xref: /linux/kernel/sched/fair.c (revision ab52c59103002b49f2455371e4b9c56ba3ef1781)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return 0;
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	u64_u32_store(cfs_rq->min_vruntime,
783 		      __update_min_vruntime(cfs_rq, vruntime));
784 }
785 
786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
787 {
788 	return entity_before(__node_2_se(a), __node_2_se(b));
789 }
790 
791 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
792 
793 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
794 {
795 	if (node) {
796 		struct sched_entity *rse = __node_2_se(node);
797 		if (vruntime_gt(min_vruntime, se, rse))
798 			se->min_vruntime = rse->min_vruntime;
799 	}
800 }
801 
802 /*
803  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
804  */
805 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
806 {
807 	u64 old_min_vruntime = se->min_vruntime;
808 	struct rb_node *node = &se->run_node;
809 
810 	se->min_vruntime = se->vruntime;
811 	__min_vruntime_update(se, node->rb_right);
812 	__min_vruntime_update(se, node->rb_left);
813 
814 	return se->min_vruntime == old_min_vruntime;
815 }
816 
817 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
818 		     run_node, min_vruntime, min_vruntime_update);
819 
820 /*
821  * Enqueue an entity into the rb-tree:
822  */
823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
824 {
825 	avg_vruntime_add(cfs_rq, se);
826 	se->min_vruntime = se->vruntime;
827 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
828 				__entity_less, &min_vruntime_cb);
829 }
830 
831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
834 				  &min_vruntime_cb);
835 	avg_vruntime_sub(cfs_rq, se);
836 }
837 
838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
839 {
840 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
841 
842 	if (!root)
843 		return NULL;
844 
845 	return __node_2_se(root);
846 }
847 
848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
849 {
850 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
851 
852 	if (!left)
853 		return NULL;
854 
855 	return __node_2_se(left);
856 }
857 
858 /*
859  * Earliest Eligible Virtual Deadline First
860  *
861  * In order to provide latency guarantees for different request sizes
862  * EEVDF selects the best runnable task from two criteria:
863  *
864  *  1) the task must be eligible (must be owed service)
865  *
866  *  2) from those tasks that meet 1), we select the one
867  *     with the earliest virtual deadline.
868  *
869  * We can do this in O(log n) time due to an augmented RB-tree. The
870  * tree keeps the entries sorted on deadline, but also functions as a
871  * heap based on the vruntime by keeping:
872  *
873  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
874  *
875  * Which allows tree pruning through eligibility.
876  */
877 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
878 {
879 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
880 	struct sched_entity *se = __pick_first_entity(cfs_rq);
881 	struct sched_entity *curr = cfs_rq->curr;
882 	struct sched_entity *best = NULL;
883 
884 	/*
885 	 * We can safely skip eligibility check if there is only one entity
886 	 * in this cfs_rq, saving some cycles.
887 	 */
888 	if (cfs_rq->nr_running == 1)
889 		return curr && curr->on_rq ? curr : se;
890 
891 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
892 		curr = NULL;
893 
894 	/*
895 	 * Once selected, run a task until it either becomes non-eligible or
896 	 * until it gets a new slice. See the HACK in set_next_entity().
897 	 */
898 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
899 		return curr;
900 
901 	/* Pick the leftmost entity if it's eligible */
902 	if (se && entity_eligible(cfs_rq, se)) {
903 		best = se;
904 		goto found;
905 	}
906 
907 	/* Heap search for the EEVD entity */
908 	while (node) {
909 		struct rb_node *left = node->rb_left;
910 
911 		/*
912 		 * Eligible entities in left subtree are always better
913 		 * choices, since they have earlier deadlines.
914 		 */
915 		if (left && vruntime_eligible(cfs_rq,
916 					__node_2_se(left)->min_vruntime)) {
917 			node = left;
918 			continue;
919 		}
920 
921 		se = __node_2_se(node);
922 
923 		/*
924 		 * The left subtree either is empty or has no eligible
925 		 * entity, so check the current node since it is the one
926 		 * with earliest deadline that might be eligible.
927 		 */
928 		if (entity_eligible(cfs_rq, se)) {
929 			best = se;
930 			break;
931 		}
932 
933 		node = node->rb_right;
934 	}
935 found:
936 	if (!best || (curr && entity_before(curr, best)))
937 		best = curr;
938 
939 	return best;
940 }
941 
942 #ifdef CONFIG_SCHED_DEBUG
943 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
944 {
945 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
946 
947 	if (!last)
948 		return NULL;
949 
950 	return __node_2_se(last);
951 }
952 
953 /**************************************************************
954  * Scheduling class statistics methods:
955  */
956 #ifdef CONFIG_SMP
957 int sched_update_scaling(void)
958 {
959 	unsigned int factor = get_update_sysctl_factor();
960 
961 #define WRT_SYSCTL(name) \
962 	(normalized_sysctl_##name = sysctl_##name / (factor))
963 	WRT_SYSCTL(sched_base_slice);
964 #undef WRT_SYSCTL
965 
966 	return 0;
967 }
968 #endif
969 #endif
970 
971 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
972 
973 /*
974  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
975  * this is probably good enough.
976  */
977 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
978 {
979 	if ((s64)(se->vruntime - se->deadline) < 0)
980 		return;
981 
982 	/*
983 	 * For EEVDF the virtual time slope is determined by w_i (iow.
984 	 * nice) while the request time r_i is determined by
985 	 * sysctl_sched_base_slice.
986 	 */
987 	se->slice = sysctl_sched_base_slice;
988 
989 	/*
990 	 * EEVDF: vd_i = ve_i + r_i / w_i
991 	 */
992 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
993 
994 	/*
995 	 * The task has consumed its request, reschedule.
996 	 */
997 	if (cfs_rq->nr_running > 1) {
998 		resched_curr(rq_of(cfs_rq));
999 		clear_buddies(cfs_rq, se);
1000 	}
1001 }
1002 
1003 #include "pelt.h"
1004 #ifdef CONFIG_SMP
1005 
1006 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1007 static unsigned long task_h_load(struct task_struct *p);
1008 static unsigned long capacity_of(int cpu);
1009 
1010 /* Give new sched_entity start runnable values to heavy its load in infant time */
1011 void init_entity_runnable_average(struct sched_entity *se)
1012 {
1013 	struct sched_avg *sa = &se->avg;
1014 
1015 	memset(sa, 0, sizeof(*sa));
1016 
1017 	/*
1018 	 * Tasks are initialized with full load to be seen as heavy tasks until
1019 	 * they get a chance to stabilize to their real load level.
1020 	 * Group entities are initialized with zero load to reflect the fact that
1021 	 * nothing has been attached to the task group yet.
1022 	 */
1023 	if (entity_is_task(se))
1024 		sa->load_avg = scale_load_down(se->load.weight);
1025 
1026 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1027 }
1028 
1029 /*
1030  * With new tasks being created, their initial util_avgs are extrapolated
1031  * based on the cfs_rq's current util_avg:
1032  *
1033  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1034  *		* se_weight(se)
1035  *
1036  * However, in many cases, the above util_avg does not give a desired
1037  * value. Moreover, the sum of the util_avgs may be divergent, such
1038  * as when the series is a harmonic series.
1039  *
1040  * To solve this problem, we also cap the util_avg of successive tasks to
1041  * only 1/2 of the left utilization budget:
1042  *
1043  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044  *
1045  * where n denotes the nth task and cpu_scale the CPU capacity.
1046  *
1047  * For example, for a CPU with 1024 of capacity, a simplest series from
1048  * the beginning would be like:
1049  *
1050  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1051  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052  *
1053  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054  * if util_avg > util_avg_cap.
1055  */
1056 void post_init_entity_util_avg(struct task_struct *p)
1057 {
1058 	struct sched_entity *se = &p->se;
1059 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 	struct sched_avg *sa = &se->avg;
1061 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063 
1064 	if (p->sched_class != &fair_sched_class) {
1065 		/*
1066 		 * For !fair tasks do:
1067 		 *
1068 		update_cfs_rq_load_avg(now, cfs_rq);
1069 		attach_entity_load_avg(cfs_rq, se);
1070 		switched_from_fair(rq, p);
1071 		 *
1072 		 * such that the next switched_to_fair() has the
1073 		 * expected state.
1074 		 */
1075 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 		return;
1077 	}
1078 
1079 	if (cap > 0) {
1080 		if (cfs_rq->avg.util_avg != 0) {
1081 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1082 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083 
1084 			if (sa->util_avg > cap)
1085 				sa->util_avg = cap;
1086 		} else {
1087 			sa->util_avg = cap;
1088 		}
1089 	}
1090 
1091 	sa->runnable_avg = sa->util_avg;
1092 }
1093 
1094 #else /* !CONFIG_SMP */
1095 void init_entity_runnable_average(struct sched_entity *se)
1096 {
1097 }
1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 }
1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102 {
1103 }
1104 #endif /* CONFIG_SMP */
1105 
1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107 {
1108 	u64 now = rq_clock_task(rq);
1109 	s64 delta_exec;
1110 
1111 	delta_exec = now - curr->exec_start;
1112 	if (unlikely(delta_exec <= 0))
1113 		return delta_exec;
1114 
1115 	curr->exec_start = now;
1116 	curr->sum_exec_runtime += delta_exec;
1117 
1118 	if (schedstat_enabled()) {
1119 		struct sched_statistics *stats;
1120 
1121 		stats = __schedstats_from_se(curr);
1122 		__schedstat_set(stats->exec_max,
1123 				max(delta_exec, stats->exec_max));
1124 	}
1125 
1126 	return delta_exec;
1127 }
1128 
1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130 {
1131 	trace_sched_stat_runtime(p, delta_exec);
1132 	account_group_exec_runtime(p, delta_exec);
1133 	cgroup_account_cputime(p, delta_exec);
1134 	if (p->dl_server)
1135 		dl_server_update(p->dl_server, delta_exec);
1136 }
1137 
1138 /*
1139  * Used by other classes to account runtime.
1140  */
1141 s64 update_curr_common(struct rq *rq)
1142 {
1143 	struct task_struct *curr = rq->curr;
1144 	s64 delta_exec;
1145 
1146 	delta_exec = update_curr_se(rq, &curr->se);
1147 	if (likely(delta_exec > 0))
1148 		update_curr_task(curr, delta_exec);
1149 
1150 	return delta_exec;
1151 }
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	s64 delta_exec;
1160 
1161 	if (unlikely(!curr))
1162 		return;
1163 
1164 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 	if (unlikely(delta_exec <= 0))
1166 		return;
1167 
1168 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1169 	update_deadline(cfs_rq, curr);
1170 	update_min_vruntime(cfs_rq);
1171 
1172 	if (entity_is_task(curr))
1173 		update_curr_task(task_of(curr), delta_exec);
1174 
1175 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1176 }
1177 
1178 static void update_curr_fair(struct rq *rq)
1179 {
1180 	update_curr(cfs_rq_of(&rq->curr->se));
1181 }
1182 
1183 static inline void
1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185 {
1186 	struct sched_statistics *stats;
1187 	struct task_struct *p = NULL;
1188 
1189 	if (!schedstat_enabled())
1190 		return;
1191 
1192 	stats = __schedstats_from_se(se);
1193 
1194 	if (entity_is_task(se))
1195 		p = task_of(se);
1196 
1197 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198 }
1199 
1200 static inline void
1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202 {
1203 	struct sched_statistics *stats;
1204 	struct task_struct *p = NULL;
1205 
1206 	if (!schedstat_enabled())
1207 		return;
1208 
1209 	stats = __schedstats_from_se(se);
1210 
1211 	/*
1212 	 * When the sched_schedstat changes from 0 to 1, some sched se
1213 	 * maybe already in the runqueue, the se->statistics.wait_start
1214 	 * will be 0.So it will let the delta wrong. We need to avoid this
1215 	 * scenario.
1216 	 */
1217 	if (unlikely(!schedstat_val(stats->wait_start)))
1218 		return;
1219 
1220 	if (entity_is_task(se))
1221 		p = task_of(se);
1222 
1223 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224 }
1225 
1226 static inline void
1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228 {
1229 	struct sched_statistics *stats;
1230 	struct task_struct *tsk = NULL;
1231 
1232 	if (!schedstat_enabled())
1233 		return;
1234 
1235 	stats = __schedstats_from_se(se);
1236 
1237 	if (entity_is_task(se))
1238 		tsk = task_of(se);
1239 
1240 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241 }
1242 
1243 /*
1244  * Task is being enqueued - update stats:
1245  */
1246 static inline void
1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248 {
1249 	if (!schedstat_enabled())
1250 		return;
1251 
1252 	/*
1253 	 * Are we enqueueing a waiting task? (for current tasks
1254 	 * a dequeue/enqueue event is a NOP)
1255 	 */
1256 	if (se != cfs_rq->curr)
1257 		update_stats_wait_start_fair(cfs_rq, se);
1258 
1259 	if (flags & ENQUEUE_WAKEUP)
1260 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261 }
1262 
1263 static inline void
1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265 {
1266 
1267 	if (!schedstat_enabled())
1268 		return;
1269 
1270 	/*
1271 	 * Mark the end of the wait period if dequeueing a
1272 	 * waiting task:
1273 	 */
1274 	if (se != cfs_rq->curr)
1275 		update_stats_wait_end_fair(cfs_rq, se);
1276 
1277 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 		struct task_struct *tsk = task_of(se);
1279 		unsigned int state;
1280 
1281 		/* XXX racy against TTWU */
1282 		state = READ_ONCE(tsk->__state);
1283 		if (state & TASK_INTERRUPTIBLE)
1284 			__schedstat_set(tsk->stats.sleep_start,
1285 				      rq_clock(rq_of(cfs_rq)));
1286 		if (state & TASK_UNINTERRUPTIBLE)
1287 			__schedstat_set(tsk->stats.block_start,
1288 				      rq_clock(rq_of(cfs_rq)));
1289 	}
1290 }
1291 
1292 /*
1293  * We are picking a new current task - update its stats:
1294  */
1295 static inline void
1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297 {
1298 	/*
1299 	 * We are starting a new run period:
1300 	 */
1301 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302 }
1303 
1304 /**************************************************
1305  * Scheduling class queueing methods:
1306  */
1307 
1308 static inline bool is_core_idle(int cpu)
1309 {
1310 #ifdef CONFIG_SCHED_SMT
1311 	int sibling;
1312 
1313 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 		if (cpu == sibling)
1315 			continue;
1316 
1317 		if (!idle_cpu(sibling))
1318 			return false;
1319 	}
1320 #endif
1321 
1322 	return true;
1323 }
1324 
1325 #ifdef CONFIG_NUMA
1326 #define NUMA_IMBALANCE_MIN 2
1327 
1328 static inline long
1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330 {
1331 	/*
1332 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 	 * threshold. Above this threshold, individual tasks may be contending
1334 	 * for both memory bandwidth and any shared HT resources.  This is an
1335 	 * approximation as the number of running tasks may not be related to
1336 	 * the number of busy CPUs due to sched_setaffinity.
1337 	 */
1338 	if (dst_running > imb_numa_nr)
1339 		return imbalance;
1340 
1341 	/*
1342 	 * Allow a small imbalance based on a simple pair of communicating
1343 	 * tasks that remain local when the destination is lightly loaded.
1344 	 */
1345 	if (imbalance <= NUMA_IMBALANCE_MIN)
1346 		return 0;
1347 
1348 	return imbalance;
1349 }
1350 #endif /* CONFIG_NUMA */
1351 
1352 #ifdef CONFIG_NUMA_BALANCING
1353 /*
1354  * Approximate time to scan a full NUMA task in ms. The task scan period is
1355  * calculated based on the tasks virtual memory size and
1356  * numa_balancing_scan_size.
1357  */
1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360 
1361 /* Portion of address space to scan in MB */
1362 unsigned int sysctl_numa_balancing_scan_size = 256;
1363 
1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366 
1367 /* The page with hint page fault latency < threshold in ms is considered hot */
1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369 
1370 struct numa_group {
1371 	refcount_t refcount;
1372 
1373 	spinlock_t lock; /* nr_tasks, tasks */
1374 	int nr_tasks;
1375 	pid_t gid;
1376 	int active_nodes;
1377 
1378 	struct rcu_head rcu;
1379 	unsigned long total_faults;
1380 	unsigned long max_faults_cpu;
1381 	/*
1382 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 	 *
1384 	 * Faults_cpu is used to decide whether memory should move
1385 	 * towards the CPU. As a consequence, these stats are weighted
1386 	 * more by CPU use than by memory faults.
1387 	 */
1388 	unsigned long faults[];
1389 };
1390 
1391 /*
1392  * For functions that can be called in multiple contexts that permit reading
1393  * ->numa_group (see struct task_struct for locking rules).
1394  */
1395 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396 {
1397 	return rcu_dereference_check(p->numa_group, p == current ||
1398 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399 }
1400 
1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402 {
1403 	return rcu_dereference_protected(p->numa_group, p == current);
1404 }
1405 
1406 static inline unsigned long group_faults_priv(struct numa_group *ng);
1407 static inline unsigned long group_faults_shared(struct numa_group *ng);
1408 
1409 static unsigned int task_nr_scan_windows(struct task_struct *p)
1410 {
1411 	unsigned long rss = 0;
1412 	unsigned long nr_scan_pages;
1413 
1414 	/*
1415 	 * Calculations based on RSS as non-present and empty pages are skipped
1416 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 	 * on resident pages
1418 	 */
1419 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 	rss = get_mm_rss(p->mm);
1421 	if (!rss)
1422 		rss = nr_scan_pages;
1423 
1424 	rss = round_up(rss, nr_scan_pages);
1425 	return rss / nr_scan_pages;
1426 }
1427 
1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429 #define MAX_SCAN_WINDOW 2560
1430 
1431 static unsigned int task_scan_min(struct task_struct *p)
1432 {
1433 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434 	unsigned int scan, floor;
1435 	unsigned int windows = 1;
1436 
1437 	if (scan_size < MAX_SCAN_WINDOW)
1438 		windows = MAX_SCAN_WINDOW / scan_size;
1439 	floor = 1000 / windows;
1440 
1441 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 	return max_t(unsigned int, floor, scan);
1443 }
1444 
1445 static unsigned int task_scan_start(struct task_struct *p)
1446 {
1447 	unsigned long smin = task_scan_min(p);
1448 	unsigned long period = smin;
1449 	struct numa_group *ng;
1450 
1451 	/* Scale the maximum scan period with the amount of shared memory. */
1452 	rcu_read_lock();
1453 	ng = rcu_dereference(p->numa_group);
1454 	if (ng) {
1455 		unsigned long shared = group_faults_shared(ng);
1456 		unsigned long private = group_faults_priv(ng);
1457 
1458 		period *= refcount_read(&ng->refcount);
1459 		period *= shared + 1;
1460 		period /= private + shared + 1;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	return max(smin, period);
1465 }
1466 
1467 static unsigned int task_scan_max(struct task_struct *p)
1468 {
1469 	unsigned long smin = task_scan_min(p);
1470 	unsigned long smax;
1471 	struct numa_group *ng;
1472 
1473 	/* Watch for min being lower than max due to floor calculations */
1474 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475 
1476 	/* Scale the maximum scan period with the amount of shared memory. */
1477 	ng = deref_curr_numa_group(p);
1478 	if (ng) {
1479 		unsigned long shared = group_faults_shared(ng);
1480 		unsigned long private = group_faults_priv(ng);
1481 		unsigned long period = smax;
1482 
1483 		period *= refcount_read(&ng->refcount);
1484 		period *= shared + 1;
1485 		period /= private + shared + 1;
1486 
1487 		smax = max(smax, period);
1488 	}
1489 
1490 	return max(smin, smax);
1491 }
1492 
1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494 {
1495 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497 }
1498 
1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500 {
1501 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503 }
1504 
1505 /* Shared or private faults. */
1506 #define NR_NUMA_HINT_FAULT_TYPES 2
1507 
1508 /* Memory and CPU locality */
1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510 
1511 /* Averaged statistics, and temporary buffers. */
1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513 
1514 pid_t task_numa_group_id(struct task_struct *p)
1515 {
1516 	struct numa_group *ng;
1517 	pid_t gid = 0;
1518 
1519 	rcu_read_lock();
1520 	ng = rcu_dereference(p->numa_group);
1521 	if (ng)
1522 		gid = ng->gid;
1523 	rcu_read_unlock();
1524 
1525 	return gid;
1526 }
1527 
1528 /*
1529  * The averaged statistics, shared & private, memory & CPU,
1530  * occupy the first half of the array. The second half of the
1531  * array is for current counters, which are averaged into the
1532  * first set by task_numa_placement.
1533  */
1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535 {
1536 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537 }
1538 
1539 static inline unsigned long task_faults(struct task_struct *p, int nid)
1540 {
1541 	if (!p->numa_faults)
1542 		return 0;
1543 
1544 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546 }
1547 
1548 static inline unsigned long group_faults(struct task_struct *p, int nid)
1549 {
1550 	struct numa_group *ng = deref_task_numa_group(p);
1551 
1552 	if (!ng)
1553 		return 0;
1554 
1555 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557 }
1558 
1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560 {
1561 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563 }
1564 
1565 static inline unsigned long group_faults_priv(struct numa_group *ng)
1566 {
1567 	unsigned long faults = 0;
1568 	int node;
1569 
1570 	for_each_online_node(node) {
1571 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 	}
1573 
1574 	return faults;
1575 }
1576 
1577 static inline unsigned long group_faults_shared(struct numa_group *ng)
1578 {
1579 	unsigned long faults = 0;
1580 	int node;
1581 
1582 	for_each_online_node(node) {
1583 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 	}
1585 
1586 	return faults;
1587 }
1588 
1589 /*
1590  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591  * considered part of a numa group's pseudo-interleaving set. Migrations
1592  * between these nodes are slowed down, to allow things to settle down.
1593  */
1594 #define ACTIVE_NODE_FRACTION 3
1595 
1596 static bool numa_is_active_node(int nid, struct numa_group *ng)
1597 {
1598 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599 }
1600 
1601 /* Handle placement on systems where not all nodes are directly connected. */
1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603 					int lim_dist, bool task)
1604 {
1605 	unsigned long score = 0;
1606 	int node, max_dist;
1607 
1608 	/*
1609 	 * All nodes are directly connected, and the same distance
1610 	 * from each other. No need for fancy placement algorithms.
1611 	 */
1612 	if (sched_numa_topology_type == NUMA_DIRECT)
1613 		return 0;
1614 
1615 	/* sched_max_numa_distance may be changed in parallel. */
1616 	max_dist = READ_ONCE(sched_max_numa_distance);
1617 	/*
1618 	 * This code is called for each node, introducing N^2 complexity,
1619 	 * which should be OK given the number of nodes rarely exceeds 8.
1620 	 */
1621 	for_each_online_node(node) {
1622 		unsigned long faults;
1623 		int dist = node_distance(nid, node);
1624 
1625 		/*
1626 		 * The furthest away nodes in the system are not interesting
1627 		 * for placement; nid was already counted.
1628 		 */
1629 		if (dist >= max_dist || node == nid)
1630 			continue;
1631 
1632 		/*
1633 		 * On systems with a backplane NUMA topology, compare groups
1634 		 * of nodes, and move tasks towards the group with the most
1635 		 * memory accesses. When comparing two nodes at distance
1636 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 		 * of each group. Skip other nodes.
1638 		 */
1639 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640 			continue;
1641 
1642 		/* Add up the faults from nearby nodes. */
1643 		if (task)
1644 			faults = task_faults(p, node);
1645 		else
1646 			faults = group_faults(p, node);
1647 
1648 		/*
1649 		 * On systems with a glueless mesh NUMA topology, there are
1650 		 * no fixed "groups of nodes". Instead, nodes that are not
1651 		 * directly connected bounce traffic through intermediate
1652 		 * nodes; a numa_group can occupy any set of nodes.
1653 		 * The further away a node is, the less the faults count.
1654 		 * This seems to result in good task placement.
1655 		 */
1656 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657 			faults *= (max_dist - dist);
1658 			faults /= (max_dist - LOCAL_DISTANCE);
1659 		}
1660 
1661 		score += faults;
1662 	}
1663 
1664 	return score;
1665 }
1666 
1667 /*
1668  * These return the fraction of accesses done by a particular task, or
1669  * task group, on a particular numa node.  The group weight is given a
1670  * larger multiplier, in order to group tasks together that are almost
1671  * evenly spread out between numa nodes.
1672  */
1673 static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 					int dist)
1675 {
1676 	unsigned long faults, total_faults;
1677 
1678 	if (!p->numa_faults)
1679 		return 0;
1680 
1681 	total_faults = p->total_numa_faults;
1682 
1683 	if (!total_faults)
1684 		return 0;
1685 
1686 	faults = task_faults(p, nid);
1687 	faults += score_nearby_nodes(p, nid, dist, true);
1688 
1689 	return 1000 * faults / total_faults;
1690 }
1691 
1692 static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 					 int dist)
1694 {
1695 	struct numa_group *ng = deref_task_numa_group(p);
1696 	unsigned long faults, total_faults;
1697 
1698 	if (!ng)
1699 		return 0;
1700 
1701 	total_faults = ng->total_faults;
1702 
1703 	if (!total_faults)
1704 		return 0;
1705 
1706 	faults = group_faults(p, nid);
1707 	faults += score_nearby_nodes(p, nid, dist, false);
1708 
1709 	return 1000 * faults / total_faults;
1710 }
1711 
1712 /*
1713  * If memory tiering mode is enabled, cpupid of slow memory page is
1714  * used to record scan time instead of CPU and PID.  When tiering mode
1715  * is disabled at run time, the scan time (in cpupid) will be
1716  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1717  * access out of array bound.
1718  */
1719 static inline bool cpupid_valid(int cpupid)
1720 {
1721 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722 }
1723 
1724 /*
1725  * For memory tiering mode, if there are enough free pages (more than
1726  * enough watermark defined here) in fast memory node, to take full
1727  * advantage of fast memory capacity, all recently accessed slow
1728  * memory pages will be migrated to fast memory node without
1729  * considering hot threshold.
1730  */
1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732 {
1733 	int z;
1734 	unsigned long enough_wmark;
1735 
1736 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 			   pgdat->node_present_pages >> 4);
1738 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 		struct zone *zone = pgdat->node_zones + z;
1740 
1741 		if (!populated_zone(zone))
1742 			continue;
1743 
1744 		if (zone_watermark_ok(zone, 0,
1745 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746 				      ZONE_MOVABLE, 0))
1747 			return true;
1748 	}
1749 	return false;
1750 }
1751 
1752 /*
1753  * For memory tiering mode, when page tables are scanned, the scan
1754  * time will be recorded in struct page in addition to make page
1755  * PROT_NONE for slow memory page.  So when the page is accessed, in
1756  * hint page fault handler, the hint page fault latency is calculated
1757  * via,
1758  *
1759  *	hint page fault latency = hint page fault time - scan time
1760  *
1761  * The smaller the hint page fault latency, the higher the possibility
1762  * for the page to be hot.
1763  */
1764 static int numa_hint_fault_latency(struct folio *folio)
1765 {
1766 	int last_time, time;
1767 
1768 	time = jiffies_to_msecs(jiffies);
1769 	last_time = folio_xchg_access_time(folio, time);
1770 
1771 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772 }
1773 
1774 /*
1775  * For memory tiering mode, too high promotion/demotion throughput may
1776  * hurt application latency.  So we provide a mechanism to rate limit
1777  * the number of pages that are tried to be promoted.
1778  */
1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 				      unsigned long rate_limit, int nr)
1781 {
1782 	unsigned long nr_cand;
1783 	unsigned int now, start;
1784 
1785 	now = jiffies_to_msecs(jiffies);
1786 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 	start = pgdat->nbp_rl_start;
1789 	if (now - start > MSEC_PER_SEC &&
1790 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 		pgdat->nbp_rl_nr_cand = nr_cand;
1792 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 		return true;
1794 	return false;
1795 }
1796 
1797 #define NUMA_MIGRATION_ADJUST_STEPS	16
1798 
1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 					    unsigned long rate_limit,
1801 					    unsigned int ref_th)
1802 {
1803 	unsigned int now, start, th_period, unit_th, th;
1804 	unsigned long nr_cand, ref_cand, diff_cand;
1805 
1806 	now = jiffies_to_msecs(jiffies);
1807 	th_period = sysctl_numa_balancing_scan_period_max;
1808 	start = pgdat->nbp_th_start;
1809 	if (now - start > th_period &&
1810 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 		ref_cand = rate_limit *
1812 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 		th = pgdat->nbp_threshold ? : ref_th;
1817 		if (diff_cand > ref_cand * 11 / 10)
1818 			th = max(th - unit_th, unit_th);
1819 		else if (diff_cand < ref_cand * 9 / 10)
1820 			th = min(th + unit_th, ref_th * 2);
1821 		pgdat->nbp_th_nr_cand = nr_cand;
1822 		pgdat->nbp_threshold = th;
1823 	}
1824 }
1825 
1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827 				int src_nid, int dst_cpu)
1828 {
1829 	struct numa_group *ng = deref_curr_numa_group(p);
1830 	int dst_nid = cpu_to_node(dst_cpu);
1831 	int last_cpupid, this_cpupid;
1832 
1833 	/*
1834 	 * Cannot migrate to memoryless nodes.
1835 	 */
1836 	if (!node_state(dst_nid, N_MEMORY))
1837 		return false;
1838 
1839 	/*
1840 	 * The pages in slow memory node should be migrated according
1841 	 * to hot/cold instead of private/shared.
1842 	 */
1843 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1844 	    !node_is_toptier(src_nid)) {
1845 		struct pglist_data *pgdat;
1846 		unsigned long rate_limit;
1847 		unsigned int latency, th, def_th;
1848 
1849 		pgdat = NODE_DATA(dst_nid);
1850 		if (pgdat_free_space_enough(pgdat)) {
1851 			/* workload changed, reset hot threshold */
1852 			pgdat->nbp_threshold = 0;
1853 			return true;
1854 		}
1855 
1856 		def_th = sysctl_numa_balancing_hot_threshold;
1857 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1858 			(20 - PAGE_SHIFT);
1859 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1860 
1861 		th = pgdat->nbp_threshold ? : def_th;
1862 		latency = numa_hint_fault_latency(folio);
1863 		if (latency >= th)
1864 			return false;
1865 
1866 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1867 						  folio_nr_pages(folio));
1868 	}
1869 
1870 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1871 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1872 
1873 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1874 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1875 		return false;
1876 
1877 	/*
1878 	 * Allow first faults or private faults to migrate immediately early in
1879 	 * the lifetime of a task. The magic number 4 is based on waiting for
1880 	 * two full passes of the "multi-stage node selection" test that is
1881 	 * executed below.
1882 	 */
1883 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1884 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1885 		return true;
1886 
1887 	/*
1888 	 * Multi-stage node selection is used in conjunction with a periodic
1889 	 * migration fault to build a temporal task<->page relation. By using
1890 	 * a two-stage filter we remove short/unlikely relations.
1891 	 *
1892 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1893 	 * a task's usage of a particular page (n_p) per total usage of this
1894 	 * page (n_t) (in a given time-span) to a probability.
1895 	 *
1896 	 * Our periodic faults will sample this probability and getting the
1897 	 * same result twice in a row, given these samples are fully
1898 	 * independent, is then given by P(n)^2, provided our sample period
1899 	 * is sufficiently short compared to the usage pattern.
1900 	 *
1901 	 * This quadric squishes small probabilities, making it less likely we
1902 	 * act on an unlikely task<->page relation.
1903 	 */
1904 	if (!cpupid_pid_unset(last_cpupid) &&
1905 				cpupid_to_nid(last_cpupid) != dst_nid)
1906 		return false;
1907 
1908 	/* Always allow migrate on private faults */
1909 	if (cpupid_match_pid(p, last_cpupid))
1910 		return true;
1911 
1912 	/* A shared fault, but p->numa_group has not been set up yet. */
1913 	if (!ng)
1914 		return true;
1915 
1916 	/*
1917 	 * Destination node is much more heavily used than the source
1918 	 * node? Allow migration.
1919 	 */
1920 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1921 					ACTIVE_NODE_FRACTION)
1922 		return true;
1923 
1924 	/*
1925 	 * Distribute memory according to CPU & memory use on each node,
1926 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1927 	 *
1928 	 * faults_cpu(dst)   3   faults_cpu(src)
1929 	 * --------------- * - > ---------------
1930 	 * faults_mem(dst)   4   faults_mem(src)
1931 	 */
1932 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1933 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1934 }
1935 
1936 /*
1937  * 'numa_type' describes the node at the moment of load balancing.
1938  */
1939 enum numa_type {
1940 	/* The node has spare capacity that can be used to run more tasks.  */
1941 	node_has_spare = 0,
1942 	/*
1943 	 * The node is fully used and the tasks don't compete for more CPU
1944 	 * cycles. Nevertheless, some tasks might wait before running.
1945 	 */
1946 	node_fully_busy,
1947 	/*
1948 	 * The node is overloaded and can't provide expected CPU cycles to all
1949 	 * tasks.
1950 	 */
1951 	node_overloaded
1952 };
1953 
1954 /* Cached statistics for all CPUs within a node */
1955 struct numa_stats {
1956 	unsigned long load;
1957 	unsigned long runnable;
1958 	unsigned long util;
1959 	/* Total compute capacity of CPUs on a node */
1960 	unsigned long compute_capacity;
1961 	unsigned int nr_running;
1962 	unsigned int weight;
1963 	enum numa_type node_type;
1964 	int idle_cpu;
1965 };
1966 
1967 struct task_numa_env {
1968 	struct task_struct *p;
1969 
1970 	int src_cpu, src_nid;
1971 	int dst_cpu, dst_nid;
1972 	int imb_numa_nr;
1973 
1974 	struct numa_stats src_stats, dst_stats;
1975 
1976 	int imbalance_pct;
1977 	int dist;
1978 
1979 	struct task_struct *best_task;
1980 	long best_imp;
1981 	int best_cpu;
1982 };
1983 
1984 static unsigned long cpu_load(struct rq *rq);
1985 static unsigned long cpu_runnable(struct rq *rq);
1986 
1987 static inline enum
1988 numa_type numa_classify(unsigned int imbalance_pct,
1989 			 struct numa_stats *ns)
1990 {
1991 	if ((ns->nr_running > ns->weight) &&
1992 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1993 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1994 		return node_overloaded;
1995 
1996 	if ((ns->nr_running < ns->weight) ||
1997 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1998 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1999 		return node_has_spare;
2000 
2001 	return node_fully_busy;
2002 }
2003 
2004 #ifdef CONFIG_SCHED_SMT
2005 /* Forward declarations of select_idle_sibling helpers */
2006 static inline bool test_idle_cores(int cpu);
2007 static inline int numa_idle_core(int idle_core, int cpu)
2008 {
2009 	if (!static_branch_likely(&sched_smt_present) ||
2010 	    idle_core >= 0 || !test_idle_cores(cpu))
2011 		return idle_core;
2012 
2013 	/*
2014 	 * Prefer cores instead of packing HT siblings
2015 	 * and triggering future load balancing.
2016 	 */
2017 	if (is_core_idle(cpu))
2018 		idle_core = cpu;
2019 
2020 	return idle_core;
2021 }
2022 #else
2023 static inline int numa_idle_core(int idle_core, int cpu)
2024 {
2025 	return idle_core;
2026 }
2027 #endif
2028 
2029 /*
2030  * Gather all necessary information to make NUMA balancing placement
2031  * decisions that are compatible with standard load balancer. This
2032  * borrows code and logic from update_sg_lb_stats but sharing a
2033  * common implementation is impractical.
2034  */
2035 static void update_numa_stats(struct task_numa_env *env,
2036 			      struct numa_stats *ns, int nid,
2037 			      bool find_idle)
2038 {
2039 	int cpu, idle_core = -1;
2040 
2041 	memset(ns, 0, sizeof(*ns));
2042 	ns->idle_cpu = -1;
2043 
2044 	rcu_read_lock();
2045 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2046 		struct rq *rq = cpu_rq(cpu);
2047 
2048 		ns->load += cpu_load(rq);
2049 		ns->runnable += cpu_runnable(rq);
2050 		ns->util += cpu_util_cfs(cpu);
2051 		ns->nr_running += rq->cfs.h_nr_running;
2052 		ns->compute_capacity += capacity_of(cpu);
2053 
2054 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2055 			if (READ_ONCE(rq->numa_migrate_on) ||
2056 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2057 				continue;
2058 
2059 			if (ns->idle_cpu == -1)
2060 				ns->idle_cpu = cpu;
2061 
2062 			idle_core = numa_idle_core(idle_core, cpu);
2063 		}
2064 	}
2065 	rcu_read_unlock();
2066 
2067 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2068 
2069 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2070 
2071 	if (idle_core >= 0)
2072 		ns->idle_cpu = idle_core;
2073 }
2074 
2075 static void task_numa_assign(struct task_numa_env *env,
2076 			     struct task_struct *p, long imp)
2077 {
2078 	struct rq *rq = cpu_rq(env->dst_cpu);
2079 
2080 	/* Check if run-queue part of active NUMA balance. */
2081 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2082 		int cpu;
2083 		int start = env->dst_cpu;
2084 
2085 		/* Find alternative idle CPU. */
2086 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2087 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2088 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2089 				continue;
2090 			}
2091 
2092 			env->dst_cpu = cpu;
2093 			rq = cpu_rq(env->dst_cpu);
2094 			if (!xchg(&rq->numa_migrate_on, 1))
2095 				goto assign;
2096 		}
2097 
2098 		/* Failed to find an alternative idle CPU */
2099 		return;
2100 	}
2101 
2102 assign:
2103 	/*
2104 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2105 	 * found a better CPU to move/swap.
2106 	 */
2107 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2108 		rq = cpu_rq(env->best_cpu);
2109 		WRITE_ONCE(rq->numa_migrate_on, 0);
2110 	}
2111 
2112 	if (env->best_task)
2113 		put_task_struct(env->best_task);
2114 	if (p)
2115 		get_task_struct(p);
2116 
2117 	env->best_task = p;
2118 	env->best_imp = imp;
2119 	env->best_cpu = env->dst_cpu;
2120 }
2121 
2122 static bool load_too_imbalanced(long src_load, long dst_load,
2123 				struct task_numa_env *env)
2124 {
2125 	long imb, old_imb;
2126 	long orig_src_load, orig_dst_load;
2127 	long src_capacity, dst_capacity;
2128 
2129 	/*
2130 	 * The load is corrected for the CPU capacity available on each node.
2131 	 *
2132 	 * src_load        dst_load
2133 	 * ------------ vs ---------
2134 	 * src_capacity    dst_capacity
2135 	 */
2136 	src_capacity = env->src_stats.compute_capacity;
2137 	dst_capacity = env->dst_stats.compute_capacity;
2138 
2139 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2140 
2141 	orig_src_load = env->src_stats.load;
2142 	orig_dst_load = env->dst_stats.load;
2143 
2144 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2145 
2146 	/* Would this change make things worse? */
2147 	return (imb > old_imb);
2148 }
2149 
2150 /*
2151  * Maximum NUMA importance can be 1998 (2*999);
2152  * SMALLIMP @ 30 would be close to 1998/64.
