1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 WARN_ON_ONCE(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * HACK, stash a copy of deadline at the point of pick in vlag, 888 * which isn't used until dequeue. 889 */ 890 static inline void set_protect_slice(struct sched_entity *se) 891 { 892 se->vlag = se->deadline; 893 } 894 895 static inline bool protect_slice(struct sched_entity *se) 896 { 897 return se->vlag == se->deadline; 898 } 899 900 static inline void cancel_protect_slice(struct sched_entity *se) 901 { 902 if (protect_slice(se)) 903 se->vlag = se->deadline + 1; 904 } 905 906 /* 907 * Earliest Eligible Virtual Deadline First 908 * 909 * In order to provide latency guarantees for different request sizes 910 * EEVDF selects the best runnable task from two criteria: 911 * 912 * 1) the task must be eligible (must be owed service) 913 * 914 * 2) from those tasks that meet 1), we select the one 915 * with the earliest virtual deadline. 916 * 917 * We can do this in O(log n) time due to an augmented RB-tree. The 918 * tree keeps the entries sorted on deadline, but also functions as a 919 * heap based on the vruntime by keeping: 920 * 921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 922 * 923 * Which allows tree pruning through eligibility. 924 */ 925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 926 { 927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 928 struct sched_entity *se = __pick_first_entity(cfs_rq); 929 struct sched_entity *curr = cfs_rq->curr; 930 struct sched_entity *best = NULL; 931 932 /* 933 * We can safely skip eligibility check if there is only one entity 934 * in this cfs_rq, saving some cycles. 935 */ 936 if (cfs_rq->nr_queued == 1) 937 return curr && curr->on_rq ? curr : se; 938 939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 940 curr = NULL; 941 942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) 943 return curr; 944 945 /* Pick the leftmost entity if it's eligible */ 946 if (se && entity_eligible(cfs_rq, se)) { 947 best = se; 948 goto found; 949 } 950 951 /* Heap search for the EEVD entity */ 952 while (node) { 953 struct rb_node *left = node->rb_left; 954 955 /* 956 * Eligible entities in left subtree are always better 957 * choices, since they have earlier deadlines. 958 */ 959 if (left && vruntime_eligible(cfs_rq, 960 __node_2_se(left)->min_vruntime)) { 961 node = left; 962 continue; 963 } 964 965 se = __node_2_se(node); 966 967 /* 968 * The left subtree either is empty or has no eligible 969 * entity, so check the current node since it is the one 970 * with earliest deadline that might be eligible. 971 */ 972 if (entity_eligible(cfs_rq, se)) { 973 best = se; 974 break; 975 } 976 977 node = node->rb_right; 978 } 979 found: 980 if (!best || (curr && entity_before(curr, best))) 981 best = curr; 982 983 return best; 984 } 985 986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 987 { 988 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 989 990 if (!last) 991 return NULL; 992 993 return __node_2_se(last); 994 } 995 996 /************************************************************** 997 * Scheduling class statistics methods: 998 */ 999 #ifdef CONFIG_SMP 1000 int sched_update_scaling(void) 1001 { 1002 unsigned int factor = get_update_sysctl_factor(); 1003 1004 #define WRT_SYSCTL(name) \ 1005 (normalized_sysctl_##name = sysctl_##name / (factor)) 1006 WRT_SYSCTL(sched_base_slice); 1007 #undef WRT_SYSCTL 1008 1009 return 0; 1010 } 1011 #endif 1012 1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1014 1015 /* 1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1017 * this is probably good enough. 1018 */ 1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1020 { 1021 if ((s64)(se->vruntime - se->deadline) < 0) 1022 return false; 1023 1024 /* 1025 * For EEVDF the virtual time slope is determined by w_i (iow. 1026 * nice) while the request time r_i is determined by 1027 * sysctl_sched_base_slice. 1028 */ 1029 if (!se->custom_slice) 1030 se->slice = sysctl_sched_base_slice; 1031 1032 /* 1033 * EEVDF: vd_i = ve_i + r_i / w_i 1034 */ 1035 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1036 1037 /* 1038 * The task has consumed its request, reschedule. 1039 */ 1040 return true; 1041 } 1042 1043 #include "pelt.h" 1044 #ifdef CONFIG_SMP 1045 1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1047 static unsigned long task_h_load(struct task_struct *p); 1048 static unsigned long capacity_of(int cpu); 1049 1050 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1051 void init_entity_runnable_average(struct sched_entity *se) 1052 { 1053 struct sched_avg *sa = &se->avg; 1054 1055 memset(sa, 0, sizeof(*sa)); 1056 1057 /* 1058 * Tasks are initialized with full load to be seen as heavy tasks until 1059 * they get a chance to stabilize to their real load level. 1060 * Group entities are initialized with zero load to reflect the fact that 1061 * nothing has been attached to the task group yet. 1062 */ 1063 if (entity_is_task(se)) 1064 sa->load_avg = scale_load_down(se->load.weight); 1065 1066 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1067 } 1068 1069 /* 1070 * With new tasks being created, their initial util_avgs are extrapolated 1071 * based on the cfs_rq's current util_avg: 1072 * 1073 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1074 * * se_weight(se) 1075 * 1076 * However, in many cases, the above util_avg does not give a desired 1077 * value. Moreover, the sum of the util_avgs may be divergent, such 1078 * as when the series is a harmonic series. 1079 * 1080 * To solve this problem, we also cap the util_avg of successive tasks to 1081 * only 1/2 of the left utilization budget: 1082 * 1083 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1084 * 1085 * where n denotes the nth task and cpu_scale the CPU capacity. 1086 * 1087 * For example, for a CPU with 1024 of capacity, a simplest series from 1088 * the beginning would be like: 1089 * 1090 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1091 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1092 * 1093 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1094 * if util_avg > util_avg_cap. 1095 */ 1096 void post_init_entity_util_avg(struct task_struct *p) 1097 { 1098 struct sched_entity *se = &p->se; 1099 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1100 struct sched_avg *sa = &se->avg; 1101 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1102 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1103 1104 if (p->sched_class != &fair_sched_class) { 1105 /* 1106 * For !fair tasks do: 1107 * 1108 update_cfs_rq_load_avg(now, cfs_rq); 1109 attach_entity_load_avg(cfs_rq, se); 1110 switched_from_fair(rq, p); 1111 * 1112 * such that the next switched_to_fair() has the 1113 * expected state. 1114 */ 1115 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1116 return; 1117 } 1118 1119 if (cap > 0) { 1120 if (cfs_rq->avg.util_avg != 0) { 1121 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1122 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1123 1124 if (sa->util_avg > cap) 1125 sa->util_avg = cap; 1126 } else { 1127 sa->util_avg = cap; 1128 } 1129 } 1130 1131 sa->runnable_avg = sa->util_avg; 1132 } 1133 1134 #else /* !CONFIG_SMP */ 1135 void init_entity_runnable_average(struct sched_entity *se) 1136 { 1137 } 1138 void post_init_entity_util_avg(struct task_struct *p) 1139 { 1140 } 1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1142 { 1143 } 1144 #endif /* CONFIG_SMP */ 1145 1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1147 { 1148 u64 now = rq_clock_task(rq); 1149 s64 delta_exec; 1150 1151 delta_exec = now - curr->exec_start; 1152 if (unlikely(delta_exec <= 0)) 1153 return delta_exec; 1154 1155 curr->exec_start = now; 1156 curr->sum_exec_runtime += delta_exec; 1157 1158 if (schedstat_enabled()) { 1159 struct sched_statistics *stats; 1160 1161 stats = __schedstats_from_se(curr); 1162 __schedstat_set(stats->exec_max, 1163 max(delta_exec, stats->exec_max)); 1164 } 1165 1166 return delta_exec; 1167 } 1168 1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1170 { 1171 trace_sched_stat_runtime(p, delta_exec); 1172 account_group_exec_runtime(p, delta_exec); 1173 cgroup_account_cputime(p, delta_exec); 1174 } 1175 1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1177 { 1178 if (!sched_feat(PREEMPT_SHORT)) 1179 return false; 1180 1181 if (curr->vlag == curr->deadline) 1182 return false; 1183 1184 return !entity_eligible(cfs_rq, curr); 1185 } 1186 1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1188 struct sched_entity *pse, struct sched_entity *se) 1189 { 1190 if (!sched_feat(PREEMPT_SHORT)) 1191 return false; 1192 1193 if (pse->slice >= se->slice) 1194 return false; 1195 1196 if (!entity_eligible(cfs_rq, pse)) 1197 return false; 1198 1199 if (entity_before(pse, se)) 1200 return true; 1201 1202 if (!entity_eligible(cfs_rq, se)) 1203 return true; 1204 1205 return false; 1206 } 1207 1208 /* 1209 * Used by other classes to account runtime. 1210 */ 1211 s64 update_curr_common(struct rq *rq) 1212 { 1213 struct task_struct *donor = rq->donor; 1214 s64 delta_exec; 1215 1216 delta_exec = update_curr_se(rq, &donor->se); 1217 if (likely(delta_exec > 0)) 1218 update_curr_task(donor, delta_exec); 1219 1220 return delta_exec; 1221 } 1222 1223 /* 1224 * Update the current task's runtime statistics. 1225 */ 1226 static void update_curr(struct cfs_rq *cfs_rq) 1227 { 1228 struct sched_entity *curr = cfs_rq->curr; 1229 struct rq *rq = rq_of(cfs_rq); 1230 s64 delta_exec; 1231 bool resched; 1232 1233 if (unlikely(!curr)) 1234 return; 1235 1236 delta_exec = update_curr_se(rq, curr); 1237 if (unlikely(delta_exec <= 0)) 1238 return; 1239 1240 curr->vruntime += calc_delta_fair(delta_exec, curr); 1241 resched = update_deadline(cfs_rq, curr); 1242 update_min_vruntime(cfs_rq); 1243 1244 if (entity_is_task(curr)) { 1245 struct task_struct *p = task_of(curr); 1246 1247 update_curr_task(p, delta_exec); 1248 1249 /* 1250 * If the fair_server is active, we need to account for the 1251 * fair_server time whether or not the task is running on 1252 * behalf of fair_server or not: 1253 * - If the task is running on behalf of fair_server, we need 1254 * to limit its time based on the assigned runtime. 1255 * - Fair task that runs outside of fair_server should account 1256 * against fair_server such that it can account for this time 1257 * and possibly avoid running this period. 1258 */ 1259 if (dl_server_active(&rq->fair_server)) 1260 dl_server_update(&rq->fair_server, delta_exec); 1261 } 1262 1263 account_cfs_rq_runtime(cfs_rq, delta_exec); 1264 1265 if (cfs_rq->nr_queued == 1) 1266 return; 1267 1268 if (resched || did_preempt_short(cfs_rq, curr)) { 1269 resched_curr_lazy(rq); 1270 clear_buddies(cfs_rq, curr); 1271 } 1272 } 1273 1274 static void update_curr_fair(struct rq *rq) 1275 { 1276 update_curr(cfs_rq_of(&rq->donor->se)); 1277 } 1278 1279 static inline void 1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1281 { 1282 struct sched_statistics *stats; 1283 struct task_struct *p = NULL; 1284 1285 if (!schedstat_enabled()) 1286 return; 1287 1288 stats = __schedstats_from_se(se); 1289 1290 if (entity_is_task(se)) 1291 p = task_of(se); 1292 1293 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1294 } 1295 1296 static inline void 1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1298 { 1299 struct sched_statistics *stats; 1300 struct task_struct *p = NULL; 1301 1302 if (!schedstat_enabled()) 1303 return; 1304 1305 stats = __schedstats_from_se(se); 1306 1307 /* 1308 * When the sched_schedstat changes from 0 to 1, some sched se 1309 * maybe already in the runqueue, the se->statistics.wait_start 1310 * will be 0.So it will let the delta wrong. We need to avoid this 1311 * scenario. 1312 */ 1313 if (unlikely(!schedstat_val(stats->wait_start))) 1314 return; 1315 1316 if (entity_is_task(se)) 1317 p = task_of(se); 1318 1319 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1320 } 1321 1322 static inline void 1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1324 { 1325 struct sched_statistics *stats; 1326 struct task_struct *tsk = NULL; 1327 1328 if (!schedstat_enabled()) 1329 return; 1330 1331 stats = __schedstats_from_se(se); 1332 1333 if (entity_is_task(se)) 1334 tsk = task_of(se); 1335 1336 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1337 } 1338 1339 /* 1340 * Task is being enqueued - update stats: 1341 */ 1342 static inline void 1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1344 { 1345 if (!schedstat_enabled()) 1346 return; 1347 1348 /* 1349 * Are we enqueueing a waiting task? (for current tasks 1350 * a dequeue/enqueue event is a NOP) 1351 */ 1352 if (se != cfs_rq->curr) 1353 update_stats_wait_start_fair(cfs_rq, se); 1354 1355 if (flags & ENQUEUE_WAKEUP) 1356 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1357 } 1358 1359 static inline void 1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1361 { 1362 1363 if (!schedstat_enabled()) 1364 return; 1365 1366 /* 1367 * Mark the end of the wait period if dequeueing a 1368 * waiting task: 1369 */ 1370 if (se != cfs_rq->curr) 1371 update_stats_wait_end_fair(cfs_rq, se); 1372 1373 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1374 struct task_struct *tsk = task_of(se); 1375 unsigned int state; 1376 1377 /* XXX racy against TTWU */ 1378 state = READ_ONCE(tsk->__state); 1379 if (state & TASK_INTERRUPTIBLE) 1380 __schedstat_set(tsk->stats.sleep_start, 1381 rq_clock(rq_of(cfs_rq))); 1382 if (state & TASK_UNINTERRUPTIBLE) 1383 __schedstat_set(tsk->stats.block_start, 1384 rq_clock(rq_of(cfs_rq))); 1385 } 1386 } 1387 1388 /* 1389 * We are picking a new current task - update its stats: 1390 */ 1391 static inline void 1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1393 { 1394 /* 1395 * We are starting a new run period: 1396 */ 1397 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1398 } 1399 1400 /************************************************** 1401 * Scheduling class queueing methods: 1402 */ 1403 1404 static inline bool is_core_idle(int cpu) 1405 { 1406 #ifdef CONFIG_SCHED_SMT 1407 int sibling; 1408 1409 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1410 if (cpu == sibling) 1411 continue; 1412 1413 if (!idle_cpu(sibling)) 1414 return false; 1415 } 1416 #endif 1417 1418 return true; 1419 } 1420 1421 #ifdef CONFIG_NUMA 1422 #define NUMA_IMBALANCE_MIN 2 1423 1424 static inline long 1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1426 { 1427 /* 1428 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1429 * threshold. Above this threshold, individual tasks may be contending 1430 * for both memory bandwidth and any shared HT resources. This is an 1431 * approximation as the number of running tasks may not be related to 1432 * the number of busy CPUs due to sched_setaffinity. 1433 */ 1434 if (dst_running > imb_numa_nr) 1435 return imbalance; 1436 1437 /* 1438 * Allow a small imbalance based on a simple pair of communicating 1439 * tasks that remain local when the destination is lightly loaded. 1440 */ 1441 if (imbalance <= NUMA_IMBALANCE_MIN) 1442 return 0; 1443 1444 return imbalance; 1445 } 1446 #endif /* CONFIG_NUMA */ 1447 1448 #ifdef CONFIG_NUMA_BALANCING 1449 /* 1450 * Approximate time to scan a full NUMA task in ms. The task scan period is 1451 * calculated based on the tasks virtual memory size and 1452 * numa_balancing_scan_size. 1453 */ 1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1456 1457 /* Portion of address space to scan in MB */ 1458 unsigned int sysctl_numa_balancing_scan_size = 256; 1459 1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1461 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1462 1463 /* The page with hint page fault latency < threshold in ms is considered hot */ 1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1465 1466 struct numa_group { 1467 refcount_t refcount; 1468 1469 spinlock_t lock; /* nr_tasks, tasks */ 1470 int nr_tasks; 1471 pid_t gid; 1472 int active_nodes; 1473 1474 struct rcu_head rcu; 1475 unsigned long total_faults; 1476 unsigned long max_faults_cpu; 1477 /* 1478 * faults[] array is split into two regions: faults_mem and faults_cpu. 1479 * 1480 * Faults_cpu is used to decide whether memory should move 1481 * towards the CPU. As a consequence, these stats are weighted 1482 * more by CPU use than by memory faults. 1483 */ 1484 unsigned long faults[]; 1485 }; 1486 1487 /* 1488 * For functions that can be called in multiple contexts that permit reading 1489 * ->numa_group (see struct task_struct for locking rules). 1490 */ 1491 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1492 { 1493 return rcu_dereference_check(p->numa_group, p == current || 1494 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1495 } 1496 1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1498 { 1499 return rcu_dereference_protected(p->numa_group, p == current); 1500 } 1501 1502 static inline unsigned long group_faults_priv(struct numa_group *ng); 1503 static inline unsigned long group_faults_shared(struct numa_group *ng); 1504 1505 static unsigned int task_nr_scan_windows(struct task_struct *p) 1506 { 1507 unsigned long rss = 0; 1508 unsigned long nr_scan_pages; 1509 1510 /* 1511 * Calculations based on RSS as non-present and empty pages are skipped 1512 * by the PTE scanner and NUMA hinting faults should be trapped based 1513 * on resident pages 1514 */ 1515 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1516 rss = get_mm_rss(p->mm); 1517 if (!rss) 1518 rss = nr_scan_pages; 1519 1520 rss = round_up(rss, nr_scan_pages); 1521 return rss / nr_scan_pages; 1522 } 1523 1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1525 #define MAX_SCAN_WINDOW 2560 1526 1527 static unsigned int task_scan_min(struct task_struct *p) 1528 { 1529 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1530 unsigned int scan, floor; 1531 unsigned int windows = 1; 1532 1533 if (scan_size < MAX_SCAN_WINDOW) 1534 windows = MAX_SCAN_WINDOW / scan_size; 1535 floor = 1000 / windows; 1536 1537 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1538 return max_t(unsigned int, floor, scan); 1539 } 1540 1541 static unsigned int task_scan_start(struct task_struct *p) 1542 { 1543 unsigned long smin = task_scan_min(p); 1544 unsigned long period = smin; 1545 struct numa_group *ng; 1546 1547 /* Scale the maximum scan period with the amount of shared memory. */ 1548 rcu_read_lock(); 1549 ng = rcu_dereference(p->numa_group); 1550 if (ng) { 1551 unsigned long shared = group_faults_shared(ng); 1552 unsigned long private = group_faults_priv(ng); 1553 1554 period *= refcount_read(&ng->refcount); 1555 period *= shared + 1; 1556 period /= private + shared + 1; 1557 } 1558 rcu_read_unlock(); 1559 1560 return max(smin, period); 1561 } 1562 1563 static unsigned int task_scan_max(struct task_struct *p) 1564 { 1565 unsigned long smin = task_scan_min(p); 1566 unsigned long smax; 1567 struct numa_group *ng; 1568 1569 /* Watch for min being lower than max due to floor calculations */ 1570 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1571 1572 /* Scale the maximum scan period with the amount of shared memory. */ 1573 ng = deref_curr_numa_group(p); 1574 if (ng) { 1575 unsigned long shared = group_faults_shared(ng); 1576 unsigned long private = group_faults_priv(ng); 1577 unsigned long period = smax; 1578 1579 period *= refcount_read(&ng->refcount); 1580 period *= shared + 1; 1581 period /= private + shared + 1; 1582 1583 smax = max(smax, period); 1584 } 1585 1586 return max(smin, smax); 1587 } 1588 1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1590 { 1591 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1592 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1593 } 1594 1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1596 { 1597 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1598 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1599 } 1600 1601 /* Shared or private faults. */ 1602 #define NR_NUMA_HINT_FAULT_TYPES 2 1603 1604 /* Memory and CPU locality */ 1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1606 1607 /* Averaged statistics, and temporary buffers. */ 1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1609 1610 pid_t task_numa_group_id(struct task_struct *p) 1611 { 1612 struct numa_group *ng; 1613 pid_t gid = 0; 1614 1615 rcu_read_lock(); 1616 ng = rcu_dereference(p->numa_group); 1617 if (ng) 1618 gid = ng->gid; 1619 rcu_read_unlock(); 1620 1621 return gid; 1622 } 1623 1624 /* 1625 * The averaged statistics, shared & private, memory & CPU, 1626 * occupy the first half of the array. The second half of the 1627 * array is for current counters, which are averaged into the 1628 * first set by task_numa_placement. 1629 */ 1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1631 { 1632 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1633 } 1634 1635 static inline unsigned long task_faults(struct task_struct *p, int nid) 1636 { 1637 if (!p->numa_faults) 1638 return 0; 1639 1640 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1641 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1642 } 1643 1644 static inline unsigned long group_faults(struct task_struct *p, int nid) 1645 { 1646 struct numa_group *ng = deref_task_numa_group(p); 1647 1648 if (!ng) 1649 return 0; 1650 1651 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1652 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1653 } 1654 1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1656 { 1657 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1658 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1659 } 1660 1661 static inline unsigned long group_faults_priv(struct numa_group *ng) 1662 { 1663 unsigned long faults = 0; 1664 int node; 1665 1666 for_each_online_node(node) { 1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1668 } 1669 1670 return faults; 1671 } 1672 1673 static inline unsigned long group_faults_shared(struct numa_group *ng) 1674 { 1675 unsigned long faults = 0; 1676 int node; 1677 1678 for_each_online_node(node) { 1679 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1680 } 1681 1682 return faults; 1683 } 1684 1685 /* 1686 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1687 * considered part of a numa group's pseudo-interleaving set. Migrations 1688 * between these nodes are slowed down, to allow things to settle down. 1689 */ 1690 #define ACTIVE_NODE_FRACTION 3 1691 1692 static bool numa_is_active_node(int nid, struct numa_group *ng) 1693 { 1694 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1695 } 1696 1697 /* Handle placement on systems where not all nodes are directly connected. */ 1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1699 int lim_dist, bool task) 1700 { 1701 unsigned long score = 0; 1702 int node, max_dist; 1703 1704 /* 1705 * All nodes are directly connected, and the same distance 1706 * from each other. No need for fancy placement algorithms. 1707 */ 1708 if (sched_numa_topology_type == NUMA_DIRECT) 1709 return 0; 1710 1711 /* sched_max_numa_distance may be changed in parallel. */ 1712 max_dist = READ_ONCE(sched_max_numa_distance); 1713 /* 1714 * This code is called for each node, introducing N^2 complexity, 1715 * which should be OK given the number of nodes rarely exceeds 8. 1716 */ 1717 for_each_online_node(node) { 1718 unsigned long faults; 1719 int dist = node_distance(nid, node); 1720 1721 /* 1722 * The furthest away nodes in the system are not interesting 1723 * for placement; nid was already counted. 1724 */ 1725 if (dist >= max_dist || node == nid) 1726 continue; 1727 1728 /* 1729 * On systems with a backplane NUMA topology, compare groups 1730 * of nodes, and move tasks towards the group with the most 1731 * memory accesses. When comparing two nodes at distance 1732 * "hoplimit", only nodes closer by than "hoplimit" are part 1733 * of each group. Skip other nodes. 1734 */ 1735 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1736 continue; 1737 1738 /* Add up the faults from nearby nodes. */ 1739 if (task) 1740 faults = task_faults(p, node); 1741 else 1742 faults = group_faults(p, node); 1743 1744 /* 1745 * On systems with a glueless mesh NUMA topology, there are 1746 * no fixed "groups of nodes". Instead, nodes that are not 1747 * directly connected bounce traffic through intermediate 1748 * nodes; a numa_group can occupy any set of nodes. 1749 * The further away a node is, the less the faults count. 1750 * This seems to result in good task placement. 1751 */ 1752 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1753 faults *= (max_dist - dist); 1754 faults /= (max_dist - LOCAL_DISTANCE); 1755 } 1756 1757 score += faults; 1758 } 1759 1760 return score; 1761 } 1762 1763 /* 1764 * These return the fraction of accesses done by a particular task, or 1765 * task group, on a particular numa node. The group weight is given a 1766 * larger multiplier, in order to group tasks together that are almost 1767 * evenly spread out between numa nodes. 1768 */ 1769 static inline unsigned long task_weight(struct task_struct *p, int nid, 1770 int dist) 1771 { 1772 unsigned long faults, total_faults; 1773 1774 if (!p->numa_faults) 1775 return 0; 1776 1777 total_faults = p->total_numa_faults; 1778 1779 if (!total_faults) 1780 return 0; 1781 1782 faults = task_faults(p, nid); 1783 faults += score_nearby_nodes(p, nid, dist, true); 1784 1785 return 1000 * faults / total_faults; 1786 } 1787 1788 static inline unsigned long group_weight(struct task_struct *p, int nid, 1789 int dist) 1790 { 1791 struct numa_group *ng = deref_task_numa_group(p); 1792 unsigned long faults, total_faults; 1793 1794 if (!ng) 1795 return 0; 1796 1797 total_faults = ng->total_faults; 1798 1799 if (!total_faults) 1800 return 0; 1801 1802 faults = group_faults(p, nid); 1803 faults += score_nearby_nodes(p, nid, dist, false); 1804 1805 return 1000 * faults / total_faults; 1806 } 1807 1808 /* 1809 * If memory tiering mode is enabled, cpupid of slow memory page is 1810 * used to record scan time instead of CPU and PID. When tiering mode 1811 * is disabled at run time, the scan time (in cpupid) will be 1812 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1813 * access out of array bound. 1814 */ 1815 static inline bool cpupid_valid(int cpupid) 1816 { 1817 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1818 } 1819 1820 /* 1821 * For memory tiering mode, if there are enough free pages (more than 1822 * enough watermark defined here) in fast memory node, to take full 1823 * advantage of fast memory capacity, all recently accessed slow 1824 * memory pages will be migrated to fast memory node without 1825 * considering hot threshold. 1826 */ 1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1828 { 1829 int z; 1830 unsigned long enough_wmark; 1831 1832 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1833 pgdat->node_present_pages >> 4); 1834 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1835 struct zone *zone = pgdat->node_zones + z; 1836 1837 if (!populated_zone(zone)) 1838 continue; 1839 1840 if (zone_watermark_ok(zone, 0, 1841 promo_wmark_pages(zone) + enough_wmark, 1842 ZONE_MOVABLE, 0)) 1843 return true; 1844 } 1845 return false; 1846 } 1847 1848 /* 1849 * For memory tiering mode, when page tables are scanned, the scan 1850 * time will be recorded in struct page in addition to make page 1851 * PROT_NONE for slow memory page. So when the page is accessed, in 1852 * hint page fault handler, the hint page fault latency is calculated 1853 * via, 1854 * 1855 * hint page fault latency = hint page fault time - scan time 1856 * 1857 * The smaller the hint page fault latency, the higher the possibility 1858 * for the page to be hot. 1859 */ 1860 static int numa_hint_fault_latency(struct folio *folio) 1861 { 1862 int last_time, time; 1863 1864 time = jiffies_to_msecs(jiffies); 1865 last_time = folio_xchg_access_time(folio, time); 1866 1867 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1868 } 1869 1870 /* 1871 * For memory tiering mode, too high promotion/demotion throughput may 1872 * hurt application latency. So we provide a mechanism to rate limit 1873 * the number of pages that are tried to be promoted. 1874 */ 1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1876 unsigned long rate_limit, int nr) 1877 { 1878 unsigned long nr_cand; 1879 unsigned int now, start; 1880 1881 now = jiffies_to_msecs(jiffies); 1882 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1883 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1884 start = pgdat->nbp_rl_start; 1885 if (now - start > MSEC_PER_SEC && 1886 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1887 pgdat->nbp_rl_nr_cand = nr_cand; 1888 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1889 return true; 1890 return false; 1891 } 1892 1893 #define NUMA_MIGRATION_ADJUST_STEPS 16 1894 1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1896 unsigned long rate_limit, 1897 unsigned int ref_th) 1898 { 1899 unsigned int now, start, th_period, unit_th, th; 1900 unsigned long nr_cand, ref_cand, diff_cand; 1901 1902 now = jiffies_to_msecs(jiffies); 1903 th_period = sysctl_numa_balancing_scan_period_max; 1904 start = pgdat->nbp_th_start; 1905 if (now - start > th_period && 1906 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1907 ref_cand = rate_limit * 1908 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1909 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1910 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1911 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1912 th = pgdat->nbp_threshold ? : ref_th; 1913 if (diff_cand > ref_cand * 11 / 10) 1914 th = max(th - unit_th, unit_th); 1915 else if (diff_cand < ref_cand * 9 / 10) 1916 th = min(th + unit_th, ref_th * 2); 1917 pgdat->nbp_th_nr_cand = nr_cand; 1918 pgdat->nbp_threshold = th; 1919 } 1920 } 1921 1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1923 int src_nid, int dst_cpu) 1924 { 1925 struct numa_group *ng = deref_curr_numa_group(p); 1926 int dst_nid = cpu_to_node(dst_cpu); 1927 int last_cpupid, this_cpupid; 1928 1929 /* 1930 * Cannot migrate to memoryless nodes. 1931 */ 1932 if (!node_state(dst_nid, N_MEMORY)) 1933 return false; 1934 1935 /* 1936 * The pages in slow memory node should be migrated according 1937 * to hot/cold instead of private/shared. 1938 */ 1939 if (folio_use_access_time(folio)) { 1940 struct pglist_data *pgdat; 1941 unsigned long rate_limit; 1942 unsigned int latency, th, def_th; 1943 1944 pgdat = NODE_DATA(dst_nid); 1945 if (pgdat_free_space_enough(pgdat)) { 1946 /* workload changed, reset hot threshold */ 1947 pgdat->nbp_threshold = 0; 1948 return true; 1949 } 1950 1951 def_th = sysctl_numa_balancing_hot_threshold; 1952 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1953 (20 - PAGE_SHIFT); 1954 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1955 1956 th = pgdat->nbp_threshold ? : def_th; 1957 latency = numa_hint_fault_latency(folio); 1958 if (latency >= th) 1959 return false; 1960 1961 return !numa_promotion_rate_limit(pgdat, rate_limit, 1962 folio_nr_pages(folio)); 1963 } 1964 1965 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1966 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1967 1968 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1969 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1970 return false; 1971 1972 /* 1973 * Allow first faults or private faults to migrate immediately early in 1974 * the lifetime of a task. The magic number 4 is based on waiting for 1975 * two full passes of the "multi-stage node selection" test that is 1976 * executed below. 1977 */ 1978 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1979 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1980 return true; 1981 1982 /* 1983 * Multi-stage node selection is used in conjunction with a periodic 1984 * migration fault to build a temporal task<->page relation. By using 1985 * a two-stage filter we remove short/unlikely relations. 1986 * 1987 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1988 * a task's usage of a particular page (n_p) per total usage of this 1989 * page (n_t) (in a given time-span) to a probability. 1990 * 1991 * Our periodic faults will sample this probability and getting the 1992 * same result twice in a row, given these samples are fully 1993 * independent, is then given by P(n)^2, provided our sample period 1994 * is sufficiently short compared to the usage pattern. 1995 * 1996 * This quadric squishes small probabilities, making it less likely we 1997 * act on an unlikely task<->page relation. 1998 */ 1999 if (!cpupid_pid_unset(last_cpupid) && 2000 cpupid_to_nid(last_cpupid) != dst_nid) 2001 return false; 2002 2003 /* Always allow migrate on private faults */ 2004 if (cpupid_match_pid(p, last_cpupid)) 2005 return true; 2006 2007 /* A shared fault, but p->numa_group has not been set up yet. */ 2008 if (!ng) 2009 return true; 2010 2011 /* 2012 * Destination node is much more heavily used than the source 2013 * node? Allow migration. 2014 */ 2015 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2016 ACTIVE_NODE_FRACTION) 2017 return true; 2018 2019 /* 2020 * Distribute memory according to CPU & memory use on each node, 2021 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2022 * 2023 * faults_cpu(dst) 3 faults_cpu(src) 2024 * --------------- * - > --------------- 2025 * faults_mem(dst) 4 faults_mem(src) 2026 */ 2027 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2028 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2029 } 2030 2031 /* 2032 * 'numa_type' describes the node at the moment of load balancing. 2033 */ 2034 enum numa_type { 2035 /* The node has spare capacity that can be used to run more tasks. */ 2036 node_has_spare = 0, 2037 /* 2038 * The node is fully used and the tasks don't compete for more CPU 2039 * cycles. Nevertheless, some tasks might wait before running. 2040 */ 2041 node_fully_busy, 2042 /* 2043 * The node is overloaded and can't provide expected CPU cycles to all 2044 * tasks. 2045 */ 2046 node_overloaded 2047 }; 2048 2049 /* Cached statistics for all CPUs within a node */ 2050 struct numa_stats { 2051 unsigned long load; 2052 unsigned long runnable; 2053 unsigned long util; 2054 /* Total compute capacity of CPUs on a node */ 2055 unsigned long compute_capacity; 2056 unsigned int nr_running; 2057 unsigned int weight; 2058 enum numa_type node_type; 2059 int idle_cpu; 2060 }; 2061 2062 struct task_numa_env { 2063 struct task_struct *p; 2064 2065 int src_cpu, src_nid; 2066 int dst_cpu, dst_nid; 2067 int imb_numa_nr; 2068 2069 struct numa_stats src_stats, dst_stats; 2070 2071 int imbalance_pct; 2072 int dist; 2073 2074 struct task_struct *best_task; 2075 long best_imp; 2076 int best_cpu; 2077 }; 2078 2079 static unsigned long cpu_load(struct rq *rq); 2080 static unsigned long cpu_runnable(struct rq *rq); 2081 2082 static inline enum 2083 numa_type numa_classify(unsigned int imbalance_pct, 2084 struct numa_stats *ns) 2085 { 2086 if ((ns->nr_running > ns->weight) && 2087 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2088 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2089 return node_overloaded; 2090 2091 if ((ns->nr_running < ns->weight) || 2092 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2093 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2094 return node_has_spare; 2095 2096 return node_fully_busy; 2097 } 2098 2099 #ifdef CONFIG_SCHED_SMT 2100 /* Forward declarations of select_idle_sibling helpers */ 2101 static inline bool test_idle_cores(int cpu); 2102 static inline int numa_idle_core(int idle_core, int cpu) 2103 { 2104 if (!static_branch_likely(&sched_smt_present) || 2105 idle_core >= 0 || !test_idle_cores(cpu)) 2106 return idle_core; 2107 2108 /* 2109 * Prefer cores instead of packing HT siblings 2110 * and triggering future load balancing. 2111 */ 2112 if (is_core_idle(cpu)) 2113 idle_core = cpu; 2114 2115 return idle_core; 2116 } 2117 #else 2118 static inline int numa_idle_core(int idle_core, int cpu) 2119 { 2120 return idle_core; 2121 } 2122 #endif 2123 2124 /* 2125 * Gather all necessary information to make NUMA balancing placement 2126 * decisions that are compatible with standard load balancer. This 2127 * borrows code and logic from update_sg_lb_stats but sharing a 2128 * common implementation is impractical. 2129 */ 2130 static void update_numa_stats(struct task_numa_env *env, 2131 struct numa_stats *ns, int nid, 2132 bool find_idle) 2133 { 2134 int cpu, idle_core = -1; 2135 2136 memset(ns, 0, sizeof(*ns)); 2137 ns->idle_cpu = -1; 2138 2139 rcu_read_lock(); 2140 for_each_cpu(cpu, cpumask_of_node(nid)) { 2141 struct rq *rq = cpu_rq(cpu); 2142 2143 ns->load += cpu_load(rq); 2144 ns->runnable += cpu_runnable(rq); 2145 ns->util += cpu_util_cfs(cpu); 2146 ns->nr_running += rq->cfs.h_nr_runnable; 2147 ns->compute_capacity += capacity_of(cpu); 2148 2149 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2150 if (READ_ONCE(rq->numa_migrate_on) || 2151 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2152 continue; 2153 2154 if (ns->idle_cpu == -1) 2155 ns->idle_cpu = cpu; 2156 2157 idle_core = numa_idle_core(idle_core, cpu); 2158 } 2159 } 2160 rcu_read_unlock(); 2161 2162 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2163 2164 ns->node_type = numa_classify(env->imbalance_pct, ns); 2165 2166 if (idle_core >= 0) 2167 ns->idle_cpu = idle_core; 2168 } 2169 2170 static void task_numa_assign(struct task_numa_env *env, 2171 struct task_struct *p, long imp) 2172 { 2173 struct rq *rq = cpu_rq(env->dst_cpu); 2174 2175 /* Check if run-queue part of active NUMA balance. */ 2176 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2177 int cpu; 2178 int start = env->dst_cpu; 2179 2180 /* Find alternative idle CPU. */ 2181 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2182 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2183 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2184 continue; 2185 } 2186 2187 env->dst_cpu = cpu; 2188 rq = cpu_rq(env->dst_cpu); 2189 if (!xchg(&rq->numa_migrate_on, 1)) 2190 goto assign; 2191 } 2192 2193 /* Failed to find an alternative idle CPU */ 2194 return; 2195 } 2196 2197 assign: 2198 /* 2199 * Clear previous best_cpu/rq numa-migrate flag, since task now 2200 * found a better CPU to move/swap. 2201 */ 2202 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2203 rq = cpu_rq(env->best_cpu); 2204 WRITE_ONCE(rq->numa_migrate_on, 0); 2205 } 2206 2207 if (env->best_task) 2208 put_task_struct(env->best_task); 2209 if (p) 2210 get_task_struct(p); 2211 2212 env->best_task = p; 2213 env->best_imp = imp; 2214 env->best_cpu = env->dst_cpu; 2215 } 2216 2217 static bool load_too_imbalanced(long src_load, long dst_load, 2218 struct task_numa_env *env) 2219 { 2220 long imb, old_imb; 2221 long orig_src_load, orig_dst_load; 2222 long src_capacity, dst_capacity; 2223 2224 /* 2225 * The load is corrected for the CPU capacity available on each node. 2226 * 2227 * src_load dst_load 2228 * ------------ vs --------- 2229 * src_capacity dst_capacity 2230 */ 2231 src_capacity = env->src_stats.compute_capacity; 2232 dst_capacity = env->dst_stats.compute_capacity; 2233 2234 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2235 2236 orig_src_load = env->src_stats.load; 2237 orig_dst_load = env->dst_stats.load; 2238 2239 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2240 2241 /* Would this change make things worse? */ 2242 return (imb > old_imb); 2243 } 2244 2245 /* 2246 * Maximum NUMA importance can be 1998 (2*999); 2247 * SMALLIMP @ 30 would be close to 1998/64. 2248 * Used to deter task migration. 2249 */ 2250 #define SMALLIMP 30 2251 2252 /* 2253 * This checks if the overall compute and NUMA accesses of the system would 2254 * be improved if the source tasks was migrated to the target dst_cpu taking 2255 * into account that it might be best if task running on the dst_cpu should 2256 * be exchanged with the source task 2257 */ 2258 static bool task_numa_compare(struct task_numa_env *env, 2259 long taskimp, long groupimp, bool maymove) 2260 { 2261 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2262 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2263 long imp = p_ng ? groupimp : taskimp; 2264 struct task_struct *cur; 2265 long src_load, dst_load; 2266 int dist = env->dist; 2267 long moveimp = imp; 2268 long load; 2269 bool stopsearch = false; 2270 2271 if (READ_ONCE(dst_rq->numa_migrate_on)) 2272 return false; 2273 2274 rcu_read_lock(); 2275 cur = rcu_dereference(dst_rq->curr); 2276 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2277 cur = NULL; 2278 2279 /* 2280 * Because we have preemption enabled we can get migrated around and 2281 * end try selecting ourselves (current == env->p) as a swap candidate. 2282 */ 2283 if (cur == env->p) { 2284 stopsearch = true; 2285 goto unlock; 2286 } 2287 2288 if (!cur) { 2289 if (maymove && moveimp >= env->best_imp) 2290 goto assign; 2291 else 2292 goto unlock; 2293 } 2294 2295 /* Skip this swap candidate if cannot move to the source cpu. */ 2296 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2297 goto unlock; 2298 2299 /* 2300 * Skip this swap candidate if it is not moving to its preferred 2301 * node and the best task is. 2302 */ 2303 if (env->best_task && 2304 env->best_task->numa_preferred_nid == env->src_nid && 2305 cur->numa_preferred_nid != env->src_nid) { 2306 goto unlock; 2307 } 2308 2309 /* 2310 * "imp" is the fault differential for the source task between the 2311 * source and destination node. Calculate the total differential for 2312 * the source task and potential destination task. The more negative 2313 * the value is, the more remote accesses that would be expected to 2314 * be incurred if the tasks were swapped. 2315 * 2316 * If dst and source tasks are in the same NUMA group, or not 2317 * in any group then look only at task weights. 2318 */ 2319 cur_ng = rcu_dereference(cur->numa_group); 2320 if (cur_ng == p_ng) { 2321 /* 2322 * Do not swap within a group or between tasks that have 2323 * no group if there is spare capacity. Swapping does 2324 * not address the load imbalance and helps one task at 2325 * the cost of punishing another. 2326 */ 2327 if (env->dst_stats.node_type == node_has_spare) 2328 goto unlock; 2329 2330 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2331 task_weight(cur, env->dst_nid, dist); 2332 /* 2333 * Add some hysteresis to prevent swapping the 2334 * tasks within a group over tiny differences. 2335 */ 2336 if (cur_ng) 2337 imp -= imp / 16; 2338 } else { 2339 /* 2340 * Compare the group weights. If a task is all by itself 2341 * (not part of a group), use the task weight instead. 2342 */ 2343 if (cur_ng && p_ng) 2344 imp += group_weight(cur, env->src_nid, dist) - 2345 group_weight(cur, env->dst_nid, dist); 2346 else 2347 imp += task_weight(cur, env->src_nid, dist) - 2348 task_weight(cur, env->dst_nid, dist); 2349 } 2350 2351 /* Discourage picking a task already on its preferred node */ 2352 if (cur->numa_preferred_nid == env->dst_nid) 2353 imp -= imp / 16; 2354 2355 /* 2356 * Encourage picking a task that moves to its preferred node. 2357 * This potentially makes imp larger than it's maximum of 2358 * 1998 (see SMALLIMP and task_weight for why) but in this 2359 * case, it does not matter. 2360 */ 2361 if (cur->numa_preferred_nid == env->src_nid) 2362 imp += imp / 8; 2363 2364 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2365 imp = moveimp; 2366 cur = NULL; 2367 goto assign; 2368 } 2369 2370 /* 2371 * Prefer swapping with a task moving to its preferred node over a 2372 * task that is not. 2373 */ 2374 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2375 env->best_task->numa_preferred_nid != env->src_nid) { 2376 goto assign; 2377 } 2378 2379 /* 2380 * If the NUMA importance is less than SMALLIMP, 2381 * task migration might only result in ping pong 2382 * of tasks and also hurt performance due to cache 2383 * misses. 2384 */ 2385 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2386 goto unlock; 2387 2388 /* 2389 * In the overloaded case, try and keep the load balanced. 2390 */ 2391 load = task_h_load(env->p) - task_h_load(cur); 2392 if (!load) 2393 goto assign; 2394 2395 dst_load = env->dst_stats.load + load; 2396 src_load = env->src_stats.load - load; 2397 2398 if (load_too_imbalanced(src_load, dst_load, env)) 2399 goto unlock; 2400 2401 assign: 2402 /* Evaluate an idle CPU for a task numa move. */ 2403 if (!cur) { 2404 int cpu = env->dst_stats.idle_cpu; 2405 2406 /* Nothing cached so current CPU went idle since the search. */ 2407 if (cpu < 0) 2408 cpu = env->dst_cpu; 2409 2410 /* 2411 * If the CPU is no longer truly idle and the previous best CPU 2412 * is, keep using it. 2413 */ 2414 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2415 idle_cpu(env->best_cpu)) { 2416 cpu = env->best_cpu; 2417 } 2418 2419 env->dst_cpu = cpu; 2420 } 2421 2422 task_numa_assign(env, cur, imp); 2423 2424 /* 2425 * If a move to idle is allowed because there is capacity or load 2426 * balance improves then stop the search. While a better swap 2427 * candidate may exist, a search is not free. 2428 */ 2429 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2430 stopsearch = true; 2431 2432 /* 2433 * If a swap candidate must be identified and the current best task 2434 * moves its preferred node then stop the search. 2435 */ 2436 if (!maymove && env->best_task && 2437 env->best_task->numa_preferred_nid == env->src_nid) { 2438 stopsearch = true; 2439 } 2440 unlock: 2441 rcu_read_unlock(); 2442 2443 return stopsearch; 2444 } 2445 2446 static void task_numa_find_cpu(struct task_numa_env *env, 2447 long taskimp, long groupimp) 2448 { 2449 bool maymove = false; 2450 int cpu; 2451 2452 /* 2453 * If dst node has spare capacity, then check if there is an 2454 * imbalance that would be overruled by the load balancer. 2455 */ 2456 if (env->dst_stats.node_type == node_has_spare) { 2457 unsigned int imbalance; 2458 int src_running, dst_running; 2459 2460 /* 2461 * Would movement cause an imbalance? Note that if src has 2462 * more running tasks that the imbalance is ignored as the 2463 * move improves the imbalance from the perspective of the 2464 * CPU load balancer. 2465 * */ 2466 src_running = env->src_stats.nr_running - 1; 2467 dst_running = env->dst_stats.nr_running + 1; 2468 imbalance = max(0, dst_running - src_running); 2469 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2470 env->imb_numa_nr); 2471 2472 /* Use idle CPU if there is no imbalance */ 2473 if (!imbalance) { 2474 maymove = true; 2475 if (env->dst_stats.idle_cpu >= 0) { 2476 env->dst_cpu = env->dst_stats.idle_cpu; 2477 task_numa_assign(env, NULL, 0); 2478 return; 2479 } 2480 } 2481 } else { 2482 long src_load, dst_load, load; 2483 /* 2484 * If the improvement from just moving env->p direction is better 2485 * than swapping tasks around, check if a move is possible. 2486 */ 2487 load = task_h_load(env->p); 2488 dst_load = env->dst_stats.load + load; 2489 src_load = env->src_stats.load - load; 2490 maymove = !load_too_imbalanced(src_load, dst_load, env); 2491 } 2492 2493 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2494 /* Skip this CPU if the source task cannot migrate */ 2495 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2496 continue; 2497 2498 env->dst_cpu = cpu; 2499 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2500 break; 2501 } 2502 } 2503 2504 static int task_numa_migrate(struct task_struct *p) 2505 { 2506 struct task_numa_env env = { 2507 .p = p, 2508 2509 .src_cpu = task_cpu(p), 2510 .src_nid = task_node(p), 2511 2512 .imbalance_pct = 112, 2513 2514 .best_task = NULL, 2515 .best_imp = 0, 2516 .best_cpu = -1, 2517 }; 2518 unsigned long taskweight, groupweight; 2519 struct sched_domain *sd; 2520 long taskimp, groupimp; 2521 struct numa_group *ng; 2522 struct rq *best_rq; 2523 int nid, ret, dist; 2524 2525 /* 2526 * Pick the lowest SD_NUMA domain, as that would have the smallest 2527 * imbalance and would be the first to start moving tasks about. 