1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 WARN_ON_ONCE(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * HACK, stash a copy of deadline at the point of pick in vlag, 888 * which isn't used until dequeue. 889 */ 890 static inline void set_protect_slice(struct sched_entity *se) 891 { 892 se->vlag = se->deadline; 893 } 894 895 static inline bool protect_slice(struct sched_entity *se) 896 { 897 return se->vlag == se->deadline; 898 } 899 900 static inline void cancel_protect_slice(struct sched_entity *se) 901 { 902 if (protect_slice(se)) 903 se->vlag = se->deadline + 1; 904 } 905 906 /* 907 * Earliest Eligible Virtual Deadline First 908 * 909 * In order to provide latency guarantees for different request sizes 910 * EEVDF selects the best runnable task from two criteria: 911 * 912 * 1) the task must be eligible (must be owed service) 913 * 914 * 2) from those tasks that meet 1), we select the one 915 * with the earliest virtual deadline. 916 * 917 * We can do this in O(log n) time due to an augmented RB-tree. The 918 * tree keeps the entries sorted on deadline, but also functions as a 919 * heap based on the vruntime by keeping: 920 * 921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 922 * 923 * Which allows tree pruning through eligibility. 924 */ 925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 926 { 927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 928 struct sched_entity *se = __pick_first_entity(cfs_rq); 929 struct sched_entity *curr = cfs_rq->curr; 930 struct sched_entity *best = NULL; 931 932 /* 933 * We can safely skip eligibility check if there is only one entity 934 * in this cfs_rq, saving some cycles. 935 */ 936 if (cfs_rq->nr_queued == 1) 937 return curr && curr->on_rq ? curr : se; 938 939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 940 curr = NULL; 941 942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) 943 return curr; 944 945 /* Pick the leftmost entity if it's eligible */ 946 if (se && entity_eligible(cfs_rq, se)) { 947 best = se; 948 goto found; 949 } 950 951 /* Heap search for the EEVD entity */ 952 while (node) { 953 struct rb_node *left = node->rb_left; 954 955 /* 956 * Eligible entities in left subtree are always better 957 * choices, since they have earlier deadlines. 958 */ 959 if (left && vruntime_eligible(cfs_rq, 960 __node_2_se(left)->min_vruntime)) { 961 node = left; 962 continue; 963 } 964 965 se = __node_2_se(node); 966 967 /* 968 * The left subtree either is empty or has no eligible 969 * entity, so check the current node since it is the one 970 * with earliest deadline that might be eligible. 971 */ 972 if (entity_eligible(cfs_rq, se)) { 973 best = se; 974 break; 975 } 976 977 node = node->rb_right; 978 } 979 found: 980 if (!best || (curr && entity_before(curr, best))) 981 best = curr; 982 983 return best; 984 } 985 986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 987 { 988 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 989 990 if (!last) 991 return NULL; 992 993 return __node_2_se(last); 994 } 995 996 /************************************************************** 997 * Scheduling class statistics methods: 998 */ 999 #ifdef CONFIG_SMP 1000 int sched_update_scaling(void) 1001 { 1002 unsigned int factor = get_update_sysctl_factor(); 1003 1004 #define WRT_SYSCTL(name) \ 1005 (normalized_sysctl_##name = sysctl_##name / (factor)) 1006 WRT_SYSCTL(sched_base_slice); 1007 #undef WRT_SYSCTL 1008 1009 return 0; 1010 } 1011 #endif 1012 1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1014 1015 /* 1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1017 * this is probably good enough. 1018 */ 1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1020 { 1021 if ((s64)(se->vruntime - se->deadline) < 0) 1022 return false; 1023 1024 /* 1025 * For EEVDF the virtual time slope is determined by w_i (iow. 1026 * nice) while the request time r_i is determined by 1027 * sysctl_sched_base_slice. 1028 */ 1029 if (!se->custom_slice) 1030 se->slice = sysctl_sched_base_slice; 1031 1032 /* 1033 * EEVDF: vd_i = ve_i + r_i / w_i 1034 */ 1035 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1036 1037 /* 1038 * The task has consumed its request, reschedule. 1039 */ 1040 return true; 1041 } 1042 1043 #include "pelt.h" 1044 #ifdef CONFIG_SMP 1045 1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1047 static unsigned long task_h_load(struct task_struct *p); 1048 static unsigned long capacity_of(int cpu); 1049 1050 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1051 void init_entity_runnable_average(struct sched_entity *se) 1052 { 1053 struct sched_avg *sa = &se->avg; 1054 1055 memset(sa, 0, sizeof(*sa)); 1056 1057 /* 1058 * Tasks are initialized with full load to be seen as heavy tasks until 1059 * they get a chance to stabilize to their real load level. 1060 * Group entities are initialized with zero load to reflect the fact that 1061 * nothing has been attached to the task group yet. 1062 */ 1063 if (entity_is_task(se)) 1064 sa->load_avg = scale_load_down(se->load.weight); 1065 1066 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1067 } 1068 1069 /* 1070 * With new tasks being created, their initial util_avgs are extrapolated 1071 * based on the cfs_rq's current util_avg: 1072 * 1073 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1074 * * se_weight(se) 1075 * 1076 * However, in many cases, the above util_avg does not give a desired 1077 * value. Moreover, the sum of the util_avgs may be divergent, such 1078 * as when the series is a harmonic series. 1079 * 1080 * To solve this problem, we also cap the util_avg of successive tasks to 1081 * only 1/2 of the left utilization budget: 1082 * 1083 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1084 * 1085 * where n denotes the nth task and cpu_scale the CPU capacity. 1086 * 1087 * For example, for a CPU with 1024 of capacity, a simplest series from 1088 * the beginning would be like: 1089 * 1090 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1091 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1092 * 1093 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1094 * if util_avg > util_avg_cap. 1095 */ 1096 void post_init_entity_util_avg(struct task_struct *p) 1097 { 1098 struct sched_entity *se = &p->se; 1099 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1100 struct sched_avg *sa = &se->avg; 1101 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1102 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1103 1104 if (p->sched_class != &fair_sched_class) { 1105 /* 1106 * For !fair tasks do: 1107 * 1108 update_cfs_rq_load_avg(now, cfs_rq); 1109 attach_entity_load_avg(cfs_rq, se); 1110 switched_from_fair(rq, p); 1111 * 1112 * such that the next switched_to_fair() has the 1113 * expected state. 1114 */ 1115 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1116 return; 1117 } 1118 1119 if (cap > 0) { 1120 if (cfs_rq->avg.util_avg != 0) { 1121 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1122 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1123 1124 if (sa->util_avg > cap) 1125 sa->util_avg = cap; 1126 } else { 1127 sa->util_avg = cap; 1128 } 1129 } 1130 1131 sa->runnable_avg = sa->util_avg; 1132 } 1133 1134 #else /* !CONFIG_SMP */ 1135 void init_entity_runnable_average(struct sched_entity *se) 1136 { 1137 } 1138 void post_init_entity_util_avg(struct task_struct *p) 1139 { 1140 } 1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1142 { 1143 } 1144 #endif /* CONFIG_SMP */ 1145 1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1147 { 1148 u64 now = rq_clock_task(rq); 1149 s64 delta_exec; 1150 1151 delta_exec = now - curr->exec_start; 1152 if (unlikely(delta_exec <= 0)) 1153 return delta_exec; 1154 1155 curr->exec_start = now; 1156 curr->sum_exec_runtime += delta_exec; 1157 1158 if (schedstat_enabled()) { 1159 struct sched_statistics *stats; 1160 1161 stats = __schedstats_from_se(curr); 1162 __schedstat_set(stats->exec_max, 1163 max(delta_exec, stats->exec_max)); 1164 } 1165 1166 return delta_exec; 1167 } 1168 1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1170 { 1171 trace_sched_stat_runtime(p, delta_exec); 1172 account_group_exec_runtime(p, delta_exec); 1173 cgroup_account_cputime(p, delta_exec); 1174 } 1175 1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1177 { 1178 if (!sched_feat(PREEMPT_SHORT)) 1179 return false; 1180 1181 if (curr->vlag == curr->deadline) 1182 return false; 1183 1184 return !entity_eligible(cfs_rq, curr); 1185 } 1186 1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1188 struct sched_entity *pse, struct sched_entity *se) 1189 { 1190 if (!sched_feat(PREEMPT_SHORT)) 1191 return false; 1192 1193 if (pse->slice >= se->slice) 1194 return false; 1195 1196 if (!entity_eligible(cfs_rq, pse)) 1197 return false; 1198 1199 if (entity_before(pse, se)) 1200 return true; 1201 1202 if (!entity_eligible(cfs_rq, se)) 1203 return true; 1204 1205 return false; 1206 } 1207 1208 /* 1209 * Used by other classes to account runtime. 1210 */ 1211 s64 update_curr_common(struct rq *rq) 1212 { 1213 struct task_struct *donor = rq->donor; 1214 s64 delta_exec; 1215 1216 delta_exec = update_curr_se(rq, &donor->se); 1217 if (likely(delta_exec > 0)) 1218 update_curr_task(donor, delta_exec); 1219 1220 return delta_exec; 1221 } 1222 1223 /* 1224 * Update the current task's runtime statistics. 1225 */ 1226 static void update_curr(struct cfs_rq *cfs_rq) 1227 { 1228 struct sched_entity *curr = cfs_rq->curr; 1229 struct rq *rq = rq_of(cfs_rq); 1230 s64 delta_exec; 1231 bool resched; 1232 1233 if (unlikely(!curr)) 1234 return; 1235 1236 delta_exec = update_curr_se(rq, curr); 1237 if (unlikely(delta_exec <= 0)) 1238 return; 1239 1240 curr->vruntime += calc_delta_fair(delta_exec, curr); 1241 resched = update_deadline(cfs_rq, curr); 1242 update_min_vruntime(cfs_rq); 1243 1244 if (entity_is_task(curr)) { 1245 struct task_struct *p = task_of(curr); 1246 1247 update_curr_task(p, delta_exec); 1248 1249 /* 1250 * If the fair_server is active, we need to account for the 1251 * fair_server time whether or not the task is running on 1252 * behalf of fair_server or not: 1253 * - If the task is running on behalf of fair_server, we need 1254 * to limit its time based on the assigned runtime. 1255 * - Fair task that runs outside of fair_server should account 1256 * against fair_server such that it can account for this time 1257 * and possibly avoid running this period. 1258 */ 1259 if (dl_server_active(&rq->fair_server)) 1260 dl_server_update(&rq->fair_server, delta_exec); 1261 } 1262 1263 account_cfs_rq_runtime(cfs_rq, delta_exec); 1264 1265 if (cfs_rq->nr_queued == 1) 1266 return; 1267 1268 if (resched || did_preempt_short(cfs_rq, curr)) { 1269 resched_curr_lazy(rq); 1270 clear_buddies(cfs_rq, curr); 1271 } 1272 } 1273 1274 static void update_curr_fair(struct rq *rq) 1275 { 1276 update_curr(cfs_rq_of(&rq->donor->se)); 1277 } 1278 1279 static inline void 1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1281 { 1282 struct sched_statistics *stats; 1283 struct task_struct *p = NULL; 1284 1285 if (!schedstat_enabled()) 1286 return; 1287 1288 stats = __schedstats_from_se(se); 1289 1290 if (entity_is_task(se)) 1291 p = task_of(se); 1292 1293 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1294 } 1295 1296 static inline void 1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1298 { 1299 struct sched_statistics *stats; 1300 struct task_struct *p = NULL; 1301 1302 if (!schedstat_enabled()) 1303 return; 1304 1305 stats = __schedstats_from_se(se); 1306 1307 /* 1308 * When the sched_schedstat changes from 0 to 1, some sched se 1309 * maybe already in the runqueue, the se->statistics.wait_start 1310 * will be 0.So it will let the delta wrong. We need to avoid this 1311 * scenario. 1312 */ 1313 if (unlikely(!schedstat_val(stats->wait_start))) 1314 return; 1315 1316 if (entity_is_task(se)) 1317 p = task_of(se); 1318 1319 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1320 } 1321 1322 static inline void 1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1324 { 1325 struct sched_statistics *stats; 1326 struct task_struct *tsk = NULL; 1327 1328 if (!schedstat_enabled()) 1329 return; 1330 1331 stats = __schedstats_from_se(se); 1332 1333 if (entity_is_task(se)) 1334 tsk = task_of(se); 1335 1336 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1337 } 1338 1339 /* 1340 * Task is being enqueued - update stats: 1341 */ 1342 static inline void 1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1344 { 1345 if (!schedstat_enabled()) 1346 return; 1347 1348 /* 1349 * Are we enqueueing a waiting task? (for current tasks 1350 * a dequeue/enqueue event is a NOP) 1351 */ 1352 if (se != cfs_rq->curr) 1353 update_stats_wait_start_fair(cfs_rq, se); 1354 1355 if (flags & ENQUEUE_WAKEUP) 1356 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1357 } 1358 1359 static inline void 1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1361 { 1362 1363 if (!schedstat_enabled()) 1364 return; 1365 1366 /* 1367 * Mark the end of the wait period if dequeueing a 1368 * waiting task: 1369 */ 1370 if (se != cfs_rq->curr) 1371 update_stats_wait_end_fair(cfs_rq, se); 1372 1373 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1374 struct task_struct *tsk = task_of(se); 1375 unsigned int state; 1376 1377 /* XXX racy against TTWU */ 1378 state = READ_ONCE(tsk->__state); 1379 if (state & TASK_INTERRUPTIBLE) 1380 __schedstat_set(tsk->stats.sleep_start, 1381 rq_clock(rq_of(cfs_rq))); 1382 if (state & TASK_UNINTERRUPTIBLE) 1383 __schedstat_set(tsk->stats.block_start, 1384 rq_clock(rq_of(cfs_rq))); 1385 } 1386 } 1387 1388 /* 1389 * We are picking a new current task - update its stats: 1390 */ 1391 static inline void 1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1393 { 1394 /* 1395 * We are starting a new run period: 1396 */ 1397 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1398 } 1399 1400 /************************************************** 1401 * Scheduling class queueing methods: 1402 */ 1403 1404 static inline bool is_core_idle(int cpu) 1405 { 1406 #ifdef CONFIG_SCHED_SMT 1407 int sibling; 1408 1409 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1410 if (cpu == sibling) 1411 continue; 1412 1413 if (!idle_cpu(sibling)) 1414 return false; 1415 } 1416 #endif 1417 1418 return true; 1419 } 1420 1421 #ifdef CONFIG_NUMA 1422 #define NUMA_IMBALANCE_MIN 2 1423 1424 static inline long 1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1426 { 1427 /* 1428 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1429 * threshold. Above this threshold, individual tasks may be contending 1430 * for both memory bandwidth and any shared HT resources. This is an 1431 * approximation as the number of running tasks may not be related to 1432 * the number of busy CPUs due to sched_setaffinity. 1433 */ 1434 if (dst_running > imb_numa_nr) 1435 return imbalance; 1436 1437 /* 1438 * Allow a small imbalance based on a simple pair of communicating 1439 * tasks that remain local when the destination is lightly loaded. 1440 */ 1441 if (imbalance <= NUMA_IMBALANCE_MIN) 1442 return 0; 1443 1444 return imbalance; 1445 } 1446 #endif /* CONFIG_NUMA */ 1447 1448 #ifdef CONFIG_NUMA_BALANCING 1449 /* 1450 * Approximate time to scan a full NUMA task in ms. The task scan period is 1451 * calculated based on the tasks virtual memory size and 1452 * numa_balancing_scan_size. 1453 */ 1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1456 1457 /* Portion of address space to scan in MB */ 1458 unsigned int sysctl_numa_balancing_scan_size = 256; 1459 1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1461 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1462 1463 /* The page with hint page fault latency < threshold in ms is considered hot */ 1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1465 1466 struct numa_group { 1467 refcount_t refcount; 1468 1469 spinlock_t lock; /* nr_tasks, tasks */ 1470 int nr_tasks; 1471 pid_t gid; 1472 int active_nodes; 1473 1474 struct rcu_head rcu; 1475 unsigned long total_faults; 1476 unsigned long max_faults_cpu; 1477 /* 1478 * faults[] array is split into two regions: faults_mem and faults_cpu. 1479 * 1480 * Faults_cpu is used to decide whether memory should move 1481 * towards the CPU. As a consequence, these stats are weighted 1482 * more by CPU use than by memory faults. 1483 */ 1484 unsigned long faults[]; 1485 }; 1486 1487 /* 1488 * For functions that can be called in multiple contexts that permit reading 1489 * ->numa_group (see struct task_struct for locking rules). 1490 */ 1491 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1492 { 1493 return rcu_dereference_check(p->numa_group, p == current || 1494 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1495 } 1496 1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1498 { 1499 return rcu_dereference_protected(p->numa_group, p == current); 1500 } 1501 1502 static inline unsigned long group_faults_priv(struct numa_group *ng); 1503 static inline unsigned long group_faults_shared(struct numa_group *ng); 1504 1505 static unsigned int task_nr_scan_windows(struct task_struct *p) 1506 { 1507 unsigned long rss = 0; 1508 unsigned long nr_scan_pages; 1509 1510 /* 1511 * Calculations based on RSS as non-present and empty pages are skipped 1512 * by the PTE scanner and NUMA hinting faults should be trapped based 1513 * on resident pages 1514 */ 1515 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1516 rss = get_mm_rss(p->mm); 1517 if (!rss) 1518 rss = nr_scan_pages; 1519 1520 rss = round_up(rss, nr_scan_pages); 1521 return rss / nr_scan_pages; 1522 } 1523 1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1525 #define MAX_SCAN_WINDOW 2560 1526 1527 static unsigned int task_scan_min(struct task_struct *p) 1528 { 1529 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1530 unsigned int scan, floor; 1531 unsigned int windows = 1; 1532 1533 if (scan_size < MAX_SCAN_WINDOW) 1534 windows = MAX_SCAN_WINDOW / scan_size; 1535 floor = 1000 / windows; 1536 1537 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1538 return max_t(unsigned int, floor, scan); 1539 } 1540 1541 static unsigned int task_scan_start(struct task_struct *p) 1542 { 1543 unsigned long smin = task_scan_min(p); 1544 unsigned long period = smin; 1545 struct numa_group *ng; 1546 1547 /* Scale the maximum scan period with the amount of shared memory. */ 1548 rcu_read_lock(); 1549 ng = rcu_dereference(p->numa_group); 1550 if (ng) { 1551 unsigned long shared = group_faults_shared(ng); 1552 unsigned long private = group_faults_priv(ng); 1553 1554 period *= refcount_read(&ng->refcount); 1555 period *= shared + 1; 1556 period /= private + shared + 1; 1557 } 1558 rcu_read_unlock(); 1559 1560 return max(smin, period); 1561 } 1562 1563 static unsigned int task_scan_max(struct task_struct *p) 1564 { 1565 unsigned long smin = task_scan_min(p); 1566 unsigned long smax; 1567 struct numa_group *ng; 1568 1569 /* Watch for min being lower than max due to floor calculations */ 1570 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1571 1572 /* Scale the maximum scan period with the amount of shared memory. */ 1573 ng = deref_curr_numa_group(p); 1574 if (ng) { 1575 unsigned long shared = group_faults_shared(ng); 1576 unsigned long private = group_faults_priv(ng); 1577 unsigned long period = smax; 1578 1579 period *= refcount_read(&ng->refcount); 1580 period *= shared + 1; 1581 period /= private + shared + 1; 1582 1583 smax = max(smax, period); 1584 } 1585 1586 return max(smin, smax); 1587 } 1588 1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1590 { 1591 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1592 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1593 } 1594 1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1596 { 1597 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1598 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1599 } 1600 1601 /* Shared or private faults. */ 1602 #define NR_NUMA_HINT_FAULT_TYPES 2 1603 1604 /* Memory and CPU locality */ 1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1606 1607 /* Averaged statistics, and temporary buffers. */ 1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1609 1610 pid_t task_numa_group_id(struct task_struct *p) 1611 { 1612 struct numa_group *ng; 1613 pid_t gid = 0; 1614 1615 rcu_read_lock(); 1616 ng = rcu_dereference(p->numa_group); 1617 if (ng) 1618 gid = ng->gid; 1619 rcu_read_unlock(); 1620 1621 return gid; 1622 } 1623 1624 /* 1625 * The averaged statistics, shared & private, memory & CPU, 1626 * occupy the first half of the array. The second half of the 1627 * array is for current counters, which are averaged into the 1628 * first set by task_numa_placement. 1629 */ 1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1631 { 1632 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1633 } 1634 1635 static inline unsigned long task_faults(struct task_struct *p, int nid) 1636 { 1637 if (!p->numa_faults) 1638 return 0; 1639 1640 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1641 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1642 } 1643 1644 static inline unsigned long group_faults(struct task_struct *p, int nid) 1645 { 1646 struct numa_group *ng = deref_task_numa_group(p); 1647 1648 if (!ng) 1649 return 0; 1650 1651 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1652 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1653 } 1654 1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1656 { 1657 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1658 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1659 } 1660 1661 static inline unsigned long group_faults_priv(struct numa_group *ng) 1662 { 1663 unsigned long faults = 0; 1664 int node; 1665 1666 for_each_online_node(node) { 1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1668 } 1669 1670 return faults; 1671 } 1672 1673 static inline unsigned long group_faults_shared(struct numa_group *ng) 1674 { 1675 unsigned long faults = 0; 1676 int node; 1677 1678 for_each_online_node(node) { 1679 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1680 } 1681 1682 return faults; 1683 } 1684 1685 /* 1686 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1687 * considered part of a numa group's pseudo-interleaving set. Migrations 1688 * between these nodes are slowed down, to allow things to settle down. 1689 */ 1690 #define ACTIVE_NODE_FRACTION 3 1691 1692 static bool numa_is_active_node(int nid, struct numa_group *ng) 1693 { 1694 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1695 } 1696 1697 /* Handle placement on systems where not all nodes are directly connected. */ 1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1699 int lim_dist, bool task) 1700 { 1701 unsigned long score = 0; 1702 int node, max_dist; 1703 1704 /* 1705 * All nodes are directly connected, and the same distance 1706 * from each other. No need for fancy placement algorithms. 1707 */ 1708 if (sched_numa_topology_type == NUMA_DIRECT) 1709 return 0; 1710 1711 /* sched_max_numa_distance may be changed in parallel. */ 1712 max_dist = READ_ONCE(sched_max_numa_distance); 1713 /* 1714 * This code is called for each node, introducing N^2 complexity, 1715 * which should be OK given the number of nodes rarely exceeds 8. 1716 */ 1717 for_each_online_node(node) { 1718 unsigned long faults; 1719 int dist = node_distance(nid, node); 1720 1721 /* 1722 * The furthest away nodes in the system are not interesting 1723 * for placement; nid was already counted. 1724 */ 1725 if (dist >= max_dist || node == nid) 1726 continue; 1727 1728 /* 1729 * On systems with a backplane NUMA topology, compare groups 1730 * of nodes, and move tasks towards the group with the most 1731 * memory accesses. When comparing two nodes at distance 1732 * "hoplimit", only nodes closer by than "hoplimit" are part 1733 * of each group. Skip other nodes. 1734 */ 1735 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1736 continue; 1737 1738 /* Add up the faults from nearby nodes. */ 1739 if (task) 1740 faults = task_faults(p, node); 1741 else 1742 faults = group_faults(p, node); 1743 1744 /* 1745 * On systems with a glueless mesh NUMA topology, there are 1746 * no fixed "groups of nodes". Instead, nodes that are not 1747 * directly connected bounce traffic through intermediate 1748 * nodes; a numa_group can occupy any set of nodes. 1749 * The further away a node is, the less the faults count. 1750 * This seems to result in good task placement. 1751 */ 1752 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1753 faults *= (max_dist - dist); 1754 faults /= (max_dist - LOCAL_DISTANCE); 1755 } 1756 1757 score += faults; 1758 } 1759 1760 return score; 1761 } 1762 1763 /* 1764 * These return the fraction of accesses done by a particular task, or 1765 * task group, on a particular numa node. The group weight is given a 1766 * larger multiplier, in order to group tasks together that are almost 1767 * evenly spread out between numa nodes. 1768 */ 1769 static inline unsigned long task_weight(struct task_struct *p, int nid, 1770 int dist) 1771 { 1772 unsigned long faults, total_faults; 1773 1774 if (!p->numa_faults) 1775 return 0; 1776 1777 total_faults = p->total_numa_faults; 1778 1779 if (!total_faults) 1780 return 0; 1781 1782 faults = task_faults(p, nid); 1783 faults += score_nearby_nodes(p, nid, dist, true); 1784 1785 return 1000 * faults / total_faults; 1786 } 1787 1788 static inline unsigned long group_weight(struct task_struct *p, int nid, 1789 int dist) 1790 { 1791 struct numa_group *ng = deref_task_numa_group(p); 1792 unsigned long faults, total_faults; 1793 1794 if (!ng) 1795 return 0; 1796 1797 total_faults = ng->total_faults; 1798 1799 if (!total_faults) 1800 return 0; 1801 1802 faults = group_faults(p, nid); 1803 faults += score_nearby_nodes(p, nid, dist, false); 1804 1805 return 1000 * faults / total_faults; 1806 } 1807 1808 /* 1809 * If memory tiering mode is enabled, cpupid of slow memory page is 1810 * used to record scan time instead of CPU and PID. When tiering mode 1811 * is disabled at run time, the scan time (in cpupid) will be 1812 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1813 * access out of array bound. 1814 */ 1815 static inline bool cpupid_valid(int cpupid) 1816 { 1817 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1818 } 1819 1820 /* 1821 * For memory tiering mode, if there are enough free pages (more than 1822 * enough watermark defined here) in fast memory node, to take full 1823 * advantage of fast memory capacity, all recently accessed slow 1824 * memory pages will be migrated to fast memory node without 1825 * considering hot threshold. 1826 */ 1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1828 { 1829 int z; 1830 unsigned long enough_wmark; 1831 1832 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1833 pgdat->node_present_pages >> 4); 1834 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1835 struct zone *zone = pgdat->node_zones + z; 1836 1837 if (!populated_zone(zone)) 1838 continue; 1839 1840 if (zone_watermark_ok(zone, 0, 1841 promo_wmark_pages(zone) + enough_wmark, 1842 ZONE_MOVABLE, 0)) 1843 return true; 1844 } 1845 return false; 1846 } 1847 1848 /* 1849 * For memory tiering mode, when page tables are scanned, the scan 1850 * time will be recorded in struct page in addition to make page 1851 * PROT_NONE for slow memory page. So when the page is accessed, in 1852 * hint page fault handler, the hint page fault latency is calculated 1853 * via, 1854 * 1855 * hint page fault latency = hint page fault time - scan time 1856 * 1857 * The smaller the hint page fault latency, the higher the possibility 1858 * for the page to be hot. 1859 */ 1860 static int numa_hint_fault_latency(struct folio *folio) 1861 { 1862 int last_time, time; 1863 1864 time = jiffies_to_msecs(jiffies); 1865 last_time = folio_xchg_access_time(folio, time); 1866 1867 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1868 } 1869 1870 /* 1871 * For memory tiering mode, too high promotion/demotion throughput may 1872 * hurt application latency. So we provide a mechanism to rate limit 1873 * the number of pages that are tried to be promoted. 1874 */ 1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1876 unsigned long rate_limit, int nr) 1877 { 1878 unsigned long nr_cand; 1879 unsigned int now, start; 1880 1881 now = jiffies_to_msecs(jiffies); 1882 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1883 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1884 start = pgdat->nbp_rl_start; 1885 if (now - start > MSEC_PER_SEC && 1886 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1887 pgdat->nbp_rl_nr_cand = nr_cand; 1888 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1889 return true; 1890 return false; 1891 } 1892 1893 #define NUMA_MIGRATION_ADJUST_STEPS 16 1894 1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1896 unsigned long rate_limit, 1897 unsigned int ref_th) 1898 { 1899 unsigned int now, start, th_period, unit_th, th; 1900 unsigned long nr_cand, ref_cand, diff_cand; 1901 1902 now = jiffies_to_msecs(jiffies); 1903 th_period = sysctl_numa_balancing_scan_period_max; 1904 start = pgdat->nbp_th_start; 1905 if (now - start > th_period && 1906 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1907 ref_cand = rate_limit * 1908 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1909 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1910 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1911 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1912 th = pgdat->nbp_threshold ? : ref_th; 1913 if (diff_cand > ref_cand * 11 / 10) 1914 th = max(th - unit_th, unit_th); 1915 else if (diff_cand < ref_cand * 9 / 10) 1916 th = min(th + unit_th, ref_th * 2); 1917 pgdat->nbp_th_nr_cand = nr_cand; 1918 pgdat->nbp_threshold = th; 1919 } 1920 } 1921 1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1923 int src_nid, int dst_cpu) 1924 { 1925 struct numa_group *ng = deref_curr_numa_group(p); 1926 int dst_nid = cpu_to_node(dst_cpu); 1927 int last_cpupid, this_cpupid; 1928 1929 /* 1930 * Cannot migrate to memoryless nodes. 1931 */ 1932 if (!node_state(dst_nid, N_MEMORY)) 1933 return false; 1934 1935 /* 1936 * The pages in slow memory node should be migrated according 1937 * to hot/cold instead of private/shared. 1938 */ 1939 if (folio_use_access_time(folio)) { 1940 struct pglist_data *pgdat; 1941 unsigned long rate_limit; 1942 unsigned int latency, th, def_th; 1943 1944 pgdat = NODE_DATA(dst_nid); 1945 if (pgdat_free_space_enough(pgdat)) { 1946 /* workload changed, reset hot threshold */ 1947 pgdat->nbp_threshold = 0; 1948 return true; 1949 } 1950 1951 def_th = sysctl_numa_balancing_hot_threshold; 1952 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1953 (20 - PAGE_SHIFT); 1954 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1955 1956 th = pgdat->nbp_threshold ? : def_th; 1957 latency = numa_hint_fault_latency(folio); 1958 if (latency >= th) 1959 return false; 1960 1961 return !numa_promotion_rate_limit(pgdat, rate_limit, 1962 folio_nr_pages(folio)); 1963 } 1964 1965 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1966 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1967 1968 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1969 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1970 return false; 1971 1972 /* 1973 * Allow first faults or private faults to migrate immediately early in 1974 * the lifetime of a task. The magic number 4 is based on waiting for 1975 * two full passes of the "multi-stage node selection" test that is 1976 * executed below. 1977 */ 1978 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1979 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1980 return true; 1981 1982 /* 1983 * Multi-stage node selection is used in conjunction with a periodic 1984 * migration fault to build a temporal task<->page relation. By using 1985 * a two-stage filter we remove short/unlikely relations. 1986 * 1987 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1988 * a task's usage of a particular page (n_p) per total usage of this 1989 * page (n_t) (in a given time-span) to a probability. 1990 * 1991 * Our periodic faults will sample this probability and getting the 1992 * same result twice in a row, given these samples are fully 1993 * independent, is then given by P(n)^2, provided our sample period 1994 * is sufficiently short compared to the usage pattern. 1995 * 1996 * This quadric squishes small probabilities, making it less likely we 1997 * act on an unlikely task<->page relation. 1998 */ 1999 if (!cpupid_pid_unset(last_cpupid) && 2000 cpupid_to_nid(last_cpupid) != dst_nid) 2001 return false; 2002 2003 /* Always allow migrate on private faults */ 2004 if (cpupid_match_pid(p, last_cpupid)) 2005 return true; 2006 2007 /* A shared fault, but p->numa_group has not been set up yet. */ 2008 if (!ng) 2009 return true; 2010 2011 /* 2012 * Destination node is much more heavily used than the source 2013 * node? Allow migration. 2014 */ 2015 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2016 ACTIVE_NODE_FRACTION) 2017 return true; 2018 2019 /* 2020 * Distribute memory according to CPU & memory use on each node, 2021 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2022 * 2023 * faults_cpu(dst) 3 faults_cpu(src) 2024 * --------------- * - > --------------- 2025 * faults_mem(dst) 4 faults_mem(src) 2026 */ 2027 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2028 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2029 } 2030 2031 /* 2032 * 'numa_type' describes the node at the moment of load balancing. 2033 */ 2034 enum numa_type { 2035 /* The node has spare capacity that can be used to run more tasks. */ 2036 node_has_spare = 0, 2037 /* 2038 * The node is fully used and the tasks don't compete for more CPU 2039 * cycles. Nevertheless, some tasks might wait before running. 2040 */ 2041 node_fully_busy, 2042 /* 2043 * The node is overloaded and can't provide expected CPU cycles to all 2044 * tasks. 2045 */ 2046 node_overloaded 2047 }; 2048 2049 /* Cached statistics for all CPUs within a node */ 2050 struct numa_stats { 2051 unsigned long load; 2052 unsigned long runnable; 2053 unsigned long util; 2054 /* Total compute capacity of CPUs on a node */ 2055 unsigned long compute_capacity; 2056 unsigned int nr_running; 2057 unsigned int weight; 2058 enum numa_type node_type; 2059 int idle_cpu; 2060 }; 2061 2062 struct task_numa_env { 2063 struct task_struct *p; 2064 2065 int src_cpu, src_nid; 2066 int dst_cpu, dst_nid; 2067 int imb_numa_nr; 2068 2069 struct numa_stats src_stats, dst_stats; 2070 2071 int imbalance_pct; 2072 int dist; 2073 2074 struct task_struct *best_task; 2075 long best_imp; 2076 int best_cpu; 2077 }; 2078 2079 static unsigned long cpu_load(struct rq *rq); 2080 static unsigned long cpu_runnable(struct rq *rq); 2081 2082 static inline enum 2083 numa_type numa_classify(unsigned int imbalance_pct, 2084 struct numa_stats *ns) 2085 { 2086 if ((ns->nr_running > ns->weight) && 2087 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2088 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2089 return node_overloaded; 2090 2091 if ((ns->nr_running < ns->weight) || 2092 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2093 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2094 return node_has_spare; 2095 2096 return node_fully_busy; 2097 } 2098 2099 #ifdef CONFIG_SCHED_SMT 2100 /* Forward declarations of select_idle_sibling helpers */ 2101 static inline bool test_idle_cores(int cpu); 2102 static inline int numa_idle_core(int idle_core, int cpu) 2103 { 2104 if (!static_branch_likely(&sched_smt_present) || 2105 idle_core >= 0 || !test_idle_cores(cpu)) 2106 return idle_core; 2107 2108 /* 2109 * Prefer cores instead of packing HT siblings 2110 * and triggering future load balancing. 2111 */ 2112 if (is_core_idle(cpu)) 2113 idle_core = cpu; 2114 2115 return idle_core; 2116 } 2117 #else 2118 static inline int numa_idle_core(int idle_core, int cpu) 2119 { 2120 return idle_core; 2121 } 2122 #endif 2123 2124 /* 2125 * Gather all necessary information to make NUMA balancing placement 2126 * decisions that are compatible with standard load balancer. This 2127 * borrows code and logic from update_sg_lb_stats but sharing a 2128 * common implementation is impractical. 2129 */ 2130 static void update_numa_stats(struct task_numa_env *env, 2131 struct numa_stats *ns, int nid, 2132 bool find_idle) 2133 { 2134 int cpu, idle_core = -1; 2135 2136 memset(ns, 0, sizeof(*ns)); 2137 ns->idle_cpu = -1; 2138 2139 rcu_read_lock(); 2140 for_each_cpu(cpu, cpumask_of_node(nid)) { 2141 struct rq *rq = cpu_rq(cpu); 2142 2143 ns->load += cpu_load(rq); 2144 ns->runnable += cpu_runnable(rq); 2145 ns->util += cpu_util_cfs(cpu); 2146 ns->nr_running += rq->cfs.h_nr_runnable; 2147 ns->compute_capacity += capacity_of(cpu); 2148 2149 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2150 if (READ_ONCE(rq->numa_migrate_on) || 2151 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2152 continue; 2153 2154 if (ns->idle_cpu == -1) 2155 ns->idle_cpu = cpu; 2156 2157 idle_core = numa_idle_core(idle_core, cpu); 2158 } 2159 } 2160 rcu_read_unlock(); 2161 2162 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2163 2164 ns->node_type = numa_classify(env->imbalance_pct, ns); 2165 2166 if (idle_core >= 0) 2167 ns->idle_cpu = idle_core; 2168 } 2169 2170 static void task_numa_assign(struct task_numa_env *env, 2171 struct task_struct *p, long imp) 2172 { 2173 struct rq *rq = cpu_rq(env->dst_cpu); 2174 2175 /* Check if run-queue part of active NUMA balance. */ 2176 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2177 int cpu; 2178 int start = env->dst_cpu; 2179 2180 /* Find alternative idle CPU. */ 2181 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2182 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2183 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2184 continue; 2185 } 2186 2187 env->dst_cpu = cpu; 2188 rq = cpu_rq(env->dst_cpu); 2189 if (!xchg(&rq->numa_migrate_on, 1)) 2190 goto assign; 2191 } 2192 2193 /* Failed to find an alternative idle CPU */ 2194 return; 2195 } 2196 2197 assign: 2198 /* 2199 * Clear previous best_cpu/rq numa-migrate flag, since task now 2200 * found a better CPU to move/swap. 2201 */ 2202 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2203 rq = cpu_rq(env->best_cpu); 2204 WRITE_ONCE(rq->numa_migrate_on, 0); 2205 } 2206 2207 if (env->best_task) 2208 put_task_struct(env->best_task); 2209 if (p) 2210 get_task_struct(p); 2211 2212 env->best_task = p; 2213 env->best_imp = imp; 2214 env->best_cpu = env->dst_cpu; 2215 } 2216 2217 static bool load_too_imbalanced(long src_load, long dst_load, 2218 struct task_numa_env *env) 2219 { 2220 long imb, old_imb; 2221 long orig_src_load, orig_dst_load; 2222 long src_capacity, dst_capacity; 2223 2224 /* 2225 * The load is corrected for the CPU capacity available on each node. 2226 * 2227 * src_load dst_load 2228 * ------------ vs --------- 2229 * src_capacity dst_capacity 2230 */ 2231 src_capacity = env->src_stats.compute_capacity; 2232 dst_capacity = env->dst_stats.compute_capacity; 2233 2234 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2235 2236 orig_src_load = env->src_stats.load; 2237 orig_dst_load = env->dst_stats.load; 2238 2239 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2240 2241 /* Would this change make things worse? */ 2242 return (imb > old_imb); 2243 } 2244 2245 /* 2246 * Maximum NUMA importance can be 1998 (2*999); 2247 * SMALLIMP @ 30 would be close to 1998/64. 2248 * Used to deter task migration. 2249 */ 2250 #define SMALLIMP 30 2251 2252 /* 2253 * This checks if the overall compute and NUMA accesses of the system would 2254 * be improved if the source tasks was migrated to the target dst_cpu taking 2255 * into account that it might be best if task running on the dst_cpu should 2256 * be exchanged with the source task 2257 */ 2258 static bool task_numa_compare(struct task_numa_env *env, 2259 long taskimp, long groupimp, bool maymove) 2260 { 2261 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2262 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2263 long imp = p_ng ? groupimp : taskimp; 2264 struct task_struct *cur; 2265 long src_load, dst_load; 2266 int dist = env->dist; 2267 long moveimp = imp; 2268 long load; 2269 bool stopsearch = false; 2270 2271 if (READ_ONCE(dst_rq->numa_migrate_on)) 2272 return false; 2273 2274 rcu_read_lock(); 2275 cur = rcu_dereference(dst_rq->curr); 2276 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2277 cur = NULL; 2278 2279 /* 2280 * Because we have preemption enabled we can get migrated around and 2281 * end try selecting ourselves (current == env->p) as a swap candidate. 2282 */ 2283 if (cur == env->p) { 2284 stopsearch = true; 2285 goto unlock; 2286 } 2287 2288 if (!cur) { 2289 if (maymove && moveimp >= env->best_imp) 2290 goto assign; 2291 else 2292 goto unlock; 2293 } 2294 2295 /* Skip this swap candidate if cannot move to the source cpu. */ 2296 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2297 goto unlock; 2298 2299 /* 2300 * Skip this swap candidate if it is not moving to its preferred 2301 * node and the best task is. 2302 */ 2303 if (env->best_task && 2304 env->best_task->numa_preferred_nid == env->src_nid && 2305 cur->numa_preferred_nid != env->src_nid) { 2306 goto unlock; 2307 } 2308 2309 /* 2310 * "imp" is the fault differential for the source task between the 2311 * source and destination node. Calculate the total differential for 2312 * the source task and potential destination task. The more negative 2313 * the value is, the more remote accesses that would be expected to 2314 * be incurred if the tasks were swapped. 2315 * 2316 * If dst and source tasks are in the same NUMA group, or not 2317 * in any group then look only at task weights. 2318 */ 2319 cur_ng = rcu_dereference(cur->numa_group); 2320 if (cur_ng == p_ng) { 2321 /* 2322 * Do not swap within a group or between tasks that have 2323 * no group if there is spare capacity. Swapping does 2324 * not address the load imbalance and helps one task at 2325 * the cost of punishing another. 2326 */ 2327 if (env->dst_stats.node_type == node_has_spare) 2328 goto unlock; 2329 2330 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2331 task_weight(cur, env->dst_nid, dist); 2332 /* 2333 * Add some hysteresis to prevent swapping the 2334 * tasks within a group over tiny differences. 2335 */ 2336 if (cur_ng) 2337 imp -= imp / 16; 2338 } else { 2339 /* 2340 * Compare the group weights. If a task is all by itself 2341 * (not part of a group), use the task weight instead. 2342 */ 2343 if (cur_ng && p_ng) 2344 imp += group_weight(cur, env->src_nid, dist) - 2345 group_weight(cur, env->dst_nid, dist); 2346 else 2347 imp += task_weight(cur, env->src_nid, dist) - 2348 task_weight(cur, env->dst_nid, dist); 2349 } 2350 2351 /* Discourage picking a task already on its preferred node */ 2352 if (cur->numa_preferred_nid == env->dst_nid) 2353 imp -= imp / 16; 2354 2355 /* 2356 * Encourage picking a task that moves to its preferred node. 2357 * This potentially makes imp larger than it's maximum of 2358 * 1998 (see SMALLIMP and task_weight for why) but in this 2359 * case, it does not matter. 2360 */ 2361 if (cur->numa_preferred_nid == env->src_nid) 2362 imp += imp / 8; 2363 2364 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2365 imp = moveimp; 2366 cur = NULL; 2367 goto assign; 2368 } 2369 2370 /* 2371 * Prefer swapping with a task moving to its preferred node over a 2372 * task that is not. 2373 */ 2374 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2375 env->best_task->numa_preferred_nid != env->src_nid) { 2376 goto assign; 2377 } 2378 2379 /* 2380 * If the NUMA importance is less than SMALLIMP, 2381 * task migration might only result in ping pong 2382 * of tasks and also hurt performance due to cache 2383 * misses. 2384 */ 2385 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2386 goto unlock; 2387 2388 /* 2389 * In the overloaded case, try and keep the load balanced. 2390 */ 2391 load = task_h_load(env->p) - task_h_load(cur); 2392 if (!load) 2393 goto assign; 2394 2395 dst_load = env->dst_stats.load + load; 2396 src_load = env->src_stats.load - load; 2397 2398 if (load_too_imbalanced(src_load, dst_load, env)) 2399 goto unlock; 2400 2401 assign: 2402 /* Evaluate an idle CPU for a task numa move. */ 2403 if (!cur) { 2404 int cpu = env->dst_stats.idle_cpu; 2405 2406 /* Nothing cached so current CPU went idle since the search. */ 2407 if (cpu < 0) 2408 cpu = env->dst_cpu; 2409 2410 /* 2411 * If the CPU is no longer truly idle and the previous best CPU 2412 * is, keep using it. 2413 */ 2414 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2415 idle_cpu(env->best_cpu)) { 2416 cpu = env->best_cpu; 2417 } 2418 2419 env->dst_cpu = cpu; 2420 } 2421 2422 task_numa_assign(env, cur, imp); 2423 2424 /* 2425 * If a move to idle is allowed because there is capacity or load 2426 * balance improves then stop the search. While a better swap 2427 * candidate may exist, a search is not free. 2428 */ 2429 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2430 stopsearch = true; 2431 2432 /* 2433 * If a swap candidate must be identified and the current best task 2434 * moves its preferred node then stop the search. 2435 */ 2436 if (!maymove && env->best_task && 2437 env->best_task->numa_preferred_nid == env->src_nid) { 2438 stopsearch = true; 2439 } 2440 unlock: 2441 rcu_read_unlock(); 2442 2443 return stopsearch; 2444 } 2445 2446 static void task_numa_find_cpu(struct task_numa_env *env, 2447 long taskimp, long groupimp) 2448 { 2449 bool maymove = false; 2450 int cpu; 2451 2452 /* 2453 * If dst node has spare capacity, then check if there is an 2454 * imbalance that would be overruled by the load balancer. 2455 */ 2456 if (env->dst_stats.node_type == node_has_spare) { 2457 unsigned int imbalance; 2458 int src_running, dst_running; 2459 2460 /* 2461 * Would movement cause an imbalance? Note that if src has 2462 * more running tasks that the imbalance is ignored as the 2463 * move improves the imbalance from the perspective of the 2464 * CPU load balancer. 2465 * */ 2466 src_running = env->src_stats.nr_running - 1; 2467 dst_running = env->dst_stats.nr_running + 1; 2468 imbalance = max(0, dst_running - src_running); 2469 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2470 env->imb_numa_nr); 2471 2472 /* Use idle CPU if there is no imbalance */ 2473 if (!imbalance) { 2474 maymove = true; 2475 if (env->dst_stats.idle_cpu >= 0) { 2476 env->dst_cpu = env->dst_stats.idle_cpu; 2477 task_numa_assign(env, NULL, 0); 2478 return; 2479 } 2480 } 2481 } else { 2482 long src_load, dst_load, load; 2483 /* 2484 * If the improvement from just moving env->p direction is better 2485 * than swapping tasks around, check if a move is possible. 2486 */ 2487 load = task_h_load(env->p); 2488 dst_load = env->dst_stats.load + load; 2489 src_load = env->src_stats.load - load; 2490 maymove = !load_too_imbalanced(src_load, dst_load, env); 2491 } 2492 2493 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2494 /* Skip this CPU if the source task cannot migrate */ 2495 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2496 continue; 2497 2498 env->dst_cpu = cpu; 2499 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2500 break; 2501 } 2502 } 2503 2504 static int task_numa_migrate(struct task_struct *p) 2505 { 2506 struct task_numa_env env = { 2507 .p = p, 2508 2509 .src_cpu = task_cpu(p), 2510 .src_nid = task_node(p), 2511 2512 .imbalance_pct = 112, 2513 2514 .best_task = NULL, 2515 .best_imp = 0, 2516 .best_cpu = -1, 2517 }; 2518 unsigned long taskweight, groupweight; 2519 struct sched_domain *sd; 2520 long taskimp, groupimp; 2521 struct numa_group *ng; 2522 struct rq *best_rq; 2523 int nid, ret, dist; 2524 2525 /* 2526 * Pick the lowest SD_NUMA domain, as that would have the smallest 2527 * imbalance and would be the first to start moving tasks about. 