2153  * Used to deter task migration.
2154  */
2155 #define SMALLIMP	30
2156 
2157 /*
2158  * This checks if the overall compute and NUMA accesses of the system would
2159  * be improved if the source tasks was migrated to the target dst_cpu taking
2160  * into account that it might be best if task running on the dst_cpu should
2161  * be exchanged with the source task
2162  */
2163 static bool task_numa_compare(struct task_numa_env *env,
2164 			      long taskimp, long groupimp, bool maymove)
2165 {
2166 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2167 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2168 	long imp = p_ng ? groupimp : taskimp;
2169 	struct task_struct *cur;
2170 	long src_load, dst_load;
2171 	int dist = env->dist;
2172 	long moveimp = imp;
2173 	long load;
2174 	bool stopsearch = false;
2175 
2176 	if (READ_ONCE(dst_rq->numa_migrate_on))
2177 		return false;
2178 
2179 	rcu_read_lock();
2180 	cur = rcu_dereference(dst_rq->curr);
2181 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2182 		cur = NULL;
2183 
2184 	/*
2185 	 * Because we have preemption enabled we can get migrated around and
2186 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2187 	 */
2188 	if (cur == env->p) {
2189 		stopsearch = true;
2190 		goto unlock;
2191 	}
2192 
2193 	if (!cur) {
2194 		if (maymove && moveimp >= env->best_imp)
2195 			goto assign;
2196 		else
2197 			goto unlock;
2198 	}
2199 
2200 	/* Skip this swap candidate if cannot move to the source cpu. */
2201 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2202 		goto unlock;
2203 
2204 	/*
2205 	 * Skip this swap candidate if it is not moving to its preferred
2206 	 * node and the best task is.
2207 	 */
2208 	if (env->best_task &&
2209 	    env->best_task->numa_preferred_nid == env->src_nid &&
2210 	    cur->numa_preferred_nid != env->src_nid) {
2211 		goto unlock;
2212 	}
2213 
2214 	/*
2215 	 * "imp" is the fault differential for the source task between the
2216 	 * source and destination node. Calculate the total differential for
2217 	 * the source task and potential destination task. The more negative
2218 	 * the value is, the more remote accesses that would be expected to
2219 	 * be incurred if the tasks were swapped.
2220 	 *
2221 	 * If dst and source tasks are in the same NUMA group, or not
2222 	 * in any group then look only at task weights.
2223 	 */
2224 	cur_ng = rcu_dereference(cur->numa_group);
2225 	if (cur_ng == p_ng) {
2226 		/*
2227 		 * Do not swap within a group or between tasks that have
2228 		 * no group if there is spare capacity. Swapping does
2229 		 * not address the load imbalance and helps one task at
2230 		 * the cost of punishing another.
2231 		 */
2232 		if (env->dst_stats.node_type == node_has_spare)
2233 			goto unlock;
2234 
2235 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2236 		      task_weight(cur, env->dst_nid, dist);
2237 		/*
2238 		 * Add some hysteresis to prevent swapping the
2239 		 * tasks within a group over tiny differences.
2240 		 */
2241 		if (cur_ng)
2242 			imp -= imp / 16;
2243 	} else {
2244 		/*
2245 		 * Compare the group weights. If a task is all by itself
2246 		 * (not part of a group), use the task weight instead.
2247 		 */
2248 		if (cur_ng && p_ng)
2249 			imp += group_weight(cur, env->src_nid, dist) -
2250 			       group_weight(cur, env->dst_nid, dist);
2251 		else
2252 			imp += task_weight(cur, env->src_nid, dist) -
2253 			       task_weight(cur, env->dst_nid, dist);
2254 	}
2255 
2256 	/* Discourage picking a task already on its preferred node */
2257 	if (cur->numa_preferred_nid == env->dst_nid)
2258 		imp -= imp / 16;
2259 
2260 	/*
2261 	 * Encourage picking a task that moves to its preferred node.
2262 	 * This potentially makes imp larger than it's maximum of
2263 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2264 	 * case, it does not matter.
2265 	 */
2266 	if (cur->numa_preferred_nid == env->src_nid)
2267 		imp += imp / 8;
2268 
2269 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2270 		imp = moveimp;
2271 		cur = NULL;
2272 		goto assign;
2273 	}
2274 
2275 	/*
2276 	 * Prefer swapping with a task moving to its preferred node over a
2277 	 * task that is not.
2278 	 */
2279 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2280 	    env->best_task->numa_preferred_nid != env->src_nid) {
2281 		goto assign;
2282 	}
2283 
2284 	/*
2285 	 * If the NUMA importance is less than SMALLIMP,
2286 	 * task migration might only result in ping pong
2287 	 * of tasks and also hurt performance due to cache
2288 	 * misses.
2289 	 */
2290 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2291 		goto unlock;
2292 
2293 	/*
2294 	 * In the overloaded case, try and keep the load balanced.
2295 	 */
2296 	load = task_h_load(env->p) - task_h_load(cur);
2297 	if (!load)
2298 		goto assign;
2299 
2300 	dst_load = env->dst_stats.load + load;
2301 	src_load = env->src_stats.load - load;
2302 
2303 	if (load_too_imbalanced(src_load, dst_load, env))
2304 		goto unlock;
2305 
2306 assign:
2307 	/* Evaluate an idle CPU for a task numa move. */
2308 	if (!cur) {
2309 		int cpu = env->dst_stats.idle_cpu;
2310 
2311 		/* Nothing cached so current CPU went idle since the search. */
2312 		if (cpu < 0)
2313 			cpu = env->dst_cpu;
2314 
2315 		/*
2316 		 * If the CPU is no longer truly idle and the previous best CPU
2317 		 * is, keep using it.
2318 		 */
2319 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2320 		    idle_cpu(env->best_cpu)) {
2321 			cpu = env->best_cpu;
2322 		}
2323 
2324 		env->dst_cpu = cpu;
2325 	}
2326 
2327 	task_numa_assign(env, cur, imp);
2328 
2329 	/*
2330 	 * If a move to idle is allowed because there is capacity or load
2331 	 * balance improves then stop the search. While a better swap
2332 	 * candidate may exist, a search is not free.
2333 	 */
2334 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2335 		stopsearch = true;
2336 
2337 	/*
2338 	 * If a swap candidate must be identified and the current best task
2339 	 * moves its preferred node then stop the search.
2340 	 */
2341 	if (!maymove && env->best_task &&
2342 	    env->best_task->numa_preferred_nid == env->src_nid) {
2343 		stopsearch = true;
2344 	}
2345 unlock:
2346 	rcu_read_unlock();
2347 
2348 	return stopsearch;
2349 }
2350 
2351 static void task_numa_find_cpu(struct task_numa_env *env,
2352 				long taskimp, long groupimp)
2353 {
2354 	bool maymove = false;
2355 	int cpu;
2356 
2357 	/*
2358 	 * If dst node has spare capacity, then check if there is an
2359 	 * imbalance that would be overruled by the load balancer.
2360 	 */
2361 	if (env->dst_stats.node_type == node_has_spare) {
2362 		unsigned int imbalance;
2363 		int src_running, dst_running;
2364 
2365 		/*
2366 		 * Would movement cause an imbalance? Note that if src has
2367 		 * more running tasks that the imbalance is ignored as the
2368 		 * move improves the imbalance from the perspective of the
2369 		 * CPU load balancer.
2370 		 * */
2371 		src_running = env->src_stats.nr_running - 1;
2372 		dst_running = env->dst_stats.nr_running + 1;
2373 		imbalance = max(0, dst_running - src_running);
2374 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2375 						  env->imb_numa_nr);
2376 
2377 		/* Use idle CPU if there is no imbalance */
2378 		if (!imbalance) {
2379 			maymove = true;
2380 			if (env->dst_stats.idle_cpu >= 0) {
2381 				env->dst_cpu = env->dst_stats.idle_cpu;
2382 				task_numa_assign(env, NULL, 0);
2383 				return;
2384 			}
2385 		}
2386 	} else {
2387 		long src_load, dst_load, load;
2388 		/*
2389 		 * If the improvement from just moving env->p direction is better
2390 		 * than swapping tasks around, check if a move is possible.
2391 		 */
2392 		load = task_h_load(env->p);
2393 		dst_load = env->dst_stats.load + load;
2394 		src_load = env->src_stats.load - load;
2395 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2396 	}
2397 
2398 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2399 		/* Skip this CPU if the source task cannot migrate */
2400 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2401 			continue;
2402 
2403 		env->dst_cpu = cpu;
2404 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2405 			break;
2406 	}
2407 }
2408 
2409 static int task_numa_migrate(struct task_struct *p)
2410 {
2411 	struct task_numa_env env = {
2412 		.p = p,
2413 
2414 		.src_cpu = task_cpu(p),
2415 		.src_nid = task_node(p),
2416 
2417 		.imbalance_pct = 112,
2418 
2419 		.best_task = NULL,
2420 		.best_imp = 0,
2421 		.best_cpu = -1,
2422 	};
2423 	unsigned long taskweight, groupweight;
2424 	struct sched_domain *sd;
2425 	long taskimp, groupimp;
2426 	struct numa_group *ng;
2427 	struct rq *best_rq;
2428 	int nid, ret, dist;
2429 
2430 	/*
2431 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2432 	 * imbalance and would be the first to start moving tasks about.
2433 	 *
2434 	 * And we want to avoid any moving of tasks about, as that would create
2435 	 * random movement of tasks -- counter the numa conditions we're trying
2436 	 * to satisfy here.
2437 	 */
2438 	rcu_read_lock();
2439 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2440 	if (sd) {
2441 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2442 		env.imb_numa_nr = sd->imb_numa_nr;
2443 	}
2444 	rcu_read_unlock();
2445 
2446 	/*
2447 	 * Cpusets can break the scheduler domain tree into smaller
2448 	 * balance domains, some of which do not cross NUMA boundaries.
2449 	 * Tasks that are "trapped" in such domains cannot be migrated
2450 	 * elsewhere, so there is no point in (re)trying.
2451 	 */
2452 	if (unlikely(!sd)) {
2453 		sched_setnuma(p, task_node(p));
2454 		return -EINVAL;
2455 	}
2456 
2457 	env.dst_nid = p->numa_preferred_nid;
2458 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2459 	taskweight = task_weight(p, env.src_nid, dist);
2460 	groupweight = group_weight(p, env.src_nid, dist);
2461 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2462 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2463 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2464 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2465 
2466 	/* Try to find a spot on the preferred nid. */
2467 	task_numa_find_cpu(&env, taskimp, groupimp);
2468 
2469 	/*
2470 	 * Look at other nodes in these cases:
2471 	 * - there is no space available on the preferred_nid
2472 	 * - the task is part of a numa_group that is interleaved across
2473 	 *   multiple NUMA nodes; in order to better consolidate the group,
2474 	 *   we need to check other locations.
2475 	 */
2476 	ng = deref_curr_numa_group(p);
2477 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2478 		for_each_node_state(nid, N_CPU) {
2479 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2480 				continue;
2481 
2482 			dist = node_distance(env.src_nid, env.dst_nid);
2483 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2484 						dist != env.dist) {
2485 				taskweight = task_weight(p, env.src_nid, dist);
2486 				groupweight = group_weight(p, env.src_nid, dist);
2487 			}
2488 
2489 			/* Only consider nodes where both task and groups benefit */
2490 			taskimp = task_weight(p, nid, dist) - taskweight;
2491 			groupimp = group_weight(p, nid, dist) - groupweight;
2492 			if (taskimp < 0 && groupimp < 0)
2493 				continue;
2494 
2495 			env.dist = dist;
2496 			env.dst_nid = nid;
2497 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2498 			task_numa_find_cpu(&env, taskimp, groupimp);
2499 		}
2500 	}
2501 
2502 	/*
2503 	 * If the task is part of a workload that spans multiple NUMA nodes,
2504 	 * and is migrating into one of the workload's active nodes, remember
2505 	 * this node as the task's preferred numa node, so the workload can
2506 	 * settle down.
2507 	 * A task that migrated to a second choice node will be better off
2508 	 * trying for a better one later. Do not set the preferred node here.
2509 	 */
2510 	if (ng) {
2511 		if (env.best_cpu == -1)
2512 			nid = env.src_nid;
2513 		else
2514 			nid = cpu_to_node(env.best_cpu);
2515 
2516 		if (nid != p->numa_preferred_nid)
2517 			sched_setnuma(p, nid);
2518 	}
2519 
2520 	/* No better CPU than the current one was found. */
2521 	if (env.best_cpu == -1) {
2522 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2523 		return -EAGAIN;
2524 	}
2525 
2526 	best_rq = cpu_rq(env.best_cpu);
2527 	if (env.best_task == NULL) {
2528 		ret = migrate_task_to(p, env.best_cpu);
2529 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2530 		if (ret != 0)
2531 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2532 		return ret;
2533 	}
2534 
2535 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2536 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2537 
2538 	if (ret != 0)
2539 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2540 	put_task_struct(env.best_task);
2541 	return ret;
2542 }
2543 
2544 /* Attempt to migrate a task to a CPU on the preferred node. */
2545 static void numa_migrate_preferred(struct task_struct *p)
2546 {
2547 	unsigned long interval = HZ;
2548 
2549 	/* This task has no NUMA fault statistics yet */
2550 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2551 		return;
2552 
2553 	/* Periodically retry migrating the task to the preferred node */
2554 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2555 	p->numa_migrate_retry = jiffies + interval;
2556 
2557 	/* Success if task is already running on preferred CPU */
2558 	if (task_node(p) == p->numa_preferred_nid)
2559 		return;
2560 
2561 	/* Otherwise, try migrate to a CPU on the preferred node */
2562 	task_numa_migrate(p);
2563 }
2564 
2565 /*
2566  * Find out how many nodes the workload is actively running on. Do this by
2567  * tracking the nodes from which NUMA hinting faults are triggered. This can
2568  * be different from the set of nodes where the workload's memory is currently
2569  * located.
2570  */
2571 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2572 {
2573 	unsigned long faults, max_faults = 0;
2574 	int nid, active_nodes = 0;
2575 
2576 	for_each_node_state(nid, N_CPU) {
2577 		faults = group_faults_cpu(numa_group, nid);
2578 		if (faults > max_faults)
2579 			max_faults = faults;
2580 	}
2581 
2582 	for_each_node_state(nid, N_CPU) {
2583 		faults = group_faults_cpu(numa_group, nid);
2584 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2585 			active_nodes++;
2586 	}
2587 
2588 	numa_group->max_faults_cpu = max_faults;
2589 	numa_group->active_nodes = active_nodes;
2590 }
2591 
2592 /*
2593  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2594  * increments. The more local the fault statistics are, the higher the scan
2595  * period will be for the next scan window. If local/(local+remote) ratio is
2596  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2597  * the scan period will decrease. Aim for 70% local accesses.
2598  */
2599 #define NUMA_PERIOD_SLOTS 10
2600 #define NUMA_PERIOD_THRESHOLD 7
2601 
2602 /*
2603  * Increase the scan period (slow down scanning) if the majority of
2604  * our memory is already on our local node, or if the majority of
2605  * the page accesses are shared with other processes.
2606  * Otherwise, decrease the scan period.
2607  */
2608 static void update_task_scan_period(struct task_struct *p,
2609 			unsigned long shared, unsigned long private)
2610 {
2611 	unsigned int period_slot;
2612 	int lr_ratio, ps_ratio;
2613 	int diff;
2614 
2615 	unsigned long remote = p->numa_faults_locality[0];
2616 	unsigned long local = p->numa_faults_locality[1];
2617 
2618 	/*
2619 	 * If there were no record hinting faults then either the task is
2620 	 * completely idle or all activity is in areas that are not of interest
2621 	 * to automatic numa balancing. Related to that, if there were failed
2622 	 * migration then it implies we are migrating too quickly or the local
2623 	 * node is overloaded. In either case, scan slower
2624 	 */
2625 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2626 		p->numa_scan_period = min(p->numa_scan_period_max,
2627 			p->numa_scan_period << 1);
2628 
2629 		p->mm->numa_next_scan = jiffies +
2630 			msecs_to_jiffies(p->numa_scan_period);
2631 
2632 		return;
2633 	}
2634 
2635 	/*
2636 	 * Prepare to scale scan period relative to the current period.
2637 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2638 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2639 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2640 	 */
2641 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2642 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2643 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2644 
2645 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2646 		/*
2647 		 * Most memory accesses are local. There is no need to
2648 		 * do fast NUMA scanning, since memory is already local.
2649 		 */
2650 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2651 		if (!slot)
2652 			slot = 1;
2653 		diff = slot * period_slot;
2654 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2655 		/*
2656 		 * Most memory accesses are shared with other tasks.
2657 		 * There is no point in continuing fast NUMA scanning,
2658 		 * since other tasks may just move the memory elsewhere.
2659 		 */
2660 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2661 		if (!slot)
2662 			slot = 1;
2663 		diff = slot * period_slot;
2664 	} else {
2665 		/*
2666 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2667 		 * yet they are not on the local NUMA node. Speed up
2668 		 * NUMA scanning to get the memory moved over.
2669 		 */
2670 		int ratio = max(lr_ratio, ps_ratio);
2671 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2672 	}
2673 
2674 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2675 			task_scan_min(p), task_scan_max(p));
2676 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2677 }
2678 
2679 /*
2680  * Get the fraction of time the task has been running since the last
2681  * NUMA placement cycle. The scheduler keeps similar statistics, but
2682  * decays those on a 32ms period, which is orders of magnitude off
2683  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2684  * stats only if the task is so new there are no NUMA statistics yet.
2685  */
2686 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2687 {
2688 	u64 runtime, delta, now;
2689 	/* Use the start of this time slice to avoid calculations. */
2690 	now = p->se.exec_start;
2691 	runtime = p->se.sum_exec_runtime;
2692 
2693 	if (p->last_task_numa_placement) {
2694 		delta = runtime - p->last_sum_exec_runtime;
2695 		*period = now - p->last_task_numa_placement;
2696 
2697 		/* Avoid time going backwards, prevent potential divide error: */
2698 		if (unlikely((s64)*period < 0))
2699 			*period = 0;
2700 	} else {
2701 		delta = p->se.avg.load_sum;
2702 		*period = LOAD_AVG_MAX;
2703 	}
2704 
2705 	p->last_sum_exec_runtime = runtime;
2706 	p->last_task_numa_placement = now;
2707 
2708 	return delta;
2709 }
2710 
2711 /*
2712  * Determine the preferred nid for a task in a numa_group. This needs to
2713  * be done in a way that produces consistent results with group_weight,
2714  * otherwise workloads might not converge.
2715  */
2716 static int preferred_group_nid(struct task_struct *p, int nid)
2717 {
2718 	nodemask_t nodes;
2719 	int dist;
2720 
2721 	/* Direct connections between all NUMA nodes. */
2722 	if (sched_numa_topology_type == NUMA_DIRECT)
2723 		return nid;
2724 
2725 	/*
2726 	 * On a system with glueless mesh NUMA topology, group_weight
2727 	 * scores nodes according to the number of NUMA hinting faults on
2728 	 * both the node itself, and on nearby nodes.
2729 	 */
2730 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2731 		unsigned long score, max_score = 0;
2732 		int node, max_node = nid;
2733 
2734 		dist = sched_max_numa_distance;
2735 
2736 		for_each_node_state(node, N_CPU) {
2737 			score = group_weight(p, node, dist);
2738 			if (score > max_score) {
2739 				max_score = score;
2740 				max_node = node;
2741 			}
2742 		}
2743 		return max_node;
2744 	}
2745 
2746 	/*
2747 	 * Finding the preferred nid in a system with NUMA backplane
2748 	 * interconnect topology is more involved. The goal is to locate
2749 	 * tasks from numa_groups near each other in the system, and
2750 	 * untangle workloads from different sides of the system. This requires
2751 	 * searching down the hierarchy of node groups, recursively searching
2752 	 * inside the highest scoring group of nodes. The nodemask tricks
2753 	 * keep the complexity of the search down.
2754 	 */
2755 	nodes = node_states[N_CPU];
2756 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2757 		unsigned long max_faults = 0;
2758 		nodemask_t max_group = NODE_MASK_NONE;
2759 		int a, b;
2760 
2761 		/* Are there nodes at this distance from each other? */
2762 		if (!find_numa_distance(dist))
2763 			continue;
2764 
2765 		for_each_node_mask(a, nodes) {
2766 			unsigned long faults = 0;
2767 			nodemask_t this_group;
2768 			nodes_clear(this_group);
2769 
2770 			/* Sum group's NUMA faults; includes a==b case. */
2771 			for_each_node_mask(b, nodes) {
2772 				if (node_distance(a, b) < dist) {
2773 					faults += group_faults(p, b);
2774 					node_set(b, this_group);
2775 					node_clear(b, nodes);
2776 				}
2777 			}
2778 
2779 			/* Remember the top group. */
2780 			if (faults > max_faults) {
2781 				max_faults = faults;
2782 				max_group = this_group;
2783 				/*
2784 				 * subtle: at the smallest distance there is
2785 				 * just one node left in each "group", the
2786 				 * winner is the preferred nid.
2787 				 */
2788 				nid = a;
2789 			}
2790 		}
2791 		/* Next round, evaluate the nodes within max_group. */
2792 		if (!max_faults)
2793 			break;
2794 		nodes = max_group;
2795 	}
2796 	return nid;
2797 }
2798 
2799 static void task_numa_placement(struct task_struct *p)
2800 {
2801 	int seq, nid, max_nid = NUMA_NO_NODE;
2802 	unsigned long max_faults = 0;
2803 	unsigned long fault_types[2] = { 0, 0 };
2804 	unsigned long total_faults;
2805 	u64 runtime, period;
2806 	spinlock_t *group_lock = NULL;
2807 	struct numa_group *ng;
2808 
2809 	/*
2810 	 * The p->mm->numa_scan_seq field gets updated without
2811 	 * exclusive access. Use READ_ONCE() here to ensure
2812 	 * that the field is read in a single access:
2813 	 */
2814 	seq = READ_ONCE(p->mm->numa_scan_seq);
2815 	if (p->numa_scan_seq == seq)
2816 		return;
2817 	p->numa_scan_seq = seq;
2818 	p->numa_scan_period_max = task_scan_max(p);
2819 
2820 	total_faults = p->numa_faults_locality[0] +
2821 		       p->numa_faults_locality[1];
2822 	runtime = numa_get_avg_runtime(p, &period);
2823 
2824 	/* If the task is part of a group prevent parallel updates to group stats */
2825 	ng = deref_curr_numa_group(p);
2826 	if (ng) {
2827 		group_lock = &ng->lock;
2828 		spin_lock_irq(group_lock);
2829 	}
2830 
2831 	/* Find the node with the highest number of faults */
2832 	for_each_online_node(nid) {
2833 		/* Keep track of the offsets in numa_faults array */
2834 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2835 		unsigned long faults = 0, group_faults = 0;
2836 		int priv;
2837 
2838 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2839 			long diff, f_diff, f_weight;
2840 
2841 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2842 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2843 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2844 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2845 
2846 			/* Decay existing window, copy faults since last scan */
2847 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2848 			fault_types[priv] += p->numa_faults[membuf_idx];
2849 			p->numa_faults[membuf_idx] = 0;
2850 
2851 			/*
2852 			 * Normalize the faults_from, so all tasks in a group
2853 			 * count according to CPU use, instead of by the raw
2854 			 * number of faults. Tasks with little runtime have
2855 			 * little over-all impact on throughput, and thus their
2856 			 * faults are less important.
2857 			 */
2858 			f_weight = div64_u64(runtime << 16, period + 1);
2859 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2860 				   (total_faults + 1);
2861 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2862 			p->numa_faults[cpubuf_idx] = 0;
2863 
2864 			p->numa_faults[mem_idx] += diff;
2865 			p->numa_faults[cpu_idx] += f_diff;
2866 			faults += p->numa_faults[mem_idx];
2867 			p->total_numa_faults += diff;
2868 			if (ng) {
2869 				/*
2870 				 * safe because we can only change our own group
2871 				 *
2872 				 * mem_idx represents the offset for a given
2873 				 * nid and priv in a specific region because it
2874 				 * is at the beginning of the numa_faults array.
2875 				 */
2876 				ng->faults[mem_idx] += diff;
2877 				ng->faults[cpu_idx] += f_diff;
2878 				ng->total_faults += diff;
2879 				group_faults += ng->faults[mem_idx];
2880 			}
2881 		}
2882 
2883 		if (!ng) {
2884 			if (faults > max_faults) {
2885 				max_faults = faults;
2886 				max_nid = nid;
2887 			}
2888 		} else if (group_faults > max_faults) {
2889 			max_faults = group_faults;
2890 			max_nid = nid;
2891 		}
2892 	}
2893 
2894 	/* Cannot migrate task to CPU-less node */
2895 	max_nid = numa_nearest_node(max_nid, N_CPU);
2896 
2897 	if (ng) {
2898 		numa_group_count_active_nodes(ng);
2899 		spin_unlock_irq(group_lock);
2900 		max_nid = preferred_group_nid(p, max_nid);
2901 	}
2902 
2903 	if (max_faults) {
2904 		/* Set the new preferred node */
2905 		if (max_nid != p->numa_preferred_nid)
2906 			sched_setnuma(p, max_nid);
2907 	}
2908 
2909 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2910 }
2911 
2912 static inline int get_numa_group(struct numa_group *grp)
2913 {
2914 	return refcount_inc_not_zero(&grp->refcount);
2915 }
2916 
2917 static inline void put_numa_group(struct numa_group *grp)
2918 {
2919 	if (refcount_dec_and_test(&grp->refcount))
2920 		kfree_rcu(grp, rcu);
2921 }
2922 
2923 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2924 			int *priv)
2925 {
2926 	struct numa_group *grp, *my_grp;
2927 	struct task_struct *tsk;
2928 	bool join = false;
2929 	int cpu = cpupid_to_cpu(cpupid);
2930 	int i;
2931 
2932 	if (unlikely(!deref_curr_numa_group(p))) {
2933 		unsigned int size = sizeof(struct numa_group) +
2934 				    NR_NUMA_HINT_FAULT_STATS *
2935 				    nr_node_ids * sizeof(unsigned long);
2936 
2937 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2938 		if (!grp)
2939 			return;
2940 
2941 		refcount_set(&grp->refcount, 1);
2942 		grp->active_nodes = 1;
2943 		grp->max_faults_cpu = 0;
2944 		spin_lock_init(&grp->lock);
2945 		grp->gid = p->pid;
2946 
2947 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2948 			grp->faults[i] = p->numa_faults[i];
2949 
2950 		grp->total_faults = p->total_numa_faults;
2951 
2952 		grp->nr_tasks++;
2953 		rcu_assign_pointer(p->numa_group, grp);
2954 	}
2955 
2956 	rcu_read_lock();
2957 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2958 
2959 	if (!cpupid_match_pid(tsk, cpupid))
2960 		goto no_join;
2961 
2962 	grp = rcu_dereference(tsk->numa_group);
2963 	if (!grp)
2964 		goto no_join;
2965 
2966 	my_grp = deref_curr_numa_group(p);
2967 	if (grp == my_grp)
2968 		goto no_join;
2969 
2970 	/*
2971 	 * Only join the other group if its bigger; if we're the bigger group,
2972 	 * the other task will join us.
2973 	 */
2974 	if (my_grp->nr_tasks > grp->nr_tasks)
2975 		goto no_join;
2976 
2977 	/*
2978 	 * Tie-break on the grp address.
2979 	 */
2980 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2981 		goto no_join;
2982 
2983 	/* Always join threads in the same process. */
2984 	if (tsk->mm == current->mm)
2985 		join = true;
2986 
2987 	/* Simple filter to avoid false positives due to PID collisions */
2988 	if (flags & TNF_SHARED)
2989 		join = true;
2990 
2991 	/* Update priv based on whether false sharing was detected */
2992 	*priv = !join;
2993 
2994 	if (join && !get_numa_group(grp))
2995 		goto no_join;
2996 
2997 	rcu_read_unlock();
2998 
2999 	if (!join)
3000 		return;
3001 
3002 	WARN_ON_ONCE(irqs_disabled());
3003 	double_lock_irq(&my_grp->lock, &grp->lock);
3004 
3005 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3006 		my_grp->faults[i] -= p->numa_faults[i];
3007 		grp->faults[i] += p->numa_faults[i];
3008 	}
3009 	my_grp->total_faults -= p->total_numa_faults;
3010 	grp->total_faults += p->total_numa_faults;
3011 
3012 	my_grp->nr_tasks--;
3013 	grp->nr_tasks++;
3014 
3015 	spin_unlock(&my_grp->lock);
3016 	spin_unlock_irq(&grp->lock);
3017 
3018 	rcu_assign_pointer(p->numa_group, grp);
3019 
3020 	put_numa_group(my_grp);
3021 	return;
3022 
3023 no_join:
3024 	rcu_read_unlock();
3025 	return;
3026 }
3027 
3028 /*
3029  * Get rid of NUMA statistics associated with a task (either current or dead).
3030  * If @final is set, the task is dead and has reached refcount zero, so we can
3031  * safely free all relevant data structures. Otherwise, there might be
3032  * concurrent reads from places like load balancing and procfs, and we should
3033  * reset the data back to default state without freeing ->numa_faults.
3034  */
3035 void task_numa_free(struct task_struct *p, bool final)
3036 {
3037 	/* safe: p either is current or is being freed by current */
3038 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3039 	unsigned long *numa_faults = p->numa_faults;
3040 	unsigned long flags;
3041 	int i;
3042 
3043 	if (!numa_faults)
3044 		return;
3045 
3046 	if (grp) {
3047 		spin_lock_irqsave(&grp->lock, flags);
3048 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3049 			grp->faults[i] -= p->numa_faults[i];
3050 		grp->total_faults -= p->total_numa_faults;
3051 
3052 		grp->nr_tasks--;
3053 		spin_unlock_irqrestore(&grp->lock, flags);
3054 		RCU_INIT_POINTER(p->numa_group, NULL);
3055 		put_numa_group(grp);
3056 	}
3057 
3058 	if (final) {
3059 		p->numa_faults = NULL;
3060 		kfree(numa_faults);
3061 	} else {
3062 		p->total_numa_faults = 0;
3063 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3064 			numa_faults[i] = 0;
3065 	}
3066 }
3067 
3068 /*
3069  * Got a PROT_NONE fault for a page on @node.
3070  */
3071 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3072 {
3073 	struct task_struct *p = current;
3074 	bool migrated = flags & TNF_MIGRATED;
3075 	int cpu_node = task_node(current);
3076 	int local = !!(flags & TNF_FAULT_LOCAL);
3077 	struct numa_group *ng;
3078 	int priv;
3079 
3080 	if (!static_branch_likely(&sched_numa_balancing))
3081 		return;
3082 
3083 	/* for example, ksmd faulting in a user's mm */
3084 	if (!p->mm)
3085 		return;
3086 
3087 	/*
3088 	 * NUMA faults statistics are unnecessary for the slow memory
3089 	 * node for memory tiering mode.
3090 	 */
3091 	if (!node_is_toptier(mem_node) &&
3092 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3093 	     !cpupid_valid(last_cpupid)))
3094 		return;
3095 
3096 	/* Allocate buffer to track faults on a per-node basis */
3097 	if (unlikely(!p->numa_faults)) {
3098 		int size = sizeof(*p->numa_faults) *
3099 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3100 
3101 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3102 		if (!p->numa_faults)
3103 			return;
3104 
3105 		p->total_numa_faults = 0;
3106 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3107 	}
3108 
3109 	/*
3110 	 * First accesses are treated as private, otherwise consider accesses
3111 	 * to be private if the accessing pid has not changed
3112 	 */
3113 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3114 		priv = 1;
3115 	} else {
3116 		priv = cpupid_match_pid(p, last_cpupid);
3117 		if (!priv && !(flags & TNF_NO_GROUP))
3118 			task_numa_group(p, last_cpupid, flags, &priv);
3119 	}
3120 
3121 	/*
3122 	 * If a workload spans multiple NUMA nodes, a shared fault that
3123 	 * occurs wholly within the set of nodes that the workload is
3124 	 * actively using should be counted as local. This allows the
3125 	 * scan rate to slow down when a workload has settled down.
3126 	 */
3127 	ng = deref_curr_numa_group(p);
3128 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3129 				numa_is_active_node(cpu_node, ng) &&
3130 				numa_is_active_node(mem_node, ng))
3131 		local = 1;
3132 
3133 	/*
3134 	 * Retry to migrate task to preferred node periodically, in case it
3135 	 * previously failed, or the scheduler moved us.
3136 	 */
3137 	if (time_after(jiffies, p->numa_migrate_retry)) {
3138 		task_numa_placement(p);
3139 		numa_migrate_preferred(p);
3140 	}
3141 
3142 	if (migrated)
3143 		p->numa_pages_migrated += pages;
3144 	if (flags & TNF_MIGRATE_FAIL)
3145 		p->numa_faults_locality[2] += pages;
3146 
3147 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3148 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3149 	p->numa_faults_locality[local] += pages;
3150 }
3151 
3152 static void reset_ptenuma_scan(struct task_struct *p)
3153 {
3154 	/*
3155 	 * We only did a read acquisition of the mmap sem, so
3156 	 * p->mm->numa_scan_seq is written to without exclusive access
3157 	 * and the update is not guaranteed to be atomic. That's not
3158 	 * much of an issue though, since this is just used for
3159 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3160 	 * expensive, to avoid any form of compiler optimizations:
3161 	 */
3162 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3163 	p->mm->numa_scan_offset = 0;
3164 }
3165 
3166 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3167 {
3168 	unsigned long pids;
3169 	/*
3170 	 * Allow unconditional access first two times, so that all the (pages)
3171 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3172 	 * This is also done to avoid any side effect of task scanning
3173 	 * amplifying the unfairness of disjoint set of VMAs' access.
3174 	 */
3175 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3176 		return true;
3177 
3178 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3179 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3180 		return true;
3181 
3182 	/*
3183 	 * Complete a scan that has already started regardless of PID access, or
3184 	 * some VMAs may never be scanned in multi-threaded applications:
3185 	 */
3186 	if (mm->numa_scan_offset > vma->vm_start) {
3187 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3188 		return true;
3189 	}
3190 
3191 	return false;
3192 }
3193 
3194 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3195 
3196 /*
3197  * The expensive part of numa migration is done from task_work context.
3198  * Triggered from task_tick_numa().
3199  */
3200 static void task_numa_work(struct callback_head *work)
3201 {
3202 	unsigned long migrate, next_scan, now = jiffies;
3203 	struct task_struct *p = current;
3204 	struct mm_struct *mm = p->mm;
3205 	u64 runtime = p->se.sum_exec_runtime;
3206 	struct vm_area_struct *vma;
3207 	unsigned long start, end;
3208 	unsigned long nr_pte_updates = 0;
3209 	long pages, virtpages;
3210 	struct vma_iterator vmi;
3211 	bool vma_pids_skipped;
3212 	bool vma_pids_forced = false;
3213 
3214 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3215 
3216 	work->next = work;
3217 	/*
3218 	 * Who cares about NUMA placement when they're dying.
3219 	 *
3220 	 * NOTE: make sure not to dereference p->mm before this check,
3221 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3222 	 * without p->mm even though we still had it when we enqueued this
3223 	 * work.
3224 	 */
3225 	if (p->flags & PF_EXITING)
3226 		return;
3227 
3228 	if (!mm->numa_next_scan) {
3229 		mm->numa_next_scan = now +
3230 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3231 	}
3232 
3233 	/*
3234 	 * Enforce maximal scan/migration frequency..
3235 	 */
3236 	migrate = mm->numa_next_scan;
3237 	if (time_before(now, migrate))
3238 		return;
3239 
3240 	if (p->numa_scan_period == 0) {
3241 		p->numa_scan_period_max = task_scan_max(p);
3242 		p->numa_scan_period = task_scan_start(p);
3243 	}
3244 
3245 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3246 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3247 		return;
3248 
3249 	/*
3250 	 * Delay this task enough that another task of this mm will likely win
3251 	 * the next time around.
3252 	 */
3253 	p->node_stamp += 2 * TICK_NSEC;
3254 
3255 	pages = sysctl_numa_balancing_scan_size;
3256 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3257 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3258 	if (!pages)
3259 		return;
3260 
3261 
3262 	if (!mmap_read_trylock(mm))
3263 		return;
3264 
3265 	/*
3266 	 * VMAs are skipped if the current PID has not trapped a fault within
3267 	 * the VMA recently. Allow scanning to be forced if there is no
3268 	 * suitable VMA remaining.
3269 	 */
3270 	vma_pids_skipped = false;
3271 
3272 retry_pids:
3273 	start = mm->numa_scan_offset;
3274 	vma_iter_init(&vmi, mm, start);
3275 	vma = vma_next(&vmi);
3276 	if (!vma) {
3277 		reset_ptenuma_scan(p);
3278 		start = 0;
3279 		vma_iter_set(&vmi, start);
3280 		vma = vma_next(&vmi);
3281 	}
3282 
3283 	do {
3284 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3285 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3286 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3287 			continue;
3288 		}
3289 
3290 		/*
3291 		 * Shared library pages mapped by multiple processes are not
3292 		 * migrated as it is expected they are cache replicated. Avoid
3293 		 * hinting faults in read-only file-backed mappings or the vDSO
3294 		 * as migrating the pages will be of marginal benefit.
3295 		 */
3296 		if (!vma->vm_mm ||
3297 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3298 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3299 			continue;
3300 		}
3301 
3302 		/*
3303 		 * Skip inaccessible VMAs to avoid any confusion between
3304 		 * PROT_NONE and NUMA hinting PTEs
3305 		 */
3306 		if (!vma_is_accessible(vma)) {
3307 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3308 			continue;
3309 		}
3310 
3311 		/* Initialise new per-VMA NUMAB state. */
3312 		if (!vma->numab_state) {
3313 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3314 				GFP_KERNEL);
3315 			if (!vma->numab_state)
3316 				continue;
3317 
3318 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3319 
3320 			vma->numab_state->next_scan = now +
3321 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3322 
3323 			/* Reset happens after 4 times scan delay of scan start */
3324 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3325 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3326 
3327 			/*
3328 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3329 			 * to prevent VMAs being skipped prematurely on the
3330 			 * first scan:
3331 			 */
3332 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3333 		}
3334 
3335 		/*
3336 		 * Scanning the VMAs of short lived tasks add more overhead. So
3337 		 * delay the scan for new VMAs.