2528 * 2529 * And we want to avoid any moving of tasks about, as that would create 2530 * random movement of tasks -- counter the numa conditions we're trying 2531 * to satisfy here. 2532 */ 2533 rcu_read_lock(); 2534 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2535 if (sd) { 2536 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2537 env.imb_numa_nr = sd->imb_numa_nr; 2538 } 2539 rcu_read_unlock(); 2540 2541 /* 2542 * Cpusets can break the scheduler domain tree into smaller 2543 * balance domains, some of which do not cross NUMA boundaries. 2544 * Tasks that are "trapped" in such domains cannot be migrated 2545 * elsewhere, so there is no point in (re)trying. 2546 */ 2547 if (unlikely(!sd)) { 2548 sched_setnuma(p, task_node(p)); 2549 return -EINVAL; 2550 } 2551 2552 env.dst_nid = p->numa_preferred_nid; 2553 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2554 taskweight = task_weight(p, env.src_nid, dist); 2555 groupweight = group_weight(p, env.src_nid, dist); 2556 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2557 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2558 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2559 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2560 2561 /* Try to find a spot on the preferred nid. */ 2562 task_numa_find_cpu(&env, taskimp, groupimp); 2563 2564 /* 2565 * Look at other nodes in these cases: 2566 * - there is no space available on the preferred_nid 2567 * - the task is part of a numa_group that is interleaved across 2568 * multiple NUMA nodes; in order to better consolidate the group, 2569 * we need to check other locations. 2570 */ 2571 ng = deref_curr_numa_group(p); 2572 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2573 for_each_node_state(nid, N_CPU) { 2574 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2575 continue; 2576 2577 dist = node_distance(env.src_nid, env.dst_nid); 2578 if (sched_numa_topology_type == NUMA_BACKPLANE && 2579 dist != env.dist) { 2580 taskweight = task_weight(p, env.src_nid, dist); 2581 groupweight = group_weight(p, env.src_nid, dist); 2582 } 2583 2584 /* Only consider nodes where both task and groups benefit */ 2585 taskimp = task_weight(p, nid, dist) - taskweight; 2586 groupimp = group_weight(p, nid, dist) - groupweight; 2587 if (taskimp < 0 && groupimp < 0) 2588 continue; 2589 2590 env.dist = dist; 2591 env.dst_nid = nid; 2592 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2593 task_numa_find_cpu(&env, taskimp, groupimp); 2594 } 2595 } 2596 2597 /* 2598 * If the task is part of a workload that spans multiple NUMA nodes, 2599 * and is migrating into one of the workload's active nodes, remember 2600 * this node as the task's preferred numa node, so the workload can 2601 * settle down. 2602 * A task that migrated to a second choice node will be better off 2603 * trying for a better one later. Do not set the preferred node here. 2604 */ 2605 if (ng) { 2606 if (env.best_cpu == -1) 2607 nid = env.src_nid; 2608 else 2609 nid = cpu_to_node(env.best_cpu); 2610 2611 if (nid != p->numa_preferred_nid) 2612 sched_setnuma(p, nid); 2613 } 2614 2615 /* No better CPU than the current one was found. */ 2616 if (env.best_cpu == -1) { 2617 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2618 return -EAGAIN; 2619 } 2620 2621 best_rq = cpu_rq(env.best_cpu); 2622 if (env.best_task == NULL) { 2623 ret = migrate_task_to(p, env.best_cpu); 2624 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2625 if (ret != 0) 2626 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2627 return ret; 2628 } 2629 2630 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2631 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2632 2633 if (ret != 0) 2634 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2635 put_task_struct(env.best_task); 2636 return ret; 2637 } 2638 2639 /* Attempt to migrate a task to a CPU on the preferred node. */ 2640 static void numa_migrate_preferred(struct task_struct *p) 2641 { 2642 unsigned long interval = HZ; 2643 2644 /* This task has no NUMA fault statistics yet */ 2645 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2646 return; 2647 2648 /* Periodically retry migrating the task to the preferred node */ 2649 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2650 p->numa_migrate_retry = jiffies + interval; 2651 2652 /* Success if task is already running on preferred CPU */ 2653 if (task_node(p) == p->numa_preferred_nid) 2654 return; 2655 2656 /* Otherwise, try migrate to a CPU on the preferred node */ 2657 task_numa_migrate(p); 2658 } 2659 2660 /* 2661 * Find out how many nodes the workload is actively running on. Do this by 2662 * tracking the nodes from which NUMA hinting faults are triggered. This can 2663 * be different from the set of nodes where the workload's memory is currently 2664 * located. 2665 */ 2666 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2667 { 2668 unsigned long faults, max_faults = 0; 2669 int nid, active_nodes = 0; 2670 2671 for_each_node_state(nid, N_CPU) { 2672 faults = group_faults_cpu(numa_group, nid); 2673 if (faults > max_faults) 2674 max_faults = faults; 2675 } 2676 2677 for_each_node_state(nid, N_CPU) { 2678 faults = group_faults_cpu(numa_group, nid); 2679 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2680 active_nodes++; 2681 } 2682 2683 numa_group->max_faults_cpu = max_faults; 2684 numa_group->active_nodes = active_nodes; 2685 } 2686 2687 /* 2688 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2689 * increments. The more local the fault statistics are, the higher the scan 2690 * period will be for the next scan window. If local/(local+remote) ratio is 2691 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2692 * the scan period will decrease. Aim for 70% local accesses. 2693 */ 2694 #define NUMA_PERIOD_SLOTS 10 2695 #define NUMA_PERIOD_THRESHOLD 7 2696 2697 /* 2698 * Increase the scan period (slow down scanning) if the majority of 2699 * our memory is already on our local node, or if the majority of 2700 * the page accesses are shared with other processes. 2701 * Otherwise, decrease the scan period. 2702 */ 2703 static void update_task_scan_period(struct task_struct *p, 2704 unsigned long shared, unsigned long private) 2705 { 2706 unsigned int period_slot; 2707 int lr_ratio, ps_ratio; 2708 int diff; 2709 2710 unsigned long remote = p->numa_faults_locality[0]; 2711 unsigned long local = p->numa_faults_locality[1]; 2712 2713 /* 2714 * If there were no record hinting faults then either the task is 2715 * completely idle or all activity is in areas that are not of interest 2716 * to automatic numa balancing. Related to that, if there were failed 2717 * migration then it implies we are migrating too quickly or the local 2718 * node is overloaded. In either case, scan slower 2719 */ 2720 if (local + shared == 0 || p->numa_faults_locality[2]) { 2721 p->numa_scan_period = min(p->numa_scan_period_max, 2722 p->numa_scan_period << 1); 2723 2724 p->mm->numa_next_scan = jiffies + 2725 msecs_to_jiffies(p->numa_scan_period); 2726 2727 return; 2728 } 2729 2730 /* 2731 * Prepare to scale scan period relative to the current period. 2732 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2733 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2734 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2735 */ 2736 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2737 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2738 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2739 2740 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2741 /* 2742 * Most memory accesses are local. There is no need to 2743 * do fast NUMA scanning, since memory is already local. 2744 */ 2745 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2746 if (!slot) 2747 slot = 1; 2748 diff = slot * period_slot; 2749 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2750 /* 2751 * Most memory accesses are shared with other tasks. 2752 * There is no point in continuing fast NUMA scanning, 2753 * since other tasks may just move the memory elsewhere. 2754 */ 2755 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2756 if (!slot) 2757 slot = 1; 2758 diff = slot * period_slot; 2759 } else { 2760 /* 2761 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2762 * yet they are not on the local NUMA node. Speed up 2763 * NUMA scanning to get the memory moved over. 2764 */ 2765 int ratio = max(lr_ratio, ps_ratio); 2766 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2767 } 2768 2769 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2770 task_scan_min(p), task_scan_max(p)); 2771 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2772 } 2773 2774 /* 2775 * Get the fraction of time the task has been running since the last 2776 * NUMA placement cycle. The scheduler keeps similar statistics, but 2777 * decays those on a 32ms period, which is orders of magnitude off 2778 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2779 * stats only if the task is so new there are no NUMA statistics yet. 2780 */ 2781 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2782 { 2783 u64 runtime, delta, now; 2784 /* Use the start of this time slice to avoid calculations. */ 2785 now = p->se.exec_start; 2786 runtime = p->se.sum_exec_runtime; 2787 2788 if (p->last_task_numa_placement) { 2789 delta = runtime - p->last_sum_exec_runtime; 2790 *period = now - p->last_task_numa_placement; 2791 2792 /* Avoid time going backwards, prevent potential divide error: */ 2793 if (unlikely((s64)*period < 0)) 2794 *period = 0; 2795 } else { 2796 delta = p->se.avg.load_sum; 2797 *period = LOAD_AVG_MAX; 2798 } 2799 2800 p->last_sum_exec_runtime = runtime; 2801 p->last_task_numa_placement = now; 2802 2803 return delta; 2804 } 2805 2806 /* 2807 * Determine the preferred nid for a task in a numa_group. This needs to 2808 * be done in a way that produces consistent results with group_weight, 2809 * otherwise workloads might not converge. 2810 */ 2811 static int preferred_group_nid(struct task_struct *p, int nid) 2812 { 2813 nodemask_t nodes; 2814 int dist; 2815 2816 /* Direct connections between all NUMA nodes. */ 2817 if (sched_numa_topology_type == NUMA_DIRECT) 2818 return nid; 2819 2820 /* 2821 * On a system with glueless mesh NUMA topology, group_weight 2822 * scores nodes according to the number of NUMA hinting faults on 2823 * both the node itself, and on nearby nodes. 2824 */ 2825 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2826 unsigned long score, max_score = 0; 2827 int node, max_node = nid; 2828 2829 dist = sched_max_numa_distance; 2830 2831 for_each_node_state(node, N_CPU) { 2832 score = group_weight(p, node, dist); 2833 if (score > max_score) { 2834 max_score = score; 2835 max_node = node; 2836 } 2837 } 2838 return max_node; 2839 } 2840 2841 /* 2842 * Finding the preferred nid in a system with NUMA backplane 2843 * interconnect topology is more involved. The goal is to locate 2844 * tasks from numa_groups near each other in the system, and 2845 * untangle workloads from different sides of the system. This requires 2846 * searching down the hierarchy of node groups, recursively searching 2847 * inside the highest scoring group of nodes. The nodemask tricks 2848 * keep the complexity of the search down. 2849 */ 2850 nodes = node_states[N_CPU]; 2851 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2852 unsigned long max_faults = 0; 2853 nodemask_t max_group = NODE_MASK_NONE; 2854 int a, b; 2855 2856 /* Are there nodes at this distance from each other? */ 2857 if (!find_numa_distance(dist)) 2858 continue; 2859 2860 for_each_node_mask(a, nodes) { 2861 unsigned long faults = 0; 2862 nodemask_t this_group; 2863 nodes_clear(this_group); 2864 2865 /* Sum group's NUMA faults; includes a==b case. */ 2866 for_each_node_mask(b, nodes) { 2867 if (node_distance(a, b) < dist) { 2868 faults += group_faults(p, b); 2869 node_set(b, this_group); 2870 node_clear(b, nodes); 2871 } 2872 } 2873 2874 /* Remember the top group. */ 2875 if (faults > max_faults) { 2876 max_faults = faults; 2877 max_group = this_group; 2878 /* 2879 * subtle: at the smallest distance there is 2880 * just one node left in each "group", the 2881 * winner is the preferred nid. 2882 */ 2883 nid = a; 2884 } 2885 } 2886 /* Next round, evaluate the nodes within max_group. */ 2887 if (!max_faults) 2888 break; 2889 nodes = max_group; 2890 } 2891 return nid; 2892 } 2893 2894 static void task_numa_placement(struct task_struct *p) 2895 { 2896 int seq, nid, max_nid = NUMA_NO_NODE; 2897 unsigned long max_faults = 0; 2898 unsigned long fault_types[2] = { 0, 0 }; 2899 unsigned long total_faults; 2900 u64 runtime, period; 2901 spinlock_t *group_lock = NULL; 2902 struct numa_group *ng; 2903 2904 /* 2905 * The p->mm->numa_scan_seq field gets updated without 2906 * exclusive access. Use READ_ONCE() here to ensure 2907 * that the field is read in a single access: 2908 */ 2909 seq = READ_ONCE(p->mm->numa_scan_seq); 2910 if (p->numa_scan_seq == seq) 2911 return; 2912 p->numa_scan_seq = seq; 2913 p->numa_scan_period_max = task_scan_max(p); 2914 2915 total_faults = p->numa_faults_locality[0] + 2916 p->numa_faults_locality[1]; 2917 runtime = numa_get_avg_runtime(p, &period); 2918 2919 /* If the task is part of a group prevent parallel updates to group stats */ 2920 ng = deref_curr_numa_group(p); 2921 if (ng) { 2922 group_lock = &ng->lock; 2923 spin_lock_irq(group_lock); 2924 } 2925 2926 /* Find the node with the highest number of faults */ 2927 for_each_online_node(nid) { 2928 /* Keep track of the offsets in numa_faults array */ 2929 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2930 unsigned long faults = 0, group_faults = 0; 2931 int priv; 2932 2933 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2934 long diff, f_diff, f_weight; 2935 2936 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2937 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2938 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2939 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2940 2941 /* Decay existing window, copy faults since last scan */ 2942 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2943 fault_types[priv] += p->numa_faults[membuf_idx]; 2944 p->numa_faults[membuf_idx] = 0; 2945 2946 /* 2947 * Normalize the faults_from, so all tasks in a group 2948 * count according to CPU use, instead of by the raw 2949 * number of faults. Tasks with little runtime have 2950 * little over-all impact on throughput, and thus their 2951 * faults are less important. 2952 */ 2953 f_weight = div64_u64(runtime << 16, period + 1); 2954 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2955 (total_faults + 1); 2956 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2957 p->numa_faults[cpubuf_idx] = 0; 2958 2959 p->numa_faults[mem_idx] += diff; 2960 p->numa_faults[cpu_idx] += f_diff; 2961 faults += p->numa_faults[mem_idx]; 2962 p->total_numa_faults += diff; 2963 if (ng) { 2964 /* 2965 * safe because we can only change our own group 2966 * 2967 * mem_idx represents the offset for a given 2968 * nid and priv in a specific region because it 2969 * is at the beginning of the numa_faults array. 2970 */ 2971 ng->faults[mem_idx] += diff; 2972 ng->faults[cpu_idx] += f_diff; 2973 ng->total_faults += diff; 2974 group_faults += ng->faults[mem_idx]; 2975 } 2976 } 2977 2978 if (!ng) { 2979 if (faults > max_faults) { 2980 max_faults = faults; 2981 max_nid = nid; 2982 } 2983 } else if (group_faults > max_faults) { 2984 max_faults = group_faults; 2985 max_nid = nid; 2986 } 2987 } 2988 2989 /* Cannot migrate task to CPU-less node */ 2990 max_nid = numa_nearest_node(max_nid, N_CPU); 2991 2992 if (ng) { 2993 numa_group_count_active_nodes(ng); 2994 spin_unlock_irq(group_lock); 2995 max_nid = preferred_group_nid(p, max_nid); 2996 } 2997 2998 if (max_faults) { 2999 /* Set the new preferred node */ 3000 if (max_nid != p->numa_preferred_nid) 3001 sched_setnuma(p, max_nid); 3002 } 3003 3004 update_task_scan_period(p, fault_types[0], fault_types[1]); 3005 } 3006 3007 static inline int get_numa_group(struct numa_group *grp) 3008 { 3009 return refcount_inc_not_zero(&grp->refcount); 3010 } 3011 3012 static inline void put_numa_group(struct numa_group *grp) 3013 { 3014 if (refcount_dec_and_test(&grp->refcount)) 3015 kfree_rcu(grp, rcu); 3016 } 3017 3018 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3019 int *priv) 3020 { 3021 struct numa_group *grp, *my_grp; 3022 struct task_struct *tsk; 3023 bool join = false; 3024 int cpu = cpupid_to_cpu(cpupid); 3025 int i; 3026 3027 if (unlikely(!deref_curr_numa_group(p))) { 3028 unsigned int size = sizeof(struct numa_group) + 3029 NR_NUMA_HINT_FAULT_STATS * 3030 nr_node_ids * sizeof(unsigned long); 3031 3032 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3033 if (!grp) 3034 return; 3035 3036 refcount_set(&grp->refcount, 1); 3037 grp->active_nodes = 1; 3038 grp->max_faults_cpu = 0; 3039 spin_lock_init(&grp->lock); 3040 grp->gid = p->pid; 3041 3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3043 grp->faults[i] = p->numa_faults[i]; 3044 3045 grp->total_faults = p->total_numa_faults; 3046 3047 grp->nr_tasks++; 3048 rcu_assign_pointer(p->numa_group, grp); 3049 } 3050 3051 rcu_read_lock(); 3052 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3053 3054 if (!cpupid_match_pid(tsk, cpupid)) 3055 goto no_join; 3056 3057 grp = rcu_dereference(tsk->numa_group); 3058 if (!grp) 3059 goto no_join; 3060 3061 my_grp = deref_curr_numa_group(p); 3062 if (grp == my_grp) 3063 goto no_join; 3064 3065 /* 3066 * Only join the other group if its bigger; if we're the bigger group, 3067 * the other task will join us. 3068 */ 3069 if (my_grp->nr_tasks > grp->nr_tasks) 3070 goto no_join; 3071 3072 /* 3073 * Tie-break on the grp address. 3074 */ 3075 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3076 goto no_join; 3077 3078 /* Always join threads in the same process. */ 3079 if (tsk->mm == current->mm) 3080 join = true; 3081 3082 /* Simple filter to avoid false positives due to PID collisions */ 3083 if (flags & TNF_SHARED) 3084 join = true; 3085 3086 /* Update priv based on whether false sharing was detected */ 3087 *priv = !join; 3088 3089 if (join && !get_numa_group(grp)) 3090 goto no_join; 3091 3092 rcu_read_unlock(); 3093 3094 if (!join) 3095 return; 3096 3097 WARN_ON_ONCE(irqs_disabled()); 3098 double_lock_irq(&my_grp->lock, &grp->lock); 3099 3100 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3101 my_grp->faults[i] -= p->numa_faults[i]; 3102 grp->faults[i] += p->numa_faults[i]; 3103 } 3104 my_grp->total_faults -= p->total_numa_faults; 3105 grp->total_faults += p->total_numa_faults; 3106 3107 my_grp->nr_tasks--; 3108 grp->nr_tasks++; 3109 3110 spin_unlock(&my_grp->lock); 3111 spin_unlock_irq(&grp->lock); 3112 3113 rcu_assign_pointer(p->numa_group, grp); 3114 3115 put_numa_group(my_grp); 3116 return; 3117 3118 no_join: 3119 rcu_read_unlock(); 3120 return; 3121 } 3122 3123 /* 3124 * Get rid of NUMA statistics associated with a task (either current or dead). 3125 * If @final is set, the task is dead and has reached refcount zero, so we can 3126 * safely free all relevant data structures. Otherwise, there might be 3127 * concurrent reads from places like load balancing and procfs, and we should 3128 * reset the data back to default state without freeing ->numa_faults. 3129 */ 3130 void task_numa_free(struct task_struct *p, bool final) 3131 { 3132 /* safe: p either is current or is being freed by current */ 3133 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3134 unsigned long *numa_faults = p->numa_faults; 3135 unsigned long flags; 3136 int i; 3137 3138 if (!numa_faults) 3139 return; 3140 3141 if (grp) { 3142 spin_lock_irqsave(&grp->lock, flags); 3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3144 grp->faults[i] -= p->numa_faults[i]; 3145 grp->total_faults -= p->total_numa_faults; 3146 3147 grp->nr_tasks--; 3148 spin_unlock_irqrestore(&grp->lock, flags); 3149 RCU_INIT_POINTER(p->numa_group, NULL); 3150 put_numa_group(grp); 3151 } 3152 3153 if (final) { 3154 p->numa_faults = NULL; 3155 kfree(numa_faults); 3156 } else { 3157 p->total_numa_faults = 0; 3158 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3159 numa_faults[i] = 0; 3160 } 3161 } 3162 3163 /* 3164 * Got a PROT_NONE fault for a page on @node. 3165 */ 3166 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3167 { 3168 struct task_struct *p = current; 3169 bool migrated = flags & TNF_MIGRATED; 3170 int cpu_node = task_node(current); 3171 int local = !!(flags & TNF_FAULT_LOCAL); 3172 struct numa_group *ng; 3173 int priv; 3174 3175 if (!static_branch_likely(&sched_numa_balancing)) 3176 return; 3177 3178 /* for example, ksmd faulting in a user's mm */ 3179 if (!p->mm) 3180 return; 3181 3182 /* 3183 * NUMA faults statistics are unnecessary for the slow memory 3184 * node for memory tiering mode. 3185 */ 3186 if (!node_is_toptier(mem_node) && 3187 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3188 !cpupid_valid(last_cpupid))) 3189 return; 3190 3191 /* Allocate buffer to track faults on a per-node basis */ 3192 if (unlikely(!p->numa_faults)) { 3193 int size = sizeof(*p->numa_faults) * 3194 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3195 3196 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3197 if (!p->numa_faults) 3198 return; 3199 3200 p->total_numa_faults = 0; 3201 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3202 } 3203 3204 /* 3205 * First accesses are treated as private, otherwise consider accesses 3206 * to be private if the accessing pid has not changed 3207 */ 3208 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3209 priv = 1; 3210 } else { 3211 priv = cpupid_match_pid(p, last_cpupid); 3212 if (!priv && !(flags & TNF_NO_GROUP)) 3213 task_numa_group(p, last_cpupid, flags, &priv); 3214 } 3215 3216 /* 3217 * If a workload spans multiple NUMA nodes, a shared fault that 3218 * occurs wholly within the set of nodes that the workload is 3219 * actively using should be counted as local. This allows the 3220 * scan rate to slow down when a workload has settled down. 3221 */ 3222 ng = deref_curr_numa_group(p); 3223 if (!priv && !local && ng && ng->active_nodes > 1 && 3224 numa_is_active_node(cpu_node, ng) && 3225 numa_is_active_node(mem_node, ng)) 3226 local = 1; 3227 3228 /* 3229 * Retry to migrate task to preferred node periodically, in case it 3230 * previously failed, or the scheduler moved us. 3231 */ 3232 if (time_after(jiffies, p->numa_migrate_retry)) { 3233 task_numa_placement(p); 3234 numa_migrate_preferred(p); 3235 } 3236 3237 if (migrated) 3238 p->numa_pages_migrated += pages; 3239 if (flags & TNF_MIGRATE_FAIL) 3240 p->numa_faults_locality[2] += pages; 3241 3242 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3243 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3244 p->numa_faults_locality[local] += pages; 3245 } 3246 3247 static void reset_ptenuma_scan(struct task_struct *p) 3248 { 3249 /* 3250 * We only did a read acquisition of the mmap sem, so 3251 * p->mm->numa_scan_seq is written to without exclusive access 3252 * and the update is not guaranteed to be atomic. That's not 3253 * much of an issue though, since this is just used for 3254 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3255 * expensive, to avoid any form of compiler optimizations: 3256 */ 3257 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3258 p->mm->numa_scan_offset = 0; 3259 } 3260 3261 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3262 { 3263 unsigned long pids; 3264 /* 3265 * Allow unconditional access first two times, so that all the (pages) 3266 * of VMAs get prot_none fault introduced irrespective of accesses. 3267 * This is also done to avoid any side effect of task scanning 3268 * amplifying the unfairness of disjoint set of VMAs' access. 3269 */ 3270 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3271 return true; 3272 3273 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3274 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3275 return true; 3276 3277 /* 3278 * Complete a scan that has already started regardless of PID access, or 3279 * some VMAs may never be scanned in multi-threaded applications: 3280 */ 3281 if (mm->numa_scan_offset > vma->vm_start) { 3282 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3283 return true; 3284 } 3285 3286 /* 3287 * This vma has not been accessed for a while, and if the number 3288 * the threads in the same process is low, which means no other 3289 * threads can help scan this vma, force a vma scan. 3290 */ 3291 if (READ_ONCE(mm->numa_scan_seq) > 3292 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3293 return true; 3294 3295 return false; 3296 } 3297 3298 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3299 3300 /* 3301 * The expensive part of numa migration is done from task_work context. 3302 * Triggered from task_tick_numa(). 3303 */ 3304 static void task_numa_work(struct callback_head *work) 3305 { 3306 unsigned long migrate, next_scan, now = jiffies; 3307 struct task_struct *p = current; 3308 struct mm_struct *mm = p->mm; 3309 u64 runtime = p->se.sum_exec_runtime; 3310 struct vm_area_struct *vma; 3311 unsigned long start, end; 3312 unsigned long nr_pte_updates = 0; 3313 long pages, virtpages; 3314 struct vma_iterator vmi; 3315 bool vma_pids_skipped; 3316 bool vma_pids_forced = false; 3317 3318 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3319 3320 work->next = work; 3321 /* 3322 * Who cares about NUMA placement when they're dying. 3323 * 3324 * NOTE: make sure not to dereference p->mm before this check, 3325 * exit_task_work() happens _after_ exit_mm() so we could be called 3326 * without p->mm even though we still had it when we enqueued this 3327 * work. 3328 */ 3329 if (p->flags & PF_EXITING) 3330 return; 3331 3332 /* 3333 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3334 * no page can be migrated. 3335 */ 3336 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3337 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3338 return; 3339 } 3340 3341 if (!mm->numa_next_scan) { 3342 mm->numa_next_scan = now + 3343 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3344 } 3345 3346 /* 3347 * Enforce maximal scan/migration frequency.. 3348 */ 3349 migrate = mm->numa_next_scan; 3350 if (time_before(now, migrate)) 3351 return; 3352 3353 if (p->numa_scan_period == 0) { 3354 p->numa_scan_period_max = task_scan_max(p); 3355 p->numa_scan_period = task_scan_start(p); 3356 } 3357 3358 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3359 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3360 return; 3361 3362 /* 3363 * Delay this task enough that another task of this mm will likely win 3364 * the next time around. 3365 */ 3366 p->node_stamp += 2 * TICK_NSEC; 3367 3368 pages = sysctl_numa_balancing_scan_size; 3369 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3370 virtpages = pages * 8; /* Scan up to this much virtual space */ 3371 if (!pages) 3372 return; 3373 3374 3375 if (!mmap_read_trylock(mm)) 3376 return; 3377 3378 /* 3379 * VMAs are skipped if the current PID has not trapped a fault within 3380 * the VMA recently. Allow scanning to be forced if there is no 3381 * suitable VMA remaining. 3382 */ 3383 vma_pids_skipped = false; 3384 3385 retry_pids: 3386 start = mm->numa_scan_offset; 3387 vma_iter_init(&vmi, mm, start); 3388 vma = vma_next(&vmi); 3389 if (!vma) { 3390 reset_ptenuma_scan(p); 3391 start = 0; 3392 vma_iter_set(&vmi, start); 3393 vma = vma_next(&vmi); 3394 } 3395 3396 for (; vma; vma = vma_next(&vmi)) { 3397 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3398 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3399 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3400 continue; 3401 } 3402 3403 /* 3404 * Shared library pages mapped by multiple processes are not 3405 * migrated as it is expected they are cache replicated. Avoid 3406 * hinting faults in read-only file-backed mappings or the vDSO 3407 * as migrating the pages will be of marginal benefit. 3408 */ 3409 if (!vma->vm_mm || 3410 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3411 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3412 continue; 3413 } 3414 3415 /* 3416 * Skip inaccessible VMAs to avoid any confusion between 3417 * PROT_NONE and NUMA hinting PTEs 3418 */ 3419 if (!vma_is_accessible(vma)) { 3420 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3421 continue; 3422 } 3423 3424 /* Initialise new per-VMA NUMAB state. */ 3425 if (!vma->numab_state) { 3426 struct vma_numab_state *ptr; 3427 3428 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3429 if (!ptr) 3430 continue; 3431 3432 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3433 kfree(ptr); 3434 continue; 3435 } 3436 3437 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3438 3439 vma->numab_state->next_scan = now + 3440 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3441 3442 /* Reset happens after 4 times scan delay of scan start */ 3443 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3444 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3445 3446 /* 3447 * Ensure prev_scan_seq does not match numa_scan_seq, 3448 * to prevent VMAs being skipped prematurely on the 3449 * first scan: 3450 */ 3451 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3452 } 3453 3454 /* 3455 * Scanning the VMAs of short lived tasks add more overhead. So 3456 * delay the scan for new VMAs. 3457 */ 3458 if (mm->numa_scan_seq && time_before(jiffies, 3459 vma->numab_state->next_scan)) { 3460 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3461 continue; 3462 } 3463 3464 /* RESET access PIDs regularly for old VMAs. */ 3465 if (mm->numa_scan_seq && 3466 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3467 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3468 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3469 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3470 vma->numab_state->pids_active[1] = 0; 3471 } 3472 3473 /* Do not rescan VMAs twice within the same sequence. */ 3474 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3475 mm->numa_scan_offset = vma->vm_end; 3476 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3477 continue; 3478 } 3479 3480 /* 3481 * Do not scan the VMA if task has not accessed it, unless no other 3482 * VMA candidate exists. 3483 */ 3484 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3485 vma_pids_skipped = true; 3486 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3487 continue; 3488 } 3489 3490 do { 3491 start = max(start, vma->vm_start); 3492 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3493 end = min(end, vma->vm_end); 3494 nr_pte_updates = change_prot_numa(vma, start, end); 3495 3496 /* 3497 * Try to scan sysctl_numa_balancing_size worth of 3498 * hpages that have at least one present PTE that 3499 * is not already PTE-numa. If the VMA contains 3500 * areas that are unused or already full of prot_numa 3501 * PTEs, scan up to virtpages, to skip through those 3502 * areas faster. 3503 */ 3504 if (nr_pte_updates) 3505 pages -= (end - start) >> PAGE_SHIFT; 3506 virtpages -= (end - start) >> PAGE_SHIFT; 3507 3508 start = end; 3509 if (pages <= 0 || virtpages <= 0) 3510 goto out; 3511 3512 cond_resched(); 3513 } while (end != vma->vm_end); 3514 3515 /* VMA scan is complete, do not scan until next sequence. */ 3516 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3517 3518 /* 3519 * Only force scan within one VMA at a time, to limit the 3520 * cost of scanning a potentially uninteresting VMA. 3521 */ 3522 if (vma_pids_forced) 3523 break; 3524 } 3525 3526 /* 3527 * If no VMAs are remaining and VMAs were skipped due to the PID 3528 * not accessing the VMA previously, then force a scan to ensure 3529 * forward progress: 3530 */ 3531 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3532 vma_pids_forced = true; 3533 goto retry_pids; 3534 } 3535 3536 out: 3537 /* 3538 * It is possible to reach the end of the VMA list but the last few 3539 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3540 * would find the !migratable VMA on the next scan but not reset the 3541 * scanner to the start so check it now. 3542 */ 3543 if (vma) 3544 mm->numa_scan_offset = start; 3545 else 3546 reset_ptenuma_scan(p); 3547 mmap_read_unlock(mm); 3548 3549 /* 3550 * Make sure tasks use at least 32x as much time to run other code 3551 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3552 * Usually update_task_scan_period slows down scanning enough; on an 3553 * overloaded system we need to limit overhead on a per task basis. 3554 */ 3555 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3556 u64 diff = p->se.sum_exec_runtime - runtime; 3557 p->node_stamp += 32 * diff; 3558 } 3559 } 3560 3561 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3562 { 3563 int mm_users = 0; 3564 struct mm_struct *mm = p->mm; 3565 3566 if (mm) { 3567 mm_users = atomic_read(&mm->mm_users); 3568 if (mm_users == 1) { 3569 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3570 mm->numa_scan_seq = 0; 3571 } 3572 } 3573 p->node_stamp = 0; 3574 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3575 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3576 p->numa_migrate_retry = 0; 3577 /* Protect against double add, see task_tick_numa and task_numa_work */ 3578 p->numa_work.next = &p->numa_work; 3579 p->numa_faults = NULL; 3580 p->numa_pages_migrated = 0; 3581 p->total_numa_faults = 0; 3582 RCU_INIT_POINTER(p->numa_group, NULL); 3583 p->last_task_numa_placement = 0; 3584 p->last_sum_exec_runtime = 0; 3585 3586 init_task_work(&p->numa_work, task_numa_work); 3587 3588 /* New address space, reset the preferred nid */ 3589 if (!(clone_flags & CLONE_VM)) { 3590 p->numa_preferred_nid = NUMA_NO_NODE; 3591 return; 3592 } 3593 3594 /* 3595 * New thread, keep existing numa_preferred_nid which should be copied 3596 * already by arch_dup_task_struct but stagger when scans start. 3597 */ 3598 if (mm) { 3599 unsigned int delay; 3600 3601 delay = min_t(unsigned int, task_scan_max(current), 3602 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3603 delay += 2 * TICK_NSEC; 3604 p->node_stamp = delay; 3605 } 3606 } 3607 3608 /* 3609 * Drive the periodic memory faults.. 3610 */ 3611 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3612 { 3613 struct callback_head *work = &curr->numa_work; 3614 u64 period, now; 3615 3616 /* 3617 * We don't care about NUMA placement if we don't have memory. 3618 */ 3619 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3620 return; 3621 3622 /* 3623 * Using runtime rather than walltime has the dual advantage that 3624 * we (mostly) drive the selection from busy threads and that the 3625 * task needs to have done some actual work before we bother with 3626 * NUMA placement. 3627 */ 3628 now = curr->se.sum_exec_runtime; 3629 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3630 3631 if (now > curr->node_stamp + period) { 3632 if (!curr->node_stamp) 3633 curr->numa_scan_period = task_scan_start(curr); 3634 curr->node_stamp += period; 3635 3636 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3637 task_work_add(curr, work, TWA_RESUME); 3638 } 3639 } 3640 3641 static void update_scan_period(struct task_struct *p, int new_cpu) 3642 { 3643 int src_nid = cpu_to_node(task_cpu(p)); 3644 int dst_nid = cpu_to_node(new_cpu); 3645 3646 if (!static_branch_likely(&sched_numa_balancing)) 3647 return; 3648 3649 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3650 return; 3651 3652 if (src_nid == dst_nid) 3653 return; 3654 3655 /* 3656 * Allow resets if faults have been trapped before one scan 3657 * has completed. This is most likely due to a new task that 3658 * is pulled cross-node due to wakeups or load balancing. 3659 */ 3660 if (p->numa_scan_seq) { 3661 /* 3662 * Avoid scan adjustments if moving to the preferred 3663 * node or if the task was not previously running on 3664 * the preferred node. 3665 */ 3666 if (dst_nid == p->numa_preferred_nid || 3667 (p->numa_preferred_nid != NUMA_NO_NODE && 3668 src_nid != p->numa_preferred_nid)) 3669 return; 3670 } 3671 3672 p->numa_scan_period = task_scan_start(p); 3673 } 3674 3675 #else 3676 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3677 { 3678 } 3679 3680 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3681 { 3682 } 3683 3684 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3685 { 3686 } 3687 3688 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3689 { 3690 } 3691 3692 #endif /* CONFIG_NUMA_BALANCING */ 3693 3694 static void 3695 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3696 { 3697 update_load_add(&cfs_rq->load, se->load.weight); 3698 #ifdef CONFIG_SMP 3699 if (entity_is_task(se)) { 3700 struct rq *rq = rq_of(cfs_rq); 3701 3702 account_numa_enqueue(rq, task_of(se)); 3703 list_add(&se->group_node, &rq->cfs_tasks); 3704 } 3705 #endif 3706 cfs_rq->nr_queued++; 3707 } 3708 3709 static void 3710 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3711 { 3712 update_load_sub(&cfs_rq->load, se->load.weight); 3713 #ifdef CONFIG_SMP 3714 if (entity_is_task(se)) { 3715 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3716 list_del_init(&se->group_node); 3717 } 3718 #endif 3719 cfs_rq->nr_queued--; 3720 } 3721 3722 /* 3723 * Signed add and clamp on underflow. 3724 * 3725 * Explicitly do a load-store to ensure the intermediate value never hits 3726 * memory. This allows lockless observations without ever seeing the negative 3727 * values. 3728 */ 3729 #define add_positive(_ptr, _val) do { \ 3730 typeof(_ptr) ptr = (_ptr); \ 3731 typeof(_val) val = (_val); \ 3732 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3733 \ 3734 res = var + val; \ 3735 \ 3736 if (val < 0 && res > var) \ 3737 res = 0; \ 3738 \ 3739 WRITE_ONCE(*ptr, res); \ 3740 } while (0) 3741 3742 /* 3743 * Unsigned subtract and clamp on underflow. 3744 * 3745 * Explicitly do a load-store to ensure the intermediate value never hits 3746 * memory. This allows lockless observations without ever seeing the negative 3747 * values. 3748 */ 3749 #define sub_positive(_ptr, _val) do { \ 3750 typeof(_ptr) ptr = (_ptr); \ 3751 typeof(*ptr) val = (_val); \ 3752 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3753 res = var - val; \ 3754 if (res > var) \ 3755 res = 0; \ 3756 WRITE_ONCE(*ptr, res); \ 3757 } while (0) 3758 3759 /* 3760 * Remove and clamp on negative, from a local variable. 3761 * 3762 * A variant of sub_positive(), which does not use explicit load-store 3763 * and is thus optimized for local variable updates. 3764 */ 3765 #define lsub_positive(_ptr, _val) do { \ 3766 typeof(_ptr) ptr = (_ptr); \ 3767 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3768 } while (0) 3769 3770 #ifdef CONFIG_SMP 3771 static inline void 3772 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3773 { 3774 cfs_rq->avg.load_avg += se->avg.load_avg; 3775 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3776 } 3777 3778 static inline void 3779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3780 { 3781 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3782 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3783 /* See update_cfs_rq_load_avg() */ 3784 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3785 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3786 } 3787 #else 3788 static inline void 3789 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3790 static inline void 3791 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3792 #endif 3793 3794 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3795 3796 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3797 unsigned long weight) 3798 { 3799 bool curr = cfs_rq->curr == se; 3800 3801 if (se->on_rq) { 3802 /* commit outstanding execution time */ 3803 update_curr(cfs_rq); 3804 update_entity_lag(cfs_rq, se); 3805 se->deadline -= se->vruntime; 3806 se->rel_deadline = 1; 3807 cfs_rq->nr_queued--; 3808 if (!curr) 3809 __dequeue_entity(cfs_rq, se); 3810 update_load_sub(&cfs_rq->load, se->load.weight); 3811 } 3812 dequeue_load_avg(cfs_rq, se); 3813 3814 /* 3815 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3816 * we need to scale se->vlag when w_i changes. 3817 */ 3818 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3819 if (se->rel_deadline) 3820 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3821 3822 update_load_set(&se->load, weight); 3823 3824 #ifdef CONFIG_SMP 3825 do { 3826 u32 divider = get_pelt_divider(&se->avg); 3827 3828 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3829 } while (0); 3830 #endif 3831 3832 enqueue_load_avg(cfs_rq, se); 3833 if (se->on_rq) { 3834 place_entity(cfs_rq, se, 0); 3835 update_load_add(&cfs_rq->load, se->load.weight); 3836 if (!curr) 3837 __enqueue_entity(cfs_rq, se); 3838 cfs_rq->nr_queued++; 3839 3840 /* 3841 * The entity's vruntime has been adjusted, so let's check 3842 * whether the rq-wide min_vruntime needs updated too. Since 3843 * the calculations above require stable min_vruntime rather 3844 * than up-to-date one, we do the update at the end of the 3845 * reweight process. 3846 */ 3847 update_min_vruntime(cfs_rq); 3848 } 3849 } 3850 3851 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3852 const struct load_weight *lw) 3853 { 3854 struct sched_entity *se = &p->se; 3855 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3856 struct load_weight *load = &se->load; 3857 3858 reweight_entity(cfs_rq, se, lw->weight); 3859 load->inv_weight = lw->inv_weight; 3860 } 3861 3862 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3863 3864 #ifdef CONFIG_FAIR_GROUP_SCHED 3865 #ifdef CONFIG_SMP 3866 /* 3867 * All this does is approximate the hierarchical proportion which includes that 3868 * global sum we all love to hate. 3869 * 3870 * That is, the weight of a group entity, is the proportional share of the 3871 * group weight based on the group runqueue weights. That is: 3872 * 3873 * tg->weight * grq->load.weight 3874 * ge->load.weight = ----------------------------- (1) 3875 * \Sum grq->load.weight 3876 * 3877 * Now, because computing that sum is prohibitively expensive to compute (been 3878 * there, done that) we approximate it with this average stuff. The average 3879 * moves slower and therefore the approximation is cheaper and more stable. 3880 * 3881 * So instead of the above, we substitute: 3882 * 3883 * grq->load.weight -> grq->avg.load_avg (2) 3884 * 3885 * which yields the following: 3886 * 3887 * tg->weight * grq->avg.load_avg 3888 * ge->load.weight = ------------------------------ (3) 3889 * tg->load_avg 3890 * 3891 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3892 * 3893 * That is shares_avg, and it is right (given the approximation (2)). 3894 * 3895 * The problem with it is that because the average is slow -- it was designed 3896 * to be exactly that of course -- this leads to transients in boundary 3897 * conditions. In specific, the case where the group was idle and we start the 3898 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3899 * yielding bad latency etc.. 3900 * 3901 * Now, in that special case (1) reduces to: 3902 * 3903 * tg->weight * grq->load.weight 3904 * ge->load.weight = ----------------------------- = tg->weight (4) 3905 * grp->load.weight 3906 * 3907 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3908 * 3909 * So what we do is modify our approximation (3) to approach (4) in the (near) 3910 * UP case, like: 3911 * 3912 * ge->load.weight = 3913 * 3914 * tg->weight * grq->load.weight 3915 * --------------------------------------------------- (5) 3916 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3917 * 3918 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3919 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3920 * 3921 * 3922 * tg->weight * grq->load.weight 3923 * ge->load.weight = ----------------------------- (6) 3924 * tg_load_avg' 3925 * 3926 * Where: 3927 * 3928 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3929 * max(grq->load.weight, grq->avg.load_avg) 3930 * 3931 * And that is shares_weight and is icky. In the (near) UP case it approaches 3932 * (4) while in the normal case it approaches (3). It consistently 3933 * overestimates the ge->load.weight and therefore: 3934 * 3935 * \Sum ge->load.weight >= tg->weight 3936 * 3937 * hence icky! 3938 */ 3939 static long calc_group_shares(struct cfs_rq *cfs_rq) 3940 { 3941 long tg_weight, tg_shares, load, shares; 3942 struct task_group *tg = cfs_rq->tg; 3943 3944 tg_shares = READ_ONCE(tg->shares); 3945 3946 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3947 3948 tg_weight = atomic_long_read(&tg->load_avg); 3949 3950 /* Ensure tg_weight >= load */ 3951 tg_weight -= cfs_rq->tg_load_avg_contrib; 3952 tg_weight += load; 3953 3954 shares = (tg_shares * load); 3955 if (tg_weight) 3956 shares /= tg_weight; 3957 3958 /* 3959 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3960 * of a group with small tg->shares value. It is a floor value which is 3961 * assigned as a minimum load.weight to the sched_entity representing 3962 * the group on a CPU. 3963 * 3964 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3965 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3966 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3967 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3968 * instead of 0. 3969 */ 3970 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3971 } 3972 #endif /* CONFIG_SMP */ 3973 3974 /* 3975 * Recomputes the group entity based on the current state of its group 3976 * runqueue. 3977 */ 3978 static void update_cfs_group(struct sched_entity *se) 3979 { 3980 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3981 long shares; 3982 3983 /* 3984 * When a group becomes empty, preserve its weight. This matters for 3985 * DELAY_DEQUEUE. 3986 */ 3987 if (!gcfs_rq || !gcfs_rq->load.weight) 3988 return; 3989 3990 if (throttled_hierarchy(gcfs_rq)) 3991 return; 3992 3993 #ifndef CONFIG_SMP 3994 shares = READ_ONCE(gcfs_rq->tg->shares); 3995 #else 3996 shares = calc_group_shares(gcfs_rq); 3997 #endif 3998 if (unlikely(se->load.weight != shares)) 3999 reweight_entity(cfs_rq_of(se), se, shares); 4000 } 4001 4002 #else /* CONFIG_FAIR_GROUP_SCHED */ 4003 static inline void update_cfs_group(struct sched_entity *se) 4004 { 4005 } 4006 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4007 4008 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4009 { 4010 struct rq *rq = rq_of(cfs_rq); 4011 4012 if (&rq->cfs == cfs_rq) { 4013 /* 4014 * There are a few boundary cases this might miss but it should 4015 * get called often enough that that should (hopefully) not be 4016 * a real problem. 4017 * 4018 * It will not get called when we go idle, because the idle 4019 * thread is a different class (!fair), nor will the utilization 4020 * number include things like RT tasks. 4021 * 4022 * As is, the util number is not freq-invariant (we'd have to 4023 * implement arch_scale_freq_capacity() for that). 4024 * 4025 * See cpu_util_cfs(). 4026 */ 4027 cpufreq_update_util(rq, flags); 4028 } 4029 } 4030 4031 #ifdef CONFIG_SMP 4032 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4033 { 4034 if (sa->load_sum) 4035 return false; 4036 4037 if (sa->util_sum) 4038 return false; 4039 4040 if (sa->runnable_sum) 4041 return false; 4042 4043 /* 4044 * _avg must be null when _sum are null because _avg = _sum / divider 4045 * Make sure that rounding and/or propagation of PELT values never 4046 * break this. 4047 */ 4048 WARN_ON_ONCE(sa->load_avg || 4049 sa->util_avg || 4050 sa->runnable_avg); 4051 4052 return true; 4053 } 4054 4055 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4056 { 4057 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4058 cfs_rq->last_update_time_copy); 4059 } 4060 #ifdef CONFIG_FAIR_GROUP_SCHED 4061 /* 4062 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4063 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4064 * bottom-up, we only have to test whether the cfs_rq before us on the list 4065 * is our child. 