2528 * 2529 * And we want to avoid any moving of tasks about, as that would create 2530 * random movement of tasks -- counter the numa conditions we're trying 2531 * to satisfy here. 2532 */ 2533 rcu_read_lock(); 2534 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2535 if (sd) { 2536 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2537 env.imb_numa_nr = sd->imb_numa_nr; 2538 } 2539 rcu_read_unlock(); 2540 2541 /* 2542 * Cpusets can break the scheduler domain tree into smaller 2543 * balance domains, some of which do not cross NUMA boundaries. 2544 * Tasks that are "trapped" in such domains cannot be migrated 2545 * elsewhere, so there is no point in (re)trying. 2546 */ 2547 if (unlikely(!sd)) { 2548 sched_setnuma(p, task_node(p)); 2549 return -EINVAL; 2550 } 2551 2552 env.dst_nid = p->numa_preferred_nid; 2553 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2554 taskweight = task_weight(p, env.src_nid, dist); 2555 groupweight = group_weight(p, env.src_nid, dist); 2556 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2557 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2558 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2559 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2560 2561 /* Try to find a spot on the preferred nid. */ 2562 task_numa_find_cpu(&env, taskimp, groupimp); 2563 2564 /* 2565 * Look at other nodes in these cases: 2566 * - there is no space available on the preferred_nid 2567 * - the task is part of a numa_group that is interleaved across 2568 * multiple NUMA nodes; in order to better consolidate the group, 2569 * we need to check other locations. 2570 */ 2571 ng = deref_curr_numa_group(p); 2572 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2573 for_each_node_state(nid, N_CPU) { 2574 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2575 continue; 2576 2577 dist = node_distance(env.src_nid, env.dst_nid); 2578 if (sched_numa_topology_type == NUMA_BACKPLANE && 2579 dist != env.dist) { 2580 taskweight = task_weight(p, env.src_nid, dist); 2581 groupweight = group_weight(p, env.src_nid, dist); 2582 } 2583 2584 /* Only consider nodes where both task and groups benefit */ 2585 taskimp = task_weight(p, nid, dist) - taskweight; 2586 groupimp = group_weight(p, nid, dist) - groupweight; 2587 if (taskimp < 0 && groupimp < 0) 2588 continue; 2589 2590 env.dist = dist; 2591 env.dst_nid = nid; 2592 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2593 task_numa_find_cpu(&env, taskimp, groupimp); 2594 } 2595 } 2596 2597 /* 2598 * If the task is part of a workload that spans multiple NUMA nodes, 2599 * and is migrating into one of the workload's active nodes, remember 2600 * this node as the task's preferred numa node, so the workload can 2601 * settle down. 2602 * A task that migrated to a second choice node will be better off 2603 * trying for a better one later. Do not set the preferred node here. 2604 */ 2605 if (ng) { 2606 if (env.best_cpu == -1) 2607 nid = env.src_nid; 2608 else 2609 nid = cpu_to_node(env.best_cpu); 2610 2611 if (nid != p->numa_preferred_nid) 2612 sched_setnuma(p, nid); 2613 } 2614 2615 /* No better CPU than the current one was found. */ 2616 if (env.best_cpu == -1) { 2617 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2618 return -EAGAIN; 2619 } 2620 2621 best_rq = cpu_rq(env.best_cpu); 2622 if (env.best_task == NULL) { 2623 ret = migrate_task_to(p, env.best_cpu); 2624 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2625 if (ret != 0) 2626 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2627 return ret; 2628 } 2629 2630 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2631 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2632 2633 if (ret != 0) 2634 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2635 put_task_struct(env.best_task); 2636 return ret; 2637 } 2638 2639 /* Attempt to migrate a task to a CPU on the preferred node. */ 2640 static void numa_migrate_preferred(struct task_struct *p) 2641 { 2642 unsigned long interval = HZ; 2643 2644 /* This task has no NUMA fault statistics yet */ 2645 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2646 return; 2647 2648 /* Periodically retry migrating the task to the preferred node */ 2649 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2650 p->numa_migrate_retry = jiffies + interval; 2651 2652 /* Success if task is already running on preferred CPU */ 2653 if (task_node(p) == p->numa_preferred_nid) 2654 return; 2655 2656 /* Otherwise, try migrate to a CPU on the preferred node */ 2657 task_numa_migrate(p); 2658 } 2659 2660 /* 2661 * Find out how many nodes the workload is actively running on. Do this by 2662 * tracking the nodes from which NUMA hinting faults are triggered. This can 2663 * be different from the set of nodes where the workload's memory is currently 2664 * located. 2665 */ 2666 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2667 { 2668 unsigned long faults, max_faults = 0; 2669 int nid, active_nodes = 0; 2670 2671 for_each_node_state(nid, N_CPU) { 2672 faults = group_faults_cpu(numa_group, nid); 2673 if (faults > max_faults) 2674 max_faults = faults; 2675 } 2676 2677 for_each_node_state(nid, N_CPU) { 2678 faults = group_faults_cpu(numa_group, nid); 2679 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2680 active_nodes++; 2681 } 2682 2683 numa_group->max_faults_cpu = max_faults; 2684 numa_group->active_nodes = active_nodes; 2685 } 2686 2687 /* 2688 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2689 * increments. The more local the fault statistics are, the higher the scan 2690 * period will be for the next scan window. If local/(local+remote) ratio is 2691 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2692 * the scan period will decrease. Aim for 70% local accesses. 2693 */ 2694 #define NUMA_PERIOD_SLOTS 10 2695 #define NUMA_PERIOD_THRESHOLD 7 2696 2697 /* 2698 * Increase the scan period (slow down scanning) if the majority of 2699 * our memory is already on our local node, or if the majority of 2700 * the page accesses are shared with other processes. 2701 * Otherwise, decrease the scan period. 2702 */ 2703 static void update_task_scan_period(struct task_struct *p, 2704 unsigned long shared, unsigned long private) 2705 { 2706 unsigned int period_slot; 2707 int lr_ratio, ps_ratio; 2708 int diff; 2709 2710 unsigned long remote = p->numa_faults_locality[0]; 2711 unsigned long local = p->numa_faults_locality[1]; 2712 2713 /* 2714 * If there were no record hinting faults then either the task is 2715 * completely idle or all activity is in areas that are not of interest 2716 * to automatic numa balancing. Related to that, if there were failed 2717 * migration then it implies we are migrating too quickly or the local 2718 * node is overloaded. In either case, scan slower 2719 */ 2720 if (local + shared == 0 || p->numa_faults_locality[2]) { 2721 p->numa_scan_period = min(p->numa_scan_period_max, 2722 p->numa_scan_period << 1); 2723 2724 p->mm->numa_next_scan = jiffies + 2725 msecs_to_jiffies(p->numa_scan_period); 2726 2727 return; 2728 } 2729 2730 /* 2731 * Prepare to scale scan period relative to the current period. 2732 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2733 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2734 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2735 */ 2736 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2737 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2738 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2739 2740 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2741 /* 2742 * Most memory accesses are local. There is no need to 2743 * do fast NUMA scanning, since memory is already local. 2744 */ 2745 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2746 if (!slot) 2747 slot = 1; 2748 diff = slot * period_slot; 2749 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2750 /* 2751 * Most memory accesses are shared with other tasks. 2752 * There is no point in continuing fast NUMA scanning, 2753 * since other tasks may just move the memory elsewhere. 2754 */ 2755 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2756 if (!slot) 2757 slot = 1; 2758 diff = slot * period_slot; 2759 } else { 2760 /* 2761 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2762 * yet they are not on the local NUMA node. Speed up 2763 * NUMA scanning to get the memory moved over. 2764 */ 2765 int ratio = max(lr_ratio, ps_ratio); 2766 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2767 } 2768 2769 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2770 task_scan_min(p), task_scan_max(p)); 2771 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2772 } 2773 2774 /* 2775 * Get the fraction of time the task has been running since the last 2776 * NUMA placement cycle. The scheduler keeps similar statistics, but 2777 * decays those on a 32ms period, which is orders of magnitude off 2778 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2779 * stats only if the task is so new there are no NUMA statistics yet. 2780 */ 2781 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2782 { 2783 u64 runtime, delta, now; 2784 /* Use the start of this time slice to avoid calculations. */ 2785 now = p->se.exec_start; 2786 runtime = p->se.sum_exec_runtime; 2787 2788 if (p->last_task_numa_placement) { 2789 delta = runtime - p->last_sum_exec_runtime; 2790 *period = now - p->last_task_numa_placement; 2791 2792 /* Avoid time going backwards, prevent potential divide error: */ 2793 if (unlikely((s64)*period < 0)) 2794 *period = 0; 2795 } else { 2796 delta = p->se.avg.load_sum; 2797 *period = LOAD_AVG_MAX; 2798 } 2799 2800 p->last_sum_exec_runtime = runtime; 2801 p->last_task_numa_placement = now; 2802 2803 return delta; 2804 } 2805 2806 /* 2807 * Determine the preferred nid for a task in a numa_group. This needs to 2808 * be done in a way that produces consistent results with group_weight, 2809 * otherwise workloads might not converge. 2810 */ 2811 static int preferred_group_nid(struct task_struct *p, int nid) 2812 { 2813 nodemask_t nodes; 2814 int dist; 2815 2816 /* Direct connections between all NUMA nodes. */ 2817 if (sched_numa_topology_type == NUMA_DIRECT) 2818 return nid; 2819 2820 /* 2821 * On a system with glueless mesh NUMA topology, group_weight 2822 * scores nodes according to the number of NUMA hinting faults on 2823 * both the node itself, and on nearby nodes. 2824 */ 2825 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2826 unsigned long score, max_score = 0; 2827 int node, max_node = nid; 2828 2829 dist = sched_max_numa_distance; 2830 2831 for_each_node_state(node, N_CPU) { 2832 score = group_weight(p, node, dist); 2833 if (score > max_score) { 2834 max_score = score; 2835 max_node = node; 2836 } 2837 } 2838 return max_node; 2839 } 2840 2841 /* 2842 * Finding the preferred nid in a system with NUMA backplane 2843 * interconnect topology is more involved. The goal is to locate 2844 * tasks from numa_groups near each other in the system, and 2845 * untangle workloads from different sides of the system. This requires 2846 * searching down the hierarchy of node groups, recursively searching 2847 * inside the highest scoring group of nodes. The nodemask tricks 2848 * keep the complexity of the search down. 2849 */ 2850 nodes = node_states[N_CPU]; 2851 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2852 unsigned long max_faults = 0; 2853 nodemask_t max_group = NODE_MASK_NONE; 2854 int a, b; 2855 2856 /* Are there nodes at this distance from each other? */ 2857 if (!find_numa_distance(dist)) 2858 continue; 2859 2860 for_each_node_mask(a, nodes) { 2861 unsigned long faults = 0; 2862 nodemask_t this_group; 2863 nodes_clear(this_group); 2864 2865 /* Sum group's NUMA faults; includes a==b case. */ 2866 for_each_node_mask(b, nodes) { 2867 if (node_distance(a, b) < dist) { 2868 faults += group_faults(p, b); 2869 node_set(b, this_group); 2870 node_clear(b, nodes); 2871 } 2872 } 2873 2874 /* Remember the top group. */ 2875 if (faults > max_faults) { 2876 max_faults = faults; 2877 max_group = this_group; 2878 /* 2879 * subtle: at the smallest distance there is 2880 * just one node left in each "group", the 2881 * winner is the preferred nid. 2882 */ 2883 nid = a; 2884 } 2885 } 2886 /* Next round, evaluate the nodes within max_group. */ 2887 if (!max_faults) 2888 break; 2889 nodes = max_group; 2890 } 2891 return nid; 2892 } 2893 2894 static void task_numa_placement(struct task_struct *p) 2895 { 2896 int seq, nid, max_nid = NUMA_NO_NODE; 2897 unsigned long max_faults = 0; 2898 unsigned long fault_types[2] = { 0, 0 }; 2899 unsigned long total_faults; 2900 u64 runtime, period; 2901 spinlock_t *group_lock = NULL; 2902 struct numa_group *ng; 2903 2904 /* 2905 * The p->mm->numa_scan_seq field gets updated without 2906 * exclusive access. Use READ_ONCE() here to ensure 2907 * that the field is read in a single access: 2908 */ 2909 seq = READ_ONCE(p->mm->numa_scan_seq); 2910 if (p->numa_scan_seq == seq) 2911 return; 2912 p->numa_scan_seq = seq; 2913 p->numa_scan_period_max = task_scan_max(p); 2914 2915 total_faults = p->numa_faults_locality[0] + 2916 p->numa_faults_locality[1]; 2917 runtime = numa_get_avg_runtime(p, &period); 2918 2919 /* If the task is part of a group prevent parallel updates to group stats */ 2920 ng = deref_curr_numa_group(p); 2921 if (ng) { 2922 group_lock = &ng->lock; 2923 spin_lock_irq(group_lock); 2924 } 2925 2926 /* Find the node with the highest number of faults */ 2927 for_each_online_node(nid) { 2928 /* Keep track of the offsets in numa_faults array */ 2929 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2930 unsigned long faults = 0, group_faults = 0; 2931 int priv; 2932 2933 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2934 long diff, f_diff, f_weight; 2935 2936 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2937 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2938 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2939 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2940 2941 /* Decay existing window, copy faults since last scan */ 2942 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2943 fault_types[priv] += p->numa_faults[membuf_idx]; 2944 p->numa_faults[membuf_idx] = 0; 2945 2946 /* 2947 * Normalize the faults_from, so all tasks in a group 2948 * count according to CPU use, instead of by the raw 2949 * number of faults. Tasks with little runtime have 2950 * little over-all impact on throughput, and thus their 2951 * faults are less important. 2952 */ 2953 f_weight = div64_u64(runtime << 16, period + 1); 2954 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2955 (total_faults + 1); 2956 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2957 p->numa_faults[cpubuf_idx] = 0; 2958 2959 p->numa_faults[mem_idx] += diff; 2960 p->numa_faults[cpu_idx] += f_diff; 2961 faults += p->numa_faults[mem_idx]; 2962 p->total_numa_faults += diff; 2963 if (ng) { 2964 /* 2965 * safe because we can only change our own group 2966 * 2967 * mem_idx represents the offset for a given 2968 * nid and priv in a specific region because it 2969 * is at the beginning of the numa_faults array. 2970 */ 2971 ng->faults[mem_idx] += diff; 2972 ng->faults[cpu_idx] += f_diff; 2973 ng->total_faults += diff; 2974 group_faults += ng->faults[mem_idx]; 2975 } 2976 } 2977 2978 if (!ng) { 2979 if (faults > max_faults) { 2980 max_faults = faults; 2981 max_nid = nid; 2982 } 2983 } else if (group_faults > max_faults) { 2984 max_faults = group_faults; 2985 max_nid = nid; 2986 } 2987 } 2988 2989 /* Cannot migrate task to CPU-less node */ 2990 max_nid = numa_nearest_node(max_nid, N_CPU); 2991 2992 if (ng) { 2993 numa_group_count_active_nodes(ng); 2994 spin_unlock_irq(group_lock); 2995 max_nid = preferred_group_nid(p, max_nid); 2996 } 2997 2998 if (max_faults) { 2999 /* Set the new preferred node */ 3000 if (max_nid != p->numa_preferred_nid) 3001 sched_setnuma(p, max_nid); 3002 } 3003 3004 update_task_scan_period(p, fault_types[0], fault_types[1]); 3005 } 3006 3007 static inline int get_numa_group(struct numa_group *grp) 3008 { 3009 return refcount_inc_not_zero(&grp->refcount); 3010 } 3011 3012 static inline void put_numa_group(struct numa_group *grp) 3013 { 3014 if (refcount_dec_and_test(&grp->refcount)) 3015 kfree_rcu(grp, rcu); 3016 } 3017 3018 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3019 int *priv) 3020 { 3021 struct numa_group *grp, *my_grp; 3022 struct task_struct *tsk; 3023 bool join = false; 3024 int cpu = cpupid_to_cpu(cpupid); 3025 int i; 3026 3027 if (unlikely(!deref_curr_numa_group(p))) { 3028 unsigned int size = sizeof(struct numa_group) + 3029 NR_NUMA_HINT_FAULT_STATS * 3030 nr_node_ids * sizeof(unsigned long); 3031 3032 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3033 if (!grp) 3034 return; 3035 3036 refcount_set(&grp->refcount, 1); 3037 grp->active_nodes = 1; 3038 grp->max_faults_cpu = 0; 3039 spin_lock_init(&grp->lock); 3040 grp->gid = p->pid; 3041 3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3043 grp->faults[i] = p->numa_faults[i]; 3044 3045 grp->total_faults = p->total_numa_faults; 3046 3047 grp->nr_tasks++; 3048 rcu_assign_pointer(p->numa_group, grp); 3049 } 3050 3051 rcu_read_lock(); 3052 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3053 3054 if (!cpupid_match_pid(tsk, cpupid)) 3055 goto no_join; 3056 3057 grp = rcu_dereference(tsk->numa_group); 3058 if (!grp) 3059 goto no_join; 3060 3061 my_grp = deref_curr_numa_group(p); 3062 if (grp == my_grp) 3063 goto no_join; 3064 3065 /* 3066 * Only join the other group if its bigger; if we're the bigger group, 3067 * the other task will join us. 3068 */ 3069 if (my_grp->nr_tasks > grp->nr_tasks) 3070 goto no_join; 3071 3072 /* 3073 * Tie-break on the grp address. 3074 */ 3075 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3076 goto no_join; 3077 3078 /* Always join threads in the same process. */ 3079 if (tsk->mm == current->mm) 3080 join = true; 3081 3082 /* Simple filter to avoid false positives due to PID collisions */ 3083 if (flags & TNF_SHARED) 3084 join = true; 3085 3086 /* Update priv based on whether false sharing was detected */ 3087 *priv = !join; 3088 3089 if (join && !get_numa_group(grp)) 3090 goto no_join; 3091 3092 rcu_read_unlock(); 3093 3094 if (!join) 3095 return; 3096 3097 WARN_ON_ONCE(irqs_disabled()); 3098 double_lock_irq(&my_grp->lock, &grp->lock); 3099 3100 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3101 my_grp->faults[i] -= p->numa_faults[i]; 3102 grp->faults[i] += p->numa_faults[i]; 3103 } 3104 my_grp->total_faults -= p->total_numa_faults; 3105 grp->total_faults += p->total_numa_faults; 3106 3107 my_grp->nr_tasks--; 3108 grp->nr_tasks++; 3109 3110 spin_unlock(&my_grp->lock); 3111 spin_unlock_irq(&grp->lock); 3112 3113 rcu_assign_pointer(p->numa_group, grp); 3114 3115 put_numa_group(my_grp); 3116 return; 3117 3118 no_join: 3119 rcu_read_unlock(); 3120 return; 3121 } 3122 3123 /* 3124 * Get rid of NUMA statistics associated with a task (either current or dead). 3125 * If @final is set, the task is dead and has reached refcount zero, so we can 3126 * safely free all relevant data structures. Otherwise, there might be 3127 * concurrent reads from places like load balancing and procfs, and we should 3128 * reset the data back to default state without freeing ->numa_faults. 3129 */ 3130 void task_numa_free(struct task_struct *p, bool final) 3131 { 3132 /* safe: p either is current or is being freed by current */ 3133 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3134 unsigned long *numa_faults = p->numa_faults; 3135 unsigned long flags; 3136 int i; 3137 3138 if (!numa_faults) 3139 return; 3140 3141 if (grp) { 3142 spin_lock_irqsave(&grp->lock, flags); 3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3144 grp->faults[i] -= p->numa_faults[i]; 3145 grp->total_faults -= p->total_numa_faults; 3146 3147 grp->nr_tasks--; 3148 spin_unlock_irqrestore(&grp->lock, flags); 3149 RCU_INIT_POINTER(p->numa_group, NULL); 3150 put_numa_group(grp); 3151 } 3152 3153 if (final) { 3154 p->numa_faults = NULL; 3155 kfree(numa_faults); 3156 } else { 3157 p->total_numa_faults = 0; 3158 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3159 numa_faults[i] = 0; 3160 } 3161 } 3162 3163 /* 3164 * Got a PROT_NONE fault for a page on @node. 3165 */ 3166 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3167 { 3168 struct task_struct *p = current; 3169 bool migrated = flags & TNF_MIGRATED; 3170 int cpu_node = task_node(current); 3171 int local = !!(flags & TNF_FAULT_LOCAL); 3172 struct numa_group *ng; 3173 int priv; 3174 3175 if (!static_branch_likely(&sched_numa_balancing)) 3176 return; 3177 3178 /* for example, ksmd faulting in a user's mm */ 3179 if (!p->mm) 3180 return; 3181 3182 /* 3183 * NUMA faults statistics are unnecessary for the slow memory 3184 * node for memory tiering mode. 3185 */ 3186 if (!node_is_toptier(mem_node) && 3187 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3188 !cpupid_valid(last_cpupid))) 3189 return; 3190 3191 /* Allocate buffer to track faults on a per-node basis */ 3192 if (unlikely(!p->numa_faults)) { 3193 int size = sizeof(*p->numa_faults) * 3194 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3195 3196 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3197 if (!p->numa_faults) 3198 return; 3199 3200 p->total_numa_faults = 0; 3201 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3202 } 3203 3204 /* 3205 * First accesses are treated as private, otherwise consider accesses 3206 * to be private if the accessing pid has not changed 3207 */ 3208 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3209 priv = 1; 3210 } else { 3211 priv = cpupid_match_pid(p, last_cpupid); 3212 if (!priv && !(flags & TNF_NO_GROUP)) 3213 task_numa_group(p, last_cpupid, flags, &priv); 3214 } 3215 3216 /* 3217 * If a workload spans multiple NUMA nodes, a shared fault that 3218 * occurs wholly within the set of nodes that the workload is 3219 * actively using should be counted as local. This allows the 3220 * scan rate to slow down when a workload has settled down. 3221 */ 3222 ng = deref_curr_numa_group(p); 3223 if (!priv && !local && ng && ng->active_nodes > 1 && 3224 numa_is_active_node(cpu_node, ng) && 3225 numa_is_active_node(mem_node, ng)) 3226 local = 1; 3227 3228 /* 3229 * Retry to migrate task to preferred node periodically, in case it 3230 * previously failed, or the scheduler moved us. 3231 */ 3232 if (time_after(jiffies, p->numa_migrate_retry)) { 3233 task_numa_placement(p); 3234 numa_migrate_preferred(p); 3235 } 3236 3237 if (migrated) 3238 p->numa_pages_migrated += pages; 3239 if (flags & TNF_MIGRATE_FAIL) 3240 p->numa_faults_locality[2] += pages; 3241 3242 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3243 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3244 p->numa_faults_locality[local] += pages; 3245 } 3246 3247 static void reset_ptenuma_scan(struct task_struct *p) 3248 { 3249 /* 3250 * We only did a read acquisition of the mmap sem, so 3251 * p->mm->numa_scan_seq is written to without exclusive access 3252 * and the update is not guaranteed to be atomic. That's not 3253 * much of an issue though, since this is just used for 3254 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3255 * expensive, to avoid any form of compiler optimizations: 3256 */ 3257 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3258 p->mm->numa_scan_offset = 0; 3259 } 3260 3261 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3262 { 3263 unsigned long pids; 3264 /* 3265 * Allow unconditional access first two times, so that all the (pages) 3266 * of VMAs get prot_none fault introduced irrespective of accesses. 3267 * This is also done to avoid any side effect of task scanning 3268 * amplifying the unfairness of disjoint set of VMAs' access. 3269 */ 3270 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3271 return true; 3272 3273 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3274 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3275 return true; 3276 3277 /* 3278 * Complete a scan that has already started regardless of PID access, or 3279 * some VMAs may never be scanned in multi-threaded applications: 3280 */ 3281 if (mm->numa_scan_offset > vma->vm_start) { 3282 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3283 return true; 3284 } 3285 3286 /* 3287 * This vma has not been accessed for a while, and if the number 3288 * the threads in the same process is low, which means no other 3289 * threads can help scan this vma, force a vma scan. 3290 */ 3291 if (READ_ONCE(mm->numa_scan_seq) > 3292 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3293 return true; 3294 3295 return false; 3296 } 3297 3298 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3299 3300 /* 3301 * The expensive part of numa migration is done from task_work context. 3302 * Triggered from task_tick_numa(). 3303 */ 3304 static void task_numa_work(struct callback_head *work) 3305 { 3306 unsigned long migrate, next_scan, now = jiffies; 3307 struct task_struct *p = current; 3308 struct mm_struct *mm = p->mm; 3309 u64 runtime = p->se.sum_exec_runtime; 3310 struct vm_area_struct *vma; 3311 unsigned long start, end; 3312 unsigned long nr_pte_updates = 0; 3313 long pages, virtpages; 3314 struct vma_iterator vmi; 3315 bool vma_pids_skipped; 3316 bool vma_pids_forced = false; 3317 3318 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3319 3320 work->next = work; 3321 /* 3322 * Who cares about NUMA placement when they're dying. 3323 * 3324 * NOTE: make sure not to dereference p->mm before this check, 3325 * exit_task_work() happens _after_ exit_mm() so we could be called 3326 * without p->mm even though we still had it when we enqueued this 3327 * work. 3328 */ 3329 if (p->flags & PF_EXITING) 3330 return; 3331 3332 /* 3333 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3334 * no page can be migrated. 3335 */ 3336 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3337 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3338 return; 3339 } 3340 3341 if (!mm->numa_next_scan) { 3342 mm->numa_next_scan = now + 3343 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3344 } 3345 3346 /* 3347 * Enforce maximal scan/migration frequency.. 3348 */ 3349 migrate = mm->numa_next_scan; 3350 if (time_before(now, migrate)) 3351 return; 3352 3353 if (p->numa_scan_period == 0) { 3354 p->numa_scan_period_max = task_scan_max(p); 3355 p->numa_scan_period = task_scan_start(p); 3356 } 3357 3358 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3359 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3360 return; 3361 3362 /* 3363 * Delay this task enough that another task of this mm will likely win 3364 * the next time around. 3365 */ 3366 p->node_stamp += 2 * TICK_NSEC; 3367 3368 pages = sysctl_numa_balancing_scan_size; 3369 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3370 virtpages = pages * 8; /* Scan up to this much virtual space */ 3371 if (!pages) 3372 return; 3373 3374 3375 if (!mmap_read_trylock(mm)) 3376 return; 3377 3378 /* 3379 * VMAs are skipped if the current PID has not trapped a fault within 3380 * the VMA recently. Allow scanning to be forced if there is no 3381 * suitable VMA remaining. 3382 */ 3383 vma_pids_skipped = false; 3384 3385 retry_pids: 3386 start = mm->numa_scan_offset; 3387 vma_iter_init(&vmi, mm, start); 3388 vma = vma_next(&vmi); 3389 if (!vma) { 3390 reset_ptenuma_scan(p); 3391 start = 0; 3392 vma_iter_set(&vmi, start); 3393 vma = vma_next(&vmi); 3394 } 3395 3396 for (; vma; vma = vma_next(&vmi)) { 3397 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3398 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3399 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3400 continue; 3401 } 3402 3403 /* 3404 * Shared library pages mapped by multiple processes are not 3405 * migrated as it is expected they are cache replicated. Avoid 3406 * hinting faults in read-only file-backed mappings or the vDSO 3407 * as migrating the pages will be of marginal benefit. 3408 */ 3409 if (!vma->vm_mm || 3410 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3411 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3412 continue; 3413 } 3414 3415 /* 3416 * Skip inaccessible VMAs to avoid any confusion between 3417 * PROT_NONE and NUMA hinting PTEs 3418 */ 3419 if (!vma_is_accessible(vma)) { 3420 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3421 continue; 3422 } 3423 3424 /* Initialise new per-VMA NUMAB state. */ 3425 if (!vma->numab_state) { 3426 struct vma_numab_state *ptr; 3427 3428 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3429 if (!ptr) 3430 continue; 3431 3432 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3433 kfree(ptr); 3434 continue; 3435 } 3436 3437 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3438 3439 vma->numab_state->next_scan = now + 3440 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3441 3442 /* Reset happens after 4 times scan delay of scan start */ 3443 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3444 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3445 3446 /* 3447 * Ensure prev_scan_seq does not match numa_scan_seq, 3448 * to prevent VMAs being skipped prematurely on the 3449 * first scan: 3450 */ 3451 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3452 } 3453 3454 /* 3455 * Scanning the VMAs of short lived tasks add more overhead. So 3456 * delay the scan for new VMAs. 3457 */ 3458 if (mm->numa_scan_seq && time_before(jiffies, 3459 vma->numab_state->next_scan)) { 3460 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3461 continue; 3462 } 3463 3464 /* RESET access PIDs regularly for old VMAs. */ 3465 if (mm->numa_scan_seq && 3466 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3467 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3468 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3469 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3470 vma->numab_state->pids_active[1] = 0; 3471 } 3472 3473 /* Do not rescan VMAs twice within the same sequence. */ 3474 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3475 mm->numa_scan_offset = vma->vm_end; 3476 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3477 continue; 3478 } 3479 3480 /* 3481 * Do not scan the VMA if task has not accessed it, unless no other 3482 * VMA candidate exists. 3483 */ 3484 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3485 vma_pids_skipped = true; 3486 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3487 continue; 3488 } 3489 3490 do { 3491 start = max(start, vma->vm_start); 3492 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3493 end = min(end, vma->vm_end); 3494 nr_pte_updates = change_prot_numa(vma, start, end); 3495 3496 /* 3497 * Try to scan sysctl_numa_balancing_size worth of 3498 * hpages that have at least one present PTE that 3499 * is not already PTE-numa. If the VMA contains 3500 * areas that are unused or already full of prot_numa 3501 * PTEs, scan up to virtpages, to skip through those 3502 * areas faster. 3503 */ 3504 if (nr_pte_updates) 3505 pages -= (end - start) >> PAGE_SHIFT; 3506 virtpages -= (end - start) >> PAGE_SHIFT; 3507 3508 start = end; 3509 if (pages <= 0 || virtpages <= 0) 3510 goto out; 3511 3512 cond_resched(); 3513 } while (end != vma->vm_end); 3514 3515 /* VMA scan is complete, do not scan until next sequence. */ 3516 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3517 3518 /* 3519 * Only force scan within one VMA at a time, to limit the 3520 * cost of scanning a potentially uninteresting VMA. 3521 */ 3522 if (vma_pids_forced) 3523 break; 3524 } 3525 3526 /* 3527 * If no VMAs are remaining and VMAs were skipped due to the PID 3528 * not accessing the VMA previously, then force a scan to ensure 3529 * forward progress: 3530 */ 3531 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3532 vma_pids_forced = true; 3533 goto retry_pids; 3534 } 3535 3536 out: 3537 /* 3538 * It is possible to reach the end of the VMA list but the last few 3539 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3540 * would find the !migratable VMA on the next scan but not reset the 3541 * scanner to the start so check it now. 3542 */ 3543 if (vma) 3544 mm->numa_scan_offset = start; 3545 else 3546 reset_ptenuma_scan(p); 3547 mmap_read_unlock(mm); 3548 3549 /* 3550 * Make sure tasks use at least 32x as much time to run other code 3551 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3552 * Usually update_task_scan_period slows down scanning enough; on an 3553 * overloaded system we need to limit overhead on a per task basis. 3554 */ 3555 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3556 u64 diff = p->se.sum_exec_runtime - runtime; 3557 p->node_stamp += 32 * diff; 3558 } 3559 } 3560 3561 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3562 { 3563 int mm_users = 0; 3564 struct mm_struct *mm = p->mm; 3565 3566 if (mm) { 3567 mm_users = atomic_read(&mm->mm_users); 3568 if (mm_users == 1) { 3569 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3570 mm->numa_scan_seq = 0; 3571 } 3572 } 3573 p->node_stamp = 0; 3574 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3575 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3576 p->numa_migrate_retry = 0; 3577 /* Protect against double add, see task_tick_numa and task_numa_work */ 3578 p->numa_work.next = &p->numa_work; 3579 p->numa_faults = NULL; 3580 p->numa_pages_migrated = 0; 3581 p->total_numa_faults = 0; 3582 RCU_INIT_POINTER(p->numa_group, NULL); 3583 p->last_task_numa_placement = 0; 3584 p->last_sum_exec_runtime = 0; 3585 3586 init_task_work(&p->numa_work, task_numa_work); 3587 3588 /* New address space, reset the preferred nid */ 3589 if (!(clone_flags & CLONE_VM)) { 3590 p->numa_preferred_nid = NUMA_NO_NODE; 3591 return; 3592 } 3593 3594 /* 3595 * New thread, keep existing numa_preferred_nid which should be copied 3596 * already by arch_dup_task_struct but stagger when scans start. 3597 */ 3598 if (mm) { 3599 unsigned int delay; 3600 3601 delay = min_t(unsigned int, task_scan_max(current), 3602 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3603 delay += 2 * TICK_NSEC; 3604 p->node_stamp = delay; 3605 } 3606 } 3607 3608 /* 3609 * Drive the periodic memory faults.. 3610 */ 3611 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3612 { 3613 struct callback_head *work = &curr->numa_work; 3614 u64 period, now; 3615 3616 /* 3617 * We don't care about NUMA placement if we don't have memory. 3618 */ 3619 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3620 return; 3621 3622 /* 3623 * Using runtime rather than walltime has the dual advantage that 3624 * we (mostly) drive the selection from busy threads and that the 3625 * task needs to have done some actual work before we bother with 3626 * NUMA placement. 3627 */ 3628 now = curr->se.sum_exec_runtime; 3629 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3630 3631 if (now > curr->node_stamp + period) { 3632 if (!curr->node_stamp) 3633 curr->numa_scan_period = task_scan_start(curr); 3634 curr->node_stamp += period; 3635 3636 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3637 task_work_add(curr, work, TWA_RESUME); 3638 } 3639 } 3640 3641 static void update_scan_period(struct task_struct *p, int new_cpu) 3642 { 3643 int src_nid = cpu_to_node(task_cpu(p)); 3644 int dst_nid = cpu_to_node(new_cpu); 3645 3646 if (!static_branch_likely(&sched_numa_balancing)) 3647 return; 3648 3649 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3650 return; 3651 3652 if (src_nid == dst_nid) 3653 return; 3654 3655 /* 3656 * Allow resets if faults have been trapped before one scan 3657 * has completed. This is most likely due to a new task that 3658 * is pulled cross-node due to wakeups or load balancing. 3659 */ 3660 if (p->numa_scan_seq) { 3661 /* 3662 * Avoid scan adjustments if moving to the preferred 3663 * node or if the task was not previously running on 3664 * the preferred node. 3665 */ 3666 if (dst_nid == p->numa_preferred_nid || 3667 (p->numa_preferred_nid != NUMA_NO_NODE && 3668 src_nid != p->numa_preferred_nid)) 3669 return; 3670 } 3671 3672 p->numa_scan_period = task_scan_start(p); 3673 } 3674 3675 #else 3676 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3677 { 3678 } 3679 3680 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3681 { 3682 } 3683 3684 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3685 { 3686 } 3687 3688 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3689 { 3690 } 3691 3692 #endif /* CONFIG_NUMA_BALANCING */ 3693 3694 static void 3695 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3696 { 3697 update_load_add(&cfs_rq->load, se->load.weight); 3698 #ifdef CONFIG_SMP 3699 if (entity_is_task(se)) { 3700 struct rq *rq = rq_of(cfs_rq); 3701 3702 account_numa_enqueue(rq, task_of(se)); 3703 list_add(&se->group_node, &rq->cfs_tasks); 3704 } 3705 #endif 3706 cfs_rq->nr_queued++; 3707 } 3708 3709 static void 3710 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3711 { 3712 update_load_sub(&cfs_rq->load, se->load.weight); 3713 #ifdef CONFIG_SMP 3714 if (entity_is_task(se)) { 3715 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3716 list_del_init(&se->group_node); 3717 } 3718 #endif 3719 cfs_rq->nr_queued--; 3720 } 3721 3722 /* 3723 * Signed add and clamp on underflow. 3724 * 3725 * Explicitly do a load-store to ensure the intermediate value never hits 3726 * memory. This allows lockless observations without ever seeing the negative 3727 * values. 3728 */ 3729 #define add_positive(_ptr, _val) do { \ 3730 typeof(_ptr) ptr = (_ptr); \ 3731 typeof(_val) val = (_val); \ 3732 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3733 \ 3734 res = var + val; \ 3735 \ 3736 if (val < 0 && res > var) \ 3737 res = 0; \ 3738 \ 3739 WRITE_ONCE(*ptr, res); \ 3740 } while (0) 3741 3742 /* 3743 * Unsigned subtract and clamp on underflow. 3744 * 3745 * Explicitly do a load-store to ensure the intermediate value never hits 3746 * memory. This allows lockless observations without ever seeing the negative 3747 * values. 3748 */ 3749 #define sub_positive(_ptr, _val) do { \ 3750 typeof(_ptr) ptr = (_ptr); \ 3751 typeof(*ptr) val = (_val); \ 3752 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3753 res = var - val; \ 3754 if (res > var) \ 3755 res = 0; \ 3756 WRITE_ONCE(*ptr, res); \ 3757 } while (0) 3758 3759 /* 3760 * Remove and clamp on negative, from a local variable. 3761 * 3762 * A variant of sub_positive(), which does not use explicit load-store 3763 * and is thus optimized for local variable updates. 3764 */ 3765 #define lsub_positive(_ptr, _val) do { \ 3766 typeof(_ptr) ptr = (_ptr); \ 3767 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3768 } while (0) 3769 3770 #ifdef CONFIG_SMP 3771 static inline void 3772 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3773 { 3774 cfs_rq->avg.load_avg += se->avg.load_avg; 3775 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3776 } 3777 3778 static inline void 3779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3780 { 3781 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3782 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3783 /* See update_cfs_rq_load_avg() */ 3784 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3785 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3786 } 3787 #else 3788 static inline void 3789 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3790 static inline void 3791 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3792 #endif 3793 3794 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3795 3796 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3797 unsigned long weight) 3798 { 3799 bool curr = cfs_rq->curr == se; 3800 3801 if (se->on_rq) { 3802 /* commit outstanding execution time */ 3803 update_curr(cfs_rq); 3804 update_entity_lag(cfs_rq, se); 3805 se->deadline -= se->vruntime; 3806 se->rel_deadline = 1; 3807 if (!curr) 3808 __dequeue_entity(cfs_rq, se); 3809 update_load_sub(&cfs_rq->load, se->load.weight); 3810 } 3811 dequeue_load_avg(cfs_rq, se); 3812 3813 /* 3814 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3815 * we need to scale se->vlag when w_i changes. 3816 */ 3817 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3818 if (se->rel_deadline) 3819 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3820 3821 update_load_set(&se->load, weight); 3822 3823 #ifdef CONFIG_SMP 3824 do { 3825 u32 divider = get_pelt_divider(&se->avg); 3826 3827 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3828 } while (0); 3829 #endif 3830 3831 enqueue_load_avg(cfs_rq, se); 3832 if (se->on_rq) { 3833 update_load_add(&cfs_rq->load, se->load.weight); 3834 place_entity(cfs_rq, se, 0); 3835 if (!curr) 3836 __enqueue_entity(cfs_rq, se); 3837 3838 /* 3839 * The entity's vruntime has been adjusted, so let's check 3840 * whether the rq-wide min_vruntime needs updated too. Since 3841 * the calculations above require stable min_vruntime rather 3842 * than up-to-date one, we do the update at the end of the 3843 * reweight process. 3844 */ 3845 update_min_vruntime(cfs_rq); 3846 } 3847 } 3848 3849 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3850 const struct load_weight *lw) 3851 { 3852 struct sched_entity *se = &p->se; 3853 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3854 struct load_weight *load = &se->load; 3855 3856 reweight_entity(cfs_rq, se, lw->weight); 3857 load->inv_weight = lw->inv_weight; 3858 } 3859 3860 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3861 3862 #ifdef CONFIG_FAIR_GROUP_SCHED 3863 #ifdef CONFIG_SMP 3864 /* 3865 * All this does is approximate the hierarchical proportion which includes that 3866 * global sum we all love to hate. 3867 * 3868 * That is, the weight of a group entity, is the proportional share of the 3869 * group weight based on the group runqueue weights. That is: 3870 * 3871 * tg->weight * grq->load.weight 3872 * ge->load.weight = ----------------------------- (1) 3873 * \Sum grq->load.weight 3874 * 3875 * Now, because computing that sum is prohibitively expensive to compute (been 3876 * there, done that) we approximate it with this average stuff. The average 3877 * moves slower and therefore the approximation is cheaper and more stable. 3878 * 3879 * So instead of the above, we substitute: 3880 * 3881 * grq->load.weight -> grq->avg.load_avg (2) 3882 * 3883 * which yields the following: 3884 * 3885 * tg->weight * grq->avg.load_avg 3886 * ge->load.weight = ------------------------------ (3) 3887 * tg->load_avg 3888 * 3889 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3890 * 3891 * That is shares_avg, and it is right (given the approximation (2)). 3892 * 3893 * The problem with it is that because the average is slow -- it was designed 3894 * to be exactly that of course -- this leads to transients in boundary 3895 * conditions. In specific, the case where the group was idle and we start the 3896 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3897 * yielding bad latency etc.. 3898 * 3899 * Now, in that special case (1) reduces to: 3900 * 3901 * tg->weight * grq->load.weight 3902 * ge->load.weight = ----------------------------- = tg->weight (4) 3903 * grp->load.weight 3904 * 3905 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3906 * 3907 * So what we do is modify our approximation (3) to approach (4) in the (near) 3908 * UP case, like: 3909 * 3910 * ge->load.weight = 3911 * 3912 * tg->weight * grq->load.weight 3913 * --------------------------------------------------- (5) 3914 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3915 * 3916 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3917 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3918 * 3919 * 3920 * tg->weight * grq->load.weight 3921 * ge->load.weight = ----------------------------- (6) 3922 * tg_load_avg' 3923 * 3924 * Where: 3925 * 3926 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3927 * max(grq->load.weight, grq->avg.load_avg) 3928 * 3929 * And that is shares_weight and is icky. In the (near) UP case it approaches 3930 * (4) while in the normal case it approaches (3). It consistently 3931 * overestimates the ge->load.weight and therefore: 3932 * 3933 * \Sum ge->load.weight >= tg->weight 3934 * 3935 * hence icky! 3936 */ 3937 static long calc_group_shares(struct cfs_rq *cfs_rq) 3938 { 3939 long tg_weight, tg_shares, load, shares; 3940 struct task_group *tg = cfs_rq->tg; 3941 3942 tg_shares = READ_ONCE(tg->shares); 3943 3944 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3945 3946 tg_weight = atomic_long_read(&tg->load_avg); 3947 3948 /* Ensure tg_weight >= load */ 3949 tg_weight -= cfs_rq->tg_load_avg_contrib; 3950 tg_weight += load; 3951 3952 shares = (tg_shares * load); 3953 if (tg_weight) 3954 shares /= tg_weight; 3955 3956 /* 3957 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3958 * of a group with small tg->shares value. It is a floor value which is 3959 * assigned as a minimum load.weight to the sched_entity representing 3960 * the group on a CPU. 3961 * 3962 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3963 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3964 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3965 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3966 * instead of 0. 3967 */ 3968 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3969 } 3970 #endif /* CONFIG_SMP */ 3971 3972 /* 3973 * Recomputes the group entity based on the current state of its group 3974 * runqueue. 3975 */ 3976 static void update_cfs_group(struct sched_entity *se) 3977 { 3978 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3979 long shares; 3980 3981 /* 3982 * When a group becomes empty, preserve its weight. This matters for 3983 * DELAY_DEQUEUE. 3984 */ 3985 if (!gcfs_rq || !gcfs_rq->load.weight) 3986 return; 3987 3988 if (throttled_hierarchy(gcfs_rq)) 3989 return; 3990 3991 #ifndef CONFIG_SMP 3992 shares = READ_ONCE(gcfs_rq->tg->shares); 3993 #else 3994 shares = calc_group_shares(gcfs_rq); 3995 #endif 3996 if (unlikely(se->load.weight != shares)) 3997 reweight_entity(cfs_rq_of(se), se, shares); 3998 } 3999 4000 #else /* CONFIG_FAIR_GROUP_SCHED */ 4001 static inline void update_cfs_group(struct sched_entity *se) 4002 { 4003 } 4004 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4005 4006 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4007 { 4008 struct rq *rq = rq_of(cfs_rq); 4009 4010 if (&rq->cfs == cfs_rq) { 4011 /* 4012 * There are a few boundary cases this might miss but it should 4013 * get called often enough that that should (hopefully) not be 4014 * a real problem. 4015 * 4016 * It will not get called when we go idle, because the idle 4017 * thread is a different class (!fair), nor will the utilization 4018 * number include things like RT tasks. 4019 * 4020 * As is, the util number is not freq-invariant (we'd have to 4021 * implement arch_scale_freq_capacity() for that). 4022 * 4023 * See cpu_util_cfs(). 4024 */ 4025 cpufreq_update_util(rq, flags); 4026 } 4027 } 4028 4029 #ifdef CONFIG_SMP 4030 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4031 { 4032 if (sa->load_sum) 4033 return false; 4034 4035 if (sa->util_sum) 4036 return false; 4037 4038 if (sa->runnable_sum) 4039 return false; 4040 4041 /* 4042 * _avg must be null when _sum are null because _avg = _sum / divider 4043 * Make sure that rounding and/or propagation of PELT values never 4044 * break this. 4045 */ 4046 WARN_ON_ONCE(sa->load_avg || 4047 sa->util_avg || 4048 sa->runnable_avg); 4049 4050 return true; 4051 } 4052 4053 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4054 { 4055 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4056 cfs_rq->last_update_time_copy); 4057 } 4058 #ifdef CONFIG_FAIR_GROUP_SCHED 4059 /* 4060 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4061 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4062 * bottom-up, we only have to test whether the cfs_rq before us on the list 4063 * is our child. 