3338 		 */
3339 		if (mm->numa_scan_seq && time_before(jiffies,
3340 						vma->numab_state->next_scan)) {
3341 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3342 			continue;
3343 		}
3344 
3345 		/* RESET access PIDs regularly for old VMAs. */
3346 		if (mm->numa_scan_seq &&
3347 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3348 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3349 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3350 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3351 			vma->numab_state->pids_active[1] = 0;
3352 		}
3353 
3354 		/* Do not rescan VMAs twice within the same sequence. */
3355 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3356 			mm->numa_scan_offset = vma->vm_end;
3357 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3358 			continue;
3359 		}
3360 
3361 		/*
3362 		 * Do not scan the VMA if task has not accessed it, unless no other
3363 		 * VMA candidate exists.
3364 		 */
3365 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3366 			vma_pids_skipped = true;
3367 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3368 			continue;
3369 		}
3370 
3371 		do {
3372 			start = max(start, vma->vm_start);
3373 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3374 			end = min(end, vma->vm_end);
3375 			nr_pte_updates = change_prot_numa(vma, start, end);
3376 
3377 			/*
3378 			 * Try to scan sysctl_numa_balancing_size worth of
3379 			 * hpages that have at least one present PTE that
3380 			 * is not already PTE-numa. If the VMA contains
3381 			 * areas that are unused or already full of prot_numa
3382 			 * PTEs, scan up to virtpages, to skip through those
3383 			 * areas faster.
3384 			 */
3385 			if (nr_pte_updates)
3386 				pages -= (end - start) >> PAGE_SHIFT;
3387 			virtpages -= (end - start) >> PAGE_SHIFT;
3388 
3389 			start = end;
3390 			if (pages <= 0 || virtpages <= 0)
3391 				goto out;
3392 
3393 			cond_resched();
3394 		} while (end != vma->vm_end);
3395 
3396 		/* VMA scan is complete, do not scan until next sequence. */
3397 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3398 
3399 		/*
3400 		 * Only force scan within one VMA at a time, to limit the
3401 		 * cost of scanning a potentially uninteresting VMA.
3402 		 */
3403 		if (vma_pids_forced)
3404 			break;
3405 	} for_each_vma(vmi, vma);
3406 
3407 	/*
3408 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3409 	 * not accessing the VMA previously, then force a scan to ensure
3410 	 * forward progress:
3411 	 */
3412 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3413 		vma_pids_forced = true;
3414 		goto retry_pids;
3415 	}
3416 
3417 out:
3418 	/*
3419 	 * It is possible to reach the end of the VMA list but the last few
3420 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3421 	 * would find the !migratable VMA on the next scan but not reset the
3422 	 * scanner to the start so check it now.
3423 	 */
3424 	if (vma)
3425 		mm->numa_scan_offset = start;
3426 	else
3427 		reset_ptenuma_scan(p);
3428 	mmap_read_unlock(mm);
3429 
3430 	/*
3431 	 * Make sure tasks use at least 32x as much time to run other code
3432 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3433 	 * Usually update_task_scan_period slows down scanning enough; on an
3434 	 * overloaded system we need to limit overhead on a per task basis.
3435 	 */
3436 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3437 		u64 diff = p->se.sum_exec_runtime - runtime;
3438 		p->node_stamp += 32 * diff;
3439 	}
3440 }
3441 
3442 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3443 {
3444 	int mm_users = 0;
3445 	struct mm_struct *mm = p->mm;
3446 
3447 	if (mm) {
3448 		mm_users = atomic_read(&mm->mm_users);
3449 		if (mm_users == 1) {
3450 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3451 			mm->numa_scan_seq = 0;
3452 		}
3453 	}
3454 	p->node_stamp			= 0;
3455 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3456 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3457 	p->numa_migrate_retry		= 0;
3458 	/* Protect against double add, see task_tick_numa and task_numa_work */
3459 	p->numa_work.next		= &p->numa_work;
3460 	p->numa_faults			= NULL;
3461 	p->numa_pages_migrated		= 0;
3462 	p->total_numa_faults		= 0;
3463 	RCU_INIT_POINTER(p->numa_group, NULL);
3464 	p->last_task_numa_placement	= 0;
3465 	p->last_sum_exec_runtime	= 0;
3466 
3467 	init_task_work(&p->numa_work, task_numa_work);
3468 
3469 	/* New address space, reset the preferred nid */
3470 	if (!(clone_flags & CLONE_VM)) {
3471 		p->numa_preferred_nid = NUMA_NO_NODE;
3472 		return;
3473 	}
3474 
3475 	/*
3476 	 * New thread, keep existing numa_preferred_nid which should be copied
3477 	 * already by arch_dup_task_struct but stagger when scans start.
3478 	 */
3479 	if (mm) {
3480 		unsigned int delay;
3481 
3482 		delay = min_t(unsigned int, task_scan_max(current),
3483 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3484 		delay += 2 * TICK_NSEC;
3485 		p->node_stamp = delay;
3486 	}
3487 }
3488 
3489 /*
3490  * Drive the periodic memory faults..
3491  */
3492 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3493 {
3494 	struct callback_head *work = &curr->numa_work;
3495 	u64 period, now;
3496 
3497 	/*
3498 	 * We don't care about NUMA placement if we don't have memory.
3499 	 */
3500 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3501 		return;
3502 
3503 	/*
3504 	 * Using runtime rather than walltime has the dual advantage that
3505 	 * we (mostly) drive the selection from busy threads and that the
3506 	 * task needs to have done some actual work before we bother with
3507 	 * NUMA placement.
3508 	 */
3509 	now = curr->se.sum_exec_runtime;
3510 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3511 
3512 	if (now > curr->node_stamp + period) {
3513 		if (!curr->node_stamp)
3514 			curr->numa_scan_period = task_scan_start(curr);
3515 		curr->node_stamp += period;
3516 
3517 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3518 			task_work_add(curr, work, TWA_RESUME);
3519 	}
3520 }
3521 
3522 static void update_scan_period(struct task_struct *p, int new_cpu)
3523 {
3524 	int src_nid = cpu_to_node(task_cpu(p));
3525 	int dst_nid = cpu_to_node(new_cpu);
3526 
3527 	if (!static_branch_likely(&sched_numa_balancing))
3528 		return;
3529 
3530 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3531 		return;
3532 
3533 	if (src_nid == dst_nid)
3534 		return;
3535 
3536 	/*
3537 	 * Allow resets if faults have been trapped before one scan
3538 	 * has completed. This is most likely due to a new task that
3539 	 * is pulled cross-node due to wakeups or load balancing.
3540 	 */
3541 	if (p->numa_scan_seq) {
3542 		/*
3543 		 * Avoid scan adjustments if moving to the preferred
3544 		 * node or if the task was not previously running on
3545 		 * the preferred node.
3546 		 */
3547 		if (dst_nid == p->numa_preferred_nid ||
3548 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3549 			src_nid != p->numa_preferred_nid))
3550 			return;
3551 	}
3552 
3553 	p->numa_scan_period = task_scan_start(p);
3554 }
3555 
3556 #else
3557 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3558 {
3559 }
3560 
3561 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3562 {
3563 }
3564 
3565 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3566 {
3567 }
3568 
3569 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3570 {
3571 }
3572 
3573 #endif /* CONFIG_NUMA_BALANCING */
3574 
3575 static void
3576 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3577 {
3578 	update_load_add(&cfs_rq->load, se->load.weight);
3579 #ifdef CONFIG_SMP
3580 	if (entity_is_task(se)) {
3581 		struct rq *rq = rq_of(cfs_rq);
3582 
3583 		account_numa_enqueue(rq, task_of(se));
3584 		list_add(&se->group_node, &rq->cfs_tasks);
3585 	}
3586 #endif
3587 	cfs_rq->nr_running++;
3588 	if (se_is_idle(se))
3589 		cfs_rq->idle_nr_running++;
3590 }
3591 
3592 static void
3593 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3594 {
3595 	update_load_sub(&cfs_rq->load, se->load.weight);
3596 #ifdef CONFIG_SMP
3597 	if (entity_is_task(se)) {
3598 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3599 		list_del_init(&se->group_node);
3600 	}
3601 #endif
3602 	cfs_rq->nr_running--;
3603 	if (se_is_idle(se))
3604 		cfs_rq->idle_nr_running--;
3605 }
3606 
3607 /*
3608  * Signed add and clamp on underflow.
3609  *
3610  * Explicitly do a load-store to ensure the intermediate value never hits
3611  * memory. This allows lockless observations without ever seeing the negative
3612  * values.
3613  */
3614 #define add_positive(_ptr, _val) do {                           \
3615 	typeof(_ptr) ptr = (_ptr);                              \
3616 	typeof(_val) val = (_val);                              \
3617 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3618 								\
3619 	res = var + val;                                        \
3620 								\
3621 	if (val < 0 && res > var)                               \
3622 		res = 0;                                        \
3623 								\
3624 	WRITE_ONCE(*ptr, res);                                  \
3625 } while (0)
3626 
3627 /*
3628  * Unsigned subtract and clamp on underflow.
3629  *
3630  * Explicitly do a load-store to ensure the intermediate value never hits
3631  * memory. This allows lockless observations without ever seeing the negative
3632  * values.
3633  */
3634 #define sub_positive(_ptr, _val) do {				\
3635 	typeof(_ptr) ptr = (_ptr);				\
3636 	typeof(*ptr) val = (_val);				\
3637 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3638 	res = var - val;					\
3639 	if (res > var)						\
3640 		res = 0;					\
3641 	WRITE_ONCE(*ptr, res);					\
3642 } while (0)
3643 
3644 /*
3645  * Remove and clamp on negative, from a local variable.
3646  *
3647  * A variant of sub_positive(), which does not use explicit load-store
3648  * and is thus optimized for local variable updates.
3649  */
3650 #define lsub_positive(_ptr, _val) do {				\
3651 	typeof(_ptr) ptr = (_ptr);				\
3652 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3653 } while (0)
3654 
3655 #ifdef CONFIG_SMP
3656 static inline void
3657 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3658 {
3659 	cfs_rq->avg.load_avg += se->avg.load_avg;
3660 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3661 }
3662 
3663 static inline void
3664 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3665 {
3666 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3667 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3668 	/* See update_cfs_rq_load_avg() */
3669 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3670 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3671 }
3672 #else
3673 static inline void
3674 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3675 static inline void
3676 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3677 #endif
3678 
3679 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3680 			   unsigned long weight)
3681 {
3682 	unsigned long old_weight = se->load.weight;
3683 	s64 vlag, vslice;
3684 
3685 	/*
3686 	 * VRUNTIME
3687 	 * --------
3688 	 *
3689 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3690 	 * adjusted if re-weight at !0-lag point.
3691 	 *
3692 	 * Proof: For contradiction assume this is not true, so we can
3693 	 * re-weight without changing vruntime at !0-lag point.
3694 	 *
3695 	 *             Weight	VRuntime   Avg-VRuntime
3696 	 *     before    w          v            V
3697 	 *      after    w'         v'           V'
3698 	 *
3699 	 * Since lag needs to be preserved through re-weight:
3700 	 *
3701 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3702 	 *	==>	V' = (V - v)*w/w' + v		(1)
3703 	 *
3704 	 * Let W be the total weight of the entities before reweight,
3705 	 * since V' is the new weighted average of entities:
3706 	 *
3707 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3708 	 *
3709 	 * by using (1) & (2) we obtain:
3710 	 *
3711 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3712 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3713 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3714 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3715 	 *
3716 	 * Since we are doing at !0-lag point which means V != v, we
3717 	 * can simplify (3):
3718 	 *
3719 	 *	==>	W / (W + w' - w) = w / w'
3720 	 *	==>	Ww' = Ww + ww' - ww
3721 	 *	==>	W * (w' - w) = w * (w' - w)
3722 	 *	==>	W = w	(re-weight indicates w' != w)
3723 	 *
3724 	 * So the cfs_rq contains only one entity, hence vruntime of
3725 	 * the entity @v should always equal to the cfs_rq's weighted
3726 	 * average vruntime @V, which means we will always re-weight
3727 	 * at 0-lag point, thus breach assumption. Proof completed.
3728 	 *
3729 	 *
3730 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3731 	 * vruntime of all the entities.
3732 	 *
3733 	 * Proof: According to corollary #1, Eq. (1) should be:
3734 	 *
3735 	 *	(V - v)*w = (V' - v')*w'
3736 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3737 	 *
3738 	 * According to the weighted average formula, we have:
3739 	 *
3740 	 *	V' = (WV - wv + w'v') / (W - w + w')
3741 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3742 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3743 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3744 	 *
3745 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3746 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3747 	 *
3748 	 * If the entity is the only one in the cfs_rq, then reweight
3749 	 * always occurs at 0-lag point, so V won't change. Or else
3750 	 * there are other entities, hence W != w, then Eq. (5) turns
3751 	 * into V' = V. So V won't change in either case, proof done.
3752 	 *
3753 	 *
3754 	 * So according to corollary #1 & #2, the effect of re-weight
3755 	 * on vruntime should be:
3756 	 *
3757 	 *	v' = V' - (V - v) * w / w'		(4)
3758 	 *	   = V  - (V - v) * w / w'
3759 	 *	   = V  - vl * w / w'
3760 	 *	   = V  - vl'
3761 	 */
3762 	if (avruntime != se->vruntime) {
3763 		vlag = entity_lag(avruntime, se);
3764 		vlag = div_s64(vlag * old_weight, weight);
3765 		se->vruntime = avruntime - vlag;
3766 	}
3767 
3768 	/*
3769 	 * DEADLINE
3770 	 * --------
3771 	 *
3772 	 * When the weight changes, the virtual time slope changes and
3773 	 * we should adjust the relative virtual deadline accordingly.
3774 	 *
3775 	 *	d' = v' + (d - v)*w/w'
3776 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3777 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3778 	 *	   = V  + (d - V)*w/w'
3779 	 */
3780 	vslice = (s64)(se->deadline - avruntime);
3781 	vslice = div_s64(vslice * old_weight, weight);
3782 	se->deadline = avruntime + vslice;
3783 }
3784 
3785 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3786 			    unsigned long weight)
3787 {
3788 	bool curr = cfs_rq->curr == se;
3789 	u64 avruntime;
3790 
3791 	if (se->on_rq) {
3792 		/* commit outstanding execution time */
3793 		update_curr(cfs_rq);
3794 		avruntime = avg_vruntime(cfs_rq);
3795 		if (!curr)
3796 			__dequeue_entity(cfs_rq, se);
3797 		update_load_sub(&cfs_rq->load, se->load.weight);
3798 	}
3799 	dequeue_load_avg(cfs_rq, se);
3800 
3801 	if (se->on_rq) {
3802 		reweight_eevdf(se, avruntime, weight);
3803 	} else {
3804 		/*
3805 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3806 		 * we need to scale se->vlag when w_i changes.
3807 		 */
3808 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3809 	}
3810 
3811 	update_load_set(&se->load, weight);
3812 
3813 #ifdef CONFIG_SMP
3814 	do {
3815 		u32 divider = get_pelt_divider(&se->avg);
3816 
3817 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3818 	} while (0);
3819 #endif
3820 
3821 	enqueue_load_avg(cfs_rq, se);
3822 	if (se->on_rq) {
3823 		update_load_add(&cfs_rq->load, se->load.weight);
3824 		if (!curr)
3825 			__enqueue_entity(cfs_rq, se);
3826 
3827 		/*
3828 		 * The entity's vruntime has been adjusted, so let's check
3829 		 * whether the rq-wide min_vruntime needs updated too. Since
3830 		 * the calculations above require stable min_vruntime rather
3831 		 * than up-to-date one, we do the update at the end of the
3832 		 * reweight process.
3833 		 */
3834 		update_min_vruntime(cfs_rq);
3835 	}
3836 }
3837 
3838 void reweight_task(struct task_struct *p, int prio)
3839 {
3840 	struct sched_entity *se = &p->se;
3841 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3842 	struct load_weight *load = &se->load;
3843 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3844 
3845 	reweight_entity(cfs_rq, se, weight);
3846 	load->inv_weight = sched_prio_to_wmult[prio];
3847 }
3848 
3849 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3850 
3851 #ifdef CONFIG_FAIR_GROUP_SCHED
3852 #ifdef CONFIG_SMP
3853 /*
3854  * All this does is approximate the hierarchical proportion which includes that
3855  * global sum we all love to hate.
3856  *
3857  * That is, the weight of a group entity, is the proportional share of the
3858  * group weight based on the group runqueue weights. That is:
3859  *
3860  *                     tg->weight * grq->load.weight
3861  *   ge->load.weight = -----------------------------               (1)
3862  *                       \Sum grq->load.weight
3863  *
3864  * Now, because computing that sum is prohibitively expensive to compute (been
3865  * there, done that) we approximate it with this average stuff. The average
3866  * moves slower and therefore the approximation is cheaper and more stable.
3867  *
3868  * So instead of the above, we substitute:
3869  *
3870  *   grq->load.weight -> grq->avg.load_avg                         (2)
3871  *
3872  * which yields the following:
3873  *
3874  *                     tg->weight * grq->avg.load_avg
3875  *   ge->load.weight = ------------------------------              (3)
3876  *                             tg->load_avg
3877  *
3878  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3879  *
3880  * That is shares_avg, and it is right (given the approximation (2)).
3881  *
3882  * The problem with it is that because the average is slow -- it was designed
3883  * to be exactly that of course -- this leads to transients in boundary
3884  * conditions. In specific, the case where the group was idle and we start the
3885  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3886  * yielding bad latency etc..
3887  *
3888  * Now, in that special case (1) reduces to:
3889  *
3890  *                     tg->weight * grq->load.weight
3891  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3892  *                         grp->load.weight
3893  *
3894  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3895  *
3896  * So what we do is modify our approximation (3) to approach (4) in the (near)
3897  * UP case, like:
3898  *
3899  *   ge->load.weight =
3900  *
3901  *              tg->weight * grq->load.weight
3902  *     ---------------------------------------------------         (5)
3903  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3904  *
3905  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3906  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3907  *
3908  *
3909  *                     tg->weight * grq->load.weight
3910  *   ge->load.weight = -----------------------------		   (6)
3911  *                             tg_load_avg'
3912  *
3913  * Where:
3914  *
3915  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3916  *                  max(grq->load.weight, grq->avg.load_avg)
3917  *
3918  * And that is shares_weight and is icky. In the (near) UP case it approaches
3919  * (4) while in the normal case it approaches (3). It consistently
3920  * overestimates the ge->load.weight and therefore:
3921  *
3922  *   \Sum ge->load.weight >= tg->weight
3923  *
3924  * hence icky!
3925  */
3926 static long calc_group_shares(struct cfs_rq *cfs_rq)
3927 {
3928 	long tg_weight, tg_shares, load, shares;
3929 	struct task_group *tg = cfs_rq->tg;
3930 
3931 	tg_shares = READ_ONCE(tg->shares);
3932 
3933 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3934 
3935 	tg_weight = atomic_long_read(&tg->load_avg);
3936 
3937 	/* Ensure tg_weight >= load */
3938 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3939 	tg_weight += load;
3940 
3941 	shares = (tg_shares * load);
3942 	if (tg_weight)
3943 		shares /= tg_weight;
3944 
3945 	/*
3946 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3947 	 * of a group with small tg->shares value. It is a floor value which is
3948 	 * assigned as a minimum load.weight to the sched_entity representing
3949 	 * the group on a CPU.
3950 	 *
3951 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3952 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3953 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3954 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3955 	 * instead of 0.
3956 	 */
3957 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3958 }
3959 #endif /* CONFIG_SMP */
3960 
3961 /*
3962  * Recomputes the group entity based on the current state of its group
3963  * runqueue.
3964  */
3965 static void update_cfs_group(struct sched_entity *se)
3966 {
3967 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3968 	long shares;
3969 
3970 	if (!gcfs_rq)
3971 		return;
3972 
3973 	if (throttled_hierarchy(gcfs_rq))
3974 		return;
3975 
3976 #ifndef CONFIG_SMP
3977 	shares = READ_ONCE(gcfs_rq->tg->shares);
3978 #else
3979 	shares = calc_group_shares(gcfs_rq);
3980 #endif
3981 	if (unlikely(se->load.weight != shares))
3982 		reweight_entity(cfs_rq_of(se), se, shares);
3983 }
3984 
3985 #else /* CONFIG_FAIR_GROUP_SCHED */
3986 static inline void update_cfs_group(struct sched_entity *se)
3987 {
3988 }
3989 #endif /* CONFIG_FAIR_GROUP_SCHED */
3990 
3991 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3992 {
3993 	struct rq *rq = rq_of(cfs_rq);
3994 
3995 	if (&rq->cfs == cfs_rq) {
3996 		/*
3997 		 * There are a few boundary cases this might miss but it should
3998 		 * get called often enough that that should (hopefully) not be
3999 		 * a real problem.
4000 		 *
4001 		 * It will not get called when we go idle, because the idle
4002 		 * thread is a different class (!fair), nor will the utilization
4003 		 * number include things like RT tasks.
4004 		 *
4005 		 * As is, the util number is not freq-invariant (we'd have to
4006 		 * implement arch_scale_freq_capacity() for that).
4007 		 *
4008 		 * See cpu_util_cfs().
4009 		 */
4010 		cpufreq_update_util(rq, flags);
4011 	}
4012 }
4013 
4014 #ifdef CONFIG_SMP
4015 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4016 {
4017 	if (sa->load_sum)
4018 		return false;
4019 
4020 	if (sa->util_sum)
4021 		return false;
4022 
4023 	if (sa->runnable_sum)
4024 		return false;
4025 
4026 	/*
4027 	 * _avg must be null when _sum are null because _avg = _sum / divider
4028 	 * Make sure that rounding and/or propagation of PELT values never
4029 	 * break this.
4030 	 */
4031 	SCHED_WARN_ON(sa->load_avg ||
4032 		      sa->util_avg ||
4033 		      sa->runnable_avg);
4034 
4035 	return true;
4036 }
4037 
4038 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4039 {
4040 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4041 				 cfs_rq->last_update_time_copy);
4042 }
4043 #ifdef CONFIG_FAIR_GROUP_SCHED
4044 /*
4045  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4046  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4047  * bottom-up, we only have to test whether the cfs_rq before us on the list
4048  * is our child.
4049  * If cfs_rq is not on the list, test whether a child needs its to be added to
4050  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4051  */
4052 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4053 {
4054 	struct cfs_rq *prev_cfs_rq;
4055 	struct list_head *prev;
4056 
4057 	if (cfs_rq->on_list) {
4058 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4059 	} else {
4060 		struct rq *rq = rq_of(cfs_rq);
4061 
4062 		prev = rq->tmp_alone_branch;
4063 	}
4064 
4065 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4066 
4067 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4068 }
4069 
4070 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4071 {
4072 	if (cfs_rq->load.weight)
4073 		return false;
4074 
4075 	if (!load_avg_is_decayed(&cfs_rq->avg))
4076 		return false;
4077 
4078 	if (child_cfs_rq_on_list(cfs_rq))
4079 		return false;
4080 
4081 	return true;
4082 }
4083 
4084 /**
4085  * update_tg_load_avg - update the tg's load avg
4086  * @cfs_rq: the cfs_rq whose avg changed
4087  *
4088  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4089  * However, because tg->load_avg is a global value there are performance
4090  * considerations.
4091  *
4092  * In order to avoid having to look at the other cfs_rq's, we use a
4093  * differential update where we store the last value we propagated. This in
4094  * turn allows skipping updates if the differential is 'small'.
4095  *
4096  * Updating tg's load_avg is necessary before update_cfs_share().
4097  */
4098 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4099 {
4100 	long delta;
4101 	u64 now;
4102 
4103 	/*
4104 	 * No need to update load_avg for root_task_group as it is not used.
4105 	 */
4106 	if (cfs_rq->tg == &root_task_group)
4107 		return;
4108 
4109 	/* rq has been offline and doesn't contribute to the share anymore: */
4110 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4111 		return;
4112 
4113 	/*
4114 	 * For migration heavy workloads, access to tg->load_avg can be
4115 	 * unbound. Limit the update rate to at most once per ms.
4116 	 */
4117 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4118 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4119 		return;
4120 
4121 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4122 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4123 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4124 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4125 		cfs_rq->last_update_tg_load_avg = now;
4126 	}
4127 }
4128 
4129 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4130 {
4131 	long delta;
4132 	u64 now;
4133 
4134 	/*
4135 	 * No need to update load_avg for root_task_group, as it is not used.
4136 	 */
4137 	if (cfs_rq->tg == &root_task_group)
4138 		return;
4139 
4140 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4141 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4142 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4143 	cfs_rq->tg_load_avg_contrib = 0;
4144 	cfs_rq->last_update_tg_load_avg = now;
4145 }
4146 
4147 /* CPU offline callback: */
4148 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4149 {
4150 	struct task_group *tg;
4151 
4152 	lockdep_assert_rq_held(rq);
4153 
4154 	/*
4155 	 * The rq clock has already been updated in
4156 	 * set_rq_offline(), so we should skip updating
4157 	 * the rq clock again in unthrottle_cfs_rq().
4158 	 */
4159 	rq_clock_start_loop_update(rq);
4160 
4161 	rcu_read_lock();
4162 	list_for_each_entry_rcu(tg, &task_groups, list) {
4163 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4164 
4165 		clear_tg_load_avg(cfs_rq);
4166 	}
4167 	rcu_read_unlock();
4168 
4169 	rq_clock_stop_loop_update(rq);
4170 }
4171 
4172 /*
4173  * Called within set_task_rq() right before setting a task's CPU. The
4174  * caller only guarantees p->pi_lock is held; no other assumptions,
4175  * including the state of rq->lock, should be made.
4176  */
4177 void set_task_rq_fair(struct sched_entity *se,
4178 		      struct cfs_rq *prev, struct cfs_rq *next)
4179 {
4180 	u64 p_last_update_time;
4181 	u64 n_last_update_time;
4182 
4183 	if (!sched_feat(ATTACH_AGE_LOAD))
4184 		return;
4185 
4186 	/*
4187 	 * We are supposed to update the task to "current" time, then its up to
4188 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4189 	 * getting what current time is, so simply throw away the out-of-date
4190 	 * time. This will result in the wakee task is less decayed, but giving
4191 	 * the wakee more load sounds not bad.
4192 	 */
4193 	if (!(se->avg.last_update_time && prev))
4194 		return;
4195 
4196 	p_last_update_time = cfs_rq_last_update_time(prev);
4197 	n_last_update_time = cfs_rq_last_update_time(next);
4198 
4199 	__update_load_avg_blocked_se(p_last_update_time, se);
4200 	se->avg.last_update_time = n_last_update_time;
4201 }
4202 
4203 /*
4204  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4205  * propagate its contribution. The key to this propagation is the invariant
4206  * that for each group:
4207  *
4208  *   ge->avg == grq->avg						(1)
4209  *
4210  * _IFF_ we look at the pure running and runnable sums. Because they
4211  * represent the very same entity, just at different points in the hierarchy.
4212  *
4213  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4214  * and simply copies the running/runnable sum over (but still wrong, because
4215  * the group entity and group rq do not have their PELT windows aligned).
4216  *
4217  * However, update_tg_cfs_load() is more complex. So we have:
4218  *
4219  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4220  *
4221  * And since, like util, the runnable part should be directly transferable,
4222  * the following would _appear_ to be the straight forward approach:
4223  *
4224  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4225  *
4226  * And per (1) we have:
4227  *
4228  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4229  *
4230  * Which gives:
4231  *
4232  *                      ge->load.weight * grq->avg.load_avg
4233  *   ge->avg.load_avg = -----------------------------------		(4)
4234  *                               grq->load.weight
4235  *
4236  * Except that is wrong!
4237  *
4238  * Because while for entities historical weight is not important and we
4239  * really only care about our future and therefore can consider a pure
4240  * runnable sum, runqueues can NOT do this.
4241  *
4242  * We specifically want runqueues to have a load_avg that includes
4243  * historical weights. Those represent the blocked load, the load we expect
4244  * to (shortly) return to us. This only works by keeping the weights as
4245  * integral part of the sum. We therefore cannot decompose as per (3).
4246  *
4247  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4248  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4249  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4250  * runnable section of these tasks overlap (or not). If they were to perfectly
4251  * align the rq as a whole would be runnable 2/3 of the time. If however we
4252  * always have at least 1 runnable task, the rq as a whole is always runnable.
4253  *
4254  * So we'll have to approximate.. :/
4255  *
4256  * Given the constraint:
4257  *
4258  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4259  *
4260  * We can construct a rule that adds runnable to a rq by assuming minimal
4261  * overlap.
4262  *
4263  * On removal, we'll assume each task is equally runnable; which yields:
4264  *
4265  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4266  *
4267  * XXX: only do this for the part of runnable > running ?
4268  *
4269  */
4270 static inline void
4271 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4272 {
4273 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4274 	u32 new_sum, divider;
4275 
4276 	/* Nothing to update */
4277 	if (!delta_avg)
4278 		return;
4279 
4280 	/*
4281 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4282 	 * See ___update_load_avg() for details.
4283 	 */
4284 	divider = get_pelt_divider(&cfs_rq->avg);
4285 
4286 
4287 	/* Set new sched_entity's utilization */
4288 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4289 	new_sum = se->avg.util_avg * divider;
4290 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4291 	se->avg.util_sum = new_sum;
4292 
4293 	/* Update parent cfs_rq utilization */
4294 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4295 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4296 
4297 	/* See update_cfs_rq_load_avg() */
4298 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4299 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4300 }
4301 
4302 static inline void
4303 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4304 {
4305 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4306 	u32 new_sum, divider;
4307 
4308 	/* Nothing to update */
4309 	if (!delta_avg)
4310 		return;
4311 
4312 	/*
4313 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4314 	 * See ___update_load_avg() for details.
4315 	 */
4316 	divider = get_pelt_divider(&cfs_rq->avg);
4317 
4318 	/* Set new sched_entity's runnable */
4319 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4320 	new_sum = se->avg.runnable_avg * divider;
4321 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4322 	se->avg.runnable_sum = new_sum;
4323 
4324 	/* Update parent cfs_rq runnable */
4325 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4326 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4327 	/* See update_cfs_rq_load_avg() */
4328 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4329 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4330 }
4331 
4332 static inline void
4333 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4334 {
4335 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4336 	unsigned long load_avg;
4337 	u64 load_sum = 0;
4338 	s64 delta_sum;
4339 	u32 divider;
4340 
4341 	if (!runnable_sum)
4342 		return;
4343 
4344 	gcfs_rq->prop_runnable_sum = 0;
4345 
4346 	/*
4347 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4348 	 * See ___update_load_avg() for details.
4349 	 */
4350 	divider = get_pelt_divider(&cfs_rq->avg);
4351 
4352 	if (runnable_sum >= 0) {
4353 		/*
4354 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4355 		 * the CPU is saturated running == runnable.
4356 		 */
4357 		runnable_sum += se->avg.load_sum;
4358 		runnable_sum = min_t(long, runnable_sum, divider);
4359 	} else {
4360 		/*
4361 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4362 		 * assuming all tasks are equally runnable.
4363 		 */
4364 		if (scale_load_down(gcfs_rq->load.weight)) {
4365 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4366 				scale_load_down(gcfs_rq->load.weight));
4367 		}
4368 
4369 		/* But make sure to not inflate se's runnable */
4370 		runnable_sum = min(se->avg.load_sum, load_sum);
4371 	}
4372 
4373 	/*
4374 	 * runnable_sum can't be lower than running_sum
4375 	 * Rescale running sum to be in the same range as runnable sum
4376 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4377 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4378 	 */
4379 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4380 	runnable_sum = max(runnable_sum, running_sum);
4381 
4382 	load_sum = se_weight(se) * runnable_sum;
4383 	load_avg = div_u64(load_sum, divider);
4384 
4385 	delta_avg = load_avg - se->avg.load_avg;
4386 	if (!delta_avg)
4387 		return;
4388 
4389 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4390 
4391 	se->avg.load_sum = runnable_sum;
4392 	se->avg.load_avg = load_avg;
4393 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4394 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4395 	/* See update_cfs_rq_load_avg() */
4396 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4397 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4398 }
4399 
4400 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4401 {
4402 	cfs_rq->propagate = 1;
4403 	cfs_rq->prop_runnable_sum += runnable_sum;
4404 }
4405 
4406 /* Update task and its cfs_rq load average */
4407 static inline int propagate_entity_load_avg(struct sched_entity *se)
4408 {
4409 	struct cfs_rq *cfs_rq, *gcfs_rq;
4410 
4411 	if (entity_is_task(se))
4412 		return 0;
4413 
4414 	gcfs_rq = group_cfs_rq(se);
4415 	if (!gcfs_rq->propagate)
4416 		return 0;
4417 
4418 	gcfs_rq->propagate = 0;
4419 
4420 	cfs_rq = cfs_rq_of(se);
4421 
4422 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4423 
4424 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4425 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4426 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4427 
4428 	trace_pelt_cfs_tp(cfs_rq);
4429 	trace_pelt_se_tp(se);
4430 
4431 	return 1;
4432 }
4433 
4434 /*
4435  * Check if we need to update the load and the utilization of a blocked
4436  * group_entity:
4437  */
4438 static inline bool skip_blocked_update(struct sched_entity *se)
4439 {
4440 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4441 
4442 	/*
4443 	 * If sched_entity still have not zero load or utilization, we have to
4444 	 * decay it:
4445 	 */
4446 	if (se->avg.load_avg || se->avg.util_avg)
4447 		return false;
4448 
4449 	/*
4450 	 * If there is a pending propagation, we have to update the load and
4451 	 * the utilization of the sched_entity:
4452 	 */
4453 	if (gcfs_rq->propagate)
4454 		return false;
4455 
4456 	/*
4457 	 * Otherwise, the load and the utilization of the sched_entity is
4458 	 * already zero and there is no pending propagation, so it will be a
4459 	 * waste of time to try to decay it:
4460 	 */
4461 	return true;
4462 }
4463 
4464 #else /* CONFIG_FAIR_GROUP_SCHED */
4465 
4466 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4467 
4468 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4469 
4470 static inline int propagate_entity_load_avg(struct sched_entity *se)
4471 {
4472 	return 0;
4473 }
4474 
4475 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4476 
4477 #endif /* CONFIG_FAIR_GROUP_SCHED */
4478 
4479 #ifdef CONFIG_NO_HZ_COMMON
4480 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4481 {
4482 	u64 throttled = 0, now, lut;
4483 	struct cfs_rq *cfs_rq;
4484 	struct rq *rq;
4485 	bool is_idle;
4486 
4487 	if (load_avg_is_decayed(&se->avg))
4488 		return;
4489 
4490 	cfs_rq = cfs_rq_of(se);
4491 	rq = rq_of(cfs_rq);
4492 
4493 	rcu_read_lock();
4494 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4495 	rcu_read_unlock();
4496 
4497 	/*
4498 	 * The lag estimation comes with a cost we don't want to pay all the
4499 	 * time. Hence, limiting to the case where the source CPU is idle and
4500 	 * we know we are at the greatest risk to have an outdated clock.
4501 	 */
4502 	if (!is_idle)
4503 		return;
4504 
4505 	/*
4506 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4507 	 *
4508 	 *   last_update_time (the cfs_rq's last_update_time)
4509 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4510 	 *      = rq_clock_pelt()@cfs_rq_idle
4511 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4512 	 *
4513 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4514 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4515 	 *
4516 	 *   rq_idle_lag (delta between now and rq's update)
4517 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4518 	 *
4519 	 * We can then write:
4520 	 *
4521 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4522 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4523 	 * Where:
4524 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4525 	 *      rq_clock()@rq_idle      is rq->clock_idle
4526 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4527 	 *                              is cfs_rq->throttled_pelt_idle
4528 	 */
4529 
4530 #ifdef CONFIG_CFS_BANDWIDTH
4531 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4532 	/* The clock has been stopped for throttling */
4533 	if (throttled == U64_MAX)
4534 		return;
4535 #endif
4536 	now = u64_u32_load(rq->clock_pelt_idle);
4537 	/*
4538 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4539 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4540 	 * which lead to an underestimation. The opposite would lead to an
4541 	 * overestimation.
4542 	 */
4543 	smp_rmb();
4544 	lut = cfs_rq_last_update_time(cfs_rq);
4545 
4546 	now -= throttled;
4547 	if (now < lut)
4548 		/*
4549 		 * cfs_rq->avg.last_update_time is more recent than our
4550 		 * estimation, let's use it.
4551 		 */
4552 		now = lut;
4553 	else
4554 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4555 
4556 	__update_load_avg_blocked_se(now, se);
4557 }
4558 #else
4559 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4560 #endif
4561 
4562 /**
4563  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4564  * @now: current time, as per cfs_rq_clock_pelt()
4565  * @cfs_rq: cfs_rq to update
4566  *
4567  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4568  * avg. The immediate corollary is that all (fair) tasks must be attached.
4569  *
4570  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4571  *
4572  * Return: true if the load decayed or we removed load.
4573  *
4574  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4575  * call update_tg_load_avg() when this function returns true.
4576  */
4577 static inline int
4578 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4579 {
4580 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4581 	struct sched_avg *sa = &cfs_rq->avg;
4582 	int decayed = 0;
4583 
4584 	if (cfs_rq->removed.nr) {
4585 		unsigned long r;
4586 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4587 
4588 		raw_spin_lock(&cfs_rq->removed.lock);
4589 		swap(cfs_rq->removed.util_avg, removed_util);
4590 		swap(cfs_rq->removed.load_avg, removed_load);
4591 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4592 		cfs_rq->removed.nr = 0;
4593 		raw_spin_unlock(&cfs_rq->removed.lock);
4594 
4595 		r = removed_load;
4596 		sub_positive(&sa->load_avg, r);
4597 		sub_positive(&sa->load_sum, r * divider);
4598 		/* See sa->util_sum below */
4599 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4600 
4601 		r = removed_util;
4602 		sub_positive(&sa->util_avg, r);
4603 		sub_positive(&sa->util_sum, r * divider);
4604 		/*
4605 		 * Because of rounding, se->util_sum might ends up being +1 more than
4606 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4607 		 * a lot of tasks with the rounding problem between 2 updates of
4608 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4609 		 * cfs_util_avg is not.
4610 		 * Check that util_sum is still above its lower bound for the new
4611 		 * util_avg. Given that period_contrib might have moved since the last
4612 		 * sync, we are only sure that util_sum must be above or equal to
4613 		 *    util_avg * minimum possible divider
4614 		 */
4615 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4616 
4617 		r = removed_runnable;
4618 		sub_positive(&sa->runnable_avg, r);
4619 		sub_positive(&sa->runnable_sum, r * divider);
4620 		/* See sa->util_sum above */
4621 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4622 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4623 
4624 		/*
4625 		 * removed_runnable is the unweighted version of removed_load so we
4626 		 * can use it to estimate removed_load_sum.
4627 		 */
4628 		add_tg_cfs_propagate(cfs_rq,
4629 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4630 
4631 		decayed = 1;
4632 	}
4633 
4634 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4635 	u64_u32_store_copy(sa->last_update_time,
4636 			   cfs_rq->last_update_time_copy,
4637 			   sa->last_update_time);
4638 	return decayed;
4639 }
4640 
4641 /**
4642  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4643  * @cfs_rq: cfs_rq to attach to
4644  * @se: sched_entity to attach
4645  *
4646  * Must call update_cfs_rq_load_avg() before this, since we rely on
4647  * cfs_rq->avg.last_update_time being current.