4066 * If cfs_rq is not on the list, test whether a child needs its to be added to 4067 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4068 */ 4069 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4070 { 4071 struct cfs_rq *prev_cfs_rq; 4072 struct list_head *prev; 4073 struct rq *rq = rq_of(cfs_rq); 4074 4075 if (cfs_rq->on_list) { 4076 prev = cfs_rq->leaf_cfs_rq_list.prev; 4077 } else { 4078 prev = rq->tmp_alone_branch; 4079 } 4080 4081 if (prev == &rq->leaf_cfs_rq_list) 4082 return false; 4083 4084 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4085 4086 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4087 } 4088 4089 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4090 { 4091 if (cfs_rq->load.weight) 4092 return false; 4093 4094 if (!load_avg_is_decayed(&cfs_rq->avg)) 4095 return false; 4096 4097 if (child_cfs_rq_on_list(cfs_rq)) 4098 return false; 4099 4100 return true; 4101 } 4102 4103 /** 4104 * update_tg_load_avg - update the tg's load avg 4105 * @cfs_rq: the cfs_rq whose avg changed 4106 * 4107 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4108 * However, because tg->load_avg is a global value there are performance 4109 * considerations. 4110 * 4111 * In order to avoid having to look at the other cfs_rq's, we use a 4112 * differential update where we store the last value we propagated. This in 4113 * turn allows skipping updates if the differential is 'small'. 4114 * 4115 * Updating tg's load_avg is necessary before update_cfs_share(). 4116 */ 4117 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4118 { 4119 long delta; 4120 u64 now; 4121 4122 /* 4123 * No need to update load_avg for root_task_group as it is not used. 4124 */ 4125 if (cfs_rq->tg == &root_task_group) 4126 return; 4127 4128 /* rq has been offline and doesn't contribute to the share anymore: */ 4129 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4130 return; 4131 4132 /* 4133 * For migration heavy workloads, access to tg->load_avg can be 4134 * unbound. Limit the update rate to at most once per ms. 4135 */ 4136 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4137 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4138 return; 4139 4140 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4141 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4142 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4143 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4144 cfs_rq->last_update_tg_load_avg = now; 4145 } 4146 } 4147 4148 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4149 { 4150 long delta; 4151 u64 now; 4152 4153 /* 4154 * No need to update load_avg for root_task_group, as it is not used. 4155 */ 4156 if (cfs_rq->tg == &root_task_group) 4157 return; 4158 4159 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4160 delta = 0 - cfs_rq->tg_load_avg_contrib; 4161 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4162 cfs_rq->tg_load_avg_contrib = 0; 4163 cfs_rq->last_update_tg_load_avg = now; 4164 } 4165 4166 /* CPU offline callback: */ 4167 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4168 { 4169 struct task_group *tg; 4170 4171 lockdep_assert_rq_held(rq); 4172 4173 /* 4174 * The rq clock has already been updated in 4175 * set_rq_offline(), so we should skip updating 4176 * the rq clock again in unthrottle_cfs_rq(). 4177 */ 4178 rq_clock_start_loop_update(rq); 4179 4180 rcu_read_lock(); 4181 list_for_each_entry_rcu(tg, &task_groups, list) { 4182 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4183 4184 clear_tg_load_avg(cfs_rq); 4185 } 4186 rcu_read_unlock(); 4187 4188 rq_clock_stop_loop_update(rq); 4189 } 4190 4191 /* 4192 * Called within set_task_rq() right before setting a task's CPU. The 4193 * caller only guarantees p->pi_lock is held; no other assumptions, 4194 * including the state of rq->lock, should be made. 4195 */ 4196 void set_task_rq_fair(struct sched_entity *se, 4197 struct cfs_rq *prev, struct cfs_rq *next) 4198 { 4199 u64 p_last_update_time; 4200 u64 n_last_update_time; 4201 4202 if (!sched_feat(ATTACH_AGE_LOAD)) 4203 return; 4204 4205 /* 4206 * We are supposed to update the task to "current" time, then its up to 4207 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4208 * getting what current time is, so simply throw away the out-of-date 4209 * time. This will result in the wakee task is less decayed, but giving 4210 * the wakee more load sounds not bad. 4211 */ 4212 if (!(se->avg.last_update_time && prev)) 4213 return; 4214 4215 p_last_update_time = cfs_rq_last_update_time(prev); 4216 n_last_update_time = cfs_rq_last_update_time(next); 4217 4218 __update_load_avg_blocked_se(p_last_update_time, se); 4219 se->avg.last_update_time = n_last_update_time; 4220 } 4221 4222 /* 4223 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4224 * propagate its contribution. The key to this propagation is the invariant 4225 * that for each group: 4226 * 4227 * ge->avg == grq->avg (1) 4228 * 4229 * _IFF_ we look at the pure running and runnable sums. Because they 4230 * represent the very same entity, just at different points in the hierarchy. 4231 * 4232 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4233 * and simply copies the running/runnable sum over (but still wrong, because 4234 * the group entity and group rq do not have their PELT windows aligned). 4235 * 4236 * However, update_tg_cfs_load() is more complex. So we have: 4237 * 4238 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4239 * 4240 * And since, like util, the runnable part should be directly transferable, 4241 * the following would _appear_ to be the straight forward approach: 4242 * 4243 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4244 * 4245 * And per (1) we have: 4246 * 4247 * ge->avg.runnable_avg == grq->avg.runnable_avg 4248 * 4249 * Which gives: 4250 * 4251 * ge->load.weight * grq->avg.load_avg 4252 * ge->avg.load_avg = ----------------------------------- (4) 4253 * grq->load.weight 4254 * 4255 * Except that is wrong! 4256 * 4257 * Because while for entities historical weight is not important and we 4258 * really only care about our future and therefore can consider a pure 4259 * runnable sum, runqueues can NOT do this. 4260 * 4261 * We specifically want runqueues to have a load_avg that includes 4262 * historical weights. Those represent the blocked load, the load we expect 4263 * to (shortly) return to us. This only works by keeping the weights as 4264 * integral part of the sum. We therefore cannot decompose as per (3). 4265 * 4266 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4267 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4268 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4269 * runnable section of these tasks overlap (or not). If they were to perfectly 4270 * align the rq as a whole would be runnable 2/3 of the time. If however we 4271 * always have at least 1 runnable task, the rq as a whole is always runnable. 4272 * 4273 * So we'll have to approximate.. :/ 4274 * 4275 * Given the constraint: 4276 * 4277 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4278 * 4279 * We can construct a rule that adds runnable to a rq by assuming minimal 4280 * overlap. 4281 * 4282 * On removal, we'll assume each task is equally runnable; which yields: 4283 * 4284 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4285 * 4286 * XXX: only do this for the part of runnable > running ? 4287 * 4288 */ 4289 static inline void 4290 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4291 { 4292 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4293 u32 new_sum, divider; 4294 4295 /* Nothing to update */ 4296 if (!delta_avg) 4297 return; 4298 4299 /* 4300 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4301 * See ___update_load_avg() for details. 4302 */ 4303 divider = get_pelt_divider(&cfs_rq->avg); 4304 4305 4306 /* Set new sched_entity's utilization */ 4307 se->avg.util_avg = gcfs_rq->avg.util_avg; 4308 new_sum = se->avg.util_avg * divider; 4309 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4310 se->avg.util_sum = new_sum; 4311 4312 /* Update parent cfs_rq utilization */ 4313 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4314 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4315 4316 /* See update_cfs_rq_load_avg() */ 4317 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4318 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4319 } 4320 4321 static inline void 4322 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4323 { 4324 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4325 u32 new_sum, divider; 4326 4327 /* Nothing to update */ 4328 if (!delta_avg) 4329 return; 4330 4331 /* 4332 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4333 * See ___update_load_avg() for details. 4334 */ 4335 divider = get_pelt_divider(&cfs_rq->avg); 4336 4337 /* Set new sched_entity's runnable */ 4338 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4339 new_sum = se->avg.runnable_avg * divider; 4340 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4341 se->avg.runnable_sum = new_sum; 4342 4343 /* Update parent cfs_rq runnable */ 4344 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4345 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4346 /* See update_cfs_rq_load_avg() */ 4347 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4348 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4349 } 4350 4351 static inline void 4352 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4353 { 4354 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4355 unsigned long load_avg; 4356 u64 load_sum = 0; 4357 s64 delta_sum; 4358 u32 divider; 4359 4360 if (!runnable_sum) 4361 return; 4362 4363 gcfs_rq->prop_runnable_sum = 0; 4364 4365 /* 4366 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4367 * See ___update_load_avg() for details. 4368 */ 4369 divider = get_pelt_divider(&cfs_rq->avg); 4370 4371 if (runnable_sum >= 0) { 4372 /* 4373 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4374 * the CPU is saturated running == runnable. 4375 */ 4376 runnable_sum += se->avg.load_sum; 4377 runnable_sum = min_t(long, runnable_sum, divider); 4378 } else { 4379 /* 4380 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4381 * assuming all tasks are equally runnable. 4382 */ 4383 if (scale_load_down(gcfs_rq->load.weight)) { 4384 load_sum = div_u64(gcfs_rq->avg.load_sum, 4385 scale_load_down(gcfs_rq->load.weight)); 4386 } 4387 4388 /* But make sure to not inflate se's runnable */ 4389 runnable_sum = min(se->avg.load_sum, load_sum); 4390 } 4391 4392 /* 4393 * runnable_sum can't be lower than running_sum 4394 * Rescale running sum to be in the same range as runnable sum 4395 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4396 * runnable_sum is in [0 : LOAD_AVG_MAX] 4397 */ 4398 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4399 runnable_sum = max(runnable_sum, running_sum); 4400 4401 load_sum = se_weight(se) * runnable_sum; 4402 load_avg = div_u64(load_sum, divider); 4403 4404 delta_avg = load_avg - se->avg.load_avg; 4405 if (!delta_avg) 4406 return; 4407 4408 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4409 4410 se->avg.load_sum = runnable_sum; 4411 se->avg.load_avg = load_avg; 4412 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4413 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4414 /* See update_cfs_rq_load_avg() */ 4415 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4416 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4417 } 4418 4419 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4420 { 4421 cfs_rq->propagate = 1; 4422 cfs_rq->prop_runnable_sum += runnable_sum; 4423 } 4424 4425 /* Update task and its cfs_rq load average */ 4426 static inline int propagate_entity_load_avg(struct sched_entity *se) 4427 { 4428 struct cfs_rq *cfs_rq, *gcfs_rq; 4429 4430 if (entity_is_task(se)) 4431 return 0; 4432 4433 gcfs_rq = group_cfs_rq(se); 4434 if (!gcfs_rq->propagate) 4435 return 0; 4436 4437 gcfs_rq->propagate = 0; 4438 4439 cfs_rq = cfs_rq_of(se); 4440 4441 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4442 4443 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4444 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4445 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4446 4447 trace_pelt_cfs_tp(cfs_rq); 4448 trace_pelt_se_tp(se); 4449 4450 return 1; 4451 } 4452 4453 /* 4454 * Check if we need to update the load and the utilization of a blocked 4455 * group_entity: 4456 */ 4457 static inline bool skip_blocked_update(struct sched_entity *se) 4458 { 4459 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4460 4461 /* 4462 * If sched_entity still have not zero load or utilization, we have to 4463 * decay it: 4464 */ 4465 if (se->avg.load_avg || se->avg.util_avg) 4466 return false; 4467 4468 /* 4469 * If there is a pending propagation, we have to update the load and 4470 * the utilization of the sched_entity: 4471 */ 4472 if (gcfs_rq->propagate) 4473 return false; 4474 4475 /* 4476 * Otherwise, the load and the utilization of the sched_entity is 4477 * already zero and there is no pending propagation, so it will be a 4478 * waste of time to try to decay it: 4479 */ 4480 return true; 4481 } 4482 4483 #else /* CONFIG_FAIR_GROUP_SCHED */ 4484 4485 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4486 4487 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4488 4489 static inline int propagate_entity_load_avg(struct sched_entity *se) 4490 { 4491 return 0; 4492 } 4493 4494 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4495 4496 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4497 4498 #ifdef CONFIG_NO_HZ_COMMON 4499 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4500 { 4501 u64 throttled = 0, now, lut; 4502 struct cfs_rq *cfs_rq; 4503 struct rq *rq; 4504 bool is_idle; 4505 4506 if (load_avg_is_decayed(&se->avg)) 4507 return; 4508 4509 cfs_rq = cfs_rq_of(se); 4510 rq = rq_of(cfs_rq); 4511 4512 rcu_read_lock(); 4513 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4514 rcu_read_unlock(); 4515 4516 /* 4517 * The lag estimation comes with a cost we don't want to pay all the 4518 * time. Hence, limiting to the case where the source CPU is idle and 4519 * we know we are at the greatest risk to have an outdated clock. 4520 */ 4521 if (!is_idle) 4522 return; 4523 4524 /* 4525 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4526 * 4527 * last_update_time (the cfs_rq's last_update_time) 4528 * = cfs_rq_clock_pelt()@cfs_rq_idle 4529 * = rq_clock_pelt()@cfs_rq_idle 4530 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4531 * 4532 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4533 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4534 * 4535 * rq_idle_lag (delta between now and rq's update) 4536 * = sched_clock_cpu() - rq_clock()@rq_idle 4537 * 4538 * We can then write: 4539 * 4540 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4541 * sched_clock_cpu() - rq_clock()@rq_idle 4542 * Where: 4543 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4544 * rq_clock()@rq_idle is rq->clock_idle 4545 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4546 * is cfs_rq->throttled_pelt_idle 4547 */ 4548 4549 #ifdef CONFIG_CFS_BANDWIDTH 4550 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4551 /* The clock has been stopped for throttling */ 4552 if (throttled == U64_MAX) 4553 return; 4554 #endif 4555 now = u64_u32_load(rq->clock_pelt_idle); 4556 /* 4557 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4558 * is observed the old clock_pelt_idle value and the new clock_idle, 4559 * which lead to an underestimation. The opposite would lead to an 4560 * overestimation. 4561 */ 4562 smp_rmb(); 4563 lut = cfs_rq_last_update_time(cfs_rq); 4564 4565 now -= throttled; 4566 if (now < lut) 4567 /* 4568 * cfs_rq->avg.last_update_time is more recent than our 4569 * estimation, let's use it. 4570 */ 4571 now = lut; 4572 else 4573 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4574 4575 __update_load_avg_blocked_se(now, se); 4576 } 4577 #else 4578 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4579 #endif 4580 4581 /** 4582 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4583 * @now: current time, as per cfs_rq_clock_pelt() 4584 * @cfs_rq: cfs_rq to update 4585 * 4586 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4587 * avg. The immediate corollary is that all (fair) tasks must be attached. 4588 * 4589 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4590 * 4591 * Return: true if the load decayed or we removed load. 4592 * 4593 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4594 * call update_tg_load_avg() when this function returns true. 4595 */ 4596 static inline int 4597 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4598 { 4599 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4600 struct sched_avg *sa = &cfs_rq->avg; 4601 int decayed = 0; 4602 4603 if (cfs_rq->removed.nr) { 4604 unsigned long r; 4605 u32 divider = get_pelt_divider(&cfs_rq->avg); 4606 4607 raw_spin_lock(&cfs_rq->removed.lock); 4608 swap(cfs_rq->removed.util_avg, removed_util); 4609 swap(cfs_rq->removed.load_avg, removed_load); 4610 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4611 cfs_rq->removed.nr = 0; 4612 raw_spin_unlock(&cfs_rq->removed.lock); 4613 4614 r = removed_load; 4615 sub_positive(&sa->load_avg, r); 4616 sub_positive(&sa->load_sum, r * divider); 4617 /* See sa->util_sum below */ 4618 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4619 4620 r = removed_util; 4621 sub_positive(&sa->util_avg, r); 4622 sub_positive(&sa->util_sum, r * divider); 4623 /* 4624 * Because of rounding, se->util_sum might ends up being +1 more than 4625 * cfs->util_sum. Although this is not a problem by itself, detaching 4626 * a lot of tasks with the rounding problem between 2 updates of 4627 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4628 * cfs_util_avg is not. 4629 * Check that util_sum is still above its lower bound for the new 4630 * util_avg. Given that period_contrib might have moved since the last 4631 * sync, we are only sure that util_sum must be above or equal to 4632 * util_avg * minimum possible divider 4633 */ 4634 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4635 4636 r = removed_runnable; 4637 sub_positive(&sa->runnable_avg, r); 4638 sub_positive(&sa->runnable_sum, r * divider); 4639 /* See sa->util_sum above */ 4640 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4641 sa->runnable_avg * PELT_MIN_DIVIDER); 4642 4643 /* 4644 * removed_runnable is the unweighted version of removed_load so we 4645 * can use it to estimate removed_load_sum. 4646 */ 4647 add_tg_cfs_propagate(cfs_rq, 4648 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4649 4650 decayed = 1; 4651 } 4652 4653 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4654 u64_u32_store_copy(sa->last_update_time, 4655 cfs_rq->last_update_time_copy, 4656 sa->last_update_time); 4657 return decayed; 4658 } 4659 4660 /** 4661 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4662 * @cfs_rq: cfs_rq to attach to 4663 * @se: sched_entity to attach 4664 * 4665 * Must call update_cfs_rq_load_avg() before this, since we rely on 4666 * cfs_rq->avg.last_update_time being current. 4667 */ 4668 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4669 { 4670 /* 4671 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4672 * See ___update_load_avg() for details. 4673 */ 4674 u32 divider = get_pelt_divider(&cfs_rq->avg); 4675 4676 /* 4677 * When we attach the @se to the @cfs_rq, we must align the decay 4678 * window because without that, really weird and wonderful things can 4679 * happen. 4680 * 4681 * XXX illustrate 4682 */ 4683 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4684 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4685 4686 /* 4687 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4688 * period_contrib. This isn't strictly correct, but since we're 4689 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4690 * _sum a little. 4691 */ 4692 se->avg.util_sum = se->avg.util_avg * divider; 4693 4694 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4695 4696 se->avg.load_sum = se->avg.load_avg * divider; 4697 if (se_weight(se) < se->avg.load_sum) 4698 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4699 else 4700 se->avg.load_sum = 1; 4701 4702 enqueue_load_avg(cfs_rq, se); 4703 cfs_rq->avg.util_avg += se->avg.util_avg; 4704 cfs_rq->avg.util_sum += se->avg.util_sum; 4705 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4706 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4707 4708 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4709 4710 cfs_rq_util_change(cfs_rq, 0); 4711 4712 trace_pelt_cfs_tp(cfs_rq); 4713 } 4714 4715 /** 4716 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4717 * @cfs_rq: cfs_rq to detach from 4718 * @se: sched_entity to detach 4719 * 4720 * Must call update_cfs_rq_load_avg() before this, since we rely on 4721 * cfs_rq->avg.last_update_time being current. 4722 */ 4723 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4724 { 4725 dequeue_load_avg(cfs_rq, se); 4726 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4727 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4728 /* See update_cfs_rq_load_avg() */ 4729 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4730 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4731 4732 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4733 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4734 /* See update_cfs_rq_load_avg() */ 4735 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4736 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4737 4738 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4739 4740 cfs_rq_util_change(cfs_rq, 0); 4741 4742 trace_pelt_cfs_tp(cfs_rq); 4743 } 4744 4745 /* 4746 * Optional action to be done while updating the load average 4747 */ 4748 #define UPDATE_TG 0x1 4749 #define SKIP_AGE_LOAD 0x2 4750 #define DO_ATTACH 0x4 4751 #define DO_DETACH 0x8 4752 4753 /* Update task and its cfs_rq load average */ 4754 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4755 { 4756 u64 now = cfs_rq_clock_pelt(cfs_rq); 4757 int decayed; 4758 4759 /* 4760 * Track task load average for carrying it to new CPU after migrated, and 4761 * track group sched_entity load average for task_h_load calculation in migration 4762 */ 4763 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4764 __update_load_avg_se(now, cfs_rq, se); 4765 4766 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4767 decayed |= propagate_entity_load_avg(se); 4768 4769 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4770 4771 /* 4772 * DO_ATTACH means we're here from enqueue_entity(). 4773 * !last_update_time means we've passed through 4774 * migrate_task_rq_fair() indicating we migrated. 4775 * 4776 * IOW we're enqueueing a task on a new CPU. 4777 */ 4778 attach_entity_load_avg(cfs_rq, se); 4779 update_tg_load_avg(cfs_rq); 4780 4781 } else if (flags & DO_DETACH) { 4782 /* 4783 * DO_DETACH means we're here from dequeue_entity() 4784 * and we are migrating task out of the CPU. 4785 */ 4786 detach_entity_load_avg(cfs_rq, se); 4787 update_tg_load_avg(cfs_rq); 4788 } else if (decayed) { 4789 cfs_rq_util_change(cfs_rq, 0); 4790 4791 if (flags & UPDATE_TG) 4792 update_tg_load_avg(cfs_rq); 4793 } 4794 } 4795 4796 /* 4797 * Synchronize entity load avg of dequeued entity without locking 4798 * the previous rq. 4799 */ 4800 static void sync_entity_load_avg(struct sched_entity *se) 4801 { 4802 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4803 u64 last_update_time; 4804 4805 last_update_time = cfs_rq_last_update_time(cfs_rq); 4806 __update_load_avg_blocked_se(last_update_time, se); 4807 } 4808 4809 /* 4810 * Task first catches up with cfs_rq, and then subtract 4811 * itself from the cfs_rq (task must be off the queue now). 4812 */ 4813 static void remove_entity_load_avg(struct sched_entity *se) 4814 { 4815 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4816 unsigned long flags; 4817 4818 /* 4819 * tasks cannot exit without having gone through wake_up_new_task() -> 4820 * enqueue_task_fair() which will have added things to the cfs_rq, 4821 * so we can remove unconditionally. 4822 */ 4823 4824 sync_entity_load_avg(se); 4825 4826 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4827 ++cfs_rq->removed.nr; 4828 cfs_rq->removed.util_avg += se->avg.util_avg; 4829 cfs_rq->removed.load_avg += se->avg.load_avg; 4830 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4831 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4832 } 4833 4834 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4835 { 4836 return cfs_rq->avg.runnable_avg; 4837 } 4838 4839 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4840 { 4841 return cfs_rq->avg.load_avg; 4842 } 4843 4844 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4845 4846 static inline unsigned long task_util(struct task_struct *p) 4847 { 4848 return READ_ONCE(p->se.avg.util_avg); 4849 } 4850 4851 static inline unsigned long task_runnable(struct task_struct *p) 4852 { 4853 return READ_ONCE(p->se.avg.runnable_avg); 4854 } 4855 4856 static inline unsigned long _task_util_est(struct task_struct *p) 4857 { 4858 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4859 } 4860 4861 static inline unsigned long task_util_est(struct task_struct *p) 4862 { 4863 return max(task_util(p), _task_util_est(p)); 4864 } 4865 4866 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4867 struct task_struct *p) 4868 { 4869 unsigned int enqueued; 4870 4871 if (!sched_feat(UTIL_EST)) 4872 return; 4873 4874 /* Update root cfs_rq's estimated utilization */ 4875 enqueued = cfs_rq->avg.util_est; 4876 enqueued += _task_util_est(p); 4877 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4878 4879 trace_sched_util_est_cfs_tp(cfs_rq); 4880 } 4881 4882 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4883 struct task_struct *p) 4884 { 4885 unsigned int enqueued; 4886 4887 if (!sched_feat(UTIL_EST)) 4888 return; 4889 4890 /* Update root cfs_rq's estimated utilization */ 4891 enqueued = cfs_rq->avg.util_est; 4892 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4893 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4894 4895 trace_sched_util_est_cfs_tp(cfs_rq); 4896 } 4897 4898 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4899 4900 static inline void util_est_update(struct cfs_rq *cfs_rq, 4901 struct task_struct *p, 4902 bool task_sleep) 4903 { 4904 unsigned int ewma, dequeued, last_ewma_diff; 4905 4906 if (!sched_feat(UTIL_EST)) 4907 return; 4908 4909 /* 4910 * Skip update of task's estimated utilization when the task has not 4911 * yet completed an activation, e.g. being migrated. 4912 */ 4913 if (!task_sleep) 4914 return; 4915 4916 /* Get current estimate of utilization */ 4917 ewma = READ_ONCE(p->se.avg.util_est); 4918 4919 /* 4920 * If the PELT values haven't changed since enqueue time, 4921 * skip the util_est update. 4922 */ 4923 if (ewma & UTIL_AVG_UNCHANGED) 4924 return; 4925 4926 /* Get utilization at dequeue */ 4927 dequeued = task_util(p); 4928 4929 /* 4930 * Reset EWMA on utilization increases, the moving average is used only 4931 * to smooth utilization decreases. 4932 */ 4933 if (ewma <= dequeued) { 4934 ewma = dequeued; 4935 goto done; 4936 } 4937 4938 /* 4939 * Skip update of task's estimated utilization when its members are 4940 * already ~1% close to its last activation value. 4941 */ 4942 last_ewma_diff = ewma - dequeued; 4943 if (last_ewma_diff < UTIL_EST_MARGIN) 4944 goto done; 4945 4946 /* 4947 * To avoid underestimate of task utilization, skip updates of EWMA if 4948 * we cannot grant that thread got all CPU time it wanted. 4949 */ 4950 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4951 goto done; 4952 4953 4954 /* 4955 * Update Task's estimated utilization 4956 * 4957 * When *p completes an activation we can consolidate another sample 4958 * of the task size. This is done by using this value to update the 4959 * Exponential Weighted Moving Average (EWMA): 4960 * 4961 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4962 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4963 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4964 * = w * ( -last_ewma_diff ) + ewma(t-1) 4965 * = w * (-last_ewma_diff + ewma(t-1) / w) 4966 * 4967 * Where 'w' is the weight of new samples, which is configured to be 4968 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4969 */ 4970 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4971 ewma -= last_ewma_diff; 4972 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4973 done: 4974 ewma |= UTIL_AVG_UNCHANGED; 4975 WRITE_ONCE(p->se.avg.util_est, ewma); 4976 4977 trace_sched_util_est_se_tp(&p->se); 4978 } 4979 4980 static inline unsigned long get_actual_cpu_capacity(int cpu) 4981 { 4982 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4983 4984 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4985 4986 return capacity; 4987 } 4988 4989 static inline int util_fits_cpu(unsigned long util, 4990 unsigned long uclamp_min, 4991 unsigned long uclamp_max, 4992 int cpu) 4993 { 4994 unsigned long capacity = capacity_of(cpu); 4995 unsigned long capacity_orig; 4996 bool fits, uclamp_max_fits; 4997 4998 /* 4999 * Check if the real util fits without any uclamp boost/cap applied. 5000 */ 5001 fits = fits_capacity(util, capacity); 5002 5003 if (!uclamp_is_used()) 5004 return fits; 5005 5006 /* 5007 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5008 * uclamp_max. We only care about capacity pressure (by using 5009 * capacity_of()) for comparing against the real util. 5010 * 5011 * If a task is boosted to 1024 for example, we don't want a tiny 5012 * pressure to skew the check whether it fits a CPU or not. 5013 * 5014 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5015 * should fit a little cpu even if there's some pressure. 5016 * 5017 * Only exception is for HW or cpufreq pressure since it has a direct impact 5018 * on available OPP of the system. 5019 * 5020 * We honour it for uclamp_min only as a drop in performance level 5021 * could result in not getting the requested minimum performance level. 5022 * 5023 * For uclamp_max, we can tolerate a drop in performance level as the 5024 * goal is to cap the task. So it's okay if it's getting less. 5025 */ 5026 capacity_orig = arch_scale_cpu_capacity(cpu); 5027 5028 /* 5029 * We want to force a task to fit a cpu as implied by uclamp_max. 5030 * But we do have some corner cases to cater for.. 5031 * 5032 * 5033 * C=z 5034 * | ___ 5035 * | C=y | | 5036 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5037 * | C=x | | | | 5038 * | ___ | | | | 5039 * | | | | | | | (util somewhere in this region) 5040 * | | | | | | | 5041 * | | | | | | | 5042 * +---------------------------------------- 5043 * CPU0 CPU1 CPU2 5044 * 5045 * In the above example if a task is capped to a specific performance 5046 * point, y, then when: 5047 * 5048 * * util = 80% of x then it does not fit on CPU0 and should migrate 5049 * to CPU1 5050 * * util = 80% of y then it is forced to fit on CPU1 to honour 5051 * uclamp_max request. 5052 * 5053 * which is what we're enforcing here. A task always fits if 5054 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5055 * the normal upmigration rules should withhold still. 5056 * 5057 * Only exception is when we are on max capacity, then we need to be 5058 * careful not to block overutilized state. This is so because: 5059 * 5060 * 1. There's no concept of capping at max_capacity! We can't go 5061 * beyond this performance level anyway. 5062 * 2. The system is being saturated when we're operating near 5063 * max capacity, it doesn't make sense to block overutilized. 5064 */ 5065 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5066 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5067 fits = fits || uclamp_max_fits; 5068 5069 /* 5070 * 5071 * C=z 5072 * | ___ (region a, capped, util >= uclamp_max) 5073 * | C=y | | 5074 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5075 * | C=x | | | | 5076 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5077 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5078 * | | | | | | | 5079 * | | | | | | | (region c, boosted, util < uclamp_min) 5080 * +---------------------------------------- 5081 * CPU0 CPU1 CPU2 5082 * 5083 * a) If util > uclamp_max, then we're capped, we don't care about 5084 * actual fitness value here. We only care if uclamp_max fits 5085 * capacity without taking margin/pressure into account. 5086 * See comment above. 5087 * 5088 * b) If uclamp_min <= util <= uclamp_max, then the normal 5089 * fits_capacity() rules apply. Except we need to ensure that we 5090 * enforce we remain within uclamp_max, see comment above. 5091 * 5092 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5093 * need to take into account the boosted value fits the CPU without 5094 * taking margin/pressure into account. 5095 * 5096 * Cases (a) and (b) are handled in the 'fits' variable already. We 5097 * just need to consider an extra check for case (c) after ensuring we 5098 * handle the case uclamp_min > uclamp_max. 5099 */ 5100 uclamp_min = min(uclamp_min, uclamp_max); 5101 if (fits && (util < uclamp_min) && 5102 (uclamp_min > get_actual_cpu_capacity(cpu))) 5103 return -1; 5104 5105 return fits; 5106 } 5107 5108 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5109 { 5110 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5111 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5112 unsigned long util = task_util_est(p); 5113 /* 5114 * Return true only if the cpu fully fits the task requirements, which 5115 * include the utilization but also the performance hints. 5116 */ 5117 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5118 } 5119 5120 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5121 { 5122 int cpu = cpu_of(rq); 5123 5124 if (!sched_asym_cpucap_active()) 5125 return; 5126 5127 /* 5128 * Affinity allows us to go somewhere higher? Or are we on biggest 5129 * available CPU already? Or do we fit into this CPU ? 5130 */ 5131 if (!p || (p->nr_cpus_allowed == 1) || 5132 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5133 task_fits_cpu(p, cpu)) { 5134 5135 rq->misfit_task_load = 0; 5136 return; 5137 } 5138 5139 /* 5140 * Make sure that misfit_task_load will not be null even if 5141 * task_h_load() returns 0. 5142 */ 5143 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5144 } 5145 5146 #else /* CONFIG_SMP */ 5147 5148 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5149 { 5150 return !cfs_rq->nr_queued; 5151 } 5152 5153 #define UPDATE_TG 0x0 5154 #define SKIP_AGE_LOAD 0x0 5155 #define DO_ATTACH 0x0 5156 #define DO_DETACH 0x0 5157 5158 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5159 { 5160 cfs_rq_util_change(cfs_rq, 0); 5161 } 5162 5163 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5164 5165 static inline void 5166 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5167 static inline void 5168 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5169 5170 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5171 { 5172 return 0; 5173 } 5174 5175 static inline void 5176 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5177 5178 static inline void 5179 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5180 5181 static inline void 5182 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5183 bool task_sleep) {} 5184 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5185 5186 #endif /* CONFIG_SMP */ 5187 5188 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5189 { 5190 struct sched_entity *se = &p->se; 5191 5192 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5193 if (attr->sched_runtime) { 5194 se->custom_slice = 1; 5195 se->slice = clamp_t(u64, attr->sched_runtime, 5196 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5197 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5198 } else { 5199 se->custom_slice = 0; 5200 se->slice = sysctl_sched_base_slice; 5201 } 5202 } 5203 5204 static void 5205 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5206 { 5207 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5208 s64 lag = 0; 5209 5210 if (!se->custom_slice) 5211 se->slice = sysctl_sched_base_slice; 5212 vslice = calc_delta_fair(se->slice, se); 5213 5214 /* 5215 * Due to how V is constructed as the weighted average of entities, 5216 * adding tasks with positive lag, or removing tasks with negative lag 5217 * will move 'time' backwards, this can screw around with the lag of 5218 * other tasks. 5219 * 5220 * EEVDF: placement strategy #1 / #2 5221 */ 5222 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5223 struct sched_entity *curr = cfs_rq->curr; 5224 unsigned long load; 5225 5226 lag = se->vlag; 5227 5228 /* 5229 * If we want to place a task and preserve lag, we have to 5230 * consider the effect of the new entity on the weighted 5231 * average and compensate for this, otherwise lag can quickly 5232 * evaporate. 5233 * 5234 * Lag is defined as: 5235 * 5236 * lag_i = S - s_i = w_i * (V - v_i) 5237 * 5238 * To avoid the 'w_i' term all over the place, we only track 5239 * the virtual lag: 5240 * 5241 * vl_i = V - v_i <=> v_i = V - vl_i 5242 * 5243 * And we take V to be the weighted average of all v: 5244 * 5245 * V = (\Sum w_j*v_j) / W 5246 * 5247 * Where W is: \Sum w_j 5248 * 5249 * Then, the weighted average after adding an entity with lag 5250 * vl_i is given by: 5251 * 5252 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5253 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5254 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5255 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5256 * = V - w_i*vl_i / (W + w_i) 5257 * 5258 * And the actual lag after adding an entity with vl_i is: 5259 * 5260 * vl'_i = V' - v_i 5261 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5262 * = vl_i - w_i*vl_i / (W + w_i) 5263 * 5264 * Which is strictly less than vl_i. So in order to preserve lag 5265 * we should inflate the lag before placement such that the 5266 * effective lag after placement comes out right. 5267 * 5268 * As such, invert the above relation for vl'_i to get the vl_i 5269 * we need to use such that the lag after placement is the lag 5270 * we computed before dequeue. 5271 * 5272 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5273 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5274 * 5275 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5276 * = W*vl_i 5277 * 5278 * vl_i = (W + w_i)*vl'_i / W 5279 */ 5280 load = cfs_rq->avg_load; 5281 if (curr && curr->on_rq) 5282 load += scale_load_down(curr->load.weight); 5283 5284 lag *= load + scale_load_down(se->load.weight); 5285 if (WARN_ON_ONCE(!load)) 5286 load = 1; 5287 lag = div_s64(lag, load); 5288 } 5289 5290 se->vruntime = vruntime - lag; 5291 5292 if (se->rel_deadline) { 5293 se->deadline += se->vruntime; 5294 se->rel_deadline = 0; 5295 return; 5296 } 5297 5298 /* 5299 * When joining the competition; the existing tasks will be, 5300 * on average, halfway through their slice, as such start tasks 5301 * off with half a slice to ease into the competition. 5302 */ 5303 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5304 vslice /= 2; 5305 5306 /* 5307 * EEVDF: vd_i = ve_i + r_i/w_i 5308 */ 5309 se->deadline = se->vruntime + vslice; 5310 } 5311 5312 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5313 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5314 5315 static void 5316 requeue_delayed_entity(struct sched_entity *se); 5317 5318 static void 5319 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5320 { 5321 bool curr = cfs_rq->curr == se; 5322 5323 /* 5324 * If we're the current task, we must renormalise before calling 5325 * update_curr(). 5326 */ 5327 if (curr) 5328 place_entity(cfs_rq, se, flags); 5329 5330 update_curr(cfs_rq); 5331 5332 /* 5333 * When enqueuing a sched_entity, we must: 5334 * - Update loads to have both entity and cfs_rq synced with now. 5335 * - For group_entity, update its runnable_weight to reflect the new 5336 * h_nr_runnable of its group cfs_rq. 5337 * - For group_entity, update its weight to reflect the new share of 5338 * its group cfs_rq 5339 * - Add its new weight to cfs_rq->load.weight 5340 */ 5341 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5342 se_update_runnable(se); 5343 /* 5344 * XXX update_load_avg() above will have attached us to the pelt sum; 5345 * but update_cfs_group() here will re-adjust the weight and have to 5346 * undo/redo all that. Seems wasteful. 5347 */ 5348 update_cfs_group(se); 5349 5350 /* 5351 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5352 * we can place the entity. 5353 */ 5354 if (!curr) 5355 place_entity(cfs_rq, se, flags); 5356 5357 account_entity_enqueue(cfs_rq, se); 5358 5359 /* Entity has migrated, no longer consider this task hot */ 5360 if (flags & ENQUEUE_MIGRATED) 5361 se->exec_start = 0; 5362 5363 check_schedstat_required(); 5364 update_stats_enqueue_fair(cfs_rq, se, flags); 5365 if (!curr) 5366 __enqueue_entity(cfs_rq, se); 5367 se->on_rq = 1; 5368 5369 if (cfs_rq->nr_queued == 1) { 5370 check_enqueue_throttle(cfs_rq); 5371 if (!throttled_hierarchy(cfs_rq)) { 5372 list_add_leaf_cfs_rq(cfs_rq); 5373 } else { 5374 #ifdef CONFIG_CFS_BANDWIDTH 5375 struct rq *rq = rq_of(cfs_rq); 5376 5377 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5378 cfs_rq->throttled_clock = rq_clock(rq); 5379 if (!cfs_rq->throttled_clock_self) 5380 cfs_rq->throttled_clock_self = rq_clock(rq); 5381 #endif 5382 } 5383 } 5384 } 5385 5386 static void __clear_buddies_next(struct sched_entity *se) 5387 { 5388 for_each_sched_entity(se) { 5389 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5390 if (cfs_rq->next != se) 5391 break; 5392 5393 cfs_rq->next = NULL; 5394 } 5395 } 5396 5397 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5398 { 5399 if (cfs_rq->next == se) 5400 __clear_buddies_next(se); 5401 } 5402 5403 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5404 5405 static void set_delayed(struct sched_entity *se) 5406 { 5407 se->sched_delayed = 1; 5408 5409 /* 5410 * Delayed se of cfs_rq have no tasks queued on them. 5411 * Do not adjust h_nr_runnable since dequeue_entities() 5412 * will account it for blocked tasks. 5413 */ 5414 if (!entity_is_task(se)) 5415 return; 5416 5417 for_each_sched_entity(se) { 5418 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5419 5420 cfs_rq->h_nr_runnable--; 5421 if (cfs_rq_throttled(cfs_rq)) 5422 break; 5423 } 5424 } 5425 5426 static void clear_delayed(struct sched_entity *se) 5427 { 5428 se->sched_delayed = 0; 5429 5430 /* 5431 * Delayed se of cfs_rq have no tasks queued on them. 5432 * Do not adjust h_nr_runnable since a dequeue has 5433 * already accounted for it or an enqueue of a task 5434 * below it will account for it in enqueue_task_fair(). 5435 */ 5436 if (!entity_is_task(se)) 5437 return; 5438 5439 for_each_sched_entity(se) { 5440 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5441 5442 cfs_rq->h_nr_runnable++; 5443 if (cfs_rq_throttled(cfs_rq)) 5444 break; 5445 } 5446 } 5447 5448 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5449 { 5450 clear_delayed(se); 5451 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5452 se->vlag = 0; 5453 } 5454 5455 static bool 5456 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5457 { 5458 bool sleep = flags & DEQUEUE_SLEEP; 5459 int action = UPDATE_TG; 5460 5461 update_curr(cfs_rq); 5462 clear_buddies(cfs_rq, se); 5463 5464 if (flags & DEQUEUE_DELAYED) { 5465 WARN_ON_ONCE(!se->sched_delayed); 5466 } else { 5467 bool delay = sleep; 5468 /* 5469 * DELAY_DEQUEUE relies on spurious wakeups, special task 5470 * states must not suffer spurious wakeups, excempt them. 5471 */ 5472 if (flags & DEQUEUE_SPECIAL) 5473 delay = false; 5474 5475 WARN_ON_ONCE(delay && se->sched_delayed); 5476 5477 if (sched_feat(DELAY_DEQUEUE) && delay && 5478 !entity_eligible(cfs_rq, se)) { 5479 update_load_avg(cfs_rq, se, 0); 5480 set_delayed(se); 5481 return false; 5482 } 5483 } 5484 5485 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5486 action |= DO_DETACH; 5487 5488 /* 5489 * When dequeuing a sched_entity, we must: 5490 * - Update loads to have both entity and cfs_rq synced with now. 5491 * - For group_entity, update its runnable_weight to reflect the new 5492 * h_nr_runnable of its group cfs_rq. 5493 * - Subtract its previous weight from cfs_rq->load.weight. 5494 * - For group entity, update its weight to reflect the new share 5495 * of its group cfs_rq. 5496 */ 5497 update_load_avg(cfs_rq, se, action); 5498 se_update_runnable(se); 5499 5500 update_stats_dequeue_fair(cfs_rq, se, flags); 5501 5502 update_entity_lag(cfs_rq, se); 5503 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5504 se->deadline -= se->vruntime; 5505 se->rel_deadline = 1; 5506 } 5507 5508 if (se != cfs_rq->curr) 5509 __dequeue_entity(cfs_rq, se); 5510 se->on_rq = 0; 5511 account_entity_dequeue(cfs_rq, se); 5512 5513 /* return excess runtime on last dequeue */ 5514 return_cfs_rq_runtime(cfs_rq); 5515 5516 update_cfs_group(se); 5517 5518 /* 5519 * Now advance min_vruntime if @se was the entity holding it back, 5520 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5521 * put back on, and if we advance min_vruntime, we'll be placed back 5522 * further than we started -- i.e. we'll be penalized. 5523 */ 5524 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5525 update_min_vruntime(cfs_rq); 5526 5527 if (flags & DEQUEUE_DELAYED) 5528 finish_delayed_dequeue_entity(se); 5529 5530 if (cfs_rq->nr_queued == 0) 5531 update_idle_cfs_rq_clock_pelt(cfs_rq); 5532 5533 return true; 5534 } 5535 5536 static void 5537 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5538 { 5539 clear_buddies(cfs_rq, se); 5540 5541 /* 'current' is not kept within the tree. */ 5542 if (se->on_rq) { 5543 /* 5544 * Any task has to be enqueued before it get to execute on 5545 * a CPU. So account for the time it spent waiting on the 5546 * runqueue. 5547 */ 5548 update_stats_wait_end_fair(cfs_rq, se); 5549 __dequeue_entity(cfs_rq, se); 5550 update_load_avg(cfs_rq, se, UPDATE_TG); 5551 5552 set_protect_slice(se); 5553 } 5554 5555 update_stats_curr_start(cfs_rq, se); 5556 WARN_ON_ONCE(cfs_rq->curr); 5557 cfs_rq->curr = se; 5558 5559 /* 5560 * Track our maximum slice length, if the CPU's load is at 5561 * least twice that of our own weight (i.e. don't track it 5562 * when there are only lesser-weight tasks around): 5563 */ 5564 if (schedstat_enabled() && 5565 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5566 struct sched_statistics *stats; 5567 5568 stats = __schedstats_from_se(se); 5569 __schedstat_set(stats->slice_max, 5570 max((u64)stats->slice_max, 5571 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5572 } 5573 5574 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5575 } 5576 5577 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5578 5579 /* 5580 * Pick the next process, keeping these things in mind, in this order: 5581 * 1) keep things fair between processes/task groups 5582 * 2) pick the "next" process, since someone really wants that to run 5583 * 3) pick the "last" process, for cache locality 5584 * 4) do not run the "skip" process, if something else is available 5585 */ 5586 static struct sched_entity * 5587 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5588 { 5589 struct sched_entity *se; 5590 5591 /* 5592 * Picking the ->next buddy will affect latency but not fairness. 5593 */ 5594 if (sched_feat(PICK_BUDDY) && 5595 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5596 /* ->next will never be delayed */ 5597 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 5598 return cfs_rq->next; 5599 } 5600 5601 se = pick_eevdf(cfs_rq); 5602 if (se->sched_delayed) { 5603 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5604 /* 5605 * Must not reference @se again, see __block_task(). 5606 */ 5607 return NULL; 5608 } 5609 return se; 5610 } 5611 5612 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5613 5614 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5615 { 5616 /* 5617 * If still on the runqueue then deactivate_task() 5618 * was not called and update_curr() has to be done: 5619 */ 5620 if (prev->on_rq) 5621 update_curr(cfs_rq); 5622 5623 /* throttle cfs_rqs exceeding runtime */ 5624 check_cfs_rq_runtime(cfs_rq); 5625 5626 if (prev->on_rq) { 5627 update_stats_wait_start_fair(cfs_rq, prev); 5628 /* Put 'current' back into the tree. */ 5629 __enqueue_entity(cfs_rq, prev); 5630 /* in !on_rq case, update occurred at dequeue */ 5631 update_load_avg(cfs_rq, prev, 0); 5632 } 5633 WARN_ON_ONCE(cfs_rq->curr != prev); 5634 cfs_rq->curr = NULL; 5635 } 5636 5637 static void 5638 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5639 { 5640 /* 5641 * Update run-time statistics of the 'current'. 