4064 * If cfs_rq is not on the list, test whether a child needs its to be added to 4065 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4066 */ 4067 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4068 { 4069 struct cfs_rq *prev_cfs_rq; 4070 struct list_head *prev; 4071 struct rq *rq = rq_of(cfs_rq); 4072 4073 if (cfs_rq->on_list) { 4074 prev = cfs_rq->leaf_cfs_rq_list.prev; 4075 } else { 4076 prev = rq->tmp_alone_branch; 4077 } 4078 4079 if (prev == &rq->leaf_cfs_rq_list) 4080 return false; 4081 4082 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4083 4084 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4085 } 4086 4087 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4088 { 4089 if (cfs_rq->load.weight) 4090 return false; 4091 4092 if (!load_avg_is_decayed(&cfs_rq->avg)) 4093 return false; 4094 4095 if (child_cfs_rq_on_list(cfs_rq)) 4096 return false; 4097 4098 return true; 4099 } 4100 4101 /** 4102 * update_tg_load_avg - update the tg's load avg 4103 * @cfs_rq: the cfs_rq whose avg changed 4104 * 4105 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4106 * However, because tg->load_avg is a global value there are performance 4107 * considerations. 4108 * 4109 * In order to avoid having to look at the other cfs_rq's, we use a 4110 * differential update where we store the last value we propagated. This in 4111 * turn allows skipping updates if the differential is 'small'. 4112 * 4113 * Updating tg's load_avg is necessary before update_cfs_share(). 4114 */ 4115 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4116 { 4117 long delta; 4118 u64 now; 4119 4120 /* 4121 * No need to update load_avg for root_task_group as it is not used. 4122 */ 4123 if (cfs_rq->tg == &root_task_group) 4124 return; 4125 4126 /* rq has been offline and doesn't contribute to the share anymore: */ 4127 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4128 return; 4129 4130 /* 4131 * For migration heavy workloads, access to tg->load_avg can be 4132 * unbound. Limit the update rate to at most once per ms. 4133 */ 4134 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4135 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4136 return; 4137 4138 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4139 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4140 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4141 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4142 cfs_rq->last_update_tg_load_avg = now; 4143 } 4144 } 4145 4146 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4147 { 4148 long delta; 4149 u64 now; 4150 4151 /* 4152 * No need to update load_avg for root_task_group, as it is not used. 4153 */ 4154 if (cfs_rq->tg == &root_task_group) 4155 return; 4156 4157 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4158 delta = 0 - cfs_rq->tg_load_avg_contrib; 4159 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4160 cfs_rq->tg_load_avg_contrib = 0; 4161 cfs_rq->last_update_tg_load_avg = now; 4162 } 4163 4164 /* CPU offline callback: */ 4165 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4166 { 4167 struct task_group *tg; 4168 4169 lockdep_assert_rq_held(rq); 4170 4171 /* 4172 * The rq clock has already been updated in 4173 * set_rq_offline(), so we should skip updating 4174 * the rq clock again in unthrottle_cfs_rq(). 4175 */ 4176 rq_clock_start_loop_update(rq); 4177 4178 rcu_read_lock(); 4179 list_for_each_entry_rcu(tg, &task_groups, list) { 4180 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4181 4182 clear_tg_load_avg(cfs_rq); 4183 } 4184 rcu_read_unlock(); 4185 4186 rq_clock_stop_loop_update(rq); 4187 } 4188 4189 /* 4190 * Called within set_task_rq() right before setting a task's CPU. The 4191 * caller only guarantees p->pi_lock is held; no other assumptions, 4192 * including the state of rq->lock, should be made. 4193 */ 4194 void set_task_rq_fair(struct sched_entity *se, 4195 struct cfs_rq *prev, struct cfs_rq *next) 4196 { 4197 u64 p_last_update_time; 4198 u64 n_last_update_time; 4199 4200 if (!sched_feat(ATTACH_AGE_LOAD)) 4201 return; 4202 4203 /* 4204 * We are supposed to update the task to "current" time, then its up to 4205 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4206 * getting what current time is, so simply throw away the out-of-date 4207 * time. This will result in the wakee task is less decayed, but giving 4208 * the wakee more load sounds not bad. 4209 */ 4210 if (!(se->avg.last_update_time && prev)) 4211 return; 4212 4213 p_last_update_time = cfs_rq_last_update_time(prev); 4214 n_last_update_time = cfs_rq_last_update_time(next); 4215 4216 __update_load_avg_blocked_se(p_last_update_time, se); 4217 se->avg.last_update_time = n_last_update_time; 4218 } 4219 4220 /* 4221 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4222 * propagate its contribution. The key to this propagation is the invariant 4223 * that for each group: 4224 * 4225 * ge->avg == grq->avg (1) 4226 * 4227 * _IFF_ we look at the pure running and runnable sums. Because they 4228 * represent the very same entity, just at different points in the hierarchy. 4229 * 4230 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4231 * and simply copies the running/runnable sum over (but still wrong, because 4232 * the group entity and group rq do not have their PELT windows aligned). 4233 * 4234 * However, update_tg_cfs_load() is more complex. So we have: 4235 * 4236 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4237 * 4238 * And since, like util, the runnable part should be directly transferable, 4239 * the following would _appear_ to be the straight forward approach: 4240 * 4241 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4242 * 4243 * And per (1) we have: 4244 * 4245 * ge->avg.runnable_avg == grq->avg.runnable_avg 4246 * 4247 * Which gives: 4248 * 4249 * ge->load.weight * grq->avg.load_avg 4250 * ge->avg.load_avg = ----------------------------------- (4) 4251 * grq->load.weight 4252 * 4253 * Except that is wrong! 4254 * 4255 * Because while for entities historical weight is not important and we 4256 * really only care about our future and therefore can consider a pure 4257 * runnable sum, runqueues can NOT do this. 4258 * 4259 * We specifically want runqueues to have a load_avg that includes 4260 * historical weights. Those represent the blocked load, the load we expect 4261 * to (shortly) return to us. This only works by keeping the weights as 4262 * integral part of the sum. We therefore cannot decompose as per (3). 4263 * 4264 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4265 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4266 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4267 * runnable section of these tasks overlap (or not). If they were to perfectly 4268 * align the rq as a whole would be runnable 2/3 of the time. If however we 4269 * always have at least 1 runnable task, the rq as a whole is always runnable. 4270 * 4271 * So we'll have to approximate.. :/ 4272 * 4273 * Given the constraint: 4274 * 4275 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4276 * 4277 * We can construct a rule that adds runnable to a rq by assuming minimal 4278 * overlap. 4279 * 4280 * On removal, we'll assume each task is equally runnable; which yields: 4281 * 4282 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4283 * 4284 * XXX: only do this for the part of runnable > running ? 4285 * 4286 */ 4287 static inline void 4288 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4289 { 4290 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4291 u32 new_sum, divider; 4292 4293 /* Nothing to update */ 4294 if (!delta_avg) 4295 return; 4296 4297 /* 4298 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4299 * See ___update_load_avg() for details. 4300 */ 4301 divider = get_pelt_divider(&cfs_rq->avg); 4302 4303 4304 /* Set new sched_entity's utilization */ 4305 se->avg.util_avg = gcfs_rq->avg.util_avg; 4306 new_sum = se->avg.util_avg * divider; 4307 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4308 se->avg.util_sum = new_sum; 4309 4310 /* Update parent cfs_rq utilization */ 4311 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4312 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4313 4314 /* See update_cfs_rq_load_avg() */ 4315 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4316 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4317 } 4318 4319 static inline void 4320 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4321 { 4322 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4323 u32 new_sum, divider; 4324 4325 /* Nothing to update */ 4326 if (!delta_avg) 4327 return; 4328 4329 /* 4330 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4331 * See ___update_load_avg() for details. 4332 */ 4333 divider = get_pelt_divider(&cfs_rq->avg); 4334 4335 /* Set new sched_entity's runnable */ 4336 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4337 new_sum = se->avg.runnable_avg * divider; 4338 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4339 se->avg.runnable_sum = new_sum; 4340 4341 /* Update parent cfs_rq runnable */ 4342 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4343 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4344 /* See update_cfs_rq_load_avg() */ 4345 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4346 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4347 } 4348 4349 static inline void 4350 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4351 { 4352 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4353 unsigned long load_avg; 4354 u64 load_sum = 0; 4355 s64 delta_sum; 4356 u32 divider; 4357 4358 if (!runnable_sum) 4359 return; 4360 4361 gcfs_rq->prop_runnable_sum = 0; 4362 4363 /* 4364 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4365 * See ___update_load_avg() for details. 4366 */ 4367 divider = get_pelt_divider(&cfs_rq->avg); 4368 4369 if (runnable_sum >= 0) { 4370 /* 4371 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4372 * the CPU is saturated running == runnable. 4373 */ 4374 runnable_sum += se->avg.load_sum; 4375 runnable_sum = min_t(long, runnable_sum, divider); 4376 } else { 4377 /* 4378 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4379 * assuming all tasks are equally runnable. 4380 */ 4381 if (scale_load_down(gcfs_rq->load.weight)) { 4382 load_sum = div_u64(gcfs_rq->avg.load_sum, 4383 scale_load_down(gcfs_rq->load.weight)); 4384 } 4385 4386 /* But make sure to not inflate se's runnable */ 4387 runnable_sum = min(se->avg.load_sum, load_sum); 4388 } 4389 4390 /* 4391 * runnable_sum can't be lower than running_sum 4392 * Rescale running sum to be in the same range as runnable sum 4393 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4394 * runnable_sum is in [0 : LOAD_AVG_MAX] 4395 */ 4396 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4397 runnable_sum = max(runnable_sum, running_sum); 4398 4399 load_sum = se_weight(se) * runnable_sum; 4400 load_avg = div_u64(load_sum, divider); 4401 4402 delta_avg = load_avg - se->avg.load_avg; 4403 if (!delta_avg) 4404 return; 4405 4406 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4407 4408 se->avg.load_sum = runnable_sum; 4409 se->avg.load_avg = load_avg; 4410 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4411 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4412 /* See update_cfs_rq_load_avg() */ 4413 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4414 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4415 } 4416 4417 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4418 { 4419 cfs_rq->propagate = 1; 4420 cfs_rq->prop_runnable_sum += runnable_sum; 4421 } 4422 4423 /* Update task and its cfs_rq load average */ 4424 static inline int propagate_entity_load_avg(struct sched_entity *se) 4425 { 4426 struct cfs_rq *cfs_rq, *gcfs_rq; 4427 4428 if (entity_is_task(se)) 4429 return 0; 4430 4431 gcfs_rq = group_cfs_rq(se); 4432 if (!gcfs_rq->propagate) 4433 return 0; 4434 4435 gcfs_rq->propagate = 0; 4436 4437 cfs_rq = cfs_rq_of(se); 4438 4439 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4440 4441 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4442 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4443 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4444 4445 trace_pelt_cfs_tp(cfs_rq); 4446 trace_pelt_se_tp(se); 4447 4448 return 1; 4449 } 4450 4451 /* 4452 * Check if we need to update the load and the utilization of a blocked 4453 * group_entity: 4454 */ 4455 static inline bool skip_blocked_update(struct sched_entity *se) 4456 { 4457 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4458 4459 /* 4460 * If sched_entity still have not zero load or utilization, we have to 4461 * decay it: 4462 */ 4463 if (se->avg.load_avg || se->avg.util_avg) 4464 return false; 4465 4466 /* 4467 * If there is a pending propagation, we have to update the load and 4468 * the utilization of the sched_entity: 4469 */ 4470 if (gcfs_rq->propagate) 4471 return false; 4472 4473 /* 4474 * Otherwise, the load and the utilization of the sched_entity is 4475 * already zero and there is no pending propagation, so it will be a 4476 * waste of time to try to decay it: 4477 */ 4478 return true; 4479 } 4480 4481 #else /* CONFIG_FAIR_GROUP_SCHED */ 4482 4483 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4484 4485 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4486 4487 static inline int propagate_entity_load_avg(struct sched_entity *se) 4488 { 4489 return 0; 4490 } 4491 4492 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4493 4494 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4495 4496 #ifdef CONFIG_NO_HZ_COMMON 4497 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4498 { 4499 u64 throttled = 0, now, lut; 4500 struct cfs_rq *cfs_rq; 4501 struct rq *rq; 4502 bool is_idle; 4503 4504 if (load_avg_is_decayed(&se->avg)) 4505 return; 4506 4507 cfs_rq = cfs_rq_of(se); 4508 rq = rq_of(cfs_rq); 4509 4510 rcu_read_lock(); 4511 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4512 rcu_read_unlock(); 4513 4514 /* 4515 * The lag estimation comes with a cost we don't want to pay all the 4516 * time. Hence, limiting to the case where the source CPU is idle and 4517 * we know we are at the greatest risk to have an outdated clock. 4518 */ 4519 if (!is_idle) 4520 return; 4521 4522 /* 4523 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4524 * 4525 * last_update_time (the cfs_rq's last_update_time) 4526 * = cfs_rq_clock_pelt()@cfs_rq_idle 4527 * = rq_clock_pelt()@cfs_rq_idle 4528 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4529 * 4530 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4531 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4532 * 4533 * rq_idle_lag (delta between now and rq's update) 4534 * = sched_clock_cpu() - rq_clock()@rq_idle 4535 * 4536 * We can then write: 4537 * 4538 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4539 * sched_clock_cpu() - rq_clock()@rq_idle 4540 * Where: 4541 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4542 * rq_clock()@rq_idle is rq->clock_idle 4543 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4544 * is cfs_rq->throttled_pelt_idle 4545 */ 4546 4547 #ifdef CONFIG_CFS_BANDWIDTH 4548 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4549 /* The clock has been stopped for throttling */ 4550 if (throttled == U64_MAX) 4551 return; 4552 #endif 4553 now = u64_u32_load(rq->clock_pelt_idle); 4554 /* 4555 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4556 * is observed the old clock_pelt_idle value and the new clock_idle, 4557 * which lead to an underestimation. The opposite would lead to an 4558 * overestimation. 4559 */ 4560 smp_rmb(); 4561 lut = cfs_rq_last_update_time(cfs_rq); 4562 4563 now -= throttled; 4564 if (now < lut) 4565 /* 4566 * cfs_rq->avg.last_update_time is more recent than our 4567 * estimation, let's use it. 4568 */ 4569 now = lut; 4570 else 4571 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4572 4573 __update_load_avg_blocked_se(now, se); 4574 } 4575 #else 4576 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4577 #endif 4578 4579 /** 4580 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4581 * @now: current time, as per cfs_rq_clock_pelt() 4582 * @cfs_rq: cfs_rq to update 4583 * 4584 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4585 * avg. The immediate corollary is that all (fair) tasks must be attached. 4586 * 4587 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4588 * 4589 * Return: true if the load decayed or we removed load. 4590 * 4591 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4592 * call update_tg_load_avg() when this function returns true. 4593 */ 4594 static inline int 4595 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4596 { 4597 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4598 struct sched_avg *sa = &cfs_rq->avg; 4599 int decayed = 0; 4600 4601 if (cfs_rq->removed.nr) { 4602 unsigned long r; 4603 u32 divider = get_pelt_divider(&cfs_rq->avg); 4604 4605 raw_spin_lock(&cfs_rq->removed.lock); 4606 swap(cfs_rq->removed.util_avg, removed_util); 4607 swap(cfs_rq->removed.load_avg, removed_load); 4608 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4609 cfs_rq->removed.nr = 0; 4610 raw_spin_unlock(&cfs_rq->removed.lock); 4611 4612 r = removed_load; 4613 sub_positive(&sa->load_avg, r); 4614 sub_positive(&sa->load_sum, r * divider); 4615 /* See sa->util_sum below */ 4616 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4617 4618 r = removed_util; 4619 sub_positive(&sa->util_avg, r); 4620 sub_positive(&sa->util_sum, r * divider); 4621 /* 4622 * Because of rounding, se->util_sum might ends up being +1 more than 4623 * cfs->util_sum. Although this is not a problem by itself, detaching 4624 * a lot of tasks with the rounding problem between 2 updates of 4625 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4626 * cfs_util_avg is not. 4627 * Check that util_sum is still above its lower bound for the new 4628 * util_avg. Given that period_contrib might have moved since the last 4629 * sync, we are only sure that util_sum must be above or equal to 4630 * util_avg * minimum possible divider 4631 */ 4632 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4633 4634 r = removed_runnable; 4635 sub_positive(&sa->runnable_avg, r); 4636 sub_positive(&sa->runnable_sum, r * divider); 4637 /* See sa->util_sum above */ 4638 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4639 sa->runnable_avg * PELT_MIN_DIVIDER); 4640 4641 /* 4642 * removed_runnable is the unweighted version of removed_load so we 4643 * can use it to estimate removed_load_sum. 4644 */ 4645 add_tg_cfs_propagate(cfs_rq, 4646 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4647 4648 decayed = 1; 4649 } 4650 4651 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4652 u64_u32_store_copy(sa->last_update_time, 4653 cfs_rq->last_update_time_copy, 4654 sa->last_update_time); 4655 return decayed; 4656 } 4657 4658 /** 4659 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4660 * @cfs_rq: cfs_rq to attach to 4661 * @se: sched_entity to attach 4662 * 4663 * Must call update_cfs_rq_load_avg() before this, since we rely on 4664 * cfs_rq->avg.last_update_time being current. 4665 */ 4666 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4667 { 4668 /* 4669 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4670 * See ___update_load_avg() for details. 4671 */ 4672 u32 divider = get_pelt_divider(&cfs_rq->avg); 4673 4674 /* 4675 * When we attach the @se to the @cfs_rq, we must align the decay 4676 * window because without that, really weird and wonderful things can 4677 * happen. 4678 * 4679 * XXX illustrate 4680 */ 4681 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4682 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4683 4684 /* 4685 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4686 * period_contrib. This isn't strictly correct, but since we're 4687 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4688 * _sum a little. 4689 */ 4690 se->avg.util_sum = se->avg.util_avg * divider; 4691 4692 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4693 4694 se->avg.load_sum = se->avg.load_avg * divider; 4695 if (se_weight(se) < se->avg.load_sum) 4696 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4697 else 4698 se->avg.load_sum = 1; 4699 4700 enqueue_load_avg(cfs_rq, se); 4701 cfs_rq->avg.util_avg += se->avg.util_avg; 4702 cfs_rq->avg.util_sum += se->avg.util_sum; 4703 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4704 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4705 4706 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4707 4708 cfs_rq_util_change(cfs_rq, 0); 4709 4710 trace_pelt_cfs_tp(cfs_rq); 4711 } 4712 4713 /** 4714 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4715 * @cfs_rq: cfs_rq to detach from 4716 * @se: sched_entity to detach 4717 * 4718 * Must call update_cfs_rq_load_avg() before this, since we rely on 4719 * cfs_rq->avg.last_update_time being current. 4720 */ 4721 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4722 { 4723 dequeue_load_avg(cfs_rq, se); 4724 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4725 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4726 /* See update_cfs_rq_load_avg() */ 4727 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4728 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4729 4730 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4731 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4732 /* See update_cfs_rq_load_avg() */ 4733 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4734 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4735 4736 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4737 4738 cfs_rq_util_change(cfs_rq, 0); 4739 4740 trace_pelt_cfs_tp(cfs_rq); 4741 } 4742 4743 /* 4744 * Optional action to be done while updating the load average 4745 */ 4746 #define UPDATE_TG 0x1 4747 #define SKIP_AGE_LOAD 0x2 4748 #define DO_ATTACH 0x4 4749 #define DO_DETACH 0x8 4750 4751 /* Update task and its cfs_rq load average */ 4752 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4753 { 4754 u64 now = cfs_rq_clock_pelt(cfs_rq); 4755 int decayed; 4756 4757 /* 4758 * Track task load average for carrying it to new CPU after migrated, and 4759 * track group sched_entity load average for task_h_load calculation in migration 4760 */ 4761 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4762 __update_load_avg_se(now, cfs_rq, se); 4763 4764 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4765 decayed |= propagate_entity_load_avg(se); 4766 4767 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4768 4769 /* 4770 * DO_ATTACH means we're here from enqueue_entity(). 4771 * !last_update_time means we've passed through 4772 * migrate_task_rq_fair() indicating we migrated. 4773 * 4774 * IOW we're enqueueing a task on a new CPU. 4775 */ 4776 attach_entity_load_avg(cfs_rq, se); 4777 update_tg_load_avg(cfs_rq); 4778 4779 } else if (flags & DO_DETACH) { 4780 /* 4781 * DO_DETACH means we're here from dequeue_entity() 4782 * and we are migrating task out of the CPU. 4783 */ 4784 detach_entity_load_avg(cfs_rq, se); 4785 update_tg_load_avg(cfs_rq); 4786 } else if (decayed) { 4787 cfs_rq_util_change(cfs_rq, 0); 4788 4789 if (flags & UPDATE_TG) 4790 update_tg_load_avg(cfs_rq); 4791 } 4792 } 4793 4794 /* 4795 * Synchronize entity load avg of dequeued entity without locking 4796 * the previous rq. 4797 */ 4798 static void sync_entity_load_avg(struct sched_entity *se) 4799 { 4800 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4801 u64 last_update_time; 4802 4803 last_update_time = cfs_rq_last_update_time(cfs_rq); 4804 __update_load_avg_blocked_se(last_update_time, se); 4805 } 4806 4807 /* 4808 * Task first catches up with cfs_rq, and then subtract 4809 * itself from the cfs_rq (task must be off the queue now). 4810 */ 4811 static void remove_entity_load_avg(struct sched_entity *se) 4812 { 4813 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4814 unsigned long flags; 4815 4816 /* 4817 * tasks cannot exit without having gone through wake_up_new_task() -> 4818 * enqueue_task_fair() which will have added things to the cfs_rq, 4819 * so we can remove unconditionally. 4820 */ 4821 4822 sync_entity_load_avg(se); 4823 4824 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4825 ++cfs_rq->removed.nr; 4826 cfs_rq->removed.util_avg += se->avg.util_avg; 4827 cfs_rq->removed.load_avg += se->avg.load_avg; 4828 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4829 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4830 } 4831 4832 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4833 { 4834 return cfs_rq->avg.runnable_avg; 4835 } 4836 4837 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4838 { 4839 return cfs_rq->avg.load_avg; 4840 } 4841 4842 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4843 4844 static inline unsigned long task_util(struct task_struct *p) 4845 { 4846 return READ_ONCE(p->se.avg.util_avg); 4847 } 4848 4849 static inline unsigned long task_runnable(struct task_struct *p) 4850 { 4851 return READ_ONCE(p->se.avg.runnable_avg); 4852 } 4853 4854 static inline unsigned long _task_util_est(struct task_struct *p) 4855 { 4856 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4857 } 4858 4859 static inline unsigned long task_util_est(struct task_struct *p) 4860 { 4861 return max(task_util(p), _task_util_est(p)); 4862 } 4863 4864 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4865 struct task_struct *p) 4866 { 4867 unsigned int enqueued; 4868 4869 if (!sched_feat(UTIL_EST)) 4870 return; 4871 4872 /* Update root cfs_rq's estimated utilization */ 4873 enqueued = cfs_rq->avg.util_est; 4874 enqueued += _task_util_est(p); 4875 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4876 4877 trace_sched_util_est_cfs_tp(cfs_rq); 4878 } 4879 4880 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4881 struct task_struct *p) 4882 { 4883 unsigned int enqueued; 4884 4885 if (!sched_feat(UTIL_EST)) 4886 return; 4887 4888 /* Update root cfs_rq's estimated utilization */ 4889 enqueued = cfs_rq->avg.util_est; 4890 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4891 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4892 4893 trace_sched_util_est_cfs_tp(cfs_rq); 4894 } 4895 4896 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4897 4898 static inline void util_est_update(struct cfs_rq *cfs_rq, 4899 struct task_struct *p, 4900 bool task_sleep) 4901 { 4902 unsigned int ewma, dequeued, last_ewma_diff; 4903 4904 if (!sched_feat(UTIL_EST)) 4905 return; 4906 4907 /* 4908 * Skip update of task's estimated utilization when the task has not 4909 * yet completed an activation, e.g. being migrated. 4910 */ 4911 if (!task_sleep) 4912 return; 4913 4914 /* Get current estimate of utilization */ 4915 ewma = READ_ONCE(p->se.avg.util_est); 4916 4917 /* 4918 * If the PELT values haven't changed since enqueue time, 4919 * skip the util_est update. 4920 */ 4921 if (ewma & UTIL_AVG_UNCHANGED) 4922 return; 4923 4924 /* Get utilization at dequeue */ 4925 dequeued = task_util(p); 4926 4927 /* 4928 * Reset EWMA on utilization increases, the moving average is used only 4929 * to smooth utilization decreases. 4930 */ 4931 if (ewma <= dequeued) { 4932 ewma = dequeued; 4933 goto done; 4934 } 4935 4936 /* 4937 * Skip update of task's estimated utilization when its members are 4938 * already ~1% close to its last activation value. 4939 */ 4940 last_ewma_diff = ewma - dequeued; 4941 if (last_ewma_diff < UTIL_EST_MARGIN) 4942 goto done; 4943 4944 /* 4945 * To avoid overestimation of actual task utilization, skip updates if 4946 * we cannot grant there is idle time in this CPU. 4947 */ 4948 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4949 return; 4950 4951 /* 4952 * To avoid underestimate of task utilization, skip updates of EWMA if 4953 * we cannot grant that thread got all CPU time it wanted. 4954 */ 4955 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4956 goto done; 4957 4958 4959 /* 4960 * Update Task's estimated utilization 4961 * 4962 * When *p completes an activation we can consolidate another sample 4963 * of the task size. This is done by using this value to update the 4964 * Exponential Weighted Moving Average (EWMA): 4965 * 4966 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4967 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4968 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4969 * = w * ( -last_ewma_diff ) + ewma(t-1) 4970 * = w * (-last_ewma_diff + ewma(t-1) / w) 4971 * 4972 * Where 'w' is the weight of new samples, which is configured to be 4973 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4974 */ 4975 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4976 ewma -= last_ewma_diff; 4977 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4978 done: 4979 ewma |= UTIL_AVG_UNCHANGED; 4980 WRITE_ONCE(p->se.avg.util_est, ewma); 4981 4982 trace_sched_util_est_se_tp(&p->se); 4983 } 4984 4985 static inline unsigned long get_actual_cpu_capacity(int cpu) 4986 { 4987 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4988 4989 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4990 4991 return capacity; 4992 } 4993 4994 static inline int util_fits_cpu(unsigned long util, 4995 unsigned long uclamp_min, 4996 unsigned long uclamp_max, 4997 int cpu) 4998 { 4999 unsigned long capacity = capacity_of(cpu); 5000 unsigned long capacity_orig; 5001 bool fits, uclamp_max_fits; 5002 5003 /* 5004 * Check if the real util fits without any uclamp boost/cap applied. 5005 */ 5006 fits = fits_capacity(util, capacity); 5007 5008 if (!uclamp_is_used()) 5009 return fits; 5010 5011 /* 5012 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5013 * uclamp_max. We only care about capacity pressure (by using 5014 * capacity_of()) for comparing against the real util. 5015 * 5016 * If a task is boosted to 1024 for example, we don't want a tiny 5017 * pressure to skew the check whether it fits a CPU or not. 5018 * 5019 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5020 * should fit a little cpu even if there's some pressure. 5021 * 5022 * Only exception is for HW or cpufreq pressure since it has a direct impact 5023 * on available OPP of the system. 5024 * 5025 * We honour it for uclamp_min only as a drop in performance level 5026 * could result in not getting the requested minimum performance level. 5027 * 5028 * For uclamp_max, we can tolerate a drop in performance level as the 5029 * goal is to cap the task. So it's okay if it's getting less. 5030 */ 5031 capacity_orig = arch_scale_cpu_capacity(cpu); 5032 5033 /* 5034 * We want to force a task to fit a cpu as implied by uclamp_max. 5035 * But we do have some corner cases to cater for.. 5036 * 5037 * 5038 * C=z 5039 * | ___ 5040 * | C=y | | 5041 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5042 * | C=x | | | | 5043 * | ___ | | | | 5044 * | | | | | | | (util somewhere in this region) 5045 * | | | | | | | 5046 * | | | | | | | 5047 * +---------------------------------------- 5048 * CPU0 CPU1 CPU2 5049 * 5050 * In the above example if a task is capped to a specific performance 5051 * point, y, then when: 5052 * 5053 * * util = 80% of x then it does not fit on CPU0 and should migrate 5054 * to CPU1 5055 * * util = 80% of y then it is forced to fit on CPU1 to honour 5056 * uclamp_max request. 5057 * 5058 * which is what we're enforcing here. A task always fits if 5059 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5060 * the normal upmigration rules should withhold still. 5061 * 5062 * Only exception is when we are on max capacity, then we need to be 5063 * careful not to block overutilized state. This is so because: 5064 * 5065 * 1. There's no concept of capping at max_capacity! We can't go 5066 * beyond this performance level anyway. 5067 * 2. The system is being saturated when we're operating near 5068 * max capacity, it doesn't make sense to block overutilized. 5069 */ 5070 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5071 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5072 fits = fits || uclamp_max_fits; 5073 5074 /* 5075 * 5076 * C=z 5077 * | ___ (region a, capped, util >= uclamp_max) 5078 * | C=y | | 5079 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5080 * | C=x | | | | 5081 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5082 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5083 * | | | | | | | 5084 * | | | | | | | (region c, boosted, util < uclamp_min) 5085 * +---------------------------------------- 5086 * CPU0 CPU1 CPU2 5087 * 5088 * a) If util > uclamp_max, then we're capped, we don't care about 5089 * actual fitness value here. We only care if uclamp_max fits 5090 * capacity without taking margin/pressure into account. 5091 * See comment above. 5092 * 5093 * b) If uclamp_min <= util <= uclamp_max, then the normal 5094 * fits_capacity() rules apply. Except we need to ensure that we 5095 * enforce we remain within uclamp_max, see comment above. 5096 * 5097 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5098 * need to take into account the boosted value fits the CPU without 5099 * taking margin/pressure into account. 5100 * 5101 * Cases (a) and (b) are handled in the 'fits' variable already. We 5102 * just need to consider an extra check for case (c) after ensuring we 5103 * handle the case uclamp_min > uclamp_max. 5104 */ 5105 uclamp_min = min(uclamp_min, uclamp_max); 5106 if (fits && (util < uclamp_min) && 5107 (uclamp_min > get_actual_cpu_capacity(cpu))) 5108 return -1; 5109 5110 return fits; 5111 } 5112 5113 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5114 { 5115 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5116 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5117 unsigned long util = task_util_est(p); 5118 /* 5119 * Return true only if the cpu fully fits the task requirements, which 5120 * include the utilization but also the performance hints. 5121 */ 5122 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5123 } 5124 5125 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5126 { 5127 int cpu = cpu_of(rq); 5128 5129 if (!sched_asym_cpucap_active()) 5130 return; 5131 5132 /* 5133 * Affinity allows us to go somewhere higher? Or are we on biggest 5134 * available CPU already? Or do we fit into this CPU ? 5135 */ 5136 if (!p || (p->nr_cpus_allowed == 1) || 5137 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5138 task_fits_cpu(p, cpu)) { 5139 5140 rq->misfit_task_load = 0; 5141 return; 5142 } 5143 5144 /* 5145 * Make sure that misfit_task_load will not be null even if 5146 * task_h_load() returns 0. 5147 */ 5148 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5149 } 5150 5151 #else /* CONFIG_SMP */ 5152 5153 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5154 { 5155 return !cfs_rq->nr_queued; 5156 } 5157 5158 #define UPDATE_TG 0x0 5159 #define SKIP_AGE_LOAD 0x0 5160 #define DO_ATTACH 0x0 5161 #define DO_DETACH 0x0 5162 5163 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5164 { 5165 cfs_rq_util_change(cfs_rq, 0); 5166 } 5167 5168 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5169 5170 static inline void 5171 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5172 static inline void 5173 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5174 5175 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5176 { 5177 return 0; 5178 } 5179 5180 static inline void 5181 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5182 5183 static inline void 5184 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5185 5186 static inline void 5187 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5188 bool task_sleep) {} 5189 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5190 5191 #endif /* CONFIG_SMP */ 5192 5193 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5194 { 5195 struct sched_entity *se = &p->se; 5196 5197 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5198 if (attr->sched_runtime) { 5199 se->custom_slice = 1; 5200 se->slice = clamp_t(u64, attr->sched_runtime, 5201 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5202 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5203 } else { 5204 se->custom_slice = 0; 5205 se->slice = sysctl_sched_base_slice; 5206 } 5207 } 5208 5209 static void 5210 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5211 { 5212 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5213 s64 lag = 0; 5214 5215 if (!se->custom_slice) 5216 se->slice = sysctl_sched_base_slice; 5217 vslice = calc_delta_fair(se->slice, se); 5218 5219 /* 5220 * Due to how V is constructed as the weighted average of entities, 5221 * adding tasks with positive lag, or removing tasks with negative lag 5222 * will move 'time' backwards, this can screw around with the lag of 5223 * other tasks. 5224 * 5225 * EEVDF: placement strategy #1 / #2 5226 */ 5227 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5228 struct sched_entity *curr = cfs_rq->curr; 5229 unsigned long load; 5230 5231 lag = se->vlag; 5232 5233 /* 5234 * If we want to place a task and preserve lag, we have to 5235 * consider the effect of the new entity on the weighted 5236 * average and compensate for this, otherwise lag can quickly 5237 * evaporate. 5238 * 5239 * Lag is defined as: 5240 * 5241 * lag_i = S - s_i = w_i * (V - v_i) 5242 * 5243 * To avoid the 'w_i' term all over the place, we only track 5244 * the virtual lag: 5245 * 5246 * vl_i = V - v_i <=> v_i = V - vl_i 5247 * 5248 * And we take V to be the weighted average of all v: 5249 * 5250 * V = (\Sum w_j*v_j) / W 5251 * 5252 * Where W is: \Sum w_j 5253 * 5254 * Then, the weighted average after adding an entity with lag 5255 * vl_i is given by: 5256 * 5257 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5258 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5259 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5260 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5261 * = V - w_i*vl_i / (W + w_i) 5262 * 5263 * And the actual lag after adding an entity with vl_i is: 5264 * 5265 * vl'_i = V' - v_i 5266 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5267 * = vl_i - w_i*vl_i / (W + w_i) 5268 * 5269 * Which is strictly less than vl_i. So in order to preserve lag 5270 * we should inflate the lag before placement such that the 5271 * effective lag after placement comes out right. 5272 * 5273 * As such, invert the above relation for vl'_i to get the vl_i 5274 * we need to use such that the lag after placement is the lag 5275 * we computed before dequeue. 5276 * 5277 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5278 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5279 * 5280 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5281 * = W*vl_i 5282 * 5283 * vl_i = (W + w_i)*vl'_i / W 5284 */ 5285 load = cfs_rq->avg_load; 5286 if (curr && curr->on_rq) 5287 load += scale_load_down(curr->load.weight); 5288 5289 lag *= load + scale_load_down(se->load.weight); 5290 if (WARN_ON_ONCE(!load)) 5291 load = 1; 5292 lag = div_s64(lag, load); 5293 } 5294 5295 se->vruntime = vruntime - lag; 5296 5297 if (se->rel_deadline) { 5298 se->deadline += se->vruntime; 5299 se->rel_deadline = 0; 5300 return; 5301 } 5302 5303 /* 5304 * When joining the competition; the existing tasks will be, 5305 * on average, halfway through their slice, as such start tasks 5306 * off with half a slice to ease into the competition. 5307 */ 5308 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5309 vslice /= 2; 5310 5311 /* 5312 * EEVDF: vd_i = ve_i + r_i/w_i 5313 */ 5314 se->deadline = se->vruntime + vslice; 5315 } 5316 5317 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5318 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5319 5320 static void 5321 requeue_delayed_entity(struct sched_entity *se); 5322 5323 static void 5324 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5325 { 5326 bool curr = cfs_rq->curr == se; 5327 5328 /* 5329 * If we're the current task, we must renormalise before calling 5330 * update_curr(). 5331 */ 5332 if (curr) 5333 place_entity(cfs_rq, se, flags); 5334 5335 update_curr(cfs_rq); 5336 5337 /* 5338 * When enqueuing a sched_entity, we must: 5339 * - Update loads to have both entity and cfs_rq synced with now. 5340 * - For group_entity, update its runnable_weight to reflect the new 5341 * h_nr_runnable of its group cfs_rq. 5342 * - For group_entity, update its weight to reflect the new share of 5343 * its group cfs_rq 5344 * - Add its new weight to cfs_rq->load.weight 5345 */ 5346 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5347 se_update_runnable(se); 5348 /* 5349 * XXX update_load_avg() above will have attached us to the pelt sum; 5350 * but update_cfs_group() here will re-adjust the weight and have to 5351 * undo/redo all that. Seems wasteful. 5352 */ 5353 update_cfs_group(se); 5354 5355 /* 5356 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5357 * we can place the entity. 5358 */ 5359 if (!curr) 5360 place_entity(cfs_rq, se, flags); 5361 5362 account_entity_enqueue(cfs_rq, se); 5363 5364 /* Entity has migrated, no longer consider this task hot */ 5365 if (flags & ENQUEUE_MIGRATED) 5366 se->exec_start = 0; 5367 5368 check_schedstat_required(); 5369 update_stats_enqueue_fair(cfs_rq, se, flags); 5370 if (!curr) 5371 __enqueue_entity(cfs_rq, se); 5372 se->on_rq = 1; 5373 5374 if (cfs_rq->nr_queued == 1) { 5375 check_enqueue_throttle(cfs_rq); 5376 if (!throttled_hierarchy(cfs_rq)) { 5377 list_add_leaf_cfs_rq(cfs_rq); 5378 } else { 5379 #ifdef CONFIG_CFS_BANDWIDTH 5380 struct rq *rq = rq_of(cfs_rq); 5381 5382 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5383 cfs_rq->throttled_clock = rq_clock(rq); 5384 if (!cfs_rq->throttled_clock_self) 5385 cfs_rq->throttled_clock_self = rq_clock(rq); 5386 #endif 5387 } 5388 } 5389 } 5390 5391 static void __clear_buddies_next(struct sched_entity *se) 5392 { 5393 for_each_sched_entity(se) { 5394 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5395 if (cfs_rq->next != se) 5396 break; 5397 5398 cfs_rq->next = NULL; 5399 } 5400 } 5401 5402 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5403 { 5404 if (cfs_rq->next == se) 5405 __clear_buddies_next(se); 5406 } 5407 5408 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5409 5410 static void set_delayed(struct sched_entity *se) 5411 { 5412 se->sched_delayed = 1; 5413 5414 /* 5415 * Delayed se of cfs_rq have no tasks queued on them. 5416 * Do not adjust h_nr_runnable since dequeue_entities() 5417 * will account it for blocked tasks. 5418 */ 5419 if (!entity_is_task(se)) 5420 return; 5421 5422 for_each_sched_entity(se) { 5423 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5424 5425 cfs_rq->h_nr_runnable--; 5426 if (cfs_rq_throttled(cfs_rq)) 5427 break; 5428 } 5429 } 5430 5431 static void clear_delayed(struct sched_entity *se) 5432 { 5433 se->sched_delayed = 0; 5434 5435 /* 5436 * Delayed se of cfs_rq have no tasks queued on them. 5437 * Do not adjust h_nr_runnable since a dequeue has 5438 * already accounted for it or an enqueue of a task 5439 * below it will account for it in enqueue_task_fair(). 5440 */ 5441 if (!entity_is_task(se)) 5442 return; 5443 5444 for_each_sched_entity(se) { 5445 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5446 5447 cfs_rq->h_nr_runnable++; 5448 if (cfs_rq_throttled(cfs_rq)) 5449 break; 5450 } 5451 } 5452 5453 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5454 { 5455 clear_delayed(se); 5456 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5457 se->vlag = 0; 5458 } 5459 5460 static bool 5461 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5462 { 5463 bool sleep = flags & DEQUEUE_SLEEP; 5464 int action = UPDATE_TG; 5465 5466 update_curr(cfs_rq); 5467 clear_buddies(cfs_rq, se); 5468 5469 if (flags & DEQUEUE_DELAYED) { 5470 WARN_ON_ONCE(!se->sched_delayed); 5471 } else { 5472 bool delay = sleep; 5473 /* 5474 * DELAY_DEQUEUE relies on spurious wakeups, special task 5475 * states must not suffer spurious wakeups, excempt them. 5476 */ 5477 if (flags & DEQUEUE_SPECIAL) 5478 delay = false; 5479 5480 WARN_ON_ONCE(delay && se->sched_delayed); 5481 5482 if (sched_feat(DELAY_DEQUEUE) && delay && 5483 !entity_eligible(cfs_rq, se)) { 5484 update_load_avg(cfs_rq, se, 0); 5485 set_delayed(se); 5486 return false; 5487 } 5488 } 5489 5490 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5491 action |= DO_DETACH; 5492 5493 /* 5494 * When dequeuing a sched_entity, we must: 5495 * - Update loads to have both entity and cfs_rq synced with now. 5496 * - For group_entity, update its runnable_weight to reflect the new 5497 * h_nr_runnable of its group cfs_rq. 5498 * - Subtract its previous weight from cfs_rq->load.weight. 5499 * - For group entity, update its weight to reflect the new share 5500 * of its group cfs_rq. 5501 */ 5502 update_load_avg(cfs_rq, se, action); 5503 se_update_runnable(se); 5504 5505 update_stats_dequeue_fair(cfs_rq, se, flags); 5506 5507 update_entity_lag(cfs_rq, se); 5508 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5509 se->deadline -= se->vruntime; 5510 se->rel_deadline = 1; 5511 } 5512 5513 if (se != cfs_rq->curr) 5514 __dequeue_entity(cfs_rq, se); 5515 se->on_rq = 0; 5516 account_entity_dequeue(cfs_rq, se); 5517 5518 /* return excess runtime on last dequeue */ 5519 return_cfs_rq_runtime(cfs_rq); 5520 5521 update_cfs_group(se); 5522 5523 /* 5524 * Now advance min_vruntime if @se was the entity holding it back, 5525 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5526 * put back on, and if we advance min_vruntime, we'll be placed back 5527 * further than we started -- i.e. we'll be penalized. 5528 */ 5529 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5530 update_min_vruntime(cfs_rq); 5531 5532 if (flags & DEQUEUE_DELAYED) 5533 finish_delayed_dequeue_entity(se); 5534 5535 if (cfs_rq->nr_queued == 0) 5536 update_idle_cfs_rq_clock_pelt(cfs_rq); 5537 5538 return true; 5539 } 5540 5541 static void 5542 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5543 { 5544 clear_buddies(cfs_rq, se); 5545 5546 /* 'current' is not kept within the tree. */ 5547 if (se->on_rq) { 5548 /* 5549 * Any task has to be enqueued before it get to execute on 5550 * a CPU. So account for the time it spent waiting on the 5551 * runqueue. 5552 */ 5553 update_stats_wait_end_fair(cfs_rq, se); 5554 __dequeue_entity(cfs_rq, se); 5555 update_load_avg(cfs_rq, se, UPDATE_TG); 5556 5557 set_protect_slice(se); 5558 } 5559 5560 update_stats_curr_start(cfs_rq, se); 5561 WARN_ON_ONCE(cfs_rq->curr); 5562 cfs_rq->curr = se; 5563 5564 /* 5565 * Track our maximum slice length, if the CPU's load is at 5566 * least twice that of our own weight (i.e. don't track it 5567 * when there are only lesser-weight tasks around): 5568 */ 5569 if (schedstat_enabled() && 5570 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5571 struct sched_statistics *stats; 5572 5573 stats = __schedstats_from_se(se); 5574 __schedstat_set(stats->slice_max, 5575 max((u64)stats->slice_max, 5576 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5577 } 5578 5579 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5580 } 5581 5582 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5583 5584 /* 5585 * Pick the next process, keeping these things in mind, in this order: 5586 * 1) keep things fair between processes/task groups 5587 * 2) pick the "next" process, since someone really wants that to run 5588 * 3) pick the "last" process, for cache locality 5589 * 4) do not run the "skip" process, if something else is available 5590 */ 5591 static struct sched_entity * 5592 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5593 { 5594 struct sched_entity *se; 5595 5596 /* 5597 * Picking the ->next buddy will affect latency but not fairness. 5598 */ 5599 if (sched_feat(PICK_BUDDY) && 5600 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5601 /* ->next will never be delayed */ 5602 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 5603 return cfs_rq->next; 5604 } 5605 5606 se = pick_eevdf(cfs_rq); 5607 if (se->sched_delayed) { 5608 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5609 /* 5610 * Must not reference @se again, see __block_task(). 5611 */ 5612 return NULL; 5613 } 5614 return se; 5615 } 5616 5617 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5618 5619 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5620 { 5621 /* 5622 * If still on the runqueue then deactivate_task() 5623 * was not called and update_curr() has to be done: 5624 */ 5625 if (prev->on_rq) 5626 update_curr(cfs_rq); 5627 5628 /* throttle cfs_rqs exceeding runtime */ 5629 check_cfs_rq_runtime(cfs_rq); 5630 5631 if (prev->on_rq) { 5632 update_stats_wait_start_fair(cfs_rq, prev); 5633 /* Put 'current' back into the tree. */ 5634 __enqueue_entity(cfs_rq, prev); 5635 /* in !on_rq case, update occurred at dequeue */ 5636 update_load_avg(cfs_rq, prev, 0); 5637 } 5638 WARN_ON_ONCE(cfs_rq->curr != prev); 5639 cfs_rq->curr = NULL; 5640 } 5641 5642 static void 5643 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5644 { 5645 /* 5646 * Update run-time statistics of the 'current'. 