1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 #endif 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * (default: 5 msec, units: microseconds) 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * The margin used when comparing utilization with CPU capacity: 115 * util * margin < capacity * 1024 116 * 117 * (default: ~20%) 118 */ 119 unsigned int capacity_margin = 1280; 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 /* An entity is a task if it doesn't "own" a runqueue */ 259 #define entity_is_task(se) (!se->my_q) 260 261 static inline struct task_struct *task_of(struct sched_entity *se) 262 { 263 SCHED_WARN_ON(!entity_is_task(se)); 264 return container_of(se, struct task_struct, se); 265 } 266 267 /* Walk up scheduling entities hierarchy */ 268 #define for_each_sched_entity(se) \ 269 for (; se; se = se->parent) 270 271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 272 { 273 return p->se.cfs_rq; 274 } 275 276 /* runqueue on which this entity is (to be) queued */ 277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 278 { 279 return se->cfs_rq; 280 } 281 282 /* runqueue "owned" by this group */ 283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 284 { 285 return grp->my_q; 286 } 287 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 289 { 290 if (!cfs_rq->on_list) { 291 struct rq *rq = rq_of(cfs_rq); 292 int cpu = cpu_of(rq); 293 /* 294 * Ensure we either appear before our parent (if already 295 * enqueued) or force our parent to appear after us when it is 296 * enqueued. The fact that we always enqueue bottom-up 297 * reduces this to two cases and a special case for the root 298 * cfs_rq. Furthermore, it also means that we will always reset 299 * tmp_alone_branch either when the branch is connected 300 * to a tree or when we reach the beg of the tree 301 */ 302 if (cfs_rq->tg->parent && 303 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 304 /* 305 * If parent is already on the list, we add the child 306 * just before. Thanks to circular linked property of 307 * the list, this means to put the child at the tail 308 * of the list that starts by parent. 309 */ 310 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 311 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 312 /* 313 * The branch is now connected to its tree so we can 314 * reset tmp_alone_branch to the beginning of the 315 * list. 316 */ 317 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 318 } else if (!cfs_rq->tg->parent) { 319 /* 320 * cfs rq without parent should be put 321 * at the tail of the list. 322 */ 323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 324 &rq->leaf_cfs_rq_list); 325 /* 326 * We have reach the beg of a tree so we can reset 327 * tmp_alone_branch to the beginning of the list. 328 */ 329 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 330 } else { 331 /* 332 * The parent has not already been added so we want to 333 * make sure that it will be put after us. 334 * tmp_alone_branch points to the beg of the branch 335 * where we will add parent. 336 */ 337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 338 rq->tmp_alone_branch); 339 /* 340 * update tmp_alone_branch to points to the new beg 341 * of the branch 342 */ 343 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 344 } 345 346 cfs_rq->on_list = 1; 347 } 348 } 349 350 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 351 { 352 if (cfs_rq->on_list) { 353 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 354 cfs_rq->on_list = 0; 355 } 356 } 357 358 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 359 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 360 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 361 leaf_cfs_rq_list) 362 363 /* Do the two (enqueued) entities belong to the same group ? */ 364 static inline struct cfs_rq * 365 is_same_group(struct sched_entity *se, struct sched_entity *pse) 366 { 367 if (se->cfs_rq == pse->cfs_rq) 368 return se->cfs_rq; 369 370 return NULL; 371 } 372 373 static inline struct sched_entity *parent_entity(struct sched_entity *se) 374 { 375 return se->parent; 376 } 377 378 static void 379 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 380 { 381 int se_depth, pse_depth; 382 383 /* 384 * preemption test can be made between sibling entities who are in the 385 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 386 * both tasks until we find their ancestors who are siblings of common 387 * parent. 388 */ 389 390 /* First walk up until both entities are at same depth */ 391 se_depth = (*se)->depth; 392 pse_depth = (*pse)->depth; 393 394 while (se_depth > pse_depth) { 395 se_depth--; 396 *se = parent_entity(*se); 397 } 398 399 while (pse_depth > se_depth) { 400 pse_depth--; 401 *pse = parent_entity(*pse); 402 } 403 404 while (!is_same_group(*se, *pse)) { 405 *se = parent_entity(*se); 406 *pse = parent_entity(*pse); 407 } 408 } 409 410 #else /* !CONFIG_FAIR_GROUP_SCHED */ 411 412 static inline struct task_struct *task_of(struct sched_entity *se) 413 { 414 return container_of(se, struct task_struct, se); 415 } 416 417 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 418 { 419 return container_of(cfs_rq, struct rq, cfs); 420 } 421 422 #define entity_is_task(se) 1 423 424 #define for_each_sched_entity(se) \ 425 for (; se; se = NULL) 426 427 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 428 { 429 return &task_rq(p)->cfs; 430 } 431 432 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 433 { 434 struct task_struct *p = task_of(se); 435 struct rq *rq = task_rq(p); 436 437 return &rq->cfs; 438 } 439 440 /* runqueue "owned" by this group */ 441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 442 { 443 return NULL; 444 } 445 446 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 451 { 452 } 453 454 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 455 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 456 457 static inline struct sched_entity *parent_entity(struct sched_entity *se) 458 { 459 return NULL; 460 } 461 462 static inline void 463 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 464 { 465 } 466 467 #endif /* CONFIG_FAIR_GROUP_SCHED */ 468 469 static __always_inline 470 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 471 472 /************************************************************** 473 * Scheduling class tree data structure manipulation methods: 474 */ 475 476 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 477 { 478 s64 delta = (s64)(vruntime - max_vruntime); 479 if (delta > 0) 480 max_vruntime = vruntime; 481 482 return max_vruntime; 483 } 484 485 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 486 { 487 s64 delta = (s64)(vruntime - min_vruntime); 488 if (delta < 0) 489 min_vruntime = vruntime; 490 491 return min_vruntime; 492 } 493 494 static inline int entity_before(struct sched_entity *a, 495 struct sched_entity *b) 496 { 497 return (s64)(a->vruntime - b->vruntime) < 0; 498 } 499 500 static void update_min_vruntime(struct cfs_rq *cfs_rq) 501 { 502 struct sched_entity *curr = cfs_rq->curr; 503 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 504 505 u64 vruntime = cfs_rq->min_vruntime; 506 507 if (curr) { 508 if (curr->on_rq) 509 vruntime = curr->vruntime; 510 else 511 curr = NULL; 512 } 513 514 if (leftmost) { /* non-empty tree */ 515 struct sched_entity *se; 516 se = rb_entry(leftmost, struct sched_entity, run_node); 517 518 if (!curr) 519 vruntime = se->vruntime; 520 else 521 vruntime = min_vruntime(vruntime, se->vruntime); 522 } 523 524 /* ensure we never gain time by being placed backwards. */ 525 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 526 #ifndef CONFIG_64BIT 527 smp_wmb(); 528 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 529 #endif 530 } 531 532 /* 533 * Enqueue an entity into the rb-tree: 534 */ 535 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 536 { 537 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 538 struct rb_node *parent = NULL; 539 struct sched_entity *entry; 540 bool leftmost = true; 541 542 /* 543 * Find the right place in the rbtree: 544 */ 545 while (*link) { 546 parent = *link; 547 entry = rb_entry(parent, struct sched_entity, run_node); 548 /* 549 * We dont care about collisions. Nodes with 550 * the same key stay together. 551 */ 552 if (entity_before(se, entry)) { 553 link = &parent->rb_left; 554 } else { 555 link = &parent->rb_right; 556 leftmost = false; 557 } 558 } 559 560 rb_link_node(&se->run_node, parent, link); 561 rb_insert_color_cached(&se->run_node, 562 &cfs_rq->tasks_timeline, leftmost); 563 } 564 565 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 568 } 569 570 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 571 { 572 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 573 574 if (!left) 575 return NULL; 576 577 return rb_entry(left, struct sched_entity, run_node); 578 } 579 580 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 581 { 582 struct rb_node *next = rb_next(&se->run_node); 583 584 if (!next) 585 return NULL; 586 587 return rb_entry(next, struct sched_entity, run_node); 588 } 589 590 #ifdef CONFIG_SCHED_DEBUG 591 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 592 { 593 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 594 595 if (!last) 596 return NULL; 597 598 return rb_entry(last, struct sched_entity, run_node); 599 } 600 601 /************************************************************** 602 * Scheduling class statistics methods: 603 */ 604 605 int sched_proc_update_handler(struct ctl_table *table, int write, 606 void __user *buffer, size_t *lenp, 607 loff_t *ppos) 608 { 609 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 610 unsigned int factor = get_update_sysctl_factor(); 611 612 if (ret || !write) 613 return ret; 614 615 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 616 sysctl_sched_min_granularity); 617 618 #define WRT_SYSCTL(name) \ 619 (normalized_sysctl_##name = sysctl_##name / (factor)) 620 WRT_SYSCTL(sched_min_granularity); 621 WRT_SYSCTL(sched_latency); 622 WRT_SYSCTL(sched_wakeup_granularity); 623 #undef WRT_SYSCTL 624 625 return 0; 626 } 627 #endif 628 629 /* 630 * delta /= w 631 */ 632 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 633 { 634 if (unlikely(se->load.weight != NICE_0_LOAD)) 635 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 636 637 return delta; 638 } 639 640 /* 641 * The idea is to set a period in which each task runs once. 642 * 643 * When there are too many tasks (sched_nr_latency) we have to stretch 644 * this period because otherwise the slices get too small. 645 * 646 * p = (nr <= nl) ? l : l*nr/nl 647 */ 648 static u64 __sched_period(unsigned long nr_running) 649 { 650 if (unlikely(nr_running > sched_nr_latency)) 651 return nr_running * sysctl_sched_min_granularity; 652 else 653 return sysctl_sched_latency; 654 } 655 656 /* 657 * We calculate the wall-time slice from the period by taking a part 658 * proportional to the weight. 659 * 660 * s = p*P[w/rw] 661 */ 662 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 663 { 664 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 665 666 for_each_sched_entity(se) { 667 struct load_weight *load; 668 struct load_weight lw; 669 670 cfs_rq = cfs_rq_of(se); 671 load = &cfs_rq->load; 672 673 if (unlikely(!se->on_rq)) { 674 lw = cfs_rq->load; 675 676 update_load_add(&lw, se->load.weight); 677 load = &lw; 678 } 679 slice = __calc_delta(slice, se->load.weight, load); 680 } 681 return slice; 682 } 683 684 /* 685 * We calculate the vruntime slice of a to-be-inserted task. 686 * 687 * vs = s/w 688 */ 689 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 690 { 691 return calc_delta_fair(sched_slice(cfs_rq, se), se); 692 } 693 694 #ifdef CONFIG_SMP 695 696 #include "sched-pelt.h" 697 698 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 699 static unsigned long task_h_load(struct task_struct *p); 700 701 /* Give new sched_entity start runnable values to heavy its load in infant time */ 702 void init_entity_runnable_average(struct sched_entity *se) 703 { 704 struct sched_avg *sa = &se->avg; 705 706 memset(sa, 0, sizeof(*sa)); 707 708 /* 709 * Tasks are intialized with full load to be seen as heavy tasks until 710 * they get a chance to stabilize to their real load level. 711 * Group entities are intialized with zero load to reflect the fact that 712 * nothing has been attached to the task group yet. 713 */ 714 if (entity_is_task(se)) 715 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 716 717 se->runnable_weight = se->load.weight; 718 719 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 720 } 721 722 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 723 static void attach_entity_cfs_rq(struct sched_entity *se); 724 725 /* 726 * With new tasks being created, their initial util_avgs are extrapolated 727 * based on the cfs_rq's current util_avg: 728 * 729 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 730 * 731 * However, in many cases, the above util_avg does not give a desired 732 * value. Moreover, the sum of the util_avgs may be divergent, such 733 * as when the series is a harmonic series. 734 * 735 * To solve this problem, we also cap the util_avg of successive tasks to 736 * only 1/2 of the left utilization budget: 737 * 738 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 739 * 740 * where n denotes the nth task. 741 * 742 * For example, a simplest series from the beginning would be like: 743 * 744 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 745 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 746 * 747 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 748 * if util_avg > util_avg_cap. 749 */ 750 void post_init_entity_util_avg(struct sched_entity *se) 751 { 752 struct cfs_rq *cfs_rq = cfs_rq_of(se); 753 struct sched_avg *sa = &se->avg; 754 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 755 756 if (cap > 0) { 757 if (cfs_rq->avg.util_avg != 0) { 758 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 759 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 760 761 if (sa->util_avg > cap) 762 sa->util_avg = cap; 763 } else { 764 sa->util_avg = cap; 765 } 766 } 767 768 if (entity_is_task(se)) { 769 struct task_struct *p = task_of(se); 770 if (p->sched_class != &fair_sched_class) { 771 /* 772 * For !fair tasks do: 773 * 774 update_cfs_rq_load_avg(now, cfs_rq); 775 attach_entity_load_avg(cfs_rq, se, 0); 776 switched_from_fair(rq, p); 777 * 778 * such that the next switched_to_fair() has the 779 * expected state. 780 */ 781 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 782 return; 783 } 784 } 785 786 attach_entity_cfs_rq(se); 787 } 788 789 #else /* !CONFIG_SMP */ 790 void init_entity_runnable_average(struct sched_entity *se) 791 { 792 } 793 void post_init_entity_util_avg(struct sched_entity *se) 794 { 795 } 796 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 797 { 798 } 799 #endif /* CONFIG_SMP */ 800 801 /* 802 * Update the current task's runtime statistics. 803 */ 804 static void update_curr(struct cfs_rq *cfs_rq) 805 { 806 struct sched_entity *curr = cfs_rq->curr; 807 u64 now = rq_clock_task(rq_of(cfs_rq)); 808 u64 delta_exec; 809 810 if (unlikely(!curr)) 811 return; 812 813 delta_exec = now - curr->exec_start; 814 if (unlikely((s64)delta_exec <= 0)) 815 return; 816 817 curr->exec_start = now; 818 819 schedstat_set(curr->statistics.exec_max, 820 max(delta_exec, curr->statistics.exec_max)); 821 822 curr->sum_exec_runtime += delta_exec; 823 schedstat_add(cfs_rq->exec_clock, delta_exec); 824 825 curr->vruntime += calc_delta_fair(delta_exec, curr); 826 update_min_vruntime(cfs_rq); 827 828 if (entity_is_task(curr)) { 829 struct task_struct *curtask = task_of(curr); 830 831 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 832 cgroup_account_cputime(curtask, delta_exec); 833 account_group_exec_runtime(curtask, delta_exec); 834 } 835 836 account_cfs_rq_runtime(cfs_rq, delta_exec); 837 } 838 839 static void update_curr_fair(struct rq *rq) 840 { 841 update_curr(cfs_rq_of(&rq->curr->se)); 842 } 843 844 static inline void 845 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 846 { 847 u64 wait_start, prev_wait_start; 848 849 if (!schedstat_enabled()) 850 return; 851 852 wait_start = rq_clock(rq_of(cfs_rq)); 853 prev_wait_start = schedstat_val(se->statistics.wait_start); 854 855 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 856 likely(wait_start > prev_wait_start)) 857 wait_start -= prev_wait_start; 858 859 __schedstat_set(se->statistics.wait_start, wait_start); 860 } 861 862 static inline void 863 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 864 { 865 struct task_struct *p; 866 u64 delta; 867 868 if (!schedstat_enabled()) 869 return; 870 871 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 872 873 if (entity_is_task(se)) { 874 p = task_of(se); 875 if (task_on_rq_migrating(p)) { 876 /* 877 * Preserve migrating task's wait time so wait_start 878 * time stamp can be adjusted to accumulate wait time 879 * prior to migration. 880 */ 881 __schedstat_set(se->statistics.wait_start, delta); 882 return; 883 } 884 trace_sched_stat_wait(p, delta); 885 } 886 887 __schedstat_set(se->statistics.wait_max, 888 max(schedstat_val(se->statistics.wait_max), delta)); 889 __schedstat_inc(se->statistics.wait_count); 890 __schedstat_add(se->statistics.wait_sum, delta); 891 __schedstat_set(se->statistics.wait_start, 0); 892 } 893 894 static inline void 895 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 896 { 897 struct task_struct *tsk = NULL; 898 u64 sleep_start, block_start; 899 900 if (!schedstat_enabled()) 901 return; 902 903 sleep_start = schedstat_val(se->statistics.sleep_start); 904 block_start = schedstat_val(se->statistics.block_start); 905 906 if (entity_is_task(se)) 907 tsk = task_of(se); 908 909 if (sleep_start) { 910 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 911 912 if ((s64)delta < 0) 913 delta = 0; 914 915 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 916 __schedstat_set(se->statistics.sleep_max, delta); 917 918 __schedstat_set(se->statistics.sleep_start, 0); 919 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 920 921 if (tsk) { 922 account_scheduler_latency(tsk, delta >> 10, 1); 923 trace_sched_stat_sleep(tsk, delta); 924 } 925 } 926 if (block_start) { 927 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 928 929 if ((s64)delta < 0) 930 delta = 0; 931 932 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 933 __schedstat_set(se->statistics.block_max, delta); 934 935 __schedstat_set(se->statistics.block_start, 0); 936 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 937 938 if (tsk) { 939 if (tsk->in_iowait) { 940 __schedstat_add(se->statistics.iowait_sum, delta); 941 __schedstat_inc(se->statistics.iowait_count); 942 trace_sched_stat_iowait(tsk, delta); 943 } 944 945 trace_sched_stat_blocked(tsk, delta); 946 947 /* 948 * Blocking time is in units of nanosecs, so shift by 949 * 20 to get a milliseconds-range estimation of the 950 * amount of time that the task spent sleeping: 951 */ 952 if (unlikely(prof_on == SLEEP_PROFILING)) { 953 profile_hits(SLEEP_PROFILING, 954 (void *)get_wchan(tsk), 955 delta >> 20); 956 } 957 account_scheduler_latency(tsk, delta >> 10, 0); 958 } 959 } 960 } 961 962 /* 963 * Task is being enqueued - update stats: 964 */ 965 static inline void 966 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 967 { 968 if (!schedstat_enabled()) 969 return; 970 971 /* 972 * Are we enqueueing a waiting task? (for current tasks 973 * a dequeue/enqueue event is a NOP) 974 */ 975 if (se != cfs_rq->curr) 976 update_stats_wait_start(cfs_rq, se); 977 978 if (flags & ENQUEUE_WAKEUP) 979 update_stats_enqueue_sleeper(cfs_rq, se); 980 } 981 982 static inline void 983 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 984 { 985 986 if (!schedstat_enabled()) 987 return; 988 989 /* 990 * Mark the end of the wait period if dequeueing a 991 * waiting task: 992 */ 993 if (se != cfs_rq->curr) 994 update_stats_wait_end(cfs_rq, se); 995 996 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 997 struct task_struct *tsk = task_of(se); 998 999 if (tsk->state & TASK_INTERRUPTIBLE) 1000 __schedstat_set(se->statistics.sleep_start, 1001 rq_clock(rq_of(cfs_rq))); 1002 if (tsk->state & TASK_UNINTERRUPTIBLE) 1003 __schedstat_set(se->statistics.block_start, 1004 rq_clock(rq_of(cfs_rq))); 1005 } 1006 } 1007 1008 /* 1009 * We are picking a new current task - update its stats: 1010 */ 1011 static inline void 1012 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1013 { 1014 /* 1015 * We are starting a new run period: 1016 */ 1017 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1018 } 1019 1020 /************************************************** 1021 * Scheduling class queueing methods: 1022 */ 1023 1024 #ifdef CONFIG_NUMA_BALANCING 1025 /* 1026 * Approximate time to scan a full NUMA task in ms. The task scan period is 1027 * calculated based on the tasks virtual memory size and 1028 * numa_balancing_scan_size. 1029 */ 1030 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1031 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1032 1033 /* Portion of address space to scan in MB */ 1034 unsigned int sysctl_numa_balancing_scan_size = 256; 1035 1036 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1037 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1038 1039 struct numa_group { 1040 atomic_t refcount; 1041 1042 spinlock_t lock; /* nr_tasks, tasks */ 1043 int nr_tasks; 1044 pid_t gid; 1045 int active_nodes; 1046 1047 struct rcu_head rcu; 1048 unsigned long total_faults; 1049 unsigned long max_faults_cpu; 1050 /* 1051 * Faults_cpu is used to decide whether memory should move 1052 * towards the CPU. As a consequence, these stats are weighted 1053 * more by CPU use than by memory faults. 1054 */ 1055 unsigned long *faults_cpu; 1056 unsigned long faults[0]; 1057 }; 1058 1059 static inline unsigned long group_faults_priv(struct numa_group *ng); 1060 static inline unsigned long group_faults_shared(struct numa_group *ng); 1061 1062 static unsigned int task_nr_scan_windows(struct task_struct *p) 1063 { 1064 unsigned long rss = 0; 1065 unsigned long nr_scan_pages; 1066 1067 /* 1068 * Calculations based on RSS as non-present and empty pages are skipped 1069 * by the PTE scanner and NUMA hinting faults should be trapped based 1070 * on resident pages 1071 */ 1072 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1073 rss = get_mm_rss(p->mm); 1074 if (!rss) 1075 rss = nr_scan_pages; 1076 1077 rss = round_up(rss, nr_scan_pages); 1078 return rss / nr_scan_pages; 1079 } 1080 1081 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1082 #define MAX_SCAN_WINDOW 2560 1083 1084 static unsigned int task_scan_min(struct task_struct *p) 1085 { 1086 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1087 unsigned int scan, floor; 1088 unsigned int windows = 1; 1089 1090 if (scan_size < MAX_SCAN_WINDOW) 1091 windows = MAX_SCAN_WINDOW / scan_size; 1092 floor = 1000 / windows; 1093 1094 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1095 return max_t(unsigned int, floor, scan); 1096 } 1097 1098 static unsigned int task_scan_start(struct task_struct *p) 1099 { 1100 unsigned long smin = task_scan_min(p); 1101 unsigned long period = smin; 1102 1103 /* Scale the maximum scan period with the amount of shared memory. */ 1104 if (p->numa_group) { 1105 struct numa_group *ng = p->numa_group; 1106 unsigned long shared = group_faults_shared(ng); 1107 unsigned long private = group_faults_priv(ng); 1108 1109 period *= atomic_read(&ng->refcount); 1110 period *= shared + 1; 1111 period /= private + shared + 1; 1112 } 1113 1114 return max(smin, period); 1115 } 1116 1117 static unsigned int task_scan_max(struct task_struct *p) 1118 { 1119 unsigned long smin = task_scan_min(p); 1120 unsigned long smax; 1121 1122 /* Watch for min being lower than max due to floor calculations */ 1123 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1124 1125 /* Scale the maximum scan period with the amount of shared memory. */ 1126 if (p->numa_group) { 1127 struct numa_group *ng = p->numa_group; 1128 unsigned long shared = group_faults_shared(ng); 1129 unsigned long private = group_faults_priv(ng); 1130 unsigned long period = smax; 1131 1132 period *= atomic_read(&ng->refcount); 1133 period *= shared + 1; 1134 period /= private + shared + 1; 1135 1136 smax = max(smax, period); 1137 } 1138 1139 return max(smin, smax); 1140 } 1141 1142 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1143 { 1144 int mm_users = 0; 1145 struct mm_struct *mm = p->mm; 1146 1147 if (mm) { 1148 mm_users = atomic_read(&mm->mm_users); 1149 if (mm_users == 1) { 1150 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1151 mm->numa_scan_seq = 0; 1152 } 1153 } 1154 p->node_stamp = 0; 1155 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1156 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1157 p->numa_work.next = &p->numa_work; 1158 p->numa_faults = NULL; 1159 p->numa_group = NULL; 1160 p->last_task_numa_placement = 0; 1161 p->last_sum_exec_runtime = 0; 1162 1163 /* New address space, reset the preferred nid */ 1164 if (!(clone_flags & CLONE_VM)) { 1165 p->numa_preferred_nid = -1; 1166 return; 1167 } 1168 1169 /* 1170 * New thread, keep existing numa_preferred_nid which should be copied 1171 * already by arch_dup_task_struct but stagger when scans start. 1172 */ 1173 if (mm) { 1174 unsigned int delay; 1175 1176 delay = min_t(unsigned int, task_scan_max(current), 1177 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1178 delay += 2 * TICK_NSEC; 1179 p->node_stamp = delay; 1180 } 1181 } 1182 1183 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1184 { 1185 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1186 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1187 } 1188 1189 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1190 { 1191 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1192 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1193 } 1194 1195 /* Shared or private faults. */ 1196 #define NR_NUMA_HINT_FAULT_TYPES 2 1197 1198 /* Memory and CPU locality */ 1199 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1200 1201 /* Averaged statistics, and temporary buffers. */ 1202 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1203 1204 pid_t task_numa_group_id(struct task_struct *p) 1205 { 1206 return p->numa_group ? p->numa_group->gid : 0; 1207 } 1208 1209 /* 1210 * The averaged statistics, shared & private, memory & CPU, 1211 * occupy the first half of the array. The second half of the 1212 * array is for current counters, which are averaged into the 1213 * first set by task_numa_placement. 1214 */ 1215 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1216 { 1217 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1218 } 1219 1220 static inline unsigned long task_faults(struct task_struct *p, int nid) 1221 { 1222 if (!p->numa_faults) 1223 return 0; 1224 1225 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1226 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1227 } 1228 1229 static inline unsigned long group_faults(struct task_struct *p, int nid) 1230 { 1231 if (!p->numa_group) 1232 return 0; 1233 1234 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1235 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1236 } 1237 1238 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1239 { 1240 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1241 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1242 } 1243 1244 static inline unsigned long group_faults_priv(struct numa_group *ng) 1245 { 1246 unsigned long faults = 0; 1247 int node; 1248 1249 for_each_online_node(node) { 1250 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1251 } 1252 1253 return faults; 1254 } 1255 1256 static inline unsigned long group_faults_shared(struct numa_group *ng) 1257 { 1258 unsigned long faults = 0; 1259 int node; 1260 1261 for_each_online_node(node) { 1262 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1263 } 1264 1265 return faults; 1266 } 1267 1268 /* 1269 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1270 * considered part of a numa group's pseudo-interleaving set. Migrations 1271 * between these nodes are slowed down, to allow things to settle down. 1272 */ 1273 #define ACTIVE_NODE_FRACTION 3 1274 1275 static bool numa_is_active_node(int nid, struct numa_group *ng) 1276 { 1277 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1278 } 1279 1280 /* Handle placement on systems where not all nodes are directly connected. */ 1281 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1282 int maxdist, bool task) 1283 { 1284 unsigned long score = 0; 1285 int node; 1286 1287 /* 1288 * All nodes are directly connected, and the same distance 1289 * from each other. No need for fancy placement algorithms. 1290 */ 1291 if (sched_numa_topology_type == NUMA_DIRECT) 1292 return 0; 1293 1294 /* 1295 * This code is called for each node, introducing N^2 complexity, 1296 * which should be ok given the number of nodes rarely exceeds 8. 1297 */ 1298 for_each_online_node(node) { 1299 unsigned long faults; 1300 int dist = node_distance(nid, node); 1301 1302 /* 1303 * The furthest away nodes in the system are not interesting 1304 * for placement; nid was already counted. 1305 */ 1306 if (dist == sched_max_numa_distance || node == nid) 1307 continue; 1308 1309 /* 1310 * On systems with a backplane NUMA topology, compare groups 1311 * of nodes, and move tasks towards the group with the most 1312 * memory accesses. When comparing two nodes at distance 1313 * "hoplimit", only nodes closer by than "hoplimit" are part 1314 * of each group. Skip other nodes. 1315 */ 1316 if (sched_numa_topology_type == NUMA_BACKPLANE && 1317 dist > maxdist) 1318 continue; 1319 1320 /* Add up the faults from nearby nodes. */ 1321 if (task) 1322 faults = task_faults(p, node); 1323 else 1324 faults = group_faults(p, node); 1325 1326 /* 1327 * On systems with a glueless mesh NUMA topology, there are 1328 * no fixed "groups of nodes". Instead, nodes that are not 1329 * directly connected bounce traffic through intermediate 1330 * nodes; a numa_group can occupy any set of nodes. 1331 * The further away a node is, the less the faults count. 1332 * This seems to result in good task placement. 1333 */ 1334 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1335 faults *= (sched_max_numa_distance - dist); 1336 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1337 } 1338 1339 score += faults; 1340 } 1341 1342 return score; 1343 } 1344 1345 /* 1346 * These return the fraction of accesses done by a particular task, or 1347 * task group, on a particular numa node. The group weight is given a 1348 * larger multiplier, in order to group tasks together that are almost 1349 * evenly spread out between numa nodes. 1350 */ 1351 static inline unsigned long task_weight(struct task_struct *p, int nid, 1352 int dist) 1353 { 1354 unsigned long faults, total_faults; 1355 1356 if (!p->numa_faults) 1357 return 0; 1358 1359 total_faults = p->total_numa_faults; 1360 1361 if (!total_faults) 1362 return 0; 1363 1364 faults = task_faults(p, nid); 1365 faults += score_nearby_nodes(p, nid, dist, true); 1366 1367 return 1000 * faults / total_faults; 1368 } 1369 1370 static inline unsigned long group_weight(struct task_struct *p, int nid, 1371 int dist) 1372 { 1373 unsigned long faults, total_faults; 1374 1375 if (!p->numa_group) 1376 return 0; 1377 1378 total_faults = p->numa_group->total_faults; 1379 1380 if (!total_faults) 1381 return 0; 1382 1383 faults = group_faults(p, nid); 1384 faults += score_nearby_nodes(p, nid, dist, false); 1385 1386 return 1000 * faults / total_faults; 1387 } 1388 1389 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1390 int src_nid, int dst_cpu) 1391 { 1392 struct numa_group *ng = p->numa_group; 1393 int dst_nid = cpu_to_node(dst_cpu); 1394 int last_cpupid, this_cpupid; 1395 1396 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1397 1398 /* 1399 * Multi-stage node selection is used in conjunction with a periodic 1400 * migration fault to build a temporal task<->page relation. By using 1401 * a two-stage filter we remove short/unlikely relations. 1402 * 1403 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1404 * a task's usage of a particular page (n_p) per total usage of this 1405 * page (n_t) (in a given time-span) to a probability. 1406 * 1407 * Our periodic faults will sample this probability and getting the 1408 * same result twice in a row, given these samples are fully 1409 * independent, is then given by P(n)^2, provided our sample period 1410 * is sufficiently short compared to the usage pattern. 1411 * 1412 * This quadric squishes small probabilities, making it less likely we 1413 * act on an unlikely task<->page relation. 1414 */ 1415 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1416 if (!cpupid_pid_unset(last_cpupid) && 1417 cpupid_to_nid(last_cpupid) != dst_nid) 1418 return false; 1419 1420 /* Always allow migrate on private faults */ 1421 if (cpupid_match_pid(p, last_cpupid)) 1422 return true; 1423 1424 /* A shared fault, but p->numa_group has not been set up yet. */ 1425 if (!ng) 1426 return true; 1427 1428 /* 1429 * Destination node is much more heavily used than the source 1430 * node? Allow migration. 1431 */ 1432 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1433 ACTIVE_NODE_FRACTION) 1434 return true; 1435 1436 /* 1437 * Distribute memory according to CPU & memory use on each node, 1438 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1439 * 1440 * faults_cpu(dst) 3 faults_cpu(src) 1441 * --------------- * - > --------------- 1442 * faults_mem(dst) 4 faults_mem(src) 1443 */ 1444 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1445 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1446 } 1447 1448 static unsigned long weighted_cpuload(struct rq *rq); 1449 static unsigned long source_load(int cpu, int type); 1450 static unsigned long target_load(int cpu, int type); 1451 static unsigned long capacity_of(int cpu); 1452 1453 /* Cached statistics for all CPUs within a node */ 1454 struct numa_stats { 1455 unsigned long nr_running; 1456 unsigned long load; 1457 1458 /* Total compute capacity of CPUs on a node */ 1459 unsigned long compute_capacity; 1460 1461 /* Approximate capacity in terms of runnable tasks on a node */ 1462 unsigned long task_capacity; 1463 int has_free_capacity; 1464 }; 1465 1466 /* 1467 * XXX borrowed from update_sg_lb_stats 1468 */ 1469 static void update_numa_stats(struct numa_stats *ns, int nid) 1470 { 1471 int smt, cpu, cpus = 0; 1472 unsigned long capacity; 1473 1474 memset(ns, 0, sizeof(*ns)); 1475 for_each_cpu(cpu, cpumask_of_node(nid)) { 1476 struct rq *rq = cpu_rq(cpu); 1477 1478 ns->nr_running += rq->nr_running; 1479 ns->load += weighted_cpuload(rq); 1480 ns->compute_capacity += capacity_of(cpu); 1481 1482 cpus++; 1483 } 1484 1485 /* 1486 * If we raced with hotplug and there are no CPUs left in our mask 1487 * the @ns structure is NULL'ed and task_numa_compare() will 1488 * not find this node attractive. 1489 * 1490 * We'll either bail at !has_free_capacity, or we'll detect a huge 1491 * imbalance and bail there. 1492 */ 1493 if (!cpus) 1494 return; 1495 1496 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1497 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1498 capacity = cpus / smt; /* cores */ 1499 1500 ns->task_capacity = min_t(unsigned, capacity, 1501 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1502 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1503 } 1504 1505 struct task_numa_env { 1506 struct task_struct *p; 1507 1508 int src_cpu, src_nid; 1509 int dst_cpu, dst_nid; 1510 1511 struct numa_stats src_stats, dst_stats; 1512 1513 int imbalance_pct; 1514 int dist; 1515 1516 struct task_struct *best_task; 1517 long best_imp; 1518 int best_cpu; 1519 }; 1520 1521 static void task_numa_assign(struct task_numa_env *env, 1522 struct task_struct *p, long imp) 1523 { 1524 if (env->best_task) 1525 put_task_struct(env->best_task); 1526 if (p) 1527 get_task_struct(p); 1528 1529 env->best_task = p; 1530 env->best_imp = imp; 1531 env->best_cpu = env->dst_cpu; 1532 } 1533 1534 static bool load_too_imbalanced(long src_load, long dst_load, 1535 struct task_numa_env *env) 1536 { 1537 long imb, old_imb; 1538 long orig_src_load, orig_dst_load; 1539 long src_capacity, dst_capacity; 1540 1541 /* 1542 * The load is corrected for the CPU capacity available on each node. 1543 * 1544 * src_load dst_load 1545 * ------------ vs --------- 1546 * src_capacity dst_capacity 1547 */ 1548 src_capacity = env->src_stats.compute_capacity; 1549 dst_capacity = env->dst_stats.compute_capacity; 1550 1551 /* We care about the slope of the imbalance, not the direction. */ 1552 if (dst_load < src_load) 1553 swap(dst_load, src_load); 1554 1555 /* Is the difference below the threshold? */ 1556 imb = dst_load * src_capacity * 100 - 1557 src_load * dst_capacity * env->imbalance_pct; 1558 if (imb <= 0) 1559 return false; 1560 1561 /* 1562 * The imbalance is above the allowed threshold. 1563 * Compare it with the old imbalance. 