5642 */ 5643 update_curr(cfs_rq); 5644 5645 /* 5646 * Ensure that runnable average is periodically updated. 5647 */ 5648 update_load_avg(cfs_rq, curr, UPDATE_TG); 5649 update_cfs_group(curr); 5650 5651 #ifdef CONFIG_SCHED_HRTICK 5652 /* 5653 * queued ticks are scheduled to match the slice, so don't bother 5654 * validating it and just reschedule. 5655 */ 5656 if (queued) { 5657 resched_curr_lazy(rq_of(cfs_rq)); 5658 return; 5659 } 5660 #endif 5661 } 5662 5663 5664 /************************************************** 5665 * CFS bandwidth control machinery 5666 */ 5667 5668 #ifdef CONFIG_CFS_BANDWIDTH 5669 5670 #ifdef CONFIG_JUMP_LABEL 5671 static struct static_key __cfs_bandwidth_used; 5672 5673 static inline bool cfs_bandwidth_used(void) 5674 { 5675 return static_key_false(&__cfs_bandwidth_used); 5676 } 5677 5678 void cfs_bandwidth_usage_inc(void) 5679 { 5680 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5681 } 5682 5683 void cfs_bandwidth_usage_dec(void) 5684 { 5685 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5686 } 5687 #else /* CONFIG_JUMP_LABEL */ 5688 static bool cfs_bandwidth_used(void) 5689 { 5690 return true; 5691 } 5692 5693 void cfs_bandwidth_usage_inc(void) {} 5694 void cfs_bandwidth_usage_dec(void) {} 5695 #endif /* CONFIG_JUMP_LABEL */ 5696 5697 /* 5698 * default period for cfs group bandwidth. 5699 * default: 0.1s, units: nanoseconds 5700 */ 5701 static inline u64 default_cfs_period(void) 5702 { 5703 return 100000000ULL; 5704 } 5705 5706 static inline u64 sched_cfs_bandwidth_slice(void) 5707 { 5708 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5709 } 5710 5711 /* 5712 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5713 * directly instead of rq->clock to avoid adding additional synchronization 5714 * around rq->lock. 5715 * 5716 * requires cfs_b->lock 5717 */ 5718 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5719 { 5720 s64 runtime; 5721 5722 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5723 return; 5724 5725 cfs_b->runtime += cfs_b->quota; 5726 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5727 if (runtime > 0) { 5728 cfs_b->burst_time += runtime; 5729 cfs_b->nr_burst++; 5730 } 5731 5732 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5733 cfs_b->runtime_snap = cfs_b->runtime; 5734 } 5735 5736 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5737 { 5738 return &tg->cfs_bandwidth; 5739 } 5740 5741 /* returns 0 on failure to allocate runtime */ 5742 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5743 struct cfs_rq *cfs_rq, u64 target_runtime) 5744 { 5745 u64 min_amount, amount = 0; 5746 5747 lockdep_assert_held(&cfs_b->lock); 5748 5749 /* note: this is a positive sum as runtime_remaining <= 0 */ 5750 min_amount = target_runtime - cfs_rq->runtime_remaining; 5751 5752 if (cfs_b->quota == RUNTIME_INF) 5753 amount = min_amount; 5754 else { 5755 start_cfs_bandwidth(cfs_b); 5756 5757 if (cfs_b->runtime > 0) { 5758 amount = min(cfs_b->runtime, min_amount); 5759 cfs_b->runtime -= amount; 5760 cfs_b->idle = 0; 5761 } 5762 } 5763 5764 cfs_rq->runtime_remaining += amount; 5765 5766 return cfs_rq->runtime_remaining > 0; 5767 } 5768 5769 /* returns 0 on failure to allocate runtime */ 5770 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5771 { 5772 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5773 int ret; 5774 5775 raw_spin_lock(&cfs_b->lock); 5776 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5777 raw_spin_unlock(&cfs_b->lock); 5778 5779 return ret; 5780 } 5781 5782 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5783 { 5784 /* dock delta_exec before expiring quota (as it could span periods) */ 5785 cfs_rq->runtime_remaining -= delta_exec; 5786 5787 if (likely(cfs_rq->runtime_remaining > 0)) 5788 return; 5789 5790 if (cfs_rq->throttled) 5791 return; 5792 /* 5793 * if we're unable to extend our runtime we resched so that the active 5794 * hierarchy can be throttled 5795 */ 5796 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5797 resched_curr(rq_of(cfs_rq)); 5798 } 5799 5800 static __always_inline 5801 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5802 { 5803 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5804 return; 5805 5806 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5807 } 5808 5809 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5810 { 5811 return cfs_bandwidth_used() && cfs_rq->throttled; 5812 } 5813 5814 /* check whether cfs_rq, or any parent, is throttled */ 5815 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5816 { 5817 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5818 } 5819 5820 /* 5821 * Ensure that neither of the group entities corresponding to src_cpu or 5822 * dest_cpu are members of a throttled hierarchy when performing group 5823 * load-balance operations. 5824 */ 5825 static inline int throttled_lb_pair(struct task_group *tg, 5826 int src_cpu, int dest_cpu) 5827 { 5828 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5829 5830 src_cfs_rq = tg->cfs_rq[src_cpu]; 5831 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5832 5833 return throttled_hierarchy(src_cfs_rq) || 5834 throttled_hierarchy(dest_cfs_rq); 5835 } 5836 5837 static int tg_unthrottle_up(struct task_group *tg, void *data) 5838 { 5839 struct rq *rq = data; 5840 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5841 5842 cfs_rq->throttle_count--; 5843 if (!cfs_rq->throttle_count) { 5844 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5845 cfs_rq->throttled_clock_pelt; 5846 5847 /* Add cfs_rq with load or one or more already running entities to the list */ 5848 if (!cfs_rq_is_decayed(cfs_rq)) 5849 list_add_leaf_cfs_rq(cfs_rq); 5850 5851 if (cfs_rq->throttled_clock_self) { 5852 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5853 5854 cfs_rq->throttled_clock_self = 0; 5855 5856 if (WARN_ON_ONCE((s64)delta < 0)) 5857 delta = 0; 5858 5859 cfs_rq->throttled_clock_self_time += delta; 5860 } 5861 } 5862 5863 return 0; 5864 } 5865 5866 static int tg_throttle_down(struct task_group *tg, void *data) 5867 { 5868 struct rq *rq = data; 5869 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5870 5871 /* group is entering throttled state, stop time */ 5872 if (!cfs_rq->throttle_count) { 5873 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5874 list_del_leaf_cfs_rq(cfs_rq); 5875 5876 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5877 if (cfs_rq->nr_queued) 5878 cfs_rq->throttled_clock_self = rq_clock(rq); 5879 } 5880 cfs_rq->throttle_count++; 5881 5882 return 0; 5883 } 5884 5885 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5886 { 5887 struct rq *rq = rq_of(cfs_rq); 5888 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5889 struct sched_entity *se; 5890 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5891 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5892 5893 raw_spin_lock(&cfs_b->lock); 5894 /* This will start the period timer if necessary */ 5895 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5896 /* 5897 * We have raced with bandwidth becoming available, and if we 5898 * actually throttled the timer might not unthrottle us for an 5899 * entire period. We additionally needed to make sure that any 5900 * subsequent check_cfs_rq_runtime calls agree not to throttle 5901 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5902 * for 1ns of runtime rather than just check cfs_b. 5903 */ 5904 dequeue = 0; 5905 } else { 5906 list_add_tail_rcu(&cfs_rq->throttled_list, 5907 &cfs_b->throttled_cfs_rq); 5908 } 5909 raw_spin_unlock(&cfs_b->lock); 5910 5911 if (!dequeue) 5912 return false; /* Throttle no longer required. */ 5913 5914 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5915 5916 /* freeze hierarchy runnable averages while throttled */ 5917 rcu_read_lock(); 5918 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5919 rcu_read_unlock(); 5920 5921 queued_delta = cfs_rq->h_nr_queued; 5922 runnable_delta = cfs_rq->h_nr_runnable; 5923 idle_delta = cfs_rq->h_nr_idle; 5924 for_each_sched_entity(se) { 5925 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5926 int flags; 5927 5928 /* throttled entity or throttle-on-deactivate */ 5929 if (!se->on_rq) 5930 goto done; 5931 5932 /* 5933 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5934 * This avoids teaching dequeue_entities() about throttled 5935 * entities and keeps things relatively simple. 5936 */ 5937 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5938 if (se->sched_delayed) 5939 flags |= DEQUEUE_DELAYED; 5940 dequeue_entity(qcfs_rq, se, flags); 5941 5942 if (cfs_rq_is_idle(group_cfs_rq(se))) 5943 idle_delta = cfs_rq->h_nr_queued; 5944 5945 qcfs_rq->h_nr_queued -= queued_delta; 5946 qcfs_rq->h_nr_runnable -= runnable_delta; 5947 qcfs_rq->h_nr_idle -= idle_delta; 5948 5949 if (qcfs_rq->load.weight) { 5950 /* Avoid re-evaluating load for this entity: */ 5951 se = parent_entity(se); 5952 break; 5953 } 5954 } 5955 5956 for_each_sched_entity(se) { 5957 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5958 /* throttled entity or throttle-on-deactivate */ 5959 if (!se->on_rq) 5960 goto done; 5961 5962 update_load_avg(qcfs_rq, se, 0); 5963 se_update_runnable(se); 5964 5965 if (cfs_rq_is_idle(group_cfs_rq(se))) 5966 idle_delta = cfs_rq->h_nr_queued; 5967 5968 qcfs_rq->h_nr_queued -= queued_delta; 5969 qcfs_rq->h_nr_runnable -= runnable_delta; 5970 qcfs_rq->h_nr_idle -= idle_delta; 5971 } 5972 5973 /* At this point se is NULL and we are at root level*/ 5974 sub_nr_running(rq, queued_delta); 5975 5976 /* Stop the fair server if throttling resulted in no runnable tasks */ 5977 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5978 dl_server_stop(&rq->fair_server); 5979 done: 5980 /* 5981 * Note: distribution will already see us throttled via the 5982 * throttled-list. rq->lock protects completion. 5983 */ 5984 cfs_rq->throttled = 1; 5985 WARN_ON_ONCE(cfs_rq->throttled_clock); 5986 if (cfs_rq->nr_queued) 5987 cfs_rq->throttled_clock = rq_clock(rq); 5988 return true; 5989 } 5990 5991 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5992 { 5993 struct rq *rq = rq_of(cfs_rq); 5994 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5995 struct sched_entity *se; 5996 long queued_delta, runnable_delta, idle_delta; 5997 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5998 5999 se = cfs_rq->tg->se[cpu_of(rq)]; 6000 6001 cfs_rq->throttled = 0; 6002 6003 update_rq_clock(rq); 6004 6005 raw_spin_lock(&cfs_b->lock); 6006 if (cfs_rq->throttled_clock) { 6007 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6008 cfs_rq->throttled_clock = 0; 6009 } 6010 list_del_rcu(&cfs_rq->throttled_list); 6011 raw_spin_unlock(&cfs_b->lock); 6012 6013 /* update hierarchical throttle state */ 6014 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6015 6016 if (!cfs_rq->load.weight) { 6017 if (!cfs_rq->on_list) 6018 return; 6019 /* 6020 * Nothing to run but something to decay (on_list)? 6021 * Complete the branch. 6022 */ 6023 for_each_sched_entity(se) { 6024 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6025 break; 6026 } 6027 goto unthrottle_throttle; 6028 } 6029 6030 queued_delta = cfs_rq->h_nr_queued; 6031 runnable_delta = cfs_rq->h_nr_runnable; 6032 idle_delta = cfs_rq->h_nr_idle; 6033 for_each_sched_entity(se) { 6034 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6035 6036 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6037 if (se->sched_delayed) { 6038 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6039 6040 dequeue_entity(qcfs_rq, se, flags); 6041 } else if (se->on_rq) 6042 break; 6043 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6044 6045 if (cfs_rq_is_idle(group_cfs_rq(se))) 6046 idle_delta = cfs_rq->h_nr_queued; 6047 6048 qcfs_rq->h_nr_queued += queued_delta; 6049 qcfs_rq->h_nr_runnable += runnable_delta; 6050 qcfs_rq->h_nr_idle += idle_delta; 6051 6052 /* end evaluation on encountering a throttled cfs_rq */ 6053 if (cfs_rq_throttled(qcfs_rq)) 6054 goto unthrottle_throttle; 6055 } 6056 6057 for_each_sched_entity(se) { 6058 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6059 6060 update_load_avg(qcfs_rq, se, UPDATE_TG); 6061 se_update_runnable(se); 6062 6063 if (cfs_rq_is_idle(group_cfs_rq(se))) 6064 idle_delta = cfs_rq->h_nr_queued; 6065 6066 qcfs_rq->h_nr_queued += queued_delta; 6067 qcfs_rq->h_nr_runnable += runnable_delta; 6068 qcfs_rq->h_nr_idle += idle_delta; 6069 6070 /* end evaluation on encountering a throttled cfs_rq */ 6071 if (cfs_rq_throttled(qcfs_rq)) 6072 goto unthrottle_throttle; 6073 } 6074 6075 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6076 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6077 dl_server_start(&rq->fair_server); 6078 6079 /* At this point se is NULL and we are at root level*/ 6080 add_nr_running(rq, queued_delta); 6081 6082 unthrottle_throttle: 6083 assert_list_leaf_cfs_rq(rq); 6084 6085 /* Determine whether we need to wake up potentially idle CPU: */ 6086 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6087 resched_curr(rq); 6088 } 6089 6090 #ifdef CONFIG_SMP 6091 static void __cfsb_csd_unthrottle(void *arg) 6092 { 6093 struct cfs_rq *cursor, *tmp; 6094 struct rq *rq = arg; 6095 struct rq_flags rf; 6096 6097 rq_lock(rq, &rf); 6098 6099 /* 6100 * Iterating over the list can trigger several call to 6101 * update_rq_clock() in unthrottle_cfs_rq(). 6102 * Do it once and skip the potential next ones. 6103 */ 6104 update_rq_clock(rq); 6105 rq_clock_start_loop_update(rq); 6106 6107 /* 6108 * Since we hold rq lock we're safe from concurrent manipulation of 6109 * the CSD list. However, this RCU critical section annotates the 6110 * fact that we pair with sched_free_group_rcu(), so that we cannot 6111 * race with group being freed in the window between removing it 6112 * from the list and advancing to the next entry in the list. 6113 */ 6114 rcu_read_lock(); 6115 6116 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6117 throttled_csd_list) { 6118 list_del_init(&cursor->throttled_csd_list); 6119 6120 if (cfs_rq_throttled(cursor)) 6121 unthrottle_cfs_rq(cursor); 6122 } 6123 6124 rcu_read_unlock(); 6125 6126 rq_clock_stop_loop_update(rq); 6127 rq_unlock(rq, &rf); 6128 } 6129 6130 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6131 { 6132 struct rq *rq = rq_of(cfs_rq); 6133 bool first; 6134 6135 if (rq == this_rq()) { 6136 unthrottle_cfs_rq(cfs_rq); 6137 return; 6138 } 6139 6140 /* Already enqueued */ 6141 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6142 return; 6143 6144 first = list_empty(&rq->cfsb_csd_list); 6145 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6146 if (first) 6147 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6148 } 6149 #else 6150 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6151 { 6152 unthrottle_cfs_rq(cfs_rq); 6153 } 6154 #endif 6155 6156 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6157 { 6158 lockdep_assert_rq_held(rq_of(cfs_rq)); 6159 6160 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6161 cfs_rq->runtime_remaining <= 0)) 6162 return; 6163 6164 __unthrottle_cfs_rq_async(cfs_rq); 6165 } 6166 6167 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6168 { 6169 int this_cpu = smp_processor_id(); 6170 u64 runtime, remaining = 1; 6171 bool throttled = false; 6172 struct cfs_rq *cfs_rq, *tmp; 6173 struct rq_flags rf; 6174 struct rq *rq; 6175 LIST_HEAD(local_unthrottle); 6176 6177 rcu_read_lock(); 6178 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6179 throttled_list) { 6180 rq = rq_of(cfs_rq); 6181 6182 if (!remaining) { 6183 throttled = true; 6184 break; 6185 } 6186 6187 rq_lock_irqsave(rq, &rf); 6188 if (!cfs_rq_throttled(cfs_rq)) 6189 goto next; 6190 6191 /* Already queued for async unthrottle */ 6192 if (!list_empty(&cfs_rq->throttled_csd_list)) 6193 goto next; 6194 6195 /* By the above checks, this should never be true */ 6196 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6197 6198 raw_spin_lock(&cfs_b->lock); 6199 runtime = -cfs_rq->runtime_remaining + 1; 6200 if (runtime > cfs_b->runtime) 6201 runtime = cfs_b->runtime; 6202 cfs_b->runtime -= runtime; 6203 remaining = cfs_b->runtime; 6204 raw_spin_unlock(&cfs_b->lock); 6205 6206 cfs_rq->runtime_remaining += runtime; 6207 6208 /* we check whether we're throttled above */ 6209 if (cfs_rq->runtime_remaining > 0) { 6210 if (cpu_of(rq) != this_cpu) { 6211 unthrottle_cfs_rq_async(cfs_rq); 6212 } else { 6213 /* 6214 * We currently only expect to be unthrottling 6215 * a single cfs_rq locally. 6216 */ 6217 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6218 list_add_tail(&cfs_rq->throttled_csd_list, 6219 &local_unthrottle); 6220 } 6221 } else { 6222 throttled = true; 6223 } 6224 6225 next: 6226 rq_unlock_irqrestore(rq, &rf); 6227 } 6228 6229 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6230 throttled_csd_list) { 6231 struct rq *rq = rq_of(cfs_rq); 6232 6233 rq_lock_irqsave(rq, &rf); 6234 6235 list_del_init(&cfs_rq->throttled_csd_list); 6236 6237 if (cfs_rq_throttled(cfs_rq)) 6238 unthrottle_cfs_rq(cfs_rq); 6239 6240 rq_unlock_irqrestore(rq, &rf); 6241 } 6242 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6243 6244 rcu_read_unlock(); 6245 6246 return throttled; 6247 } 6248 6249 /* 6250 * Responsible for refilling a task_group's bandwidth and unthrottling its 6251 * cfs_rqs as appropriate. If there has been no activity within the last 6252 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6253 * used to track this state. 6254 */ 6255 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6256 { 6257 int throttled; 6258 6259 /* no need to continue the timer with no bandwidth constraint */ 6260 if (cfs_b->quota == RUNTIME_INF) 6261 goto out_deactivate; 6262 6263 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6264 cfs_b->nr_periods += overrun; 6265 6266 /* Refill extra burst quota even if cfs_b->idle */ 6267 __refill_cfs_bandwidth_runtime(cfs_b); 6268 6269 /* 6270 * idle depends on !throttled (for the case of a large deficit), and if 6271 * we're going inactive then everything else can be deferred 6272 */ 6273 if (cfs_b->idle && !throttled) 6274 goto out_deactivate; 6275 6276 if (!throttled) { 6277 /* mark as potentially idle for the upcoming period */ 6278 cfs_b->idle = 1; 6279 return 0; 6280 } 6281 6282 /* account preceding periods in which throttling occurred */ 6283 cfs_b->nr_throttled += overrun; 6284 6285 /* 6286 * This check is repeated as we release cfs_b->lock while we unthrottle. 6287 */ 6288 while (throttled && cfs_b->runtime > 0) { 6289 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6290 /* we can't nest cfs_b->lock while distributing bandwidth */ 6291 throttled = distribute_cfs_runtime(cfs_b); 6292 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6293 } 6294 6295 /* 6296 * While we are ensured activity in the period following an 6297 * unthrottle, this also covers the case in which the new bandwidth is 6298 * insufficient to cover the existing bandwidth deficit. (Forcing the 6299 * timer to remain active while there are any throttled entities.) 6300 */ 6301 cfs_b->idle = 0; 6302 6303 return 0; 6304 6305 out_deactivate: 6306 return 1; 6307 } 6308 6309 /* a cfs_rq won't donate quota below this amount */ 6310 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6311 /* minimum remaining period time to redistribute slack quota */ 6312 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6313 /* how long we wait to gather additional slack before distributing */ 6314 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6315 6316 /* 6317 * Are we near the end of the current quota period? 6318 * 6319 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6320 * hrtimer base being cleared by hrtimer_start. In the case of 6321 * migrate_hrtimers, base is never cleared, so we are fine. 6322 */ 6323 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6324 { 6325 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6326 s64 remaining; 6327 6328 /* if the call-back is running a quota refresh is already occurring */ 6329 if (hrtimer_callback_running(refresh_timer)) 6330 return 1; 6331 6332 /* is a quota refresh about to occur? */ 6333 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6334 if (remaining < (s64)min_expire) 6335 return 1; 6336 6337 return 0; 6338 } 6339 6340 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6341 { 6342 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6343 6344 /* if there's a quota refresh soon don't bother with slack */ 6345 if (runtime_refresh_within(cfs_b, min_left)) 6346 return; 6347 6348 /* don't push forwards an existing deferred unthrottle */ 6349 if (cfs_b->slack_started) 6350 return; 6351 cfs_b->slack_started = true; 6352 6353 hrtimer_start(&cfs_b->slack_timer, 6354 ns_to_ktime(cfs_bandwidth_slack_period), 6355 HRTIMER_MODE_REL); 6356 } 6357 6358 /* we know any runtime found here is valid as update_curr() precedes return */ 6359 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6360 { 6361 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6362 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6363 6364 if (slack_runtime <= 0) 6365 return; 6366 6367 raw_spin_lock(&cfs_b->lock); 6368 if (cfs_b->quota != RUNTIME_INF) { 6369 cfs_b->runtime += slack_runtime; 6370 6371 /* we are under rq->lock, defer unthrottling using a timer */ 6372 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6373 !list_empty(&cfs_b->throttled_cfs_rq)) 6374 start_cfs_slack_bandwidth(cfs_b); 6375 } 6376 raw_spin_unlock(&cfs_b->lock); 6377 6378 /* even if it's not valid for return we don't want to try again */ 6379 cfs_rq->runtime_remaining -= slack_runtime; 6380 } 6381 6382 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6383 { 6384 if (!cfs_bandwidth_used()) 6385 return; 6386 6387 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6388 return; 6389 6390 __return_cfs_rq_runtime(cfs_rq); 6391 } 6392 6393 /* 6394 * This is done with a timer (instead of inline with bandwidth return) since 6395 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6396 */ 6397 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6398 { 6399 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6400 unsigned long flags; 6401 6402 /* confirm we're still not at a refresh boundary */ 6403 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6404 cfs_b->slack_started = false; 6405 6406 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6407 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6408 return; 6409 } 6410 6411 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6412 runtime = cfs_b->runtime; 6413 6414 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6415 6416 if (!runtime) 6417 return; 6418 6419 distribute_cfs_runtime(cfs_b); 6420 } 6421 6422 /* 6423 * When a group wakes up we want to make sure that its quota is not already 6424 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6425 * runtime as update_curr() throttling can not trigger until it's on-rq. 6426 */ 6427 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6428 { 6429 if (!cfs_bandwidth_used()) 6430 return; 6431 6432 /* an active group must be handled by the update_curr()->put() path */ 6433 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6434 return; 6435 6436 /* ensure the group is not already throttled */ 6437 if (cfs_rq_throttled(cfs_rq)) 6438 return; 6439 6440 /* update runtime allocation */ 6441 account_cfs_rq_runtime(cfs_rq, 0); 6442 if (cfs_rq->runtime_remaining <= 0) 6443 throttle_cfs_rq(cfs_rq); 6444 } 6445 6446 static void sync_throttle(struct task_group *tg, int cpu) 6447 { 6448 struct cfs_rq *pcfs_rq, *cfs_rq; 6449 6450 if (!cfs_bandwidth_used()) 6451 return; 6452 6453 if (!tg->parent) 6454 return; 6455 6456 cfs_rq = tg->cfs_rq[cpu]; 6457 pcfs_rq = tg->parent->cfs_rq[cpu]; 6458 6459 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6460 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6461 } 6462 6463 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6464 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6465 { 6466 if (!cfs_bandwidth_used()) 6467 return false; 6468 6469 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6470 return false; 6471 6472 /* 6473 * it's possible for a throttled entity to be forced into a running 6474 * state (e.g. set_curr_task), in this case we're finished. 6475 */ 6476 if (cfs_rq_throttled(cfs_rq)) 6477 return true; 6478 6479 return throttle_cfs_rq(cfs_rq); 6480 } 6481 6482 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6483 { 6484 struct cfs_bandwidth *cfs_b = 6485 container_of(timer, struct cfs_bandwidth, slack_timer); 6486 6487 do_sched_cfs_slack_timer(cfs_b); 6488 6489 return HRTIMER_NORESTART; 6490 } 6491 6492 extern const u64 max_cfs_quota_period; 6493 6494 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6495 { 6496 struct cfs_bandwidth *cfs_b = 6497 container_of(timer, struct cfs_bandwidth, period_timer); 6498 unsigned long flags; 6499 int overrun; 6500 int idle = 0; 6501 int count = 0; 6502 6503 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6504 for (;;) { 6505 overrun = hrtimer_forward_now(timer, cfs_b->period); 6506 if (!overrun) 6507 break; 6508 6509 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6510 6511 if (++count > 3) { 6512 u64 new, old = ktime_to_ns(cfs_b->period); 6513 6514 /* 6515 * Grow period by a factor of 2 to avoid losing precision. 6516 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6517 * to fail. 6518 */ 6519 new = old * 2; 6520 if (new < max_cfs_quota_period) { 6521 cfs_b->period = ns_to_ktime(new); 6522 cfs_b->quota *= 2; 6523 cfs_b->burst *= 2; 6524 6525 pr_warn_ratelimited( 6526 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6527 smp_processor_id(), 6528 div_u64(new, NSEC_PER_USEC), 6529 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6530 } else { 6531 pr_warn_ratelimited( 6532 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6533 smp_processor_id(), 6534 div_u64(old, NSEC_PER_USEC), 6535 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6536 } 6537 6538 /* reset count so we don't come right back in here */ 6539 count = 0; 6540 } 6541 } 6542 if (idle) 6543 cfs_b->period_active = 0; 6544 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6545 6546 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6547 } 6548 6549 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6550 { 6551 raw_spin_lock_init(&cfs_b->lock); 6552 cfs_b->runtime = 0; 6553 cfs_b->quota = RUNTIME_INF; 6554 cfs_b->period = ns_to_ktime(default_cfs_period()); 6555 cfs_b->burst = 0; 6556 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6557 6558 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6559 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6560 HRTIMER_MODE_ABS_PINNED); 6561 6562 /* Add a random offset so that timers interleave */ 6563 hrtimer_set_expires(&cfs_b->period_timer, 6564 get_random_u32_below(cfs_b->period)); 6565 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6566 HRTIMER_MODE_REL); 6567 cfs_b->slack_started = false; 6568 } 6569 6570 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6571 { 6572 cfs_rq->runtime_enabled = 0; 6573 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6574 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6575 } 6576 6577 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6578 { 6579 lockdep_assert_held(&cfs_b->lock); 6580 6581 if (cfs_b->period_active) 6582 return; 6583 6584 cfs_b->period_active = 1; 6585 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6586 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6587 } 6588 6589 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6590 { 6591 int __maybe_unused i; 6592 6593 /* init_cfs_bandwidth() was not called */ 6594 if (!cfs_b->throttled_cfs_rq.next) 6595 return; 6596 6597 hrtimer_cancel(&cfs_b->period_timer); 6598 hrtimer_cancel(&cfs_b->slack_timer); 6599 6600 /* 6601 * It is possible that we still have some cfs_rq's pending on a CSD 6602 * list, though this race is very rare. In order for this to occur, we 6603 * must have raced with the last task leaving the group while there 6604 * exist throttled cfs_rq(s), and the period_timer must have queued the 6605 * CSD item but the remote cpu has not yet processed it. To handle this, 6606 * we can simply flush all pending CSD work inline here. We're 6607 * guaranteed at this point that no additional cfs_rq of this group can 6608 * join a CSD list. 6609 */ 6610 #ifdef CONFIG_SMP 6611 for_each_possible_cpu(i) { 6612 struct rq *rq = cpu_rq(i); 6613 unsigned long flags; 6614 6615 if (list_empty(&rq->cfsb_csd_list)) 6616 continue; 6617 6618 local_irq_save(flags); 6619 __cfsb_csd_unthrottle(rq); 6620 local_irq_restore(flags); 6621 } 6622 #endif 6623 } 6624 6625 /* 6626 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6627 * 6628 * The race is harmless, since modifying bandwidth settings of unhooked group 6629 * bits doesn't do much. 6630 */ 6631 6632 /* cpu online callback */ 6633 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6634 { 6635 struct task_group *tg; 6636 6637 lockdep_assert_rq_held(rq); 6638 6639 rcu_read_lock(); 6640 list_for_each_entry_rcu(tg, &task_groups, list) { 6641 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6642 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6643 6644 raw_spin_lock(&cfs_b->lock); 6645 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6646 raw_spin_unlock(&cfs_b->lock); 6647 } 6648 rcu_read_unlock(); 6649 } 6650 6651 /* cpu offline callback */ 6652 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6653 { 6654 struct task_group *tg; 6655 6656 lockdep_assert_rq_held(rq); 6657 6658 // Do not unthrottle for an active CPU 6659 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6660 return; 6661 6662 /* 6663 * The rq clock has already been updated in the 6664 * set_rq_offline(), so we should skip updating 6665 * the rq clock again in unthrottle_cfs_rq(). 6666 */ 6667 rq_clock_start_loop_update(rq); 6668 6669 rcu_read_lock(); 6670 list_for_each_entry_rcu(tg, &task_groups, list) { 6671 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6672 6673 if (!cfs_rq->runtime_enabled) 6674 continue; 6675 6676 /* 6677 * Offline rq is schedulable till CPU is completely disabled 6678 * in take_cpu_down(), so we prevent new cfs throttling here. 6679 */ 6680 cfs_rq->runtime_enabled = 0; 6681 6682 if (!cfs_rq_throttled(cfs_rq)) 6683 continue; 6684 6685 /* 6686 * clock_task is not advancing so we just need to make sure 6687 * there's some valid quota amount 6688 */ 6689 cfs_rq->runtime_remaining = 1; 6690 unthrottle_cfs_rq(cfs_rq); 6691 } 6692 rcu_read_unlock(); 6693 6694 rq_clock_stop_loop_update(rq); 6695 } 6696 6697 bool cfs_task_bw_constrained(struct task_struct *p) 6698 { 6699 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6700 6701 if (!cfs_bandwidth_used()) 6702 return false; 6703 6704 if (cfs_rq->runtime_enabled || 6705 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6706 return true; 6707 6708 return false; 6709 } 6710 6711 #ifdef CONFIG_NO_HZ_FULL 6712 /* called from pick_next_task_fair() */ 6713 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6714 { 6715 int cpu = cpu_of(rq); 6716 6717 if (!cfs_bandwidth_used()) 6718 return; 6719 6720 if (!tick_nohz_full_cpu(cpu)) 6721 return; 6722 6723 if (rq->nr_running != 1) 6724 return; 6725 6726 /* 6727 * We know there is only one task runnable and we've just picked it. The 6728 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6729 * be otherwise able to stop the tick. Just need to check if we are using 6730 * bandwidth control. 6731 */ 6732 if (cfs_task_bw_constrained(p)) 6733 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6734 } 6735 #endif 6736 6737 #else /* CONFIG_CFS_BANDWIDTH */ 6738 6739 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6740 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6741 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6742 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6743 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6744 6745 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6746 { 6747 return 0; 6748 } 6749 6750 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6751 { 6752 return 0; 6753 } 6754 6755 static inline int throttled_lb_pair(struct task_group *tg, 6756 int src_cpu, int dest_cpu) 6757 { 6758 return 0; 6759 } 6760 6761 #ifdef CONFIG_FAIR_GROUP_SCHED 6762 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6763 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6764 #endif 6765 6766 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6767 { 6768 return NULL; 6769 } 6770 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6771 static inline void update_runtime_enabled(struct rq *rq) {} 6772 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6773 #ifdef CONFIG_CGROUP_SCHED 6774 bool cfs_task_bw_constrained(struct task_struct *p) 6775 { 6776 return false; 6777 } 6778 #endif 6779 #endif /* CONFIG_CFS_BANDWIDTH */ 6780 6781 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6782 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6783 #endif 6784 6785 /************************************************** 6786 * CFS operations on tasks: 6787 */ 6788 6789 #ifdef CONFIG_SCHED_HRTICK 6790 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6791 { 6792 struct sched_entity *se = &p->se; 6793 6794 WARN_ON_ONCE(task_rq(p) != rq); 6795 6796 if (rq->cfs.h_nr_queued > 1) { 6797 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6798 u64 slice = se->slice; 6799 s64 delta = slice - ran; 6800 6801 if (delta < 0) { 6802 if (task_current_donor(rq, p)) 6803 resched_curr(rq); 6804 return; 6805 } 6806 hrtick_start(rq, delta); 6807 } 6808 } 6809 6810 /* 6811 * called from enqueue/dequeue and updates the hrtick when the 6812 * current task is from our class and nr_running is low enough 6813 * to matter. 6814 */ 6815 static void hrtick_update(struct rq *rq) 6816 { 6817 struct task_struct *donor = rq->donor; 6818 6819 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6820 return; 6821 6822 hrtick_start_fair(rq, donor); 6823 } 6824 #else /* !CONFIG_SCHED_HRTICK */ 6825 static inline void 6826 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6827 { 6828 } 6829 6830 static inline void hrtick_update(struct rq *rq) 6831 { 6832 } 6833 #endif 6834 6835 #ifdef CONFIG_SMP 6836 static inline bool cpu_overutilized(int cpu) 6837 { 6838 unsigned long rq_util_min, rq_util_max; 6839 6840 if (!sched_energy_enabled()) 6841 return false; 6842 6843 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6844 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6845 6846 /* Return true only if the utilization doesn't fit CPU's capacity */ 6847 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6848 } 6849 6850 /* 6851 * overutilized value make sense only if EAS is enabled 6852 */ 6853 static inline bool is_rd_overutilized(struct root_domain *rd) 6854 { 6855 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6856 } 6857 6858 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6859 { 6860 if (!sched_energy_enabled()) 6861 return; 6862 6863 WRITE_ONCE(rd->overutilized, flag); 6864 trace_sched_overutilized_tp(rd, flag); 6865 } 6866 6867 static inline void check_update_overutilized_status(struct rq *rq) 6868 { 6869 /* 6870 * overutilized field is used for load balancing decisions only 6871 * if energy aware scheduler is being used 6872 */ 6873 6874 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6875 set_rd_overutilized(rq->rd, 1); 6876 } 6877 #else 6878 static inline void check_update_overutilized_status(struct rq *rq) { } 6879 #endif 6880 6881 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6882 static int sched_idle_rq(struct rq *rq) 6883 { 6884 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6885 rq->nr_running); 6886 } 6887 6888 #ifdef CONFIG_SMP 6889 static int sched_idle_cpu(int cpu) 6890 { 6891 return sched_idle_rq(cpu_rq(cpu)); 6892 } 6893 #endif 6894 6895 static void 6896 requeue_delayed_entity(struct sched_entity *se) 6897 { 6898 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6899 6900 /* 6901 * se->sched_delayed should imply: se->on_rq == 1. 6902 * Because a delayed entity is one that is still on 6903 * the runqueue competing until elegibility. 6904 */ 6905 WARN_ON_ONCE(!se->sched_delayed); 6906 WARN_ON_ONCE(!se->on_rq); 6907 6908 if (sched_feat(DELAY_ZERO)) { 6909 update_entity_lag(cfs_rq, se); 6910 if (se->vlag > 0) { 6911 cfs_rq->nr_queued--; 6912 if (se != cfs_rq->curr) 6913 __dequeue_entity(cfs_rq, se); 6914 se->vlag = 0; 6915 place_entity(cfs_rq, se, 0); 6916 if (se != cfs_rq->curr) 6917 __enqueue_entity(cfs_rq, se); 6918 cfs_rq->nr_queued++; 6919 } 6920 } 6921 6922 update_load_avg(cfs_rq, se, 0); 6923 clear_delayed(se); 6924 } 6925 6926 /* 6927 * The enqueue_task method is called before nr_running is 6928 * increased. Here we update the fair scheduling stats and 6929 * then put the task into the rbtree: 6930 */ 6931 static void 6932 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6933 { 6934 struct cfs_rq *cfs_rq; 6935 struct sched_entity *se = &p->se; 6936 int h_nr_idle = task_has_idle_policy(p); 6937 int h_nr_runnable = 1; 6938 int task_new = !(flags & ENQUEUE_WAKEUP); 6939 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6940 u64 slice = 0; 6941 6942 /* 6943 * The code below (indirectly) updates schedutil which looks at 6944 * the cfs_rq utilization to select a frequency. 6945 * Let's add the task's estimated utilization to the cfs_rq's 6946 * estimated utilization, before we update schedutil. 6947 */ 6948 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6949 util_est_enqueue(&rq->cfs, p); 6950 6951 if (flags & ENQUEUE_DELAYED) { 6952 requeue_delayed_entity(se); 6953 return; 6954 } 6955 6956 /* 6957 * If in_iowait is set, the code below may not trigger any cpufreq 6958 * utilization updates, so do it here explicitly with the IOWAIT flag 6959 * passed. 6960 */ 6961 if (p->in_iowait) 6962 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6963 6964 if (task_new && se->sched_delayed) 6965 h_nr_runnable = 0; 6966 6967 for_each_sched_entity(se) { 6968 if (se->on_rq) { 6969 if (se->sched_delayed) 6970 requeue_delayed_entity(se); 6971 break; 6972 } 6973 cfs_rq = cfs_rq_of(se); 6974 6975 /* 6976 * Basically set the slice of group entries to the min_slice of 6977 * their respective cfs_rq. This ensures the group can service 6978 * its entities in the desired time-frame. 6979 */ 6980 if (slice) { 6981 se->slice = slice; 6982 se->custom_slice = 1; 6983 } 6984 enqueue_entity(cfs_rq, se, flags); 6985 slice = cfs_rq_min_slice(cfs_rq); 6986 6987 cfs_rq->h_nr_runnable += h_nr_runnable; 6988 cfs_rq->h_nr_queued++; 6989 cfs_rq->h_nr_idle += h_nr_idle; 6990 6991 if (cfs_rq_is_idle(cfs_rq)) 6992 h_nr_idle = 1; 6993 6994 /* end evaluation on encountering a throttled cfs_rq */ 6995 if (cfs_rq_throttled(cfs_rq)) 6996 goto enqueue_throttle; 6997 6998 flags = ENQUEUE_WAKEUP; 6999 } 7000 7001 for_each_sched_entity(se) { 7002 cfs_rq = cfs_rq_of(se); 7003 7004 update_load_avg(cfs_rq, se, UPDATE_TG); 7005 se_update_runnable(se); 7006 update_cfs_group(se); 7007 7008 se->slice = slice; 7009 if (se != cfs_rq->curr) 7010 min_vruntime_cb_propagate(&se->run_node, NULL); 7011 slice = cfs_rq_min_slice(cfs_rq); 7012 7013 cfs_rq->h_nr_runnable += h_nr_runnable; 7014 cfs_rq->h_nr_queued++; 7015 cfs_rq->h_nr_idle += h_nr_idle; 7016 7017 if (cfs_rq_is_idle(cfs_rq)) 7018 h_nr_idle = 1; 7019 7020 /* end evaluation on encountering a throttled cfs_rq */ 7021 if (cfs_rq_throttled(cfs_rq)) 7022 goto enqueue_throttle; 7023 } 7024 7025 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7026 /* Account for idle runtime */ 7027 if (!rq->nr_running) 7028 dl_server_update_idle_time(rq, rq->curr); 7029 dl_server_start(&rq->fair_server); 7030 } 7031 7032 /* At this point se is NULL and we are at root level*/ 7033 add_nr_running(rq, 1); 7034 7035 /* 7036 * Since new tasks are assigned an initial util_avg equal to 7037 * half of the spare capacity of their CPU, tiny tasks have the 7038 * ability to cross the overutilized threshold, which will 7039 * result in the load balancer ruining all the task placement 7040 * done by EAS. As a way to mitigate that effect, do not account 7041 * for the first enqueue operation of new tasks during the 7042 * overutilized flag detection. 7043 * 7044 * A better way of solving this problem would be to wait for 7045 * the PELT signals of tasks to converge before taking them 7046 * into account, but that is not straightforward to implement, 7047 * and the following generally works well enough in practice. 7048 */ 7049 if (!task_new) 7050 check_update_overutilized_status(rq); 7051 7052 enqueue_throttle: 7053 assert_list_leaf_cfs_rq(rq); 7054 7055 hrtick_update(rq); 7056 } 7057 7058 static void set_next_buddy(struct sched_entity *se); 7059 7060 /* 7061 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7062 * failing half-way through and resume the dequeue later. 7063 * 7064 * Returns: 7065 * -1 - dequeue delayed 7066 * 0 - dequeue throttled 7067 * 1 - dequeue complete 7068 */ 7069 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7070 { 7071 bool was_sched_idle = sched_idle_rq(rq); 7072 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7073 bool task_sleep = flags & DEQUEUE_SLEEP; 7074 bool task_delayed = flags & DEQUEUE_DELAYED; 7075 struct task_struct *p = NULL; 7076 int h_nr_idle = 0; 7077 int h_nr_queued = 0; 7078 int h_nr_runnable = 0; 7079 struct cfs_rq *cfs_rq; 7080 u64 slice = 0; 7081 7082 if (entity_is_task(se)) { 7083 p = task_of(se); 7084 h_nr_queued = 1; 7085 h_nr_idle = task_has_idle_policy(p); 7086 if (task_sleep || task_delayed || !se->sched_delayed) 7087 h_nr_runnable = 1; 7088 } 7089 7090 for_each_sched_entity(se) { 7091 cfs_rq = cfs_rq_of(se); 7092 7093 if (!dequeue_entity(cfs_rq, se, flags)) { 7094 if (p && &p->se == se) 7095 return -1; 7096 7097 slice = cfs_rq_min_slice(cfs_rq); 7098 break; 7099 } 7100 7101 cfs_rq->h_nr_runnable -= h_nr_runnable; 7102 cfs_rq->h_nr_queued -= h_nr_queued; 7103 cfs_rq->h_nr_idle -= h_nr_idle; 7104 7105 if (cfs_rq_is_idle(cfs_rq)) 7106 h_nr_idle = h_nr_queued; 7107 7108 /* end evaluation on encountering a throttled cfs_rq */ 7109 if (cfs_rq_throttled(cfs_rq)) 7110 return 0; 7111 7112 /* Don't dequeue parent if it has other entities besides us */ 7113 if (cfs_rq->load.weight) { 7114 slice = cfs_rq_min_slice(cfs_rq); 7115 7116 /* Avoid re-evaluating load for this entity: */ 7117 se = parent_entity(se); 7118 /* 7119 * Bias pick_next to pick a task from this cfs_rq, as 7120 * p is sleeping when it is within its sched_slice. 7121 */ 7122 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7123 set_next_buddy(se); 7124 break; 7125 } 7126 flags |= DEQUEUE_SLEEP; 7127 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7128 } 7129 7130 for_each_sched_entity(se) { 7131 cfs_rq = cfs_rq_of(se); 7132 7133 update_load_avg(cfs_rq, se, UPDATE_TG); 7134 se_update_runnable(se); 7135 update_cfs_group(se); 7136 7137 se->slice = slice; 7138 if (se != cfs_rq->curr) 7139 min_vruntime_cb_propagate(&se->run_node, NULL); 7140 slice = cfs_rq_min_slice(cfs_rq); 7141 7142 cfs_rq->h_nr_runnable -= h_nr_runnable; 7143 cfs_rq->h_nr_queued -= h_nr_queued; 7144 cfs_rq->h_nr_idle -= h_nr_idle; 7145 7146 if (cfs_rq_is_idle(cfs_rq)) 7147 h_nr_idle = h_nr_queued; 7148 7149 /* end evaluation on encountering a throttled cfs_rq */ 7150 if (cfs_rq_throttled(cfs_rq)) 7151 return 0; 7152 } 7153 7154 sub_nr_running(rq, h_nr_queued); 7155 7156 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7157 dl_server_stop(&rq->fair_server); 7158 7159 /* balance early to pull high priority tasks */ 7160 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7161 rq->next_balance = jiffies; 7162 7163 if (p && task_delayed) { 7164 WARN_ON_ONCE(!task_sleep); 7165 WARN_ON_ONCE(p->on_rq != 1); 7166 7167 /* Fix-up what dequeue_task_fair() skipped */ 7168 hrtick_update(rq); 7169 7170 /* 7171 * Fix-up what block_task() skipped. 7172 * 7173 * Must be last, @p might not be valid after this. 7174 */ 7175 __block_task(rq, p); 7176 } 7177 7178 return 1; 7179 } 7180 7181 /* 7182 * The dequeue_task method is called before nr_running is 7183 * decreased. We remove the task from the rbtree and 7184 * update the fair scheduling stats: 7185 */ 7186 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7187 { 7188 if (!p->se.sched_delayed) 7189 util_est_dequeue(&rq->cfs, p); 7190 7191 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7192 if (dequeue_entities(rq, &p->se, flags) < 0) 7193 return false; 7194 7195 /* 7196 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7197 */ 7198 7199 hrtick_update(rq); 7200 return true; 7201 } 7202 7203 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7204 { 7205 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7206 } 7207 7208 #ifdef CONFIG_SMP 7209 7210 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7211 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7212 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7213 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7214 7215 #ifdef CONFIG_NO_HZ_COMMON 7216 7217 static struct { 7218 cpumask_var_t idle_cpus_mask; 7219 atomic_t nr_cpus; 7220 int has_blocked; /* Idle CPUS has blocked load */ 7221 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7222 unsigned long next_balance; /* in jiffy units */ 7223 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7224 } nohz ____cacheline_aligned; 7225 7226 #endif /* CONFIG_NO_HZ_COMMON */ 7227 7228 static unsigned long cpu_load(struct rq *rq) 7229 { 7230 return cfs_rq_load_avg(&rq->cfs); 7231 } 7232 7233 /* 7234 * cpu_load_without - compute CPU load without any contributions from *p 7235 * @cpu: the CPU which load is requested 7236 * @p: the task which load should be discounted 7237 * 7238 * The load of a CPU is defined by the load of tasks currently enqueued on that 7239 * CPU as well as tasks which are currently sleeping after an execution on that 7240 * CPU. 7241 * 7242 * This method returns the load of the specified CPU by discounting the load of 7243 * the specified task, whenever the task is currently contributing to the CPU 7244 * load. 7245 */ 7246 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7247 { 7248 struct cfs_rq *cfs_rq; 7249 unsigned int load; 7250 7251 /* Task has no contribution or is new */ 7252 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7253 return cpu_load(rq); 7254 7255 cfs_rq = &rq->cfs; 7256 load = READ_ONCE(cfs_rq->avg.load_avg); 7257 7258 /* Discount task's util from CPU's util */ 7259 lsub_positive(&load, task_h_load(p)); 7260 7261 return load; 7262 } 7263 7264 static unsigned long cpu_runnable(struct rq *rq) 7265 { 7266 return cfs_rq_runnable_avg(&rq->cfs); 7267 } 7268 7269 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7270 { 7271 struct cfs_rq *cfs_rq; 7272 unsigned int runnable; 7273 7274 /* Task has no contribution or is new */ 7275 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7276 return cpu_runnable(rq); 7277 7278 cfs_rq = &rq->cfs; 7279 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7280 7281 /* Discount task's runnable from CPU's runnable */ 7282 lsub_positive(&runnable, p->se.avg.runnable_avg); 7283 7284 return runnable; 7285 } 7286 7287 static unsigned long capacity_of(int cpu) 7288 { 7289 return cpu_rq(cpu)->cpu_capacity; 7290 } 7291 7292 static void record_wakee(struct task_struct *p) 7293 { 7294 /* 7295 * Only decay a single time; tasks that have less then 1 wakeup per 7296 * jiffy will not have built up many flips. 7297 */ 7298 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7299 current->wakee_flips >>= 1; 7300 current->wakee_flip_decay_ts = jiffies; 7301 } 7302 7303 if (current->last_wakee != p) { 7304 current->last_wakee = p; 7305 current->wakee_flips++; 7306 } 7307 } 7308 7309 /* 7310 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7311 * 7312 * A waker of many should wake a different task than the one last awakened 7313 * at a frequency roughly N times higher than one of its wakees. 