5647 */ 5648 update_curr(cfs_rq); 5649 5650 /* 5651 * Ensure that runnable average is periodically updated. 5652 */ 5653 update_load_avg(cfs_rq, curr, UPDATE_TG); 5654 update_cfs_group(curr); 5655 5656 #ifdef CONFIG_SCHED_HRTICK 5657 /* 5658 * queued ticks are scheduled to match the slice, so don't bother 5659 * validating it and just reschedule. 5660 */ 5661 if (queued) { 5662 resched_curr_lazy(rq_of(cfs_rq)); 5663 return; 5664 } 5665 #endif 5666 } 5667 5668 5669 /************************************************** 5670 * CFS bandwidth control machinery 5671 */ 5672 5673 #ifdef CONFIG_CFS_BANDWIDTH 5674 5675 #ifdef CONFIG_JUMP_LABEL 5676 static struct static_key __cfs_bandwidth_used; 5677 5678 static inline bool cfs_bandwidth_used(void) 5679 { 5680 return static_key_false(&__cfs_bandwidth_used); 5681 } 5682 5683 void cfs_bandwidth_usage_inc(void) 5684 { 5685 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5686 } 5687 5688 void cfs_bandwidth_usage_dec(void) 5689 { 5690 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5691 } 5692 #else /* CONFIG_JUMP_LABEL */ 5693 static bool cfs_bandwidth_used(void) 5694 { 5695 return true; 5696 } 5697 5698 void cfs_bandwidth_usage_inc(void) {} 5699 void cfs_bandwidth_usage_dec(void) {} 5700 #endif /* CONFIG_JUMP_LABEL */ 5701 5702 /* 5703 * default period for cfs group bandwidth. 5704 * default: 0.1s, units: nanoseconds 5705 */ 5706 static inline u64 default_cfs_period(void) 5707 { 5708 return 100000000ULL; 5709 } 5710 5711 static inline u64 sched_cfs_bandwidth_slice(void) 5712 { 5713 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5714 } 5715 5716 /* 5717 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5718 * directly instead of rq->clock to avoid adding additional synchronization 5719 * around rq->lock. 5720 * 5721 * requires cfs_b->lock 5722 */ 5723 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5724 { 5725 s64 runtime; 5726 5727 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5728 return; 5729 5730 cfs_b->runtime += cfs_b->quota; 5731 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5732 if (runtime > 0) { 5733 cfs_b->burst_time += runtime; 5734 cfs_b->nr_burst++; 5735 } 5736 5737 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5738 cfs_b->runtime_snap = cfs_b->runtime; 5739 } 5740 5741 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5742 { 5743 return &tg->cfs_bandwidth; 5744 } 5745 5746 /* returns 0 on failure to allocate runtime */ 5747 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5748 struct cfs_rq *cfs_rq, u64 target_runtime) 5749 { 5750 u64 min_amount, amount = 0; 5751 5752 lockdep_assert_held(&cfs_b->lock); 5753 5754 /* note: this is a positive sum as runtime_remaining <= 0 */ 5755 min_amount = target_runtime - cfs_rq->runtime_remaining; 5756 5757 if (cfs_b->quota == RUNTIME_INF) 5758 amount = min_amount; 5759 else { 5760 start_cfs_bandwidth(cfs_b); 5761 5762 if (cfs_b->runtime > 0) { 5763 amount = min(cfs_b->runtime, min_amount); 5764 cfs_b->runtime -= amount; 5765 cfs_b->idle = 0; 5766 } 5767 } 5768 5769 cfs_rq->runtime_remaining += amount; 5770 5771 return cfs_rq->runtime_remaining > 0; 5772 } 5773 5774 /* returns 0 on failure to allocate runtime */ 5775 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5776 { 5777 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5778 int ret; 5779 5780 raw_spin_lock(&cfs_b->lock); 5781 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5782 raw_spin_unlock(&cfs_b->lock); 5783 5784 return ret; 5785 } 5786 5787 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5788 { 5789 /* dock delta_exec before expiring quota (as it could span periods) */ 5790 cfs_rq->runtime_remaining -= delta_exec; 5791 5792 if (likely(cfs_rq->runtime_remaining > 0)) 5793 return; 5794 5795 if (cfs_rq->throttled) 5796 return; 5797 /* 5798 * if we're unable to extend our runtime we resched so that the active 5799 * hierarchy can be throttled 5800 */ 5801 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5802 resched_curr(rq_of(cfs_rq)); 5803 } 5804 5805 static __always_inline 5806 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5807 { 5808 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5809 return; 5810 5811 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5812 } 5813 5814 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5815 { 5816 return cfs_bandwidth_used() && cfs_rq->throttled; 5817 } 5818 5819 /* check whether cfs_rq, or any parent, is throttled */ 5820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5821 { 5822 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5823 } 5824 5825 /* 5826 * Ensure that neither of the group entities corresponding to src_cpu or 5827 * dest_cpu are members of a throttled hierarchy when performing group 5828 * load-balance operations. 5829 */ 5830 static inline int throttled_lb_pair(struct task_group *tg, 5831 int src_cpu, int dest_cpu) 5832 { 5833 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5834 5835 src_cfs_rq = tg->cfs_rq[src_cpu]; 5836 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5837 5838 return throttled_hierarchy(src_cfs_rq) || 5839 throttled_hierarchy(dest_cfs_rq); 5840 } 5841 5842 static int tg_unthrottle_up(struct task_group *tg, void *data) 5843 { 5844 struct rq *rq = data; 5845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5846 5847 cfs_rq->throttle_count--; 5848 if (!cfs_rq->throttle_count) { 5849 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5850 cfs_rq->throttled_clock_pelt; 5851 5852 /* Add cfs_rq with load or one or more already running entities to the list */ 5853 if (!cfs_rq_is_decayed(cfs_rq)) 5854 list_add_leaf_cfs_rq(cfs_rq); 5855 5856 if (cfs_rq->throttled_clock_self) { 5857 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5858 5859 cfs_rq->throttled_clock_self = 0; 5860 5861 if (WARN_ON_ONCE((s64)delta < 0)) 5862 delta = 0; 5863 5864 cfs_rq->throttled_clock_self_time += delta; 5865 } 5866 } 5867 5868 return 0; 5869 } 5870 5871 static int tg_throttle_down(struct task_group *tg, void *data) 5872 { 5873 struct rq *rq = data; 5874 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5875 5876 /* group is entering throttled state, stop time */ 5877 if (!cfs_rq->throttle_count) { 5878 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5879 list_del_leaf_cfs_rq(cfs_rq); 5880 5881 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5882 if (cfs_rq->nr_queued) 5883 cfs_rq->throttled_clock_self = rq_clock(rq); 5884 } 5885 cfs_rq->throttle_count++; 5886 5887 return 0; 5888 } 5889 5890 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5891 { 5892 struct rq *rq = rq_of(cfs_rq); 5893 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5894 struct sched_entity *se; 5895 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5896 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5897 5898 raw_spin_lock(&cfs_b->lock); 5899 /* This will start the period timer if necessary */ 5900 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5901 /* 5902 * We have raced with bandwidth becoming available, and if we 5903 * actually throttled the timer might not unthrottle us for an 5904 * entire period. We additionally needed to make sure that any 5905 * subsequent check_cfs_rq_runtime calls agree not to throttle 5906 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5907 * for 1ns of runtime rather than just check cfs_b. 5908 */ 5909 dequeue = 0; 5910 } else { 5911 list_add_tail_rcu(&cfs_rq->throttled_list, 5912 &cfs_b->throttled_cfs_rq); 5913 } 5914 raw_spin_unlock(&cfs_b->lock); 5915 5916 if (!dequeue) 5917 return false; /* Throttle no longer required. */ 5918 5919 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5920 5921 /* freeze hierarchy runnable averages while throttled */ 5922 rcu_read_lock(); 5923 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5924 rcu_read_unlock(); 5925 5926 queued_delta = cfs_rq->h_nr_queued; 5927 runnable_delta = cfs_rq->h_nr_runnable; 5928 idle_delta = cfs_rq->h_nr_idle; 5929 for_each_sched_entity(se) { 5930 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5931 int flags; 5932 5933 /* throttled entity or throttle-on-deactivate */ 5934 if (!se->on_rq) 5935 goto done; 5936 5937 /* 5938 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5939 * This avoids teaching dequeue_entities() about throttled 5940 * entities and keeps things relatively simple. 5941 */ 5942 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5943 if (se->sched_delayed) 5944 flags |= DEQUEUE_DELAYED; 5945 dequeue_entity(qcfs_rq, se, flags); 5946 5947 if (cfs_rq_is_idle(group_cfs_rq(se))) 5948 idle_delta = cfs_rq->h_nr_queued; 5949 5950 qcfs_rq->h_nr_queued -= queued_delta; 5951 qcfs_rq->h_nr_runnable -= runnable_delta; 5952 qcfs_rq->h_nr_idle -= idle_delta; 5953 5954 if (qcfs_rq->load.weight) { 5955 /* Avoid re-evaluating load for this entity: */ 5956 se = parent_entity(se); 5957 break; 5958 } 5959 } 5960 5961 for_each_sched_entity(se) { 5962 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5963 /* throttled entity or throttle-on-deactivate */ 5964 if (!se->on_rq) 5965 goto done; 5966 5967 update_load_avg(qcfs_rq, se, 0); 5968 se_update_runnable(se); 5969 5970 if (cfs_rq_is_idle(group_cfs_rq(se))) 5971 idle_delta = cfs_rq->h_nr_queued; 5972 5973 qcfs_rq->h_nr_queued -= queued_delta; 5974 qcfs_rq->h_nr_runnable -= runnable_delta; 5975 qcfs_rq->h_nr_idle -= idle_delta; 5976 } 5977 5978 /* At this point se is NULL and we are at root level*/ 5979 sub_nr_running(rq, queued_delta); 5980 5981 /* Stop the fair server if throttling resulted in no runnable tasks */ 5982 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5983 dl_server_stop(&rq->fair_server); 5984 done: 5985 /* 5986 * Note: distribution will already see us throttled via the 5987 * throttled-list. rq->lock protects completion. 5988 */ 5989 cfs_rq->throttled = 1; 5990 WARN_ON_ONCE(cfs_rq->throttled_clock); 5991 if (cfs_rq->nr_queued) 5992 cfs_rq->throttled_clock = rq_clock(rq); 5993 return true; 5994 } 5995 5996 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5997 { 5998 struct rq *rq = rq_of(cfs_rq); 5999 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6000 struct sched_entity *se; 6001 long queued_delta, runnable_delta, idle_delta; 6002 long rq_h_nr_queued = rq->cfs.h_nr_queued; 6003 6004 se = cfs_rq->tg->se[cpu_of(rq)]; 6005 6006 cfs_rq->throttled = 0; 6007 6008 update_rq_clock(rq); 6009 6010 raw_spin_lock(&cfs_b->lock); 6011 if (cfs_rq->throttled_clock) { 6012 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6013 cfs_rq->throttled_clock = 0; 6014 } 6015 list_del_rcu(&cfs_rq->throttled_list); 6016 raw_spin_unlock(&cfs_b->lock); 6017 6018 /* update hierarchical throttle state */ 6019 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6020 6021 if (!cfs_rq->load.weight) { 6022 if (!cfs_rq->on_list) 6023 return; 6024 /* 6025 * Nothing to run but something to decay (on_list)? 6026 * Complete the branch. 6027 */ 6028 for_each_sched_entity(se) { 6029 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6030 break; 6031 } 6032 goto unthrottle_throttle; 6033 } 6034 6035 queued_delta = cfs_rq->h_nr_queued; 6036 runnable_delta = cfs_rq->h_nr_runnable; 6037 idle_delta = cfs_rq->h_nr_idle; 6038 for_each_sched_entity(se) { 6039 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6040 6041 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6042 if (se->sched_delayed) { 6043 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6044 6045 dequeue_entity(qcfs_rq, se, flags); 6046 } else if (se->on_rq) 6047 break; 6048 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6049 6050 if (cfs_rq_is_idle(group_cfs_rq(se))) 6051 idle_delta = cfs_rq->h_nr_queued; 6052 6053 qcfs_rq->h_nr_queued += queued_delta; 6054 qcfs_rq->h_nr_runnable += runnable_delta; 6055 qcfs_rq->h_nr_idle += idle_delta; 6056 6057 /* end evaluation on encountering a throttled cfs_rq */ 6058 if (cfs_rq_throttled(qcfs_rq)) 6059 goto unthrottle_throttle; 6060 } 6061 6062 for_each_sched_entity(se) { 6063 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6064 6065 update_load_avg(qcfs_rq, se, UPDATE_TG); 6066 se_update_runnable(se); 6067 6068 if (cfs_rq_is_idle(group_cfs_rq(se))) 6069 idle_delta = cfs_rq->h_nr_queued; 6070 6071 qcfs_rq->h_nr_queued += queued_delta; 6072 qcfs_rq->h_nr_runnable += runnable_delta; 6073 qcfs_rq->h_nr_idle += idle_delta; 6074 6075 /* end evaluation on encountering a throttled cfs_rq */ 6076 if (cfs_rq_throttled(qcfs_rq)) 6077 goto unthrottle_throttle; 6078 } 6079 6080 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6081 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6082 dl_server_start(&rq->fair_server); 6083 6084 /* At this point se is NULL and we are at root level*/ 6085 add_nr_running(rq, queued_delta); 6086 6087 unthrottle_throttle: 6088 assert_list_leaf_cfs_rq(rq); 6089 6090 /* Determine whether we need to wake up potentially idle CPU: */ 6091 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6092 resched_curr(rq); 6093 } 6094 6095 #ifdef CONFIG_SMP 6096 static void __cfsb_csd_unthrottle(void *arg) 6097 { 6098 struct cfs_rq *cursor, *tmp; 6099 struct rq *rq = arg; 6100 struct rq_flags rf; 6101 6102 rq_lock(rq, &rf); 6103 6104 /* 6105 * Iterating over the list can trigger several call to 6106 * update_rq_clock() in unthrottle_cfs_rq(). 6107 * Do it once and skip the potential next ones. 6108 */ 6109 update_rq_clock(rq); 6110 rq_clock_start_loop_update(rq); 6111 6112 /* 6113 * Since we hold rq lock we're safe from concurrent manipulation of 6114 * the CSD list. However, this RCU critical section annotates the 6115 * fact that we pair with sched_free_group_rcu(), so that we cannot 6116 * race with group being freed in the window between removing it 6117 * from the list and advancing to the next entry in the list. 6118 */ 6119 rcu_read_lock(); 6120 6121 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6122 throttled_csd_list) { 6123 list_del_init(&cursor->throttled_csd_list); 6124 6125 if (cfs_rq_throttled(cursor)) 6126 unthrottle_cfs_rq(cursor); 6127 } 6128 6129 rcu_read_unlock(); 6130 6131 rq_clock_stop_loop_update(rq); 6132 rq_unlock(rq, &rf); 6133 } 6134 6135 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6136 { 6137 struct rq *rq = rq_of(cfs_rq); 6138 bool first; 6139 6140 if (rq == this_rq()) { 6141 unthrottle_cfs_rq(cfs_rq); 6142 return; 6143 } 6144 6145 /* Already enqueued */ 6146 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6147 return; 6148 6149 first = list_empty(&rq->cfsb_csd_list); 6150 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6151 if (first) 6152 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6153 } 6154 #else 6155 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6156 { 6157 unthrottle_cfs_rq(cfs_rq); 6158 } 6159 #endif 6160 6161 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6162 { 6163 lockdep_assert_rq_held(rq_of(cfs_rq)); 6164 6165 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6166 cfs_rq->runtime_remaining <= 0)) 6167 return; 6168 6169 __unthrottle_cfs_rq_async(cfs_rq); 6170 } 6171 6172 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6173 { 6174 int this_cpu = smp_processor_id(); 6175 u64 runtime, remaining = 1; 6176 bool throttled = false; 6177 struct cfs_rq *cfs_rq, *tmp; 6178 struct rq_flags rf; 6179 struct rq *rq; 6180 LIST_HEAD(local_unthrottle); 6181 6182 rcu_read_lock(); 6183 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6184 throttled_list) { 6185 rq = rq_of(cfs_rq); 6186 6187 if (!remaining) { 6188 throttled = true; 6189 break; 6190 } 6191 6192 rq_lock_irqsave(rq, &rf); 6193 if (!cfs_rq_throttled(cfs_rq)) 6194 goto next; 6195 6196 /* Already queued for async unthrottle */ 6197 if (!list_empty(&cfs_rq->throttled_csd_list)) 6198 goto next; 6199 6200 /* By the above checks, this should never be true */ 6201 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6202 6203 raw_spin_lock(&cfs_b->lock); 6204 runtime = -cfs_rq->runtime_remaining + 1; 6205 if (runtime > cfs_b->runtime) 6206 runtime = cfs_b->runtime; 6207 cfs_b->runtime -= runtime; 6208 remaining = cfs_b->runtime; 6209 raw_spin_unlock(&cfs_b->lock); 6210 6211 cfs_rq->runtime_remaining += runtime; 6212 6213 /* we check whether we're throttled above */ 6214 if (cfs_rq->runtime_remaining > 0) { 6215 if (cpu_of(rq) != this_cpu) { 6216 unthrottle_cfs_rq_async(cfs_rq); 6217 } else { 6218 /* 6219 * We currently only expect to be unthrottling 6220 * a single cfs_rq locally. 6221 */ 6222 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6223 list_add_tail(&cfs_rq->throttled_csd_list, 6224 &local_unthrottle); 6225 } 6226 } else { 6227 throttled = true; 6228 } 6229 6230 next: 6231 rq_unlock_irqrestore(rq, &rf); 6232 } 6233 6234 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6235 throttled_csd_list) { 6236 struct rq *rq = rq_of(cfs_rq); 6237 6238 rq_lock_irqsave(rq, &rf); 6239 6240 list_del_init(&cfs_rq->throttled_csd_list); 6241 6242 if (cfs_rq_throttled(cfs_rq)) 6243 unthrottle_cfs_rq(cfs_rq); 6244 6245 rq_unlock_irqrestore(rq, &rf); 6246 } 6247 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6248 6249 rcu_read_unlock(); 6250 6251 return throttled; 6252 } 6253 6254 /* 6255 * Responsible for refilling a task_group's bandwidth and unthrottling its 6256 * cfs_rqs as appropriate. If there has been no activity within the last 6257 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6258 * used to track this state. 6259 */ 6260 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6261 { 6262 int throttled; 6263 6264 /* no need to continue the timer with no bandwidth constraint */ 6265 if (cfs_b->quota == RUNTIME_INF) 6266 goto out_deactivate; 6267 6268 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6269 cfs_b->nr_periods += overrun; 6270 6271 /* Refill extra burst quota even if cfs_b->idle */ 6272 __refill_cfs_bandwidth_runtime(cfs_b); 6273 6274 /* 6275 * idle depends on !throttled (for the case of a large deficit), and if 6276 * we're going inactive then everything else can be deferred 6277 */ 6278 if (cfs_b->idle && !throttled) 6279 goto out_deactivate; 6280 6281 if (!throttled) { 6282 /* mark as potentially idle for the upcoming period */ 6283 cfs_b->idle = 1; 6284 return 0; 6285 } 6286 6287 /* account preceding periods in which throttling occurred */ 6288 cfs_b->nr_throttled += overrun; 6289 6290 /* 6291 * This check is repeated as we release cfs_b->lock while we unthrottle. 6292 */ 6293 while (throttled && cfs_b->runtime > 0) { 6294 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6295 /* we can't nest cfs_b->lock while distributing bandwidth */ 6296 throttled = distribute_cfs_runtime(cfs_b); 6297 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6298 } 6299 6300 /* 6301 * While we are ensured activity in the period following an 6302 * unthrottle, this also covers the case in which the new bandwidth is 6303 * insufficient to cover the existing bandwidth deficit. (Forcing the 6304 * timer to remain active while there are any throttled entities.) 6305 */ 6306 cfs_b->idle = 0; 6307 6308 return 0; 6309 6310 out_deactivate: 6311 return 1; 6312 } 6313 6314 /* a cfs_rq won't donate quota below this amount */ 6315 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6316 /* minimum remaining period time to redistribute slack quota */ 6317 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6318 /* how long we wait to gather additional slack before distributing */ 6319 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6320 6321 /* 6322 * Are we near the end of the current quota period? 6323 * 6324 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6325 * hrtimer base being cleared by hrtimer_start. In the case of 6326 * migrate_hrtimers, base is never cleared, so we are fine. 6327 */ 6328 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6329 { 6330 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6331 s64 remaining; 6332 6333 /* if the call-back is running a quota refresh is already occurring */ 6334 if (hrtimer_callback_running(refresh_timer)) 6335 return 1; 6336 6337 /* is a quota refresh about to occur? */ 6338 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6339 if (remaining < (s64)min_expire) 6340 return 1; 6341 6342 return 0; 6343 } 6344 6345 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6346 { 6347 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6348 6349 /* if there's a quota refresh soon don't bother with slack */ 6350 if (runtime_refresh_within(cfs_b, min_left)) 6351 return; 6352 6353 /* don't push forwards an existing deferred unthrottle */ 6354 if (cfs_b->slack_started) 6355 return; 6356 cfs_b->slack_started = true; 6357 6358 hrtimer_start(&cfs_b->slack_timer, 6359 ns_to_ktime(cfs_bandwidth_slack_period), 6360 HRTIMER_MODE_REL); 6361 } 6362 6363 /* we know any runtime found here is valid as update_curr() precedes return */ 6364 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6365 { 6366 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6367 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6368 6369 if (slack_runtime <= 0) 6370 return; 6371 6372 raw_spin_lock(&cfs_b->lock); 6373 if (cfs_b->quota != RUNTIME_INF) { 6374 cfs_b->runtime += slack_runtime; 6375 6376 /* we are under rq->lock, defer unthrottling using a timer */ 6377 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6378 !list_empty(&cfs_b->throttled_cfs_rq)) 6379 start_cfs_slack_bandwidth(cfs_b); 6380 } 6381 raw_spin_unlock(&cfs_b->lock); 6382 6383 /* even if it's not valid for return we don't want to try again */ 6384 cfs_rq->runtime_remaining -= slack_runtime; 6385 } 6386 6387 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6388 { 6389 if (!cfs_bandwidth_used()) 6390 return; 6391 6392 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6393 return; 6394 6395 __return_cfs_rq_runtime(cfs_rq); 6396 } 6397 6398 /* 6399 * This is done with a timer (instead of inline with bandwidth return) since 6400 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6401 */ 6402 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6403 { 6404 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6405 unsigned long flags; 6406 6407 /* confirm we're still not at a refresh boundary */ 6408 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6409 cfs_b->slack_started = false; 6410 6411 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6412 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6413 return; 6414 } 6415 6416 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6417 runtime = cfs_b->runtime; 6418 6419 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6420 6421 if (!runtime) 6422 return; 6423 6424 distribute_cfs_runtime(cfs_b); 6425 } 6426 6427 /* 6428 * When a group wakes up we want to make sure that its quota is not already 6429 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6430 * runtime as update_curr() throttling can not trigger until it's on-rq. 6431 */ 6432 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6433 { 6434 if (!cfs_bandwidth_used()) 6435 return; 6436 6437 /* an active group must be handled by the update_curr()->put() path */ 6438 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6439 return; 6440 6441 /* ensure the group is not already throttled */ 6442 if (cfs_rq_throttled(cfs_rq)) 6443 return; 6444 6445 /* update runtime allocation */ 6446 account_cfs_rq_runtime(cfs_rq, 0); 6447 if (cfs_rq->runtime_remaining <= 0) 6448 throttle_cfs_rq(cfs_rq); 6449 } 6450 6451 static void sync_throttle(struct task_group *tg, int cpu) 6452 { 6453 struct cfs_rq *pcfs_rq, *cfs_rq; 6454 6455 if (!cfs_bandwidth_used()) 6456 return; 6457 6458 if (!tg->parent) 6459 return; 6460 6461 cfs_rq = tg->cfs_rq[cpu]; 6462 pcfs_rq = tg->parent->cfs_rq[cpu]; 6463 6464 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6465 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6466 } 6467 6468 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6469 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6470 { 6471 if (!cfs_bandwidth_used()) 6472 return false; 6473 6474 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6475 return false; 6476 6477 /* 6478 * it's possible for a throttled entity to be forced into a running 6479 * state (e.g. set_curr_task), in this case we're finished. 6480 */ 6481 if (cfs_rq_throttled(cfs_rq)) 6482 return true; 6483 6484 return throttle_cfs_rq(cfs_rq); 6485 } 6486 6487 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6488 { 6489 struct cfs_bandwidth *cfs_b = 6490 container_of(timer, struct cfs_bandwidth, slack_timer); 6491 6492 do_sched_cfs_slack_timer(cfs_b); 6493 6494 return HRTIMER_NORESTART; 6495 } 6496 6497 extern const u64 max_cfs_quota_period; 6498 6499 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6500 { 6501 struct cfs_bandwidth *cfs_b = 6502 container_of(timer, struct cfs_bandwidth, period_timer); 6503 unsigned long flags; 6504 int overrun; 6505 int idle = 0; 6506 int count = 0; 6507 6508 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6509 for (;;) { 6510 overrun = hrtimer_forward_now(timer, cfs_b->period); 6511 if (!overrun) 6512 break; 6513 6514 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6515 6516 if (++count > 3) { 6517 u64 new, old = ktime_to_ns(cfs_b->period); 6518 6519 /* 6520 * Grow period by a factor of 2 to avoid losing precision. 6521 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6522 * to fail. 6523 */ 6524 new = old * 2; 6525 if (new < max_cfs_quota_period) { 6526 cfs_b->period = ns_to_ktime(new); 6527 cfs_b->quota *= 2; 6528 cfs_b->burst *= 2; 6529 6530 pr_warn_ratelimited( 6531 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6532 smp_processor_id(), 6533 div_u64(new, NSEC_PER_USEC), 6534 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6535 } else { 6536 pr_warn_ratelimited( 6537 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6538 smp_processor_id(), 6539 div_u64(old, NSEC_PER_USEC), 6540 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6541 } 6542 6543 /* reset count so we don't come right back in here */ 6544 count = 0; 6545 } 6546 } 6547 if (idle) 6548 cfs_b->period_active = 0; 6549 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6550 6551 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6552 } 6553 6554 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6555 { 6556 raw_spin_lock_init(&cfs_b->lock); 6557 cfs_b->runtime = 0; 6558 cfs_b->quota = RUNTIME_INF; 6559 cfs_b->period = ns_to_ktime(default_cfs_period()); 6560 cfs_b->burst = 0; 6561 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6562 6563 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6564 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6565 HRTIMER_MODE_ABS_PINNED); 6566 6567 /* Add a random offset so that timers interleave */ 6568 hrtimer_set_expires(&cfs_b->period_timer, 6569 get_random_u32_below(cfs_b->period)); 6570 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6571 HRTIMER_MODE_REL); 6572 cfs_b->slack_started = false; 6573 } 6574 6575 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6576 { 6577 cfs_rq->runtime_enabled = 0; 6578 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6579 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6580 } 6581 6582 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6583 { 6584 lockdep_assert_held(&cfs_b->lock); 6585 6586 if (cfs_b->period_active) 6587 return; 6588 6589 cfs_b->period_active = 1; 6590 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6591 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6592 } 6593 6594 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6595 { 6596 int __maybe_unused i; 6597 6598 /* init_cfs_bandwidth() was not called */ 6599 if (!cfs_b->throttled_cfs_rq.next) 6600 return; 6601 6602 hrtimer_cancel(&cfs_b->period_timer); 6603 hrtimer_cancel(&cfs_b->slack_timer); 6604 6605 /* 6606 * It is possible that we still have some cfs_rq's pending on a CSD 6607 * list, though this race is very rare. In order for this to occur, we 6608 * must have raced with the last task leaving the group while there 6609 * exist throttled cfs_rq(s), and the period_timer must have queued the 6610 * CSD item but the remote cpu has not yet processed it. To handle this, 6611 * we can simply flush all pending CSD work inline here. We're 6612 * guaranteed at this point that no additional cfs_rq of this group can 6613 * join a CSD list. 6614 */ 6615 #ifdef CONFIG_SMP 6616 for_each_possible_cpu(i) { 6617 struct rq *rq = cpu_rq(i); 6618 unsigned long flags; 6619 6620 if (list_empty(&rq->cfsb_csd_list)) 6621 continue; 6622 6623 local_irq_save(flags); 6624 __cfsb_csd_unthrottle(rq); 6625 local_irq_restore(flags); 6626 } 6627 #endif 6628 } 6629 6630 /* 6631 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6632 * 6633 * The race is harmless, since modifying bandwidth settings of unhooked group 6634 * bits doesn't do much. 6635 */ 6636 6637 /* cpu online callback */ 6638 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6639 { 6640 struct task_group *tg; 6641 6642 lockdep_assert_rq_held(rq); 6643 6644 rcu_read_lock(); 6645 list_for_each_entry_rcu(tg, &task_groups, list) { 6646 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6647 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6648 6649 raw_spin_lock(&cfs_b->lock); 6650 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6651 raw_spin_unlock(&cfs_b->lock); 6652 } 6653 rcu_read_unlock(); 6654 } 6655 6656 /* cpu offline callback */ 6657 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6658 { 6659 struct task_group *tg; 6660 6661 lockdep_assert_rq_held(rq); 6662 6663 // Do not unthrottle for an active CPU 6664 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6665 return; 6666 6667 /* 6668 * The rq clock has already been updated in the 6669 * set_rq_offline(), so we should skip updating 6670 * the rq clock again in unthrottle_cfs_rq(). 6671 */ 6672 rq_clock_start_loop_update(rq); 6673 6674 rcu_read_lock(); 6675 list_for_each_entry_rcu(tg, &task_groups, list) { 6676 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6677 6678 if (!cfs_rq->runtime_enabled) 6679 continue; 6680 6681 /* 6682 * Offline rq is schedulable till CPU is completely disabled 6683 * in take_cpu_down(), so we prevent new cfs throttling here. 6684 */ 6685 cfs_rq->runtime_enabled = 0; 6686 6687 if (!cfs_rq_throttled(cfs_rq)) 6688 continue; 6689 6690 /* 6691 * clock_task is not advancing so we just need to make sure 6692 * there's some valid quota amount 6693 */ 6694 cfs_rq->runtime_remaining = 1; 6695 unthrottle_cfs_rq(cfs_rq); 6696 } 6697 rcu_read_unlock(); 6698 6699 rq_clock_stop_loop_update(rq); 6700 } 6701 6702 bool cfs_task_bw_constrained(struct task_struct *p) 6703 { 6704 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6705 6706 if (!cfs_bandwidth_used()) 6707 return false; 6708 6709 if (cfs_rq->runtime_enabled || 6710 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6711 return true; 6712 6713 return false; 6714 } 6715 6716 #ifdef CONFIG_NO_HZ_FULL 6717 /* called from pick_next_task_fair() */ 6718 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6719 { 6720 int cpu = cpu_of(rq); 6721 6722 if (!cfs_bandwidth_used()) 6723 return; 6724 6725 if (!tick_nohz_full_cpu(cpu)) 6726 return; 6727 6728 if (rq->nr_running != 1) 6729 return; 6730 6731 /* 6732 * We know there is only one task runnable and we've just picked it. The 6733 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6734 * be otherwise able to stop the tick. Just need to check if we are using 6735 * bandwidth control. 6736 */ 6737 if (cfs_task_bw_constrained(p)) 6738 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6739 } 6740 #endif 6741 6742 #else /* CONFIG_CFS_BANDWIDTH */ 6743 6744 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6745 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6746 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6747 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6748 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6749 6750 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6751 { 6752 return 0; 6753 } 6754 6755 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6756 { 6757 return 0; 6758 } 6759 6760 static inline int throttled_lb_pair(struct task_group *tg, 6761 int src_cpu, int dest_cpu) 6762 { 6763 return 0; 6764 } 6765 6766 #ifdef CONFIG_FAIR_GROUP_SCHED 6767 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6768 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6769 #endif 6770 6771 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6772 { 6773 return NULL; 6774 } 6775 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6776 static inline void update_runtime_enabled(struct rq *rq) {} 6777 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6778 #ifdef CONFIG_CGROUP_SCHED 6779 bool cfs_task_bw_constrained(struct task_struct *p) 6780 { 6781 return false; 6782 } 6783 #endif 6784 #endif /* CONFIG_CFS_BANDWIDTH */ 6785 6786 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6787 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6788 #endif 6789 6790 /************************************************** 6791 * CFS operations on tasks: 6792 */ 6793 6794 #ifdef CONFIG_SCHED_HRTICK 6795 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6796 { 6797 struct sched_entity *se = &p->se; 6798 6799 WARN_ON_ONCE(task_rq(p) != rq); 6800 6801 if (rq->cfs.h_nr_queued > 1) { 6802 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6803 u64 slice = se->slice; 6804 s64 delta = slice - ran; 6805 6806 if (delta < 0) { 6807 if (task_current_donor(rq, p)) 6808 resched_curr(rq); 6809 return; 6810 } 6811 hrtick_start(rq, delta); 6812 } 6813 } 6814 6815 /* 6816 * called from enqueue/dequeue and updates the hrtick when the 6817 * current task is from our class and nr_running is low enough 6818 * to matter. 6819 */ 6820 static void hrtick_update(struct rq *rq) 6821 { 6822 struct task_struct *donor = rq->donor; 6823 6824 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6825 return; 6826 6827 hrtick_start_fair(rq, donor); 6828 } 6829 #else /* !CONFIG_SCHED_HRTICK */ 6830 static inline void 6831 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6832 { 6833 } 6834 6835 static inline void hrtick_update(struct rq *rq) 6836 { 6837 } 6838 #endif 6839 6840 #ifdef CONFIG_SMP 6841 static inline bool cpu_overutilized(int cpu) 6842 { 6843 unsigned long rq_util_min, rq_util_max; 6844 6845 if (!sched_energy_enabled()) 6846 return false; 6847 6848 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6849 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6850 6851 /* Return true only if the utilization doesn't fit CPU's capacity */ 6852 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6853 } 6854 6855 /* 6856 * overutilized value make sense only if EAS is enabled 6857 */ 6858 static inline bool is_rd_overutilized(struct root_domain *rd) 6859 { 6860 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6861 } 6862 6863 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6864 { 6865 if (!sched_energy_enabled()) 6866 return; 6867 6868 WRITE_ONCE(rd->overutilized, flag); 6869 trace_sched_overutilized_tp(rd, flag); 6870 } 6871 6872 static inline void check_update_overutilized_status(struct rq *rq) 6873 { 6874 /* 6875 * overutilized field is used for load balancing decisions only 6876 * if energy aware scheduler is being used 6877 */ 6878 6879 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6880 set_rd_overutilized(rq->rd, 1); 6881 } 6882 #else 6883 static inline void check_update_overutilized_status(struct rq *rq) { } 6884 #endif 6885 6886 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6887 static int sched_idle_rq(struct rq *rq) 6888 { 6889 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6890 rq->nr_running); 6891 } 6892 6893 #ifdef CONFIG_SMP 6894 static int sched_idle_cpu(int cpu) 6895 { 6896 return sched_idle_rq(cpu_rq(cpu)); 6897 } 6898 #endif 6899 6900 static void 6901 requeue_delayed_entity(struct sched_entity *se) 6902 { 6903 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6904 6905 /* 6906 * se->sched_delayed should imply: se->on_rq == 1. 6907 * Because a delayed entity is one that is still on 6908 * the runqueue competing until elegibility. 6909 */ 6910 WARN_ON_ONCE(!se->sched_delayed); 6911 WARN_ON_ONCE(!se->on_rq); 6912 6913 if (sched_feat(DELAY_ZERO)) { 6914 update_entity_lag(cfs_rq, se); 6915 if (se->vlag > 0) { 6916 cfs_rq->nr_queued--; 6917 if (se != cfs_rq->curr) 6918 __dequeue_entity(cfs_rq, se); 6919 se->vlag = 0; 6920 place_entity(cfs_rq, se, 0); 6921 if (se != cfs_rq->curr) 6922 __enqueue_entity(cfs_rq, se); 6923 cfs_rq->nr_queued++; 6924 } 6925 } 6926 6927 update_load_avg(cfs_rq, se, 0); 6928 clear_delayed(se); 6929 } 6930 6931 /* 6932 * The enqueue_task method is called before nr_running is 6933 * increased. Here we update the fair scheduling stats and 6934 * then put the task into the rbtree: 6935 */ 6936 static void 6937 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6938 { 6939 struct cfs_rq *cfs_rq; 6940 struct sched_entity *se = &p->se; 6941 int h_nr_idle = task_has_idle_policy(p); 6942 int h_nr_runnable = 1; 6943 int task_new = !(flags & ENQUEUE_WAKEUP); 6944 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6945 u64 slice = 0; 6946 6947 /* 6948 * The code below (indirectly) updates schedutil which looks at 6949 * the cfs_rq utilization to select a frequency. 6950 * Let's add the task's estimated utilization to the cfs_rq's 6951 * estimated utilization, before we update schedutil. 6952 */ 6953 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6954 util_est_enqueue(&rq->cfs, p); 6955 6956 if (flags & ENQUEUE_DELAYED) { 6957 requeue_delayed_entity(se); 6958 return; 6959 } 6960 6961 /* 6962 * If in_iowait is set, the code below may not trigger any cpufreq 6963 * utilization updates, so do it here explicitly with the IOWAIT flag 6964 * passed. 6965 */ 6966 if (p->in_iowait) 6967 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6968 6969 if (task_new && se->sched_delayed) 6970 h_nr_runnable = 0; 6971 6972 for_each_sched_entity(se) { 6973 if (se->on_rq) { 6974 if (se->sched_delayed) 6975 requeue_delayed_entity(se); 6976 break; 6977 } 6978 cfs_rq = cfs_rq_of(se); 6979 6980 /* 6981 * Basically set the slice of group entries to the min_slice of 6982 * their respective cfs_rq. This ensures the group can service 6983 * its entities in the desired time-frame. 6984 */ 6985 if (slice) { 6986 se->slice = slice; 6987 se->custom_slice = 1; 6988 } 6989 enqueue_entity(cfs_rq, se, flags); 6990 slice = cfs_rq_min_slice(cfs_rq); 6991 6992 cfs_rq->h_nr_runnable += h_nr_runnable; 6993 cfs_rq->h_nr_queued++; 6994 cfs_rq->h_nr_idle += h_nr_idle; 6995 6996 if (cfs_rq_is_idle(cfs_rq)) 6997 h_nr_idle = 1; 6998 6999 /* end evaluation on encountering a throttled cfs_rq */ 7000 if (cfs_rq_throttled(cfs_rq)) 7001 goto enqueue_throttle; 7002 7003 flags = ENQUEUE_WAKEUP; 7004 } 7005 7006 for_each_sched_entity(se) { 7007 cfs_rq = cfs_rq_of(se); 7008 7009 update_load_avg(cfs_rq, se, UPDATE_TG); 7010 se_update_runnable(se); 7011 update_cfs_group(se); 7012 7013 se->slice = slice; 7014 if (se != cfs_rq->curr) 7015 min_vruntime_cb_propagate(&se->run_node, NULL); 7016 slice = cfs_rq_min_slice(cfs_rq); 7017 7018 cfs_rq->h_nr_runnable += h_nr_runnable; 7019 cfs_rq->h_nr_queued++; 7020 cfs_rq->h_nr_idle += h_nr_idle; 7021 7022 if (cfs_rq_is_idle(cfs_rq)) 7023 h_nr_idle = 1; 7024 7025 /* end evaluation on encountering a throttled cfs_rq */ 7026 if (cfs_rq_throttled(cfs_rq)) 7027 goto enqueue_throttle; 7028 } 7029 7030 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7031 /* Account for idle runtime */ 7032 if (!rq->nr_running) 7033 dl_server_update_idle_time(rq, rq->curr); 7034 dl_server_start(&rq->fair_server); 7035 } 7036 7037 /* At this point se is NULL and we are at root level*/ 7038 add_nr_running(rq, 1); 7039 7040 /* 7041 * Since new tasks are assigned an initial util_avg equal to 7042 * half of the spare capacity of their CPU, tiny tasks have the 7043 * ability to cross the overutilized threshold, which will 7044 * result in the load balancer ruining all the task placement 7045 * done by EAS. As a way to mitigate that effect, do not account 7046 * for the first enqueue operation of new tasks during the 7047 * overutilized flag detection. 7048 * 7049 * A better way of solving this problem would be to wait for 7050 * the PELT signals of tasks to converge before taking them 7051 * into account, but that is not straightforward to implement, 7052 * and the following generally works well enough in practice. 7053 */ 7054 if (!task_new) 7055 check_update_overutilized_status(rq); 7056 7057 enqueue_throttle: 7058 assert_list_leaf_cfs_rq(rq); 7059 7060 hrtick_update(rq); 7061 } 7062 7063 static void set_next_buddy(struct sched_entity *se); 7064 7065 /* 7066 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7067 * failing half-way through and resume the dequeue later. 7068 * 7069 * Returns: 7070 * -1 - dequeue delayed 7071 * 0 - dequeue throttled 7072 * 1 - dequeue complete 7073 */ 7074 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7075 { 7076 bool was_sched_idle = sched_idle_rq(rq); 7077 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7078 bool task_sleep = flags & DEQUEUE_SLEEP; 7079 bool task_delayed = flags & DEQUEUE_DELAYED; 7080 struct task_struct *p = NULL; 7081 int h_nr_idle = 0; 7082 int h_nr_queued = 0; 7083 int h_nr_runnable = 0; 7084 struct cfs_rq *cfs_rq; 7085 u64 slice = 0; 7086 7087 if (entity_is_task(se)) { 7088 p = task_of(se); 7089 h_nr_queued = 1; 7090 h_nr_idle = task_has_idle_policy(p); 7091 if (task_sleep || task_delayed || !se->sched_delayed) 7092 h_nr_runnable = 1; 7093 } 7094 7095 for_each_sched_entity(se) { 7096 cfs_rq = cfs_rq_of(se); 7097 7098 if (!dequeue_entity(cfs_rq, se, flags)) { 7099 if (p && &p->se == se) 7100 return -1; 7101 7102 slice = cfs_rq_min_slice(cfs_rq); 7103 break; 7104 } 7105 7106 cfs_rq->h_nr_runnable -= h_nr_runnable; 7107 cfs_rq->h_nr_queued -= h_nr_queued; 7108 cfs_rq->h_nr_idle -= h_nr_idle; 7109 7110 if (cfs_rq_is_idle(cfs_rq)) 7111 h_nr_idle = h_nr_queued; 7112 7113 /* end evaluation on encountering a throttled cfs_rq */ 7114 if (cfs_rq_throttled(cfs_rq)) 7115 return 0; 7116 7117 /* Don't dequeue parent if it has other entities besides us */ 7118 if (cfs_rq->load.weight) { 7119 slice = cfs_rq_min_slice(cfs_rq); 7120 7121 /* Avoid re-evaluating load for this entity: */ 7122 se = parent_entity(se); 7123 /* 7124 * Bias pick_next to pick a task from this cfs_rq, as 7125 * p is sleeping when it is within its sched_slice. 7126 */ 7127 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7128 set_next_buddy(se); 7129 break; 7130 } 7131 flags |= DEQUEUE_SLEEP; 7132 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7133 } 7134 7135 for_each_sched_entity(se) { 7136 cfs_rq = cfs_rq_of(se); 7137 7138 update_load_avg(cfs_rq, se, UPDATE_TG); 7139 se_update_runnable(se); 7140 update_cfs_group(se); 7141 7142 se->slice = slice; 7143 if (se != cfs_rq->curr) 7144 min_vruntime_cb_propagate(&se->run_node, NULL); 7145 slice = cfs_rq_min_slice(cfs_rq); 7146 7147 cfs_rq->h_nr_runnable -= h_nr_runnable; 7148 cfs_rq->h_nr_queued -= h_nr_queued; 7149 cfs_rq->h_nr_idle -= h_nr_idle; 7150 7151 if (cfs_rq_is_idle(cfs_rq)) 7152 h_nr_idle = h_nr_queued; 7153 7154 /* end evaluation on encountering a throttled cfs_rq */ 7155 if (cfs_rq_throttled(cfs_rq)) 7156 return 0; 7157 } 7158 7159 sub_nr_running(rq, h_nr_queued); 7160 7161 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7162 dl_server_stop(&rq->fair_server); 7163 7164 /* balance early to pull high priority tasks */ 7165 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7166 rq->next_balance = jiffies; 7167 7168 if (p && task_delayed) { 7169 WARN_ON_ONCE(!task_sleep); 7170 WARN_ON_ONCE(p->on_rq != 1); 7171 7172 /* Fix-up what dequeue_task_fair() skipped */ 7173 hrtick_update(rq); 7174 7175 /* 7176 * Fix-up what block_task() skipped. 7177 * 7178 * Must be last, @p might not be valid after this. 7179 */ 7180 __block_task(rq, p); 7181 } 7182 7183 return 1; 7184 } 7185 7186 /* 7187 * The dequeue_task method is called before nr_running is 7188 * decreased. We remove the task from the rbtree and 7189 * update the fair scheduling stats: 7190 */ 7191 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7192 { 7193 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7194 util_est_dequeue(&rq->cfs, p); 7195 7196 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7197 if (dequeue_entities(rq, &p->se, flags) < 0) 7198 return false; 7199 7200 /* 7201 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7202 */ 7203 7204 hrtick_update(rq); 7205 return true; 7206 } 7207 7208 #ifdef CONFIG_SMP 7209 7210 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7211 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7212 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7213 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7214 7215 #ifdef CONFIG_NO_HZ_COMMON 7216 7217 static struct { 7218 cpumask_var_t idle_cpus_mask; 7219 atomic_t nr_cpus; 7220 int has_blocked; /* Idle CPUS has blocked load */ 7221 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7222 unsigned long next_balance; /* in jiffy units */ 7223 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7224 } nohz ____cacheline_aligned; 7225 7226 #endif /* CONFIG_NO_HZ_COMMON */ 7227 7228 static unsigned long cpu_load(struct rq *rq) 7229 { 7230 return cfs_rq_load_avg(&rq->cfs); 7231 } 7232 7233 /* 7234 * cpu_load_without - compute CPU load without any contributions from *p 7235 * @cpu: the CPU which load is requested 7236 * @p: the task which load should be discounted 7237 * 7238 * The load of a CPU is defined by the load of tasks currently enqueued on that 7239 * CPU as well as tasks which are currently sleeping after an execution on that 7240 * CPU. 7241 * 7242 * This method returns the load of the specified CPU by discounting the load of 7243 * the specified task, whenever the task is currently contributing to the CPU 7244 * load. 7245 */ 7246 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7247 { 7248 struct cfs_rq *cfs_rq; 7249 unsigned int load; 7250 7251 /* Task has no contribution or is new */ 7252 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7253 return cpu_load(rq); 7254 7255 cfs_rq = &rq->cfs; 7256 load = READ_ONCE(cfs_rq->avg.load_avg); 7257 7258 /* Discount task's util from CPU's util */ 7259 lsub_positive(&load, task_h_load(p)); 7260 7261 return load; 7262 } 7263 7264 static unsigned long cpu_runnable(struct rq *rq) 7265 { 7266 return cfs_rq_runnable_avg(&rq->cfs); 7267 } 7268 7269 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7270 { 7271 struct cfs_rq *cfs_rq; 7272 unsigned int runnable; 7273 7274 /* Task has no contribution or is new */ 7275 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7276 return cpu_runnable(rq); 7277 7278 cfs_rq = &rq->cfs; 7279 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7280 7281 /* Discount task's runnable from CPU's runnable */ 7282 lsub_positive(&runnable, p->se.avg.runnable_avg); 7283 7284 return runnable; 7285 } 7286 7287 static unsigned long capacity_of(int cpu) 7288 { 7289 return cpu_rq(cpu)->cpu_capacity; 7290 } 7291 7292 static void record_wakee(struct task_struct *p) 7293 { 7294 /* 7295 * Only decay a single time; tasks that have less then 1 wakeup per 7296 * jiffy will not have built up many flips. 7297 */ 7298 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7299 current->wakee_flips >>= 1; 7300 current->wakee_flip_decay_ts = jiffies; 7301 } 7302 7303 if (current->last_wakee != p) { 7304 current->last_wakee = p; 7305 current->wakee_flips++; 7306 } 7307 } 7308 7309 /* 7310 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7311 * 7312 * A waker of many should wake a different task than the one last awakened 7313 * at a frequency roughly N times higher than one of its wakees. 