1564 */ 1565 orig_src_load = env->src_stats.load; 1566 orig_dst_load = env->dst_stats.load; 1567 1568 if (orig_dst_load < orig_src_load) 1569 swap(orig_dst_load, orig_src_load); 1570 1571 old_imb = orig_dst_load * src_capacity * 100 - 1572 orig_src_load * dst_capacity * env->imbalance_pct; 1573 1574 /* Would this change make things worse? */ 1575 return (imb > old_imb); 1576 } 1577 1578 /* 1579 * This checks if the overall compute and NUMA accesses of the system would 1580 * be improved if the source tasks was migrated to the target dst_cpu taking 1581 * into account that it might be best if task running on the dst_cpu should 1582 * be exchanged with the source task 1583 */ 1584 static void task_numa_compare(struct task_numa_env *env, 1585 long taskimp, long groupimp) 1586 { 1587 struct rq *src_rq = cpu_rq(env->src_cpu); 1588 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1589 struct task_struct *cur; 1590 long src_load, dst_load; 1591 long load; 1592 long imp = env->p->numa_group ? groupimp : taskimp; 1593 long moveimp = imp; 1594 int dist = env->dist; 1595 1596 rcu_read_lock(); 1597 cur = task_rcu_dereference(&dst_rq->curr); 1598 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1599 cur = NULL; 1600 1601 /* 1602 * Because we have preemption enabled we can get migrated around and 1603 * end try selecting ourselves (current == env->p) as a swap candidate. 1604 */ 1605 if (cur == env->p) 1606 goto unlock; 1607 1608 /* 1609 * "imp" is the fault differential for the source task between the 1610 * source and destination node. Calculate the total differential for 1611 * the source task and potential destination task. The more negative 1612 * the value is, the more rmeote accesses that would be expected to 1613 * be incurred if the tasks were swapped. 1614 */ 1615 if (cur) { 1616 /* Skip this swap candidate if cannot move to the source CPU: */ 1617 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1618 goto unlock; 1619 1620 /* 1621 * If dst and source tasks are in the same NUMA group, or not 1622 * in any group then look only at task weights. 1623 */ 1624 if (cur->numa_group == env->p->numa_group) { 1625 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1626 task_weight(cur, env->dst_nid, dist); 1627 /* 1628 * Add some hysteresis to prevent swapping the 1629 * tasks within a group over tiny differences. 1630 */ 1631 if (cur->numa_group) 1632 imp -= imp/16; 1633 } else { 1634 /* 1635 * Compare the group weights. If a task is all by 1636 * itself (not part of a group), use the task weight 1637 * instead. 1638 */ 1639 if (cur->numa_group) 1640 imp += group_weight(cur, env->src_nid, dist) - 1641 group_weight(cur, env->dst_nid, dist); 1642 else 1643 imp += task_weight(cur, env->src_nid, dist) - 1644 task_weight(cur, env->dst_nid, dist); 1645 } 1646 } 1647 1648 if (imp <= env->best_imp && moveimp <= env->best_imp) 1649 goto unlock; 1650 1651 if (!cur) { 1652 /* Is there capacity at our destination? */ 1653 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1654 !env->dst_stats.has_free_capacity) 1655 goto unlock; 1656 1657 goto balance; 1658 } 1659 1660 /* Balance doesn't matter much if we're running a task per CPU: */ 1661 if (imp > env->best_imp && src_rq->nr_running == 1 && 1662 dst_rq->nr_running == 1) 1663 goto assign; 1664 1665 /* 1666 * In the overloaded case, try and keep the load balanced. 1667 */ 1668 balance: 1669 load = task_h_load(env->p); 1670 dst_load = env->dst_stats.load + load; 1671 src_load = env->src_stats.load - load; 1672 1673 if (moveimp > imp && moveimp > env->best_imp) { 1674 /* 1675 * If the improvement from just moving env->p direction is 1676 * better than swapping tasks around, check if a move is 1677 * possible. Store a slightly smaller score than moveimp, 1678 * so an actually idle CPU will win. 1679 */ 1680 if (!load_too_imbalanced(src_load, dst_load, env)) { 1681 imp = moveimp - 1; 1682 cur = NULL; 1683 goto assign; 1684 } 1685 } 1686 1687 if (imp <= env->best_imp) 1688 goto unlock; 1689 1690 if (cur) { 1691 load = task_h_load(cur); 1692 dst_load -= load; 1693 src_load += load; 1694 } 1695 1696 if (load_too_imbalanced(src_load, dst_load, env)) 1697 goto unlock; 1698 1699 /* 1700 * One idle CPU per node is evaluated for a task numa move. 1701 * Call select_idle_sibling to maybe find a better one. 1702 */ 1703 if (!cur) { 1704 /* 1705 * select_idle_siblings() uses an per-CPU cpumask that 1706 * can be used from IRQ context. 1707 */ 1708 local_irq_disable(); 1709 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1710 env->dst_cpu); 1711 local_irq_enable(); 1712 } 1713 1714 assign: 1715 task_numa_assign(env, cur, imp); 1716 unlock: 1717 rcu_read_unlock(); 1718 } 1719 1720 static void task_numa_find_cpu(struct task_numa_env *env, 1721 long taskimp, long groupimp) 1722 { 1723 int cpu; 1724 1725 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1726 /* Skip this CPU if the source task cannot migrate */ 1727 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1728 continue; 1729 1730 env->dst_cpu = cpu; 1731 task_numa_compare(env, taskimp, groupimp); 1732 } 1733 } 1734 1735 /* Only move tasks to a NUMA node less busy than the current node. */ 1736 static bool numa_has_capacity(struct task_numa_env *env) 1737 { 1738 struct numa_stats *src = &env->src_stats; 1739 struct numa_stats *dst = &env->dst_stats; 1740 1741 if (src->has_free_capacity && !dst->has_free_capacity) 1742 return false; 1743 1744 /* 1745 * Only consider a task move if the source has a higher load 1746 * than the destination, corrected for CPU capacity on each node. 1747 * 1748 * src->load dst->load 1749 * --------------------- vs --------------------- 1750 * src->compute_capacity dst->compute_capacity 1751 */ 1752 if (src->load * dst->compute_capacity * env->imbalance_pct > 1753 1754 dst->load * src->compute_capacity * 100) 1755 return true; 1756 1757 return false; 1758 } 1759 1760 static int task_numa_migrate(struct task_struct *p) 1761 { 1762 struct task_numa_env env = { 1763 .p = p, 1764 1765 .src_cpu = task_cpu(p), 1766 .src_nid = task_node(p), 1767 1768 .imbalance_pct = 112, 1769 1770 .best_task = NULL, 1771 .best_imp = 0, 1772 .best_cpu = -1, 1773 }; 1774 struct sched_domain *sd; 1775 unsigned long taskweight, groupweight; 1776 int nid, ret, dist; 1777 long taskimp, groupimp; 1778 1779 /* 1780 * Pick the lowest SD_NUMA domain, as that would have the smallest 1781 * imbalance and would be the first to start moving tasks about. 1782 * 1783 * And we want to avoid any moving of tasks about, as that would create 1784 * random movement of tasks -- counter the numa conditions we're trying 1785 * to satisfy here. 1786 */ 1787 rcu_read_lock(); 1788 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1789 if (sd) 1790 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1791 rcu_read_unlock(); 1792 1793 /* 1794 * Cpusets can break the scheduler domain tree into smaller 1795 * balance domains, some of which do not cross NUMA boundaries. 1796 * Tasks that are "trapped" in such domains cannot be migrated 1797 * elsewhere, so there is no point in (re)trying. 1798 */ 1799 if (unlikely(!sd)) { 1800 p->numa_preferred_nid = task_node(p); 1801 return -EINVAL; 1802 } 1803 1804 env.dst_nid = p->numa_preferred_nid; 1805 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1806 taskweight = task_weight(p, env.src_nid, dist); 1807 groupweight = group_weight(p, env.src_nid, dist); 1808 update_numa_stats(&env.src_stats, env.src_nid); 1809 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1810 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1811 update_numa_stats(&env.dst_stats, env.dst_nid); 1812 1813 /* Try to find a spot on the preferred nid. */ 1814 if (numa_has_capacity(&env)) 1815 task_numa_find_cpu(&env, taskimp, groupimp); 1816 1817 /* 1818 * Look at other nodes in these cases: 1819 * - there is no space available on the preferred_nid 1820 * - the task is part of a numa_group that is interleaved across 1821 * multiple NUMA nodes; in order to better consolidate the group, 1822 * we need to check other locations. 1823 */ 1824 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1825 for_each_online_node(nid) { 1826 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1827 continue; 1828 1829 dist = node_distance(env.src_nid, env.dst_nid); 1830 if (sched_numa_topology_type == NUMA_BACKPLANE && 1831 dist != env.dist) { 1832 taskweight = task_weight(p, env.src_nid, dist); 1833 groupweight = group_weight(p, env.src_nid, dist); 1834 } 1835 1836 /* Only consider nodes where both task and groups benefit */ 1837 taskimp = task_weight(p, nid, dist) - taskweight; 1838 groupimp = group_weight(p, nid, dist) - groupweight; 1839 if (taskimp < 0 && groupimp < 0) 1840 continue; 1841 1842 env.dist = dist; 1843 env.dst_nid = nid; 1844 update_numa_stats(&env.dst_stats, env.dst_nid); 1845 if (numa_has_capacity(&env)) 1846 task_numa_find_cpu(&env, taskimp, groupimp); 1847 } 1848 } 1849 1850 /* 1851 * If the task is part of a workload that spans multiple NUMA nodes, 1852 * and is migrating into one of the workload's active nodes, remember 1853 * this node as the task's preferred numa node, so the workload can 1854 * settle down. 1855 * A task that migrated to a second choice node will be better off 1856 * trying for a better one later. Do not set the preferred node here. 1857 */ 1858 if (p->numa_group) { 1859 struct numa_group *ng = p->numa_group; 1860 1861 if (env.best_cpu == -1) 1862 nid = env.src_nid; 1863 else 1864 nid = env.dst_nid; 1865 1866 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1867 sched_setnuma(p, env.dst_nid); 1868 } 1869 1870 /* No better CPU than the current one was found. */ 1871 if (env.best_cpu == -1) 1872 return -EAGAIN; 1873 1874 /* 1875 * Reset the scan period if the task is being rescheduled on an 1876 * alternative node to recheck if the tasks is now properly placed. 1877 */ 1878 p->numa_scan_period = task_scan_start(p); 1879 1880 if (env.best_task == NULL) { 1881 ret = migrate_task_to(p, env.best_cpu); 1882 if (ret != 0) 1883 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1884 return ret; 1885 } 1886 1887 ret = migrate_swap(p, env.best_task); 1888 if (ret != 0) 1889 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1890 put_task_struct(env.best_task); 1891 return ret; 1892 } 1893 1894 /* Attempt to migrate a task to a CPU on the preferred node. */ 1895 static void numa_migrate_preferred(struct task_struct *p) 1896 { 1897 unsigned long interval = HZ; 1898 1899 /* This task has no NUMA fault statistics yet */ 1900 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1901 return; 1902 1903 /* Periodically retry migrating the task to the preferred node */ 1904 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1905 p->numa_migrate_retry = jiffies + interval; 1906 1907 /* Success if task is already running on preferred CPU */ 1908 if (task_node(p) == p->numa_preferred_nid) 1909 return; 1910 1911 /* Otherwise, try migrate to a CPU on the preferred node */ 1912 task_numa_migrate(p); 1913 } 1914 1915 /* 1916 * Find out how many nodes on the workload is actively running on. Do this by 1917 * tracking the nodes from which NUMA hinting faults are triggered. This can 1918 * be different from the set of nodes where the workload's memory is currently 1919 * located. 1920 */ 1921 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1922 { 1923 unsigned long faults, max_faults = 0; 1924 int nid, active_nodes = 0; 1925 1926 for_each_online_node(nid) { 1927 faults = group_faults_cpu(numa_group, nid); 1928 if (faults > max_faults) 1929 max_faults = faults; 1930 } 1931 1932 for_each_online_node(nid) { 1933 faults = group_faults_cpu(numa_group, nid); 1934 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1935 active_nodes++; 1936 } 1937 1938 numa_group->max_faults_cpu = max_faults; 1939 numa_group->active_nodes = active_nodes; 1940 } 1941 1942 /* 1943 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1944 * increments. The more local the fault statistics are, the higher the scan 1945 * period will be for the next scan window. If local/(local+remote) ratio is 1946 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1947 * the scan period will decrease. Aim for 70% local accesses. 1948 */ 1949 #define NUMA_PERIOD_SLOTS 10 1950 #define NUMA_PERIOD_THRESHOLD 7 1951 1952 /* 1953 * Increase the scan period (slow down scanning) if the majority of 1954 * our memory is already on our local node, or if the majority of 1955 * the page accesses are shared with other processes. 1956 * Otherwise, decrease the scan period. 1957 */ 1958 static void update_task_scan_period(struct task_struct *p, 1959 unsigned long shared, unsigned long private) 1960 { 1961 unsigned int period_slot; 1962 int lr_ratio, ps_ratio; 1963 int diff; 1964 1965 unsigned long remote = p->numa_faults_locality[0]; 1966 unsigned long local = p->numa_faults_locality[1]; 1967 1968 /* 1969 * If there were no record hinting faults then either the task is 1970 * completely idle or all activity is areas that are not of interest 1971 * to automatic numa balancing. Related to that, if there were failed 1972 * migration then it implies we are migrating too quickly or the local 1973 * node is overloaded. In either case, scan slower 1974 */ 1975 if (local + shared == 0 || p->numa_faults_locality[2]) { 1976 p->numa_scan_period = min(p->numa_scan_period_max, 1977 p->numa_scan_period << 1); 1978 1979 p->mm->numa_next_scan = jiffies + 1980 msecs_to_jiffies(p->numa_scan_period); 1981 1982 return; 1983 } 1984 1985 /* 1986 * Prepare to scale scan period relative to the current period. 1987 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1988 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1989 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1990 */ 1991 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1992 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1993 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1994 1995 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1996 /* 1997 * Most memory accesses are local. There is no need to 1998 * do fast NUMA scanning, since memory is already local. 1999 */ 2000 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2001 if (!slot) 2002 slot = 1; 2003 diff = slot * period_slot; 2004 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2005 /* 2006 * Most memory accesses are shared with other tasks. 2007 * There is no point in continuing fast NUMA scanning, 2008 * since other tasks may just move the memory elsewhere. 2009 */ 2010 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2011 if (!slot) 2012 slot = 1; 2013 diff = slot * period_slot; 2014 } else { 2015 /* 2016 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2017 * yet they are not on the local NUMA node. Speed up 2018 * NUMA scanning to get the memory moved over. 2019 */ 2020 int ratio = max(lr_ratio, ps_ratio); 2021 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2022 } 2023 2024 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2025 task_scan_min(p), task_scan_max(p)); 2026 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2027 } 2028 2029 /* 2030 * Get the fraction of time the task has been running since the last 2031 * NUMA placement cycle. The scheduler keeps similar statistics, but 2032 * decays those on a 32ms period, which is orders of magnitude off 2033 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2034 * stats only if the task is so new there are no NUMA statistics yet. 2035 */ 2036 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2037 { 2038 u64 runtime, delta, now; 2039 /* Use the start of this time slice to avoid calculations. */ 2040 now = p->se.exec_start; 2041 runtime = p->se.sum_exec_runtime; 2042 2043 if (p->last_task_numa_placement) { 2044 delta = runtime - p->last_sum_exec_runtime; 2045 *period = now - p->last_task_numa_placement; 2046 } else { 2047 delta = p->se.avg.load_sum; 2048 *period = LOAD_AVG_MAX; 2049 } 2050 2051 p->last_sum_exec_runtime = runtime; 2052 p->last_task_numa_placement = now; 2053 2054 return delta; 2055 } 2056 2057 /* 2058 * Determine the preferred nid for a task in a numa_group. This needs to 2059 * be done in a way that produces consistent results with group_weight, 2060 * otherwise workloads might not converge. 2061 */ 2062 static int preferred_group_nid(struct task_struct *p, int nid) 2063 { 2064 nodemask_t nodes; 2065 int dist; 2066 2067 /* Direct connections between all NUMA nodes. */ 2068 if (sched_numa_topology_type == NUMA_DIRECT) 2069 return nid; 2070 2071 /* 2072 * On a system with glueless mesh NUMA topology, group_weight 2073 * scores nodes according to the number of NUMA hinting faults on 2074 * both the node itself, and on nearby nodes. 2075 */ 2076 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2077 unsigned long score, max_score = 0; 2078 int node, max_node = nid; 2079 2080 dist = sched_max_numa_distance; 2081 2082 for_each_online_node(node) { 2083 score = group_weight(p, node, dist); 2084 if (score > max_score) { 2085 max_score = score; 2086 max_node = node; 2087 } 2088 } 2089 return max_node; 2090 } 2091 2092 /* 2093 * Finding the preferred nid in a system with NUMA backplane 2094 * interconnect topology is more involved. The goal is to locate 2095 * tasks from numa_groups near each other in the system, and 2096 * untangle workloads from different sides of the system. This requires 2097 * searching down the hierarchy of node groups, recursively searching 2098 * inside the highest scoring group of nodes. The nodemask tricks 2099 * keep the complexity of the search down. 2100 */ 2101 nodes = node_online_map; 2102 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2103 unsigned long max_faults = 0; 2104 nodemask_t max_group = NODE_MASK_NONE; 2105 int a, b; 2106 2107 /* Are there nodes at this distance from each other? */ 2108 if (!find_numa_distance(dist)) 2109 continue; 2110 2111 for_each_node_mask(a, nodes) { 2112 unsigned long faults = 0; 2113 nodemask_t this_group; 2114 nodes_clear(this_group); 2115 2116 /* Sum group's NUMA faults; includes a==b case. */ 2117 for_each_node_mask(b, nodes) { 2118 if (node_distance(a, b) < dist) { 2119 faults += group_faults(p, b); 2120 node_set(b, this_group); 2121 node_clear(b, nodes); 2122 } 2123 } 2124 2125 /* Remember the top group. */ 2126 if (faults > max_faults) { 2127 max_faults = faults; 2128 max_group = this_group; 2129 /* 2130 * subtle: at the smallest distance there is 2131 * just one node left in each "group", the 2132 * winner is the preferred nid. 2133 */ 2134 nid = a; 2135 } 2136 } 2137 /* Next round, evaluate the nodes within max_group. */ 2138 if (!max_faults) 2139 break; 2140 nodes = max_group; 2141 } 2142 return nid; 2143 } 2144 2145 static void task_numa_placement(struct task_struct *p) 2146 { 2147 int seq, nid, max_nid = -1, max_group_nid = -1; 2148 unsigned long max_faults = 0, max_group_faults = 0; 2149 unsigned long fault_types[2] = { 0, 0 }; 2150 unsigned long total_faults; 2151 u64 runtime, period; 2152 spinlock_t *group_lock = NULL; 2153 2154 /* 2155 * The p->mm->numa_scan_seq field gets updated without 2156 * exclusive access. Use READ_ONCE() here to ensure 2157 * that the field is read in a single access: 2158 */ 2159 seq = READ_ONCE(p->mm->numa_scan_seq); 2160 if (p->numa_scan_seq == seq) 2161 return; 2162 p->numa_scan_seq = seq; 2163 p->numa_scan_period_max = task_scan_max(p); 2164 2165 total_faults = p->numa_faults_locality[0] + 2166 p->numa_faults_locality[1]; 2167 runtime = numa_get_avg_runtime(p, &period); 2168 2169 /* If the task is part of a group prevent parallel updates to group stats */ 2170 if (p->numa_group) { 2171 group_lock = &p->numa_group->lock; 2172 spin_lock_irq(group_lock); 2173 } 2174 2175 /* Find the node with the highest number of faults */ 2176 for_each_online_node(nid) { 2177 /* Keep track of the offsets in numa_faults array */ 2178 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2179 unsigned long faults = 0, group_faults = 0; 2180 int priv; 2181 2182 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2183 long diff, f_diff, f_weight; 2184 2185 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2186 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2187 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2188 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2189 2190 /* Decay existing window, copy faults since last scan */ 2191 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2192 fault_types[priv] += p->numa_faults[membuf_idx]; 2193 p->numa_faults[membuf_idx] = 0; 2194 2195 /* 2196 * Normalize the faults_from, so all tasks in a group 2197 * count according to CPU use, instead of by the raw 2198 * number of faults. Tasks with little runtime have 2199 * little over-all impact on throughput, and thus their 2200 * faults are less important. 2201 */ 2202 f_weight = div64_u64(runtime << 16, period + 1); 2203 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2204 (total_faults + 1); 2205 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2206 p->numa_faults[cpubuf_idx] = 0; 2207 2208 p->numa_faults[mem_idx] += diff; 2209 p->numa_faults[cpu_idx] += f_diff; 2210 faults += p->numa_faults[mem_idx]; 2211 p->total_numa_faults += diff; 2212 if (p->numa_group) { 2213 /* 2214 * safe because we can only change our own group 2215 * 2216 * mem_idx represents the offset for a given 2217 * nid and priv in a specific region because it 2218 * is at the beginning of the numa_faults array. 2219 */ 2220 p->numa_group->faults[mem_idx] += diff; 2221 p->numa_group->faults_cpu[mem_idx] += f_diff; 2222 p->numa_group->total_faults += diff; 2223 group_faults += p->numa_group->faults[mem_idx]; 2224 } 2225 } 2226 2227 if (faults > max_faults) { 2228 max_faults = faults; 2229 max_nid = nid; 2230 } 2231 2232 if (group_faults > max_group_faults) { 2233 max_group_faults = group_faults; 2234 max_group_nid = nid; 2235 } 2236 } 2237 2238 update_task_scan_period(p, fault_types[0], fault_types[1]); 2239 2240 if (p->numa_group) { 2241 numa_group_count_active_nodes(p->numa_group); 2242 spin_unlock_irq(group_lock); 2243 max_nid = preferred_group_nid(p, max_group_nid); 2244 } 2245 2246 if (max_faults) { 2247 /* Set the new preferred node */ 2248 if (max_nid != p->numa_preferred_nid) 2249 sched_setnuma(p, max_nid); 2250 2251 if (task_node(p) != p->numa_preferred_nid) 2252 numa_migrate_preferred(p); 2253 } 2254 } 2255 2256 static inline int get_numa_group(struct numa_group *grp) 2257 { 2258 return atomic_inc_not_zero(&grp->refcount); 2259 } 2260 2261 static inline void put_numa_group(struct numa_group *grp) 2262 { 2263 if (atomic_dec_and_test(&grp->refcount)) 2264 kfree_rcu(grp, rcu); 2265 } 2266 2267 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2268 int *priv) 2269 { 2270 struct numa_group *grp, *my_grp; 2271 struct task_struct *tsk; 2272 bool join = false; 2273 int cpu = cpupid_to_cpu(cpupid); 2274 int i; 2275 2276 if (unlikely(!p->numa_group)) { 2277 unsigned int size = sizeof(struct numa_group) + 2278 4*nr_node_ids*sizeof(unsigned long); 2279 2280 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2281 if (!grp) 2282 return; 2283 2284 atomic_set(&grp->refcount, 1); 2285 grp->active_nodes = 1; 2286 grp->max_faults_cpu = 0; 2287 spin_lock_init(&grp->lock); 2288 grp->gid = p->pid; 2289 /* Second half of the array tracks nids where faults happen */ 2290 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2291 nr_node_ids; 2292 2293 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2294 grp->faults[i] = p->numa_faults[i]; 2295 2296 grp->total_faults = p->total_numa_faults; 2297 2298 grp->nr_tasks++; 2299 rcu_assign_pointer(p->numa_group, grp); 2300 } 2301 2302 rcu_read_lock(); 2303 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2304 2305 if (!cpupid_match_pid(tsk, cpupid)) 2306 goto no_join; 2307 2308 grp = rcu_dereference(tsk->numa_group); 2309 if (!grp) 2310 goto no_join; 2311 2312 my_grp = p->numa_group; 2313 if (grp == my_grp) 2314 goto no_join; 2315 2316 /* 2317 * Only join the other group if its bigger; if we're the bigger group, 2318 * the other task will join us. 2319 */ 2320 if (my_grp->nr_tasks > grp->nr_tasks) 2321 goto no_join; 2322 2323 /* 2324 * Tie-break on the grp address. 2325 */ 2326 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2327 goto no_join; 2328 2329 /* Always join threads in the same process. */ 2330 if (tsk->mm == current->mm) 2331 join = true; 2332 2333 /* Simple filter to avoid false positives due to PID collisions */ 2334 if (flags & TNF_SHARED) 2335 join = true; 2336 2337 /* Update priv based on whether false sharing was detected */ 2338 *priv = !join; 2339 2340 if (join && !get_numa_group(grp)) 2341 goto no_join; 2342 2343 rcu_read_unlock(); 2344 2345 if (!join) 2346 return; 2347 2348 BUG_ON(irqs_disabled()); 2349 double_lock_irq(&my_grp->lock, &grp->lock); 2350 2351 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2352 my_grp->faults[i] -= p->numa_faults[i]; 2353 grp->faults[i] += p->numa_faults[i]; 2354 } 2355 my_grp->total_faults -= p->total_numa_faults; 2356 grp->total_faults += p->total_numa_faults; 2357 2358 my_grp->nr_tasks--; 2359 grp->nr_tasks++; 2360 2361 spin_unlock(&my_grp->lock); 2362 spin_unlock_irq(&grp->lock); 2363 2364 rcu_assign_pointer(p->numa_group, grp); 2365 2366 put_numa_group(my_grp); 2367 return; 2368 2369 no_join: 2370 rcu_read_unlock(); 2371 return; 2372 } 2373 2374 void task_numa_free(struct task_struct *p) 2375 { 2376 struct numa_group *grp = p->numa_group; 2377 void *numa_faults = p->numa_faults; 2378 unsigned long flags; 2379 int i; 2380 2381 if (grp) { 2382 spin_lock_irqsave(&grp->lock, flags); 2383 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2384 grp->faults[i] -= p->numa_faults[i]; 2385 grp->total_faults -= p->total_numa_faults; 2386 2387 grp->nr_tasks--; 2388 spin_unlock_irqrestore(&grp->lock, flags); 2389 RCU_INIT_POINTER(p->numa_group, NULL); 2390 put_numa_group(grp); 2391 } 2392 2393 p->numa_faults = NULL; 2394 kfree(numa_faults); 2395 } 2396 2397 /* 2398 * Got a PROT_NONE fault for a page on @node. 2399 */ 2400 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2401 { 2402 struct task_struct *p = current; 2403 bool migrated = flags & TNF_MIGRATED; 2404 int cpu_node = task_node(current); 2405 int local = !!(flags & TNF_FAULT_LOCAL); 2406 struct numa_group *ng; 2407 int priv; 2408 2409 if (!static_branch_likely(&sched_numa_balancing)) 2410 return; 2411 2412 /* for example, ksmd faulting in a user's mm */ 2413 if (!p->mm) 2414 return; 2415 2416 /* Allocate buffer to track faults on a per-node basis */ 2417 if (unlikely(!p->numa_faults)) { 2418 int size = sizeof(*p->numa_faults) * 2419 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2420 2421 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2422 if (!p->numa_faults) 2423 return; 2424 2425 p->total_numa_faults = 0; 2426 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2427 } 2428 2429 /* 2430 * First accesses are treated as private, otherwise consider accesses 2431 * to be private if the accessing pid has not changed 2432 */ 2433 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2434 priv = 1; 2435 } else { 2436 priv = cpupid_match_pid(p, last_cpupid); 2437 if (!priv && !(flags & TNF_NO_GROUP)) 2438 task_numa_group(p, last_cpupid, flags, &priv); 2439 } 2440 2441 /* 2442 * If a workload spans multiple NUMA nodes, a shared fault that 2443 * occurs wholly within the set of nodes that the workload is 2444 * actively using should be counted as local. This allows the 2445 * scan rate to slow down when a workload has settled down. 2446 */ 2447 ng = p->numa_group; 2448 if (!priv && !local && ng && ng->active_nodes > 1 && 2449 numa_is_active_node(cpu_node, ng) && 2450 numa_is_active_node(mem_node, ng)) 2451 local = 1; 2452 2453 task_numa_placement(p); 2454 2455 /* 2456 * Retry task to preferred node migration periodically, in case it 2457 * case it previously failed, or the scheduler moved us. 2458 */ 2459 if (time_after(jiffies, p->numa_migrate_retry)) 2460 numa_migrate_preferred(p); 2461 2462 if (migrated) 2463 p->numa_pages_migrated += pages; 2464 if (flags & TNF_MIGRATE_FAIL) 2465 p->numa_faults_locality[2] += pages; 2466 2467 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2468 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2469 p->numa_faults_locality[local] += pages; 2470 } 2471 2472 static void reset_ptenuma_scan(struct task_struct *p) 2473 { 2474 /* 2475 * We only did a read acquisition of the mmap sem, so 2476 * p->mm->numa_scan_seq is written to without exclusive access 2477 * and the update is not guaranteed to be atomic. That's not 2478 * much of an issue though, since this is just used for 2479 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2480 * expensive, to avoid any form of compiler optimizations: 2481 */ 2482 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2483 p->mm->numa_scan_offset = 0; 2484 } 2485 2486 /* 2487 * The expensive part of numa migration is done from task_work context. 2488 * Triggered from task_tick_numa(). 2489 */ 2490 void task_numa_work(struct callback_head *work) 2491 { 2492 unsigned long migrate, next_scan, now = jiffies; 2493 struct task_struct *p = current; 2494 struct mm_struct *mm = p->mm; 2495 u64 runtime = p->se.sum_exec_runtime; 2496 struct vm_area_struct *vma; 2497 unsigned long start, end; 2498 unsigned long nr_pte_updates = 0; 2499 long pages, virtpages; 2500 2501 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2502 2503 work->next = work; /* protect against double add */ 2504 /* 2505 * Who cares about NUMA placement when they're dying. 2506 * 2507 * NOTE: make sure not to dereference p->mm before this check, 2508 * exit_task_work() happens _after_ exit_mm() so we could be called 2509 * without p->mm even though we still had it when we enqueued this 2510 * work. 2511 */ 2512 if (p->flags & PF_EXITING) 2513 return; 2514 2515 if (!mm->numa_next_scan) { 2516 mm->numa_next_scan = now + 2517 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2518 } 2519 2520 /* 2521 * Enforce maximal scan/migration frequency.. 2522 */ 2523 migrate = mm->numa_next_scan; 2524 if (time_before(now, migrate)) 2525 return; 2526 2527 if (p->numa_scan_period == 0) { 2528 p->numa_scan_period_max = task_scan_max(p); 2529 p->numa_scan_period = task_scan_start(p); 2530 } 2531 2532 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2533 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2534 return; 2535 2536 /* 2537 * Delay this task enough that another task of this mm will likely win 2538 * the next time around. 2539 */ 2540 p->node_stamp += 2 * TICK_NSEC; 2541 2542 start = mm->numa_scan_offset; 2543 pages = sysctl_numa_balancing_scan_size; 2544 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2545 virtpages = pages * 8; /* Scan up to this much virtual space */ 2546 if (!pages) 2547 return; 2548 2549 2550 if (!down_read_trylock(&mm->mmap_sem)) 2551 return; 2552 vma = find_vma(mm, start); 2553 if (!vma) { 2554 reset_ptenuma_scan(p); 2555 start = 0; 2556 vma = mm->mmap; 2557 } 2558 for (; vma; vma = vma->vm_next) { 2559 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2560 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2561 continue; 2562 } 2563 2564 /* 2565 * Shared library pages mapped by multiple processes are not 2566 * migrated as it is expected they are cache replicated. Avoid 2567 * hinting faults in read-only file-backed mappings or the vdso 2568 * as migrating the pages will be of marginal benefit. 2569 */ 2570 if (!vma->vm_mm || 2571 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2572 continue; 2573 2574 /* 2575 * Skip inaccessible VMAs to avoid any confusion between 2576 * PROT_NONE and NUMA hinting ptes 2577 */ 2578 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2579 continue; 2580 2581 do { 2582 start = max(start, vma->vm_start); 2583 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2584 end = min(end, vma->vm_end); 2585 nr_pte_updates = change_prot_numa(vma, start, end); 2586 2587 /* 2588 * Try to scan sysctl_numa_balancing_size worth of 2589 * hpages that have at least one present PTE that 2590 * is not already pte-numa. If the VMA contains 2591 * areas that are unused or already full of prot_numa 2592 * PTEs, scan up to virtpages, to skip through those 2593 * areas faster. 2594 */ 2595 if (nr_pte_updates) 2596 pages -= (end - start) >> PAGE_SHIFT; 2597 virtpages -= (end - start) >> PAGE_SHIFT; 2598 2599 start = end; 2600 if (pages <= 0 || virtpages <= 0) 2601 goto out; 2602 2603 cond_resched(); 2604 } while (end != vma->vm_end); 2605 } 2606 2607 out: 2608 /* 2609 * It is possible to reach the end of the VMA list but the last few 2610 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2611 * would find the !migratable VMA on the next scan but not reset the 2612 * scanner to the start so check it now. 2613 */ 2614 if (vma) 2615 mm->numa_scan_offset = start; 2616 else 2617 reset_ptenuma_scan(p); 2618 up_read(&mm->mmap_sem); 2619 2620 /* 2621 * Make sure tasks use at least 32x as much time to run other code 2622 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2623 * Usually update_task_scan_period slows down scanning enough; on an 2624 * overloaded system we need to limit overhead on a per task basis. 2625 */ 2626 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2627 u64 diff = p->se.sum_exec_runtime - runtime; 2628 p->node_stamp += 32 * diff; 2629 } 2630 } 2631 2632 /* 2633 * Drive the periodic memory faults.. 2634 */ 2635 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2636 { 2637 struct callback_head *work = &curr->numa_work; 2638 u64 period, now; 2639 2640 /* 2641 * We don't care about NUMA placement if we don't have memory. 2642 */ 2643 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2644 return; 2645 2646 /* 2647 * Using runtime rather than walltime has the dual advantage that 2648 * we (mostly) drive the selection from busy threads and that the 2649 * task needs to have done some actual work before we bother with 2650 * NUMA placement. 2651 */ 2652 now = curr->se.sum_exec_runtime; 2653 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2654 2655 if (now > curr->node_stamp + period) { 2656 if (!curr->node_stamp) 2657 curr->numa_scan_period = task_scan_start(curr); 2658 curr->node_stamp += period; 2659 2660 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2661 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2662 task_work_add(curr, work, true); 2663 } 2664 } 2665 } 2666 2667 #else 2668 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2669 { 2670 } 2671 2672 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2673 { 2674 } 2675 2676 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2677 { 2678 } 2679 2680 #endif /* CONFIG_NUMA_BALANCING */ 2681 2682 static void 2683 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2684 { 2685 update_load_add(&cfs_rq->load, se->load.weight); 2686 if (!parent_entity(se)) 2687 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2688 #ifdef CONFIG_SMP 2689 if (entity_is_task(se)) { 2690 struct rq *rq = rq_of(cfs_rq); 2691 2692 account_numa_enqueue(rq, task_of(se)); 2693 list_add(&se->group_node, &rq->cfs_tasks); 2694 } 2695 #endif 2696 cfs_rq->nr_running++; 2697 } 2698 2699 static void 2700 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2701 { 2702 update_load_sub(&cfs_rq->load, se->load.weight); 2703 if (!parent_entity(se)) 2704 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2705 #ifdef CONFIG_SMP 2706 if (entity_is_task(se)) { 2707 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2708 list_del_init(&se->group_node); 2709 } 2710 #endif 2711 cfs_rq->nr_running--; 2712 } 2713 2714 /* 2715 * Signed add and clamp on underflow. 2716 * 2717 * Explicitly do a load-store to ensure the intermediate value never hits 2718 * memory. This allows lockless observations without ever seeing the negative 2719 * values. 2720 */ 2721 #define add_positive(_ptr, _val) do { \ 2722 typeof(_ptr) ptr = (_ptr); \ 2723 typeof(_val) val = (_val); \ 2724 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2725 \ 2726 res = var + val; \ 2727 \ 2728 if (val < 0 && res > var) \ 2729 res = 0; \ 2730 \ 2731 WRITE_ONCE(*ptr, res); \ 2732 } while (0) 2733 2734 /* 2735 * Unsigned subtract and clamp on underflow. 2736 * 2737 * Explicitly do a load-store to ensure the intermediate value never hits 2738 * memory. This allows lockless observations without ever seeing the negative 2739 * values. 2740 */ 2741 #define sub_positive(_ptr, _val) do { \ 2742 typeof(_ptr) ptr = (_ptr); \ 2743 typeof(*ptr) val = (_val); \ 2744 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2745 res = var - val; \ 2746 if (res > var) \ 2747 res = 0; \ 2748 WRITE_ONCE(*ptr, res); \ 2749 } while (0) 2750 2751 #ifdef CONFIG_SMP 2752 /* 2753 * XXX we want to get rid of these helpers and use the full load resolution. 