7314 * 7315 * In order to determine whether we should let the load spread vs consolidating 7316 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7317 * partner, and a factor of lls_size higher frequency in the other. 7318 * 7319 * With both conditions met, we can be relatively sure that the relationship is 7320 * non-monogamous, with partner count exceeding socket size. 7321 * 7322 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7323 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7324 * socket size. 7325 */ 7326 static int wake_wide(struct task_struct *p) 7327 { 7328 unsigned int master = current->wakee_flips; 7329 unsigned int slave = p->wakee_flips; 7330 int factor = __this_cpu_read(sd_llc_size); 7331 7332 if (master < slave) 7333 swap(master, slave); 7334 if (slave < factor || master < slave * factor) 7335 return 0; 7336 return 1; 7337 } 7338 7339 /* 7340 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7341 * soonest. For the purpose of speed we only consider the waking and previous 7342 * CPU. 7343 * 7344 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7345 * cache-affine and is (or will be) idle. 7346 * 7347 * wake_affine_weight() - considers the weight to reflect the average 7348 * scheduling latency of the CPUs. This seems to work 7349 * for the overloaded case. 7350 */ 7351 static int 7352 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7353 { 7354 /* 7355 * If this_cpu is idle, it implies the wakeup is from interrupt 7356 * context. Only allow the move if cache is shared. Otherwise an 7357 * interrupt intensive workload could force all tasks onto one 7358 * node depending on the IO topology or IRQ affinity settings. 7359 * 7360 * If the prev_cpu is idle and cache affine then avoid a migration. 7361 * There is no guarantee that the cache hot data from an interrupt 7362 * is more important than cache hot data on the prev_cpu and from 7363 * a cpufreq perspective, it's better to have higher utilisation 7364 * on one CPU. 7365 */ 7366 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7367 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7368 7369 if (sync) { 7370 struct rq *rq = cpu_rq(this_cpu); 7371 7372 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7373 return this_cpu; 7374 } 7375 7376 if (available_idle_cpu(prev_cpu)) 7377 return prev_cpu; 7378 7379 return nr_cpumask_bits; 7380 } 7381 7382 static int 7383 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7384 int this_cpu, int prev_cpu, int sync) 7385 { 7386 s64 this_eff_load, prev_eff_load; 7387 unsigned long task_load; 7388 7389 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7390 7391 if (sync) { 7392 unsigned long current_load = task_h_load(current); 7393 7394 if (current_load > this_eff_load) 7395 return this_cpu; 7396 7397 this_eff_load -= current_load; 7398 } 7399 7400 task_load = task_h_load(p); 7401 7402 this_eff_load += task_load; 7403 if (sched_feat(WA_BIAS)) 7404 this_eff_load *= 100; 7405 this_eff_load *= capacity_of(prev_cpu); 7406 7407 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7408 prev_eff_load -= task_load; 7409 if (sched_feat(WA_BIAS)) 7410 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7411 prev_eff_load *= capacity_of(this_cpu); 7412 7413 /* 7414 * If sync, adjust the weight of prev_eff_load such that if 7415 * prev_eff == this_eff that select_idle_sibling() will consider 7416 * stacking the wakee on top of the waker if no other CPU is 7417 * idle. 7418 */ 7419 if (sync) 7420 prev_eff_load += 1; 7421 7422 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7423 } 7424 7425 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7426 int this_cpu, int prev_cpu, int sync) 7427 { 7428 int target = nr_cpumask_bits; 7429 7430 if (sched_feat(WA_IDLE)) 7431 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7432 7433 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7434 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7435 7436 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7437 if (target != this_cpu) 7438 return prev_cpu; 7439 7440 schedstat_inc(sd->ttwu_move_affine); 7441 schedstat_inc(p->stats.nr_wakeups_affine); 7442 return target; 7443 } 7444 7445 static struct sched_group * 7446 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7447 7448 /* 7449 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7450 */ 7451 static int 7452 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7453 { 7454 unsigned long load, min_load = ULONG_MAX; 7455 unsigned int min_exit_latency = UINT_MAX; 7456 u64 latest_idle_timestamp = 0; 7457 int least_loaded_cpu = this_cpu; 7458 int shallowest_idle_cpu = -1; 7459 int i; 7460 7461 /* Check if we have any choice: */ 7462 if (group->group_weight == 1) 7463 return cpumask_first(sched_group_span(group)); 7464 7465 /* Traverse only the allowed CPUs */ 7466 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7467 struct rq *rq = cpu_rq(i); 7468 7469 if (!sched_core_cookie_match(rq, p)) 7470 continue; 7471 7472 if (sched_idle_cpu(i)) 7473 return i; 7474 7475 if (available_idle_cpu(i)) { 7476 struct cpuidle_state *idle = idle_get_state(rq); 7477 if (idle && idle->exit_latency < min_exit_latency) { 7478 /* 7479 * We give priority to a CPU whose idle state 7480 * has the smallest exit latency irrespective 7481 * of any idle timestamp. 7482 */ 7483 min_exit_latency = idle->exit_latency; 7484 latest_idle_timestamp = rq->idle_stamp; 7485 shallowest_idle_cpu = i; 7486 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7487 rq->idle_stamp > latest_idle_timestamp) { 7488 /* 7489 * If equal or no active idle state, then 7490 * the most recently idled CPU might have 7491 * a warmer cache. 7492 */ 7493 latest_idle_timestamp = rq->idle_stamp; 7494 shallowest_idle_cpu = i; 7495 } 7496 } else if (shallowest_idle_cpu == -1) { 7497 load = cpu_load(cpu_rq(i)); 7498 if (load < min_load) { 7499 min_load = load; 7500 least_loaded_cpu = i; 7501 } 7502 } 7503 } 7504 7505 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7506 } 7507 7508 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7509 int cpu, int prev_cpu, int sd_flag) 7510 { 7511 int new_cpu = cpu; 7512 7513 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7514 return prev_cpu; 7515 7516 /* 7517 * We need task's util for cpu_util_without, sync it up to 7518 * prev_cpu's last_update_time. 7519 */ 7520 if (!(sd_flag & SD_BALANCE_FORK)) 7521 sync_entity_load_avg(&p->se); 7522 7523 while (sd) { 7524 struct sched_group *group; 7525 struct sched_domain *tmp; 7526 int weight; 7527 7528 if (!(sd->flags & sd_flag)) { 7529 sd = sd->child; 7530 continue; 7531 } 7532 7533 group = sched_balance_find_dst_group(sd, p, cpu); 7534 if (!group) { 7535 sd = sd->child; 7536 continue; 7537 } 7538 7539 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7540 if (new_cpu == cpu) { 7541 /* Now try balancing at a lower domain level of 'cpu': */ 7542 sd = sd->child; 7543 continue; 7544 } 7545 7546 /* Now try balancing at a lower domain level of 'new_cpu': */ 7547 cpu = new_cpu; 7548 weight = sd->span_weight; 7549 sd = NULL; 7550 for_each_domain(cpu, tmp) { 7551 if (weight <= tmp->span_weight) 7552 break; 7553 if (tmp->flags & sd_flag) 7554 sd = tmp; 7555 } 7556 } 7557 7558 return new_cpu; 7559 } 7560 7561 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7562 { 7563 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7564 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7565 return cpu; 7566 7567 return -1; 7568 } 7569 7570 #ifdef CONFIG_SCHED_SMT 7571 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7572 EXPORT_SYMBOL_GPL(sched_smt_present); 7573 7574 static inline void set_idle_cores(int cpu, int val) 7575 { 7576 struct sched_domain_shared *sds; 7577 7578 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7579 if (sds) 7580 WRITE_ONCE(sds->has_idle_cores, val); 7581 } 7582 7583 static inline bool test_idle_cores(int cpu) 7584 { 7585 struct sched_domain_shared *sds; 7586 7587 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7588 if (sds) 7589 return READ_ONCE(sds->has_idle_cores); 7590 7591 return false; 7592 } 7593 7594 /* 7595 * Scans the local SMT mask to see if the entire core is idle, and records this 7596 * information in sd_llc_shared->has_idle_cores. 7597 * 7598 * Since SMT siblings share all cache levels, inspecting this limited remote 7599 * state should be fairly cheap. 7600 */ 7601 void __update_idle_core(struct rq *rq) 7602 { 7603 int core = cpu_of(rq); 7604 int cpu; 7605 7606 rcu_read_lock(); 7607 if (test_idle_cores(core)) 7608 goto unlock; 7609 7610 for_each_cpu(cpu, cpu_smt_mask(core)) { 7611 if (cpu == core) 7612 continue; 7613 7614 if (!available_idle_cpu(cpu)) 7615 goto unlock; 7616 } 7617 7618 set_idle_cores(core, 1); 7619 unlock: 7620 rcu_read_unlock(); 7621 } 7622 7623 /* 7624 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7625 * there are no idle cores left in the system; tracked through 7626 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7627 */ 7628 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7629 { 7630 bool idle = true; 7631 int cpu; 7632 7633 for_each_cpu(cpu, cpu_smt_mask(core)) { 7634 if (!available_idle_cpu(cpu)) { 7635 idle = false; 7636 if (*idle_cpu == -1) { 7637 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7638 *idle_cpu = cpu; 7639 break; 7640 } 7641 continue; 7642 } 7643 break; 7644 } 7645 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7646 *idle_cpu = cpu; 7647 } 7648 7649 if (idle) 7650 return core; 7651 7652 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7653 return -1; 7654 } 7655 7656 /* 7657 * Scan the local SMT mask for idle CPUs. 7658 */ 7659 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7660 { 7661 int cpu; 7662 7663 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7664 if (cpu == target) 7665 continue; 7666 /* 7667 * Check if the CPU is in the LLC scheduling domain of @target. 7668 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7669 */ 7670 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7671 continue; 7672 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7673 return cpu; 7674 } 7675 7676 return -1; 7677 } 7678 7679 #else /* CONFIG_SCHED_SMT */ 7680 7681 static inline void set_idle_cores(int cpu, int val) 7682 { 7683 } 7684 7685 static inline bool test_idle_cores(int cpu) 7686 { 7687 return false; 7688 } 7689 7690 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7691 { 7692 return __select_idle_cpu(core, p); 7693 } 7694 7695 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7696 { 7697 return -1; 7698 } 7699 7700 #endif /* CONFIG_SCHED_SMT */ 7701 7702 /* 7703 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7704 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7705 * average idle time for this rq (as found in rq->avg_idle). 7706 */ 7707 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7708 { 7709 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7710 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7711 struct sched_domain_shared *sd_share; 7712 7713 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7714 7715 if (sched_feat(SIS_UTIL)) { 7716 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7717 if (sd_share) { 7718 /* because !--nr is the condition to stop scan */ 7719 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7720 /* overloaded LLC is unlikely to have idle cpu/core */ 7721 if (nr == 1) 7722 return -1; 7723 } 7724 } 7725 7726 if (static_branch_unlikely(&sched_cluster_active)) { 7727 struct sched_group *sg = sd->groups; 7728 7729 if (sg->flags & SD_CLUSTER) { 7730 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7731 if (!cpumask_test_cpu(cpu, cpus)) 7732 continue; 7733 7734 if (has_idle_core) { 7735 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7736 if ((unsigned int)i < nr_cpumask_bits) 7737 return i; 7738 } else { 7739 if (--nr <= 0) 7740 return -1; 7741 idle_cpu = __select_idle_cpu(cpu, p); 7742 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7743 return idle_cpu; 7744 } 7745 } 7746 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7747 } 7748 } 7749 7750 for_each_cpu_wrap(cpu, cpus, target + 1) { 7751 if (has_idle_core) { 7752 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7753 if ((unsigned int)i < nr_cpumask_bits) 7754 return i; 7755 7756 } else { 7757 if (--nr <= 0) 7758 return -1; 7759 idle_cpu = __select_idle_cpu(cpu, p); 7760 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7761 break; 7762 } 7763 } 7764 7765 if (has_idle_core) 7766 set_idle_cores(target, false); 7767 7768 return idle_cpu; 7769 } 7770 7771 /* 7772 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7773 * the task fits. If no CPU is big enough, but there are idle ones, try to 7774 * maximize capacity. 7775 */ 7776 static int 7777 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7778 { 7779 unsigned long task_util, util_min, util_max, best_cap = 0; 7780 int fits, best_fits = 0; 7781 int cpu, best_cpu = -1; 7782 struct cpumask *cpus; 7783 7784 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7785 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7786 7787 task_util = task_util_est(p); 7788 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7789 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7790 7791 for_each_cpu_wrap(cpu, cpus, target) { 7792 unsigned long cpu_cap = capacity_of(cpu); 7793 7794 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7795 continue; 7796 7797 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7798 7799 /* This CPU fits with all requirements */ 7800 if (fits > 0) 7801 return cpu; 7802 /* 7803 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7804 * Look for the CPU with best capacity. 7805 */ 7806 else if (fits < 0) 7807 cpu_cap = get_actual_cpu_capacity(cpu); 7808 7809 /* 7810 * First, select CPU which fits better (-1 being better than 0). 7811 * Then, select the one with best capacity at same level. 7812 */ 7813 if ((fits < best_fits) || 7814 ((fits == best_fits) && (cpu_cap > best_cap))) { 7815 best_cap = cpu_cap; 7816 best_cpu = cpu; 7817 best_fits = fits; 7818 } 7819 } 7820 7821 return best_cpu; 7822 } 7823 7824 static inline bool asym_fits_cpu(unsigned long util, 7825 unsigned long util_min, 7826 unsigned long util_max, 7827 int cpu) 7828 { 7829 if (sched_asym_cpucap_active()) 7830 /* 7831 * Return true only if the cpu fully fits the task requirements 7832 * which include the utilization and the performance hints. 7833 */ 7834 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7835 7836 return true; 7837 } 7838 7839 /* 7840 * Try and locate an idle core/thread in the LLC cache domain. 7841 */ 7842 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7843 { 7844 bool has_idle_core = false; 7845 struct sched_domain *sd; 7846 unsigned long task_util, util_min, util_max; 7847 int i, recent_used_cpu, prev_aff = -1; 7848 7849 /* 7850 * On asymmetric system, update task utilization because we will check 7851 * that the task fits with CPU's capacity. 7852 */ 7853 if (sched_asym_cpucap_active()) { 7854 sync_entity_load_avg(&p->se); 7855 task_util = task_util_est(p); 7856 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7857 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7858 } 7859 7860 /* 7861 * per-cpu select_rq_mask usage 7862 */ 7863 lockdep_assert_irqs_disabled(); 7864 7865 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7866 asym_fits_cpu(task_util, util_min, util_max, target)) 7867 return target; 7868 7869 /* 7870 * If the previous CPU is cache affine and idle, don't be stupid: 7871 */ 7872 if (prev != target && cpus_share_cache(prev, target) && 7873 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7874 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7875 7876 if (!static_branch_unlikely(&sched_cluster_active) || 7877 cpus_share_resources(prev, target)) 7878 return prev; 7879 7880 prev_aff = prev; 7881 } 7882 7883 /* 7884 * Allow a per-cpu kthread to stack with the wakee if the 7885 * kworker thread and the tasks previous CPUs are the same. 7886 * The assumption is that the wakee queued work for the 7887 * per-cpu kthread that is now complete and the wakeup is 7888 * essentially a sync wakeup. An obvious example of this 7889 * pattern is IO completions. 7890 */ 7891 if (is_per_cpu_kthread(current) && 7892 in_task() && 7893 prev == smp_processor_id() && 7894 this_rq()->nr_running <= 1 && 7895 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7896 return prev; 7897 } 7898 7899 /* Check a recently used CPU as a potential idle candidate: */ 7900 recent_used_cpu = p->recent_used_cpu; 7901 p->recent_used_cpu = prev; 7902 if (recent_used_cpu != prev && 7903 recent_used_cpu != target && 7904 cpus_share_cache(recent_used_cpu, target) && 7905 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7906 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7907 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7908 7909 if (!static_branch_unlikely(&sched_cluster_active) || 7910 cpus_share_resources(recent_used_cpu, target)) 7911 return recent_used_cpu; 7912 7913 } else { 7914 recent_used_cpu = -1; 7915 } 7916 7917 /* 7918 * For asymmetric CPU capacity systems, our domain of interest is 7919 * sd_asym_cpucapacity rather than sd_llc. 7920 */ 7921 if (sched_asym_cpucap_active()) { 7922 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7923 /* 7924 * On an asymmetric CPU capacity system where an exclusive 7925 * cpuset defines a symmetric island (i.e. one unique 7926 * capacity_orig value through the cpuset), the key will be set 7927 * but the CPUs within that cpuset will not have a domain with 7928 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7929 * capacity path. 7930 */ 7931 if (sd) { 7932 i = select_idle_capacity(p, sd, target); 7933 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7934 } 7935 } 7936 7937 sd = rcu_dereference(per_cpu(sd_llc, target)); 7938 if (!sd) 7939 return target; 7940 7941 if (sched_smt_active()) { 7942 has_idle_core = test_idle_cores(target); 7943 7944 if (!has_idle_core && cpus_share_cache(prev, target)) { 7945 i = select_idle_smt(p, sd, prev); 7946 if ((unsigned int)i < nr_cpumask_bits) 7947 return i; 7948 } 7949 } 7950 7951 i = select_idle_cpu(p, sd, has_idle_core, target); 7952 if ((unsigned)i < nr_cpumask_bits) 7953 return i; 7954 7955 /* 7956 * For cluster machines which have lower sharing cache like L2 or 7957 * LLC Tag, we tend to find an idle CPU in the target's cluster 7958 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7959 * use them if possible when no idle CPU found in select_idle_cpu(). 7960 */ 7961 if ((unsigned int)prev_aff < nr_cpumask_bits) 7962 return prev_aff; 7963 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7964 return recent_used_cpu; 7965 7966 return target; 7967 } 7968 7969 /** 7970 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7971 * @cpu: the CPU to get the utilization for 7972 * @p: task for which the CPU utilization should be predicted or NULL 7973 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7974 * @boost: 1 to enable boosting, otherwise 0 7975 * 7976 * The unit of the return value must be the same as the one of CPU capacity 7977 * so that CPU utilization can be compared with CPU capacity. 7978 * 7979 * CPU utilization is the sum of running time of runnable tasks plus the 7980 * recent utilization of currently non-runnable tasks on that CPU. 7981 * It represents the amount of CPU capacity currently used by CFS tasks in 7982 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7983 * capacity at f_max. 7984 * 7985 * The estimated CPU utilization is defined as the maximum between CPU 7986 * utilization and sum of the estimated utilization of the currently 7987 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7988 * previously-executed tasks, which helps better deduce how busy a CPU will 7989 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7990 * of such a task would be significantly decayed at this point of time. 7991 * 7992 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7993 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7994 * utilization. Boosting is implemented in cpu_util() so that internal 7995 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7996 * latter via cpu_util_cfs_boost(). 7997 * 7998 * CPU utilization can be higher than the current CPU capacity 7999 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 8000 * of rounding errors as well as task migrations or wakeups of new tasks. 8001 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 8002 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 8003 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 8004 * capacity. CPU utilization is allowed to overshoot current CPU capacity 8005 * though since this is useful for predicting the CPU capacity required 8006 * after task migrations (scheduler-driven DVFS). 8007 * 8008 * Return: (Boosted) (estimated) utilization for the specified CPU. 8009 */ 8010 static unsigned long 8011 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8012 { 8013 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8014 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8015 unsigned long runnable; 8016 8017 if (boost) { 8018 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8019 util = max(util, runnable); 8020 } 8021 8022 /* 8023 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8024 * contribution. If @p migrates from another CPU to @cpu add its 8025 * contribution. In all the other cases @cpu is not impacted by the 8026 * migration so its util_avg is already correct. 8027 */ 8028 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8029 lsub_positive(&util, task_util(p)); 8030 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8031 util += task_util(p); 8032 8033 if (sched_feat(UTIL_EST)) { 8034 unsigned long util_est; 8035 8036 util_est = READ_ONCE(cfs_rq->avg.util_est); 8037 8038 /* 8039 * During wake-up @p isn't enqueued yet and doesn't contribute 8040 * to any cpu_rq(cpu)->cfs.avg.util_est. 8041 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8042 * has been enqueued. 8043 * 8044 * During exec (@dst_cpu = -1) @p is enqueued and does 8045 * contribute to cpu_rq(cpu)->cfs.util_est. 8046 * Remove it to "simulate" cpu_util without @p's contribution. 8047 * 8048 * Despite the task_on_rq_queued(@p) check there is still a 8049 * small window for a possible race when an exec 8050 * select_task_rq_fair() races with LB's detach_task(). 8051 * 8052 * detach_task() 8053 * deactivate_task() 8054 * p->on_rq = TASK_ON_RQ_MIGRATING; 8055 * -------------------------------- A 8056 * dequeue_task() \ 8057 * dequeue_task_fair() + Race Time 8058 * util_est_dequeue() / 8059 * -------------------------------- B 8060 * 8061 * The additional check "current == p" is required to further 8062 * reduce the race window. 8063 */ 8064 if (dst_cpu == cpu) 8065 util_est += _task_util_est(p); 8066 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8067 lsub_positive(&util_est, _task_util_est(p)); 8068 8069 util = max(util, util_est); 8070 } 8071 8072 return min(util, arch_scale_cpu_capacity(cpu)); 8073 } 8074 8075 unsigned long cpu_util_cfs(int cpu) 8076 { 8077 return cpu_util(cpu, NULL, -1, 0); 8078 } 8079 8080 unsigned long cpu_util_cfs_boost(int cpu) 8081 { 8082 return cpu_util(cpu, NULL, -1, 1); 8083 } 8084 8085 /* 8086 * cpu_util_without: compute cpu utilization without any contributions from *p 8087 * @cpu: the CPU which utilization is requested 8088 * @p: the task which utilization should be discounted 8089 * 8090 * The utilization of a CPU is defined by the utilization of tasks currently 8091 * enqueued on that CPU as well as tasks which are currently sleeping after an 8092 * execution on that CPU. 8093 * 8094 * This method returns the utilization of the specified CPU by discounting the 8095 * utilization of the specified task, whenever the task is currently 8096 * contributing to the CPU utilization. 8097 */ 8098 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8099 { 8100 /* Task has no contribution or is new */ 8101 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8102 p = NULL; 8103 8104 return cpu_util(cpu, p, -1, 0); 8105 } 8106 8107 /* 8108 * This function computes an effective utilization for the given CPU, to be 8109 * used for frequency selection given the linear relation: f = u * f_max. 8110 * 8111 * The scheduler tracks the following metrics: 8112 * 8113 * cpu_util_{cfs,rt,dl,irq}() 8114 * cpu_bw_dl() 8115 * 8116 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8117 * synchronized windows and are thus directly comparable. 8118 * 8119 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8120 * which excludes things like IRQ and steal-time. These latter are then accrued 8121 * in the IRQ utilization. 8122 * 8123 * The DL bandwidth number OTOH is not a measured metric but a value computed 8124 * based on the task model parameters and gives the minimal utilization 8125 * required to meet deadlines. 8126 */ 8127 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8128 unsigned long *min, 8129 unsigned long *max) 8130 { 8131 unsigned long util, irq, scale; 8132 struct rq *rq = cpu_rq(cpu); 8133 8134 scale = arch_scale_cpu_capacity(cpu); 8135 8136 /* 8137 * Early check to see if IRQ/steal time saturates the CPU, can be 8138 * because of inaccuracies in how we track these -- see 8139 * update_irq_load_avg(). 8140 */ 8141 irq = cpu_util_irq(rq); 8142 if (unlikely(irq >= scale)) { 8143 if (min) 8144 *min = scale; 8145 if (max) 8146 *max = scale; 8147 return scale; 8148 } 8149 8150 if (min) { 8151 /* 8152 * The minimum utilization returns the highest level between: 8153 * - the computed DL bandwidth needed with the IRQ pressure which 8154 * steals time to the deadline task. 8155 * - The minimum performance requirement for CFS and/or RT. 8156 */ 8157 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8158 8159 /* 8160 * When an RT task is runnable and uclamp is not used, we must 8161 * ensure that the task will run at maximum compute capacity. 8162 */ 8163 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8164 *min = max(*min, scale); 8165 } 8166 8167 /* 8168 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8169 * CFS tasks and we use the same metric to track the effective 8170 * utilization (PELT windows are synchronized) we can directly add them 8171 * to obtain the CPU's actual utilization. 8172 */ 8173 util = util_cfs + cpu_util_rt(rq); 8174 util += cpu_util_dl(rq); 8175 8176 /* 8177 * The maximum hint is a soft bandwidth requirement, which can be lower 8178 * than the actual utilization because of uclamp_max requirements. 8179 */ 8180 if (max) 8181 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8182 8183 if (util >= scale) 8184 return scale; 8185 8186 /* 8187 * There is still idle time; further improve the number by using the 8188 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8189 * need to scale the task numbers: 8190 * 8191 * max - irq 8192 * U' = irq + --------- * U 8193 * max 8194 */ 8195 util = scale_irq_capacity(util, irq, scale); 8196 util += irq; 8197 8198 return min(scale, util); 8199 } 8200 8201 unsigned long sched_cpu_util(int cpu) 8202 { 8203 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8204 } 8205 8206 /* 8207 * energy_env - Utilization landscape for energy estimation. 8208 * @task_busy_time: Utilization contribution by the task for which we test the 8209 * placement. Given by eenv_task_busy_time(). 8210 * @pd_busy_time: Utilization of the whole perf domain without the task 8211 * contribution. Given by eenv_pd_busy_time(). 8212 * @cpu_cap: Maximum CPU capacity for the perf domain. 8213 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8214 */ 8215 struct energy_env { 8216 unsigned long task_busy_time; 8217 unsigned long pd_busy_time; 8218 unsigned long cpu_cap; 8219 unsigned long pd_cap; 8220 }; 8221 8222 /* 8223 * Compute the task busy time for compute_energy(). This time cannot be 8224 * injected directly into effective_cpu_util() because of the IRQ scaling. 8225 * The latter only makes sense with the most recent CPUs where the task has 8226 * run. 8227 */ 8228 static inline void eenv_task_busy_time(struct energy_env *eenv, 8229 struct task_struct *p, int prev_cpu) 8230 { 8231 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8232 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8233 8234 if (unlikely(irq >= max_cap)) 8235 busy_time = max_cap; 8236 else 8237 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8238 8239 eenv->task_busy_time = busy_time; 8240 } 8241 8242 /* 8243 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8244 * utilization for each @pd_cpus, it however doesn't take into account 8245 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8246 * scale the EM reported power consumption at the (eventually clamped) 8247 * cpu_capacity. 8248 * 8249 * The contribution of the task @p for which we want to estimate the 8250 * energy cost is removed (by cpu_util()) and must be calculated 8251 * separately (see eenv_task_busy_time). This ensures: 8252 * 8253 * - A stable PD utilization, no matter which CPU of that PD we want to place 8254 * the task on. 8255 * 8256 * - A fair comparison between CPUs as the task contribution (task_util()) 8257 * will always be the same no matter which CPU utilization we rely on 8258 * (util_avg or util_est). 8259 * 8260 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8261 * exceed @eenv->pd_cap. 8262 */ 8263 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8264 struct cpumask *pd_cpus, 8265 struct task_struct *p) 8266 { 8267 unsigned long busy_time = 0; 8268 int cpu; 8269 8270 for_each_cpu(cpu, pd_cpus) { 8271 unsigned long util = cpu_util(cpu, p, -1, 0); 8272 8273 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8274 } 8275 8276 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8277 } 8278 8279 /* 8280 * Compute the maximum utilization for compute_energy() when the task @p 8281 * is placed on the cpu @dst_cpu. 8282 * 8283 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8284 * exceed @eenv->cpu_cap. 8285 */ 8286 static inline unsigned long 8287 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8288 struct task_struct *p, int dst_cpu) 8289 { 8290 unsigned long max_util = 0; 8291 int cpu; 8292 8293 for_each_cpu(cpu, pd_cpus) { 8294 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8295 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8296 unsigned long eff_util, min, max; 8297 8298 /* 8299 * Performance domain frequency: utilization clamping 8300 * must be considered since it affects the selection 8301 * of the performance domain frequency. 8302 * NOTE: in case RT tasks are running, by default the min 8303 * utilization can be max OPP. 8304 */ 8305 eff_util = effective_cpu_util(cpu, util, &min, &max); 8306 8307 /* Task's uclamp can modify min and max value */ 8308 if (tsk && uclamp_is_used()) { 8309 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8310 8311 /* 8312 * If there is no active max uclamp constraint, 8313 * directly use task's one, otherwise keep max. 8314 */ 8315 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8316 max = uclamp_eff_value(p, UCLAMP_MAX); 8317 else 8318 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8319 } 8320 8321 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8322 max_util = max(max_util, eff_util); 8323 } 8324 8325 return min(max_util, eenv->cpu_cap); 8326 } 8327 8328 /* 8329 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8330 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8331 * contribution is ignored. 8332 */ 8333 static inline unsigned long 8334 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8335 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8336 { 8337 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8338 unsigned long busy_time = eenv->pd_busy_time; 8339 unsigned long energy; 8340 8341 if (dst_cpu >= 0) 8342 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8343 8344 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8345 8346 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8347 8348 return energy; 8349 } 8350 8351 /* 8352 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8353 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8354 * spare capacity in each performance domain and uses it as a potential 8355 * candidate to execute the task. Then, it uses the Energy Model to figure 8356 * out which of the CPU candidates is the most energy-efficient. 8357 * 8358 * The rationale for this heuristic is as follows. In a performance domain, 8359 * all the most energy efficient CPU candidates (according to the Energy 8360 * Model) are those for which we'll request a low frequency. When there are 8361 * several CPUs for which the frequency request will be the same, we don't 8362 * have enough data to break the tie between them, because the Energy Model 8363 * only includes active power costs. With this model, if we assume that 8364 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8365 * the maximum spare capacity in a performance domain is guaranteed to be among 8366 * the best candidates of the performance domain. 8367 * 8368 * In practice, it could be preferable from an energy standpoint to pack 8369 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8370 * but that could also hurt our chances to go cluster idle, and we have no 8371 * ways to tell with the current Energy Model if this is actually a good 8372 * idea or not. So, find_energy_efficient_cpu() basically favors 8373 * cluster-packing, and spreading inside a cluster. That should at least be 8374 * a good thing for latency, and this is consistent with the idea that most 8375 * of the energy savings of EAS come from the asymmetry of the system, and 8376 * not so much from breaking the tie between identical CPUs. That's also the 8377 * reason why EAS is enabled in the topology code only for systems where 8378 * SD_ASYM_CPUCAPACITY is set. 8379 * 8380 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8381 * they don't have any useful utilization data yet and it's not possible to 8382 * forecast their impact on energy consumption. Consequently, they will be 8383 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8384 * to be energy-inefficient in some use-cases. The alternative would be to 8385 * bias new tasks towards specific types of CPUs first, or to try to infer 8386 * their util_avg from the parent task, but those heuristics could hurt 8387 * other use-cases too. So, until someone finds a better way to solve this, 8388 * let's keep things simple by re-using the existing slow path. 8389 */ 8390 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8391 { 8392 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8393 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8394 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8395 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8396 struct root_domain *rd = this_rq()->rd; 8397 int cpu, best_energy_cpu, target = -1; 8398 int prev_fits = -1, best_fits = -1; 8399 unsigned long best_actual_cap = 0; 8400 unsigned long prev_actual_cap = 0; 8401 struct sched_domain *sd; 8402 struct perf_domain *pd; 8403 struct energy_env eenv; 8404 8405 rcu_read_lock(); 8406 pd = rcu_dereference(rd->pd); 8407 if (!pd) 8408 goto unlock; 8409 8410 /* 8411 * Energy-aware wake-up happens on the lowest sched_domain starting 8412 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8413 */ 8414 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8415 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8416 sd = sd->parent; 8417 if (!sd) 8418 goto unlock; 8419 8420 target = prev_cpu; 8421 8422 sync_entity_load_avg(&p->se); 8423 if (!task_util_est(p) && p_util_min == 0) 8424 goto unlock; 8425 8426 eenv_task_busy_time(&eenv, p, prev_cpu); 8427 8428 for (; pd; pd = pd->next) { 8429 unsigned long util_min = p_util_min, util_max = p_util_max; 8430 unsigned long cpu_cap, cpu_actual_cap, util; 8431 long prev_spare_cap = -1, max_spare_cap = -1; 8432 unsigned long rq_util_min, rq_util_max; 8433 unsigned long cur_delta, base_energy; 8434 int max_spare_cap_cpu = -1; 8435 int fits, max_fits = -1; 8436 8437 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8438 8439 if (cpumask_empty(cpus)) 8440 continue; 8441 8442 /* Account external pressure for the energy estimation */ 8443 cpu = cpumask_first(cpus); 8444 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8445 8446 eenv.cpu_cap = cpu_actual_cap; 8447 eenv.pd_cap = 0; 8448 8449 for_each_cpu(cpu, cpus) { 8450 struct rq *rq = cpu_rq(cpu); 8451 8452 eenv.pd_cap += cpu_actual_cap; 8453 8454 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8455 continue; 8456 8457 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8458 continue; 8459 8460 util = cpu_util(cpu, p, cpu, 0); 8461 cpu_cap = capacity_of(cpu); 8462 8463 /* 8464 * Skip CPUs that cannot satisfy the capacity request. 8465 * IOW, placing the task there would make the CPU 8466 * overutilized. Take uclamp into account to see how 8467 * much capacity we can get out of the CPU; this is 8468 * aligned with sched_cpu_util(). 8469 */ 8470 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8471 /* 8472 * Open code uclamp_rq_util_with() except for 8473 * the clamp() part. I.e.: apply max aggregation 8474 * only. util_fits_cpu() logic requires to 8475 * operate on non clamped util but must use the 8476 * max-aggregated uclamp_{min, max}. 8477 */ 8478 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8479 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8480 8481 util_min = max(rq_util_min, p_util_min); 8482 util_max = max(rq_util_max, p_util_max); 8483 } 8484 8485 fits = util_fits_cpu(util, util_min, util_max, cpu); 8486 if (!fits) 8487 continue; 8488 8489 lsub_positive(&cpu_cap, util); 8490 8491 if (cpu == prev_cpu) { 8492 /* Always use prev_cpu as a candidate. */ 8493 prev_spare_cap = cpu_cap; 8494 prev_fits = fits; 8495 } else if ((fits > max_fits) || 8496 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8497 /* 8498 * Find the CPU with the maximum spare capacity 8499 * among the remaining CPUs in the performance 8500 * domain. 8501 */ 8502 max_spare_cap = cpu_cap; 8503 max_spare_cap_cpu = cpu; 8504 max_fits = fits; 8505 } 8506 } 8507 8508 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8509 continue; 8510 8511 eenv_pd_busy_time(&eenv, cpus, p); 8512 /* Compute the 'base' energy of the pd, without @p */ 8513 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8514 8515 /* Evaluate the energy impact of using prev_cpu. */ 8516 if (prev_spare_cap > -1) { 8517 prev_delta = compute_energy(&eenv, pd, cpus, p, 8518 prev_cpu); 8519 /* CPU utilization has changed */ 8520 if (prev_delta < base_energy) 8521 goto unlock; 8522 prev_delta -= base_energy; 8523 prev_actual_cap = cpu_actual_cap; 8524 best_delta = min(best_delta, prev_delta); 8525 } 8526 8527 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8528 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8529 /* Current best energy cpu fits better */ 8530 if (max_fits < best_fits) 8531 continue; 8532 8533 /* 8534 * Both don't fit performance hint (i.e. uclamp_min) 8535 * but best energy cpu has better capacity. 8536 */ 8537 if ((max_fits < 0) && 8538 (cpu_actual_cap <= best_actual_cap)) 8539 continue; 8540 8541 cur_delta = compute_energy(&eenv, pd, cpus, p, 8542 max_spare_cap_cpu); 8543 /* CPU utilization has changed */ 8544 if (cur_delta < base_energy) 8545 goto unlock; 8546 cur_delta -= base_energy; 8547 8548 /* 8549 * Both fit for the task but best energy cpu has lower 8550 * energy impact. 8551 */ 8552 if ((max_fits > 0) && (best_fits > 0) && 8553 (cur_delta >= best_delta)) 8554 continue; 8555 8556 best_delta = cur_delta; 8557 best_energy_cpu = max_spare_cap_cpu; 8558 best_fits = max_fits; 8559 best_actual_cap = cpu_actual_cap; 8560 } 8561 } 8562 rcu_read_unlock(); 8563 8564 if ((best_fits > prev_fits) || 8565 ((best_fits > 0) && (best_delta < prev_delta)) || 8566 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8567 target = best_energy_cpu; 8568 8569 return target; 8570 8571 unlock: 8572 rcu_read_unlock(); 8573 8574 return target; 8575 } 8576 8577 /* 8578 * select_task_rq_fair: Select target runqueue for the waking task in domains 8579 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8580 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8581 * 8582 * Balances load by selecting the idlest CPU in the idlest group, or under 8583 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8584 * 8585 * Returns the target CPU number. 8586 */ 8587 static int 8588 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8589 { 8590 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8591 struct sched_domain *tmp, *sd = NULL; 8592 int cpu = smp_processor_id(); 8593 int new_cpu = prev_cpu; 8594 int want_affine = 0; 8595 /* SD_flags and WF_flags share the first nibble */ 8596 int sd_flag = wake_flags & 0xF; 8597 8598 /* 8599 * required for stable ->cpus_allowed 8600 */ 8601 lockdep_assert_held(&p->pi_lock); 8602 if (wake_flags & WF_TTWU) { 8603 record_wakee(p); 8604 8605 if ((wake_flags & WF_CURRENT_CPU) && 8606 cpumask_test_cpu(cpu, p->cpus_ptr)) 8607 return cpu; 8608 8609 if (!is_rd_overutilized(this_rq()->rd)) { 8610 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8611 if (new_cpu >= 0) 8612 return new_cpu; 8613 new_cpu = prev_cpu; 8614 } 8615 8616 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8617 } 8618 8619 rcu_read_lock(); 8620 for_each_domain(cpu, tmp) { 8621 /* 8622 * If both 'cpu' and 'prev_cpu' are part of this domain, 8623 * cpu is a valid SD_WAKE_AFFINE target. 8624 */ 8625 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8626 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8627 if (cpu != prev_cpu) 8628 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8629 8630 sd = NULL; /* Prefer wake_affine over balance flags */ 8631 break; 8632 } 8633 8634 /* 8635 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8636 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8637 * will usually go to the fast path. 8638 */ 8639 if (tmp->flags & sd_flag) 8640 sd = tmp; 8641 else if (!want_affine) 8642 break; 8643 } 8644 8645 if (unlikely(sd)) { 8646 /* Slow path */ 8647 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8648 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8649 /* Fast path */ 8650 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8651 } 8652 rcu_read_unlock(); 8653 8654 return new_cpu; 8655 } 8656 8657 /* 8658 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8659 * cfs_rq_of(p) references at time of call are still valid and identify the 8660 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8661 */ 8662 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8663 { 8664 struct sched_entity *se = &p->se; 8665 8666 if (!task_on_rq_migrating(p)) { 8667 remove_entity_load_avg(se); 8668 8669 /* 8670 * Here, the task's PELT values have been updated according to 8671 * the current rq's clock. But if that clock hasn't been 8672 * updated in a while, a substantial idle time will be missed, 8673 * leading to an inflation after wake-up on the new rq. 8674 * 8675 * Estimate the missing time from the cfs_rq last_update_time 8676 * and update sched_avg to improve the PELT continuity after 8677 * migration. 8678 */ 8679 migrate_se_pelt_lag(se); 8680 } 8681 8682 /* Tell new CPU we are migrated */ 8683 se->avg.last_update_time = 0; 8684 8685 update_scan_period(p, new_cpu); 8686 } 8687 8688 static void task_dead_fair(struct task_struct *p) 8689 { 8690 struct sched_entity *se = &p->se; 8691 8692 if (se->sched_delayed) { 8693 struct rq_flags rf; 8694 struct rq *rq; 8695 8696 rq = task_rq_lock(p, &rf); 8697 if (se->sched_delayed) { 8698 update_rq_clock(rq); 8699 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8700 } 8701 task_rq_unlock(rq, p, &rf); 8702 } 8703 8704 remove_entity_load_avg(se); 8705 } 8706 8707 /* 8708 * Set the max capacity the task is allowed to run at for misfit detection. 8709 */ 8710 static void set_task_max_allowed_capacity(struct task_struct *p) 8711 { 8712 struct asym_cap_data *entry; 8713 8714 if (!sched_asym_cpucap_active()) 8715 return; 8716 8717 rcu_read_lock(); 8718 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8719 cpumask_t *cpumask; 8720 8721 cpumask = cpu_capacity_span(entry); 8722 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8723 continue; 8724 8725 p->max_allowed_capacity = entry->capacity; 8726 break; 8727 } 8728 rcu_read_unlock(); 8729 } 8730 8731 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8732 { 8733 set_cpus_allowed_common(p, ctx); 8734 set_task_max_allowed_capacity(p); 8735 } 8736 8737 static int 8738 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8739 { 8740 if (sched_fair_runnable(rq)) 8741 return 1; 8742 8743 return sched_balance_newidle(rq, rf) != 0; 8744 } 8745 #else 8746 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8747 #endif /* CONFIG_SMP */ 8748 8749 static void set_next_buddy(struct sched_entity *se) 8750 { 8751 for_each_sched_entity(se) { 8752 if (WARN_ON_ONCE(!se->on_rq)) 8753 return; 8754 if (se_is_idle(se)) 8755 return; 8756 cfs_rq_of(se)->next = se; 8757 } 8758 } 8759 8760 /* 8761 * Preempt the current task with a newly woken task if needed: 8762 */ 8763 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8764 { 8765 struct task_struct *donor = rq->donor; 8766 struct sched_entity *se = &donor->se, *pse = &p->se; 8767 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8768 int cse_is_idle, pse_is_idle; 8769 8770 if (unlikely(se == pse)) 8771 return; 8772 8773 /* 8774 * This is possible from callers such as attach_tasks(), in which we 8775 * unconditionally wakeup_preempt() after an enqueue (which may have 8776 * lead to a throttle). This both saves work and prevents false 8777 * next-buddy nomination below. 8778 */ 8779 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8780 return; 8781 8782 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8783 set_next_buddy(pse); 8784 } 8785 8786 /* 8787 * We can come here with TIF_NEED_RESCHED already set from new task 8788 * wake up path. 8789 * 8790 * Note: this also catches the edge-case of curr being in a throttled 8791 * group (e.g. via set_curr_task), since update_curr() (in the 8792 * enqueue of curr) will have resulted in resched being set. This 8793 * prevents us from potentially nominating it as a false LAST_BUDDY 8794 * below. 8795 */ 8796 if (test_tsk_need_resched(rq->curr)) 8797 return; 8798 8799 if (!sched_feat(WAKEUP_PREEMPTION)) 8800 return; 8801 8802 find_matching_se(&se, &pse); 8803 WARN_ON_ONCE(!pse); 8804 8805 cse_is_idle = se_is_idle(se); 8806 pse_is_idle = se_is_idle(pse); 8807 8808 /* 8809 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8810 * in the inverse case). 8811 */ 8812 if (cse_is_idle && !pse_is_idle) { 8813 /* 8814 * When non-idle entity preempt an idle entity, 8815 * don't give idle entity slice protection. 8816 */ 8817 cancel_protect_slice(se); 8818 goto preempt; 8819 } 8820 8821 if (cse_is_idle != pse_is_idle) 8822 return; 8823 8824 /* 8825 * BATCH and IDLE tasks do not preempt others. 8826 */ 8827 if (unlikely(!normal_policy(p->policy))) 8828 return; 8829 8830 cfs_rq = cfs_rq_of(se); 8831 update_curr(cfs_rq); 8832 /* 8833 * If @p has a shorter slice than current and @p is eligible, override 8834 * current's slice protection in order to allow preemption. 8835 * 8836 * Note that even if @p does not turn out to be the most eligible 8837 * task at this moment, current's slice protection will be lost. 8838 */ 8839 if (do_preempt_short(cfs_rq, pse, se)) 8840 cancel_protect_slice(se); 8841 8842 /* 8843 * If @p has become the most eligible task, force preemption. 