111 	 */
5112 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5113 }
5114 
5115 #else /* CONFIG_SMP */
5116 
5117 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5118 {
5119 	return !cfs_rq->nr_running;
5120 }
5121 
5122 #define UPDATE_TG	0x0
5123 #define SKIP_AGE_LOAD	0x0
5124 #define DO_ATTACH	0x0
5125 #define DO_DETACH	0x0
5126 
5127 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5128 {
5129 	cfs_rq_util_change(cfs_rq, 0);
5130 }
5131 
5132 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5133 
5134 static inline void
5135 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5136 static inline void
5137 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5138 
5139 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5140 {
5141 	return 0;
5142 }
5143 
5144 static inline void
5145 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5146 
5147 static inline void
5148 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5149 
5150 static inline void
5151 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5152 		bool task_sleep) {}
5153 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5154 
5155 #endif /* CONFIG_SMP */
5156 
5157 static void
5158 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5159 {
5160 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5161 	s64 lag = 0;
5162 
5163 	se->slice = sysctl_sched_base_slice;
5164 	vslice = calc_delta_fair(se->slice, se);
5165 
5166 	/*
5167 	 * Due to how V is constructed as the weighted average of entities,
5168 	 * adding tasks with positive lag, or removing tasks with negative lag
5169 	 * will move 'time' backwards, this can screw around with the lag of
5170 	 * other tasks.
5171 	 *
5172 	 * EEVDF: placement strategy #1 / #2
5173 	 */
5174 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5175 		struct sched_entity *curr = cfs_rq->curr;
5176 		unsigned long load;
5177 
5178 		lag = se->vlag;
5179 
5180 		/*
5181 		 * If we want to place a task and preserve lag, we have to
5182 		 * consider the effect of the new entity on the weighted
5183 		 * average and compensate for this, otherwise lag can quickly
5184 		 * evaporate.
5185 		 *
5186 		 * Lag is defined as:
5187 		 *
5188 		 *   lag_i = S - s_i = w_i * (V - v_i)
5189 		 *
5190 		 * To avoid the 'w_i' term all over the place, we only track
5191 		 * the virtual lag:
5192 		 *
5193 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5194 		 *
5195 		 * And we take V to be the weighted average of all v:
5196 		 *
5197 		 *   V = (\Sum w_j*v_j) / W
5198 		 *
5199 		 * Where W is: \Sum w_j
5200 		 *
5201 		 * Then, the weighted average after adding an entity with lag
5202 		 * vl_i is given by:
5203 		 *
5204 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5205 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5206 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5207 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5208 		 *      = V - w_i*vl_i / (W + w_i)
5209 		 *
5210 		 * And the actual lag after adding an entity with vl_i is:
5211 		 *
5212 		 *   vl'_i = V' - v_i
5213 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5214 		 *         = vl_i - w_i*vl_i / (W + w_i)
5215 		 *
5216 		 * Which is strictly less than vl_i. So in order to preserve lag
5217 		 * we should inflate the lag before placement such that the
5218 		 * effective lag after placement comes out right.
5219 		 *
5220 		 * As such, invert the above relation for vl'_i to get the vl_i
5221 		 * we need to use such that the lag after placement is the lag
5222 		 * we computed before dequeue.
5223 		 *
5224 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5225 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5226 		 *
5227 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5228 		 *                   = W*vl_i
5229 		 *
5230 		 *   vl_i = (W + w_i)*vl'_i / W
5231 		 */
5232 		load = cfs_rq->avg_load;
5233 		if (curr && curr->on_rq)
5234 			load += scale_load_down(curr->load.weight);
5235 
5236 		lag *= load + scale_load_down(se->load.weight);
5237 		if (WARN_ON_ONCE(!load))
5238 			load = 1;
5239 		lag = div_s64(lag, load);
5240 	}
5241 
5242 	se->vruntime = vruntime - lag;
5243 
5244 	/*
5245 	 * When joining the competition; the exisiting tasks will be,
5246 	 * on average, halfway through their slice, as such start tasks
5247 	 * off with half a slice to ease into the competition.
5248 	 */
5249 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5250 		vslice /= 2;
5251 
5252 	/*
5253 	 * EEVDF: vd_i = ve_i + r_i/w_i
5254 	 */
5255 	se->deadline = se->vruntime + vslice;
5256 }
5257 
5258 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5259 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5260 
5261 static inline bool cfs_bandwidth_used(void);
5262 
5263 static void
5264 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5265 {
5266 	bool curr = cfs_rq->curr == se;
5267 
5268 	/*
5269 	 * If we're the current task, we must renormalise before calling
5270 	 * update_curr().
5271 	 */
5272 	if (curr)
5273 		place_entity(cfs_rq, se, flags);
5274 
5275 	update_curr(cfs_rq);
5276 
5277 	/*
5278 	 * When enqueuing a sched_entity, we must:
5279 	 *   - Update loads to have both entity and cfs_rq synced with now.
5280 	 *   - For group_entity, update its runnable_weight to reflect the new
5281 	 *     h_nr_running of its group cfs_rq.
5282 	 *   - For group_entity, update its weight to reflect the new share of
5283 	 *     its group cfs_rq
5284 	 *   - Add its new weight to cfs_rq->load.weight
5285 	 */
5286 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5287 	se_update_runnable(se);
5288 	/*
5289 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5290 	 * but update_cfs_group() here will re-adjust the weight and have to
5291 	 * undo/redo all that. Seems wasteful.
5292 	 */
5293 	update_cfs_group(se);
5294 
5295 	/*
5296 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5297 	 * we can place the entity.
5298 	 */
5299 	if (!curr)
5300 		place_entity(cfs_rq, se, flags);
5301 
5302 	account_entity_enqueue(cfs_rq, se);
5303 
5304 	/* Entity has migrated, no longer consider this task hot */
5305 	if (flags & ENQUEUE_MIGRATED)
5306 		se->exec_start = 0;
5307 
5308 	check_schedstat_required();
5309 	update_stats_enqueue_fair(cfs_rq, se, flags);
5310 	if (!curr)
5311 		__enqueue_entity(cfs_rq, se);
5312 	se->on_rq = 1;
5313 
5314 	if (cfs_rq->nr_running == 1) {
5315 		check_enqueue_throttle(cfs_rq);
5316 		if (!throttled_hierarchy(cfs_rq)) {
5317 			list_add_leaf_cfs_rq(cfs_rq);
5318 		} else {
5319 #ifdef CONFIG_CFS_BANDWIDTH
5320 			struct rq *rq = rq_of(cfs_rq);
5321 
5322 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5323 				cfs_rq->throttled_clock = rq_clock(rq);
5324 			if (!cfs_rq->throttled_clock_self)
5325 				cfs_rq->throttled_clock_self = rq_clock(rq);
5326 #endif
5327 		}
5328 	}
5329 }
5330 
5331 static void __clear_buddies_next(struct sched_entity *se)
5332 {
5333 	for_each_sched_entity(se) {
5334 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5335 		if (cfs_rq->next != se)
5336 			break;
5337 
5338 		cfs_rq->next = NULL;
5339 	}
5340 }
5341 
5342 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5343 {
5344 	if (cfs_rq->next == se)
5345 		__clear_buddies_next(se);
5346 }
5347 
5348 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5349 
5350 static void
5351 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5352 {
5353 	int action = UPDATE_TG;
5354 
5355 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5356 		action |= DO_DETACH;
5357 
5358 	/*
5359 	 * Update run-time statistics of the 'current'.
5360 	 */
5361 	update_curr(cfs_rq);
5362 
5363 	/*
5364 	 * When dequeuing a sched_entity, we must:
5365 	 *   - Update loads to have both entity and cfs_rq synced with now.
5366 	 *   - For group_entity, update its runnable_weight to reflect the new
5367 	 *     h_nr_running of its group cfs_rq.
5368 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5369 	 *   - For group entity, update its weight to reflect the new share
5370 	 *     of its group cfs_rq.
5371 	 */
5372 	update_load_avg(cfs_rq, se, action);
5373 	se_update_runnable(se);
5374 
5375 	update_stats_dequeue_fair(cfs_rq, se, flags);
5376 
5377 	clear_buddies(cfs_rq, se);
5378 
5379 	update_entity_lag(cfs_rq, se);
5380 	if (se != cfs_rq->curr)
5381 		__dequeue_entity(cfs_rq, se);
5382 	se->on_rq = 0;
5383 	account_entity_dequeue(cfs_rq, se);
5384 
5385 	/* return excess runtime on last dequeue */
5386 	return_cfs_rq_runtime(cfs_rq);
5387 
5388 	update_cfs_group(se);
5389 
5390 	/*
5391 	 * Now advance min_vruntime if @se was the entity holding it back,
5392 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5393 	 * put back on, and if we advance min_vruntime, we'll be placed back
5394 	 * further than we started -- ie. we'll be penalized.
5395 	 */
5396 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5397 		update_min_vruntime(cfs_rq);
5398 
5399 	if (cfs_rq->nr_running == 0)
5400 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5401 }
5402 
5403 static void
5404 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5405 {
5406 	clear_buddies(cfs_rq, se);
5407 
5408 	/* 'current' is not kept within the tree. */
5409 	if (se->on_rq) {
5410 		/*
5411 		 * Any task has to be enqueued before it get to execute on
5412 		 * a CPU. So account for the time it spent waiting on the
5413 		 * runqueue.
5414 		 */
5415 		update_stats_wait_end_fair(cfs_rq, se);
5416 		__dequeue_entity(cfs_rq, se);
5417 		update_load_avg(cfs_rq, se, UPDATE_TG);
5418 		/*
5419 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5420 		 * which isn't used until dequeue.
5421 		 */
5422 		se->vlag = se->deadline;
5423 	}
5424 
5425 	update_stats_curr_start(cfs_rq, se);
5426 	cfs_rq->curr = se;
5427 
5428 	/*
5429 	 * Track our maximum slice length, if the CPU's load is at
5430 	 * least twice that of our own weight (i.e. dont track it
5431 	 * when there are only lesser-weight tasks around):
5432 	 */
5433 	if (schedstat_enabled() &&
5434 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5435 		struct sched_statistics *stats;
5436 
5437 		stats = __schedstats_from_se(se);
5438 		__schedstat_set(stats->slice_max,
5439 				max((u64)stats->slice_max,
5440 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5441 	}
5442 
5443 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5444 }
5445 
5446 /*
5447  * Pick the next process, keeping these things in mind, in this order:
5448  * 1) keep things fair between processes/task groups
5449  * 2) pick the "next" process, since someone really wants that to run
5450  * 3) pick the "last" process, for cache locality
5451  * 4) do not run the "skip" process, if something else is available
5452  */
5453 static struct sched_entity *
5454 pick_next_entity(struct cfs_rq *cfs_rq)
5455 {
5456 	/*
5457 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5458 	 */
5459 	if (sched_feat(NEXT_BUDDY) &&
5460 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5461 		return cfs_rq->next;
5462 
5463 	return pick_eevdf(cfs_rq);
5464 }
5465 
5466 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5467 
5468 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5469 {
5470 	/*
5471 	 * If still on the runqueue then deactivate_task()
5472 	 * was not called and update_curr() has to be done:
5473 	 */
5474 	if (prev->on_rq)
5475 		update_curr(cfs_rq);
5476 
5477 	/* throttle cfs_rqs exceeding runtime */
5478 	check_cfs_rq_runtime(cfs_rq);
5479 
5480 	if (prev->on_rq) {
5481 		update_stats_wait_start_fair(cfs_rq, prev);
5482 		/* Put 'current' back into the tree. */
5483 		__enqueue_entity(cfs_rq, prev);
5484 		/* in !on_rq case, update occurred at dequeue */
5485 		update_load_avg(cfs_rq, prev, 0);
5486 	}
5487 	cfs_rq->curr = NULL;
5488 }
5489 
5490 static void
5491 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5492 {
5493 	/*
5494 	 * Update run-time statistics of the 'current'.
5495 	 */
5496 	update_curr(cfs_rq);
5497 
5498 	/*
5499 	 * Ensure that runnable average is periodically updated.
5500 	 */
5501 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5502 	update_cfs_group(curr);
5503 
5504 #ifdef CONFIG_SCHED_HRTICK
5505 	/*
5506 	 * queued ticks are scheduled to match the slice, so don't bother
5507 	 * validating it and just reschedule.
5508 	 */
5509 	if (queued) {
5510 		resched_curr(rq_of(cfs_rq));
5511 		return;
5512 	}
5513 	/*
5514 	 * don't let the period tick interfere with the hrtick preemption
5515 	 */
5516 	if (!sched_feat(DOUBLE_TICK) &&
5517 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5518 		return;
5519 #endif
5520 }
5521 
5522 
5523 /**************************************************
5524  * CFS bandwidth control machinery
5525  */
5526 
5527 #ifdef CONFIG_CFS_BANDWIDTH
5528 
5529 #ifdef CONFIG_JUMP_LABEL
5530 static struct static_key __cfs_bandwidth_used;
5531 
5532 static inline bool cfs_bandwidth_used(void)
5533 {
5534 	return static_key_false(&__cfs_bandwidth_used);
5535 }
5536 
5537 void cfs_bandwidth_usage_inc(void)
5538 {
5539 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5540 }
5541 
5542 void cfs_bandwidth_usage_dec(void)
5543 {
5544 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5545 }
5546 #else /* CONFIG_JUMP_LABEL */
5547 static bool cfs_bandwidth_used(void)
5548 {
5549 	return true;
5550 }
5551 
5552 void cfs_bandwidth_usage_inc(void) {}
5553 void cfs_bandwidth_usage_dec(void) {}
5554 #endif /* CONFIG_JUMP_LABEL */
5555 
5556 /*
5557  * default period for cfs group bandwidth.
5558  * default: 0.1s, units: nanoseconds
5559  */
5560 static inline u64 default_cfs_period(void)
5561 {
5562 	return 100000000ULL;
5563 }
5564 
5565 static inline u64 sched_cfs_bandwidth_slice(void)
5566 {
5567 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5568 }
5569 
5570 /*
5571  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5572  * directly instead of rq->clock to avoid adding additional synchronization
5573  * around rq->lock.
5574  *
5575  * requires cfs_b->lock
5576  */
5577 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5578 {
5579 	s64 runtime;
5580 
5581 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5582 		return;
5583 
5584 	cfs_b->runtime += cfs_b->quota;
5585 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5586 	if (runtime > 0) {
5587 		cfs_b->burst_time += runtime;
5588 		cfs_b->nr_burst++;
5589 	}
5590 
5591 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5592 	cfs_b->runtime_snap = cfs_b->runtime;
5593 }
5594 
5595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5596 {
5597 	return &tg->cfs_bandwidth;
5598 }
5599 
5600 /* returns 0 on failure to allocate runtime */
5601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5602 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5603 {
5604 	u64 min_amount, amount = 0;
5605 
5606 	lockdep_assert_held(&cfs_b->lock);
5607 
5608 	/* note: this is a positive sum as runtime_remaining <= 0 */
5609 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5610 
5611 	if (cfs_b->quota == RUNTIME_INF)
5612 		amount = min_amount;
5613 	else {
5614 		start_cfs_bandwidth(cfs_b);
5615 
5616 		if (cfs_b->runtime > 0) {
5617 			amount = min(cfs_b->runtime, min_amount);
5618 			cfs_b->runtime -= amount;
5619 			cfs_b->idle = 0;
5620 		}
5621 	}
5622 
5623 	cfs_rq->runtime_remaining += amount;
5624 
5625 	return cfs_rq->runtime_remaining > 0;
5626 }
5627 
5628 /* returns 0 on failure to allocate runtime */
5629 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5630 {
5631 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5632 	int ret;
5633 
5634 	raw_spin_lock(&cfs_b->lock);
5635 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5636 	raw_spin_unlock(&cfs_b->lock);
5637 
5638 	return ret;
5639 }
5640 
5641 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5642 {
5643 	/* dock delta_exec before expiring quota (as it could span periods) */
5644 	cfs_rq->runtime_remaining -= delta_exec;
5645 
5646 	if (likely(cfs_rq->runtime_remaining > 0))
5647 		return;
5648 
5649 	if (cfs_rq->throttled)
5650 		return;
5651 	/*
5652 	 * if we're unable to extend our runtime we resched so that the active
5653 	 * hierarchy can be throttled
5654 	 */
5655 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5656 		resched_curr(rq_of(cfs_rq));
5657 }
5658 
5659 static __always_inline
5660 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5661 {
5662 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5663 		return;
5664 
5665 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5666 }
5667 
5668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5669 {
5670 	return cfs_bandwidth_used() && cfs_rq->throttled;
5671 }
5672 
5673 /* check whether cfs_rq, or any parent, is throttled */
5674 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5675 {
5676 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5677 }
5678 
5679 /*
5680  * Ensure that neither of the group entities corresponding to src_cpu or
5681  * dest_cpu are members of a throttled hierarchy when performing group
5682  * load-balance operations.
5683  */
5684 static inline int throttled_lb_pair(struct task_group *tg,
5685 				    int src_cpu, int dest_cpu)
5686 {
5687 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5688 
5689 	src_cfs_rq = tg->cfs_rq[src_cpu];
5690 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5691 
5692 	return throttled_hierarchy(src_cfs_rq) ||
5693 	       throttled_hierarchy(dest_cfs_rq);
5694 }
5695 
5696 static int tg_unthrottle_up(struct task_group *tg, void *data)
5697 {
5698 	struct rq *rq = data;
5699 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5700 
5701 	cfs_rq->throttle_count--;
5702 	if (!cfs_rq->throttle_count) {
5703 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5704 					     cfs_rq->throttled_clock_pelt;
5705 
5706 		/* Add cfs_rq with load or one or more already running entities to the list */
5707 		if (!cfs_rq_is_decayed(cfs_rq))
5708 			list_add_leaf_cfs_rq(cfs_rq);
5709 
5710 		if (cfs_rq->throttled_clock_self) {
5711 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5712 
5713 			cfs_rq->throttled_clock_self = 0;
5714 
5715 			if (SCHED_WARN_ON((s64)delta < 0))
5716 				delta = 0;
5717 
5718 			cfs_rq->throttled_clock_self_time += delta;
5719 		}
5720 	}
5721 
5722 	return 0;
5723 }
5724 
5725 static int tg_throttle_down(struct task_group *tg, void *data)
5726 {
5727 	struct rq *rq = data;
5728 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5729 
5730 	/* group is entering throttled state, stop time */
5731 	if (!cfs_rq->throttle_count) {
5732 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5733 		list_del_leaf_cfs_rq(cfs_rq);
5734 
5735 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5736 		if (cfs_rq->nr_running)
5737 			cfs_rq->throttled_clock_self = rq_clock(rq);
5738 	}
5739 	cfs_rq->throttle_count++;
5740 
5741 	return 0;
5742 }
5743 
5744 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5745 {
5746 	struct rq *rq = rq_of(cfs_rq);
5747 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5748 	struct sched_entity *se;
5749 	long task_delta, idle_task_delta, dequeue = 1;
5750 
5751 	raw_spin_lock(&cfs_b->lock);
5752 	/* This will start the period timer if necessary */
5753 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5754 		/*
5755 		 * We have raced with bandwidth becoming available, and if we
5756 		 * actually throttled the timer might not unthrottle us for an
5757 		 * entire period. We additionally needed to make sure that any
5758 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5759 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5760 		 * for 1ns of runtime rather than just check cfs_b.
5761 		 */
5762 		dequeue = 0;
5763 	} else {
5764 		list_add_tail_rcu(&cfs_rq->throttled_list,
5765 				  &cfs_b->throttled_cfs_rq);
5766 	}
5767 	raw_spin_unlock(&cfs_b->lock);
5768 
5769 	if (!dequeue)
5770 		return false;  /* Throttle no longer required. */
5771 
5772 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5773 
5774 	/* freeze hierarchy runnable averages while throttled */
5775 	rcu_read_lock();
5776 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5777 	rcu_read_unlock();
5778 
5779 	task_delta = cfs_rq->h_nr_running;
5780 	idle_task_delta = cfs_rq->idle_h_nr_running;
5781 	for_each_sched_entity(se) {
5782 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5783 		/* throttled entity or throttle-on-deactivate */
5784 		if (!se->on_rq)
5785 			goto done;
5786 
5787 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5788 
5789 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5790 			idle_task_delta = cfs_rq->h_nr_running;
5791 
5792 		qcfs_rq->h_nr_running -= task_delta;
5793 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5794 
5795 		if (qcfs_rq->load.weight) {
5796 			/* Avoid re-evaluating load for this entity: */
5797 			se = parent_entity(se);
5798 			break;
5799 		}
5800 	}
5801 
5802 	for_each_sched_entity(se) {
5803 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5804 		/* throttled entity or throttle-on-deactivate */
5805 		if (!se->on_rq)
5806 			goto done;
5807 
5808 		update_load_avg(qcfs_rq, se, 0);
5809 		se_update_runnable(se);
5810 
5811 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5812 			idle_task_delta = cfs_rq->h_nr_running;
5813 
5814 		qcfs_rq->h_nr_running -= task_delta;
5815 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5816 	}
5817 
5818 	/* At this point se is NULL and we are at root level*/
5819 	sub_nr_running(rq, task_delta);
5820 
5821 done:
5822 	/*
5823 	 * Note: distribution will already see us throttled via the
5824 	 * throttled-list.  rq->lock protects completion.
5825 	 */
5826 	cfs_rq->throttled = 1;
5827 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5828 	if (cfs_rq->nr_running)
5829 		cfs_rq->throttled_clock = rq_clock(rq);
5830 	return true;
5831 }
5832 
5833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5834 {
5835 	struct rq *rq = rq_of(cfs_rq);
5836 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5837 	struct sched_entity *se;
5838 	long task_delta, idle_task_delta;
5839 
5840 	se = cfs_rq->tg->se[cpu_of(rq)];
5841 
5842 	cfs_rq->throttled = 0;
5843 
5844 	update_rq_clock(rq);
5845 
5846 	raw_spin_lock(&cfs_b->lock);
5847 	if (cfs_rq->throttled_clock) {
5848 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5849 		cfs_rq->throttled_clock = 0;
5850 	}
5851 	list_del_rcu(&cfs_rq->throttled_list);
5852 	raw_spin_unlock(&cfs_b->lock);
5853 
5854 	/* update hierarchical throttle state */
5855 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5856 
5857 	if (!cfs_rq->load.weight) {
5858 		if (!cfs_rq->on_list)
5859 			return;
5860 		/*
5861 		 * Nothing to run but something to decay (on_list)?
5862 		 * Complete the branch.
5863 		 */
5864 		for_each_sched_entity(se) {
5865 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5866 				break;
5867 		}
5868 		goto unthrottle_throttle;
5869 	}
5870 
5871 	task_delta = cfs_rq->h_nr_running;
5872 	idle_task_delta = cfs_rq->idle_h_nr_running;
5873 	for_each_sched_entity(se) {
5874 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5875 
5876 		if (se->on_rq)
5877 			break;
5878 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5879 
5880 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5881 			idle_task_delta = cfs_rq->h_nr_running;
5882 
5883 		qcfs_rq->h_nr_running += task_delta;
5884 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5885 
5886 		/* end evaluation on encountering a throttled cfs_rq */
5887 		if (cfs_rq_throttled(qcfs_rq))
5888 			goto unthrottle_throttle;
5889 	}
5890 
5891 	for_each_sched_entity(se) {
5892 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5893 
5894 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5895 		se_update_runnable(se);
5896 
5897 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5898 			idle_task_delta = cfs_rq->h_nr_running;
5899 
5900 		qcfs_rq->h_nr_running += task_delta;
5901 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5902 
5903 		/* end evaluation on encountering a throttled cfs_rq */
5904 		if (cfs_rq_throttled(qcfs_rq))
5905 			goto unthrottle_throttle;
5906 	}
5907 
5908 	/* At this point se is NULL and we are at root level*/
5909 	add_nr_running(rq, task_delta);
5910 
5911 unthrottle_throttle:
5912 	assert_list_leaf_cfs_rq(rq);
5913 
5914 	/* Determine whether we need to wake up potentially idle CPU: */
5915 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5916 		resched_curr(rq);
5917 }
5918 
5919 #ifdef CONFIG_SMP
5920 static void __cfsb_csd_unthrottle(void *arg)
5921 {
5922 	struct cfs_rq *cursor, *tmp;
5923 	struct rq *rq = arg;
5924 	struct rq_flags rf;
5925 
5926 	rq_lock(rq, &rf);
5927 
5928 	/*
5929 	 * Iterating over the list can trigger several call to
5930 	 * update_rq_clock() in unthrottle_cfs_rq().
5931 	 * Do it once and skip the potential next ones.
5932 	 */
5933 	update_rq_clock(rq);
5934 	rq_clock_start_loop_update(rq);
5935 
5936 	/*
5937 	 * Since we hold rq lock we're safe from concurrent manipulation of
5938 	 * the CSD list. However, this RCU critical section annotates the
5939 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5940 	 * race with group being freed in the window between removing it
5941 	 * from the list and advancing to the next entry in the list.
5942 	 */
5943 	rcu_read_lock();
5944 
5945 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5946 				 throttled_csd_list) {
5947 		list_del_init(&cursor->throttled_csd_list);
5948 
5949 		if (cfs_rq_throttled(cursor))
5950 			unthrottle_cfs_rq(cursor);
5951 	}
5952 
5953 	rcu_read_unlock();
5954 
5955 	rq_clock_stop_loop_update(rq);
5956 	rq_unlock(rq, &rf);
5957 }
5958 
5959 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5960 {
5961 	struct rq *rq = rq_of(cfs_rq);
5962 	bool first;
5963 
5964 	if (rq == this_rq()) {
5965 		unthrottle_cfs_rq(cfs_rq);
5966 		return;
5967 	}
5968 
5969 	/* Already enqueued */
5970 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5971 		return;
5972 
5973 	first = list_empty(&rq->cfsb_csd_list);
5974 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5975 	if (first)
5976 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5977 }
5978 #else
5979 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5980 {
5981 	unthrottle_cfs_rq(cfs_rq);
5982 }
5983 #endif
5984 
5985 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5986 {
5987 	lockdep_assert_rq_held(rq_of(cfs_rq));
5988 
5989 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5990 	    cfs_rq->runtime_remaining <= 0))
5991 		return;
5992 
5993 	__unthrottle_cfs_rq_async(cfs_rq);
5994 }
5995 
5996 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5997 {
5998 	int this_cpu = smp_processor_id();
5999 	u64 runtime, remaining = 1;
6000 	bool throttled = false;
6001 	struct cfs_rq *cfs_rq, *tmp;
6002 	struct rq_flags rf;
6003 	struct rq *rq;
6004 	LIST_HEAD(local_unthrottle);
6005 
6006 	rcu_read_lock();
6007 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6008 				throttled_list) {
6009 		rq = rq_of(cfs_rq);
6010 
6011 		if (!remaining) {
6012 			throttled = true;
6013 			break;
6014 		}
6015 
6016 		rq_lock_irqsave(rq, &rf);
6017 		if (!cfs_rq_throttled(cfs_rq))
6018 			goto next;
6019 
6020 		/* Already queued for async unthrottle */
6021 		if (!list_empty(&cfs_rq->throttled_csd_list))
6022 			goto next;
6023 
6024 		/* By the above checks, this should never be true */
6025 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6026 
6027 		raw_spin_lock(&cfs_b->lock);
6028 		runtime = -cfs_rq->runtime_remaining + 1;
6029 		if (runtime > cfs_b->runtime)
6030 			runtime = cfs_b->runtime;
6031 		cfs_b->runtime -= runtime;
6032 		remaining = cfs_b->runtime;
6033 		raw_spin_unlock(&cfs_b->lock);
6034 
6035 		cfs_rq->runtime_remaining += runtime;
6036 
6037 		/* we check whether we're throttled above */
6038 		if (cfs_rq->runtime_remaining > 0) {
6039 			if (cpu_of(rq) != this_cpu) {
6040 				unthrottle_cfs_rq_async(cfs_rq);
6041 			} else {
6042 				/*
6043 				 * We currently only expect to be unthrottling
6044 				 * a single cfs_rq locally.
6045 				 */
6046 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6047 				list_add_tail(&cfs_rq->throttled_csd_list,
6048 					      &local_unthrottle);
6049 			}
6050 		} else {
6051 			throttled = true;
6052 		}
6053 
6054 next:
6055 		rq_unlock_irqrestore(rq, &rf);
6056 	}
6057 
6058 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6059 				 throttled_csd_list) {
6060 		struct rq *rq = rq_of(cfs_rq);
6061 
6062 		rq_lock_irqsave(rq, &rf);
6063 
6064 		list_del_init(&cfs_rq->throttled_csd_list);
6065 
6066 		if (cfs_rq_throttled(cfs_rq))
6067 			unthrottle_cfs_rq(cfs_rq);
6068 
6069 		rq_unlock_irqrestore(rq, &rf);
6070 	}
6071 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6072 
6073 	rcu_read_unlock();
6074 
6075 	return throttled;
6076 }
6077 
6078 /*
6079  * Responsible for refilling a task_group's bandwidth and unthrottling its
6080  * cfs_rqs as appropriate. If there has been no activity within the last
6081  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6082  * used to track this state.
6083  */
6084 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6085 {
6086 	int throttled;
6087 
6088 	/* no need to continue the timer with no bandwidth constraint */
6089 	if (cfs_b->quota == RUNTIME_INF)
6090 		goto out_deactivate;
6091 
6092 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6093 	cfs_b->nr_periods += overrun;
6094 
6095 	/* Refill extra burst quota even if cfs_b->idle */
6096 	__refill_cfs_bandwidth_runtime(cfs_b);
6097 
6098 	/*
6099 	 * idle depends on !throttled (for the case of a large deficit), and if
6100 	 * we're going inactive then everything else can be deferred
6101 	 */
6102 	if (cfs_b->idle && !throttled)
6103 		goto out_deactivate;
6104 
6105 	if (!throttled) {
6106 		/* mark as potentially idle for the upcoming period */
6107 		cfs_b->idle = 1;
6108 		return 0;
6109 	}
6110 
6111 	/* account preceding periods in which throttling occurred */
6112 	cfs_b->nr_throttled += overrun;
6113 
6114 	/*
6115 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6116 	 */
6117 	while (throttled && cfs_b->runtime > 0) {
6118 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6119 		/* we can't nest cfs_b->lock while distributing bandwidth */
6120 		throttled = distribute_cfs_runtime(cfs_b);
6121 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6122 	}
6123 
6124 	/*
6125 	 * While we are ensured activity in the period following an
6126 	 * unthrottle, this also covers the case in which the new bandwidth is
6127 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6128 	 * timer to remain active while there are any throttled entities.)