2754 */ 2755 static inline long se_weight(struct sched_entity *se) 2756 { 2757 return scale_load_down(se->load.weight); 2758 } 2759 2760 static inline long se_runnable(struct sched_entity *se) 2761 { 2762 return scale_load_down(se->runnable_weight); 2763 } 2764 2765 static inline void 2766 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2767 { 2768 cfs_rq->runnable_weight += se->runnable_weight; 2769 2770 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2771 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2772 } 2773 2774 static inline void 2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2776 { 2777 cfs_rq->runnable_weight -= se->runnable_weight; 2778 2779 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2780 sub_positive(&cfs_rq->avg.runnable_load_sum, 2781 se_runnable(se) * se->avg.runnable_load_sum); 2782 } 2783 2784 static inline void 2785 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2786 { 2787 cfs_rq->avg.load_avg += se->avg.load_avg; 2788 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2789 } 2790 2791 static inline void 2792 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2793 { 2794 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2795 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2796 } 2797 #else 2798 static inline void 2799 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2800 static inline void 2801 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2802 static inline void 2803 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2804 static inline void 2805 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2806 #endif 2807 2808 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2809 unsigned long weight, unsigned long runnable) 2810 { 2811 if (se->on_rq) { 2812 /* commit outstanding execution time */ 2813 if (cfs_rq->curr == se) 2814 update_curr(cfs_rq); 2815 account_entity_dequeue(cfs_rq, se); 2816 dequeue_runnable_load_avg(cfs_rq, se); 2817 } 2818 dequeue_load_avg(cfs_rq, se); 2819 2820 se->runnable_weight = runnable; 2821 update_load_set(&se->load, weight); 2822 2823 #ifdef CONFIG_SMP 2824 do { 2825 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2826 2827 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2828 se->avg.runnable_load_avg = 2829 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2830 } while (0); 2831 #endif 2832 2833 enqueue_load_avg(cfs_rq, se); 2834 if (se->on_rq) { 2835 account_entity_enqueue(cfs_rq, se); 2836 enqueue_runnable_load_avg(cfs_rq, se); 2837 } 2838 } 2839 2840 void reweight_task(struct task_struct *p, int prio) 2841 { 2842 struct sched_entity *se = &p->se; 2843 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2844 struct load_weight *load = &se->load; 2845 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2846 2847 reweight_entity(cfs_rq, se, weight, weight); 2848 load->inv_weight = sched_prio_to_wmult[prio]; 2849 } 2850 2851 #ifdef CONFIG_FAIR_GROUP_SCHED 2852 #ifdef CONFIG_SMP 2853 /* 2854 * All this does is approximate the hierarchical proportion which includes that 2855 * global sum we all love to hate. 2856 * 2857 * That is, the weight of a group entity, is the proportional share of the 2858 * group weight based on the group runqueue weights. That is: 2859 * 2860 * tg->weight * grq->load.weight 2861 * ge->load.weight = ----------------------------- (1) 2862 * \Sum grq->load.weight 2863 * 2864 * Now, because computing that sum is prohibitively expensive to compute (been 2865 * there, done that) we approximate it with this average stuff. The average 2866 * moves slower and therefore the approximation is cheaper and more stable. 2867 * 2868 * So instead of the above, we substitute: 2869 * 2870 * grq->load.weight -> grq->avg.load_avg (2) 2871 * 2872 * which yields the following: 2873 * 2874 * tg->weight * grq->avg.load_avg 2875 * ge->load.weight = ------------------------------ (3) 2876 * tg->load_avg 2877 * 2878 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2879 * 2880 * That is shares_avg, and it is right (given the approximation (2)). 2881 * 2882 * The problem with it is that because the average is slow -- it was designed 2883 * to be exactly that of course -- this leads to transients in boundary 2884 * conditions. In specific, the case where the group was idle and we start the 2885 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2886 * yielding bad latency etc.. 2887 * 2888 * Now, in that special case (1) reduces to: 2889 * 2890 * tg->weight * grq->load.weight 2891 * ge->load.weight = ----------------------------- = tg->weight (4) 2892 * grp->load.weight 2893 * 2894 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2895 * 2896 * So what we do is modify our approximation (3) to approach (4) in the (near) 2897 * UP case, like: 2898 * 2899 * ge->load.weight = 2900 * 2901 * tg->weight * grq->load.weight 2902 * --------------------------------------------------- (5) 2903 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2904 * 2905 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2906 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2907 * 2908 * 2909 * tg->weight * grq->load.weight 2910 * ge->load.weight = ----------------------------- (6) 2911 * tg_load_avg' 2912 * 2913 * Where: 2914 * 2915 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2916 * max(grq->load.weight, grq->avg.load_avg) 2917 * 2918 * And that is shares_weight and is icky. In the (near) UP case it approaches 2919 * (4) while in the normal case it approaches (3). It consistently 2920 * overestimates the ge->load.weight and therefore: 2921 * 2922 * \Sum ge->load.weight >= tg->weight 2923 * 2924 * hence icky! 2925 */ 2926 static long calc_group_shares(struct cfs_rq *cfs_rq) 2927 { 2928 long tg_weight, tg_shares, load, shares; 2929 struct task_group *tg = cfs_rq->tg; 2930 2931 tg_shares = READ_ONCE(tg->shares); 2932 2933 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2934 2935 tg_weight = atomic_long_read(&tg->load_avg); 2936 2937 /* Ensure tg_weight >= load */ 2938 tg_weight -= cfs_rq->tg_load_avg_contrib; 2939 tg_weight += load; 2940 2941 shares = (tg_shares * load); 2942 if (tg_weight) 2943 shares /= tg_weight; 2944 2945 /* 2946 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2947 * of a group with small tg->shares value. It is a floor value which is 2948 * assigned as a minimum load.weight to the sched_entity representing 2949 * the group on a CPU. 2950 * 2951 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2952 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2953 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2954 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2955 * instead of 0. 2956 */ 2957 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2958 } 2959 2960 /* 2961 * This calculates the effective runnable weight for a group entity based on 2962 * the group entity weight calculated above. 2963 * 2964 * Because of the above approximation (2), our group entity weight is 2965 * an load_avg based ratio (3). This means that it includes blocked load and 2966 * does not represent the runnable weight. 2967 * 2968 * Approximate the group entity's runnable weight per ratio from the group 2969 * runqueue: 2970 * 2971 * grq->avg.runnable_load_avg 2972 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2973 * grq->avg.load_avg 2974 * 2975 * However, analogous to above, since the avg numbers are slow, this leads to 2976 * transients in the from-idle case. Instead we use: 2977 * 2978 * ge->runnable_weight = ge->load.weight * 2979 * 2980 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2981 * ----------------------------------------------------- (8) 2982 * max(grq->avg.load_avg, grq->load.weight) 2983 * 2984 * Where these max() serve both to use the 'instant' values to fix the slow 2985 * from-idle and avoid the /0 on to-idle, similar to (6). 2986 */ 2987 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2988 { 2989 long runnable, load_avg; 2990 2991 load_avg = max(cfs_rq->avg.load_avg, 2992 scale_load_down(cfs_rq->load.weight)); 2993 2994 runnable = max(cfs_rq->avg.runnable_load_avg, 2995 scale_load_down(cfs_rq->runnable_weight)); 2996 2997 runnable *= shares; 2998 if (load_avg) 2999 runnable /= load_avg; 3000 3001 return clamp_t(long, runnable, MIN_SHARES, shares); 3002 } 3003 #endif /* CONFIG_SMP */ 3004 3005 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3006 3007 /* 3008 * Recomputes the group entity based on the current state of its group 3009 * runqueue. 3010 */ 3011 static void update_cfs_group(struct sched_entity *se) 3012 { 3013 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3014 long shares, runnable; 3015 3016 if (!gcfs_rq) 3017 return; 3018 3019 if (throttled_hierarchy(gcfs_rq)) 3020 return; 3021 3022 #ifndef CONFIG_SMP 3023 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3024 3025 if (likely(se->load.weight == shares)) 3026 return; 3027 #else 3028 shares = calc_group_shares(gcfs_rq); 3029 runnable = calc_group_runnable(gcfs_rq, shares); 3030 #endif 3031 3032 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3033 } 3034 3035 #else /* CONFIG_FAIR_GROUP_SCHED */ 3036 static inline void update_cfs_group(struct sched_entity *se) 3037 { 3038 } 3039 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3040 3041 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3042 { 3043 struct rq *rq = rq_of(cfs_rq); 3044 3045 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3046 /* 3047 * There are a few boundary cases this might miss but it should 3048 * get called often enough that that should (hopefully) not be 3049 * a real problem. 3050 * 3051 * It will not get called when we go idle, because the idle 3052 * thread is a different class (!fair), nor will the utilization 3053 * number include things like RT tasks. 3054 * 3055 * As is, the util number is not freq-invariant (we'd have to 3056 * implement arch_scale_freq_capacity() for that). 3057 * 3058 * See cpu_util(). 3059 */ 3060 cpufreq_update_util(rq, flags); 3061 } 3062 } 3063 3064 #ifdef CONFIG_SMP 3065 /* 3066 * Approximate: 3067 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 3068 */ 3069 static u64 decay_load(u64 val, u64 n) 3070 { 3071 unsigned int local_n; 3072 3073 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 3074 return 0; 3075 3076 /* after bounds checking we can collapse to 32-bit */ 3077 local_n = n; 3078 3079 /* 3080 * As y^PERIOD = 1/2, we can combine 3081 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 3082 * With a look-up table which covers y^n (n<PERIOD) 3083 * 3084 * To achieve constant time decay_load. 3085 */ 3086 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 3087 val >>= local_n / LOAD_AVG_PERIOD; 3088 local_n %= LOAD_AVG_PERIOD; 3089 } 3090 3091 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 3092 return val; 3093 } 3094 3095 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 3096 { 3097 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 3098 3099 /* 3100 * c1 = d1 y^p 3101 */ 3102 c1 = decay_load((u64)d1, periods); 3103 3104 /* 3105 * p-1 3106 * c2 = 1024 \Sum y^n 3107 * n=1 3108 * 3109 * inf inf 3110 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 3111 * n=0 n=p 3112 */ 3113 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 3114 3115 return c1 + c2 + c3; 3116 } 3117 3118 /* 3119 * Accumulate the three separate parts of the sum; d1 the remainder 3120 * of the last (incomplete) period, d2 the span of full periods and d3 3121 * the remainder of the (incomplete) current period. 3122 * 3123 * d1 d2 d3 3124 * ^ ^ ^ 3125 * | | | 3126 * |<->|<----------------->|<--->| 3127 * ... |---x---|------| ... |------|-----x (now) 3128 * 3129 * p-1 3130 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 3131 * n=1 3132 * 3133 * = u y^p + (Step 1) 3134 * 3135 * p-1 3136 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 3137 * n=1 3138 */ 3139 static __always_inline u32 3140 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 3141 unsigned long load, unsigned long runnable, int running) 3142 { 3143 unsigned long scale_freq, scale_cpu; 3144 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 3145 u64 periods; 3146 3147 scale_freq = arch_scale_freq_capacity(cpu); 3148 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 3149 3150 delta += sa->period_contrib; 3151 periods = delta / 1024; /* A period is 1024us (~1ms) */ 3152 3153 /* 3154 * Step 1: decay old *_sum if we crossed period boundaries. 3155 */ 3156 if (periods) { 3157 sa->load_sum = decay_load(sa->load_sum, periods); 3158 sa->runnable_load_sum = 3159 decay_load(sa->runnable_load_sum, periods); 3160 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 3161 3162 /* 3163 * Step 2 3164 */ 3165 delta %= 1024; 3166 contrib = __accumulate_pelt_segments(periods, 3167 1024 - sa->period_contrib, delta); 3168 } 3169 sa->period_contrib = delta; 3170 3171 contrib = cap_scale(contrib, scale_freq); 3172 if (load) 3173 sa->load_sum += load * contrib; 3174 if (runnable) 3175 sa->runnable_load_sum += runnable * contrib; 3176 if (running) 3177 sa->util_sum += contrib * scale_cpu; 3178 3179 return periods; 3180 } 3181 3182 /* 3183 * We can represent the historical contribution to runnable average as the 3184 * coefficients of a geometric series. To do this we sub-divide our runnable 3185 * history into segments of approximately 1ms (1024us); label the segment that 3186 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 3187 * 3188 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 3189 * p0 p1 p2 3190 * (now) (~1ms ago) (~2ms ago) 3191 * 3192 * Let u_i denote the fraction of p_i that the entity was runnable. 3193 * 3194 * We then designate the fractions u_i as our co-efficients, yielding the 3195 * following representation of historical load: 3196 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 3197 * 3198 * We choose y based on the with of a reasonably scheduling period, fixing: 3199 * y^32 = 0.5 3200 * 3201 * This means that the contribution to load ~32ms ago (u_32) will be weighted 3202 * approximately half as much as the contribution to load within the last ms 3203 * (u_0). 3204 * 3205 * When a period "rolls over" and we have new u_0`, multiplying the previous 3206 * sum again by y is sufficient to update: 3207 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 3208 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 3209 */ 3210 static __always_inline int 3211 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, 3212 unsigned long load, unsigned long runnable, int running) 3213 { 3214 u64 delta; 3215 3216 delta = now - sa->last_update_time; 3217 /* 3218 * This should only happen when time goes backwards, which it 3219 * unfortunately does during sched clock init when we swap over to TSC. 3220 */ 3221 if ((s64)delta < 0) { 3222 sa->last_update_time = now; 3223 return 0; 3224 } 3225 3226 /* 3227 * Use 1024ns as the unit of measurement since it's a reasonable 3228 * approximation of 1us and fast to compute. 3229 */ 3230 delta >>= 10; 3231 if (!delta) 3232 return 0; 3233 3234 sa->last_update_time += delta << 10; 3235 3236 /* 3237 * running is a subset of runnable (weight) so running can't be set if 3238 * runnable is clear. But there are some corner cases where the current 3239 * se has been already dequeued but cfs_rq->curr still points to it. 3240 * This means that weight will be 0 but not running for a sched_entity 3241 * but also for a cfs_rq if the latter becomes idle. As an example, 3242 * this happens during idle_balance() which calls 3243 * update_blocked_averages() 3244 */ 3245 if (!load) 3246 runnable = running = 0; 3247 3248 /* 3249 * Now we know we crossed measurement unit boundaries. The *_avg 3250 * accrues by two steps: 3251 * 3252 * Step 1: accumulate *_sum since last_update_time. If we haven't 3253 * crossed period boundaries, finish. 3254 */ 3255 if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) 3256 return 0; 3257 3258 return 1; 3259 } 3260 3261 static __always_inline void 3262 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 3263 { 3264 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3265 3266 /* 3267 * Step 2: update *_avg. 3268 */ 3269 sa->load_avg = div_u64(load * sa->load_sum, divider); 3270 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 3271 sa->util_avg = sa->util_sum / divider; 3272 } 3273 3274 /* 3275 * When a task is dequeued, its estimated utilization should not be update if 3276 * its util_avg has not been updated at least once. 3277 * This flag is used to synchronize util_avg updates with util_est updates. 3278 * We map this information into the LSB bit of the utilization saved at 3279 * dequeue time (i.e. util_est.dequeued). 3280 */ 3281 #define UTIL_AVG_UNCHANGED 0x1 3282 3283 static inline void cfs_se_util_change(struct sched_avg *avg) 3284 { 3285 unsigned int enqueued; 3286 3287 if (!sched_feat(UTIL_EST)) 3288 return; 3289 3290 /* Avoid store if the flag has been already set */ 3291 enqueued = avg->util_est.enqueued; 3292 if (!(enqueued & UTIL_AVG_UNCHANGED)) 3293 return; 3294 3295 /* Reset flag to report util_avg has been updated */ 3296 enqueued &= ~UTIL_AVG_UNCHANGED; 3297 WRITE_ONCE(avg->util_est.enqueued, enqueued); 3298 } 3299 3300 /* 3301 * sched_entity: 3302 * 3303 * task: 3304 * se_runnable() == se_weight() 3305 * 3306 * group: [ see update_cfs_group() ] 3307 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 3308 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 3309 * 3310 * load_sum := runnable_sum 3311 * load_avg = se_weight(se) * runnable_avg 3312 * 3313 * runnable_load_sum := runnable_sum 3314 * runnable_load_avg = se_runnable(se) * runnable_avg 3315 * 3316 * XXX collapse load_sum and runnable_load_sum 3317 * 3318 * cfq_rs: 3319 * 3320 * load_sum = \Sum se_weight(se) * se->avg.load_sum 3321 * load_avg = \Sum se->avg.load_avg 3322 * 3323 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 3324 * runnable_load_avg = \Sum se->avg.runable_load_avg 3325 */ 3326 3327 static int 3328 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3329 { 3330 if (entity_is_task(se)) 3331 se->runnable_weight = se->load.weight; 3332 3333 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { 3334 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3335 return 1; 3336 } 3337 3338 return 0; 3339 } 3340 3341 static int 3342 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3343 { 3344 if (entity_is_task(se)) 3345 se->runnable_weight = se->load.weight; 3346 3347 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, 3348 cfs_rq->curr == se)) { 3349 3350 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3351 cfs_se_util_change(&se->avg); 3352 return 1; 3353 } 3354 3355 return 0; 3356 } 3357 3358 static int 3359 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3360 { 3361 if (___update_load_sum(now, cpu, &cfs_rq->avg, 3362 scale_load_down(cfs_rq->load.weight), 3363 scale_load_down(cfs_rq->runnable_weight), 3364 cfs_rq->curr != NULL)) { 3365 3366 ___update_load_avg(&cfs_rq->avg, 1, 1); 3367 return 1; 3368 } 3369 3370 return 0; 3371 } 3372 3373 #ifdef CONFIG_FAIR_GROUP_SCHED 3374 /** 3375 * update_tg_load_avg - update the tg's load avg 3376 * @cfs_rq: the cfs_rq whose avg changed 3377 * @force: update regardless of how small the difference 3378 * 3379 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3380 * However, because tg->load_avg is a global value there are performance 3381 * considerations. 3382 * 3383 * In order to avoid having to look at the other cfs_rq's, we use a 3384 * differential update where we store the last value we propagated. This in 3385 * turn allows skipping updates if the differential is 'small'. 3386 * 3387 * Updating tg's load_avg is necessary before update_cfs_share(). 3388 */ 3389 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3390 { 3391 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3392 3393 /* 3394 * No need to update load_avg for root_task_group as it is not used. 3395 */ 3396 if (cfs_rq->tg == &root_task_group) 3397 return; 3398 3399 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3400 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3401 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3402 } 3403 } 3404 3405 /* 3406 * Called within set_task_rq() right before setting a task's CPU. The 3407 * caller only guarantees p->pi_lock is held; no other assumptions, 3408 * including the state of rq->lock, should be made. 3409 */ 3410 void set_task_rq_fair(struct sched_entity *se, 3411 struct cfs_rq *prev, struct cfs_rq *next) 3412 { 3413 u64 p_last_update_time; 3414 u64 n_last_update_time; 3415 3416 if (!sched_feat(ATTACH_AGE_LOAD)) 3417 return; 3418 3419 /* 3420 * We are supposed to update the task to "current" time, then its up to 3421 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3422 * getting what current time is, so simply throw away the out-of-date 3423 * time. This will result in the wakee task is less decayed, but giving 3424 * the wakee more load sounds not bad. 3425 */ 3426 if (!(se->avg.last_update_time && prev)) 3427 return; 3428 3429 #ifndef CONFIG_64BIT 3430 { 3431 u64 p_last_update_time_copy; 3432 u64 n_last_update_time_copy; 3433 3434 do { 3435 p_last_update_time_copy = prev->load_last_update_time_copy; 3436 n_last_update_time_copy = next->load_last_update_time_copy; 3437 3438 smp_rmb(); 3439 3440 p_last_update_time = prev->avg.last_update_time; 3441 n_last_update_time = next->avg.last_update_time; 3442 3443 } while (p_last_update_time != p_last_update_time_copy || 3444 n_last_update_time != n_last_update_time_copy); 3445 } 3446 #else 3447 p_last_update_time = prev->avg.last_update_time; 3448 n_last_update_time = next->avg.last_update_time; 3449 #endif 3450 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3451 se->avg.last_update_time = n_last_update_time; 3452 } 3453 3454 3455 /* 3456 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3457 * propagate its contribution. The key to this propagation is the invariant 3458 * that for each group: 3459 * 3460 * ge->avg == grq->avg (1) 3461 * 3462 * _IFF_ we look at the pure running and runnable sums. Because they 3463 * represent the very same entity, just at different points in the hierarchy. 3464 * 3465 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3466 * sum over (but still wrong, because the group entity and group rq do not have 3467 * their PELT windows aligned). 3468 * 3469 * However, update_tg_cfs_runnable() is more complex. So we have: 3470 * 3471 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3472 * 3473 * And since, like util, the runnable part should be directly transferable, 3474 * the following would _appear_ to be the straight forward approach: 3475 * 3476 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3477 * 3478 * And per (1) we have: 3479 * 3480 * ge->avg.runnable_avg == grq->avg.runnable_avg 3481 * 3482 * Which gives: 3483 * 3484 * ge->load.weight * grq->avg.load_avg 3485 * ge->avg.load_avg = ----------------------------------- (4) 3486 * grq->load.weight 3487 * 3488 * Except that is wrong! 3489 * 3490 * Because while for entities historical weight is not important and we 3491 * really only care about our future and therefore can consider a pure 3492 * runnable sum, runqueues can NOT do this. 3493 * 3494 * We specifically want runqueues to have a load_avg that includes 3495 * historical weights. Those represent the blocked load, the load we expect 3496 * to (shortly) return to us. This only works by keeping the weights as 3497 * integral part of the sum. We therefore cannot decompose as per (3). 3498 * 3499 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3500 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3501 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3502 * runnable section of these tasks overlap (or not). If they were to perfectly 3503 * align the rq as a whole would be runnable 2/3 of the time. If however we 3504 * always have at least 1 runnable task, the rq as a whole is always runnable. 3505 * 3506 * So we'll have to approximate.. :/ 3507 * 3508 * Given the constraint: 3509 * 3510 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3511 * 3512 * We can construct a rule that adds runnable to a rq by assuming minimal 3513 * overlap. 3514 * 3515 * On removal, we'll assume each task is equally runnable; which yields: 3516 * 3517 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3518 * 3519 * XXX: only do this for the part of runnable > running ? 3520 * 3521 */ 3522 3523 static inline void 3524 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3525 { 3526 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3527 3528 /* Nothing to update */ 3529 if (!delta) 3530 return; 3531 3532 /* 3533 * The relation between sum and avg is: 3534 * 3535 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3536 * 3537 * however, the PELT windows are not aligned between grq and gse. 3538 */ 3539 3540 /* Set new sched_entity's utilization */ 3541 se->avg.util_avg = gcfs_rq->avg.util_avg; 3542 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3543 3544 /* Update parent cfs_rq utilization */ 3545 add_positive(&cfs_rq->avg.util_avg, delta); 3546 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3547 } 3548 3549 static inline void 3550 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3551 { 3552 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3553 unsigned long runnable_load_avg, load_avg; 3554 u64 runnable_load_sum, load_sum = 0; 3555 s64 delta_sum; 3556 3557 if (!runnable_sum) 3558 return; 3559 3560 gcfs_rq->prop_runnable_sum = 0; 3561 3562 if (runnable_sum >= 0) { 3563 /* 3564 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3565 * the CPU is saturated running == runnable. 3566 */ 3567 runnable_sum += se->avg.load_sum; 3568 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3569 } else { 3570 /* 3571 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3572 * assuming all tasks are equally runnable. 3573 */ 3574 if (scale_load_down(gcfs_rq->load.weight)) { 3575 load_sum = div_s64(gcfs_rq->avg.load_sum, 3576 scale_load_down(gcfs_rq->load.weight)); 3577 } 3578 3579 /* But make sure to not inflate se's runnable */ 3580 runnable_sum = min(se->avg.load_sum, load_sum); 3581 } 3582 3583 /* 3584 * runnable_sum can't be lower than running_sum 3585 * As running sum is scale with CPU capacity wehreas the runnable sum 3586 * is not we rescale running_sum 1st 3587 */ 3588 running_sum = se->avg.util_sum / 3589 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3590 runnable_sum = max(runnable_sum, running_sum); 3591 3592 load_sum = (s64)se_weight(se) * runnable_sum; 3593 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3594 3595 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3596 delta_avg = load_avg - se->avg.load_avg; 3597 3598 se->avg.load_sum = runnable_sum; 3599 se->avg.load_avg = load_avg; 3600 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3601 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3602 3603 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3604 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3605 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3606 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3607 3608 se->avg.runnable_load_sum = runnable_sum; 3609 se->avg.runnable_load_avg = runnable_load_avg; 3610 3611 if (se->on_rq) { 3612 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3613 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3614 } 3615 } 3616 3617 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3618 { 3619 cfs_rq->propagate = 1; 3620 cfs_rq->prop_runnable_sum += runnable_sum; 3621 } 3622 3623 /* Update task and its cfs_rq load average */ 3624 static inline int propagate_entity_load_avg(struct sched_entity *se) 3625 { 3626 struct cfs_rq *cfs_rq, *gcfs_rq; 3627 3628 if (entity_is_task(se)) 3629 return 0; 3630 3631 gcfs_rq = group_cfs_rq(se); 3632 if (!gcfs_rq->propagate) 3633 return 0; 3634 3635 gcfs_rq->propagate = 0; 3636 3637 cfs_rq = cfs_rq_of(se); 3638 3639 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3640 3641 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3642 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3643 3644 return 1; 3645 } 3646 3647 /* 3648 * Check if we need to update the load and the utilization of a blocked 3649 * group_entity: 3650 */ 3651 static inline bool skip_blocked_update(struct sched_entity *se) 3652 { 3653 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3654 3655 /* 3656 * If sched_entity still have not zero load or utilization, we have to 3657 * decay it: 3658 */ 3659 if (se->avg.load_avg || se->avg.util_avg) 3660 return false; 3661 3662 /* 3663 * If there is a pending propagation, we have to update the load and 3664 * the utilization of the sched_entity: 3665 */ 3666 if (gcfs_rq->propagate) 3667 return false; 3668 3669 /* 3670 * Otherwise, the load and the utilization of the sched_entity is 3671 * already zero and there is no pending propagation, so it will be a 3672 * waste of time to try to decay it: 3673 */ 3674 return true; 3675 } 3676 3677 #else /* CONFIG_FAIR_GROUP_SCHED */ 3678 3679 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3680 3681 static inline int propagate_entity_load_avg(struct sched_entity *se) 3682 { 3683 return 0; 3684 } 3685 3686 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3687 3688 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3689 3690 /** 3691 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3692 * @now: current time, as per cfs_rq_clock_task() 3693 * @cfs_rq: cfs_rq to update 3694 * 3695 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3696 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3697 * post_init_entity_util_avg(). 3698 * 3699 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3700 * 3701 * Returns true if the load decayed or we removed load. 3702 * 3703 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3704 * call update_tg_load_avg() when this function returns true. 3705 */ 3706 static inline int 3707 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3708 { 3709 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3710 struct sched_avg *sa = &cfs_rq->avg; 3711 int decayed = 0; 3712 3713 if (cfs_rq->removed.nr) { 3714 unsigned long r; 3715 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3716 3717 raw_spin_lock(&cfs_rq->removed.lock); 3718 swap(cfs_rq->removed.util_avg, removed_util); 3719 swap(cfs_rq->removed.load_avg, removed_load); 3720 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3721 cfs_rq->removed.nr = 0; 3722 raw_spin_unlock(&cfs_rq->removed.lock); 3723 3724 r = removed_load; 3725 sub_positive(&sa->load_avg, r); 3726 sub_positive(&sa->load_sum, r * divider); 3727 3728 r = removed_util; 3729 sub_positive(&sa->util_avg, r); 3730 sub_positive(&sa->util_sum, r * divider); 3731 3732 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3733 3734 decayed = 1; 3735 } 3736 3737 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3738 3739 #ifndef CONFIG_64BIT 3740 smp_wmb(); 3741 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3742 #endif 3743 3744 if (decayed) 3745 cfs_rq_util_change(cfs_rq, 0); 3746 3747 return decayed; 3748 } 3749 3750 /** 3751 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3752 * @cfs_rq: cfs_rq to attach to 3753 * @se: sched_entity to attach 3754 * 3755 * Must call update_cfs_rq_load_avg() before this, since we rely on 3756 * cfs_rq->avg.last_update_time being current. 3757 */ 3758 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3759 { 3760 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3761 3762 /* 3763 * When we attach the @se to the @cfs_rq, we must align the decay 3764 * window because without that, really weird and wonderful things can 3765 * happen. 3766 * 3767 * XXX illustrate 3768 */ 3769 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3770 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3771 3772 /* 3773 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3774 * period_contrib. This isn't strictly correct, but since we're 3775 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3776 * _sum a little. 3777 */ 3778 se->avg.util_sum = se->avg.util_avg * divider; 3779 3780 se->avg.load_sum = divider; 3781 if (se_weight(se)) { 3782 se->avg.load_sum = 3783 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3784 } 3785 3786 se->avg.runnable_load_sum = se->avg.load_sum; 3787 3788 enqueue_load_avg(cfs_rq, se); 3789 cfs_rq->avg.util_avg += se->avg.util_avg; 3790 cfs_rq->avg.util_sum += se->avg.util_sum; 3791 3792 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3793 3794 cfs_rq_util_change(cfs_rq, flags); 3795 } 3796 3797 /** 3798 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3799 * @cfs_rq: cfs_rq to detach from 3800 * @se: sched_entity to detach 3801 * 3802 * Must call update_cfs_rq_load_avg() before this, since we rely on 3803 * cfs_rq->avg.last_update_time being current. 3804 */ 3805 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3806 { 3807 dequeue_load_avg(cfs_rq, se); 3808 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3809 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3810 3811 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3812 3813 cfs_rq_util_change(cfs_rq, 0); 3814 } 3815 3816 /* 3817 * Optional action to be done while updating the load average 3818 */ 3819 #define UPDATE_TG 0x1 3820 #define SKIP_AGE_LOAD 0x2 3821 #define DO_ATTACH 0x4 3822 3823 /* Update task and its cfs_rq load average */ 3824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3825 { 3826 u64 now = cfs_rq_clock_task(cfs_rq); 3827 struct rq *rq = rq_of(cfs_rq); 3828 int cpu = cpu_of(rq); 3829 int decayed; 3830 3831 /* 3832 * Track task load average for carrying it to new CPU after migrated, and 3833 * track group sched_entity load average for task_h_load calc in migration 3834 */ 3835 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3836 __update_load_avg_se(now, cpu, cfs_rq, se); 3837 3838 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3839 decayed |= propagate_entity_load_avg(se); 3840 3841 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3842 3843 /* 3844 * DO_ATTACH means we're here from enqueue_entity(). 3845 * !last_update_time means we've passed through 3846 * migrate_task_rq_fair() indicating we migrated. 3847 * 3848 * IOW we're enqueueing a task on a new CPU. 3849 */ 3850 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3851 update_tg_load_avg(cfs_rq, 0); 3852 3853 } else if (decayed && (flags & UPDATE_TG)) 3854 update_tg_load_avg(cfs_rq, 0); 3855 } 3856 3857 #ifndef CONFIG_64BIT 3858 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3859 { 3860 u64 last_update_time_copy; 3861 u64 last_update_time; 3862 3863 do { 3864 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3865 smp_rmb(); 3866 last_update_time = cfs_rq->avg.last_update_time; 3867 } while (last_update_time != last_update_time_copy); 3868 3869 return last_update_time; 3870 } 3871 #else 3872 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3873 { 3874 return cfs_rq->avg.last_update_time; 3875 } 3876 #endif 3877 3878 /* 3879 * Synchronize entity load avg of dequeued entity without locking 3880 * the previous rq. 3881 */ 3882 void sync_entity_load_avg(struct sched_entity *se) 3883 { 3884 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3885 u64 last_update_time; 3886 3887 last_update_time = cfs_rq_last_update_time(cfs_rq); 3888 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3889 } 3890 3891 /* 3892 * Task first catches up with cfs_rq, and then subtract 3893 * itself from the cfs_rq (task must be off the queue now). 3894 */ 3895 void remove_entity_load_avg(struct sched_entity *se) 3896 { 3897 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3898 unsigned long flags; 3899 3900 /* 3901 * tasks cannot exit without having gone through wake_up_new_task() -> 3902 * post_init_entity_util_avg() which will have added things to the 3903 * cfs_rq, so we can remove unconditionally. 3904 * 3905 * Similarly for groups, they will have passed through 3906 * post_init_entity_util_avg() before unregister_sched_fair_group() 3907 * calls this. 3908 */ 3909 3910 sync_entity_load_avg(se); 3911 3912 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3913 ++cfs_rq->removed.nr; 3914 cfs_rq->removed.util_avg += se->avg.util_avg; 3915 cfs_rq->removed.load_avg += se->avg.load_avg; 3916 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3917 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3918 } 3919 3920 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3921 { 3922 return cfs_rq->avg.runnable_load_avg; 3923 } 3924 3925 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3926 { 3927 return cfs_rq->avg.load_avg; 3928 } 3929 3930 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3931 3932 static inline unsigned long task_util(struct task_struct *p) 3933 { 3934 return READ_ONCE(p->se.avg.util_avg); 3935 } 3936 3937 static inline unsigned long _task_util_est(struct task_struct *p) 3938 { 3939 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3940 3941 return max(ue.ewma, ue.enqueued); 3942 } 3943 3944 static inline unsigned long task_util_est(struct task_struct *p) 3945 { 3946 return max(task_util(p), _task_util_est(p)); 3947 } 3948 3949 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3950 struct task_struct *p) 3951 { 3952 unsigned int enqueued; 3953 3954 if (!sched_feat(UTIL_EST)) 3955 return; 3956 3957 /* Update root cfs_rq's estimated utilization */ 3958 enqueued = cfs_rq->avg.util_est.enqueued; 3959 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); 3960 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3961 } 3962 3963 /* 3964 * Check if a (signed) value is within a specified (unsigned) margin, 3965 * based on the observation that: 3966 * 3967 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3968 * 3969 * NOTE: this only works when value + maring < INT_MAX. 3970 */ 3971 static inline bool within_margin(int value, int margin) 3972 { 3973 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3974 } 3975 3976 static void 3977 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3978 { 3979 long last_ewma_diff; 3980 struct util_est ue; 3981 3982 if (!sched_feat(UTIL_EST)) 3983 return; 3984 3985 /* Update root cfs_rq's estimated utilization */ 3986 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3987 ue.enqueued -= min_t(unsigned int, ue.enqueued, 3988 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 3989 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3990 3991 /* 3992 * Skip update of task's estimated utilization when the task has not 3993 * yet completed an activation, e.g. being migrated. 3994 */ 3995 if (!task_sleep) 3996 return; 3997 3998 /* 3999 * If the PELT values haven't changed since enqueue time, 4000 * skip the util_est update. 4001 */ 4002 ue = p->se.avg.util_est; 4003 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4004 return; 4005 4006 /* 4007 * Skip update of task's estimated utilization when its EWMA is 4008 * already ~1% close to its last activation value. 