7314 * 7315 * In order to determine whether we should let the load spread vs consolidating 7316 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7317 * partner, and a factor of lls_size higher frequency in the other. 7318 * 7319 * With both conditions met, we can be relatively sure that the relationship is 7320 * non-monogamous, with partner count exceeding socket size. 7321 * 7322 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7323 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7324 * socket size. 7325 */ 7326 static int wake_wide(struct task_struct *p) 7327 { 7328 unsigned int master = current->wakee_flips; 7329 unsigned int slave = p->wakee_flips; 7330 int factor = __this_cpu_read(sd_llc_size); 7331 7332 if (master < slave) 7333 swap(master, slave); 7334 if (slave < factor || master < slave * factor) 7335 return 0; 7336 return 1; 7337 } 7338 7339 /* 7340 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7341 * soonest. For the purpose of speed we only consider the waking and previous 7342 * CPU. 7343 * 7344 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7345 * cache-affine and is (or will be) idle. 7346 * 7347 * wake_affine_weight() - considers the weight to reflect the average 7348 * scheduling latency of the CPUs. This seems to work 7349 * for the overloaded case. 7350 */ 7351 static int 7352 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7353 { 7354 /* 7355 * If this_cpu is idle, it implies the wakeup is from interrupt 7356 * context. Only allow the move if cache is shared. Otherwise an 7357 * interrupt intensive workload could force all tasks onto one 7358 * node depending on the IO topology or IRQ affinity settings. 7359 * 7360 * If the prev_cpu is idle and cache affine then avoid a migration. 7361 * There is no guarantee that the cache hot data from an interrupt 7362 * is more important than cache hot data on the prev_cpu and from 7363 * a cpufreq perspective, it's better to have higher utilisation 7364 * on one CPU. 7365 */ 7366 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7367 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7368 7369 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7370 return this_cpu; 7371 7372 if (available_idle_cpu(prev_cpu)) 7373 return prev_cpu; 7374 7375 return nr_cpumask_bits; 7376 } 7377 7378 static int 7379 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7380 int this_cpu, int prev_cpu, int sync) 7381 { 7382 s64 this_eff_load, prev_eff_load; 7383 unsigned long task_load; 7384 7385 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7386 7387 if (sync) { 7388 unsigned long current_load = task_h_load(current); 7389 7390 if (current_load > this_eff_load) 7391 return this_cpu; 7392 7393 this_eff_load -= current_load; 7394 } 7395 7396 task_load = task_h_load(p); 7397 7398 this_eff_load += task_load; 7399 if (sched_feat(WA_BIAS)) 7400 this_eff_load *= 100; 7401 this_eff_load *= capacity_of(prev_cpu); 7402 7403 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7404 prev_eff_load -= task_load; 7405 if (sched_feat(WA_BIAS)) 7406 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7407 prev_eff_load *= capacity_of(this_cpu); 7408 7409 /* 7410 * If sync, adjust the weight of prev_eff_load such that if 7411 * prev_eff == this_eff that select_idle_sibling() will consider 7412 * stacking the wakee on top of the waker if no other CPU is 7413 * idle. 7414 */ 7415 if (sync) 7416 prev_eff_load += 1; 7417 7418 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7419 } 7420 7421 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7422 int this_cpu, int prev_cpu, int sync) 7423 { 7424 int target = nr_cpumask_bits; 7425 7426 if (sched_feat(WA_IDLE)) 7427 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7428 7429 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7430 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7431 7432 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7433 if (target != this_cpu) 7434 return prev_cpu; 7435 7436 schedstat_inc(sd->ttwu_move_affine); 7437 schedstat_inc(p->stats.nr_wakeups_affine); 7438 return target; 7439 } 7440 7441 static struct sched_group * 7442 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7443 7444 /* 7445 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7446 */ 7447 static int 7448 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7449 { 7450 unsigned long load, min_load = ULONG_MAX; 7451 unsigned int min_exit_latency = UINT_MAX; 7452 u64 latest_idle_timestamp = 0; 7453 int least_loaded_cpu = this_cpu; 7454 int shallowest_idle_cpu = -1; 7455 int i; 7456 7457 /* Check if we have any choice: */ 7458 if (group->group_weight == 1) 7459 return cpumask_first(sched_group_span(group)); 7460 7461 /* Traverse only the allowed CPUs */ 7462 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7463 struct rq *rq = cpu_rq(i); 7464 7465 if (!sched_core_cookie_match(rq, p)) 7466 continue; 7467 7468 if (sched_idle_cpu(i)) 7469 return i; 7470 7471 if (available_idle_cpu(i)) { 7472 struct cpuidle_state *idle = idle_get_state(rq); 7473 if (idle && idle->exit_latency < min_exit_latency) { 7474 /* 7475 * We give priority to a CPU whose idle state 7476 * has the smallest exit latency irrespective 7477 * of any idle timestamp. 7478 */ 7479 min_exit_latency = idle->exit_latency; 7480 latest_idle_timestamp = rq->idle_stamp; 7481 shallowest_idle_cpu = i; 7482 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7483 rq->idle_stamp > latest_idle_timestamp) { 7484 /* 7485 * If equal or no active idle state, then 7486 * the most recently idled CPU might have 7487 * a warmer cache. 7488 */ 7489 latest_idle_timestamp = rq->idle_stamp; 7490 shallowest_idle_cpu = i; 7491 } 7492 } else if (shallowest_idle_cpu == -1) { 7493 load = cpu_load(cpu_rq(i)); 7494 if (load < min_load) { 7495 min_load = load; 7496 least_loaded_cpu = i; 7497 } 7498 } 7499 } 7500 7501 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7502 } 7503 7504 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7505 int cpu, int prev_cpu, int sd_flag) 7506 { 7507 int new_cpu = cpu; 7508 7509 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7510 return prev_cpu; 7511 7512 /* 7513 * We need task's util for cpu_util_without, sync it up to 7514 * prev_cpu's last_update_time. 7515 */ 7516 if (!(sd_flag & SD_BALANCE_FORK)) 7517 sync_entity_load_avg(&p->se); 7518 7519 while (sd) { 7520 struct sched_group *group; 7521 struct sched_domain *tmp; 7522 int weight; 7523 7524 if (!(sd->flags & sd_flag)) { 7525 sd = sd->child; 7526 continue; 7527 } 7528 7529 group = sched_balance_find_dst_group(sd, p, cpu); 7530 if (!group) { 7531 sd = sd->child; 7532 continue; 7533 } 7534 7535 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7536 if (new_cpu == cpu) { 7537 /* Now try balancing at a lower domain level of 'cpu': */ 7538 sd = sd->child; 7539 continue; 7540 } 7541 7542 /* Now try balancing at a lower domain level of 'new_cpu': */ 7543 cpu = new_cpu; 7544 weight = sd->span_weight; 7545 sd = NULL; 7546 for_each_domain(cpu, tmp) { 7547 if (weight <= tmp->span_weight) 7548 break; 7549 if (tmp->flags & sd_flag) 7550 sd = tmp; 7551 } 7552 } 7553 7554 return new_cpu; 7555 } 7556 7557 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7558 { 7559 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7560 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7561 return cpu; 7562 7563 return -1; 7564 } 7565 7566 #ifdef CONFIG_SCHED_SMT 7567 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7568 EXPORT_SYMBOL_GPL(sched_smt_present); 7569 7570 static inline void set_idle_cores(int cpu, int val) 7571 { 7572 struct sched_domain_shared *sds; 7573 7574 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7575 if (sds) 7576 WRITE_ONCE(sds->has_idle_cores, val); 7577 } 7578 7579 static inline bool test_idle_cores(int cpu) 7580 { 7581 struct sched_domain_shared *sds; 7582 7583 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7584 if (sds) 7585 return READ_ONCE(sds->has_idle_cores); 7586 7587 return false; 7588 } 7589 7590 /* 7591 * Scans the local SMT mask to see if the entire core is idle, and records this 7592 * information in sd_llc_shared->has_idle_cores. 7593 * 7594 * Since SMT siblings share all cache levels, inspecting this limited remote 7595 * state should be fairly cheap. 7596 */ 7597 void __update_idle_core(struct rq *rq) 7598 { 7599 int core = cpu_of(rq); 7600 int cpu; 7601 7602 rcu_read_lock(); 7603 if (test_idle_cores(core)) 7604 goto unlock; 7605 7606 for_each_cpu(cpu, cpu_smt_mask(core)) { 7607 if (cpu == core) 7608 continue; 7609 7610 if (!available_idle_cpu(cpu)) 7611 goto unlock; 7612 } 7613 7614 set_idle_cores(core, 1); 7615 unlock: 7616 rcu_read_unlock(); 7617 } 7618 7619 /* 7620 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7621 * there are no idle cores left in the system; tracked through 7622 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7623 */ 7624 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7625 { 7626 bool idle = true; 7627 int cpu; 7628 7629 for_each_cpu(cpu, cpu_smt_mask(core)) { 7630 if (!available_idle_cpu(cpu)) { 7631 idle = false; 7632 if (*idle_cpu == -1) { 7633 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7634 *idle_cpu = cpu; 7635 break; 7636 } 7637 continue; 7638 } 7639 break; 7640 } 7641 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7642 *idle_cpu = cpu; 7643 } 7644 7645 if (idle) 7646 return core; 7647 7648 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7649 return -1; 7650 } 7651 7652 /* 7653 * Scan the local SMT mask for idle CPUs. 7654 */ 7655 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7656 { 7657 int cpu; 7658 7659 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7660 if (cpu == target) 7661 continue; 7662 /* 7663 * Check if the CPU is in the LLC scheduling domain of @target. 7664 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7665 */ 7666 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7667 continue; 7668 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7669 return cpu; 7670 } 7671 7672 return -1; 7673 } 7674 7675 #else /* CONFIG_SCHED_SMT */ 7676 7677 static inline void set_idle_cores(int cpu, int val) 7678 { 7679 } 7680 7681 static inline bool test_idle_cores(int cpu) 7682 { 7683 return false; 7684 } 7685 7686 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7687 { 7688 return __select_idle_cpu(core, p); 7689 } 7690 7691 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7692 { 7693 return -1; 7694 } 7695 7696 #endif /* CONFIG_SCHED_SMT */ 7697 7698 /* 7699 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7700 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7701 * average idle time for this rq (as found in rq->avg_idle). 7702 */ 7703 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7704 { 7705 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7706 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7707 struct sched_domain_shared *sd_share; 7708 7709 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7710 7711 if (sched_feat(SIS_UTIL)) { 7712 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7713 if (sd_share) { 7714 /* because !--nr is the condition to stop scan */ 7715 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7716 /* overloaded LLC is unlikely to have idle cpu/core */ 7717 if (nr == 1) 7718 return -1; 7719 } 7720 } 7721 7722 if (static_branch_unlikely(&sched_cluster_active)) { 7723 struct sched_group *sg = sd->groups; 7724 7725 if (sg->flags & SD_CLUSTER) { 7726 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7727 if (!cpumask_test_cpu(cpu, cpus)) 7728 continue; 7729 7730 if (has_idle_core) { 7731 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7732 if ((unsigned int)i < nr_cpumask_bits) 7733 return i; 7734 } else { 7735 if (--nr <= 0) 7736 return -1; 7737 idle_cpu = __select_idle_cpu(cpu, p); 7738 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7739 return idle_cpu; 7740 } 7741 } 7742 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7743 } 7744 } 7745 7746 for_each_cpu_wrap(cpu, cpus, target + 1) { 7747 if (has_idle_core) { 7748 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7749 if ((unsigned int)i < nr_cpumask_bits) 7750 return i; 7751 7752 } else { 7753 if (--nr <= 0) 7754 return -1; 7755 idle_cpu = __select_idle_cpu(cpu, p); 7756 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7757 break; 7758 } 7759 } 7760 7761 if (has_idle_core) 7762 set_idle_cores(target, false); 7763 7764 return idle_cpu; 7765 } 7766 7767 /* 7768 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7769 * the task fits. If no CPU is big enough, but there are idle ones, try to 7770 * maximize capacity. 7771 */ 7772 static int 7773 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7774 { 7775 unsigned long task_util, util_min, util_max, best_cap = 0; 7776 int fits, best_fits = 0; 7777 int cpu, best_cpu = -1; 7778 struct cpumask *cpus; 7779 7780 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7781 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7782 7783 task_util = task_util_est(p); 7784 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7785 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7786 7787 for_each_cpu_wrap(cpu, cpus, target) { 7788 unsigned long cpu_cap = capacity_of(cpu); 7789 7790 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7791 continue; 7792 7793 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7794 7795 /* This CPU fits with all requirements */ 7796 if (fits > 0) 7797 return cpu; 7798 /* 7799 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7800 * Look for the CPU with best capacity. 7801 */ 7802 else if (fits < 0) 7803 cpu_cap = get_actual_cpu_capacity(cpu); 7804 7805 /* 7806 * First, select CPU which fits better (-1 being better than 0). 7807 * Then, select the one with best capacity at same level. 7808 */ 7809 if ((fits < best_fits) || 7810 ((fits == best_fits) && (cpu_cap > best_cap))) { 7811 best_cap = cpu_cap; 7812 best_cpu = cpu; 7813 best_fits = fits; 7814 } 7815 } 7816 7817 return best_cpu; 7818 } 7819 7820 static inline bool asym_fits_cpu(unsigned long util, 7821 unsigned long util_min, 7822 unsigned long util_max, 7823 int cpu) 7824 { 7825 if (sched_asym_cpucap_active()) 7826 /* 7827 * Return true only if the cpu fully fits the task requirements 7828 * which include the utilization and the performance hints. 7829 */ 7830 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7831 7832 return true; 7833 } 7834 7835 /* 7836 * Try and locate an idle core/thread in the LLC cache domain. 7837 */ 7838 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7839 { 7840 bool has_idle_core = false; 7841 struct sched_domain *sd; 7842 unsigned long task_util, util_min, util_max; 7843 int i, recent_used_cpu, prev_aff = -1; 7844 7845 /* 7846 * On asymmetric system, update task utilization because we will check 7847 * that the task fits with CPU's capacity. 7848 */ 7849 if (sched_asym_cpucap_active()) { 7850 sync_entity_load_avg(&p->se); 7851 task_util = task_util_est(p); 7852 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7853 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7854 } 7855 7856 /* 7857 * per-cpu select_rq_mask usage 7858 */ 7859 lockdep_assert_irqs_disabled(); 7860 7861 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7862 asym_fits_cpu(task_util, util_min, util_max, target)) 7863 return target; 7864 7865 /* 7866 * If the previous CPU is cache affine and idle, don't be stupid: 7867 */ 7868 if (prev != target && cpus_share_cache(prev, target) && 7869 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7870 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7871 7872 if (!static_branch_unlikely(&sched_cluster_active) || 7873 cpus_share_resources(prev, target)) 7874 return prev; 7875 7876 prev_aff = prev; 7877 } 7878 7879 /* 7880 * Allow a per-cpu kthread to stack with the wakee if the 7881 * kworker thread and the tasks previous CPUs are the same. 7882 * The assumption is that the wakee queued work for the 7883 * per-cpu kthread that is now complete and the wakeup is 7884 * essentially a sync wakeup. An obvious example of this 7885 * pattern is IO completions. 7886 */ 7887 if (is_per_cpu_kthread(current) && 7888 in_task() && 7889 prev == smp_processor_id() && 7890 this_rq()->nr_running <= 1 && 7891 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7892 return prev; 7893 } 7894 7895 /* Check a recently used CPU as a potential idle candidate: */ 7896 recent_used_cpu = p->recent_used_cpu; 7897 p->recent_used_cpu = prev; 7898 if (recent_used_cpu != prev && 7899 recent_used_cpu != target && 7900 cpus_share_cache(recent_used_cpu, target) && 7901 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7902 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7903 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7904 7905 if (!static_branch_unlikely(&sched_cluster_active) || 7906 cpus_share_resources(recent_used_cpu, target)) 7907 return recent_used_cpu; 7908 7909 } else { 7910 recent_used_cpu = -1; 7911 } 7912 7913 /* 7914 * For asymmetric CPU capacity systems, our domain of interest is 7915 * sd_asym_cpucapacity rather than sd_llc. 7916 */ 7917 if (sched_asym_cpucap_active()) { 7918 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7919 /* 7920 * On an asymmetric CPU capacity system where an exclusive 7921 * cpuset defines a symmetric island (i.e. one unique 7922 * capacity_orig value through the cpuset), the key will be set 7923 * but the CPUs within that cpuset will not have a domain with 7924 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7925 * capacity path. 7926 */ 7927 if (sd) { 7928 i = select_idle_capacity(p, sd, target); 7929 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7930 } 7931 } 7932 7933 sd = rcu_dereference(per_cpu(sd_llc, target)); 7934 if (!sd) 7935 return target; 7936 7937 if (sched_smt_active()) { 7938 has_idle_core = test_idle_cores(target); 7939 7940 if (!has_idle_core && cpus_share_cache(prev, target)) { 7941 i = select_idle_smt(p, sd, prev); 7942 if ((unsigned int)i < nr_cpumask_bits) 7943 return i; 7944 } 7945 } 7946 7947 i = select_idle_cpu(p, sd, has_idle_core, target); 7948 if ((unsigned)i < nr_cpumask_bits) 7949 return i; 7950 7951 /* 7952 * For cluster machines which have lower sharing cache like L2 or 7953 * LLC Tag, we tend to find an idle CPU in the target's cluster 7954 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7955 * use them if possible when no idle CPU found in select_idle_cpu(). 7956 */ 7957 if ((unsigned int)prev_aff < nr_cpumask_bits) 7958 return prev_aff; 7959 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7960 return recent_used_cpu; 7961 7962 return target; 7963 } 7964 7965 /** 7966 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7967 * @cpu: the CPU to get the utilization for 7968 * @p: task for which the CPU utilization should be predicted or NULL 7969 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7970 * @boost: 1 to enable boosting, otherwise 0 7971 * 7972 * The unit of the return value must be the same as the one of CPU capacity 7973 * so that CPU utilization can be compared with CPU capacity. 7974 * 7975 * CPU utilization is the sum of running time of runnable tasks plus the 7976 * recent utilization of currently non-runnable tasks on that CPU. 7977 * It represents the amount of CPU capacity currently used by CFS tasks in 7978 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7979 * capacity at f_max. 7980 * 7981 * The estimated CPU utilization is defined as the maximum between CPU 7982 * utilization and sum of the estimated utilization of the currently 7983 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7984 * previously-executed tasks, which helps better deduce how busy a CPU will 7985 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7986 * of such a task would be significantly decayed at this point of time. 7987 * 7988 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7989 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7990 * utilization. Boosting is implemented in cpu_util() so that internal 7991 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7992 * latter via cpu_util_cfs_boost(). 7993 * 7994 * CPU utilization can be higher than the current CPU capacity 7995 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7996 * of rounding errors as well as task migrations or wakeups of new tasks. 7997 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7998 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7999 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 8000 * capacity. CPU utilization is allowed to overshoot current CPU capacity 8001 * though since this is useful for predicting the CPU capacity required 8002 * after task migrations (scheduler-driven DVFS). 8003 * 8004 * Return: (Boosted) (estimated) utilization for the specified CPU. 8005 */ 8006 static unsigned long 8007 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8008 { 8009 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8010 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8011 unsigned long runnable; 8012 8013 if (boost) { 8014 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8015 util = max(util, runnable); 8016 } 8017 8018 /* 8019 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8020 * contribution. If @p migrates from another CPU to @cpu add its 8021 * contribution. In all the other cases @cpu is not impacted by the 8022 * migration so its util_avg is already correct. 8023 */ 8024 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8025 lsub_positive(&util, task_util(p)); 8026 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8027 util += task_util(p); 8028 8029 if (sched_feat(UTIL_EST)) { 8030 unsigned long util_est; 8031 8032 util_est = READ_ONCE(cfs_rq->avg.util_est); 8033 8034 /* 8035 * During wake-up @p isn't enqueued yet and doesn't contribute 8036 * to any cpu_rq(cpu)->cfs.avg.util_est. 8037 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8038 * has been enqueued. 8039 * 8040 * During exec (@dst_cpu = -1) @p is enqueued and does 8041 * contribute to cpu_rq(cpu)->cfs.util_est. 8042 * Remove it to "simulate" cpu_util without @p's contribution. 8043 * 8044 * Despite the task_on_rq_queued(@p) check there is still a 8045 * small window for a possible race when an exec 8046 * select_task_rq_fair() races with LB's detach_task(). 8047 * 8048 * detach_task() 8049 * deactivate_task() 8050 * p->on_rq = TASK_ON_RQ_MIGRATING; 8051 * -------------------------------- A 8052 * dequeue_task() \ 8053 * dequeue_task_fair() + Race Time 8054 * util_est_dequeue() / 8055 * -------------------------------- B 8056 * 8057 * The additional check "current == p" is required to further 8058 * reduce the race window. 8059 */ 8060 if (dst_cpu == cpu) 8061 util_est += _task_util_est(p); 8062 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8063 lsub_positive(&util_est, _task_util_est(p)); 8064 8065 util = max(util, util_est); 8066 } 8067 8068 return min(util, arch_scale_cpu_capacity(cpu)); 8069 } 8070 8071 unsigned long cpu_util_cfs(int cpu) 8072 { 8073 return cpu_util(cpu, NULL, -1, 0); 8074 } 8075 8076 unsigned long cpu_util_cfs_boost(int cpu) 8077 { 8078 return cpu_util(cpu, NULL, -1, 1); 8079 } 8080 8081 /* 8082 * cpu_util_without: compute cpu utilization without any contributions from *p 8083 * @cpu: the CPU which utilization is requested 8084 * @p: the task which utilization should be discounted 8085 * 8086 * The utilization of a CPU is defined by the utilization of tasks currently 8087 * enqueued on that CPU as well as tasks which are currently sleeping after an 8088 * execution on that CPU. 8089 * 8090 * This method returns the utilization of the specified CPU by discounting the 8091 * utilization of the specified task, whenever the task is currently 8092 * contributing to the CPU utilization. 8093 */ 8094 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8095 { 8096 /* Task has no contribution or is new */ 8097 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8098 p = NULL; 8099 8100 return cpu_util(cpu, p, -1, 0); 8101 } 8102 8103 /* 8104 * This function computes an effective utilization for the given CPU, to be 8105 * used for frequency selection given the linear relation: f = u * f_max. 8106 * 8107 * The scheduler tracks the following metrics: 8108 * 8109 * cpu_util_{cfs,rt,dl,irq}() 8110 * cpu_bw_dl() 8111 * 8112 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8113 * synchronized windows and are thus directly comparable. 8114 * 8115 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8116 * which excludes things like IRQ and steal-time. These latter are then accrued 8117 * in the IRQ utilization. 8118 * 8119 * The DL bandwidth number OTOH is not a measured metric but a value computed 8120 * based on the task model parameters and gives the minimal utilization 8121 * required to meet deadlines. 8122 */ 8123 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8124 unsigned long *min, 8125 unsigned long *max) 8126 { 8127 unsigned long util, irq, scale; 8128 struct rq *rq = cpu_rq(cpu); 8129 8130 scale = arch_scale_cpu_capacity(cpu); 8131 8132 /* 8133 * Early check to see if IRQ/steal time saturates the CPU, can be 8134 * because of inaccuracies in how we track these -- see 8135 * update_irq_load_avg(). 8136 */ 8137 irq = cpu_util_irq(rq); 8138 if (unlikely(irq >= scale)) { 8139 if (min) 8140 *min = scale; 8141 if (max) 8142 *max = scale; 8143 return scale; 8144 } 8145 8146 if (min) { 8147 /* 8148 * The minimum utilization returns the highest level between: 8149 * - the computed DL bandwidth needed with the IRQ pressure which 8150 * steals time to the deadline task. 8151 * - The minimum performance requirement for CFS and/or RT. 8152 */ 8153 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8154 8155 /* 8156 * When an RT task is runnable and uclamp is not used, we must 8157 * ensure that the task will run at maximum compute capacity. 8158 */ 8159 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8160 *min = max(*min, scale); 8161 } 8162 8163 /* 8164 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8165 * CFS tasks and we use the same metric to track the effective 8166 * utilization (PELT windows are synchronized) we can directly add them 8167 * to obtain the CPU's actual utilization. 8168 */ 8169 util = util_cfs + cpu_util_rt(rq); 8170 util += cpu_util_dl(rq); 8171 8172 /* 8173 * The maximum hint is a soft bandwidth requirement, which can be lower 8174 * than the actual utilization because of uclamp_max requirements. 8175 */ 8176 if (max) 8177 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8178 8179 if (util >= scale) 8180 return scale; 8181 8182 /* 8183 * There is still idle time; further improve the number by using the 8184 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8185 * need to scale the task numbers: 8186 * 8187 * max - irq 8188 * U' = irq + --------- * U 8189 * max 8190 */ 8191 util = scale_irq_capacity(util, irq, scale); 8192 util += irq; 8193 8194 return min(scale, util); 8195 } 8196 8197 unsigned long sched_cpu_util(int cpu) 8198 { 8199 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8200 } 8201 8202 /* 8203 * energy_env - Utilization landscape for energy estimation. 8204 * @task_busy_time: Utilization contribution by the task for which we test the 8205 * placement. Given by eenv_task_busy_time(). 8206 * @pd_busy_time: Utilization of the whole perf domain without the task 8207 * contribution. Given by eenv_pd_busy_time(). 8208 * @cpu_cap: Maximum CPU capacity for the perf domain. 8209 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8210 */ 8211 struct energy_env { 8212 unsigned long task_busy_time; 8213 unsigned long pd_busy_time; 8214 unsigned long cpu_cap; 8215 unsigned long pd_cap; 8216 }; 8217 8218 /* 8219 * Compute the task busy time for compute_energy(). This time cannot be 8220 * injected directly into effective_cpu_util() because of the IRQ scaling. 8221 * The latter only makes sense with the most recent CPUs where the task has 8222 * run. 8223 */ 8224 static inline void eenv_task_busy_time(struct energy_env *eenv, 8225 struct task_struct *p, int prev_cpu) 8226 { 8227 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8228 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8229 8230 if (unlikely(irq >= max_cap)) 8231 busy_time = max_cap; 8232 else 8233 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8234 8235 eenv->task_busy_time = busy_time; 8236 } 8237 8238 /* 8239 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8240 * utilization for each @pd_cpus, it however doesn't take into account 8241 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8242 * scale the EM reported power consumption at the (eventually clamped) 8243 * cpu_capacity. 8244 * 8245 * The contribution of the task @p for which we want to estimate the 8246 * energy cost is removed (by cpu_util()) and must be calculated 8247 * separately (see eenv_task_busy_time). This ensures: 8248 * 8249 * - A stable PD utilization, no matter which CPU of that PD we want to place 8250 * the task on. 8251 * 8252 * - A fair comparison between CPUs as the task contribution (task_util()) 8253 * will always be the same no matter which CPU utilization we rely on 8254 * (util_avg or util_est). 8255 * 8256 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8257 * exceed @eenv->pd_cap. 8258 */ 8259 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8260 struct cpumask *pd_cpus, 8261 struct task_struct *p) 8262 { 8263 unsigned long busy_time = 0; 8264 int cpu; 8265 8266 for_each_cpu(cpu, pd_cpus) { 8267 unsigned long util = cpu_util(cpu, p, -1, 0); 8268 8269 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8270 } 8271 8272 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8273 } 8274 8275 /* 8276 * Compute the maximum utilization for compute_energy() when the task @p 8277 * is placed on the cpu @dst_cpu. 8278 * 8279 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8280 * exceed @eenv->cpu_cap. 8281 */ 8282 static inline unsigned long 8283 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8284 struct task_struct *p, int dst_cpu) 8285 { 8286 unsigned long max_util = 0; 8287 int cpu; 8288 8289 for_each_cpu(cpu, pd_cpus) { 8290 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8291 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8292 unsigned long eff_util, min, max; 8293 8294 /* 8295 * Performance domain frequency: utilization clamping 8296 * must be considered since it affects the selection 8297 * of the performance domain frequency. 8298 * NOTE: in case RT tasks are running, by default the min 8299 * utilization can be max OPP. 8300 */ 8301 eff_util = effective_cpu_util(cpu, util, &min, &max); 8302 8303 /* Task's uclamp can modify min and max value */ 8304 if (tsk && uclamp_is_used()) { 8305 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8306 8307 /* 8308 * If there is no active max uclamp constraint, 8309 * directly use task's one, otherwise keep max. 8310 */ 8311 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8312 max = uclamp_eff_value(p, UCLAMP_MAX); 8313 else 8314 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8315 } 8316 8317 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8318 max_util = max(max_util, eff_util); 8319 } 8320 8321 return min(max_util, eenv->cpu_cap); 8322 } 8323 8324 /* 8325 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8326 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8327 * contribution is ignored. 8328 */ 8329 static inline unsigned long 8330 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8331 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8332 { 8333 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8334 unsigned long busy_time = eenv->pd_busy_time; 8335 unsigned long energy; 8336 8337 if (dst_cpu >= 0) 8338 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8339 8340 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8341 8342 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8343 8344 return energy; 8345 } 8346 8347 /* 8348 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8349 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8350 * spare capacity in each performance domain and uses it as a potential 8351 * candidate to execute the task. Then, it uses the Energy Model to figure 8352 * out which of the CPU candidates is the most energy-efficient. 8353 * 8354 * The rationale for this heuristic is as follows. In a performance domain, 8355 * all the most energy efficient CPU candidates (according to the Energy 8356 * Model) are those for which we'll request a low frequency. When there are 8357 * several CPUs for which the frequency request will be the same, we don't 8358 * have enough data to break the tie between them, because the Energy Model 8359 * only includes active power costs. With this model, if we assume that 8360 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8361 * the maximum spare capacity in a performance domain is guaranteed to be among 8362 * the best candidates of the performance domain. 8363 * 8364 * In practice, it could be preferable from an energy standpoint to pack 8365 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8366 * but that could also hurt our chances to go cluster idle, and we have no 8367 * ways to tell with the current Energy Model if this is actually a good 8368 * idea or not. So, find_energy_efficient_cpu() basically favors 8369 * cluster-packing, and spreading inside a cluster. That should at least be 8370 * a good thing for latency, and this is consistent with the idea that most 8371 * of the energy savings of EAS come from the asymmetry of the system, and 8372 * not so much from breaking the tie between identical CPUs. That's also the 8373 * reason why EAS is enabled in the topology code only for systems where 8374 * SD_ASYM_CPUCAPACITY is set. 8375 * 8376 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8377 * they don't have any useful utilization data yet and it's not possible to 8378 * forecast their impact on energy consumption. Consequently, they will be 8379 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8380 * to be energy-inefficient in some use-cases. The alternative would be to 8381 * bias new tasks towards specific types of CPUs first, or to try to infer 8382 * their util_avg from the parent task, but those heuristics could hurt 8383 * other use-cases too. So, until someone finds a better way to solve this, 8384 * let's keep things simple by re-using the existing slow path. 8385 */ 8386 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8387 { 8388 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8389 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8390 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8391 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8392 struct root_domain *rd = this_rq()->rd; 8393 int cpu, best_energy_cpu, target = -1; 8394 int prev_fits = -1, best_fits = -1; 8395 unsigned long best_actual_cap = 0; 8396 unsigned long prev_actual_cap = 0; 8397 struct sched_domain *sd; 8398 struct perf_domain *pd; 8399 struct energy_env eenv; 8400 8401 rcu_read_lock(); 8402 pd = rcu_dereference(rd->pd); 8403 if (!pd) 8404 goto unlock; 8405 8406 /* 8407 * Energy-aware wake-up happens on the lowest sched_domain starting 8408 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8409 */ 8410 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8411 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8412 sd = sd->parent; 8413 if (!sd) 8414 goto unlock; 8415 8416 target = prev_cpu; 8417 8418 sync_entity_load_avg(&p->se); 8419 if (!task_util_est(p) && p_util_min == 0) 8420 goto unlock; 8421 8422 eenv_task_busy_time(&eenv, p, prev_cpu); 8423 8424 for (; pd; pd = pd->next) { 8425 unsigned long util_min = p_util_min, util_max = p_util_max; 8426 unsigned long cpu_cap, cpu_actual_cap, util; 8427 long prev_spare_cap = -1, max_spare_cap = -1; 8428 unsigned long rq_util_min, rq_util_max; 8429 unsigned long cur_delta, base_energy; 8430 int max_spare_cap_cpu = -1; 8431 int fits, max_fits = -1; 8432 8433 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8434 8435 if (cpumask_empty(cpus)) 8436 continue; 8437 8438 /* Account external pressure for the energy estimation */ 8439 cpu = cpumask_first(cpus); 8440 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8441 8442 eenv.cpu_cap = cpu_actual_cap; 8443 eenv.pd_cap = 0; 8444 8445 for_each_cpu(cpu, cpus) { 8446 struct rq *rq = cpu_rq(cpu); 8447 8448 eenv.pd_cap += cpu_actual_cap; 8449 8450 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8451 continue; 8452 8453 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8454 continue; 8455 8456 util = cpu_util(cpu, p, cpu, 0); 8457 cpu_cap = capacity_of(cpu); 8458 8459 /* 8460 * Skip CPUs that cannot satisfy the capacity request. 8461 * IOW, placing the task there would make the CPU 8462 * overutilized. Take uclamp into account to see how 8463 * much capacity we can get out of the CPU; this is 8464 * aligned with sched_cpu_util(). 8465 */ 8466 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8467 /* 8468 * Open code uclamp_rq_util_with() except for 8469 * the clamp() part. I.e.: apply max aggregation 8470 * only. util_fits_cpu() logic requires to 8471 * operate on non clamped util but must use the 8472 * max-aggregated uclamp_{min, max}. 8473 */ 8474 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8475 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8476 8477 util_min = max(rq_util_min, p_util_min); 8478 util_max = max(rq_util_max, p_util_max); 8479 } 8480 8481 fits = util_fits_cpu(util, util_min, util_max, cpu); 8482 if (!fits) 8483 continue; 8484 8485 lsub_positive(&cpu_cap, util); 8486 8487 if (cpu == prev_cpu) { 8488 /* Always use prev_cpu as a candidate. */ 8489 prev_spare_cap = cpu_cap; 8490 prev_fits = fits; 8491 } else if ((fits > max_fits) || 8492 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8493 /* 8494 * Find the CPU with the maximum spare capacity 8495 * among the remaining CPUs in the performance 8496 * domain. 8497 */ 8498 max_spare_cap = cpu_cap; 8499 max_spare_cap_cpu = cpu; 8500 max_fits = fits; 8501 } 8502 } 8503 8504 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8505 continue; 8506 8507 eenv_pd_busy_time(&eenv, cpus, p); 8508 /* Compute the 'base' energy of the pd, without @p */ 8509 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8510 8511 /* Evaluate the energy impact of using prev_cpu. */ 8512 if (prev_spare_cap > -1) { 8513 prev_delta = compute_energy(&eenv, pd, cpus, p, 8514 prev_cpu); 8515 /* CPU utilization has changed */ 8516 if (prev_delta < base_energy) 8517 goto unlock; 8518 prev_delta -= base_energy; 8519 prev_actual_cap = cpu_actual_cap; 8520 best_delta = min(best_delta, prev_delta); 8521 } 8522 8523 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8524 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8525 /* Current best energy cpu fits better */ 8526 if (max_fits < best_fits) 8527 continue; 8528 8529 /* 8530 * Both don't fit performance hint (i.e. uclamp_min) 8531 * but best energy cpu has better capacity. 8532 */ 8533 if ((max_fits < 0) && 8534 (cpu_actual_cap <= best_actual_cap)) 8535 continue; 8536 8537 cur_delta = compute_energy(&eenv, pd, cpus, p, 8538 max_spare_cap_cpu); 8539 /* CPU utilization has changed */ 8540 if (cur_delta < base_energy) 8541 goto unlock; 8542 cur_delta -= base_energy; 8543 8544 /* 8545 * Both fit for the task but best energy cpu has lower 8546 * energy impact. 8547 */ 8548 if ((max_fits > 0) && (best_fits > 0) && 8549 (cur_delta >= best_delta)) 8550 continue; 8551 8552 best_delta = cur_delta; 8553 best_energy_cpu = max_spare_cap_cpu; 8554 best_fits = max_fits; 8555 best_actual_cap = cpu_actual_cap; 8556 } 8557 } 8558 rcu_read_unlock(); 8559 8560 if ((best_fits > prev_fits) || 8561 ((best_fits > 0) && (best_delta < prev_delta)) || 8562 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8563 target = best_energy_cpu; 8564 8565 return target; 8566 8567 unlock: 8568 rcu_read_unlock(); 8569 8570 return target; 8571 } 8572 8573 /* 8574 * select_task_rq_fair: Select target runqueue for the waking task in domains 8575 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8576 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8577 * 8578 * Balances load by selecting the idlest CPU in the idlest group, or under 8579 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8580 * 8581 * Returns the target CPU number. 8582 */ 8583 static int 8584 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8585 { 8586 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8587 struct sched_domain *tmp, *sd = NULL; 8588 int cpu = smp_processor_id(); 8589 int new_cpu = prev_cpu; 8590 int want_affine = 0; 8591 /* SD_flags and WF_flags share the first nibble */ 8592 int sd_flag = wake_flags & 0xF; 8593 8594 /* 8595 * required for stable ->cpus_allowed 8596 */ 8597 lockdep_assert_held(&p->pi_lock); 8598 if (wake_flags & WF_TTWU) { 8599 record_wakee(p); 8600 8601 if ((wake_flags & WF_CURRENT_CPU) && 8602 cpumask_test_cpu(cpu, p->cpus_ptr)) 8603 return cpu; 8604 8605 if (!is_rd_overutilized(this_rq()->rd)) { 8606 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8607 if (new_cpu >= 0) 8608 return new_cpu; 8609 new_cpu = prev_cpu; 8610 } 8611 8612 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8613 } 8614 8615 rcu_read_lock(); 8616 for_each_domain(cpu, tmp) { 8617 /* 8618 * If both 'cpu' and 'prev_cpu' are part of this domain, 8619 * cpu is a valid SD_WAKE_AFFINE target. 8620 */ 8621 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8622 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8623 if (cpu != prev_cpu) 8624 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8625 8626 sd = NULL; /* Prefer wake_affine over balance flags */ 8627 break; 8628 } 8629 8630 /* 8631 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8632 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8633 * will usually go to the fast path. 8634 */ 8635 if (tmp->flags & sd_flag) 8636 sd = tmp; 8637 else if (!want_affine) 8638 break; 8639 } 8640 8641 if (unlikely(sd)) { 8642 /* Slow path */ 8643 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8644 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8645 /* Fast path */ 8646 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8647 } 8648 rcu_read_unlock(); 8649 8650 return new_cpu; 8651 } 8652 8653 /* 8654 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8655 * cfs_rq_of(p) references at time of call are still valid and identify the 8656 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8657 */ 8658 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8659 { 8660 struct sched_entity *se = &p->se; 8661 8662 if (!task_on_rq_migrating(p)) { 8663 remove_entity_load_avg(se); 8664 8665 /* 8666 * Here, the task's PELT values have been updated according to 8667 * the current rq's clock. But if that clock hasn't been 8668 * updated in a while, a substantial idle time will be missed, 8669 * leading to an inflation after wake-up on the new rq. 8670 * 8671 * Estimate the missing time from the cfs_rq last_update_time 8672 * and update sched_avg to improve the PELT continuity after 8673 * migration. 8674 */ 8675 migrate_se_pelt_lag(se); 8676 } 8677 8678 /* Tell new CPU we are migrated */ 8679 se->avg.last_update_time = 0; 8680 8681 update_scan_period(p, new_cpu); 8682 } 8683 8684 static void task_dead_fair(struct task_struct *p) 8685 { 8686 struct sched_entity *se = &p->se; 8687 8688 if (se->sched_delayed) { 8689 struct rq_flags rf; 8690 struct rq *rq; 8691 8692 rq = task_rq_lock(p, &rf); 8693 if (se->sched_delayed) { 8694 update_rq_clock(rq); 8695 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8696 } 8697 task_rq_unlock(rq, p, &rf); 8698 } 8699 8700 remove_entity_load_avg(se); 8701 } 8702 8703 /* 8704 * Set the max capacity the task is allowed to run at for misfit detection. 8705 */ 8706 static void set_task_max_allowed_capacity(struct task_struct *p) 8707 { 8708 struct asym_cap_data *entry; 8709 8710 if (!sched_asym_cpucap_active()) 8711 return; 8712 8713 rcu_read_lock(); 8714 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8715 cpumask_t *cpumask; 8716 8717 cpumask = cpu_capacity_span(entry); 8718 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8719 continue; 8720 8721 p->max_allowed_capacity = entry->capacity; 8722 break; 8723 } 8724 rcu_read_unlock(); 8725 } 8726 8727 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8728 { 8729 set_cpus_allowed_common(p, ctx); 8730 set_task_max_allowed_capacity(p); 8731 } 8732 8733 static int 8734 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8735 { 8736 if (sched_fair_runnable(rq)) 8737 return 1; 8738 8739 return sched_balance_newidle(rq, rf) != 0; 8740 } 8741 #else 8742 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8743 #endif /* CONFIG_SMP */ 8744 8745 static void set_next_buddy(struct sched_entity *se) 8746 { 8747 for_each_sched_entity(se) { 8748 if (WARN_ON_ONCE(!se->on_rq)) 8749 return; 8750 if (se_is_idle(se)) 8751 return; 8752 cfs_rq_of(se)->next = se; 8753 } 8754 } 8755 8756 /* 8757 * Preempt the current task with a newly woken task if needed: 8758 */ 8759 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8760 { 8761 struct task_struct *donor = rq->donor; 8762 struct sched_entity *se = &donor->se, *pse = &p->se; 8763 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8764 int cse_is_idle, pse_is_idle; 8765 8766 if (unlikely(se == pse)) 8767 return; 8768 8769 /* 8770 * This is possible from callers such as attach_tasks(), in which we 8771 * unconditionally wakeup_preempt() after an enqueue (which may have 8772 * lead to a throttle). This both saves work and prevents false 8773 * next-buddy nomination below. 8774 */ 8775 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8776 return; 8777 8778 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8779 set_next_buddy(pse); 8780 } 8781 8782 /* 8783 * We can come here with TIF_NEED_RESCHED already set from new task 8784 * wake up path. 8785 * 8786 * Note: this also catches the edge-case of curr being in a throttled 8787 * group (e.g. via set_curr_task), since update_curr() (in the 8788 * enqueue of curr) will have resulted in resched being set. This 8789 * prevents us from potentially nominating it as a false LAST_BUDDY 8790 * below. 8791 */ 8792 if (test_tsk_need_resched(rq->curr)) 8793 return; 8794 8795 if (!sched_feat(WAKEUP_PREEMPTION)) 8796 return; 8797 8798 find_matching_se(&se, &pse); 8799 WARN_ON_ONCE(!pse); 8800 8801 cse_is_idle = se_is_idle(se); 8802 pse_is_idle = se_is_idle(pse); 8803 8804 /* 8805 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8806 * in the inverse case). 8807 */ 8808 if (cse_is_idle && !pse_is_idle) { 8809 /* 8810 * When non-idle entity preempt an idle entity, 8811 * don't give idle entity slice protection. 8812 */ 8813 cancel_protect_slice(se); 8814 goto preempt; 8815 } 8816 8817 if (cse_is_idle != pse_is_idle) 8818 return; 8819 8820 /* 8821 * BATCH and IDLE tasks do not preempt others. 8822 */ 8823 if (unlikely(!normal_policy(p->policy))) 8824 return; 8825 8826 cfs_rq = cfs_rq_of(se); 8827 update_curr(cfs_rq); 8828 /* 8829 * If @p has a shorter slice than current and @p is eligible, override 8830 * current's slice protection in order to allow preemption. 8831 * 8832 * Note that even if @p does not turn out to be the most eligible 8833 * task at this moment, current's slice protection will be lost. 8834 */ 8835 if (do_preempt_short(cfs_rq, pse, se)) 8836 cancel_protect_slice(se); 8837 8838 /* 8839 * If @p has become the most eligible task, force preemption. 