6129 	 */
6130 	cfs_b->idle = 0;
6131 
6132 	return 0;
6133 
6134 out_deactivate:
6135 	return 1;
6136 }
6137 
6138 /* a cfs_rq won't donate quota below this amount */
6139 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6140 /* minimum remaining period time to redistribute slack quota */
6141 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6142 /* how long we wait to gather additional slack before distributing */
6143 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6144 
6145 /*
6146  * Are we near the end of the current quota period?
6147  *
6148  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6149  * hrtimer base being cleared by hrtimer_start. In the case of
6150  * migrate_hrtimers, base is never cleared, so we are fine.
6151  */
6152 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6153 {
6154 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6155 	s64 remaining;
6156 
6157 	/* if the call-back is running a quota refresh is already occurring */
6158 	if (hrtimer_callback_running(refresh_timer))
6159 		return 1;
6160 
6161 	/* is a quota refresh about to occur? */
6162 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6163 	if (remaining < (s64)min_expire)
6164 		return 1;
6165 
6166 	return 0;
6167 }
6168 
6169 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6170 {
6171 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6172 
6173 	/* if there's a quota refresh soon don't bother with slack */
6174 	if (runtime_refresh_within(cfs_b, min_left))
6175 		return;
6176 
6177 	/* don't push forwards an existing deferred unthrottle */
6178 	if (cfs_b->slack_started)
6179 		return;
6180 	cfs_b->slack_started = true;
6181 
6182 	hrtimer_start(&cfs_b->slack_timer,
6183 			ns_to_ktime(cfs_bandwidth_slack_period),
6184 			HRTIMER_MODE_REL);
6185 }
6186 
6187 /* we know any runtime found here is valid as update_curr() precedes return */
6188 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6189 {
6190 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6191 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6192 
6193 	if (slack_runtime <= 0)
6194 		return;
6195 
6196 	raw_spin_lock(&cfs_b->lock);
6197 	if (cfs_b->quota != RUNTIME_INF) {
6198 		cfs_b->runtime += slack_runtime;
6199 
6200 		/* we are under rq->lock, defer unthrottling using a timer */
6201 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6202 		    !list_empty(&cfs_b->throttled_cfs_rq))
6203 			start_cfs_slack_bandwidth(cfs_b);
6204 	}
6205 	raw_spin_unlock(&cfs_b->lock);
6206 
6207 	/* even if it's not valid for return we don't want to try again */
6208 	cfs_rq->runtime_remaining -= slack_runtime;
6209 }
6210 
6211 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6212 {
6213 	if (!cfs_bandwidth_used())
6214 		return;
6215 
6216 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6217 		return;
6218 
6219 	__return_cfs_rq_runtime(cfs_rq);
6220 }
6221 
6222 /*
6223  * This is done with a timer (instead of inline with bandwidth return) since
6224  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6225  */
6226 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6227 {
6228 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6229 	unsigned long flags;
6230 
6231 	/* confirm we're still not at a refresh boundary */
6232 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6233 	cfs_b->slack_started = false;
6234 
6235 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6236 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6237 		return;
6238 	}
6239 
6240 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6241 		runtime = cfs_b->runtime;
6242 
6243 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6244 
6245 	if (!runtime)
6246 		return;
6247 
6248 	distribute_cfs_runtime(cfs_b);
6249 }
6250 
6251 /*
6252  * When a group wakes up we want to make sure that its quota is not already
6253  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6254  * runtime as update_curr() throttling can not trigger until it's on-rq.
6255  */
6256 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6257 {
6258 	if (!cfs_bandwidth_used())
6259 		return;
6260 
6261 	/* an active group must be handled by the update_curr()->put() path */
6262 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6263 		return;
6264 
6265 	/* ensure the group is not already throttled */
6266 	if (cfs_rq_throttled(cfs_rq))
6267 		return;
6268 
6269 	/* update runtime allocation */
6270 	account_cfs_rq_runtime(cfs_rq, 0);
6271 	if (cfs_rq->runtime_remaining <= 0)
6272 		throttle_cfs_rq(cfs_rq);
6273 }
6274 
6275 static void sync_throttle(struct task_group *tg, int cpu)
6276 {
6277 	struct cfs_rq *pcfs_rq, *cfs_rq;
6278 
6279 	if (!cfs_bandwidth_used())
6280 		return;
6281 
6282 	if (!tg->parent)
6283 		return;
6284 
6285 	cfs_rq = tg->cfs_rq[cpu];
6286 	pcfs_rq = tg->parent->cfs_rq[cpu];
6287 
6288 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6289 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6290 }
6291 
6292 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6293 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6294 {
6295 	if (!cfs_bandwidth_used())
6296 		return false;
6297 
6298 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6299 		return false;
6300 
6301 	/*
6302 	 * it's possible for a throttled entity to be forced into a running
6303 	 * state (e.g. set_curr_task), in this case we're finished.
6304 	 */
6305 	if (cfs_rq_throttled(cfs_rq))
6306 		return true;
6307 
6308 	return throttle_cfs_rq(cfs_rq);
6309 }
6310 
6311 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6312 {
6313 	struct cfs_bandwidth *cfs_b =
6314 		container_of(timer, struct cfs_bandwidth, slack_timer);
6315 
6316 	do_sched_cfs_slack_timer(cfs_b);
6317 
6318 	return HRTIMER_NORESTART;
6319 }
6320 
6321 extern const u64 max_cfs_quota_period;
6322 
6323 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6324 {
6325 	struct cfs_bandwidth *cfs_b =
6326 		container_of(timer, struct cfs_bandwidth, period_timer);
6327 	unsigned long flags;
6328 	int overrun;
6329 	int idle = 0;
6330 	int count = 0;
6331 
6332 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6333 	for (;;) {
6334 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6335 		if (!overrun)
6336 			break;
6337 
6338 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6339 
6340 		if (++count > 3) {
6341 			u64 new, old = ktime_to_ns(cfs_b->period);
6342 
6343 			/*
6344 			 * Grow period by a factor of 2 to avoid losing precision.
6345 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6346 			 * to fail.
6347 			 */
6348 			new = old * 2;
6349 			if (new < max_cfs_quota_period) {
6350 				cfs_b->period = ns_to_ktime(new);
6351 				cfs_b->quota *= 2;
6352 				cfs_b->burst *= 2;
6353 
6354 				pr_warn_ratelimited(
6355 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6356 					smp_processor_id(),
6357 					div_u64(new, NSEC_PER_USEC),
6358 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6359 			} else {
6360 				pr_warn_ratelimited(
6361 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6362 					smp_processor_id(),
6363 					div_u64(old, NSEC_PER_USEC),
6364 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6365 			}
6366 
6367 			/* reset count so we don't come right back in here */
6368 			count = 0;
6369 		}
6370 	}
6371 	if (idle)
6372 		cfs_b->period_active = 0;
6373 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6374 
6375 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6376 }
6377 
6378 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6379 {
6380 	raw_spin_lock_init(&cfs_b->lock);
6381 	cfs_b->runtime = 0;
6382 	cfs_b->quota = RUNTIME_INF;
6383 	cfs_b->period = ns_to_ktime(default_cfs_period());
6384 	cfs_b->burst = 0;
6385 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6386 
6387 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6388 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6389 	cfs_b->period_timer.function = sched_cfs_period_timer;
6390 
6391 	/* Add a random offset so that timers interleave */
6392 	hrtimer_set_expires(&cfs_b->period_timer,
6393 			    get_random_u32_below(cfs_b->period));
6394 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6395 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6396 	cfs_b->slack_started = false;
6397 }
6398 
6399 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6400 {
6401 	cfs_rq->runtime_enabled = 0;
6402 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6403 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6404 }
6405 
6406 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6407 {
6408 	lockdep_assert_held(&cfs_b->lock);
6409 
6410 	if (cfs_b->period_active)
6411 		return;
6412 
6413 	cfs_b->period_active = 1;
6414 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6415 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6416 }
6417 
6418 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6419 {
6420 	int __maybe_unused i;
6421 
6422 	/* init_cfs_bandwidth() was not called */
6423 	if (!cfs_b->throttled_cfs_rq.next)
6424 		return;
6425 
6426 	hrtimer_cancel(&cfs_b->period_timer);
6427 	hrtimer_cancel(&cfs_b->slack_timer);
6428 
6429 	/*
6430 	 * It is possible that we still have some cfs_rq's pending on a CSD
6431 	 * list, though this race is very rare. In order for this to occur, we
6432 	 * must have raced with the last task leaving the group while there
6433 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6434 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6435 	 * we can simply flush all pending CSD work inline here. We're
6436 	 * guaranteed at this point that no additional cfs_rq of this group can
6437 	 * join a CSD list.
6438 	 */
6439 #ifdef CONFIG_SMP
6440 	for_each_possible_cpu(i) {
6441 		struct rq *rq = cpu_rq(i);
6442 		unsigned long flags;
6443 
6444 		if (list_empty(&rq->cfsb_csd_list))
6445 			continue;
6446 
6447 		local_irq_save(flags);
6448 		__cfsb_csd_unthrottle(rq);
6449 		local_irq_restore(flags);
6450 	}
6451 #endif
6452 }
6453 
6454 /*
6455  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6456  *
6457  * The race is harmless, since modifying bandwidth settings of unhooked group
6458  * bits doesn't do much.
6459  */
6460 
6461 /* cpu online callback */
6462 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6463 {
6464 	struct task_group *tg;
6465 
6466 	lockdep_assert_rq_held(rq);
6467 
6468 	rcu_read_lock();
6469 	list_for_each_entry_rcu(tg, &task_groups, list) {
6470 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6471 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6472 
6473 		raw_spin_lock(&cfs_b->lock);
6474 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6475 		raw_spin_unlock(&cfs_b->lock);
6476 	}
6477 	rcu_read_unlock();
6478 }
6479 
6480 /* cpu offline callback */
6481 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6482 {
6483 	struct task_group *tg;
6484 
6485 	lockdep_assert_rq_held(rq);
6486 
6487 	/*
6488 	 * The rq clock has already been updated in the
6489 	 * set_rq_offline(), so we should skip updating
6490 	 * the rq clock again in unthrottle_cfs_rq().
6491 	 */
6492 	rq_clock_start_loop_update(rq);
6493 
6494 	rcu_read_lock();
6495 	list_for_each_entry_rcu(tg, &task_groups, list) {
6496 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6497 
6498 		if (!cfs_rq->runtime_enabled)
6499 			continue;
6500 
6501 		/*
6502 		 * clock_task is not advancing so we just need to make sure
6503 		 * there's some valid quota amount
6504 		 */
6505 		cfs_rq->runtime_remaining = 1;
6506 		/*
6507 		 * Offline rq is schedulable till CPU is completely disabled
6508 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6509 		 */
6510 		cfs_rq->runtime_enabled = 0;
6511 
6512 		if (cfs_rq_throttled(cfs_rq))
6513 			unthrottle_cfs_rq(cfs_rq);
6514 	}
6515 	rcu_read_unlock();
6516 
6517 	rq_clock_stop_loop_update(rq);
6518 }
6519 
6520 bool cfs_task_bw_constrained(struct task_struct *p)
6521 {
6522 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6523 
6524 	if (!cfs_bandwidth_used())
6525 		return false;
6526 
6527 	if (cfs_rq->runtime_enabled ||
6528 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6529 		return true;
6530 
6531 	return false;
6532 }
6533 
6534 #ifdef CONFIG_NO_HZ_FULL
6535 /* called from pick_next_task_fair() */
6536 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6537 {
6538 	int cpu = cpu_of(rq);
6539 
6540 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6541 		return;
6542 
6543 	if (!tick_nohz_full_cpu(cpu))
6544 		return;
6545 
6546 	if (rq->nr_running != 1)
6547 		return;
6548 
6549 	/*
6550 	 *  We know there is only one task runnable and we've just picked it. The
6551 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6552 	 *  be otherwise able to stop the tick. Just need to check if we are using
6553 	 *  bandwidth control.
6554 	 */
6555 	if (cfs_task_bw_constrained(p))
6556 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6557 }
6558 #endif
6559 
6560 #else /* CONFIG_CFS_BANDWIDTH */
6561 
6562 static inline bool cfs_bandwidth_used(void)
6563 {
6564 	return false;
6565 }
6566 
6567 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6568 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6569 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6570 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6571 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6572 
6573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6574 {
6575 	return 0;
6576 }
6577 
6578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6579 {
6580 	return 0;
6581 }
6582 
6583 static inline int throttled_lb_pair(struct task_group *tg,
6584 				    int src_cpu, int dest_cpu)
6585 {
6586 	return 0;
6587 }
6588 
6589 #ifdef CONFIG_FAIR_GROUP_SCHED
6590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6591 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6592 #endif
6593 
6594 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6595 {
6596 	return NULL;
6597 }
6598 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6599 static inline void update_runtime_enabled(struct rq *rq) {}
6600 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6601 #ifdef CONFIG_CGROUP_SCHED
6602 bool cfs_task_bw_constrained(struct task_struct *p)
6603 {
6604 	return false;
6605 }
6606 #endif
6607 #endif /* CONFIG_CFS_BANDWIDTH */
6608 
6609 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6610 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6611 #endif
6612 
6613 /**************************************************
6614  * CFS operations on tasks:
6615  */
6616 
6617 #ifdef CONFIG_SCHED_HRTICK
6618 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6619 {
6620 	struct sched_entity *se = &p->se;
6621 
6622 	SCHED_WARN_ON(task_rq(p) != rq);
6623 
6624 	if (rq->cfs.h_nr_running > 1) {
6625 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6626 		u64 slice = se->slice;
6627 		s64 delta = slice - ran;
6628 
6629 		if (delta < 0) {
6630 			if (task_current(rq, p))
6631 				resched_curr(rq);
6632 			return;
6633 		}
6634 		hrtick_start(rq, delta);
6635 	}
6636 }
6637 
6638 /*
6639  * called from enqueue/dequeue and updates the hrtick when the
6640  * current task is from our class and nr_running is low enough
6641  * to matter.
6642  */
6643 static void hrtick_update(struct rq *rq)
6644 {
6645 	struct task_struct *curr = rq->curr;
6646 
6647 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6648 		return;
6649 
6650 	hrtick_start_fair(rq, curr);
6651 }
6652 #else /* !CONFIG_SCHED_HRTICK */
6653 static inline void
6654 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6655 {
6656 }
6657 
6658 static inline void hrtick_update(struct rq *rq)
6659 {
6660 }
6661 #endif
6662 
6663 #ifdef CONFIG_SMP
6664 static inline bool cpu_overutilized(int cpu)
6665 {
6666 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6667 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6668 
6669 	/* Return true only if the utilization doesn't fit CPU's capacity */
6670 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6671 }
6672 
6673 static inline void update_overutilized_status(struct rq *rq)
6674 {
6675 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6676 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6677 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6678 	}
6679 }
6680 #else
6681 static inline void update_overutilized_status(struct rq *rq) { }
6682 #endif
6683 
6684 /* Runqueue only has SCHED_IDLE tasks enqueued */
6685 static int sched_idle_rq(struct rq *rq)
6686 {
6687 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6688 			rq->nr_running);
6689 }
6690 
6691 #ifdef CONFIG_SMP
6692 static int sched_idle_cpu(int cpu)
6693 {
6694 	return sched_idle_rq(cpu_rq(cpu));
6695 }
6696 #endif
6697 
6698 /*
6699  * The enqueue_task method is called before nr_running is
6700  * increased. Here we update the fair scheduling stats and
6701  * then put the task into the rbtree:
6702  */
6703 static void
6704 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6705 {
6706 	struct cfs_rq *cfs_rq;
6707 	struct sched_entity *se = &p->se;
6708 	int idle_h_nr_running = task_has_idle_policy(p);
6709 	int task_new = !(flags & ENQUEUE_WAKEUP);
6710 
6711 	/*
6712 	 * The code below (indirectly) updates schedutil which looks at
6713 	 * the cfs_rq utilization to select a frequency.
6714 	 * Let's add the task's estimated utilization to the cfs_rq's
6715 	 * estimated utilization, before we update schedutil.
6716 	 */
6717 	util_est_enqueue(&rq->cfs, p);
6718 
6719 	/*
6720 	 * If in_iowait is set, the code below may not trigger any cpufreq
6721 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6722 	 * passed.
6723 	 */
6724 	if (p->in_iowait)
6725 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6726 
6727 	for_each_sched_entity(se) {
6728 		if (se->on_rq)
6729 			break;
6730 		cfs_rq = cfs_rq_of(se);
6731 		enqueue_entity(cfs_rq, se, flags);
6732 
6733 		cfs_rq->h_nr_running++;
6734 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6735 
6736 		if (cfs_rq_is_idle(cfs_rq))
6737 			idle_h_nr_running = 1;
6738 
6739 		/* end evaluation on encountering a throttled cfs_rq */
6740 		if (cfs_rq_throttled(cfs_rq))
6741 			goto enqueue_throttle;
6742 
6743 		flags = ENQUEUE_WAKEUP;
6744 	}
6745 
6746 	for_each_sched_entity(se) {
6747 		cfs_rq = cfs_rq_of(se);
6748 
6749 		update_load_avg(cfs_rq, se, UPDATE_TG);
6750 		se_update_runnable(se);
6751 		update_cfs_group(se);
6752 
6753 		cfs_rq->h_nr_running++;
6754 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6755 
6756 		if (cfs_rq_is_idle(cfs_rq))
6757 			idle_h_nr_running = 1;
6758 
6759 		/* end evaluation on encountering a throttled cfs_rq */
6760 		if (cfs_rq_throttled(cfs_rq))
6761 			goto enqueue_throttle;
6762 	}
6763 
6764 	/* At this point se is NULL and we are at root level*/
6765 	add_nr_running(rq, 1);
6766 
6767 	/*
6768 	 * Since new tasks are assigned an initial util_avg equal to
6769 	 * half of the spare capacity of their CPU, tiny tasks have the
6770 	 * ability to cross the overutilized threshold, which will
6771 	 * result in the load balancer ruining all the task placement
6772 	 * done by EAS. As a way to mitigate that effect, do not account
6773 	 * for the first enqueue operation of new tasks during the
6774 	 * overutilized flag detection.
6775 	 *
6776 	 * A better way of solving this problem would be to wait for
6777 	 * the PELT signals of tasks to converge before taking them
6778 	 * into account, but that is not straightforward to implement,
6779 	 * and the following generally works well enough in practice.
6780 	 */
6781 	if (!task_new)
6782 		update_overutilized_status(rq);
6783 
6784 enqueue_throttle:
6785 	assert_list_leaf_cfs_rq(rq);
6786 
6787 	hrtick_update(rq);
6788 }
6789 
6790 static void set_next_buddy(struct sched_entity *se);
6791 
6792 /*
6793  * The dequeue_task method is called before nr_running is
6794  * decreased. We remove the task from the rbtree and
6795  * update the fair scheduling stats:
6796  */
6797 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6798 {
6799 	struct cfs_rq *cfs_rq;
6800 	struct sched_entity *se = &p->se;
6801 	int task_sleep = flags & DEQUEUE_SLEEP;
6802 	int idle_h_nr_running = task_has_idle_policy(p);
6803 	bool was_sched_idle = sched_idle_rq(rq);
6804 
6805 	util_est_dequeue(&rq->cfs, p);
6806 
6807 	for_each_sched_entity(se) {
6808 		cfs_rq = cfs_rq_of(se);
6809 		dequeue_entity(cfs_rq, se, flags);
6810 
6811 		cfs_rq->h_nr_running--;
6812 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6813 
6814 		if (cfs_rq_is_idle(cfs_rq))
6815 			idle_h_nr_running = 1;
6816 
6817 		/* end evaluation on encountering a throttled cfs_rq */
6818 		if (cfs_rq_throttled(cfs_rq))
6819 			goto dequeue_throttle;
6820 
6821 		/* Don't dequeue parent if it has other entities besides us */
6822 		if (cfs_rq->load.weight) {
6823 			/* Avoid re-evaluating load for this entity: */
6824 			se = parent_entity(se);
6825 			/*
6826 			 * Bias pick_next to pick a task from this cfs_rq, as
6827 			 * p is sleeping when it is within its sched_slice.
6828 			 */
6829 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6830 				set_next_buddy(se);
6831 			break;
6832 		}
6833 		flags |= DEQUEUE_SLEEP;
6834 	}
6835 
6836 	for_each_sched_entity(se) {
6837 		cfs_rq = cfs_rq_of(se);
6838 
6839 		update_load_avg(cfs_rq, se, UPDATE_TG);
6840 		se_update_runnable(se);
6841 		update_cfs_group(se);
6842 
6843 		cfs_rq->h_nr_running--;
6844 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6845 
6846 		if (cfs_rq_is_idle(cfs_rq))
6847 			idle_h_nr_running = 1;
6848 
6849 		/* end evaluation on encountering a throttled cfs_rq */
6850 		if (cfs_rq_throttled(cfs_rq))
6851 			goto dequeue_throttle;
6852 
6853 	}
6854 
6855 	/* At this point se is NULL and we are at root level*/
6856 	sub_nr_running(rq, 1);
6857 
6858 	/* balance early to pull high priority tasks */
6859 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6860 		rq->next_balance = jiffies;
6861 
6862 dequeue_throttle:
6863 	util_est_update(&rq->cfs, p, task_sleep);
6864 	hrtick_update(rq);
6865 }
6866 
6867 #ifdef CONFIG_SMP
6868 
6869 /* Working cpumask for: load_balance, load_balance_newidle. */
6870 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6871 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6872 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6873 
6874 #ifdef CONFIG_NO_HZ_COMMON
6875 
6876 static struct {
6877 	cpumask_var_t idle_cpus_mask;
6878 	atomic_t nr_cpus;
6879 	int has_blocked;		/* Idle CPUS has blocked load */
6880 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6881 	unsigned long next_balance;     /* in jiffy units */
6882 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6883 } nohz ____cacheline_aligned;
6884 
6885 #endif /* CONFIG_NO_HZ_COMMON */
6886 
6887 static unsigned long cpu_load(struct rq *rq)
6888 {
6889 	return cfs_rq_load_avg(&rq->cfs);
6890 }
6891 
6892 /*
6893  * cpu_load_without - compute CPU load without any contributions from *p
6894  * @cpu: the CPU which load is requested
6895  * @p: the task which load should be discounted
6896  *
6897  * The load of a CPU is defined by the load of tasks currently enqueued on that
6898  * CPU as well as tasks which are currently sleeping after an execution on that
6899  * CPU.
6900  *
6901  * This method returns the load of the specified CPU by discounting the load of
6902  * the specified task, whenever the task is currently contributing to the CPU
6903  * load.
6904  */
6905 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6906 {
6907 	struct cfs_rq *cfs_rq;
6908 	unsigned int load;
6909 
6910 	/* Task has no contribution or is new */
6911 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6912 		return cpu_load(rq);
6913 
6914 	cfs_rq = &rq->cfs;
6915 	load = READ_ONCE(cfs_rq->avg.load_avg);
6916 
6917 	/* Discount task's util from CPU's util */
6918 	lsub_positive(&load, task_h_load(p));
6919 
6920 	return load;
6921 }
6922 
6923 static unsigned long cpu_runnable(struct rq *rq)
6924 {
6925 	return cfs_rq_runnable_avg(&rq->cfs);
6926 }
6927 
6928 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6929 {
6930 	struct cfs_rq *cfs_rq;
6931 	unsigned int runnable;
6932 
6933 	/* Task has no contribution or is new */
6934 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6935 		return cpu_runnable(rq);
6936 
6937 	cfs_rq = &rq->cfs;
6938 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6939 
6940 	/* Discount task's runnable from CPU's runnable */
6941 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6942 
6943 	return runnable;
6944 }
6945 
6946 static unsigned long capacity_of(int cpu)
6947 {
6948 	return cpu_rq(cpu)->cpu_capacity;
6949 }
6950 
6951 static void record_wakee(struct task_struct *p)
6952 {
6953 	/*
6954 	 * Only decay a single time; tasks that have less then 1 wakeup per
6955 	 * jiffy will not have built up many flips.
6956 	 */
6957 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6958 		current->wakee_flips >>= 1;
6959 		current->wakee_flip_decay_ts = jiffies;
6960 	}
6961 
6962 	if (current->last_wakee != p) {
6963 		current->last_wakee = p;
6964 		current->wakee_flips++;
6965 	}
6966 }
6967 
6968 /*
6969  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6970  *
6971  * A waker of many should wake a different task than the one last awakened
6972  * at a frequency roughly N times higher than one of its wakees.
6973  *
6974  * In order to determine whether we should let the load spread vs consolidating
6975  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6976  * partner, and a factor of lls_size higher frequency in the other.
6977  *
6978  * With both conditions met, we can be relatively sure that the relationship is
6979  * non-monogamous, with partner count exceeding socket size.
6980  *
6981  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6982  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6983  * socket size.
6984  */
6985 static int wake_wide(struct task_struct *p)
6986 {
6987 	unsigned int master = current->wakee_flips;
6988 	unsigned int slave = p->wakee_flips;
6989 	int factor = __this_cpu_read(sd_llc_size);
6990 
6991 	if (master < slave)
6992 		swap(master, slave);
6993 	if (slave < factor || master < slave * factor)
6994 		return 0;
6995 	return 1;
6996 }
6997 
6998 /*
6999  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7000  * soonest. For the purpose of speed we only consider the waking and previous
7001  * CPU.
7002  *
7003  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7004  *			cache-affine and is (or	will be) idle.
7005  *
7006  * wake_affine_weight() - considers the weight to reflect the average
7007  *			  scheduling latency of the CPUs. This seems to work
7008  *			  for the overloaded case.
7009  */
7010 static int
7011 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7012 {
7013 	/*
7014 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7015 	 * context. Only allow the move if cache is shared. Otherwise an
7016 	 * interrupt intensive workload could force all tasks onto one
7017 	 * node depending on the IO topology or IRQ affinity settings.
7018 	 *
7019 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7020 	 * There is no guarantee that the cache hot data from an interrupt
7021 	 * is more important than cache hot data on the prev_cpu and from
7022 	 * a cpufreq perspective, it's better to have higher utilisation
7023 	 * on one CPU.
7024 	 */
7025 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7026 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7027 
7028 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7029 		return this_cpu;
7030 
7031 	if (available_idle_cpu(prev_cpu))
7032 		return prev_cpu;
7033 
7034 	return nr_cpumask_bits;
7035 }
7036 
7037 static int
7038 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7039 		   int this_cpu, int prev_cpu, int sync)
7040 {
7041 	s64 this_eff_load, prev_eff_load;
7042 	unsigned long task_load;
7043 
7044 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7045 
7046 	if (sync) {
7047 		unsigned long current_load = task_h_load(current);
7048 
7049 		if (current_load > this_eff_load)
7050 			return this_cpu;
7051 
7052 		this_eff_load -= current_load;
7053 	}
7054 
7055 	task_load = task_h_load(p);
7056 
7057 	this_eff_load += task_load;
7058 	if (sched_feat(WA_BIAS))
7059 		this_eff_load *= 100;
7060 	this_eff_load *= capacity_of(prev_cpu);
7061 
7062 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7063 	prev_eff_load -= task_load;
7064 	if (sched_feat(WA_BIAS))
7065 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7066 	prev_eff_load *= capacity_of(this_cpu);
7067 
7068 	/*
7069 	 * If sync, adjust the weight of prev_eff_load such that if
7070 	 * prev_eff == this_eff that select_idle_sibling() will consider
7071 	 * stacking the wakee on top of the waker if no other CPU is
7072 	 * idle.
7073 	 */
7074 	if (sync)
7075 		prev_eff_load += 1;
7076 
7077 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7078 }
7079 
7080 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7081 		       int this_cpu, int prev_cpu, int sync)
7082 {
7083 	int target = nr_cpumask_bits;
7084 
7085 	if (sched_feat(WA_IDLE))
7086 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7087 
7088 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7089 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7090 
7091 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7092 	if (target != this_cpu)
7093 		return prev_cpu;
7094 
7095 	schedstat_inc(sd->ttwu_move_affine);
7096 	schedstat_inc(p->stats.nr_wakeups_affine);
7097 	return target;
7098 }
7099 
7100 static struct sched_group *
7101 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7102 
7103 /*
7104  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7105  */
7106 static int
7107 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7108 {
7109 	unsigned long load, min_load = ULONG_MAX;
7110 	unsigned int min_exit_latency = UINT_MAX;
7111 	u64 latest_idle_timestamp = 0;
7112 	int least_loaded_cpu = this_cpu;
7113 	int shallowest_idle_cpu = -1;
7114 	int i;
7115 
7116 	/* Check if we have any choice: */
7117 	if (group->group_weight == 1)
7118 		return cpumask_first(sched_group_span(group));
7119 
7120 	/* Traverse only the allowed CPUs */
7121 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7122 		struct rq *rq = cpu_rq(i);
7123 
7124 		if (!sched_core_cookie_match(rq, p))
7125 			continue;
7126 
7127 		if (sched_idle_cpu(i))
7128 			return i;
7129 
7130 		if (available_idle_cpu(i)) {
7131 			struct cpuidle_state *idle = idle_get_state(rq);
7132 			if (idle && idle->exit_latency < min_exit_latency) {
7133 				/*
7134 				 * We give priority to a CPU whose idle state
7135 				 * has the smallest exit latency irrespective
7136 				 * of any idle timestamp.
7137 				 */
7138 				min_exit_latency = idle->exit_latency;
7139 				latest_idle_timestamp = rq->idle_stamp;
7140 				shallowest_idle_cpu = i;
7141 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7142 				   rq->idle_stamp > latest_idle_timestamp) {
7143 				/*
7144 				 * If equal or no active idle state, then
7145 				 * the most recently idled CPU might have
7146 				 * a warmer cache.
7147 				 */
7148 				latest_idle_timestamp = rq->idle_stamp;
7149 				shallowest_idle_cpu = i;
7150 			}
7151 		} else if (shallowest_idle_cpu == -1) {
7152 			load = cpu_load(cpu_rq(i));
7153 			if (load < min_load) {
7154 				min_load = load;
7155 				least_loaded_cpu = i;
7156 			}
7157 		}
7158 	}
7159 
7160 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7161 }
7162 
7163 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7164 				  int cpu, int prev_cpu, int sd_flag)
7165 {
7166 	int new_cpu = cpu;
7167 
7168 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7169 		return prev_cpu;
7170 
7171 	/*
7172 	 * We need task's util for cpu_util_without, sync it up to
7173 	 * prev_cpu's last_update_time.