4648  */
4649 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4650 {
4651 	/*
4652 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4653 	 * See ___update_load_avg() for details.
4654 	 */
4655 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4656 
4657 	/*
4658 	 * When we attach the @se to the @cfs_rq, we must align the decay
4659 	 * window because without that, really weird and wonderful things can
4660 	 * happen.
4661 	 *
4662 	 * XXX illustrate
4663 	 */
4664 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4665 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4666 
4667 	/*
4668 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4669 	 * period_contrib. This isn't strictly correct, but since we're
4670 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4671 	 * _sum a little.
4672 	 */
4673 	se->avg.util_sum = se->avg.util_avg * divider;
4674 
4675 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4676 
4677 	se->avg.load_sum = se->avg.load_avg * divider;
4678 	if (se_weight(se) < se->avg.load_sum)
4679 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4680 	else
4681 		se->avg.load_sum = 1;
4682 
4683 	enqueue_load_avg(cfs_rq, se);
4684 	cfs_rq->avg.util_avg += se->avg.util_avg;
4685 	cfs_rq->avg.util_sum += se->avg.util_sum;
4686 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4687 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4688 
4689 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4690 
4691 	cfs_rq_util_change(cfs_rq, 0);
4692 
4693 	trace_pelt_cfs_tp(cfs_rq);
4694 }
4695 
4696 /**
4697  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4698  * @cfs_rq: cfs_rq to detach from
4699  * @se: sched_entity to detach
4700  *
4701  * Must call update_cfs_rq_load_avg() before this, since we rely on
4702  * cfs_rq->avg.last_update_time being current.
4703  */
4704 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4705 {
4706 	dequeue_load_avg(cfs_rq, se);
4707 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4708 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4709 	/* See update_cfs_rq_load_avg() */
4710 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4711 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4712 
4713 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4714 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4715 	/* See update_cfs_rq_load_avg() */
4716 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4717 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4718 
4719 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4720 
4721 	cfs_rq_util_change(cfs_rq, 0);
4722 
4723 	trace_pelt_cfs_tp(cfs_rq);
4724 }
4725 
4726 /*
4727  * Optional action to be done while updating the load average
4728  */
4729 #define UPDATE_TG	0x1
4730 #define SKIP_AGE_LOAD	0x2
4731 #define DO_ATTACH	0x4
4732 #define DO_DETACH	0x8
4733 
4734 /* Update task and its cfs_rq load average */
4735 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4736 {
4737 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4738 	int decayed;
4739 
4740 	/*
4741 	 * Track task load average for carrying it to new CPU after migrated, and
4742 	 * track group sched_entity load average for task_h_load calculation in migration
4743 	 */
4744 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4745 		__update_load_avg_se(now, cfs_rq, se);
4746 
4747 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4748 	decayed |= propagate_entity_load_avg(se);
4749 
4750 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4751 
4752 		/*
4753 		 * DO_ATTACH means we're here from enqueue_entity().
4754 		 * !last_update_time means we've passed through
4755 		 * migrate_task_rq_fair() indicating we migrated.
4756 		 *
4757 		 * IOW we're enqueueing a task on a new CPU.
4758 		 */
4759 		attach_entity_load_avg(cfs_rq, se);
4760 		update_tg_load_avg(cfs_rq);
4761 
4762 	} else if (flags & DO_DETACH) {
4763 		/*
4764 		 * DO_DETACH means we're here from dequeue_entity()
4765 		 * and we are migrating task out of the CPU.
4766 		 */
4767 		detach_entity_load_avg(cfs_rq, se);
4768 		update_tg_load_avg(cfs_rq);
4769 	} else if (decayed) {
4770 		cfs_rq_util_change(cfs_rq, 0);
4771 
4772 		if (flags & UPDATE_TG)
4773 			update_tg_load_avg(cfs_rq);
4774 	}
4775 }
4776 
4777 /*
4778  * Synchronize entity load avg of dequeued entity without locking
4779  * the previous rq.
4780  */
4781 static void sync_entity_load_avg(struct sched_entity *se)
4782 {
4783 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4784 	u64 last_update_time;
4785 
4786 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4787 	__update_load_avg_blocked_se(last_update_time, se);
4788 }
4789 
4790 /*
4791  * Task first catches up with cfs_rq, and then subtract
4792  * itself from the cfs_rq (task must be off the queue now).
4793  */
4794 static void remove_entity_load_avg(struct sched_entity *se)
4795 {
4796 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4797 	unsigned long flags;
4798 
4799 	/*
4800 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4801 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4802 	 * so we can remove unconditionally.
4803 	 */
4804 
4805 	sync_entity_load_avg(se);
4806 
4807 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4808 	++cfs_rq->removed.nr;
4809 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4810 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4811 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4812 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4813 }
4814 
4815 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4816 {
4817 	return cfs_rq->avg.runnable_avg;
4818 }
4819 
4820 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4821 {
4822 	return cfs_rq->avg.load_avg;
4823 }
4824 
4825 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4826 
4827 static inline unsigned long task_util(struct task_struct *p)
4828 {
4829 	return READ_ONCE(p->se.avg.util_avg);
4830 }
4831 
4832 static inline unsigned long task_runnable(struct task_struct *p)
4833 {
4834 	return READ_ONCE(p->se.avg.runnable_avg);
4835 }
4836 
4837 static inline unsigned long _task_util_est(struct task_struct *p)
4838 {
4839 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4840 }
4841 
4842 static inline unsigned long task_util_est(struct task_struct *p)
4843 {
4844 	return max(task_util(p), _task_util_est(p));
4845 }
4846 
4847 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4848 				    struct task_struct *p)
4849 {
4850 	unsigned int enqueued;
4851 
4852 	if (!sched_feat(UTIL_EST))
4853 		return;
4854 
4855 	/* Update root cfs_rq's estimated utilization */
4856 	enqueued  = cfs_rq->avg.util_est;
4857 	enqueued += _task_util_est(p);
4858 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4859 
4860 	trace_sched_util_est_cfs_tp(cfs_rq);
4861 }
4862 
4863 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4864 				    struct task_struct *p)
4865 {
4866 	unsigned int enqueued;
4867 
4868 	if (!sched_feat(UTIL_EST))
4869 		return;
4870 
4871 	/* Update root cfs_rq's estimated utilization */
4872 	enqueued  = cfs_rq->avg.util_est;
4873 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4874 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4875 
4876 	trace_sched_util_est_cfs_tp(cfs_rq);
4877 }
4878 
4879 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4880 
4881 static inline void util_est_update(struct cfs_rq *cfs_rq,
4882 				   struct task_struct *p,
4883 				   bool task_sleep)
4884 {
4885 	unsigned int ewma, dequeued, last_ewma_diff;
4886 
4887 	if (!sched_feat(UTIL_EST))
4888 		return;
4889 
4890 	/*
4891 	 * Skip update of task's estimated utilization when the task has not
4892 	 * yet completed an activation, e.g. being migrated.
4893 	 */
4894 	if (!task_sleep)
4895 		return;
4896 
4897 	/* Get current estimate of utilization */
4898 	ewma = READ_ONCE(p->se.avg.util_est);
4899 
4900 	/*
4901 	 * If the PELT values haven't changed since enqueue time,
4902 	 * skip the util_est update.
4903 	 */
4904 	if (ewma & UTIL_AVG_UNCHANGED)
4905 		return;
4906 
4907 	/* Get utilization at dequeue */
4908 	dequeued = task_util(p);
4909 
4910 	/*
4911 	 * Reset EWMA on utilization increases, the moving average is used only
4912 	 * to smooth utilization decreases.
4913 	 */
4914 	if (ewma <= dequeued) {
4915 		ewma = dequeued;
4916 		goto done;
4917 	}
4918 
4919 	/*
4920 	 * Skip update of task's estimated utilization when its members are
4921 	 * already ~1% close to its last activation value.
4922 	 */
4923 	last_ewma_diff = ewma - dequeued;
4924 	if (last_ewma_diff < UTIL_EST_MARGIN)
4925 		goto done;
4926 
4927 	/*
4928 	 * To avoid overestimation of actual task utilization, skip updates if
4929 	 * we cannot grant there is idle time in this CPU.
4930 	 */
4931 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4932 		return;
4933 
4934 	/*
4935 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4936 	 * we cannot grant that thread got all CPU time it wanted.
4937 	 */
4938 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4939 		goto done;
4940 
4941 
4942 	/*
4943 	 * Update Task's estimated utilization
4944 	 *
4945 	 * When *p completes an activation we can consolidate another sample
4946 	 * of the task size. This is done by using this value to update the
4947 	 * Exponential Weighted Moving Average (EWMA):
4948 	 *
4949 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4950 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4951 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4952 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4953 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4954 	 *
4955 	 * Where 'w' is the weight of new samples, which is configured to be
4956 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4957 	 */
4958 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4959 	ewma  -= last_ewma_diff;
4960 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4961 done:
4962 	ewma |= UTIL_AVG_UNCHANGED;
4963 	WRITE_ONCE(p->se.avg.util_est, ewma);
4964 
4965 	trace_sched_util_est_se_tp(&p->se);
4966 }
4967 
4968 static inline unsigned long get_actual_cpu_capacity(int cpu)
4969 {
4970 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4971 
4972 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4973 
4974 	return capacity;
4975 }
4976 
4977 static inline int util_fits_cpu(unsigned long util,
4978 				unsigned long uclamp_min,
4979 				unsigned long uclamp_max,
4980 				int cpu)
4981 {
4982 	unsigned long capacity = capacity_of(cpu);
4983 	unsigned long capacity_orig;
4984 	bool fits, uclamp_max_fits;
4985 
4986 	/*
4987 	 * Check if the real util fits without any uclamp boost/cap applied.
4988 	 */
4989 	fits = fits_capacity(util, capacity);
4990 
4991 	if (!uclamp_is_used())
4992 		return fits;
4993 
4994 	/*
4995 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4996 	 * uclamp_max. We only care about capacity pressure (by using
4997 	 * capacity_of()) for comparing against the real util.
4998 	 *
4999 	 * If a task is boosted to 1024 for example, we don't want a tiny
5000 	 * pressure to skew the check whether it fits a CPU or not.
5001 	 *
5002 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5003 	 * should fit a little cpu even if there's some pressure.
5004 	 *
5005 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5006 	 * on available OPP of the system.
5007 	 *
5008 	 * We honour it for uclamp_min only as a drop in performance level
5009 	 * could result in not getting the requested minimum performance level.
5010 	 *
5011 	 * For uclamp_max, we can tolerate a drop in performance level as the
5012 	 * goal is to cap the task. So it's okay if it's getting less.
5013 	 */
5014 	capacity_orig = arch_scale_cpu_capacity(cpu);
5015 
5016 	/*
5017 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5018 	 * But we do have some corner cases to cater for..
5019 	 *
5020 	 *
5021 	 *                                 C=z
5022 	 *   |                             ___
5023 	 *   |                  C=y       |   |
5024 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5025 	 *   |      C=x        |   |      |   |
5026 	 *   |      ___        |   |      |   |
5027 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5028 	 *   |     |   |       |   |      |   |
5029 	 *   |     |   |       |   |      |   |
5030 	 *   +----------------------------------------
5031 	 *         CPU0        CPU1       CPU2
5032 	 *
5033 	 *   In the above example if a task is capped to a specific performance
5034 	 *   point, y, then when:
5035 	 *
5036 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5037 	 *     to CPU1
5038 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5039 	 *     uclamp_max request.
5040 	 *
5041 	 *   which is what we're enforcing here. A task always fits if
5042 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5043 	 *   the normal upmigration rules should withhold still.
5044 	 *
5045 	 *   Only exception is when we are on max capacity, then we need to be
5046 	 *   careful not to block overutilized state. This is so because:
5047 	 *
5048 	 *     1. There's no concept of capping at max_capacity! We can't go
5049 	 *        beyond this performance level anyway.
5050 	 *     2. The system is being saturated when we're operating near
5051 	 *        max capacity, it doesn't make sense to block overutilized.
5052 	 */
5053 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5054 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5055 	fits = fits || uclamp_max_fits;
5056 
5057 	/*
5058 	 *
5059 	 *                                 C=z
5060 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5061 	 *   |                  C=y       |   |
5062 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5063 	 *   |      C=x        |   |      |   |
5064 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5065 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5066 	 *   |     |   |       |   |      |   |
5067 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5068 	 *   +----------------------------------------
5069 	 *         CPU0        CPU1       CPU2
5070 	 *
5071 	 * a) If util > uclamp_max, then we're capped, we don't care about
5072 	 *    actual fitness value here. We only care if uclamp_max fits
5073 	 *    capacity without taking margin/pressure into account.
5074 	 *    See comment above.
5075 	 *
5076 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5077 	 *    fits_capacity() rules apply. Except we need to ensure that we
5078 	 *    enforce we remain within uclamp_max, see comment above.
5079 	 *
5080 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5081 	 *    need to take into account the boosted value fits the CPU without
5082 	 *    taking margin/pressure into account.
5083 	 *
5084 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5085 	 * just need to consider an extra check for case (c) after ensuring we
5086 	 * handle the case uclamp_min > uclamp_max.
5087 	 */
5088 	uclamp_min = min(uclamp_min, uclamp_max);
5089 	if (fits && (util < uclamp_min) &&
5090 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5091 		return -1;
5092 
5093 	return fits;
5094 }
5095 
5096 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5097 {
5098 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5099 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5100 	unsigned long util = task_util_est(p);
5101 	/*
5102 	 * Return true only if the cpu fully fits the task requirements, which
5103 	 * include the utilization but also the performance hints.
5104 	 */
5105 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5106 }
5107 
5108 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5109 {
5110 	int cpu = cpu_of(rq);
5111 
5112 	if (!sched_asym_cpucap_active())
5113 		return;
5114 
5115 	/*
5116 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5117 	 * available CPU already? Or do we fit into this CPU ?
5118 	 */
5119 	if (!p || (p->nr_cpus_allowed == 1) ||
5120 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5121 	    task_fits_cpu(p, cpu)) {
5122 
5123 		rq->misfit_task_load = 0;
5124 		return;
5125 	}
5126 
5127 	/*
5128 	 * Make sure that misfit_task_load will not be null even if
5129 	 * task_h_load() returns 0.
5130 	 */
5131 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5132 }
5133 
5134 #else /* CONFIG_SMP */
5135 
5136 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5137 {
5138 	return !cfs_rq->nr_running;
5139 }
5140 
5141 #define UPDATE_TG	0x0
5142 #define SKIP_AGE_LOAD	0x0
5143 #define DO_ATTACH	0x0
5144 #define DO_DETACH	0x0
5145 
5146 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5147 {
5148 	cfs_rq_util_change(cfs_rq, 0);
5149 }
5150 
5151 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5152 
5153 static inline void
5154 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5155 static inline void
5156 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5157 
5158 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5159 {
5160 	return 0;
5161 }
5162 
5163 static inline void
5164 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5165 
5166 static inline void
5167 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5168 
5169 static inline void
5170 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5171 		bool task_sleep) {}
5172 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5173 
5174 #endif /* CONFIG_SMP */
5175 
5176 static void
5177 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5178 {
5179 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5180 	s64 lag = 0;
5181 
5182 	se->slice = sysctl_sched_base_slice;
5183 	vslice = calc_delta_fair(se->slice, se);
5184 
5185 	/*
5186 	 * Due to how V is constructed as the weighted average of entities,
5187 	 * adding tasks with positive lag, or removing tasks with negative lag
5188 	 * will move 'time' backwards, this can screw around with the lag of
5189 	 * other tasks.
5190 	 *
5191 	 * EEVDF: placement strategy #1 / #2
5192 	 */
5193 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5194 		struct sched_entity *curr = cfs_rq->curr;
5195 		unsigned long load;
5196 
5197 		lag = se->vlag;
5198 
5199 		/*
5200 		 * If we want to place a task and preserve lag, we have to
5201 		 * consider the effect of the new entity on the weighted
5202 		 * average and compensate for this, otherwise lag can quickly
5203 		 * evaporate.
5204 		 *
5205 		 * Lag is defined as:
5206 		 *
5207 		 *   lag_i = S - s_i = w_i * (V - v_i)
5208 		 *
5209 		 * To avoid the 'w_i' term all over the place, we only track
5210 		 * the virtual lag:
5211 		 *
5212 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5213 		 *
5214 		 * And we take V to be the weighted average of all v:
5215 		 *
5216 		 *   V = (\Sum w_j*v_j) / W
5217 		 *
5218 		 * Where W is: \Sum w_j
5219 		 *
5220 		 * Then, the weighted average after adding an entity with lag
5221 		 * vl_i is given by:
5222 		 *
5223 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5224 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5225 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5226 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5227 		 *      = V - w_i*vl_i / (W + w_i)
5228 		 *
5229 		 * And the actual lag after adding an entity with vl_i is:
5230 		 *
5231 		 *   vl'_i = V' - v_i
5232 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5233 		 *         = vl_i - w_i*vl_i / (W + w_i)
5234 		 *
5235 		 * Which is strictly less than vl_i. So in order to preserve lag
5236 		 * we should inflate the lag before placement such that the
5237 		 * effective lag after placement comes out right.
5238 		 *
5239 		 * As such, invert the above relation for vl'_i to get the vl_i
5240 		 * we need to use such that the lag after placement is the lag
5241 		 * we computed before dequeue.
5242 		 *
5243 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5244 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5245 		 *
5246 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5247 		 *                   = W*vl_i
5248 		 *
5249 		 *   vl_i = (W + w_i)*vl'_i / W
5250 		 */
5251 		load = cfs_rq->avg_load;
5252 		if (curr && curr->on_rq)
5253 			load += scale_load_down(curr->load.weight);
5254 
5255 		lag *= load + scale_load_down(se->load.weight);
5256 		if (WARN_ON_ONCE(!load))
5257 			load = 1;
5258 		lag = div_s64(lag, load);
5259 	}
5260 
5261 	se->vruntime = vruntime - lag;
5262 
5263 	/*
5264 	 * When joining the competition; the existing tasks will be,
5265 	 * on average, halfway through their slice, as such start tasks
5266 	 * off with half a slice to ease into the competition.
5267 	 */
5268 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5269 		vslice /= 2;
5270 
5271 	/*
5272 	 * EEVDF: vd_i = ve_i + r_i/w_i
5273 	 */
5274 	se->deadline = se->vruntime + vslice;
5275 }
5276 
5277 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5278 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5279 
5280 static inline bool cfs_bandwidth_used(void);
5281 
5282 static void
5283 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5284 {
5285 	bool curr = cfs_rq->curr == se;
5286 
5287 	/*
5288 	 * If we're the current task, we must renormalise before calling
5289 	 * update_curr().
5290 	 */
5291 	if (curr)
5292 		place_entity(cfs_rq, se, flags);
5293 
5294 	update_curr(cfs_rq);
5295 
5296 	/*
5297 	 * When enqueuing a sched_entity, we must:
5298 	 *   - Update loads to have both entity and cfs_rq synced with now.
5299 	 *   - For group_entity, update its runnable_weight to reflect the new
5300 	 *     h_nr_running of its group cfs_rq.
5301 	 *   - For group_entity, update its weight to reflect the new share of
5302 	 *     its group cfs_rq
5303 	 *   - Add its new weight to cfs_rq->load.weight
5304 	 */
5305 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5306 	se_update_runnable(se);
5307 	/*
5308 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5309 	 * but update_cfs_group() here will re-adjust the weight and have to
5310 	 * undo/redo all that. Seems wasteful.
5311 	 */
5312 	update_cfs_group(se);
5313 
5314 	/*
5315 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5316 	 * we can place the entity.
5317 	 */
5318 	if (!curr)
5319 		place_entity(cfs_rq, se, flags);
5320 
5321 	account_entity_enqueue(cfs_rq, se);
5322 
5323 	/* Entity has migrated, no longer consider this task hot */
5324 	if (flags & ENQUEUE_MIGRATED)
5325 		se->exec_start = 0;
5326 
5327 	check_schedstat_required();
5328 	update_stats_enqueue_fair(cfs_rq, se, flags);
5329 	if (!curr)
5330 		__enqueue_entity(cfs_rq, se);
5331 	se->on_rq = 1;
5332 
5333 	if (cfs_rq->nr_running == 1) {
5334 		check_enqueue_throttle(cfs_rq);
5335 		if (!throttled_hierarchy(cfs_rq)) {
5336 			list_add_leaf_cfs_rq(cfs_rq);
5337 		} else {
5338 #ifdef CONFIG_CFS_BANDWIDTH
5339 			struct rq *rq = rq_of(cfs_rq);
5340 
5341 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5342 				cfs_rq->throttled_clock = rq_clock(rq);
5343 			if (!cfs_rq->throttled_clock_self)
5344 				cfs_rq->throttled_clock_self = rq_clock(rq);
5345 #endif
5346 		}
5347 	}
5348 }
5349 
5350 static void __clear_buddies_next(struct sched_entity *se)
5351 {
5352 	for_each_sched_entity(se) {
5353 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5354 		if (cfs_rq->next != se)
5355 			break;
5356 
5357 		cfs_rq->next = NULL;
5358 	}
5359 }
5360 
5361 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5362 {
5363 	if (cfs_rq->next == se)
5364 		__clear_buddies_next(se);
5365 }
5366 
5367 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5368 
5369 static void
5370 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5371 {
5372 	int action = UPDATE_TG;
5373 
5374 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5375 		action |= DO_DETACH;
5376 
5377 	/*
5378 	 * Update run-time statistics of the 'current'.
5379 	 */
5380 	update_curr(cfs_rq);
5381 
5382 	/*
5383 	 * When dequeuing a sched_entity, we must:
5384 	 *   - Update loads to have both entity and cfs_rq synced with now.
5385 	 *   - For group_entity, update its runnable_weight to reflect the new
5386 	 *     h_nr_running of its group cfs_rq.
5387 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5388 	 *   - For group entity, update its weight to reflect the new share
5389 	 *     of its group cfs_rq.
5390 	 */
5391 	update_load_avg(cfs_rq, se, action);
5392 	se_update_runnable(se);
5393 
5394 	update_stats_dequeue_fair(cfs_rq, se, flags);
5395 
5396 	clear_buddies(cfs_rq, se);
5397 
5398 	update_entity_lag(cfs_rq, se);
5399 	if (se != cfs_rq->curr)
5400 		__dequeue_entity(cfs_rq, se);
5401 	se->on_rq = 0;
5402 	account_entity_dequeue(cfs_rq, se);
5403 
5404 	/* return excess runtime on last dequeue */
5405 	return_cfs_rq_runtime(cfs_rq);
5406 
5407 	update_cfs_group(se);
5408 
5409 	/*
5410 	 * Now advance min_vruntime if @se was the entity holding it back,
5411 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5412 	 * put back on, and if we advance min_vruntime, we'll be placed back
5413 	 * further than we started -- i.e. we'll be penalized.
5414 	 */
5415 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5416 		update_min_vruntime(cfs_rq);
5417 
5418 	if (cfs_rq->nr_running == 0)
5419 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5420 }
5421 
5422 static void
5423 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5424 {
5425 	clear_buddies(cfs_rq, se);
5426 
5427 	/* 'current' is not kept within the tree. */
5428 	if (se->on_rq) {
5429 		/*
5430 		 * Any task has to be enqueued before it get to execute on
5431 		 * a CPU. So account for the time it spent waiting on the
5432 		 * runqueue.
5433 		 */
5434 		update_stats_wait_end_fair(cfs_rq, se);
5435 		__dequeue_entity(cfs_rq, se);
5436 		update_load_avg(cfs_rq, se, UPDATE_TG);
5437 		/*
5438 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5439 		 * which isn't used until dequeue.
5440 		 */
5441 		se->vlag = se->deadline;
5442 	}
5443 
5444 	update_stats_curr_start(cfs_rq, se);
5445 	cfs_rq->curr = se;
5446 
5447 	/*
5448 	 * Track our maximum slice length, if the CPU's load is at
5449 	 * least twice that of our own weight (i.e. don't track it
5450 	 * when there are only lesser-weight tasks around):
5451 	 */
5452 	if (schedstat_enabled() &&
5453 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5454 		struct sched_statistics *stats;
5455 
5456 		stats = __schedstats_from_se(se);
5457 		__schedstat_set(stats->slice_max,
5458 				max((u64)stats->slice_max,
5459 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5460 	}
5461 
5462 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5463 }
5464 
5465 /*
5466  * Pick the next process, keeping these things in mind, in this order:
5467  * 1) keep things fair between processes/task groups
5468  * 2) pick the "next" process, since someone really wants that to run
5469  * 3) pick the "last" process, for cache locality
5470  * 4) do not run the "skip" process, if something else is available
5471  */
5472 static struct sched_entity *
5473 pick_next_entity(struct cfs_rq *cfs_rq)
5474 {
5475 	/*
5476 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5477 	 */
5478 	if (sched_feat(NEXT_BUDDY) &&
5479 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5480 		return cfs_rq->next;
5481 
5482 	return pick_eevdf(cfs_rq);
5483 }
5484 
5485 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5486 
5487 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5488 {
5489 	/*
5490 	 * If still on the runqueue then deactivate_task()
5491 	 * was not called and update_curr() has to be done:
5492 	 */
5493 	if (prev->on_rq)
5494 		update_curr(cfs_rq);
5495 
5496 	/* throttle cfs_rqs exceeding runtime */
5497 	check_cfs_rq_runtime(cfs_rq);
5498 
5499 	if (prev->on_rq) {
5500 		update_stats_wait_start_fair(cfs_rq, prev);
5501 		/* Put 'current' back into the tree. */
5502 		__enqueue_entity(cfs_rq, prev);
5503 		/* in !on_rq case, update occurred at dequeue */
5504 		update_load_avg(cfs_rq, prev, 0);
5505 	}
5506 	cfs_rq->curr = NULL;
5507 }
5508 
5509 static void
5510 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5511 {
5512 	/*
5513 	 * Update run-time statistics of the 'current'.
5514 	 */
5515 	update_curr(cfs_rq);
5516 
5517 	/*
5518 	 * Ensure that runnable average is periodically updated.
5519 	 */
5520 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5521 	update_cfs_group(curr);
5522 
5523 #ifdef CONFIG_SCHED_HRTICK
5524 	/*
5525 	 * queued ticks are scheduled to match the slice, so don't bother
5526 	 * validating it and just reschedule.
5527 	 */
5528 	if (queued) {
5529 		resched_curr(rq_of(cfs_rq));
5530 		return;
5531 	}
5532 	/*
5533 	 * don't let the period tick interfere with the hrtick preemption
5534 	 */
5535 	if (!sched_feat(DOUBLE_TICK) &&
5536 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5537 		return;
5538 #endif
5539 }
5540 
5541 
5542 /**************************************************
5543  * CFS bandwidth control machinery
5544  */
5545 
5546 #ifdef CONFIG_CFS_BANDWIDTH
5547 
5548 #ifdef CONFIG_JUMP_LABEL
5549 static struct static_key __cfs_bandwidth_used;
5550 
5551 static inline bool cfs_bandwidth_used(void)
5552 {
5553 	return static_key_false(&__cfs_bandwidth_used);
5554 }
5555 
5556 void cfs_bandwidth_usage_inc(void)
5557 {
5558 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5559 }
5560 
5561 void cfs_bandwidth_usage_dec(void)
5562 {
5563 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5564 }
5565 #else /* CONFIG_JUMP_LABEL */
5566 static bool cfs_bandwidth_used(void)
5567 {
5568 	return true;
5569 }
5570 
5571 void cfs_bandwidth_usage_inc(void) {}
5572 void cfs_bandwidth_usage_dec(void) {}
5573 #endif /* CONFIG_JUMP_LABEL */
5574 
5575 /*
5576  * default period for cfs group bandwidth.
5577  * default: 0.1s, units: nanoseconds
5578  */
5579 static inline u64 default_cfs_period(void)
5580 {
5581 	return 100000000ULL;
5582 }
5583 
5584 static inline u64 sched_cfs_bandwidth_slice(void)
5585 {
5586 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5587 }
5588 
5589 /*
5590  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5591  * directly instead of rq->clock to avoid adding additional synchronization
5592  * around rq->lock.
5593  *
5594  * requires cfs_b->lock
5595  */
5596 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5597 {
5598 	s64 runtime;
5599 
5600 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5601 		return;
5602 
5603 	cfs_b->runtime += cfs_b->quota;
5604 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5605 	if (runtime > 0) {
5606 		cfs_b->burst_time += runtime;
5607 		cfs_b->nr_burst++;
5608 	}
5609 
5610 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5611 	cfs_b->runtime_snap = cfs_b->runtime;
5612 }
5613 
5614 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5615 {
5616 	return &tg->cfs_bandwidth;
5617 }
5618 
5619 /* returns 0 on failure to allocate runtime */
5620 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5621 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5622 {
5623 	u64 min_amount, amount = 0;
5624 
5625 	lockdep_assert_held(&cfs_b->lock);
5626 
5627 	/* note: this is a positive sum as runtime_remaining <= 0 */
5628 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5629 
5630 	if (cfs_b->quota == RUNTIME_INF)
5631 		amount = min_amount;
5632 	else {
5633 		start_cfs_bandwidth(cfs_b);
5634 
5635 		if (cfs_b->runtime > 0) {
5636 			amount = min(cfs_b->runtime, min_amount);
5637 			cfs_b->runtime -= amount;
5638 			cfs_b->idle = 0;
5639 		}
5640 	}
5641 
5642 	cfs_rq->runtime_remaining += amount;
5643 
5644 	return cfs_rq->runtime_remaining > 0;
5645 }
5646 
5647 /* returns 0 on failure to allocate runtime */
5648 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5649 {
5650 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5651 	int ret;
5652 
5653 	raw_spin_lock(&cfs_b->lock);
5654 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5655 	raw_spin_unlock(&cfs_b->lock);
5656 
5657 	return ret;
5658 }
5659 
5660 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5661 {
5662 	/* dock delta_exec before expiring quota (as it could span periods) */
5663 	cfs_rq->runtime_remaining -= delta_exec;
5664 
5665 	if (likely(cfs_rq->runtime_remaining > 0))
5666 		return;
5667 
5668 	if (cfs_rq->throttled)
5669 		return;
5670 	/*
5671 	 * if we're unable to extend our runtime we resched so that the active
5672 	 * hierarchy can be throttled
5673 	 */
5674 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5675 		resched_curr(rq_of(cfs_rq));
5676 }
5677 
5678 static __always_inline
5679 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5680 {
5681 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5682 		return;
5683 
5684 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5685 }
5686 
5687 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5688 {
5689 	return cfs_bandwidth_used() && cfs_rq->throttled;
5690 }
5691 
5692 /* check whether cfs_rq, or any parent, is throttled */
5693 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5694 {
5695 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5696 }
5697 
5698 /*
5699  * Ensure that neither of the group entities corresponding to src_cpu or
5700  * dest_cpu are members of a throttled hierarchy when performing group
5701  * load-balance operations.
5702  */
5703 static inline int throttled_lb_pair(struct task_group *tg,
5704 				    int src_cpu, int dest_cpu)
5705 {
5706 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5707 
5708 	src_cfs_rq = tg->cfs_rq[src_cpu];
5709 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5710 
5711 	return throttled_hierarchy(src_cfs_rq) ||
5712 	       throttled_hierarchy(dest_cfs_rq);
5713 }
5714 
5715 static int tg_unthrottle_up(struct task_group *tg, void *data)
5716 {
5717 	struct rq *rq = data;
5718 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5719 
5720 	cfs_rq->throttle_count--;
5721 	if (!cfs_rq->throttle_count) {
5722 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5723 					     cfs_rq->throttled_clock_pelt;
5724 
5725 		/* Add cfs_rq with load or one or more already running entities to the list */
5726 		if (!cfs_rq_is_decayed(cfs_rq))
5727 			list_add_leaf_cfs_rq(cfs_rq);
5728 
5729 		if (cfs_rq->throttled_clock_self) {
5730 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5731 
5732 			cfs_rq->throttled_clock_self = 0;
5733 
5734 			if (SCHED_WARN_ON((s64)delta < 0))
5735 				delta = 0;
5736 
5737 			cfs_rq->throttled_clock_self_time += delta;
5738 		}
5739 	}
5740 
5741 	return 0;
5742 }
5743 
5744 static int tg_throttle_down(struct task_group *tg, void *data)
5745 {
5746 	struct rq *rq = data;
5747 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5748 
5749 	/* group is entering throttled state, stop time */
5750 	if (!cfs_rq->throttle_count) {
5751 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5752 		list_del_leaf_cfs_rq(cfs_rq);
5753 
5754 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5755 		if (cfs_rq->nr_running)
5756 			cfs_rq->throttled_clock_self = rq_clock(rq);
5757 	}
5758 	cfs_rq->throttle_count++;
5759 
5760 	return 0;
5761 }
5762 
5763 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5764 {
5765 	struct rq *rq = rq_of(cfs_rq);
5766 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5767 	struct sched_entity *se;
5768 	long task_delta, idle_task_delta, dequeue = 1;
5769 
5770 	raw_spin_lock(&cfs_b->lock);
5771 	/* This will start the period timer if necessary */
5772 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5773 		/*
5774 		 * We have raced with bandwidth becoming available, and if we
5775 		 * actually throttled the timer might not unthrottle us for an
5776 		 * entire period. We additionally needed to make sure that any
5777 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5778 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5779 		 * for 1ns of runtime rather than just check cfs_b.
5780 		 */
5781 		dequeue = 0;
5782 	} else {
5783 		list_add_tail_rcu(&cfs_rq->throttled_list,
5784 				  &cfs_b->throttled_cfs_rq);
5785 	}
5786 	raw_spin_unlock(&cfs_b->lock);
5787 
5788 	if (!dequeue)
5789 		return false;  /* Throttle no longer required. */
5790 
5791 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5792 
5793 	/* freeze hierarchy runnable averages while throttled */
5794 	rcu_read_lock();
5795 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5796 	rcu_read_unlock();
5797 
5798 	task_delta = cfs_rq->h_nr_running;
5799 	idle_task_delta = cfs_rq->idle_h_nr_running;
5800 	for_each_sched_entity(se) {
5801 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5802 		/* throttled entity or throttle-on-deactivate */
5803 		if (!se->on_rq)
5804 			goto done;
5805 
5806 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5807 
5808 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5809 			idle_task_delta = cfs_rq->h_nr_running;
5810 
5811 		qcfs_rq->h_nr_running -= task_delta;
5812 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5813 
5814 		if (qcfs_rq->load.weight) {
5815 			/* Avoid re-evaluating load for this entity: */
5816 			se = parent_entity(se);
5817 			break;
5818 		}
5819 	}
5820 
5821 	for_each_sched_entity(se) {
5822 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5823 		/* throttled entity or throttle-on-deactivate */
5824 		if (!se->on_rq)
5825 			goto done;
5826 
5827 		update_load_avg(qcfs_rq, se, 0);
5828 		se_update_runnable(se);
5829 
5830 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5831 			idle_task_delta = cfs_rq->h_nr_running;
5832 
5833 		qcfs_rq->h_nr_running -= task_delta;
5834 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5835 	}
5836 
5837 	/* At this point se is NULL and we are at root level*/
5838 	sub_nr_running(rq, task_delta);
5839 
5840 done:
5841 	/*
5842 	 * Note: distribution will already see us throttled via the
5843 	 * throttled-list.  rq->lock protects completion.
5844 	 */
5845 	cfs_rq->throttled = 1;
5846 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5847 	if (cfs_rq->nr_running)
5848 		cfs_rq->throttled_clock = rq_clock(rq);
5849 	return true;
5850 }
5851 
5852 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5853 {
5854 	struct rq *rq = rq_of(cfs_rq);
5855 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5856 	struct sched_entity *se;
5857 	long task_delta, idle_task_delta;
5858 
5859 	se = cfs_rq->tg->se[cpu_of(rq)];
5860 
5861 	cfs_rq->throttled = 0;
5862 
5863 	update_rq_clock(rq);
5864 
5865 	raw_spin_lock(&cfs_b->lock);
5866 	if (cfs_rq->throttled_clock) {
5867 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5868 		cfs_rq->throttled_clock = 0;
5869 	}
5870 	list_del_rcu(&cfs_rq->throttled_list);
5871 	raw_spin_unlock(&cfs_b->lock);
5872 
5873 	/* update hierarchical throttle state */
5874 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5875 
5876 	if (!cfs_rq->load.weight) {
5877 		if (!cfs_rq->on_list)
5878 			return;
5879 		/*
5880 		 * Nothing to run but something to decay (on_list)?
5881 		 * Complete the branch.
5882 		 */
5883 		for_each_sched_entity(se) {
5884 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5885 				break;
5886 		}
5887 		goto unthrottle_throttle;
5888 	}
5889 
5890 	task_delta = cfs_rq->h_nr_running;
5891 	idle_task_delta = cfs_rq->idle_h_nr_running;
5892 	for_each_sched_entity(se) {
5893 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5894 
5895 		if (se->on_rq)
5896 			break;
5897 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5898 
5899 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5900 			idle_task_delta = cfs_rq->h_nr_running;
5901 
5902 		qcfs_rq->h_nr_running += task_delta;
5903 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5904 
5905 		/* end evaluation on encountering a throttled cfs_rq */
5906 		if (cfs_rq_throttled(qcfs_rq))
5907 			goto unthrottle_throttle;
5908 	}
5909 
5910 	for_each_sched_entity(se) {
5911 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5912 
5913 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5914 		se_update_runnable(se);
5915 
5916 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5917 			idle_task_delta = cfs_rq->h_nr_running;
5918 
5919 		qcfs_rq->h_nr_running += task_delta;
5920 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5921 
5922 		/* end evaluation on encountering a throttled cfs_rq */
5923 		if (cfs_rq_throttled(qcfs_rq))
5924 			goto unthrottle_throttle;
5925 	}
5926 
5927 	/* At this point se is NULL and we are at root level*/
5928 	add_nr_running(rq, task_delta);
5929 
5930 unthrottle_throttle:
5931 	assert_list_leaf_cfs_rq(rq);
5932 
5933 	/* Determine whether we need to wake up potentially idle CPU: */
5934 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5935 		resched_curr(rq);
5936 }
5937 
5938 #ifdef CONFIG_SMP
5939 static void __cfsb_csd_unthrottle(void *arg)
5940 {
5941 	struct cfs_rq *cursor, *tmp;
5942 	struct rq *rq = arg;
5943 	struct rq_flags rf;
5944 
5945 	rq_lock(rq, &rf);
5946 
5947 	/*
5948 	 * Iterating over the list can trigger several call to
5949 	 * update_rq_clock() in unthrottle_cfs_rq().
5950 	 * Do it once and skip the potential next ones.
5951 	 */
5952 	update_rq_clock(rq);
5953 	rq_clock_start_loop_update(rq);
5954 
5955 	/*
5956 	 * Since we hold rq lock we're safe from concurrent manipulation of
5957 	 * the CSD list. However, this RCU critical section annotates the
5958 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5959 	 * race with group being freed in the window between removing it
5960 	 * from the list and advancing to the next entry in the list.