8844 */ 8845 if (pick_eevdf(cfs_rq) == pse) 8846 goto preempt; 8847 8848 return; 8849 8850 preempt: 8851 resched_curr_lazy(rq); 8852 } 8853 8854 static struct task_struct *pick_task_fair(struct rq *rq) 8855 { 8856 struct sched_entity *se; 8857 struct cfs_rq *cfs_rq; 8858 8859 again: 8860 cfs_rq = &rq->cfs; 8861 if (!cfs_rq->nr_queued) 8862 return NULL; 8863 8864 do { 8865 /* Might not have done put_prev_entity() */ 8866 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8867 update_curr(cfs_rq); 8868 8869 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8870 goto again; 8871 8872 se = pick_next_entity(rq, cfs_rq); 8873 if (!se) 8874 goto again; 8875 cfs_rq = group_cfs_rq(se); 8876 } while (cfs_rq); 8877 8878 return task_of(se); 8879 } 8880 8881 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8882 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8883 8884 struct task_struct * 8885 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8886 { 8887 struct sched_entity *se; 8888 struct task_struct *p; 8889 int new_tasks; 8890 8891 again: 8892 p = pick_task_fair(rq); 8893 if (!p) 8894 goto idle; 8895 se = &p->se; 8896 8897 #ifdef CONFIG_FAIR_GROUP_SCHED 8898 if (prev->sched_class != &fair_sched_class) 8899 goto simple; 8900 8901 __put_prev_set_next_dl_server(rq, prev, p); 8902 8903 /* 8904 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8905 * likely that a next task is from the same cgroup as the current. 8906 * 8907 * Therefore attempt to avoid putting and setting the entire cgroup 8908 * hierarchy, only change the part that actually changes. 8909 * 8910 * Since we haven't yet done put_prev_entity and if the selected task 8911 * is a different task than we started out with, try and touch the 8912 * least amount of cfs_rqs. 8913 */ 8914 if (prev != p) { 8915 struct sched_entity *pse = &prev->se; 8916 struct cfs_rq *cfs_rq; 8917 8918 while (!(cfs_rq = is_same_group(se, pse))) { 8919 int se_depth = se->depth; 8920 int pse_depth = pse->depth; 8921 8922 if (se_depth <= pse_depth) { 8923 put_prev_entity(cfs_rq_of(pse), pse); 8924 pse = parent_entity(pse); 8925 } 8926 if (se_depth >= pse_depth) { 8927 set_next_entity(cfs_rq_of(se), se); 8928 se = parent_entity(se); 8929 } 8930 } 8931 8932 put_prev_entity(cfs_rq, pse); 8933 set_next_entity(cfs_rq, se); 8934 8935 __set_next_task_fair(rq, p, true); 8936 } 8937 8938 return p; 8939 8940 simple: 8941 #endif 8942 put_prev_set_next_task(rq, prev, p); 8943 return p; 8944 8945 idle: 8946 if (!rf) 8947 return NULL; 8948 8949 new_tasks = sched_balance_newidle(rq, rf); 8950 8951 /* 8952 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8953 * possible for any higher priority task to appear. In that case we 8954 * must re-start the pick_next_entity() loop. 8955 */ 8956 if (new_tasks < 0) 8957 return RETRY_TASK; 8958 8959 if (new_tasks > 0) 8960 goto again; 8961 8962 /* 8963 * rq is about to be idle, check if we need to update the 8964 * lost_idle_time of clock_pelt 8965 */ 8966 update_idle_rq_clock_pelt(rq); 8967 8968 return NULL; 8969 } 8970 8971 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8972 { 8973 return pick_next_task_fair(rq, prev, NULL); 8974 } 8975 8976 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8977 { 8978 return !!dl_se->rq->cfs.nr_queued; 8979 } 8980 8981 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8982 { 8983 return pick_task_fair(dl_se->rq); 8984 } 8985 8986 void fair_server_init(struct rq *rq) 8987 { 8988 struct sched_dl_entity *dl_se = &rq->fair_server; 8989 8990 init_dl_entity(dl_se); 8991 8992 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8993 } 8994 8995 /* 8996 * Account for a descheduled task: 8997 */ 8998 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8999 { 9000 struct sched_entity *se = &prev->se; 9001 struct cfs_rq *cfs_rq; 9002 9003 for_each_sched_entity(se) { 9004 cfs_rq = cfs_rq_of(se); 9005 put_prev_entity(cfs_rq, se); 9006 } 9007 } 9008 9009 /* 9010 * sched_yield() is very simple 9011 */ 9012 static void yield_task_fair(struct rq *rq) 9013 { 9014 struct task_struct *curr = rq->curr; 9015 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9016 struct sched_entity *se = &curr->se; 9017 9018 /* 9019 * Are we the only task in the tree? 9020 */ 9021 if (unlikely(rq->nr_running == 1)) 9022 return; 9023 9024 clear_buddies(cfs_rq, se); 9025 9026 update_rq_clock(rq); 9027 /* 9028 * Update run-time statistics of the 'current'. 9029 */ 9030 update_curr(cfs_rq); 9031 /* 9032 * Tell update_rq_clock() that we've just updated, 9033 * so we don't do microscopic update in schedule() 9034 * and double the fastpath cost. 9035 */ 9036 rq_clock_skip_update(rq); 9037 9038 se->deadline += calc_delta_fair(se->slice, se); 9039 } 9040 9041 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9042 { 9043 struct sched_entity *se = &p->se; 9044 9045 /* throttled hierarchies are not runnable */ 9046 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9047 return false; 9048 9049 /* Tell the scheduler that we'd really like se to run next. */ 9050 set_next_buddy(se); 9051 9052 yield_task_fair(rq); 9053 9054 return true; 9055 } 9056 9057 #ifdef CONFIG_SMP 9058 /************************************************** 9059 * Fair scheduling class load-balancing methods. 9060 * 9061 * BASICS 9062 * 9063 * The purpose of load-balancing is to achieve the same basic fairness the 9064 * per-CPU scheduler provides, namely provide a proportional amount of compute 9065 * time to each task. This is expressed in the following equation: 9066 * 9067 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9068 * 9069 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9070 * W_i,0 is defined as: 9071 * 9072 * W_i,0 = \Sum_j w_i,j (2) 9073 * 9074 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9075 * is derived from the nice value as per sched_prio_to_weight[]. 9076 * 9077 * The weight average is an exponential decay average of the instantaneous 9078 * weight: 9079 * 9080 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9081 * 9082 * C_i is the compute capacity of CPU i, typically it is the 9083 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9084 * can also include other factors [XXX]. 9085 * 9086 * To achieve this balance we define a measure of imbalance which follows 9087 * directly from (1): 9088 * 9089 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9090 * 9091 * We them move tasks around to minimize the imbalance. In the continuous 9092 * function space it is obvious this converges, in the discrete case we get 9093 * a few fun cases generally called infeasible weight scenarios. 9094 * 9095 * [XXX expand on: 9096 * - infeasible weights; 9097 * - local vs global optima in the discrete case. ] 9098 * 9099 * 9100 * SCHED DOMAINS 9101 * 9102 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9103 * for all i,j solution, we create a tree of CPUs that follows the hardware 9104 * topology where each level pairs two lower groups (or better). This results 9105 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9106 * tree to only the first of the previous level and we decrease the frequency 9107 * of load-balance at each level inversely proportional to the number of CPUs in 9108 * the groups. 9109 * 9110 * This yields: 9111 * 9112 * log_2 n 1 n 9113 * \Sum { --- * --- * 2^i } = O(n) (5) 9114 * i = 0 2^i 2^i 9115 * `- size of each group 9116 * | | `- number of CPUs doing load-balance 9117 * | `- freq 9118 * `- sum over all levels 9119 * 9120 * Coupled with a limit on how many tasks we can migrate every balance pass, 9121 * this makes (5) the runtime complexity of the balancer. 9122 * 9123 * An important property here is that each CPU is still (indirectly) connected 9124 * to every other CPU in at most O(log n) steps: 9125 * 9126 * The adjacency matrix of the resulting graph is given by: 9127 * 9128 * log_2 n 9129 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9130 * k = 0 9131 * 9132 * And you'll find that: 9133 * 9134 * A^(log_2 n)_i,j != 0 for all i,j (7) 9135 * 9136 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9137 * The task movement gives a factor of O(m), giving a convergence complexity 9138 * of: 9139 * 9140 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9141 * 9142 * 9143 * WORK CONSERVING 9144 * 9145 * In order to avoid CPUs going idle while there's still work to do, new idle 9146 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9147 * tree itself instead of relying on other CPUs to bring it work. 9148 * 9149 * This adds some complexity to both (5) and (8) but it reduces the total idle 9150 * time. 9151 * 9152 * [XXX more?] 9153 * 9154 * 9155 * CGROUPS 9156 * 9157 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9158 * 9159 * s_k,i 9160 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9161 * S_k 9162 * 9163 * Where 9164 * 9165 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9166 * 9167 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9168 * 9169 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9170 * property. 9171 * 9172 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9173 * rewrite all of this once again.] 9174 */ 9175 9176 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9177 9178 enum fbq_type { regular, remote, all }; 9179 9180 /* 9181 * 'group_type' describes the group of CPUs at the moment of load balancing. 9182 * 9183 * The enum is ordered by pulling priority, with the group with lowest priority 9184 * first so the group_type can simply be compared when selecting the busiest 9185 * group. See update_sd_pick_busiest(). 9186 */ 9187 enum group_type { 9188 /* The group has spare capacity that can be used to run more tasks. */ 9189 group_has_spare = 0, 9190 /* 9191 * The group is fully used and the tasks don't compete for more CPU 9192 * cycles. Nevertheless, some tasks might wait before running. 9193 */ 9194 group_fully_busy, 9195 /* 9196 * One task doesn't fit with CPU's capacity and must be migrated to a 9197 * more powerful CPU. 9198 */ 9199 group_misfit_task, 9200 /* 9201 * Balance SMT group that's fully busy. Can benefit from migration 9202 * a task on SMT with busy sibling to another CPU on idle core. 9203 */ 9204 group_smt_balance, 9205 /* 9206 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9207 * and the task should be migrated to it instead of running on the 9208 * current CPU. 9209 */ 9210 group_asym_packing, 9211 /* 9212 * The tasks' affinity constraints previously prevented the scheduler 9213 * from balancing the load across the system. 9214 */ 9215 group_imbalanced, 9216 /* 9217 * The CPU is overloaded and can't provide expected CPU cycles to all 9218 * tasks. 9219 */ 9220 group_overloaded 9221 }; 9222 9223 enum migration_type { 9224 migrate_load = 0, 9225 migrate_util, 9226 migrate_task, 9227 migrate_misfit 9228 }; 9229 9230 #define LBF_ALL_PINNED 0x01 9231 #define LBF_NEED_BREAK 0x02 9232 #define LBF_DST_PINNED 0x04 9233 #define LBF_SOME_PINNED 0x08 9234 #define LBF_ACTIVE_LB 0x10 9235 9236 struct lb_env { 9237 struct sched_domain *sd; 9238 9239 struct rq *src_rq; 9240 int src_cpu; 9241 9242 int dst_cpu; 9243 struct rq *dst_rq; 9244 9245 struct cpumask *dst_grpmask; 9246 int new_dst_cpu; 9247 enum cpu_idle_type idle; 9248 long imbalance; 9249 /* The set of CPUs under consideration for load-balancing */ 9250 struct cpumask *cpus; 9251 9252 unsigned int flags; 9253 9254 unsigned int loop; 9255 unsigned int loop_break; 9256 unsigned int loop_max; 9257 9258 enum fbq_type fbq_type; 9259 enum migration_type migration_type; 9260 struct list_head tasks; 9261 }; 9262 9263 /* 9264 * Is this task likely cache-hot: 9265 */ 9266 static int task_hot(struct task_struct *p, struct lb_env *env) 9267 { 9268 s64 delta; 9269 9270 lockdep_assert_rq_held(env->src_rq); 9271 9272 if (p->sched_class != &fair_sched_class) 9273 return 0; 9274 9275 if (unlikely(task_has_idle_policy(p))) 9276 return 0; 9277 9278 /* SMT siblings share cache */ 9279 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9280 return 0; 9281 9282 /* 9283 * Buddy candidates are cache hot: 9284 */ 9285 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9286 (&p->se == cfs_rq_of(&p->se)->next)) 9287 return 1; 9288 9289 if (sysctl_sched_migration_cost == -1) 9290 return 1; 9291 9292 /* 9293 * Don't migrate task if the task's cookie does not match 9294 * with the destination CPU's core cookie. 9295 */ 9296 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9297 return 1; 9298 9299 if (sysctl_sched_migration_cost == 0) 9300 return 0; 9301 9302 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9303 9304 return delta < (s64)sysctl_sched_migration_cost; 9305 } 9306 9307 #ifdef CONFIG_NUMA_BALANCING 9308 /* 9309 * Returns a positive value, if task migration degrades locality. 9310 * Returns 0, if task migration is not affected by locality. 9311 * Returns a negative value, if task migration improves locality i.e migration preferred. 9312 */ 9313 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9314 { 9315 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9316 unsigned long src_weight, dst_weight; 9317 int src_nid, dst_nid, dist; 9318 9319 if (!static_branch_likely(&sched_numa_balancing)) 9320 return 0; 9321 9322 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9323 return 0; 9324 9325 src_nid = cpu_to_node(env->src_cpu); 9326 dst_nid = cpu_to_node(env->dst_cpu); 9327 9328 if (src_nid == dst_nid) 9329 return 0; 9330 9331 /* Migrating away from the preferred node is always bad. */ 9332 if (src_nid == p->numa_preferred_nid) { 9333 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9334 return 1; 9335 else 9336 return 0; 9337 } 9338 9339 /* Encourage migration to the preferred node. */ 9340 if (dst_nid == p->numa_preferred_nid) 9341 return -1; 9342 9343 /* Leaving a core idle is often worse than degrading locality. */ 9344 if (env->idle == CPU_IDLE) 9345 return 0; 9346 9347 dist = node_distance(src_nid, dst_nid); 9348 if (numa_group) { 9349 src_weight = group_weight(p, src_nid, dist); 9350 dst_weight = group_weight(p, dst_nid, dist); 9351 } else { 9352 src_weight = task_weight(p, src_nid, dist); 9353 dst_weight = task_weight(p, dst_nid, dist); 9354 } 9355 9356 return src_weight - dst_weight; 9357 } 9358 9359 #else 9360 static inline long migrate_degrades_locality(struct task_struct *p, 9361 struct lb_env *env) 9362 { 9363 return 0; 9364 } 9365 #endif 9366 9367 /* 9368 * Check whether the task is ineligible on the destination cpu 9369 * 9370 * When the PLACE_LAG scheduling feature is enabled and 9371 * dst_cfs_rq->nr_queued is greater than 1, if the task 9372 * is ineligible, it will also be ineligible when 9373 * it is migrated to the destination cpu. 9374 */ 9375 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9376 { 9377 struct cfs_rq *dst_cfs_rq; 9378 9379 #ifdef CONFIG_FAIR_GROUP_SCHED 9380 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9381 #else 9382 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9383 #endif 9384 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9385 !entity_eligible(task_cfs_rq(p), &p->se)) 9386 return 1; 9387 9388 return 0; 9389 } 9390 9391 /* 9392 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9393 */ 9394 static 9395 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9396 { 9397 long degrades, hot; 9398 9399 lockdep_assert_rq_held(env->src_rq); 9400 if (p->sched_task_hot) 9401 p->sched_task_hot = 0; 9402 9403 /* 9404 * We do not migrate tasks that are: 9405 * 1) delayed dequeued unless we migrate load, or 9406 * 2) throttled_lb_pair, or 9407 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9408 * 4) running (obviously), or 9409 * 5) are cache-hot on their current CPU. 9410 */ 9411 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9412 return 0; 9413 9414 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9415 return 0; 9416 9417 /* 9418 * We want to prioritize the migration of eligible tasks. 9419 * For ineligible tasks we soft-limit them and only allow 9420 * them to migrate when nr_balance_failed is non-zero to 9421 * avoid load-balancing trying very hard to balance the load. 9422 */ 9423 if (!env->sd->nr_balance_failed && 9424 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9425 return 0; 9426 9427 /* Disregard percpu kthreads; they are where they need to be. */ 9428 if (kthread_is_per_cpu(p)) 9429 return 0; 9430 9431 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9432 int cpu; 9433 9434 schedstat_inc(p->stats.nr_failed_migrations_affine); 9435 9436 env->flags |= LBF_SOME_PINNED; 9437 9438 /* 9439 * Remember if this task can be migrated to any other CPU in 9440 * our sched_group. We may want to revisit it if we couldn't 9441 * meet load balance goals by pulling other tasks on src_cpu. 9442 * 9443 * Avoid computing new_dst_cpu 9444 * - for NEWLY_IDLE 9445 * - if we have already computed one in current iteration 9446 * - if it's an active balance 9447 */ 9448 if (env->idle == CPU_NEWLY_IDLE || 9449 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9450 return 0; 9451 9452 /* Prevent to re-select dst_cpu via env's CPUs: */ 9453 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9454 9455 if (cpu < nr_cpu_ids) { 9456 env->flags |= LBF_DST_PINNED; 9457 env->new_dst_cpu = cpu; 9458 } 9459 9460 return 0; 9461 } 9462 9463 /* Record that we found at least one task that could run on dst_cpu */ 9464 env->flags &= ~LBF_ALL_PINNED; 9465 9466 if (task_on_cpu(env->src_rq, p)) { 9467 schedstat_inc(p->stats.nr_failed_migrations_running); 9468 return 0; 9469 } 9470 9471 /* 9472 * Aggressive migration if: 9473 * 1) active balance 9474 * 2) destination numa is preferred 9475 * 3) task is cache cold, or 9476 * 4) too many balance attempts have failed. 9477 */ 9478 if (env->flags & LBF_ACTIVE_LB) 9479 return 1; 9480 9481 degrades = migrate_degrades_locality(p, env); 9482 if (!degrades) 9483 hot = task_hot(p, env); 9484 else 9485 hot = degrades > 0; 9486 9487 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9488 if (hot) 9489 p->sched_task_hot = 1; 9490 return 1; 9491 } 9492 9493 schedstat_inc(p->stats.nr_failed_migrations_hot); 9494 return 0; 9495 } 9496 9497 /* 9498 * detach_task() -- detach the task for the migration specified in env 9499 */ 9500 static void detach_task(struct task_struct *p, struct lb_env *env) 9501 { 9502 lockdep_assert_rq_held(env->src_rq); 9503 9504 if (p->sched_task_hot) { 9505 p->sched_task_hot = 0; 9506 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9507 schedstat_inc(p->stats.nr_forced_migrations); 9508 } 9509 9510 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9511 set_task_cpu(p, env->dst_cpu); 9512 } 9513 9514 /* 9515 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9516 * part of active balancing operations within "domain". 9517 * 9518 * Returns a task if successful and NULL otherwise. 9519 */ 9520 static struct task_struct *detach_one_task(struct lb_env *env) 9521 { 9522 struct task_struct *p; 9523 9524 lockdep_assert_rq_held(env->src_rq); 9525 9526 list_for_each_entry_reverse(p, 9527 &env->src_rq->cfs_tasks, se.group_node) { 9528 if (!can_migrate_task(p, env)) 9529 continue; 9530 9531 detach_task(p, env); 9532 9533 /* 9534 * Right now, this is only the second place where 9535 * lb_gained[env->idle] is updated (other is detach_tasks) 9536 * so we can safely collect stats here rather than 9537 * inside detach_tasks(). 9538 */ 9539 schedstat_inc(env->sd->lb_gained[env->idle]); 9540 return p; 9541 } 9542 return NULL; 9543 } 9544 9545 /* 9546 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9547 * busiest_rq, as part of a balancing operation within domain "sd". 9548 * 9549 * Returns number of detached tasks if successful and 0 otherwise. 9550 */ 9551 static int detach_tasks(struct lb_env *env) 9552 { 9553 struct list_head *tasks = &env->src_rq->cfs_tasks; 9554 unsigned long util, load; 9555 struct task_struct *p; 9556 int detached = 0; 9557 9558 lockdep_assert_rq_held(env->src_rq); 9559 9560 /* 9561 * Source run queue has been emptied by another CPU, clear 9562 * LBF_ALL_PINNED flag as we will not test any task. 9563 */ 9564 if (env->src_rq->nr_running <= 1) { 9565 env->flags &= ~LBF_ALL_PINNED; 9566 return 0; 9567 } 9568 9569 if (env->imbalance <= 0) 9570 return 0; 9571 9572 while (!list_empty(tasks)) { 9573 /* 9574 * We don't want to steal all, otherwise we may be treated likewise, 9575 * which could at worst lead to a livelock crash. 9576 */ 9577 if (env->idle && env->src_rq->nr_running <= 1) 9578 break; 9579 9580 env->loop++; 9581 /* We've more or less seen every task there is, call it quits */ 9582 if (env->loop > env->loop_max) 9583 break; 9584 9585 /* take a breather every nr_migrate tasks */ 9586 if (env->loop > env->loop_break) { 9587 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9588 env->flags |= LBF_NEED_BREAK; 9589 break; 9590 } 9591 9592 p = list_last_entry(tasks, struct task_struct, se.group_node); 9593 9594 if (!can_migrate_task(p, env)) 9595 goto next; 9596 9597 switch (env->migration_type) { 9598 case migrate_load: 9599 /* 9600 * Depending of the number of CPUs and tasks and the 9601 * cgroup hierarchy, task_h_load() can return a null 9602 * value. Make sure that env->imbalance decreases 9603 * otherwise detach_tasks() will stop only after 9604 * detaching up to loop_max tasks. 9605 */ 9606 load = max_t(unsigned long, task_h_load(p), 1); 9607 9608 if (sched_feat(LB_MIN) && 9609 load < 16 && !env->sd->nr_balance_failed) 9610 goto next; 9611 9612 /* 9613 * Make sure that we don't migrate too much load. 9614 * Nevertheless, let relax the constraint if 9615 * scheduler fails to find a good waiting task to 9616 * migrate. 9617 */ 9618 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9619 goto next; 9620 9621 env->imbalance -= load; 9622 break; 9623 9624 case migrate_util: 9625 util = task_util_est(p); 9626 9627 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9628 goto next; 9629 9630 env->imbalance -= util; 9631 break; 9632 9633 case migrate_task: 9634 env->imbalance--; 9635 break; 9636 9637 case migrate_misfit: 9638 /* This is not a misfit task */ 9639 if (task_fits_cpu(p, env->src_cpu)) 9640 goto next; 9641 9642 env->imbalance = 0; 9643 break; 9644 } 9645 9646 detach_task(p, env); 9647 list_add(&p->se.group_node, &env->tasks); 9648 9649 detached++; 9650 9651 #ifdef CONFIG_PREEMPTION 9652 /* 9653 * NEWIDLE balancing is a source of latency, so preemptible 9654 * kernels will stop after the first task is detached to minimize 9655 * the critical section. 9656 */ 9657 if (env->idle == CPU_NEWLY_IDLE) 9658 break; 9659 #endif 9660 9661 /* 9662 * We only want to steal up to the prescribed amount of 9663 * load/util/tasks. 9664 */ 9665 if (env->imbalance <= 0) 9666 break; 9667 9668 continue; 9669 next: 9670 if (p->sched_task_hot) 9671 schedstat_inc(p->stats.nr_failed_migrations_hot); 9672 9673 list_move(&p->se.group_node, tasks); 9674 } 9675 9676 /* 9677 * Right now, this is one of only two places we collect this stat 9678 * so we can safely collect detach_one_task() stats here rather 9679 * than inside detach_one_task(). 9680 */ 9681 schedstat_add(env->sd->lb_gained[env->idle], detached); 9682 9683 return detached; 9684 } 9685 9686 /* 9687 * attach_task() -- attach the task detached by detach_task() to its new rq. 9688 */ 9689 static void attach_task(struct rq *rq, struct task_struct *p) 9690 { 9691 lockdep_assert_rq_held(rq); 9692 9693 WARN_ON_ONCE(task_rq(p) != rq); 9694 activate_task(rq, p, ENQUEUE_NOCLOCK); 9695 wakeup_preempt(rq, p, 0); 9696 } 9697 9698 /* 9699 * attach_one_task() -- attaches the task returned from detach_one_task() to 9700 * its new rq. 9701 */ 9702 static void attach_one_task(struct rq *rq, struct task_struct *p) 9703 { 9704 struct rq_flags rf; 9705 9706 rq_lock(rq, &rf); 9707 update_rq_clock(rq); 9708 attach_task(rq, p); 9709 rq_unlock(rq, &rf); 9710 } 9711 9712 /* 9713 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9714 * new rq. 9715 */ 9716 static void attach_tasks(struct lb_env *env) 9717 { 9718 struct list_head *tasks = &env->tasks; 9719 struct task_struct *p; 9720 struct rq_flags rf; 9721 9722 rq_lock(env->dst_rq, &rf); 9723 update_rq_clock(env->dst_rq); 9724 9725 while (!list_empty(tasks)) { 9726 p = list_first_entry(tasks, struct task_struct, se.group_node); 9727 list_del_init(&p->se.group_node); 9728 9729 attach_task(env->dst_rq, p); 9730 } 9731 9732 rq_unlock(env->dst_rq, &rf); 9733 } 9734 9735 #ifdef CONFIG_NO_HZ_COMMON 9736 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9737 { 9738 if (cfs_rq->avg.load_avg) 9739 return true; 9740 9741 if (cfs_rq->avg.util_avg) 9742 return true; 9743 9744 return false; 9745 } 9746 9747 static inline bool others_have_blocked(struct rq *rq) 9748 { 9749 if (cpu_util_rt(rq)) 9750 return true; 9751 9752 if (cpu_util_dl(rq)) 9753 return true; 9754 9755 if (hw_load_avg(rq)) 9756 return true; 9757 9758 if (cpu_util_irq(rq)) 9759 return true; 9760 9761 return false; 9762 } 9763 9764 static inline void update_blocked_load_tick(struct rq *rq) 9765 { 9766 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9767 } 9768 9769 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9770 { 9771 if (!has_blocked) 9772 rq->has_blocked_load = 0; 9773 } 9774 #else 9775 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9776 static inline bool others_have_blocked(struct rq *rq) { return false; } 9777 static inline void update_blocked_load_tick(struct rq *rq) {} 9778 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9779 #endif 9780 9781 static bool __update_blocked_others(struct rq *rq, bool *done) 9782 { 9783 bool updated; 9784 9785 /* 9786 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9787 * DL and IRQ signals have been updated before updating CFS. 9788 */ 9789 updated = update_other_load_avgs(rq); 9790 9791 if (others_have_blocked(rq)) 9792 *done = false; 9793 9794 return updated; 9795 } 9796 9797 #ifdef CONFIG_FAIR_GROUP_SCHED 9798 9799 static bool __update_blocked_fair(struct rq *rq, bool *done) 9800 { 9801 struct cfs_rq *cfs_rq, *pos; 9802 bool decayed = false; 9803 int cpu = cpu_of(rq); 9804 9805 /* 9806 * Iterates the task_group tree in a bottom up fashion, see 9807 * list_add_leaf_cfs_rq() for details. 9808 */ 9809 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9810 struct sched_entity *se; 9811 9812 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9813 update_tg_load_avg(cfs_rq); 9814 9815 if (cfs_rq->nr_queued == 0) 9816 update_idle_cfs_rq_clock_pelt(cfs_rq); 9817 9818 if (cfs_rq == &rq->cfs) 9819 decayed = true; 9820 } 9821 9822 /* Propagate pending load changes to the parent, if any: */ 9823 se = cfs_rq->tg->se[cpu]; 9824 if (se && !skip_blocked_update(se)) 9825 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9826 9827 /* 9828 * There can be a lot of idle CPU cgroups. Don't let fully 9829 * decayed cfs_rqs linger on the list. 9830 */ 9831 if (cfs_rq_is_decayed(cfs_rq)) 9832 list_del_leaf_cfs_rq(cfs_rq); 9833 9834 /* Don't need periodic decay once load/util_avg are null */ 9835 if (cfs_rq_has_blocked(cfs_rq)) 9836 *done = false; 9837 } 9838 9839 return decayed; 9840 } 9841 9842 /* 9843 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9844 * This needs to be done in a top-down fashion because the load of a child 9845 * group is a fraction of its parents load. 9846 */ 9847 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9848 { 9849 struct rq *rq = rq_of(cfs_rq); 9850 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9851 unsigned long now = jiffies; 9852 unsigned long load; 9853 9854 if (cfs_rq->last_h_load_update == now) 9855 return; 9856 9857 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9858 for_each_sched_entity(se) { 9859 cfs_rq = cfs_rq_of(se); 9860 WRITE_ONCE(cfs_rq->h_load_next, se); 9861 if (cfs_rq->last_h_load_update == now) 9862 break; 9863 } 9864 9865 if (!se) { 9866 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9867 cfs_rq->last_h_load_update = now; 9868 } 9869 9870 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9871 load = cfs_rq->h_load; 9872 load = div64_ul(load * se->avg.load_avg, 9873 cfs_rq_load_avg(cfs_rq) + 1); 9874 cfs_rq = group_cfs_rq(se); 9875 cfs_rq->h_load = load; 9876 cfs_rq->last_h_load_update = now; 9877 } 9878 } 9879 9880 static unsigned long task_h_load(struct task_struct *p) 9881 { 9882 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9883 9884 update_cfs_rq_h_load(cfs_rq); 9885 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9886 cfs_rq_load_avg(cfs_rq) + 1); 9887 } 9888 #else 9889 static bool __update_blocked_fair(struct rq *rq, bool *done) 9890 { 9891 struct cfs_rq *cfs_rq = &rq->cfs; 9892 bool decayed; 9893 9894 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9895 if (cfs_rq_has_blocked(cfs_rq)) 9896 *done = false; 9897 9898 return decayed; 9899 } 9900 9901 static unsigned long task_h_load(struct task_struct *p) 9902 { 9903 return p->se.avg.load_avg; 9904 } 9905 #endif 9906 9907 static void sched_balance_update_blocked_averages(int cpu) 9908 { 9909 bool decayed = false, done = true; 9910 struct rq *rq = cpu_rq(cpu); 9911 struct rq_flags rf; 9912 9913 rq_lock_irqsave(rq, &rf); 9914 update_blocked_load_tick(rq); 9915 update_rq_clock(rq); 9916 9917 decayed |= __update_blocked_others(rq, &done); 9918 decayed |= __update_blocked_fair(rq, &done); 9919 9920 update_blocked_load_status(rq, !done); 9921 if (decayed) 9922 cpufreq_update_util(rq, 0); 9923 rq_unlock_irqrestore(rq, &rf); 9924 } 9925 9926 /********** Helpers for sched_balance_find_src_group ************************/ 9927 9928 /* 9929 * sg_lb_stats - stats of a sched_group required for load-balancing: 9930 */ 9931 struct sg_lb_stats { 9932 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9933 unsigned long group_load; /* Total load over the CPUs of the group */ 9934 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9935 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9936 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9937 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9938 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9939 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9940 unsigned int group_weight; 9941 enum group_type group_type; 9942 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9943 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9944 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9945 #ifdef CONFIG_NUMA_BALANCING 9946 unsigned int nr_numa_running; 9947 unsigned int nr_preferred_running; 9948 #endif 9949 }; 9950 9951 /* 9952 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9953 */ 9954 struct sd_lb_stats { 9955 struct sched_group *busiest; /* Busiest group in this sd */ 9956 struct sched_group *local; /* Local group in this sd */ 9957 unsigned long total_load; /* Total load of all groups in sd */ 9958 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9959 unsigned long avg_load; /* Average load across all groups in sd */ 9960 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9961 9962 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9963 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9964 }; 9965 9966 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9967 { 9968 /* 9969 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9970 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9971 * We must however set busiest_stat::group_type and 9972 * busiest_stat::idle_cpus to the worst busiest group because 9973 * update_sd_pick_busiest() reads these before assignment. 9974 */ 9975 *sds = (struct sd_lb_stats){ 9976 .busiest = NULL, 9977 .local = NULL, 9978 .total_load = 0UL, 9979 .total_capacity = 0UL, 9980 .busiest_stat = { 9981 .idle_cpus = UINT_MAX, 9982 .group_type = group_has_spare, 9983 }, 9984 }; 9985 } 9986 9987 static unsigned long scale_rt_capacity(int cpu) 9988 { 9989 unsigned long max = get_actual_cpu_capacity(cpu); 9990 struct rq *rq = cpu_rq(cpu); 9991 unsigned long used, free; 9992 unsigned long irq; 9993 9994 irq = cpu_util_irq(rq); 9995 9996 if (unlikely(irq >= max)) 9997 return 1; 9998 9999 /* 10000 * avg_rt.util_avg and avg_dl.util_avg track binary signals 10001 * (running and not running) with weights 0 and 1024 respectively. 10002 */ 10003 used = cpu_util_rt(rq); 10004 used += cpu_util_dl(rq); 10005 10006 if (unlikely(used >= max)) 10007 return 1; 10008 10009 free = max - used; 10010 10011 return scale_irq_capacity(free, irq, max); 10012 } 10013 10014 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10015 { 10016 unsigned long capacity = scale_rt_capacity(cpu); 10017 struct sched_group *sdg = sd->groups; 10018 10019 if (!capacity) 10020 capacity = 1; 10021 10022 cpu_rq(cpu)->cpu_capacity = capacity; 10023 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10024 10025 sdg->sgc->capacity = capacity; 10026 sdg->sgc->min_capacity = capacity; 10027 sdg->sgc->max_capacity = capacity; 10028 } 10029 10030 void update_group_capacity(struct sched_domain *sd, int cpu) 10031 { 10032 struct sched_domain *child = sd->child; 10033 struct sched_group *group, *sdg = sd->groups; 10034 unsigned long capacity, min_capacity, max_capacity; 10035 unsigned long interval; 10036 10037 interval = msecs_to_jiffies(sd->balance_interval); 10038 interval = clamp(interval, 1UL, max_load_balance_interval); 10039 sdg->sgc->next_update = jiffies + interval; 10040 10041 if (!child) { 10042 update_cpu_capacity(sd, cpu); 10043 return; 10044 } 10045 10046 capacity = 0; 10047 min_capacity = ULONG_MAX; 10048 max_capacity = 0; 10049 10050 if (child->flags & SD_OVERLAP) { 10051 /* 10052 * SD_OVERLAP domains cannot assume that child groups 10053 * span the current group. 10054 */ 10055 10056 for_each_cpu(cpu, sched_group_span(sdg)) { 10057 unsigned long cpu_cap = capacity_of(cpu); 10058 10059 capacity += cpu_cap; 10060 min_capacity = min(cpu_cap, min_capacity); 10061 max_capacity = max(cpu_cap, max_capacity); 10062 } 10063 } else { 10064 /* 10065 * !SD_OVERLAP domains can assume that child groups 10066 * span the current group. 10067 */ 10068 10069 group = child->groups; 10070 do { 10071 struct sched_group_capacity *sgc = group->sgc; 10072 10073 capacity += sgc->capacity; 10074 min_capacity = min(sgc->min_capacity, min_capacity); 10075 max_capacity = max(sgc->max_capacity, max_capacity); 10076 group = group->next; 10077 } while (group != child->groups); 10078 } 10079 10080 sdg->sgc->capacity = capacity; 10081 sdg->sgc->min_capacity = min_capacity; 10082 sdg->sgc->max_capacity = max_capacity; 10083 } 10084 10085 /* 10086 * Check whether the capacity of the rq has been noticeably reduced by side 10087 * activity. The imbalance_pct is used for the threshold. 10088 * Return true is the capacity is reduced 10089 */ 10090 static inline int 10091 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10092 { 10093 return ((rq->cpu_capacity * sd->imbalance_pct) < 10094 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10095 } 10096 10097 /* Check if the rq has a misfit task */ 10098 static inline bool check_misfit_status(struct rq *rq) 10099 { 10100 return rq->misfit_task_load; 10101 } 10102 10103 /* 10104 * Group imbalance indicates (and tries to solve) the problem where balancing 10105 * groups is inadequate due to ->cpus_ptr constraints. 10106 * 10107 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10108 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10109 * Something like: 10110 * 10111 * { 0 1 2 3 } { 4 5 6 7 } 10112 * * * * * 10113 * 10114 * If we were to balance group-wise we'd place two tasks in the first group and 10115 * two tasks in the second group. Clearly this is undesired as it will overload 10116 * cpu 3 and leave one of the CPUs in the second group unused. 10117 * 10118 * The current solution to this issue is detecting the skew in the first group 10119 * by noticing the lower domain failed to reach balance and had difficulty 10120 * moving tasks due to affinity constraints. 10121 * 10122 * When this is so detected; this group becomes a candidate for busiest; see 10123 * update_sd_pick_busiest(). And calculate_imbalance() and 10124 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10125 * to create an effective group imbalance. 10126 * 10127 * This is a somewhat tricky proposition since the next run might not find the 10128 * group imbalance and decide the groups need to be balanced again. A most 10129 * subtle and fragile situation. 10130 */ 10131 10132 static inline int sg_imbalanced(struct sched_group *group) 10133 { 10134 return group->sgc->imbalance; 10135 } 10136 10137 /* 10138 * group_has_capacity returns true if the group has spare capacity that could 10139 * be used by some tasks. 10140 * We consider that a group has spare capacity if the number of task is 10141 * smaller than the number of CPUs or if the utilization is lower than the 10142 * available capacity for CFS tasks. 10143 * For the latter, we use a threshold to stabilize the state, to take into 10144 * account the variance of the tasks' load and to return true if the available 10145 * capacity in meaningful for the load balancer. 10146 * As an example, an available capacity of 1% can appear but it doesn't make 10147 * any benefit for the load balance. 10148 */ 10149 static inline bool 10150 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10151 { 10152 if (sgs->sum_nr_running < sgs->group_weight) 10153 return true; 10154 10155 if ((sgs->group_capacity * imbalance_pct) < 10156 (sgs->group_runnable * 100)) 10157 return false; 10158 10159 if ((sgs->group_capacity * 100) > 10160 (sgs->group_util * imbalance_pct)) 10161 return true; 10162 10163 return false; 10164 } 10165 10166 /* 10167 * group_is_overloaded returns true if the group has more tasks than it can 10168 * handle. 10169 * group_is_overloaded is not equals to !group_has_capacity because a group 10170 * with the exact right number of tasks, has no more spare capacity but is not 10171 * overloaded so both group_has_capacity and group_is_overloaded return 10172 * false. 10173 */ 10174 static inline bool 10175 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10176 { 10177 if (sgs->sum_nr_running <= sgs->group_weight) 10178 return false; 10179 10180 if ((sgs->group_capacity * 100) < 10181 (sgs->group_util * imbalance_pct)) 10182 return true; 10183 10184 if ((sgs->group_capacity * imbalance_pct) < 10185 (sgs->group_runnable * 100)) 10186 return true; 10187 10188 return false; 10189 } 10190 10191 static inline enum 10192 group_type group_classify(unsigned int imbalance_pct, 10193 struct sched_group *group, 10194 struct sg_lb_stats *sgs) 10195 { 10196 if (group_is_overloaded(imbalance_pct, sgs)) 10197 return group_overloaded; 10198 10199 if (sg_imbalanced(group)) 10200 return group_imbalanced; 10201 10202 if (sgs->group_asym_packing) 10203 return group_asym_packing; 10204 10205 if (sgs->group_smt_balance) 10206 return group_smt_balance; 10207 10208 if (sgs->group_misfit_task_load) 10209 return group_misfit_task; 10210 10211 if (!group_has_capacity(imbalance_pct, sgs)) 10212 return group_fully_busy; 10213 10214 return group_has_spare; 10215 } 10216 10217 /** 10218 * sched_use_asym_prio - Check whether asym_packing priority must be used 10219 * @sd: The scheduling domain of the load balancing 10220 * @cpu: A CPU 10221 * 10222 * Always use CPU priority when balancing load between SMT siblings. When 10223 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10224 * use CPU priority if the whole core is idle. 10225 * 10226 * Returns: True if the priority of @cpu must be followed. False otherwise. 10227 */ 10228 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10229 { 10230 if (!(sd->flags & SD_ASYM_PACKING)) 10231 return false; 10232 10233 if (!sched_smt_active()) 10234 return true; 10235 10236 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10237 } 10238 10239 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10240 { 10241 /* 10242 * First check if @dst_cpu can do asym_packing load balance. Only do it 10243 * if it has higher priority than @src_cpu. 10244 */ 10245 return sched_use_asym_prio(sd, dst_cpu) && 10246 sched_asym_prefer(dst_cpu, src_cpu); 10247 } 10248 10249 /** 10250 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10251 * @env: The load balancing environment 10252 * @sgs: Load-balancing statistics of the candidate busiest group 10253 * @group: The candidate busiest group 10254 * 10255 * @env::dst_cpu can do asym_packing if it has higher priority than the 10256 * preferred CPU of @group. 10257 * 10258 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10259 * otherwise. 10260 */ 10261 static inline bool 10262 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10263 { 10264 /* 10265 * CPU priorities do not make sense for SMT cores with more than one 10266 * busy sibling. 10267 */ 10268 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10269 (sgs->group_weight - sgs->idle_cpus != 1)) 10270 return false; 10271 10272 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10273 } 10274 10275 /* One group has more than one SMT CPU while the other group does not */ 10276 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10277 struct sched_group *sg2) 10278 { 10279 if (!sg1 || !sg2) 10280 return false; 10281 10282 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10283 (sg2->flags & SD_SHARE_CPUCAPACITY); 10284 } 10285 10286 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10287 struct sched_group *group) 10288 { 10289 if (!env->idle) 10290 return false; 10291 10292 /* 10293 * For SMT source group, it is better to move a task 10294 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10295 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10296 * will not be on. 10297 */ 10298 if (group->flags & SD_SHARE_CPUCAPACITY && 10299 sgs->sum_h_nr_running > 1) 10300 return true; 10301 10302 return false; 10303 } 10304 10305 static inline long sibling_imbalance(struct lb_env *env, 10306 struct sd_lb_stats *sds, 10307 struct sg_lb_stats *busiest, 10308 struct sg_lb_stats *local) 10309 { 10310 int ncores_busiest, ncores_local; 10311 long imbalance; 10312 10313 if (!env->idle || !busiest->sum_nr_running) 10314 return 0; 10315 10316 ncores_busiest = sds->busiest->cores; 10317 ncores_local = sds->local->cores; 10318 10319 if (ncores_busiest == ncores_local) { 10320 imbalance = busiest->sum_nr_running; 10321 lsub_positive(&imbalance, local->sum_nr_running); 10322 return imbalance; 10323 } 10324 10325 /* Balance such that nr_running/ncores ratio are same on both groups */ 10326 imbalance = ncores_local * busiest->sum_nr_running; 10327 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10328 /* Normalize imbalance and do rounding on normalization */ 10329 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10330 imbalance /= ncores_local + ncores_busiest; 10331 10332 /* Take advantage of resource in an empty sched group */ 10333 if (imbalance <= 1 && local->sum_nr_running == 0 && 10334 busiest->sum_nr_running > 1) 10335 imbalance = 2; 10336 10337 return imbalance; 10338 } 10339 10340 static inline bool 10341 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10342 { 10343 /* 10344 * When there is more than 1 task, the group_overloaded case already 10345 * takes care of cpu with reduced capacity 10346 */ 10347 if (rq->cfs.h_nr_runnable != 1) 10348 return false; 10349 10350 return check_cpu_capacity(rq, sd); 10351 } 10352 10353 /** 10354 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10355 * @env: The load balancing environment. 10356 * @sds: Load-balancing data with statistics of the local group. 10357 * @group: sched_group whose statistics are to be updated. 10358 * @sgs: variable to hold the statistics for this group. 10359 * @sg_overloaded: sched_group is overloaded 10360 * @sg_overutilized: sched_group is overutilized 10361 */ 10362 static inline void update_sg_lb_stats(struct lb_env *env, 10363 struct sd_lb_stats *sds, 10364 struct sched_group *group, 10365 struct sg_lb_stats *sgs, 10366 bool *sg_overloaded, 10367 bool *sg_overutilized) 10368 { 10369 int i, nr_running, local_group, sd_flags = env->sd->flags; 10370 bool balancing_at_rd = !env->sd->parent; 10371 10372 memset(sgs, 0, sizeof(*sgs)); 10373 10374 local_group = group == sds->local; 10375 10376 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10377 struct rq *rq = cpu_rq(i); 10378 unsigned long load = cpu_load(rq); 10379 10380 sgs->group_load += load; 10381 sgs->group_util += cpu_util_cfs(i); 10382 sgs->group_runnable += cpu_runnable(rq); 10383 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10384 10385 nr_running = rq->nr_running; 10386 sgs->sum_nr_running += nr_running; 10387 10388 if (cpu_overutilized(i)) 10389 *sg_overutilized = 1; 10390 10391 /* 10392 * No need to call idle_cpu() if nr_running is not 0 10393 */ 10394 if (!nr_running && idle_cpu(i)) { 10395 sgs->idle_cpus++; 10396 /* Idle cpu can't have misfit task */ 10397 continue; 10398 } 10399 10400 /* Overload indicator is only updated at root domain */ 10401 if (balancing_at_rd && nr_running > 1) 10402 *sg_overloaded = 1; 10403 10404 #ifdef CONFIG_NUMA_BALANCING 10405 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10406 if (sd_flags & SD_NUMA) { 10407 sgs->nr_numa_running += rq->nr_numa_running; 10408 sgs->nr_preferred_running += rq->nr_preferred_running; 10409 } 10410 #endif 10411 if (local_group) 10412 continue; 10413 10414 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10415 /* Check for a misfit task on the cpu */ 10416 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10417 sgs->group_misfit_task_load = rq->misfit_task_load; 10418 *sg_overloaded = 1; 10419 } 10420 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10421 /* Check for a task running on a CPU with reduced capacity */ 10422 if (sgs->group_misfit_task_load < load) 10423 sgs->group_misfit_task_load = load; 10424 } 10425 } 10426 10427 sgs->group_capacity = group->sgc->capacity; 10428 10429 sgs->group_weight = group->group_weight; 10430 10431 /* Check if dst CPU is idle and preferred to this group */ 10432 if (!local_group && env->idle && sgs->sum_h_nr_running && 10433 sched_group_asym(env, sgs, group)) 10434 sgs->group_asym_packing = 1; 10435 10436 /* Check for loaded SMT group to be balanced to dst CPU */ 10437 if (!local_group && smt_balance(env, sgs, group)) 10438 sgs->group_smt_balance = 1; 10439 10440 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10441 10442 /* Computing avg_load makes sense only when group is overloaded */ 10443 if (sgs->group_type == group_overloaded) 10444 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10445 sgs->group_capacity; 10446 } 10447 10448 /** 10449 * update_sd_pick_busiest - return 1 on busiest group 10450 * @env: The load balancing environment. 10451 * @sds: sched_domain statistics 10452 * @sg: sched_group candidate to be checked for being the busiest 10453 * @sgs: sched_group statistics 10454 * 10455 * Determine if @sg is a busier group than the previously selected 10456 * busiest group. 10457 * 10458 * Return: %true if @sg is a busier group than the previously selected 10459 * busiest group. %false otherwise. 10460 */ 10461 static bool update_sd_pick_busiest(struct lb_env *env, 10462 struct sd_lb_stats *sds, 10463 struct sched_group *sg, 10464 struct sg_lb_stats *sgs) 10465 { 10466 struct sg_lb_stats *busiest = &sds->busiest_stat; 10467 10468 /* Make sure that there is at least one task to pull */ 10469 if (!sgs->sum_h_nr_running) 10470 return false; 10471 10472 /* 10473 * Don't try to pull misfit tasks we can't help. 10474 * We can use max_capacity here as reduction in capacity on some 10475 * CPUs in the group should either be possible to resolve 10476 * internally or be covered by avg_load imbalance (eventually). 10477 */ 10478 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10479 (sgs->group_type == group_misfit_task) && 10480 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10481 sds->local_stat.group_type != group_has_spare)) 10482 return false; 10483 10484 if (sgs->group_type > busiest->group_type) 10485 return true; 10486 10487 if (sgs->group_type < busiest->group_type) 10488 return false; 10489 10490 /* 10491 * The candidate and the current busiest group are the same type of 10492 * group. Let check which one is the busiest according to the type. 10493 */ 10494 10495 switch (sgs->group_type) { 10496 case group_overloaded: 10497 /* Select the overloaded group with highest avg_load. */ 10498 return sgs->avg_load > busiest->avg_load; 10499 10500 case group_imbalanced: 10501 /* 10502 * Select the 1st imbalanced group as we don't have any way to 10503 * choose one more than another. 