4009 */ 4010 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 4011 last_ewma_diff = ue.enqueued - ue.ewma; 4012 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 4013 return; 4014 4015 /* 4016 * Update Task's estimated utilization 4017 * 4018 * When *p completes an activation we can consolidate another sample 4019 * of the task size. This is done by storing the current PELT value 4020 * as ue.enqueued and by using this value to update the Exponential 4021 * Weighted Moving Average (EWMA): 4022 * 4023 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4024 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4025 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4026 * = w * ( last_ewma_diff ) + ewma(t-1) 4027 * = w * (last_ewma_diff + ewma(t-1) / w) 4028 * 4029 * Where 'w' is the weight of new samples, which is configured to be 4030 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4031 */ 4032 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4033 ue.ewma += last_ewma_diff; 4034 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4035 WRITE_ONCE(p->se.avg.util_est, ue); 4036 } 4037 4038 #else /* CONFIG_SMP */ 4039 4040 static inline int 4041 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4042 { 4043 return 0; 4044 } 4045 4046 #define UPDATE_TG 0x0 4047 #define SKIP_AGE_LOAD 0x0 4048 #define DO_ATTACH 0x0 4049 4050 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4051 { 4052 cfs_rq_util_change(cfs_rq, 0); 4053 } 4054 4055 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4056 4057 static inline void 4058 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 4059 static inline void 4060 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4061 4062 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 4063 { 4064 return 0; 4065 } 4066 4067 static inline void 4068 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4069 4070 static inline void 4071 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4072 bool task_sleep) {} 4073 4074 #endif /* CONFIG_SMP */ 4075 4076 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4077 { 4078 #ifdef CONFIG_SCHED_DEBUG 4079 s64 d = se->vruntime - cfs_rq->min_vruntime; 4080 4081 if (d < 0) 4082 d = -d; 4083 4084 if (d > 3*sysctl_sched_latency) 4085 schedstat_inc(cfs_rq->nr_spread_over); 4086 #endif 4087 } 4088 4089 static void 4090 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4091 { 4092 u64 vruntime = cfs_rq->min_vruntime; 4093 4094 /* 4095 * The 'current' period is already promised to the current tasks, 4096 * however the extra weight of the new task will slow them down a 4097 * little, place the new task so that it fits in the slot that 4098 * stays open at the end. 4099 */ 4100 if (initial && sched_feat(START_DEBIT)) 4101 vruntime += sched_vslice(cfs_rq, se); 4102 4103 /* sleeps up to a single latency don't count. */ 4104 if (!initial) { 4105 unsigned long thresh = sysctl_sched_latency; 4106 4107 /* 4108 * Halve their sleep time's effect, to allow 4109 * for a gentler effect of sleepers: 4110 */ 4111 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4112 thresh >>= 1; 4113 4114 vruntime -= thresh; 4115 } 4116 4117 /* ensure we never gain time by being placed backwards. */ 4118 se->vruntime = max_vruntime(se->vruntime, vruntime); 4119 } 4120 4121 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4122 4123 static inline void check_schedstat_required(void) 4124 { 4125 #ifdef CONFIG_SCHEDSTATS 4126 if (schedstat_enabled()) 4127 return; 4128 4129 /* Force schedstat enabled if a dependent tracepoint is active */ 4130 if (trace_sched_stat_wait_enabled() || 4131 trace_sched_stat_sleep_enabled() || 4132 trace_sched_stat_iowait_enabled() || 4133 trace_sched_stat_blocked_enabled() || 4134 trace_sched_stat_runtime_enabled()) { 4135 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4136 "stat_blocked and stat_runtime require the " 4137 "kernel parameter schedstats=enable or " 4138 "kernel.sched_schedstats=1\n"); 4139 } 4140 #endif 4141 } 4142 4143 4144 /* 4145 * MIGRATION 4146 * 4147 * dequeue 4148 * update_curr() 4149 * update_min_vruntime() 4150 * vruntime -= min_vruntime 4151 * 4152 * enqueue 4153 * update_curr() 4154 * update_min_vruntime() 4155 * vruntime += min_vruntime 4156 * 4157 * this way the vruntime transition between RQs is done when both 4158 * min_vruntime are up-to-date. 4159 * 4160 * WAKEUP (remote) 4161 * 4162 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4163 * vruntime -= min_vruntime 4164 * 4165 * enqueue 4166 * update_curr() 4167 * update_min_vruntime() 4168 * vruntime += min_vruntime 4169 * 4170 * this way we don't have the most up-to-date min_vruntime on the originating 4171 * CPU and an up-to-date min_vruntime on the destination CPU. 4172 */ 4173 4174 static void 4175 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4176 { 4177 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4178 bool curr = cfs_rq->curr == se; 4179 4180 /* 4181 * If we're the current task, we must renormalise before calling 4182 * update_curr(). 4183 */ 4184 if (renorm && curr) 4185 se->vruntime += cfs_rq->min_vruntime; 4186 4187 update_curr(cfs_rq); 4188 4189 /* 4190 * Otherwise, renormalise after, such that we're placed at the current 4191 * moment in time, instead of some random moment in the past. Being 4192 * placed in the past could significantly boost this task to the 4193 * fairness detriment of existing tasks. 4194 */ 4195 if (renorm && !curr) 4196 se->vruntime += cfs_rq->min_vruntime; 4197 4198 /* 4199 * When enqueuing a sched_entity, we must: 4200 * - Update loads to have both entity and cfs_rq synced with now. 4201 * - Add its load to cfs_rq->runnable_avg 4202 * - For group_entity, update its weight to reflect the new share of 4203 * its group cfs_rq 4204 * - Add its new weight to cfs_rq->load.weight 4205 */ 4206 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4207 update_cfs_group(se); 4208 enqueue_runnable_load_avg(cfs_rq, se); 4209 account_entity_enqueue(cfs_rq, se); 4210 4211 if (flags & ENQUEUE_WAKEUP) 4212 place_entity(cfs_rq, se, 0); 4213 4214 check_schedstat_required(); 4215 update_stats_enqueue(cfs_rq, se, flags); 4216 check_spread(cfs_rq, se); 4217 if (!curr) 4218 __enqueue_entity(cfs_rq, se); 4219 se->on_rq = 1; 4220 4221 if (cfs_rq->nr_running == 1) { 4222 list_add_leaf_cfs_rq(cfs_rq); 4223 check_enqueue_throttle(cfs_rq); 4224 } 4225 } 4226 4227 static void __clear_buddies_last(struct sched_entity *se) 4228 { 4229 for_each_sched_entity(se) { 4230 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4231 if (cfs_rq->last != se) 4232 break; 4233 4234 cfs_rq->last = NULL; 4235 } 4236 } 4237 4238 static void __clear_buddies_next(struct sched_entity *se) 4239 { 4240 for_each_sched_entity(se) { 4241 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4242 if (cfs_rq->next != se) 4243 break; 4244 4245 cfs_rq->next = NULL; 4246 } 4247 } 4248 4249 static void __clear_buddies_skip(struct sched_entity *se) 4250 { 4251 for_each_sched_entity(se) { 4252 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4253 if (cfs_rq->skip != se) 4254 break; 4255 4256 cfs_rq->skip = NULL; 4257 } 4258 } 4259 4260 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4261 { 4262 if (cfs_rq->last == se) 4263 __clear_buddies_last(se); 4264 4265 if (cfs_rq->next == se) 4266 __clear_buddies_next(se); 4267 4268 if (cfs_rq->skip == se) 4269 __clear_buddies_skip(se); 4270 } 4271 4272 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4273 4274 static void 4275 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4276 { 4277 /* 4278 * Update run-time statistics of the 'current'. 4279 */ 4280 update_curr(cfs_rq); 4281 4282 /* 4283 * When dequeuing a sched_entity, we must: 4284 * - Update loads to have both entity and cfs_rq synced with now. 4285 * - Substract its load from the cfs_rq->runnable_avg. 4286 * - Substract its previous weight from cfs_rq->load.weight. 4287 * - For group entity, update its weight to reflect the new share 4288 * of its group cfs_rq. 4289 */ 4290 update_load_avg(cfs_rq, se, UPDATE_TG); 4291 dequeue_runnable_load_avg(cfs_rq, se); 4292 4293 update_stats_dequeue(cfs_rq, se, flags); 4294 4295 clear_buddies(cfs_rq, se); 4296 4297 if (se != cfs_rq->curr) 4298 __dequeue_entity(cfs_rq, se); 4299 se->on_rq = 0; 4300 account_entity_dequeue(cfs_rq, se); 4301 4302 /* 4303 * Normalize after update_curr(); which will also have moved 4304 * min_vruntime if @se is the one holding it back. But before doing 4305 * update_min_vruntime() again, which will discount @se's position and 4306 * can move min_vruntime forward still more. 4307 */ 4308 if (!(flags & DEQUEUE_SLEEP)) 4309 se->vruntime -= cfs_rq->min_vruntime; 4310 4311 /* return excess runtime on last dequeue */ 4312 return_cfs_rq_runtime(cfs_rq); 4313 4314 update_cfs_group(se); 4315 4316 /* 4317 * Now advance min_vruntime if @se was the entity holding it back, 4318 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4319 * put back on, and if we advance min_vruntime, we'll be placed back 4320 * further than we started -- ie. we'll be penalized. 4321 */ 4322 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 4323 update_min_vruntime(cfs_rq); 4324 } 4325 4326 /* 4327 * Preempt the current task with a newly woken task if needed: 4328 */ 4329 static void 4330 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4331 { 4332 unsigned long ideal_runtime, delta_exec; 4333 struct sched_entity *se; 4334 s64 delta; 4335 4336 ideal_runtime = sched_slice(cfs_rq, curr); 4337 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4338 if (delta_exec > ideal_runtime) { 4339 resched_curr(rq_of(cfs_rq)); 4340 /* 4341 * The current task ran long enough, ensure it doesn't get 4342 * re-elected due to buddy favours. 4343 */ 4344 clear_buddies(cfs_rq, curr); 4345 return; 4346 } 4347 4348 /* 4349 * Ensure that a task that missed wakeup preemption by a 4350 * narrow margin doesn't have to wait for a full slice. 4351 * This also mitigates buddy induced latencies under load. 4352 */ 4353 if (delta_exec < sysctl_sched_min_granularity) 4354 return; 4355 4356 se = __pick_first_entity(cfs_rq); 4357 delta = curr->vruntime - se->vruntime; 4358 4359 if (delta < 0) 4360 return; 4361 4362 if (delta > ideal_runtime) 4363 resched_curr(rq_of(cfs_rq)); 4364 } 4365 4366 static void 4367 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4368 { 4369 /* 'current' is not kept within the tree. */ 4370 if (se->on_rq) { 4371 /* 4372 * Any task has to be enqueued before it get to execute on 4373 * a CPU. So account for the time it spent waiting on the 4374 * runqueue. 4375 */ 4376 update_stats_wait_end(cfs_rq, se); 4377 __dequeue_entity(cfs_rq, se); 4378 update_load_avg(cfs_rq, se, UPDATE_TG); 4379 } 4380 4381 update_stats_curr_start(cfs_rq, se); 4382 cfs_rq->curr = se; 4383 4384 /* 4385 * Track our maximum slice length, if the CPU's load is at 4386 * least twice that of our own weight (i.e. dont track it 4387 * when there are only lesser-weight tasks around): 4388 */ 4389 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4390 schedstat_set(se->statistics.slice_max, 4391 max((u64)schedstat_val(se->statistics.slice_max), 4392 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4393 } 4394 4395 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4396 } 4397 4398 static int 4399 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4400 4401 /* 4402 * Pick the next process, keeping these things in mind, in this order: 4403 * 1) keep things fair between processes/task groups 4404 * 2) pick the "next" process, since someone really wants that to run 4405 * 3) pick the "last" process, for cache locality 4406 * 4) do not run the "skip" process, if something else is available 4407 */ 4408 static struct sched_entity * 4409 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4410 { 4411 struct sched_entity *left = __pick_first_entity(cfs_rq); 4412 struct sched_entity *se; 4413 4414 /* 4415 * If curr is set we have to see if its left of the leftmost entity 4416 * still in the tree, provided there was anything in the tree at all. 4417 */ 4418 if (!left || (curr && entity_before(curr, left))) 4419 left = curr; 4420 4421 se = left; /* ideally we run the leftmost entity */ 4422 4423 /* 4424 * Avoid running the skip buddy, if running something else can 4425 * be done without getting too unfair. 4426 */ 4427 if (cfs_rq->skip == se) { 4428 struct sched_entity *second; 4429 4430 if (se == curr) { 4431 second = __pick_first_entity(cfs_rq); 4432 } else { 4433 second = __pick_next_entity(se); 4434 if (!second || (curr && entity_before(curr, second))) 4435 second = curr; 4436 } 4437 4438 if (second && wakeup_preempt_entity(second, left) < 1) 4439 se = second; 4440 } 4441 4442 /* 4443 * Prefer last buddy, try to return the CPU to a preempted task. 4444 */ 4445 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4446 se = cfs_rq->last; 4447 4448 /* 4449 * Someone really wants this to run. If it's not unfair, run it. 4450 */ 4451 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4452 se = cfs_rq->next; 4453 4454 clear_buddies(cfs_rq, se); 4455 4456 return se; 4457 } 4458 4459 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4460 4461 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4462 { 4463 /* 4464 * If still on the runqueue then deactivate_task() 4465 * was not called and update_curr() has to be done: 4466 */ 4467 if (prev->on_rq) 4468 update_curr(cfs_rq); 4469 4470 /* throttle cfs_rqs exceeding runtime */ 4471 check_cfs_rq_runtime(cfs_rq); 4472 4473 check_spread(cfs_rq, prev); 4474 4475 if (prev->on_rq) { 4476 update_stats_wait_start(cfs_rq, prev); 4477 /* Put 'current' back into the tree. */ 4478 __enqueue_entity(cfs_rq, prev); 4479 /* in !on_rq case, update occurred at dequeue */ 4480 update_load_avg(cfs_rq, prev, 0); 4481 } 4482 cfs_rq->curr = NULL; 4483 } 4484 4485 static void 4486 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4487 { 4488 /* 4489 * Update run-time statistics of the 'current'. 4490 */ 4491 update_curr(cfs_rq); 4492 4493 /* 4494 * Ensure that runnable average is periodically updated. 4495 */ 4496 update_load_avg(cfs_rq, curr, UPDATE_TG); 4497 update_cfs_group(curr); 4498 4499 #ifdef CONFIG_SCHED_HRTICK 4500 /* 4501 * queued ticks are scheduled to match the slice, so don't bother 4502 * validating it and just reschedule. 4503 */ 4504 if (queued) { 4505 resched_curr(rq_of(cfs_rq)); 4506 return; 4507 } 4508 /* 4509 * don't let the period tick interfere with the hrtick preemption 4510 */ 4511 if (!sched_feat(DOUBLE_TICK) && 4512 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4513 return; 4514 #endif 4515 4516 if (cfs_rq->nr_running > 1) 4517 check_preempt_tick(cfs_rq, curr); 4518 } 4519 4520 4521 /************************************************** 4522 * CFS bandwidth control machinery 4523 */ 4524 4525 #ifdef CONFIG_CFS_BANDWIDTH 4526 4527 #ifdef HAVE_JUMP_LABEL 4528 static struct static_key __cfs_bandwidth_used; 4529 4530 static inline bool cfs_bandwidth_used(void) 4531 { 4532 return static_key_false(&__cfs_bandwidth_used); 4533 } 4534 4535 void cfs_bandwidth_usage_inc(void) 4536 { 4537 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4538 } 4539 4540 void cfs_bandwidth_usage_dec(void) 4541 { 4542 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4543 } 4544 #else /* HAVE_JUMP_LABEL */ 4545 static bool cfs_bandwidth_used(void) 4546 { 4547 return true; 4548 } 4549 4550 void cfs_bandwidth_usage_inc(void) {} 4551 void cfs_bandwidth_usage_dec(void) {} 4552 #endif /* HAVE_JUMP_LABEL */ 4553 4554 /* 4555 * default period for cfs group bandwidth. 4556 * default: 0.1s, units: nanoseconds 4557 */ 4558 static inline u64 default_cfs_period(void) 4559 { 4560 return 100000000ULL; 4561 } 4562 4563 static inline u64 sched_cfs_bandwidth_slice(void) 4564 { 4565 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4566 } 4567 4568 /* 4569 * Replenish runtime according to assigned quota and update expiration time. 4570 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4571 * additional synchronization around rq->lock. 4572 * 4573 * requires cfs_b->lock 4574 */ 4575 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4576 { 4577 u64 now; 4578 4579 if (cfs_b->quota == RUNTIME_INF) 4580 return; 4581 4582 now = sched_clock_cpu(smp_processor_id()); 4583 cfs_b->runtime = cfs_b->quota; 4584 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4585 cfs_b->expires_seq++; 4586 } 4587 4588 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4589 { 4590 return &tg->cfs_bandwidth; 4591 } 4592 4593 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4594 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4595 { 4596 if (unlikely(cfs_rq->throttle_count)) 4597 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4598 4599 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4600 } 4601 4602 /* returns 0 on failure to allocate runtime */ 4603 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4604 { 4605 struct task_group *tg = cfs_rq->tg; 4606 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4607 u64 amount = 0, min_amount, expires; 4608 int expires_seq; 4609 4610 /* note: this is a positive sum as runtime_remaining <= 0 */ 4611 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4612 4613 raw_spin_lock(&cfs_b->lock); 4614 if (cfs_b->quota == RUNTIME_INF) 4615 amount = min_amount; 4616 else { 4617 start_cfs_bandwidth(cfs_b); 4618 4619 if (cfs_b->runtime > 0) { 4620 amount = min(cfs_b->runtime, min_amount); 4621 cfs_b->runtime -= amount; 4622 cfs_b->idle = 0; 4623 } 4624 } 4625 expires_seq = cfs_b->expires_seq; 4626 expires = cfs_b->runtime_expires; 4627 raw_spin_unlock(&cfs_b->lock); 4628 4629 cfs_rq->runtime_remaining += amount; 4630 /* 4631 * we may have advanced our local expiration to account for allowed 4632 * spread between our sched_clock and the one on which runtime was 4633 * issued. 4634 */ 4635 if (cfs_rq->expires_seq != expires_seq) { 4636 cfs_rq->expires_seq = expires_seq; 4637 cfs_rq->runtime_expires = expires; 4638 } 4639 4640 return cfs_rq->runtime_remaining > 0; 4641 } 4642 4643 /* 4644 * Note: This depends on the synchronization provided by sched_clock and the 4645 * fact that rq->clock snapshots this value. 4646 */ 4647 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4648 { 4649 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4650 4651 /* if the deadline is ahead of our clock, nothing to do */ 4652 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4653 return; 4654 4655 if (cfs_rq->runtime_remaining < 0) 4656 return; 4657 4658 /* 4659 * If the local deadline has passed we have to consider the 4660 * possibility that our sched_clock is 'fast' and the global deadline 4661 * has not truly expired. 4662 * 4663 * Fortunately we can check determine whether this the case by checking 4664 * whether the global deadline(cfs_b->expires_seq) has advanced. 4665 */ 4666 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4667 /* extend local deadline, drift is bounded above by 2 ticks */ 4668 cfs_rq->runtime_expires += TICK_NSEC; 4669 } else { 4670 /* global deadline is ahead, expiration has passed */ 4671 cfs_rq->runtime_remaining = 0; 4672 } 4673 } 4674 4675 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4676 { 4677 /* dock delta_exec before expiring quota (as it could span periods) */ 4678 cfs_rq->runtime_remaining -= delta_exec; 4679 expire_cfs_rq_runtime(cfs_rq); 4680 4681 if (likely(cfs_rq->runtime_remaining > 0)) 4682 return; 4683 4684 /* 4685 * if we're unable to extend our runtime we resched so that the active 4686 * hierarchy can be throttled 4687 */ 4688 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4689 resched_curr(rq_of(cfs_rq)); 4690 } 4691 4692 static __always_inline 4693 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4694 { 4695 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4696 return; 4697 4698 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4699 } 4700 4701 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4702 { 4703 return cfs_bandwidth_used() && cfs_rq->throttled; 4704 } 4705 4706 /* check whether cfs_rq, or any parent, is throttled */ 4707 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4708 { 4709 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4710 } 4711 4712 /* 4713 * Ensure that neither of the group entities corresponding to src_cpu or 4714 * dest_cpu are members of a throttled hierarchy when performing group 4715 * load-balance operations. 4716 */ 4717 static inline int throttled_lb_pair(struct task_group *tg, 4718 int src_cpu, int dest_cpu) 4719 { 4720 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4721 4722 src_cfs_rq = tg->cfs_rq[src_cpu]; 4723 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4724 4725 return throttled_hierarchy(src_cfs_rq) || 4726 throttled_hierarchy(dest_cfs_rq); 4727 } 4728 4729 /* updated child weight may affect parent so we have to do this bottom up */ 4730 static int tg_unthrottle_up(struct task_group *tg, void *data) 4731 { 4732 struct rq *rq = data; 4733 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4734 4735 cfs_rq->throttle_count--; 4736 if (!cfs_rq->throttle_count) { 4737 /* adjust cfs_rq_clock_task() */ 4738 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4739 cfs_rq->throttled_clock_task; 4740 } 4741 4742 return 0; 4743 } 4744 4745 static int tg_throttle_down(struct task_group *tg, void *data) 4746 { 4747 struct rq *rq = data; 4748 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4749 4750 /* group is entering throttled state, stop time */ 4751 if (!cfs_rq->throttle_count) 4752 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4753 cfs_rq->throttle_count++; 4754 4755 return 0; 4756 } 4757 4758 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4759 { 4760 struct rq *rq = rq_of(cfs_rq); 4761 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4762 struct sched_entity *se; 4763 long task_delta, dequeue = 1; 4764 bool empty; 4765 4766 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4767 4768 /* freeze hierarchy runnable averages while throttled */ 4769 rcu_read_lock(); 4770 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4771 rcu_read_unlock(); 4772 4773 task_delta = cfs_rq->h_nr_running; 4774 for_each_sched_entity(se) { 4775 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4776 /* throttled entity or throttle-on-deactivate */ 4777 if (!se->on_rq) 4778 break; 4779 4780 if (dequeue) 4781 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4782 qcfs_rq->h_nr_running -= task_delta; 4783 4784 if (qcfs_rq->load.weight) 4785 dequeue = 0; 4786 } 4787 4788 if (!se) 4789 sub_nr_running(rq, task_delta); 4790 4791 cfs_rq->throttled = 1; 4792 cfs_rq->throttled_clock = rq_clock(rq); 4793 raw_spin_lock(&cfs_b->lock); 4794 empty = list_empty(&cfs_b->throttled_cfs_rq); 4795 4796 /* 4797 * Add to the _head_ of the list, so that an already-started 4798 * distribute_cfs_runtime will not see us 4799 */ 4800 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4801 4802 /* 4803 * If we're the first throttled task, make sure the bandwidth 4804 * timer is running. 4805 */ 4806 if (empty) 4807 start_cfs_bandwidth(cfs_b); 4808 4809 raw_spin_unlock(&cfs_b->lock); 4810 } 4811 4812 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4813 { 4814 struct rq *rq = rq_of(cfs_rq); 4815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4816 struct sched_entity *se; 4817 int enqueue = 1; 4818 long task_delta; 4819 4820 se = cfs_rq->tg->se[cpu_of(rq)]; 4821 4822 cfs_rq->throttled = 0; 4823 4824 update_rq_clock(rq); 4825 4826 raw_spin_lock(&cfs_b->lock); 4827 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4828 list_del_rcu(&cfs_rq->throttled_list); 4829 raw_spin_unlock(&cfs_b->lock); 4830 4831 /* update hierarchical throttle state */ 4832 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4833 4834 if (!cfs_rq->load.weight) 4835 return; 4836 4837 task_delta = cfs_rq->h_nr_running; 4838 for_each_sched_entity(se) { 4839 if (se->on_rq) 4840 enqueue = 0; 4841 4842 cfs_rq = cfs_rq_of(se); 4843 if (enqueue) 4844 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4845 cfs_rq->h_nr_running += task_delta; 4846 4847 if (cfs_rq_throttled(cfs_rq)) 4848 break; 4849 } 4850 4851 if (!se) 4852 add_nr_running(rq, task_delta); 4853 4854 /* Determine whether we need to wake up potentially idle CPU: */ 4855 if (rq->curr == rq->idle && rq->cfs.nr_running) 4856 resched_curr(rq); 4857 } 4858 4859 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4860 u64 remaining, u64 expires) 4861 { 4862 struct cfs_rq *cfs_rq; 4863 u64 runtime; 4864 u64 starting_runtime = remaining; 4865 4866 rcu_read_lock(); 4867 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4868 throttled_list) { 4869 struct rq *rq = rq_of(cfs_rq); 4870 struct rq_flags rf; 4871 4872 rq_lock(rq, &rf); 4873 if (!cfs_rq_throttled(cfs_rq)) 4874 goto next; 4875 4876 runtime = -cfs_rq->runtime_remaining + 1; 4877 if (runtime > remaining) 4878 runtime = remaining; 4879 remaining -= runtime; 4880 4881 cfs_rq->runtime_remaining += runtime; 4882 cfs_rq->runtime_expires = expires; 4883 4884 /* we check whether we're throttled above */ 4885 if (cfs_rq->runtime_remaining > 0) 4886 unthrottle_cfs_rq(cfs_rq); 4887 4888 next: 4889 rq_unlock(rq, &rf); 4890 4891 if (!remaining) 4892 break; 4893 } 4894 rcu_read_unlock(); 4895 4896 return starting_runtime - remaining; 4897 } 4898 4899 /* 4900 * Responsible for refilling a task_group's bandwidth and unthrottling its 4901 * cfs_rqs as appropriate. If there has been no activity within the last 4902 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4903 * used to track this state. 4904 */ 4905 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4906 { 4907 u64 runtime, runtime_expires; 4908 int throttled; 4909 4910 /* no need to continue the timer with no bandwidth constraint */ 4911 if (cfs_b->quota == RUNTIME_INF) 4912 goto out_deactivate; 4913 4914 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4915 cfs_b->nr_periods += overrun; 4916 4917 /* 4918 * idle depends on !throttled (for the case of a large deficit), and if 4919 * we're going inactive then everything else can be deferred 4920 */ 4921 if (cfs_b->idle && !throttled) 4922 goto out_deactivate; 4923 4924 __refill_cfs_bandwidth_runtime(cfs_b); 4925 4926 if (!throttled) { 4927 /* mark as potentially idle for the upcoming period */ 4928 cfs_b->idle = 1; 4929 return 0; 4930 } 4931 4932 /* account preceding periods in which throttling occurred */ 4933 cfs_b->nr_throttled += overrun; 4934 4935 runtime_expires = cfs_b->runtime_expires; 4936 4937 /* 4938 * This check is repeated as we are holding onto the new bandwidth while 4939 * we unthrottle. This can potentially race with an unthrottled group 4940 * trying to acquire new bandwidth from the global pool. This can result 4941 * in us over-using our runtime if it is all used during this loop, but 4942 * only by limited amounts in that extreme case. 4943 */ 4944 while (throttled && cfs_b->runtime > 0) { 4945 runtime = cfs_b->runtime; 4946 raw_spin_unlock(&cfs_b->lock); 4947 /* we can't nest cfs_b->lock while distributing bandwidth */ 4948 runtime = distribute_cfs_runtime(cfs_b, runtime, 4949 runtime_expires); 4950 raw_spin_lock(&cfs_b->lock); 4951 4952 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4953 4954 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4955 } 4956 4957 /* 4958 * While we are ensured activity in the period following an 4959 * unthrottle, this also covers the case in which the new bandwidth is 4960 * insufficient to cover the existing bandwidth deficit. (Forcing the 4961 * timer to remain active while there are any throttled entities.) 4962 */ 4963 cfs_b->idle = 0; 4964 4965 return 0; 4966 4967 out_deactivate: 4968 return 1; 4969 } 4970 4971 /* a cfs_rq won't donate quota below this amount */ 4972 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4973 /* minimum remaining period time to redistribute slack quota */ 4974 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4975 /* how long we wait to gather additional slack before distributing */ 4976 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4977 4978 /* 4979 * Are we near the end of the current quota period? 4980 * 4981 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4982 * hrtimer base being cleared by hrtimer_start. In the case of 4983 * migrate_hrtimers, base is never cleared, so we are fine. 4984 */ 4985 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4986 { 4987 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4988 u64 remaining; 4989 4990 /* if the call-back is running a quota refresh is already occurring */ 4991 if (hrtimer_callback_running(refresh_timer)) 4992 return 1; 4993 4994 /* is a quota refresh about to occur? */ 4995 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4996 if (remaining < min_expire) 4997 return 1; 4998 4999 return 0; 5000 } 5001 5002 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5003 { 5004 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5005 5006 /* if there's a quota refresh soon don't bother with slack */ 5007 if (runtime_refresh_within(cfs_b, min_left)) 5008 return; 5009 5010 hrtimer_start(&cfs_b->slack_timer, 5011 ns_to_ktime(cfs_bandwidth_slack_period), 5012 HRTIMER_MODE_REL); 5013 } 5014 5015 /* we know any runtime found here is valid as update_curr() precedes return */ 5016 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5017 { 5018 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5019 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5020 5021 if (slack_runtime <= 0) 5022 return; 5023 5024 raw_spin_lock(&cfs_b->lock); 5025 if (cfs_b->quota != RUNTIME_INF && 5026 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 5027 cfs_b->runtime += slack_runtime; 5028 5029 /* we are under rq->lock, defer unthrottling using a timer */ 5030 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5031 !list_empty(&cfs_b->throttled_cfs_rq)) 5032 start_cfs_slack_bandwidth(cfs_b); 5033 } 5034 raw_spin_unlock(&cfs_b->lock); 5035 5036 /* even if it's not valid for return we don't want to try again */ 5037 cfs_rq->runtime_remaining -= slack_runtime; 5038 } 5039 5040 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5041 { 5042 if (!cfs_bandwidth_used()) 5043 return; 5044 5045 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5046 return; 5047 5048 __return_cfs_rq_runtime(cfs_rq); 5049 } 5050 5051 /* 5052 * This is done with a timer (instead of inline with bandwidth return) since 5053 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5054 */ 5055 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5056 { 5057 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5058 u64 expires; 5059 5060 /* confirm we're still not at a refresh boundary */ 5061 raw_spin_lock(&cfs_b->lock); 5062 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5063 raw_spin_unlock(&cfs_b->lock); 5064 return; 5065 } 5066 5067 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5068 runtime = cfs_b->runtime; 5069 5070 expires = cfs_b->runtime_expires; 5071 raw_spin_unlock(&cfs_b->lock); 5072 5073 if (!runtime) 5074 return; 5075 5076 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 5077 5078 raw_spin_lock(&cfs_b->lock); 5079 if (expires == cfs_b->runtime_expires) 5080 cfs_b->runtime -= min(runtime, cfs_b->runtime); 5081 raw_spin_unlock(&cfs_b->lock); 5082 } 5083 5084 /* 5085 * When a group wakes up we want to make sure that its quota is not already 5086 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5087 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5088 */ 5089 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5090 { 5091 if (!cfs_bandwidth_used()) 5092 return; 5093 5094 /* an active group must be handled by the update_curr()->put() path */ 5095 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5096 return; 5097 5098 /* ensure the group is not already throttled */ 5099 if (cfs_rq_throttled(cfs_rq)) 5100 return; 5101 5102 /* update runtime allocation */ 5103 account_cfs_rq_runtime(cfs_rq, 0); 5104 if (cfs_rq->runtime_remaining <= 0) 5105 throttle_cfs_rq(cfs_rq); 5106 } 5107 5108 static void sync_throttle(struct task_group *tg, int cpu) 5109 { 5110 struct cfs_rq *pcfs_rq, *cfs_rq; 5111 5112 if (!cfs_bandwidth_used()) 5113 return; 5114 5115 if (!tg->parent) 5116 return; 5117 5118 cfs_rq = tg->cfs_rq[cpu]; 5119 pcfs_rq = tg->parent->cfs_rq[cpu]; 5120 5121 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5122 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5123 } 5124 5125 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5126 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5127 { 5128 if (!cfs_bandwidth_used()) 5129 return false; 5130 5131 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5132 return false; 5133 5134 /* 5135 * it's possible for a throttled entity to be forced into a running 5136 * state (e.g. set_curr_task), in this case we're finished. 5137 */ 5138 if (cfs_rq_throttled(cfs_rq)) 5139 return true; 5140 5141 throttle_cfs_rq(cfs_rq); 5142 return true; 5143 } 5144 5145 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5146 { 5147 struct cfs_bandwidth *cfs_b = 5148 container_of(timer, struct cfs_bandwidth, slack_timer); 5149 5150 do_sched_cfs_slack_timer(cfs_b); 5151 5152 return HRTIMER_NORESTART; 5153 } 5154 5155 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5156 { 5157 struct cfs_bandwidth *cfs_b = 5158 container_of(timer, struct cfs_bandwidth, period_timer); 5159 int overrun; 5160 int idle = 0; 5161 5162 raw_spin_lock(&cfs_b->lock); 5163 for (;;) { 5164 overrun = hrtimer_forward_now(timer, cfs_b->period); 5165 if (!overrun) 5166 break; 5167 5168 idle = do_sched_cfs_period_timer(cfs_b, overrun); 5169 } 5170 if (idle) 5171 cfs_b->period_active = 0; 5172 raw_spin_unlock(&cfs_b->lock); 5173 5174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5175 } 5176 5177 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5178 { 5179 raw_spin_lock_init(&cfs_b->lock); 5180 cfs_b->runtime = 0; 5181 cfs_b->quota = RUNTIME_INF; 5182 cfs_b->period = ns_to_ktime(default_cfs_period()); 5183 5184 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5185 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5186 cfs_b->period_timer.function = sched_cfs_period_timer; 5187 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5188 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5189 } 5190 5191 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5192 { 5193 cfs_rq->runtime_enabled = 0; 5194 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5195 } 5196 5197 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5198 { 5199 u64 overrun; 5200 5201 lockdep_assert_held(&cfs_b->lock); 5202 5203 if (cfs_b->period_active) 5204 return; 5205 5206 cfs_b->period_active = 1; 5207 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5208 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 5209 cfs_b->expires_seq++; 5210 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5211 } 5212 5213 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5214 { 5215 /* init_cfs_bandwidth() was not called */ 5216 if (!cfs_b->throttled_cfs_rq.next) 5217 return; 5218 5219 hrtimer_cancel(&cfs_b->period_timer); 5220 hrtimer_cancel(&cfs_b->slack_timer); 5221 } 5222 5223 /* 5224 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5225 * 5226 * The race is harmless, since modifying bandwidth settings of unhooked group 5227 * bits doesn't do much. 5228 */ 5229 5230 /* cpu online calback */ 5231 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5232 { 5233 struct task_group *tg; 5234 5235 lockdep_assert_held(&rq->lock); 5236 5237 rcu_read_lock(); 5238 list_for_each_entry_rcu(tg, &task_groups, list) { 5239 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5240 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5241 5242 raw_spin_lock(&cfs_b->lock); 5243 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5244 raw_spin_unlock(&cfs_b->lock); 5245 } 5246 rcu_read_unlock(); 5247 } 5248 5249 /* cpu offline callback */ 5250 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5251 { 5252 struct task_group *tg; 5253 5254 lockdep_assert_held(&rq->lock); 5255 5256 rcu_read_lock(); 5257 list_for_each_entry_rcu(tg, &task_groups, list) { 5258 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5259 5260 if (!cfs_rq->runtime_enabled) 5261 continue; 5262 5263 /* 5264 * clock_task is not advancing so we just need to make sure 5265 * there's some valid quota amount 5266 */ 5267 cfs_rq->runtime_remaining = 1; 5268 /* 5269 * Offline rq is schedulable till CPU is completely disabled 5270 * in take_cpu_down(), so we prevent new cfs throttling here. 5271 */ 5272 cfs_rq->runtime_enabled = 0; 5273 5274 if (cfs_rq_throttled(cfs_rq)) 5275 unthrottle_cfs_rq(cfs_rq); 5276 } 5277 rcu_read_unlock(); 5278 } 5279 5280 #else /* CONFIG_CFS_BANDWIDTH */ 5281 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5282 { 5283 return rq_clock_task(rq_of(cfs_rq)); 5284 } 5285 5286 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5287 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5288 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5289 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5290 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5291 5292 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5293 { 5294 return 0; 5295 } 5296 5297 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5298 { 5299 return 0; 5300 } 5301 5302 static inline int throttled_lb_pair(struct task_group *tg, 5303 int src_cpu, int dest_cpu) 5304 { 5305 return 0; 5306 } 5307 5308 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5309 5310 #ifdef CONFIG_FAIR_GROUP_SCHED 5311 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5312 #endif 5313 5314 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5315 { 5316 return NULL; 5317 } 5318 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5319 static inline void update_runtime_enabled(struct rq *rq) {} 5320 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5321 5322 #endif /* CONFIG_CFS_BANDWIDTH */ 5323 5324 /************************************************** 5325 * CFS operations on tasks: 5326 */ 5327 5328 #ifdef CONFIG_SCHED_HRTICK 5329 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5330 { 5331 struct sched_entity *se = &p->se; 5332 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5333 5334 SCHED_WARN_ON(task_rq(p) != rq); 5335 5336 if (rq->cfs.h_nr_running > 1) { 5337 u64 slice = sched_slice(cfs_rq, se); 5338 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5339 s64 delta = slice - ran; 5340 5341 if (delta < 0) { 5342 if (rq->curr == p) 5343 resched_curr(rq); 5344 return; 5345 } 5346 hrtick_start(rq, delta); 5347 } 5348 } 5349 5350 /* 5351 * called from enqueue/dequeue and updates the hrtick when the 5352 * current task is from our class and nr_running is low enough 5353 * to matter. 