5961 	 */
5962 	rcu_read_lock();
5963 
5964 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5965 				 throttled_csd_list) {
5966 		list_del_init(&cursor->throttled_csd_list);
5967 
5968 		if (cfs_rq_throttled(cursor))
5969 			unthrottle_cfs_rq(cursor);
5970 	}
5971 
5972 	rcu_read_unlock();
5973 
5974 	rq_clock_stop_loop_update(rq);
5975 	rq_unlock(rq, &rf);
5976 }
5977 
5978 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5979 {
5980 	struct rq *rq = rq_of(cfs_rq);
5981 	bool first;
5982 
5983 	if (rq == this_rq()) {
5984 		unthrottle_cfs_rq(cfs_rq);
5985 		return;
5986 	}
5987 
5988 	/* Already enqueued */
5989 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5990 		return;
5991 
5992 	first = list_empty(&rq->cfsb_csd_list);
5993 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5994 	if (first)
5995 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5996 }
5997 #else
5998 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5999 {
6000 	unthrottle_cfs_rq(cfs_rq);
6001 }
6002 #endif
6003 
6004 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6005 {
6006 	lockdep_assert_rq_held(rq_of(cfs_rq));
6007 
6008 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6009 	    cfs_rq->runtime_remaining <= 0))
6010 		return;
6011 
6012 	__unthrottle_cfs_rq_async(cfs_rq);
6013 }
6014 
6015 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6016 {
6017 	int this_cpu = smp_processor_id();
6018 	u64 runtime, remaining = 1;
6019 	bool throttled = false;
6020 	struct cfs_rq *cfs_rq, *tmp;
6021 	struct rq_flags rf;
6022 	struct rq *rq;
6023 	LIST_HEAD(local_unthrottle);
6024 
6025 	rcu_read_lock();
6026 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6027 				throttled_list) {
6028 		rq = rq_of(cfs_rq);
6029 
6030 		if (!remaining) {
6031 			throttled = true;
6032 			break;
6033 		}
6034 
6035 		rq_lock_irqsave(rq, &rf);
6036 		if (!cfs_rq_throttled(cfs_rq))
6037 			goto next;
6038 
6039 		/* Already queued for async unthrottle */
6040 		if (!list_empty(&cfs_rq->throttled_csd_list))
6041 			goto next;
6042 
6043 		/* By the above checks, this should never be true */
6044 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6045 
6046 		raw_spin_lock(&cfs_b->lock);
6047 		runtime = -cfs_rq->runtime_remaining + 1;
6048 		if (runtime > cfs_b->runtime)
6049 			runtime = cfs_b->runtime;
6050 		cfs_b->runtime -= runtime;
6051 		remaining = cfs_b->runtime;
6052 		raw_spin_unlock(&cfs_b->lock);
6053 
6054 		cfs_rq->runtime_remaining += runtime;
6055 
6056 		/* we check whether we're throttled above */
6057 		if (cfs_rq->runtime_remaining > 0) {
6058 			if (cpu_of(rq) != this_cpu) {
6059 				unthrottle_cfs_rq_async(cfs_rq);
6060 			} else {
6061 				/*
6062 				 * We currently only expect to be unthrottling
6063 				 * a single cfs_rq locally.
6064 				 */
6065 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6066 				list_add_tail(&cfs_rq->throttled_csd_list,
6067 					      &local_unthrottle);
6068 			}
6069 		} else {
6070 			throttled = true;
6071 		}
6072 
6073 next:
6074 		rq_unlock_irqrestore(rq, &rf);
6075 	}
6076 
6077 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6078 				 throttled_csd_list) {
6079 		struct rq *rq = rq_of(cfs_rq);
6080 
6081 		rq_lock_irqsave(rq, &rf);
6082 
6083 		list_del_init(&cfs_rq->throttled_csd_list);
6084 
6085 		if (cfs_rq_throttled(cfs_rq))
6086 			unthrottle_cfs_rq(cfs_rq);
6087 
6088 		rq_unlock_irqrestore(rq, &rf);
6089 	}
6090 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6091 
6092 	rcu_read_unlock();
6093 
6094 	return throttled;
6095 }
6096 
6097 /*
6098  * Responsible for refilling a task_group's bandwidth and unthrottling its
6099  * cfs_rqs as appropriate. If there has been no activity within the last
6100  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6101  * used to track this state.
6102  */
6103 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6104 {
6105 	int throttled;
6106 
6107 	/* no need to continue the timer with no bandwidth constraint */
6108 	if (cfs_b->quota == RUNTIME_INF)
6109 		goto out_deactivate;
6110 
6111 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6112 	cfs_b->nr_periods += overrun;
6113 
6114 	/* Refill extra burst quota even if cfs_b->idle */
6115 	__refill_cfs_bandwidth_runtime(cfs_b);
6116 
6117 	/*
6118 	 * idle depends on !throttled (for the case of a large deficit), and if
6119 	 * we're going inactive then everything else can be deferred
6120 	 */
6121 	if (cfs_b->idle && !throttled)
6122 		goto out_deactivate;
6123 
6124 	if (!throttled) {
6125 		/* mark as potentially idle for the upcoming period */
6126 		cfs_b->idle = 1;
6127 		return 0;
6128 	}
6129 
6130 	/* account preceding periods in which throttling occurred */
6131 	cfs_b->nr_throttled += overrun;
6132 
6133 	/*
6134 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6135 	 */
6136 	while (throttled && cfs_b->runtime > 0) {
6137 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6138 		/* we can't nest cfs_b->lock while distributing bandwidth */
6139 		throttled = distribute_cfs_runtime(cfs_b);
6140 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6141 	}
6142 
6143 	/*
6144 	 * While we are ensured activity in the period following an
6145 	 * unthrottle, this also covers the case in which the new bandwidth is
6146 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6147 	 * timer to remain active while there are any throttled entities.)
6148 	 */
6149 	cfs_b->idle = 0;
6150 
6151 	return 0;
6152 
6153 out_deactivate:
6154 	return 1;
6155 }
6156 
6157 /* a cfs_rq won't donate quota below this amount */
6158 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6159 /* minimum remaining period time to redistribute slack quota */
6160 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6161 /* how long we wait to gather additional slack before distributing */
6162 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6163 
6164 /*
6165  * Are we near the end of the current quota period?
6166  *
6167  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6168  * hrtimer base being cleared by hrtimer_start. In the case of
6169  * migrate_hrtimers, base is never cleared, so we are fine.
6170  */
6171 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6172 {
6173 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6174 	s64 remaining;
6175 
6176 	/* if the call-back is running a quota refresh is already occurring */
6177 	if (hrtimer_callback_running(refresh_timer))
6178 		return 1;
6179 
6180 	/* is a quota refresh about to occur? */
6181 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6182 	if (remaining < (s64)min_expire)
6183 		return 1;
6184 
6185 	return 0;
6186 }
6187 
6188 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6189 {
6190 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6191 
6192 	/* if there's a quota refresh soon don't bother with slack */
6193 	if (runtime_refresh_within(cfs_b, min_left))
6194 		return;
6195 
6196 	/* don't push forwards an existing deferred unthrottle */
6197 	if (cfs_b->slack_started)
6198 		return;
6199 	cfs_b->slack_started = true;
6200 
6201 	hrtimer_start(&cfs_b->slack_timer,
6202 			ns_to_ktime(cfs_bandwidth_slack_period),
6203 			HRTIMER_MODE_REL);
6204 }
6205 
6206 /* we know any runtime found here is valid as update_curr() precedes return */
6207 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6208 {
6209 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6210 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6211 
6212 	if (slack_runtime <= 0)
6213 		return;
6214 
6215 	raw_spin_lock(&cfs_b->lock);
6216 	if (cfs_b->quota != RUNTIME_INF) {
6217 		cfs_b->runtime += slack_runtime;
6218 
6219 		/* we are under rq->lock, defer unthrottling using a timer */
6220 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6221 		    !list_empty(&cfs_b->throttled_cfs_rq))
6222 			start_cfs_slack_bandwidth(cfs_b);
6223 	}
6224 	raw_spin_unlock(&cfs_b->lock);
6225 
6226 	/* even if it's not valid for return we don't want to try again */
6227 	cfs_rq->runtime_remaining -= slack_runtime;
6228 }
6229 
6230 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6231 {
6232 	if (!cfs_bandwidth_used())
6233 		return;
6234 
6235 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6236 		return;
6237 
6238 	__return_cfs_rq_runtime(cfs_rq);
6239 }
6240 
6241 /*
6242  * This is done with a timer (instead of inline with bandwidth return) since
6243  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6244  */
6245 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6246 {
6247 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6248 	unsigned long flags;
6249 
6250 	/* confirm we're still not at a refresh boundary */
6251 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6252 	cfs_b->slack_started = false;
6253 
6254 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6255 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6256 		return;
6257 	}
6258 
6259 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6260 		runtime = cfs_b->runtime;
6261 
6262 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6263 
6264 	if (!runtime)
6265 		return;
6266 
6267 	distribute_cfs_runtime(cfs_b);
6268 }
6269 
6270 /*
6271  * When a group wakes up we want to make sure that its quota is not already
6272  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6273  * runtime as update_curr() throttling can not trigger until it's on-rq.
6274  */
6275 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6276 {
6277 	if (!cfs_bandwidth_used())
6278 		return;
6279 
6280 	/* an active group must be handled by the update_curr()->put() path */
6281 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6282 		return;
6283 
6284 	/* ensure the group is not already throttled */
6285 	if (cfs_rq_throttled(cfs_rq))
6286 		return;
6287 
6288 	/* update runtime allocation */
6289 	account_cfs_rq_runtime(cfs_rq, 0);
6290 	if (cfs_rq->runtime_remaining <= 0)
6291 		throttle_cfs_rq(cfs_rq);
6292 }
6293 
6294 static void sync_throttle(struct task_group *tg, int cpu)
6295 {
6296 	struct cfs_rq *pcfs_rq, *cfs_rq;
6297 
6298 	if (!cfs_bandwidth_used())
6299 		return;
6300 
6301 	if (!tg->parent)
6302 		return;
6303 
6304 	cfs_rq = tg->cfs_rq[cpu];
6305 	pcfs_rq = tg->parent->cfs_rq[cpu];
6306 
6307 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6308 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6309 }
6310 
6311 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6312 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6313 {
6314 	if (!cfs_bandwidth_used())
6315 		return false;
6316 
6317 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6318 		return false;
6319 
6320 	/*
6321 	 * it's possible for a throttled entity to be forced into a running
6322 	 * state (e.g. set_curr_task), in this case we're finished.
6323 	 */
6324 	if (cfs_rq_throttled(cfs_rq))
6325 		return true;
6326 
6327 	return throttle_cfs_rq(cfs_rq);
6328 }
6329 
6330 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6331 {
6332 	struct cfs_bandwidth *cfs_b =
6333 		container_of(timer, struct cfs_bandwidth, slack_timer);
6334 
6335 	do_sched_cfs_slack_timer(cfs_b);
6336 
6337 	return HRTIMER_NORESTART;
6338 }
6339 
6340 extern const u64 max_cfs_quota_period;
6341 
6342 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6343 {
6344 	struct cfs_bandwidth *cfs_b =
6345 		container_of(timer, struct cfs_bandwidth, period_timer);
6346 	unsigned long flags;
6347 	int overrun;
6348 	int idle = 0;
6349 	int count = 0;
6350 
6351 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6352 	for (;;) {
6353 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6354 		if (!overrun)
6355 			break;
6356 
6357 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6358 
6359 		if (++count > 3) {
6360 			u64 new, old = ktime_to_ns(cfs_b->period);
6361 
6362 			/*
6363 			 * Grow period by a factor of 2 to avoid losing precision.
6364 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6365 			 * to fail.
6366 			 */
6367 			new = old * 2;
6368 			if (new < max_cfs_quota_period) {
6369 				cfs_b->period = ns_to_ktime(new);
6370 				cfs_b->quota *= 2;
6371 				cfs_b->burst *= 2;
6372 
6373 				pr_warn_ratelimited(
6374 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6375 					smp_processor_id(),
6376 					div_u64(new, NSEC_PER_USEC),
6377 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6378 			} else {
6379 				pr_warn_ratelimited(
6380 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6381 					smp_processor_id(),
6382 					div_u64(old, NSEC_PER_USEC),
6383 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6384 			}
6385 
6386 			/* reset count so we don't come right back in here */
6387 			count = 0;
6388 		}
6389 	}
6390 	if (idle)
6391 		cfs_b->period_active = 0;
6392 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6393 
6394 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6395 }
6396 
6397 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6398 {
6399 	raw_spin_lock_init(&cfs_b->lock);
6400 	cfs_b->runtime = 0;
6401 	cfs_b->quota = RUNTIME_INF;
6402 	cfs_b->period = ns_to_ktime(default_cfs_period());
6403 	cfs_b->burst = 0;
6404 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6405 
6406 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6407 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6408 	cfs_b->period_timer.function = sched_cfs_period_timer;
6409 
6410 	/* Add a random offset so that timers interleave */
6411 	hrtimer_set_expires(&cfs_b->period_timer,
6412 			    get_random_u32_below(cfs_b->period));
6413 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6414 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6415 	cfs_b->slack_started = false;
6416 }
6417 
6418 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6419 {
6420 	cfs_rq->runtime_enabled = 0;
6421 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6422 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6423 }
6424 
6425 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6426 {
6427 	lockdep_assert_held(&cfs_b->lock);
6428 
6429 	if (cfs_b->period_active)
6430 		return;
6431 
6432 	cfs_b->period_active = 1;
6433 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6434 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6435 }
6436 
6437 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6438 {
6439 	int __maybe_unused i;
6440 
6441 	/* init_cfs_bandwidth() was not called */
6442 	if (!cfs_b->throttled_cfs_rq.next)
6443 		return;
6444 
6445 	hrtimer_cancel(&cfs_b->period_timer);
6446 	hrtimer_cancel(&cfs_b->slack_timer);
6447 
6448 	/*
6449 	 * It is possible that we still have some cfs_rq's pending on a CSD
6450 	 * list, though this race is very rare. In order for this to occur, we
6451 	 * must have raced with the last task leaving the group while there
6452 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6453 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6454 	 * we can simply flush all pending CSD work inline here. We're
6455 	 * guaranteed at this point that no additional cfs_rq of this group can
6456 	 * join a CSD list.
6457 	 */
6458 #ifdef CONFIG_SMP
6459 	for_each_possible_cpu(i) {
6460 		struct rq *rq = cpu_rq(i);
6461 		unsigned long flags;
6462 
6463 		if (list_empty(&rq->cfsb_csd_list))
6464 			continue;
6465 
6466 		local_irq_save(flags);
6467 		__cfsb_csd_unthrottle(rq);
6468 		local_irq_restore(flags);
6469 	}
6470 #endif
6471 }
6472 
6473 /*
6474  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6475  *
6476  * The race is harmless, since modifying bandwidth settings of unhooked group
6477  * bits doesn't do much.
6478  */
6479 
6480 /* cpu online callback */
6481 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6482 {
6483 	struct task_group *tg;
6484 
6485 	lockdep_assert_rq_held(rq);
6486 
6487 	rcu_read_lock();
6488 	list_for_each_entry_rcu(tg, &task_groups, list) {
6489 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6490 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6491 
6492 		raw_spin_lock(&cfs_b->lock);
6493 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6494 		raw_spin_unlock(&cfs_b->lock);
6495 	}
6496 	rcu_read_unlock();
6497 }
6498 
6499 /* cpu offline callback */
6500 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6501 {
6502 	struct task_group *tg;
6503 
6504 	lockdep_assert_rq_held(rq);
6505 
6506 	/*
6507 	 * The rq clock has already been updated in the
6508 	 * set_rq_offline(), so we should skip updating
6509 	 * the rq clock again in unthrottle_cfs_rq().
6510 	 */
6511 	rq_clock_start_loop_update(rq);
6512 
6513 	rcu_read_lock();
6514 	list_for_each_entry_rcu(tg, &task_groups, list) {
6515 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6516 
6517 		if (!cfs_rq->runtime_enabled)
6518 			continue;
6519 
6520 		/*
6521 		 * clock_task is not advancing so we just need to make sure
6522 		 * there's some valid quota amount
6523 		 */
6524 		cfs_rq->runtime_remaining = 1;
6525 		/*
6526 		 * Offline rq is schedulable till CPU is completely disabled
6527 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6528 		 */
6529 		cfs_rq->runtime_enabled = 0;
6530 
6531 		if (cfs_rq_throttled(cfs_rq))
6532 			unthrottle_cfs_rq(cfs_rq);
6533 	}
6534 	rcu_read_unlock();
6535 
6536 	rq_clock_stop_loop_update(rq);
6537 }
6538 
6539 bool cfs_task_bw_constrained(struct task_struct *p)
6540 {
6541 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6542 
6543 	if (!cfs_bandwidth_used())
6544 		return false;
6545 
6546 	if (cfs_rq->runtime_enabled ||
6547 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6548 		return true;
6549 
6550 	return false;
6551 }
6552 
6553 #ifdef CONFIG_NO_HZ_FULL
6554 /* called from pick_next_task_fair() */
6555 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6556 {
6557 	int cpu = cpu_of(rq);
6558 
6559 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6560 		return;
6561 
6562 	if (!tick_nohz_full_cpu(cpu))
6563 		return;
6564 
6565 	if (rq->nr_running != 1)
6566 		return;
6567 
6568 	/*
6569 	 *  We know there is only one task runnable and we've just picked it. The
6570 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6571 	 *  be otherwise able to stop the tick. Just need to check if we are using
6572 	 *  bandwidth control.
6573 	 */
6574 	if (cfs_task_bw_constrained(p))
6575 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6576 }
6577 #endif
6578 
6579 #else /* CONFIG_CFS_BANDWIDTH */
6580 
6581 static inline bool cfs_bandwidth_used(void)
6582 {
6583 	return false;
6584 }
6585 
6586 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6587 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6588 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6589 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6590 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6591 
6592 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6593 {
6594 	return 0;
6595 }
6596 
6597 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6598 {
6599 	return 0;
6600 }
6601 
6602 static inline int throttled_lb_pair(struct task_group *tg,
6603 				    int src_cpu, int dest_cpu)
6604 {
6605 	return 0;
6606 }
6607 
6608 #ifdef CONFIG_FAIR_GROUP_SCHED
6609 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6610 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6611 #endif
6612 
6613 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6614 {
6615 	return NULL;
6616 }
6617 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6618 static inline void update_runtime_enabled(struct rq *rq) {}
6619 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6620 #ifdef CONFIG_CGROUP_SCHED
6621 bool cfs_task_bw_constrained(struct task_struct *p)
6622 {
6623 	return false;
6624 }
6625 #endif
6626 #endif /* CONFIG_CFS_BANDWIDTH */
6627 
6628 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6629 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6630 #endif
6631 
6632 /**************************************************
6633  * CFS operations on tasks:
6634  */
6635 
6636 #ifdef CONFIG_SCHED_HRTICK
6637 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6638 {
6639 	struct sched_entity *se = &p->se;
6640 
6641 	SCHED_WARN_ON(task_rq(p) != rq);
6642 
6643 	if (rq->cfs.h_nr_running > 1) {
6644 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6645 		u64 slice = se->slice;
6646 		s64 delta = slice - ran;
6647 
6648 		if (delta < 0) {
6649 			if (task_current(rq, p))
6650 				resched_curr(rq);
6651 			return;
6652 		}
6653 		hrtick_start(rq, delta);
6654 	}
6655 }
6656 
6657 /*
6658  * called from enqueue/dequeue and updates the hrtick when the
6659  * current task is from our class and nr_running is low enough
6660  * to matter.
6661  */
6662 static void hrtick_update(struct rq *rq)
6663 {
6664 	struct task_struct *curr = rq->curr;
6665 
6666 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6667 		return;
6668 
6669 	hrtick_start_fair(rq, curr);
6670 }
6671 #else /* !CONFIG_SCHED_HRTICK */
6672 static inline void
6673 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6674 {
6675 }
6676 
6677 static inline void hrtick_update(struct rq *rq)
6678 {
6679 }
6680 #endif
6681 
6682 #ifdef CONFIG_SMP
6683 static inline bool cpu_overutilized(int cpu)
6684 {
6685 	unsigned long  rq_util_min, rq_util_max;
6686 
6687 	if (!sched_energy_enabled())
6688 		return false;
6689 
6690 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6691 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6692 
6693 	/* Return true only if the utilization doesn't fit CPU's capacity */
6694 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6695 }
6696 
6697 /*
6698  * overutilized value make sense only if EAS is enabled
6699  */
6700 static inline bool is_rd_overutilized(struct root_domain *rd)
6701 {
6702 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6703 }
6704 
6705 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6706 {
6707 	if (!sched_energy_enabled())
6708 		return;
6709 
6710 	WRITE_ONCE(rd->overutilized, flag);
6711 	trace_sched_overutilized_tp(rd, flag);
6712 }
6713 
6714 static inline void check_update_overutilized_status(struct rq *rq)
6715 {
6716 	/*
6717 	 * overutilized field is used for load balancing decisions only
6718 	 * if energy aware scheduler is being used
6719 	 */
6720 
6721 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6722 		set_rd_overutilized(rq->rd, 1);
6723 }
6724 #else
6725 static inline void check_update_overutilized_status(struct rq *rq) { }
6726 #endif
6727 
6728 /* Runqueue only has SCHED_IDLE tasks enqueued */
6729 static int sched_idle_rq(struct rq *rq)
6730 {
6731 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6732 			rq->nr_running);
6733 }
6734 
6735 #ifdef CONFIG_SMP
6736 static int sched_idle_cpu(int cpu)
6737 {
6738 	return sched_idle_rq(cpu_rq(cpu));
6739 }
6740 #endif
6741 
6742 /*
6743  * The enqueue_task method is called before nr_running is
6744  * increased. Here we update the fair scheduling stats and
6745  * then put the task into the rbtree:
6746  */
6747 static void
6748 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6749 {
6750 	struct cfs_rq *cfs_rq;
6751 	struct sched_entity *se = &p->se;
6752 	int idle_h_nr_running = task_has_idle_policy(p);
6753 	int task_new = !(flags & ENQUEUE_WAKEUP);
6754 
6755 	/*
6756 	 * The code below (indirectly) updates schedutil which looks at
6757 	 * the cfs_rq utilization to select a frequency.
6758 	 * Let's add the task's estimated utilization to the cfs_rq's
6759 	 * estimated utilization, before we update schedutil.
6760 	 */
6761 	util_est_enqueue(&rq->cfs, p);
6762 
6763 	/*
6764 	 * If in_iowait is set, the code below may not trigger any cpufreq
6765 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6766 	 * passed.
6767 	 */
6768 	if (p->in_iowait)
6769 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6770 
6771 	for_each_sched_entity(se) {
6772 		if (se->on_rq)
6773 			break;
6774 		cfs_rq = cfs_rq_of(se);
6775 		enqueue_entity(cfs_rq, se, flags);
6776 
6777 		cfs_rq->h_nr_running++;
6778 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6779 
6780 		if (cfs_rq_is_idle(cfs_rq))
6781 			idle_h_nr_running = 1;
6782 
6783 		/* end evaluation on encountering a throttled cfs_rq */
6784 		if (cfs_rq_throttled(cfs_rq))
6785 			goto enqueue_throttle;
6786 
6787 		flags = ENQUEUE_WAKEUP;
6788 	}
6789 
6790 	for_each_sched_entity(se) {
6791 		cfs_rq = cfs_rq_of(se);
6792 
6793 		update_load_avg(cfs_rq, se, UPDATE_TG);
6794 		se_update_runnable(se);
6795 		update_cfs_group(se);
6796 
6797 		cfs_rq->h_nr_running++;
6798 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6799 
6800 		if (cfs_rq_is_idle(cfs_rq))
6801 			idle_h_nr_running = 1;
6802 
6803 		/* end evaluation on encountering a throttled cfs_rq */
6804 		if (cfs_rq_throttled(cfs_rq))
6805 			goto enqueue_throttle;
6806 	}
6807 
6808 	/* At this point se is NULL and we are at root level*/
6809 	add_nr_running(rq, 1);
6810 
6811 	/*
6812 	 * Since new tasks are assigned an initial util_avg equal to
6813 	 * half of the spare capacity of their CPU, tiny tasks have the
6814 	 * ability to cross the overutilized threshold, which will
6815 	 * result in the load balancer ruining all the task placement
6816 	 * done by EAS. As a way to mitigate that effect, do not account
6817 	 * for the first enqueue operation of new tasks during the
6818 	 * overutilized flag detection.
6819 	 *
6820 	 * A better way of solving this problem would be to wait for
6821 	 * the PELT signals of tasks to converge before taking them
6822 	 * into account, but that is not straightforward to implement,
6823 	 * and the following generally works well enough in practice.
6824 	 */
6825 	if (!task_new)
6826 		check_update_overutilized_status(rq);
6827 
6828 enqueue_throttle:
6829 	assert_list_leaf_cfs_rq(rq);
6830 
6831 	hrtick_update(rq);
6832 }
6833 
6834 static void set_next_buddy(struct sched_entity *se);
6835 
6836 /*
6837  * The dequeue_task method is called before nr_running is
6838  * decreased. We remove the task from the rbtree and
6839  * update the fair scheduling stats:
6840  */
6841 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6842 {
6843 	struct cfs_rq *cfs_rq;
6844 	struct sched_entity *se = &p->se;
6845 	int task_sleep = flags & DEQUEUE_SLEEP;
6846 	int idle_h_nr_running = task_has_idle_policy(p);
6847 	bool was_sched_idle = sched_idle_rq(rq);
6848 
6849 	util_est_dequeue(&rq->cfs, p);
6850 
6851 	for_each_sched_entity(se) {
6852 		cfs_rq = cfs_rq_of(se);
6853 		dequeue_entity(cfs_rq, se, flags);
6854 
6855 		cfs_rq->h_nr_running--;
6856 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6857 
6858 		if (cfs_rq_is_idle(cfs_rq))
6859 			idle_h_nr_running = 1;
6860 
6861 		/* end evaluation on encountering a throttled cfs_rq */
6862 		if (cfs_rq_throttled(cfs_rq))
6863 			goto dequeue_throttle;
6864 
6865 		/* Don't dequeue parent if it has other entities besides us */
6866 		if (cfs_rq->load.weight) {
6867 			/* Avoid re-evaluating load for this entity: */
6868 			se = parent_entity(se);
6869 			/*
6870 			 * Bias pick_next to pick a task from this cfs_rq, as
6871 			 * p is sleeping when it is within its sched_slice.
6872 			 */
6873 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6874 				set_next_buddy(se);
6875 			break;
6876 		}
6877 		flags |= DEQUEUE_SLEEP;
6878 	}
6879 
6880 	for_each_sched_entity(se) {
6881 		cfs_rq = cfs_rq_of(se);
6882 
6883 		update_load_avg(cfs_rq, se, UPDATE_TG);
6884 		se_update_runnable(se);
6885 		update_cfs_group(se);
6886 
6887 		cfs_rq->h_nr_running--;
6888 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6889 
6890 		if (cfs_rq_is_idle(cfs_rq))
6891 			idle_h_nr_running = 1;
6892 
6893 		/* end evaluation on encountering a throttled cfs_rq */
6894 		if (cfs_rq_throttled(cfs_rq))
6895 			goto dequeue_throttle;
6896 
6897 	}
6898 
6899 	/* At this point se is NULL and we are at root level*/
6900 	sub_nr_running(rq, 1);
6901 
6902 	/* balance early to pull high priority tasks */
6903 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6904 		rq->next_balance = jiffies;
6905 
6906 dequeue_throttle:
6907 	util_est_update(&rq->cfs, p, task_sleep);
6908 	hrtick_update(rq);
6909 }
6910 
6911 #ifdef CONFIG_SMP
6912 
6913 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
6914 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6915 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6916 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6917 
6918 #ifdef CONFIG_NO_HZ_COMMON
6919 
6920 static struct {
6921 	cpumask_var_t idle_cpus_mask;
6922 	atomic_t nr_cpus;
6923 	int has_blocked;		/* Idle CPUS has blocked load */
6924 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6925 	unsigned long next_balance;     /* in jiffy units */
6926 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6927 } nohz ____cacheline_aligned;
6928 
6929 #endif /* CONFIG_NO_HZ_COMMON */
6930 
6931 static unsigned long cpu_load(struct rq *rq)
6932 {
6933 	return cfs_rq_load_avg(&rq->cfs);
6934 }
6935 
6936 /*
6937  * cpu_load_without - compute CPU load without any contributions from *p
6938  * @cpu: the CPU which load is requested
6939  * @p: the task which load should be discounted
6940  *
6941  * The load of a CPU is defined by the load of tasks currently enqueued on that
6942  * CPU as well as tasks which are currently sleeping after an execution on that
6943  * CPU.
6944  *
6945  * This method returns the load of the specified CPU by discounting the load of
6946  * the specified task, whenever the task is currently contributing to the CPU
6947  * load.
6948  */
6949 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6950 {
6951 	struct cfs_rq *cfs_rq;
6952 	unsigned int load;
6953 
6954 	/* Task has no contribution or is new */
6955 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6956 		return cpu_load(rq);
6957 
6958 	cfs_rq = &rq->cfs;
6959 	load = READ_ONCE(cfs_rq->avg.load_avg);
6960 
6961 	/* Discount task's util from CPU's util */
6962 	lsub_positive(&load, task_h_load(p));
6963 
6964 	return load;
6965 }
6966 
6967 static unsigned long cpu_runnable(struct rq *rq)
6968 {
6969 	return cfs_rq_runnable_avg(&rq->cfs);
6970 }
6971 
6972 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6973 {
6974 	struct cfs_rq *cfs_rq;
6975 	unsigned int runnable;
6976 
6977 	/* Task has no contribution or is new */
6978 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6979 		return cpu_runnable(rq);
6980 
6981 	cfs_rq = &rq->cfs;
6982 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6983 
6984 	/* Discount task's runnable from CPU's runnable */
6985 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6986 
6987 	return runnable;
6988 }
6989 
6990 static unsigned long capacity_of(int cpu)
6991 {
6992 	return cpu_rq(cpu)->cpu_capacity;
6993 }
6994 
6995 static void record_wakee(struct task_struct *p)
6996 {
6997 	/*
6998 	 * Only decay a single time; tasks that have less then 1 wakeup per
6999 	 * jiffy will not have built up many flips.
7000 	 */
7001 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7002 		current->wakee_flips >>= 1;
7003 		current->wakee_flip_decay_ts = jiffies;
7004 	}
7005 
7006 	if (current->last_wakee != p) {
7007 		current->last_wakee = p;
7008 		current->wakee_flips++;
7009 	}
7010 }
7011 
7012 /*
7013  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7014  *
7015  * A waker of many should wake a different task than the one last awakened
7016  * at a frequency roughly N times higher than one of its wakees.
7017  *
7018  * In order to determine whether we should let the load spread vs consolidating
7019  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7020  * partner, and a factor of lls_size higher frequency in the other.
7021  *
7022  * With both conditions met, we can be relatively sure that the relationship is
7023  * non-monogamous, with partner count exceeding socket size.
7024  *
7025  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7026  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7027  * socket size.
7028  */
7029 static int wake_wide(struct task_struct *p)
7030 {
7031 	unsigned int master = current->wakee_flips;
7032 	unsigned int slave = p->wakee_flips;
7033 	int factor = __this_cpu_read(sd_llc_size);
7034 
7035 	if (master < slave)
7036 		swap(master, slave);
7037 	if (slave < factor || master < slave * factor)
7038 		return 0;
7039 	return 1;
7040 }
7041 
7042 /*
7043  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7044  * soonest. For the purpose of speed we only consider the waking and previous
7045  * CPU.
7046  *
7047  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7048  *			cache-affine and is (or	will be) idle.
7049  *
7050  * wake_affine_weight() - considers the weight to reflect the average
7051  *			  scheduling latency of the CPUs. This seems to work
7052  *			  for the overloaded case.
7053  */
7054 static int
7055 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7056 {
7057 	/*
7058 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7059 	 * context. Only allow the move if cache is shared. Otherwise an
7060 	 * interrupt intensive workload could force all tasks onto one
7061 	 * node depending on the IO topology or IRQ affinity settings.
7062 	 *
7063 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7064 	 * There is no guarantee that the cache hot data from an interrupt
7065 	 * is more important than cache hot data on the prev_cpu and from
7066 	 * a cpufreq perspective, it's better to have higher utilisation
7067 	 * on one CPU.
7068 	 */
7069 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7070 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7071 
7072 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7073 		return this_cpu;
7074 
7075 	if (available_idle_cpu(prev_cpu))
7076 		return prev_cpu;
7077 
7078 	return nr_cpumask_bits;
7079 }
7080 
7081 static int
7082 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7083 		   int this_cpu, int prev_cpu, int sync)
7084 {
7085 	s64 this_eff_load, prev_eff_load;
7086 	unsigned long task_load;
7087 
7088 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7089 
7090 	if (sync) {
7091 		unsigned long current_load = task_h_load(current);
7092 
7093 		if (current_load > this_eff_load)
7094 			return this_cpu;
7095 
7096 		this_eff_load -= current_load;
7097 	}
7098 
7099 	task_load = task_h_load(p);
7100 
7101 	this_eff_load += task_load;
7102 	if (sched_feat(WA_BIAS))
7103 		this_eff_load *= 100;
7104 	this_eff_load *= capacity_of(prev_cpu);
7105 
7106 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7107 	prev_eff_load -= task_load;
7108 	if (sched_feat(WA_BIAS))
7109 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7110 	prev_eff_load *= capacity_of(this_cpu);
7111 
7112 	/*
7113 	 * If sync, adjust the weight of prev_eff_load such that if
7114 	 * prev_eff == this_eff that select_idle_sibling() will consider
7115 	 * stacking the wakee on top of the waker if no other CPU is
7116 	 * idle.
7117 	 */
7118 	if (sync)
7119 		prev_eff_load += 1;
7120 
7121 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7122 }
7123 
7124 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7125 		       int this_cpu, int prev_cpu, int sync)
7126 {
7127 	int target = nr_cpumask_bits;
7128 
7129 	if (sched_feat(WA_IDLE))
7130 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7131 
7132 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7133 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7134 
7135 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7136 	if (target != this_cpu)
7137 		return prev_cpu;
7138 
7139 	schedstat_inc(sd->ttwu_move_affine);
7140 	schedstat_inc(p->stats.nr_wakeups_affine);
7141 	return target;
7142 }
7143 
7144 static struct sched_group *
7145 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7146 
7147 /*
7148  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7149  */
7150 static int
7151 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7152 {
7153 	unsigned long load, min_load = ULONG_MAX;
7154 	unsigned int min_exit_latency = UINT_MAX;
7155 	u64 latest_idle_timestamp = 0;
7156 	int least_loaded_cpu = this_cpu;
7157 	int shallowest_idle_cpu = -1;
7158 	int i;
7159 
7160 	/* Check if we have any choice: */
7161 	if (group->group_weight == 1)
7162 		return cpumask_first(sched_group_span(group));
7163 
7164 	/* Traverse only the allowed CPUs */
7165 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7166 		struct rq *rq = cpu_rq(i);
7167 
7168 		if (!sched_core_cookie_match(rq, p))
7169 			continue;
7170 
7171 		if (sched_idle_cpu(i))
7172 			return i;
7173 
7174 		if (available_idle_cpu(i)) {
7175 			struct cpuidle_state *idle = idle_get_state(rq);
7176 			if (idle && idle->exit_latency < min_exit_latency) {
7177 				/*
7178 				 * We give priority to a CPU whose idle state
7179 				 * has the smallest exit latency irrespective
7180 				 * of any idle timestamp.
7181 				 */
7182 				min_exit_latency = idle->exit_latency;
7183 				latest_idle_timestamp = rq->idle_stamp;
7184 				shallowest_idle_cpu = i;
7185 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7186 				   rq->idle_stamp > latest_idle_timestamp) {
7187 				/*
7188 				 * If equal or no active idle state, then
7189 				 * the most recently idled CPU might have
7190 				 * a warmer cache.
7191 				 */
7192 				latest_idle_timestamp = rq->idle_stamp;
7193 				shallowest_idle_cpu = i;
7194 			}
7195 		} else if (shallowest_idle_cpu == -1) {
7196 			load = cpu_load(cpu_rq(i));
7197 			if (load < min_load) {
7198 				min_load = load;
7199 				least_loaded_cpu = i;
7200 			}
7201 		}
7202 	}
7203 
7204 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7205 }
7206 
7207 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7208 				  int cpu, int prev_cpu, int sd_flag)
7209 {
7210 	int new_cpu = cpu;
7211 
7212 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7213 		return prev_cpu;
7214 
7215 	/*
7216 	 * We need task's util for cpu_util_without, sync it up to
7217 	 * prev_cpu's last_update_time.
7218 	 */
7219 	if (!(sd_flag & SD_BALANCE_FORK))
7220 		sync_entity_load_avg(&p->se);
7221 
7222 	while (sd) {
7223 		struct sched_group *group;
7224 		struct sched_domain *tmp;
7225 		int weight;
7226 
7227 		if (!(sd->flags & sd_flag)) {
7228 			sd = sd->child;
7229 			continue;
7230 		}
7231 
7232 		group = sched_balance_find_dst_group(sd, p, cpu);
7233 		if (!group) {
7234 			sd = sd->child;
7235 			continue;
7236 		}
7237 
7238 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7239 		if (new_cpu == cpu) {
7240 			/* Now try balancing at a lower domain level of 'cpu': */
7241 			sd = sd->child;
7242 			continue;
7243 		}
7244 
7245 		/* Now try balancing at a lower domain level of 'new_cpu': */
7246 		cpu = new_cpu;
7247 		weight = sd->span_weight;
7248 		sd = NULL;
7249 		for_each_domain(cpu, tmp) {
7250 			if (weight <= tmp->span_weight)
7251 				break;
7252 			if (tmp->flags & sd_flag)
7253 				sd = tmp;
7254 		}
7255 	}
7256 
7257 	return new_cpu;
7258 }
7259 
7260 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7261 {
7262 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7263 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7264 		return cpu;
7265 
7266 	return -1;
7267 }
7268 
7269 #ifdef CONFIG_SCHED_SMT
7270 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7271 EXPORT_SYMBOL_GPL(sched_smt_present);
7272 
7273 static inline void set_idle_cores(int cpu, int val)
7274 {
7275 	struct sched_domain_shared *sds;
7276 
7277 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7278 	if (sds)
7279 		WRITE_ONCE(sds->has_idle_cores, val);
7280 }
7281 
7282 static inline bool test_idle_cores(int cpu)
7283 {
7284 	struct sched_domain_shared *sds;
7285 
7286 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7287 	if (sds)
7288 		return READ_ONCE(sds->has_idle_cores);
7289 
7290 	return false;
7291 }
7292 
7293 /*
7294  * Scans the local SMT mask to see if the entire core is idle, and records this
7295  * information in sd_llc_shared->has_idle_cores.