10504 */ 10505 return false; 10506 10507 case group_asym_packing: 10508 /* Prefer to move from lowest priority CPU's work */ 10509 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10510 READ_ONCE(sg->asym_prefer_cpu)); 10511 10512 case group_misfit_task: 10513 /* 10514 * If we have more than one misfit sg go with the biggest 10515 * misfit. 10516 */ 10517 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10518 10519 case group_smt_balance: 10520 /* 10521 * Check if we have spare CPUs on either SMT group to 10522 * choose has spare or fully busy handling. 10523 */ 10524 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10525 goto has_spare; 10526 10527 fallthrough; 10528 10529 case group_fully_busy: 10530 /* 10531 * Select the fully busy group with highest avg_load. In 10532 * theory, there is no need to pull task from such kind of 10533 * group because tasks have all compute capacity that they need 10534 * but we can still improve the overall throughput by reducing 10535 * contention when accessing shared HW resources. 10536 * 10537 * XXX for now avg_load is not computed and always 0 so we 10538 * select the 1st one, except if @sg is composed of SMT 10539 * siblings. 10540 */ 10541 10542 if (sgs->avg_load < busiest->avg_load) 10543 return false; 10544 10545 if (sgs->avg_load == busiest->avg_load) { 10546 /* 10547 * SMT sched groups need more help than non-SMT groups. 10548 * If @sg happens to also be SMT, either choice is good. 10549 */ 10550 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10551 return false; 10552 } 10553 10554 break; 10555 10556 case group_has_spare: 10557 /* 10558 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10559 * as we do not want to pull task off SMT core with one task 10560 * and make the core idle. 10561 */ 10562 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10563 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10564 return false; 10565 else 10566 return true; 10567 } 10568 has_spare: 10569 10570 /* 10571 * Select not overloaded group with lowest number of idle CPUs 10572 * and highest number of running tasks. We could also compare 10573 * the spare capacity which is more stable but it can end up 10574 * that the group has less spare capacity but finally more idle 10575 * CPUs which means less opportunity to pull tasks. 10576 */ 10577 if (sgs->idle_cpus > busiest->idle_cpus) 10578 return false; 10579 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10580 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10581 return false; 10582 10583 break; 10584 } 10585 10586 /* 10587 * Candidate sg has no more than one task per CPU and has higher 10588 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10589 * throughput. Maximize throughput, power/energy consequences are not 10590 * considered. 10591 */ 10592 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10593 (sgs->group_type <= group_fully_busy) && 10594 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10595 return false; 10596 10597 return true; 10598 } 10599 10600 #ifdef CONFIG_NUMA_BALANCING 10601 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10602 { 10603 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10604 return regular; 10605 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10606 return remote; 10607 return all; 10608 } 10609 10610 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10611 { 10612 if (rq->nr_running > rq->nr_numa_running) 10613 return regular; 10614 if (rq->nr_running > rq->nr_preferred_running) 10615 return remote; 10616 return all; 10617 } 10618 #else 10619 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10620 { 10621 return all; 10622 } 10623 10624 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10625 { 10626 return regular; 10627 } 10628 #endif /* CONFIG_NUMA_BALANCING */ 10629 10630 10631 struct sg_lb_stats; 10632 10633 /* 10634 * task_running_on_cpu - return 1 if @p is running on @cpu. 10635 */ 10636 10637 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10638 { 10639 /* Task has no contribution or is new */ 10640 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10641 return 0; 10642 10643 if (task_on_rq_queued(p)) 10644 return 1; 10645 10646 return 0; 10647 } 10648 10649 /** 10650 * idle_cpu_without - would a given CPU be idle without p ? 10651 * @cpu: the processor on which idleness is tested. 10652 * @p: task which should be ignored. 10653 * 10654 * Return: 1 if the CPU would be idle. 0 otherwise. 10655 */ 10656 static int idle_cpu_without(int cpu, struct task_struct *p) 10657 { 10658 struct rq *rq = cpu_rq(cpu); 10659 10660 if (rq->curr != rq->idle && rq->curr != p) 10661 return 0; 10662 10663 /* 10664 * rq->nr_running can't be used but an updated version without the 10665 * impact of p on cpu must be used instead. The updated nr_running 10666 * be computed and tested before calling idle_cpu_without(). 10667 */ 10668 10669 if (rq->ttwu_pending) 10670 return 0; 10671 10672 return 1; 10673 } 10674 10675 /* 10676 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10677 * @sd: The sched_domain level to look for idlest group. 10678 * @group: sched_group whose statistics are to be updated. 10679 * @sgs: variable to hold the statistics for this group. 10680 * @p: The task for which we look for the idlest group/CPU. 10681 */ 10682 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10683 struct sched_group *group, 10684 struct sg_lb_stats *sgs, 10685 struct task_struct *p) 10686 { 10687 int i, nr_running; 10688 10689 memset(sgs, 0, sizeof(*sgs)); 10690 10691 /* Assume that task can't fit any CPU of the group */ 10692 if (sd->flags & SD_ASYM_CPUCAPACITY) 10693 sgs->group_misfit_task_load = 1; 10694 10695 for_each_cpu(i, sched_group_span(group)) { 10696 struct rq *rq = cpu_rq(i); 10697 unsigned int local; 10698 10699 sgs->group_load += cpu_load_without(rq, p); 10700 sgs->group_util += cpu_util_without(i, p); 10701 sgs->group_runnable += cpu_runnable_without(rq, p); 10702 local = task_running_on_cpu(i, p); 10703 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10704 10705 nr_running = rq->nr_running - local; 10706 sgs->sum_nr_running += nr_running; 10707 10708 /* 10709 * No need to call idle_cpu_without() if nr_running is not 0 10710 */ 10711 if (!nr_running && idle_cpu_without(i, p)) 10712 sgs->idle_cpus++; 10713 10714 /* Check if task fits in the CPU */ 10715 if (sd->flags & SD_ASYM_CPUCAPACITY && 10716 sgs->group_misfit_task_load && 10717 task_fits_cpu(p, i)) 10718 sgs->group_misfit_task_load = 0; 10719 10720 } 10721 10722 sgs->group_capacity = group->sgc->capacity; 10723 10724 sgs->group_weight = group->group_weight; 10725 10726 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10727 10728 /* 10729 * Computing avg_load makes sense only when group is fully busy or 10730 * overloaded 10731 */ 10732 if (sgs->group_type == group_fully_busy || 10733 sgs->group_type == group_overloaded) 10734 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10735 sgs->group_capacity; 10736 } 10737 10738 static bool update_pick_idlest(struct sched_group *idlest, 10739 struct sg_lb_stats *idlest_sgs, 10740 struct sched_group *group, 10741 struct sg_lb_stats *sgs) 10742 { 10743 if (sgs->group_type < idlest_sgs->group_type) 10744 return true; 10745 10746 if (sgs->group_type > idlest_sgs->group_type) 10747 return false; 10748 10749 /* 10750 * The candidate and the current idlest group are the same type of 10751 * group. Let check which one is the idlest according to the type. 10752 */ 10753 10754 switch (sgs->group_type) { 10755 case group_overloaded: 10756 case group_fully_busy: 10757 /* Select the group with lowest avg_load. */ 10758 if (idlest_sgs->avg_load <= sgs->avg_load) 10759 return false; 10760 break; 10761 10762 case group_imbalanced: 10763 case group_asym_packing: 10764 case group_smt_balance: 10765 /* Those types are not used in the slow wakeup path */ 10766 return false; 10767 10768 case group_misfit_task: 10769 /* Select group with the highest max capacity */ 10770 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10771 return false; 10772 break; 10773 10774 case group_has_spare: 10775 /* Select group with most idle CPUs */ 10776 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10777 return false; 10778 10779 /* Select group with lowest group_util */ 10780 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10781 idlest_sgs->group_util <= sgs->group_util) 10782 return false; 10783 10784 break; 10785 } 10786 10787 return true; 10788 } 10789 10790 /* 10791 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10792 * domain. 10793 * 10794 * Assumes p is allowed on at least one CPU in sd. 10795 */ 10796 static struct sched_group * 10797 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10798 { 10799 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10800 struct sg_lb_stats local_sgs, tmp_sgs; 10801 struct sg_lb_stats *sgs; 10802 unsigned long imbalance; 10803 struct sg_lb_stats idlest_sgs = { 10804 .avg_load = UINT_MAX, 10805 .group_type = group_overloaded, 10806 }; 10807 10808 do { 10809 int local_group; 10810 10811 /* Skip over this group if it has no CPUs allowed */ 10812 if (!cpumask_intersects(sched_group_span(group), 10813 p->cpus_ptr)) 10814 continue; 10815 10816 /* Skip over this group if no cookie matched */ 10817 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10818 continue; 10819 10820 local_group = cpumask_test_cpu(this_cpu, 10821 sched_group_span(group)); 10822 10823 if (local_group) { 10824 sgs = &local_sgs; 10825 local = group; 10826 } else { 10827 sgs = &tmp_sgs; 10828 } 10829 10830 update_sg_wakeup_stats(sd, group, sgs, p); 10831 10832 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10833 idlest = group; 10834 idlest_sgs = *sgs; 10835 } 10836 10837 } while (group = group->next, group != sd->groups); 10838 10839 10840 /* There is no idlest group to push tasks to */ 10841 if (!idlest) 10842 return NULL; 10843 10844 /* The local group has been skipped because of CPU affinity */ 10845 if (!local) 10846 return idlest; 10847 10848 /* 10849 * If the local group is idler than the selected idlest group 10850 * don't try and push the task. 10851 */ 10852 if (local_sgs.group_type < idlest_sgs.group_type) 10853 return NULL; 10854 10855 /* 10856 * If the local group is busier than the selected idlest group 10857 * try and push the task. 10858 */ 10859 if (local_sgs.group_type > idlest_sgs.group_type) 10860 return idlest; 10861 10862 switch (local_sgs.group_type) { 10863 case group_overloaded: 10864 case group_fully_busy: 10865 10866 /* Calculate allowed imbalance based on load */ 10867 imbalance = scale_load_down(NICE_0_LOAD) * 10868 (sd->imbalance_pct-100) / 100; 10869 10870 /* 10871 * When comparing groups across NUMA domains, it's possible for 10872 * the local domain to be very lightly loaded relative to the 10873 * remote domains but "imbalance" skews the comparison making 10874 * remote CPUs look much more favourable. When considering 10875 * cross-domain, add imbalance to the load on the remote node 10876 * and consider staying local. 10877 */ 10878 10879 if ((sd->flags & SD_NUMA) && 10880 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10881 return NULL; 10882 10883 /* 10884 * If the local group is less loaded than the selected 10885 * idlest group don't try and push any tasks. 10886 */ 10887 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10888 return NULL; 10889 10890 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10891 return NULL; 10892 break; 10893 10894 case group_imbalanced: 10895 case group_asym_packing: 10896 case group_smt_balance: 10897 /* Those type are not used in the slow wakeup path */ 10898 return NULL; 10899 10900 case group_misfit_task: 10901 /* Select group with the highest max capacity */ 10902 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10903 return NULL; 10904 break; 10905 10906 case group_has_spare: 10907 #ifdef CONFIG_NUMA 10908 if (sd->flags & SD_NUMA) { 10909 int imb_numa_nr = sd->imb_numa_nr; 10910 #ifdef CONFIG_NUMA_BALANCING 10911 int idlest_cpu; 10912 /* 10913 * If there is spare capacity at NUMA, try to select 10914 * the preferred node 10915 */ 10916 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10917 return NULL; 10918 10919 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10920 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10921 return idlest; 10922 #endif /* CONFIG_NUMA_BALANCING */ 10923 /* 10924 * Otherwise, keep the task close to the wakeup source 10925 * and improve locality if the number of running tasks 10926 * would remain below threshold where an imbalance is 10927 * allowed while accounting for the possibility the 10928 * task is pinned to a subset of CPUs. If there is a 10929 * real need of migration, periodic load balance will 10930 * take care of it. 10931 */ 10932 if (p->nr_cpus_allowed != NR_CPUS) { 10933 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10934 10935 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10936 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10937 } 10938 10939 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10940 if (!adjust_numa_imbalance(imbalance, 10941 local_sgs.sum_nr_running + 1, 10942 imb_numa_nr)) { 10943 return NULL; 10944 } 10945 } 10946 #endif /* CONFIG_NUMA */ 10947 10948 /* 10949 * Select group with highest number of idle CPUs. We could also 10950 * compare the utilization which is more stable but it can end 10951 * up that the group has less spare capacity but finally more 10952 * idle CPUs which means more opportunity to run task. 10953 */ 10954 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10955 return NULL; 10956 break; 10957 } 10958 10959 return idlest; 10960 } 10961 10962 static void update_idle_cpu_scan(struct lb_env *env, 10963 unsigned long sum_util) 10964 { 10965 struct sched_domain_shared *sd_share; 10966 int llc_weight, pct; 10967 u64 x, y, tmp; 10968 /* 10969 * Update the number of CPUs to scan in LLC domain, which could 10970 * be used as a hint in select_idle_cpu(). The update of sd_share 10971 * could be expensive because it is within a shared cache line. 10972 * So the write of this hint only occurs during periodic load 10973 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10974 * can fire way more frequently than the former. 10975 */ 10976 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10977 return; 10978 10979 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10980 if (env->sd->span_weight != llc_weight) 10981 return; 10982 10983 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10984 if (!sd_share) 10985 return; 10986 10987 /* 10988 * The number of CPUs to search drops as sum_util increases, when 10989 * sum_util hits 85% or above, the scan stops. 10990 * The reason to choose 85% as the threshold is because this is the 10991 * imbalance_pct(117) when a LLC sched group is overloaded. 10992 * 10993 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10994 * and y'= y / SCHED_CAPACITY_SCALE 10995 * 10996 * x is the ratio of sum_util compared to the CPU capacity: 10997 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10998 * y' is the ratio of CPUs to be scanned in the LLC domain, 10999 * and the number of CPUs to scan is calculated by: 11000 * 11001 * nr_scan = llc_weight * y' [2] 11002 * 11003 * When x hits the threshold of overloaded, AKA, when 11004 * x = 100 / pct, y drops to 0. According to [1], 11005 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 11006 * 11007 * Scale x by SCHED_CAPACITY_SCALE: 11008 * x' = sum_util / llc_weight; [3] 11009 * 11010 * and finally [1] becomes: 11011 * y = SCHED_CAPACITY_SCALE - 11012 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11013 * 11014 */ 11015 /* equation [3] */ 11016 x = sum_util; 11017 do_div(x, llc_weight); 11018 11019 /* equation [4] */ 11020 pct = env->sd->imbalance_pct; 11021 tmp = x * x * pct * pct; 11022 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11023 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11024 y = SCHED_CAPACITY_SCALE - tmp; 11025 11026 /* equation [2] */ 11027 y *= llc_weight; 11028 do_div(y, SCHED_CAPACITY_SCALE); 11029 if ((int)y != sd_share->nr_idle_scan) 11030 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11031 } 11032 11033 /** 11034 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11035 * @env: The load balancing environment. 11036 * @sds: variable to hold the statistics for this sched_domain. 11037 */ 11038 11039 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11040 { 11041 struct sched_group *sg = env->sd->groups; 11042 struct sg_lb_stats *local = &sds->local_stat; 11043 struct sg_lb_stats tmp_sgs; 11044 unsigned long sum_util = 0; 11045 bool sg_overloaded = 0, sg_overutilized = 0; 11046 11047 do { 11048 struct sg_lb_stats *sgs = &tmp_sgs; 11049 int local_group; 11050 11051 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11052 if (local_group) { 11053 sds->local = sg; 11054 sgs = local; 11055 11056 if (env->idle != CPU_NEWLY_IDLE || 11057 time_after_eq(jiffies, sg->sgc->next_update)) 11058 update_group_capacity(env->sd, env->dst_cpu); 11059 } 11060 11061 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11062 11063 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11064 sds->busiest = sg; 11065 sds->busiest_stat = *sgs; 11066 } 11067 11068 /* Now, start updating sd_lb_stats */ 11069 sds->total_load += sgs->group_load; 11070 sds->total_capacity += sgs->group_capacity; 11071 11072 sum_util += sgs->group_util; 11073 sg = sg->next; 11074 } while (sg != env->sd->groups); 11075 11076 /* 11077 * Indicate that the child domain of the busiest group prefers tasks 11078 * go to a child's sibling domains first. NB the flags of a sched group 11079 * are those of the child domain. 11080 */ 11081 if (sds->busiest) 11082 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11083 11084 11085 if (env->sd->flags & SD_NUMA) 11086 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11087 11088 if (!env->sd->parent) { 11089 /* update overload indicator if we are at root domain */ 11090 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11091 11092 /* Update over-utilization (tipping point, U >= 0) indicator */ 11093 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11094 } else if (sg_overutilized) { 11095 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11096 } 11097 11098 update_idle_cpu_scan(env, sum_util); 11099 } 11100 11101 /** 11102 * calculate_imbalance - Calculate the amount of imbalance present within the 11103 * groups of a given sched_domain during load balance. 11104 * @env: load balance environment 11105 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11106 */ 11107 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11108 { 11109 struct sg_lb_stats *local, *busiest; 11110 11111 local = &sds->local_stat; 11112 busiest = &sds->busiest_stat; 11113 11114 if (busiest->group_type == group_misfit_task) { 11115 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11116 /* Set imbalance to allow misfit tasks to be balanced. */ 11117 env->migration_type = migrate_misfit; 11118 env->imbalance = 1; 11119 } else { 11120 /* 11121 * Set load imbalance to allow moving task from cpu 11122 * with reduced capacity. 11123 */ 11124 env->migration_type = migrate_load; 11125 env->imbalance = busiest->group_misfit_task_load; 11126 } 11127 return; 11128 } 11129 11130 if (busiest->group_type == group_asym_packing) { 11131 /* 11132 * In case of asym capacity, we will try to migrate all load to 11133 * the preferred CPU. 11134 */ 11135 env->migration_type = migrate_task; 11136 env->imbalance = busiest->sum_h_nr_running; 11137 return; 11138 } 11139 11140 if (busiest->group_type == group_smt_balance) { 11141 /* Reduce number of tasks sharing CPU capacity */ 11142 env->migration_type = migrate_task; 11143 env->imbalance = 1; 11144 return; 11145 } 11146 11147 if (busiest->group_type == group_imbalanced) { 11148 /* 11149 * In the group_imb case we cannot rely on group-wide averages 11150 * to ensure CPU-load equilibrium, try to move any task to fix 11151 * the imbalance. The next load balance will take care of 11152 * balancing back the system. 11153 */ 11154 env->migration_type = migrate_task; 11155 env->imbalance = 1; 11156 return; 11157 } 11158 11159 /* 11160 * Try to use spare capacity of local group without overloading it or 11161 * emptying busiest. 11162 */ 11163 if (local->group_type == group_has_spare) { 11164 if ((busiest->group_type > group_fully_busy) && 11165 !(env->sd->flags & SD_SHARE_LLC)) { 11166 /* 11167 * If busiest is overloaded, try to fill spare 11168 * capacity. This might end up creating spare capacity 11169 * in busiest or busiest still being overloaded but 11170 * there is no simple way to directly compute the 11171 * amount of load to migrate in order to balance the 11172 * system. 11173 */ 11174 env->migration_type = migrate_util; 11175 env->imbalance = max(local->group_capacity, local->group_util) - 11176 local->group_util; 11177 11178 /* 11179 * In some cases, the group's utilization is max or even 11180 * higher than capacity because of migrations but the 11181 * local CPU is (newly) idle. There is at least one 11182 * waiting task in this overloaded busiest group. Let's 11183 * try to pull it. 11184 */ 11185 if (env->idle && env->imbalance == 0) { 11186 env->migration_type = migrate_task; 11187 env->imbalance = 1; 11188 } 11189 11190 return; 11191 } 11192 11193 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11194 /* 11195 * When prefer sibling, evenly spread running tasks on 11196 * groups. 11197 */ 11198 env->migration_type = migrate_task; 11199 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11200 } else { 11201 11202 /* 11203 * If there is no overload, we just want to even the number of 11204 * idle CPUs. 11205 */ 11206 env->migration_type = migrate_task; 11207 env->imbalance = max_t(long, 0, 11208 (local->idle_cpus - busiest->idle_cpus)); 11209 } 11210 11211 #ifdef CONFIG_NUMA 11212 /* Consider allowing a small imbalance between NUMA groups */ 11213 if (env->sd->flags & SD_NUMA) { 11214 env->imbalance = adjust_numa_imbalance(env->imbalance, 11215 local->sum_nr_running + 1, 11216 env->sd->imb_numa_nr); 11217 } 11218 #endif 11219 11220 /* Number of tasks to move to restore balance */ 11221 env->imbalance >>= 1; 11222 11223 return; 11224 } 11225 11226 /* 11227 * Local is fully busy but has to take more load to relieve the 11228 * busiest group 11229 */ 11230 if (local->group_type < group_overloaded) { 11231 /* 11232 * Local will become overloaded so the avg_load metrics are 11233 * finally needed. 11234 */ 11235 11236 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11237 local->group_capacity; 11238 11239 /* 11240 * If the local group is more loaded than the selected 11241 * busiest group don't try to pull any tasks. 11242 */ 11243 if (local->avg_load >= busiest->avg_load) { 11244 env->imbalance = 0; 11245 return; 11246 } 11247 11248 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11249 sds->total_capacity; 11250 11251 /* 11252 * If the local group is more loaded than the average system 11253 * load, don't try to pull any tasks. 11254 */ 11255 if (local->avg_load >= sds->avg_load) { 11256 env->imbalance = 0; 11257 return; 11258 } 11259 11260 } 11261 11262 /* 11263 * Both group are or will become overloaded and we're trying to get all 11264 * the CPUs to the average_load, so we don't want to push ourselves 11265 * above the average load, nor do we wish to reduce the max loaded CPU 11266 * below the average load. At the same time, we also don't want to 11267 * reduce the group load below the group capacity. Thus we look for 11268 * the minimum possible imbalance. 11269 */ 11270 env->migration_type = migrate_load; 11271 env->imbalance = min( 11272 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11273 (sds->avg_load - local->avg_load) * local->group_capacity 11274 ) / SCHED_CAPACITY_SCALE; 11275 } 11276 11277 /******* sched_balance_find_src_group() helpers end here *********************/ 11278 11279 /* 11280 * Decision matrix according to the local and busiest group type: 11281 * 11282 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11283 * has_spare nr_idle balanced N/A N/A balanced balanced 11284 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11285 * misfit_task force N/A N/A N/A N/A N/A 11286 * asym_packing force force N/A N/A force force 11287 * imbalanced force force N/A N/A force force 11288 * overloaded force force N/A N/A force avg_load 11289 * 11290 * N/A : Not Applicable because already filtered while updating 11291 * statistics. 11292 * balanced : The system is balanced for these 2 groups. 11293 * force : Calculate the imbalance as load migration is probably needed. 11294 * avg_load : Only if imbalance is significant enough. 11295 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11296 * different in groups. 11297 */ 11298 11299 /** 11300 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11301 * if there is an imbalance. 11302 * @env: The load balancing environment. 11303 * 11304 * Also calculates the amount of runnable load which should be moved 11305 * to restore balance. 11306 * 11307 * Return: - The busiest group if imbalance exists. 11308 */ 11309 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11310 { 11311 struct sg_lb_stats *local, *busiest; 11312 struct sd_lb_stats sds; 11313 11314 init_sd_lb_stats(&sds); 11315 11316 /* 11317 * Compute the various statistics relevant for load balancing at 11318 * this level. 11319 */ 11320 update_sd_lb_stats(env, &sds); 11321 11322 /* There is no busy sibling group to pull tasks from */ 11323 if (!sds.busiest) 11324 goto out_balanced; 11325 11326 busiest = &sds.busiest_stat; 11327 11328 /* Misfit tasks should be dealt with regardless of the avg load */ 11329 if (busiest->group_type == group_misfit_task) 11330 goto force_balance; 11331 11332 if (!is_rd_overutilized(env->dst_rq->rd) && 11333 rcu_dereference(env->dst_rq->rd->pd)) 11334 goto out_balanced; 11335 11336 /* ASYM feature bypasses nice load balance check */ 11337 if (busiest->group_type == group_asym_packing) 11338 goto force_balance; 11339 11340 /* 11341 * If the busiest group is imbalanced the below checks don't 11342 * work because they assume all things are equal, which typically 11343 * isn't true due to cpus_ptr constraints and the like. 11344 */ 11345 if (busiest->group_type == group_imbalanced) 11346 goto force_balance; 11347 11348 local = &sds.local_stat; 11349 /* 11350 * If the local group is busier than the selected busiest group 11351 * don't try and pull any tasks. 11352 */ 11353 if (local->group_type > busiest->group_type) 11354 goto out_balanced; 11355 11356 /* 11357 * When groups are overloaded, use the avg_load to ensure fairness 11358 * between tasks. 11359 */ 11360 if (local->group_type == group_overloaded) { 11361 /* 11362 * If the local group is more loaded than the selected 11363 * busiest group don't try to pull any tasks. 11364 */ 11365 if (local->avg_load >= busiest->avg_load) 11366 goto out_balanced; 11367 11368 /* XXX broken for overlapping NUMA groups */ 11369 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11370 sds.total_capacity; 11371 11372 /* 11373 * Don't pull any tasks if this group is already above the 11374 * domain average load. 11375 */ 11376 if (local->avg_load >= sds.avg_load) 11377 goto out_balanced; 11378 11379 /* 11380 * If the busiest group is more loaded, use imbalance_pct to be 11381 * conservative. 11382 */ 11383 if (100 * busiest->avg_load <= 11384 env->sd->imbalance_pct * local->avg_load) 11385 goto out_balanced; 11386 } 11387 11388 /* 11389 * Try to move all excess tasks to a sibling domain of the busiest 11390 * group's child domain. 11391 */ 11392 if (sds.prefer_sibling && local->group_type == group_has_spare && 11393 sibling_imbalance(env, &sds, busiest, local) > 1) 11394 goto force_balance; 11395 11396 if (busiest->group_type != group_overloaded) { 11397 if (!env->idle) { 11398 /* 11399 * If the busiest group is not overloaded (and as a 11400 * result the local one too) but this CPU is already 11401 * busy, let another idle CPU try to pull task. 11402 */ 11403 goto out_balanced; 11404 } 11405 11406 if (busiest->group_type == group_smt_balance && 11407 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11408 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11409 goto force_balance; 11410 } 11411 11412 if (busiest->group_weight > 1 && 11413 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11414 /* 11415 * If the busiest group is not overloaded 11416 * and there is no imbalance between this and busiest 11417 * group wrt idle CPUs, it is balanced. The imbalance 11418 * becomes significant if the diff is greater than 1 11419 * otherwise we might end up to just move the imbalance 11420 * on another group. Of course this applies only if 11421 * there is more than 1 CPU per group. 11422 */ 11423 goto out_balanced; 11424 } 11425 11426 if (busiest->sum_h_nr_running == 1) { 11427 /* 11428 * busiest doesn't have any tasks waiting to run 11429 */ 11430 goto out_balanced; 11431 } 11432 } 11433 11434 force_balance: 11435 /* Looks like there is an imbalance. Compute it */ 11436 calculate_imbalance(env, &sds); 11437 return env->imbalance ? sds.busiest : NULL; 11438 11439 out_balanced: 11440 env->imbalance = 0; 11441 return NULL; 11442 } 11443 11444 /* 11445 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11446 */ 11447 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11448 struct sched_group *group) 11449 { 11450 struct rq *busiest = NULL, *rq; 11451 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11452 unsigned int busiest_nr = 0; 11453 int i; 11454 11455 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11456 unsigned long capacity, load, util; 11457 unsigned int nr_running; 11458 enum fbq_type rt; 11459 11460 rq = cpu_rq(i); 11461 rt = fbq_classify_rq(rq); 11462 11463 /* 11464 * We classify groups/runqueues into three groups: 11465 * - regular: there are !numa tasks 11466 * - remote: there are numa tasks that run on the 'wrong' node 11467 * - all: there is no distinction 11468 * 11469 * In order to avoid migrating ideally placed numa tasks, 11470 * ignore those when there's better options. 11471 * 11472 * If we ignore the actual busiest queue to migrate another 11473 * task, the next balance pass can still reduce the busiest 11474 * queue by moving tasks around inside the node. 11475 * 11476 * If we cannot move enough load due to this classification 11477 * the next pass will adjust the group classification and 11478 * allow migration of more tasks. 11479 * 11480 * Both cases only affect the total convergence complexity. 11481 */ 11482 if (rt > env->fbq_type) 11483 continue; 11484 11485 nr_running = rq->cfs.h_nr_runnable; 11486 if (!nr_running) 11487 continue; 11488 11489 capacity = capacity_of(i); 11490 11491 /* 11492 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11493 * eventually lead to active_balancing high->low capacity. 11494 * Higher per-CPU capacity is considered better than balancing 11495 * average load. 11496 */ 11497 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11498 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11499 nr_running == 1) 11500 continue; 11501 11502 /* 11503 * Make sure we only pull tasks from a CPU of lower priority 11504 * when balancing between SMT siblings. 11505 * 11506 * If balancing between cores, let lower priority CPUs help 11507 * SMT cores with more than one busy sibling. 11508 */ 11509 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11510 continue; 11511 11512 switch (env->migration_type) { 11513 case migrate_load: 11514 /* 11515 * When comparing with load imbalance, use cpu_load() 11516 * which is not scaled with the CPU capacity. 11517 */ 11518 load = cpu_load(rq); 11519 11520 if (nr_running == 1 && load > env->imbalance && 11521 !check_cpu_capacity(rq, env->sd)) 11522 break; 11523 11524 /* 11525 * For the load comparisons with the other CPUs, 11526 * consider the cpu_load() scaled with the CPU 11527 * capacity, so that the load can be moved away 11528 * from the CPU that is potentially running at a 11529 * lower capacity. 11530 * 11531 * Thus we're looking for max(load_i / capacity_i), 11532 * crosswise multiplication to rid ourselves of the 11533 * division works out to: 11534 * load_i * capacity_j > load_j * capacity_i; 11535 * where j is our previous maximum. 11536 */ 11537 if (load * busiest_capacity > busiest_load * capacity) { 11538 busiest_load = load; 11539 busiest_capacity = capacity; 11540 busiest = rq; 11541 } 11542 break; 11543 11544 case migrate_util: 11545 util = cpu_util_cfs_boost(i); 11546 11547 /* 11548 * Don't try to pull utilization from a CPU with one 11549 * running task. Whatever its utilization, we will fail 11550 * detach the task. 11551 */ 11552 if (nr_running <= 1) 11553 continue; 11554 11555 if (busiest_util < util) { 11556 busiest_util = util; 11557 busiest = rq; 11558 } 11559 break; 11560 11561 case migrate_task: 11562 if (busiest_nr < nr_running) { 11563 busiest_nr = nr_running; 11564 busiest = rq; 11565 } 11566 break; 11567 11568 case migrate_misfit: 11569 /* 11570 * For ASYM_CPUCAPACITY domains with misfit tasks we 11571 * simply seek the "biggest" misfit task. 11572 */ 11573 if (rq->misfit_task_load > busiest_load) { 11574 busiest_load = rq->misfit_task_load; 11575 busiest = rq; 11576 } 11577 11578 break; 11579 11580 } 11581 } 11582 11583 return busiest; 11584 } 11585 11586 /* 11587 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11588 * so long as it is large enough. 11589 */ 11590 #define MAX_PINNED_INTERVAL 512 11591 11592 static inline bool 11593 asym_active_balance(struct lb_env *env) 11594 { 11595 /* 11596 * ASYM_PACKING needs to force migrate tasks from busy but lower 11597 * priority CPUs in order to pack all tasks in the highest priority 11598 * CPUs. When done between cores, do it only if the whole core if the 11599 * whole core is idle. 11600 * 11601 * If @env::src_cpu is an SMT core with busy siblings, let 11602 * the lower priority @env::dst_cpu help it. Do not follow 11603 * CPU priority. 11604 */ 11605 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11606 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11607 !sched_use_asym_prio(env->sd, env->src_cpu)); 11608 } 11609 11610 static inline bool 11611 imbalanced_active_balance(struct lb_env *env) 11612 { 11613 struct sched_domain *sd = env->sd; 11614 11615 /* 11616 * The imbalanced case includes the case of pinned tasks preventing a fair 11617 * distribution of the load on the system but also the even distribution of the 11618 * threads on a system with spare capacity 11619 */ 11620 if ((env->migration_type == migrate_task) && 11621 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11622 return 1; 11623 11624 return 0; 11625 } 11626 11627 static int need_active_balance(struct lb_env *env) 11628 { 11629 struct sched_domain *sd = env->sd; 11630 11631 if (asym_active_balance(env)) 11632 return 1; 11633 11634 if (imbalanced_active_balance(env)) 11635 return 1; 11636 11637 /* 11638 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11639 * It's worth migrating the task if the src_cpu's capacity is reduced 11640 * because of other sched_class or IRQs if more capacity stays 11641 * available on dst_cpu. 11642 */ 11643 if (env->idle && 11644 (env->src_rq->cfs.h_nr_runnable == 1)) { 11645 if ((check_cpu_capacity(env->src_rq, sd)) && 11646 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11647 return 1; 11648 } 11649 11650 if (env->migration_type == migrate_misfit) 11651 return 1; 11652 11653 return 0; 11654 } 11655 11656 static int active_load_balance_cpu_stop(void *data); 11657 11658 static int should_we_balance(struct lb_env *env) 11659 { 11660 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11661 struct sched_group *sg = env->sd->groups; 11662 int cpu, idle_smt = -1; 11663 11664 /* 11665 * Ensure the balancing environment is consistent; can happen 11666 * when the softirq triggers 'during' hotplug. 11667 */ 11668 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11669 return 0; 11670 11671 /* 11672 * In the newly idle case, we will allow all the CPUs 11673 * to do the newly idle load balance. 11674 * 11675 * However, we bail out if we already have tasks or a wakeup pending, 11676 * to optimize wakeup latency. 11677 */ 11678 if (env->idle == CPU_NEWLY_IDLE) { 11679 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11680 return 0; 11681 return 1; 11682 } 11683 11684 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11685 /* Try to find first idle CPU */ 11686 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11687 if (!idle_cpu(cpu)) 11688 continue; 11689 11690 /* 11691 * Don't balance to idle SMT in busy core right away when 11692 * balancing cores, but remember the first idle SMT CPU for 11693 * later consideration. Find CPU on an idle core first. 11694 */ 11695 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11696 if (idle_smt == -1) 11697 idle_smt = cpu; 11698 /* 11699 * If the core is not idle, and first SMT sibling which is 11700 * idle has been found, then its not needed to check other 11701 * SMT siblings for idleness: 11702 */ 11703 #ifdef CONFIG_SCHED_SMT 11704 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11705 #endif 11706 continue; 11707 } 11708 11709 /* 11710 * Are we the first idle core in a non-SMT domain or higher, 11711 * or the first idle CPU in a SMT domain? 11712 */ 11713 return cpu == env->dst_cpu; 11714 } 11715 11716 /* Are we the first idle CPU with busy siblings? */ 11717 if (idle_smt != -1) 11718 return idle_smt == env->dst_cpu; 11719 11720 /* Are we the first CPU of this group ? */ 11721 return group_balance_cpu(sg) == env->dst_cpu; 11722 } 11723 11724 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11725 enum cpu_idle_type idle) 11726 { 11727 if (!schedstat_enabled()) 11728 return; 11729 11730 switch (env->migration_type) { 11731 case migrate_load: 11732 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11733 break; 11734 case migrate_util: 11735 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11736 break; 11737 case migrate_task: 11738 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11739 break; 11740 case migrate_misfit: 11741 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11742 break; 11743 } 11744 } 11745 11746 /* 11747 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11748 * tasks if there is an imbalance. 11749 */ 11750 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11751 struct sched_domain *sd, enum cpu_idle_type idle, 11752 int *continue_balancing) 11753 { 11754 int ld_moved, cur_ld_moved, active_balance = 0; 11755 struct sched_domain *sd_parent = sd->parent; 11756 struct sched_group *group; 11757 struct rq *busiest; 11758 struct rq_flags rf; 11759 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11760 struct lb_env env = { 11761 .sd = sd, 11762 .dst_cpu = this_cpu, 11763 .dst_rq = this_rq, 11764 .dst_grpmask = group_balance_mask(sd->groups), 11765 .idle = idle, 11766 .loop_break = SCHED_NR_MIGRATE_BREAK, 11767 .cpus = cpus, 11768 .fbq_type = all, 11769 .tasks = LIST_HEAD_INIT(env.tasks), 11770 }; 11771 11772 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11773 11774 schedstat_inc(sd->lb_count[idle]); 11775 11776 redo: 11777 if (!should_we_balance(&env)) { 11778 *continue_balancing = 0; 11779 goto out_balanced; 11780 } 11781 11782 group = sched_balance_find_src_group(&env); 11783 if (!group) { 11784 schedstat_inc(sd->lb_nobusyg[idle]); 11785 goto out_balanced; 11786 } 11787 11788 busiest = sched_balance_find_src_rq(&env, group); 11789 if (!busiest) { 11790 schedstat_inc(sd->lb_nobusyq[idle]); 11791 goto out_balanced; 11792 } 11793 11794 WARN_ON_ONCE(busiest == env.dst_rq); 11795 11796 update_lb_imbalance_stat(&env, sd, idle); 11797 11798 env.src_cpu = busiest->cpu; 11799 env.src_rq = busiest; 11800 11801 ld_moved = 0; 11802 /* Clear this flag as soon as we find a pullable task */ 11803 env.flags |= LBF_ALL_PINNED; 11804 if (busiest->nr_running > 1) { 11805 /* 11806 * Attempt to move tasks. If sched_balance_find_src_group has found 11807 * an imbalance but busiest->nr_running <= 1, the group is 11808 * still unbalanced. ld_moved simply stays zero, so it is 11809 * correctly treated as an imbalance. 11810 */ 11811 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11812 11813 more_balance: 11814 rq_lock_irqsave(busiest, &rf); 11815 update_rq_clock(busiest); 11816 11817 /* 11818 * cur_ld_moved - load moved in current iteration 11819 * ld_moved - cumulative load moved across iterations 11820 */ 11821 cur_ld_moved = detach_tasks(&env); 11822 11823 /* 11824 * We've detached some tasks from busiest_rq. Every 11825 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11826 * unlock busiest->lock, and we are able to be sure 11827 * that nobody can manipulate the tasks in parallel. 11828 * See task_rq_lock() family for the details. 11829 */ 11830 11831 rq_unlock(busiest, &rf); 11832 11833 if (cur_ld_moved) { 11834 attach_tasks(&env); 11835 ld_moved += cur_ld_moved; 11836 } 11837 11838 local_irq_restore(rf.flags); 11839 11840 if (env.flags & LBF_NEED_BREAK) { 11841 env.flags &= ~LBF_NEED_BREAK; 11842 goto more_balance; 11843 } 11844 11845 /* 11846 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11847 * us and move them to an alternate dst_cpu in our sched_group 11848 * where they can run. The upper limit on how many times we 11849 * iterate on same src_cpu is dependent on number of CPUs in our 11850 * sched_group. 11851 * 11852 * This changes load balance semantics a bit on who can move 11853 * load to a given_cpu. In addition to the given_cpu itself 11854 * (or a ilb_cpu acting on its behalf where given_cpu is 11855 * nohz-idle), we now have balance_cpu in a position to move 11856 * load to given_cpu. In rare situations, this may cause 11857 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11858 * _independently_ and at _same_ time to move some load to 11859 * given_cpu) causing excess load to be moved to given_cpu. 11860 * This however should not happen so much in practice and 11861 * moreover subsequent load balance cycles should correct the 11862 * excess load moved. 11863 */ 11864 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11865 11866 /* Prevent to re-select dst_cpu via env's CPUs */ 11867 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11868 11869 env.dst_rq = cpu_rq(env.new_dst_cpu); 11870 env.dst_cpu = env.new_dst_cpu; 11871 env.flags &= ~LBF_DST_PINNED; 11872 env.loop = 0; 11873 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11874 11875 /* 11876 * Go back to "more_balance" rather than "redo" since we 11877 * need to continue with same src_cpu. 11878 */ 11879 goto more_balance; 11880 } 11881 11882 /* 11883 * We failed to reach balance because of affinity. 11884 */ 11885 if (sd_parent) { 11886 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11887 11888 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11889 *group_imbalance = 1; 11890 } 11891 11892 /* All tasks on this runqueue were pinned by CPU affinity */ 11893 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11894 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11895 /* 11896 * Attempting to continue load balancing at the current 11897 * sched_domain level only makes sense if there are 11898 * active CPUs remaining as possible busiest CPUs to 11899 * pull load from which are not contained within the 11900 * destination group that is receiving any migrated 11901 * load. 11902 */ 11903 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11904 env.loop = 0; 11905 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11906 goto redo; 11907 } 11908 goto out_all_pinned; 11909 } 11910 } 11911 11912 if (!ld_moved) { 11913 schedstat_inc(sd->lb_failed[idle]); 11914 /* 11915 * Increment the failure counter only on periodic balance. 11916 * We do not want newidle balance, which can be very 11917 * frequent, pollute the failure counter causing 11918 * excessive cache_hot migrations and active balances. 11919 * 11920 * Similarly for migration_misfit which is not related to 11921 * load/util migration, don't pollute nr_balance_failed. 11922 */ 11923 if (idle != CPU_NEWLY_IDLE && 11924 env.migration_type != migrate_misfit) 11925 sd->nr_balance_failed++; 11926 11927 if (need_active_balance(&env)) { 11928 unsigned long flags; 11929 11930 raw_spin_rq_lock_irqsave(busiest, flags); 11931 11932 /* 11933 * Don't kick the active_load_balance_cpu_stop, 11934 * if the curr task on busiest CPU can't be 11935 * moved to this_cpu: 11936 */ 11937 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11938 raw_spin_rq_unlock_irqrestore(busiest, flags); 11939 goto out_one_pinned; 11940 } 11941 11942 /* Record that we found at least one task that could run on this_cpu */ 11943 env.flags &= ~LBF_ALL_PINNED; 11944 11945 /* 11946 * ->active_balance synchronizes accesses to 11947 * ->active_balance_work. Once set, it's cleared 11948 * only after active load balance is finished. 11949 */ 11950 if (!busiest->active_balance) { 11951 busiest->active_balance = 1; 11952 busiest->push_cpu = this_cpu; 11953 active_balance = 1; 11954 } 11955 11956 preempt_disable(); 11957 raw_spin_rq_unlock_irqrestore(busiest, flags); 11958 if (active_balance) { 11959 stop_one_cpu_nowait(cpu_of(busiest), 11960 active_load_balance_cpu_stop, busiest, 11961 &busiest->active_balance_work); 11962 } 11963 preempt_enable(); 11964 } 11965 } else { 11966 sd->nr_balance_failed = 0; 11967 } 11968 11969 if (likely(!active_balance) || need_active_balance(&env)) { 11970 /* We were unbalanced, so reset the balancing interval */ 11971 sd->balance_interval = sd->min_interval; 11972 } 11973 11974 goto out; 11975 11976 out_balanced: 11977 /* 11978 * We reach balance although we may have faced some affinity 11979 * constraints. Clear the imbalance flag only if other tasks got 11980 * a chance to move and fix the imbalance. 11981 */ 11982 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11983 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11984 11985 if (*group_imbalance) 11986 *group_imbalance = 0; 11987 } 11988 11989 out_all_pinned: 11990 /* 11991 * We reach balance because all tasks are pinned at this level so 11992 * we can't migrate them. Let the imbalance flag set so parent level 11993 * can try to migrate them. 11994 */ 11995 schedstat_inc(sd->lb_balanced[idle]); 11996 11997 sd->nr_balance_failed = 0; 11998 11999 out_one_pinned: 12000 ld_moved = 0; 12001 12002 /* 12003 * sched_balance_newidle() disregards balance intervals, so we could 12004 * repeatedly reach this code, which would lead to balance_interval 12005 * skyrocketing in a short amount of time. Skip the balance_interval 12006 * increase logic to avoid that. 12007 * 12008 * Similarly misfit migration which is not necessarily an indication of 12009 * the system being busy and requires lb to backoff to let it settle 12010 * down. 12011 */ 12012 if (env.idle == CPU_NEWLY_IDLE || 12013 env.migration_type == migrate_misfit) 12014 goto out; 12015 12016 /* tune up the balancing interval */ 12017 if ((env.flags & LBF_ALL_PINNED && 12018 sd->balance_interval < MAX_PINNED_INTERVAL) || 12019 sd->balance_interval < sd->max_interval) 12020 sd->balance_interval *= 2; 12021 out: 12022 return ld_moved; 12023 } 12024 12025 static inline unsigned long 12026 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12027 { 12028 unsigned long interval = sd->balance_interval; 12029 12030 if (cpu_busy) 12031 interval *= sd->busy_factor; 12032 12033 /* scale ms to jiffies */ 12034 interval = msecs_to_jiffies(interval); 12035 12036 /* 12037 * Reduce likelihood of busy balancing at higher domains racing with 12038 * balancing at lower domains by preventing their balancing periods 12039 * from being multiples of each other. 12040 */ 12041 if (cpu_busy) 12042 interval -= 1; 12043 12044 interval = clamp(interval, 1UL, max_load_balance_interval); 12045 12046 return interval; 12047 } 12048 12049 static inline void 12050 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12051 { 12052 unsigned long interval, next; 12053 12054 /* used by idle balance, so cpu_busy = 0 */ 12055 interval = get_sd_balance_interval(sd, 0); 12056 next = sd->last_balance + interval; 12057 12058 if (time_after(*next_balance, next)) 12059 *next_balance = next; 12060 } 12061 12062 /* 12063 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12064 * running tasks off the busiest CPU onto idle CPUs. It requires at 12065 * least 1 task to be running on each physical CPU where possible, and 12066 * avoids physical / logical imbalances. 