5354 */ 5355 static void hrtick_update(struct rq *rq) 5356 { 5357 struct task_struct *curr = rq->curr; 5358 5359 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5360 return; 5361 5362 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5363 hrtick_start_fair(rq, curr); 5364 } 5365 #else /* !CONFIG_SCHED_HRTICK */ 5366 static inline void 5367 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5368 { 5369 } 5370 5371 static inline void hrtick_update(struct rq *rq) 5372 { 5373 } 5374 #endif 5375 5376 /* 5377 * The enqueue_task method is called before nr_running is 5378 * increased. Here we update the fair scheduling stats and 5379 * then put the task into the rbtree: 5380 */ 5381 static void 5382 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5383 { 5384 struct cfs_rq *cfs_rq; 5385 struct sched_entity *se = &p->se; 5386 5387 /* 5388 * The code below (indirectly) updates schedutil which looks at 5389 * the cfs_rq utilization to select a frequency. 5390 * Let's add the task's estimated utilization to the cfs_rq's 5391 * estimated utilization, before we update schedutil. 5392 */ 5393 util_est_enqueue(&rq->cfs, p); 5394 5395 /* 5396 * If in_iowait is set, the code below may not trigger any cpufreq 5397 * utilization updates, so do it here explicitly with the IOWAIT flag 5398 * passed. 5399 */ 5400 if (p->in_iowait) 5401 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5402 5403 for_each_sched_entity(se) { 5404 if (se->on_rq) 5405 break; 5406 cfs_rq = cfs_rq_of(se); 5407 enqueue_entity(cfs_rq, se, flags); 5408 5409 /* 5410 * end evaluation on encountering a throttled cfs_rq 5411 * 5412 * note: in the case of encountering a throttled cfs_rq we will 5413 * post the final h_nr_running increment below. 5414 */ 5415 if (cfs_rq_throttled(cfs_rq)) 5416 break; 5417 cfs_rq->h_nr_running++; 5418 5419 flags = ENQUEUE_WAKEUP; 5420 } 5421 5422 for_each_sched_entity(se) { 5423 cfs_rq = cfs_rq_of(se); 5424 cfs_rq->h_nr_running++; 5425 5426 if (cfs_rq_throttled(cfs_rq)) 5427 break; 5428 5429 update_load_avg(cfs_rq, se, UPDATE_TG); 5430 update_cfs_group(se); 5431 } 5432 5433 if (!se) 5434 add_nr_running(rq, 1); 5435 5436 hrtick_update(rq); 5437 } 5438 5439 static void set_next_buddy(struct sched_entity *se); 5440 5441 /* 5442 * The dequeue_task method is called before nr_running is 5443 * decreased. We remove the task from the rbtree and 5444 * update the fair scheduling stats: 5445 */ 5446 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5447 { 5448 struct cfs_rq *cfs_rq; 5449 struct sched_entity *se = &p->se; 5450 int task_sleep = flags & DEQUEUE_SLEEP; 5451 5452 for_each_sched_entity(se) { 5453 cfs_rq = cfs_rq_of(se); 5454 dequeue_entity(cfs_rq, se, flags); 5455 5456 /* 5457 * end evaluation on encountering a throttled cfs_rq 5458 * 5459 * note: in the case of encountering a throttled cfs_rq we will 5460 * post the final h_nr_running decrement below. 5461 */ 5462 if (cfs_rq_throttled(cfs_rq)) 5463 break; 5464 cfs_rq->h_nr_running--; 5465 5466 /* Don't dequeue parent if it has other entities besides us */ 5467 if (cfs_rq->load.weight) { 5468 /* Avoid re-evaluating load for this entity: */ 5469 se = parent_entity(se); 5470 /* 5471 * Bias pick_next to pick a task from this cfs_rq, as 5472 * p is sleeping when it is within its sched_slice. 5473 */ 5474 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5475 set_next_buddy(se); 5476 break; 5477 } 5478 flags |= DEQUEUE_SLEEP; 5479 } 5480 5481 for_each_sched_entity(se) { 5482 cfs_rq = cfs_rq_of(se); 5483 cfs_rq->h_nr_running--; 5484 5485 if (cfs_rq_throttled(cfs_rq)) 5486 break; 5487 5488 update_load_avg(cfs_rq, se, UPDATE_TG); 5489 update_cfs_group(se); 5490 } 5491 5492 if (!se) 5493 sub_nr_running(rq, 1); 5494 5495 util_est_dequeue(&rq->cfs, p, task_sleep); 5496 hrtick_update(rq); 5497 } 5498 5499 #ifdef CONFIG_SMP 5500 5501 /* Working cpumask for: load_balance, load_balance_newidle. */ 5502 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5503 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5504 5505 #ifdef CONFIG_NO_HZ_COMMON 5506 /* 5507 * per rq 'load' arrray crap; XXX kill this. 5508 */ 5509 5510 /* 5511 * The exact cpuload calculated at every tick would be: 5512 * 5513 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5514 * 5515 * If a CPU misses updates for n ticks (as it was idle) and update gets 5516 * called on the n+1-th tick when CPU may be busy, then we have: 5517 * 5518 * load_n = (1 - 1/2^i)^n * load_0 5519 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5520 * 5521 * decay_load_missed() below does efficient calculation of 5522 * 5523 * load' = (1 - 1/2^i)^n * load 5524 * 5525 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5526 * This allows us to precompute the above in said factors, thereby allowing the 5527 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5528 * fixed_power_int()) 5529 * 5530 * The calculation is approximated on a 128 point scale. 5531 */ 5532 #define DEGRADE_SHIFT 7 5533 5534 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5535 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5536 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5537 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5538 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5539 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5540 { 120, 112, 98, 76, 45, 16, 2, 0 } 5541 }; 5542 5543 /* 5544 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5545 * would be when CPU is idle and so we just decay the old load without 5546 * adding any new load. 5547 */ 5548 static unsigned long 5549 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5550 { 5551 int j = 0; 5552 5553 if (!missed_updates) 5554 return load; 5555 5556 if (missed_updates >= degrade_zero_ticks[idx]) 5557 return 0; 5558 5559 if (idx == 1) 5560 return load >> missed_updates; 5561 5562 while (missed_updates) { 5563 if (missed_updates % 2) 5564 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5565 5566 missed_updates >>= 1; 5567 j++; 5568 } 5569 return load; 5570 } 5571 5572 static struct { 5573 cpumask_var_t idle_cpus_mask; 5574 atomic_t nr_cpus; 5575 int has_blocked; /* Idle CPUS has blocked load */ 5576 unsigned long next_balance; /* in jiffy units */ 5577 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5578 } nohz ____cacheline_aligned; 5579 5580 #endif /* CONFIG_NO_HZ_COMMON */ 5581 5582 /** 5583 * __cpu_load_update - update the rq->cpu_load[] statistics 5584 * @this_rq: The rq to update statistics for 5585 * @this_load: The current load 5586 * @pending_updates: The number of missed updates 5587 * 5588 * Update rq->cpu_load[] statistics. This function is usually called every 5589 * scheduler tick (TICK_NSEC). 5590 * 5591 * This function computes a decaying average: 5592 * 5593 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5594 * 5595 * Because of NOHZ it might not get called on every tick which gives need for 5596 * the @pending_updates argument. 5597 * 5598 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5599 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5600 * = A * (A * load[i]_n-2 + B) + B 5601 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5602 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5603 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5604 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5605 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5606 * 5607 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5608 * any change in load would have resulted in the tick being turned back on. 5609 * 5610 * For regular NOHZ, this reduces to: 5611 * 5612 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5613 * 5614 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5615 * term. 5616 */ 5617 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5618 unsigned long pending_updates) 5619 { 5620 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5621 int i, scale; 5622 5623 this_rq->nr_load_updates++; 5624 5625 /* Update our load: */ 5626 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5627 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5628 unsigned long old_load, new_load; 5629 5630 /* scale is effectively 1 << i now, and >> i divides by scale */ 5631 5632 old_load = this_rq->cpu_load[i]; 5633 #ifdef CONFIG_NO_HZ_COMMON 5634 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5635 if (tickless_load) { 5636 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5637 /* 5638 * old_load can never be a negative value because a 5639 * decayed tickless_load cannot be greater than the 5640 * original tickless_load. 5641 */ 5642 old_load += tickless_load; 5643 } 5644 #endif 5645 new_load = this_load; 5646 /* 5647 * Round up the averaging division if load is increasing. This 5648 * prevents us from getting stuck on 9 if the load is 10, for 5649 * example. 5650 */ 5651 if (new_load > old_load) 5652 new_load += scale - 1; 5653 5654 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5655 } 5656 5657 sched_avg_update(this_rq); 5658 } 5659 5660 /* Used instead of source_load when we know the type == 0 */ 5661 static unsigned long weighted_cpuload(struct rq *rq) 5662 { 5663 return cfs_rq_runnable_load_avg(&rq->cfs); 5664 } 5665 5666 #ifdef CONFIG_NO_HZ_COMMON 5667 /* 5668 * There is no sane way to deal with nohz on smp when using jiffies because the 5669 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5670 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5671 * 5672 * Therefore we need to avoid the delta approach from the regular tick when 5673 * possible since that would seriously skew the load calculation. This is why we 5674 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5675 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5676 * loop exit, nohz_idle_balance, nohz full exit...) 5677 * 5678 * This means we might still be one tick off for nohz periods. 5679 */ 5680 5681 static void cpu_load_update_nohz(struct rq *this_rq, 5682 unsigned long curr_jiffies, 5683 unsigned long load) 5684 { 5685 unsigned long pending_updates; 5686 5687 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5688 if (pending_updates) { 5689 this_rq->last_load_update_tick = curr_jiffies; 5690 /* 5691 * In the regular NOHZ case, we were idle, this means load 0. 5692 * In the NOHZ_FULL case, we were non-idle, we should consider 5693 * its weighted load. 5694 */ 5695 cpu_load_update(this_rq, load, pending_updates); 5696 } 5697 } 5698 5699 /* 5700 * Called from nohz_idle_balance() to update the load ratings before doing the 5701 * idle balance. 5702 */ 5703 static void cpu_load_update_idle(struct rq *this_rq) 5704 { 5705 /* 5706 * bail if there's load or we're actually up-to-date. 5707 */ 5708 if (weighted_cpuload(this_rq)) 5709 return; 5710 5711 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5712 } 5713 5714 /* 5715 * Record CPU load on nohz entry so we know the tickless load to account 5716 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5717 * than other cpu_load[idx] but it should be fine as cpu_load readers 5718 * shouldn't rely into synchronized cpu_load[*] updates. 5719 */ 5720 void cpu_load_update_nohz_start(void) 5721 { 5722 struct rq *this_rq = this_rq(); 5723 5724 /* 5725 * This is all lockless but should be fine. If weighted_cpuload changes 5726 * concurrently we'll exit nohz. And cpu_load write can race with 5727 * cpu_load_update_idle() but both updater would be writing the same. 5728 */ 5729 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5730 } 5731 5732 /* 5733 * Account the tickless load in the end of a nohz frame. 5734 */ 5735 void cpu_load_update_nohz_stop(void) 5736 { 5737 unsigned long curr_jiffies = READ_ONCE(jiffies); 5738 struct rq *this_rq = this_rq(); 5739 unsigned long load; 5740 struct rq_flags rf; 5741 5742 if (curr_jiffies == this_rq->last_load_update_tick) 5743 return; 5744 5745 load = weighted_cpuload(this_rq); 5746 rq_lock(this_rq, &rf); 5747 update_rq_clock(this_rq); 5748 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5749 rq_unlock(this_rq, &rf); 5750 } 5751 #else /* !CONFIG_NO_HZ_COMMON */ 5752 static inline void cpu_load_update_nohz(struct rq *this_rq, 5753 unsigned long curr_jiffies, 5754 unsigned long load) { } 5755 #endif /* CONFIG_NO_HZ_COMMON */ 5756 5757 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5758 { 5759 #ifdef CONFIG_NO_HZ_COMMON 5760 /* See the mess around cpu_load_update_nohz(). */ 5761 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5762 #endif 5763 cpu_load_update(this_rq, load, 1); 5764 } 5765 5766 /* 5767 * Called from scheduler_tick() 5768 */ 5769 void cpu_load_update_active(struct rq *this_rq) 5770 { 5771 unsigned long load = weighted_cpuload(this_rq); 5772 5773 if (tick_nohz_tick_stopped()) 5774 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5775 else 5776 cpu_load_update_periodic(this_rq, load); 5777 } 5778 5779 /* 5780 * Return a low guess at the load of a migration-source CPU weighted 5781 * according to the scheduling class and "nice" value. 5782 * 5783 * We want to under-estimate the load of migration sources, to 5784 * balance conservatively. 5785 */ 5786 static unsigned long source_load(int cpu, int type) 5787 { 5788 struct rq *rq = cpu_rq(cpu); 5789 unsigned long total = weighted_cpuload(rq); 5790 5791 if (type == 0 || !sched_feat(LB_BIAS)) 5792 return total; 5793 5794 return min(rq->cpu_load[type-1], total); 5795 } 5796 5797 /* 5798 * Return a high guess at the load of a migration-target CPU weighted 5799 * according to the scheduling class and "nice" value. 5800 */ 5801 static unsigned long target_load(int cpu, int type) 5802 { 5803 struct rq *rq = cpu_rq(cpu); 5804 unsigned long total = weighted_cpuload(rq); 5805 5806 if (type == 0 || !sched_feat(LB_BIAS)) 5807 return total; 5808 5809 return max(rq->cpu_load[type-1], total); 5810 } 5811 5812 static unsigned long capacity_of(int cpu) 5813 { 5814 return cpu_rq(cpu)->cpu_capacity; 5815 } 5816 5817 static unsigned long capacity_orig_of(int cpu) 5818 { 5819 return cpu_rq(cpu)->cpu_capacity_orig; 5820 } 5821 5822 static unsigned long cpu_avg_load_per_task(int cpu) 5823 { 5824 struct rq *rq = cpu_rq(cpu); 5825 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5826 unsigned long load_avg = weighted_cpuload(rq); 5827 5828 if (nr_running) 5829 return load_avg / nr_running; 5830 5831 return 0; 5832 } 5833 5834 static void record_wakee(struct task_struct *p) 5835 { 5836 /* 5837 * Only decay a single time; tasks that have less then 1 wakeup per 5838 * jiffy will not have built up many flips. 5839 */ 5840 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5841 current->wakee_flips >>= 1; 5842 current->wakee_flip_decay_ts = jiffies; 5843 } 5844 5845 if (current->last_wakee != p) { 5846 current->last_wakee = p; 5847 current->wakee_flips++; 5848 } 5849 } 5850 5851 /* 5852 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5853 * 5854 * A waker of many should wake a different task than the one last awakened 5855 * at a frequency roughly N times higher than one of its wakees. 5856 * 5857 * In order to determine whether we should let the load spread vs consolidating 5858 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5859 * partner, and a factor of lls_size higher frequency in the other. 5860 * 5861 * With both conditions met, we can be relatively sure that the relationship is 5862 * non-monogamous, with partner count exceeding socket size. 5863 * 5864 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5865 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5866 * socket size. 5867 */ 5868 static int wake_wide(struct task_struct *p) 5869 { 5870 unsigned int master = current->wakee_flips; 5871 unsigned int slave = p->wakee_flips; 5872 int factor = this_cpu_read(sd_llc_size); 5873 5874 if (master < slave) 5875 swap(master, slave); 5876 if (slave < factor || master < slave * factor) 5877 return 0; 5878 return 1; 5879 } 5880 5881 /* 5882 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5883 * soonest. For the purpose of speed we only consider the waking and previous 5884 * CPU. 5885 * 5886 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5887 * cache-affine and is (or will be) idle. 5888 * 5889 * wake_affine_weight() - considers the weight to reflect the average 5890 * scheduling latency of the CPUs. This seems to work 5891 * for the overloaded case. 5892 */ 5893 static int 5894 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5895 { 5896 /* 5897 * If this_cpu is idle, it implies the wakeup is from interrupt 5898 * context. Only allow the move if cache is shared. Otherwise an 5899 * interrupt intensive workload could force all tasks onto one 5900 * node depending on the IO topology or IRQ affinity settings. 5901 * 5902 * If the prev_cpu is idle and cache affine then avoid a migration. 5903 * There is no guarantee that the cache hot data from an interrupt 5904 * is more important than cache hot data on the prev_cpu and from 5905 * a cpufreq perspective, it's better to have higher utilisation 5906 * on one CPU. 5907 */ 5908 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5909 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5910 5911 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5912 return this_cpu; 5913 5914 return nr_cpumask_bits; 5915 } 5916 5917 static int 5918 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5919 int this_cpu, int prev_cpu, int sync) 5920 { 5921 s64 this_eff_load, prev_eff_load; 5922 unsigned long task_load; 5923 5924 this_eff_load = target_load(this_cpu, sd->wake_idx); 5925 5926 if (sync) { 5927 unsigned long current_load = task_h_load(current); 5928 5929 if (current_load > this_eff_load) 5930 return this_cpu; 5931 5932 this_eff_load -= current_load; 5933 } 5934 5935 task_load = task_h_load(p); 5936 5937 this_eff_load += task_load; 5938 if (sched_feat(WA_BIAS)) 5939 this_eff_load *= 100; 5940 this_eff_load *= capacity_of(prev_cpu); 5941 5942 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5943 prev_eff_load -= task_load; 5944 if (sched_feat(WA_BIAS)) 5945 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5946 prev_eff_load *= capacity_of(this_cpu); 5947 5948 /* 5949 * If sync, adjust the weight of prev_eff_load such that if 5950 * prev_eff == this_eff that select_idle_sibling() will consider 5951 * stacking the wakee on top of the waker if no other CPU is 5952 * idle. 5953 */ 5954 if (sync) 5955 prev_eff_load += 1; 5956 5957 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5958 } 5959 5960 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5961 int this_cpu, int prev_cpu, int sync) 5962 { 5963 int target = nr_cpumask_bits; 5964 5965 if (sched_feat(WA_IDLE)) 5966 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5967 5968 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5969 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5970 5971 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5972 if (target == nr_cpumask_bits) 5973 return prev_cpu; 5974 5975 schedstat_inc(sd->ttwu_move_affine); 5976 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5977 return target; 5978 } 5979 5980 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5981 5982 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5983 { 5984 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5985 } 5986 5987 /* 5988 * find_idlest_group finds and returns the least busy CPU group within the 5989 * domain. 5990 * 5991 * Assumes p is allowed on at least one CPU in sd. 5992 */ 5993 static struct sched_group * 5994 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5995 int this_cpu, int sd_flag) 5996 { 5997 struct sched_group *idlest = NULL, *group = sd->groups; 5998 struct sched_group *most_spare_sg = NULL; 5999 unsigned long min_runnable_load = ULONG_MAX; 6000 unsigned long this_runnable_load = ULONG_MAX; 6001 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 6002 unsigned long most_spare = 0, this_spare = 0; 6003 int load_idx = sd->forkexec_idx; 6004 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 6005 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 6006 (sd->imbalance_pct-100) / 100; 6007 6008 if (sd_flag & SD_BALANCE_WAKE) 6009 load_idx = sd->wake_idx; 6010 6011 do { 6012 unsigned long load, avg_load, runnable_load; 6013 unsigned long spare_cap, max_spare_cap; 6014 int local_group; 6015 int i; 6016 6017 /* Skip over this group if it has no CPUs allowed */ 6018 if (!cpumask_intersects(sched_group_span(group), 6019 &p->cpus_allowed)) 6020 continue; 6021 6022 local_group = cpumask_test_cpu(this_cpu, 6023 sched_group_span(group)); 6024 6025 /* 6026 * Tally up the load of all CPUs in the group and find 6027 * the group containing the CPU with most spare capacity. 6028 */ 6029 avg_load = 0; 6030 runnable_load = 0; 6031 max_spare_cap = 0; 6032 6033 for_each_cpu(i, sched_group_span(group)) { 6034 /* Bias balancing toward CPUs of our domain */ 6035 if (local_group) 6036 load = source_load(i, load_idx); 6037 else 6038 load = target_load(i, load_idx); 6039 6040 runnable_load += load; 6041 6042 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 6043 6044 spare_cap = capacity_spare_wake(i, p); 6045 6046 if (spare_cap > max_spare_cap) 6047 max_spare_cap = spare_cap; 6048 } 6049 6050 /* Adjust by relative CPU capacity of the group */ 6051 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 6052 group->sgc->capacity; 6053 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 6054 group->sgc->capacity; 6055 6056 if (local_group) { 6057 this_runnable_load = runnable_load; 6058 this_avg_load = avg_load; 6059 this_spare = max_spare_cap; 6060 } else { 6061 if (min_runnable_load > (runnable_load + imbalance)) { 6062 /* 6063 * The runnable load is significantly smaller 6064 * so we can pick this new CPU: 6065 */ 6066 min_runnable_load = runnable_load; 6067 min_avg_load = avg_load; 6068 idlest = group; 6069 } else if ((runnable_load < (min_runnable_load + imbalance)) && 6070 (100*min_avg_load > imbalance_scale*avg_load)) { 6071 /* 6072 * The runnable loads are close so take the 6073 * blocked load into account through avg_load: 6074 */ 6075 min_avg_load = avg_load; 6076 idlest = group; 6077 } 6078 6079 if (most_spare < max_spare_cap) { 6080 most_spare = max_spare_cap; 6081 most_spare_sg = group; 6082 } 6083 } 6084 } while (group = group->next, group != sd->groups); 6085 6086 /* 6087 * The cross-over point between using spare capacity or least load 6088 * is too conservative for high utilization tasks on partially 6089 * utilized systems if we require spare_capacity > task_util(p), 6090 * so we allow for some task stuffing by using 6091 * spare_capacity > task_util(p)/2. 6092 * 6093 * Spare capacity can't be used for fork because the utilization has 6094 * not been set yet, we must first select a rq to compute the initial 6095 * utilization. 6096 */ 6097 if (sd_flag & SD_BALANCE_FORK) 6098 goto skip_spare; 6099 6100 if (this_spare > task_util(p) / 2 && 6101 imbalance_scale*this_spare > 100*most_spare) 6102 return NULL; 6103 6104 if (most_spare > task_util(p) / 2) 6105 return most_spare_sg; 6106 6107 skip_spare: 6108 if (!idlest) 6109 return NULL; 6110 6111 /* 6112 * When comparing groups across NUMA domains, it's possible for the 6113 * local domain to be very lightly loaded relative to the remote 6114 * domains but "imbalance" skews the comparison making remote CPUs 6115 * look much more favourable. When considering cross-domain, add 6116 * imbalance to the runnable load on the remote node and consider 6117 * staying local. 6118 */ 6119 if ((sd->flags & SD_NUMA) && 6120 min_runnable_load + imbalance >= this_runnable_load) 6121 return NULL; 6122 6123 if (min_runnable_load > (this_runnable_load + imbalance)) 6124 return NULL; 6125 6126 if ((this_runnable_load < (min_runnable_load + imbalance)) && 6127 (100*this_avg_load < imbalance_scale*min_avg_load)) 6128 return NULL; 6129 6130 return idlest; 6131 } 6132 6133 /* 6134 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6135 */ 6136 static int 6137 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6138 { 6139 unsigned long load, min_load = ULONG_MAX; 6140 unsigned int min_exit_latency = UINT_MAX; 6141 u64 latest_idle_timestamp = 0; 6142 int least_loaded_cpu = this_cpu; 6143 int shallowest_idle_cpu = -1; 6144 int i; 6145 6146 /* Check if we have any choice: */ 6147 if (group->group_weight == 1) 6148 return cpumask_first(sched_group_span(group)); 6149 6150 /* Traverse only the allowed CPUs */ 6151 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 6152 if (available_idle_cpu(i)) { 6153 struct rq *rq = cpu_rq(i); 6154 struct cpuidle_state *idle = idle_get_state(rq); 6155 if (idle && idle->exit_latency < min_exit_latency) { 6156 /* 6157 * We give priority to a CPU whose idle state 6158 * has the smallest exit latency irrespective 6159 * of any idle timestamp. 6160 */ 6161 min_exit_latency = idle->exit_latency; 6162 latest_idle_timestamp = rq->idle_stamp; 6163 shallowest_idle_cpu = i; 6164 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6165 rq->idle_stamp > latest_idle_timestamp) { 6166 /* 6167 * If equal or no active idle state, then 6168 * the most recently idled CPU might have 6169 * a warmer cache. 6170 */ 6171 latest_idle_timestamp = rq->idle_stamp; 6172 shallowest_idle_cpu = i; 6173 } 6174 } else if (shallowest_idle_cpu == -1) { 6175 load = weighted_cpuload(cpu_rq(i)); 6176 if (load < min_load) { 6177 min_load = load; 6178 least_loaded_cpu = i; 6179 } 6180 } 6181 } 6182 6183 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6184 } 6185 6186 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6187 int cpu, int prev_cpu, int sd_flag) 6188 { 6189 int new_cpu = cpu; 6190 6191 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 6192 return prev_cpu; 6193 6194 /* 6195 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's 6196 * last_update_time. 6197 */ 6198 if (!(sd_flag & SD_BALANCE_FORK)) 6199 sync_entity_load_avg(&p->se); 6200 6201 while (sd) { 6202 struct sched_group *group; 6203 struct sched_domain *tmp; 6204 int weight; 6205 6206 if (!(sd->flags & sd_flag)) { 6207 sd = sd->child; 6208 continue; 6209 } 6210 6211 group = find_idlest_group(sd, p, cpu, sd_flag); 6212 if (!group) { 6213 sd = sd->child; 6214 continue; 6215 } 6216 6217 new_cpu = find_idlest_group_cpu(group, p, cpu); 6218 if (new_cpu == cpu) { 6219 /* Now try balancing at a lower domain level of 'cpu': */ 6220 sd = sd->child; 6221 continue; 6222 } 6223 6224 /* Now try balancing at a lower domain level of 'new_cpu': */ 6225 cpu = new_cpu; 6226 weight = sd->span_weight; 6227 sd = NULL; 6228 for_each_domain(cpu, tmp) { 6229 if (weight <= tmp->span_weight) 6230 break; 6231 if (tmp->flags & sd_flag) 6232 sd = tmp; 6233 } 6234 } 6235 6236 return new_cpu; 6237 } 6238 6239 #ifdef CONFIG_SCHED_SMT 6240 6241 static inline void set_idle_cores(int cpu, int val) 6242 { 6243 struct sched_domain_shared *sds; 6244 6245 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6246 if (sds) 6247 WRITE_ONCE(sds->has_idle_cores, val); 6248 } 6249 6250 static inline bool test_idle_cores(int cpu, bool def) 6251 { 6252 struct sched_domain_shared *sds; 6253 6254 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6255 if (sds) 6256 return READ_ONCE(sds->has_idle_cores); 6257 6258 return def; 6259 } 6260 6261 /* 6262 * Scans the local SMT mask to see if the entire core is idle, and records this 6263 * information in sd_llc_shared->has_idle_cores. 6264 * 6265 * Since SMT siblings share all cache levels, inspecting this limited remote 6266 * state should be fairly cheap. 6267 */ 6268 void __update_idle_core(struct rq *rq) 6269 { 6270 int core = cpu_of(rq); 6271 int cpu; 6272 6273 rcu_read_lock(); 6274 if (test_idle_cores(core, true)) 6275 goto unlock; 6276 6277 for_each_cpu(cpu, cpu_smt_mask(core)) { 6278 if (cpu == core) 6279 continue; 6280 6281 if (!available_idle_cpu(cpu)) 6282 goto unlock; 6283 } 6284 6285 set_idle_cores(core, 1); 6286 unlock: 6287 rcu_read_unlock(); 6288 } 6289 6290 /* 6291 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6292 * there are no idle cores left in the system; tracked through 6293 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6294 */ 6295 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6296 { 6297 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6298 int core, cpu; 6299 6300 if (!static_branch_likely(&sched_smt_present)) 6301 return -1; 6302 6303 if (!test_idle_cores(target, false)) 6304 return -1; 6305 6306 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6307 6308 for_each_cpu_wrap(core, cpus, target) { 6309 bool idle = true; 6310 6311 for_each_cpu(cpu, cpu_smt_mask(core)) { 6312 cpumask_clear_cpu(cpu, cpus); 6313 if (!available_idle_cpu(cpu)) 6314 idle = false; 6315 } 6316 6317 if (idle) 6318 return core; 6319 } 6320 6321 /* 6322 * Failed to find an idle core; stop looking for one. 6323 */ 6324 set_idle_cores(target, 0); 6325 6326 return -1; 6327 } 6328 6329 /* 6330 * Scan the local SMT mask for idle CPUs. 6331 */ 6332 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6333 { 6334 int cpu; 6335 6336 if (!static_branch_likely(&sched_smt_present)) 6337 return -1; 6338 6339 for_each_cpu(cpu, cpu_smt_mask(target)) { 6340 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6341 continue; 6342 if (available_idle_cpu(cpu)) 6343 return cpu; 6344 } 6345 6346 return -1; 6347 } 6348 6349 #else /* CONFIG_SCHED_SMT */ 6350 6351 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6352 { 6353 return -1; 6354 } 6355 6356 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6357 { 6358 return -1; 6359 } 6360 6361 #endif /* CONFIG_SCHED_SMT */ 6362 6363 /* 6364 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6365 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6366 * average idle time for this rq (as found in rq->avg_idle). 6367 */ 6368 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6369 { 6370 struct sched_domain *this_sd; 6371 u64 avg_cost, avg_idle; 6372 u64 time, cost; 6373 s64 delta; 6374 int cpu, nr = INT_MAX; 6375 6376 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6377 if (!this_sd) 6378 return -1; 6379 6380 /* 6381 * Due to large variance we need a large fuzz factor; hackbench in 6382 * particularly is sensitive here. 6383 */ 6384 avg_idle = this_rq()->avg_idle / 512; 6385 avg_cost = this_sd->avg_scan_cost + 1; 6386 6387 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6388 return -1; 6389 6390 if (sched_feat(SIS_PROP)) { 6391 u64 span_avg = sd->span_weight * avg_idle; 6392 if (span_avg > 4*avg_cost) 6393 nr = div_u64(span_avg, avg_cost); 6394 else 6395 nr = 4; 6396 } 6397 6398 time = local_clock(); 6399 6400 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6401 if (!--nr) 6402 return -1; 6403 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6404 continue; 6405 if (available_idle_cpu(cpu)) 6406 break; 6407 } 6408 6409 time = local_clock() - time; 6410 cost = this_sd->avg_scan_cost; 6411 delta = (s64)(time - cost) / 8; 6412 this_sd->avg_scan_cost += delta; 6413 6414 return cpu; 6415 } 6416 6417 /* 6418 * Try and locate an idle core/thread in the LLC cache domain. 6419 */ 6420 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6421 { 6422 struct sched_domain *sd; 6423 int i, recent_used_cpu; 6424 6425 if (available_idle_cpu(target)) 6426 return target; 6427 6428 /* 6429 * If the previous CPU is cache affine and idle, don't be stupid: 6430 */ 6431 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6432 return prev; 6433 6434 /* Check a recently used CPU as a potential idle candidate: */ 6435 recent_used_cpu = p->recent_used_cpu; 6436 if (recent_used_cpu != prev && 6437 recent_used_cpu != target && 6438 cpus_share_cache(recent_used_cpu, target) && 6439 available_idle_cpu(recent_used_cpu) && 6440 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6441 /* 6442 * Replace recent_used_cpu with prev as it is a potential 6443 * candidate for the next wake: 6444 */ 6445 p->recent_used_cpu = prev; 6446 return recent_used_cpu; 6447 } 6448 6449 sd = rcu_dereference(per_cpu(sd_llc, target)); 6450 if (!sd) 6451 return target; 6452 6453 i = select_idle_core(p, sd, target); 6454 if ((unsigned)i < nr_cpumask_bits) 6455 return i; 6456 6457 i = select_idle_cpu(p, sd, target); 6458 if ((unsigned)i < nr_cpumask_bits) 6459 return i; 6460 6461 i = select_idle_smt(p, sd, target); 6462 if ((unsigned)i < nr_cpumask_bits) 6463 return i; 6464 6465 return target; 6466 } 6467 6468 /** 6469 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6470 * @cpu: the CPU to get the utilization of 6471 * 6472 * The unit of the return value must be the one of capacity so we can compare 6473 * the utilization with the capacity of the CPU that is available for CFS task 6474 * (ie cpu_capacity). 6475 * 6476 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6477 * recent utilization of currently non-runnable tasks on a CPU. It represents 6478 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6479 * capacity_orig is the cpu_capacity available at the highest frequency 6480 * (arch_scale_freq_capacity()). 6481 * The utilization of a CPU converges towards a sum equal to or less than the 6482 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6483 * the running time on this CPU scaled by capacity_curr. 6484 * 6485 * The estimated utilization of a CPU is defined to be the maximum between its 6486 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6487 * currently RUNNABLE on that CPU. 6488 * This allows to properly represent the expected utilization of a CPU which 6489 * has just got a big task running since a long sleep period. At the same time 6490 * however it preserves the benefits of the "blocked utilization" in 6491 * describing the potential for other tasks waking up on the same CPU. 6492 * 6493 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6494 * higher than capacity_orig because of unfortunate rounding in 6495 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6496 * the average stabilizes with the new running time. We need to check that the 6497 * utilization stays within the range of [0..capacity_orig] and cap it if 6498 * necessary. Without utilization capping, a group could be seen as overloaded 6499 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6500 * available capacity. We allow utilization to overshoot capacity_curr (but not 6501 * capacity_orig) as it useful for predicting the capacity required after task 6502 * migrations (scheduler-driven DVFS). 6503 * 6504 * Return: the (estimated) utilization for the specified CPU 6505 */ 6506 static inline unsigned long cpu_util(int cpu) 6507 { 6508 struct cfs_rq *cfs_rq; 6509 unsigned int util; 6510 6511 cfs_rq = &cpu_rq(cpu)->cfs; 6512 util = READ_ONCE(cfs_rq->avg.util_avg); 6513 6514 if (sched_feat(UTIL_EST)) 6515 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6516 6517 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6518 } 6519 6520 /* 6521 * cpu_util_wake: Compute CPU utilization with any contributions from 6522 * the waking task p removed. 6523 */ 6524 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6525 { 6526 struct cfs_rq *cfs_rq; 6527 unsigned int util; 6528 6529 /* Task has no contribution or is new */ 6530 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6531 return cpu_util(cpu); 6532 6533 cfs_rq = &cpu_rq(cpu)->cfs; 6534 util = READ_ONCE(cfs_rq->avg.util_avg); 6535 6536 /* Discount task's blocked util from CPU's util */ 6537 util -= min_t(unsigned int, util, task_util(p)); 6538 6539 /* 6540 * Covered cases: 6541 * 6542 * a) if *p is the only task sleeping on this CPU, then: 6543 * cpu_util (== task_util) > util_est (== 0) 6544 * and thus we return: 6545 * cpu_util_wake = (cpu_util - task_util) = 0 6546 * 6547 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6548 * IDLE, then: 6549 * cpu_util >= task_util 6550 * cpu_util > util_est (== 0) 6551 * and thus we discount *p's blocked utilization to return: 6552 * cpu_util_wake = (cpu_util - task_util) >= 0 6553 * 6554 * c) if other tasks are RUNNABLE on that CPU and 6555 * util_est > cpu_util 6556 * then we use util_est since it returns a more restrictive 6557 * estimation of the spare capacity on that CPU, by just 6558 * considering the expected utilization of tasks already 6559 * runnable on that CPU. 6560 * 6561 * Cases a) and b) are covered by the above code, while case c) is 6562 * covered by the following code when estimated utilization is 6563 * enabled. 