7174 	 */
7175 	if (!(sd_flag & SD_BALANCE_FORK))
7176 		sync_entity_load_avg(&p->se);
7177 
7178 	while (sd) {
7179 		struct sched_group *group;
7180 		struct sched_domain *tmp;
7181 		int weight;
7182 
7183 		if (!(sd->flags & sd_flag)) {
7184 			sd = sd->child;
7185 			continue;
7186 		}
7187 
7188 		group = find_idlest_group(sd, p, cpu);
7189 		if (!group) {
7190 			sd = sd->child;
7191 			continue;
7192 		}
7193 
7194 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7195 		if (new_cpu == cpu) {
7196 			/* Now try balancing at a lower domain level of 'cpu': */
7197 			sd = sd->child;
7198 			continue;
7199 		}
7200 
7201 		/* Now try balancing at a lower domain level of 'new_cpu': */
7202 		cpu = new_cpu;
7203 		weight = sd->span_weight;
7204 		sd = NULL;
7205 		for_each_domain(cpu, tmp) {
7206 			if (weight <= tmp->span_weight)
7207 				break;
7208 			if (tmp->flags & sd_flag)
7209 				sd = tmp;
7210 		}
7211 	}
7212 
7213 	return new_cpu;
7214 }
7215 
7216 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7217 {
7218 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7219 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7220 		return cpu;
7221 
7222 	return -1;
7223 }
7224 
7225 #ifdef CONFIG_SCHED_SMT
7226 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7227 EXPORT_SYMBOL_GPL(sched_smt_present);
7228 
7229 static inline void set_idle_cores(int cpu, int val)
7230 {
7231 	struct sched_domain_shared *sds;
7232 
7233 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7234 	if (sds)
7235 		WRITE_ONCE(sds->has_idle_cores, val);
7236 }
7237 
7238 static inline bool test_idle_cores(int cpu)
7239 {
7240 	struct sched_domain_shared *sds;
7241 
7242 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7243 	if (sds)
7244 		return READ_ONCE(sds->has_idle_cores);
7245 
7246 	return false;
7247 }
7248 
7249 /*
7250  * Scans the local SMT mask to see if the entire core is idle, and records this
7251  * information in sd_llc_shared->has_idle_cores.
7252  *
7253  * Since SMT siblings share all cache levels, inspecting this limited remote
7254  * state should be fairly cheap.
7255  */
7256 void __update_idle_core(struct rq *rq)
7257 {
7258 	int core = cpu_of(rq);
7259 	int cpu;
7260 
7261 	rcu_read_lock();
7262 	if (test_idle_cores(core))
7263 		goto unlock;
7264 
7265 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7266 		if (cpu == core)
7267 			continue;
7268 
7269 		if (!available_idle_cpu(cpu))
7270 			goto unlock;
7271 	}
7272 
7273 	set_idle_cores(core, 1);
7274 unlock:
7275 	rcu_read_unlock();
7276 }
7277 
7278 /*
7279  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7280  * there are no idle cores left in the system; tracked through
7281  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7282  */
7283 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7284 {
7285 	bool idle = true;
7286 	int cpu;
7287 
7288 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7289 		if (!available_idle_cpu(cpu)) {
7290 			idle = false;
7291 			if (*idle_cpu == -1) {
7292 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
7293 					*idle_cpu = cpu;
7294 					break;
7295 				}
7296 				continue;
7297 			}
7298 			break;
7299 		}
7300 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
7301 			*idle_cpu = cpu;
7302 	}
7303 
7304 	if (idle)
7305 		return core;
7306 
7307 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7308 	return -1;
7309 }
7310 
7311 /*
7312  * Scan the local SMT mask for idle CPUs.
7313  */
7314 static int select_idle_smt(struct task_struct *p, int target)
7315 {
7316 	int cpu;
7317 
7318 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7319 		if (cpu == target)
7320 			continue;
7321 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7322 			return cpu;
7323 	}
7324 
7325 	return -1;
7326 }
7327 
7328 #else /* CONFIG_SCHED_SMT */
7329 
7330 static inline void set_idle_cores(int cpu, int val)
7331 {
7332 }
7333 
7334 static inline bool test_idle_cores(int cpu)
7335 {
7336 	return false;
7337 }
7338 
7339 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7340 {
7341 	return __select_idle_cpu(core, p);
7342 }
7343 
7344 static inline int select_idle_smt(struct task_struct *p, int target)
7345 {
7346 	return -1;
7347 }
7348 
7349 #endif /* CONFIG_SCHED_SMT */
7350 
7351 /*
7352  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7353  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7354  * average idle time for this rq (as found in rq->avg_idle).
7355  */
7356 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7357 {
7358 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7359 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7360 	struct sched_domain_shared *sd_share;
7361 
7362 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7363 
7364 	if (sched_feat(SIS_UTIL)) {
7365 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7366 		if (sd_share) {
7367 			/* because !--nr is the condition to stop scan */
7368 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7369 			/* overloaded LLC is unlikely to have idle cpu/core */
7370 			if (nr == 1)
7371 				return -1;
7372 		}
7373 	}
7374 
7375 	if (static_branch_unlikely(&sched_cluster_active)) {
7376 		struct sched_group *sg = sd->groups;
7377 
7378 		if (sg->flags & SD_CLUSTER) {
7379 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7380 				if (!cpumask_test_cpu(cpu, cpus))
7381 					continue;
7382 
7383 				if (has_idle_core) {
7384 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7385 					if ((unsigned int)i < nr_cpumask_bits)
7386 						return i;
7387 				} else {
7388 					if (--nr <= 0)
7389 						return -1;
7390 					idle_cpu = __select_idle_cpu(cpu, p);
7391 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7392 						return idle_cpu;
7393 				}
7394 			}
7395 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7396 		}
7397 	}
7398 
7399 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7400 		if (has_idle_core) {
7401 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7402 			if ((unsigned int)i < nr_cpumask_bits)
7403 				return i;
7404 
7405 		} else {
7406 			if (--nr <= 0)
7407 				return -1;
7408 			idle_cpu = __select_idle_cpu(cpu, p);
7409 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7410 				break;
7411 		}
7412 	}
7413 
7414 	if (has_idle_core)
7415 		set_idle_cores(target, false);
7416 
7417 	return idle_cpu;
7418 }
7419 
7420 /*
7421  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7422  * the task fits. If no CPU is big enough, but there are idle ones, try to
7423  * maximize capacity.
7424  */
7425 static int
7426 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7427 {
7428 	unsigned long task_util, util_min, util_max, best_cap = 0;
7429 	int fits, best_fits = 0;
7430 	int cpu, best_cpu = -1;
7431 	struct cpumask *cpus;
7432 
7433 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7434 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7435 
7436 	task_util = task_util_est(p);
7437 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7438 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7439 
7440 	for_each_cpu_wrap(cpu, cpus, target) {
7441 		unsigned long cpu_cap = capacity_of(cpu);
7442 
7443 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7444 			continue;
7445 
7446 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7447 
7448 		/* This CPU fits with all requirements */
7449 		if (fits > 0)
7450 			return cpu;
7451 		/*
7452 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7453 		 * Look for the CPU with best capacity.
7454 		 */
7455 		else if (fits < 0)
7456 			cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
7457 
7458 		/*
7459 		 * First, select CPU which fits better (-1 being better than 0).
7460 		 * Then, select the one with best capacity at same level.
7461 		 */
7462 		if ((fits < best_fits) ||
7463 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7464 			best_cap = cpu_cap;
7465 			best_cpu = cpu;
7466 			best_fits = fits;
7467 		}
7468 	}
7469 
7470 	return best_cpu;
7471 }
7472 
7473 static inline bool asym_fits_cpu(unsigned long util,
7474 				 unsigned long util_min,
7475 				 unsigned long util_max,
7476 				 int cpu)
7477 {
7478 	if (sched_asym_cpucap_active())
7479 		/*
7480 		 * Return true only if the cpu fully fits the task requirements
7481 		 * which include the utilization and the performance hints.
7482 		 */
7483 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7484 
7485 	return true;
7486 }
7487 
7488 /*
7489  * Try and locate an idle core/thread in the LLC cache domain.
7490  */
7491 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7492 {
7493 	bool has_idle_core = false;
7494 	struct sched_domain *sd;
7495 	unsigned long task_util, util_min, util_max;
7496 	int i, recent_used_cpu, prev_aff = -1;
7497 
7498 	/*
7499 	 * On asymmetric system, update task utilization because we will check
7500 	 * that the task fits with cpu's capacity.
7501 	 */
7502 	if (sched_asym_cpucap_active()) {
7503 		sync_entity_load_avg(&p->se);
7504 		task_util = task_util_est(p);
7505 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7506 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7507 	}
7508 
7509 	/*
7510 	 * per-cpu select_rq_mask usage
7511 	 */
7512 	lockdep_assert_irqs_disabled();
7513 
7514 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7515 	    asym_fits_cpu(task_util, util_min, util_max, target))
7516 		return target;
7517 
7518 	/*
7519 	 * If the previous CPU is cache affine and idle, don't be stupid:
7520 	 */
7521 	if (prev != target && cpus_share_cache(prev, target) &&
7522 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7523 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7524 
7525 		if (!static_branch_unlikely(&sched_cluster_active) ||
7526 		    cpus_share_resources(prev, target))
7527 			return prev;
7528 
7529 		prev_aff = prev;
7530 	}
7531 
7532 	/*
7533 	 * Allow a per-cpu kthread to stack with the wakee if the
7534 	 * kworker thread and the tasks previous CPUs are the same.
7535 	 * The assumption is that the wakee queued work for the
7536 	 * per-cpu kthread that is now complete and the wakeup is
7537 	 * essentially a sync wakeup. An obvious example of this
7538 	 * pattern is IO completions.
7539 	 */
7540 	if (is_per_cpu_kthread(current) &&
7541 	    in_task() &&
7542 	    prev == smp_processor_id() &&
7543 	    this_rq()->nr_running <= 1 &&
7544 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7545 		return prev;
7546 	}
7547 
7548 	/* Check a recently used CPU as a potential idle candidate: */
7549 	recent_used_cpu = p->recent_used_cpu;
7550 	p->recent_used_cpu = prev;
7551 	if (recent_used_cpu != prev &&
7552 	    recent_used_cpu != target &&
7553 	    cpus_share_cache(recent_used_cpu, target) &&
7554 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7555 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7556 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7557 
7558 		if (!static_branch_unlikely(&sched_cluster_active) ||
7559 		    cpus_share_resources(recent_used_cpu, target))
7560 			return recent_used_cpu;
7561 
7562 	} else {
7563 		recent_used_cpu = -1;
7564 	}
7565 
7566 	/*
7567 	 * For asymmetric CPU capacity systems, our domain of interest is
7568 	 * sd_asym_cpucapacity rather than sd_llc.
7569 	 */
7570 	if (sched_asym_cpucap_active()) {
7571 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7572 		/*
7573 		 * On an asymmetric CPU capacity system where an exclusive
7574 		 * cpuset defines a symmetric island (i.e. one unique
7575 		 * capacity_orig value through the cpuset), the key will be set
7576 		 * but the CPUs within that cpuset will not have a domain with
7577 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7578 		 * capacity path.
7579 		 */
7580 		if (sd) {
7581 			i = select_idle_capacity(p, sd, target);
7582 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7583 		}
7584 	}
7585 
7586 	sd = rcu_dereference(per_cpu(sd_llc, target));
7587 	if (!sd)
7588 		return target;
7589 
7590 	if (sched_smt_active()) {
7591 		has_idle_core = test_idle_cores(target);
7592 
7593 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7594 			i = select_idle_smt(p, prev);
7595 			if ((unsigned int)i < nr_cpumask_bits)
7596 				return i;
7597 		}
7598 	}
7599 
7600 	i = select_idle_cpu(p, sd, has_idle_core, target);
7601 	if ((unsigned)i < nr_cpumask_bits)
7602 		return i;
7603 
7604 	/*
7605 	 * For cluster machines which have lower sharing cache like L2 or
7606 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7607 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7608 	 * use them if possible when no idle CPU found in select_idle_cpu().
7609 	 */
7610 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7611 		return prev_aff;
7612 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7613 		return recent_used_cpu;
7614 
7615 	return target;
7616 }
7617 
7618 /**
7619  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7620  * @cpu: the CPU to get the utilization for
7621  * @p: task for which the CPU utilization should be predicted or NULL
7622  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7623  * @boost: 1 to enable boosting, otherwise 0
7624  *
7625  * The unit of the return value must be the same as the one of CPU capacity
7626  * so that CPU utilization can be compared with CPU capacity.
7627  *
7628  * CPU utilization is the sum of running time of runnable tasks plus the
7629  * recent utilization of currently non-runnable tasks on that CPU.
7630  * It represents the amount of CPU capacity currently used by CFS tasks in
7631  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7632  * capacity at f_max.
7633  *
7634  * The estimated CPU utilization is defined as the maximum between CPU
7635  * utilization and sum of the estimated utilization of the currently
7636  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7637  * previously-executed tasks, which helps better deduce how busy a CPU will
7638  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7639  * of such a task would be significantly decayed at this point of time.
7640  *
7641  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7642  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7643  * utilization. Boosting is implemented in cpu_util() so that internal
7644  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7645  * latter via cpu_util_cfs_boost().
7646  *
7647  * CPU utilization can be higher than the current CPU capacity
7648  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7649  * of rounding errors as well as task migrations or wakeups of new tasks.
7650  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7651  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7652  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7653  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7654  * though since this is useful for predicting the CPU capacity required
7655  * after task migrations (scheduler-driven DVFS).
7656  *
7657  * Return: (Boosted) (estimated) utilization for the specified CPU.
7658  */
7659 static unsigned long
7660 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7661 {
7662 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7663 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7664 	unsigned long runnable;
7665 
7666 	if (boost) {
7667 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7668 		util = max(util, runnable);
7669 	}
7670 
7671 	/*
7672 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7673 	 * contribution. If @p migrates from another CPU to @cpu add its
7674 	 * contribution. In all the other cases @cpu is not impacted by the
7675 	 * migration so its util_avg is already correct.
7676 	 */
7677 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7678 		lsub_positive(&util, task_util(p));
7679 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7680 		util += task_util(p);
7681 
7682 	if (sched_feat(UTIL_EST)) {
7683 		unsigned long util_est;
7684 
7685 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7686 
7687 		/*
7688 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7689 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7690 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7691 		 * has been enqueued.
7692 		 *
7693 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7694 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7695 		 * Remove it to "simulate" cpu_util without @p's contribution.
7696 		 *
7697 		 * Despite the task_on_rq_queued(@p) check there is still a
7698 		 * small window for a possible race when an exec
7699 		 * select_task_rq_fair() races with LB's detach_task().
7700 		 *
7701 		 *   detach_task()
7702 		 *     deactivate_task()
7703 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7704 		 *       -------------------------------- A
7705 		 *       dequeue_task()                    \
7706 		 *         dequeue_task_fair()              + Race Time
7707 		 *           util_est_dequeue()            /
7708 		 *       -------------------------------- B
7709 		 *
7710 		 * The additional check "current == p" is required to further
7711 		 * reduce the race window.
7712 		 */
7713 		if (dst_cpu == cpu)
7714 			util_est += _task_util_est(p);
7715 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7716 			lsub_positive(&util_est, _task_util_est(p));
7717 
7718 		util = max(util, util_est);
7719 	}
7720 
7721 	return min(util, arch_scale_cpu_capacity(cpu));
7722 }
7723 
7724 unsigned long cpu_util_cfs(int cpu)
7725 {
7726 	return cpu_util(cpu, NULL, -1, 0);
7727 }
7728 
7729 unsigned long cpu_util_cfs_boost(int cpu)
7730 {
7731 	return cpu_util(cpu, NULL, -1, 1);
7732 }
7733 
7734 /*
7735  * cpu_util_without: compute cpu utilization without any contributions from *p
7736  * @cpu: the CPU which utilization is requested
7737  * @p: the task which utilization should be discounted
7738  *
7739  * The utilization of a CPU is defined by the utilization of tasks currently
7740  * enqueued on that CPU as well as tasks which are currently sleeping after an
7741  * execution on that CPU.
7742  *
7743  * This method returns the utilization of the specified CPU by discounting the
7744  * utilization of the specified task, whenever the task is currently
7745  * contributing to the CPU utilization.
7746  */
7747 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7748 {
7749 	/* Task has no contribution or is new */
7750 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7751 		p = NULL;
7752 
7753 	return cpu_util(cpu, p, -1, 0);
7754 }
7755 
7756 /*
7757  * energy_env - Utilization landscape for energy estimation.
7758  * @task_busy_time: Utilization contribution by the task for which we test the
7759  *                  placement. Given by eenv_task_busy_time().
7760  * @pd_busy_time:   Utilization of the whole perf domain without the task
7761  *                  contribution. Given by eenv_pd_busy_time().
7762  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7763  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7764  */
7765 struct energy_env {
7766 	unsigned long task_busy_time;
7767 	unsigned long pd_busy_time;
7768 	unsigned long cpu_cap;
7769 	unsigned long pd_cap;
7770 };
7771 
7772 /*
7773  * Compute the task busy time for compute_energy(). This time cannot be
7774  * injected directly into effective_cpu_util() because of the IRQ scaling.
7775  * The latter only makes sense with the most recent CPUs where the task has
7776  * run.
7777  */
7778 static inline void eenv_task_busy_time(struct energy_env *eenv,
7779 				       struct task_struct *p, int prev_cpu)
7780 {
7781 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7782 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7783 
7784 	if (unlikely(irq >= max_cap))
7785 		busy_time = max_cap;
7786 	else
7787 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7788 
7789 	eenv->task_busy_time = busy_time;
7790 }
7791 
7792 /*
7793  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7794  * utilization for each @pd_cpus, it however doesn't take into account
7795  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7796  * scale the EM reported power consumption at the (eventually clamped)
7797  * cpu_capacity.
7798  *
7799  * The contribution of the task @p for which we want to estimate the
7800  * energy cost is removed (by cpu_util()) and must be calculated
7801  * separately (see eenv_task_busy_time). This ensures:
7802  *
7803  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7804  *     the task on.
7805  *
7806  *   - A fair comparison between CPUs as the task contribution (task_util())
7807  *     will always be the same no matter which CPU utilization we rely on
7808  *     (util_avg or util_est).
7809  *
7810  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7811  * exceed @eenv->pd_cap.
7812  */
7813 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7814 				     struct cpumask *pd_cpus,
7815 				     struct task_struct *p)
7816 {
7817 	unsigned long busy_time = 0;
7818 	int cpu;
7819 
7820 	for_each_cpu(cpu, pd_cpus) {
7821 		unsigned long util = cpu_util(cpu, p, -1, 0);
7822 
7823 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7824 	}
7825 
7826 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7827 }
7828 
7829 /*
7830  * Compute the maximum utilization for compute_energy() when the task @p
7831  * is placed on the cpu @dst_cpu.
7832  *
7833  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7834  * exceed @eenv->cpu_cap.
7835  */
7836 static inline unsigned long
7837 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7838 		 struct task_struct *p, int dst_cpu)
7839 {
7840 	unsigned long max_util = 0;
7841 	int cpu;
7842 
7843 	for_each_cpu(cpu, pd_cpus) {
7844 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7845 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7846 		unsigned long eff_util, min, max;
7847 
7848 		/*
7849 		 * Performance domain frequency: utilization clamping
7850 		 * must be considered since it affects the selection
7851 		 * of the performance domain frequency.
7852 		 * NOTE: in case RT tasks are running, by default the
7853 		 * FREQUENCY_UTIL's utilization can be max OPP.
7854 		 */
7855 		eff_util = effective_cpu_util(cpu, util, &min, &max);
7856 
7857 		/* Task's uclamp can modify min and max value */
7858 		if (tsk && uclamp_is_used()) {
7859 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7860 
7861 			/*
7862 			 * If there is no active max uclamp constraint,
7863 			 * directly use task's one, otherwise keep max.
7864 			 */
7865 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7866 				max = uclamp_eff_value(p, UCLAMP_MAX);
7867 			else
7868 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7869 		}
7870 
7871 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7872 		max_util = max(max_util, eff_util);
7873 	}
7874 
7875 	return min(max_util, eenv->cpu_cap);
7876 }
7877 
7878 /*
7879  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7880  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7881  * contribution is ignored.
7882  */
7883 static inline unsigned long
7884 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7885 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7886 {
7887 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7888 	unsigned long busy_time = eenv->pd_busy_time;
7889 	unsigned long energy;
7890 
7891 	if (dst_cpu >= 0)
7892 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7893 
7894 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7895 
7896 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7897 
7898 	return energy;
7899 }
7900 
7901 /*
7902  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7903  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7904  * spare capacity in each performance domain and uses it as a potential
7905  * candidate to execute the task. Then, it uses the Energy Model to figure
7906  * out which of the CPU candidates is the most energy-efficient.
7907  *
7908  * The rationale for this heuristic is as follows. In a performance domain,
7909  * all the most energy efficient CPU candidates (according to the Energy
7910  * Model) are those for which we'll request a low frequency. When there are
7911  * several CPUs for which the frequency request will be the same, we don't
7912  * have enough data to break the tie between them, because the Energy Model
7913  * only includes active power costs. With this model, if we assume that
7914  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7915  * the maximum spare capacity in a performance domain is guaranteed to be among
7916  * the best candidates of the performance domain.
7917  *
7918  * In practice, it could be preferable from an energy standpoint to pack
7919  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7920  * but that could also hurt our chances to go cluster idle, and we have no
7921  * ways to tell with the current Energy Model if this is actually a good
7922  * idea or not. So, find_energy_efficient_cpu() basically favors
7923  * cluster-packing, and spreading inside a cluster. That should at least be
7924  * a good thing for latency, and this is consistent with the idea that most
7925  * of the energy savings of EAS come from the asymmetry of the system, and
7926  * not so much from breaking the tie between identical CPUs. That's also the
7927  * reason why EAS is enabled in the topology code only for systems where
7928  * SD_ASYM_CPUCAPACITY is set.
7929  *
7930  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7931  * they don't have any useful utilization data yet and it's not possible to
7932  * forecast their impact on energy consumption. Consequently, they will be
7933  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7934  * to be energy-inefficient in some use-cases. The alternative would be to
7935  * bias new tasks towards specific types of CPUs first, or to try to infer
7936  * their util_avg from the parent task, but those heuristics could hurt
7937  * other use-cases too. So, until someone finds a better way to solve this,
7938  * let's keep things simple by re-using the existing slow path.
7939  */
7940 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7941 {
7942 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7943 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7944 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7945 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7946 	struct root_domain *rd = this_rq()->rd;
7947 	int cpu, best_energy_cpu, target = -1;
7948 	int prev_fits = -1, best_fits = -1;
7949 	unsigned long best_thermal_cap = 0;
7950 	unsigned long prev_thermal_cap = 0;
7951 	struct sched_domain *sd;
7952 	struct perf_domain *pd;
7953 	struct energy_env eenv;
7954 
7955 	rcu_read_lock();
7956 	pd = rcu_dereference(rd->pd);
7957 	if (!pd || READ_ONCE(rd->overutilized))
7958 		goto unlock;
7959 
7960 	/*
7961 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7962 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7963 	 */
7964 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7965 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7966 		sd = sd->parent;
7967 	if (!sd)
7968 		goto unlock;
7969 
7970 	target = prev_cpu;
7971 
7972 	sync_entity_load_avg(&p->se);
7973 	if (!task_util_est(p) && p_util_min == 0)
7974 		goto unlock;
7975 
7976 	eenv_task_busy_time(&eenv, p, prev_cpu);
7977 
7978 	for (; pd; pd = pd->next) {
7979 		unsigned long util_min = p_util_min, util_max = p_util_max;
7980 		unsigned long cpu_cap, cpu_thermal_cap, util;
7981 		long prev_spare_cap = -1, max_spare_cap = -1;
7982 		unsigned long rq_util_min, rq_util_max;
7983 		unsigned long cur_delta, base_energy;
7984 		int max_spare_cap_cpu = -1;
7985 		int fits, max_fits = -1;
7986 
7987 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7988 
7989 		if (cpumask_empty(cpus))
7990 			continue;
7991 
7992 		/* Account thermal pressure for the energy estimation */
7993 		cpu = cpumask_first(cpus);
7994 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7995 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7996 
7997 		eenv.cpu_cap = cpu_thermal_cap;
7998 		eenv.pd_cap = 0;
7999 
8000 		for_each_cpu(cpu, cpus) {
8001 			struct rq *rq = cpu_rq(cpu);
8002 
8003 			eenv.pd_cap += cpu_thermal_cap;
8004 
8005 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8006 				continue;
8007 
8008 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8009 				continue;
8010 
8011 			util = cpu_util(cpu, p, cpu, 0);
8012 			cpu_cap = capacity_of(cpu);
8013 
8014 			/*
8015 			 * Skip CPUs that cannot satisfy the capacity request.
8016 			 * IOW, placing the task there would make the CPU
8017 			 * overutilized. Take uclamp into account to see how
8018 			 * much capacity we can get out of the CPU; this is
8019 			 * aligned with sched_cpu_util().
8020 			 */
8021 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8022 				/*
8023 				 * Open code uclamp_rq_util_with() except for
8024 				 * the clamp() part. Ie: apply max aggregation
8025 				 * only. util_fits_cpu() logic requires to
8026 				 * operate on non clamped util but must use the
8027 				 * max-aggregated uclamp_{min, max}.
8028 				 */
8029 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8030 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8031 
8032 				util_min = max(rq_util_min, p_util_min);
8033 				util_max = max(rq_util_max, p_util_max);
8034 			}
8035 
8036 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8037 			if (!fits)
8038 				continue;
8039 
8040 			lsub_positive(&cpu_cap, util);
8041 
8042 			if (cpu == prev_cpu) {
8043 				/* Always use prev_cpu as a candidate. */
8044 				prev_spare_cap = cpu_cap;
8045 				prev_fits = fits;
8046 			} else if ((fits > max_fits) ||
8047 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8048 				/*
8049 				 * Find the CPU with the maximum spare capacity
8050 				 * among the remaining CPUs in the performance
8051 				 * domain.
8052 				 */
8053 				max_spare_cap = cpu_cap;
8054 				max_spare_cap_cpu = cpu;
8055 				max_fits = fits;
8056 			}
8057 		}
8058 
8059 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8060 			continue;
8061 
8062 		eenv_pd_busy_time(&eenv, cpus, p);
8063 		/* Compute the 'base' energy of the pd, without @p */
8064 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8065 
8066 		/* Evaluate the energy impact of using prev_cpu. */
8067 		if (prev_spare_cap > -1) {
8068 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8069 						    prev_cpu);
8070 			/* CPU utilization has changed */
8071 			if (prev_delta < base_energy)
8072 				goto unlock;
8073 			prev_delta -= base_energy;
8074 			prev_thermal_cap = cpu_thermal_cap;
8075 			best_delta = min(best_delta, prev_delta);
8076 		}
8077 
8078 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8079 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8080 			/* Current best energy cpu fits better */
8081 			if (max_fits < best_fits)
8082 				continue;
8083 
8084 			/*
8085 			 * Both don't fit performance hint (i.e. uclamp_min)
8086 			 * but best energy cpu has better capacity.
8087 			 */
8088 			if ((max_fits < 0) &&
8089 			    (cpu_thermal_cap <= best_thermal_cap))
8090 				continue;
8091 
8092 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8093 						   max_spare_cap_cpu);
8094 			/* CPU utilization has changed */
8095 			if (cur_delta < base_energy)
8096 				goto unlock;
8097 			cur_delta -= base_energy;
8098 
8099 			/*
8100 			 * Both fit for the task but best energy cpu has lower
8101 			 * energy impact.
8102 			 */
8103 			if ((max_fits > 0) && (best_fits > 0) &&
8104 			    (cur_delta >= best_delta))
8105 				continue;
8106 
8107 			best_delta = cur_delta;
8108 			best_energy_cpu = max_spare_cap_cpu;
8109 			best_fits = max_fits;
8110 			best_thermal_cap = cpu_thermal_cap;
8111 		}
8112 	}
8113 	rcu_read_unlock();
8114 
8115 	if ((best_fits > prev_fits) ||
8116 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8117 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8118 		target = best_energy_cpu;
8119 
8120 	return target;
8121 
8122 unlock:
8123 	rcu_read_unlock();
8124 
8125 	return target;
8126 }
8127 
8128 /*
8129  * select_task_rq_fair: Select target runqueue for the waking task in domains
8130  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8131  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8132  *
8133  * Balances load by selecting the idlest CPU in the idlest group, or under
8134  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8135  *
8136  * Returns the target CPU number.
8137  */
8138 static int
8139 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8140 {
8141 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8142 	struct sched_domain *tmp, *sd = NULL;
8143 	int cpu = smp_processor_id();
8144 	int new_cpu = prev_cpu;
8145 	int want_affine = 0;
8146 	/* SD_flags and WF_flags share the first nibble */
8147 	int sd_flag = wake_flags & 0xF;
8148 
8149 	/*
8150 	 * required for stable ->cpus_allowed
8151 	 */
8152 	lockdep_assert_held(&p->pi_lock);
8153 	if (wake_flags & WF_TTWU) {
8154 		record_wakee(p);
8155 
8156 		if ((wake_flags & WF_CURRENT_CPU) &&
8157 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8158 			return cpu;
8159 
8160 		if (sched_energy_enabled()) {
8161 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8162 			if (new_cpu >= 0)
8163 				return new_cpu;
8164 			new_cpu = prev_cpu;
8165 		}
8166 
8167 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8168 	}
8169 
8170 	rcu_read_lock();
8171 	for_each_domain(cpu, tmp) {
8172 		/*
8173 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8174 		 * cpu is a valid SD_WAKE_AFFINE target.
8175 		 */
8176 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8177 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8178 			if (cpu != prev_cpu)
8179 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8180 
8181 			sd = NULL; /* Prefer wake_affine over balance flags */
8182 			break;
8183 		}
8184 
8185 		/*
8186 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8187 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8188 		 * will usually go to the fast path.
8189 		 */
8190 		if (tmp->flags & sd_flag)
8191 			sd = tmp;
8192 		else if (!want_affine)
8193 			break;
8194 	}
8195 
8196 	if (unlikely(sd)) {
8197 		/* Slow path */
8198 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8199 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8200 		/* Fast path */
8201 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8202 	}
8203 	rcu_read_unlock();
8204 
8205 	return new_cpu;
8206 }
8207 
8208 /*
8209  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8210  * cfs_rq_of(p) references at time of call are still valid and identify the
8211  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8212  */
8213 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8214 {
8215 	struct sched_entity *se = &p->se;
8216 
8217 	if (!task_on_rq_migrating(p)) {
8218 		remove_entity_load_avg(se);
8219 
8220 		/*
8221 		 * Here, the task's PELT values have been updated according to
8222 		 * the current rq's clock. But if that clock hasn't been
8223 		 * updated in a while, a substantial idle time will be missed,
8224 		 * leading to an inflation after wake-up on the new rq.
8225 		 *
8226 		 * Estimate the missing time from the cfs_rq last_update_time
8227 		 * and update sched_avg to improve the PELT continuity after
8228 		 * migration.