7296  *
7297  * Since SMT siblings share all cache levels, inspecting this limited remote
7298  * state should be fairly cheap.
7299  */
7300 void __update_idle_core(struct rq *rq)
7301 {
7302 	int core = cpu_of(rq);
7303 	int cpu;
7304 
7305 	rcu_read_lock();
7306 	if (test_idle_cores(core))
7307 		goto unlock;
7308 
7309 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7310 		if (cpu == core)
7311 			continue;
7312 
7313 		if (!available_idle_cpu(cpu))
7314 			goto unlock;
7315 	}
7316 
7317 	set_idle_cores(core, 1);
7318 unlock:
7319 	rcu_read_unlock();
7320 }
7321 
7322 /*
7323  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7324  * there are no idle cores left in the system; tracked through
7325  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7326  */
7327 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7328 {
7329 	bool idle = true;
7330 	int cpu;
7331 
7332 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7333 		if (!available_idle_cpu(cpu)) {
7334 			idle = false;
7335 			if (*idle_cpu == -1) {
7336 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7337 					*idle_cpu = cpu;
7338 					break;
7339 				}
7340 				continue;
7341 			}
7342 			break;
7343 		}
7344 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7345 			*idle_cpu = cpu;
7346 	}
7347 
7348 	if (idle)
7349 		return core;
7350 
7351 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7352 	return -1;
7353 }
7354 
7355 /*
7356  * Scan the local SMT mask for idle CPUs.
7357  */
7358 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7359 {
7360 	int cpu;
7361 
7362 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7363 		if (cpu == target)
7364 			continue;
7365 		/*
7366 		 * Check if the CPU is in the LLC scheduling domain of @target.
7367 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7368 		 */
7369 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7370 			continue;
7371 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7372 			return cpu;
7373 	}
7374 
7375 	return -1;
7376 }
7377 
7378 #else /* CONFIG_SCHED_SMT */
7379 
7380 static inline void set_idle_cores(int cpu, int val)
7381 {
7382 }
7383 
7384 static inline bool test_idle_cores(int cpu)
7385 {
7386 	return false;
7387 }
7388 
7389 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7390 {
7391 	return __select_idle_cpu(core, p);
7392 }
7393 
7394 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7395 {
7396 	return -1;
7397 }
7398 
7399 #endif /* CONFIG_SCHED_SMT */
7400 
7401 /*
7402  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7403  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7404  * average idle time for this rq (as found in rq->avg_idle).
7405  */
7406 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7407 {
7408 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7409 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7410 	struct sched_domain_shared *sd_share;
7411 
7412 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7413 
7414 	if (sched_feat(SIS_UTIL)) {
7415 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7416 		if (sd_share) {
7417 			/* because !--nr is the condition to stop scan */
7418 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7419 			/* overloaded LLC is unlikely to have idle cpu/core */
7420 			if (nr == 1)
7421 				return -1;
7422 		}
7423 	}
7424 
7425 	if (static_branch_unlikely(&sched_cluster_active)) {
7426 		struct sched_group *sg = sd->groups;
7427 
7428 		if (sg->flags & SD_CLUSTER) {
7429 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7430 				if (!cpumask_test_cpu(cpu, cpus))
7431 					continue;
7432 
7433 				if (has_idle_core) {
7434 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7435 					if ((unsigned int)i < nr_cpumask_bits)
7436 						return i;
7437 				} else {
7438 					if (--nr <= 0)
7439 						return -1;
7440 					idle_cpu = __select_idle_cpu(cpu, p);
7441 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7442 						return idle_cpu;
7443 				}
7444 			}
7445 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7446 		}
7447 	}
7448 
7449 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7450 		if (has_idle_core) {
7451 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7452 			if ((unsigned int)i < nr_cpumask_bits)
7453 				return i;
7454 
7455 		} else {
7456 			if (--nr <= 0)
7457 				return -1;
7458 			idle_cpu = __select_idle_cpu(cpu, p);
7459 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7460 				break;
7461 		}
7462 	}
7463 
7464 	if (has_idle_core)
7465 		set_idle_cores(target, false);
7466 
7467 	return idle_cpu;
7468 }
7469 
7470 /*
7471  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7472  * the task fits. If no CPU is big enough, but there are idle ones, try to
7473  * maximize capacity.
7474  */
7475 static int
7476 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7477 {
7478 	unsigned long task_util, util_min, util_max, best_cap = 0;
7479 	int fits, best_fits = 0;
7480 	int cpu, best_cpu = -1;
7481 	struct cpumask *cpus;
7482 
7483 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7484 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7485 
7486 	task_util = task_util_est(p);
7487 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7488 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7489 
7490 	for_each_cpu_wrap(cpu, cpus, target) {
7491 		unsigned long cpu_cap = capacity_of(cpu);
7492 
7493 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7494 			continue;
7495 
7496 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7497 
7498 		/* This CPU fits with all requirements */
7499 		if (fits > 0)
7500 			return cpu;
7501 		/*
7502 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7503 		 * Look for the CPU with best capacity.
7504 		 */
7505 		else if (fits < 0)
7506 			cpu_cap = get_actual_cpu_capacity(cpu);
7507 
7508 		/*
7509 		 * First, select CPU which fits better (-1 being better than 0).
7510 		 * Then, select the one with best capacity at same level.
7511 		 */
7512 		if ((fits < best_fits) ||
7513 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7514 			best_cap = cpu_cap;
7515 			best_cpu = cpu;
7516 			best_fits = fits;
7517 		}
7518 	}
7519 
7520 	return best_cpu;
7521 }
7522 
7523 static inline bool asym_fits_cpu(unsigned long util,
7524 				 unsigned long util_min,
7525 				 unsigned long util_max,
7526 				 int cpu)
7527 {
7528 	if (sched_asym_cpucap_active())
7529 		/*
7530 		 * Return true only if the cpu fully fits the task requirements
7531 		 * which include the utilization and the performance hints.
7532 		 */
7533 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7534 
7535 	return true;
7536 }
7537 
7538 /*
7539  * Try and locate an idle core/thread in the LLC cache domain.
7540  */
7541 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7542 {
7543 	bool has_idle_core = false;
7544 	struct sched_domain *sd;
7545 	unsigned long task_util, util_min, util_max;
7546 	int i, recent_used_cpu, prev_aff = -1;
7547 
7548 	/*
7549 	 * On asymmetric system, update task utilization because we will check
7550 	 * that the task fits with CPU's capacity.
7551 	 */
7552 	if (sched_asym_cpucap_active()) {
7553 		sync_entity_load_avg(&p->se);
7554 		task_util = task_util_est(p);
7555 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7556 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7557 	}
7558 
7559 	/*
7560 	 * per-cpu select_rq_mask usage
7561 	 */
7562 	lockdep_assert_irqs_disabled();
7563 
7564 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7565 	    asym_fits_cpu(task_util, util_min, util_max, target))
7566 		return target;
7567 
7568 	/*
7569 	 * If the previous CPU is cache affine and idle, don't be stupid:
7570 	 */
7571 	if (prev != target && cpus_share_cache(prev, target) &&
7572 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7573 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7574 
7575 		if (!static_branch_unlikely(&sched_cluster_active) ||
7576 		    cpus_share_resources(prev, target))
7577 			return prev;
7578 
7579 		prev_aff = prev;
7580 	}
7581 
7582 	/*
7583 	 * Allow a per-cpu kthread to stack with the wakee if the
7584 	 * kworker thread and the tasks previous CPUs are the same.
7585 	 * The assumption is that the wakee queued work for the
7586 	 * per-cpu kthread that is now complete and the wakeup is
7587 	 * essentially a sync wakeup. An obvious example of this
7588 	 * pattern is IO completions.
7589 	 */
7590 	if (is_per_cpu_kthread(current) &&
7591 	    in_task() &&
7592 	    prev == smp_processor_id() &&
7593 	    this_rq()->nr_running <= 1 &&
7594 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7595 		return prev;
7596 	}
7597 
7598 	/* Check a recently used CPU as a potential idle candidate: */
7599 	recent_used_cpu = p->recent_used_cpu;
7600 	p->recent_used_cpu = prev;
7601 	if (recent_used_cpu != prev &&
7602 	    recent_used_cpu != target &&
7603 	    cpus_share_cache(recent_used_cpu, target) &&
7604 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7605 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7606 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7607 
7608 		if (!static_branch_unlikely(&sched_cluster_active) ||
7609 		    cpus_share_resources(recent_used_cpu, target))
7610 			return recent_used_cpu;
7611 
7612 	} else {
7613 		recent_used_cpu = -1;
7614 	}
7615 
7616 	/*
7617 	 * For asymmetric CPU capacity systems, our domain of interest is
7618 	 * sd_asym_cpucapacity rather than sd_llc.
7619 	 */
7620 	if (sched_asym_cpucap_active()) {
7621 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7622 		/*
7623 		 * On an asymmetric CPU capacity system where an exclusive
7624 		 * cpuset defines a symmetric island (i.e. one unique
7625 		 * capacity_orig value through the cpuset), the key will be set
7626 		 * but the CPUs within that cpuset will not have a domain with
7627 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7628 		 * capacity path.
7629 		 */
7630 		if (sd) {
7631 			i = select_idle_capacity(p, sd, target);
7632 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7633 		}
7634 	}
7635 
7636 	sd = rcu_dereference(per_cpu(sd_llc, target));
7637 	if (!sd)
7638 		return target;
7639 
7640 	if (sched_smt_active()) {
7641 		has_idle_core = test_idle_cores(target);
7642 
7643 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7644 			i = select_idle_smt(p, sd, prev);
7645 			if ((unsigned int)i < nr_cpumask_bits)
7646 				return i;
7647 		}
7648 	}
7649 
7650 	i = select_idle_cpu(p, sd, has_idle_core, target);
7651 	if ((unsigned)i < nr_cpumask_bits)
7652 		return i;
7653 
7654 	/*
7655 	 * For cluster machines which have lower sharing cache like L2 or
7656 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7657 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7658 	 * use them if possible when no idle CPU found in select_idle_cpu().
7659 	 */
7660 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7661 		return prev_aff;
7662 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7663 		return recent_used_cpu;
7664 
7665 	return target;
7666 }
7667 
7668 /**
7669  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7670  * @cpu: the CPU to get the utilization for
7671  * @p: task for which the CPU utilization should be predicted or NULL
7672  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7673  * @boost: 1 to enable boosting, otherwise 0
7674  *
7675  * The unit of the return value must be the same as the one of CPU capacity
7676  * so that CPU utilization can be compared with CPU capacity.
7677  *
7678  * CPU utilization is the sum of running time of runnable tasks plus the
7679  * recent utilization of currently non-runnable tasks on that CPU.
7680  * It represents the amount of CPU capacity currently used by CFS tasks in
7681  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7682  * capacity at f_max.
7683  *
7684  * The estimated CPU utilization is defined as the maximum between CPU
7685  * utilization and sum of the estimated utilization of the currently
7686  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7687  * previously-executed tasks, which helps better deduce how busy a CPU will
7688  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7689  * of such a task would be significantly decayed at this point of time.
7690  *
7691  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7692  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7693  * utilization. Boosting is implemented in cpu_util() so that internal
7694  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7695  * latter via cpu_util_cfs_boost().
7696  *
7697  * CPU utilization can be higher than the current CPU capacity
7698  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7699  * of rounding errors as well as task migrations or wakeups of new tasks.
7700  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7701  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7702  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7703  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7704  * though since this is useful for predicting the CPU capacity required
7705  * after task migrations (scheduler-driven DVFS).
7706  *
7707  * Return: (Boosted) (estimated) utilization for the specified CPU.
7708  */
7709 static unsigned long
7710 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7711 {
7712 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7713 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7714 	unsigned long runnable;
7715 
7716 	if (boost) {
7717 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7718 		util = max(util, runnable);
7719 	}
7720 
7721 	/*
7722 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7723 	 * contribution. If @p migrates from another CPU to @cpu add its
7724 	 * contribution. In all the other cases @cpu is not impacted by the
7725 	 * migration so its util_avg is already correct.
7726 	 */
7727 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7728 		lsub_positive(&util, task_util(p));
7729 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7730 		util += task_util(p);
7731 
7732 	if (sched_feat(UTIL_EST)) {
7733 		unsigned long util_est;
7734 
7735 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7736 
7737 		/*
7738 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7739 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7740 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7741 		 * has been enqueued.
7742 		 *
7743 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7744 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7745 		 * Remove it to "simulate" cpu_util without @p's contribution.
7746 		 *
7747 		 * Despite the task_on_rq_queued(@p) check there is still a
7748 		 * small window for a possible race when an exec
7749 		 * select_task_rq_fair() races with LB's detach_task().
7750 		 *
7751 		 *   detach_task()
7752 		 *     deactivate_task()
7753 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7754 		 *       -------------------------------- A
7755 		 *       dequeue_task()                    \
7756 		 *         dequeue_task_fair()              + Race Time
7757 		 *           util_est_dequeue()            /
7758 		 *       -------------------------------- B
7759 		 *
7760 		 * The additional check "current == p" is required to further
7761 		 * reduce the race window.
7762 		 */
7763 		if (dst_cpu == cpu)
7764 			util_est += _task_util_est(p);
7765 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7766 			lsub_positive(&util_est, _task_util_est(p));
7767 
7768 		util = max(util, util_est);
7769 	}
7770 
7771 	return min(util, arch_scale_cpu_capacity(cpu));
7772 }
7773 
7774 unsigned long cpu_util_cfs(int cpu)
7775 {
7776 	return cpu_util(cpu, NULL, -1, 0);
7777 }
7778 
7779 unsigned long cpu_util_cfs_boost(int cpu)
7780 {
7781 	return cpu_util(cpu, NULL, -1, 1);
7782 }
7783 
7784 /*
7785  * cpu_util_without: compute cpu utilization without any contributions from *p
7786  * @cpu: the CPU which utilization is requested
7787  * @p: the task which utilization should be discounted
7788  *
7789  * The utilization of a CPU is defined by the utilization of tasks currently
7790  * enqueued on that CPU as well as tasks which are currently sleeping after an
7791  * execution on that CPU.
7792  *
7793  * This method returns the utilization of the specified CPU by discounting the
7794  * utilization of the specified task, whenever the task is currently
7795  * contributing to the CPU utilization.
7796  */
7797 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7798 {
7799 	/* Task has no contribution or is new */
7800 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7801 		p = NULL;
7802 
7803 	return cpu_util(cpu, p, -1, 0);
7804 }
7805 
7806 /*
7807  * energy_env - Utilization landscape for energy estimation.
7808  * @task_busy_time: Utilization contribution by the task for which we test the
7809  *                  placement. Given by eenv_task_busy_time().
7810  * @pd_busy_time:   Utilization of the whole perf domain without the task
7811  *                  contribution. Given by eenv_pd_busy_time().
7812  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7813  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7814  */
7815 struct energy_env {
7816 	unsigned long task_busy_time;
7817 	unsigned long pd_busy_time;
7818 	unsigned long cpu_cap;
7819 	unsigned long pd_cap;
7820 };
7821 
7822 /*
7823  * Compute the task busy time for compute_energy(). This time cannot be
7824  * injected directly into effective_cpu_util() because of the IRQ scaling.
7825  * The latter only makes sense with the most recent CPUs where the task has
7826  * run.
7827  */
7828 static inline void eenv_task_busy_time(struct energy_env *eenv,
7829 				       struct task_struct *p, int prev_cpu)
7830 {
7831 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7832 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7833 
7834 	if (unlikely(irq >= max_cap))
7835 		busy_time = max_cap;
7836 	else
7837 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7838 
7839 	eenv->task_busy_time = busy_time;
7840 }
7841 
7842 /*
7843  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7844  * utilization for each @pd_cpus, it however doesn't take into account
7845  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7846  * scale the EM reported power consumption at the (eventually clamped)
7847  * cpu_capacity.
7848  *
7849  * The contribution of the task @p for which we want to estimate the
7850  * energy cost is removed (by cpu_util()) and must be calculated
7851  * separately (see eenv_task_busy_time). This ensures:
7852  *
7853  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7854  *     the task on.
7855  *
7856  *   - A fair comparison between CPUs as the task contribution (task_util())
7857  *     will always be the same no matter which CPU utilization we rely on
7858  *     (util_avg or util_est).
7859  *
7860  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7861  * exceed @eenv->pd_cap.
7862  */
7863 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7864 				     struct cpumask *pd_cpus,
7865 				     struct task_struct *p)
7866 {
7867 	unsigned long busy_time = 0;
7868 	int cpu;
7869 
7870 	for_each_cpu(cpu, pd_cpus) {
7871 		unsigned long util = cpu_util(cpu, p, -1, 0);
7872 
7873 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7874 	}
7875 
7876 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7877 }
7878 
7879 /*
7880  * Compute the maximum utilization for compute_energy() when the task @p
7881  * is placed on the cpu @dst_cpu.
7882  *
7883  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7884  * exceed @eenv->cpu_cap.
7885  */
7886 static inline unsigned long
7887 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7888 		 struct task_struct *p, int dst_cpu)
7889 {
7890 	unsigned long max_util = 0;
7891 	int cpu;
7892 
7893 	for_each_cpu(cpu, pd_cpus) {
7894 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7895 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7896 		unsigned long eff_util, min, max;
7897 
7898 		/*
7899 		 * Performance domain frequency: utilization clamping
7900 		 * must be considered since it affects the selection
7901 		 * of the performance domain frequency.
7902 		 * NOTE: in case RT tasks are running, by default the min
7903 		 * utilization can be max OPP.
7904 		 */
7905 		eff_util = effective_cpu_util(cpu, util, &min, &max);
7906 
7907 		/* Task's uclamp can modify min and max value */
7908 		if (tsk && uclamp_is_used()) {
7909 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7910 
7911 			/*
7912 			 * If there is no active max uclamp constraint,
7913 			 * directly use task's one, otherwise keep max.
7914 			 */
7915 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7916 				max = uclamp_eff_value(p, UCLAMP_MAX);
7917 			else
7918 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7919 		}
7920 
7921 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7922 		max_util = max(max_util, eff_util);
7923 	}
7924 
7925 	return min(max_util, eenv->cpu_cap);
7926 }
7927 
7928 /*
7929  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7930  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7931  * contribution is ignored.
7932  */
7933 static inline unsigned long
7934 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7935 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7936 {
7937 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7938 	unsigned long busy_time = eenv->pd_busy_time;
7939 	unsigned long energy;
7940 
7941 	if (dst_cpu >= 0)
7942 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7943 
7944 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7945 
7946 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7947 
7948 	return energy;
7949 }
7950 
7951 /*
7952  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7953  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7954  * spare capacity in each performance domain and uses it as a potential
7955  * candidate to execute the task. Then, it uses the Energy Model to figure
7956  * out which of the CPU candidates is the most energy-efficient.
7957  *
7958  * The rationale for this heuristic is as follows. In a performance domain,
7959  * all the most energy efficient CPU candidates (according to the Energy
7960  * Model) are those for which we'll request a low frequency. When there are
7961  * several CPUs for which the frequency request will be the same, we don't
7962  * have enough data to break the tie between them, because the Energy Model
7963  * only includes active power costs. With this model, if we assume that
7964  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7965  * the maximum spare capacity in a performance domain is guaranteed to be among
7966  * the best candidates of the performance domain.
7967  *
7968  * In practice, it could be preferable from an energy standpoint to pack
7969  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7970  * but that could also hurt our chances to go cluster idle, and we have no
7971  * ways to tell with the current Energy Model if this is actually a good
7972  * idea or not. So, find_energy_efficient_cpu() basically favors
7973  * cluster-packing, and spreading inside a cluster. That should at least be
7974  * a good thing for latency, and this is consistent with the idea that most
7975  * of the energy savings of EAS come from the asymmetry of the system, and
7976  * not so much from breaking the tie between identical CPUs. That's also the
7977  * reason why EAS is enabled in the topology code only for systems where
7978  * SD_ASYM_CPUCAPACITY is set.
7979  *
7980  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7981  * they don't have any useful utilization data yet and it's not possible to
7982  * forecast their impact on energy consumption. Consequently, they will be
7983  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
7984  * to be energy-inefficient in some use-cases. The alternative would be to
7985  * bias new tasks towards specific types of CPUs first, or to try to infer
7986  * their util_avg from the parent task, but those heuristics could hurt
7987  * other use-cases too. So, until someone finds a better way to solve this,
7988  * let's keep things simple by re-using the existing slow path.
7989  */
7990 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7991 {
7992 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7993 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7994 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7995 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7996 	struct root_domain *rd = this_rq()->rd;
7997 	int cpu, best_energy_cpu, target = -1;
7998 	int prev_fits = -1, best_fits = -1;
7999 	unsigned long best_actual_cap = 0;
8000 	unsigned long prev_actual_cap = 0;
8001 	struct sched_domain *sd;
8002 	struct perf_domain *pd;
8003 	struct energy_env eenv;
8004 
8005 	rcu_read_lock();
8006 	pd = rcu_dereference(rd->pd);
8007 	if (!pd)
8008 		goto unlock;
8009 
8010 	/*
8011 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8012 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8013 	 */
8014 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8015 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8016 		sd = sd->parent;
8017 	if (!sd)
8018 		goto unlock;
8019 
8020 	target = prev_cpu;
8021 
8022 	sync_entity_load_avg(&p->se);
8023 	if (!task_util_est(p) && p_util_min == 0)
8024 		goto unlock;
8025 
8026 	eenv_task_busy_time(&eenv, p, prev_cpu);
8027 
8028 	for (; pd; pd = pd->next) {
8029 		unsigned long util_min = p_util_min, util_max = p_util_max;
8030 		unsigned long cpu_cap, cpu_actual_cap, util;
8031 		long prev_spare_cap = -1, max_spare_cap = -1;
8032 		unsigned long rq_util_min, rq_util_max;
8033 		unsigned long cur_delta, base_energy;
8034 		int max_spare_cap_cpu = -1;
8035 		int fits, max_fits = -1;
8036 
8037 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8038 
8039 		if (cpumask_empty(cpus))
8040 			continue;
8041 
8042 		/* Account external pressure for the energy estimation */
8043 		cpu = cpumask_first(cpus);
8044 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8045 
8046 		eenv.cpu_cap = cpu_actual_cap;
8047 		eenv.pd_cap = 0;
8048 
8049 		for_each_cpu(cpu, cpus) {
8050 			struct rq *rq = cpu_rq(cpu);
8051 
8052 			eenv.pd_cap += cpu_actual_cap;
8053 
8054 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8055 				continue;
8056 
8057 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8058 				continue;
8059 
8060 			util = cpu_util(cpu, p, cpu, 0);
8061 			cpu_cap = capacity_of(cpu);
8062 
8063 			/*
8064 			 * Skip CPUs that cannot satisfy the capacity request.
8065 			 * IOW, placing the task there would make the CPU
8066 			 * overutilized. Take uclamp into account to see how
8067 			 * much capacity we can get out of the CPU; this is
8068 			 * aligned with sched_cpu_util().
8069 			 */
8070 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8071 				/*
8072 				 * Open code uclamp_rq_util_with() except for
8073 				 * the clamp() part. I.e.: apply max aggregation
8074 				 * only. util_fits_cpu() logic requires to
8075 				 * operate on non clamped util but must use the
8076 				 * max-aggregated uclamp_{min, max}.
8077 				 */
8078 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8079 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8080 
8081 				util_min = max(rq_util_min, p_util_min);
8082 				util_max = max(rq_util_max, p_util_max);
8083 			}
8084 
8085 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8086 			if (!fits)
8087 				continue;
8088 
8089 			lsub_positive(&cpu_cap, util);
8090 
8091 			if (cpu == prev_cpu) {
8092 				/* Always use prev_cpu as a candidate. */
8093 				prev_spare_cap = cpu_cap;
8094 				prev_fits = fits;
8095 			} else if ((fits > max_fits) ||
8096 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8097 				/*
8098 				 * Find the CPU with the maximum spare capacity
8099 				 * among the remaining CPUs in the performance
8100 				 * domain.
8101 				 */
8102 				max_spare_cap = cpu_cap;
8103 				max_spare_cap_cpu = cpu;
8104 				max_fits = fits;
8105 			}
8106 		}
8107 
8108 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8109 			continue;
8110 
8111 		eenv_pd_busy_time(&eenv, cpus, p);
8112 		/* Compute the 'base' energy of the pd, without @p */
8113 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8114 
8115 		/* Evaluate the energy impact of using prev_cpu. */
8116 		if (prev_spare_cap > -1) {
8117 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8118 						    prev_cpu);
8119 			/* CPU utilization has changed */
8120 			if (prev_delta < base_energy)
8121 				goto unlock;
8122 			prev_delta -= base_energy;
8123 			prev_actual_cap = cpu_actual_cap;
8124 			best_delta = min(best_delta, prev_delta);
8125 		}
8126 
8127 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8128 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8129 			/* Current best energy cpu fits better */
8130 			if (max_fits < best_fits)
8131 				continue;
8132 
8133 			/*
8134 			 * Both don't fit performance hint (i.e. uclamp_min)
8135 			 * but best energy cpu has better capacity.
8136 			 */
8137 			if ((max_fits < 0) &&
8138 			    (cpu_actual_cap <= best_actual_cap))
8139 				continue;
8140 
8141 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8142 						   max_spare_cap_cpu);
8143 			/* CPU utilization has changed */
8144 			if (cur_delta < base_energy)
8145 				goto unlock;
8146 			cur_delta -= base_energy;
8147 
8148 			/*
8149 			 * Both fit for the task but best energy cpu has lower
8150 			 * energy impact.
8151 			 */
8152 			if ((max_fits > 0) && (best_fits > 0) &&
8153 			    (cur_delta >= best_delta))
8154 				continue;
8155 
8156 			best_delta = cur_delta;
8157 			best_energy_cpu = max_spare_cap_cpu;
8158 			best_fits = max_fits;
8159 			best_actual_cap = cpu_actual_cap;
8160 		}
8161 	}
8162 	rcu_read_unlock();
8163 
8164 	if ((best_fits > prev_fits) ||
8165 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8166 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8167 		target = best_energy_cpu;
8168 
8169 	return target;
8170 
8171 unlock:
8172 	rcu_read_unlock();
8173 
8174 	return target;
8175 }
8176 
8177 /*
8178  * select_task_rq_fair: Select target runqueue for the waking task in domains
8179  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8180  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8181  *
8182  * Balances load by selecting the idlest CPU in the idlest group, or under
8183  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8184  *
8185  * Returns the target CPU number.
8186  */
8187 static int
8188 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8189 {
8190 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8191 	struct sched_domain *tmp, *sd = NULL;
8192 	int cpu = smp_processor_id();
8193 	int new_cpu = prev_cpu;
8194 	int want_affine = 0;
8195 	/* SD_flags and WF_flags share the first nibble */
8196 	int sd_flag = wake_flags & 0xF;
8197 
8198 	/*
8199 	 * required for stable ->cpus_allowed
8200 	 */
8201 	lockdep_assert_held(&p->pi_lock);
8202 	if (wake_flags & WF_TTWU) {
8203 		record_wakee(p);
8204 
8205 		if ((wake_flags & WF_CURRENT_CPU) &&
8206 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8207 			return cpu;
8208 
8209 		if (!is_rd_overutilized(this_rq()->rd)) {
8210 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8211 			if (new_cpu >= 0)
8212 				return new_cpu;
8213 			new_cpu = prev_cpu;
8214 		}
8215 
8216 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8217 	}
8218 
8219 	rcu_read_lock();
8220 	for_each_domain(cpu, tmp) {
8221 		/*
8222 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8223 		 * cpu is a valid SD_WAKE_AFFINE target.
8224 		 */
8225 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8226 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8227 			if (cpu != prev_cpu)
8228 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8229 
8230 			sd = NULL; /* Prefer wake_affine over balance flags */
8231 			break;
8232 		}
8233 
8234 		/*
8235 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8236 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8237 		 * will usually go to the fast path.
8238 		 */
8239 		if (tmp->flags & sd_flag)
8240 			sd = tmp;
8241 		else if (!want_affine)
8242 			break;
8243 	}
8244 
8245 	if (unlikely(sd)) {
8246 		/* Slow path */
8247 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8248 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8249 		/* Fast path */
8250 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8251 	}
8252 	rcu_read_unlock();
8253 
8254 	return new_cpu;
8255 }
8256 
8257 /*
8258  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8259  * cfs_rq_of(p) references at time of call are still valid and identify the
8260  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8261  */
8262 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8263 {
8264 	struct sched_entity *se = &p->se;
8265 
8266 	if (!task_on_rq_migrating(p)) {
8267 		remove_entity_load_avg(se);
8268 
8269 		/*
8270 		 * Here, the task's PELT values have been updated according to
8271 		 * the current rq's clock. But if that clock hasn't been
8272 		 * updated in a while, a substantial idle time will be missed,
8273 		 * leading to an inflation after wake-up on the new rq.
8274 		 *
8275 		 * Estimate the missing time from the cfs_rq last_update_time
8276 		 * and update sched_avg to improve the PELT continuity after
8277 		 * migration.
8278 		 */
8279 		migrate_se_pelt_lag(se);
8280 	}
8281 
8282 	/* Tell new CPU we are migrated */
8283 	se->avg.last_update_time = 0;
8284 
8285 	update_scan_period(p, new_cpu);
8286 }
8287 
8288 static void task_dead_fair(struct task_struct *p)
8289 {
8290 	remove_entity_load_avg(&p->se);
8291 }
8292 
8293 /*
8294  * Set the max capacity the task is allowed to run at for misfit detection.
8295  */
8296 static void set_task_max_allowed_capacity(struct task_struct *p)
8297 {
8298 	struct asym_cap_data *entry;
8299 
8300 	if (!sched_asym_cpucap_active())
8301 		return;
8302 
8303 	rcu_read_lock();
8304 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8305 		cpumask_t *cpumask;
8306 
8307 		cpumask = cpu_capacity_span(entry);
8308 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8309 			continue;
8310 
8311 		p->max_allowed_capacity = entry->capacity;
8312 		break;
8313 	}
8314 	rcu_read_unlock();
8315 }
8316 
8317 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8318 {
8319 	set_cpus_allowed_common(p, ctx);
8320 	set_task_max_allowed_capacity(p);
8321 }
8322 
8323 static int
8324 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8325 {
8326 	if (rq->nr_running)
8327 		return 1;
8328 
8329 	return sched_balance_newidle(rq, rf) != 0;
8330 }
8331 #else
8332 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8333 #endif /* CONFIG_SMP */
8334 
8335 static void set_next_buddy(struct sched_entity *se)
8336 {
8337 	for_each_sched_entity(se) {
8338 		if (SCHED_WARN_ON(!se->on_rq))
8339 			return;
8340 		if (se_is_idle(se))
8341 			return;
8342 		cfs_rq_of(se)->next = se;
8343 	}
8344 }
8345 
8346 /*
8347  * Preempt the current task with a newly woken task if needed:
8348  */
8349 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8350 {
8351 	struct task_struct *curr = rq->curr;
8352 	struct sched_entity *se = &curr->se, *pse = &p->se;
8353 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8354 	int cse_is_idle, pse_is_idle;
8355 
8356 	if (unlikely(se == pse))
8357 		return;
8358 
8359 	/*
8360 	 * This is possible from callers such as attach_tasks(), in which we
8361 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8362 	 * lead to a throttle).  This both saves work and prevents false
8363 	 * next-buddy nomination below.
8364 	 */
8365 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8366 		return;
8367 
8368 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8369 		set_next_buddy(pse);
8370 	}
8371 
8372 	/*
8373 	 * We can come here with TIF_NEED_RESCHED already set from new task
8374 	 * wake up path.
8375 	 *
8376 	 * Note: this also catches the edge-case of curr being in a throttled
8377 	 * group (e.g. via set_curr_task), since update_curr() (in the
8378 	 * enqueue of curr) will have resulted in resched being set.  This
8379 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8380 	 * below.
8381 	 */
8382 	if (test_tsk_need_resched(curr))
8383 		return;
8384 
8385 	/* Idle tasks are by definition preempted by non-idle tasks. */
8386 	if (unlikely(task_has_idle_policy(curr)) &&
8387 	    likely(!task_has_idle_policy(p)))
8388 		goto preempt;
8389 
8390 	/*
8391 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8392 	 * is driven by the tick):
8393 	 */
8394 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8395 		return;
8396 
8397 	find_matching_se(&se, &pse);
8398 	WARN_ON_ONCE(!pse);
8399 
8400 	cse_is_idle = se_is_idle(se);
8401 	pse_is_idle = se_is_idle(pse);
8402 
8403 	/*
8404 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8405 	 * in the inverse case).
8406 	 */
8407 	if (cse_is_idle && !pse_is_idle)
8408 		goto preempt;
8409 	if (cse_is_idle != pse_is_idle)
8410 		return;
8411 
8412 	cfs_rq = cfs_rq_of(se);
8413 	update_curr(cfs_rq);
8414 
8415 	/*
8416 	 * XXX pick_eevdf(cfs_rq) != se ?
8417 	 */
8418 	if (pick_eevdf(cfs_rq) == pse)
8419 		goto preempt;
8420 
8421 	return;
8422 
8423 preempt:
8424 	resched_curr(rq);
8425 }
8426 
8427 #ifdef CONFIG_SMP
8428 static struct task_struct *pick_task_fair(struct rq *rq)
8429 {
8430 	struct sched_entity *se;
8431 	struct cfs_rq *cfs_rq;
8432 
8433 again:
8434 	cfs_rq = &rq->cfs;
8435 	if (!cfs_rq->nr_running)
8436 		return NULL;
8437 
8438 	do {
8439 		struct sched_entity *curr = cfs_rq->curr;
8440 
8441 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8442 		if (curr) {
8443 			if (curr->on_rq)
8444 				update_curr(cfs_rq);
8445 			else
8446 				curr = NULL;
8447 
8448 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8449 				goto again;
8450 		}
8451 
8452 		se = pick_next_entity(cfs_rq);
8453 		cfs_rq = group_cfs_rq(se);
8454 	} while (cfs_rq);
8455 
8456 	return task_of(se);
8457 }
8458 #endif
8459 
8460 struct task_struct *
8461 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8462 {
8463 	struct cfs_rq *cfs_rq = &rq->cfs;
8464 	struct sched_entity *se;
8465 	struct task_struct *p;
8466 	int new_tasks;
8467 
8468 again:
8469 	if (!sched_fair_runnable(rq))
8470 		goto idle;
8471 
8472 #ifdef CONFIG_FAIR_GROUP_SCHED
8473 	if (!prev || prev->sched_class != &fair_sched_class)
8474 		goto simple;
8475 
8476 	/*
8477 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8478 	 * likely that a next task is from the same cgroup as the current.
8479 	 *
8480 	 * Therefore attempt to avoid putting and setting the entire cgroup
8481 	 * hierarchy, only change the part that actually changes.
8482 	 */
8483 
8484 	do {
8485 		struct sched_entity *curr = cfs_rq->curr;
8486 
8487 		/*
8488 		 * Since we got here without doing put_prev_entity() we also
8489 		 * have to consider cfs_rq->curr. If it is still a runnable
8490 		 * entity, update_curr() will update its vruntime, otherwise
8491 		 * forget we've ever seen it.
8492 		 */
8493 		if (curr) {
8494 			if (curr->on_rq)
8495 				update_curr(cfs_rq);
8496 			else
8497 				curr = NULL;
8498 
8499 			/*
8500 			 * This call to check_cfs_rq_runtime() will do the
8501 			 * throttle and dequeue its entity in the parent(s).
8502 			 * Therefore the nr_running test will indeed
8503 			 * be correct.
8504 			 */
8505 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8506 				cfs_rq = &rq->cfs;
8507 
8508 				if (!cfs_rq->nr_running)
8509 					goto idle;
8510 
8511 				goto simple;
8512 			}
8513 		}
8514 
8515 		se = pick_next_entity(cfs_rq);
8516 		cfs_rq = group_cfs_rq(se);
8517 	} while (cfs_rq);
8518 
8519 	p = task_of(se);
8520 
8521 	/*
8522 	 * Since we haven't yet done put_prev_entity and if the selected task
8523 	 * is a different task than we started out with, try and touch the
8524 	 * least amount of cfs_rqs.
8525 	 */
8526 	if (prev != p) {
8527 		struct sched_entity *pse = &prev->se;
8528 
8529 		while (!(cfs_rq = is_same_group(se, pse))) {
8530 			int se_depth = se->depth;
8531 			int pse_depth = pse->depth;
8532 
8533 			if (se_depth <= pse_depth) {
8534 				put_prev_entity(cfs_rq_of(pse), pse);
8535 				pse = parent_entity(pse);
8536 			}
8537 			if (se_depth >= pse_depth) {
8538 				set_next_entity(cfs_rq_of(se), se);
8539 				se = parent_entity(se);
8540 			}
8541 		}
8542 
8543 		put_prev_entity(cfs_rq, pse);
8544 		set_next_entity(cfs_rq, se);
8545 	}
8546 
8547 	goto done;
8548 simple:
8549 #endif
8550 	if (prev)
8551 		put_prev_task(rq, prev);
8552 
8553 	do {
8554 		se = pick_next_entity(cfs_rq);
8555 		set_next_entity(cfs_rq, se);
8556 		cfs_rq = group_cfs_rq(se);
8557 	} while (cfs_rq);
8558 
8559 	p = task_of(se);
8560 
8561 done: __maybe_unused;
8562 #ifdef CONFIG_SMP
8563 	/*
8564 	 * Move the next running task to the front of
8565 	 * the list, so our cfs_tasks list becomes MRU
8566 	 * one.
8567 	 */
8568 	list_move(&p->se.group_node, &rq->cfs_tasks);
8569 #endif
8570 
8571 	if (hrtick_enabled_fair(rq))
8572 		hrtick_start_fair(rq, p);
8573 
8574 	update_misfit_status(p, rq);
8575 	sched_fair_update_stop_tick(rq, p);
8576 
8577 	return p;
8578 
8579 idle:
8580 	if (!rf)
8581 		return NULL;
8582 
8583 	new_tasks = sched_balance_newidle(rq, rf);
8584 
8585 	/*
8586 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8587 	 * possible for any higher priority task to appear. In that case we
8588 	 * must re-start the pick_next_entity() loop.
8589 	 */
8590 	if (new_tasks < 0)
8591 		return RETRY_TASK;
8592 
8593 	if (new_tasks > 0)
8594 		goto again;
8595 
8596 	/*
8597 	 * rq is about to be idle, check if we need to update the
8598 	 * lost_idle_time of clock_pelt
8599 	 */
8600 	update_idle_rq_clock_pelt(rq);
8601 
8602 	return NULL;
8603 }
8604 
8605 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8606 {
8607 	return pick_next_task_fair(rq, NULL, NULL);
8608 }
8609 
8610 /*
8611  * Account for a descheduled task:
8612  */
8613 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8614 {
8615 	struct sched_entity *se = &prev->se;
8616 	struct cfs_rq *cfs_rq;
8617 
8618 	for_each_sched_entity(se) {
8619 		cfs_rq = cfs_rq_of(se);
8620 		put_prev_entity(cfs_rq, se);
8621 	}
8622 }
8623 
8624 /*
8625  * sched_yield() is very simple
8626  */
8627 static void yield_task_fair(struct rq *rq)
8628 {
8629 	struct task_struct *curr = rq->curr;
8630 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8631 	struct sched_entity *se = &curr->se;
8632 
8633 	/*
8634 	 * Are we the only task in the tree?