8840 */ 8841 if (pick_eevdf(cfs_rq) == pse) 8842 goto preempt; 8843 8844 return; 8845 8846 preempt: 8847 resched_curr_lazy(rq); 8848 } 8849 8850 static struct task_struct *pick_task_fair(struct rq *rq) 8851 { 8852 struct sched_entity *se; 8853 struct cfs_rq *cfs_rq; 8854 8855 again: 8856 cfs_rq = &rq->cfs; 8857 if (!cfs_rq->nr_queued) 8858 return NULL; 8859 8860 do { 8861 /* Might not have done put_prev_entity() */ 8862 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8863 update_curr(cfs_rq); 8864 8865 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8866 goto again; 8867 8868 se = pick_next_entity(rq, cfs_rq); 8869 if (!se) 8870 goto again; 8871 cfs_rq = group_cfs_rq(se); 8872 } while (cfs_rq); 8873 8874 return task_of(se); 8875 } 8876 8877 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8878 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8879 8880 struct task_struct * 8881 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8882 { 8883 struct sched_entity *se; 8884 struct task_struct *p; 8885 int new_tasks; 8886 8887 again: 8888 p = pick_task_fair(rq); 8889 if (!p) 8890 goto idle; 8891 se = &p->se; 8892 8893 #ifdef CONFIG_FAIR_GROUP_SCHED 8894 if (prev->sched_class != &fair_sched_class) 8895 goto simple; 8896 8897 __put_prev_set_next_dl_server(rq, prev, p); 8898 8899 /* 8900 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8901 * likely that a next task is from the same cgroup as the current. 8902 * 8903 * Therefore attempt to avoid putting and setting the entire cgroup 8904 * hierarchy, only change the part that actually changes. 8905 * 8906 * Since we haven't yet done put_prev_entity and if the selected task 8907 * is a different task than we started out with, try and touch the 8908 * least amount of cfs_rqs. 8909 */ 8910 if (prev != p) { 8911 struct sched_entity *pse = &prev->se; 8912 struct cfs_rq *cfs_rq; 8913 8914 while (!(cfs_rq = is_same_group(se, pse))) { 8915 int se_depth = se->depth; 8916 int pse_depth = pse->depth; 8917 8918 if (se_depth <= pse_depth) { 8919 put_prev_entity(cfs_rq_of(pse), pse); 8920 pse = parent_entity(pse); 8921 } 8922 if (se_depth >= pse_depth) { 8923 set_next_entity(cfs_rq_of(se), se); 8924 se = parent_entity(se); 8925 } 8926 } 8927 8928 put_prev_entity(cfs_rq, pse); 8929 set_next_entity(cfs_rq, se); 8930 8931 __set_next_task_fair(rq, p, true); 8932 } 8933 8934 return p; 8935 8936 simple: 8937 #endif 8938 put_prev_set_next_task(rq, prev, p); 8939 return p; 8940 8941 idle: 8942 if (!rf) 8943 return NULL; 8944 8945 new_tasks = sched_balance_newidle(rq, rf); 8946 8947 /* 8948 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8949 * possible for any higher priority task to appear. In that case we 8950 * must re-start the pick_next_entity() loop. 8951 */ 8952 if (new_tasks < 0) 8953 return RETRY_TASK; 8954 8955 if (new_tasks > 0) 8956 goto again; 8957 8958 /* 8959 * rq is about to be idle, check if we need to update the 8960 * lost_idle_time of clock_pelt 8961 */ 8962 update_idle_rq_clock_pelt(rq); 8963 8964 return NULL; 8965 } 8966 8967 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8968 { 8969 return pick_next_task_fair(rq, prev, NULL); 8970 } 8971 8972 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8973 { 8974 return !!dl_se->rq->cfs.nr_queued; 8975 } 8976 8977 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8978 { 8979 return pick_task_fair(dl_se->rq); 8980 } 8981 8982 void fair_server_init(struct rq *rq) 8983 { 8984 struct sched_dl_entity *dl_se = &rq->fair_server; 8985 8986 init_dl_entity(dl_se); 8987 8988 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8989 } 8990 8991 /* 8992 * Account for a descheduled task: 8993 */ 8994 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8995 { 8996 struct sched_entity *se = &prev->se; 8997 struct cfs_rq *cfs_rq; 8998 8999 for_each_sched_entity(se) { 9000 cfs_rq = cfs_rq_of(se); 9001 put_prev_entity(cfs_rq, se); 9002 } 9003 } 9004 9005 /* 9006 * sched_yield() is very simple 9007 */ 9008 static void yield_task_fair(struct rq *rq) 9009 { 9010 struct task_struct *curr = rq->curr; 9011 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9012 struct sched_entity *se = &curr->se; 9013 9014 /* 9015 * Are we the only task in the tree? 9016 */ 9017 if (unlikely(rq->nr_running == 1)) 9018 return; 9019 9020 clear_buddies(cfs_rq, se); 9021 9022 update_rq_clock(rq); 9023 /* 9024 * Update run-time statistics of the 'current'. 9025 */ 9026 update_curr(cfs_rq); 9027 /* 9028 * Tell update_rq_clock() that we've just updated, 9029 * so we don't do microscopic update in schedule() 9030 * and double the fastpath cost. 9031 */ 9032 rq_clock_skip_update(rq); 9033 9034 se->deadline += calc_delta_fair(se->slice, se); 9035 } 9036 9037 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9038 { 9039 struct sched_entity *se = &p->se; 9040 9041 /* throttled hierarchies are not runnable */ 9042 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9043 return false; 9044 9045 /* Tell the scheduler that we'd really like se to run next. */ 9046 set_next_buddy(se); 9047 9048 yield_task_fair(rq); 9049 9050 return true; 9051 } 9052 9053 #ifdef CONFIG_SMP 9054 /************************************************** 9055 * Fair scheduling class load-balancing methods. 9056 * 9057 * BASICS 9058 * 9059 * The purpose of load-balancing is to achieve the same basic fairness the 9060 * per-CPU scheduler provides, namely provide a proportional amount of compute 9061 * time to each task. This is expressed in the following equation: 9062 * 9063 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9064 * 9065 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9066 * W_i,0 is defined as: 9067 * 9068 * W_i,0 = \Sum_j w_i,j (2) 9069 * 9070 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9071 * is derived from the nice value as per sched_prio_to_weight[]. 9072 * 9073 * The weight average is an exponential decay average of the instantaneous 9074 * weight: 9075 * 9076 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9077 * 9078 * C_i is the compute capacity of CPU i, typically it is the 9079 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9080 * can also include other factors [XXX]. 9081 * 9082 * To achieve this balance we define a measure of imbalance which follows 9083 * directly from (1): 9084 * 9085 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9086 * 9087 * We them move tasks around to minimize the imbalance. In the continuous 9088 * function space it is obvious this converges, in the discrete case we get 9089 * a few fun cases generally called infeasible weight scenarios. 9090 * 9091 * [XXX expand on: 9092 * - infeasible weights; 9093 * - local vs global optima in the discrete case. ] 9094 * 9095 * 9096 * SCHED DOMAINS 9097 * 9098 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9099 * for all i,j solution, we create a tree of CPUs that follows the hardware 9100 * topology where each level pairs two lower groups (or better). This results 9101 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9102 * tree to only the first of the previous level and we decrease the frequency 9103 * of load-balance at each level inversely proportional to the number of CPUs in 9104 * the groups. 9105 * 9106 * This yields: 9107 * 9108 * log_2 n 1 n 9109 * \Sum { --- * --- * 2^i } = O(n) (5) 9110 * i = 0 2^i 2^i 9111 * `- size of each group 9112 * | | `- number of CPUs doing load-balance 9113 * | `- freq 9114 * `- sum over all levels 9115 * 9116 * Coupled with a limit on how many tasks we can migrate every balance pass, 9117 * this makes (5) the runtime complexity of the balancer. 9118 * 9119 * An important property here is that each CPU is still (indirectly) connected 9120 * to every other CPU in at most O(log n) steps: 9121 * 9122 * The adjacency matrix of the resulting graph is given by: 9123 * 9124 * log_2 n 9125 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9126 * k = 0 9127 * 9128 * And you'll find that: 9129 * 9130 * A^(log_2 n)_i,j != 0 for all i,j (7) 9131 * 9132 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9133 * The task movement gives a factor of O(m), giving a convergence complexity 9134 * of: 9135 * 9136 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9137 * 9138 * 9139 * WORK CONSERVING 9140 * 9141 * In order to avoid CPUs going idle while there's still work to do, new idle 9142 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9143 * tree itself instead of relying on other CPUs to bring it work. 9144 * 9145 * This adds some complexity to both (5) and (8) but it reduces the total idle 9146 * time. 9147 * 9148 * [XXX more?] 9149 * 9150 * 9151 * CGROUPS 9152 * 9153 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9154 * 9155 * s_k,i 9156 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9157 * S_k 9158 * 9159 * Where 9160 * 9161 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9162 * 9163 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9164 * 9165 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9166 * property. 9167 * 9168 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9169 * rewrite all of this once again.] 9170 */ 9171 9172 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9173 9174 enum fbq_type { regular, remote, all }; 9175 9176 /* 9177 * 'group_type' describes the group of CPUs at the moment of load balancing. 9178 * 9179 * The enum is ordered by pulling priority, with the group with lowest priority 9180 * first so the group_type can simply be compared when selecting the busiest 9181 * group. See update_sd_pick_busiest(). 9182 */ 9183 enum group_type { 9184 /* The group has spare capacity that can be used to run more tasks. */ 9185 group_has_spare = 0, 9186 /* 9187 * The group is fully used and the tasks don't compete for more CPU 9188 * cycles. Nevertheless, some tasks might wait before running. 9189 */ 9190 group_fully_busy, 9191 /* 9192 * One task doesn't fit with CPU's capacity and must be migrated to a 9193 * more powerful CPU. 9194 */ 9195 group_misfit_task, 9196 /* 9197 * Balance SMT group that's fully busy. Can benefit from migration 9198 * a task on SMT with busy sibling to another CPU on idle core. 9199 */ 9200 group_smt_balance, 9201 /* 9202 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9203 * and the task should be migrated to it instead of running on the 9204 * current CPU. 9205 */ 9206 group_asym_packing, 9207 /* 9208 * The tasks' affinity constraints previously prevented the scheduler 9209 * from balancing the load across the system. 9210 */ 9211 group_imbalanced, 9212 /* 9213 * The CPU is overloaded and can't provide expected CPU cycles to all 9214 * tasks. 9215 */ 9216 group_overloaded 9217 }; 9218 9219 enum migration_type { 9220 migrate_load = 0, 9221 migrate_util, 9222 migrate_task, 9223 migrate_misfit 9224 }; 9225 9226 #define LBF_ALL_PINNED 0x01 9227 #define LBF_NEED_BREAK 0x02 9228 #define LBF_DST_PINNED 0x04 9229 #define LBF_SOME_PINNED 0x08 9230 #define LBF_ACTIVE_LB 0x10 9231 9232 struct lb_env { 9233 struct sched_domain *sd; 9234 9235 struct rq *src_rq; 9236 int src_cpu; 9237 9238 int dst_cpu; 9239 struct rq *dst_rq; 9240 9241 struct cpumask *dst_grpmask; 9242 int new_dst_cpu; 9243 enum cpu_idle_type idle; 9244 long imbalance; 9245 /* The set of CPUs under consideration for load-balancing */ 9246 struct cpumask *cpus; 9247 9248 unsigned int flags; 9249 9250 unsigned int loop; 9251 unsigned int loop_break; 9252 unsigned int loop_max; 9253 9254 enum fbq_type fbq_type; 9255 enum migration_type migration_type; 9256 struct list_head tasks; 9257 }; 9258 9259 /* 9260 * Is this task likely cache-hot: 9261 */ 9262 static int task_hot(struct task_struct *p, struct lb_env *env) 9263 { 9264 s64 delta; 9265 9266 lockdep_assert_rq_held(env->src_rq); 9267 9268 if (p->sched_class != &fair_sched_class) 9269 return 0; 9270 9271 if (unlikely(task_has_idle_policy(p))) 9272 return 0; 9273 9274 /* SMT siblings share cache */ 9275 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9276 return 0; 9277 9278 /* 9279 * Buddy candidates are cache hot: 9280 */ 9281 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9282 (&p->se == cfs_rq_of(&p->se)->next)) 9283 return 1; 9284 9285 if (sysctl_sched_migration_cost == -1) 9286 return 1; 9287 9288 /* 9289 * Don't migrate task if the task's cookie does not match 9290 * with the destination CPU's core cookie. 9291 */ 9292 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9293 return 1; 9294 9295 if (sysctl_sched_migration_cost == 0) 9296 return 0; 9297 9298 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9299 9300 return delta < (s64)sysctl_sched_migration_cost; 9301 } 9302 9303 #ifdef CONFIG_NUMA_BALANCING 9304 /* 9305 * Returns a positive value, if task migration degrades locality. 9306 * Returns 0, if task migration is not affected by locality. 9307 * Returns a negative value, if task migration improves locality i.e migration preferred. 9308 */ 9309 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9310 { 9311 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9312 unsigned long src_weight, dst_weight; 9313 int src_nid, dst_nid, dist; 9314 9315 if (!static_branch_likely(&sched_numa_balancing)) 9316 return 0; 9317 9318 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9319 return 0; 9320 9321 src_nid = cpu_to_node(env->src_cpu); 9322 dst_nid = cpu_to_node(env->dst_cpu); 9323 9324 if (src_nid == dst_nid) 9325 return 0; 9326 9327 /* Migrating away from the preferred node is always bad. */ 9328 if (src_nid == p->numa_preferred_nid) { 9329 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9330 return 1; 9331 else 9332 return 0; 9333 } 9334 9335 /* Encourage migration to the preferred node. */ 9336 if (dst_nid == p->numa_preferred_nid) 9337 return -1; 9338 9339 /* Leaving a core idle is often worse than degrading locality. */ 9340 if (env->idle == CPU_IDLE) 9341 return 0; 9342 9343 dist = node_distance(src_nid, dst_nid); 9344 if (numa_group) { 9345 src_weight = group_weight(p, src_nid, dist); 9346 dst_weight = group_weight(p, dst_nid, dist); 9347 } else { 9348 src_weight = task_weight(p, src_nid, dist); 9349 dst_weight = task_weight(p, dst_nid, dist); 9350 } 9351 9352 return src_weight - dst_weight; 9353 } 9354 9355 #else 9356 static inline long migrate_degrades_locality(struct task_struct *p, 9357 struct lb_env *env) 9358 { 9359 return 0; 9360 } 9361 #endif 9362 9363 /* 9364 * Check whether the task is ineligible on the destination cpu 9365 * 9366 * When the PLACE_LAG scheduling feature is enabled and 9367 * dst_cfs_rq->nr_queued is greater than 1, if the task 9368 * is ineligible, it will also be ineligible when 9369 * it is migrated to the destination cpu. 9370 */ 9371 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9372 { 9373 struct cfs_rq *dst_cfs_rq; 9374 9375 #ifdef CONFIG_FAIR_GROUP_SCHED 9376 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9377 #else 9378 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9379 #endif 9380 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9381 !entity_eligible(task_cfs_rq(p), &p->se)) 9382 return 1; 9383 9384 return 0; 9385 } 9386 9387 /* 9388 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9389 */ 9390 static 9391 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9392 { 9393 long degrades, hot; 9394 9395 lockdep_assert_rq_held(env->src_rq); 9396 if (p->sched_task_hot) 9397 p->sched_task_hot = 0; 9398 9399 /* 9400 * We do not migrate tasks that are: 9401 * 1) delayed dequeued unless we migrate load, or 9402 * 2) throttled_lb_pair, or 9403 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9404 * 4) running (obviously), or 9405 * 5) are cache-hot on their current CPU. 9406 */ 9407 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9408 return 0; 9409 9410 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9411 return 0; 9412 9413 /* 9414 * We want to prioritize the migration of eligible tasks. 9415 * For ineligible tasks we soft-limit them and only allow 9416 * them to migrate when nr_balance_failed is non-zero to 9417 * avoid load-balancing trying very hard to balance the load. 9418 */ 9419 if (!env->sd->nr_balance_failed && 9420 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9421 return 0; 9422 9423 /* Disregard percpu kthreads; they are where they need to be. */ 9424 if (kthread_is_per_cpu(p)) 9425 return 0; 9426 9427 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9428 int cpu; 9429 9430 schedstat_inc(p->stats.nr_failed_migrations_affine); 9431 9432 env->flags |= LBF_SOME_PINNED; 9433 9434 /* 9435 * Remember if this task can be migrated to any other CPU in 9436 * our sched_group. We may want to revisit it if we couldn't 9437 * meet load balance goals by pulling other tasks on src_cpu. 9438 * 9439 * Avoid computing new_dst_cpu 9440 * - for NEWLY_IDLE 9441 * - if we have already computed one in current iteration 9442 * - if it's an active balance 9443 */ 9444 if (env->idle == CPU_NEWLY_IDLE || 9445 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9446 return 0; 9447 9448 /* Prevent to re-select dst_cpu via env's CPUs: */ 9449 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9450 9451 if (cpu < nr_cpu_ids) { 9452 env->flags |= LBF_DST_PINNED; 9453 env->new_dst_cpu = cpu; 9454 } 9455 9456 return 0; 9457 } 9458 9459 /* Record that we found at least one task that could run on dst_cpu */ 9460 env->flags &= ~LBF_ALL_PINNED; 9461 9462 if (task_on_cpu(env->src_rq, p)) { 9463 schedstat_inc(p->stats.nr_failed_migrations_running); 9464 return 0; 9465 } 9466 9467 /* 9468 * Aggressive migration if: 9469 * 1) active balance 9470 * 2) destination numa is preferred 9471 * 3) task is cache cold, or 9472 * 4) too many balance attempts have failed. 9473 */ 9474 if (env->flags & LBF_ACTIVE_LB) 9475 return 1; 9476 9477 degrades = migrate_degrades_locality(p, env); 9478 if (!degrades) 9479 hot = task_hot(p, env); 9480 else 9481 hot = degrades > 0; 9482 9483 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9484 if (hot) 9485 p->sched_task_hot = 1; 9486 return 1; 9487 } 9488 9489 schedstat_inc(p->stats.nr_failed_migrations_hot); 9490 return 0; 9491 } 9492 9493 /* 9494 * detach_task() -- detach the task for the migration specified in env 9495 */ 9496 static void detach_task(struct task_struct *p, struct lb_env *env) 9497 { 9498 lockdep_assert_rq_held(env->src_rq); 9499 9500 if (p->sched_task_hot) { 9501 p->sched_task_hot = 0; 9502 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9503 schedstat_inc(p->stats.nr_forced_migrations); 9504 } 9505 9506 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9507 set_task_cpu(p, env->dst_cpu); 9508 } 9509 9510 /* 9511 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9512 * part of active balancing operations within "domain". 9513 * 9514 * Returns a task if successful and NULL otherwise. 9515 */ 9516 static struct task_struct *detach_one_task(struct lb_env *env) 9517 { 9518 struct task_struct *p; 9519 9520 lockdep_assert_rq_held(env->src_rq); 9521 9522 list_for_each_entry_reverse(p, 9523 &env->src_rq->cfs_tasks, se.group_node) { 9524 if (!can_migrate_task(p, env)) 9525 continue; 9526 9527 detach_task(p, env); 9528 9529 /* 9530 * Right now, this is only the second place where 9531 * lb_gained[env->idle] is updated (other is detach_tasks) 9532 * so we can safely collect stats here rather than 9533 * inside detach_tasks(). 9534 */ 9535 schedstat_inc(env->sd->lb_gained[env->idle]); 9536 return p; 9537 } 9538 return NULL; 9539 } 9540 9541 /* 9542 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9543 * busiest_rq, as part of a balancing operation within domain "sd". 9544 * 9545 * Returns number of detached tasks if successful and 0 otherwise. 9546 */ 9547 static int detach_tasks(struct lb_env *env) 9548 { 9549 struct list_head *tasks = &env->src_rq->cfs_tasks; 9550 unsigned long util, load; 9551 struct task_struct *p; 9552 int detached = 0; 9553 9554 lockdep_assert_rq_held(env->src_rq); 9555 9556 /* 9557 * Source run queue has been emptied by another CPU, clear 9558 * LBF_ALL_PINNED flag as we will not test any task. 9559 */ 9560 if (env->src_rq->nr_running <= 1) { 9561 env->flags &= ~LBF_ALL_PINNED; 9562 return 0; 9563 } 9564 9565 if (env->imbalance <= 0) 9566 return 0; 9567 9568 while (!list_empty(tasks)) { 9569 /* 9570 * We don't want to steal all, otherwise we may be treated likewise, 9571 * which could at worst lead to a livelock crash. 9572 */ 9573 if (env->idle && env->src_rq->nr_running <= 1) 9574 break; 9575 9576 env->loop++; 9577 /* We've more or less seen every task there is, call it quits */ 9578 if (env->loop > env->loop_max) 9579 break; 9580 9581 /* take a breather every nr_migrate tasks */ 9582 if (env->loop > env->loop_break) { 9583 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9584 env->flags |= LBF_NEED_BREAK; 9585 break; 9586 } 9587 9588 p = list_last_entry(tasks, struct task_struct, se.group_node); 9589 9590 if (!can_migrate_task(p, env)) 9591 goto next; 9592 9593 switch (env->migration_type) { 9594 case migrate_load: 9595 /* 9596 * Depending of the number of CPUs and tasks and the 9597 * cgroup hierarchy, task_h_load() can return a null 9598 * value. Make sure that env->imbalance decreases 9599 * otherwise detach_tasks() will stop only after 9600 * detaching up to loop_max tasks. 9601 */ 9602 load = max_t(unsigned long, task_h_load(p), 1); 9603 9604 if (sched_feat(LB_MIN) && 9605 load < 16 && !env->sd->nr_balance_failed) 9606 goto next; 9607 9608 /* 9609 * Make sure that we don't migrate too much load. 9610 * Nevertheless, let relax the constraint if 9611 * scheduler fails to find a good waiting task to 9612 * migrate. 9613 */ 9614 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9615 goto next; 9616 9617 env->imbalance -= load; 9618 break; 9619 9620 case migrate_util: 9621 util = task_util_est(p); 9622 9623 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9624 goto next; 9625 9626 env->imbalance -= util; 9627 break; 9628 9629 case migrate_task: 9630 env->imbalance--; 9631 break; 9632 9633 case migrate_misfit: 9634 /* This is not a misfit task */ 9635 if (task_fits_cpu(p, env->src_cpu)) 9636 goto next; 9637 9638 env->imbalance = 0; 9639 break; 9640 } 9641 9642 detach_task(p, env); 9643 list_add(&p->se.group_node, &env->tasks); 9644 9645 detached++; 9646 9647 #ifdef CONFIG_PREEMPTION 9648 /* 9649 * NEWIDLE balancing is a source of latency, so preemptible 9650 * kernels will stop after the first task is detached to minimize 9651 * the critical section. 9652 */ 9653 if (env->idle == CPU_NEWLY_IDLE) 9654 break; 9655 #endif 9656 9657 /* 9658 * We only want to steal up to the prescribed amount of 9659 * load/util/tasks. 9660 */ 9661 if (env->imbalance <= 0) 9662 break; 9663 9664 continue; 9665 next: 9666 if (p->sched_task_hot) 9667 schedstat_inc(p->stats.nr_failed_migrations_hot); 9668 9669 list_move(&p->se.group_node, tasks); 9670 } 9671 9672 /* 9673 * Right now, this is one of only two places we collect this stat 9674 * so we can safely collect detach_one_task() stats here rather 9675 * than inside detach_one_task(). 9676 */ 9677 schedstat_add(env->sd->lb_gained[env->idle], detached); 9678 9679 return detached; 9680 } 9681 9682 /* 9683 * attach_task() -- attach the task detached by detach_task() to its new rq. 9684 */ 9685 static void attach_task(struct rq *rq, struct task_struct *p) 9686 { 9687 lockdep_assert_rq_held(rq); 9688 9689 WARN_ON_ONCE(task_rq(p) != rq); 9690 activate_task(rq, p, ENQUEUE_NOCLOCK); 9691 wakeup_preempt(rq, p, 0); 9692 } 9693 9694 /* 9695 * attach_one_task() -- attaches the task returned from detach_one_task() to 9696 * its new rq. 9697 */ 9698 static void attach_one_task(struct rq *rq, struct task_struct *p) 9699 { 9700 struct rq_flags rf; 9701 9702 rq_lock(rq, &rf); 9703 update_rq_clock(rq); 9704 attach_task(rq, p); 9705 rq_unlock(rq, &rf); 9706 } 9707 9708 /* 9709 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9710 * new rq. 9711 */ 9712 static void attach_tasks(struct lb_env *env) 9713 { 9714 struct list_head *tasks = &env->tasks; 9715 struct task_struct *p; 9716 struct rq_flags rf; 9717 9718 rq_lock(env->dst_rq, &rf); 9719 update_rq_clock(env->dst_rq); 9720 9721 while (!list_empty(tasks)) { 9722 p = list_first_entry(tasks, struct task_struct, se.group_node); 9723 list_del_init(&p->se.group_node); 9724 9725 attach_task(env->dst_rq, p); 9726 } 9727 9728 rq_unlock(env->dst_rq, &rf); 9729 } 9730 9731 #ifdef CONFIG_NO_HZ_COMMON 9732 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9733 { 9734 if (cfs_rq->avg.load_avg) 9735 return true; 9736 9737 if (cfs_rq->avg.util_avg) 9738 return true; 9739 9740 return false; 9741 } 9742 9743 static inline bool others_have_blocked(struct rq *rq) 9744 { 9745 if (cpu_util_rt(rq)) 9746 return true; 9747 9748 if (cpu_util_dl(rq)) 9749 return true; 9750 9751 if (hw_load_avg(rq)) 9752 return true; 9753 9754 if (cpu_util_irq(rq)) 9755 return true; 9756 9757 return false; 9758 } 9759 9760 static inline void update_blocked_load_tick(struct rq *rq) 9761 { 9762 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9763 } 9764 9765 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9766 { 9767 if (!has_blocked) 9768 rq->has_blocked_load = 0; 9769 } 9770 #else 9771 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9772 static inline bool others_have_blocked(struct rq *rq) { return false; } 9773 static inline void update_blocked_load_tick(struct rq *rq) {} 9774 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9775 #endif 9776 9777 static bool __update_blocked_others(struct rq *rq, bool *done) 9778 { 9779 bool updated; 9780 9781 /* 9782 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9783 * DL and IRQ signals have been updated before updating CFS. 9784 */ 9785 updated = update_other_load_avgs(rq); 9786 9787 if (others_have_blocked(rq)) 9788 *done = false; 9789 9790 return updated; 9791 } 9792 9793 #ifdef CONFIG_FAIR_GROUP_SCHED 9794 9795 static bool __update_blocked_fair(struct rq *rq, bool *done) 9796 { 9797 struct cfs_rq *cfs_rq, *pos; 9798 bool decayed = false; 9799 int cpu = cpu_of(rq); 9800 9801 /* 9802 * Iterates the task_group tree in a bottom up fashion, see 9803 * list_add_leaf_cfs_rq() for details. 9804 */ 9805 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9806 struct sched_entity *se; 9807 9808 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9809 update_tg_load_avg(cfs_rq); 9810 9811 if (cfs_rq->nr_queued == 0) 9812 update_idle_cfs_rq_clock_pelt(cfs_rq); 9813 9814 if (cfs_rq == &rq->cfs) 9815 decayed = true; 9816 } 9817 9818 /* Propagate pending load changes to the parent, if any: */ 9819 se = cfs_rq->tg->se[cpu]; 9820 if (se && !skip_blocked_update(se)) 9821 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9822 9823 /* 9824 * There can be a lot of idle CPU cgroups. Don't let fully 9825 * decayed cfs_rqs linger on the list. 9826 */ 9827 if (cfs_rq_is_decayed(cfs_rq)) 9828 list_del_leaf_cfs_rq(cfs_rq); 9829 9830 /* Don't need periodic decay once load/util_avg are null */ 9831 if (cfs_rq_has_blocked(cfs_rq)) 9832 *done = false; 9833 } 9834 9835 return decayed; 9836 } 9837 9838 /* 9839 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9840 * This needs to be done in a top-down fashion because the load of a child 9841 * group is a fraction of its parents load. 9842 */ 9843 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9844 { 9845 struct rq *rq = rq_of(cfs_rq); 9846 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9847 unsigned long now = jiffies; 9848 unsigned long load; 9849 9850 if (cfs_rq->last_h_load_update == now) 9851 return; 9852 9853 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9854 for_each_sched_entity(se) { 9855 cfs_rq = cfs_rq_of(se); 9856 WRITE_ONCE(cfs_rq->h_load_next, se); 9857 if (cfs_rq->last_h_load_update == now) 9858 break; 9859 } 9860 9861 if (!se) { 9862 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9863 cfs_rq->last_h_load_update = now; 9864 } 9865 9866 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9867 load = cfs_rq->h_load; 9868 load = div64_ul(load * se->avg.load_avg, 9869 cfs_rq_load_avg(cfs_rq) + 1); 9870 cfs_rq = group_cfs_rq(se); 9871 cfs_rq->h_load = load; 9872 cfs_rq->last_h_load_update = now; 9873 } 9874 } 9875 9876 static unsigned long task_h_load(struct task_struct *p) 9877 { 9878 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9879 9880 update_cfs_rq_h_load(cfs_rq); 9881 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9882 cfs_rq_load_avg(cfs_rq) + 1); 9883 } 9884 #else 9885 static bool __update_blocked_fair(struct rq *rq, bool *done) 9886 { 9887 struct cfs_rq *cfs_rq = &rq->cfs; 9888 bool decayed; 9889 9890 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9891 if (cfs_rq_has_blocked(cfs_rq)) 9892 *done = false; 9893 9894 return decayed; 9895 } 9896 9897 static unsigned long task_h_load(struct task_struct *p) 9898 { 9899 return p->se.avg.load_avg; 9900 } 9901 #endif 9902 9903 static void sched_balance_update_blocked_averages(int cpu) 9904 { 9905 bool decayed = false, done = true; 9906 struct rq *rq = cpu_rq(cpu); 9907 struct rq_flags rf; 9908 9909 rq_lock_irqsave(rq, &rf); 9910 update_blocked_load_tick(rq); 9911 update_rq_clock(rq); 9912 9913 decayed |= __update_blocked_others(rq, &done); 9914 decayed |= __update_blocked_fair(rq, &done); 9915 9916 update_blocked_load_status(rq, !done); 9917 if (decayed) 9918 cpufreq_update_util(rq, 0); 9919 rq_unlock_irqrestore(rq, &rf); 9920 } 9921 9922 /********** Helpers for sched_balance_find_src_group ************************/ 9923 9924 /* 9925 * sg_lb_stats - stats of a sched_group required for load-balancing: 9926 */ 9927 struct sg_lb_stats { 9928 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9929 unsigned long group_load; /* Total load over the CPUs of the group */ 9930 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9931 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9932 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9933 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9934 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9935 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9936 unsigned int group_weight; 9937 enum group_type group_type; 9938 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9939 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9940 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9941 #ifdef CONFIG_NUMA_BALANCING 9942 unsigned int nr_numa_running; 9943 unsigned int nr_preferred_running; 9944 #endif 9945 }; 9946 9947 /* 9948 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9949 */ 9950 struct sd_lb_stats { 9951 struct sched_group *busiest; /* Busiest group in this sd */ 9952 struct sched_group *local; /* Local group in this sd */ 9953 unsigned long total_load; /* Total load of all groups in sd */ 9954 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9955 unsigned long avg_load; /* Average load across all groups in sd */ 9956 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9957 9958 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9959 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9960 }; 9961 9962 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9963 { 9964 /* 9965 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9966 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9967 * We must however set busiest_stat::group_type and 9968 * busiest_stat::idle_cpus to the worst busiest group because 9969 * update_sd_pick_busiest() reads these before assignment. 9970 */ 9971 *sds = (struct sd_lb_stats){ 9972 .busiest = NULL, 9973 .local = NULL, 9974 .total_load = 0UL, 9975 .total_capacity = 0UL, 9976 .busiest_stat = { 9977 .idle_cpus = UINT_MAX, 9978 .group_type = group_has_spare, 9979 }, 9980 }; 9981 } 9982 9983 static unsigned long scale_rt_capacity(int cpu) 9984 { 9985 unsigned long max = get_actual_cpu_capacity(cpu); 9986 struct rq *rq = cpu_rq(cpu); 9987 unsigned long used, free; 9988 unsigned long irq; 9989 9990 irq = cpu_util_irq(rq); 9991 9992 if (unlikely(irq >= max)) 9993 return 1; 9994 9995 /* 9996 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9997 * (running and not running) with weights 0 and 1024 respectively. 9998 */ 9999 used = cpu_util_rt(rq); 10000 used += cpu_util_dl(rq); 10001 10002 if (unlikely(used >= max)) 10003 return 1; 10004 10005 free = max - used; 10006 10007 return scale_irq_capacity(free, irq, max); 10008 } 10009 10010 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10011 { 10012 unsigned long capacity = scale_rt_capacity(cpu); 10013 struct sched_group *sdg = sd->groups; 10014 10015 if (!capacity) 10016 capacity = 1; 10017 10018 cpu_rq(cpu)->cpu_capacity = capacity; 10019 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10020 10021 sdg->sgc->capacity = capacity; 10022 sdg->sgc->min_capacity = capacity; 10023 sdg->sgc->max_capacity = capacity; 10024 } 10025 10026 void update_group_capacity(struct sched_domain *sd, int cpu) 10027 { 10028 struct sched_domain *child = sd->child; 10029 struct sched_group *group, *sdg = sd->groups; 10030 unsigned long capacity, min_capacity, max_capacity; 10031 unsigned long interval; 10032 10033 interval = msecs_to_jiffies(sd->balance_interval); 10034 interval = clamp(interval, 1UL, max_load_balance_interval); 10035 sdg->sgc->next_update = jiffies + interval; 10036 10037 if (!child) { 10038 update_cpu_capacity(sd, cpu); 10039 return; 10040 } 10041 10042 capacity = 0; 10043 min_capacity = ULONG_MAX; 10044 max_capacity = 0; 10045 10046 if (child->flags & SD_OVERLAP) { 10047 /* 10048 * SD_OVERLAP domains cannot assume that child groups 10049 * span the current group. 10050 */ 10051 10052 for_each_cpu(cpu, sched_group_span(sdg)) { 10053 unsigned long cpu_cap = capacity_of(cpu); 10054 10055 capacity += cpu_cap; 10056 min_capacity = min(cpu_cap, min_capacity); 10057 max_capacity = max(cpu_cap, max_capacity); 10058 } 10059 } else { 10060 /* 10061 * !SD_OVERLAP domains can assume that child groups 10062 * span the current group. 10063 */ 10064 10065 group = child->groups; 10066 do { 10067 struct sched_group_capacity *sgc = group->sgc; 10068 10069 capacity += sgc->capacity; 10070 min_capacity = min(sgc->min_capacity, min_capacity); 10071 max_capacity = max(sgc->max_capacity, max_capacity); 10072 group = group->next; 10073 } while (group != child->groups); 10074 } 10075 10076 sdg->sgc->capacity = capacity; 10077 sdg->sgc->min_capacity = min_capacity; 10078 sdg->sgc->max_capacity = max_capacity; 10079 } 10080 10081 /* 10082 * Check whether the capacity of the rq has been noticeably reduced by side 10083 * activity. The imbalance_pct is used for the threshold. 10084 * Return true is the capacity is reduced 10085 */ 10086 static inline int 10087 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10088 { 10089 return ((rq->cpu_capacity * sd->imbalance_pct) < 10090 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10091 } 10092 10093 /* Check if the rq has a misfit task */ 10094 static inline bool check_misfit_status(struct rq *rq) 10095 { 10096 return rq->misfit_task_load; 10097 } 10098 10099 /* 10100 * Group imbalance indicates (and tries to solve) the problem where balancing 10101 * groups is inadequate due to ->cpus_ptr constraints. 10102 * 10103 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10104 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10105 * Something like: 10106 * 10107 * { 0 1 2 3 } { 4 5 6 7 } 10108 * * * * * 10109 * 10110 * If we were to balance group-wise we'd place two tasks in the first group and 10111 * two tasks in the second group. Clearly this is undesired as it will overload 10112 * cpu 3 and leave one of the CPUs in the second group unused. 10113 * 10114 * The current solution to this issue is detecting the skew in the first group 10115 * by noticing the lower domain failed to reach balance and had difficulty 10116 * moving tasks due to affinity constraints. 10117 * 10118 * When this is so detected; this group becomes a candidate for busiest; see 10119 * update_sd_pick_busiest(). And calculate_imbalance() and 10120 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10121 * to create an effective group imbalance. 10122 * 10123 * This is a somewhat tricky proposition since the next run might not find the 10124 * group imbalance and decide the groups need to be balanced again. A most 10125 * subtle and fragile situation. 10126 */ 10127 10128 static inline int sg_imbalanced(struct sched_group *group) 10129 { 10130 return group->sgc->imbalance; 10131 } 10132 10133 /* 10134 * group_has_capacity returns true if the group has spare capacity that could 10135 * be used by some tasks. 10136 * We consider that a group has spare capacity if the number of task is 10137 * smaller than the number of CPUs or if the utilization is lower than the 10138 * available capacity for CFS tasks. 10139 * For the latter, we use a threshold to stabilize the state, to take into 10140 * account the variance of the tasks' load and to return true if the available 10141 * capacity in meaningful for the load balancer. 10142 * As an example, an available capacity of 1% can appear but it doesn't make 10143 * any benefit for the load balance. 10144 */ 10145 static inline bool 10146 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10147 { 10148 if (sgs->sum_nr_running < sgs->group_weight) 10149 return true; 10150 10151 if ((sgs->group_capacity * imbalance_pct) < 10152 (sgs->group_runnable * 100)) 10153 return false; 10154 10155 if ((sgs->group_capacity * 100) > 10156 (sgs->group_util * imbalance_pct)) 10157 return true; 10158 10159 return false; 10160 } 10161 10162 /* 10163 * group_is_overloaded returns true if the group has more tasks than it can 10164 * handle. 10165 * group_is_overloaded is not equals to !group_has_capacity because a group 10166 * with the exact right number of tasks, has no more spare capacity but is not 10167 * overloaded so both group_has_capacity and group_is_overloaded return 10168 * false. 10169 */ 10170 static inline bool 10171 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10172 { 10173 if (sgs->sum_nr_running <= sgs->group_weight) 10174 return false; 10175 10176 if ((sgs->group_capacity * 100) < 10177 (sgs->group_util * imbalance_pct)) 10178 return true; 10179 10180 if ((sgs->group_capacity * imbalance_pct) < 10181 (sgs->group_runnable * 100)) 10182 return true; 10183 10184 return false; 10185 } 10186 10187 static inline enum 10188 group_type group_classify(unsigned int imbalance_pct, 10189 struct sched_group *group, 10190 struct sg_lb_stats *sgs) 10191 { 10192 if (group_is_overloaded(imbalance_pct, sgs)) 10193 return group_overloaded; 10194 10195 if (sg_imbalanced(group)) 10196 return group_imbalanced; 10197 10198 if (sgs->group_asym_packing) 10199 return group_asym_packing; 10200 10201 if (sgs->group_smt_balance) 10202 return group_smt_balance; 10203 10204 if (sgs->group_misfit_task_load) 10205 return group_misfit_task; 10206 10207 if (!group_has_capacity(imbalance_pct, sgs)) 10208 return group_fully_busy; 10209 10210 return group_has_spare; 10211 } 10212 10213 /** 10214 * sched_use_asym_prio - Check whether asym_packing priority must be used 10215 * @sd: The scheduling domain of the load balancing 10216 * @cpu: A CPU 10217 * 10218 * Always use CPU priority when balancing load between SMT siblings. When 10219 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10220 * use CPU priority if the whole core is idle. 10221 * 10222 * Returns: True if the priority of @cpu must be followed. False otherwise. 10223 */ 10224 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10225 { 10226 if (!(sd->flags & SD_ASYM_PACKING)) 10227 return false; 10228 10229 if (!sched_smt_active()) 10230 return true; 10231 10232 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10233 } 10234 10235 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10236 { 10237 /* 10238 * First check if @dst_cpu can do asym_packing load balance. Only do it 10239 * if it has higher priority than @src_cpu. 10240 */ 10241 return sched_use_asym_prio(sd, dst_cpu) && 10242 sched_asym_prefer(dst_cpu, src_cpu); 10243 } 10244 10245 /** 10246 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10247 * @env: The load balancing environment 10248 * @sgs: Load-balancing statistics of the candidate busiest group 10249 * @group: The candidate busiest group 10250 * 10251 * @env::dst_cpu can do asym_packing if it has higher priority than the 10252 * preferred CPU of @group. 10253 * 10254 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10255 * otherwise. 10256 */ 10257 static inline bool 10258 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10259 { 10260 /* 10261 * CPU priorities do not make sense for SMT cores with more than one 10262 * busy sibling. 10263 */ 10264 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10265 (sgs->group_weight - sgs->idle_cpus != 1)) 10266 return false; 10267 10268 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10269 } 10270 10271 /* One group has more than one SMT CPU while the other group does not */ 10272 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10273 struct sched_group *sg2) 10274 { 10275 if (!sg1 || !sg2) 10276 return false; 10277 10278 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10279 (sg2->flags & SD_SHARE_CPUCAPACITY); 10280 } 10281 10282 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10283 struct sched_group *group) 10284 { 10285 if (!env->idle) 10286 return false; 10287 10288 /* 10289 * For SMT source group, it is better to move a task 10290 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10291 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10292 * will not be on. 10293 */ 10294 if (group->flags & SD_SHARE_CPUCAPACITY && 10295 sgs->sum_h_nr_running > 1) 10296 return true; 10297 10298 return false; 10299 } 10300 10301 static inline long sibling_imbalance(struct lb_env *env, 10302 struct sd_lb_stats *sds, 10303 struct sg_lb_stats *busiest, 10304 struct sg_lb_stats *local) 10305 { 10306 int ncores_busiest, ncores_local; 10307 long imbalance; 10308 10309 if (!env->idle || !busiest->sum_nr_running) 10310 return 0; 10311 10312 ncores_busiest = sds->busiest->cores; 10313 ncores_local = sds->local->cores; 10314 10315 if (ncores_busiest == ncores_local) { 10316 imbalance = busiest->sum_nr_running; 10317 lsub_positive(&imbalance, local->sum_nr_running); 10318 return imbalance; 10319 } 10320 10321 /* Balance such that nr_running/ncores ratio are same on both groups */ 10322 imbalance = ncores_local * busiest->sum_nr_running; 10323 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10324 /* Normalize imbalance and do rounding on normalization */ 10325 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10326 imbalance /= ncores_local + ncores_busiest; 10327 10328 /* Take advantage of resource in an empty sched group */ 10329 if (imbalance <= 1 && local->sum_nr_running == 0 && 10330 busiest->sum_nr_running > 1) 10331 imbalance = 2; 10332 10333 return imbalance; 10334 } 10335 10336 static inline bool 10337 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10338 { 10339 /* 10340 * When there is more than 1 task, the group_overloaded case already 10341 * takes care of cpu with reduced capacity 10342 */ 10343 if (rq->cfs.h_nr_runnable != 1) 10344 return false; 10345 10346 return check_cpu_capacity(rq, sd); 10347 } 10348 10349 /** 10350 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10351 * @env: The load balancing environment. 10352 * @sds: Load-balancing data with statistics of the local group. 10353 * @group: sched_group whose statistics are to be updated. 10354 * @sgs: variable to hold the statistics for this group. 10355 * @sg_overloaded: sched_group is overloaded 10356 * @sg_overutilized: sched_group is overutilized 10357 */ 10358 static inline void update_sg_lb_stats(struct lb_env *env, 10359 struct sd_lb_stats *sds, 10360 struct sched_group *group, 10361 struct sg_lb_stats *sgs, 10362 bool *sg_overloaded, 10363 bool *sg_overutilized) 10364 { 10365 int i, nr_running, local_group, sd_flags = env->sd->flags; 10366 bool balancing_at_rd = !env->sd->parent; 10367 10368 memset(sgs, 0, sizeof(*sgs)); 10369 10370 local_group = group == sds->local; 10371 10372 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10373 struct rq *rq = cpu_rq(i); 10374 unsigned long load = cpu_load(rq); 10375 10376 sgs->group_load += load; 10377 sgs->group_util += cpu_util_cfs(i); 10378 sgs->group_runnable += cpu_runnable(rq); 10379 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10380 10381 nr_running = rq->nr_running; 10382 sgs->sum_nr_running += nr_running; 10383 10384 if (cpu_overutilized(i)) 10385 *sg_overutilized = 1; 10386 10387 /* 10388 * No need to call idle_cpu() if nr_running is not 0 10389 */ 10390 if (!nr_running && idle_cpu(i)) { 10391 sgs->idle_cpus++; 10392 /* Idle cpu can't have misfit task */ 10393 continue; 10394 } 10395 10396 /* Overload indicator is only updated at root domain */ 10397 if (balancing_at_rd && nr_running > 1) 10398 *sg_overloaded = 1; 10399 10400 #ifdef CONFIG_NUMA_BALANCING 10401 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10402 if (sd_flags & SD_NUMA) { 10403 sgs->nr_numa_running += rq->nr_numa_running; 10404 sgs->nr_preferred_running += rq->nr_preferred_running; 10405 } 10406 #endif 10407 if (local_group) 10408 continue; 10409 10410 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10411 /* Check for a misfit task on the cpu */ 10412 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10413 sgs->group_misfit_task_load = rq->misfit_task_load; 10414 *sg_overloaded = 1; 10415 } 10416 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10417 /* Check for a task running on a CPU with reduced capacity */ 10418 if (sgs->group_misfit_task_load < load) 10419 sgs->group_misfit_task_load = load; 10420 } 10421 } 10422 10423 sgs->group_capacity = group->sgc->capacity; 10424 10425 sgs->group_weight = group->group_weight; 10426 10427 /* Check if dst CPU is idle and preferred to this group */ 10428 if (!local_group && env->idle && sgs->sum_h_nr_running && 10429 sched_group_asym(env, sgs, group)) 10430 sgs->group_asym_packing = 1; 10431 10432 /* Check for loaded SMT group to be balanced to dst CPU */ 10433 if (!local_group && smt_balance(env, sgs, group)) 10434 sgs->group_smt_balance = 1; 10435 10436 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10437 10438 /* Computing avg_load makes sense only when group is overloaded */ 10439 if (sgs->group_type == group_overloaded) 10440 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10441 sgs->group_capacity; 10442 } 10443 10444 /** 10445 * update_sd_pick_busiest - return 1 on busiest group 10446 * @env: The load balancing environment. 10447 * @sds: sched_domain statistics 10448 * @sg: sched_group candidate to be checked for being the busiest 10449 * @sgs: sched_group statistics 10450 * 10451 * Determine if @sg is a busier group than the previously selected 10452 * busiest group. 10453 * 10454 * Return: %true if @sg is a busier group than the previously selected 10455 * busiest group. %false otherwise. 10456 */ 10457 static bool update_sd_pick_busiest(struct lb_env *env, 10458 struct sd_lb_stats *sds, 10459 struct sched_group *sg, 10460 struct sg_lb_stats *sgs) 10461 { 10462 struct sg_lb_stats *busiest = &sds->busiest_stat; 10463 10464 /* Make sure that there is at least one task to pull */ 10465 if (!sgs->sum_h_nr_running) 10466 return false; 10467 10468 /* 10469 * Don't try to pull misfit tasks we can't help. 10470 * We can use max_capacity here as reduction in capacity on some 10471 * CPUs in the group should either be possible to resolve 10472 * internally or be covered by avg_load imbalance (eventually). 10473 */ 10474 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10475 (sgs->group_type == group_misfit_task) && 10476 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10477 sds->local_stat.group_type != group_has_spare)) 10478 return false; 10479 10480 if (sgs->group_type > busiest->group_type) 10481 return true; 10482 10483 if (sgs->group_type < busiest->group_type) 10484 return false; 10485 10486 /* 10487 * The candidate and the current busiest group are the same type of 10488 * group. Let check which one is the busiest according to the type. 10489 */ 10490 10491 switch (sgs->group_type) { 10492 case group_overloaded: 10493 /* Select the overloaded group with highest avg_load. */ 10494 return sgs->avg_load > busiest->avg_load; 10495 10496 case group_imbalanced: 10497 /* 10498 * Select the 1st imbalanced group as we don't have any way to 10499 * choose one more than another. 