8229 		 */
8230 		migrate_se_pelt_lag(se);
8231 	}
8232 
8233 	/* Tell new CPU we are migrated */
8234 	se->avg.last_update_time = 0;
8235 
8236 	update_scan_period(p, new_cpu);
8237 }
8238 
8239 static void task_dead_fair(struct task_struct *p)
8240 {
8241 	remove_entity_load_avg(&p->se);
8242 }
8243 
8244 static int
8245 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8246 {
8247 	if (rq->nr_running)
8248 		return 1;
8249 
8250 	return newidle_balance(rq, rf) != 0;
8251 }
8252 #endif /* CONFIG_SMP */
8253 
8254 static void set_next_buddy(struct sched_entity *se)
8255 {
8256 	for_each_sched_entity(se) {
8257 		if (SCHED_WARN_ON(!se->on_rq))
8258 			return;
8259 		if (se_is_idle(se))
8260 			return;
8261 		cfs_rq_of(se)->next = se;
8262 	}
8263 }
8264 
8265 /*
8266  * Preempt the current task with a newly woken task if needed:
8267  */
8268 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8269 {
8270 	struct task_struct *curr = rq->curr;
8271 	struct sched_entity *se = &curr->se, *pse = &p->se;
8272 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8273 	int cse_is_idle, pse_is_idle;
8274 
8275 	if (unlikely(se == pse))
8276 		return;
8277 
8278 	/*
8279 	 * This is possible from callers such as attach_tasks(), in which we
8280 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8281 	 * lead to a throttle).  This both saves work and prevents false
8282 	 * next-buddy nomination below.
8283 	 */
8284 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8285 		return;
8286 
8287 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8288 		set_next_buddy(pse);
8289 	}
8290 
8291 	/*
8292 	 * We can come here with TIF_NEED_RESCHED already set from new task
8293 	 * wake up path.
8294 	 *
8295 	 * Note: this also catches the edge-case of curr being in a throttled
8296 	 * group (e.g. via set_curr_task), since update_curr() (in the
8297 	 * enqueue of curr) will have resulted in resched being set.  This
8298 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8299 	 * below.
8300 	 */
8301 	if (test_tsk_need_resched(curr))
8302 		return;
8303 
8304 	/* Idle tasks are by definition preempted by non-idle tasks. */
8305 	if (unlikely(task_has_idle_policy(curr)) &&
8306 	    likely(!task_has_idle_policy(p)))
8307 		goto preempt;
8308 
8309 	/*
8310 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8311 	 * is driven by the tick):
8312 	 */
8313 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8314 		return;
8315 
8316 	find_matching_se(&se, &pse);
8317 	WARN_ON_ONCE(!pse);
8318 
8319 	cse_is_idle = se_is_idle(se);
8320 	pse_is_idle = se_is_idle(pse);
8321 
8322 	/*
8323 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8324 	 * in the inverse case).
8325 	 */
8326 	if (cse_is_idle && !pse_is_idle)
8327 		goto preempt;
8328 	if (cse_is_idle != pse_is_idle)
8329 		return;
8330 
8331 	cfs_rq = cfs_rq_of(se);
8332 	update_curr(cfs_rq);
8333 
8334 	/*
8335 	 * XXX pick_eevdf(cfs_rq) != se ?
8336 	 */
8337 	if (pick_eevdf(cfs_rq) == pse)
8338 		goto preempt;
8339 
8340 	return;
8341 
8342 preempt:
8343 	resched_curr(rq);
8344 }
8345 
8346 #ifdef CONFIG_SMP
8347 static struct task_struct *pick_task_fair(struct rq *rq)
8348 {
8349 	struct sched_entity *se;
8350 	struct cfs_rq *cfs_rq;
8351 
8352 again:
8353 	cfs_rq = &rq->cfs;
8354 	if (!cfs_rq->nr_running)
8355 		return NULL;
8356 
8357 	do {
8358 		struct sched_entity *curr = cfs_rq->curr;
8359 
8360 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8361 		if (curr) {
8362 			if (curr->on_rq)
8363 				update_curr(cfs_rq);
8364 			else
8365 				curr = NULL;
8366 
8367 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8368 				goto again;
8369 		}
8370 
8371 		se = pick_next_entity(cfs_rq);
8372 		cfs_rq = group_cfs_rq(se);
8373 	} while (cfs_rq);
8374 
8375 	return task_of(se);
8376 }
8377 #endif
8378 
8379 struct task_struct *
8380 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8381 {
8382 	struct cfs_rq *cfs_rq = &rq->cfs;
8383 	struct sched_entity *se;
8384 	struct task_struct *p;
8385 	int new_tasks;
8386 
8387 again:
8388 	if (!sched_fair_runnable(rq))
8389 		goto idle;
8390 
8391 #ifdef CONFIG_FAIR_GROUP_SCHED
8392 	if (!prev || prev->sched_class != &fair_sched_class)
8393 		goto simple;
8394 
8395 	/*
8396 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8397 	 * likely that a next task is from the same cgroup as the current.
8398 	 *
8399 	 * Therefore attempt to avoid putting and setting the entire cgroup
8400 	 * hierarchy, only change the part that actually changes.
8401 	 */
8402 
8403 	do {
8404 		struct sched_entity *curr = cfs_rq->curr;
8405 
8406 		/*
8407 		 * Since we got here without doing put_prev_entity() we also
8408 		 * have to consider cfs_rq->curr. If it is still a runnable
8409 		 * entity, update_curr() will update its vruntime, otherwise
8410 		 * forget we've ever seen it.
8411 		 */
8412 		if (curr) {
8413 			if (curr->on_rq)
8414 				update_curr(cfs_rq);
8415 			else
8416 				curr = NULL;
8417 
8418 			/*
8419 			 * This call to check_cfs_rq_runtime() will do the
8420 			 * throttle and dequeue its entity in the parent(s).
8421 			 * Therefore the nr_running test will indeed
8422 			 * be correct.
8423 			 */
8424 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8425 				cfs_rq = &rq->cfs;
8426 
8427 				if (!cfs_rq->nr_running)
8428 					goto idle;
8429 
8430 				goto simple;
8431 			}
8432 		}
8433 
8434 		se = pick_next_entity(cfs_rq);
8435 		cfs_rq = group_cfs_rq(se);
8436 	} while (cfs_rq);
8437 
8438 	p = task_of(se);
8439 
8440 	/*
8441 	 * Since we haven't yet done put_prev_entity and if the selected task
8442 	 * is a different task than we started out with, try and touch the
8443 	 * least amount of cfs_rqs.
8444 	 */
8445 	if (prev != p) {
8446 		struct sched_entity *pse = &prev->se;
8447 
8448 		while (!(cfs_rq = is_same_group(se, pse))) {
8449 			int se_depth = se->depth;
8450 			int pse_depth = pse->depth;
8451 
8452 			if (se_depth <= pse_depth) {
8453 				put_prev_entity(cfs_rq_of(pse), pse);
8454 				pse = parent_entity(pse);
8455 			}
8456 			if (se_depth >= pse_depth) {
8457 				set_next_entity(cfs_rq_of(se), se);
8458 				se = parent_entity(se);
8459 			}
8460 		}
8461 
8462 		put_prev_entity(cfs_rq, pse);
8463 		set_next_entity(cfs_rq, se);
8464 	}
8465 
8466 	goto done;
8467 simple:
8468 #endif
8469 	if (prev)
8470 		put_prev_task(rq, prev);
8471 
8472 	do {
8473 		se = pick_next_entity(cfs_rq);
8474 		set_next_entity(cfs_rq, se);
8475 		cfs_rq = group_cfs_rq(se);
8476 	} while (cfs_rq);
8477 
8478 	p = task_of(se);
8479 
8480 done: __maybe_unused;
8481 #ifdef CONFIG_SMP
8482 	/*
8483 	 * Move the next running task to the front of
8484 	 * the list, so our cfs_tasks list becomes MRU
8485 	 * one.
8486 	 */
8487 	list_move(&p->se.group_node, &rq->cfs_tasks);
8488 #endif
8489 
8490 	if (hrtick_enabled_fair(rq))
8491 		hrtick_start_fair(rq, p);
8492 
8493 	update_misfit_status(p, rq);
8494 	sched_fair_update_stop_tick(rq, p);
8495 
8496 	return p;
8497 
8498 idle:
8499 	if (!rf)
8500 		return NULL;
8501 
8502 	new_tasks = newidle_balance(rq, rf);
8503 
8504 	/*
8505 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8506 	 * possible for any higher priority task to appear. In that case we
8507 	 * must re-start the pick_next_entity() loop.
8508 	 */
8509 	if (new_tasks < 0)
8510 		return RETRY_TASK;
8511 
8512 	if (new_tasks > 0)
8513 		goto again;
8514 
8515 	/*
8516 	 * rq is about to be idle, check if we need to update the
8517 	 * lost_idle_time of clock_pelt
8518 	 */
8519 	update_idle_rq_clock_pelt(rq);
8520 
8521 	return NULL;
8522 }
8523 
8524 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8525 {
8526 	return pick_next_task_fair(rq, NULL, NULL);
8527 }
8528 
8529 /*
8530  * Account for a descheduled task:
8531  */
8532 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8533 {
8534 	struct sched_entity *se = &prev->se;
8535 	struct cfs_rq *cfs_rq;
8536 
8537 	for_each_sched_entity(se) {
8538 		cfs_rq = cfs_rq_of(se);
8539 		put_prev_entity(cfs_rq, se);
8540 	}
8541 }
8542 
8543 /*
8544  * sched_yield() is very simple
8545  */
8546 static void yield_task_fair(struct rq *rq)
8547 {
8548 	struct task_struct *curr = rq->curr;
8549 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8550 	struct sched_entity *se = &curr->se;
8551 
8552 	/*
8553 	 * Are we the only task in the tree?
8554 	 */
8555 	if (unlikely(rq->nr_running == 1))
8556 		return;
8557 
8558 	clear_buddies(cfs_rq, se);
8559 
8560 	update_rq_clock(rq);
8561 	/*
8562 	 * Update run-time statistics of the 'current'.
8563 	 */
8564 	update_curr(cfs_rq);
8565 	/*
8566 	 * Tell update_rq_clock() that we've just updated,
8567 	 * so we don't do microscopic update in schedule()
8568 	 * and double the fastpath cost.
8569 	 */
8570 	rq_clock_skip_update(rq);
8571 
8572 	se->deadline += calc_delta_fair(se->slice, se);
8573 }
8574 
8575 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8576 {
8577 	struct sched_entity *se = &p->se;
8578 
8579 	/* throttled hierarchies are not runnable */
8580 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8581 		return false;
8582 
8583 	/* Tell the scheduler that we'd really like pse to run next. */
8584 	set_next_buddy(se);
8585 
8586 	yield_task_fair(rq);
8587 
8588 	return true;
8589 }
8590 
8591 #ifdef CONFIG_SMP
8592 /**************************************************
8593  * Fair scheduling class load-balancing methods.
8594  *
8595  * BASICS
8596  *
8597  * The purpose of load-balancing is to achieve the same basic fairness the
8598  * per-CPU scheduler provides, namely provide a proportional amount of compute
8599  * time to each task. This is expressed in the following equation:
8600  *
8601  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8602  *
8603  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8604  * W_i,0 is defined as:
8605  *
8606  *   W_i,0 = \Sum_j w_i,j                                             (2)
8607  *
8608  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8609  * is derived from the nice value as per sched_prio_to_weight[].
8610  *
8611  * The weight average is an exponential decay average of the instantaneous
8612  * weight:
8613  *
8614  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8615  *
8616  * C_i is the compute capacity of CPU i, typically it is the
8617  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8618  * can also include other factors [XXX].
8619  *
8620  * To achieve this balance we define a measure of imbalance which follows
8621  * directly from (1):
8622  *
8623  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8624  *
8625  * We them move tasks around to minimize the imbalance. In the continuous
8626  * function space it is obvious this converges, in the discrete case we get
8627  * a few fun cases generally called infeasible weight scenarios.
8628  *
8629  * [XXX expand on:
8630  *     - infeasible weights;
8631  *     - local vs global optima in the discrete case. ]
8632  *
8633  *
8634  * SCHED DOMAINS
8635  *
8636  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8637  * for all i,j solution, we create a tree of CPUs that follows the hardware
8638  * topology where each level pairs two lower groups (or better). This results
8639  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8640  * tree to only the first of the previous level and we decrease the frequency
8641  * of load-balance at each level inv. proportional to the number of CPUs in
8642  * the groups.
8643  *
8644  * This yields:
8645  *
8646  *     log_2 n     1     n
8647  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8648  *     i = 0      2^i   2^i
8649  *                               `- size of each group
8650  *         |         |     `- number of CPUs doing load-balance
8651  *         |         `- freq
8652  *         `- sum over all levels
8653  *
8654  * Coupled with a limit on how many tasks we can migrate every balance pass,
8655  * this makes (5) the runtime complexity of the balancer.
8656  *
8657  * An important property here is that each CPU is still (indirectly) connected
8658  * to every other CPU in at most O(log n) steps:
8659  *
8660  * The adjacency matrix of the resulting graph is given by:
8661  *
8662  *             log_2 n
8663  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8664  *             k = 0
8665  *
8666  * And you'll find that:
8667  *
8668  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8669  *
8670  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8671  * The task movement gives a factor of O(m), giving a convergence complexity
8672  * of:
8673  *
8674  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8675  *
8676  *
8677  * WORK CONSERVING
8678  *
8679  * In order to avoid CPUs going idle while there's still work to do, new idle
8680  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8681  * tree itself instead of relying on other CPUs to bring it work.
8682  *
8683  * This adds some complexity to both (5) and (8) but it reduces the total idle
8684  * time.
8685  *
8686  * [XXX more?]
8687  *
8688  *
8689  * CGROUPS
8690  *
8691  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8692  *
8693  *                                s_k,i
8694  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8695  *                                 S_k
8696  *
8697  * Where
8698  *
8699  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8700  *
8701  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8702  *
8703  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8704  * property.
8705  *
8706  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8707  *      rewrite all of this once again.]
8708  */
8709 
8710 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8711 
8712 enum fbq_type { regular, remote, all };
8713 
8714 /*
8715  * 'group_type' describes the group of CPUs at the moment of load balancing.
8716  *
8717  * The enum is ordered by pulling priority, with the group with lowest priority
8718  * first so the group_type can simply be compared when selecting the busiest
8719  * group. See update_sd_pick_busiest().
8720  */
8721 enum group_type {
8722 	/* The group has spare capacity that can be used to run more tasks.  */
8723 	group_has_spare = 0,
8724 	/*
8725 	 * The group is fully used and the tasks don't compete for more CPU
8726 	 * cycles. Nevertheless, some tasks might wait before running.
8727 	 */
8728 	group_fully_busy,
8729 	/*
8730 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8731 	 * more powerful CPU.
8732 	 */
8733 	group_misfit_task,
8734 	/*
8735 	 * Balance SMT group that's fully busy. Can benefit from migration
8736 	 * a task on SMT with busy sibling to another CPU on idle core.
8737 	 */
8738 	group_smt_balance,
8739 	/*
8740 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8741 	 * and the task should be migrated to it instead of running on the
8742 	 * current CPU.
8743 	 */
8744 	group_asym_packing,
8745 	/*
8746 	 * The tasks' affinity constraints previously prevented the scheduler
8747 	 * from balancing the load across the system.
8748 	 */
8749 	group_imbalanced,
8750 	/*
8751 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8752 	 * tasks.
8753 	 */
8754 	group_overloaded
8755 };
8756 
8757 enum migration_type {
8758 	migrate_load = 0,
8759 	migrate_util,
8760 	migrate_task,
8761 	migrate_misfit
8762 };
8763 
8764 #define LBF_ALL_PINNED	0x01
8765 #define LBF_NEED_BREAK	0x02
8766 #define LBF_DST_PINNED  0x04
8767 #define LBF_SOME_PINNED	0x08
8768 #define LBF_ACTIVE_LB	0x10
8769 
8770 struct lb_env {
8771 	struct sched_domain	*sd;
8772 
8773 	struct rq		*src_rq;
8774 	int			src_cpu;
8775 
8776 	int			dst_cpu;
8777 	struct rq		*dst_rq;
8778 
8779 	struct cpumask		*dst_grpmask;
8780 	int			new_dst_cpu;
8781 	enum cpu_idle_type	idle;
8782 	long			imbalance;
8783 	/* The set of CPUs under consideration for load-balancing */
8784 	struct cpumask		*cpus;
8785 
8786 	unsigned int		flags;
8787 
8788 	unsigned int		loop;
8789 	unsigned int		loop_break;
8790 	unsigned int		loop_max;
8791 
8792 	enum fbq_type		fbq_type;
8793 	enum migration_type	migration_type;
8794 	struct list_head	tasks;
8795 };
8796 
8797 /*
8798  * Is this task likely cache-hot:
8799  */
8800 static int task_hot(struct task_struct *p, struct lb_env *env)
8801 {
8802 	s64 delta;
8803 
8804 	lockdep_assert_rq_held(env->src_rq);
8805 
8806 	if (p->sched_class != &fair_sched_class)
8807 		return 0;
8808 
8809 	if (unlikely(task_has_idle_policy(p)))
8810 		return 0;
8811 
8812 	/* SMT siblings share cache */
8813 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8814 		return 0;
8815 
8816 	/*
8817 	 * Buddy candidates are cache hot:
8818 	 */
8819 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8820 	    (&p->se == cfs_rq_of(&p->se)->next))
8821 		return 1;
8822 
8823 	if (sysctl_sched_migration_cost == -1)
8824 		return 1;
8825 
8826 	/*
8827 	 * Don't migrate task if the task's cookie does not match
8828 	 * with the destination CPU's core cookie.
8829 	 */
8830 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8831 		return 1;
8832 
8833 	if (sysctl_sched_migration_cost == 0)
8834 		return 0;
8835 
8836 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8837 
8838 	return delta < (s64)sysctl_sched_migration_cost;
8839 }
8840 
8841 #ifdef CONFIG_NUMA_BALANCING
8842 /*
8843  * Returns 1, if task migration degrades locality
8844  * Returns 0, if task migration improves locality i.e migration preferred.
8845  * Returns -1, if task migration is not affected by locality.
8846  */
8847 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8848 {
8849 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8850 	unsigned long src_weight, dst_weight;
8851 	int src_nid, dst_nid, dist;
8852 
8853 	if (!static_branch_likely(&sched_numa_balancing))
8854 		return -1;
8855 
8856 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8857 		return -1;
8858 
8859 	src_nid = cpu_to_node(env->src_cpu);
8860 	dst_nid = cpu_to_node(env->dst_cpu);
8861 
8862 	if (src_nid == dst_nid)
8863 		return -1;
8864 
8865 	/* Migrating away from the preferred node is always bad. */
8866 	if (src_nid == p->numa_preferred_nid) {
8867 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8868 			return 1;
8869 		else
8870 			return -1;
8871 	}
8872 
8873 	/* Encourage migration to the preferred node. */
8874 	if (dst_nid == p->numa_preferred_nid)
8875 		return 0;
8876 
8877 	/* Leaving a core idle is often worse than degrading locality. */
8878 	if (env->idle == CPU_IDLE)
8879 		return -1;
8880 
8881 	dist = node_distance(src_nid, dst_nid);
8882 	if (numa_group) {
8883 		src_weight = group_weight(p, src_nid, dist);
8884 		dst_weight = group_weight(p, dst_nid, dist);
8885 	} else {
8886 		src_weight = task_weight(p, src_nid, dist);
8887 		dst_weight = task_weight(p, dst_nid, dist);
8888 	}
8889 
8890 	return dst_weight < src_weight;
8891 }
8892 
8893 #else
8894 static inline int migrate_degrades_locality(struct task_struct *p,
8895 					     struct lb_env *env)
8896 {
8897 	return -1;
8898 }
8899 #endif
8900 
8901 /*
8902  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8903  */
8904 static
8905 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8906 {
8907 	int tsk_cache_hot;
8908 
8909 	lockdep_assert_rq_held(env->src_rq);
8910 
8911 	/*
8912 	 * We do not migrate tasks that are:
8913 	 * 1) throttled_lb_pair, or
8914 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8915 	 * 3) running (obviously), or
8916 	 * 4) are cache-hot on their current CPU.
8917 	 */
8918 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8919 		return 0;
8920 
8921 	/* Disregard pcpu kthreads; they are where they need to be. */
8922 	if (kthread_is_per_cpu(p))
8923 		return 0;
8924 
8925 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8926 		int cpu;
8927 
8928 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8929 
8930 		env->flags |= LBF_SOME_PINNED;
8931 
8932 		/*
8933 		 * Remember if this task can be migrated to any other CPU in
8934 		 * our sched_group. We may want to revisit it if we couldn't
8935 		 * meet load balance goals by pulling other tasks on src_cpu.
8936 		 *
8937 		 * Avoid computing new_dst_cpu
8938 		 * - for NEWLY_IDLE
8939 		 * - if we have already computed one in current iteration
8940 		 * - if it's an active balance
8941 		 */
8942 		if (env->idle == CPU_NEWLY_IDLE ||
8943 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8944 			return 0;
8945 
8946 		/* Prevent to re-select dst_cpu via env's CPUs: */
8947 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8948 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8949 				env->flags |= LBF_DST_PINNED;
8950 				env->new_dst_cpu = cpu;
8951 				break;
8952 			}
8953 		}
8954 
8955 		return 0;
8956 	}
8957 
8958 	/* Record that we found at least one task that could run on dst_cpu */
8959 	env->flags &= ~LBF_ALL_PINNED;
8960 
8961 	if (task_on_cpu(env->src_rq, p)) {
8962 		schedstat_inc(p->stats.nr_failed_migrations_running);
8963 		return 0;
8964 	}
8965 
8966 	/*
8967 	 * Aggressive migration if:
8968 	 * 1) active balance
8969 	 * 2) destination numa is preferred
8970 	 * 3) task is cache cold, or
8971 	 * 4) too many balance attempts have failed.
8972 	 */
8973 	if (env->flags & LBF_ACTIVE_LB)
8974 		return 1;
8975 
8976 	tsk_cache_hot = migrate_degrades_locality(p, env);
8977 	if (tsk_cache_hot == -1)
8978 		tsk_cache_hot = task_hot(p, env);
8979 
8980 	if (tsk_cache_hot <= 0 ||
8981 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8982 		if (tsk_cache_hot == 1) {
8983 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8984 			schedstat_inc(p->stats.nr_forced_migrations);
8985 		}
8986 		return 1;
8987 	}
8988 
8989 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8990 	return 0;
8991 }
8992 
8993 /*
8994  * detach_task() -- detach the task for the migration specified in env
8995  */
8996 static void detach_task(struct task_struct *p, struct lb_env *env)
8997 {
8998 	lockdep_assert_rq_held(env->src_rq);
8999 
9000 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9001 	set_task_cpu(p, env->dst_cpu);
9002 }
9003 
9004 /*
9005  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9006  * part of active balancing operations within "domain".
9007  *
9008  * Returns a task if successful and NULL otherwise.
9009  */
9010 static struct task_struct *detach_one_task(struct lb_env *env)
9011 {
9012 	struct task_struct *p;
9013 
9014 	lockdep_assert_rq_held(env->src_rq);
9015 
9016 	list_for_each_entry_reverse(p,
9017 			&env->src_rq->cfs_tasks, se.group_node) {
9018 		if (!can_migrate_task(p, env))
9019 			continue;
9020 
9021 		detach_task(p, env);
9022 
9023 		/*
9024 		 * Right now, this is only the second place where
9025 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9026 		 * so we can safely collect stats here rather than
9027 		 * inside detach_tasks().
9028 		 */
9029 		schedstat_inc(env->sd->lb_gained[env->idle]);
9030 		return p;
9031 	}
9032 	return NULL;
9033 }
9034 
9035 /*
9036  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9037  * busiest_rq, as part of a balancing operation within domain "sd".
9038  *
9039  * Returns number of detached tasks if successful and 0 otherwise.
9040  */
9041 static int detach_tasks(struct lb_env *env)
9042 {
9043 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9044 	unsigned long util, load;
9045 	struct task_struct *p;
9046 	int detached = 0;
9047 
9048 	lockdep_assert_rq_held(env->src_rq);
9049 
9050 	/*
9051 	 * Source run queue has been emptied by another CPU, clear
9052 	 * LBF_ALL_PINNED flag as we will not test any task.
9053 	 */
9054 	if (env->src_rq->nr_running <= 1) {
9055 		env->flags &= ~LBF_ALL_PINNED;
9056 		return 0;
9057 	}
9058 
9059 	if (env->imbalance <= 0)
9060 		return 0;
9061 
9062 	while (!list_empty(tasks)) {
9063 		/*
9064 		 * We don't want to steal all, otherwise we may be treated likewise,
9065 		 * which could at worst lead to a livelock crash.
9066 		 */
9067 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9068 			break;
9069 
9070 		env->loop++;
9071 		/*
9072 		 * We've more or less seen every task there is, call it quits
9073 		 * unless we haven't found any movable task yet.
9074 		 */
9075 		if (env->loop > env->loop_max &&
9076 		    !(env->flags & LBF_ALL_PINNED))
9077 			break;
9078 
9079 		/* take a breather every nr_migrate tasks */
9080 		if (env->loop > env->loop_break) {
9081 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9082 			env->flags |= LBF_NEED_BREAK;
9083 			break;
9084 		}
9085 
9086 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9087 
9088 		if (!can_migrate_task(p, env))
9089 			goto next;
9090 
9091 		switch (env->migration_type) {
9092 		case migrate_load:
9093 			/*
9094 			 * Depending of the number of CPUs and tasks and the
9095 			 * cgroup hierarchy, task_h_load() can return a null
9096 			 * value. Make sure that env->imbalance decreases
9097 			 * otherwise detach_tasks() will stop only after
9098 			 * detaching up to loop_max tasks.
9099 			 */
9100 			load = max_t(unsigned long, task_h_load(p), 1);
9101 
9102 			if (sched_feat(LB_MIN) &&
9103 			    load < 16 && !env->sd->nr_balance_failed)
9104 				goto next;
9105 
9106 			/*
9107 			 * Make sure that we don't migrate too much load.
9108 			 * Nevertheless, let relax the constraint if
9109 			 * scheduler fails to find a good waiting task to
9110 			 * migrate.
9111 			 */
9112 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9113 				goto next;
9114 
9115 			env->imbalance -= load;
9116 			break;
9117 
9118 		case migrate_util:
9119 			util = task_util_est(p);
9120 
9121 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9122 				goto next;
9123 
9124 			env->imbalance -= util;
9125 			break;
9126 
9127 		case migrate_task:
9128 			env->imbalance--;
9129 			break;
9130 
9131 		case migrate_misfit:
9132 			/* This is not a misfit task */
9133 			if (task_fits_cpu(p, env->src_cpu))
9134 				goto next;
9135 
9136 			env->imbalance = 0;
9137 			break;
9138 		}
9139 
9140 		detach_task(p, env);
9141 		list_add(&p->se.group_node, &env->tasks);
9142 
9143 		detached++;
9144 
9145 #ifdef CONFIG_PREEMPTION
9146 		/*
9147 		 * NEWIDLE balancing is a source of latency, so preemptible
9148 		 * kernels will stop after the first task is detached to minimize
9149 		 * the critical section.
9150 		 */
9151 		if (env->idle == CPU_NEWLY_IDLE)
9152 			break;
9153 #endif
9154 
9155 		/*
9156 		 * We only want to steal up to the prescribed amount of
9157 		 * load/util/tasks.
9158 		 */
9159 		if (env->imbalance <= 0)
9160 			break;
9161 
9162 		continue;
9163 next:
9164 		list_move(&p->se.group_node, tasks);
9165 	}
9166 
9167 	/*
9168 	 * Right now, this is one of only two places we collect this stat
9169 	 * so we can safely collect detach_one_task() stats here rather
9170 	 * than inside detach_one_task().
9171 	 */
9172 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9173 
9174 	return detached;
9175 }
9176 
9177 /*
9178  * attach_task() -- attach the task detached by detach_task() to its new rq.
9179  */
9180 static void attach_task(struct rq *rq, struct task_struct *p)
9181 {
9182 	lockdep_assert_rq_held(rq);
9183 
9184 	WARN_ON_ONCE(task_rq(p) != rq);
9185 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9186 	wakeup_preempt(rq, p, 0);
9187 }
9188 
9189 /*
9190  * attach_one_task() -- attaches the task returned from detach_one_task() to
9191  * its new rq.
9192  */
9193 static void attach_one_task(struct rq *rq, struct task_struct *p)
9194 {
9195 	struct rq_flags rf;
9196 
9197 	rq_lock(rq, &rf);
9198 	update_rq_clock(rq);
9199 	attach_task(rq, p);
9200 	rq_unlock(rq, &rf);
9201 }
9202 
9203 /*
9204  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9205  * new rq.
9206  */
9207 static void attach_tasks(struct lb_env *env)
9208 {
9209 	struct list_head *tasks = &env->tasks;
9210 	struct task_struct *p;
9211 	struct rq_flags rf;
9212 
9213 	rq_lock(env->dst_rq, &rf);
9214 	update_rq_clock(env->dst_rq);
9215 
9216 	while (!list_empty(tasks)) {
9217 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9218 		list_del_init(&p->se.group_node);
9219 
9220 		attach_task(env->dst_rq, p);
9221 	}
9222 
9223 	rq_unlock(env->dst_rq, &rf);
9224 }
9225 
9226 #ifdef CONFIG_NO_HZ_COMMON
9227 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9228 {
9229 	if (cfs_rq->avg.load_avg)
9230 		return true;
9231 
9232 	if (cfs_rq->avg.util_avg)
9233 		return true;
9234 
9235 	return false;
9236 }
9237 
9238 static inline bool others_have_blocked(struct rq *rq)
9239 {
9240 	if (READ_ONCE(rq->avg_rt.util_avg))
9241 		return true;
9242 
9243 	if (READ_ONCE(rq->avg_dl.util_avg))
9244 		return true;
9245 
9246 	if (thermal_load_avg(rq))
9247 		return true;
9248 
9249 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9250 	if (READ_ONCE(rq->avg_irq.util_avg))
9251 		return true;
9252 #endif
9253 
9254 	return false;
9255 }
9256 
9257 static inline void update_blocked_load_tick(struct rq *rq)
9258 {
9259 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9260 }
9261 
9262 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9263 {
9264 	if (!has_blocked)
9265 		rq->has_blocked_load = 0;
9266 }
9267 #else
9268 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9269 static inline bool others_have_blocked(struct rq *rq) { return false; }
9270 static inline void update_blocked_load_tick(struct rq *rq) {}
9271 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9272 #endif
9273 
9274 static bool __update_blocked_others(struct rq *rq, bool *done)
9275 {
9276 	const struct sched_class *curr_class;
9277 	u64 now = rq_clock_pelt(rq);
9278 	unsigned long thermal_pressure;
9279 	bool decayed;
9280 
9281 	/*
9282 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9283 	 * DL and IRQ signals have been updated before updating CFS.