8635 	 */
8636 	if (unlikely(rq->nr_running == 1))
8637 		return;
8638 
8639 	clear_buddies(cfs_rq, se);
8640 
8641 	update_rq_clock(rq);
8642 	/*
8643 	 * Update run-time statistics of the 'current'.
8644 	 */
8645 	update_curr(cfs_rq);
8646 	/*
8647 	 * Tell update_rq_clock() that we've just updated,
8648 	 * so we don't do microscopic update in schedule()
8649 	 * and double the fastpath cost.
8650 	 */
8651 	rq_clock_skip_update(rq);
8652 
8653 	se->deadline += calc_delta_fair(se->slice, se);
8654 }
8655 
8656 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8657 {
8658 	struct sched_entity *se = &p->se;
8659 
8660 	/* throttled hierarchies are not runnable */
8661 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8662 		return false;
8663 
8664 	/* Tell the scheduler that we'd really like se to run next. */
8665 	set_next_buddy(se);
8666 
8667 	yield_task_fair(rq);
8668 
8669 	return true;
8670 }
8671 
8672 #ifdef CONFIG_SMP
8673 /**************************************************
8674  * Fair scheduling class load-balancing methods.
8675  *
8676  * BASICS
8677  *
8678  * The purpose of load-balancing is to achieve the same basic fairness the
8679  * per-CPU scheduler provides, namely provide a proportional amount of compute
8680  * time to each task. This is expressed in the following equation:
8681  *
8682  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8683  *
8684  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8685  * W_i,0 is defined as:
8686  *
8687  *   W_i,0 = \Sum_j w_i,j                                             (2)
8688  *
8689  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8690  * is derived from the nice value as per sched_prio_to_weight[].
8691  *
8692  * The weight average is an exponential decay average of the instantaneous
8693  * weight:
8694  *
8695  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8696  *
8697  * C_i is the compute capacity of CPU i, typically it is the
8698  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8699  * can also include other factors [XXX].
8700  *
8701  * To achieve this balance we define a measure of imbalance which follows
8702  * directly from (1):
8703  *
8704  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8705  *
8706  * We them move tasks around to minimize the imbalance. In the continuous
8707  * function space it is obvious this converges, in the discrete case we get
8708  * a few fun cases generally called infeasible weight scenarios.
8709  *
8710  * [XXX expand on:
8711  *     - infeasible weights;
8712  *     - local vs global optima in the discrete case. ]
8713  *
8714  *
8715  * SCHED DOMAINS
8716  *
8717  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8718  * for all i,j solution, we create a tree of CPUs that follows the hardware
8719  * topology where each level pairs two lower groups (or better). This results
8720  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8721  * tree to only the first of the previous level and we decrease the frequency
8722  * of load-balance at each level inv. proportional to the number of CPUs in
8723  * the groups.
8724  *
8725  * This yields:
8726  *
8727  *     log_2 n     1     n
8728  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8729  *     i = 0      2^i   2^i
8730  *                               `- size of each group
8731  *         |         |     `- number of CPUs doing load-balance
8732  *         |         `- freq
8733  *         `- sum over all levels
8734  *
8735  * Coupled with a limit on how many tasks we can migrate every balance pass,
8736  * this makes (5) the runtime complexity of the balancer.
8737  *
8738  * An important property here is that each CPU is still (indirectly) connected
8739  * to every other CPU in at most O(log n) steps:
8740  *
8741  * The adjacency matrix of the resulting graph is given by:
8742  *
8743  *             log_2 n
8744  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8745  *             k = 0
8746  *
8747  * And you'll find that:
8748  *
8749  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8750  *
8751  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8752  * The task movement gives a factor of O(m), giving a convergence complexity
8753  * of:
8754  *
8755  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8756  *
8757  *
8758  * WORK CONSERVING
8759  *
8760  * In order to avoid CPUs going idle while there's still work to do, new idle
8761  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8762  * tree itself instead of relying on other CPUs to bring it work.
8763  *
8764  * This adds some complexity to both (5) and (8) but it reduces the total idle
8765  * time.
8766  *
8767  * [XXX more?]
8768  *
8769  *
8770  * CGROUPS
8771  *
8772  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8773  *
8774  *                                s_k,i
8775  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8776  *                                 S_k
8777  *
8778  * Where
8779  *
8780  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8781  *
8782  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8783  *
8784  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8785  * property.
8786  *
8787  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8788  *      rewrite all of this once again.]
8789  */
8790 
8791 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8792 
8793 enum fbq_type { regular, remote, all };
8794 
8795 /*
8796  * 'group_type' describes the group of CPUs at the moment of load balancing.
8797  *
8798  * The enum is ordered by pulling priority, with the group with lowest priority
8799  * first so the group_type can simply be compared when selecting the busiest
8800  * group. See update_sd_pick_busiest().
8801  */
8802 enum group_type {
8803 	/* The group has spare capacity that can be used to run more tasks.  */
8804 	group_has_spare = 0,
8805 	/*
8806 	 * The group is fully used and the tasks don't compete for more CPU
8807 	 * cycles. Nevertheless, some tasks might wait before running.
8808 	 */
8809 	group_fully_busy,
8810 	/*
8811 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8812 	 * more powerful CPU.
8813 	 */
8814 	group_misfit_task,
8815 	/*
8816 	 * Balance SMT group that's fully busy. Can benefit from migration
8817 	 * a task on SMT with busy sibling to another CPU on idle core.
8818 	 */
8819 	group_smt_balance,
8820 	/*
8821 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8822 	 * and the task should be migrated to it instead of running on the
8823 	 * current CPU.
8824 	 */
8825 	group_asym_packing,
8826 	/*
8827 	 * The tasks' affinity constraints previously prevented the scheduler
8828 	 * from balancing the load across the system.
8829 	 */
8830 	group_imbalanced,
8831 	/*
8832 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8833 	 * tasks.
8834 	 */
8835 	group_overloaded
8836 };
8837 
8838 enum migration_type {
8839 	migrate_load = 0,
8840 	migrate_util,
8841 	migrate_task,
8842 	migrate_misfit
8843 };
8844 
8845 #define LBF_ALL_PINNED	0x01
8846 #define LBF_NEED_BREAK	0x02
8847 #define LBF_DST_PINNED  0x04
8848 #define LBF_SOME_PINNED	0x08
8849 #define LBF_ACTIVE_LB	0x10
8850 
8851 struct lb_env {
8852 	struct sched_domain	*sd;
8853 
8854 	struct rq		*src_rq;
8855 	int			src_cpu;
8856 
8857 	int			dst_cpu;
8858 	struct rq		*dst_rq;
8859 
8860 	struct cpumask		*dst_grpmask;
8861 	int			new_dst_cpu;
8862 	enum cpu_idle_type	idle;
8863 	long			imbalance;
8864 	/* The set of CPUs under consideration for load-balancing */
8865 	struct cpumask		*cpus;
8866 
8867 	unsigned int		flags;
8868 
8869 	unsigned int		loop;
8870 	unsigned int		loop_break;
8871 	unsigned int		loop_max;
8872 
8873 	enum fbq_type		fbq_type;
8874 	enum migration_type	migration_type;
8875 	struct list_head	tasks;
8876 };
8877 
8878 /*
8879  * Is this task likely cache-hot:
8880  */
8881 static int task_hot(struct task_struct *p, struct lb_env *env)
8882 {
8883 	s64 delta;
8884 
8885 	lockdep_assert_rq_held(env->src_rq);
8886 
8887 	if (p->sched_class != &fair_sched_class)
8888 		return 0;
8889 
8890 	if (unlikely(task_has_idle_policy(p)))
8891 		return 0;
8892 
8893 	/* SMT siblings share cache */
8894 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8895 		return 0;
8896 
8897 	/*
8898 	 * Buddy candidates are cache hot:
8899 	 */
8900 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8901 	    (&p->se == cfs_rq_of(&p->se)->next))
8902 		return 1;
8903 
8904 	if (sysctl_sched_migration_cost == -1)
8905 		return 1;
8906 
8907 	/*
8908 	 * Don't migrate task if the task's cookie does not match
8909 	 * with the destination CPU's core cookie.
8910 	 */
8911 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8912 		return 1;
8913 
8914 	if (sysctl_sched_migration_cost == 0)
8915 		return 0;
8916 
8917 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8918 
8919 	return delta < (s64)sysctl_sched_migration_cost;
8920 }
8921 
8922 #ifdef CONFIG_NUMA_BALANCING
8923 /*
8924  * Returns 1, if task migration degrades locality
8925  * Returns 0, if task migration improves locality i.e migration preferred.
8926  * Returns -1, if task migration is not affected by locality.
8927  */
8928 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8929 {
8930 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8931 	unsigned long src_weight, dst_weight;
8932 	int src_nid, dst_nid, dist;
8933 
8934 	if (!static_branch_likely(&sched_numa_balancing))
8935 		return -1;
8936 
8937 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8938 		return -1;
8939 
8940 	src_nid = cpu_to_node(env->src_cpu);
8941 	dst_nid = cpu_to_node(env->dst_cpu);
8942 
8943 	if (src_nid == dst_nid)
8944 		return -1;
8945 
8946 	/* Migrating away from the preferred node is always bad. */
8947 	if (src_nid == p->numa_preferred_nid) {
8948 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8949 			return 1;
8950 		else
8951 			return -1;
8952 	}
8953 
8954 	/* Encourage migration to the preferred node. */
8955 	if (dst_nid == p->numa_preferred_nid)
8956 		return 0;
8957 
8958 	/* Leaving a core idle is often worse than degrading locality. */
8959 	if (env->idle == CPU_IDLE)
8960 		return -1;
8961 
8962 	dist = node_distance(src_nid, dst_nid);
8963 	if (numa_group) {
8964 		src_weight = group_weight(p, src_nid, dist);
8965 		dst_weight = group_weight(p, dst_nid, dist);
8966 	} else {
8967 		src_weight = task_weight(p, src_nid, dist);
8968 		dst_weight = task_weight(p, dst_nid, dist);
8969 	}
8970 
8971 	return dst_weight < src_weight;
8972 }
8973 
8974 #else
8975 static inline int migrate_degrades_locality(struct task_struct *p,
8976 					     struct lb_env *env)
8977 {
8978 	return -1;
8979 }
8980 #endif
8981 
8982 /*
8983  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8984  */
8985 static
8986 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8987 {
8988 	int tsk_cache_hot;
8989 
8990 	lockdep_assert_rq_held(env->src_rq);
8991 
8992 	/*
8993 	 * We do not migrate tasks that are:
8994 	 * 1) throttled_lb_pair, or
8995 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8996 	 * 3) running (obviously), or
8997 	 * 4) are cache-hot on their current CPU.
8998 	 */
8999 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9000 		return 0;
9001 
9002 	/* Disregard percpu kthreads; they are where they need to be. */
9003 	if (kthread_is_per_cpu(p))
9004 		return 0;
9005 
9006 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9007 		int cpu;
9008 
9009 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9010 
9011 		env->flags |= LBF_SOME_PINNED;
9012 
9013 		/*
9014 		 * Remember if this task can be migrated to any other CPU in
9015 		 * our sched_group. We may want to revisit it if we couldn't
9016 		 * meet load balance goals by pulling other tasks on src_cpu.
9017 		 *
9018 		 * Avoid computing new_dst_cpu
9019 		 * - for NEWLY_IDLE
9020 		 * - if we have already computed one in current iteration
9021 		 * - if it's an active balance
9022 		 */
9023 		if (env->idle == CPU_NEWLY_IDLE ||
9024 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9025 			return 0;
9026 
9027 		/* Prevent to re-select dst_cpu via env's CPUs: */
9028 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9029 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9030 				env->flags |= LBF_DST_PINNED;
9031 				env->new_dst_cpu = cpu;
9032 				break;
9033 			}
9034 		}
9035 
9036 		return 0;
9037 	}
9038 
9039 	/* Record that we found at least one task that could run on dst_cpu */
9040 	env->flags &= ~LBF_ALL_PINNED;
9041 
9042 	if (task_on_cpu(env->src_rq, p)) {
9043 		schedstat_inc(p->stats.nr_failed_migrations_running);
9044 		return 0;
9045 	}
9046 
9047 	/*
9048 	 * Aggressive migration if:
9049 	 * 1) active balance
9050 	 * 2) destination numa is preferred
9051 	 * 3) task is cache cold, or
9052 	 * 4) too many balance attempts have failed.
9053 	 */
9054 	if (env->flags & LBF_ACTIVE_LB)
9055 		return 1;
9056 
9057 	tsk_cache_hot = migrate_degrades_locality(p, env);
9058 	if (tsk_cache_hot == -1)
9059 		tsk_cache_hot = task_hot(p, env);
9060 
9061 	if (tsk_cache_hot <= 0 ||
9062 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9063 		if (tsk_cache_hot == 1) {
9064 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9065 			schedstat_inc(p->stats.nr_forced_migrations);
9066 		}
9067 		return 1;
9068 	}
9069 
9070 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9071 	return 0;
9072 }
9073 
9074 /*
9075  * detach_task() -- detach the task for the migration specified in env
9076  */
9077 static void detach_task(struct task_struct *p, struct lb_env *env)
9078 {
9079 	lockdep_assert_rq_held(env->src_rq);
9080 
9081 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9082 	set_task_cpu(p, env->dst_cpu);
9083 }
9084 
9085 /*
9086  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9087  * part of active balancing operations within "domain".
9088  *
9089  * Returns a task if successful and NULL otherwise.
9090  */
9091 static struct task_struct *detach_one_task(struct lb_env *env)
9092 {
9093 	struct task_struct *p;
9094 
9095 	lockdep_assert_rq_held(env->src_rq);
9096 
9097 	list_for_each_entry_reverse(p,
9098 			&env->src_rq->cfs_tasks, se.group_node) {
9099 		if (!can_migrate_task(p, env))
9100 			continue;
9101 
9102 		detach_task(p, env);
9103 
9104 		/*
9105 		 * Right now, this is only the second place where
9106 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9107 		 * so we can safely collect stats here rather than
9108 		 * inside detach_tasks().
9109 		 */
9110 		schedstat_inc(env->sd->lb_gained[env->idle]);
9111 		return p;
9112 	}
9113 	return NULL;
9114 }
9115 
9116 /*
9117  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9118  * busiest_rq, as part of a balancing operation within domain "sd".
9119  *
9120  * Returns number of detached tasks if successful and 0 otherwise.
9121  */
9122 static int detach_tasks(struct lb_env *env)
9123 {
9124 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9125 	unsigned long util, load;
9126 	struct task_struct *p;
9127 	int detached = 0;
9128 
9129 	lockdep_assert_rq_held(env->src_rq);
9130 
9131 	/*
9132 	 * Source run queue has been emptied by another CPU, clear
9133 	 * LBF_ALL_PINNED flag as we will not test any task.
9134 	 */
9135 	if (env->src_rq->nr_running <= 1) {
9136 		env->flags &= ~LBF_ALL_PINNED;
9137 		return 0;
9138 	}
9139 
9140 	if (env->imbalance <= 0)
9141 		return 0;
9142 
9143 	while (!list_empty(tasks)) {
9144 		/*
9145 		 * We don't want to steal all, otherwise we may be treated likewise,
9146 		 * which could at worst lead to a livelock crash.
9147 		 */
9148 		if (env->idle && env->src_rq->nr_running <= 1)
9149 			break;
9150 
9151 		env->loop++;
9152 		/*
9153 		 * We've more or less seen every task there is, call it quits
9154 		 * unless we haven't found any movable task yet.
9155 		 */
9156 		if (env->loop > env->loop_max &&
9157 		    !(env->flags & LBF_ALL_PINNED))
9158 			break;
9159 
9160 		/* take a breather every nr_migrate tasks */
9161 		if (env->loop > env->loop_break) {
9162 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9163 			env->flags |= LBF_NEED_BREAK;
9164 			break;
9165 		}
9166 
9167 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9168 
9169 		if (!can_migrate_task(p, env))
9170 			goto next;
9171 
9172 		switch (env->migration_type) {
9173 		case migrate_load:
9174 			/*
9175 			 * Depending of the number of CPUs and tasks and the
9176 			 * cgroup hierarchy, task_h_load() can return a null
9177 			 * value. Make sure that env->imbalance decreases
9178 			 * otherwise detach_tasks() will stop only after
9179 			 * detaching up to loop_max tasks.
9180 			 */
9181 			load = max_t(unsigned long, task_h_load(p), 1);
9182 
9183 			if (sched_feat(LB_MIN) &&
9184 			    load < 16 && !env->sd->nr_balance_failed)
9185 				goto next;
9186 
9187 			/*
9188 			 * Make sure that we don't migrate too much load.
9189 			 * Nevertheless, let relax the constraint if
9190 			 * scheduler fails to find a good waiting task to
9191 			 * migrate.
9192 			 */
9193 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9194 				goto next;
9195 
9196 			env->imbalance -= load;
9197 			break;
9198 
9199 		case migrate_util:
9200 			util = task_util_est(p);
9201 
9202 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9203 				goto next;
9204 
9205 			env->imbalance -= util;
9206 			break;
9207 
9208 		case migrate_task:
9209 			env->imbalance--;
9210 			break;
9211 
9212 		case migrate_misfit:
9213 			/* This is not a misfit task */
9214 			if (task_fits_cpu(p, env->src_cpu))
9215 				goto next;
9216 
9217 			env->imbalance = 0;
9218 			break;
9219 		}
9220 
9221 		detach_task(p, env);
9222 		list_add(&p->se.group_node, &env->tasks);
9223 
9224 		detached++;
9225 
9226 #ifdef CONFIG_PREEMPTION
9227 		/*
9228 		 * NEWIDLE balancing is a source of latency, so preemptible
9229 		 * kernels will stop after the first task is detached to minimize
9230 		 * the critical section.
9231 		 */
9232 		if (env->idle == CPU_NEWLY_IDLE)
9233 			break;
9234 #endif
9235 
9236 		/*
9237 		 * We only want to steal up to the prescribed amount of
9238 		 * load/util/tasks.
9239 		 */
9240 		if (env->imbalance <= 0)
9241 			break;
9242 
9243 		continue;
9244 next:
9245 		list_move(&p->se.group_node, tasks);
9246 	}
9247 
9248 	/*
9249 	 * Right now, this is one of only two places we collect this stat
9250 	 * so we can safely collect detach_one_task() stats here rather
9251 	 * than inside detach_one_task().
9252 	 */
9253 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9254 
9255 	return detached;
9256 }
9257 
9258 /*
9259  * attach_task() -- attach the task detached by detach_task() to its new rq.
9260  */
9261 static void attach_task(struct rq *rq, struct task_struct *p)
9262 {
9263 	lockdep_assert_rq_held(rq);
9264 
9265 	WARN_ON_ONCE(task_rq(p) != rq);
9266 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9267 	wakeup_preempt(rq, p, 0);
9268 }
9269 
9270 /*
9271  * attach_one_task() -- attaches the task returned from detach_one_task() to
9272  * its new rq.
9273  */
9274 static void attach_one_task(struct rq *rq, struct task_struct *p)
9275 {
9276 	struct rq_flags rf;
9277 
9278 	rq_lock(rq, &rf);
9279 	update_rq_clock(rq);
9280 	attach_task(rq, p);
9281 	rq_unlock(rq, &rf);
9282 }
9283 
9284 /*
9285  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9286  * new rq.
9287  */
9288 static void attach_tasks(struct lb_env *env)
9289 {
9290 	struct list_head *tasks = &env->tasks;
9291 	struct task_struct *p;
9292 	struct rq_flags rf;
9293 
9294 	rq_lock(env->dst_rq, &rf);
9295 	update_rq_clock(env->dst_rq);
9296 
9297 	while (!list_empty(tasks)) {
9298 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9299 		list_del_init(&p->se.group_node);
9300 
9301 		attach_task(env->dst_rq, p);
9302 	}
9303 
9304 	rq_unlock(env->dst_rq, &rf);
9305 }
9306 
9307 #ifdef CONFIG_NO_HZ_COMMON
9308 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9309 {
9310 	if (cfs_rq->avg.load_avg)
9311 		return true;
9312 
9313 	if (cfs_rq->avg.util_avg)
9314 		return true;
9315 
9316 	return false;
9317 }
9318 
9319 static inline bool others_have_blocked(struct rq *rq)
9320 {
9321 	if (cpu_util_rt(rq))
9322 		return true;
9323 
9324 	if (cpu_util_dl(rq))
9325 		return true;
9326 
9327 	if (hw_load_avg(rq))
9328 		return true;
9329 
9330 	if (cpu_util_irq(rq))
9331 		return true;
9332 
9333 	return false;
9334 }
9335 
9336 static inline void update_blocked_load_tick(struct rq *rq)
9337 {
9338 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9339 }
9340 
9341 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9342 {
9343 	if (!has_blocked)
9344 		rq->has_blocked_load = 0;
9345 }
9346 #else
9347 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9348 static inline bool others_have_blocked(struct rq *rq) { return false; }
9349 static inline void update_blocked_load_tick(struct rq *rq) {}
9350 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9351 #endif
9352 
9353 static bool __update_blocked_others(struct rq *rq, bool *done)
9354 {
9355 	const struct sched_class *curr_class;
9356 	u64 now = rq_clock_pelt(rq);
9357 	unsigned long hw_pressure;
9358 	bool decayed;
9359 
9360 	/*
9361 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9362 	 * DL and IRQ signals have been updated before updating CFS.
9363 	 */
9364 	curr_class = rq->curr->sched_class;
9365 
9366 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
9367 
9368 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9369 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9370 		  update_hw_load_avg(now, rq, hw_pressure) |
9371 		  update_irq_load_avg(rq, 0);
9372 
9373 	if (others_have_blocked(rq))
9374 		*done = false;
9375 
9376 	return decayed;
9377 }
9378 
9379 #ifdef CONFIG_FAIR_GROUP_SCHED
9380 
9381 static bool __update_blocked_fair(struct rq *rq, bool *done)
9382 {
9383 	struct cfs_rq *cfs_rq, *pos;
9384 	bool decayed = false;
9385 	int cpu = cpu_of(rq);
9386 
9387 	/*
9388 	 * Iterates the task_group tree in a bottom up fashion, see
9389 	 * list_add_leaf_cfs_rq() for details.
9390 	 */
9391 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9392 		struct sched_entity *se;
9393 
9394 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9395 			update_tg_load_avg(cfs_rq);
9396 
9397 			if (cfs_rq->nr_running == 0)
9398 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9399 
9400 			if (cfs_rq == &rq->cfs)
9401 				decayed = true;
9402 		}
9403 
9404 		/* Propagate pending load changes to the parent, if any: */
9405 		se = cfs_rq->tg->se[cpu];
9406 		if (se && !skip_blocked_update(se))
9407 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9408 
9409 		/*
9410 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9411 		 * decayed cfs_rqs linger on the list.
9412 		 */
9413 		if (cfs_rq_is_decayed(cfs_rq))
9414 			list_del_leaf_cfs_rq(cfs_rq);
9415 
9416 		/* Don't need periodic decay once load/util_avg are null */
9417 		if (cfs_rq_has_blocked(cfs_rq))
9418 			*done = false;
9419 	}
9420 
9421 	return decayed;
9422 }
9423 
9424 /*
9425  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9426  * This needs to be done in a top-down fashion because the load of a child
9427  * group is a fraction of its parents load.
9428  */
9429 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9430 {
9431 	struct rq *rq = rq_of(cfs_rq);
9432 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9433 	unsigned long now = jiffies;
9434 	unsigned long load;
9435 
9436 	if (cfs_rq->last_h_load_update == now)
9437 		return;
9438 
9439 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9440 	for_each_sched_entity(se) {
9441 		cfs_rq = cfs_rq_of(se);
9442 		WRITE_ONCE(cfs_rq->h_load_next, se);
9443 		if (cfs_rq->last_h_load_update == now)
9444 			break;
9445 	}
9446 
9447 	if (!se) {
9448 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9449 		cfs_rq->last_h_load_update = now;
9450 	}
9451 
9452 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9453 		load = cfs_rq->h_load;
9454 		load = div64_ul(load * se->avg.load_avg,
9455 			cfs_rq_load_avg(cfs_rq) + 1);
9456 		cfs_rq = group_cfs_rq(se);
9457 		cfs_rq->h_load = load;
9458 		cfs_rq->last_h_load_update = now;
9459 	}
9460 }
9461 
9462 static unsigned long task_h_load(struct task_struct *p)
9463 {
9464 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9465 
9466 	update_cfs_rq_h_load(cfs_rq);
9467 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9468 			cfs_rq_load_avg(cfs_rq) + 1);
9469 }
9470 #else
9471 static bool __update_blocked_fair(struct rq *rq, bool *done)
9472 {
9473 	struct cfs_rq *cfs_rq = &rq->cfs;
9474 	bool decayed;
9475 
9476 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9477 	if (cfs_rq_has_blocked(cfs_rq))
9478 		*done = false;
9479 
9480 	return decayed;
9481 }
9482 
9483 static unsigned long task_h_load(struct task_struct *p)
9484 {
9485 	return p->se.avg.load_avg;
9486 }
9487 #endif
9488 
9489 static void sched_balance_update_blocked_averages(int cpu)
9490 {
9491 	bool decayed = false, done = true;
9492 	struct rq *rq = cpu_rq(cpu);
9493 	struct rq_flags rf;
9494 
9495 	rq_lock_irqsave(rq, &rf);
9496 	update_blocked_load_tick(rq);
9497 	update_rq_clock(rq);
9498 
9499 	decayed |= __update_blocked_others(rq, &done);
9500 	decayed |= __update_blocked_fair(rq, &done);
9501 
9502 	update_blocked_load_status(rq, !done);
9503 	if (decayed)
9504 		cpufreq_update_util(rq, 0);
9505 	rq_unlock_irqrestore(rq, &rf);
9506 }
9507 
9508 /********** Helpers for sched_balance_find_src_group ************************/
9509 
9510 /*
9511  * sg_lb_stats - stats of a sched_group required for load-balancing:
9512  */
9513 struct sg_lb_stats {
9514 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9515 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9516 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9517 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9518 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9519 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9520 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9521 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9522 	unsigned int group_weight;
9523 	enum group_type group_type;
9524 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9525 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9526 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9527 #ifdef CONFIG_NUMA_BALANCING
9528 	unsigned int nr_numa_running;
9529 	unsigned int nr_preferred_running;
9530 #endif
9531 };
9532 
9533 /*
9534  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9535  */
9536 struct sd_lb_stats {
9537 	struct sched_group *busiest;		/* Busiest group in this sd */
9538 	struct sched_group *local;		/* Local group in this sd */
9539 	unsigned long total_load;		/* Total load of all groups in sd */
9540 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9541 	unsigned long avg_load;			/* Average load across all groups in sd */
9542 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9543 
9544 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9545 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9546 };
9547 
9548 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9549 {
9550 	/*
9551 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9552 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9553 	 * We must however set busiest_stat::group_type and
9554 	 * busiest_stat::idle_cpus to the worst busiest group because
9555 	 * update_sd_pick_busiest() reads these before assignment.
9556 	 */
9557 	*sds = (struct sd_lb_stats){
9558 		.busiest = NULL,
9559 		.local = NULL,
9560 		.total_load = 0UL,
9561 		.total_capacity = 0UL,
9562 		.busiest_stat = {
9563 			.idle_cpus = UINT_MAX,
9564 			.group_type = group_has_spare,
9565 		},
9566 	};
9567 }
9568 
9569 static unsigned long scale_rt_capacity(int cpu)
9570 {
9571 	unsigned long max = get_actual_cpu_capacity(cpu);
9572 	struct rq *rq = cpu_rq(cpu);
9573 	unsigned long used, free;
9574 	unsigned long irq;
9575 
9576 	irq = cpu_util_irq(rq);
9577 
9578 	if (unlikely(irq >= max))
9579 		return 1;
9580 
9581 	/*
9582 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9583 	 * (running and not running) with weights 0 and 1024 respectively.
9584 	 */
9585 	used = cpu_util_rt(rq);
9586 	used += cpu_util_dl(rq);
9587 
9588 	if (unlikely(used >= max))
9589 		return 1;
9590 
9591 	free = max - used;
9592 
9593 	return scale_irq_capacity(free, irq, max);
9594 }
9595 
9596 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9597 {
9598 	unsigned long capacity = scale_rt_capacity(cpu);
9599 	struct sched_group *sdg = sd->groups;
9600 
9601 	if (!capacity)
9602 		capacity = 1;
9603 
9604 	cpu_rq(cpu)->cpu_capacity = capacity;
9605 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9606 
9607 	sdg->sgc->capacity = capacity;
9608 	sdg->sgc->min_capacity = capacity;
9609 	sdg->sgc->max_capacity = capacity;
9610 }
9611 
9612 void update_group_capacity(struct sched_domain *sd, int cpu)
9613 {
9614 	struct sched_domain *child = sd->child;
9615 	struct sched_group *group, *sdg = sd->groups;
9616 	unsigned long capacity, min_capacity, max_capacity;
9617 	unsigned long interval;
9618 
9619 	interval = msecs_to_jiffies(sd->balance_interval);
9620 	interval = clamp(interval, 1UL, max_load_balance_interval);
9621 	sdg->sgc->next_update = jiffies + interval;
9622 
9623 	if (!child) {
9624 		update_cpu_capacity(sd, cpu);
9625 		return;
9626 	}
9627 
9628 	capacity = 0;
9629 	min_capacity = ULONG_MAX;
9630 	max_capacity = 0;
9631 
9632 	if (child->flags & SD_OVERLAP) {
9633 		/*
9634 		 * SD_OVERLAP domains cannot assume that child groups
9635 		 * span the current group.
9636 		 */
9637 
9638 		for_each_cpu(cpu, sched_group_span(sdg)) {
9639 			unsigned long cpu_cap = capacity_of(cpu);
9640 
9641 			capacity += cpu_cap;
9642 			min_capacity = min(cpu_cap, min_capacity);
9643 			max_capacity = max(cpu_cap, max_capacity);
9644 		}
9645 	} else  {
9646 		/*
9647 		 * !SD_OVERLAP domains can assume that child groups
9648 		 * span the current group.
9649 		 */
9650 
9651 		group = child->groups;
9652 		do {
9653 			struct sched_group_capacity *sgc = group->sgc;
9654 
9655 			capacity += sgc->capacity;
9656 			min_capacity = min(sgc->min_capacity, min_capacity);
9657 			max_capacity = max(sgc->max_capacity, max_capacity);
9658 			group = group->next;
9659 		} while (group != child->groups);
9660 	}
9661 
9662 	sdg->sgc->capacity = capacity;
9663 	sdg->sgc->min_capacity = min_capacity;
9664 	sdg->sgc->max_capacity = max_capacity;
9665 }
9666 
9667 /*
9668  * Check whether the capacity of the rq has been noticeably reduced by side
9669  * activity. The imbalance_pct is used for the threshold.
9670  * Return true is the capacity is reduced
9671  */
9672 static inline int
9673 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9674 {
9675 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9676 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9677 }
9678 
9679 /* Check if the rq has a misfit task */
9680 static inline bool check_misfit_status(struct rq *rq)
9681 {
9682 	return rq->misfit_task_load;
9683 }
9684 
9685 /*
9686  * Group imbalance indicates (and tries to solve) the problem where balancing
9687  * groups is inadequate due to ->cpus_ptr constraints.
9688  *
9689  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9690  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9691  * Something like:
9692  *
9693  *	{ 0 1 2 3 } { 4 5 6 7 }
9694  *	        *     * * *
9695  *
9696  * If we were to balance group-wise we'd place two tasks in the first group and
9697  * two tasks in the second group. Clearly this is undesired as it will overload
9698  * cpu 3 and leave one of the CPUs in the second group unused.
9699  *
9700  * The current solution to this issue is detecting the skew in the first group
9701  * by noticing the lower domain failed to reach balance and had difficulty
9702  * moving tasks due to affinity constraints.
9703  *
9704  * When this is so detected; this group becomes a candidate for busiest; see
9705  * update_sd_pick_busiest(). And calculate_imbalance() and
9706  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
9707  * to create an effective group imbalance.
9708  *
9709  * This is a somewhat tricky proposition since the next run might not find the
9710  * group imbalance and decide the groups need to be balanced again. A most
9711  * subtle and fragile situation.
9712  */
9713 
9714 static inline int sg_imbalanced(struct sched_group *group)
9715 {
9716 	return group->sgc->imbalance;
9717 }
9718 
9719 /*
9720  * group_has_capacity returns true if the group has spare capacity that could
9721  * be used by some tasks.
9722  * We consider that a group has spare capacity if the number of task is
9723  * smaller than the number of CPUs or if the utilization is lower than the
9724  * available capacity for CFS tasks.
9725  * For the latter, we use a threshold to stabilize the state, to take into
9726  * account the variance of the tasks' load and to return true if the available
9727  * capacity in meaningful for the load balancer.
9728  * As an example, an available capacity of 1% can appear but it doesn't make
9729  * any benefit for the load balance.
9730  */
9731 static inline bool
9732 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9733 {
9734 	if (sgs->sum_nr_running < sgs->group_weight)
9735 		return true;
9736 
9737 	if ((sgs->group_capacity * imbalance_pct) <
9738 			(sgs->group_runnable * 100))
9739 		return false;
9740 
9741 	if ((sgs->group_capacity * 100) >
9742 			(sgs->group_util * imbalance_pct))
9743 		return true;
9744 
9745 	return false;
9746 }
9747 
9748 /*
9749  *  group_is_overloaded returns true if the group has more tasks than it can
9750  *  handle.
9751  *  group_is_overloaded is not equals to !group_has_capacity because a group
9752  *  with the exact right number of tasks, has no more spare capacity but is not
9753  *  overloaded so both group_has_capacity and group_is_overloaded return
9754  *  false.
9755  */
9756 static inline bool
9757 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9758 {
9759 	if (sgs->sum_nr_running <= sgs->group_weight)
9760 		return false;
9761 
9762 	if ((sgs->group_capacity * 100) <
9763 			(sgs->group_util * imbalance_pct))
9764 		return true;
9765 
9766 	if ((sgs->group_capacity * imbalance_pct) <
9767 			(sgs->group_runnable * 100))
9768 		return true;
9769 
9770 	return false;
9771 }
9772 
9773 static inline enum
9774 group_type group_classify(unsigned int imbalance_pct,
9775 			  struct sched_group *group,
9776 			  struct sg_lb_stats *sgs)
9777 {
9778 	if (group_is_overloaded(imbalance_pct, sgs))
9779 		return group_overloaded;
9780 
9781 	if (sg_imbalanced(group))
9782 		return group_imbalanced;
9783 
9784 	if (sgs->group_asym_packing)
9785 		return group_asym_packing;
9786 
9787 	if (sgs->group_smt_balance)
9788 		return group_smt_balance;
9789 
9790 	if (sgs->group_misfit_task_load)
9791 		return group_misfit_task;
9792 
9793 	if (!group_has_capacity(imbalance_pct, sgs))
9794 		return group_fully_busy;
9795 
9796 	return group_has_spare;
9797 }
9798 
9799 /**
9800  * sched_use_asym_prio - Check whether asym_packing priority must be used
9801  * @sd:		The scheduling domain of the load balancing
9802  * @cpu:	A CPU
9803  *
9804  * Always use CPU priority when balancing load between SMT siblings. When
9805  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9806  * use CPU priority if the whole core is idle.
9807  *
9808  * Returns: True if the priority of @cpu must be followed. False otherwise.
9809  */
9810 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9811 {
9812 	if (!(sd->flags & SD_ASYM_PACKING))
9813 		return false;
9814 
9815 	if (!sched_smt_active())
9816 		return true;
9817 
9818 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9819 }
9820 
9821 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9822 {
9823 	/*
9824 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
9825 	 * if it has higher priority than @src_cpu.
9826 	 */
9827 	return sched_use_asym_prio(sd, dst_cpu) &&
9828 		sched_asym_prefer(dst_cpu, src_cpu);
9829 }
9830 
9831 /**
9832  * sched_group_asym - Check if the destination CPU can do asym_packing balance
9833  * @env:	The load balancing environment
9834  * @sgs:	Load-balancing statistics of the candidate busiest group
9835  * @group:	The candidate busiest group
9836  *
9837  * @env::dst_cpu can do asym_packing if it has higher priority than the
9838  * preferred CPU of @group.
9839  *
9840  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9841  * otherwise.
9842  */
9843 static inline bool
9844 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
9845 {
9846 	/*
9847 	 * CPU priorities do not make sense for SMT cores with more than one
9848 	 * busy sibling.
9849 	 */
9850 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9851 	    (sgs->group_weight - sgs->idle_cpus != 1))
9852 		return false;
9853 
9854 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
9855 }
9856 
9857 /* One group has more than one SMT CPU while the other group does not */
9858 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9859 				    struct sched_group *sg2)
9860 {
9861 	if (!sg1 || !sg2)
9862 		return false;
9863 
9864 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9865 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9866 }
9867 
9868 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9869 			       struct sched_group *group)
9870 {
9871 	if (!env->idle)
9872 		return false;
9873 
9874 	/*
9875 	 * For SMT source group, it is better to move a task
9876 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9877 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9878 	 * will not be on.
9879 	 */
9880 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9881 	    sgs->sum_h_nr_running > 1)
9882 		return true;
9883 
9884 	return false;
9885 }
9886 
9887 static inline long sibling_imbalance(struct lb_env *env,
9888 				    struct sd_lb_stats *sds,
9889 				    struct sg_lb_stats *busiest,
9890 				    struct sg_lb_stats *local)
9891 {
9892 	int ncores_busiest, ncores_local;
9893 	long imbalance;
9894 
9895 	if (!env->idle || !busiest->sum_nr_running)
9896 		return 0;
9897 
9898 	ncores_busiest = sds->busiest->cores;
9899 	ncores_local = sds->local->cores;
9900 
9901 	if (ncores_busiest == ncores_local) {
9902 		imbalance = busiest->sum_nr_running;
9903 		lsub_positive(&imbalance, local->sum_nr_running);
9904 		return imbalance;
9905 	}
9906 
9907 	/* Balance such that nr_running/ncores ratio are same on both groups */
9908 	imbalance = ncores_local * busiest->sum_nr_running;
9909 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9910 	/* Normalize imbalance and do rounding on normalization */
9911 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9912 	imbalance /= ncores_local + ncores_busiest;
9913 
9914 	/* Take advantage of resource in an empty sched group */
9915 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9916 	    busiest->sum_nr_running > 1)
9917 		imbalance = 2;
9918 
9919 	return imbalance;
9920 }
9921 
9922 static inline bool
9923 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9924 {
9925 	/*
9926 	 * When there is more than 1 task, the group_overloaded case already
9927 	 * takes care of cpu with reduced capacity
9928 	 */
9929 	if (rq->cfs.h_nr_running != 1)
9930 		return false;
9931 
9932 	return check_cpu_capacity(rq, sd);
9933 }
9934 
9935 /**
9936  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9937  * @env: The load balancing environment.