10500 */ 10501 return false; 10502 10503 case group_asym_packing: 10504 /* Prefer to move from lowest priority CPU's work */ 10505 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10506 10507 case group_misfit_task: 10508 /* 10509 * If we have more than one misfit sg go with the biggest 10510 * misfit. 10511 */ 10512 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10513 10514 case group_smt_balance: 10515 /* 10516 * Check if we have spare CPUs on either SMT group to 10517 * choose has spare or fully busy handling. 10518 */ 10519 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10520 goto has_spare; 10521 10522 fallthrough; 10523 10524 case group_fully_busy: 10525 /* 10526 * Select the fully busy group with highest avg_load. In 10527 * theory, there is no need to pull task from such kind of 10528 * group because tasks have all compute capacity that they need 10529 * but we can still improve the overall throughput by reducing 10530 * contention when accessing shared HW resources. 10531 * 10532 * XXX for now avg_load is not computed and always 0 so we 10533 * select the 1st one, except if @sg is composed of SMT 10534 * siblings. 10535 */ 10536 10537 if (sgs->avg_load < busiest->avg_load) 10538 return false; 10539 10540 if (sgs->avg_load == busiest->avg_load) { 10541 /* 10542 * SMT sched groups need more help than non-SMT groups. 10543 * If @sg happens to also be SMT, either choice is good. 10544 */ 10545 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10546 return false; 10547 } 10548 10549 break; 10550 10551 case group_has_spare: 10552 /* 10553 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10554 * as we do not want to pull task off SMT core with one task 10555 * and make the core idle. 10556 */ 10557 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10558 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10559 return false; 10560 else 10561 return true; 10562 } 10563 has_spare: 10564 10565 /* 10566 * Select not overloaded group with lowest number of idle CPUs 10567 * and highest number of running tasks. We could also compare 10568 * the spare capacity which is more stable but it can end up 10569 * that the group has less spare capacity but finally more idle 10570 * CPUs which means less opportunity to pull tasks. 10571 */ 10572 if (sgs->idle_cpus > busiest->idle_cpus) 10573 return false; 10574 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10575 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10576 return false; 10577 10578 break; 10579 } 10580 10581 /* 10582 * Candidate sg has no more than one task per CPU and has higher 10583 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10584 * throughput. Maximize throughput, power/energy consequences are not 10585 * considered. 10586 */ 10587 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10588 (sgs->group_type <= group_fully_busy) && 10589 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10590 return false; 10591 10592 return true; 10593 } 10594 10595 #ifdef CONFIG_NUMA_BALANCING 10596 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10597 { 10598 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10599 return regular; 10600 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10601 return remote; 10602 return all; 10603 } 10604 10605 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10606 { 10607 if (rq->nr_running > rq->nr_numa_running) 10608 return regular; 10609 if (rq->nr_running > rq->nr_preferred_running) 10610 return remote; 10611 return all; 10612 } 10613 #else 10614 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10615 { 10616 return all; 10617 } 10618 10619 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10620 { 10621 return regular; 10622 } 10623 #endif /* CONFIG_NUMA_BALANCING */ 10624 10625 10626 struct sg_lb_stats; 10627 10628 /* 10629 * task_running_on_cpu - return 1 if @p is running on @cpu. 10630 */ 10631 10632 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10633 { 10634 /* Task has no contribution or is new */ 10635 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10636 return 0; 10637 10638 if (task_on_rq_queued(p)) 10639 return 1; 10640 10641 return 0; 10642 } 10643 10644 /** 10645 * idle_cpu_without - would a given CPU be idle without p ? 10646 * @cpu: the processor on which idleness is tested. 10647 * @p: task which should be ignored. 10648 * 10649 * Return: 1 if the CPU would be idle. 0 otherwise. 10650 */ 10651 static int idle_cpu_without(int cpu, struct task_struct *p) 10652 { 10653 struct rq *rq = cpu_rq(cpu); 10654 10655 if (rq->curr != rq->idle && rq->curr != p) 10656 return 0; 10657 10658 /* 10659 * rq->nr_running can't be used but an updated version without the 10660 * impact of p on cpu must be used instead. The updated nr_running 10661 * be computed and tested before calling idle_cpu_without(). 10662 */ 10663 10664 if (rq->ttwu_pending) 10665 return 0; 10666 10667 return 1; 10668 } 10669 10670 /* 10671 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10672 * @sd: The sched_domain level to look for idlest group. 10673 * @group: sched_group whose statistics are to be updated. 10674 * @sgs: variable to hold the statistics for this group. 10675 * @p: The task for which we look for the idlest group/CPU. 10676 */ 10677 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10678 struct sched_group *group, 10679 struct sg_lb_stats *sgs, 10680 struct task_struct *p) 10681 { 10682 int i, nr_running; 10683 10684 memset(sgs, 0, sizeof(*sgs)); 10685 10686 /* Assume that task can't fit any CPU of the group */ 10687 if (sd->flags & SD_ASYM_CPUCAPACITY) 10688 sgs->group_misfit_task_load = 1; 10689 10690 for_each_cpu(i, sched_group_span(group)) { 10691 struct rq *rq = cpu_rq(i); 10692 unsigned int local; 10693 10694 sgs->group_load += cpu_load_without(rq, p); 10695 sgs->group_util += cpu_util_without(i, p); 10696 sgs->group_runnable += cpu_runnable_without(rq, p); 10697 local = task_running_on_cpu(i, p); 10698 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10699 10700 nr_running = rq->nr_running - local; 10701 sgs->sum_nr_running += nr_running; 10702 10703 /* 10704 * No need to call idle_cpu_without() if nr_running is not 0 10705 */ 10706 if (!nr_running && idle_cpu_without(i, p)) 10707 sgs->idle_cpus++; 10708 10709 /* Check if task fits in the CPU */ 10710 if (sd->flags & SD_ASYM_CPUCAPACITY && 10711 sgs->group_misfit_task_load && 10712 task_fits_cpu(p, i)) 10713 sgs->group_misfit_task_load = 0; 10714 10715 } 10716 10717 sgs->group_capacity = group->sgc->capacity; 10718 10719 sgs->group_weight = group->group_weight; 10720 10721 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10722 10723 /* 10724 * Computing avg_load makes sense only when group is fully busy or 10725 * overloaded 10726 */ 10727 if (sgs->group_type == group_fully_busy || 10728 sgs->group_type == group_overloaded) 10729 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10730 sgs->group_capacity; 10731 } 10732 10733 static bool update_pick_idlest(struct sched_group *idlest, 10734 struct sg_lb_stats *idlest_sgs, 10735 struct sched_group *group, 10736 struct sg_lb_stats *sgs) 10737 { 10738 if (sgs->group_type < idlest_sgs->group_type) 10739 return true; 10740 10741 if (sgs->group_type > idlest_sgs->group_type) 10742 return false; 10743 10744 /* 10745 * The candidate and the current idlest group are the same type of 10746 * group. Let check which one is the idlest according to the type. 10747 */ 10748 10749 switch (sgs->group_type) { 10750 case group_overloaded: 10751 case group_fully_busy: 10752 /* Select the group with lowest avg_load. */ 10753 if (idlest_sgs->avg_load <= sgs->avg_load) 10754 return false; 10755 break; 10756 10757 case group_imbalanced: 10758 case group_asym_packing: 10759 case group_smt_balance: 10760 /* Those types are not used in the slow wakeup path */ 10761 return false; 10762 10763 case group_misfit_task: 10764 /* Select group with the highest max capacity */ 10765 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10766 return false; 10767 break; 10768 10769 case group_has_spare: 10770 /* Select group with most idle CPUs */ 10771 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10772 return false; 10773 10774 /* Select group with lowest group_util */ 10775 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10776 idlest_sgs->group_util <= sgs->group_util) 10777 return false; 10778 10779 break; 10780 } 10781 10782 return true; 10783 } 10784 10785 /* 10786 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10787 * domain. 10788 * 10789 * Assumes p is allowed on at least one CPU in sd. 10790 */ 10791 static struct sched_group * 10792 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10793 { 10794 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10795 struct sg_lb_stats local_sgs, tmp_sgs; 10796 struct sg_lb_stats *sgs; 10797 unsigned long imbalance; 10798 struct sg_lb_stats idlest_sgs = { 10799 .avg_load = UINT_MAX, 10800 .group_type = group_overloaded, 10801 }; 10802 10803 do { 10804 int local_group; 10805 10806 /* Skip over this group if it has no CPUs allowed */ 10807 if (!cpumask_intersects(sched_group_span(group), 10808 p->cpus_ptr)) 10809 continue; 10810 10811 /* Skip over this group if no cookie matched */ 10812 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10813 continue; 10814 10815 local_group = cpumask_test_cpu(this_cpu, 10816 sched_group_span(group)); 10817 10818 if (local_group) { 10819 sgs = &local_sgs; 10820 local = group; 10821 } else { 10822 sgs = &tmp_sgs; 10823 } 10824 10825 update_sg_wakeup_stats(sd, group, sgs, p); 10826 10827 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10828 idlest = group; 10829 idlest_sgs = *sgs; 10830 } 10831 10832 } while (group = group->next, group != sd->groups); 10833 10834 10835 /* There is no idlest group to push tasks to */ 10836 if (!idlest) 10837 return NULL; 10838 10839 /* The local group has been skipped because of CPU affinity */ 10840 if (!local) 10841 return idlest; 10842 10843 /* 10844 * If the local group is idler than the selected idlest group 10845 * don't try and push the task. 10846 */ 10847 if (local_sgs.group_type < idlest_sgs.group_type) 10848 return NULL; 10849 10850 /* 10851 * If the local group is busier than the selected idlest group 10852 * try and push the task. 10853 */ 10854 if (local_sgs.group_type > idlest_sgs.group_type) 10855 return idlest; 10856 10857 switch (local_sgs.group_type) { 10858 case group_overloaded: 10859 case group_fully_busy: 10860 10861 /* Calculate allowed imbalance based on load */ 10862 imbalance = scale_load_down(NICE_0_LOAD) * 10863 (sd->imbalance_pct-100) / 100; 10864 10865 /* 10866 * When comparing groups across NUMA domains, it's possible for 10867 * the local domain to be very lightly loaded relative to the 10868 * remote domains but "imbalance" skews the comparison making 10869 * remote CPUs look much more favourable. When considering 10870 * cross-domain, add imbalance to the load on the remote node 10871 * and consider staying local. 10872 */ 10873 10874 if ((sd->flags & SD_NUMA) && 10875 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10876 return NULL; 10877 10878 /* 10879 * If the local group is less loaded than the selected 10880 * idlest group don't try and push any tasks. 10881 */ 10882 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10883 return NULL; 10884 10885 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10886 return NULL; 10887 break; 10888 10889 case group_imbalanced: 10890 case group_asym_packing: 10891 case group_smt_balance: 10892 /* Those type are not used in the slow wakeup path */ 10893 return NULL; 10894 10895 case group_misfit_task: 10896 /* Select group with the highest max capacity */ 10897 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10898 return NULL; 10899 break; 10900 10901 case group_has_spare: 10902 #ifdef CONFIG_NUMA 10903 if (sd->flags & SD_NUMA) { 10904 int imb_numa_nr = sd->imb_numa_nr; 10905 #ifdef CONFIG_NUMA_BALANCING 10906 int idlest_cpu; 10907 /* 10908 * If there is spare capacity at NUMA, try to select 10909 * the preferred node 10910 */ 10911 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10912 return NULL; 10913 10914 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10915 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10916 return idlest; 10917 #endif /* CONFIG_NUMA_BALANCING */ 10918 /* 10919 * Otherwise, keep the task close to the wakeup source 10920 * and improve locality if the number of running tasks 10921 * would remain below threshold where an imbalance is 10922 * allowed while accounting for the possibility the 10923 * task is pinned to a subset of CPUs. If there is a 10924 * real need of migration, periodic load balance will 10925 * take care of it. 10926 */ 10927 if (p->nr_cpus_allowed != NR_CPUS) { 10928 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10929 10930 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10931 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10932 } 10933 10934 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10935 if (!adjust_numa_imbalance(imbalance, 10936 local_sgs.sum_nr_running + 1, 10937 imb_numa_nr)) { 10938 return NULL; 10939 } 10940 } 10941 #endif /* CONFIG_NUMA */ 10942 10943 /* 10944 * Select group with highest number of idle CPUs. We could also 10945 * compare the utilization which is more stable but it can end 10946 * up that the group has less spare capacity but finally more 10947 * idle CPUs which means more opportunity to run task. 10948 */ 10949 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10950 return NULL; 10951 break; 10952 } 10953 10954 return idlest; 10955 } 10956 10957 static void update_idle_cpu_scan(struct lb_env *env, 10958 unsigned long sum_util) 10959 { 10960 struct sched_domain_shared *sd_share; 10961 int llc_weight, pct; 10962 u64 x, y, tmp; 10963 /* 10964 * Update the number of CPUs to scan in LLC domain, which could 10965 * be used as a hint in select_idle_cpu(). The update of sd_share 10966 * could be expensive because it is within a shared cache line. 10967 * So the write of this hint only occurs during periodic load 10968 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10969 * can fire way more frequently than the former. 10970 */ 10971 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10972 return; 10973 10974 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10975 if (env->sd->span_weight != llc_weight) 10976 return; 10977 10978 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10979 if (!sd_share) 10980 return; 10981 10982 /* 10983 * The number of CPUs to search drops as sum_util increases, when 10984 * sum_util hits 85% or above, the scan stops. 10985 * The reason to choose 85% as the threshold is because this is the 10986 * imbalance_pct(117) when a LLC sched group is overloaded. 10987 * 10988 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10989 * and y'= y / SCHED_CAPACITY_SCALE 10990 * 10991 * x is the ratio of sum_util compared to the CPU capacity: 10992 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10993 * y' is the ratio of CPUs to be scanned in the LLC domain, 10994 * and the number of CPUs to scan is calculated by: 10995 * 10996 * nr_scan = llc_weight * y' [2] 10997 * 10998 * When x hits the threshold of overloaded, AKA, when 10999 * x = 100 / pct, y drops to 0. According to [1], 11000 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 11001 * 11002 * Scale x by SCHED_CAPACITY_SCALE: 11003 * x' = sum_util / llc_weight; [3] 11004 * 11005 * and finally [1] becomes: 11006 * y = SCHED_CAPACITY_SCALE - 11007 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11008 * 11009 */ 11010 /* equation [3] */ 11011 x = sum_util; 11012 do_div(x, llc_weight); 11013 11014 /* equation [4] */ 11015 pct = env->sd->imbalance_pct; 11016 tmp = x * x * pct * pct; 11017 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11018 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11019 y = SCHED_CAPACITY_SCALE - tmp; 11020 11021 /* equation [2] */ 11022 y *= llc_weight; 11023 do_div(y, SCHED_CAPACITY_SCALE); 11024 if ((int)y != sd_share->nr_idle_scan) 11025 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11026 } 11027 11028 /** 11029 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11030 * @env: The load balancing environment. 11031 * @sds: variable to hold the statistics for this sched_domain. 11032 */ 11033 11034 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11035 { 11036 struct sched_group *sg = env->sd->groups; 11037 struct sg_lb_stats *local = &sds->local_stat; 11038 struct sg_lb_stats tmp_sgs; 11039 unsigned long sum_util = 0; 11040 bool sg_overloaded = 0, sg_overutilized = 0; 11041 11042 do { 11043 struct sg_lb_stats *sgs = &tmp_sgs; 11044 int local_group; 11045 11046 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11047 if (local_group) { 11048 sds->local = sg; 11049 sgs = local; 11050 11051 if (env->idle != CPU_NEWLY_IDLE || 11052 time_after_eq(jiffies, sg->sgc->next_update)) 11053 update_group_capacity(env->sd, env->dst_cpu); 11054 } 11055 11056 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11057 11058 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11059 sds->busiest = sg; 11060 sds->busiest_stat = *sgs; 11061 } 11062 11063 /* Now, start updating sd_lb_stats */ 11064 sds->total_load += sgs->group_load; 11065 sds->total_capacity += sgs->group_capacity; 11066 11067 sum_util += sgs->group_util; 11068 sg = sg->next; 11069 } while (sg != env->sd->groups); 11070 11071 /* 11072 * Indicate that the child domain of the busiest group prefers tasks 11073 * go to a child's sibling domains first. NB the flags of a sched group 11074 * are those of the child domain. 11075 */ 11076 if (sds->busiest) 11077 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11078 11079 11080 if (env->sd->flags & SD_NUMA) 11081 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11082 11083 if (!env->sd->parent) { 11084 /* update overload indicator if we are at root domain */ 11085 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11086 11087 /* Update over-utilization (tipping point, U >= 0) indicator */ 11088 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11089 } else if (sg_overutilized) { 11090 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11091 } 11092 11093 update_idle_cpu_scan(env, sum_util); 11094 } 11095 11096 /** 11097 * calculate_imbalance - Calculate the amount of imbalance present within the 11098 * groups of a given sched_domain during load balance. 11099 * @env: load balance environment 11100 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11101 */ 11102 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11103 { 11104 struct sg_lb_stats *local, *busiest; 11105 11106 local = &sds->local_stat; 11107 busiest = &sds->busiest_stat; 11108 11109 if (busiest->group_type == group_misfit_task) { 11110 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11111 /* Set imbalance to allow misfit tasks to be balanced. */ 11112 env->migration_type = migrate_misfit; 11113 env->imbalance = 1; 11114 } else { 11115 /* 11116 * Set load imbalance to allow moving task from cpu 11117 * with reduced capacity. 11118 */ 11119 env->migration_type = migrate_load; 11120 env->imbalance = busiest->group_misfit_task_load; 11121 } 11122 return; 11123 } 11124 11125 if (busiest->group_type == group_asym_packing) { 11126 /* 11127 * In case of asym capacity, we will try to migrate all load to 11128 * the preferred CPU. 11129 */ 11130 env->migration_type = migrate_task; 11131 env->imbalance = busiest->sum_h_nr_running; 11132 return; 11133 } 11134 11135 if (busiest->group_type == group_smt_balance) { 11136 /* Reduce number of tasks sharing CPU capacity */ 11137 env->migration_type = migrate_task; 11138 env->imbalance = 1; 11139 return; 11140 } 11141 11142 if (busiest->group_type == group_imbalanced) { 11143 /* 11144 * In the group_imb case we cannot rely on group-wide averages 11145 * to ensure CPU-load equilibrium, try to move any task to fix 11146 * the imbalance. The next load balance will take care of 11147 * balancing back the system. 11148 */ 11149 env->migration_type = migrate_task; 11150 env->imbalance = 1; 11151 return; 11152 } 11153 11154 /* 11155 * Try to use spare capacity of local group without overloading it or 11156 * emptying busiest. 11157 */ 11158 if (local->group_type == group_has_spare) { 11159 if ((busiest->group_type > group_fully_busy) && 11160 !(env->sd->flags & SD_SHARE_LLC)) { 11161 /* 11162 * If busiest is overloaded, try to fill spare 11163 * capacity. This might end up creating spare capacity 11164 * in busiest or busiest still being overloaded but 11165 * there is no simple way to directly compute the 11166 * amount of load to migrate in order to balance the 11167 * system. 11168 */ 11169 env->migration_type = migrate_util; 11170 env->imbalance = max(local->group_capacity, local->group_util) - 11171 local->group_util; 11172 11173 /* 11174 * In some cases, the group's utilization is max or even 11175 * higher than capacity because of migrations but the 11176 * local CPU is (newly) idle. There is at least one 11177 * waiting task in this overloaded busiest group. Let's 11178 * try to pull it. 11179 */ 11180 if (env->idle && env->imbalance == 0) { 11181 env->migration_type = migrate_task; 11182 env->imbalance = 1; 11183 } 11184 11185 return; 11186 } 11187 11188 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11189 /* 11190 * When prefer sibling, evenly spread running tasks on 11191 * groups. 11192 */ 11193 env->migration_type = migrate_task; 11194 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11195 } else { 11196 11197 /* 11198 * If there is no overload, we just want to even the number of 11199 * idle CPUs. 11200 */ 11201 env->migration_type = migrate_task; 11202 env->imbalance = max_t(long, 0, 11203 (local->idle_cpus - busiest->idle_cpus)); 11204 } 11205 11206 #ifdef CONFIG_NUMA 11207 /* Consider allowing a small imbalance between NUMA groups */ 11208 if (env->sd->flags & SD_NUMA) { 11209 env->imbalance = adjust_numa_imbalance(env->imbalance, 11210 local->sum_nr_running + 1, 11211 env->sd->imb_numa_nr); 11212 } 11213 #endif 11214 11215 /* Number of tasks to move to restore balance */ 11216 env->imbalance >>= 1; 11217 11218 return; 11219 } 11220 11221 /* 11222 * Local is fully busy but has to take more load to relieve the 11223 * busiest group 11224 */ 11225 if (local->group_type < group_overloaded) { 11226 /* 11227 * Local will become overloaded so the avg_load metrics are 11228 * finally needed. 11229 */ 11230 11231 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11232 local->group_capacity; 11233 11234 /* 11235 * If the local group is more loaded than the selected 11236 * busiest group don't try to pull any tasks. 11237 */ 11238 if (local->avg_load >= busiest->avg_load) { 11239 env->imbalance = 0; 11240 return; 11241 } 11242 11243 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11244 sds->total_capacity; 11245 11246 /* 11247 * If the local group is more loaded than the average system 11248 * load, don't try to pull any tasks. 11249 */ 11250 if (local->avg_load >= sds->avg_load) { 11251 env->imbalance = 0; 11252 return; 11253 } 11254 11255 } 11256 11257 /* 11258 * Both group are or will become overloaded and we're trying to get all 11259 * the CPUs to the average_load, so we don't want to push ourselves 11260 * above the average load, nor do we wish to reduce the max loaded CPU 11261 * below the average load. At the same time, we also don't want to 11262 * reduce the group load below the group capacity. Thus we look for 11263 * the minimum possible imbalance. 11264 */ 11265 env->migration_type = migrate_load; 11266 env->imbalance = min( 11267 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11268 (sds->avg_load - local->avg_load) * local->group_capacity 11269 ) / SCHED_CAPACITY_SCALE; 11270 } 11271 11272 /******* sched_balance_find_src_group() helpers end here *********************/ 11273 11274 /* 11275 * Decision matrix according to the local and busiest group type: 11276 * 11277 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11278 * has_spare nr_idle balanced N/A N/A balanced balanced 11279 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11280 * misfit_task force N/A N/A N/A N/A N/A 11281 * asym_packing force force N/A N/A force force 11282 * imbalanced force force N/A N/A force force 11283 * overloaded force force N/A N/A force avg_load 11284 * 11285 * N/A : Not Applicable because already filtered while updating 11286 * statistics. 11287 * balanced : The system is balanced for these 2 groups. 11288 * force : Calculate the imbalance as load migration is probably needed. 11289 * avg_load : Only if imbalance is significant enough. 11290 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11291 * different in groups. 11292 */ 11293 11294 /** 11295 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11296 * if there is an imbalance. 11297 * @env: The load balancing environment. 11298 * 11299 * Also calculates the amount of runnable load which should be moved 11300 * to restore balance. 11301 * 11302 * Return: - The busiest group if imbalance exists. 11303 */ 11304 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11305 { 11306 struct sg_lb_stats *local, *busiest; 11307 struct sd_lb_stats sds; 11308 11309 init_sd_lb_stats(&sds); 11310 11311 /* 11312 * Compute the various statistics relevant for load balancing at 11313 * this level. 11314 */ 11315 update_sd_lb_stats(env, &sds); 11316 11317 /* There is no busy sibling group to pull tasks from */ 11318 if (!sds.busiest) 11319 goto out_balanced; 11320 11321 busiest = &sds.busiest_stat; 11322 11323 /* Misfit tasks should be dealt with regardless of the avg load */ 11324 if (busiest->group_type == group_misfit_task) 11325 goto force_balance; 11326 11327 if (!is_rd_overutilized(env->dst_rq->rd) && 11328 rcu_dereference(env->dst_rq->rd->pd)) 11329 goto out_balanced; 11330 11331 /* ASYM feature bypasses nice load balance check */ 11332 if (busiest->group_type == group_asym_packing) 11333 goto force_balance; 11334 11335 /* 11336 * If the busiest group is imbalanced the below checks don't 11337 * work because they assume all things are equal, which typically 11338 * isn't true due to cpus_ptr constraints and the like. 11339 */ 11340 if (busiest->group_type == group_imbalanced) 11341 goto force_balance; 11342 11343 local = &sds.local_stat; 11344 /* 11345 * If the local group is busier than the selected busiest group 11346 * don't try and pull any tasks. 11347 */ 11348 if (local->group_type > busiest->group_type) 11349 goto out_balanced; 11350 11351 /* 11352 * When groups are overloaded, use the avg_load to ensure fairness 11353 * between tasks. 11354 */ 11355 if (local->group_type == group_overloaded) { 11356 /* 11357 * If the local group is more loaded than the selected 11358 * busiest group don't try to pull any tasks. 11359 */ 11360 if (local->avg_load >= busiest->avg_load) 11361 goto out_balanced; 11362 11363 /* XXX broken for overlapping NUMA groups */ 11364 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11365 sds.total_capacity; 11366 11367 /* 11368 * Don't pull any tasks if this group is already above the 11369 * domain average load. 11370 */ 11371 if (local->avg_load >= sds.avg_load) 11372 goto out_balanced; 11373 11374 /* 11375 * If the busiest group is more loaded, use imbalance_pct to be 11376 * conservative. 11377 */ 11378 if (100 * busiest->avg_load <= 11379 env->sd->imbalance_pct * local->avg_load) 11380 goto out_balanced; 11381 } 11382 11383 /* 11384 * Try to move all excess tasks to a sibling domain of the busiest 11385 * group's child domain. 11386 */ 11387 if (sds.prefer_sibling && local->group_type == group_has_spare && 11388 sibling_imbalance(env, &sds, busiest, local) > 1) 11389 goto force_balance; 11390 11391 if (busiest->group_type != group_overloaded) { 11392 if (!env->idle) { 11393 /* 11394 * If the busiest group is not overloaded (and as a 11395 * result the local one too) but this CPU is already 11396 * busy, let another idle CPU try to pull task. 11397 */ 11398 goto out_balanced; 11399 } 11400 11401 if (busiest->group_type == group_smt_balance && 11402 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11403 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11404 goto force_balance; 11405 } 11406 11407 if (busiest->group_weight > 1 && 11408 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11409 /* 11410 * If the busiest group is not overloaded 11411 * and there is no imbalance between this and busiest 11412 * group wrt idle CPUs, it is balanced. The imbalance 11413 * becomes significant if the diff is greater than 1 11414 * otherwise we might end up to just move the imbalance 11415 * on another group. Of course this applies only if 11416 * there is more than 1 CPU per group. 11417 */ 11418 goto out_balanced; 11419 } 11420 11421 if (busiest->sum_h_nr_running == 1) { 11422 /* 11423 * busiest doesn't have any tasks waiting to run 11424 */ 11425 goto out_balanced; 11426 } 11427 } 11428 11429 force_balance: 11430 /* Looks like there is an imbalance. Compute it */ 11431 calculate_imbalance(env, &sds); 11432 return env->imbalance ? sds.busiest : NULL; 11433 11434 out_balanced: 11435 env->imbalance = 0; 11436 return NULL; 11437 } 11438 11439 /* 11440 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11441 */ 11442 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11443 struct sched_group *group) 11444 { 11445 struct rq *busiest = NULL, *rq; 11446 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11447 unsigned int busiest_nr = 0; 11448 int i; 11449 11450 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11451 unsigned long capacity, load, util; 11452 unsigned int nr_running; 11453 enum fbq_type rt; 11454 11455 rq = cpu_rq(i); 11456 rt = fbq_classify_rq(rq); 11457 11458 /* 11459 * We classify groups/runqueues into three groups: 11460 * - regular: there are !numa tasks 11461 * - remote: there are numa tasks that run on the 'wrong' node 11462 * - all: there is no distinction 11463 * 11464 * In order to avoid migrating ideally placed numa tasks, 11465 * ignore those when there's better options. 11466 * 11467 * If we ignore the actual busiest queue to migrate another 11468 * task, the next balance pass can still reduce the busiest 11469 * queue by moving tasks around inside the node. 11470 * 11471 * If we cannot move enough load due to this classification 11472 * the next pass will adjust the group classification and 11473 * allow migration of more tasks. 11474 * 11475 * Both cases only affect the total convergence complexity. 11476 */ 11477 if (rt > env->fbq_type) 11478 continue; 11479 11480 nr_running = rq->cfs.h_nr_runnable; 11481 if (!nr_running) 11482 continue; 11483 11484 capacity = capacity_of(i); 11485 11486 /* 11487 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11488 * eventually lead to active_balancing high->low capacity. 11489 * Higher per-CPU capacity is considered better than balancing 11490 * average load. 11491 */ 11492 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11493 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11494 nr_running == 1) 11495 continue; 11496 11497 /* 11498 * Make sure we only pull tasks from a CPU of lower priority 11499 * when balancing between SMT siblings. 11500 * 11501 * If balancing between cores, let lower priority CPUs help 11502 * SMT cores with more than one busy sibling. 11503 */ 11504 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11505 continue; 11506 11507 switch (env->migration_type) { 11508 case migrate_load: 11509 /* 11510 * When comparing with load imbalance, use cpu_load() 11511 * which is not scaled with the CPU capacity. 11512 */ 11513 load = cpu_load(rq); 11514 11515 if (nr_running == 1 && load > env->imbalance && 11516 !check_cpu_capacity(rq, env->sd)) 11517 break; 11518 11519 /* 11520 * For the load comparisons with the other CPUs, 11521 * consider the cpu_load() scaled with the CPU 11522 * capacity, so that the load can be moved away 11523 * from the CPU that is potentially running at a 11524 * lower capacity. 11525 * 11526 * Thus we're looking for max(load_i / capacity_i), 11527 * crosswise multiplication to rid ourselves of the 11528 * division works out to: 11529 * load_i * capacity_j > load_j * capacity_i; 11530 * where j is our previous maximum. 11531 */ 11532 if (load * busiest_capacity > busiest_load * capacity) { 11533 busiest_load = load; 11534 busiest_capacity = capacity; 11535 busiest = rq; 11536 } 11537 break; 11538 11539 case migrate_util: 11540 util = cpu_util_cfs_boost(i); 11541 11542 /* 11543 * Don't try to pull utilization from a CPU with one 11544 * running task. Whatever its utilization, we will fail 11545 * detach the task. 11546 */ 11547 if (nr_running <= 1) 11548 continue; 11549 11550 if (busiest_util < util) { 11551 busiest_util = util; 11552 busiest = rq; 11553 } 11554 break; 11555 11556 case migrate_task: 11557 if (busiest_nr < nr_running) { 11558 busiest_nr = nr_running; 11559 busiest = rq; 11560 } 11561 break; 11562 11563 case migrate_misfit: 11564 /* 11565 * For ASYM_CPUCAPACITY domains with misfit tasks we 11566 * simply seek the "biggest" misfit task. 11567 */ 11568 if (rq->misfit_task_load > busiest_load) { 11569 busiest_load = rq->misfit_task_load; 11570 busiest = rq; 11571 } 11572 11573 break; 11574 11575 } 11576 } 11577 11578 return busiest; 11579 } 11580 11581 /* 11582 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11583 * so long as it is large enough. 11584 */ 11585 #define MAX_PINNED_INTERVAL 512 11586 11587 static inline bool 11588 asym_active_balance(struct lb_env *env) 11589 { 11590 /* 11591 * ASYM_PACKING needs to force migrate tasks from busy but lower 11592 * priority CPUs in order to pack all tasks in the highest priority 11593 * CPUs. When done between cores, do it only if the whole core if the 11594 * whole core is idle. 11595 * 11596 * If @env::src_cpu is an SMT core with busy siblings, let 11597 * the lower priority @env::dst_cpu help it. Do not follow 11598 * CPU priority. 11599 */ 11600 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11601 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11602 !sched_use_asym_prio(env->sd, env->src_cpu)); 11603 } 11604 11605 static inline bool 11606 imbalanced_active_balance(struct lb_env *env) 11607 { 11608 struct sched_domain *sd = env->sd; 11609 11610 /* 11611 * The imbalanced case includes the case of pinned tasks preventing a fair 11612 * distribution of the load on the system but also the even distribution of the 11613 * threads on a system with spare capacity 11614 */ 11615 if ((env->migration_type == migrate_task) && 11616 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11617 return 1; 11618 11619 return 0; 11620 } 11621 11622 static int need_active_balance(struct lb_env *env) 11623 { 11624 struct sched_domain *sd = env->sd; 11625 11626 if (asym_active_balance(env)) 11627 return 1; 11628 11629 if (imbalanced_active_balance(env)) 11630 return 1; 11631 11632 /* 11633 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11634 * It's worth migrating the task if the src_cpu's capacity is reduced 11635 * because of other sched_class or IRQs if more capacity stays 11636 * available on dst_cpu. 11637 */ 11638 if (env->idle && 11639 (env->src_rq->cfs.h_nr_runnable == 1)) { 11640 if ((check_cpu_capacity(env->src_rq, sd)) && 11641 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11642 return 1; 11643 } 11644 11645 if (env->migration_type == migrate_misfit) 11646 return 1; 11647 11648 return 0; 11649 } 11650 11651 static int active_load_balance_cpu_stop(void *data); 11652 11653 static int should_we_balance(struct lb_env *env) 11654 { 11655 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11656 struct sched_group *sg = env->sd->groups; 11657 int cpu, idle_smt = -1; 11658 11659 /* 11660 * Ensure the balancing environment is consistent; can happen 11661 * when the softirq triggers 'during' hotplug. 11662 */ 11663 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11664 return 0; 11665 11666 /* 11667 * In the newly idle case, we will allow all the CPUs 11668 * to do the newly idle load balance. 11669 * 11670 * However, we bail out if we already have tasks or a wakeup pending, 11671 * to optimize wakeup latency. 11672 */ 11673 if (env->idle == CPU_NEWLY_IDLE) { 11674 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11675 return 0; 11676 return 1; 11677 } 11678 11679 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11680 /* Try to find first idle CPU */ 11681 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11682 if (!idle_cpu(cpu)) 11683 continue; 11684 11685 /* 11686 * Don't balance to idle SMT in busy core right away when 11687 * balancing cores, but remember the first idle SMT CPU for 11688 * later consideration. Find CPU on an idle core first. 11689 */ 11690 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11691 if (idle_smt == -1) 11692 idle_smt = cpu; 11693 /* 11694 * If the core is not idle, and first SMT sibling which is 11695 * idle has been found, then its not needed to check other 11696 * SMT siblings for idleness: 11697 */ 11698 #ifdef CONFIG_SCHED_SMT 11699 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11700 #endif 11701 continue; 11702 } 11703 11704 /* 11705 * Are we the first idle core in a non-SMT domain or higher, 11706 * or the first idle CPU in a SMT domain? 11707 */ 11708 return cpu == env->dst_cpu; 11709 } 11710 11711 /* Are we the first idle CPU with busy siblings? */ 11712 if (idle_smt != -1) 11713 return idle_smt == env->dst_cpu; 11714 11715 /* Are we the first CPU of this group ? */ 11716 return group_balance_cpu(sg) == env->dst_cpu; 11717 } 11718 11719 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11720 enum cpu_idle_type idle) 11721 { 11722 if (!schedstat_enabled()) 11723 return; 11724 11725 switch (env->migration_type) { 11726 case migrate_load: 11727 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11728 break; 11729 case migrate_util: 11730 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11731 break; 11732 case migrate_task: 11733 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11734 break; 11735 case migrate_misfit: 11736 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11737 break; 11738 } 11739 } 11740 11741 /* 11742 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11743 * tasks if there is an imbalance. 11744 */ 11745 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11746 struct sched_domain *sd, enum cpu_idle_type idle, 11747 int *continue_balancing) 11748 { 11749 int ld_moved, cur_ld_moved, active_balance = 0; 11750 struct sched_domain *sd_parent = sd->parent; 11751 struct sched_group *group; 11752 struct rq *busiest; 11753 struct rq_flags rf; 11754 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11755 struct lb_env env = { 11756 .sd = sd, 11757 .dst_cpu = this_cpu, 11758 .dst_rq = this_rq, 11759 .dst_grpmask = group_balance_mask(sd->groups), 11760 .idle = idle, 11761 .loop_break = SCHED_NR_MIGRATE_BREAK, 11762 .cpus = cpus, 11763 .fbq_type = all, 11764 .tasks = LIST_HEAD_INIT(env.tasks), 11765 }; 11766 11767 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11768 11769 schedstat_inc(sd->lb_count[idle]); 11770 11771 redo: 11772 if (!should_we_balance(&env)) { 11773 *continue_balancing = 0; 11774 goto out_balanced; 11775 } 11776 11777 group = sched_balance_find_src_group(&env); 11778 if (!group) { 11779 schedstat_inc(sd->lb_nobusyg[idle]); 11780 goto out_balanced; 11781 } 11782 11783 busiest = sched_balance_find_src_rq(&env, group); 11784 if (!busiest) { 11785 schedstat_inc(sd->lb_nobusyq[idle]); 11786 goto out_balanced; 11787 } 11788 11789 WARN_ON_ONCE(busiest == env.dst_rq); 11790 11791 update_lb_imbalance_stat(&env, sd, idle); 11792 11793 env.src_cpu = busiest->cpu; 11794 env.src_rq = busiest; 11795 11796 ld_moved = 0; 11797 /* Clear this flag as soon as we find a pullable task */ 11798 env.flags |= LBF_ALL_PINNED; 11799 if (busiest->nr_running > 1) { 11800 /* 11801 * Attempt to move tasks. If sched_balance_find_src_group has found 11802 * an imbalance but busiest->nr_running <= 1, the group is 11803 * still unbalanced. ld_moved simply stays zero, so it is 11804 * correctly treated as an imbalance. 11805 */ 11806 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11807 11808 more_balance: 11809 rq_lock_irqsave(busiest, &rf); 11810 update_rq_clock(busiest); 11811 11812 /* 11813 * cur_ld_moved - load moved in current iteration 11814 * ld_moved - cumulative load moved across iterations 11815 */ 11816 cur_ld_moved = detach_tasks(&env); 11817 11818 /* 11819 * We've detached some tasks from busiest_rq. Every 11820 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11821 * unlock busiest->lock, and we are able to be sure 11822 * that nobody can manipulate the tasks in parallel. 11823 * See task_rq_lock() family for the details. 11824 */ 11825 11826 rq_unlock(busiest, &rf); 11827 11828 if (cur_ld_moved) { 11829 attach_tasks(&env); 11830 ld_moved += cur_ld_moved; 11831 } 11832 11833 local_irq_restore(rf.flags); 11834 11835 if (env.flags & LBF_NEED_BREAK) { 11836 env.flags &= ~LBF_NEED_BREAK; 11837 goto more_balance; 11838 } 11839 11840 /* 11841 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11842 * us and move them to an alternate dst_cpu in our sched_group 11843 * where they can run. The upper limit on how many times we 11844 * iterate on same src_cpu is dependent on number of CPUs in our 11845 * sched_group. 11846 * 11847 * This changes load balance semantics a bit on who can move 11848 * load to a given_cpu. In addition to the given_cpu itself 11849 * (or a ilb_cpu acting on its behalf where given_cpu is 11850 * nohz-idle), we now have balance_cpu in a position to move 11851 * load to given_cpu. In rare situations, this may cause 11852 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11853 * _independently_ and at _same_ time to move some load to 11854 * given_cpu) causing excess load to be moved to given_cpu. 11855 * This however should not happen so much in practice and 11856 * moreover subsequent load balance cycles should correct the 11857 * excess load moved. 11858 */ 11859 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11860 11861 /* Prevent to re-select dst_cpu via env's CPUs */ 11862 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11863 11864 env.dst_rq = cpu_rq(env.new_dst_cpu); 11865 env.dst_cpu = env.new_dst_cpu; 11866 env.flags &= ~LBF_DST_PINNED; 11867 env.loop = 0; 11868 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11869 11870 /* 11871 * Go back to "more_balance" rather than "redo" since we 11872 * need to continue with same src_cpu. 11873 */ 11874 goto more_balance; 11875 } 11876 11877 /* 11878 * We failed to reach balance because of affinity. 11879 */ 11880 if (sd_parent) { 11881 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11882 11883 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11884 *group_imbalance = 1; 11885 } 11886 11887 /* All tasks on this runqueue were pinned by CPU affinity */ 11888 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11889 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11890 /* 11891 * Attempting to continue load balancing at the current 11892 * sched_domain level only makes sense if there are 11893 * active CPUs remaining as possible busiest CPUs to 11894 * pull load from which are not contained within the 11895 * destination group that is receiving any migrated 11896 * load. 11897 */ 11898 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11899 env.loop = 0; 11900 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11901 goto redo; 11902 } 11903 goto out_all_pinned; 11904 } 11905 } 11906 11907 if (!ld_moved) { 11908 schedstat_inc(sd->lb_failed[idle]); 11909 /* 11910 * Increment the failure counter only on periodic balance. 11911 * We do not want newidle balance, which can be very 11912 * frequent, pollute the failure counter causing 11913 * excessive cache_hot migrations and active balances. 11914 * 11915 * Similarly for migration_misfit which is not related to 11916 * load/util migration, don't pollute nr_balance_failed. 11917 */ 11918 if (idle != CPU_NEWLY_IDLE && 11919 env.migration_type != migrate_misfit) 11920 sd->nr_balance_failed++; 11921 11922 if (need_active_balance(&env)) { 11923 unsigned long flags; 11924 11925 raw_spin_rq_lock_irqsave(busiest, flags); 11926 11927 /* 11928 * Don't kick the active_load_balance_cpu_stop, 11929 * if the curr task on busiest CPU can't be 11930 * moved to this_cpu: 11931 */ 11932 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11933 raw_spin_rq_unlock_irqrestore(busiest, flags); 11934 goto out_one_pinned; 11935 } 11936 11937 /* Record that we found at least one task that could run on this_cpu */ 11938 env.flags &= ~LBF_ALL_PINNED; 11939 11940 /* 11941 * ->active_balance synchronizes accesses to 11942 * ->active_balance_work. Once set, it's cleared 11943 * only after active load balance is finished. 11944 */ 11945 if (!busiest->active_balance) { 11946 busiest->active_balance = 1; 11947 busiest->push_cpu = this_cpu; 11948 active_balance = 1; 11949 } 11950 11951 preempt_disable(); 11952 raw_spin_rq_unlock_irqrestore(busiest, flags); 11953 if (active_balance) { 11954 stop_one_cpu_nowait(cpu_of(busiest), 11955 active_load_balance_cpu_stop, busiest, 11956 &busiest->active_balance_work); 11957 } 11958 preempt_enable(); 11959 } 11960 } else { 11961 sd->nr_balance_failed = 0; 11962 } 11963 11964 if (likely(!active_balance) || need_active_balance(&env)) { 11965 /* We were unbalanced, so reset the balancing interval */ 11966 sd->balance_interval = sd->min_interval; 11967 } 11968 11969 goto out; 11970 11971 out_balanced: 11972 /* 11973 * We reach balance although we may have faced some affinity 11974 * constraints. Clear the imbalance flag only if other tasks got 11975 * a chance to move and fix the imbalance. 11976 */ 11977 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11978 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11979 11980 if (*group_imbalance) 11981 *group_imbalance = 0; 11982 } 11983 11984 out_all_pinned: 11985 /* 11986 * We reach balance because all tasks are pinned at this level so 11987 * we can't migrate them. Let the imbalance flag set so parent level 11988 * can try to migrate them. 11989 */ 11990 schedstat_inc(sd->lb_balanced[idle]); 11991 11992 sd->nr_balance_failed = 0; 11993 11994 out_one_pinned: 11995 ld_moved = 0; 11996 11997 /* 11998 * sched_balance_newidle() disregards balance intervals, so we could 11999 * repeatedly reach this code, which would lead to balance_interval 12000 * skyrocketing in a short amount of time. Skip the balance_interval 12001 * increase logic to avoid that. 12002 * 12003 * Similarly misfit migration which is not necessarily an indication of 12004 * the system being busy and requires lb to backoff to let it settle 12005 * down. 12006 */ 12007 if (env.idle == CPU_NEWLY_IDLE || 12008 env.migration_type == migrate_misfit) 12009 goto out; 12010 12011 /* tune up the balancing interval */ 12012 if ((env.flags & LBF_ALL_PINNED && 12013 sd->balance_interval < MAX_PINNED_INTERVAL) || 12014 sd->balance_interval < sd->max_interval) 12015 sd->balance_interval *= 2; 12016 out: 12017 return ld_moved; 12018 } 12019 12020 static inline unsigned long 12021 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12022 { 12023 unsigned long interval = sd->balance_interval; 12024 12025 if (cpu_busy) 12026 interval *= sd->busy_factor; 12027 12028 /* scale ms to jiffies */ 12029 interval = msecs_to_jiffies(interval); 12030 12031 /* 12032 * Reduce likelihood of busy balancing at higher domains racing with 12033 * balancing at lower domains by preventing their balancing periods 12034 * from being multiples of each other. 12035 */ 12036 if (cpu_busy) 12037 interval -= 1; 12038 12039 interval = clamp(interval, 1UL, max_load_balance_interval); 12040 12041 return interval; 12042 } 12043 12044 static inline void 12045 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12046 { 12047 unsigned long interval, next; 12048 12049 /* used by idle balance, so cpu_busy = 0 */ 12050 interval = get_sd_balance_interval(sd, 0); 12051 next = sd->last_balance + interval; 12052 12053 if (time_after(*next_balance, next)) 12054 *next_balance = next; 12055 } 12056 12057 /* 12058 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12059 * running tasks off the busiest CPU onto idle CPUs. It requires at 12060 * least 1 task to be running on each physical CPU where possible, and 12061 * avoids physical / logical imbalances. 