9284 	 */
9285 	curr_class = rq->curr->sched_class;
9286 
9287 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9288 
9289 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9290 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9291 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9292 		  update_irq_load_avg(rq, 0);
9293 
9294 	if (others_have_blocked(rq))
9295 		*done = false;
9296 
9297 	return decayed;
9298 }
9299 
9300 #ifdef CONFIG_FAIR_GROUP_SCHED
9301 
9302 static bool __update_blocked_fair(struct rq *rq, bool *done)
9303 {
9304 	struct cfs_rq *cfs_rq, *pos;
9305 	bool decayed = false;
9306 	int cpu = cpu_of(rq);
9307 
9308 	/*
9309 	 * Iterates the task_group tree in a bottom up fashion, see
9310 	 * list_add_leaf_cfs_rq() for details.
9311 	 */
9312 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9313 		struct sched_entity *se;
9314 
9315 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9316 			update_tg_load_avg(cfs_rq);
9317 
9318 			if (cfs_rq->nr_running == 0)
9319 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9320 
9321 			if (cfs_rq == &rq->cfs)
9322 				decayed = true;
9323 		}
9324 
9325 		/* Propagate pending load changes to the parent, if any: */
9326 		se = cfs_rq->tg->se[cpu];
9327 		if (se && !skip_blocked_update(se))
9328 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9329 
9330 		/*
9331 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9332 		 * decayed cfs_rqs linger on the list.
9333 		 */
9334 		if (cfs_rq_is_decayed(cfs_rq))
9335 			list_del_leaf_cfs_rq(cfs_rq);
9336 
9337 		/* Don't need periodic decay once load/util_avg are null */
9338 		if (cfs_rq_has_blocked(cfs_rq))
9339 			*done = false;
9340 	}
9341 
9342 	return decayed;
9343 }
9344 
9345 /*
9346  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9347  * This needs to be done in a top-down fashion because the load of a child
9348  * group is a fraction of its parents load.
9349  */
9350 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9351 {
9352 	struct rq *rq = rq_of(cfs_rq);
9353 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9354 	unsigned long now = jiffies;
9355 	unsigned long load;
9356 
9357 	if (cfs_rq->last_h_load_update == now)
9358 		return;
9359 
9360 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9361 	for_each_sched_entity(se) {
9362 		cfs_rq = cfs_rq_of(se);
9363 		WRITE_ONCE(cfs_rq->h_load_next, se);
9364 		if (cfs_rq->last_h_load_update == now)
9365 			break;
9366 	}
9367 
9368 	if (!se) {
9369 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9370 		cfs_rq->last_h_load_update = now;
9371 	}
9372 
9373 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9374 		load = cfs_rq->h_load;
9375 		load = div64_ul(load * se->avg.load_avg,
9376 			cfs_rq_load_avg(cfs_rq) + 1);
9377 		cfs_rq = group_cfs_rq(se);
9378 		cfs_rq->h_load = load;
9379 		cfs_rq->last_h_load_update = now;
9380 	}
9381 }
9382 
9383 static unsigned long task_h_load(struct task_struct *p)
9384 {
9385 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9386 
9387 	update_cfs_rq_h_load(cfs_rq);
9388 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9389 			cfs_rq_load_avg(cfs_rq) + 1);
9390 }
9391 #else
9392 static bool __update_blocked_fair(struct rq *rq, bool *done)
9393 {
9394 	struct cfs_rq *cfs_rq = &rq->cfs;
9395 	bool decayed;
9396 
9397 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9398 	if (cfs_rq_has_blocked(cfs_rq))
9399 		*done = false;
9400 
9401 	return decayed;
9402 }
9403 
9404 static unsigned long task_h_load(struct task_struct *p)
9405 {
9406 	return p->se.avg.load_avg;
9407 }
9408 #endif
9409 
9410 static void update_blocked_averages(int cpu)
9411 {
9412 	bool decayed = false, done = true;
9413 	struct rq *rq = cpu_rq(cpu);
9414 	struct rq_flags rf;
9415 
9416 	rq_lock_irqsave(rq, &rf);
9417 	update_blocked_load_tick(rq);
9418 	update_rq_clock(rq);
9419 
9420 	decayed |= __update_blocked_others(rq, &done);
9421 	decayed |= __update_blocked_fair(rq, &done);
9422 
9423 	update_blocked_load_status(rq, !done);
9424 	if (decayed)
9425 		cpufreq_update_util(rq, 0);
9426 	rq_unlock_irqrestore(rq, &rf);
9427 }
9428 
9429 /********** Helpers for find_busiest_group ************************/
9430 
9431 /*
9432  * sg_lb_stats - stats of a sched_group required for load_balancing
9433  */
9434 struct sg_lb_stats {
9435 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9436 	unsigned long group_load; /* Total load over the CPUs of the group */
9437 	unsigned long group_capacity;
9438 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9439 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9440 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9441 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9442 	unsigned int idle_cpus;
9443 	unsigned int group_weight;
9444 	enum group_type group_type;
9445 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9446 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9447 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9448 #ifdef CONFIG_NUMA_BALANCING
9449 	unsigned int nr_numa_running;
9450 	unsigned int nr_preferred_running;
9451 #endif
9452 };
9453 
9454 /*
9455  * sd_lb_stats - Structure to store the statistics of a sched_domain
9456  *		 during load balancing.
9457  */
9458 struct sd_lb_stats {
9459 	struct sched_group *busiest;	/* Busiest group in this sd */
9460 	struct sched_group *local;	/* Local group in this sd */
9461 	unsigned long total_load;	/* Total load of all groups in sd */
9462 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9463 	unsigned long avg_load;	/* Average load across all groups in sd */
9464 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9465 
9466 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9467 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9468 };
9469 
9470 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9471 {
9472 	/*
9473 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9474 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9475 	 * We must however set busiest_stat::group_type and
9476 	 * busiest_stat::idle_cpus to the worst busiest group because
9477 	 * update_sd_pick_busiest() reads these before assignment.
9478 	 */
9479 	*sds = (struct sd_lb_stats){
9480 		.busiest = NULL,
9481 		.local = NULL,
9482 		.total_load = 0UL,
9483 		.total_capacity = 0UL,
9484 		.busiest_stat = {
9485 			.idle_cpus = UINT_MAX,
9486 			.group_type = group_has_spare,
9487 		},
9488 	};
9489 }
9490 
9491 static unsigned long scale_rt_capacity(int cpu)
9492 {
9493 	struct rq *rq = cpu_rq(cpu);
9494 	unsigned long max = arch_scale_cpu_capacity(cpu);
9495 	unsigned long used, free;
9496 	unsigned long irq;
9497 
9498 	irq = cpu_util_irq(rq);
9499 
9500 	if (unlikely(irq >= max))
9501 		return 1;
9502 
9503 	/*
9504 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9505 	 * (running and not running) with weights 0 and 1024 respectively.
9506 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9507 	 * average uses the actual delta max capacity(load).
9508 	 */
9509 	used = READ_ONCE(rq->avg_rt.util_avg);
9510 	used += READ_ONCE(rq->avg_dl.util_avg);
9511 	used += thermal_load_avg(rq);
9512 
9513 	if (unlikely(used >= max))
9514 		return 1;
9515 
9516 	free = max - used;
9517 
9518 	return scale_irq_capacity(free, irq, max);
9519 }
9520 
9521 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9522 {
9523 	unsigned long capacity = scale_rt_capacity(cpu);
9524 	struct sched_group *sdg = sd->groups;
9525 
9526 	if (!capacity)
9527 		capacity = 1;
9528 
9529 	cpu_rq(cpu)->cpu_capacity = capacity;
9530 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9531 
9532 	sdg->sgc->capacity = capacity;
9533 	sdg->sgc->min_capacity = capacity;
9534 	sdg->sgc->max_capacity = capacity;
9535 }
9536 
9537 void update_group_capacity(struct sched_domain *sd, int cpu)
9538 {
9539 	struct sched_domain *child = sd->child;
9540 	struct sched_group *group, *sdg = sd->groups;
9541 	unsigned long capacity, min_capacity, max_capacity;
9542 	unsigned long interval;
9543 
9544 	interval = msecs_to_jiffies(sd->balance_interval);
9545 	interval = clamp(interval, 1UL, max_load_balance_interval);
9546 	sdg->sgc->next_update = jiffies + interval;
9547 
9548 	if (!child) {
9549 		update_cpu_capacity(sd, cpu);
9550 		return;
9551 	}
9552 
9553 	capacity = 0;
9554 	min_capacity = ULONG_MAX;
9555 	max_capacity = 0;
9556 
9557 	if (child->flags & SD_OVERLAP) {
9558 		/*
9559 		 * SD_OVERLAP domains cannot assume that child groups
9560 		 * span the current group.
9561 		 */
9562 
9563 		for_each_cpu(cpu, sched_group_span(sdg)) {
9564 			unsigned long cpu_cap = capacity_of(cpu);
9565 
9566 			capacity += cpu_cap;
9567 			min_capacity = min(cpu_cap, min_capacity);
9568 			max_capacity = max(cpu_cap, max_capacity);
9569 		}
9570 	} else  {
9571 		/*
9572 		 * !SD_OVERLAP domains can assume that child groups
9573 		 * span the current group.
9574 		 */
9575 
9576 		group = child->groups;
9577 		do {
9578 			struct sched_group_capacity *sgc = group->sgc;
9579 
9580 			capacity += sgc->capacity;
9581 			min_capacity = min(sgc->min_capacity, min_capacity);
9582 			max_capacity = max(sgc->max_capacity, max_capacity);
9583 			group = group->next;
9584 		} while (group != child->groups);
9585 	}
9586 
9587 	sdg->sgc->capacity = capacity;
9588 	sdg->sgc->min_capacity = min_capacity;
9589 	sdg->sgc->max_capacity = max_capacity;
9590 }
9591 
9592 /*
9593  * Check whether the capacity of the rq has been noticeably reduced by side
9594  * activity. The imbalance_pct is used for the threshold.
9595  * Return true is the capacity is reduced
9596  */
9597 static inline int
9598 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9599 {
9600 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9601 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9602 }
9603 
9604 /*
9605  * Check whether a rq has a misfit task and if it looks like we can actually
9606  * help that task: we can migrate the task to a CPU of higher capacity, or
9607  * the task's current CPU is heavily pressured.
9608  */
9609 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9610 {
9611 	return rq->misfit_task_load &&
9612 		(arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
9613 		 check_cpu_capacity(rq, sd));
9614 }
9615 
9616 /*
9617  * Group imbalance indicates (and tries to solve) the problem where balancing
9618  * groups is inadequate due to ->cpus_ptr constraints.
9619  *
9620  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9621  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9622  * Something like:
9623  *
9624  *	{ 0 1 2 3 } { 4 5 6 7 }
9625  *	        *     * * *
9626  *
9627  * If we were to balance group-wise we'd place two tasks in the first group and
9628  * two tasks in the second group. Clearly this is undesired as it will overload
9629  * cpu 3 and leave one of the CPUs in the second group unused.
9630  *
9631  * The current solution to this issue is detecting the skew in the first group
9632  * by noticing the lower domain failed to reach balance and had difficulty
9633  * moving tasks due to affinity constraints.
9634  *
9635  * When this is so detected; this group becomes a candidate for busiest; see
9636  * update_sd_pick_busiest(). And calculate_imbalance() and
9637  * find_busiest_group() avoid some of the usual balance conditions to allow it
9638  * to create an effective group imbalance.
9639  *
9640  * This is a somewhat tricky proposition since the next run might not find the
9641  * group imbalance and decide the groups need to be balanced again. A most
9642  * subtle and fragile situation.
9643  */
9644 
9645 static inline int sg_imbalanced(struct sched_group *group)
9646 {
9647 	return group->sgc->imbalance;
9648 }
9649 
9650 /*
9651  * group_has_capacity returns true if the group has spare capacity that could
9652  * be used by some tasks.
9653  * We consider that a group has spare capacity if the number of task is
9654  * smaller than the number of CPUs or if the utilization is lower than the
9655  * available capacity for CFS tasks.
9656  * For the latter, we use a threshold to stabilize the state, to take into
9657  * account the variance of the tasks' load and to return true if the available
9658  * capacity in meaningful for the load balancer.
9659  * As an example, an available capacity of 1% can appear but it doesn't make
9660  * any benefit for the load balance.
9661  */
9662 static inline bool
9663 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9664 {
9665 	if (sgs->sum_nr_running < sgs->group_weight)
9666 		return true;
9667 
9668 	if ((sgs->group_capacity * imbalance_pct) <
9669 			(sgs->group_runnable * 100))
9670 		return false;
9671 
9672 	if ((sgs->group_capacity * 100) >
9673 			(sgs->group_util * imbalance_pct))
9674 		return true;
9675 
9676 	return false;
9677 }
9678 
9679 /*
9680  *  group_is_overloaded returns true if the group has more tasks than it can
9681  *  handle.
9682  *  group_is_overloaded is not equals to !group_has_capacity because a group
9683  *  with the exact right number of tasks, has no more spare capacity but is not
9684  *  overloaded so both group_has_capacity and group_is_overloaded return
9685  *  false.
9686  */
9687 static inline bool
9688 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9689 {
9690 	if (sgs->sum_nr_running <= sgs->group_weight)
9691 		return false;
9692 
9693 	if ((sgs->group_capacity * 100) <
9694 			(sgs->group_util * imbalance_pct))
9695 		return true;
9696 
9697 	if ((sgs->group_capacity * imbalance_pct) <
9698 			(sgs->group_runnable * 100))
9699 		return true;
9700 
9701 	return false;
9702 }
9703 
9704 static inline enum
9705 group_type group_classify(unsigned int imbalance_pct,
9706 			  struct sched_group *group,
9707 			  struct sg_lb_stats *sgs)
9708 {
9709 	if (group_is_overloaded(imbalance_pct, sgs))
9710 		return group_overloaded;
9711 
9712 	if (sg_imbalanced(group))
9713 		return group_imbalanced;
9714 
9715 	if (sgs->group_asym_packing)
9716 		return group_asym_packing;
9717 
9718 	if (sgs->group_smt_balance)
9719 		return group_smt_balance;
9720 
9721 	if (sgs->group_misfit_task_load)
9722 		return group_misfit_task;
9723 
9724 	if (!group_has_capacity(imbalance_pct, sgs))
9725 		return group_fully_busy;
9726 
9727 	return group_has_spare;
9728 }
9729 
9730 /**
9731  * sched_use_asym_prio - Check whether asym_packing priority must be used
9732  * @sd:		The scheduling domain of the load balancing
9733  * @cpu:	A CPU
9734  *
9735  * Always use CPU priority when balancing load between SMT siblings. When
9736  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9737  * use CPU priority if the whole core is idle.
9738  *
9739  * Returns: True if the priority of @cpu must be followed. False otherwise.
9740  */
9741 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9742 {
9743 	if (!sched_smt_active())
9744 		return true;
9745 
9746 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9747 }
9748 
9749 /**
9750  * sched_asym - Check if the destination CPU can do asym_packing load balance
9751  * @env:	The load balancing environment
9752  * @sds:	Load-balancing data with statistics of the local group
9753  * @sgs:	Load-balancing statistics of the candidate busiest group
9754  * @group:	The candidate busiest group
9755  *
9756  * @env::dst_cpu can do asym_packing if it has higher priority than the
9757  * preferred CPU of @group.
9758  *
9759  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9760  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9761  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9762  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9763  *
9764  * If we are balancing load within an SMT core, or at PKG domain level, always
9765  * proceed.
9766  *
9767  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9768  * otherwise.
9769  */
9770 static inline bool
9771 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9772 	   struct sched_group *group)
9773 {
9774 	/* Ensure that the whole local core is idle, if applicable. */
9775 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9776 		return false;
9777 
9778 	/*
9779 	 * CPU priorities does not make sense for SMT cores with more than one
9780 	 * busy sibling.
9781 	 */
9782 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9783 		if (sgs->group_weight - sgs->idle_cpus != 1)
9784 			return false;
9785 	}
9786 
9787 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9788 }
9789 
9790 /* One group has more than one SMT CPU while the other group does not */
9791 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9792 				    struct sched_group *sg2)
9793 {
9794 	if (!sg1 || !sg2)
9795 		return false;
9796 
9797 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9798 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9799 }
9800 
9801 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9802 			       struct sched_group *group)
9803 {
9804 	if (env->idle == CPU_NOT_IDLE)
9805 		return false;
9806 
9807 	/*
9808 	 * For SMT source group, it is better to move a task
9809 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9810 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9811 	 * will not be on.
9812 	 */
9813 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9814 	    sgs->sum_h_nr_running > 1)
9815 		return true;
9816 
9817 	return false;
9818 }
9819 
9820 static inline long sibling_imbalance(struct lb_env *env,
9821 				    struct sd_lb_stats *sds,
9822 				    struct sg_lb_stats *busiest,
9823 				    struct sg_lb_stats *local)
9824 {
9825 	int ncores_busiest, ncores_local;
9826 	long imbalance;
9827 
9828 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9829 		return 0;
9830 
9831 	ncores_busiest = sds->busiest->cores;
9832 	ncores_local = sds->local->cores;
9833 
9834 	if (ncores_busiest == ncores_local) {
9835 		imbalance = busiest->sum_nr_running;
9836 		lsub_positive(&imbalance, local->sum_nr_running);
9837 		return imbalance;
9838 	}
9839 
9840 	/* Balance such that nr_running/ncores ratio are same on both groups */
9841 	imbalance = ncores_local * busiest->sum_nr_running;
9842 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9843 	/* Normalize imbalance and do rounding on normalization */
9844 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9845 	imbalance /= ncores_local + ncores_busiest;
9846 
9847 	/* Take advantage of resource in an empty sched group */
9848 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9849 	    busiest->sum_nr_running > 1)
9850 		imbalance = 2;
9851 
9852 	return imbalance;
9853 }
9854 
9855 static inline bool
9856 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9857 {
9858 	/*
9859 	 * When there is more than 1 task, the group_overloaded case already
9860 	 * takes care of cpu with reduced capacity
9861 	 */
9862 	if (rq->cfs.h_nr_running != 1)
9863 		return false;
9864 
9865 	return check_cpu_capacity(rq, sd);
9866 }
9867 
9868 /**
9869  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9870  * @env: The load balancing environment.
9871  * @sds: Load-balancing data with statistics of the local group.
9872  * @group: sched_group whose statistics are to be updated.
9873  * @sgs: variable to hold the statistics for this group.
9874  * @sg_status: Holds flag indicating the status of the sched_group
9875  */
9876 static inline void update_sg_lb_stats(struct lb_env *env,
9877 				      struct sd_lb_stats *sds,
9878 				      struct sched_group *group,
9879 				      struct sg_lb_stats *sgs,
9880 				      int *sg_status)
9881 {
9882 	int i, nr_running, local_group;
9883 
9884 	memset(sgs, 0, sizeof(*sgs));
9885 
9886 	local_group = group == sds->local;
9887 
9888 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9889 		struct rq *rq = cpu_rq(i);
9890 		unsigned long load = cpu_load(rq);
9891 
9892 		sgs->group_load += load;
9893 		sgs->group_util += cpu_util_cfs(i);
9894 		sgs->group_runnable += cpu_runnable(rq);
9895 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9896 
9897 		nr_running = rq->nr_running;
9898 		sgs->sum_nr_running += nr_running;
9899 
9900 		if (nr_running > 1)
9901 			*sg_status |= SG_OVERLOAD;
9902 
9903 		if (cpu_overutilized(i))
9904 			*sg_status |= SG_OVERUTILIZED;
9905 
9906 #ifdef CONFIG_NUMA_BALANCING
9907 		sgs->nr_numa_running += rq->nr_numa_running;
9908 		sgs->nr_preferred_running += rq->nr_preferred_running;
9909 #endif
9910 		/*
9911 		 * No need to call idle_cpu() if nr_running is not 0
9912 		 */
9913 		if (!nr_running && idle_cpu(i)) {
9914 			sgs->idle_cpus++;
9915 			/* Idle cpu can't have misfit task */
9916 			continue;
9917 		}
9918 
9919 		if (local_group)
9920 			continue;
9921 
9922 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9923 			/* Check for a misfit task on the cpu */
9924 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9925 				sgs->group_misfit_task_load = rq->misfit_task_load;
9926 				*sg_status |= SG_OVERLOAD;
9927 			}
9928 		} else if ((env->idle != CPU_NOT_IDLE) &&
9929 			   sched_reduced_capacity(rq, env->sd)) {
9930 			/* Check for a task running on a CPU with reduced capacity */
9931 			if (sgs->group_misfit_task_load < load)
9932 				sgs->group_misfit_task_load = load;
9933 		}
9934 	}
9935 
9936 	sgs->group_capacity = group->sgc->capacity;
9937 
9938 	sgs->group_weight = group->group_weight;
9939 
9940 	/* Check if dst CPU is idle and preferred to this group */
9941 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9942 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9943 	    sched_asym(env, sds, sgs, group)) {
9944 		sgs->group_asym_packing = 1;
9945 	}
9946 
9947 	/* Check for loaded SMT group to be balanced to dst CPU */
9948 	if (!local_group && smt_balance(env, sgs, group))
9949 		sgs->group_smt_balance = 1;
9950 
9951 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9952 
9953 	/* Computing avg_load makes sense only when group is overloaded */
9954 	if (sgs->group_type == group_overloaded)
9955 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9956 				sgs->group_capacity;
9957 }
9958 
9959 /**
9960  * update_sd_pick_busiest - return 1 on busiest group
9961  * @env: The load balancing environment.
9962  * @sds: sched_domain statistics
9963  * @sg: sched_group candidate to be checked for being the busiest
9964  * @sgs: sched_group statistics
9965  *
9966  * Determine if @sg is a busier group than the previously selected
9967  * busiest group.
9968  *
9969  * Return: %true if @sg is a busier group than the previously selected
9970  * busiest group. %false otherwise.
9971  */
9972 static bool update_sd_pick_busiest(struct lb_env *env,
9973 				   struct sd_lb_stats *sds,
9974 				   struct sched_group *sg,
9975 				   struct sg_lb_stats *sgs)
9976 {
9977 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9978 
9979 	/* Make sure that there is at least one task to pull */
9980 	if (!sgs->sum_h_nr_running)
9981 		return false;
9982 
9983 	/*
9984 	 * Don't try to pull misfit tasks we can't help.
9985 	 * We can use max_capacity here as reduction in capacity on some
9986 	 * CPUs in the group should either be possible to resolve
9987 	 * internally or be covered by avg_load imbalance (eventually).
9988 	 */
9989 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9990 	    (sgs->group_type == group_misfit_task) &&
9991 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9992 	     sds->local_stat.group_type != group_has_spare))
9993 		return false;
9994 
9995 	if (sgs->group_type > busiest->group_type)
9996 		return true;
9997 
9998 	if (sgs->group_type < busiest->group_type)
9999 		return false;
10000 
10001 	/*
10002 	 * The candidate and the current busiest group are the same type of
10003 	 * group. Let check which one is the busiest according to the type.
10004 	 */
10005 
10006 	switch (sgs->group_type) {
10007 	case group_overloaded:
10008 		/* Select the overloaded group with highest avg_load. */
10009 		if (sgs->avg_load <= busiest->avg_load)
10010 			return false;
10011 		break;
10012 
10013 	case group_imbalanced:
10014 		/*
10015 		 * Select the 1st imbalanced group as we don't have any way to
10016 		 * choose one more than another.
10017 		 */
10018 		return false;
10019 
10020 	case group_asym_packing:
10021 		/* Prefer to move from lowest priority CPU's work */
10022 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10023 			return false;
10024 		break;
10025 
10026 	case group_misfit_task:
10027 		/*
10028 		 * If we have more than one misfit sg go with the biggest
10029 		 * misfit.
10030 		 */
10031 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10032 			return false;
10033 		break;
10034 
10035 	case group_smt_balance:
10036 		/*
10037 		 * Check if we have spare CPUs on either SMT group to
10038 		 * choose has spare or fully busy handling.
10039 		 */
10040 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10041 			goto has_spare;
10042 
10043 		fallthrough;
10044 
10045 	case group_fully_busy:
10046 		/*
10047 		 * Select the fully busy group with highest avg_load. In
10048 		 * theory, there is no need to pull task from such kind of
10049 		 * group because tasks have all compute capacity that they need
10050 		 * but we can still improve the overall throughput by reducing
10051 		 * contention when accessing shared HW resources.
10052 		 *
10053 		 * XXX for now avg_load is not computed and always 0 so we
10054 		 * select the 1st one, except if @sg is composed of SMT
10055 		 * siblings.
10056 		 */
10057 
10058 		if (sgs->avg_load < busiest->avg_load)
10059 			return false;
10060 
10061 		if (sgs->avg_load == busiest->avg_load) {
10062 			/*
10063 			 * SMT sched groups need more help than non-SMT groups.
10064 			 * If @sg happens to also be SMT, either choice is good.
10065 			 */
10066 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10067 				return false;
10068 		}
10069 
10070 		break;
10071 
10072 	case group_has_spare:
10073 		/*
10074 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10075 		 * as we do not want to pull task off SMT core with one task
10076 		 * and make the core idle.
10077 		 */
10078 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10079 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10080 				return false;
10081 			else
10082 				return true;
10083 		}
10084 has_spare:
10085 
10086 		/*
10087 		 * Select not overloaded group with lowest number of idle cpus
10088 		 * and highest number of running tasks. We could also compare
10089 		 * the spare capacity which is more stable but it can end up
10090 		 * that the group has less spare capacity but finally more idle
10091 		 * CPUs which means less opportunity to pull tasks.
10092 		 */
10093 		if (sgs->idle_cpus > busiest->idle_cpus)
10094 			return false;
10095 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10096 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10097 			return false;
10098 
10099 		break;
10100 	}
10101 
10102 	/*
10103 	 * Candidate sg has no more than one task per CPU and has higher
10104 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10105 	 * throughput. Maximize throughput, power/energy consequences are not
10106 	 * considered.
10107 	 */
10108 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10109 	    (sgs->group_type <= group_fully_busy) &&
10110 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10111 		return false;
10112 
10113 	return true;
10114 }
10115 
10116 #ifdef CONFIG_NUMA_BALANCING
10117 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10118 {
10119 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10120 		return regular;
10121 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10122 		return remote;
10123 	return all;
10124 }
10125 
10126 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10127 {
10128 	if (rq->nr_running > rq->nr_numa_running)
10129 		return regular;
10130 	if (rq->nr_running > rq->nr_preferred_running)
10131 		return remote;
10132 	return all;
10133 }
10134 #else
10135 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10136 {
10137 	return all;
10138 }
10139 
10140 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10141 {
10142 	return regular;
10143 }
10144 #endif /* CONFIG_NUMA_BALANCING */
10145 
10146 
10147 struct sg_lb_stats;
10148 
10149 /*
10150  * task_running_on_cpu - return 1 if @p is running on @cpu.
10151  */
10152 
10153 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10154 {
10155 	/* Task has no contribution or is new */
10156 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10157 		return 0;
10158 
10159 	if (task_on_rq_queued(p))
10160 		return 1;
10161 
10162 	return 0;
10163 }
10164 
10165 /**
10166  * idle_cpu_without - would a given CPU be idle without p ?
10167  * @cpu: the processor on which idleness is tested.
10168  * @p: task which should be ignored.
10169  *
10170  * Return: 1 if the CPU would be idle. 0 otherwise.
10171  */
10172 static int idle_cpu_without(int cpu, struct task_struct *p)
10173 {
10174 	struct rq *rq = cpu_rq(cpu);
10175 
10176 	if (rq->curr != rq->idle && rq->curr != p)
10177 		return 0;
10178 
10179 	/*
10180 	 * rq->nr_running can't be used but an updated version without the
10181 	 * impact of p on cpu must be used instead. The updated nr_running
10182 	 * be computed and tested before calling idle_cpu_without().
10183 	 */
10184 
10185 #ifdef CONFIG_SMP
10186 	if (rq->ttwu_pending)
10187 		return 0;
10188 #endif
10189 
10190 	return 1;
10191 }
10192 
10193 /*
10194  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10195  * @sd: The sched_domain level to look for idlest group.
10196  * @group: sched_group whose statistics are to be updated.
10197  * @sgs: variable to hold the statistics for this group.
10198  * @p: The task for which we look for the idlest group/CPU.
10199  */
10200 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10201 					  struct sched_group *group,
10202 					  struct sg_lb_stats *sgs,
10203 					  struct task_struct *p)
10204 {
10205 	int i, nr_running;
10206 
10207 	memset(sgs, 0, sizeof(*sgs));
10208 
10209 	/* Assume that task can't fit any CPU of the group */
10210 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10211 		sgs->group_misfit_task_load = 1;
10212 
10213 	for_each_cpu(i, sched_group_span(group)) {
10214 		struct rq *rq = cpu_rq(i);
10215 		unsigned int local;
10216 
10217 		sgs->group_load += cpu_load_without(rq, p);
10218 		sgs->group_util += cpu_util_without(i, p);
10219 		sgs->group_runnable += cpu_runnable_without(rq, p);
10220 		local = task_running_on_cpu(i, p);
10221 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10222 
10223 		nr_running = rq->nr_running - local;
10224 		sgs->sum_nr_running += nr_running;
10225 
10226 		/*
10227 		 * No need to call idle_cpu_without() if nr_running is not 0
10228 		 */
10229 		if (!nr_running && idle_cpu_without(i, p))
10230 			sgs->idle_cpus++;
10231 
10232 		/* Check if task fits in the CPU */
10233 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10234 		    sgs->group_misfit_task_load &&
10235 		    task_fits_cpu(p, i))
10236 			sgs->group_misfit_task_load = 0;
10237 
10238 	}
10239 
10240 	sgs->group_capacity = group->sgc->capacity;
10241 
10242 	sgs->group_weight = group->group_weight;
10243 
10244 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10245 
10246 	/*
10247 	 * Computing avg_load makes sense only when group is fully busy or
10248 	 * overloaded
10249 	 */
10250 	if (sgs->group_type == group_fully_busy ||
10251 		sgs->group_type == group_overloaded)
10252 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10253 				sgs->group_capacity;
10254 }
10255 
10256 static bool update_pick_idlest(struct sched_group *idlest,
10257 			       struct sg_lb_stats *idlest_sgs,
10258 			       struct sched_group *group,
10259 			       struct sg_lb_stats *sgs)
10260 {
10261 	if (sgs->group_type < idlest_sgs->group_type)
10262 		return true;
10263 
10264 	if (sgs->group_type > idlest_sgs->group_type)
10265 		return false;
10266 
10267 	/*
10268 	 * The candidate and the current idlest group are the same type of
10269 	 * group. Let check which one is the idlest according to the type.