6564 */ 6565 if (sched_feat(UTIL_EST)) 6566 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6567 6568 /* 6569 * Utilization (estimated) can exceed the CPU capacity, thus let's 6570 * clamp to the maximum CPU capacity to ensure consistency with 6571 * the cpu_util call. 6572 */ 6573 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6574 } 6575 6576 /* 6577 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6578 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6579 * 6580 * In that case WAKE_AFFINE doesn't make sense and we'll let 6581 * BALANCE_WAKE sort things out. 6582 */ 6583 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6584 { 6585 long min_cap, max_cap; 6586 6587 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6588 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6589 6590 /* Minimum capacity is close to max, no need to abort wake_affine */ 6591 if (max_cap - min_cap < max_cap >> 3) 6592 return 0; 6593 6594 /* Bring task utilization in sync with prev_cpu */ 6595 sync_entity_load_avg(&p->se); 6596 6597 return min_cap * 1024 < task_util(p) * capacity_margin; 6598 } 6599 6600 /* 6601 * select_task_rq_fair: Select target runqueue for the waking task in domains 6602 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6603 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6604 * 6605 * Balances load by selecting the idlest CPU in the idlest group, or under 6606 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6607 * 6608 * Returns the target CPU number. 6609 * 6610 * preempt must be disabled. 6611 */ 6612 static int 6613 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6614 { 6615 struct sched_domain *tmp, *sd = NULL; 6616 int cpu = smp_processor_id(); 6617 int new_cpu = prev_cpu; 6618 int want_affine = 0; 6619 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6620 6621 if (sd_flag & SD_BALANCE_WAKE) { 6622 record_wakee(p); 6623 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6624 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6625 } 6626 6627 rcu_read_lock(); 6628 for_each_domain(cpu, tmp) { 6629 if (!(tmp->flags & SD_LOAD_BALANCE)) 6630 break; 6631 6632 /* 6633 * If both 'cpu' and 'prev_cpu' are part of this domain, 6634 * cpu is a valid SD_WAKE_AFFINE target. 6635 */ 6636 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6637 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6638 if (cpu != prev_cpu) 6639 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6640 6641 sd = NULL; /* Prefer wake_affine over balance flags */ 6642 break; 6643 } 6644 6645 if (tmp->flags & sd_flag) 6646 sd = tmp; 6647 else if (!want_affine) 6648 break; 6649 } 6650 6651 if (unlikely(sd)) { 6652 /* Slow path */ 6653 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6654 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6655 /* Fast path */ 6656 6657 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6658 6659 if (want_affine) 6660 current->recent_used_cpu = cpu; 6661 } 6662 rcu_read_unlock(); 6663 6664 return new_cpu; 6665 } 6666 6667 static void detach_entity_cfs_rq(struct sched_entity *se); 6668 6669 /* 6670 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6671 * cfs_rq_of(p) references at time of call are still valid and identify the 6672 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6673 */ 6674 static void migrate_task_rq_fair(struct task_struct *p) 6675 { 6676 /* 6677 * As blocked tasks retain absolute vruntime the migration needs to 6678 * deal with this by subtracting the old and adding the new 6679 * min_vruntime -- the latter is done by enqueue_entity() when placing 6680 * the task on the new runqueue. 6681 */ 6682 if (p->state == TASK_WAKING) { 6683 struct sched_entity *se = &p->se; 6684 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6685 u64 min_vruntime; 6686 6687 #ifndef CONFIG_64BIT 6688 u64 min_vruntime_copy; 6689 6690 do { 6691 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6692 smp_rmb(); 6693 min_vruntime = cfs_rq->min_vruntime; 6694 } while (min_vruntime != min_vruntime_copy); 6695 #else 6696 min_vruntime = cfs_rq->min_vruntime; 6697 #endif 6698 6699 se->vruntime -= min_vruntime; 6700 } 6701 6702 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6703 /* 6704 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6705 * rq->lock and can modify state directly. 6706 */ 6707 lockdep_assert_held(&task_rq(p)->lock); 6708 detach_entity_cfs_rq(&p->se); 6709 6710 } else { 6711 /* 6712 * We are supposed to update the task to "current" time, then 6713 * its up to date and ready to go to new CPU/cfs_rq. But we 6714 * have difficulty in getting what current time is, so simply 6715 * throw away the out-of-date time. This will result in the 6716 * wakee task is less decayed, but giving the wakee more load 6717 * sounds not bad. 6718 */ 6719 remove_entity_load_avg(&p->se); 6720 } 6721 6722 /* Tell new CPU we are migrated */ 6723 p->se.avg.last_update_time = 0; 6724 6725 /* We have migrated, no longer consider this task hot */ 6726 p->se.exec_start = 0; 6727 } 6728 6729 static void task_dead_fair(struct task_struct *p) 6730 { 6731 remove_entity_load_avg(&p->se); 6732 } 6733 #endif /* CONFIG_SMP */ 6734 6735 static unsigned long wakeup_gran(struct sched_entity *se) 6736 { 6737 unsigned long gran = sysctl_sched_wakeup_granularity; 6738 6739 /* 6740 * Since its curr running now, convert the gran from real-time 6741 * to virtual-time in his units. 6742 * 6743 * By using 'se' instead of 'curr' we penalize light tasks, so 6744 * they get preempted easier. That is, if 'se' < 'curr' then 6745 * the resulting gran will be larger, therefore penalizing the 6746 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6747 * be smaller, again penalizing the lighter task. 6748 * 6749 * This is especially important for buddies when the leftmost 6750 * task is higher priority than the buddy. 6751 */ 6752 return calc_delta_fair(gran, se); 6753 } 6754 6755 /* 6756 * Should 'se' preempt 'curr'. 6757 * 6758 * |s1 6759 * |s2 6760 * |s3 6761 * g 6762 * |<--->|c 6763 * 6764 * w(c, s1) = -1 6765 * w(c, s2) = 0 6766 * w(c, s3) = 1 6767 * 6768 */ 6769 static int 6770 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6771 { 6772 s64 gran, vdiff = curr->vruntime - se->vruntime; 6773 6774 if (vdiff <= 0) 6775 return -1; 6776 6777 gran = wakeup_gran(se); 6778 if (vdiff > gran) 6779 return 1; 6780 6781 return 0; 6782 } 6783 6784 static void set_last_buddy(struct sched_entity *se) 6785 { 6786 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6787 return; 6788 6789 for_each_sched_entity(se) { 6790 if (SCHED_WARN_ON(!se->on_rq)) 6791 return; 6792 cfs_rq_of(se)->last = se; 6793 } 6794 } 6795 6796 static void set_next_buddy(struct sched_entity *se) 6797 { 6798 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6799 return; 6800 6801 for_each_sched_entity(se) { 6802 if (SCHED_WARN_ON(!se->on_rq)) 6803 return; 6804 cfs_rq_of(se)->next = se; 6805 } 6806 } 6807 6808 static void set_skip_buddy(struct sched_entity *se) 6809 { 6810 for_each_sched_entity(se) 6811 cfs_rq_of(se)->skip = se; 6812 } 6813 6814 /* 6815 * Preempt the current task with a newly woken task if needed: 6816 */ 6817 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6818 { 6819 struct task_struct *curr = rq->curr; 6820 struct sched_entity *se = &curr->se, *pse = &p->se; 6821 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6822 int scale = cfs_rq->nr_running >= sched_nr_latency; 6823 int next_buddy_marked = 0; 6824 6825 if (unlikely(se == pse)) 6826 return; 6827 6828 /* 6829 * This is possible from callers such as attach_tasks(), in which we 6830 * unconditionally check_prempt_curr() after an enqueue (which may have 6831 * lead to a throttle). This both saves work and prevents false 6832 * next-buddy nomination below. 6833 */ 6834 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6835 return; 6836 6837 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6838 set_next_buddy(pse); 6839 next_buddy_marked = 1; 6840 } 6841 6842 /* 6843 * We can come here with TIF_NEED_RESCHED already set from new task 6844 * wake up path. 6845 * 6846 * Note: this also catches the edge-case of curr being in a throttled 6847 * group (e.g. via set_curr_task), since update_curr() (in the 6848 * enqueue of curr) will have resulted in resched being set. This 6849 * prevents us from potentially nominating it as a false LAST_BUDDY 6850 * below. 6851 */ 6852 if (test_tsk_need_resched(curr)) 6853 return; 6854 6855 /* Idle tasks are by definition preempted by non-idle tasks. */ 6856 if (unlikely(curr->policy == SCHED_IDLE) && 6857 likely(p->policy != SCHED_IDLE)) 6858 goto preempt; 6859 6860 /* 6861 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6862 * is driven by the tick): 6863 */ 6864 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6865 return; 6866 6867 find_matching_se(&se, &pse); 6868 update_curr(cfs_rq_of(se)); 6869 BUG_ON(!pse); 6870 if (wakeup_preempt_entity(se, pse) == 1) { 6871 /* 6872 * Bias pick_next to pick the sched entity that is 6873 * triggering this preemption. 6874 */ 6875 if (!next_buddy_marked) 6876 set_next_buddy(pse); 6877 goto preempt; 6878 } 6879 6880 return; 6881 6882 preempt: 6883 resched_curr(rq); 6884 /* 6885 * Only set the backward buddy when the current task is still 6886 * on the rq. This can happen when a wakeup gets interleaved 6887 * with schedule on the ->pre_schedule() or idle_balance() 6888 * point, either of which can * drop the rq lock. 6889 * 6890 * Also, during early boot the idle thread is in the fair class, 6891 * for obvious reasons its a bad idea to schedule back to it. 6892 */ 6893 if (unlikely(!se->on_rq || curr == rq->idle)) 6894 return; 6895 6896 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6897 set_last_buddy(se); 6898 } 6899 6900 static struct task_struct * 6901 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6902 { 6903 struct cfs_rq *cfs_rq = &rq->cfs; 6904 struct sched_entity *se; 6905 struct task_struct *p; 6906 int new_tasks; 6907 6908 again: 6909 if (!cfs_rq->nr_running) 6910 goto idle; 6911 6912 #ifdef CONFIG_FAIR_GROUP_SCHED 6913 if (prev->sched_class != &fair_sched_class) 6914 goto simple; 6915 6916 /* 6917 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6918 * likely that a next task is from the same cgroup as the current. 6919 * 6920 * Therefore attempt to avoid putting and setting the entire cgroup 6921 * hierarchy, only change the part that actually changes. 6922 */ 6923 6924 do { 6925 struct sched_entity *curr = cfs_rq->curr; 6926 6927 /* 6928 * Since we got here without doing put_prev_entity() we also 6929 * have to consider cfs_rq->curr. If it is still a runnable 6930 * entity, update_curr() will update its vruntime, otherwise 6931 * forget we've ever seen it. 6932 */ 6933 if (curr) { 6934 if (curr->on_rq) 6935 update_curr(cfs_rq); 6936 else 6937 curr = NULL; 6938 6939 /* 6940 * This call to check_cfs_rq_runtime() will do the 6941 * throttle and dequeue its entity in the parent(s). 6942 * Therefore the nr_running test will indeed 6943 * be correct. 6944 */ 6945 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6946 cfs_rq = &rq->cfs; 6947 6948 if (!cfs_rq->nr_running) 6949 goto idle; 6950 6951 goto simple; 6952 } 6953 } 6954 6955 se = pick_next_entity(cfs_rq, curr); 6956 cfs_rq = group_cfs_rq(se); 6957 } while (cfs_rq); 6958 6959 p = task_of(se); 6960 6961 /* 6962 * Since we haven't yet done put_prev_entity and if the selected task 6963 * is a different task than we started out with, try and touch the 6964 * least amount of cfs_rqs. 6965 */ 6966 if (prev != p) { 6967 struct sched_entity *pse = &prev->se; 6968 6969 while (!(cfs_rq = is_same_group(se, pse))) { 6970 int se_depth = se->depth; 6971 int pse_depth = pse->depth; 6972 6973 if (se_depth <= pse_depth) { 6974 put_prev_entity(cfs_rq_of(pse), pse); 6975 pse = parent_entity(pse); 6976 } 6977 if (se_depth >= pse_depth) { 6978 set_next_entity(cfs_rq_of(se), se); 6979 se = parent_entity(se); 6980 } 6981 } 6982 6983 put_prev_entity(cfs_rq, pse); 6984 set_next_entity(cfs_rq, se); 6985 } 6986 6987 goto done; 6988 simple: 6989 #endif 6990 6991 put_prev_task(rq, prev); 6992 6993 do { 6994 se = pick_next_entity(cfs_rq, NULL); 6995 set_next_entity(cfs_rq, se); 6996 cfs_rq = group_cfs_rq(se); 6997 } while (cfs_rq); 6998 6999 p = task_of(se); 7000 7001 done: __maybe_unused; 7002 #ifdef CONFIG_SMP 7003 /* 7004 * Move the next running task to the front of 7005 * the list, so our cfs_tasks list becomes MRU 7006 * one. 7007 */ 7008 list_move(&p->se.group_node, &rq->cfs_tasks); 7009 #endif 7010 7011 if (hrtick_enabled(rq)) 7012 hrtick_start_fair(rq, p); 7013 7014 return p; 7015 7016 idle: 7017 new_tasks = idle_balance(rq, rf); 7018 7019 /* 7020 * Because idle_balance() releases (and re-acquires) rq->lock, it is 7021 * possible for any higher priority task to appear. In that case we 7022 * must re-start the pick_next_entity() loop. 7023 */ 7024 if (new_tasks < 0) 7025 return RETRY_TASK; 7026 7027 if (new_tasks > 0) 7028 goto again; 7029 7030 return NULL; 7031 } 7032 7033 /* 7034 * Account for a descheduled task: 7035 */ 7036 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7037 { 7038 struct sched_entity *se = &prev->se; 7039 struct cfs_rq *cfs_rq; 7040 7041 for_each_sched_entity(se) { 7042 cfs_rq = cfs_rq_of(se); 7043 put_prev_entity(cfs_rq, se); 7044 } 7045 } 7046 7047 /* 7048 * sched_yield() is very simple 7049 * 7050 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7051 */ 7052 static void yield_task_fair(struct rq *rq) 7053 { 7054 struct task_struct *curr = rq->curr; 7055 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7056 struct sched_entity *se = &curr->se; 7057 7058 /* 7059 * Are we the only task in the tree? 7060 */ 7061 if (unlikely(rq->nr_running == 1)) 7062 return; 7063 7064 clear_buddies(cfs_rq, se); 7065 7066 if (curr->policy != SCHED_BATCH) { 7067 update_rq_clock(rq); 7068 /* 7069 * Update run-time statistics of the 'current'. 7070 */ 7071 update_curr(cfs_rq); 7072 /* 7073 * Tell update_rq_clock() that we've just updated, 7074 * so we don't do microscopic update in schedule() 7075 * and double the fastpath cost. 7076 */ 7077 rq_clock_skip_update(rq); 7078 } 7079 7080 set_skip_buddy(se); 7081 } 7082 7083 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7084 { 7085 struct sched_entity *se = &p->se; 7086 7087 /* throttled hierarchies are not runnable */ 7088 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7089 return false; 7090 7091 /* Tell the scheduler that we'd really like pse to run next. */ 7092 set_next_buddy(se); 7093 7094 yield_task_fair(rq); 7095 7096 return true; 7097 } 7098 7099 #ifdef CONFIG_SMP 7100 /************************************************** 7101 * Fair scheduling class load-balancing methods. 7102 * 7103 * BASICS 7104 * 7105 * The purpose of load-balancing is to achieve the same basic fairness the 7106 * per-CPU scheduler provides, namely provide a proportional amount of compute 7107 * time to each task. This is expressed in the following equation: 7108 * 7109 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7110 * 7111 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7112 * W_i,0 is defined as: 7113 * 7114 * W_i,0 = \Sum_j w_i,j (2) 7115 * 7116 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7117 * is derived from the nice value as per sched_prio_to_weight[]. 7118 * 7119 * The weight average is an exponential decay average of the instantaneous 7120 * weight: 7121 * 7122 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7123 * 7124 * C_i is the compute capacity of CPU i, typically it is the 7125 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7126 * can also include other factors [XXX]. 7127 * 7128 * To achieve this balance we define a measure of imbalance which follows 7129 * directly from (1): 7130 * 7131 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7132 * 7133 * We them move tasks around to minimize the imbalance. In the continuous 7134 * function space it is obvious this converges, in the discrete case we get 7135 * a few fun cases generally called infeasible weight scenarios. 7136 * 7137 * [XXX expand on: 7138 * - infeasible weights; 7139 * - local vs global optima in the discrete case. ] 7140 * 7141 * 7142 * SCHED DOMAINS 7143 * 7144 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7145 * for all i,j solution, we create a tree of CPUs that follows the hardware 7146 * topology where each level pairs two lower groups (or better). This results 7147 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7148 * tree to only the first of the previous level and we decrease the frequency 7149 * of load-balance at each level inv. proportional to the number of CPUs in 7150 * the groups. 7151 * 7152 * This yields: 7153 * 7154 * log_2 n 1 n 7155 * \Sum { --- * --- * 2^i } = O(n) (5) 7156 * i = 0 2^i 2^i 7157 * `- size of each group 7158 * | | `- number of CPUs doing load-balance 7159 * | `- freq 7160 * `- sum over all levels 7161 * 7162 * Coupled with a limit on how many tasks we can migrate every balance pass, 7163 * this makes (5) the runtime complexity of the balancer. 7164 * 7165 * An important property here is that each CPU is still (indirectly) connected 7166 * to every other CPU in at most O(log n) steps: 7167 * 7168 * The adjacency matrix of the resulting graph is given by: 7169 * 7170 * log_2 n 7171 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7172 * k = 0 7173 * 7174 * And you'll find that: 7175 * 7176 * A^(log_2 n)_i,j != 0 for all i,j (7) 7177 * 7178 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7179 * The task movement gives a factor of O(m), giving a convergence complexity 7180 * of: 7181 * 7182 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7183 * 7184 * 7185 * WORK CONSERVING 7186 * 7187 * In order to avoid CPUs going idle while there's still work to do, new idle 7188 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7189 * tree itself instead of relying on other CPUs to bring it work. 7190 * 7191 * This adds some complexity to both (5) and (8) but it reduces the total idle 7192 * time. 7193 * 7194 * [XXX more?] 7195 * 7196 * 7197 * CGROUPS 7198 * 7199 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7200 * 7201 * s_k,i 7202 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7203 * S_k 7204 * 7205 * Where 7206 * 7207 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7208 * 7209 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7210 * 7211 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7212 * property. 7213 * 7214 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7215 * rewrite all of this once again.] 7216 */ 7217 7218 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7219 7220 enum fbq_type { regular, remote, all }; 7221 7222 #define LBF_ALL_PINNED 0x01 7223 #define LBF_NEED_BREAK 0x02 7224 #define LBF_DST_PINNED 0x04 7225 #define LBF_SOME_PINNED 0x08 7226 #define LBF_NOHZ_STATS 0x10 7227 #define LBF_NOHZ_AGAIN 0x20 7228 7229 struct lb_env { 7230 struct sched_domain *sd; 7231 7232 struct rq *src_rq; 7233 int src_cpu; 7234 7235 int dst_cpu; 7236 struct rq *dst_rq; 7237 7238 struct cpumask *dst_grpmask; 7239 int new_dst_cpu; 7240 enum cpu_idle_type idle; 7241 long imbalance; 7242 /* The set of CPUs under consideration for load-balancing */ 7243 struct cpumask *cpus; 7244 7245 unsigned int flags; 7246 7247 unsigned int loop; 7248 unsigned int loop_break; 7249 unsigned int loop_max; 7250 7251 enum fbq_type fbq_type; 7252 struct list_head tasks; 7253 }; 7254 7255 /* 7256 * Is this task likely cache-hot: 7257 */ 7258 static int task_hot(struct task_struct *p, struct lb_env *env) 7259 { 7260 s64 delta; 7261 7262 lockdep_assert_held(&env->src_rq->lock); 7263 7264 if (p->sched_class != &fair_sched_class) 7265 return 0; 7266 7267 if (unlikely(p->policy == SCHED_IDLE)) 7268 return 0; 7269 7270 /* 7271 * Buddy candidates are cache hot: 7272 */ 7273 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7274 (&p->se == cfs_rq_of(&p->se)->next || 7275 &p->se == cfs_rq_of(&p->se)->last)) 7276 return 1; 7277 7278 if (sysctl_sched_migration_cost == -1) 7279 return 1; 7280 if (sysctl_sched_migration_cost == 0) 7281 return 0; 7282 7283 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7284 7285 return delta < (s64)sysctl_sched_migration_cost; 7286 } 7287 7288 #ifdef CONFIG_NUMA_BALANCING 7289 /* 7290 * Returns 1, if task migration degrades locality 7291 * Returns 0, if task migration improves locality i.e migration preferred. 7292 * Returns -1, if task migration is not affected by locality. 7293 */ 7294 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7295 { 7296 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7297 unsigned long src_faults, dst_faults; 7298 int src_nid, dst_nid; 7299 7300 if (!static_branch_likely(&sched_numa_balancing)) 7301 return -1; 7302 7303 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7304 return -1; 7305 7306 src_nid = cpu_to_node(env->src_cpu); 7307 dst_nid = cpu_to_node(env->dst_cpu); 7308 7309 if (src_nid == dst_nid) 7310 return -1; 7311 7312 /* Migrating away from the preferred node is always bad. */ 7313 if (src_nid == p->numa_preferred_nid) { 7314 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7315 return 1; 7316 else 7317 return -1; 7318 } 7319 7320 /* Encourage migration to the preferred node. */ 7321 if (dst_nid == p->numa_preferred_nid) 7322 return 0; 7323 7324 /* Leaving a core idle is often worse than degrading locality. */ 7325 if (env->idle != CPU_NOT_IDLE) 7326 return -1; 7327 7328 if (numa_group) { 7329 src_faults = group_faults(p, src_nid); 7330 dst_faults = group_faults(p, dst_nid); 7331 } else { 7332 src_faults = task_faults(p, src_nid); 7333 dst_faults = task_faults(p, dst_nid); 7334 } 7335 7336 return dst_faults < src_faults; 7337 } 7338 7339 #else 7340 static inline int migrate_degrades_locality(struct task_struct *p, 7341 struct lb_env *env) 7342 { 7343 return -1; 7344 } 7345 #endif 7346 7347 /* 7348 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7349 */ 7350 static 7351 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7352 { 7353 int tsk_cache_hot; 7354 7355 lockdep_assert_held(&env->src_rq->lock); 7356 7357 /* 7358 * We do not migrate tasks that are: 7359 * 1) throttled_lb_pair, or 7360 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7361 * 3) running (obviously), or 7362 * 4) are cache-hot on their current CPU. 7363 */ 7364 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7365 return 0; 7366 7367 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7368 int cpu; 7369 7370 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7371 7372 env->flags |= LBF_SOME_PINNED; 7373 7374 /* 7375 * Remember if this task can be migrated to any other CPU in 7376 * our sched_group. We may want to revisit it if we couldn't 7377 * meet load balance goals by pulling other tasks on src_cpu. 7378 * 7379 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7380 * already computed one in current iteration. 7381 */ 7382 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7383 return 0; 7384 7385 /* Prevent to re-select dst_cpu via env's CPUs: */ 7386 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7387 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7388 env->flags |= LBF_DST_PINNED; 7389 env->new_dst_cpu = cpu; 7390 break; 7391 } 7392 } 7393 7394 return 0; 7395 } 7396 7397 /* Record that we found atleast one task that could run on dst_cpu */ 7398 env->flags &= ~LBF_ALL_PINNED; 7399 7400 if (task_running(env->src_rq, p)) { 7401 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7402 return 0; 7403 } 7404 7405 /* 7406 * Aggressive migration if: 7407 * 1) destination numa is preferred 7408 * 2) task is cache cold, or 7409 * 3) too many balance attempts have failed. 7410 */ 7411 tsk_cache_hot = migrate_degrades_locality(p, env); 7412 if (tsk_cache_hot == -1) 7413 tsk_cache_hot = task_hot(p, env); 7414 7415 if (tsk_cache_hot <= 0 || 7416 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7417 if (tsk_cache_hot == 1) { 7418 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7419 schedstat_inc(p->se.statistics.nr_forced_migrations); 7420 } 7421 return 1; 7422 } 7423 7424 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7425 return 0; 7426 } 7427 7428 /* 7429 * detach_task() -- detach the task for the migration specified in env 7430 */ 7431 static void detach_task(struct task_struct *p, struct lb_env *env) 7432 { 7433 lockdep_assert_held(&env->src_rq->lock); 7434 7435 p->on_rq = TASK_ON_RQ_MIGRATING; 7436 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7437 set_task_cpu(p, env->dst_cpu); 7438 } 7439 7440 /* 7441 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7442 * part of active balancing operations within "domain". 7443 * 7444 * Returns a task if successful and NULL otherwise. 7445 */ 7446 static struct task_struct *detach_one_task(struct lb_env *env) 7447 { 7448 struct task_struct *p; 7449 7450 lockdep_assert_held(&env->src_rq->lock); 7451 7452 list_for_each_entry_reverse(p, 7453 &env->src_rq->cfs_tasks, se.group_node) { 7454 if (!can_migrate_task(p, env)) 7455 continue; 7456 7457 detach_task(p, env); 7458 7459 /* 7460 * Right now, this is only the second place where 7461 * lb_gained[env->idle] is updated (other is detach_tasks) 7462 * so we can safely collect stats here rather than 7463 * inside detach_tasks(). 7464 */ 7465 schedstat_inc(env->sd->lb_gained[env->idle]); 7466 return p; 7467 } 7468 return NULL; 7469 } 7470 7471 static const unsigned int sched_nr_migrate_break = 32; 7472 7473 /* 7474 * detach_tasks() -- tries to detach up to imbalance weighted load from 7475 * busiest_rq, as part of a balancing operation within domain "sd". 7476 * 7477 * Returns number of detached tasks if successful and 0 otherwise. 7478 */ 7479 static int detach_tasks(struct lb_env *env) 7480 { 7481 struct list_head *tasks = &env->src_rq->cfs_tasks; 7482 struct task_struct *p; 7483 unsigned long load; 7484 int detached = 0; 7485 7486 lockdep_assert_held(&env->src_rq->lock); 7487 7488 if (env->imbalance <= 0) 7489 return 0; 7490 7491 while (!list_empty(tasks)) { 7492 /* 7493 * We don't want to steal all, otherwise we may be treated likewise, 7494 * which could at worst lead to a livelock crash. 7495 */ 7496 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7497 break; 7498 7499 p = list_last_entry(tasks, struct task_struct, se.group_node); 7500 7501 env->loop++; 7502 /* We've more or less seen every task there is, call it quits */ 7503 if (env->loop > env->loop_max) 7504 break; 7505 7506 /* take a breather every nr_migrate tasks */ 7507 if (env->loop > env->loop_break) { 7508 env->loop_break += sched_nr_migrate_break; 7509 env->flags |= LBF_NEED_BREAK; 7510 break; 7511 } 7512 7513 if (!can_migrate_task(p, env)) 7514 goto next; 7515 7516 load = task_h_load(p); 7517 7518 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7519 goto next; 7520 7521 if ((load / 2) > env->imbalance) 7522 goto next; 7523 7524 detach_task(p, env); 7525 list_add(&p->se.group_node, &env->tasks); 7526 7527 detached++; 7528 env->imbalance -= load; 7529 7530 #ifdef CONFIG_PREEMPT 7531 /* 7532 * NEWIDLE balancing is a source of latency, so preemptible 7533 * kernels will stop after the first task is detached to minimize 7534 * the critical section. 7535 */ 7536 if (env->idle == CPU_NEWLY_IDLE) 7537 break; 7538 #endif 7539 7540 /* 7541 * We only want to steal up to the prescribed amount of 7542 * weighted load. 7543 */ 7544 if (env->imbalance <= 0) 7545 break; 7546 7547 continue; 7548 next: 7549 list_move(&p->se.group_node, tasks); 7550 } 7551 7552 /* 7553 * Right now, this is one of only two places we collect this stat 7554 * so we can safely collect detach_one_task() stats here rather 7555 * than inside detach_one_task(). 7556 */ 7557 schedstat_add(env->sd->lb_gained[env->idle], detached); 7558 7559 return detached; 7560 } 7561 7562 /* 7563 * attach_task() -- attach the task detached by detach_task() to its new rq. 7564 */ 7565 static void attach_task(struct rq *rq, struct task_struct *p) 7566 { 7567 lockdep_assert_held(&rq->lock); 7568 7569 BUG_ON(task_rq(p) != rq); 7570 activate_task(rq, p, ENQUEUE_NOCLOCK); 7571 p->on_rq = TASK_ON_RQ_QUEUED; 7572 check_preempt_curr(rq, p, 0); 7573 } 7574 7575 /* 7576 * attach_one_task() -- attaches the task returned from detach_one_task() to 7577 * its new rq. 7578 */ 7579 static void attach_one_task(struct rq *rq, struct task_struct *p) 7580 { 7581 struct rq_flags rf; 7582 7583 rq_lock(rq, &rf); 7584 update_rq_clock(rq); 7585 attach_task(rq, p); 7586 rq_unlock(rq, &rf); 7587 } 7588 7589 /* 7590 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7591 * new rq. 7592 */ 7593 static void attach_tasks(struct lb_env *env) 7594 { 7595 struct list_head *tasks = &env->tasks; 7596 struct task_struct *p; 7597 struct rq_flags rf; 7598 7599 rq_lock(env->dst_rq, &rf); 7600 update_rq_clock(env->dst_rq); 7601 7602 while (!list_empty(tasks)) { 7603 p = list_first_entry(tasks, struct task_struct, se.group_node); 7604 list_del_init(&p->se.group_node); 7605 7606 attach_task(env->dst_rq, p); 7607 } 7608 7609 rq_unlock(env->dst_rq, &rf); 7610 } 7611 7612 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7613 { 7614 if (cfs_rq->avg.load_avg) 7615 return true; 7616 7617 if (cfs_rq->avg.util_avg) 7618 return true; 7619 7620 return false; 7621 } 7622 7623 #ifdef CONFIG_FAIR_GROUP_SCHED 7624 7625 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7626 { 7627 if (cfs_rq->load.weight) 7628 return false; 7629 7630 if (cfs_rq->avg.load_sum) 7631 return false; 7632 7633 if (cfs_rq->avg.util_sum) 7634 return false; 7635 7636 if (cfs_rq->avg.runnable_load_sum) 7637 return false; 7638 7639 return true; 7640 } 7641 7642 static void update_blocked_averages(int cpu) 7643 { 7644 struct rq *rq = cpu_rq(cpu); 7645 struct cfs_rq *cfs_rq, *pos; 7646 struct rq_flags rf; 7647 bool done = true; 7648 7649 rq_lock_irqsave(rq, &rf); 7650 update_rq_clock(rq); 7651 7652 /* 7653 * Iterates the task_group tree in a bottom up fashion, see 7654 * list_add_leaf_cfs_rq() for details. 7655 */ 7656 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7657 struct sched_entity *se; 7658 7659 /* throttled entities do not contribute to load */ 7660 if (throttled_hierarchy(cfs_rq)) 7661 continue; 7662 7663 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7664 update_tg_load_avg(cfs_rq, 0); 7665 7666 /* Propagate pending load changes to the parent, if any: */ 7667 se = cfs_rq->tg->se[cpu]; 7668 if (se && !skip_blocked_update(se)) 7669 update_load_avg(cfs_rq_of(se), se, 0); 7670 7671 /* 7672 * There can be a lot of idle CPU cgroups. Don't let fully 7673 * decayed cfs_rqs linger on the list. 7674 */ 7675 if (cfs_rq_is_decayed(cfs_rq)) 7676 list_del_leaf_cfs_rq(cfs_rq); 7677 7678 /* Don't need periodic decay once load/util_avg are null */ 7679 if (cfs_rq_has_blocked(cfs_rq)) 7680 done = false; 7681 } 7682 7683 #ifdef CONFIG_NO_HZ_COMMON 7684 rq->last_blocked_load_update_tick = jiffies; 7685 if (done) 7686 rq->has_blocked_load = 0; 7687 #endif 7688 rq_unlock_irqrestore(rq, &rf); 7689 } 7690 7691 /* 7692 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7693 * This needs to be done in a top-down fashion because the load of a child 7694 * group is a fraction of its parents load. 7695 */ 7696 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7697 { 7698 struct rq *rq = rq_of(cfs_rq); 7699 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7700 unsigned long now = jiffies; 7701 unsigned long load; 7702 7703 if (cfs_rq->last_h_load_update == now) 7704 return; 7705 7706 cfs_rq->h_load_next = NULL; 7707 for_each_sched_entity(se) { 7708 cfs_rq = cfs_rq_of(se); 7709 cfs_rq->h_load_next = se; 7710 if (cfs_rq->last_h_load_update == now) 7711 break; 7712 } 7713 7714 if (!se) { 7715 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7716 cfs_rq->last_h_load_update = now; 7717 } 7718 7719 while ((se = cfs_rq->h_load_next) != NULL) { 7720 load = cfs_rq->h_load; 7721 load = div64_ul(load * se->avg.load_avg, 7722 cfs_rq_load_avg(cfs_rq) + 1); 7723 cfs_rq = group_cfs_rq(se); 7724 cfs_rq->h_load = load; 7725 cfs_rq->last_h_load_update = now; 7726 } 7727 } 7728 7729 static unsigned long task_h_load(struct task_struct *p) 7730 { 7731 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7732 7733 update_cfs_rq_h_load(cfs_rq); 7734 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7735 cfs_rq_load_avg(cfs_rq) + 1); 7736 } 7737 #else 7738 static inline void update_blocked_averages(int cpu) 7739 { 7740 struct rq *rq = cpu_rq(cpu); 7741 struct cfs_rq *cfs_rq = &rq->cfs; 7742 struct rq_flags rf; 7743 7744 rq_lock_irqsave(rq, &rf); 7745 update_rq_clock(rq); 7746 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7747 #ifdef CONFIG_NO_HZ_COMMON 7748 rq->last_blocked_load_update_tick = jiffies; 7749 if (!cfs_rq_has_blocked(cfs_rq)) 7750 rq->has_blocked_load = 0; 7751 #endif 7752 rq_unlock_irqrestore(rq, &rf); 7753 } 7754 7755 static unsigned long task_h_load(struct task_struct *p) 7756 { 7757 return p->se.avg.load_avg; 7758 } 7759 #endif 7760 7761 /********** Helpers for find_busiest_group ************************/ 7762 7763 enum group_type { 7764 group_other = 0, 7765 group_imbalanced, 7766 group_overloaded, 7767 }; 7768 7769 /* 7770 * sg_lb_stats - stats of a sched_group required for load_balancing 7771 */ 7772 struct sg_lb_stats { 7773 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7774 unsigned long group_load; /* Total load over the CPUs of the group */ 7775 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7776 unsigned long load_per_task; 7777 unsigned long group_capacity; 7778 unsigned long group_util; /* Total utilization of the group */ 7779 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7780 unsigned int idle_cpus; 7781 unsigned int group_weight; 7782 enum group_type group_type; 7783 int group_no_capacity; 7784 #ifdef CONFIG_NUMA_BALANCING 7785 unsigned int nr_numa_running; 7786 unsigned int nr_preferred_running; 7787 #endif 7788 }; 7789 7790 /* 7791 * sd_lb_stats - Structure to store the statistics of a sched_domain 7792 * during load balancing. 7793 */ 7794 struct sd_lb_stats { 7795 struct sched_group *busiest; /* Busiest group in this sd */ 7796 struct sched_group *local; /* Local group in this sd */ 7797 unsigned long total_running; 7798 unsigned long total_load; /* Total load of all groups in sd */ 7799 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7800 unsigned long avg_load; /* Average load across all groups in sd */ 7801 7802 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7803 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7804 }; 7805 7806 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7807 { 7808 /* 7809 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7810 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7811 * We must however clear busiest_stat::avg_load because 7812 * update_sd_pick_busiest() reads this before assignment. 7813 */ 7814 *sds = (struct sd_lb_stats){ 7815 .busiest = NULL, 7816 .local = NULL, 7817 .total_running = 0UL, 7818 .total_load = 0UL, 7819 .total_capacity = 0UL, 7820 .busiest_stat = { 7821 .avg_load = 0UL, 7822 .sum_nr_running = 0, 7823 .group_type = group_other, 7824 }, 7825 }; 7826 } 7827 7828 /** 7829 * get_sd_load_idx - Obtain the load index for a given sched domain. 7830 * @sd: The sched_domain whose load_idx is to be obtained. 7831 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7832 * 7833 * Return: The load index. 7834 */ 7835 static inline int get_sd_load_idx(struct sched_domain *sd, 7836 enum cpu_idle_type idle) 7837 { 7838 int load_idx; 7839 7840 switch (idle) { 7841 case CPU_NOT_IDLE: 7842 load_idx = sd->busy_idx; 7843 break; 7844 7845 case CPU_NEWLY_IDLE: 7846 load_idx = sd->newidle_idx; 7847 break; 7848 default: 7849 load_idx = sd->idle_idx; 7850 break; 7851 } 7852 7853 return load_idx; 7854 } 7855 7856 static unsigned long scale_rt_capacity(int cpu) 7857 { 7858 struct rq *rq = cpu_rq(cpu); 7859 u64 total, used, age_stamp, avg; 7860 s64 delta; 7861 7862 /* 7863 * Since we're reading these variables without serialization make sure 7864 * we read them once before doing sanity checks on them. 7865 */ 7866 age_stamp = READ_ONCE(rq->age_stamp); 7867 avg = READ_ONCE(rq->rt_avg); 7868 delta = __rq_clock_broken(rq) - age_stamp; 7869 7870 if (unlikely(delta < 0)) 7871 delta = 0; 7872 7873 total = sched_avg_period() + delta; 7874 7875 used = div_u64(avg, total); 7876 7877 if (likely(used < SCHED_CAPACITY_SCALE)) 7878 return SCHED_CAPACITY_SCALE - used; 7879 7880 return 1; 7881 } 7882 7883 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7884 { 7885 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7886 struct sched_group *sdg = sd->groups; 7887 7888 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7889 7890 capacity *= scale_rt_capacity(cpu); 7891 capacity >>= SCHED_CAPACITY_SHIFT; 7892 7893 if (!capacity) 7894 capacity = 1; 7895 7896 cpu_rq(cpu)->cpu_capacity = capacity; 7897 sdg->sgc->capacity = capacity; 7898 sdg->sgc->min_capacity = capacity; 7899 } 7900 7901 void update_group_capacity(struct sched_domain *sd, int cpu) 7902 { 7903 struct sched_domain *child = sd->child; 7904 struct sched_group *group, *sdg = sd->groups; 7905 unsigned long capacity, min_capacity; 7906 unsigned long interval; 7907 7908 interval = msecs_to_jiffies(sd->balance_interval); 7909 interval = clamp(interval, 1UL, max_load_balance_interval); 7910 sdg->sgc->next_update = jiffies + interval; 7911 7912 if (!child) { 7913 update_cpu_capacity(sd, cpu); 7914 return; 7915 } 7916 7917 capacity = 0; 7918 min_capacity = ULONG_MAX; 7919 7920 if (child->flags & SD_OVERLAP) { 7921 /* 7922 * SD_OVERLAP domains cannot assume that child groups 7923 * span the current group. 