12062 */ 12063 static int active_load_balance_cpu_stop(void *data) 12064 { 12065 struct rq *busiest_rq = data; 12066 int busiest_cpu = cpu_of(busiest_rq); 12067 int target_cpu = busiest_rq->push_cpu; 12068 struct rq *target_rq = cpu_rq(target_cpu); 12069 struct sched_domain *sd; 12070 struct task_struct *p = NULL; 12071 struct rq_flags rf; 12072 12073 rq_lock_irq(busiest_rq, &rf); 12074 /* 12075 * Between queueing the stop-work and running it is a hole in which 12076 * CPUs can become inactive. We should not move tasks from or to 12077 * inactive CPUs. 12078 */ 12079 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12080 goto out_unlock; 12081 12082 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12083 if (unlikely(busiest_cpu != smp_processor_id() || 12084 !busiest_rq->active_balance)) 12085 goto out_unlock; 12086 12087 /* Is there any task to move? */ 12088 if (busiest_rq->nr_running <= 1) 12089 goto out_unlock; 12090 12091 /* 12092 * This condition is "impossible", if it occurs 12093 * we need to fix it. Originally reported by 12094 * Bjorn Helgaas on a 128-CPU setup. 12095 */ 12096 WARN_ON_ONCE(busiest_rq == target_rq); 12097 12098 /* Search for an sd spanning us and the target CPU. */ 12099 rcu_read_lock(); 12100 for_each_domain(target_cpu, sd) { 12101 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12102 break; 12103 } 12104 12105 if (likely(sd)) { 12106 struct lb_env env = { 12107 .sd = sd, 12108 .dst_cpu = target_cpu, 12109 .dst_rq = target_rq, 12110 .src_cpu = busiest_rq->cpu, 12111 .src_rq = busiest_rq, 12112 .idle = CPU_IDLE, 12113 .flags = LBF_ACTIVE_LB, 12114 }; 12115 12116 schedstat_inc(sd->alb_count); 12117 update_rq_clock(busiest_rq); 12118 12119 p = detach_one_task(&env); 12120 if (p) { 12121 schedstat_inc(sd->alb_pushed); 12122 /* Active balancing done, reset the failure counter. */ 12123 sd->nr_balance_failed = 0; 12124 } else { 12125 schedstat_inc(sd->alb_failed); 12126 } 12127 } 12128 rcu_read_unlock(); 12129 out_unlock: 12130 busiest_rq->active_balance = 0; 12131 rq_unlock(busiest_rq, &rf); 12132 12133 if (p) 12134 attach_one_task(target_rq, p); 12135 12136 local_irq_enable(); 12137 12138 return 0; 12139 } 12140 12141 /* 12142 * This flag serializes load-balancing passes over large domains 12143 * (above the NODE topology level) - only one load-balancing instance 12144 * may run at a time, to reduce overhead on very large systems with 12145 * lots of CPUs and large NUMA distances. 12146 * 12147 * - Note that load-balancing passes triggered while another one 12148 * is executing are skipped and not re-tried. 12149 * 12150 * - Also note that this does not serialize rebalance_domains() 12151 * execution, as non-SD_SERIALIZE domains will still be 12152 * load-balanced in parallel. 12153 */ 12154 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12155 12156 /* 12157 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12158 * This trades load-balance latency on larger machines for less cross talk. 12159 */ 12160 void update_max_interval(void) 12161 { 12162 max_load_balance_interval = HZ*num_online_cpus()/10; 12163 } 12164 12165 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12166 { 12167 if (cost > sd->max_newidle_lb_cost) { 12168 /* 12169 * Track max cost of a domain to make sure to not delay the 12170 * next wakeup on the CPU. 12171 */ 12172 sd->max_newidle_lb_cost = cost; 12173 sd->last_decay_max_lb_cost = jiffies; 12174 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12175 /* 12176 * Decay the newidle max times by ~1% per second to ensure that 12177 * it is not outdated and the current max cost is actually 12178 * shorter. 12179 */ 12180 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12181 sd->last_decay_max_lb_cost = jiffies; 12182 12183 return true; 12184 } 12185 12186 return false; 12187 } 12188 12189 /* 12190 * It checks each scheduling domain to see if it is due to be balanced, 12191 * and initiates a balancing operation if so. 12192 * 12193 * Balancing parameters are set up in init_sched_domains. 12194 */ 12195 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12196 { 12197 int continue_balancing = 1; 12198 int cpu = rq->cpu; 12199 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12200 unsigned long interval; 12201 struct sched_domain *sd; 12202 /* Earliest time when we have to do rebalance again */ 12203 unsigned long next_balance = jiffies + 60*HZ; 12204 int update_next_balance = 0; 12205 int need_serialize, need_decay = 0; 12206 u64 max_cost = 0; 12207 12208 rcu_read_lock(); 12209 for_each_domain(cpu, sd) { 12210 /* 12211 * Decay the newidle max times here because this is a regular 12212 * visit to all the domains. 12213 */ 12214 need_decay = update_newidle_cost(sd, 0); 12215 max_cost += sd->max_newidle_lb_cost; 12216 12217 /* 12218 * Stop the load balance at this level. There is another 12219 * CPU in our sched group which is doing load balancing more 12220 * actively. 12221 */ 12222 if (!continue_balancing) { 12223 if (need_decay) 12224 continue; 12225 break; 12226 } 12227 12228 interval = get_sd_balance_interval(sd, busy); 12229 12230 need_serialize = sd->flags & SD_SERIALIZE; 12231 if (need_serialize) { 12232 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12233 goto out; 12234 } 12235 12236 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12237 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12238 /* 12239 * The LBF_DST_PINNED logic could have changed 12240 * env->dst_cpu, so we can't know our idle 12241 * state even if we migrated tasks. Update it. 12242 */ 12243 idle = idle_cpu(cpu); 12244 busy = !idle && !sched_idle_cpu(cpu); 12245 } 12246 sd->last_balance = jiffies; 12247 interval = get_sd_balance_interval(sd, busy); 12248 } 12249 if (need_serialize) 12250 atomic_set_release(&sched_balance_running, 0); 12251 out: 12252 if (time_after(next_balance, sd->last_balance + interval)) { 12253 next_balance = sd->last_balance + interval; 12254 update_next_balance = 1; 12255 } 12256 } 12257 if (need_decay) { 12258 /* 12259 * Ensure the rq-wide value also decays but keep it at a 12260 * reasonable floor to avoid funnies with rq->avg_idle. 12261 */ 12262 rq->max_idle_balance_cost = 12263 max((u64)sysctl_sched_migration_cost, max_cost); 12264 } 12265 rcu_read_unlock(); 12266 12267 /* 12268 * next_balance will be updated only when there is a need. 12269 * When the cpu is attached to null domain for ex, it will not be 12270 * updated. 12271 */ 12272 if (likely(update_next_balance)) 12273 rq->next_balance = next_balance; 12274 12275 } 12276 12277 static inline int on_null_domain(struct rq *rq) 12278 { 12279 return unlikely(!rcu_dereference_sched(rq->sd)); 12280 } 12281 12282 #ifdef CONFIG_NO_HZ_COMMON 12283 /* 12284 * NOHZ idle load balancing (ILB) details: 12285 * 12286 * - When one of the busy CPUs notices that there may be an idle rebalancing 12287 * needed, they will kick the idle load balancer, which then does idle 12288 * load balancing for all the idle CPUs. 12289 */ 12290 static inline int find_new_ilb(void) 12291 { 12292 const struct cpumask *hk_mask; 12293 int ilb_cpu; 12294 12295 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12296 12297 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12298 12299 if (ilb_cpu == smp_processor_id()) 12300 continue; 12301 12302 if (idle_cpu(ilb_cpu)) 12303 return ilb_cpu; 12304 } 12305 12306 return -1; 12307 } 12308 12309 /* 12310 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12311 * SMP function call (IPI). 12312 * 12313 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12314 * (if there is one). 12315 */ 12316 static void kick_ilb(unsigned int flags) 12317 { 12318 int ilb_cpu; 12319 12320 /* 12321 * Increase nohz.next_balance only when if full ilb is triggered but 12322 * not if we only update stats. 12323 */ 12324 if (flags & NOHZ_BALANCE_KICK) 12325 nohz.next_balance = jiffies+1; 12326 12327 ilb_cpu = find_new_ilb(); 12328 if (ilb_cpu < 0) 12329 return; 12330 12331 /* 12332 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12333 * i.e. all bits in flags are already set in ilb_cpu. 12334 */ 12335 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12336 return; 12337 12338 /* 12339 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12340 * the first flag owns it; cleared by nohz_csd_func(). 12341 */ 12342 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12343 if (flags & NOHZ_KICK_MASK) 12344 return; 12345 12346 /* 12347 * This way we generate an IPI on the target CPU which 12348 * is idle, and the softirq performing NOHZ idle load balancing 12349 * will be run before returning from the IPI. 12350 */ 12351 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12352 } 12353 12354 /* 12355 * Current decision point for kicking the idle load balancer in the presence 12356 * of idle CPUs in the system. 12357 */ 12358 static void nohz_balancer_kick(struct rq *rq) 12359 { 12360 unsigned long now = jiffies; 12361 struct sched_domain_shared *sds; 12362 struct sched_domain *sd; 12363 int nr_busy, i, cpu = rq->cpu; 12364 unsigned int flags = 0; 12365 12366 if (unlikely(rq->idle_balance)) 12367 return; 12368 12369 /* 12370 * We may be recently in ticked or tickless idle mode. At the first 12371 * busy tick after returning from idle, we will update the busy stats. 12372 */ 12373 nohz_balance_exit_idle(rq); 12374 12375 /* 12376 * None are in tickless mode and hence no need for NOHZ idle load 12377 * balancing: 12378 */ 12379 if (likely(!atomic_read(&nohz.nr_cpus))) 12380 return; 12381 12382 if (READ_ONCE(nohz.has_blocked) && 12383 time_after(now, READ_ONCE(nohz.next_blocked))) 12384 flags = NOHZ_STATS_KICK; 12385 12386 if (time_before(now, nohz.next_balance)) 12387 goto out; 12388 12389 if (rq->nr_running >= 2) { 12390 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12391 goto out; 12392 } 12393 12394 rcu_read_lock(); 12395 12396 sd = rcu_dereference(rq->sd); 12397 if (sd) { 12398 /* 12399 * If there's a runnable CFS task and the current CPU has reduced 12400 * capacity, kick the ILB to see if there's a better CPU to run on: 12401 */ 12402 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12403 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12404 goto unlock; 12405 } 12406 } 12407 12408 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12409 if (sd) { 12410 /* 12411 * When ASYM_PACKING; see if there's a more preferred CPU 12412 * currently idle; in which case, kick the ILB to move tasks 12413 * around. 12414 * 12415 * When balancing between cores, all the SMT siblings of the 12416 * preferred CPU must be idle. 12417 */ 12418 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12419 if (sched_asym(sd, i, cpu)) { 12420 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12421 goto unlock; 12422 } 12423 } 12424 } 12425 12426 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12427 if (sd) { 12428 /* 12429 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12430 * to run the misfit task on. 12431 */ 12432 if (check_misfit_status(rq)) { 12433 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12434 goto unlock; 12435 } 12436 12437 /* 12438 * For asymmetric systems, we do not want to nicely balance 12439 * cache use, instead we want to embrace asymmetry and only 12440 * ensure tasks have enough CPU capacity. 12441 * 12442 * Skip the LLC logic because it's not relevant in that case. 12443 */ 12444 goto unlock; 12445 } 12446 12447 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12448 if (sds) { 12449 /* 12450 * If there is an imbalance between LLC domains (IOW we could 12451 * increase the overall cache utilization), we need a less-loaded LLC 12452 * domain to pull some load from. Likewise, we may need to spread 12453 * load within the current LLC domain (e.g. packed SMT cores but 12454 * other CPUs are idle). We can't really know from here how busy 12455 * the others are - so just get a NOHZ balance going if it looks 12456 * like this LLC domain has tasks we could move. 12457 */ 12458 nr_busy = atomic_read(&sds->nr_busy_cpus); 12459 if (nr_busy > 1) { 12460 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12461 goto unlock; 12462 } 12463 } 12464 unlock: 12465 rcu_read_unlock(); 12466 out: 12467 if (READ_ONCE(nohz.needs_update)) 12468 flags |= NOHZ_NEXT_KICK; 12469 12470 if (flags) 12471 kick_ilb(flags); 12472 } 12473 12474 static void set_cpu_sd_state_busy(int cpu) 12475 { 12476 struct sched_domain *sd; 12477 12478 rcu_read_lock(); 12479 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12480 12481 if (!sd || !sd->nohz_idle) 12482 goto unlock; 12483 sd->nohz_idle = 0; 12484 12485 atomic_inc(&sd->shared->nr_busy_cpus); 12486 unlock: 12487 rcu_read_unlock(); 12488 } 12489 12490 void nohz_balance_exit_idle(struct rq *rq) 12491 { 12492 WARN_ON_ONCE(rq != this_rq()); 12493 12494 if (likely(!rq->nohz_tick_stopped)) 12495 return; 12496 12497 rq->nohz_tick_stopped = 0; 12498 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12499 atomic_dec(&nohz.nr_cpus); 12500 12501 set_cpu_sd_state_busy(rq->cpu); 12502 } 12503 12504 static void set_cpu_sd_state_idle(int cpu) 12505 { 12506 struct sched_domain *sd; 12507 12508 rcu_read_lock(); 12509 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12510 12511 if (!sd || sd->nohz_idle) 12512 goto unlock; 12513 sd->nohz_idle = 1; 12514 12515 atomic_dec(&sd->shared->nr_busy_cpus); 12516 unlock: 12517 rcu_read_unlock(); 12518 } 12519 12520 /* 12521 * This routine will record that the CPU is going idle with tick stopped. 12522 * This info will be used in performing idle load balancing in the future. 12523 */ 12524 void nohz_balance_enter_idle(int cpu) 12525 { 12526 struct rq *rq = cpu_rq(cpu); 12527 12528 WARN_ON_ONCE(cpu != smp_processor_id()); 12529 12530 /* If this CPU is going down, then nothing needs to be done: */ 12531 if (!cpu_active(cpu)) 12532 return; 12533 12534 /* 12535 * Can be set safely without rq->lock held 12536 * If a clear happens, it will have evaluated last additions because 12537 * rq->lock is held during the check and the clear 12538 */ 12539 rq->has_blocked_load = 1; 12540 12541 /* 12542 * The tick is still stopped but load could have been added in the 12543 * meantime. We set the nohz.has_blocked flag to trig a check of the 12544 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12545 * of nohz.has_blocked can only happen after checking the new load 12546 */ 12547 if (rq->nohz_tick_stopped) 12548 goto out; 12549 12550 /* If we're a completely isolated CPU, we don't play: */ 12551 if (on_null_domain(rq)) 12552 return; 12553 12554 rq->nohz_tick_stopped = 1; 12555 12556 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12557 atomic_inc(&nohz.nr_cpus); 12558 12559 /* 12560 * Ensures that if nohz_idle_balance() fails to observe our 12561 * @idle_cpus_mask store, it must observe the @has_blocked 12562 * and @needs_update stores. 12563 */ 12564 smp_mb__after_atomic(); 12565 12566 set_cpu_sd_state_idle(cpu); 12567 12568 WRITE_ONCE(nohz.needs_update, 1); 12569 out: 12570 /* 12571 * Each time a cpu enter idle, we assume that it has blocked load and 12572 * enable the periodic update of the load of idle CPUs 12573 */ 12574 WRITE_ONCE(nohz.has_blocked, 1); 12575 } 12576 12577 static bool update_nohz_stats(struct rq *rq) 12578 { 12579 unsigned int cpu = rq->cpu; 12580 12581 if (!rq->has_blocked_load) 12582 return false; 12583 12584 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12585 return false; 12586 12587 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12588 return true; 12589 12590 sched_balance_update_blocked_averages(cpu); 12591 12592 return rq->has_blocked_load; 12593 } 12594 12595 /* 12596 * Internal function that runs load balance for all idle CPUs. The load balance 12597 * can be a simple update of blocked load or a complete load balance with 12598 * tasks movement depending of flags. 12599 */ 12600 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12601 { 12602 /* Earliest time when we have to do rebalance again */ 12603 unsigned long now = jiffies; 12604 unsigned long next_balance = now + 60*HZ; 12605 bool has_blocked_load = false; 12606 int update_next_balance = 0; 12607 int this_cpu = this_rq->cpu; 12608 int balance_cpu; 12609 struct rq *rq; 12610 12611 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12612 12613 /* 12614 * We assume there will be no idle load after this update and clear 12615 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12616 * set the has_blocked flag and trigger another update of idle load. 12617 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12618 * setting the flag, we are sure to not clear the state and not 12619 * check the load of an idle cpu. 12620 * 12621 * Same applies to idle_cpus_mask vs needs_update. 12622 */ 12623 if (flags & NOHZ_STATS_KICK) 12624 WRITE_ONCE(nohz.has_blocked, 0); 12625 if (flags & NOHZ_NEXT_KICK) 12626 WRITE_ONCE(nohz.needs_update, 0); 12627 12628 /* 12629 * Ensures that if we miss the CPU, we must see the has_blocked 12630 * store from nohz_balance_enter_idle(). 12631 */ 12632 smp_mb(); 12633 12634 /* 12635 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12636 * chance for other idle cpu to pull load. 12637 */ 12638 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12639 if (!idle_cpu(balance_cpu)) 12640 continue; 12641 12642 /* 12643 * If this CPU gets work to do, stop the load balancing 12644 * work being done for other CPUs. Next load 12645 * balancing owner will pick it up. 12646 */ 12647 if (!idle_cpu(this_cpu) && need_resched()) { 12648 if (flags & NOHZ_STATS_KICK) 12649 has_blocked_load = true; 12650 if (flags & NOHZ_NEXT_KICK) 12651 WRITE_ONCE(nohz.needs_update, 1); 12652 goto abort; 12653 } 12654 12655 rq = cpu_rq(balance_cpu); 12656 12657 if (flags & NOHZ_STATS_KICK) 12658 has_blocked_load |= update_nohz_stats(rq); 12659 12660 /* 12661 * If time for next balance is due, 12662 * do the balance. 12663 */ 12664 if (time_after_eq(jiffies, rq->next_balance)) { 12665 struct rq_flags rf; 12666 12667 rq_lock_irqsave(rq, &rf); 12668 update_rq_clock(rq); 12669 rq_unlock_irqrestore(rq, &rf); 12670 12671 if (flags & NOHZ_BALANCE_KICK) 12672 sched_balance_domains(rq, CPU_IDLE); 12673 } 12674 12675 if (time_after(next_balance, rq->next_balance)) { 12676 next_balance = rq->next_balance; 12677 update_next_balance = 1; 12678 } 12679 } 12680 12681 /* 12682 * next_balance will be updated only when there is a need. 12683 * When the CPU is attached to null domain for ex, it will not be 12684 * updated. 12685 */ 12686 if (likely(update_next_balance)) 12687 nohz.next_balance = next_balance; 12688 12689 if (flags & NOHZ_STATS_KICK) 12690 WRITE_ONCE(nohz.next_blocked, 12691 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12692 12693 abort: 12694 /* There is still blocked load, enable periodic update */ 12695 if (has_blocked_load) 12696 WRITE_ONCE(nohz.has_blocked, 1); 12697 } 12698 12699 /* 12700 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12701 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12702 */ 12703 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12704 { 12705 unsigned int flags = this_rq->nohz_idle_balance; 12706 12707 if (!flags) 12708 return false; 12709 12710 this_rq->nohz_idle_balance = 0; 12711 12712 if (idle != CPU_IDLE) 12713 return false; 12714 12715 _nohz_idle_balance(this_rq, flags); 12716 12717 return true; 12718 } 12719 12720 /* 12721 * Check if we need to directly run the ILB for updating blocked load before 12722 * entering idle state. Here we run ILB directly without issuing IPIs. 12723 * 12724 * Note that when this function is called, the tick may not yet be stopped on 12725 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12726 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12727 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12728 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12729 * called from this function on (this) CPU that's not yet in the mask. That's 12730 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12731 * updating the blocked load of already idle CPUs without waking up one of 12732 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12733 * cpu about to enter idle, because it can take a long time. 12734 */ 12735 void nohz_run_idle_balance(int cpu) 12736 { 12737 unsigned int flags; 12738 12739 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12740 12741 /* 12742 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12743 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12744 */ 12745 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12746 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12747 } 12748 12749 static void nohz_newidle_balance(struct rq *this_rq) 12750 { 12751 int this_cpu = this_rq->cpu; 12752 12753 /* Will wake up very soon. No time for doing anything else*/ 12754 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12755 return; 12756 12757 /* Don't need to update blocked load of idle CPUs*/ 12758 if (!READ_ONCE(nohz.has_blocked) || 12759 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12760 return; 12761 12762 /* 12763 * Set the need to trigger ILB in order to update blocked load 12764 * before entering idle state. 12765 */ 12766 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12767 } 12768 12769 #else /* !CONFIG_NO_HZ_COMMON */ 12770 static inline void nohz_balancer_kick(struct rq *rq) { } 12771 12772 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12773 { 12774 return false; 12775 } 12776 12777 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12778 #endif /* CONFIG_NO_HZ_COMMON */ 12779 12780 /* 12781 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12782 * idle. Attempts to pull tasks from other CPUs. 12783 * 12784 * Returns: 12785 * < 0 - we released the lock and there are !fair tasks present 12786 * 0 - failed, no new tasks 12787 * > 0 - success, new (fair) tasks present 12788 */ 12789 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12790 { 12791 unsigned long next_balance = jiffies + HZ; 12792 int this_cpu = this_rq->cpu; 12793 int continue_balancing = 1; 12794 u64 t0, t1, curr_cost = 0; 12795 struct sched_domain *sd; 12796 int pulled_task = 0; 12797 12798 update_misfit_status(NULL, this_rq); 12799 12800 /* 12801 * There is a task waiting to run. No need to search for one. 12802 * Return 0; the task will be enqueued when switching to idle. 12803 */ 12804 if (this_rq->ttwu_pending) 12805 return 0; 12806 12807 /* 12808 * We must set idle_stamp _before_ calling sched_balance_rq() 12809 * for CPU_NEWLY_IDLE, such that we measure the this duration 12810 * as idle time. 12811 */ 12812 this_rq->idle_stamp = rq_clock(this_rq); 12813 12814 /* 12815 * Do not pull tasks towards !active CPUs... 12816 */ 12817 if (!cpu_active(this_cpu)) 12818 return 0; 12819 12820 /* 12821 * This is OK, because current is on_cpu, which avoids it being picked 12822 * for load-balance and preemption/IRQs are still disabled avoiding 12823 * further scheduler activity on it and we're being very careful to 12824 * re-start the picking loop. 12825 */ 12826 rq_unpin_lock(this_rq, rf); 12827 12828 rcu_read_lock(); 12829 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12830 12831 if (!get_rd_overloaded(this_rq->rd) || 12832 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12833 12834 if (sd) 12835 update_next_balance(sd, &next_balance); 12836 rcu_read_unlock(); 12837 12838 goto out; 12839 } 12840 rcu_read_unlock(); 12841 12842 raw_spin_rq_unlock(this_rq); 12843 12844 t0 = sched_clock_cpu(this_cpu); 12845 sched_balance_update_blocked_averages(this_cpu); 12846 12847 rcu_read_lock(); 12848 for_each_domain(this_cpu, sd) { 12849 u64 domain_cost; 12850 12851 update_next_balance(sd, &next_balance); 12852 12853 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12854 break; 12855 12856 if (sd->flags & SD_BALANCE_NEWIDLE) { 12857 12858 pulled_task = sched_balance_rq(this_cpu, this_rq, 12859 sd, CPU_NEWLY_IDLE, 12860 &continue_balancing); 12861 12862 t1 = sched_clock_cpu(this_cpu); 12863 domain_cost = t1 - t0; 12864 update_newidle_cost(sd, domain_cost); 12865 12866 curr_cost += domain_cost; 12867 t0 = t1; 12868 } 12869 12870 /* 12871 * Stop searching for tasks to pull if there are 12872 * now runnable tasks on this rq. 12873 */ 12874 if (pulled_task || !continue_balancing) 12875 break; 12876 } 12877 rcu_read_unlock(); 12878 12879 raw_spin_rq_lock(this_rq); 12880 12881 if (curr_cost > this_rq->max_idle_balance_cost) 12882 this_rq->max_idle_balance_cost = curr_cost; 12883 12884 /* 12885 * While browsing the domains, we released the rq lock, a task could 12886 * have been enqueued in the meantime. Since we're not going idle, 12887 * pretend we pulled a task. 12888 */ 12889 if (this_rq->cfs.h_nr_queued && !pulled_task) 12890 pulled_task = 1; 12891 12892 /* Is there a task of a high priority class? */ 12893 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12894 pulled_task = -1; 12895 12896 out: 12897 /* Move the next balance forward */ 12898 if (time_after(this_rq->next_balance, next_balance)) 12899 this_rq->next_balance = next_balance; 12900 12901 if (pulled_task) 12902 this_rq->idle_stamp = 0; 12903 else 12904 nohz_newidle_balance(this_rq); 12905 12906 rq_repin_lock(this_rq, rf); 12907 12908 return pulled_task; 12909 } 12910 12911 /* 12912 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12913 * 12914 * - directly from the local sched_tick() for periodic load balancing 12915 * 12916 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12917 * through the SMP cross-call nohz_csd_func() 12918 */ 12919 static __latent_entropy void sched_balance_softirq(void) 12920 { 12921 struct rq *this_rq = this_rq(); 12922 enum cpu_idle_type idle = this_rq->idle_balance; 12923 /* 12924 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12925 * balancing on behalf of the other idle CPUs whose ticks are 12926 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12927 * give the idle CPUs a chance to load balance. Else we may 12928 * load balance only within the local sched_domain hierarchy 12929 * and abort nohz_idle_balance altogether if we pull some load. 12930 */ 12931 if (nohz_idle_balance(this_rq, idle)) 12932 return; 12933 12934 /* normal load balance */ 12935 sched_balance_update_blocked_averages(this_rq->cpu); 12936 sched_balance_domains(this_rq, idle); 12937 } 12938 12939 /* 12940 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12941 */ 12942 void sched_balance_trigger(struct rq *rq) 12943 { 12944 /* 12945 * Don't need to rebalance while attached to NULL domain or 12946 * runqueue CPU is not active 12947 */ 12948 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12949 return; 12950 12951 if (time_after_eq(jiffies, rq->next_balance)) 12952 raise_softirq(SCHED_SOFTIRQ); 12953 12954 nohz_balancer_kick(rq); 12955 } 12956 12957 static void rq_online_fair(struct rq *rq) 12958 { 12959 update_sysctl(); 12960 12961 update_runtime_enabled(rq); 12962 } 12963 12964 static void rq_offline_fair(struct rq *rq) 12965 { 12966 update_sysctl(); 12967 12968 /* Ensure any throttled groups are reachable by pick_next_task */ 12969 unthrottle_offline_cfs_rqs(rq); 12970 12971 /* Ensure that we remove rq contribution to group share: */ 12972 clear_tg_offline_cfs_rqs(rq); 12973 } 12974 12975 #endif /* CONFIG_SMP */ 12976 12977 #ifdef CONFIG_SCHED_CORE 12978 static inline bool 12979 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12980 { 12981 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12982 u64 slice = se->slice; 12983 12984 return (rtime * min_nr_tasks > slice); 12985 } 12986 12987 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12988 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12989 { 12990 if (!sched_core_enabled(rq)) 12991 return; 12992 12993 /* 12994 * If runqueue has only one task which used up its slice and 12995 * if the sibling is forced idle, then trigger schedule to 12996 * give forced idle task a chance. 12997 * 12998 * sched_slice() considers only this active rq and it gets the 12999 * whole slice. But during force idle, we have siblings acting 13000 * like a single runqueue and hence we need to consider runnable 13001 * tasks on this CPU and the forced idle CPU. Ideally, we should 13002 * go through the forced idle rq, but that would be a perf hit. 13003 * We can assume that the forced idle CPU has at least 13004 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13005 * if we need to give up the CPU. 13006 */ 13007 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13008 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13009 resched_curr(rq); 13010 } 13011 13012 /* 13013 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 13014 */ 13015 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13016 bool forceidle) 13017 { 13018 for_each_sched_entity(se) { 13019 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13020 13021 if (forceidle) { 13022 if (cfs_rq->forceidle_seq == fi_seq) 13023 break; 13024 cfs_rq->forceidle_seq = fi_seq; 13025 } 13026 13027 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13028 } 13029 } 13030 13031 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13032 { 13033 struct sched_entity *se = &p->se; 13034 13035 if (p->sched_class != &fair_sched_class) 13036 return; 13037 13038 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13039 } 13040 13041 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13042 bool in_fi) 13043 { 13044 struct rq *rq = task_rq(a); 13045 const struct sched_entity *sea = &a->se; 13046 const struct sched_entity *seb = &b->se; 13047 struct cfs_rq *cfs_rqa; 13048 struct cfs_rq *cfs_rqb; 13049 s64 delta; 13050 13051 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13052 13053 #ifdef CONFIG_FAIR_GROUP_SCHED 13054 /* 13055 * Find an se in the hierarchy for tasks a and b, such that the se's 13056 * are immediate siblings. 13057 */ 13058 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13059 int sea_depth = sea->depth; 13060 int seb_depth = seb->depth; 13061 13062 if (sea_depth >= seb_depth) 13063 sea = parent_entity(sea); 13064 if (sea_depth <= seb_depth) 13065 seb = parent_entity(seb); 13066 } 13067 13068 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13069 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13070 13071 cfs_rqa = sea->cfs_rq; 13072 cfs_rqb = seb->cfs_rq; 13073 #else 13074 cfs_rqa = &task_rq(a)->cfs; 13075 cfs_rqb = &task_rq(b)->cfs; 13076 #endif 13077 13078 /* 13079 * Find delta after normalizing se's vruntime with its cfs_rq's 13080 * min_vruntime_fi, which would have been updated in prior calls 13081 * to se_fi_update(). 13082 */ 13083 delta = (s64)(sea->vruntime - seb->vruntime) + 13084 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13085 13086 return delta > 0; 13087 } 13088 13089 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13090 { 13091 struct cfs_rq *cfs_rq; 13092 13093 #ifdef CONFIG_FAIR_GROUP_SCHED 13094 cfs_rq = task_group(p)->cfs_rq[cpu]; 13095 #else 13096 cfs_rq = &cpu_rq(cpu)->cfs; 13097 #endif 13098 return throttled_hierarchy(cfs_rq); 13099 } 13100 #else 13101 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13102 #endif 13103 13104 /* 13105 * scheduler tick hitting a task of our scheduling class. 13106 * 13107 * NOTE: This function can be called remotely by the tick offload that 13108 * goes along full dynticks. Therefore no local assumption can be made 13109 * and everything must be accessed through the @rq and @curr passed in 13110 * parameters. 13111 */ 13112 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13113 { 13114 struct cfs_rq *cfs_rq; 13115 struct sched_entity *se = &curr->se; 13116 13117 for_each_sched_entity(se) { 13118 cfs_rq = cfs_rq_of(se); 13119 entity_tick(cfs_rq, se, queued); 13120 } 13121 13122 if (static_branch_unlikely(&sched_numa_balancing)) 13123 task_tick_numa(rq, curr); 13124 13125 update_misfit_status(curr, rq); 13126 check_update_overutilized_status(task_rq(curr)); 13127 13128 task_tick_core(rq, curr); 13129 } 13130 13131 /* 13132 * called on fork with the child task as argument from the parent's context 13133 * - child not yet on the tasklist 13134 * - preemption disabled 13135 */ 13136 static void task_fork_fair(struct task_struct *p) 13137 { 13138 set_task_max_allowed_capacity(p); 13139 } 13140 13141 /* 13142 * Priority of the task has changed. Check to see if we preempt 13143 * the current task. 13144 */ 13145 static void 13146 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13147 { 13148 if (!task_on_rq_queued(p)) 13149 return; 13150 13151 if (rq->cfs.nr_queued == 1) 13152 return; 13153 13154 /* 13155 * Reschedule if we are currently running on this runqueue and 13156 * our priority decreased, or if we are not currently running on 13157 * this runqueue and our priority is higher than the current's 13158 */ 13159 if (task_current_donor(rq, p)) { 13160 if (p->prio > oldprio) 13161 resched_curr(rq); 13162 } else 13163 wakeup_preempt(rq, p, 0); 13164 } 13165 13166 #ifdef CONFIG_FAIR_GROUP_SCHED 13167 /* 13168 * Propagate the changes of the sched_entity across the tg tree to make it 13169 * visible to the root 13170 */ 13171 static void propagate_entity_cfs_rq(struct sched_entity *se) 13172 { 13173 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13174 13175 if (cfs_rq_throttled(cfs_rq)) 13176 return; 13177 13178 if (!throttled_hierarchy(cfs_rq)) 13179 list_add_leaf_cfs_rq(cfs_rq); 13180 13181 /* Start to propagate at parent */ 13182 se = se->parent; 13183 13184 for_each_sched_entity(se) { 13185 cfs_rq = cfs_rq_of(se); 13186 13187 update_load_avg(cfs_rq, se, UPDATE_TG); 13188 13189 if (cfs_rq_throttled(cfs_rq)) 13190 break; 13191 13192 if (!throttled_hierarchy(cfs_rq)) 13193 list_add_leaf_cfs_rq(cfs_rq); 13194 } 13195 } 13196 #else 13197 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13198 #endif 13199 13200 static void detach_entity_cfs_rq(struct sched_entity *se) 13201 { 13202 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13203 13204 #ifdef CONFIG_SMP 13205 /* 13206 * In case the task sched_avg hasn't been attached: 13207 * - A forked task which hasn't been woken up by wake_up_new_task(). 13208 * - A task which has been woken up by try_to_wake_up() but is 13209 * waiting for actually being woken up by sched_ttwu_pending(). 13210 */ 13211 if (!se->avg.last_update_time) 13212 return; 13213 #endif 13214 13215 /* Catch up with the cfs_rq and remove our load when we leave */ 13216 update_load_avg(cfs_rq, se, 0); 13217 detach_entity_load_avg(cfs_rq, se); 13218 update_tg_load_avg(cfs_rq); 13219 propagate_entity_cfs_rq(se); 13220 } 13221 13222 static void attach_entity_cfs_rq(struct sched_entity *se) 13223 { 13224 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13225 13226 /* Synchronize entity with its cfs_rq */ 13227 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13228 attach_entity_load_avg(cfs_rq, se); 13229 update_tg_load_avg(cfs_rq); 13230 propagate_entity_cfs_rq(se); 13231 } 13232 13233 static void detach_task_cfs_rq(struct task_struct *p) 13234 { 13235 struct sched_entity *se = &p->se; 13236 13237 detach_entity_cfs_rq(se); 13238 } 13239 13240 static void attach_task_cfs_rq(struct task_struct *p) 13241 { 13242 struct sched_entity *se = &p->se; 13243 13244 attach_entity_cfs_rq(se); 13245 } 13246 13247 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13248 { 13249 detach_task_cfs_rq(p); 13250 } 13251 13252 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13253 { 13254 WARN_ON_ONCE(p->se.sched_delayed); 13255 13256 attach_task_cfs_rq(p); 13257 13258 set_task_max_allowed_capacity(p); 13259 13260 if (task_on_rq_queued(p)) { 13261 /* 13262 * We were most likely switched from sched_rt, so 13263 * kick off the schedule if running, otherwise just see 13264 * if we can still preempt the current task. 13265 */ 13266 if (task_current_donor(rq, p)) 13267 resched_curr(rq); 13268 else 13269 wakeup_preempt(rq, p, 0); 13270 } 13271 } 13272 13273 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13274 { 13275 struct sched_entity *se = &p->se; 13276 13277 #ifdef CONFIG_SMP 13278 if (task_on_rq_queued(p)) { 13279 /* 13280 * Move the next running task to the front of the list, so our 13281 * cfs_tasks list becomes MRU one. 13282 */ 13283 list_move(&se->group_node, &rq->cfs_tasks); 13284 } 13285 #endif 13286 if (!first) 13287 return; 13288 13289 WARN_ON_ONCE(se->sched_delayed); 13290 13291 if (hrtick_enabled_fair(rq)) 13292 hrtick_start_fair(rq, p); 13293 13294 update_misfit_status(p, rq); 13295 sched_fair_update_stop_tick(rq, p); 13296 } 13297 13298 /* 13299 * Account for a task changing its policy or group. 13300 * 13301 * This routine is mostly called to set cfs_rq->curr field when a task 13302 * migrates between groups/classes. 13303 */ 13304 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13305 { 13306 struct sched_entity *se = &p->se; 13307 13308 for_each_sched_entity(se) { 13309 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13310 13311 set_next_entity(cfs_rq, se); 13312 /* ensure bandwidth has been allocated on our new cfs_rq */ 13313 account_cfs_rq_runtime(cfs_rq, 0); 13314 } 13315 13316 __set_next_task_fair(rq, p, first); 13317 } 13318 13319 void init_cfs_rq(struct cfs_rq *cfs_rq) 13320 { 13321 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13322 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13323 #ifdef CONFIG_SMP 13324 raw_spin_lock_init(&cfs_rq->removed.lock); 13325 #endif 13326 } 13327 13328 #ifdef CONFIG_FAIR_GROUP_SCHED 13329 static void task_change_group_fair(struct task_struct *p) 13330 { 13331 /* 13332 * We couldn't detach or attach a forked task which 13333 * hasn't been woken up by wake_up_new_task(). 13334 */ 13335 if (READ_ONCE(p->__state) == TASK_NEW) 13336 return; 13337 13338 detach_task_cfs_rq(p); 13339 13340 #ifdef CONFIG_SMP 13341 /* Tell se's cfs_rq has been changed -- migrated */ 13342 p->se.avg.last_update_time = 0; 13343 #endif 13344 set_task_rq(p, task_cpu(p)); 13345 attach_task_cfs_rq(p); 13346 } 13347 13348 void free_fair_sched_group(struct task_group *tg) 13349 { 13350 int i; 13351 13352 for_each_possible_cpu(i) { 13353 if (tg->cfs_rq) 13354 kfree(tg->cfs_rq[i]); 13355 if (tg->se) 13356 kfree(tg->se[i]); 13357 } 13358 13359 kfree(tg->cfs_rq); 13360 kfree(tg->se); 13361 } 13362 13363 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13364 { 13365 struct sched_entity *se; 13366 struct cfs_rq *cfs_rq; 13367 int i; 13368 13369 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13370 if (!tg->cfs_rq) 13371 goto err; 13372 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13373 if (!tg->se) 13374 goto err; 13375 13376 tg->shares = NICE_0_LOAD; 13377 13378 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13379 13380 for_each_possible_cpu(i) { 13381 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13382 GFP_KERNEL, cpu_to_node(i)); 13383 if (!cfs_rq) 13384 goto err; 13385 13386 se = kzalloc_node(sizeof(struct sched_entity_stats), 13387 GFP_KERNEL, cpu_to_node(i)); 13388 if (!se) 13389 goto err_free_rq; 13390 13391 init_cfs_rq(cfs_rq); 13392 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13393 init_entity_runnable_average(se); 13394 } 13395 13396 return 1; 13397 13398 err_free_rq: 13399 kfree(cfs_rq); 13400 err: 13401 return 0; 13402 } 13403 13404 void online_fair_sched_group(struct task_group *tg) 13405 { 13406 struct sched_entity *se; 13407 struct rq_flags rf; 13408 struct rq *rq; 13409 int i; 13410 13411 for_each_possible_cpu(i) { 13412 rq = cpu_rq(i); 13413 se = tg->se[i]; 13414 rq_lock_irq(rq, &rf); 13415 update_rq_clock(rq); 13416 attach_entity_cfs_rq(se); 13417 sync_throttle(tg, i); 13418 rq_unlock_irq(rq, &rf); 13419 } 13420 } 13421 13422 void unregister_fair_sched_group(struct task_group *tg) 13423 { 13424 int cpu; 13425 13426 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13427 13428 for_each_possible_cpu(cpu) { 13429 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13430 struct sched_entity *se = tg->se[cpu]; 13431 struct rq *rq = cpu_rq(cpu); 13432 13433 if (se) { 13434 if (se->sched_delayed) { 13435 guard(rq_lock_irqsave)(rq); 13436 if (se->sched_delayed) { 13437 update_rq_clock(rq); 13438 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13439 } 13440 list_del_leaf_cfs_rq(cfs_rq); 13441 } 13442 remove_entity_load_avg(se); 13443 } 13444 13445 /* 13446 * Only empty task groups can be destroyed; so we can speculatively 13447 * check on_list without danger of it being re-added. 13448 */ 13449 if (cfs_rq->on_list) { 13450 guard(rq_lock_irqsave)(rq); 13451 list_del_leaf_cfs_rq(cfs_rq); 13452 } 13453 } 13454 } 13455 13456 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13457 struct sched_entity *se, int cpu, 13458 struct sched_entity *parent) 13459 { 13460 struct rq *rq = cpu_rq(cpu); 13461 13462 cfs_rq->tg = tg; 13463 cfs_rq->rq = rq; 13464 init_cfs_rq_runtime(cfs_rq); 13465 13466 tg->cfs_rq[cpu] = cfs_rq; 13467 tg->se[cpu] = se; 13468 13469 /* se could be NULL for root_task_group */ 13470 if (!se) 13471 return; 13472 13473 if (!parent) { 13474 se->cfs_rq = &rq->cfs; 13475 se->depth = 0; 13476 } else { 13477 se->cfs_rq = parent->my_q; 13478 se->depth = parent->depth + 1; 13479 } 13480 13481 se->my_q = cfs_rq; 13482 /* guarantee group entities always have weight */ 13483 update_load_set(&se->load, NICE_0_LOAD); 13484 se->parent = parent; 13485 } 13486 13487 static DEFINE_MUTEX(shares_mutex); 13488 13489 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13490 { 13491 int i; 13492 13493 lockdep_assert_held(&shares_mutex); 13494 13495 /* 13496 * We can't change the weight of the root cgroup. 13497 */ 13498 if (!tg->se[0]) 13499 return -EINVAL; 13500 13501 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13502 13503 if (tg->shares == shares) 13504 return 0; 13505 13506 tg->shares = shares; 13507 for_each_possible_cpu(i) { 13508 struct rq *rq = cpu_rq(i); 13509 struct sched_entity *se = tg->se[i]; 13510 struct rq_flags rf; 13511 13512 /* Propagate contribution to hierarchy */ 13513 rq_lock_irqsave(rq, &rf); 13514 update_rq_clock(rq); 13515 for_each_sched_entity(se) { 13516 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13517 update_cfs_group(se); 13518 } 13519 rq_unlock_irqrestore(rq, &rf); 13520 } 13521 13522 return 0; 13523 } 13524 13525 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13526 { 13527 int ret; 13528 13529 mutex_lock(&shares_mutex); 13530 if (tg_is_idle(tg)) 13531 ret = -EINVAL; 13532 else 13533 ret = __sched_group_set_shares(tg, shares); 13534 mutex_unlock(&shares_mutex); 13535 13536 return ret; 13537 } 13538 13539 int sched_group_set_idle(struct task_group *tg, long idle) 13540 { 13541 int i; 13542 13543 if (tg == &root_task_group) 13544 return -EINVAL; 13545 13546 if (idle < 0 || idle > 1) 13547 return -EINVAL; 13548 13549 mutex_lock(&shares_mutex); 13550 13551 if (tg->idle == idle) { 13552 mutex_unlock(&shares_mutex); 13553 return 0; 13554 } 13555 13556 tg->idle = idle; 13557 13558 for_each_possible_cpu(i) { 13559 struct rq *rq = cpu_rq(i); 13560 struct sched_entity *se = tg->se[i]; 13561 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13562 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13563 long idle_task_delta; 13564 struct rq_flags rf; 13565 13566 rq_lock_irqsave(rq, &rf); 13567 13568 grp_cfs_rq->idle = idle; 13569 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13570 goto next_cpu; 13571 13572 idle_task_delta = grp_cfs_rq->h_nr_queued - 13573 grp_cfs_rq->h_nr_idle; 13574 if (!cfs_rq_is_idle(grp_cfs_rq)) 13575 idle_task_delta *= -1; 13576 13577 for_each_sched_entity(se) { 13578 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13579 13580 if (!se->on_rq) 13581 break; 13582 13583 cfs_rq->h_nr_idle += idle_task_delta; 13584 13585 /* Already accounted at parent level and above. */ 13586 if (cfs_rq_is_idle(cfs_rq)) 13587 break; 13588 } 13589 13590 next_cpu: 13591 rq_unlock_irqrestore(rq, &rf); 13592 } 13593 13594 /* Idle groups have minimum weight. */ 13595 if (tg_is_idle(tg)) 13596 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13597 else 13598 __sched_group_set_shares(tg, NICE_0_LOAD); 13599 13600 mutex_unlock(&shares_mutex); 13601 return 0; 13602 } 13603 13604 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13605 13606 13607 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13608 { 13609 struct sched_entity *se = &task->se; 13610 unsigned int rr_interval = 0; 13611 13612 /* 13613 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13614 * idle runqueue: 13615 */ 13616 if (rq->cfs.load.weight) 13617 rr_interval = NS_TO_JIFFIES(se->slice); 13618 13619 return rr_interval; 13620 } 13621 13622 /* 13623 * All the scheduling class methods: 13624 */ 13625 DEFINE_SCHED_CLASS(fair) = { 13626 13627 .enqueue_task = enqueue_task_fair, 13628 .dequeue_task = dequeue_task_fair, 13629 .yield_task = yield_task_fair, 13630 .yield_to_task = yield_to_task_fair, 13631 13632 .wakeup_preempt = check_preempt_wakeup_fair, 13633 13634 .pick_task = pick_task_fair, 13635 .pick_next_task = __pick_next_task_fair, 13636 .put_prev_task = put_prev_task_fair, 13637 .set_next_task = set_next_task_fair, 13638 13639 #ifdef CONFIG_SMP 13640 .balance = balance_fair, 13641 .select_task_rq = select_task_rq_fair, 13642 .migrate_task_rq = migrate_task_rq_fair, 13643 13644 .rq_online = rq_online_fair, 13645 .rq_offline = rq_offline_fair, 13646 13647 .task_dead = task_dead_fair, 13648 .set_cpus_allowed = set_cpus_allowed_fair, 13649 #endif 13650 13651 .task_tick = task_tick_fair, 13652 .task_fork = task_fork_fair, 13653 13654 .reweight_task = reweight_task_fair, 13655 .prio_changed = prio_changed_fair, 13656 .switched_from = switched_from_fair, 13657 .switched_to = switched_to_fair, 13658 13659 .get_rr_interval = get_rr_interval_fair, 13660 13661 .update_curr = update_curr_fair, 13662 13663 #ifdef CONFIG_FAIR_GROUP_SCHED 13664 .task_change_group = task_change_group_fair, 13665 #endif 13666 13667 #ifdef CONFIG_SCHED_CORE 13668 .task_is_throttled = task_is_throttled_fair, 13669 #endif 13670 13671 #ifdef CONFIG_UCLAMP_TASK 13672 .uclamp_enabled = 1, 13673 #endif 13674 }; 13675 13676 void print_cfs_stats(struct seq_file *m, int cpu) 13677 { 13678 struct cfs_rq *cfs_rq, *pos; 13679 13680 rcu_read_lock(); 13681 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13682 print_cfs_rq(m, cpu, cfs_rq); 13683 rcu_read_unlock(); 13684 } 13685 13686 #ifdef CONFIG_NUMA_BALANCING 13687 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13688 { 13689 int node; 13690 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13691 struct numa_group *ng; 13692 13693 rcu_read_lock(); 13694 ng = rcu_dereference(p->numa_group); 13695 for_each_online_node(node) { 13696 if (p->numa_faults) { 13697 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13698 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13699 } 13700 if (ng) { 13701 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13702 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13703 } 13704 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13705 } 13706 rcu_read_unlock(); 13707 } 13708 #endif /* CONFIG_NUMA_BALANCING */ 13709 13710 __init void init_sched_fair_class(void) 13711 { 13712 #ifdef CONFIG_SMP 13713 int i; 13714 13715 for_each_possible_cpu(i) { 13716 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13717 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13718 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13719 GFP_KERNEL, cpu_to_node(i)); 13720 13721 #ifdef CONFIG_CFS_BANDWIDTH 13722 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13723 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13724 #endif 13725 } 13726 13727 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13728 13729 #ifdef CONFIG_NO_HZ_COMMON 13730 nohz.next_balance = jiffies; 13731 nohz.next_blocked = jiffies; 13732 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13733 #endif 13734 #endif /* SMP */ 13735 13736 } 13737