10270 	 */
10271 
10272 	switch (sgs->group_type) {
10273 	case group_overloaded:
10274 	case group_fully_busy:
10275 		/* Select the group with lowest avg_load. */
10276 		if (idlest_sgs->avg_load <= sgs->avg_load)
10277 			return false;
10278 		break;
10279 
10280 	case group_imbalanced:
10281 	case group_asym_packing:
10282 	case group_smt_balance:
10283 		/* Those types are not used in the slow wakeup path */
10284 		return false;
10285 
10286 	case group_misfit_task:
10287 		/* Select group with the highest max capacity */
10288 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10289 			return false;
10290 		break;
10291 
10292 	case group_has_spare:
10293 		/* Select group with most idle CPUs */
10294 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10295 			return false;
10296 
10297 		/* Select group with lowest group_util */
10298 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10299 			idlest_sgs->group_util <= sgs->group_util)
10300 			return false;
10301 
10302 		break;
10303 	}
10304 
10305 	return true;
10306 }
10307 
10308 /*
10309  * find_idlest_group() finds and returns the least busy CPU group within the
10310  * domain.
10311  *
10312  * Assumes p is allowed on at least one CPU in sd.
10313  */
10314 static struct sched_group *
10315 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10316 {
10317 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10318 	struct sg_lb_stats local_sgs, tmp_sgs;
10319 	struct sg_lb_stats *sgs;
10320 	unsigned long imbalance;
10321 	struct sg_lb_stats idlest_sgs = {
10322 			.avg_load = UINT_MAX,
10323 			.group_type = group_overloaded,
10324 	};
10325 
10326 	do {
10327 		int local_group;
10328 
10329 		/* Skip over this group if it has no CPUs allowed */
10330 		if (!cpumask_intersects(sched_group_span(group),
10331 					p->cpus_ptr))
10332 			continue;
10333 
10334 		/* Skip over this group if no cookie matched */
10335 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10336 			continue;
10337 
10338 		local_group = cpumask_test_cpu(this_cpu,
10339 					       sched_group_span(group));
10340 
10341 		if (local_group) {
10342 			sgs = &local_sgs;
10343 			local = group;
10344 		} else {
10345 			sgs = &tmp_sgs;
10346 		}
10347 
10348 		update_sg_wakeup_stats(sd, group, sgs, p);
10349 
10350 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10351 			idlest = group;
10352 			idlest_sgs = *sgs;
10353 		}
10354 
10355 	} while (group = group->next, group != sd->groups);
10356 
10357 
10358 	/* There is no idlest group to push tasks to */
10359 	if (!idlest)
10360 		return NULL;
10361 
10362 	/* The local group has been skipped because of CPU affinity */
10363 	if (!local)
10364 		return idlest;
10365 
10366 	/*
10367 	 * If the local group is idler than the selected idlest group
10368 	 * don't try and push the task.
10369 	 */
10370 	if (local_sgs.group_type < idlest_sgs.group_type)
10371 		return NULL;
10372 
10373 	/*
10374 	 * If the local group is busier than the selected idlest group
10375 	 * try and push the task.
10376 	 */
10377 	if (local_sgs.group_type > idlest_sgs.group_type)
10378 		return idlest;
10379 
10380 	switch (local_sgs.group_type) {
10381 	case group_overloaded:
10382 	case group_fully_busy:
10383 
10384 		/* Calculate allowed imbalance based on load */
10385 		imbalance = scale_load_down(NICE_0_LOAD) *
10386 				(sd->imbalance_pct-100) / 100;
10387 
10388 		/*
10389 		 * When comparing groups across NUMA domains, it's possible for
10390 		 * the local domain to be very lightly loaded relative to the
10391 		 * remote domains but "imbalance" skews the comparison making
10392 		 * remote CPUs look much more favourable. When considering
10393 		 * cross-domain, add imbalance to the load on the remote node
10394 		 * and consider staying local.
10395 		 */
10396 
10397 		if ((sd->flags & SD_NUMA) &&
10398 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10399 			return NULL;
10400 
10401 		/*
10402 		 * If the local group is less loaded than the selected
10403 		 * idlest group don't try and push any tasks.
10404 		 */
10405 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10406 			return NULL;
10407 
10408 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10409 			return NULL;
10410 		break;
10411 
10412 	case group_imbalanced:
10413 	case group_asym_packing:
10414 	case group_smt_balance:
10415 		/* Those type are not used in the slow wakeup path */
10416 		return NULL;
10417 
10418 	case group_misfit_task:
10419 		/* Select group with the highest max capacity */
10420 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10421 			return NULL;
10422 		break;
10423 
10424 	case group_has_spare:
10425 #ifdef CONFIG_NUMA
10426 		if (sd->flags & SD_NUMA) {
10427 			int imb_numa_nr = sd->imb_numa_nr;
10428 #ifdef CONFIG_NUMA_BALANCING
10429 			int idlest_cpu;
10430 			/*
10431 			 * If there is spare capacity at NUMA, try to select
10432 			 * the preferred node
10433 			 */
10434 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10435 				return NULL;
10436 
10437 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10438 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10439 				return idlest;
10440 #endif /* CONFIG_NUMA_BALANCING */
10441 			/*
10442 			 * Otherwise, keep the task close to the wakeup source
10443 			 * and improve locality if the number of running tasks
10444 			 * would remain below threshold where an imbalance is
10445 			 * allowed while accounting for the possibility the
10446 			 * task is pinned to a subset of CPUs. If there is a
10447 			 * real need of migration, periodic load balance will
10448 			 * take care of it.
10449 			 */
10450 			if (p->nr_cpus_allowed != NR_CPUS) {
10451 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10452 
10453 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10454 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10455 			}
10456 
10457 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10458 			if (!adjust_numa_imbalance(imbalance,
10459 						   local_sgs.sum_nr_running + 1,
10460 						   imb_numa_nr)) {
10461 				return NULL;
10462 			}
10463 		}
10464 #endif /* CONFIG_NUMA */
10465 
10466 		/*
10467 		 * Select group with highest number of idle CPUs. We could also
10468 		 * compare the utilization which is more stable but it can end
10469 		 * up that the group has less spare capacity but finally more
10470 		 * idle CPUs which means more opportunity to run task.
10471 		 */
10472 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10473 			return NULL;
10474 		break;
10475 	}
10476 
10477 	return idlest;
10478 }
10479 
10480 static void update_idle_cpu_scan(struct lb_env *env,
10481 				 unsigned long sum_util)
10482 {
10483 	struct sched_domain_shared *sd_share;
10484 	int llc_weight, pct;
10485 	u64 x, y, tmp;
10486 	/*
10487 	 * Update the number of CPUs to scan in LLC domain, which could
10488 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10489 	 * could be expensive because it is within a shared cache line.
10490 	 * So the write of this hint only occurs during periodic load
10491 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10492 	 * can fire way more frequently than the former.
10493 	 */
10494 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10495 		return;
10496 
10497 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10498 	if (env->sd->span_weight != llc_weight)
10499 		return;
10500 
10501 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10502 	if (!sd_share)
10503 		return;
10504 
10505 	/*
10506 	 * The number of CPUs to search drops as sum_util increases, when
10507 	 * sum_util hits 85% or above, the scan stops.
10508 	 * The reason to choose 85% as the threshold is because this is the
10509 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10510 	 *
10511 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10512 	 * and y'= y / SCHED_CAPACITY_SCALE
10513 	 *
10514 	 * x is the ratio of sum_util compared to the CPU capacity:
10515 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10516 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10517 	 * and the number of CPUs to scan is calculated by:
10518 	 *
10519 	 * nr_scan = llc_weight * y'                                    [2]
10520 	 *
10521 	 * When x hits the threshold of overloaded, AKA, when
10522 	 * x = 100 / pct, y drops to 0. According to [1],
10523 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10524 	 *
10525 	 * Scale x by SCHED_CAPACITY_SCALE:
10526 	 * x' = sum_util / llc_weight;                                  [3]
10527 	 *
10528 	 * and finally [1] becomes:
10529 	 * y = SCHED_CAPACITY_SCALE -
10530 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10531 	 *
10532 	 */
10533 	/* equation [3] */
10534 	x = sum_util;
10535 	do_div(x, llc_weight);
10536 
10537 	/* equation [4] */
10538 	pct = env->sd->imbalance_pct;
10539 	tmp = x * x * pct * pct;
10540 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10541 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10542 	y = SCHED_CAPACITY_SCALE - tmp;
10543 
10544 	/* equation [2] */
10545 	y *= llc_weight;
10546 	do_div(y, SCHED_CAPACITY_SCALE);
10547 	if ((int)y != sd_share->nr_idle_scan)
10548 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10549 }
10550 
10551 /**
10552  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10553  * @env: The load balancing environment.
10554  * @sds: variable to hold the statistics for this sched_domain.
10555  */
10556 
10557 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10558 {
10559 	struct sched_group *sg = env->sd->groups;
10560 	struct sg_lb_stats *local = &sds->local_stat;
10561 	struct sg_lb_stats tmp_sgs;
10562 	unsigned long sum_util = 0;
10563 	int sg_status = 0;
10564 
10565 	do {
10566 		struct sg_lb_stats *sgs = &tmp_sgs;
10567 		int local_group;
10568 
10569 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10570 		if (local_group) {
10571 			sds->local = sg;
10572 			sgs = local;
10573 
10574 			if (env->idle != CPU_NEWLY_IDLE ||
10575 			    time_after_eq(jiffies, sg->sgc->next_update))
10576 				update_group_capacity(env->sd, env->dst_cpu);
10577 		}
10578 
10579 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10580 
10581 		if (local_group)
10582 			goto next_group;
10583 
10584 
10585 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10586 			sds->busiest = sg;
10587 			sds->busiest_stat = *sgs;
10588 		}
10589 
10590 next_group:
10591 		/* Now, start updating sd_lb_stats */
10592 		sds->total_load += sgs->group_load;
10593 		sds->total_capacity += sgs->group_capacity;
10594 
10595 		sum_util += sgs->group_util;
10596 		sg = sg->next;
10597 	} while (sg != env->sd->groups);
10598 
10599 	/*
10600 	 * Indicate that the child domain of the busiest group prefers tasks
10601 	 * go to a child's sibling domains first. NB the flags of a sched group
10602 	 * are those of the child domain.
10603 	 */
10604 	if (sds->busiest)
10605 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10606 
10607 
10608 	if (env->sd->flags & SD_NUMA)
10609 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10610 
10611 	if (!env->sd->parent) {
10612 		struct root_domain *rd = env->dst_rq->rd;
10613 
10614 		/* update overload indicator if we are at root domain */
10615 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10616 
10617 		/* Update over-utilization (tipping point, U >= 0) indicator */
10618 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10619 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10620 	} else if (sg_status & SG_OVERUTILIZED) {
10621 		struct root_domain *rd = env->dst_rq->rd;
10622 
10623 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10624 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10625 	}
10626 
10627 	update_idle_cpu_scan(env, sum_util);
10628 }
10629 
10630 /**
10631  * calculate_imbalance - Calculate the amount of imbalance present within the
10632  *			 groups of a given sched_domain during load balance.
10633  * @env: load balance environment
10634  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10635  */
10636 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10637 {
10638 	struct sg_lb_stats *local, *busiest;
10639 
10640 	local = &sds->local_stat;
10641 	busiest = &sds->busiest_stat;
10642 
10643 	if (busiest->group_type == group_misfit_task) {
10644 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10645 			/* Set imbalance to allow misfit tasks to be balanced. */
10646 			env->migration_type = migrate_misfit;
10647 			env->imbalance = 1;
10648 		} else {
10649 			/*
10650 			 * Set load imbalance to allow moving task from cpu
10651 			 * with reduced capacity.
10652 			 */
10653 			env->migration_type = migrate_load;
10654 			env->imbalance = busiest->group_misfit_task_load;
10655 		}
10656 		return;
10657 	}
10658 
10659 	if (busiest->group_type == group_asym_packing) {
10660 		/*
10661 		 * In case of asym capacity, we will try to migrate all load to
10662 		 * the preferred CPU.
10663 		 */
10664 		env->migration_type = migrate_task;
10665 		env->imbalance = busiest->sum_h_nr_running;
10666 		return;
10667 	}
10668 
10669 	if (busiest->group_type == group_smt_balance) {
10670 		/* Reduce number of tasks sharing CPU capacity */
10671 		env->migration_type = migrate_task;
10672 		env->imbalance = 1;
10673 		return;
10674 	}
10675 
10676 	if (busiest->group_type == group_imbalanced) {
10677 		/*
10678 		 * In the group_imb case we cannot rely on group-wide averages
10679 		 * to ensure CPU-load equilibrium, try to move any task to fix
10680 		 * the imbalance. The next load balance will take care of
10681 		 * balancing back the system.
10682 		 */
10683 		env->migration_type = migrate_task;
10684 		env->imbalance = 1;
10685 		return;
10686 	}
10687 
10688 	/*
10689 	 * Try to use spare capacity of local group without overloading it or
10690 	 * emptying busiest.
10691 	 */
10692 	if (local->group_type == group_has_spare) {
10693 		if ((busiest->group_type > group_fully_busy) &&
10694 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10695 			/*
10696 			 * If busiest is overloaded, try to fill spare
10697 			 * capacity. This might end up creating spare capacity
10698 			 * in busiest or busiest still being overloaded but
10699 			 * there is no simple way to directly compute the
10700 			 * amount of load to migrate in order to balance the
10701 			 * system.
10702 			 */
10703 			env->migration_type = migrate_util;
10704 			env->imbalance = max(local->group_capacity, local->group_util) -
10705 					 local->group_util;
10706 
10707 			/*
10708 			 * In some cases, the group's utilization is max or even
10709 			 * higher than capacity because of migrations but the
10710 			 * local CPU is (newly) idle. There is at least one
10711 			 * waiting task in this overloaded busiest group. Let's
10712 			 * try to pull it.
10713 			 */
10714 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10715 				env->migration_type = migrate_task;
10716 				env->imbalance = 1;
10717 			}
10718 
10719 			return;
10720 		}
10721 
10722 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10723 			/*
10724 			 * When prefer sibling, evenly spread running tasks on
10725 			 * groups.
10726 			 */
10727 			env->migration_type = migrate_task;
10728 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10729 		} else {
10730 
10731 			/*
10732 			 * If there is no overload, we just want to even the number of
10733 			 * idle cpus.
10734 			 */
10735 			env->migration_type = migrate_task;
10736 			env->imbalance = max_t(long, 0,
10737 					       (local->idle_cpus - busiest->idle_cpus));
10738 		}
10739 
10740 #ifdef CONFIG_NUMA
10741 		/* Consider allowing a small imbalance between NUMA groups */
10742 		if (env->sd->flags & SD_NUMA) {
10743 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10744 							       local->sum_nr_running + 1,
10745 							       env->sd->imb_numa_nr);
10746 		}
10747 #endif
10748 
10749 		/* Number of tasks to move to restore balance */
10750 		env->imbalance >>= 1;
10751 
10752 		return;
10753 	}
10754 
10755 	/*
10756 	 * Local is fully busy but has to take more load to relieve the
10757 	 * busiest group
10758 	 */
10759 	if (local->group_type < group_overloaded) {
10760 		/*
10761 		 * Local will become overloaded so the avg_load metrics are
10762 		 * finally needed.
10763 		 */
10764 
10765 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10766 				  local->group_capacity;
10767 
10768 		/*
10769 		 * If the local group is more loaded than the selected
10770 		 * busiest group don't try to pull any tasks.
10771 		 */
10772 		if (local->avg_load >= busiest->avg_load) {
10773 			env->imbalance = 0;
10774 			return;
10775 		}
10776 
10777 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10778 				sds->total_capacity;
10779 
10780 		/*
10781 		 * If the local group is more loaded than the average system
10782 		 * load, don't try to pull any tasks.
10783 		 */
10784 		if (local->avg_load >= sds->avg_load) {
10785 			env->imbalance = 0;
10786 			return;
10787 		}
10788 
10789 	}
10790 
10791 	/*
10792 	 * Both group are or will become overloaded and we're trying to get all
10793 	 * the CPUs to the average_load, so we don't want to push ourselves
10794 	 * above the average load, nor do we wish to reduce the max loaded CPU
10795 	 * below the average load. At the same time, we also don't want to
10796 	 * reduce the group load below the group capacity. Thus we look for
10797 	 * the minimum possible imbalance.
10798 	 */
10799 	env->migration_type = migrate_load;
10800 	env->imbalance = min(
10801 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10802 		(sds->avg_load - local->avg_load) * local->group_capacity
10803 	) / SCHED_CAPACITY_SCALE;
10804 }
10805 
10806 /******* find_busiest_group() helpers end here *********************/
10807 
10808 /*
10809  * Decision matrix according to the local and busiest group type:
10810  *
10811  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10812  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10813  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10814  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10815  * asym_packing     force     force      N/A    N/A  force      force
10816  * imbalanced       force     force      N/A    N/A  force      force
10817  * overloaded       force     force      N/A    N/A  force      avg_load
10818  *
10819  * N/A :      Not Applicable because already filtered while updating
10820  *            statistics.
10821  * balanced : The system is balanced for these 2 groups.
10822  * force :    Calculate the imbalance as load migration is probably needed.
10823  * avg_load : Only if imbalance is significant enough.
10824  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10825  *            different in groups.
10826  */
10827 
10828 /**
10829  * find_busiest_group - Returns the busiest group within the sched_domain
10830  * if there is an imbalance.
10831  * @env: The load balancing environment.
10832  *
10833  * Also calculates the amount of runnable load which should be moved
10834  * to restore balance.
10835  *
10836  * Return:	- The busiest group if imbalance exists.
10837  */
10838 static struct sched_group *find_busiest_group(struct lb_env *env)
10839 {
10840 	struct sg_lb_stats *local, *busiest;
10841 	struct sd_lb_stats sds;
10842 
10843 	init_sd_lb_stats(&sds);
10844 
10845 	/*
10846 	 * Compute the various statistics relevant for load balancing at
10847 	 * this level.
10848 	 */
10849 	update_sd_lb_stats(env, &sds);
10850 
10851 	/* There is no busy sibling group to pull tasks from */
10852 	if (!sds.busiest)
10853 		goto out_balanced;
10854 
10855 	busiest = &sds.busiest_stat;
10856 
10857 	/* Misfit tasks should be dealt with regardless of the avg load */
10858 	if (busiest->group_type == group_misfit_task)
10859 		goto force_balance;
10860 
10861 	if (sched_energy_enabled()) {
10862 		struct root_domain *rd = env->dst_rq->rd;
10863 
10864 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10865 			goto out_balanced;
10866 	}
10867 
10868 	/* ASYM feature bypasses nice load balance check */
10869 	if (busiest->group_type == group_asym_packing)
10870 		goto force_balance;
10871 
10872 	/*
10873 	 * If the busiest group is imbalanced the below checks don't
10874 	 * work because they assume all things are equal, which typically
10875 	 * isn't true due to cpus_ptr constraints and the like.
10876 	 */
10877 	if (busiest->group_type == group_imbalanced)
10878 		goto force_balance;
10879 
10880 	local = &sds.local_stat;
10881 	/*
10882 	 * If the local group is busier than the selected busiest group
10883 	 * don't try and pull any tasks.
10884 	 */
10885 	if (local->group_type > busiest->group_type)
10886 		goto out_balanced;
10887 
10888 	/*
10889 	 * When groups are overloaded, use the avg_load to ensure fairness
10890 	 * between tasks.
10891 	 */
10892 	if (local->group_type == group_overloaded) {
10893 		/*
10894 		 * If the local group is more loaded than the selected
10895 		 * busiest group don't try to pull any tasks.
10896 		 */
10897 		if (local->avg_load >= busiest->avg_load)
10898 			goto out_balanced;
10899 
10900 		/* XXX broken for overlapping NUMA groups */
10901 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10902 				sds.total_capacity;
10903 
10904 		/*
10905 		 * Don't pull any tasks if this group is already above the
10906 		 * domain average load.
10907 		 */
10908 		if (local->avg_load >= sds.avg_load)
10909 			goto out_balanced;
10910 
10911 		/*
10912 		 * If the busiest group is more loaded, use imbalance_pct to be
10913 		 * conservative.
10914 		 */
10915 		if (100 * busiest->avg_load <=
10916 				env->sd->imbalance_pct * local->avg_load)
10917 			goto out_balanced;
10918 	}
10919 
10920 	/*
10921 	 * Try to move all excess tasks to a sibling domain of the busiest
10922 	 * group's child domain.
10923 	 */
10924 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10925 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10926 		goto force_balance;
10927 
10928 	if (busiest->group_type != group_overloaded) {
10929 		if (env->idle == CPU_NOT_IDLE) {
10930 			/*
10931 			 * If the busiest group is not overloaded (and as a
10932 			 * result the local one too) but this CPU is already
10933 			 * busy, let another idle CPU try to pull task.
10934 			 */
10935 			goto out_balanced;
10936 		}
10937 
10938 		if (busiest->group_type == group_smt_balance &&
10939 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10940 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10941 			goto force_balance;
10942 		}
10943 
10944 		if (busiest->group_weight > 1 &&
10945 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10946 			/*
10947 			 * If the busiest group is not overloaded
10948 			 * and there is no imbalance between this and busiest
10949 			 * group wrt idle CPUs, it is balanced. The imbalance
10950 			 * becomes significant if the diff is greater than 1
10951 			 * otherwise we might end up to just move the imbalance
10952 			 * on another group. Of course this applies only if
10953 			 * there is more than 1 CPU per group.
10954 			 */
10955 			goto out_balanced;
10956 		}
10957 
10958 		if (busiest->sum_h_nr_running == 1) {
10959 			/*
10960 			 * busiest doesn't have any tasks waiting to run
10961 			 */
10962 			goto out_balanced;
10963 		}
10964 	}
10965 
10966 force_balance:
10967 	/* Looks like there is an imbalance. Compute it */
10968 	calculate_imbalance(env, &sds);
10969 	return env->imbalance ? sds.busiest : NULL;
10970 
10971 out_balanced:
10972 	env->imbalance = 0;
10973 	return NULL;
10974 }
10975 
10976 /*
10977  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10978  */
10979 static struct rq *find_busiest_queue(struct lb_env *env,
10980 				     struct sched_group *group)
10981 {
10982 	struct rq *busiest = NULL, *rq;
10983 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10984 	unsigned int busiest_nr = 0;
10985 	int i;
10986 
10987 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10988 		unsigned long capacity, load, util;
10989 		unsigned int nr_running;
10990 		enum fbq_type rt;
10991 
10992 		rq = cpu_rq(i);
10993 		rt = fbq_classify_rq(rq);
10994 
10995 		/*
10996 		 * We classify groups/runqueues into three groups:
10997 		 *  - regular: there are !numa tasks
10998 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10999 		 *  - all:     there is no distinction
11000 		 *
11001 		 * In order to avoid migrating ideally placed numa tasks,
11002 		 * ignore those when there's better options.
11003 		 *
11004 		 * If we ignore the actual busiest queue to migrate another
11005 		 * task, the next balance pass can still reduce the busiest
11006 		 * queue by moving tasks around inside the node.
11007 		 *
11008 		 * If we cannot move enough load due to this classification
11009 		 * the next pass will adjust the group classification and
11010 		 * allow migration of more tasks.
11011 		 *
11012 		 * Both cases only affect the total convergence complexity.
11013 		 */
11014 		if (rt > env->fbq_type)
11015 			continue;
11016 
11017 		nr_running = rq->cfs.h_nr_running;
11018 		if (!nr_running)
11019 			continue;
11020 
11021 		capacity = capacity_of(i);
11022 
11023 		/*
11024 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11025 		 * eventually lead to active_balancing high->low capacity.
11026 		 * Higher per-CPU capacity is considered better than balancing
11027 		 * average load.
11028 		 */
11029 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11030 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11031 		    nr_running == 1)
11032 			continue;
11033 
11034 		/*
11035 		 * Make sure we only pull tasks from a CPU of lower priority
11036 		 * when balancing between SMT siblings.
11037 		 *
11038 		 * If balancing between cores, let lower priority CPUs help
11039 		 * SMT cores with more than one busy sibling.
11040 		 */
11041 		if ((env->sd->flags & SD_ASYM_PACKING) &&
11042 		    sched_use_asym_prio(env->sd, i) &&
11043 		    sched_asym_prefer(i, env->dst_cpu) &&
11044 		    nr_running == 1)
11045 			continue;
11046 
11047 		switch (env->migration_type) {
11048 		case migrate_load:
11049 			/*
11050 			 * When comparing with load imbalance, use cpu_load()
11051 			 * which is not scaled with the CPU capacity.
11052 			 */
11053 			load = cpu_load(rq);
11054 
11055 			if (nr_running == 1 && load > env->imbalance &&
11056 			    !check_cpu_capacity(rq, env->sd))
11057 				break;
11058 
11059 			/*
11060 			 * For the load comparisons with the other CPUs,
11061 			 * consider the cpu_load() scaled with the CPU
11062 			 * capacity, so that the load can be moved away
11063 			 * from the CPU that is potentially running at a
11064 			 * lower capacity.
11065 			 *
11066 			 * Thus we're looking for max(load_i / capacity_i),
11067 			 * crosswise multiplication to rid ourselves of the
11068 			 * division works out to:
11069 			 * load_i * capacity_j > load_j * capacity_i;
11070 			 * where j is our previous maximum.
11071 			 */
11072 			if (load * busiest_capacity > busiest_load * capacity) {
11073 				busiest_load = load;
11074 				busiest_capacity = capacity;
11075 				busiest = rq;
11076 			}
11077 			break;
11078 
11079 		case migrate_util:
11080 			util = cpu_util_cfs_boost(i);
11081 
11082 			/*
11083 			 * Don't try to pull utilization from a CPU with one
11084 			 * running task. Whatever its utilization, we will fail
11085 			 * detach the task.
11086 			 */
11087 			if (nr_running <= 1)
11088 				continue;
11089 
11090 			if (busiest_util < util) {
11091 				busiest_util = util;
11092 				busiest = rq;
11093 			}
11094 			break;
11095 
11096 		case migrate_task:
11097 			if (busiest_nr < nr_running) {
11098 				busiest_nr = nr_running;
11099 				busiest = rq;
11100 			}
11101 			break;
11102 
11103 		case migrate_misfit:
11104 			/*
11105 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11106 			 * simply seek the "biggest" misfit task.
11107 			 */
11108 			if (rq->misfit_task_load > busiest_load) {
11109 				busiest_load = rq->misfit_task_load;
11110 				busiest = rq;
11111 			}
11112 
11113 			break;
11114 
11115 		}
11116 	}
11117 
11118 	return busiest;
11119 }
11120 
11121 /*
11122  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11123  * so long as it is large enough.
11124  */
11125 #define MAX_PINNED_INTERVAL	512
11126 
11127 static inline bool
11128 asym_active_balance(struct lb_env *env)
11129 {
11130 	/*
11131 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11132 	 * priority CPUs in order to pack all tasks in the highest priority
11133 	 * CPUs. When done between cores, do it only if the whole core if the
11134 	 * whole core is idle.
11135 	 *
11136 	 * If @env::src_cpu is an SMT core with busy siblings, let
11137 	 * the lower priority @env::dst_cpu help it. Do not follow
11138 	 * CPU priority.
11139 	 */
11140 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11141 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11142 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11143 		!sched_use_asym_prio(env->sd, env->src_cpu));
11144 }
11145 
11146 static inline bool
11147 imbalanced_active_balance(struct lb_env *env)
11148 {
11149 	struct sched_domain *sd = env->sd;
11150 
11151 	/*
11152 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11153 	 * distribution of the load on the system but also the even distribution of the
11154 	 * threads on a system with spare capacity
11155 	 */
11156 	if ((env->migration_type == migrate_task) &&
11157 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11158 		return 1;
11159 
11160 	return 0;
11161 }
11162 
11163 static int need_active_balance(struct lb_env *env)
11164 {
11165 	struct sched_domain *sd = env->sd;
11166 
11167 	if (asym_active_balance(env))
11168 		return 1;
11169 
11170 	if (imbalanced_active_balance(env))
11171 		return 1;
11172 
11173 	/*
11174 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11175 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11176 	 * because of other sched_class or IRQs if more capacity stays
11177 	 * available on dst_cpu.
11178 	 */
11179 	if ((env->idle != CPU_NOT_IDLE) &&
11180 	    (env->src_rq->cfs.h_nr_running == 1)) {
11181 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11182 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11183 			return 1;
11184 	}
11185 
11186 	if (env->migration_type == migrate_misfit)
11187 		return 1;
11188 
11189 	return 0;
11190 }
11191 
11192 static int active_load_balance_cpu_stop(void *data);
11193 
11194 static int should_we_balance(struct lb_env *env)
11195 {
11196 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11197 	struct sched_group *sg = env->sd->groups;
11198 	int cpu, idle_smt = -1;
11199 
11200 	/*
11201 	 * Ensure the balancing environment is consistent; can happen
11202 	 * when the softirq triggers 'during' hotplug.
11203 	 */
11204 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11205 		return 0;
11206 
11207 	/*
11208 	 * In the newly idle case, we will allow all the CPUs
11209 	 * to do the newly idle load balance.
11210 	 *
11211 	 * However, we bail out if we already have tasks or a wakeup pending,
11212 	 * to optimize wakeup latency.
11213 	 */
11214 	if (env->idle == CPU_NEWLY_IDLE) {
11215 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11216 			return 0;
11217 		return 1;
11218 	}
11219 
11220 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11221 	/* Try to find first idle CPU */
11222 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11223 		if (!idle_cpu(cpu))
11224 			continue;
11225 
11226 		/*
11227 		 * Don't balance to idle SMT in busy core right away when
11228 		 * balancing cores, but remember the first idle SMT CPU for
11229 		 * later consideration.  Find CPU on an idle core first.
11230 		 */
11231 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11232 			if (idle_smt == -1)
11233 				idle_smt = cpu;
11234 			/*
11235 			 * If the core is not idle, and first SMT sibling which is
11236 			 * idle has been found, then its not needed to check other
11237 			 * SMT siblings for idleness:
11238 			 */
11239 #ifdef CONFIG_SCHED_SMT
11240 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11241 #endif
11242 			continue;
11243 		}
11244 
11245 		/*
11246 		 * Are we the first idle core in a non-SMT domain or higher,
11247 		 * or the first idle CPU in a SMT domain?
11248 		 */
11249 		return cpu == env->dst_cpu;
11250 	}
11251 
11252 	/* Are we the first idle CPU with busy siblings? */
11253 	if (idle_smt != -1)
11254 		return idle_smt == env->dst_cpu;
11255 
11256 	/* Are we the first CPU of this group ? */
11257 	return group_balance_cpu(sg) == env->dst_cpu;
11258 }
11259 
11260 /*
11261  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11262  * tasks if there is an imbalance.