7924 */ 7925 7926 for_each_cpu(cpu, sched_group_span(sdg)) { 7927 struct sched_group_capacity *sgc; 7928 struct rq *rq = cpu_rq(cpu); 7929 7930 /* 7931 * build_sched_domains() -> init_sched_groups_capacity() 7932 * gets here before we've attached the domains to the 7933 * runqueues. 7934 * 7935 * Use capacity_of(), which is set irrespective of domains 7936 * in update_cpu_capacity(). 7937 * 7938 * This avoids capacity from being 0 and 7939 * causing divide-by-zero issues on boot. 7940 */ 7941 if (unlikely(!rq->sd)) { 7942 capacity += capacity_of(cpu); 7943 } else { 7944 sgc = rq->sd->groups->sgc; 7945 capacity += sgc->capacity; 7946 } 7947 7948 min_capacity = min(capacity, min_capacity); 7949 } 7950 } else { 7951 /* 7952 * !SD_OVERLAP domains can assume that child groups 7953 * span the current group. 7954 */ 7955 7956 group = child->groups; 7957 do { 7958 struct sched_group_capacity *sgc = group->sgc; 7959 7960 capacity += sgc->capacity; 7961 min_capacity = min(sgc->min_capacity, min_capacity); 7962 group = group->next; 7963 } while (group != child->groups); 7964 } 7965 7966 sdg->sgc->capacity = capacity; 7967 sdg->sgc->min_capacity = min_capacity; 7968 } 7969 7970 /* 7971 * Check whether the capacity of the rq has been noticeably reduced by side 7972 * activity. The imbalance_pct is used for the threshold. 7973 * Return true is the capacity is reduced 7974 */ 7975 static inline int 7976 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7977 { 7978 return ((rq->cpu_capacity * sd->imbalance_pct) < 7979 (rq->cpu_capacity_orig * 100)); 7980 } 7981 7982 /* 7983 * Group imbalance indicates (and tries to solve) the problem where balancing 7984 * groups is inadequate due to ->cpus_allowed constraints. 7985 * 7986 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7987 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7988 * Something like: 7989 * 7990 * { 0 1 2 3 } { 4 5 6 7 } 7991 * * * * * 7992 * 7993 * If we were to balance group-wise we'd place two tasks in the first group and 7994 * two tasks in the second group. Clearly this is undesired as it will overload 7995 * cpu 3 and leave one of the CPUs in the second group unused. 7996 * 7997 * The current solution to this issue is detecting the skew in the first group 7998 * by noticing the lower domain failed to reach balance and had difficulty 7999 * moving tasks due to affinity constraints. 8000 * 8001 * When this is so detected; this group becomes a candidate for busiest; see 8002 * update_sd_pick_busiest(). And calculate_imbalance() and 8003 * find_busiest_group() avoid some of the usual balance conditions to allow it 8004 * to create an effective group imbalance. 8005 * 8006 * This is a somewhat tricky proposition since the next run might not find the 8007 * group imbalance and decide the groups need to be balanced again. A most 8008 * subtle and fragile situation. 8009 */ 8010 8011 static inline int sg_imbalanced(struct sched_group *group) 8012 { 8013 return group->sgc->imbalance; 8014 } 8015 8016 /* 8017 * group_has_capacity returns true if the group has spare capacity that could 8018 * be used by some tasks. 8019 * We consider that a group has spare capacity if the * number of task is 8020 * smaller than the number of CPUs or if the utilization is lower than the 8021 * available capacity for CFS tasks. 8022 * For the latter, we use a threshold to stabilize the state, to take into 8023 * account the variance of the tasks' load and to return true if the available 8024 * capacity in meaningful for the load balancer. 8025 * As an example, an available capacity of 1% can appear but it doesn't make 8026 * any benefit for the load balance. 8027 */ 8028 static inline bool 8029 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 8030 { 8031 if (sgs->sum_nr_running < sgs->group_weight) 8032 return true; 8033 8034 if ((sgs->group_capacity * 100) > 8035 (sgs->group_util * env->sd->imbalance_pct)) 8036 return true; 8037 8038 return false; 8039 } 8040 8041 /* 8042 * group_is_overloaded returns true if the group has more tasks than it can 8043 * handle. 8044 * group_is_overloaded is not equals to !group_has_capacity because a group 8045 * with the exact right number of tasks, has no more spare capacity but is not 8046 * overloaded so both group_has_capacity and group_is_overloaded return 8047 * false. 8048 */ 8049 static inline bool 8050 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 8051 { 8052 if (sgs->sum_nr_running <= sgs->group_weight) 8053 return false; 8054 8055 if ((sgs->group_capacity * 100) < 8056 (sgs->group_util * env->sd->imbalance_pct)) 8057 return true; 8058 8059 return false; 8060 } 8061 8062 /* 8063 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 8064 * per-CPU capacity than sched_group ref. 8065 */ 8066 static inline bool 8067 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8068 { 8069 return sg->sgc->min_capacity * capacity_margin < 8070 ref->sgc->min_capacity * 1024; 8071 } 8072 8073 static inline enum 8074 group_type group_classify(struct sched_group *group, 8075 struct sg_lb_stats *sgs) 8076 { 8077 if (sgs->group_no_capacity) 8078 return group_overloaded; 8079 8080 if (sg_imbalanced(group)) 8081 return group_imbalanced; 8082 8083 return group_other; 8084 } 8085 8086 static bool update_nohz_stats(struct rq *rq, bool force) 8087 { 8088 #ifdef CONFIG_NO_HZ_COMMON 8089 unsigned int cpu = rq->cpu; 8090 8091 if (!rq->has_blocked_load) 8092 return false; 8093 8094 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8095 return false; 8096 8097 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8098 return true; 8099 8100 update_blocked_averages(cpu); 8101 8102 return rq->has_blocked_load; 8103 #else 8104 return false; 8105 #endif 8106 } 8107 8108 /** 8109 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8110 * @env: The load balancing environment. 8111 * @group: sched_group whose statistics are to be updated. 8112 * @load_idx: Load index of sched_domain of this_cpu for load calc. 8113 * @local_group: Does group contain this_cpu. 8114 * @sgs: variable to hold the statistics for this group. 8115 * @overload: Indicate more than one runnable task for any CPU. 8116 */ 8117 static inline void update_sg_lb_stats(struct lb_env *env, 8118 struct sched_group *group, int load_idx, 8119 int local_group, struct sg_lb_stats *sgs, 8120 bool *overload) 8121 { 8122 unsigned long load; 8123 int i, nr_running; 8124 8125 memset(sgs, 0, sizeof(*sgs)); 8126 8127 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8128 struct rq *rq = cpu_rq(i); 8129 8130 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8131 env->flags |= LBF_NOHZ_AGAIN; 8132 8133 /* Bias balancing toward CPUs of our domain: */ 8134 if (local_group) 8135 load = target_load(i, load_idx); 8136 else 8137 load = source_load(i, load_idx); 8138 8139 sgs->group_load += load; 8140 sgs->group_util += cpu_util(i); 8141 sgs->sum_nr_running += rq->cfs.h_nr_running; 8142 8143 nr_running = rq->nr_running; 8144 if (nr_running > 1) 8145 *overload = true; 8146 8147 #ifdef CONFIG_NUMA_BALANCING 8148 sgs->nr_numa_running += rq->nr_numa_running; 8149 sgs->nr_preferred_running += rq->nr_preferred_running; 8150 #endif 8151 sgs->sum_weighted_load += weighted_cpuload(rq); 8152 /* 8153 * No need to call idle_cpu() if nr_running is not 0 8154 */ 8155 if (!nr_running && idle_cpu(i)) 8156 sgs->idle_cpus++; 8157 } 8158 8159 /* Adjust by relative CPU capacity of the group */ 8160 sgs->group_capacity = group->sgc->capacity; 8161 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8162 8163 if (sgs->sum_nr_running) 8164 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 8165 8166 sgs->group_weight = group->group_weight; 8167 8168 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8169 sgs->group_type = group_classify(group, sgs); 8170 } 8171 8172 /** 8173 * update_sd_pick_busiest - return 1 on busiest group 8174 * @env: The load balancing environment. 8175 * @sds: sched_domain statistics 8176 * @sg: sched_group candidate to be checked for being the busiest 8177 * @sgs: sched_group statistics 8178 * 8179 * Determine if @sg is a busier group than the previously selected 8180 * busiest group. 8181 * 8182 * Return: %true if @sg is a busier group than the previously selected 8183 * busiest group. %false otherwise. 8184 */ 8185 static bool update_sd_pick_busiest(struct lb_env *env, 8186 struct sd_lb_stats *sds, 8187 struct sched_group *sg, 8188 struct sg_lb_stats *sgs) 8189 { 8190 struct sg_lb_stats *busiest = &sds->busiest_stat; 8191 8192 if (sgs->group_type > busiest->group_type) 8193 return true; 8194 8195 if (sgs->group_type < busiest->group_type) 8196 return false; 8197 8198 if (sgs->avg_load <= busiest->avg_load) 8199 return false; 8200 8201 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8202 goto asym_packing; 8203 8204 /* 8205 * Candidate sg has no more than one task per CPU and 8206 * has higher per-CPU capacity. Migrating tasks to less 8207 * capable CPUs may harm throughput. Maximize throughput, 8208 * power/energy consequences are not considered. 8209 */ 8210 if (sgs->sum_nr_running <= sgs->group_weight && 8211 group_smaller_cpu_capacity(sds->local, sg)) 8212 return false; 8213 8214 asym_packing: 8215 /* This is the busiest node in its class. */ 8216 if (!(env->sd->flags & SD_ASYM_PACKING)) 8217 return true; 8218 8219 /* No ASYM_PACKING if target CPU is already busy */ 8220 if (env->idle == CPU_NOT_IDLE) 8221 return true; 8222 /* 8223 * ASYM_PACKING needs to move all the work to the highest 8224 * prority CPUs in the group, therefore mark all groups 8225 * of lower priority than ourself as busy. 8226 */ 8227 if (sgs->sum_nr_running && 8228 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8229 if (!sds->busiest) 8230 return true; 8231 8232 /* Prefer to move from lowest priority CPU's work */ 8233 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8234 sg->asym_prefer_cpu)) 8235 return true; 8236 } 8237 8238 return false; 8239 } 8240 8241 #ifdef CONFIG_NUMA_BALANCING 8242 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8243 { 8244 if (sgs->sum_nr_running > sgs->nr_numa_running) 8245 return regular; 8246 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8247 return remote; 8248 return all; 8249 } 8250 8251 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8252 { 8253 if (rq->nr_running > rq->nr_numa_running) 8254 return regular; 8255 if (rq->nr_running > rq->nr_preferred_running) 8256 return remote; 8257 return all; 8258 } 8259 #else 8260 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8261 { 8262 return all; 8263 } 8264 8265 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8266 { 8267 return regular; 8268 } 8269 #endif /* CONFIG_NUMA_BALANCING */ 8270 8271 /** 8272 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8273 * @env: The load balancing environment. 8274 * @sds: variable to hold the statistics for this sched_domain. 8275 */ 8276 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8277 { 8278 struct sched_domain *child = env->sd->child; 8279 struct sched_group *sg = env->sd->groups; 8280 struct sg_lb_stats *local = &sds->local_stat; 8281 struct sg_lb_stats tmp_sgs; 8282 int load_idx, prefer_sibling = 0; 8283 bool overload = false; 8284 8285 if (child && child->flags & SD_PREFER_SIBLING) 8286 prefer_sibling = 1; 8287 8288 #ifdef CONFIG_NO_HZ_COMMON 8289 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8290 env->flags |= LBF_NOHZ_STATS; 8291 #endif 8292 8293 load_idx = get_sd_load_idx(env->sd, env->idle); 8294 8295 do { 8296 struct sg_lb_stats *sgs = &tmp_sgs; 8297 int local_group; 8298 8299 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8300 if (local_group) { 8301 sds->local = sg; 8302 sgs = local; 8303 8304 if (env->idle != CPU_NEWLY_IDLE || 8305 time_after_eq(jiffies, sg->sgc->next_update)) 8306 update_group_capacity(env->sd, env->dst_cpu); 8307 } 8308 8309 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 8310 &overload); 8311 8312 if (local_group) 8313 goto next_group; 8314 8315 /* 8316 * In case the child domain prefers tasks go to siblings 8317 * first, lower the sg capacity so that we'll try 8318 * and move all the excess tasks away. We lower the capacity 8319 * of a group only if the local group has the capacity to fit 8320 * these excess tasks. The extra check prevents the case where 8321 * you always pull from the heaviest group when it is already 8322 * under-utilized (possible with a large weight task outweighs 8323 * the tasks on the system). 8324 */ 8325 if (prefer_sibling && sds->local && 8326 group_has_capacity(env, local) && 8327 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8328 sgs->group_no_capacity = 1; 8329 sgs->group_type = group_classify(sg, sgs); 8330 } 8331 8332 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8333 sds->busiest = sg; 8334 sds->busiest_stat = *sgs; 8335 } 8336 8337 next_group: 8338 /* Now, start updating sd_lb_stats */ 8339 sds->total_running += sgs->sum_nr_running; 8340 sds->total_load += sgs->group_load; 8341 sds->total_capacity += sgs->group_capacity; 8342 8343 sg = sg->next; 8344 } while (sg != env->sd->groups); 8345 8346 #ifdef CONFIG_NO_HZ_COMMON 8347 if ((env->flags & LBF_NOHZ_AGAIN) && 8348 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8349 8350 WRITE_ONCE(nohz.next_blocked, 8351 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8352 } 8353 #endif 8354 8355 if (env->sd->flags & SD_NUMA) 8356 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8357 8358 if (!env->sd->parent) { 8359 /* update overload indicator if we are at root domain */ 8360 if (env->dst_rq->rd->overload != overload) 8361 env->dst_rq->rd->overload = overload; 8362 } 8363 } 8364 8365 /** 8366 * check_asym_packing - Check to see if the group is packed into the 8367 * sched domain. 8368 * 8369 * This is primarily intended to used at the sibling level. Some 8370 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8371 * case of POWER7, it can move to lower SMT modes only when higher 8372 * threads are idle. When in lower SMT modes, the threads will 8373 * perform better since they share less core resources. Hence when we 8374 * have idle threads, we want them to be the higher ones. 8375 * 8376 * This packing function is run on idle threads. It checks to see if 8377 * the busiest CPU in this domain (core in the P7 case) has a higher 8378 * CPU number than the packing function is being run on. Here we are 8379 * assuming lower CPU number will be equivalent to lower a SMT thread 8380 * number. 8381 * 8382 * Return: 1 when packing is required and a task should be moved to 8383 * this CPU. The amount of the imbalance is returned in env->imbalance. 8384 * 8385 * @env: The load balancing environment. 8386 * @sds: Statistics of the sched_domain which is to be packed 8387 */ 8388 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8389 { 8390 int busiest_cpu; 8391 8392 if (!(env->sd->flags & SD_ASYM_PACKING)) 8393 return 0; 8394 8395 if (env->idle == CPU_NOT_IDLE) 8396 return 0; 8397 8398 if (!sds->busiest) 8399 return 0; 8400 8401 busiest_cpu = sds->busiest->asym_prefer_cpu; 8402 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8403 return 0; 8404 8405 env->imbalance = DIV_ROUND_CLOSEST( 8406 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8407 SCHED_CAPACITY_SCALE); 8408 8409 return 1; 8410 } 8411 8412 /** 8413 * fix_small_imbalance - Calculate the minor imbalance that exists 8414 * amongst the groups of a sched_domain, during 8415 * load balancing. 8416 * @env: The load balancing environment. 8417 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8418 */ 8419 static inline 8420 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8421 { 8422 unsigned long tmp, capa_now = 0, capa_move = 0; 8423 unsigned int imbn = 2; 8424 unsigned long scaled_busy_load_per_task; 8425 struct sg_lb_stats *local, *busiest; 8426 8427 local = &sds->local_stat; 8428 busiest = &sds->busiest_stat; 8429 8430 if (!local->sum_nr_running) 8431 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8432 else if (busiest->load_per_task > local->load_per_task) 8433 imbn = 1; 8434 8435 scaled_busy_load_per_task = 8436 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8437 busiest->group_capacity; 8438 8439 if (busiest->avg_load + scaled_busy_load_per_task >= 8440 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8441 env->imbalance = busiest->load_per_task; 8442 return; 8443 } 8444 8445 /* 8446 * OK, we don't have enough imbalance to justify moving tasks, 8447 * however we may be able to increase total CPU capacity used by 8448 * moving them. 8449 */ 8450 8451 capa_now += busiest->group_capacity * 8452 min(busiest->load_per_task, busiest->avg_load); 8453 capa_now += local->group_capacity * 8454 min(local->load_per_task, local->avg_load); 8455 capa_now /= SCHED_CAPACITY_SCALE; 8456 8457 /* Amount of load we'd subtract */ 8458 if (busiest->avg_load > scaled_busy_load_per_task) { 8459 capa_move += busiest->group_capacity * 8460 min(busiest->load_per_task, 8461 busiest->avg_load - scaled_busy_load_per_task); 8462 } 8463 8464 /* Amount of load we'd add */ 8465 if (busiest->avg_load * busiest->group_capacity < 8466 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8467 tmp = (busiest->avg_load * busiest->group_capacity) / 8468 local->group_capacity; 8469 } else { 8470 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8471 local->group_capacity; 8472 } 8473 capa_move += local->group_capacity * 8474 min(local->load_per_task, local->avg_load + tmp); 8475 capa_move /= SCHED_CAPACITY_SCALE; 8476 8477 /* Move if we gain throughput */ 8478 if (capa_move > capa_now) 8479 env->imbalance = busiest->load_per_task; 8480 } 8481 8482 /** 8483 * calculate_imbalance - Calculate the amount of imbalance present within the 8484 * groups of a given sched_domain during load balance. 8485 * @env: load balance environment 8486 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8487 */ 8488 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8489 { 8490 unsigned long max_pull, load_above_capacity = ~0UL; 8491 struct sg_lb_stats *local, *busiest; 8492 8493 local = &sds->local_stat; 8494 busiest = &sds->busiest_stat; 8495 8496 if (busiest->group_type == group_imbalanced) { 8497 /* 8498 * In the group_imb case we cannot rely on group-wide averages 8499 * to ensure CPU-load equilibrium, look at wider averages. XXX 8500 */ 8501 busiest->load_per_task = 8502 min(busiest->load_per_task, sds->avg_load); 8503 } 8504 8505 /* 8506 * Avg load of busiest sg can be less and avg load of local sg can 8507 * be greater than avg load across all sgs of sd because avg load 8508 * factors in sg capacity and sgs with smaller group_type are 8509 * skipped when updating the busiest sg: 8510 */ 8511 if (busiest->avg_load <= sds->avg_load || 8512 local->avg_load >= sds->avg_load) { 8513 env->imbalance = 0; 8514 return fix_small_imbalance(env, sds); 8515 } 8516 8517 /* 8518 * If there aren't any idle CPUs, avoid creating some. 8519 */ 8520 if (busiest->group_type == group_overloaded && 8521 local->group_type == group_overloaded) { 8522 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8523 if (load_above_capacity > busiest->group_capacity) { 8524 load_above_capacity -= busiest->group_capacity; 8525 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8526 load_above_capacity /= busiest->group_capacity; 8527 } else 8528 load_above_capacity = ~0UL; 8529 } 8530 8531 /* 8532 * We're trying to get all the CPUs to the average_load, so we don't 8533 * want to push ourselves above the average load, nor do we wish to 8534 * reduce the max loaded CPU below the average load. At the same time, 8535 * we also don't want to reduce the group load below the group 8536 * capacity. Thus we look for the minimum possible imbalance. 8537 */ 8538 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8539 8540 /* How much load to actually move to equalise the imbalance */ 8541 env->imbalance = min( 8542 max_pull * busiest->group_capacity, 8543 (sds->avg_load - local->avg_load) * local->group_capacity 8544 ) / SCHED_CAPACITY_SCALE; 8545 8546 /* 8547 * if *imbalance is less than the average load per runnable task 8548 * there is no guarantee that any tasks will be moved so we'll have 8549 * a think about bumping its value to force at least one task to be 8550 * moved 8551 */ 8552 if (env->imbalance < busiest->load_per_task) 8553 return fix_small_imbalance(env, sds); 8554 } 8555 8556 /******* find_busiest_group() helpers end here *********************/ 8557 8558 /** 8559 * find_busiest_group - Returns the busiest group within the sched_domain 8560 * if there is an imbalance. 8561 * 8562 * Also calculates the amount of weighted load which should be moved 8563 * to restore balance. 8564 * 8565 * @env: The load balancing environment. 8566 * 8567 * Return: - The busiest group if imbalance exists. 8568 */ 8569 static struct sched_group *find_busiest_group(struct lb_env *env) 8570 { 8571 struct sg_lb_stats *local, *busiest; 8572 struct sd_lb_stats sds; 8573 8574 init_sd_lb_stats(&sds); 8575 8576 /* 8577 * Compute the various statistics relavent for load balancing at 8578 * this level. 8579 */ 8580 update_sd_lb_stats(env, &sds); 8581 local = &sds.local_stat; 8582 busiest = &sds.busiest_stat; 8583 8584 /* ASYM feature bypasses nice load balance check */ 8585 if (check_asym_packing(env, &sds)) 8586 return sds.busiest; 8587 8588 /* There is no busy sibling group to pull tasks from */ 8589 if (!sds.busiest || busiest->sum_nr_running == 0) 8590 goto out_balanced; 8591 8592 /* XXX broken for overlapping NUMA groups */ 8593 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8594 / sds.total_capacity; 8595 8596 /* 8597 * If the busiest group is imbalanced the below checks don't 8598 * work because they assume all things are equal, which typically 8599 * isn't true due to cpus_allowed constraints and the like. 8600 */ 8601 if (busiest->group_type == group_imbalanced) 8602 goto force_balance; 8603 8604 /* 8605 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8606 * capacities from resulting in underutilization due to avg_load. 8607 */ 8608 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8609 busiest->group_no_capacity) 8610 goto force_balance; 8611 8612 /* 8613 * If the local group is busier than the selected busiest group 8614 * don't try and pull any tasks. 8615 */ 8616 if (local->avg_load >= busiest->avg_load) 8617 goto out_balanced; 8618 8619 /* 8620 * Don't pull any tasks if this group is already above the domain 8621 * average load. 8622 */ 8623 if (local->avg_load >= sds.avg_load) 8624 goto out_balanced; 8625 8626 if (env->idle == CPU_IDLE) { 8627 /* 8628 * This CPU is idle. If the busiest group is not overloaded 8629 * and there is no imbalance between this and busiest group 8630 * wrt idle CPUs, it is balanced. The imbalance becomes 8631 * significant if the diff is greater than 1 otherwise we 8632 * might end up to just move the imbalance on another group 8633 */ 8634 if ((busiest->group_type != group_overloaded) && 8635 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8636 goto out_balanced; 8637 } else { 8638 /* 8639 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8640 * imbalance_pct to be conservative. 8641 */ 8642 if (100 * busiest->avg_load <= 8643 env->sd->imbalance_pct * local->avg_load) 8644 goto out_balanced; 8645 } 8646 8647 force_balance: 8648 /* Looks like there is an imbalance. Compute it */ 8649 calculate_imbalance(env, &sds); 8650 return sds.busiest; 8651 8652 out_balanced: 8653 env->imbalance = 0; 8654 return NULL; 8655 } 8656 8657 /* 8658 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8659 */ 8660 static struct rq *find_busiest_queue(struct lb_env *env, 8661 struct sched_group *group) 8662 { 8663 struct rq *busiest = NULL, *rq; 8664 unsigned long busiest_load = 0, busiest_capacity = 1; 8665 int i; 8666 8667 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8668 unsigned long capacity, wl; 8669 enum fbq_type rt; 8670 8671 rq = cpu_rq(i); 8672 rt = fbq_classify_rq(rq); 8673 8674 /* 8675 * We classify groups/runqueues into three groups: 8676 * - regular: there are !numa tasks 8677 * - remote: there are numa tasks that run on the 'wrong' node 8678 * - all: there is no distinction 8679 * 8680 * In order to avoid migrating ideally placed numa tasks, 8681 * ignore those when there's better options. 8682 * 8683 * If we ignore the actual busiest queue to migrate another 8684 * task, the next balance pass can still reduce the busiest 8685 * queue by moving tasks around inside the node. 8686 * 8687 * If we cannot move enough load due to this classification 8688 * the next pass will adjust the group classification and 8689 * allow migration of more tasks. 8690 * 8691 * Both cases only affect the total convergence complexity. 8692 */ 8693 if (rt > env->fbq_type) 8694 continue; 8695 8696 capacity = capacity_of(i); 8697 8698 wl = weighted_cpuload(rq); 8699 8700 /* 8701 * When comparing with imbalance, use weighted_cpuload() 8702 * which is not scaled with the CPU capacity. 8703 */ 8704 8705 if (rq->nr_running == 1 && wl > env->imbalance && 8706 !check_cpu_capacity(rq, env->sd)) 8707 continue; 8708 8709 /* 8710 * For the load comparisons with the other CPU's, consider 8711 * the weighted_cpuload() scaled with the CPU capacity, so 8712 * that the load can be moved away from the CPU that is 8713 * potentially running at a lower capacity. 8714 * 8715 * Thus we're looking for max(wl_i / capacity_i), crosswise 8716 * multiplication to rid ourselves of the division works out 8717 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8718 * our previous maximum. 8719 */ 8720 if (wl * busiest_capacity > busiest_load * capacity) { 8721 busiest_load = wl; 8722 busiest_capacity = capacity; 8723 busiest = rq; 8724 } 8725 } 8726 8727 return busiest; 8728 } 8729 8730 /* 8731 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8732 * so long as it is large enough. 8733 */ 8734 #define MAX_PINNED_INTERVAL 512 8735 8736 static int need_active_balance(struct lb_env *env) 8737 { 8738 struct sched_domain *sd = env->sd; 8739 8740 if (env->idle == CPU_NEWLY_IDLE) { 8741 8742 /* 8743 * ASYM_PACKING needs to force migrate tasks from busy but 8744 * lower priority CPUs in order to pack all tasks in the 8745 * highest priority CPUs. 8746 */ 8747 if ((sd->flags & SD_ASYM_PACKING) && 8748 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8749 return 1; 8750 } 8751 8752 /* 8753 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8754 * It's worth migrating the task if the src_cpu's capacity is reduced 8755 * because of other sched_class or IRQs if more capacity stays 8756 * available on dst_cpu. 8757 */ 8758 if ((env->idle != CPU_NOT_IDLE) && 8759 (env->src_rq->cfs.h_nr_running == 1)) { 8760 if ((check_cpu_capacity(env->src_rq, sd)) && 8761 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8762 return 1; 8763 } 8764 8765 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8766 } 8767 8768 static int active_load_balance_cpu_stop(void *data); 8769 8770 static int should_we_balance(struct lb_env *env) 8771 { 8772 struct sched_group *sg = env->sd->groups; 8773 int cpu, balance_cpu = -1; 8774 8775 /* 8776 * Ensure the balancing environment is consistent; can happen 8777 * when the softirq triggers 'during' hotplug. 8778 */ 8779 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8780 return 0; 8781 8782 /* 8783 * In the newly idle case, we will allow all the CPUs 8784 * to do the newly idle load balance. 8785 */ 8786 if (env->idle == CPU_NEWLY_IDLE) 8787 return 1; 8788 8789 /* Try to find first idle CPU */ 8790 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8791 if (!idle_cpu(cpu)) 8792 continue; 8793 8794 balance_cpu = cpu; 8795 break; 8796 } 8797 8798 if (balance_cpu == -1) 8799 balance_cpu = group_balance_cpu(sg); 8800 8801 /* 8802 * First idle CPU or the first CPU(busiest) in this sched group 8803 * is eligible for doing load balancing at this and above domains. 8804 */ 8805 return balance_cpu == env->dst_cpu; 8806 } 8807 8808 /* 8809 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8810 * tasks if there is an imbalance. 8811 */ 8812 static int load_balance(int this_cpu, struct rq *this_rq, 8813 struct sched_domain *sd, enum cpu_idle_type idle, 8814 int *continue_balancing) 8815 { 8816 int ld_moved, cur_ld_moved, active_balance = 0; 8817 struct sched_domain *sd_parent = sd->parent; 8818 struct sched_group *group; 8819 struct rq *busiest; 8820 struct rq_flags rf; 8821 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8822 8823 struct lb_env env = { 8824 .sd = sd, 8825 .dst_cpu = this_cpu, 8826 .dst_rq = this_rq, 8827 .dst_grpmask = sched_group_span(sd->groups), 8828 .idle = idle, 8829 .loop_break = sched_nr_migrate_break, 8830 .cpus = cpus, 8831 .fbq_type = all, 8832 .tasks = LIST_HEAD_INIT(env.tasks), 8833 }; 8834 8835 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8836 8837 schedstat_inc(sd->lb_count[idle]); 8838 8839 redo: 8840 if (!should_we_balance(&env)) { 8841 *continue_balancing = 0; 8842 goto out_balanced; 8843 } 8844 8845 group = find_busiest_group(&env); 8846 if (!group) { 8847 schedstat_inc(sd->lb_nobusyg[idle]); 8848 goto out_balanced; 8849 } 8850 8851 busiest = find_busiest_queue(&env, group); 8852 if (!busiest) { 8853 schedstat_inc(sd->lb_nobusyq[idle]); 8854 goto out_balanced; 8855 } 8856 8857 BUG_ON(busiest == env.dst_rq); 8858 8859 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8860 8861 env.src_cpu = busiest->cpu; 8862 env.src_rq = busiest; 8863 8864 ld_moved = 0; 8865 if (busiest->nr_running > 1) { 8866 /* 8867 * Attempt to move tasks. If find_busiest_group has found 8868 * an imbalance but busiest->nr_running <= 1, the group is 8869 * still unbalanced. ld_moved simply stays zero, so it is 8870 * correctly treated as an imbalance. 8871 */ 8872 env.flags |= LBF_ALL_PINNED; 8873 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8874 8875 more_balance: 8876 rq_lock_irqsave(busiest, &rf); 8877 update_rq_clock(busiest); 8878 8879 /* 8880 * cur_ld_moved - load moved in current iteration 8881 * ld_moved - cumulative load moved across iterations 8882 */ 8883 cur_ld_moved = detach_tasks(&env); 8884 8885 /* 8886 * We've detached some tasks from busiest_rq. Every 8887 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8888 * unlock busiest->lock, and we are able to be sure 8889 * that nobody can manipulate the tasks in parallel. 8890 * See task_rq_lock() family for the details. 8891 */ 8892 8893 rq_unlock(busiest, &rf); 8894 8895 if (cur_ld_moved) { 8896 attach_tasks(&env); 8897 ld_moved += cur_ld_moved; 8898 } 8899 8900 local_irq_restore(rf.flags); 8901 8902 if (env.flags & LBF_NEED_BREAK) { 8903 env.flags &= ~LBF_NEED_BREAK; 8904 goto more_balance; 8905 } 8906 8907 /* 8908 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8909 * us and move them to an alternate dst_cpu in our sched_group 8910 * where they can run. The upper limit on how many times we 8911 * iterate on same src_cpu is dependent on number of CPUs in our 8912 * sched_group. 8913 * 8914 * This changes load balance semantics a bit on who can move 8915 * load to a given_cpu. In addition to the given_cpu itself 8916 * (or a ilb_cpu acting on its behalf where given_cpu is 8917 * nohz-idle), we now have balance_cpu in a position to move 8918 * load to given_cpu. In rare situations, this may cause 8919 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8920 * _independently_ and at _same_ time to move some load to 8921 * given_cpu) causing exceess load to be moved to given_cpu. 8922 * This however should not happen so much in practice and 8923 * moreover subsequent load balance cycles should correct the 8924 * excess load moved. 8925 */ 8926 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8927 8928 /* Prevent to re-select dst_cpu via env's CPUs */ 8929 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8930 8931 env.dst_rq = cpu_rq(env.new_dst_cpu); 8932 env.dst_cpu = env.new_dst_cpu; 8933 env.flags &= ~LBF_DST_PINNED; 8934 env.loop = 0; 8935 env.loop_break = sched_nr_migrate_break; 8936 8937 /* 8938 * Go back to "more_balance" rather than "redo" since we 8939 * need to continue with same src_cpu. 8940 */ 8941 goto more_balance; 8942 } 8943 8944 /* 8945 * We failed to reach balance because of affinity. 8946 */ 8947 if (sd_parent) { 8948 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8949 8950 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8951 *group_imbalance = 1; 8952 } 8953 8954 /* All tasks on this runqueue were pinned by CPU affinity */ 8955 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8956 cpumask_clear_cpu(cpu_of(busiest), cpus); 8957 /* 8958 * Attempting to continue load balancing at the current 8959 * sched_domain level only makes sense if there are 8960 * active CPUs remaining as possible busiest CPUs to 8961 * pull load from which are not contained within the 8962 * destination group that is receiving any migrated 8963 * load. 8964 */ 8965 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8966 env.loop = 0; 8967 env.loop_break = sched_nr_migrate_break; 8968 goto redo; 8969 } 8970 goto out_all_pinned; 8971 } 8972 } 8973 8974 if (!ld_moved) { 8975 schedstat_inc(sd->lb_failed[idle]); 8976 /* 8977 * Increment the failure counter only on periodic balance. 8978 * We do not want newidle balance, which can be very 8979 * frequent, pollute the failure counter causing 8980 * excessive cache_hot migrations and active balances. 8981 */ 8982 if (idle != CPU_NEWLY_IDLE) 8983 sd->nr_balance_failed++; 8984 8985 if (need_active_balance(&env)) { 8986 unsigned long flags; 8987 8988 raw_spin_lock_irqsave(&busiest->lock, flags); 8989 8990 /* 8991 * Don't kick the active_load_balance_cpu_stop, 8992 * if the curr task on busiest CPU can't be 8993 * moved to this_cpu: 8994 */ 8995 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8996 raw_spin_unlock_irqrestore(&busiest->lock, 8997 flags); 8998 env.flags |= LBF_ALL_PINNED; 8999 goto out_one_pinned; 9000 } 9001 9002 /* 9003 * ->active_balance synchronizes accesses to 9004 * ->active_balance_work. Once set, it's cleared 9005 * only after active load balance is finished. 9006 */ 9007 if (!busiest->active_balance) { 9008 busiest->active_balance = 1; 9009 busiest->push_cpu = this_cpu; 9010 active_balance = 1; 9011 } 9012 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9013 9014 if (active_balance) { 9015 stop_one_cpu_nowait(cpu_of(busiest), 9016 active_load_balance_cpu_stop, busiest, 9017 &busiest->active_balance_work); 9018 } 9019 9020 /* We've kicked active balancing, force task migration. */ 9021 sd->nr_balance_failed = sd->cache_nice_tries+1; 9022 } 9023 } else 9024 sd->nr_balance_failed = 0; 9025 9026 if (likely(!active_balance)) { 9027 /* We were unbalanced, so reset the balancing interval */ 9028 sd->balance_interval = sd->min_interval; 9029 } else { 9030 /* 9031 * If we've begun active balancing, start to back off. This 9032 * case may not be covered by the all_pinned logic if there 9033 * is only 1 task on the busy runqueue (because we don't call 9034 * detach_tasks). 9035 */ 9036 if (sd->balance_interval < sd->max_interval) 9037 sd->balance_interval *= 2; 9038 } 9039 9040 goto out; 9041 9042 out_balanced: 9043 /* 9044 * We reach balance although we may have faced some affinity 9045 * constraints. Clear the imbalance flag if it was set. 9046 */ 9047 if (sd_parent) { 9048 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9049 9050 if (*group_imbalance) 9051 *group_imbalance = 0; 9052 } 9053 9054 out_all_pinned: 9055 /* 9056 * We reach balance because all tasks are pinned at this level so 9057 * we can't migrate them. Let the imbalance flag set so parent level 9058 * can try to migrate them. 9059 */ 9060 schedstat_inc(sd->lb_balanced[idle]); 9061 9062 sd->nr_balance_failed = 0; 9063 9064 out_one_pinned: 9065 /* tune up the balancing interval */ 9066 if (((env.flags & LBF_ALL_PINNED) && 9067 sd->balance_interval < MAX_PINNED_INTERVAL) || 9068 (sd->balance_interval < sd->max_interval)) 9069 sd->balance_interval *= 2; 9070 9071 ld_moved = 0; 9072 out: 9073 return ld_moved; 9074 } 9075 9076 static inline unsigned long 9077 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9078 { 9079 unsigned long interval = sd->balance_interval; 9080 9081 if (cpu_busy) 9082 interval *= sd->busy_factor; 9083 9084 /* scale ms to jiffies */ 9085 interval = msecs_to_jiffies(interval); 9086 interval = clamp(interval, 1UL, max_load_balance_interval); 9087 9088 return interval; 9089 } 9090 9091 static inline void 9092 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9093 { 9094 unsigned long interval, next; 9095 9096 /* used by idle balance, so cpu_busy = 0 */ 9097 interval = get_sd_balance_interval(sd, 0); 9098 next = sd->last_balance + interval; 9099 9100 if (time_after(*next_balance, next)) 9101 *next_balance = next; 9102 } 9103 9104 /* 9105 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9106 * running tasks off the busiest CPU onto idle CPUs. It requires at 9107 * least 1 task to be running on each physical CPU where possible, and 9108 * avoids physical / logical imbalances. 