12067 */ 12068 static int active_load_balance_cpu_stop(void *data) 12069 { 12070 struct rq *busiest_rq = data; 12071 int busiest_cpu = cpu_of(busiest_rq); 12072 int target_cpu = busiest_rq->push_cpu; 12073 struct rq *target_rq = cpu_rq(target_cpu); 12074 struct sched_domain *sd; 12075 struct task_struct *p = NULL; 12076 struct rq_flags rf; 12077 12078 rq_lock_irq(busiest_rq, &rf); 12079 /* 12080 * Between queueing the stop-work and running it is a hole in which 12081 * CPUs can become inactive. We should not move tasks from or to 12082 * inactive CPUs. 12083 */ 12084 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12085 goto out_unlock; 12086 12087 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12088 if (unlikely(busiest_cpu != smp_processor_id() || 12089 !busiest_rq->active_balance)) 12090 goto out_unlock; 12091 12092 /* Is there any task to move? */ 12093 if (busiest_rq->nr_running <= 1) 12094 goto out_unlock; 12095 12096 /* 12097 * This condition is "impossible", if it occurs 12098 * we need to fix it. Originally reported by 12099 * Bjorn Helgaas on a 128-CPU setup. 12100 */ 12101 WARN_ON_ONCE(busiest_rq == target_rq); 12102 12103 /* Search for an sd spanning us and the target CPU. */ 12104 rcu_read_lock(); 12105 for_each_domain(target_cpu, sd) { 12106 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12107 break; 12108 } 12109 12110 if (likely(sd)) { 12111 struct lb_env env = { 12112 .sd = sd, 12113 .dst_cpu = target_cpu, 12114 .dst_rq = target_rq, 12115 .src_cpu = busiest_rq->cpu, 12116 .src_rq = busiest_rq, 12117 .idle = CPU_IDLE, 12118 .flags = LBF_ACTIVE_LB, 12119 }; 12120 12121 schedstat_inc(sd->alb_count); 12122 update_rq_clock(busiest_rq); 12123 12124 p = detach_one_task(&env); 12125 if (p) { 12126 schedstat_inc(sd->alb_pushed); 12127 /* Active balancing done, reset the failure counter. */ 12128 sd->nr_balance_failed = 0; 12129 } else { 12130 schedstat_inc(sd->alb_failed); 12131 } 12132 } 12133 rcu_read_unlock(); 12134 out_unlock: 12135 busiest_rq->active_balance = 0; 12136 rq_unlock(busiest_rq, &rf); 12137 12138 if (p) 12139 attach_one_task(target_rq, p); 12140 12141 local_irq_enable(); 12142 12143 return 0; 12144 } 12145 12146 /* 12147 * This flag serializes load-balancing passes over large domains 12148 * (above the NODE topology level) - only one load-balancing instance 12149 * may run at a time, to reduce overhead on very large systems with 12150 * lots of CPUs and large NUMA distances. 12151 * 12152 * - Note that load-balancing passes triggered while another one 12153 * is executing are skipped and not re-tried. 12154 * 12155 * - Also note that this does not serialize rebalance_domains() 12156 * execution, as non-SD_SERIALIZE domains will still be 12157 * load-balanced in parallel. 12158 */ 12159 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12160 12161 /* 12162 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12163 * This trades load-balance latency on larger machines for less cross talk. 12164 */ 12165 void update_max_interval(void) 12166 { 12167 max_load_balance_interval = HZ*num_online_cpus()/10; 12168 } 12169 12170 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12171 { 12172 if (cost > sd->max_newidle_lb_cost) { 12173 /* 12174 * Track max cost of a domain to make sure to not delay the 12175 * next wakeup on the CPU. 12176 */ 12177 sd->max_newidle_lb_cost = cost; 12178 sd->last_decay_max_lb_cost = jiffies; 12179 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12180 /* 12181 * Decay the newidle max times by ~1% per second to ensure that 12182 * it is not outdated and the current max cost is actually 12183 * shorter. 12184 */ 12185 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12186 sd->last_decay_max_lb_cost = jiffies; 12187 12188 return true; 12189 } 12190 12191 return false; 12192 } 12193 12194 /* 12195 * It checks each scheduling domain to see if it is due to be balanced, 12196 * and initiates a balancing operation if so. 12197 * 12198 * Balancing parameters are set up in init_sched_domains. 12199 */ 12200 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12201 { 12202 int continue_balancing = 1; 12203 int cpu = rq->cpu; 12204 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12205 unsigned long interval; 12206 struct sched_domain *sd; 12207 /* Earliest time when we have to do rebalance again */ 12208 unsigned long next_balance = jiffies + 60*HZ; 12209 int update_next_balance = 0; 12210 int need_serialize, need_decay = 0; 12211 u64 max_cost = 0; 12212 12213 rcu_read_lock(); 12214 for_each_domain(cpu, sd) { 12215 /* 12216 * Decay the newidle max times here because this is a regular 12217 * visit to all the domains. 12218 */ 12219 need_decay = update_newidle_cost(sd, 0); 12220 max_cost += sd->max_newidle_lb_cost; 12221 12222 /* 12223 * Stop the load balance at this level. There is another 12224 * CPU in our sched group which is doing load balancing more 12225 * actively. 12226 */ 12227 if (!continue_balancing) { 12228 if (need_decay) 12229 continue; 12230 break; 12231 } 12232 12233 interval = get_sd_balance_interval(sd, busy); 12234 12235 need_serialize = sd->flags & SD_SERIALIZE; 12236 if (need_serialize) { 12237 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12238 goto out; 12239 } 12240 12241 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12242 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12243 /* 12244 * The LBF_DST_PINNED logic could have changed 12245 * env->dst_cpu, so we can't know our idle 12246 * state even if we migrated tasks. Update it. 12247 */ 12248 idle = idle_cpu(cpu); 12249 busy = !idle && !sched_idle_cpu(cpu); 12250 } 12251 sd->last_balance = jiffies; 12252 interval = get_sd_balance_interval(sd, busy); 12253 } 12254 if (need_serialize) 12255 atomic_set_release(&sched_balance_running, 0); 12256 out: 12257 if (time_after(next_balance, sd->last_balance + interval)) { 12258 next_balance = sd->last_balance + interval; 12259 update_next_balance = 1; 12260 } 12261 } 12262 if (need_decay) { 12263 /* 12264 * Ensure the rq-wide value also decays but keep it at a 12265 * reasonable floor to avoid funnies with rq->avg_idle. 12266 */ 12267 rq->max_idle_balance_cost = 12268 max((u64)sysctl_sched_migration_cost, max_cost); 12269 } 12270 rcu_read_unlock(); 12271 12272 /* 12273 * next_balance will be updated only when there is a need. 12274 * When the cpu is attached to null domain for ex, it will not be 12275 * updated. 12276 */ 12277 if (likely(update_next_balance)) 12278 rq->next_balance = next_balance; 12279 12280 } 12281 12282 static inline int on_null_domain(struct rq *rq) 12283 { 12284 return unlikely(!rcu_dereference_sched(rq->sd)); 12285 } 12286 12287 #ifdef CONFIG_NO_HZ_COMMON 12288 /* 12289 * NOHZ idle load balancing (ILB) details: 12290 * 12291 * - When one of the busy CPUs notices that there may be an idle rebalancing 12292 * needed, they will kick the idle load balancer, which then does idle 12293 * load balancing for all the idle CPUs. 12294 */ 12295 static inline int find_new_ilb(void) 12296 { 12297 const struct cpumask *hk_mask; 12298 int ilb_cpu; 12299 12300 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12301 12302 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12303 12304 if (ilb_cpu == smp_processor_id()) 12305 continue; 12306 12307 if (idle_cpu(ilb_cpu)) 12308 return ilb_cpu; 12309 } 12310 12311 return -1; 12312 } 12313 12314 /* 12315 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12316 * SMP function call (IPI). 12317 * 12318 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12319 * (if there is one). 12320 */ 12321 static void kick_ilb(unsigned int flags) 12322 { 12323 int ilb_cpu; 12324 12325 /* 12326 * Increase nohz.next_balance only when if full ilb is triggered but 12327 * not if we only update stats. 12328 */ 12329 if (flags & NOHZ_BALANCE_KICK) 12330 nohz.next_balance = jiffies+1; 12331 12332 ilb_cpu = find_new_ilb(); 12333 if (ilb_cpu < 0) 12334 return; 12335 12336 /* 12337 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12338 * i.e. all bits in flags are already set in ilb_cpu. 12339 */ 12340 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12341 return; 12342 12343 /* 12344 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12345 * the first flag owns it; cleared by nohz_csd_func(). 12346 */ 12347 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12348 if (flags & NOHZ_KICK_MASK) 12349 return; 12350 12351 /* 12352 * This way we generate an IPI on the target CPU which 12353 * is idle, and the softirq performing NOHZ idle load balancing 12354 * will be run before returning from the IPI. 12355 */ 12356 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12357 } 12358 12359 /* 12360 * Current decision point for kicking the idle load balancer in the presence 12361 * of idle CPUs in the system. 12362 */ 12363 static void nohz_balancer_kick(struct rq *rq) 12364 { 12365 unsigned long now = jiffies; 12366 struct sched_domain_shared *sds; 12367 struct sched_domain *sd; 12368 int nr_busy, i, cpu = rq->cpu; 12369 unsigned int flags = 0; 12370 12371 if (unlikely(rq->idle_balance)) 12372 return; 12373 12374 /* 12375 * We may be recently in ticked or tickless idle mode. At the first 12376 * busy tick after returning from idle, we will update the busy stats. 12377 */ 12378 nohz_balance_exit_idle(rq); 12379 12380 /* 12381 * None are in tickless mode and hence no need for NOHZ idle load 12382 * balancing: 12383 */ 12384 if (likely(!atomic_read(&nohz.nr_cpus))) 12385 return; 12386 12387 if (READ_ONCE(nohz.has_blocked) && 12388 time_after(now, READ_ONCE(nohz.next_blocked))) 12389 flags = NOHZ_STATS_KICK; 12390 12391 if (time_before(now, nohz.next_balance)) 12392 goto out; 12393 12394 if (rq->nr_running >= 2) { 12395 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12396 goto out; 12397 } 12398 12399 rcu_read_lock(); 12400 12401 sd = rcu_dereference(rq->sd); 12402 if (sd) { 12403 /* 12404 * If there's a runnable CFS task and the current CPU has reduced 12405 * capacity, kick the ILB to see if there's a better CPU to run on: 12406 */ 12407 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12408 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12409 goto unlock; 12410 } 12411 } 12412 12413 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12414 if (sd) { 12415 /* 12416 * When ASYM_PACKING; see if there's a more preferred CPU 12417 * currently idle; in which case, kick the ILB to move tasks 12418 * around. 12419 * 12420 * When balancing between cores, all the SMT siblings of the 12421 * preferred CPU must be idle. 12422 */ 12423 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12424 if (sched_asym(sd, i, cpu)) { 12425 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12426 goto unlock; 12427 } 12428 } 12429 } 12430 12431 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12432 if (sd) { 12433 /* 12434 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12435 * to run the misfit task on. 12436 */ 12437 if (check_misfit_status(rq)) { 12438 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12439 goto unlock; 12440 } 12441 12442 /* 12443 * For asymmetric systems, we do not want to nicely balance 12444 * cache use, instead we want to embrace asymmetry and only 12445 * ensure tasks have enough CPU capacity. 12446 * 12447 * Skip the LLC logic because it's not relevant in that case. 12448 */ 12449 goto unlock; 12450 } 12451 12452 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12453 if (sds) { 12454 /* 12455 * If there is an imbalance between LLC domains (IOW we could 12456 * increase the overall cache utilization), we need a less-loaded LLC 12457 * domain to pull some load from. Likewise, we may need to spread 12458 * load within the current LLC domain (e.g. packed SMT cores but 12459 * other CPUs are idle). We can't really know from here how busy 12460 * the others are - so just get a NOHZ balance going if it looks 12461 * like this LLC domain has tasks we could move. 12462 */ 12463 nr_busy = atomic_read(&sds->nr_busy_cpus); 12464 if (nr_busy > 1) { 12465 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12466 goto unlock; 12467 } 12468 } 12469 unlock: 12470 rcu_read_unlock(); 12471 out: 12472 if (READ_ONCE(nohz.needs_update)) 12473 flags |= NOHZ_NEXT_KICK; 12474 12475 if (flags) 12476 kick_ilb(flags); 12477 } 12478 12479 static void set_cpu_sd_state_busy(int cpu) 12480 { 12481 struct sched_domain *sd; 12482 12483 rcu_read_lock(); 12484 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12485 12486 if (!sd || !sd->nohz_idle) 12487 goto unlock; 12488 sd->nohz_idle = 0; 12489 12490 atomic_inc(&sd->shared->nr_busy_cpus); 12491 unlock: 12492 rcu_read_unlock(); 12493 } 12494 12495 void nohz_balance_exit_idle(struct rq *rq) 12496 { 12497 WARN_ON_ONCE(rq != this_rq()); 12498 12499 if (likely(!rq->nohz_tick_stopped)) 12500 return; 12501 12502 rq->nohz_tick_stopped = 0; 12503 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12504 atomic_dec(&nohz.nr_cpus); 12505 12506 set_cpu_sd_state_busy(rq->cpu); 12507 } 12508 12509 static void set_cpu_sd_state_idle(int cpu) 12510 { 12511 struct sched_domain *sd; 12512 12513 rcu_read_lock(); 12514 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12515 12516 if (!sd || sd->nohz_idle) 12517 goto unlock; 12518 sd->nohz_idle = 1; 12519 12520 atomic_dec(&sd->shared->nr_busy_cpus); 12521 unlock: 12522 rcu_read_unlock(); 12523 } 12524 12525 /* 12526 * This routine will record that the CPU is going idle with tick stopped. 12527 * This info will be used in performing idle load balancing in the future. 12528 */ 12529 void nohz_balance_enter_idle(int cpu) 12530 { 12531 struct rq *rq = cpu_rq(cpu); 12532 12533 WARN_ON_ONCE(cpu != smp_processor_id()); 12534 12535 /* If this CPU is going down, then nothing needs to be done: */ 12536 if (!cpu_active(cpu)) 12537 return; 12538 12539 /* 12540 * Can be set safely without rq->lock held 12541 * If a clear happens, it will have evaluated last additions because 12542 * rq->lock is held during the check and the clear 12543 */ 12544 rq->has_blocked_load = 1; 12545 12546 /* 12547 * The tick is still stopped but load could have been added in the 12548 * meantime. We set the nohz.has_blocked flag to trig a check of the 12549 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12550 * of nohz.has_blocked can only happen after checking the new load 12551 */ 12552 if (rq->nohz_tick_stopped) 12553 goto out; 12554 12555 /* If we're a completely isolated CPU, we don't play: */ 12556 if (on_null_domain(rq)) 12557 return; 12558 12559 rq->nohz_tick_stopped = 1; 12560 12561 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12562 atomic_inc(&nohz.nr_cpus); 12563 12564 /* 12565 * Ensures that if nohz_idle_balance() fails to observe our 12566 * @idle_cpus_mask store, it must observe the @has_blocked 12567 * and @needs_update stores. 12568 */ 12569 smp_mb__after_atomic(); 12570 12571 set_cpu_sd_state_idle(cpu); 12572 12573 WRITE_ONCE(nohz.needs_update, 1); 12574 out: 12575 /* 12576 * Each time a cpu enter idle, we assume that it has blocked load and 12577 * enable the periodic update of the load of idle CPUs 12578 */ 12579 WRITE_ONCE(nohz.has_blocked, 1); 12580 } 12581 12582 static bool update_nohz_stats(struct rq *rq) 12583 { 12584 unsigned int cpu = rq->cpu; 12585 12586 if (!rq->has_blocked_load) 12587 return false; 12588 12589 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12590 return false; 12591 12592 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12593 return true; 12594 12595 sched_balance_update_blocked_averages(cpu); 12596 12597 return rq->has_blocked_load; 12598 } 12599 12600 /* 12601 * Internal function that runs load balance for all idle CPUs. The load balance 12602 * can be a simple update of blocked load or a complete load balance with 12603 * tasks movement depending of flags. 12604 */ 12605 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12606 { 12607 /* Earliest time when we have to do rebalance again */ 12608 unsigned long now = jiffies; 12609 unsigned long next_balance = now + 60*HZ; 12610 bool has_blocked_load = false; 12611 int update_next_balance = 0; 12612 int this_cpu = this_rq->cpu; 12613 int balance_cpu; 12614 struct rq *rq; 12615 12616 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12617 12618 /* 12619 * We assume there will be no idle load after this update and clear 12620 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12621 * set the has_blocked flag and trigger another update of idle load. 12622 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12623 * setting the flag, we are sure to not clear the state and not 12624 * check the load of an idle cpu. 12625 * 12626 * Same applies to idle_cpus_mask vs needs_update. 12627 */ 12628 if (flags & NOHZ_STATS_KICK) 12629 WRITE_ONCE(nohz.has_blocked, 0); 12630 if (flags & NOHZ_NEXT_KICK) 12631 WRITE_ONCE(nohz.needs_update, 0); 12632 12633 /* 12634 * Ensures that if we miss the CPU, we must see the has_blocked 12635 * store from nohz_balance_enter_idle(). 12636 */ 12637 smp_mb(); 12638 12639 /* 12640 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12641 * chance for other idle cpu to pull load. 12642 */ 12643 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12644 if (!idle_cpu(balance_cpu)) 12645 continue; 12646 12647 /* 12648 * If this CPU gets work to do, stop the load balancing 12649 * work being done for other CPUs. Next load 12650 * balancing owner will pick it up. 12651 */ 12652 if (!idle_cpu(this_cpu) && need_resched()) { 12653 if (flags & NOHZ_STATS_KICK) 12654 has_blocked_load = true; 12655 if (flags & NOHZ_NEXT_KICK) 12656 WRITE_ONCE(nohz.needs_update, 1); 12657 goto abort; 12658 } 12659 12660 rq = cpu_rq(balance_cpu); 12661 12662 if (flags & NOHZ_STATS_KICK) 12663 has_blocked_load |= update_nohz_stats(rq); 12664 12665 /* 12666 * If time for next balance is due, 12667 * do the balance. 12668 */ 12669 if (time_after_eq(jiffies, rq->next_balance)) { 12670 struct rq_flags rf; 12671 12672 rq_lock_irqsave(rq, &rf); 12673 update_rq_clock(rq); 12674 rq_unlock_irqrestore(rq, &rf); 12675 12676 if (flags & NOHZ_BALANCE_KICK) 12677 sched_balance_domains(rq, CPU_IDLE); 12678 } 12679 12680 if (time_after(next_balance, rq->next_balance)) { 12681 next_balance = rq->next_balance; 12682 update_next_balance = 1; 12683 } 12684 } 12685 12686 /* 12687 * next_balance will be updated only when there is a need. 12688 * When the CPU is attached to null domain for ex, it will not be 12689 * updated. 12690 */ 12691 if (likely(update_next_balance)) 12692 nohz.next_balance = next_balance; 12693 12694 if (flags & NOHZ_STATS_KICK) 12695 WRITE_ONCE(nohz.next_blocked, 12696 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12697 12698 abort: 12699 /* There is still blocked load, enable periodic update */ 12700 if (has_blocked_load) 12701 WRITE_ONCE(nohz.has_blocked, 1); 12702 } 12703 12704 /* 12705 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12706 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12707 */ 12708 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12709 { 12710 unsigned int flags = this_rq->nohz_idle_balance; 12711 12712 if (!flags) 12713 return false; 12714 12715 this_rq->nohz_idle_balance = 0; 12716 12717 if (idle != CPU_IDLE) 12718 return false; 12719 12720 _nohz_idle_balance(this_rq, flags); 12721 12722 return true; 12723 } 12724 12725 /* 12726 * Check if we need to directly run the ILB for updating blocked load before 12727 * entering idle state. Here we run ILB directly without issuing IPIs. 12728 * 12729 * Note that when this function is called, the tick may not yet be stopped on 12730 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12731 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12732 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12733 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12734 * called from this function on (this) CPU that's not yet in the mask. That's 12735 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12736 * updating the blocked load of already idle CPUs without waking up one of 12737 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12738 * cpu about to enter idle, because it can take a long time. 12739 */ 12740 void nohz_run_idle_balance(int cpu) 12741 { 12742 unsigned int flags; 12743 12744 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12745 12746 /* 12747 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12748 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12749 */ 12750 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12751 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12752 } 12753 12754 static void nohz_newidle_balance(struct rq *this_rq) 12755 { 12756 int this_cpu = this_rq->cpu; 12757 12758 /* Will wake up very soon. No time for doing anything else*/ 12759 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12760 return; 12761 12762 /* Don't need to update blocked load of idle CPUs*/ 12763 if (!READ_ONCE(nohz.has_blocked) || 12764 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12765 return; 12766 12767 /* 12768 * Set the need to trigger ILB in order to update blocked load 12769 * before entering idle state. 12770 */ 12771 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12772 } 12773 12774 #else /* !CONFIG_NO_HZ_COMMON */ 12775 static inline void nohz_balancer_kick(struct rq *rq) { } 12776 12777 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12778 { 12779 return false; 12780 } 12781 12782 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12783 #endif /* CONFIG_NO_HZ_COMMON */ 12784 12785 /* 12786 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12787 * idle. Attempts to pull tasks from other CPUs. 12788 * 12789 * Returns: 12790 * < 0 - we released the lock and there are !fair tasks present 12791 * 0 - failed, no new tasks 12792 * > 0 - success, new (fair) tasks present 12793 */ 12794 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12795 { 12796 unsigned long next_balance = jiffies + HZ; 12797 int this_cpu = this_rq->cpu; 12798 int continue_balancing = 1; 12799 u64 t0, t1, curr_cost = 0; 12800 struct sched_domain *sd; 12801 int pulled_task = 0; 12802 12803 update_misfit_status(NULL, this_rq); 12804 12805 /* 12806 * There is a task waiting to run. No need to search for one. 12807 * Return 0; the task will be enqueued when switching to idle. 12808 */ 12809 if (this_rq->ttwu_pending) 12810 return 0; 12811 12812 /* 12813 * We must set idle_stamp _before_ calling sched_balance_rq() 12814 * for CPU_NEWLY_IDLE, such that we measure the this duration 12815 * as idle time. 12816 */ 12817 this_rq->idle_stamp = rq_clock(this_rq); 12818 12819 /* 12820 * Do not pull tasks towards !active CPUs... 12821 */ 12822 if (!cpu_active(this_cpu)) 12823 return 0; 12824 12825 /* 12826 * This is OK, because current is on_cpu, which avoids it being picked 12827 * for load-balance and preemption/IRQs are still disabled avoiding 12828 * further scheduler activity on it and we're being very careful to 12829 * re-start the picking loop. 12830 */ 12831 rq_unpin_lock(this_rq, rf); 12832 12833 rcu_read_lock(); 12834 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12835 12836 if (!get_rd_overloaded(this_rq->rd) || 12837 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12838 12839 if (sd) 12840 update_next_balance(sd, &next_balance); 12841 rcu_read_unlock(); 12842 12843 goto out; 12844 } 12845 rcu_read_unlock(); 12846 12847 raw_spin_rq_unlock(this_rq); 12848 12849 t0 = sched_clock_cpu(this_cpu); 12850 sched_balance_update_blocked_averages(this_cpu); 12851 12852 rcu_read_lock(); 12853 for_each_domain(this_cpu, sd) { 12854 u64 domain_cost; 12855 12856 update_next_balance(sd, &next_balance); 12857 12858 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12859 break; 12860 12861 if (sd->flags & SD_BALANCE_NEWIDLE) { 12862 12863 pulled_task = sched_balance_rq(this_cpu, this_rq, 12864 sd, CPU_NEWLY_IDLE, 12865 &continue_balancing); 12866 12867 t1 = sched_clock_cpu(this_cpu); 12868 domain_cost = t1 - t0; 12869 update_newidle_cost(sd, domain_cost); 12870 12871 curr_cost += domain_cost; 12872 t0 = t1; 12873 } 12874 12875 /* 12876 * Stop searching for tasks to pull if there are 12877 * now runnable tasks on this rq. 12878 */ 12879 if (pulled_task || !continue_balancing) 12880 break; 12881 } 12882 rcu_read_unlock(); 12883 12884 raw_spin_rq_lock(this_rq); 12885 12886 if (curr_cost > this_rq->max_idle_balance_cost) 12887 this_rq->max_idle_balance_cost = curr_cost; 12888 12889 /* 12890 * While browsing the domains, we released the rq lock, a task could 12891 * have been enqueued in the meantime. Since we're not going idle, 12892 * pretend we pulled a task. 12893 */ 12894 if (this_rq->cfs.h_nr_queued && !pulled_task) 12895 pulled_task = 1; 12896 12897 /* Is there a task of a high priority class? */ 12898 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12899 pulled_task = -1; 12900 12901 out: 12902 /* Move the next balance forward */ 12903 if (time_after(this_rq->next_balance, next_balance)) 12904 this_rq->next_balance = next_balance; 12905 12906 if (pulled_task) 12907 this_rq->idle_stamp = 0; 12908 else 12909 nohz_newidle_balance(this_rq); 12910 12911 rq_repin_lock(this_rq, rf); 12912 12913 return pulled_task; 12914 } 12915 12916 /* 12917 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12918 * 12919 * - directly from the local sched_tick() for periodic load balancing 12920 * 12921 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12922 * through the SMP cross-call nohz_csd_func() 12923 */ 12924 static __latent_entropy void sched_balance_softirq(void) 12925 { 12926 struct rq *this_rq = this_rq(); 12927 enum cpu_idle_type idle = this_rq->idle_balance; 12928 /* 12929 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12930 * balancing on behalf of the other idle CPUs whose ticks are 12931 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12932 * give the idle CPUs a chance to load balance. Else we may 12933 * load balance only within the local sched_domain hierarchy 12934 * and abort nohz_idle_balance altogether if we pull some load. 12935 */ 12936 if (nohz_idle_balance(this_rq, idle)) 12937 return; 12938 12939 /* normal load balance */ 12940 sched_balance_update_blocked_averages(this_rq->cpu); 12941 sched_balance_domains(this_rq, idle); 12942 } 12943 12944 /* 12945 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12946 */ 12947 void sched_balance_trigger(struct rq *rq) 12948 { 12949 /* 12950 * Don't need to rebalance while attached to NULL domain or 12951 * runqueue CPU is not active 12952 */ 12953 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12954 return; 12955 12956 if (time_after_eq(jiffies, rq->next_balance)) 12957 raise_softirq(SCHED_SOFTIRQ); 12958 12959 nohz_balancer_kick(rq); 12960 } 12961 12962 static void rq_online_fair(struct rq *rq) 12963 { 12964 update_sysctl(); 12965 12966 update_runtime_enabled(rq); 12967 } 12968 12969 static void rq_offline_fair(struct rq *rq) 12970 { 12971 update_sysctl(); 12972 12973 /* Ensure any throttled groups are reachable by pick_next_task */ 12974 unthrottle_offline_cfs_rqs(rq); 12975 12976 /* Ensure that we remove rq contribution to group share: */ 12977 clear_tg_offline_cfs_rqs(rq); 12978 } 12979 12980 #endif /* CONFIG_SMP */ 12981 12982 #ifdef CONFIG_SCHED_CORE 12983 static inline bool 12984 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12985 { 12986 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12987 u64 slice = se->slice; 12988 12989 return (rtime * min_nr_tasks > slice); 12990 } 12991 12992 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12993 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12994 { 12995 if (!sched_core_enabled(rq)) 12996 return; 12997 12998 /* 12999 * If runqueue has only one task which used up its slice and 13000 * if the sibling is forced idle, then trigger schedule to 13001 * give forced idle task a chance. 13002 * 13003 * sched_slice() considers only this active rq and it gets the 13004 * whole slice. But during force idle, we have siblings acting 13005 * like a single runqueue and hence we need to consider runnable 13006 * tasks on this CPU and the forced idle CPU. Ideally, we should 13007 * go through the forced idle rq, but that would be a perf hit. 13008 * We can assume that the forced idle CPU has at least 13009 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13010 * if we need to give up the CPU. 13011 */ 13012 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13013 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13014 resched_curr(rq); 13015 } 13016 13017 /* 13018 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 13019 */ 13020 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13021 bool forceidle) 13022 { 13023 for_each_sched_entity(se) { 13024 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13025 13026 if (forceidle) { 13027 if (cfs_rq->forceidle_seq == fi_seq) 13028 break; 13029 cfs_rq->forceidle_seq = fi_seq; 13030 } 13031 13032 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13033 } 13034 } 13035 13036 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13037 { 13038 struct sched_entity *se = &p->se; 13039 13040 if (p->sched_class != &fair_sched_class) 13041 return; 13042 13043 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13044 } 13045 13046 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13047 bool in_fi) 13048 { 13049 struct rq *rq = task_rq(a); 13050 const struct sched_entity *sea = &a->se; 13051 const struct sched_entity *seb = &b->se; 13052 struct cfs_rq *cfs_rqa; 13053 struct cfs_rq *cfs_rqb; 13054 s64 delta; 13055 13056 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13057 13058 #ifdef CONFIG_FAIR_GROUP_SCHED 13059 /* 13060 * Find an se in the hierarchy for tasks a and b, such that the se's 13061 * are immediate siblings. 13062 */ 13063 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13064 int sea_depth = sea->depth; 13065 int seb_depth = seb->depth; 13066 13067 if (sea_depth >= seb_depth) 13068 sea = parent_entity(sea); 13069 if (sea_depth <= seb_depth) 13070 seb = parent_entity(seb); 13071 } 13072 13073 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13074 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13075 13076 cfs_rqa = sea->cfs_rq; 13077 cfs_rqb = seb->cfs_rq; 13078 #else 13079 cfs_rqa = &task_rq(a)->cfs; 13080 cfs_rqb = &task_rq(b)->cfs; 13081 #endif 13082 13083 /* 13084 * Find delta after normalizing se's vruntime with its cfs_rq's 13085 * min_vruntime_fi, which would have been updated in prior calls 13086 * to se_fi_update(). 13087 */ 13088 delta = (s64)(sea->vruntime - seb->vruntime) + 13089 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13090 13091 return delta > 0; 13092 } 13093 13094 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13095 { 13096 struct cfs_rq *cfs_rq; 13097 13098 #ifdef CONFIG_FAIR_GROUP_SCHED 13099 cfs_rq = task_group(p)->cfs_rq[cpu]; 13100 #else 13101 cfs_rq = &cpu_rq(cpu)->cfs; 13102 #endif 13103 return throttled_hierarchy(cfs_rq); 13104 } 13105 #else 13106 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13107 #endif 13108 13109 /* 13110 * scheduler tick hitting a task of our scheduling class. 13111 * 13112 * NOTE: This function can be called remotely by the tick offload that 13113 * goes along full dynticks. Therefore no local assumption can be made 13114 * and everything must be accessed through the @rq and @curr passed in 13115 * parameters. 13116 */ 13117 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13118 { 13119 struct cfs_rq *cfs_rq; 13120 struct sched_entity *se = &curr->se; 13121 13122 for_each_sched_entity(se) { 13123 cfs_rq = cfs_rq_of(se); 13124 entity_tick(cfs_rq, se, queued); 13125 } 13126 13127 if (static_branch_unlikely(&sched_numa_balancing)) 13128 task_tick_numa(rq, curr); 13129 13130 update_misfit_status(curr, rq); 13131 check_update_overutilized_status(task_rq(curr)); 13132 13133 task_tick_core(rq, curr); 13134 } 13135 13136 /* 13137 * called on fork with the child task as argument from the parent's context 13138 * - child not yet on the tasklist 13139 * - preemption disabled 13140 */ 13141 static void task_fork_fair(struct task_struct *p) 13142 { 13143 set_task_max_allowed_capacity(p); 13144 } 13145 13146 /* 13147 * Priority of the task has changed. Check to see if we preempt 13148 * the current task. 13149 */ 13150 static void 13151 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13152 { 13153 if (!task_on_rq_queued(p)) 13154 return; 13155 13156 if (rq->cfs.nr_queued == 1) 13157 return; 13158 13159 /* 13160 * Reschedule if we are currently running on this runqueue and 13161 * our priority decreased, or if we are not currently running on 13162 * this runqueue and our priority is higher than the current's 13163 */ 13164 if (task_current_donor(rq, p)) { 13165 if (p->prio > oldprio) 13166 resched_curr(rq); 13167 } else 13168 wakeup_preempt(rq, p, 0); 13169 } 13170 13171 #ifdef CONFIG_FAIR_GROUP_SCHED 13172 /* 13173 * Propagate the changes of the sched_entity across the tg tree to make it 13174 * visible to the root 13175 */ 13176 static void propagate_entity_cfs_rq(struct sched_entity *se) 13177 { 13178 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13179 13180 if (cfs_rq_throttled(cfs_rq)) 13181 return; 13182 13183 if (!throttled_hierarchy(cfs_rq)) 13184 list_add_leaf_cfs_rq(cfs_rq); 13185 13186 /* Start to propagate at parent */ 13187 se = se->parent; 13188 13189 for_each_sched_entity(se) { 13190 cfs_rq = cfs_rq_of(se); 13191 13192 update_load_avg(cfs_rq, se, UPDATE_TG); 13193 13194 if (cfs_rq_throttled(cfs_rq)) 13195 break; 13196 13197 if (!throttled_hierarchy(cfs_rq)) 13198 list_add_leaf_cfs_rq(cfs_rq); 13199 } 13200 } 13201 #else 13202 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13203 #endif 13204 13205 static void detach_entity_cfs_rq(struct sched_entity *se) 13206 { 13207 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13208 13209 #ifdef CONFIG_SMP 13210 /* 13211 * In case the task sched_avg hasn't been attached: 13212 * - A forked task which hasn't been woken up by wake_up_new_task(). 13213 * - A task which has been woken up by try_to_wake_up() but is 13214 * waiting for actually being woken up by sched_ttwu_pending(). 13215 */ 13216 if (!se->avg.last_update_time) 13217 return; 13218 #endif 13219 13220 /* Catch up with the cfs_rq and remove our load when we leave */ 13221 update_load_avg(cfs_rq, se, 0); 13222 detach_entity_load_avg(cfs_rq, se); 13223 update_tg_load_avg(cfs_rq); 13224 propagate_entity_cfs_rq(se); 13225 } 13226 13227 static void attach_entity_cfs_rq(struct sched_entity *se) 13228 { 13229 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13230 13231 /* Synchronize entity with its cfs_rq */ 13232 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13233 attach_entity_load_avg(cfs_rq, se); 13234 update_tg_load_avg(cfs_rq); 13235 propagate_entity_cfs_rq(se); 13236 } 13237 13238 static void detach_task_cfs_rq(struct task_struct *p) 13239 { 13240 struct sched_entity *se = &p->se; 13241 13242 detach_entity_cfs_rq(se); 13243 } 13244 13245 static void attach_task_cfs_rq(struct task_struct *p) 13246 { 13247 struct sched_entity *se = &p->se; 13248 13249 attach_entity_cfs_rq(se); 13250 } 13251 13252 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13253 { 13254 detach_task_cfs_rq(p); 13255 } 13256 13257 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13258 { 13259 WARN_ON_ONCE(p->se.sched_delayed); 13260 13261 attach_task_cfs_rq(p); 13262 13263 set_task_max_allowed_capacity(p); 13264 13265 if (task_on_rq_queued(p)) { 13266 /* 13267 * We were most likely switched from sched_rt, so 13268 * kick off the schedule if running, otherwise just see 13269 * if we can still preempt the current task. 13270 */ 13271 if (task_current_donor(rq, p)) 13272 resched_curr(rq); 13273 else 13274 wakeup_preempt(rq, p, 0); 13275 } 13276 } 13277 13278 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13279 { 13280 struct sched_entity *se = &p->se; 13281 13282 #ifdef CONFIG_SMP 13283 if (task_on_rq_queued(p)) { 13284 /* 13285 * Move the next running task to the front of the list, so our 13286 * cfs_tasks list becomes MRU one. 13287 */ 13288 list_move(&se->group_node, &rq->cfs_tasks); 13289 } 13290 #endif 13291 if (!first) 13292 return; 13293 13294 WARN_ON_ONCE(se->sched_delayed); 13295 13296 if (hrtick_enabled_fair(rq)) 13297 hrtick_start_fair(rq, p); 13298 13299 update_misfit_status(p, rq); 13300 sched_fair_update_stop_tick(rq, p); 13301 } 13302 13303 /* 13304 * Account for a task changing its policy or group. 13305 * 13306 * This routine is mostly called to set cfs_rq->curr field when a task 13307 * migrates between groups/classes. 13308 */ 13309 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13310 { 13311 struct sched_entity *se = &p->se; 13312 13313 for_each_sched_entity(se) { 13314 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13315 13316 set_next_entity(cfs_rq, se); 13317 /* ensure bandwidth has been allocated on our new cfs_rq */ 13318 account_cfs_rq_runtime(cfs_rq, 0); 13319 } 13320 13321 __set_next_task_fair(rq, p, first); 13322 } 13323 13324 void init_cfs_rq(struct cfs_rq *cfs_rq) 13325 { 13326 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13327 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13328 #ifdef CONFIG_SMP 13329 raw_spin_lock_init(&cfs_rq->removed.lock); 13330 #endif 13331 } 13332 13333 #ifdef CONFIG_FAIR_GROUP_SCHED 13334 static void task_change_group_fair(struct task_struct *p) 13335 { 13336 /* 13337 * We couldn't detach or attach a forked task which 13338 * hasn't been woken up by wake_up_new_task(). 13339 */ 13340 if (READ_ONCE(p->__state) == TASK_NEW) 13341 return; 13342 13343 detach_task_cfs_rq(p); 13344 13345 #ifdef CONFIG_SMP 13346 /* Tell se's cfs_rq has been changed -- migrated */ 13347 p->se.avg.last_update_time = 0; 13348 #endif 13349 set_task_rq(p, task_cpu(p)); 13350 attach_task_cfs_rq(p); 13351 } 13352 13353 void free_fair_sched_group(struct task_group *tg) 13354 { 13355 int i; 13356 13357 for_each_possible_cpu(i) { 13358 if (tg->cfs_rq) 13359 kfree(tg->cfs_rq[i]); 13360 if (tg->se) 13361 kfree(tg->se[i]); 13362 } 13363 13364 kfree(tg->cfs_rq); 13365 kfree(tg->se); 13366 } 13367 13368 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13369 { 13370 struct sched_entity *se; 13371 struct cfs_rq *cfs_rq; 13372 int i; 13373 13374 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13375 if (!tg->cfs_rq) 13376 goto err; 13377 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13378 if (!tg->se) 13379 goto err; 13380 13381 tg->shares = NICE_0_LOAD; 13382 13383 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13384 13385 for_each_possible_cpu(i) { 13386 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13387 GFP_KERNEL, cpu_to_node(i)); 13388 if (!cfs_rq) 13389 goto err; 13390 13391 se = kzalloc_node(sizeof(struct sched_entity_stats), 13392 GFP_KERNEL, cpu_to_node(i)); 13393 if (!se) 13394 goto err_free_rq; 13395 13396 init_cfs_rq(cfs_rq); 13397 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13398 init_entity_runnable_average(se); 13399 } 13400 13401 return 1; 13402 13403 err_free_rq: 13404 kfree(cfs_rq); 13405 err: 13406 return 0; 13407 } 13408 13409 void online_fair_sched_group(struct task_group *tg) 13410 { 13411 struct sched_entity *se; 13412 struct rq_flags rf; 13413 struct rq *rq; 13414 int i; 13415 13416 for_each_possible_cpu(i) { 13417 rq = cpu_rq(i); 13418 se = tg->se[i]; 13419 rq_lock_irq(rq, &rf); 13420 update_rq_clock(rq); 13421 attach_entity_cfs_rq(se); 13422 sync_throttle(tg, i); 13423 rq_unlock_irq(rq, &rf); 13424 } 13425 } 13426 13427 void unregister_fair_sched_group(struct task_group *tg) 13428 { 13429 int cpu; 13430 13431 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13432 13433 for_each_possible_cpu(cpu) { 13434 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13435 struct sched_entity *se = tg->se[cpu]; 13436 struct rq *rq = cpu_rq(cpu); 13437 13438 if (se) { 13439 if (se->sched_delayed) { 13440 guard(rq_lock_irqsave)(rq); 13441 if (se->sched_delayed) { 13442 update_rq_clock(rq); 13443 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13444 } 13445 list_del_leaf_cfs_rq(cfs_rq); 13446 } 13447 remove_entity_load_avg(se); 13448 } 13449 13450 /* 13451 * Only empty task groups can be destroyed; so we can speculatively 13452 * check on_list without danger of it being re-added. 13453 */ 13454 if (cfs_rq->on_list) { 13455 guard(rq_lock_irqsave)(rq); 13456 list_del_leaf_cfs_rq(cfs_rq); 13457 } 13458 } 13459 } 13460 13461 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13462 struct sched_entity *se, int cpu, 13463 struct sched_entity *parent) 13464 { 13465 struct rq *rq = cpu_rq(cpu); 13466 13467 cfs_rq->tg = tg; 13468 cfs_rq->rq = rq; 13469 init_cfs_rq_runtime(cfs_rq); 13470 13471 tg->cfs_rq[cpu] = cfs_rq; 13472 tg->se[cpu] = se; 13473 13474 /* se could be NULL for root_task_group */ 13475 if (!se) 13476 return; 13477 13478 if (!parent) { 13479 se->cfs_rq = &rq->cfs; 13480 se->depth = 0; 13481 } else { 13482 se->cfs_rq = parent->my_q; 13483 se->depth = parent->depth + 1; 13484 } 13485 13486 se->my_q = cfs_rq; 13487 /* guarantee group entities always have weight */ 13488 update_load_set(&se->load, NICE_0_LOAD); 13489 se->parent = parent; 13490 } 13491 13492 static DEFINE_MUTEX(shares_mutex); 13493 13494 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13495 { 13496 int i; 13497 13498 lockdep_assert_held(&shares_mutex); 13499 13500 /* 13501 * We can't change the weight of the root cgroup. 13502 */ 13503 if (!tg->se[0]) 13504 return -EINVAL; 13505 13506 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13507 13508 if (tg->shares == shares) 13509 return 0; 13510 13511 tg->shares = shares; 13512 for_each_possible_cpu(i) { 13513 struct rq *rq = cpu_rq(i); 13514 struct sched_entity *se = tg->se[i]; 13515 struct rq_flags rf; 13516 13517 /* Propagate contribution to hierarchy */ 13518 rq_lock_irqsave(rq, &rf); 13519 update_rq_clock(rq); 13520 for_each_sched_entity(se) { 13521 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13522 update_cfs_group(se); 13523 } 13524 rq_unlock_irqrestore(rq, &rf); 13525 } 13526 13527 return 0; 13528 } 13529 13530 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13531 { 13532 int ret; 13533 13534 mutex_lock(&shares_mutex); 13535 if (tg_is_idle(tg)) 13536 ret = -EINVAL; 13537 else 13538 ret = __sched_group_set_shares(tg, shares); 13539 mutex_unlock(&shares_mutex); 13540 13541 return ret; 13542 } 13543 13544 int sched_group_set_idle(struct task_group *tg, long idle) 13545 { 13546 int i; 13547 13548 if (tg == &root_task_group) 13549 return -EINVAL; 13550 13551 if (idle < 0 || idle > 1) 13552 return -EINVAL; 13553 13554 mutex_lock(&shares_mutex); 13555 13556 if (tg->idle == idle) { 13557 mutex_unlock(&shares_mutex); 13558 return 0; 13559 } 13560 13561 tg->idle = idle; 13562 13563 for_each_possible_cpu(i) { 13564 struct rq *rq = cpu_rq(i); 13565 struct sched_entity *se = tg->se[i]; 13566 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13567 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13568 long idle_task_delta; 13569 struct rq_flags rf; 13570 13571 rq_lock_irqsave(rq, &rf); 13572 13573 grp_cfs_rq->idle = idle; 13574 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13575 goto next_cpu; 13576 13577 idle_task_delta = grp_cfs_rq->h_nr_queued - 13578 grp_cfs_rq->h_nr_idle; 13579 if (!cfs_rq_is_idle(grp_cfs_rq)) 13580 idle_task_delta *= -1; 13581 13582 for_each_sched_entity(se) { 13583 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13584 13585 if (!se->on_rq) 13586 break; 13587 13588 cfs_rq->h_nr_idle += idle_task_delta; 13589 13590 /* Already accounted at parent level and above. */ 13591 if (cfs_rq_is_idle(cfs_rq)) 13592 break; 13593 } 13594 13595 next_cpu: 13596 rq_unlock_irqrestore(rq, &rf); 13597 } 13598 13599 /* Idle groups have minimum weight. */ 13600 if (tg_is_idle(tg)) 13601 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13602 else 13603 __sched_group_set_shares(tg, NICE_0_LOAD); 13604 13605 mutex_unlock(&shares_mutex); 13606 return 0; 13607 } 13608 13609 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13610 13611 13612 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13613 { 13614 struct sched_entity *se = &task->se; 13615 unsigned int rr_interval = 0; 13616 13617 /* 13618 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13619 * idle runqueue: 13620 */ 13621 if (rq->cfs.load.weight) 13622 rr_interval = NS_TO_JIFFIES(se->slice); 13623 13624 return rr_interval; 13625 } 13626 13627 /* 13628 * All the scheduling class methods: 13629 */ 13630 DEFINE_SCHED_CLASS(fair) = { 13631 13632 .enqueue_task = enqueue_task_fair, 13633 .dequeue_task = dequeue_task_fair, 13634 .yield_task = yield_task_fair, 13635 .yield_to_task = yield_to_task_fair, 13636 13637 .wakeup_preempt = check_preempt_wakeup_fair, 13638 13639 .pick_task = pick_task_fair, 13640 .pick_next_task = __pick_next_task_fair, 13641 .put_prev_task = put_prev_task_fair, 13642 .set_next_task = set_next_task_fair, 13643 13644 #ifdef CONFIG_SMP 13645 .balance = balance_fair, 13646 .select_task_rq = select_task_rq_fair, 13647 .migrate_task_rq = migrate_task_rq_fair, 13648 13649 .rq_online = rq_online_fair, 13650 .rq_offline = rq_offline_fair, 13651 13652 .task_dead = task_dead_fair, 13653 .set_cpus_allowed = set_cpus_allowed_fair, 13654 #endif 13655 13656 .task_tick = task_tick_fair, 13657 .task_fork = task_fork_fair, 13658 13659 .reweight_task = reweight_task_fair, 13660 .prio_changed = prio_changed_fair, 13661 .switched_from = switched_from_fair, 13662 .switched_to = switched_to_fair, 13663 13664 .get_rr_interval = get_rr_interval_fair, 13665 13666 .update_curr = update_curr_fair, 13667 13668 #ifdef CONFIG_FAIR_GROUP_SCHED 13669 .task_change_group = task_change_group_fair, 13670 #endif 13671 13672 #ifdef CONFIG_SCHED_CORE 13673 .task_is_throttled = task_is_throttled_fair, 13674 #endif 13675 13676 #ifdef CONFIG_UCLAMP_TASK 13677 .uclamp_enabled = 1, 13678 #endif 13679 }; 13680 13681 void print_cfs_stats(struct seq_file *m, int cpu) 13682 { 13683 struct cfs_rq *cfs_rq, *pos; 13684 13685 rcu_read_lock(); 13686 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13687 print_cfs_rq(m, cpu, cfs_rq); 13688 rcu_read_unlock(); 13689 } 13690 13691 #ifdef CONFIG_NUMA_BALANCING 13692 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13693 { 13694 int node; 13695 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13696 struct numa_group *ng; 13697 13698 rcu_read_lock(); 13699 ng = rcu_dereference(p->numa_group); 13700 for_each_online_node(node) { 13701 if (p->numa_faults) { 13702 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13703 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13704 } 13705 if (ng) { 13706 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13707 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13708 } 13709 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13710 } 13711 rcu_read_unlock(); 13712 } 13713 #endif /* CONFIG_NUMA_BALANCING */ 13714 13715 __init void init_sched_fair_class(void) 13716 { 13717 #ifdef CONFIG_SMP 13718 int i; 13719 13720 for_each_possible_cpu(i) { 13721 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13722 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13723 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13724 GFP_KERNEL, cpu_to_node(i)); 13725 13726 #ifdef CONFIG_CFS_BANDWIDTH 13727 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13728 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13729 #endif 13730 } 13731 13732 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13733 13734 #ifdef CONFIG_NO_HZ_COMMON 13735 nohz.next_balance = jiffies; 13736 nohz.next_blocked = jiffies; 13737 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13738 #endif 13739 #endif /* SMP */ 13740 13741 } 13742