11263  */
11264 static int load_balance(int this_cpu, struct rq *this_rq,
11265 			struct sched_domain *sd, enum cpu_idle_type idle,
11266 			int *continue_balancing)
11267 {
11268 	int ld_moved, cur_ld_moved, active_balance = 0;
11269 	struct sched_domain *sd_parent = sd->parent;
11270 	struct sched_group *group;
11271 	struct rq *busiest;
11272 	struct rq_flags rf;
11273 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11274 	struct lb_env env = {
11275 		.sd		= sd,
11276 		.dst_cpu	= this_cpu,
11277 		.dst_rq		= this_rq,
11278 		.dst_grpmask    = group_balance_mask(sd->groups),
11279 		.idle		= idle,
11280 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11281 		.cpus		= cpus,
11282 		.fbq_type	= all,
11283 		.tasks		= LIST_HEAD_INIT(env.tasks),
11284 	};
11285 
11286 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11287 
11288 	schedstat_inc(sd->lb_count[idle]);
11289 
11290 redo:
11291 	if (!should_we_balance(&env)) {
11292 		*continue_balancing = 0;
11293 		goto out_balanced;
11294 	}
11295 
11296 	group = find_busiest_group(&env);
11297 	if (!group) {
11298 		schedstat_inc(sd->lb_nobusyg[idle]);
11299 		goto out_balanced;
11300 	}
11301 
11302 	busiest = find_busiest_queue(&env, group);
11303 	if (!busiest) {
11304 		schedstat_inc(sd->lb_nobusyq[idle]);
11305 		goto out_balanced;
11306 	}
11307 
11308 	WARN_ON_ONCE(busiest == env.dst_rq);
11309 
11310 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11311 
11312 	env.src_cpu = busiest->cpu;
11313 	env.src_rq = busiest;
11314 
11315 	ld_moved = 0;
11316 	/* Clear this flag as soon as we find a pullable task */
11317 	env.flags |= LBF_ALL_PINNED;
11318 	if (busiest->nr_running > 1) {
11319 		/*
11320 		 * Attempt to move tasks. If find_busiest_group has found
11321 		 * an imbalance but busiest->nr_running <= 1, the group is
11322 		 * still unbalanced. ld_moved simply stays zero, so it is
11323 		 * correctly treated as an imbalance.
11324 		 */
11325 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11326 
11327 more_balance:
11328 		rq_lock_irqsave(busiest, &rf);
11329 		update_rq_clock(busiest);
11330 
11331 		/*
11332 		 * cur_ld_moved - load moved in current iteration
11333 		 * ld_moved     - cumulative load moved across iterations
11334 		 */
11335 		cur_ld_moved = detach_tasks(&env);
11336 
11337 		/*
11338 		 * We've detached some tasks from busiest_rq. Every
11339 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11340 		 * unlock busiest->lock, and we are able to be sure
11341 		 * that nobody can manipulate the tasks in parallel.
11342 		 * See task_rq_lock() family for the details.
11343 		 */
11344 
11345 		rq_unlock(busiest, &rf);
11346 
11347 		if (cur_ld_moved) {
11348 			attach_tasks(&env);
11349 			ld_moved += cur_ld_moved;
11350 		}
11351 
11352 		local_irq_restore(rf.flags);
11353 
11354 		if (env.flags & LBF_NEED_BREAK) {
11355 			env.flags &= ~LBF_NEED_BREAK;
11356 			/* Stop if we tried all running tasks */
11357 			if (env.loop < busiest->nr_running)
11358 				goto more_balance;
11359 		}
11360 
11361 		/*
11362 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11363 		 * us and move them to an alternate dst_cpu in our sched_group
11364 		 * where they can run. The upper limit on how many times we
11365 		 * iterate on same src_cpu is dependent on number of CPUs in our
11366 		 * sched_group.
11367 		 *
11368 		 * This changes load balance semantics a bit on who can move
11369 		 * load to a given_cpu. In addition to the given_cpu itself
11370 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11371 		 * nohz-idle), we now have balance_cpu in a position to move
11372 		 * load to given_cpu. In rare situations, this may cause
11373 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11374 		 * _independently_ and at _same_ time to move some load to
11375 		 * given_cpu) causing excess load to be moved to given_cpu.
11376 		 * This however should not happen so much in practice and
11377 		 * moreover subsequent load balance cycles should correct the
11378 		 * excess load moved.
11379 		 */
11380 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11381 
11382 			/* Prevent to re-select dst_cpu via env's CPUs */
11383 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11384 
11385 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11386 			env.dst_cpu	 = env.new_dst_cpu;
11387 			env.flags	&= ~LBF_DST_PINNED;
11388 			env.loop	 = 0;
11389 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11390 
11391 			/*
11392 			 * Go back to "more_balance" rather than "redo" since we
11393 			 * need to continue with same src_cpu.
11394 			 */
11395 			goto more_balance;
11396 		}
11397 
11398 		/*
11399 		 * We failed to reach balance because of affinity.
11400 		 */
11401 		if (sd_parent) {
11402 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11403 
11404 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11405 				*group_imbalance = 1;
11406 		}
11407 
11408 		/* All tasks on this runqueue were pinned by CPU affinity */
11409 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11410 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11411 			/*
11412 			 * Attempting to continue load balancing at the current
11413 			 * sched_domain level only makes sense if there are
11414 			 * active CPUs remaining as possible busiest CPUs to
11415 			 * pull load from which are not contained within the
11416 			 * destination group that is receiving any migrated
11417 			 * load.
11418 			 */
11419 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11420 				env.loop = 0;
11421 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11422 				goto redo;
11423 			}
11424 			goto out_all_pinned;
11425 		}
11426 	}
11427 
11428 	if (!ld_moved) {
11429 		schedstat_inc(sd->lb_failed[idle]);
11430 		/*
11431 		 * Increment the failure counter only on periodic balance.
11432 		 * We do not want newidle balance, which can be very
11433 		 * frequent, pollute the failure counter causing
11434 		 * excessive cache_hot migrations and active balances.
11435 		 */
11436 		if (idle != CPU_NEWLY_IDLE)
11437 			sd->nr_balance_failed++;
11438 
11439 		if (need_active_balance(&env)) {
11440 			unsigned long flags;
11441 
11442 			raw_spin_rq_lock_irqsave(busiest, flags);
11443 
11444 			/*
11445 			 * Don't kick the active_load_balance_cpu_stop,
11446 			 * if the curr task on busiest CPU can't be
11447 			 * moved to this_cpu:
11448 			 */
11449 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11450 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11451 				goto out_one_pinned;
11452 			}
11453 
11454 			/* Record that we found at least one task that could run on this_cpu */
11455 			env.flags &= ~LBF_ALL_PINNED;
11456 
11457 			/*
11458 			 * ->active_balance synchronizes accesses to
11459 			 * ->active_balance_work.  Once set, it's cleared
11460 			 * only after active load balance is finished.
11461 			 */
11462 			if (!busiest->active_balance) {
11463 				busiest->active_balance = 1;
11464 				busiest->push_cpu = this_cpu;
11465 				active_balance = 1;
11466 			}
11467 
11468 			preempt_disable();
11469 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11470 			if (active_balance) {
11471 				stop_one_cpu_nowait(cpu_of(busiest),
11472 					active_load_balance_cpu_stop, busiest,
11473 					&busiest->active_balance_work);
11474 			}
11475 			preempt_enable();
11476 		}
11477 	} else {
11478 		sd->nr_balance_failed = 0;
11479 	}
11480 
11481 	if (likely(!active_balance) || need_active_balance(&env)) {
11482 		/* We were unbalanced, so reset the balancing interval */
11483 		sd->balance_interval = sd->min_interval;
11484 	}
11485 
11486 	goto out;
11487 
11488 out_balanced:
11489 	/*
11490 	 * We reach balance although we may have faced some affinity
11491 	 * constraints. Clear the imbalance flag only if other tasks got
11492 	 * a chance to move and fix the imbalance.
11493 	 */
11494 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11495 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11496 
11497 		if (*group_imbalance)
11498 			*group_imbalance = 0;
11499 	}
11500 
11501 out_all_pinned:
11502 	/*
11503 	 * We reach balance because all tasks are pinned at this level so
11504 	 * we can't migrate them. Let the imbalance flag set so parent level
11505 	 * can try to migrate them.
11506 	 */
11507 	schedstat_inc(sd->lb_balanced[idle]);
11508 
11509 	sd->nr_balance_failed = 0;
11510 
11511 out_one_pinned:
11512 	ld_moved = 0;
11513 
11514 	/*
11515 	 * newidle_balance() disregards balance intervals, so we could
11516 	 * repeatedly reach this code, which would lead to balance_interval
11517 	 * skyrocketing in a short amount of time. Skip the balance_interval
11518 	 * increase logic to avoid that.
11519 	 */
11520 	if (env.idle == CPU_NEWLY_IDLE)
11521 		goto out;
11522 
11523 	/* tune up the balancing interval */
11524 	if ((env.flags & LBF_ALL_PINNED &&
11525 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11526 	    sd->balance_interval < sd->max_interval)
11527 		sd->balance_interval *= 2;
11528 out:
11529 	return ld_moved;
11530 }
11531 
11532 static inline unsigned long
11533 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11534 {
11535 	unsigned long interval = sd->balance_interval;
11536 
11537 	if (cpu_busy)
11538 		interval *= sd->busy_factor;
11539 
11540 	/* scale ms to jiffies */
11541 	interval = msecs_to_jiffies(interval);
11542 
11543 	/*
11544 	 * Reduce likelihood of busy balancing at higher domains racing with
11545 	 * balancing at lower domains by preventing their balancing periods
11546 	 * from being multiples of each other.
11547 	 */
11548 	if (cpu_busy)
11549 		interval -= 1;
11550 
11551 	interval = clamp(interval, 1UL, max_load_balance_interval);
11552 
11553 	return interval;
11554 }
11555 
11556 static inline void
11557 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11558 {
11559 	unsigned long interval, next;
11560 
11561 	/* used by idle balance, so cpu_busy = 0 */
11562 	interval = get_sd_balance_interval(sd, 0);
11563 	next = sd->last_balance + interval;
11564 
11565 	if (time_after(*next_balance, next))
11566 		*next_balance = next;
11567 }
11568 
11569 /*
11570  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11571  * running tasks off the busiest CPU onto idle CPUs. It requires at
11572  * least 1 task to be running on each physical CPU where possible, and
11573  * avoids physical / logical imbalances.
11574  */
11575 static int active_load_balance_cpu_stop(void *data)
11576 {
11577 	struct rq *busiest_rq = data;
11578 	int busiest_cpu = cpu_of(busiest_rq);
11579 	int target_cpu = busiest_rq->push_cpu;
11580 	struct rq *target_rq = cpu_rq(target_cpu);
11581 	struct sched_domain *sd;
11582 	struct task_struct *p = NULL;
11583 	struct rq_flags rf;
11584 
11585 	rq_lock_irq(busiest_rq, &rf);
11586 	/*
11587 	 * Between queueing the stop-work and running it is a hole in which
11588 	 * CPUs can become inactive. We should not move tasks from or to
11589 	 * inactive CPUs.
11590 	 */
11591 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11592 		goto out_unlock;
11593 
11594 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11595 	if (unlikely(busiest_cpu != smp_processor_id() ||
11596 		     !busiest_rq->active_balance))
11597 		goto out_unlock;
11598 
11599 	/* Is there any task to move? */
11600 	if (busiest_rq->nr_running <= 1)
11601 		goto out_unlock;
11602 
11603 	/*
11604 	 * This condition is "impossible", if it occurs
11605 	 * we need to fix it. Originally reported by
11606 	 * Bjorn Helgaas on a 128-CPU setup.
11607 	 */
11608 	WARN_ON_ONCE(busiest_rq == target_rq);
11609 
11610 	/* Search for an sd spanning us and the target CPU. */
11611 	rcu_read_lock();
11612 	for_each_domain(target_cpu, sd) {
11613 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11614 			break;
11615 	}
11616 
11617 	if (likely(sd)) {
11618 		struct lb_env env = {
11619 			.sd		= sd,
11620 			.dst_cpu	= target_cpu,
11621 			.dst_rq		= target_rq,
11622 			.src_cpu	= busiest_rq->cpu,
11623 			.src_rq		= busiest_rq,
11624 			.idle		= CPU_IDLE,
11625 			.flags		= LBF_ACTIVE_LB,
11626 		};
11627 
11628 		schedstat_inc(sd->alb_count);
11629 		update_rq_clock(busiest_rq);
11630 
11631 		p = detach_one_task(&env);
11632 		if (p) {
11633 			schedstat_inc(sd->alb_pushed);
11634 			/* Active balancing done, reset the failure counter. */
11635 			sd->nr_balance_failed = 0;
11636 		} else {
11637 			schedstat_inc(sd->alb_failed);
11638 		}
11639 	}
11640 	rcu_read_unlock();
11641 out_unlock:
11642 	busiest_rq->active_balance = 0;
11643 	rq_unlock(busiest_rq, &rf);
11644 
11645 	if (p)
11646 		attach_one_task(target_rq, p);
11647 
11648 	local_irq_enable();
11649 
11650 	return 0;
11651 }
11652 
11653 static DEFINE_SPINLOCK(balancing);
11654 
11655 /*
11656  * Scale the max load_balance interval with the number of CPUs in the system.
11657  * This trades load-balance latency on larger machines for less cross talk.
11658  */
11659 void update_max_interval(void)
11660 {
11661 	max_load_balance_interval = HZ*num_online_cpus()/10;
11662 }
11663 
11664 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11665 {
11666 	if (cost > sd->max_newidle_lb_cost) {
11667 		/*
11668 		 * Track max cost of a domain to make sure to not delay the
11669 		 * next wakeup on the CPU.
11670 		 */
11671 		sd->max_newidle_lb_cost = cost;
11672 		sd->last_decay_max_lb_cost = jiffies;
11673 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11674 		/*
11675 		 * Decay the newidle max times by ~1% per second to ensure that
11676 		 * it is not outdated and the current max cost is actually
11677 		 * shorter.
11678 		 */
11679 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11680 		sd->last_decay_max_lb_cost = jiffies;
11681 
11682 		return true;
11683 	}
11684 
11685 	return false;
11686 }
11687 
11688 /*
11689  * It checks each scheduling domain to see if it is due to be balanced,
11690  * and initiates a balancing operation if so.
11691  *
11692  * Balancing parameters are set up in init_sched_domains.
11693  */
11694 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11695 {
11696 	int continue_balancing = 1;
11697 	int cpu = rq->cpu;
11698 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11699 	unsigned long interval;
11700 	struct sched_domain *sd;
11701 	/* Earliest time when we have to do rebalance again */
11702 	unsigned long next_balance = jiffies + 60*HZ;
11703 	int update_next_balance = 0;
11704 	int need_serialize, need_decay = 0;
11705 	u64 max_cost = 0;
11706 
11707 	rcu_read_lock();
11708 	for_each_domain(cpu, sd) {
11709 		/*
11710 		 * Decay the newidle max times here because this is a regular
11711 		 * visit to all the domains.
11712 		 */
11713 		need_decay = update_newidle_cost(sd, 0);
11714 		max_cost += sd->max_newidle_lb_cost;
11715 
11716 		/*
11717 		 * Stop the load balance at this level. There is another
11718 		 * CPU in our sched group which is doing load balancing more
11719 		 * actively.
11720 		 */
11721 		if (!continue_balancing) {
11722 			if (need_decay)
11723 				continue;
11724 			break;
11725 		}
11726 
11727 		interval = get_sd_balance_interval(sd, busy);
11728 
11729 		need_serialize = sd->flags & SD_SERIALIZE;
11730 		if (need_serialize) {
11731 			if (!spin_trylock(&balancing))
11732 				goto out;
11733 		}
11734 
11735 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11736 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11737 				/*
11738 				 * The LBF_DST_PINNED logic could have changed
11739 				 * env->dst_cpu, so we can't know our idle
11740 				 * state even if we migrated tasks. Update it.
11741 				 */
11742 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11743 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11744 			}
11745 			sd->last_balance = jiffies;
11746 			interval = get_sd_balance_interval(sd, busy);
11747 		}
11748 		if (need_serialize)
11749 			spin_unlock(&balancing);
11750 out:
11751 		if (time_after(next_balance, sd->last_balance + interval)) {
11752 			next_balance = sd->last_balance + interval;
11753 			update_next_balance = 1;
11754 		}
11755 	}
11756 	if (need_decay) {
11757 		/*
11758 		 * Ensure the rq-wide value also decays but keep it at a
11759 		 * reasonable floor to avoid funnies with rq->avg_idle.
11760 		 */
11761 		rq->max_idle_balance_cost =
11762 			max((u64)sysctl_sched_migration_cost, max_cost);
11763 	}
11764 	rcu_read_unlock();
11765 
11766 	/*
11767 	 * next_balance will be updated only when there is a need.
11768 	 * When the cpu is attached to null domain for ex, it will not be
11769 	 * updated.
11770 	 */
11771 	if (likely(update_next_balance))
11772 		rq->next_balance = next_balance;
11773 
11774 }
11775 
11776 static inline int on_null_domain(struct rq *rq)
11777 {
11778 	return unlikely(!rcu_dereference_sched(rq->sd));
11779 }
11780 
11781 #ifdef CONFIG_NO_HZ_COMMON
11782 /*
11783  * NOHZ idle load balancing (ILB) details:
11784  *
11785  * - When one of the busy CPUs notices that there may be an idle rebalancing
11786  *   needed, they will kick the idle load balancer, which then does idle
11787  *   load balancing for all the idle CPUs.
11788  *
11789  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11790  *   anywhere yet.
11791  */
11792 static inline int find_new_ilb(void)
11793 {
11794 	const struct cpumask *hk_mask;
11795 	int ilb_cpu;
11796 
11797 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11798 
11799 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11800 
11801 		if (ilb_cpu == smp_processor_id())
11802 			continue;
11803 
11804 		if (idle_cpu(ilb_cpu))
11805 			return ilb_cpu;
11806 	}
11807 
11808 	return -1;
11809 }
11810 
11811 /*
11812  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11813  * SMP function call (IPI).
11814  *
11815  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11816  */
11817 static void kick_ilb(unsigned int flags)
11818 {
11819 	int ilb_cpu;
11820 
11821 	/*
11822 	 * Increase nohz.next_balance only when if full ilb is triggered but
11823 	 * not if we only update stats.
11824 	 */
11825 	if (flags & NOHZ_BALANCE_KICK)
11826 		nohz.next_balance = jiffies+1;
11827 
11828 	ilb_cpu = find_new_ilb();
11829 	if (ilb_cpu < 0)
11830 		return;
11831 
11832 	/*
11833 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11834 	 * the first flag owns it; cleared by nohz_csd_func().
11835 	 */
11836 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11837 	if (flags & NOHZ_KICK_MASK)
11838 		return;
11839 
11840 	/*
11841 	 * This way we generate an IPI on the target CPU which
11842 	 * is idle, and the softirq performing NOHZ idle load balancing
11843 	 * will be run before returning from the IPI.
11844 	 */
11845 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11846 }
11847 
11848 /*
11849  * Current decision point for kicking the idle load balancer in the presence
11850  * of idle CPUs in the system.
11851  */
11852 static void nohz_balancer_kick(struct rq *rq)
11853 {
11854 	unsigned long now = jiffies;
11855 	struct sched_domain_shared *sds;
11856 	struct sched_domain *sd;
11857 	int nr_busy, i, cpu = rq->cpu;
11858 	unsigned int flags = 0;
11859 
11860 	if (unlikely(rq->idle_balance))
11861 		return;
11862 
11863 	/*
11864 	 * We may be recently in ticked or tickless idle mode. At the first
11865 	 * busy tick after returning from idle, we will update the busy stats.
11866 	 */
11867 	nohz_balance_exit_idle(rq);
11868 
11869 	/*
11870 	 * None are in tickless mode and hence no need for NOHZ idle load
11871 	 * balancing:
11872 	 */
11873 	if (likely(!atomic_read(&nohz.nr_cpus)))
11874 		return;
11875 
11876 	if (READ_ONCE(nohz.has_blocked) &&
11877 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11878 		flags = NOHZ_STATS_KICK;
11879 
11880 	if (time_before(now, nohz.next_balance))
11881 		goto out;
11882 
11883 	if (rq->nr_running >= 2) {
11884 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11885 		goto out;
11886 	}
11887 
11888 	rcu_read_lock();
11889 
11890 	sd = rcu_dereference(rq->sd);
11891 	if (sd) {
11892 		/*
11893 		 * If there's a runnable CFS task and the current CPU has reduced
11894 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11895 		 */
11896 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11897 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11898 			goto unlock;
11899 		}
11900 	}
11901 
11902 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11903 	if (sd) {
11904 		/*
11905 		 * When ASYM_PACKING; see if there's a more preferred CPU
11906 		 * currently idle; in which case, kick the ILB to move tasks
11907 		 * around.
11908 		 *
11909 		 * When balancing betwen cores, all the SMT siblings of the
11910 		 * preferred CPU must be idle.
11911 		 */
11912 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11913 			if (sched_use_asym_prio(sd, i) &&
11914 			    sched_asym_prefer(i, cpu)) {
11915 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11916 				goto unlock;
11917 			}
11918 		}
11919 	}
11920 
11921 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11922 	if (sd) {
11923 		/*
11924 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11925 		 * to run the misfit task on.
11926 		 */
11927 		if (check_misfit_status(rq, sd)) {
11928 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11929 			goto unlock;
11930 		}
11931 
11932 		/*
11933 		 * For asymmetric systems, we do not want to nicely balance
11934 		 * cache use, instead we want to embrace asymmetry and only
11935 		 * ensure tasks have enough CPU capacity.
11936 		 *
11937 		 * Skip the LLC logic because it's not relevant in that case.
11938 		 */
11939 		goto unlock;
11940 	}
11941 
11942 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11943 	if (sds) {
11944 		/*
11945 		 * If there is an imbalance between LLC domains (IOW we could
11946 		 * increase the overall cache utilization), we need a less-loaded LLC
11947 		 * domain to pull some load from. Likewise, we may need to spread
11948 		 * load within the current LLC domain (e.g. packed SMT cores but
11949 		 * other CPUs are idle). We can't really know from here how busy
11950 		 * the others are - so just get a NOHZ balance going if it looks
11951 		 * like this LLC domain has tasks we could move.
11952 		 */
11953 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11954 		if (nr_busy > 1) {
11955 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11956 			goto unlock;
11957 		}
11958 	}
11959 unlock:
11960 	rcu_read_unlock();
11961 out:
11962 	if (READ_ONCE(nohz.needs_update))
11963 		flags |= NOHZ_NEXT_KICK;
11964 
11965 	if (flags)
11966 		kick_ilb(flags);
11967 }
11968 
11969 static void set_cpu_sd_state_busy(int cpu)
11970 {
11971 	struct sched_domain *sd;
11972 
11973 	rcu_read_lock();
11974 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11975 
11976 	if (!sd || !sd->nohz_idle)
11977 		goto unlock;
11978 	sd->nohz_idle = 0;
11979 
11980 	atomic_inc(&sd->shared->nr_busy_cpus);
11981 unlock:
11982 	rcu_read_unlock();
11983 }
11984 
11985 void nohz_balance_exit_idle(struct rq *rq)
11986 {
11987 	SCHED_WARN_ON(rq != this_rq());
11988 
11989 	if (likely(!rq->nohz_tick_stopped))
11990 		return;
11991 
11992 	rq->nohz_tick_stopped = 0;
11993 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11994 	atomic_dec(&nohz.nr_cpus);
11995 
11996 	set_cpu_sd_state_busy(rq->cpu);
11997 }
11998 
11999 static void set_cpu_sd_state_idle(int cpu)
12000 {
12001 	struct sched_domain *sd;
12002 
12003 	rcu_read_lock();
12004 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12005 
12006 	if (!sd || sd->nohz_idle)
12007 		goto unlock;
12008 	sd->nohz_idle = 1;
12009 
12010 	atomic_dec(&sd->shared->nr_busy_cpus);
12011 unlock:
12012 	rcu_read_unlock();
12013 }
12014 
12015 /*
12016  * This routine will record that the CPU is going idle with tick stopped.
12017  * This info will be used in performing idle load balancing in the future.
12018  */
12019 void nohz_balance_enter_idle(int cpu)
12020 {
12021 	struct rq *rq = cpu_rq(cpu);
12022 
12023 	SCHED_WARN_ON(cpu != smp_processor_id());
12024 
12025 	/* If this CPU is going down, then nothing needs to be done: */
12026 	if (!cpu_active(cpu))
12027 		return;
12028 
12029 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12030 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12031 		return;
12032 
12033 	/*
12034 	 * Can be set safely without rq->lock held
12035 	 * If a clear happens, it will have evaluated last additions because
12036 	 * rq->lock is held during the check and the clear
12037 	 */
12038 	rq->has_blocked_load = 1;
12039 
12040 	/*
12041 	 * The tick is still stopped but load could have been added in the
12042 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12043 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12044 	 * of nohz.has_blocked can only happen after checking the new load
12045 	 */
12046 	if (rq->nohz_tick_stopped)
12047 		goto out;
12048 
12049 	/* If we're a completely isolated CPU, we don't play: */
12050 	if (on_null_domain(rq))
12051 		return;
12052 
12053 	rq->nohz_tick_stopped = 1;
12054 
12055 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12056 	atomic_inc(&nohz.nr_cpus);
12057 
12058 	/*
12059 	 * Ensures that if nohz_idle_balance() fails to observe our
12060 	 * @idle_cpus_mask store, it must observe the @has_blocked
12061 	 * and @needs_update stores.
12062 	 */
12063 	smp_mb__after_atomic();
12064 
12065 	set_cpu_sd_state_idle(cpu);
12066 
12067 	WRITE_ONCE(nohz.needs_update, 1);
12068 out:
12069 	/*
12070 	 * Each time a cpu enter idle, we assume that it has blocked load and
12071 	 * enable the periodic update of the load of idle cpus
12072 	 */
12073 	WRITE_ONCE(nohz.has_blocked, 1);
12074 }
12075 
12076 static bool update_nohz_stats(struct rq *rq)
12077 {
12078 	unsigned int cpu = rq->cpu;
12079 
12080 	if (!rq->has_blocked_load)
12081 		return false;
12082 
12083 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12084 		return false;
12085 
12086 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12087 		return true;
12088 
12089 	update_blocked_averages(cpu);
12090 
12091 	return rq->has_blocked_load;
12092 }
12093 
12094 /*
12095  * Internal function that runs load balance for all idle cpus. The load balance
12096  * can be a simple update of blocked load or a complete load balance with
12097  * tasks movement depending of flags.
12098  */
12099 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12100 {
12101 	/* Earliest time when we have to do rebalance again */
12102 	unsigned long now = jiffies;
12103 	unsigned long next_balance = now + 60*HZ;
12104 	bool has_blocked_load = false;
12105 	int update_next_balance = 0;
12106 	int this_cpu = this_rq->cpu;
12107 	int balance_cpu;
12108 	struct rq *rq;
12109 
12110 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12111 
12112 	/*
12113 	 * We assume there will be no idle load after this update and clear
12114 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12115 	 * set the has_blocked flag and trigger another update of idle load.
12116 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12117 	 * setting the flag, we are sure to not clear the state and not
12118 	 * check the load of an idle cpu.
12119 	 *
12120 	 * Same applies to idle_cpus_mask vs needs_update.
12121 	 */
12122 	if (flags & NOHZ_STATS_KICK)
12123 		WRITE_ONCE(nohz.has_blocked, 0);
12124 	if (flags & NOHZ_NEXT_KICK)
12125 		WRITE_ONCE(nohz.needs_update, 0);
12126 
12127 	/*
12128 	 * Ensures that if we miss the CPU, we must see the has_blocked
12129 	 * store from nohz_balance_enter_idle().
12130 	 */
12131 	smp_mb();
12132 
12133 	/*
12134 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12135 	 * chance for other idle cpu to pull load.
12136 	 */
12137 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12138 		if (!idle_cpu(balance_cpu))
12139 			continue;
12140 
12141 		/*
12142 		 * If this CPU gets work to do, stop the load balancing
12143 		 * work being done for other CPUs. Next load
12144 		 * balancing owner will pick it up.
12145 		 */
12146 		if (need_resched()) {
12147 			if (flags & NOHZ_STATS_KICK)
12148 				has_blocked_load = true;
12149 			if (flags & NOHZ_NEXT_KICK)
12150 				WRITE_ONCE(nohz.needs_update, 1);
12151 			goto abort;
12152 		}
12153 
12154 		rq = cpu_rq(balance_cpu);
12155 
12156 		if (flags & NOHZ_STATS_KICK)
12157 			has_blocked_load |= update_nohz_stats(rq);
12158 
12159 		/*
12160 		 * If time for next balance is due,
12161 		 * do the balance.
12162 		 */
12163 		if (time_after_eq(jiffies, rq->next_balance)) {
12164 			struct rq_flags rf;
12165 
12166 			rq_lock_irqsave(rq, &rf);
12167 			update_rq_clock(rq);
12168 			rq_unlock_irqrestore(rq, &rf);
12169 
12170 			if (flags & NOHZ_BALANCE_KICK)
12171 				rebalance_domains(rq, CPU_IDLE);
12172 		}
12173 
12174 		if (time_after(next_balance, rq->next_balance)) {
12175 			next_balance = rq->next_balance;
12176 			update_next_balance = 1;
12177 		}
12178 	}
12179 
12180 	/*
12181 	 * next_balance will be updated only when there is a need.
12182 	 * When the CPU is attached to null domain for ex, it will not be
12183 	 * updated.
12184 	 */
12185 	if (likely(update_next_balance))
12186 		nohz.next_balance = next_balance;
12187 
12188 	if (flags & NOHZ_STATS_KICK)
12189 		WRITE_ONCE(nohz.next_blocked,
12190 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12191 
12192 abort:
12193 	/* There is still blocked load, enable periodic update */
12194 	if (has_blocked_load)
12195 		WRITE_ONCE(nohz.has_blocked, 1);
12196 }
12197 
12198 /*
12199  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12200  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12201  */
12202 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12203 {
12204 	unsigned int flags = this_rq->nohz_idle_balance;
12205 
12206 	if (!flags)
12207 		return false;
12208 
12209 	this_rq->nohz_idle_balance = 0;
12210 
12211 	if (idle != CPU_IDLE)
12212 		return false;
12213 
12214 	_nohz_idle_balance(this_rq, flags);
12215 
12216 	return true;
12217 }
12218 
12219 /*
12220  * Check if we need to directly run the ILB for updating blocked load before
12221  * entering idle state. Here we run ILB directly without issuing IPIs.