9109 */ 9110 static int active_load_balance_cpu_stop(void *data) 9111 { 9112 struct rq *busiest_rq = data; 9113 int busiest_cpu = cpu_of(busiest_rq); 9114 int target_cpu = busiest_rq->push_cpu; 9115 struct rq *target_rq = cpu_rq(target_cpu); 9116 struct sched_domain *sd; 9117 struct task_struct *p = NULL; 9118 struct rq_flags rf; 9119 9120 rq_lock_irq(busiest_rq, &rf); 9121 /* 9122 * Between queueing the stop-work and running it is a hole in which 9123 * CPUs can become inactive. We should not move tasks from or to 9124 * inactive CPUs. 9125 */ 9126 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9127 goto out_unlock; 9128 9129 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9130 if (unlikely(busiest_cpu != smp_processor_id() || 9131 !busiest_rq->active_balance)) 9132 goto out_unlock; 9133 9134 /* Is there any task to move? */ 9135 if (busiest_rq->nr_running <= 1) 9136 goto out_unlock; 9137 9138 /* 9139 * This condition is "impossible", if it occurs 9140 * we need to fix it. Originally reported by 9141 * Bjorn Helgaas on a 128-CPU setup. 9142 */ 9143 BUG_ON(busiest_rq == target_rq); 9144 9145 /* Search for an sd spanning us and the target CPU. */ 9146 rcu_read_lock(); 9147 for_each_domain(target_cpu, sd) { 9148 if ((sd->flags & SD_LOAD_BALANCE) && 9149 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9150 break; 9151 } 9152 9153 if (likely(sd)) { 9154 struct lb_env env = { 9155 .sd = sd, 9156 .dst_cpu = target_cpu, 9157 .dst_rq = target_rq, 9158 .src_cpu = busiest_rq->cpu, 9159 .src_rq = busiest_rq, 9160 .idle = CPU_IDLE, 9161 /* 9162 * can_migrate_task() doesn't need to compute new_dst_cpu 9163 * for active balancing. Since we have CPU_IDLE, but no 9164 * @dst_grpmask we need to make that test go away with lying 9165 * about DST_PINNED. 9166 */ 9167 .flags = LBF_DST_PINNED, 9168 }; 9169 9170 schedstat_inc(sd->alb_count); 9171 update_rq_clock(busiest_rq); 9172 9173 p = detach_one_task(&env); 9174 if (p) { 9175 schedstat_inc(sd->alb_pushed); 9176 /* Active balancing done, reset the failure counter. */ 9177 sd->nr_balance_failed = 0; 9178 } else { 9179 schedstat_inc(sd->alb_failed); 9180 } 9181 } 9182 rcu_read_unlock(); 9183 out_unlock: 9184 busiest_rq->active_balance = 0; 9185 rq_unlock(busiest_rq, &rf); 9186 9187 if (p) 9188 attach_one_task(target_rq, p); 9189 9190 local_irq_enable(); 9191 9192 return 0; 9193 } 9194 9195 static DEFINE_SPINLOCK(balancing); 9196 9197 /* 9198 * Scale the max load_balance interval with the number of CPUs in the system. 9199 * This trades load-balance latency on larger machines for less cross talk. 9200 */ 9201 void update_max_interval(void) 9202 { 9203 max_load_balance_interval = HZ*num_online_cpus()/10; 9204 } 9205 9206 /* 9207 * It checks each scheduling domain to see if it is due to be balanced, 9208 * and initiates a balancing operation if so. 9209 * 9210 * Balancing parameters are set up in init_sched_domains. 9211 */ 9212 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9213 { 9214 int continue_balancing = 1; 9215 int cpu = rq->cpu; 9216 unsigned long interval; 9217 struct sched_domain *sd; 9218 /* Earliest time when we have to do rebalance again */ 9219 unsigned long next_balance = jiffies + 60*HZ; 9220 int update_next_balance = 0; 9221 int need_serialize, need_decay = 0; 9222 u64 max_cost = 0; 9223 9224 rcu_read_lock(); 9225 for_each_domain(cpu, sd) { 9226 /* 9227 * Decay the newidle max times here because this is a regular 9228 * visit to all the domains. Decay ~1% per second. 9229 */ 9230 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9231 sd->max_newidle_lb_cost = 9232 (sd->max_newidle_lb_cost * 253) / 256; 9233 sd->next_decay_max_lb_cost = jiffies + HZ; 9234 need_decay = 1; 9235 } 9236 max_cost += sd->max_newidle_lb_cost; 9237 9238 if (!(sd->flags & SD_LOAD_BALANCE)) 9239 continue; 9240 9241 /* 9242 * Stop the load balance at this level. There is another 9243 * CPU in our sched group which is doing load balancing more 9244 * actively. 9245 */ 9246 if (!continue_balancing) { 9247 if (need_decay) 9248 continue; 9249 break; 9250 } 9251 9252 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9253 9254 need_serialize = sd->flags & SD_SERIALIZE; 9255 if (need_serialize) { 9256 if (!spin_trylock(&balancing)) 9257 goto out; 9258 } 9259 9260 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9261 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9262 /* 9263 * The LBF_DST_PINNED logic could have changed 9264 * env->dst_cpu, so we can't know our idle 9265 * state even if we migrated tasks. Update it. 9266 */ 9267 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9268 } 9269 sd->last_balance = jiffies; 9270 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9271 } 9272 if (need_serialize) 9273 spin_unlock(&balancing); 9274 out: 9275 if (time_after(next_balance, sd->last_balance + interval)) { 9276 next_balance = sd->last_balance + interval; 9277 update_next_balance = 1; 9278 } 9279 } 9280 if (need_decay) { 9281 /* 9282 * Ensure the rq-wide value also decays but keep it at a 9283 * reasonable floor to avoid funnies with rq->avg_idle. 9284 */ 9285 rq->max_idle_balance_cost = 9286 max((u64)sysctl_sched_migration_cost, max_cost); 9287 } 9288 rcu_read_unlock(); 9289 9290 /* 9291 * next_balance will be updated only when there is a need. 9292 * When the cpu is attached to null domain for ex, it will not be 9293 * updated. 9294 */ 9295 if (likely(update_next_balance)) { 9296 rq->next_balance = next_balance; 9297 9298 #ifdef CONFIG_NO_HZ_COMMON 9299 /* 9300 * If this CPU has been elected to perform the nohz idle 9301 * balance. Other idle CPUs have already rebalanced with 9302 * nohz_idle_balance() and nohz.next_balance has been 9303 * updated accordingly. This CPU is now running the idle load 9304 * balance for itself and we need to update the 9305 * nohz.next_balance accordingly. 9306 */ 9307 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9308 nohz.next_balance = rq->next_balance; 9309 #endif 9310 } 9311 } 9312 9313 static inline int on_null_domain(struct rq *rq) 9314 { 9315 return unlikely(!rcu_dereference_sched(rq->sd)); 9316 } 9317 9318 #ifdef CONFIG_NO_HZ_COMMON 9319 /* 9320 * idle load balancing details 9321 * - When one of the busy CPUs notice that there may be an idle rebalancing 9322 * needed, they will kick the idle load balancer, which then does idle 9323 * load balancing for all the idle CPUs. 9324 */ 9325 9326 static inline int find_new_ilb(void) 9327 { 9328 int ilb = cpumask_first(nohz.idle_cpus_mask); 9329 9330 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9331 return ilb; 9332 9333 return nr_cpu_ids; 9334 } 9335 9336 /* 9337 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9338 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9339 * CPU (if there is one). 9340 */ 9341 static void kick_ilb(unsigned int flags) 9342 { 9343 int ilb_cpu; 9344 9345 nohz.next_balance++; 9346 9347 ilb_cpu = find_new_ilb(); 9348 9349 if (ilb_cpu >= nr_cpu_ids) 9350 return; 9351 9352 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9353 if (flags & NOHZ_KICK_MASK) 9354 return; 9355 9356 /* 9357 * Use smp_send_reschedule() instead of resched_cpu(). 9358 * This way we generate a sched IPI on the target CPU which 9359 * is idle. And the softirq performing nohz idle load balance 9360 * will be run before returning from the IPI. 9361 */ 9362 smp_send_reschedule(ilb_cpu); 9363 } 9364 9365 /* 9366 * Current heuristic for kicking the idle load balancer in the presence 9367 * of an idle cpu in the system. 9368 * - This rq has more than one task. 9369 * - This rq has at least one CFS task and the capacity of the CPU is 9370 * significantly reduced because of RT tasks or IRQs. 9371 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9372 * multiple busy cpu. 9373 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9374 * domain span are idle. 9375 */ 9376 static void nohz_balancer_kick(struct rq *rq) 9377 { 9378 unsigned long now = jiffies; 9379 struct sched_domain_shared *sds; 9380 struct sched_domain *sd; 9381 int nr_busy, i, cpu = rq->cpu; 9382 unsigned int flags = 0; 9383 9384 if (unlikely(rq->idle_balance)) 9385 return; 9386 9387 /* 9388 * We may be recently in ticked or tickless idle mode. At the first 9389 * busy tick after returning from idle, we will update the busy stats. 9390 */ 9391 nohz_balance_exit_idle(rq); 9392 9393 /* 9394 * None are in tickless mode and hence no need for NOHZ idle load 9395 * balancing. 9396 */ 9397 if (likely(!atomic_read(&nohz.nr_cpus))) 9398 return; 9399 9400 if (READ_ONCE(nohz.has_blocked) && 9401 time_after(now, READ_ONCE(nohz.next_blocked))) 9402 flags = NOHZ_STATS_KICK; 9403 9404 if (time_before(now, nohz.next_balance)) 9405 goto out; 9406 9407 if (rq->nr_running >= 2) { 9408 flags = NOHZ_KICK_MASK; 9409 goto out; 9410 } 9411 9412 rcu_read_lock(); 9413 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9414 if (sds) { 9415 /* 9416 * XXX: write a coherent comment on why we do this. 9417 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9418 */ 9419 nr_busy = atomic_read(&sds->nr_busy_cpus); 9420 if (nr_busy > 1) { 9421 flags = NOHZ_KICK_MASK; 9422 goto unlock; 9423 } 9424 9425 } 9426 9427 sd = rcu_dereference(rq->sd); 9428 if (sd) { 9429 if ((rq->cfs.h_nr_running >= 1) && 9430 check_cpu_capacity(rq, sd)) { 9431 flags = NOHZ_KICK_MASK; 9432 goto unlock; 9433 } 9434 } 9435 9436 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9437 if (sd) { 9438 for_each_cpu(i, sched_domain_span(sd)) { 9439 if (i == cpu || 9440 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9441 continue; 9442 9443 if (sched_asym_prefer(i, cpu)) { 9444 flags = NOHZ_KICK_MASK; 9445 goto unlock; 9446 } 9447 } 9448 } 9449 unlock: 9450 rcu_read_unlock(); 9451 out: 9452 if (flags) 9453 kick_ilb(flags); 9454 } 9455 9456 static void set_cpu_sd_state_busy(int cpu) 9457 { 9458 struct sched_domain *sd; 9459 9460 rcu_read_lock(); 9461 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9462 9463 if (!sd || !sd->nohz_idle) 9464 goto unlock; 9465 sd->nohz_idle = 0; 9466 9467 atomic_inc(&sd->shared->nr_busy_cpus); 9468 unlock: 9469 rcu_read_unlock(); 9470 } 9471 9472 void nohz_balance_exit_idle(struct rq *rq) 9473 { 9474 SCHED_WARN_ON(rq != this_rq()); 9475 9476 if (likely(!rq->nohz_tick_stopped)) 9477 return; 9478 9479 rq->nohz_tick_stopped = 0; 9480 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9481 atomic_dec(&nohz.nr_cpus); 9482 9483 set_cpu_sd_state_busy(rq->cpu); 9484 } 9485 9486 static void set_cpu_sd_state_idle(int cpu) 9487 { 9488 struct sched_domain *sd; 9489 9490 rcu_read_lock(); 9491 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9492 9493 if (!sd || sd->nohz_idle) 9494 goto unlock; 9495 sd->nohz_idle = 1; 9496 9497 atomic_dec(&sd->shared->nr_busy_cpus); 9498 unlock: 9499 rcu_read_unlock(); 9500 } 9501 9502 /* 9503 * This routine will record that the CPU is going idle with tick stopped. 9504 * This info will be used in performing idle load balancing in the future. 9505 */ 9506 void nohz_balance_enter_idle(int cpu) 9507 { 9508 struct rq *rq = cpu_rq(cpu); 9509 9510 SCHED_WARN_ON(cpu != smp_processor_id()); 9511 9512 /* If this CPU is going down, then nothing needs to be done: */ 9513 if (!cpu_active(cpu)) 9514 return; 9515 9516 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9517 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9518 return; 9519 9520 /* 9521 * Can be set safely without rq->lock held 9522 * If a clear happens, it will have evaluated last additions because 9523 * rq->lock is held during the check and the clear 9524 */ 9525 rq->has_blocked_load = 1; 9526 9527 /* 9528 * The tick is still stopped but load could have been added in the 9529 * meantime. We set the nohz.has_blocked flag to trig a check of the 9530 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9531 * of nohz.has_blocked can only happen after checking the new load 9532 */ 9533 if (rq->nohz_tick_stopped) 9534 goto out; 9535 9536 /* If we're a completely isolated CPU, we don't play: */ 9537 if (on_null_domain(rq)) 9538 return; 9539 9540 rq->nohz_tick_stopped = 1; 9541 9542 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9543 atomic_inc(&nohz.nr_cpus); 9544 9545 /* 9546 * Ensures that if nohz_idle_balance() fails to observe our 9547 * @idle_cpus_mask store, it must observe the @has_blocked 9548 * store. 9549 */ 9550 smp_mb__after_atomic(); 9551 9552 set_cpu_sd_state_idle(cpu); 9553 9554 out: 9555 /* 9556 * Each time a cpu enter idle, we assume that it has blocked load and 9557 * enable the periodic update of the load of idle cpus 9558 */ 9559 WRITE_ONCE(nohz.has_blocked, 1); 9560 } 9561 9562 /* 9563 * Internal function that runs load balance for all idle cpus. The load balance 9564 * can be a simple update of blocked load or a complete load balance with 9565 * tasks movement depending of flags. 9566 * The function returns false if the loop has stopped before running 9567 * through all idle CPUs. 9568 */ 9569 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9570 enum cpu_idle_type idle) 9571 { 9572 /* Earliest time when we have to do rebalance again */ 9573 unsigned long now = jiffies; 9574 unsigned long next_balance = now + 60*HZ; 9575 bool has_blocked_load = false; 9576 int update_next_balance = 0; 9577 int this_cpu = this_rq->cpu; 9578 int balance_cpu; 9579 int ret = false; 9580 struct rq *rq; 9581 9582 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9583 9584 /* 9585 * We assume there will be no idle load after this update and clear 9586 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9587 * set the has_blocked flag and trig another update of idle load. 9588 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9589 * setting the flag, we are sure to not clear the state and not 9590 * check the load of an idle cpu. 9591 */ 9592 WRITE_ONCE(nohz.has_blocked, 0); 9593 9594 /* 9595 * Ensures that if we miss the CPU, we must see the has_blocked 9596 * store from nohz_balance_enter_idle(). 9597 */ 9598 smp_mb(); 9599 9600 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9601 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9602 continue; 9603 9604 /* 9605 * If this CPU gets work to do, stop the load balancing 9606 * work being done for other CPUs. Next load 9607 * balancing owner will pick it up. 9608 */ 9609 if (need_resched()) { 9610 has_blocked_load = true; 9611 goto abort; 9612 } 9613 9614 rq = cpu_rq(balance_cpu); 9615 9616 has_blocked_load |= update_nohz_stats(rq, true); 9617 9618 /* 9619 * If time for next balance is due, 9620 * do the balance. 9621 */ 9622 if (time_after_eq(jiffies, rq->next_balance)) { 9623 struct rq_flags rf; 9624 9625 rq_lock_irqsave(rq, &rf); 9626 update_rq_clock(rq); 9627 cpu_load_update_idle(rq); 9628 rq_unlock_irqrestore(rq, &rf); 9629 9630 if (flags & NOHZ_BALANCE_KICK) 9631 rebalance_domains(rq, CPU_IDLE); 9632 } 9633 9634 if (time_after(next_balance, rq->next_balance)) { 9635 next_balance = rq->next_balance; 9636 update_next_balance = 1; 9637 } 9638 } 9639 9640 /* Newly idle CPU doesn't need an update */ 9641 if (idle != CPU_NEWLY_IDLE) { 9642 update_blocked_averages(this_cpu); 9643 has_blocked_load |= this_rq->has_blocked_load; 9644 } 9645 9646 if (flags & NOHZ_BALANCE_KICK) 9647 rebalance_domains(this_rq, CPU_IDLE); 9648 9649 WRITE_ONCE(nohz.next_blocked, 9650 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9651 9652 /* The full idle balance loop has been done */ 9653 ret = true; 9654 9655 abort: 9656 /* There is still blocked load, enable periodic update */ 9657 if (has_blocked_load) 9658 WRITE_ONCE(nohz.has_blocked, 1); 9659 9660 /* 9661 * next_balance will be updated only when there is a need. 9662 * When the CPU is attached to null domain for ex, it will not be 9663 * updated. 9664 */ 9665 if (likely(update_next_balance)) 9666 nohz.next_balance = next_balance; 9667 9668 return ret; 9669 } 9670 9671 /* 9672 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9673 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9674 */ 9675 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9676 { 9677 int this_cpu = this_rq->cpu; 9678 unsigned int flags; 9679 9680 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9681 return false; 9682 9683 if (idle != CPU_IDLE) { 9684 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9685 return false; 9686 } 9687 9688 /* 9689 * barrier, pairs with nohz_balance_enter_idle(), ensures ... 9690 */ 9691 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9692 if (!(flags & NOHZ_KICK_MASK)) 9693 return false; 9694 9695 _nohz_idle_balance(this_rq, flags, idle); 9696 9697 return true; 9698 } 9699 9700 static void nohz_newidle_balance(struct rq *this_rq) 9701 { 9702 int this_cpu = this_rq->cpu; 9703 9704 /* 9705 * This CPU doesn't want to be disturbed by scheduler 9706 * housekeeping 9707 */ 9708 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9709 return; 9710 9711 /* Will wake up very soon. No time for doing anything else*/ 9712 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9713 return; 9714 9715 /* Don't need to update blocked load of idle CPUs*/ 9716 if (!READ_ONCE(nohz.has_blocked) || 9717 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9718 return; 9719 9720 raw_spin_unlock(&this_rq->lock); 9721 /* 9722 * This CPU is going to be idle and blocked load of idle CPUs 9723 * need to be updated. Run the ilb locally as it is a good 9724 * candidate for ilb instead of waking up another idle CPU. 9725 * Kick an normal ilb if we failed to do the update. 9726 */ 9727 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9728 kick_ilb(NOHZ_STATS_KICK); 9729 raw_spin_lock(&this_rq->lock); 9730 } 9731 9732 #else /* !CONFIG_NO_HZ_COMMON */ 9733 static inline void nohz_balancer_kick(struct rq *rq) { } 9734 9735 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9736 { 9737 return false; 9738 } 9739 9740 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9741 #endif /* CONFIG_NO_HZ_COMMON */ 9742 9743 /* 9744 * idle_balance is called by schedule() if this_cpu is about to become 9745 * idle. Attempts to pull tasks from other CPUs. 9746 */ 9747 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9748 { 9749 unsigned long next_balance = jiffies + HZ; 9750 int this_cpu = this_rq->cpu; 9751 struct sched_domain *sd; 9752 int pulled_task = 0; 9753 u64 curr_cost = 0; 9754 9755 /* 9756 * We must set idle_stamp _before_ calling idle_balance(), such that we 9757 * measure the duration of idle_balance() as idle time. 9758 */ 9759 this_rq->idle_stamp = rq_clock(this_rq); 9760 9761 /* 9762 * Do not pull tasks towards !active CPUs... 9763 */ 9764 if (!cpu_active(this_cpu)) 9765 return 0; 9766 9767 /* 9768 * This is OK, because current is on_cpu, which avoids it being picked 9769 * for load-balance and preemption/IRQs are still disabled avoiding 9770 * further scheduler activity on it and we're being very careful to 9771 * re-start the picking loop. 9772 */ 9773 rq_unpin_lock(this_rq, rf); 9774 9775 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9776 !this_rq->rd->overload) { 9777 9778 rcu_read_lock(); 9779 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9780 if (sd) 9781 update_next_balance(sd, &next_balance); 9782 rcu_read_unlock(); 9783 9784 nohz_newidle_balance(this_rq); 9785 9786 goto out; 9787 } 9788 9789 raw_spin_unlock(&this_rq->lock); 9790 9791 update_blocked_averages(this_cpu); 9792 rcu_read_lock(); 9793 for_each_domain(this_cpu, sd) { 9794 int continue_balancing = 1; 9795 u64 t0, domain_cost; 9796 9797 if (!(sd->flags & SD_LOAD_BALANCE)) 9798 continue; 9799 9800 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9801 update_next_balance(sd, &next_balance); 9802 break; 9803 } 9804 9805 if (sd->flags & SD_BALANCE_NEWIDLE) { 9806 t0 = sched_clock_cpu(this_cpu); 9807 9808 pulled_task = load_balance(this_cpu, this_rq, 9809 sd, CPU_NEWLY_IDLE, 9810 &continue_balancing); 9811 9812 domain_cost = sched_clock_cpu(this_cpu) - t0; 9813 if (domain_cost > sd->max_newidle_lb_cost) 9814 sd->max_newidle_lb_cost = domain_cost; 9815 9816 curr_cost += domain_cost; 9817 } 9818 9819 update_next_balance(sd, &next_balance); 9820 9821 /* 9822 * Stop searching for tasks to pull if there are 9823 * now runnable tasks on this rq. 9824 */ 9825 if (pulled_task || this_rq->nr_running > 0) 9826 break; 9827 } 9828 rcu_read_unlock(); 9829 9830 raw_spin_lock(&this_rq->lock); 9831 9832 if (curr_cost > this_rq->max_idle_balance_cost) 9833 this_rq->max_idle_balance_cost = curr_cost; 9834 9835 out: 9836 /* 9837 * While browsing the domains, we released the rq lock, a task could 9838 * have been enqueued in the meantime. Since we're not going idle, 9839 * pretend we pulled a task. 9840 */ 9841 if (this_rq->cfs.h_nr_running && !pulled_task) 9842 pulled_task = 1; 9843 9844 /* Move the next balance forward */ 9845 if (time_after(this_rq->next_balance, next_balance)) 9846 this_rq->next_balance = next_balance; 9847 9848 /* Is there a task of a high priority class? */ 9849 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9850 pulled_task = -1; 9851 9852 if (pulled_task) 9853 this_rq->idle_stamp = 0; 9854 9855 rq_repin_lock(this_rq, rf); 9856 9857 return pulled_task; 9858 } 9859 9860 /* 9861 * run_rebalance_domains is triggered when needed from the scheduler tick. 9862 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9863 */ 9864 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9865 { 9866 struct rq *this_rq = this_rq(); 9867 enum cpu_idle_type idle = this_rq->idle_balance ? 9868 CPU_IDLE : CPU_NOT_IDLE; 9869 9870 /* 9871 * If this CPU has a pending nohz_balance_kick, then do the 9872 * balancing on behalf of the other idle CPUs whose ticks are 9873 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9874 * give the idle CPUs a chance to load balance. Else we may 9875 * load balance only within the local sched_domain hierarchy 9876 * and abort nohz_idle_balance altogether if we pull some load. 9877 */ 9878 if (nohz_idle_balance(this_rq, idle)) 9879 return; 9880 9881 /* normal load balance */ 9882 update_blocked_averages(this_rq->cpu); 9883 rebalance_domains(this_rq, idle); 9884 } 9885 9886 /* 9887 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9888 */ 9889 void trigger_load_balance(struct rq *rq) 9890 { 9891 /* Don't need to rebalance while attached to NULL domain */ 9892 if (unlikely(on_null_domain(rq))) 9893 return; 9894 9895 if (time_after_eq(jiffies, rq->next_balance)) 9896 raise_softirq(SCHED_SOFTIRQ); 9897 9898 nohz_balancer_kick(rq); 9899 } 9900 9901 static void rq_online_fair(struct rq *rq) 9902 { 9903 update_sysctl(); 9904 9905 update_runtime_enabled(rq); 9906 } 9907 9908 static void rq_offline_fair(struct rq *rq) 9909 { 9910 update_sysctl(); 9911 9912 /* Ensure any throttled groups are reachable by pick_next_task */ 9913 unthrottle_offline_cfs_rqs(rq); 9914 } 9915 9916 #endif /* CONFIG_SMP */ 9917 9918 /* 9919 * scheduler tick hitting a task of our scheduling class. 9920 * 9921 * NOTE: This function can be called remotely by the tick offload that 9922 * goes along full dynticks. Therefore no local assumption can be made 9923 * and everything must be accessed through the @rq and @curr passed in 9924 * parameters. 9925 */ 9926 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9927 { 9928 struct cfs_rq *cfs_rq; 9929 struct sched_entity *se = &curr->se; 9930 9931 for_each_sched_entity(se) { 9932 cfs_rq = cfs_rq_of(se); 9933 entity_tick(cfs_rq, se, queued); 9934 } 9935 9936 if (static_branch_unlikely(&sched_numa_balancing)) 9937 task_tick_numa(rq, curr); 9938 } 9939 9940 /* 9941 * called on fork with the child task as argument from the parent's context 9942 * - child not yet on the tasklist 9943 * - preemption disabled 9944 */ 9945 static void task_fork_fair(struct task_struct *p) 9946 { 9947 struct cfs_rq *cfs_rq; 9948 struct sched_entity *se = &p->se, *curr; 9949 struct rq *rq = this_rq(); 9950 struct rq_flags rf; 9951 9952 rq_lock(rq, &rf); 9953 update_rq_clock(rq); 9954 9955 cfs_rq = task_cfs_rq(current); 9956 curr = cfs_rq->curr; 9957 if (curr) { 9958 update_curr(cfs_rq); 9959 se->vruntime = curr->vruntime; 9960 } 9961 place_entity(cfs_rq, se, 1); 9962 9963 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9964 /* 9965 * Upon rescheduling, sched_class::put_prev_task() will place 9966 * 'current' within the tree based on its new key value. 9967 */ 9968 swap(curr->vruntime, se->vruntime); 9969 resched_curr(rq); 9970 } 9971 9972 se->vruntime -= cfs_rq->min_vruntime; 9973 rq_unlock(rq, &rf); 9974 } 9975 9976 /* 9977 * Priority of the task has changed. Check to see if we preempt 9978 * the current task. 9979 */ 9980 static void 9981 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9982 { 9983 if (!task_on_rq_queued(p)) 9984 return; 9985 9986 /* 9987 * Reschedule if we are currently running on this runqueue and 9988 * our priority decreased, or if we are not currently running on 9989 * this runqueue and our priority is higher than the current's 9990 */ 9991 if (rq->curr == p) { 9992 if (p->prio > oldprio) 9993 resched_curr(rq); 9994 } else 9995 check_preempt_curr(rq, p, 0); 9996 } 9997 9998 static inline bool vruntime_normalized(struct task_struct *p) 9999 { 10000 struct sched_entity *se = &p->se; 10001 10002 /* 10003 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10004 * the dequeue_entity(.flags=0) will already have normalized the 10005 * vruntime. 10006 */ 10007 if (p->on_rq) 10008 return true; 10009 10010 /* 10011 * When !on_rq, vruntime of the task has usually NOT been normalized. 10012 * But there are some cases where it has already been normalized: 10013 * 10014 * - A forked child which is waiting for being woken up by 10015 * wake_up_new_task(). 10016 * - A task which has been woken up by try_to_wake_up() and 10017 * waiting for actually being woken up by sched_ttwu_pending(). 10018 */ 10019 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 10020 return true; 10021 10022 return false; 10023 } 10024 10025 #ifdef CONFIG_FAIR_GROUP_SCHED 10026 /* 10027 * Propagate the changes of the sched_entity across the tg tree to make it 10028 * visible to the root 10029 */ 10030 static void propagate_entity_cfs_rq(struct sched_entity *se) 10031 { 10032 struct cfs_rq *cfs_rq; 10033 10034 /* Start to propagate at parent */ 10035 se = se->parent; 10036 10037 for_each_sched_entity(se) { 10038 cfs_rq = cfs_rq_of(se); 10039 10040 if (cfs_rq_throttled(cfs_rq)) 10041 break; 10042 10043 update_load_avg(cfs_rq, se, UPDATE_TG); 10044 } 10045 } 10046 #else 10047 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10048 #endif 10049 10050 static void detach_entity_cfs_rq(struct sched_entity *se) 10051 { 10052 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10053 10054 /* Catch up with the cfs_rq and remove our load when we leave */ 10055 update_load_avg(cfs_rq, se, 0); 10056 detach_entity_load_avg(cfs_rq, se); 10057 update_tg_load_avg(cfs_rq, false); 10058 propagate_entity_cfs_rq(se); 10059 } 10060 10061 static void attach_entity_cfs_rq(struct sched_entity *se) 10062 { 10063 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10064 10065 #ifdef CONFIG_FAIR_GROUP_SCHED 10066 /* 10067 * Since the real-depth could have been changed (only FAIR 10068 * class maintain depth value), reset depth properly. 10069 */ 10070 se->depth = se->parent ? se->parent->depth + 1 : 0; 10071 #endif 10072 10073 /* Synchronize entity with its cfs_rq */ 10074 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10075 attach_entity_load_avg(cfs_rq, se, 0); 10076 update_tg_load_avg(cfs_rq, false); 10077 propagate_entity_cfs_rq(se); 10078 } 10079 10080 static void detach_task_cfs_rq(struct task_struct *p) 10081 { 10082 struct sched_entity *se = &p->se; 10083 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10084 10085 if (!vruntime_normalized(p)) { 10086 /* 10087 * Fix up our vruntime so that the current sleep doesn't 10088 * cause 'unlimited' sleep bonus. 10089 */ 10090 place_entity(cfs_rq, se, 0); 10091 se->vruntime -= cfs_rq->min_vruntime; 10092 } 10093 10094 detach_entity_cfs_rq(se); 10095 } 10096 10097 static void attach_task_cfs_rq(struct task_struct *p) 10098 { 10099 struct sched_entity *se = &p->se; 10100 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10101 10102 attach_entity_cfs_rq(se); 10103 10104 if (!vruntime_normalized(p)) 10105 se->vruntime += cfs_rq->min_vruntime; 10106 } 10107 10108 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10109 { 10110 detach_task_cfs_rq(p); 10111 } 10112 10113 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10114 { 10115 attach_task_cfs_rq(p); 10116 10117 if (task_on_rq_queued(p)) { 10118 /* 10119 * We were most likely switched from sched_rt, so 10120 * kick off the schedule if running, otherwise just see 10121 * if we can still preempt the current task. 10122 */ 10123 if (rq->curr == p) 10124 resched_curr(rq); 10125 else 10126 check_preempt_curr(rq, p, 0); 10127 } 10128 } 10129 10130 /* Account for a task changing its policy or group. 10131 * 10132 * This routine is mostly called to set cfs_rq->curr field when a task 10133 * migrates between groups/classes. 10134 */ 10135 static void set_curr_task_fair(struct rq *rq) 10136 { 10137 struct sched_entity *se = &rq->curr->se; 10138 10139 for_each_sched_entity(se) { 10140 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10141 10142 set_next_entity(cfs_rq, se); 10143 /* ensure bandwidth has been allocated on our new cfs_rq */ 10144 account_cfs_rq_runtime(cfs_rq, 0); 10145 } 10146 } 10147 10148 void init_cfs_rq(struct cfs_rq *cfs_rq) 10149 { 10150 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10151 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10152 #ifndef CONFIG_64BIT 10153 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10154 #endif 10155 #ifdef CONFIG_SMP 10156 raw_spin_lock_init(&cfs_rq->removed.lock); 10157 #endif 10158 } 10159 10160 #ifdef CONFIG_FAIR_GROUP_SCHED 10161 static void task_set_group_fair(struct task_struct *p) 10162 { 10163 struct sched_entity *se = &p->se; 10164 10165 set_task_rq(p, task_cpu(p)); 10166 se->depth = se->parent ? se->parent->depth + 1 : 0; 10167 } 10168 10169 static void task_move_group_fair(struct task_struct *p) 10170 { 10171 detach_task_cfs_rq(p); 10172 set_task_rq(p, task_cpu(p)); 10173 10174 #ifdef CONFIG_SMP 10175 /* Tell se's cfs_rq has been changed -- migrated */ 10176 p->se.avg.last_update_time = 0; 10177 #endif 10178 attach_task_cfs_rq(p); 10179 } 10180 10181 static void task_change_group_fair(struct task_struct *p, int type) 10182 { 10183 switch (type) { 10184 case TASK_SET_GROUP: 10185 task_set_group_fair(p); 10186 break; 10187 10188 case TASK_MOVE_GROUP: 10189 task_move_group_fair(p); 10190 break; 10191 } 10192 } 10193 10194 void free_fair_sched_group(struct task_group *tg) 10195 { 10196 int i; 10197 10198 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10199 10200 for_each_possible_cpu(i) { 10201 if (tg->cfs_rq) 10202 kfree(tg->cfs_rq[i]); 10203 if (tg->se) 10204 kfree(tg->se[i]); 10205 } 10206 10207 kfree(tg->cfs_rq); 10208 kfree(tg->se); 10209 } 10210 10211 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10212 { 10213 struct sched_entity *se; 10214 struct cfs_rq *cfs_rq; 10215 int i; 10216 10217 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10218 if (!tg->cfs_rq) 10219 goto err; 10220 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10221 if (!tg->se) 10222 goto err; 10223 10224 tg->shares = NICE_0_LOAD; 10225 10226 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10227 10228 for_each_possible_cpu(i) { 10229 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10230 GFP_KERNEL, cpu_to_node(i)); 10231 if (!cfs_rq) 10232 goto err; 10233 10234 se = kzalloc_node(sizeof(struct sched_entity), 10235 GFP_KERNEL, cpu_to_node(i)); 10236 if (!se) 10237 goto err_free_rq; 10238 10239 init_cfs_rq(cfs_rq); 10240 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10241 init_entity_runnable_average(se); 10242 } 10243 10244 return 1; 10245 10246 err_free_rq: 10247 kfree(cfs_rq); 10248 err: 10249 return 0; 10250 } 10251 10252 void online_fair_sched_group(struct task_group *tg) 10253 { 10254 struct sched_entity *se; 10255 struct rq *rq; 10256 int i; 10257 10258 for_each_possible_cpu(i) { 10259 rq = cpu_rq(i); 10260 se = tg->se[i]; 10261 10262 raw_spin_lock_irq(&rq->lock); 10263 update_rq_clock(rq); 10264 attach_entity_cfs_rq(se); 10265 sync_throttle(tg, i); 10266 raw_spin_unlock_irq(&rq->lock); 10267 } 10268 } 10269 10270 void unregister_fair_sched_group(struct task_group *tg) 10271 { 10272 unsigned long flags; 10273 struct rq *rq; 10274 int cpu; 10275 10276 for_each_possible_cpu(cpu) { 10277 if (tg->se[cpu]) 10278 remove_entity_load_avg(tg->se[cpu]); 10279 10280 /* 10281 * Only empty task groups can be destroyed; so we can speculatively 10282 * check on_list without danger of it being re-added. 10283 */ 10284 if (!tg->cfs_rq[cpu]->on_list) 10285 continue; 10286 10287 rq = cpu_rq(cpu); 10288 10289 raw_spin_lock_irqsave(&rq->lock, flags); 10290 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10291 raw_spin_unlock_irqrestore(&rq->lock, flags); 10292 } 10293 } 10294 10295 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10296 struct sched_entity *se, int cpu, 10297 struct sched_entity *parent) 10298 { 10299 struct rq *rq = cpu_rq(cpu); 10300 10301 cfs_rq->tg = tg; 10302 cfs_rq->rq = rq; 10303 init_cfs_rq_runtime(cfs_rq); 10304 10305 tg->cfs_rq[cpu] = cfs_rq; 10306 tg->se[cpu] = se; 10307 10308 /* se could be NULL for root_task_group */ 10309 if (!se) 10310 return; 10311 10312 if (!parent) { 10313 se->cfs_rq = &rq->cfs; 10314 se->depth = 0; 10315 } else { 10316 se->cfs_rq = parent->my_q; 10317 se->depth = parent->depth + 1; 10318 } 10319 10320 se->my_q = cfs_rq; 10321 /* guarantee group entities always have weight */ 10322 update_load_set(&se->load, NICE_0_LOAD); 10323 se->parent = parent; 10324 } 10325 10326 static DEFINE_MUTEX(shares_mutex); 10327 10328 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10329 { 10330 int i; 10331 10332 /* 10333 * We can't change the weight of the root cgroup. 10334 */ 10335 if (!tg->se[0]) 10336 return -EINVAL; 10337 10338 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10339 10340 mutex_lock(&shares_mutex); 10341 if (tg->shares == shares) 10342 goto done; 10343 10344 tg->shares = shares; 10345 for_each_possible_cpu(i) { 10346 struct rq *rq = cpu_rq(i); 10347 struct sched_entity *se = tg->se[i]; 10348 struct rq_flags rf; 10349 10350 /* Propagate contribution to hierarchy */ 10351 rq_lock_irqsave(rq, &rf); 10352 update_rq_clock(rq); 10353 for_each_sched_entity(se) { 10354 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10355 update_cfs_group(se); 10356 } 10357 rq_unlock_irqrestore(rq, &rf); 10358 } 10359 10360 done: 10361 mutex_unlock(&shares_mutex); 10362 return 0; 10363 } 10364 #else /* CONFIG_FAIR_GROUP_SCHED */ 10365 10366 void free_fair_sched_group(struct task_group *tg) { } 10367 10368 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10369 { 10370 return 1; 10371 } 10372 10373 void online_fair_sched_group(struct task_group *tg) { } 10374 10375 void unregister_fair_sched_group(struct task_group *tg) { } 10376 10377 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10378 10379 10380 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10381 { 10382 struct sched_entity *se = &task->se; 10383 unsigned int rr_interval = 0; 10384 10385 /* 10386 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10387 * idle runqueue: 10388 */ 10389 if (rq->cfs.load.weight) 10390 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10391 10392 return rr_interval; 10393 } 10394 10395 /* 10396 * All the scheduling class methods: 10397 */ 10398 const struct sched_class fair_sched_class = { 10399 .next = &idle_sched_class, 10400 .enqueue_task = enqueue_task_fair, 10401 .dequeue_task = dequeue_task_fair, 10402 .yield_task = yield_task_fair, 10403 .yield_to_task = yield_to_task_fair, 10404 10405 .check_preempt_curr = check_preempt_wakeup, 10406 10407 .pick_next_task = pick_next_task_fair, 10408 .put_prev_task = put_prev_task_fair, 10409 10410 #ifdef CONFIG_SMP 10411 .select_task_rq = select_task_rq_fair, 10412 .migrate_task_rq = migrate_task_rq_fair, 10413 10414 .rq_online = rq_online_fair, 10415 .rq_offline = rq_offline_fair, 10416 10417 .task_dead = task_dead_fair, 10418 .set_cpus_allowed = set_cpus_allowed_common, 10419 #endif 10420 10421 .set_curr_task = set_curr_task_fair, 10422 .task_tick = task_tick_fair, 10423 .task_fork = task_fork_fair, 10424 10425 .prio_changed = prio_changed_fair, 10426 .switched_from = switched_from_fair, 10427 .switched_to = switched_to_fair, 10428 10429 .get_rr_interval = get_rr_interval_fair, 10430 10431 .update_curr = update_curr_fair, 10432 10433 #ifdef CONFIG_FAIR_GROUP_SCHED 10434 .task_change_group = task_change_group_fair, 10435 #endif 10436 }; 10437 10438 #ifdef CONFIG_SCHED_DEBUG 10439 void print_cfs_stats(struct seq_file *m, int cpu) 10440 { 10441 struct cfs_rq *cfs_rq, *pos; 10442 10443 rcu_read_lock(); 10444 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10445 print_cfs_rq(m, cpu, cfs_rq); 10446 rcu_read_unlock(); 10447 } 10448 10449 #ifdef CONFIG_NUMA_BALANCING 10450 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10451 { 10452 int node; 10453 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10454 10455 for_each_online_node(node) { 10456 if (p->numa_faults) { 10457 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10458 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10459 } 10460 if (p->numa_group) { 10461 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10462 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10463 } 10464 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10465 } 10466 } 10467 #endif /* CONFIG_NUMA_BALANCING */ 10468 #endif /* CONFIG_SCHED_DEBUG */ 10469 10470 __init void init_sched_fair_class(void) 10471 { 10472 #ifdef CONFIG_SMP 10473 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10474 10475 #ifdef CONFIG_NO_HZ_COMMON 10476 nohz.next_balance = jiffies; 10477 nohz.next_blocked = jiffies; 10478 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10479 #endif 10480 #endif /* SMP */ 10481 10482 } 10483