12222  *
12223  * Note that when this function is called, the tick may not yet be stopped on
12224  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12225  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12226  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12227  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12228  * called from this function on (this) CPU that's not yet in the mask. That's
12229  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12230  * updating the blocked load of already idle CPUs without waking up one of
12231  * those idle CPUs and outside the preempt disable / irq off phase of the local
12232  * cpu about to enter idle, because it can take a long time.
12233  */
12234 void nohz_run_idle_balance(int cpu)
12235 {
12236 	unsigned int flags;
12237 
12238 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12239 
12240 	/*
12241 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12242 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12243 	 */
12244 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12245 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12246 }
12247 
12248 static void nohz_newidle_balance(struct rq *this_rq)
12249 {
12250 	int this_cpu = this_rq->cpu;
12251 
12252 	/*
12253 	 * This CPU doesn't want to be disturbed by scheduler
12254 	 * housekeeping
12255 	 */
12256 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12257 		return;
12258 
12259 	/* Will wake up very soon. No time for doing anything else*/
12260 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12261 		return;
12262 
12263 	/* Don't need to update blocked load of idle CPUs*/
12264 	if (!READ_ONCE(nohz.has_blocked) ||
12265 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12266 		return;
12267 
12268 	/*
12269 	 * Set the need to trigger ILB in order to update blocked load
12270 	 * before entering idle state.
12271 	 */
12272 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12273 }
12274 
12275 #else /* !CONFIG_NO_HZ_COMMON */
12276 static inline void nohz_balancer_kick(struct rq *rq) { }
12277 
12278 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12279 {
12280 	return false;
12281 }
12282 
12283 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12284 #endif /* CONFIG_NO_HZ_COMMON */
12285 
12286 /*
12287  * newidle_balance is called by schedule() if this_cpu is about to become
12288  * idle. Attempts to pull tasks from other CPUs.
12289  *
12290  * Returns:
12291  *   < 0 - we released the lock and there are !fair tasks present
12292  *     0 - failed, no new tasks
12293  *   > 0 - success, new (fair) tasks present
12294  */
12295 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12296 {
12297 	unsigned long next_balance = jiffies + HZ;
12298 	int this_cpu = this_rq->cpu;
12299 	u64 t0, t1, curr_cost = 0;
12300 	struct sched_domain *sd;
12301 	int pulled_task = 0;
12302 
12303 	update_misfit_status(NULL, this_rq);
12304 
12305 	/*
12306 	 * There is a task waiting to run. No need to search for one.
12307 	 * Return 0; the task will be enqueued when switching to idle.
12308 	 */
12309 	if (this_rq->ttwu_pending)
12310 		return 0;
12311 
12312 	/*
12313 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12314 	 * measure the duration of idle_balance() as idle time.
12315 	 */
12316 	this_rq->idle_stamp = rq_clock(this_rq);
12317 
12318 	/*
12319 	 * Do not pull tasks towards !active CPUs...
12320 	 */
12321 	if (!cpu_active(this_cpu))
12322 		return 0;
12323 
12324 	/*
12325 	 * This is OK, because current is on_cpu, which avoids it being picked
12326 	 * for load-balance and preemption/IRQs are still disabled avoiding
12327 	 * further scheduler activity on it and we're being very careful to
12328 	 * re-start the picking loop.
12329 	 */
12330 	rq_unpin_lock(this_rq, rf);
12331 
12332 	rcu_read_lock();
12333 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12334 
12335 	if (!READ_ONCE(this_rq->rd->overload) ||
12336 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12337 
12338 		if (sd)
12339 			update_next_balance(sd, &next_balance);
12340 		rcu_read_unlock();
12341 
12342 		goto out;
12343 	}
12344 	rcu_read_unlock();
12345 
12346 	raw_spin_rq_unlock(this_rq);
12347 
12348 	t0 = sched_clock_cpu(this_cpu);
12349 	update_blocked_averages(this_cpu);
12350 
12351 	rcu_read_lock();
12352 	for_each_domain(this_cpu, sd) {
12353 		int continue_balancing = 1;
12354 		u64 domain_cost;
12355 
12356 		update_next_balance(sd, &next_balance);
12357 
12358 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12359 			break;
12360 
12361 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12362 
12363 			pulled_task = load_balance(this_cpu, this_rq,
12364 						   sd, CPU_NEWLY_IDLE,
12365 						   &continue_balancing);
12366 
12367 			t1 = sched_clock_cpu(this_cpu);
12368 			domain_cost = t1 - t0;
12369 			update_newidle_cost(sd, domain_cost);
12370 
12371 			curr_cost += domain_cost;
12372 			t0 = t1;
12373 		}
12374 
12375 		/*
12376 		 * Stop searching for tasks to pull if there are
12377 		 * now runnable tasks on this rq.
12378 		 */
12379 		if (pulled_task || this_rq->nr_running > 0 ||
12380 		    this_rq->ttwu_pending)
12381 			break;
12382 	}
12383 	rcu_read_unlock();
12384 
12385 	raw_spin_rq_lock(this_rq);
12386 
12387 	if (curr_cost > this_rq->max_idle_balance_cost)
12388 		this_rq->max_idle_balance_cost = curr_cost;
12389 
12390 	/*
12391 	 * While browsing the domains, we released the rq lock, a task could
12392 	 * have been enqueued in the meantime. Since we're not going idle,
12393 	 * pretend we pulled a task.
12394 	 */
12395 	if (this_rq->cfs.h_nr_running && !pulled_task)
12396 		pulled_task = 1;
12397 
12398 	/* Is there a task of a high priority class? */
12399 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12400 		pulled_task = -1;
12401 
12402 out:
12403 	/* Move the next balance forward */
12404 	if (time_after(this_rq->next_balance, next_balance))
12405 		this_rq->next_balance = next_balance;
12406 
12407 	if (pulled_task)
12408 		this_rq->idle_stamp = 0;
12409 	else
12410 		nohz_newidle_balance(this_rq);
12411 
12412 	rq_repin_lock(this_rq, rf);
12413 
12414 	return pulled_task;
12415 }
12416 
12417 /*
12418  * run_rebalance_domains is triggered when needed from the scheduler tick.
12419  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12420  */
12421 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12422 {
12423 	struct rq *this_rq = this_rq();
12424 	enum cpu_idle_type idle = this_rq->idle_balance ?
12425 						CPU_IDLE : CPU_NOT_IDLE;
12426 
12427 	/*
12428 	 * If this CPU has a pending nohz_balance_kick, then do the
12429 	 * balancing on behalf of the other idle CPUs whose ticks are
12430 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12431 	 * give the idle CPUs a chance to load balance. Else we may
12432 	 * load balance only within the local sched_domain hierarchy
12433 	 * and abort nohz_idle_balance altogether if we pull some load.
12434 	 */
12435 	if (nohz_idle_balance(this_rq, idle))
12436 		return;
12437 
12438 	/* normal load balance */
12439 	update_blocked_averages(this_rq->cpu);
12440 	rebalance_domains(this_rq, idle);
12441 }
12442 
12443 /*
12444  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12445  */
12446 void trigger_load_balance(struct rq *rq)
12447 {
12448 	/*
12449 	 * Don't need to rebalance while attached to NULL domain or
12450 	 * runqueue CPU is not active
12451 	 */
12452 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12453 		return;
12454 
12455 	if (time_after_eq(jiffies, rq->next_balance))
12456 		raise_softirq(SCHED_SOFTIRQ);
12457 
12458 	nohz_balancer_kick(rq);
12459 }
12460 
12461 static void rq_online_fair(struct rq *rq)
12462 {
12463 	update_sysctl();
12464 
12465 	update_runtime_enabled(rq);
12466 }
12467 
12468 static void rq_offline_fair(struct rq *rq)
12469 {
12470 	update_sysctl();
12471 
12472 	/* Ensure any throttled groups are reachable by pick_next_task */
12473 	unthrottle_offline_cfs_rqs(rq);
12474 
12475 	/* Ensure that we remove rq contribution to group share: */
12476 	clear_tg_offline_cfs_rqs(rq);
12477 }
12478 
12479 #endif /* CONFIG_SMP */
12480 
12481 #ifdef CONFIG_SCHED_CORE
12482 static inline bool
12483 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12484 {
12485 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12486 	u64 slice = se->slice;
12487 
12488 	return (rtime * min_nr_tasks > slice);
12489 }
12490 
12491 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12492 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12493 {
12494 	if (!sched_core_enabled(rq))
12495 		return;
12496 
12497 	/*
12498 	 * If runqueue has only one task which used up its slice and
12499 	 * if the sibling is forced idle, then trigger schedule to
12500 	 * give forced idle task a chance.
12501 	 *
12502 	 * sched_slice() considers only this active rq and it gets the
12503 	 * whole slice. But during force idle, we have siblings acting
12504 	 * like a single runqueue and hence we need to consider runnable
12505 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12506 	 * go through the forced idle rq, but that would be a perf hit.
12507 	 * We can assume that the forced idle CPU has at least
12508 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12509 	 * if we need to give up the CPU.
12510 	 */
12511 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12512 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12513 		resched_curr(rq);
12514 }
12515 
12516 /*
12517  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12518  */
12519 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12520 			 bool forceidle)
12521 {
12522 	for_each_sched_entity(se) {
12523 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12524 
12525 		if (forceidle) {
12526 			if (cfs_rq->forceidle_seq == fi_seq)
12527 				break;
12528 			cfs_rq->forceidle_seq = fi_seq;
12529 		}
12530 
12531 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12532 	}
12533 }
12534 
12535 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12536 {
12537 	struct sched_entity *se = &p->se;
12538 
12539 	if (p->sched_class != &fair_sched_class)
12540 		return;
12541 
12542 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12543 }
12544 
12545 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12546 			bool in_fi)
12547 {
12548 	struct rq *rq = task_rq(a);
12549 	const struct sched_entity *sea = &a->se;
12550 	const struct sched_entity *seb = &b->se;
12551 	struct cfs_rq *cfs_rqa;
12552 	struct cfs_rq *cfs_rqb;
12553 	s64 delta;
12554 
12555 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12556 
12557 #ifdef CONFIG_FAIR_GROUP_SCHED
12558 	/*
12559 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12560 	 * are immediate siblings.
12561 	 */
12562 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12563 		int sea_depth = sea->depth;
12564 		int seb_depth = seb->depth;
12565 
12566 		if (sea_depth >= seb_depth)
12567 			sea = parent_entity(sea);
12568 		if (sea_depth <= seb_depth)
12569 			seb = parent_entity(seb);
12570 	}
12571 
12572 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12573 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12574 
12575 	cfs_rqa = sea->cfs_rq;
12576 	cfs_rqb = seb->cfs_rq;
12577 #else
12578 	cfs_rqa = &task_rq(a)->cfs;
12579 	cfs_rqb = &task_rq(b)->cfs;
12580 #endif
12581 
12582 	/*
12583 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12584 	 * min_vruntime_fi, which would have been updated in prior calls
12585 	 * to se_fi_update().
12586 	 */
12587 	delta = (s64)(sea->vruntime - seb->vruntime) +
12588 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12589 
12590 	return delta > 0;
12591 }
12592 
12593 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12594 {
12595 	struct cfs_rq *cfs_rq;
12596 
12597 #ifdef CONFIG_FAIR_GROUP_SCHED
12598 	cfs_rq = task_group(p)->cfs_rq[cpu];
12599 #else
12600 	cfs_rq = &cpu_rq(cpu)->cfs;
12601 #endif
12602 	return throttled_hierarchy(cfs_rq);
12603 }
12604 #else
12605 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12606 #endif
12607 
12608 /*
12609  * scheduler tick hitting a task of our scheduling class.
12610  *
12611  * NOTE: This function can be called remotely by the tick offload that
12612  * goes along full dynticks. Therefore no local assumption can be made
12613  * and everything must be accessed through the @rq and @curr passed in
12614  * parameters.
12615  */
12616 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12617 {
12618 	struct cfs_rq *cfs_rq;
12619 	struct sched_entity *se = &curr->se;
12620 
12621 	for_each_sched_entity(se) {
12622 		cfs_rq = cfs_rq_of(se);
12623 		entity_tick(cfs_rq, se, queued);
12624 	}
12625 
12626 	if (static_branch_unlikely(&sched_numa_balancing))
12627 		task_tick_numa(rq, curr);
12628 
12629 	update_misfit_status(curr, rq);
12630 	update_overutilized_status(task_rq(curr));
12631 
12632 	task_tick_core(rq, curr);
12633 }
12634 
12635 /*
12636  * called on fork with the child task as argument from the parent's context
12637  *  - child not yet on the tasklist
12638  *  - preemption disabled
12639  */
12640 static void task_fork_fair(struct task_struct *p)
12641 {
12642 	struct sched_entity *se = &p->se, *curr;
12643 	struct cfs_rq *cfs_rq;
12644 	struct rq *rq = this_rq();
12645 	struct rq_flags rf;
12646 
12647 	rq_lock(rq, &rf);
12648 	update_rq_clock(rq);
12649 
12650 	cfs_rq = task_cfs_rq(current);
12651 	curr = cfs_rq->curr;
12652 	if (curr)
12653 		update_curr(cfs_rq);
12654 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12655 	rq_unlock(rq, &rf);
12656 }
12657 
12658 /*
12659  * Priority of the task has changed. Check to see if we preempt
12660  * the current task.
12661  */
12662 static void
12663 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12664 {
12665 	if (!task_on_rq_queued(p))
12666 		return;
12667 
12668 	if (rq->cfs.nr_running == 1)
12669 		return;
12670 
12671 	/*
12672 	 * Reschedule if we are currently running on this runqueue and
12673 	 * our priority decreased, or if we are not currently running on
12674 	 * this runqueue and our priority is higher than the current's
12675 	 */
12676 	if (task_current(rq, p)) {
12677 		if (p->prio > oldprio)
12678 			resched_curr(rq);
12679 	} else
12680 		wakeup_preempt(rq, p, 0);
12681 }
12682 
12683 #ifdef CONFIG_FAIR_GROUP_SCHED
12684 /*
12685  * Propagate the changes of the sched_entity across the tg tree to make it
12686  * visible to the root
12687  */
12688 static void propagate_entity_cfs_rq(struct sched_entity *se)
12689 {
12690 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12691 
12692 	if (cfs_rq_throttled(cfs_rq))
12693 		return;
12694 
12695 	if (!throttled_hierarchy(cfs_rq))
12696 		list_add_leaf_cfs_rq(cfs_rq);
12697 
12698 	/* Start to propagate at parent */
12699 	se = se->parent;
12700 
12701 	for_each_sched_entity(se) {
12702 		cfs_rq = cfs_rq_of(se);
12703 
12704 		update_load_avg(cfs_rq, se, UPDATE_TG);
12705 
12706 		if (cfs_rq_throttled(cfs_rq))
12707 			break;
12708 
12709 		if (!throttled_hierarchy(cfs_rq))
12710 			list_add_leaf_cfs_rq(cfs_rq);
12711 	}
12712 }
12713 #else
12714 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12715 #endif
12716 
12717 static void detach_entity_cfs_rq(struct sched_entity *se)
12718 {
12719 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12720 
12721 #ifdef CONFIG_SMP
12722 	/*
12723 	 * In case the task sched_avg hasn't been attached:
12724 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12725 	 * - A task which has been woken up by try_to_wake_up() but is
12726 	 *   waiting for actually being woken up by sched_ttwu_pending().
12727 	 */
12728 	if (!se->avg.last_update_time)
12729 		return;
12730 #endif
12731 
12732 	/* Catch up with the cfs_rq and remove our load when we leave */
12733 	update_load_avg(cfs_rq, se, 0);
12734 	detach_entity_load_avg(cfs_rq, se);
12735 	update_tg_load_avg(cfs_rq);
12736 	propagate_entity_cfs_rq(se);
12737 }
12738 
12739 static void attach_entity_cfs_rq(struct sched_entity *se)
12740 {
12741 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12742 
12743 	/* Synchronize entity with its cfs_rq */
12744 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12745 	attach_entity_load_avg(cfs_rq, se);
12746 	update_tg_load_avg(cfs_rq);
12747 	propagate_entity_cfs_rq(se);
12748 }
12749 
12750 static void detach_task_cfs_rq(struct task_struct *p)
12751 {
12752 	struct sched_entity *se = &p->se;
12753 
12754 	detach_entity_cfs_rq(se);
12755 }
12756 
12757 static void attach_task_cfs_rq(struct task_struct *p)
12758 {
12759 	struct sched_entity *se = &p->se;
12760 
12761 	attach_entity_cfs_rq(se);
12762 }
12763 
12764 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12765 {
12766 	detach_task_cfs_rq(p);
12767 }
12768 
12769 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12770 {
12771 	attach_task_cfs_rq(p);
12772 
12773 	if (task_on_rq_queued(p)) {
12774 		/*
12775 		 * We were most likely switched from sched_rt, so
12776 		 * kick off the schedule if running, otherwise just see
12777 		 * if we can still preempt the current task.
12778 		 */
12779 		if (task_current(rq, p))
12780 			resched_curr(rq);
12781 		else
12782 			wakeup_preempt(rq, p, 0);
12783 	}
12784 }
12785 
12786 /* Account for a task changing its policy or group.
12787  *
12788  * This routine is mostly called to set cfs_rq->curr field when a task
12789  * migrates between groups/classes.
12790  */
12791 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12792 {
12793 	struct sched_entity *se = &p->se;
12794 
12795 #ifdef CONFIG_SMP
12796 	if (task_on_rq_queued(p)) {
12797 		/*
12798 		 * Move the next running task to the front of the list, so our
12799 		 * cfs_tasks list becomes MRU one.
12800 		 */
12801 		list_move(&se->group_node, &rq->cfs_tasks);
12802 	}
12803 #endif
12804 
12805 	for_each_sched_entity(se) {
12806 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12807 
12808 		set_next_entity(cfs_rq, se);
12809 		/* ensure bandwidth has been allocated on our new cfs_rq */
12810 		account_cfs_rq_runtime(cfs_rq, 0);
12811 	}
12812 }
12813 
12814 void init_cfs_rq(struct cfs_rq *cfs_rq)
12815 {
12816 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12817 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12818 #ifdef CONFIG_SMP
12819 	raw_spin_lock_init(&cfs_rq->removed.lock);
12820 #endif
12821 }
12822 
12823 #ifdef CONFIG_FAIR_GROUP_SCHED
12824 static void task_change_group_fair(struct task_struct *p)
12825 {
12826 	/*
12827 	 * We couldn't detach or attach a forked task which
12828 	 * hasn't been woken up by wake_up_new_task().
12829 	 */
12830 	if (READ_ONCE(p->__state) == TASK_NEW)
12831 		return;
12832 
12833 	detach_task_cfs_rq(p);
12834 
12835 #ifdef CONFIG_SMP
12836 	/* Tell se's cfs_rq has been changed -- migrated */
12837 	p->se.avg.last_update_time = 0;
12838 #endif
12839 	set_task_rq(p, task_cpu(p));
12840 	attach_task_cfs_rq(p);
12841 }
12842 
12843 void free_fair_sched_group(struct task_group *tg)
12844 {
12845 	int i;
12846 
12847 	for_each_possible_cpu(i) {
12848 		if (tg->cfs_rq)
12849 			kfree(tg->cfs_rq[i]);
12850 		if (tg->se)
12851 			kfree(tg->se[i]);
12852 	}
12853 
12854 	kfree(tg->cfs_rq);
12855 	kfree(tg->se);
12856 }
12857 
12858 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12859 {
12860 	struct sched_entity *se;
12861 	struct cfs_rq *cfs_rq;
12862 	int i;
12863 
12864 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12865 	if (!tg->cfs_rq)
12866 		goto err;
12867 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12868 	if (!tg->se)
12869 		goto err;
12870 
12871 	tg->shares = NICE_0_LOAD;
12872 
12873 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12874 
12875 	for_each_possible_cpu(i) {
12876 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12877 				      GFP_KERNEL, cpu_to_node(i));
12878 		if (!cfs_rq)
12879 			goto err;
12880 
12881 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12882 				  GFP_KERNEL, cpu_to_node(i));
12883 		if (!se)
12884 			goto err_free_rq;
12885 
12886 		init_cfs_rq(cfs_rq);
12887 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12888 		init_entity_runnable_average(se);
12889 	}
12890 
12891 	return 1;
12892 
12893 err_free_rq:
12894 	kfree(cfs_rq);
12895 err:
12896 	return 0;
12897 }
12898 
12899 void online_fair_sched_group(struct task_group *tg)
12900 {
12901 	struct sched_entity *se;
12902 	struct rq_flags rf;
12903 	struct rq *rq;
12904 	int i;
12905 
12906 	for_each_possible_cpu(i) {
12907 		rq = cpu_rq(i);
12908 		se = tg->se[i];
12909 		rq_lock_irq(rq, &rf);
12910 		update_rq_clock(rq);
12911 		attach_entity_cfs_rq(se);
12912 		sync_throttle(tg, i);
12913 		rq_unlock_irq(rq, &rf);
12914 	}
12915 }
12916 
12917 void unregister_fair_sched_group(struct task_group *tg)
12918 {
12919 	unsigned long flags;
12920 	struct rq *rq;
12921 	int cpu;
12922 
12923 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12924 
12925 	for_each_possible_cpu(cpu) {
12926 		if (tg->se[cpu])
12927 			remove_entity_load_avg(tg->se[cpu]);
12928 
12929 		/*
12930 		 * Only empty task groups can be destroyed; so we can speculatively
12931 		 * check on_list without danger of it being re-added.
12932 		 */
12933 		if (!tg->cfs_rq[cpu]->on_list)
12934 			continue;
12935 
12936 		rq = cpu_rq(cpu);
12937 
12938 		raw_spin_rq_lock_irqsave(rq, flags);
12939 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12940 		raw_spin_rq_unlock_irqrestore(rq, flags);
12941 	}
12942 }
12943 
12944 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12945 			struct sched_entity *se, int cpu,
12946 			struct sched_entity *parent)
12947 {
12948 	struct rq *rq = cpu_rq(cpu);
12949 
12950 	cfs_rq->tg = tg;
12951 	cfs_rq->rq = rq;
12952 	init_cfs_rq_runtime(cfs_rq);
12953 
12954 	tg->cfs_rq[cpu] = cfs_rq;
12955 	tg->se[cpu] = se;
12956 
12957 	/* se could be NULL for root_task_group */
12958 	if (!se)
12959 		return;
12960 
12961 	if (!parent) {
12962 		se->cfs_rq = &rq->cfs;
12963 		se->depth = 0;
12964 	} else {
12965 		se->cfs_rq = parent->my_q;
12966 		se->depth = parent->depth + 1;
12967 	}
12968 
12969 	se->my_q = cfs_rq;
12970 	/* guarantee group entities always have weight */
12971 	update_load_set(&se->load, NICE_0_LOAD);
12972 	se->parent = parent;
12973 }
12974 
12975 static DEFINE_MUTEX(shares_mutex);
12976 
12977 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12978 {
12979 	int i;
12980 
12981 	lockdep_assert_held(&shares_mutex);
12982 
12983 	/*
12984 	 * We can't change the weight of the root cgroup.
12985 	 */
12986 	if (!tg->se[0])
12987 		return -EINVAL;
12988 
12989 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12990 
12991 	if (tg->shares == shares)
12992 		return 0;
12993 
12994 	tg->shares = shares;
12995 	for_each_possible_cpu(i) {
12996 		struct rq *rq = cpu_rq(i);
12997 		struct sched_entity *se = tg->se[i];
12998 		struct rq_flags rf;
12999 
13000 		/* Propagate contribution to hierarchy */
13001 		rq_lock_irqsave(rq, &rf);
13002 		update_rq_clock(rq);
13003 		for_each_sched_entity(se) {
13004 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13005 			update_cfs_group(se);
13006 		}
13007 		rq_unlock_irqrestore(rq, &rf);
13008 	}
13009 
13010 	return 0;
13011 }
13012 
13013 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13014 {
13015 	int ret;
13016 
13017 	mutex_lock(&shares_mutex);
13018 	if (tg_is_idle(tg))
13019 		ret = -EINVAL;
13020 	else
13021 		ret = __sched_group_set_shares(tg, shares);
13022 	mutex_unlock(&shares_mutex);
13023 
13024 	return ret;
13025 }
13026 
13027 int sched_group_set_idle(struct task_group *tg, long idle)
13028 {
13029 	int i;
13030 
13031 	if (tg == &root_task_group)
13032 		return -EINVAL;
13033 
13034 	if (idle < 0 || idle > 1)
13035 		return -EINVAL;
13036 
13037 	mutex_lock(&shares_mutex);
13038 
13039 	if (tg->idle == idle) {
13040 		mutex_unlock(&shares_mutex);
13041 		return 0;
13042 	}
13043 
13044 	tg->idle = idle;
13045 
13046 	for_each_possible_cpu(i) {
13047 		struct rq *rq = cpu_rq(i);
13048 		struct sched_entity *se = tg->se[i];
13049 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13050 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13051 		long idle_task_delta;
13052 		struct rq_flags rf;
13053 
13054 		rq_lock_irqsave(rq, &rf);
13055 
13056 		grp_cfs_rq->idle = idle;
13057 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13058 			goto next_cpu;
13059 
13060 		if (se->on_rq) {
13061 			parent_cfs_rq = cfs_rq_of(se);
13062 			if (cfs_rq_is_idle(grp_cfs_rq))
13063 				parent_cfs_rq->idle_nr_running++;
13064 			else
13065 				parent_cfs_rq->idle_nr_running--;
13066 		}
13067 
13068 		idle_task_delta = grp_cfs_rq->h_nr_running -
13069 				  grp_cfs_rq->idle_h_nr_running;
13070 		if (!cfs_rq_is_idle(grp_cfs_rq))
13071 			idle_task_delta *= -1;
13072 
13073 		for_each_sched_entity(se) {
13074 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13075 
13076 			if (!se->on_rq)
13077 				break;
13078 
13079 			cfs_rq->idle_h_nr_running += idle_task_delta;
13080 
13081 			/* Already accounted at parent level and above. */
13082 			if (cfs_rq_is_idle(cfs_rq))
13083 				break;
13084 		}
13085 
13086 next_cpu:
13087 		rq_unlock_irqrestore(rq, &rf);
13088 	}
13089 
13090 	/* Idle groups have minimum weight. */
13091 	if (tg_is_idle(tg))
13092 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13093 	else
13094 		__sched_group_set_shares(tg, NICE_0_LOAD);
13095 
13096 	mutex_unlock(&shares_mutex);
13097 	return 0;
13098 }
13099 
13100 #endif /* CONFIG_FAIR_GROUP_SCHED */
13101 
13102 
13103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13104 {
13105 	struct sched_entity *se = &task->se;
13106 	unsigned int rr_interval = 0;
13107 
13108 	/*
13109 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13110 	 * idle runqueue:
13111 	 */
13112 	if (rq->cfs.load.weight)
13113 		rr_interval = NS_TO_JIFFIES(se->slice);
13114 
13115 	return rr_interval;
13116 }
13117 
13118 /*
13119  * All the scheduling class methods:
13120  */
13121 DEFINE_SCHED_CLASS(fair) = {
13122 
13123 	.enqueue_task		= enqueue_task_fair,
13124 	.dequeue_task		= dequeue_task_fair,
13125 	.yield_task		= yield_task_fair,
13126 	.yield_to_task		= yield_to_task_fair,
13127 
13128 	.wakeup_preempt		= check_preempt_wakeup_fair,
13129 
13130 	.pick_next_task		= __pick_next_task_fair,
13131 	.put_prev_task		= put_prev_task_fair,
13132 	.set_next_task          = set_next_task_fair,
13133 
13134 #ifdef CONFIG_SMP
13135 	.balance		= balance_fair,
13136 	.pick_task		= pick_task_fair,
13137 	.select_task_rq		= select_task_rq_fair,
13138 	.migrate_task_rq	= migrate_task_rq_fair,
13139 
13140 	.rq_online		= rq_online_fair,
13141 	.rq_offline		= rq_offline_fair,
13142 
13143 	.task_dead		= task_dead_fair,
13144 	.set_cpus_allowed	= set_cpus_allowed_common,
13145 #endif
13146 
13147 	.task_tick		= task_tick_fair,
13148 	.task_fork		= task_fork_fair,
13149 
13150 	.prio_changed		= prio_changed_fair,
13151 	.switched_from		= switched_from_fair,
13152 	.switched_to		= switched_to_fair,
13153 
13154 	.get_rr_interval	= get_rr_interval_fair,
13155 
13156 	.update_curr		= update_curr_fair,
13157 
13158 #ifdef CONFIG_FAIR_GROUP_SCHED
13159 	.task_change_group	= task_change_group_fair,
13160 #endif
13161 
13162 #ifdef CONFIG_SCHED_CORE
13163 	.task_is_throttled	= task_is_throttled_fair,
13164 #endif
13165 
13166 #ifdef CONFIG_UCLAMP_TASK
13167 	.uclamp_enabled		= 1,
13168 #endif
13169 };
13170 
13171 #ifdef CONFIG_SCHED_DEBUG
13172 void print_cfs_stats(struct seq_file *m, int cpu)
13173 {
13174 	struct cfs_rq *cfs_rq, *pos;
13175 
13176 	rcu_read_lock();
13177 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13178 		print_cfs_rq(m, cpu, cfs_rq);
13179 	rcu_read_unlock();
13180 }
13181 
13182 #ifdef CONFIG_NUMA_BALANCING
13183 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13184 {
13185 	int node;
13186 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13187 	struct numa_group *ng;
13188 
13189 	rcu_read_lock();
13190 	ng = rcu_dereference(p->numa_group);
13191 	for_each_online_node(node) {
13192 		if (p->numa_faults) {
13193 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13194 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13195 		}
13196 		if (ng) {
13197 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13198 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13199 		}
13200 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13201 	}
13202 	rcu_read_unlock();
13203 }
13204 #endif /* CONFIG_NUMA_BALANCING */
13205 #endif /* CONFIG_SCHED_DEBUG */
13206 
13207 __init void init_sched_fair_class(void)
13208 {
13209 #ifdef CONFIG_SMP
13210 	int i;
13211 
13212 	for_each_possible_cpu(i) {
13213 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13214 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13215 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13216 					GFP_KERNEL, cpu_to_node(i));
13217 
13218 #ifdef CONFIG_CFS_BANDWIDTH
13219 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13220 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13221 #endif
13222 	}
13223 
13224 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13225 
13226 #ifdef CONFIG_NO_HZ_COMMON
13227 	nohz.next_balance = jiffies;
13228 	nohz.next_blocked = jiffies;
13229 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13230 #endif
13231 #endif /* SMP */
13232 
13233 }
13234