9938  * @sds: Load-balancing data with statistics of the local group.
9939  * @group: sched_group whose statistics are to be updated.
9940  * @sgs: variable to hold the statistics for this group.
9941  * @sg_overloaded: sched_group is overloaded
9942  * @sg_overutilized: sched_group is overutilized
9943  */
9944 static inline void update_sg_lb_stats(struct lb_env *env,
9945 				      struct sd_lb_stats *sds,
9946 				      struct sched_group *group,
9947 				      struct sg_lb_stats *sgs,
9948 				      bool *sg_overloaded,
9949 				      bool *sg_overutilized)
9950 {
9951 	int i, nr_running, local_group;
9952 
9953 	memset(sgs, 0, sizeof(*sgs));
9954 
9955 	local_group = group == sds->local;
9956 
9957 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9958 		struct rq *rq = cpu_rq(i);
9959 		unsigned long load = cpu_load(rq);
9960 
9961 		sgs->group_load += load;
9962 		sgs->group_util += cpu_util_cfs(i);
9963 		sgs->group_runnable += cpu_runnable(rq);
9964 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9965 
9966 		nr_running = rq->nr_running;
9967 		sgs->sum_nr_running += nr_running;
9968 
9969 		if (nr_running > 1)
9970 			*sg_overloaded = 1;
9971 
9972 		if (cpu_overutilized(i))
9973 			*sg_overutilized = 1;
9974 
9975 #ifdef CONFIG_NUMA_BALANCING
9976 		sgs->nr_numa_running += rq->nr_numa_running;
9977 		sgs->nr_preferred_running += rq->nr_preferred_running;
9978 #endif
9979 		/*
9980 		 * No need to call idle_cpu() if nr_running is not 0
9981 		 */
9982 		if (!nr_running && idle_cpu(i)) {
9983 			sgs->idle_cpus++;
9984 			/* Idle cpu can't have misfit task */
9985 			continue;
9986 		}
9987 
9988 		if (local_group)
9989 			continue;
9990 
9991 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9992 			/* Check for a misfit task on the cpu */
9993 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9994 				sgs->group_misfit_task_load = rq->misfit_task_load;
9995 				*sg_overloaded = 1;
9996 			}
9997 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
9998 			/* Check for a task running on a CPU with reduced capacity */
9999 			if (sgs->group_misfit_task_load < load)
10000 				sgs->group_misfit_task_load = load;
10001 		}
10002 	}
10003 
10004 	sgs->group_capacity = group->sgc->capacity;
10005 
10006 	sgs->group_weight = group->group_weight;
10007 
10008 	/* Check if dst CPU is idle and preferred to this group */
10009 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10010 	    sched_group_asym(env, sgs, group))
10011 		sgs->group_asym_packing = 1;
10012 
10013 	/* Check for loaded SMT group to be balanced to dst CPU */
10014 	if (!local_group && smt_balance(env, sgs, group))
10015 		sgs->group_smt_balance = 1;
10016 
10017 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10018 
10019 	/* Computing avg_load makes sense only when group is overloaded */
10020 	if (sgs->group_type == group_overloaded)
10021 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10022 				sgs->group_capacity;
10023 }
10024 
10025 /**
10026  * update_sd_pick_busiest - return 1 on busiest group
10027  * @env: The load balancing environment.
10028  * @sds: sched_domain statistics
10029  * @sg: sched_group candidate to be checked for being the busiest
10030  * @sgs: sched_group statistics
10031  *
10032  * Determine if @sg is a busier group than the previously selected
10033  * busiest group.
10034  *
10035  * Return: %true if @sg is a busier group than the previously selected
10036  * busiest group. %false otherwise.
10037  */
10038 static bool update_sd_pick_busiest(struct lb_env *env,
10039 				   struct sd_lb_stats *sds,
10040 				   struct sched_group *sg,
10041 				   struct sg_lb_stats *sgs)
10042 {
10043 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10044 
10045 	/* Make sure that there is at least one task to pull */
10046 	if (!sgs->sum_h_nr_running)
10047 		return false;
10048 
10049 	/*
10050 	 * Don't try to pull misfit tasks we can't help.
10051 	 * We can use max_capacity here as reduction in capacity on some
10052 	 * CPUs in the group should either be possible to resolve
10053 	 * internally or be covered by avg_load imbalance (eventually).
10054 	 */
10055 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10056 	    (sgs->group_type == group_misfit_task) &&
10057 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10058 	     sds->local_stat.group_type != group_has_spare))
10059 		return false;
10060 
10061 	if (sgs->group_type > busiest->group_type)
10062 		return true;
10063 
10064 	if (sgs->group_type < busiest->group_type)
10065 		return false;
10066 
10067 	/*
10068 	 * The candidate and the current busiest group are the same type of
10069 	 * group. Let check which one is the busiest according to the type.
10070 	 */
10071 
10072 	switch (sgs->group_type) {
10073 	case group_overloaded:
10074 		/* Select the overloaded group with highest avg_load. */
10075 		return sgs->avg_load > busiest->avg_load;
10076 
10077 	case group_imbalanced:
10078 		/*
10079 		 * Select the 1st imbalanced group as we don't have any way to
10080 		 * choose one more than another.
10081 		 */
10082 		return false;
10083 
10084 	case group_asym_packing:
10085 		/* Prefer to move from lowest priority CPU's work */
10086 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10087 
10088 	case group_misfit_task:
10089 		/*
10090 		 * If we have more than one misfit sg go with the biggest
10091 		 * misfit.
10092 		 */
10093 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10094 
10095 	case group_smt_balance:
10096 		/*
10097 		 * Check if we have spare CPUs on either SMT group to
10098 		 * choose has spare or fully busy handling.
10099 		 */
10100 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10101 			goto has_spare;
10102 
10103 		fallthrough;
10104 
10105 	case group_fully_busy:
10106 		/*
10107 		 * Select the fully busy group with highest avg_load. In
10108 		 * theory, there is no need to pull task from such kind of
10109 		 * group because tasks have all compute capacity that they need
10110 		 * but we can still improve the overall throughput by reducing
10111 		 * contention when accessing shared HW resources.
10112 		 *
10113 		 * XXX for now avg_load is not computed and always 0 so we
10114 		 * select the 1st one, except if @sg is composed of SMT
10115 		 * siblings.
10116 		 */
10117 
10118 		if (sgs->avg_load < busiest->avg_load)
10119 			return false;
10120 
10121 		if (sgs->avg_load == busiest->avg_load) {
10122 			/*
10123 			 * SMT sched groups need more help than non-SMT groups.
10124 			 * If @sg happens to also be SMT, either choice is good.
10125 			 */
10126 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10127 				return false;
10128 		}
10129 
10130 		break;
10131 
10132 	case group_has_spare:
10133 		/*
10134 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10135 		 * as we do not want to pull task off SMT core with one task
10136 		 * and make the core idle.
10137 		 */
10138 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10139 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10140 				return false;
10141 			else
10142 				return true;
10143 		}
10144 has_spare:
10145 
10146 		/*
10147 		 * Select not overloaded group with lowest number of idle CPUs
10148 		 * and highest number of running tasks. We could also compare
10149 		 * the spare capacity which is more stable but it can end up
10150 		 * that the group has less spare capacity but finally more idle
10151 		 * CPUs which means less opportunity to pull tasks.
10152 		 */
10153 		if (sgs->idle_cpus > busiest->idle_cpus)
10154 			return false;
10155 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10156 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10157 			return false;
10158 
10159 		break;
10160 	}
10161 
10162 	/*
10163 	 * Candidate sg has no more than one task per CPU and has higher
10164 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10165 	 * throughput. Maximize throughput, power/energy consequences are not
10166 	 * considered.
10167 	 */
10168 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10169 	    (sgs->group_type <= group_fully_busy) &&
10170 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10171 		return false;
10172 
10173 	return true;
10174 }
10175 
10176 #ifdef CONFIG_NUMA_BALANCING
10177 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10178 {
10179 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10180 		return regular;
10181 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10182 		return remote;
10183 	return all;
10184 }
10185 
10186 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10187 {
10188 	if (rq->nr_running > rq->nr_numa_running)
10189 		return regular;
10190 	if (rq->nr_running > rq->nr_preferred_running)
10191 		return remote;
10192 	return all;
10193 }
10194 #else
10195 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10196 {
10197 	return all;
10198 }
10199 
10200 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10201 {
10202 	return regular;
10203 }
10204 #endif /* CONFIG_NUMA_BALANCING */
10205 
10206 
10207 struct sg_lb_stats;
10208 
10209 /*
10210  * task_running_on_cpu - return 1 if @p is running on @cpu.
10211  */
10212 
10213 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10214 {
10215 	/* Task has no contribution or is new */
10216 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10217 		return 0;
10218 
10219 	if (task_on_rq_queued(p))
10220 		return 1;
10221 
10222 	return 0;
10223 }
10224 
10225 /**
10226  * idle_cpu_without - would a given CPU be idle without p ?
10227  * @cpu: the processor on which idleness is tested.
10228  * @p: task which should be ignored.
10229  *
10230  * Return: 1 if the CPU would be idle. 0 otherwise.
10231  */
10232 static int idle_cpu_without(int cpu, struct task_struct *p)
10233 {
10234 	struct rq *rq = cpu_rq(cpu);
10235 
10236 	if (rq->curr != rq->idle && rq->curr != p)
10237 		return 0;
10238 
10239 	/*
10240 	 * rq->nr_running can't be used but an updated version without the
10241 	 * impact of p on cpu must be used instead. The updated nr_running
10242 	 * be computed and tested before calling idle_cpu_without().
10243 	 */
10244 
10245 	if (rq->ttwu_pending)
10246 		return 0;
10247 
10248 	return 1;
10249 }
10250 
10251 /*
10252  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10253  * @sd: The sched_domain level to look for idlest group.
10254  * @group: sched_group whose statistics are to be updated.
10255  * @sgs: variable to hold the statistics for this group.
10256  * @p: The task for which we look for the idlest group/CPU.
10257  */
10258 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10259 					  struct sched_group *group,
10260 					  struct sg_lb_stats *sgs,
10261 					  struct task_struct *p)
10262 {
10263 	int i, nr_running;
10264 
10265 	memset(sgs, 0, sizeof(*sgs));
10266 
10267 	/* Assume that task can't fit any CPU of the group */
10268 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10269 		sgs->group_misfit_task_load = 1;
10270 
10271 	for_each_cpu(i, sched_group_span(group)) {
10272 		struct rq *rq = cpu_rq(i);
10273 		unsigned int local;
10274 
10275 		sgs->group_load += cpu_load_without(rq, p);
10276 		sgs->group_util += cpu_util_without(i, p);
10277 		sgs->group_runnable += cpu_runnable_without(rq, p);
10278 		local = task_running_on_cpu(i, p);
10279 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10280 
10281 		nr_running = rq->nr_running - local;
10282 		sgs->sum_nr_running += nr_running;
10283 
10284 		/*
10285 		 * No need to call idle_cpu_without() if nr_running is not 0
10286 		 */
10287 		if (!nr_running && idle_cpu_without(i, p))
10288 			sgs->idle_cpus++;
10289 
10290 		/* Check if task fits in the CPU */
10291 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10292 		    sgs->group_misfit_task_load &&
10293 		    task_fits_cpu(p, i))
10294 			sgs->group_misfit_task_load = 0;
10295 
10296 	}
10297 
10298 	sgs->group_capacity = group->sgc->capacity;
10299 
10300 	sgs->group_weight = group->group_weight;
10301 
10302 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10303 
10304 	/*
10305 	 * Computing avg_load makes sense only when group is fully busy or
10306 	 * overloaded
10307 	 */
10308 	if (sgs->group_type == group_fully_busy ||
10309 		sgs->group_type == group_overloaded)
10310 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10311 				sgs->group_capacity;
10312 }
10313 
10314 static bool update_pick_idlest(struct sched_group *idlest,
10315 			       struct sg_lb_stats *idlest_sgs,
10316 			       struct sched_group *group,
10317 			       struct sg_lb_stats *sgs)
10318 {
10319 	if (sgs->group_type < idlest_sgs->group_type)
10320 		return true;
10321 
10322 	if (sgs->group_type > idlest_sgs->group_type)
10323 		return false;
10324 
10325 	/*
10326 	 * The candidate and the current idlest group are the same type of
10327 	 * group. Let check which one is the idlest according to the type.
10328 	 */
10329 
10330 	switch (sgs->group_type) {
10331 	case group_overloaded:
10332 	case group_fully_busy:
10333 		/* Select the group with lowest avg_load. */
10334 		if (idlest_sgs->avg_load <= sgs->avg_load)
10335 			return false;
10336 		break;
10337 
10338 	case group_imbalanced:
10339 	case group_asym_packing:
10340 	case group_smt_balance:
10341 		/* Those types are not used in the slow wakeup path */
10342 		return false;
10343 
10344 	case group_misfit_task:
10345 		/* Select group with the highest max capacity */
10346 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10347 			return false;
10348 		break;
10349 
10350 	case group_has_spare:
10351 		/* Select group with most idle CPUs */
10352 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10353 			return false;
10354 
10355 		/* Select group with lowest group_util */
10356 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10357 			idlest_sgs->group_util <= sgs->group_util)
10358 			return false;
10359 
10360 		break;
10361 	}
10362 
10363 	return true;
10364 }
10365 
10366 /*
10367  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10368  * domain.
10369  *
10370  * Assumes p is allowed on at least one CPU in sd.
10371  */
10372 static struct sched_group *
10373 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10374 {
10375 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10376 	struct sg_lb_stats local_sgs, tmp_sgs;
10377 	struct sg_lb_stats *sgs;
10378 	unsigned long imbalance;
10379 	struct sg_lb_stats idlest_sgs = {
10380 			.avg_load = UINT_MAX,
10381 			.group_type = group_overloaded,
10382 	};
10383 
10384 	do {
10385 		int local_group;
10386 
10387 		/* Skip over this group if it has no CPUs allowed */
10388 		if (!cpumask_intersects(sched_group_span(group),
10389 					p->cpus_ptr))
10390 			continue;
10391 
10392 		/* Skip over this group if no cookie matched */
10393 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10394 			continue;
10395 
10396 		local_group = cpumask_test_cpu(this_cpu,
10397 					       sched_group_span(group));
10398 
10399 		if (local_group) {
10400 			sgs = &local_sgs;
10401 			local = group;
10402 		} else {
10403 			sgs = &tmp_sgs;
10404 		}
10405 
10406 		update_sg_wakeup_stats(sd, group, sgs, p);
10407 
10408 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10409 			idlest = group;
10410 			idlest_sgs = *sgs;
10411 		}
10412 
10413 	} while (group = group->next, group != sd->groups);
10414 
10415 
10416 	/* There is no idlest group to push tasks to */
10417 	if (!idlest)
10418 		return NULL;
10419 
10420 	/* The local group has been skipped because of CPU affinity */
10421 	if (!local)
10422 		return idlest;
10423 
10424 	/*
10425 	 * If the local group is idler than the selected idlest group
10426 	 * don't try and push the task.
10427 	 */
10428 	if (local_sgs.group_type < idlest_sgs.group_type)
10429 		return NULL;
10430 
10431 	/*
10432 	 * If the local group is busier than the selected idlest group
10433 	 * try and push the task.
10434 	 */
10435 	if (local_sgs.group_type > idlest_sgs.group_type)
10436 		return idlest;
10437 
10438 	switch (local_sgs.group_type) {
10439 	case group_overloaded:
10440 	case group_fully_busy:
10441 
10442 		/* Calculate allowed imbalance based on load */
10443 		imbalance = scale_load_down(NICE_0_LOAD) *
10444 				(sd->imbalance_pct-100) / 100;
10445 
10446 		/*
10447 		 * When comparing groups across NUMA domains, it's possible for
10448 		 * the local domain to be very lightly loaded relative to the
10449 		 * remote domains but "imbalance" skews the comparison making
10450 		 * remote CPUs look much more favourable. When considering
10451 		 * cross-domain, add imbalance to the load on the remote node
10452 		 * and consider staying local.
10453 		 */
10454 
10455 		if ((sd->flags & SD_NUMA) &&
10456 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10457 			return NULL;
10458 
10459 		/*
10460 		 * If the local group is less loaded than the selected
10461 		 * idlest group don't try and push any tasks.
10462 		 */
10463 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10464 			return NULL;
10465 
10466 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10467 			return NULL;
10468 		break;
10469 
10470 	case group_imbalanced:
10471 	case group_asym_packing:
10472 	case group_smt_balance:
10473 		/* Those type are not used in the slow wakeup path */
10474 		return NULL;
10475 
10476 	case group_misfit_task:
10477 		/* Select group with the highest max capacity */
10478 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10479 			return NULL;
10480 		break;
10481 
10482 	case group_has_spare:
10483 #ifdef CONFIG_NUMA
10484 		if (sd->flags & SD_NUMA) {
10485 			int imb_numa_nr = sd->imb_numa_nr;
10486 #ifdef CONFIG_NUMA_BALANCING
10487 			int idlest_cpu;
10488 			/*
10489 			 * If there is spare capacity at NUMA, try to select
10490 			 * the preferred node
10491 			 */
10492 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10493 				return NULL;
10494 
10495 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10496 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10497 				return idlest;
10498 #endif /* CONFIG_NUMA_BALANCING */
10499 			/*
10500 			 * Otherwise, keep the task close to the wakeup source
10501 			 * and improve locality if the number of running tasks
10502 			 * would remain below threshold where an imbalance is
10503 			 * allowed while accounting for the possibility the
10504 			 * task is pinned to a subset of CPUs. If there is a
10505 			 * real need of migration, periodic load balance will
10506 			 * take care of it.
10507 			 */
10508 			if (p->nr_cpus_allowed != NR_CPUS) {
10509 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10510 
10511 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10512 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10513 			}
10514 
10515 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10516 			if (!adjust_numa_imbalance(imbalance,
10517 						   local_sgs.sum_nr_running + 1,
10518 						   imb_numa_nr)) {
10519 				return NULL;
10520 			}
10521 		}
10522 #endif /* CONFIG_NUMA */
10523 
10524 		/*
10525 		 * Select group with highest number of idle CPUs. We could also
10526 		 * compare the utilization which is more stable but it can end
10527 		 * up that the group has less spare capacity but finally more
10528 		 * idle CPUs which means more opportunity to run task.
10529 		 */
10530 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10531 			return NULL;
10532 		break;
10533 	}
10534 
10535 	return idlest;
10536 }
10537 
10538 static void update_idle_cpu_scan(struct lb_env *env,
10539 				 unsigned long sum_util)
10540 {
10541 	struct sched_domain_shared *sd_share;
10542 	int llc_weight, pct;
10543 	u64 x, y, tmp;
10544 	/*
10545 	 * Update the number of CPUs to scan in LLC domain, which could
10546 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10547 	 * could be expensive because it is within a shared cache line.
10548 	 * So the write of this hint only occurs during periodic load
10549 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10550 	 * can fire way more frequently than the former.
10551 	 */
10552 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10553 		return;
10554 
10555 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10556 	if (env->sd->span_weight != llc_weight)
10557 		return;
10558 
10559 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10560 	if (!sd_share)
10561 		return;
10562 
10563 	/*
10564 	 * The number of CPUs to search drops as sum_util increases, when
10565 	 * sum_util hits 85% or above, the scan stops.
10566 	 * The reason to choose 85% as the threshold is because this is the
10567 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10568 	 *
10569 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10570 	 * and y'= y / SCHED_CAPACITY_SCALE
10571 	 *
10572 	 * x is the ratio of sum_util compared to the CPU capacity:
10573 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10574 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10575 	 * and the number of CPUs to scan is calculated by:
10576 	 *
10577 	 * nr_scan = llc_weight * y'                                    [2]
10578 	 *
10579 	 * When x hits the threshold of overloaded, AKA, when
10580 	 * x = 100 / pct, y drops to 0. According to [1],
10581 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10582 	 *
10583 	 * Scale x by SCHED_CAPACITY_SCALE:
10584 	 * x' = sum_util / llc_weight;                                  [3]
10585 	 *
10586 	 * and finally [1] becomes:
10587 	 * y = SCHED_CAPACITY_SCALE -
10588 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10589 	 *
10590 	 */
10591 	/* equation [3] */
10592 	x = sum_util;
10593 	do_div(x, llc_weight);
10594 
10595 	/* equation [4] */
10596 	pct = env->sd->imbalance_pct;
10597 	tmp = x * x * pct * pct;
10598 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10599 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10600 	y = SCHED_CAPACITY_SCALE - tmp;
10601 
10602 	/* equation [2] */
10603 	y *= llc_weight;
10604 	do_div(y, SCHED_CAPACITY_SCALE);
10605 	if ((int)y != sd_share->nr_idle_scan)
10606 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10607 }
10608 
10609 /**
10610  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10611  * @env: The load balancing environment.
10612  * @sds: variable to hold the statistics for this sched_domain.
10613  */
10614 
10615 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10616 {
10617 	struct sched_group *sg = env->sd->groups;
10618 	struct sg_lb_stats *local = &sds->local_stat;
10619 	struct sg_lb_stats tmp_sgs;
10620 	unsigned long sum_util = 0;
10621 	bool sg_overloaded = 0, sg_overutilized = 0;
10622 
10623 	do {
10624 		struct sg_lb_stats *sgs = &tmp_sgs;
10625 		int local_group;
10626 
10627 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10628 		if (local_group) {
10629 			sds->local = sg;
10630 			sgs = local;
10631 
10632 			if (env->idle != CPU_NEWLY_IDLE ||
10633 			    time_after_eq(jiffies, sg->sgc->next_update))
10634 				update_group_capacity(env->sd, env->dst_cpu);
10635 		}
10636 
10637 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10638 
10639 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10640 			sds->busiest = sg;
10641 			sds->busiest_stat = *sgs;
10642 		}
10643 
10644 		/* Now, start updating sd_lb_stats */
10645 		sds->total_load += sgs->group_load;
10646 		sds->total_capacity += sgs->group_capacity;
10647 
10648 		sum_util += sgs->group_util;
10649 		sg = sg->next;
10650 	} while (sg != env->sd->groups);
10651 
10652 	/*
10653 	 * Indicate that the child domain of the busiest group prefers tasks
10654 	 * go to a child's sibling domains first. NB the flags of a sched group
10655 	 * are those of the child domain.
10656 	 */
10657 	if (sds->busiest)
10658 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10659 
10660 
10661 	if (env->sd->flags & SD_NUMA)
10662 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10663 
10664 	if (!env->sd->parent) {
10665 		/* update overload indicator if we are at root domain */
10666 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
10667 
10668 		/* Update over-utilization (tipping point, U >= 0) indicator */
10669 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10670 	} else if (sg_overutilized) {
10671 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10672 	}
10673 
10674 	update_idle_cpu_scan(env, sum_util);
10675 }
10676 
10677 /**
10678  * calculate_imbalance - Calculate the amount of imbalance present within the
10679  *			 groups of a given sched_domain during load balance.
10680  * @env: load balance environment
10681  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10682  */
10683 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10684 {
10685 	struct sg_lb_stats *local, *busiest;
10686 
10687 	local = &sds->local_stat;
10688 	busiest = &sds->busiest_stat;
10689 
10690 	if (busiest->group_type == group_misfit_task) {
10691 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10692 			/* Set imbalance to allow misfit tasks to be balanced. */
10693 			env->migration_type = migrate_misfit;
10694 			env->imbalance = 1;
10695 		} else {
10696 			/*
10697 			 * Set load imbalance to allow moving task from cpu
10698 			 * with reduced capacity.
10699 			 */
10700 			env->migration_type = migrate_load;
10701 			env->imbalance = busiest->group_misfit_task_load;
10702 		}
10703 		return;
10704 	}
10705 
10706 	if (busiest->group_type == group_asym_packing) {
10707 		/*
10708 		 * In case of asym capacity, we will try to migrate all load to
10709 		 * the preferred CPU.
10710 		 */
10711 		env->migration_type = migrate_task;
10712 		env->imbalance = busiest->sum_h_nr_running;
10713 		return;
10714 	}
10715 
10716 	if (busiest->group_type == group_smt_balance) {
10717 		/* Reduce number of tasks sharing CPU capacity */
10718 		env->migration_type = migrate_task;
10719 		env->imbalance = 1;
10720 		return;
10721 	}
10722 
10723 	if (busiest->group_type == group_imbalanced) {
10724 		/*
10725 		 * In the group_imb case we cannot rely on group-wide averages
10726 		 * to ensure CPU-load equilibrium, try to move any task to fix
10727 		 * the imbalance. The next load balance will take care of
10728 		 * balancing back the system.
10729 		 */
10730 		env->migration_type = migrate_task;
10731 		env->imbalance = 1;
10732 		return;
10733 	}
10734 
10735 	/*
10736 	 * Try to use spare capacity of local group without overloading it or
10737 	 * emptying busiest.
10738 	 */
10739 	if (local->group_type == group_has_spare) {
10740 		if ((busiest->group_type > group_fully_busy) &&
10741 		    !(env->sd->flags & SD_SHARE_LLC)) {
10742 			/*
10743 			 * If busiest is overloaded, try to fill spare
10744 			 * capacity. This might end up creating spare capacity
10745 			 * in busiest or busiest still being overloaded but
10746 			 * there is no simple way to directly compute the
10747 			 * amount of load to migrate in order to balance the
10748 			 * system.
10749 			 */
10750 			env->migration_type = migrate_util;
10751 			env->imbalance = max(local->group_capacity, local->group_util) -
10752 					 local->group_util;
10753 
10754 			/*
10755 			 * In some cases, the group's utilization is max or even
10756 			 * higher than capacity because of migrations but the
10757 			 * local CPU is (newly) idle. There is at least one
10758 			 * waiting task in this overloaded busiest group. Let's
10759 			 * try to pull it.
10760 			 */
10761 			if (env->idle && env->imbalance == 0) {
10762 				env->migration_type = migrate_task;
10763 				env->imbalance = 1;
10764 			}
10765 
10766 			return;
10767 		}
10768 
10769 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10770 			/*
10771 			 * When prefer sibling, evenly spread running tasks on
10772 			 * groups.
10773 			 */
10774 			env->migration_type = migrate_task;
10775 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10776 		} else {
10777 
10778 			/*
10779 			 * If there is no overload, we just want to even the number of
10780 			 * idle CPUs.
10781 			 */
10782 			env->migration_type = migrate_task;
10783 			env->imbalance = max_t(long, 0,
10784 					       (local->idle_cpus - busiest->idle_cpus));
10785 		}
10786 
10787 #ifdef CONFIG_NUMA
10788 		/* Consider allowing a small imbalance between NUMA groups */
10789 		if (env->sd->flags & SD_NUMA) {
10790 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10791 							       local->sum_nr_running + 1,
10792 							       env->sd->imb_numa_nr);
10793 		}
10794 #endif
10795 
10796 		/* Number of tasks to move to restore balance */
10797 		env->imbalance >>= 1;
10798 
10799 		return;
10800 	}
10801 
10802 	/*
10803 	 * Local is fully busy but has to take more load to relieve the
10804 	 * busiest group
10805 	 */
10806 	if (local->group_type < group_overloaded) {
10807 		/*
10808 		 * Local will become overloaded so the avg_load metrics are
10809 		 * finally needed.
10810 		 */
10811 
10812 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10813 				  local->group_capacity;
10814 
10815 		/*
10816 		 * If the local group is more loaded than the selected
10817 		 * busiest group don't try to pull any tasks.
10818 		 */
10819 		if (local->avg_load >= busiest->avg_load) {
10820 			env->imbalance = 0;
10821 			return;
10822 		}
10823 
10824 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10825 				sds->total_capacity;
10826 
10827 		/*
10828 		 * If the local group is more loaded than the average system
10829 		 * load, don't try to pull any tasks.
10830 		 */
10831 		if (local->avg_load >= sds->avg_load) {
10832 			env->imbalance = 0;
10833 			return;
10834 		}
10835 
10836 	}
10837 
10838 	/*
10839 	 * Both group are or will become overloaded and we're trying to get all
10840 	 * the CPUs to the average_load, so we don't want to push ourselves
10841 	 * above the average load, nor do we wish to reduce the max loaded CPU
10842 	 * below the average load. At the same time, we also don't want to
10843 	 * reduce the group load below the group capacity. Thus we look for
10844 	 * the minimum possible imbalance.
10845 	 */
10846 	env->migration_type = migrate_load;
10847 	env->imbalance = min(
10848 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10849 		(sds->avg_load - local->avg_load) * local->group_capacity
10850 	) / SCHED_CAPACITY_SCALE;
10851 }
10852 
10853 /******* sched_balance_find_src_group() helpers end here *********************/
10854 
10855 /*
10856  * Decision matrix according to the local and busiest group type:
10857  *
10858  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10859  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10860  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10861  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10862  * asym_packing     force     force      N/A    N/A  force      force
10863  * imbalanced       force     force      N/A    N/A  force      force
10864  * overloaded       force     force      N/A    N/A  force      avg_load
10865  *
10866  * N/A :      Not Applicable because already filtered while updating
10867  *            statistics.
10868  * balanced : The system is balanced for these 2 groups.
10869  * force :    Calculate the imbalance as load migration is probably needed.
10870  * avg_load : Only if imbalance is significant enough.
10871  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10872  *            different in groups.
10873  */
10874 
10875 /**
10876  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
10877  * if there is an imbalance.
10878  * @env: The load balancing environment.
10879  *
10880  * Also calculates the amount of runnable load which should be moved
10881  * to restore balance.
10882  *
10883  * Return:	- The busiest group if imbalance exists.
10884  */
10885 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
10886 {
10887 	struct sg_lb_stats *local, *busiest;
10888 	struct sd_lb_stats sds;
10889 
10890 	init_sd_lb_stats(&sds);
10891 
10892 	/*
10893 	 * Compute the various statistics relevant for load balancing at
10894 	 * this level.
10895 	 */
10896 	update_sd_lb_stats(env, &sds);
10897 
10898 	/* There is no busy sibling group to pull tasks from */
10899 	if (!sds.busiest)
10900 		goto out_balanced;
10901 
10902 	busiest = &sds.busiest_stat;
10903 
10904 	/* Misfit tasks should be dealt with regardless of the avg load */
10905 	if (busiest->group_type == group_misfit_task)
10906 		goto force_balance;
10907 
10908 	if (!is_rd_overutilized(env->dst_rq->rd) &&
10909 	    rcu_dereference(env->dst_rq->rd->pd))
10910 		goto out_balanced;
10911 
10912 	/* ASYM feature bypasses nice load balance check */
10913 	if (busiest->group_type == group_asym_packing)
10914 		goto force_balance;
10915 
10916 	/*
10917 	 * If the busiest group is imbalanced the below checks don't
10918 	 * work because they assume all things are equal, which typically
10919 	 * isn't true due to cpus_ptr constraints and the like.
10920 	 */
10921 	if (busiest->group_type == group_imbalanced)
10922 		goto force_balance;
10923 
10924 	local = &sds.local_stat;
10925 	/*
10926 	 * If the local group is busier than the selected busiest group
10927 	 * don't try and pull any tasks.
10928 	 */
10929 	if (local->group_type > busiest->group_type)
10930 		goto out_balanced;
10931 
10932 	/*
10933 	 * When groups are overloaded, use the avg_load to ensure fairness
10934 	 * between tasks.
10935 	 */
10936 	if (local->group_type == group_overloaded) {
10937 		/*
10938 		 * If the local group is more loaded than the selected
10939 		 * busiest group don't try to pull any tasks.
10940 		 */
10941 		if (local->avg_load >= busiest->avg_load)
10942 			goto out_balanced;
10943 
10944 		/* XXX broken for overlapping NUMA groups */
10945 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10946 				sds.total_capacity;
10947 
10948 		/*
10949 		 * Don't pull any tasks if this group is already above the
10950 		 * domain average load.
10951 		 */
10952 		if (local->avg_load >= sds.avg_load)
10953 			goto out_balanced;
10954 
10955 		/*
10956 		 * If the busiest group is more loaded, use imbalance_pct to be
10957 		 * conservative.
10958 		 */
10959 		if (100 * busiest->avg_load <=
10960 				env->sd->imbalance_pct * local->avg_load)
10961 			goto out_balanced;
10962 	}
10963 
10964 	/*
10965 	 * Try to move all excess tasks to a sibling domain of the busiest
10966 	 * group's child domain.
10967 	 */
10968 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10969 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10970 		goto force_balance;
10971 
10972 	if (busiest->group_type != group_overloaded) {
10973 		if (!env->idle) {
10974 			/*
10975 			 * If the busiest group is not overloaded (and as a
10976 			 * result the local one too) but this CPU is already
10977 			 * busy, let another idle CPU try to pull task.
10978 			 */
10979 			goto out_balanced;
10980 		}
10981 
10982 		if (busiest->group_type == group_smt_balance &&
10983 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10984 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10985 			goto force_balance;
10986 		}
10987 
10988 		if (busiest->group_weight > 1 &&
10989 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10990 			/*
10991 			 * If the busiest group is not overloaded
10992 			 * and there is no imbalance between this and busiest
10993 			 * group wrt idle CPUs, it is balanced. The imbalance
10994 			 * becomes significant if the diff is greater than 1
10995 			 * otherwise we might end up to just move the imbalance
10996 			 * on another group. Of course this applies only if
10997 			 * there is more than 1 CPU per group.
10998 			 */
10999 			goto out_balanced;
11000 		}
11001 
11002 		if (busiest->sum_h_nr_running == 1) {
11003 			/*
11004 			 * busiest doesn't have any tasks waiting to run
11005 			 */
11006 			goto out_balanced;
11007 		}
11008 	}
11009 
11010 force_balance:
11011 	/* Looks like there is an imbalance. Compute it */
11012 	calculate_imbalance(env, &sds);
11013 	return env->imbalance ? sds.busiest : NULL;
11014 
11015 out_balanced:
11016 	env->imbalance = 0;
11017 	return NULL;
11018 }
11019 
11020 /*
11021  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11022  */
11023 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11024 				     struct sched_group *group)
11025 {
11026 	struct rq *busiest = NULL, *rq;
11027 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11028 	unsigned int busiest_nr = 0;
11029 	int i;
11030 
11031 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11032 		unsigned long capacity, load, util;
11033 		unsigned int nr_running;
11034 		enum fbq_type rt;
11035 
11036 		rq = cpu_rq(i);
11037 		rt = fbq_classify_rq(rq);
11038 
11039 		/*
11040 		 * We classify groups/runqueues into three groups:
11041 		 *  - regular: there are !numa tasks
11042 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11043 		 *  - all:     there is no distinction
11044 		 *
11045 		 * In order to avoid migrating ideally placed numa tasks,
11046 		 * ignore those when there's better options.
11047 		 *
11048 		 * If we ignore the actual busiest queue to migrate another
11049 		 * task, the next balance pass can still reduce the busiest
11050 		 * queue by moving tasks around inside the node.
11051 		 *
11052 		 * If we cannot move enough load due to this classification
11053 		 * the next pass will adjust the group classification and
11054 		 * allow migration of more tasks.
11055 		 *
11056 		 * Both cases only affect the total convergence complexity.
11057 		 */
11058 		if (rt > env->fbq_type)
11059 			continue;
11060 
11061 		nr_running = rq->cfs.h_nr_running;
11062 		if (!nr_running)
11063 			continue;
11064 
11065 		capacity = capacity_of(i);
11066 
11067 		/*
11068 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11069 		 * eventually lead to active_balancing high->low capacity.
11070 		 * Higher per-CPU capacity is considered better than balancing
11071 		 * average load.
11072 		 */
11073 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11074 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11075 		    nr_running == 1)
11076 			continue;
11077 
11078 		/*
11079 		 * Make sure we only pull tasks from a CPU of lower priority
11080 		 * when balancing between SMT siblings.
11081 		 *
11082 		 * If balancing between cores, let lower priority CPUs help
11083 		 * SMT cores with more than one busy sibling.
11084 		 */
11085 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11086 			continue;
11087 
11088 		switch (env->migration_type) {
11089 		case migrate_load:
11090 			/*
11091 			 * When comparing with load imbalance, use cpu_load()
11092 			 * which is not scaled with the CPU capacity.
11093 			 */
11094 			load = cpu_load(rq);
11095 
11096 			if (nr_running == 1 && load > env->imbalance &&
11097 			    !check_cpu_capacity(rq, env->sd))
11098 				break;
11099 
11100 			/*
11101 			 * For the load comparisons with the other CPUs,
11102 			 * consider the cpu_load() scaled with the CPU
11103 			 * capacity, so that the load can be moved away
11104 			 * from the CPU that is potentially running at a
11105 			 * lower capacity.
11106 			 *
11107 			 * Thus we're looking for max(load_i / capacity_i),
11108 			 * crosswise multiplication to rid ourselves of the
11109 			 * division works out to:
11110 			 * load_i * capacity_j > load_j * capacity_i;
11111 			 * where j is our previous maximum.
11112 			 */
11113 			if (load * busiest_capacity > busiest_load * capacity) {
11114 				busiest_load = load;
11115 				busiest_capacity = capacity;
11116 				busiest = rq;
11117 			}
11118 			break;
11119 
11120 		case migrate_util:
11121 			util = cpu_util_cfs_boost(i);
11122 
11123 			/*
11124 			 * Don't try to pull utilization from a CPU with one
11125 			 * running task. Whatever its utilization, we will fail
11126 			 * detach the task.
11127 			 */
11128 			if (nr_running <= 1)
11129 				continue;
11130 
11131 			if (busiest_util < util) {
11132 				busiest_util = util;
11133 				busiest = rq;
11134 			}
11135 			break;
11136 
11137 		case migrate_task:
11138 			if (busiest_nr < nr_running) {
11139 				busiest_nr = nr_running;
11140 				busiest = rq;
11141 			}
11142 			break;
11143 
11144 		case migrate_misfit:
11145 			/*
11146 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11147 			 * simply seek the "biggest" misfit task.
11148 			 */
11149 			if (rq->misfit_task_load > busiest_load) {
11150 				busiest_load = rq->misfit_task_load;
11151 				busiest = rq;
11152 			}
11153 
11154 			break;
11155 
11156 		}
11157 	}
11158 
11159 	return busiest;
11160 }
11161 
11162 /*
11163  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11164  * so long as it is large enough.
11165  */
11166 #define MAX_PINNED_INTERVAL	512
11167 
11168 static inline bool
11169 asym_active_balance(struct lb_env *env)
11170 {
11171 	/*
11172 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11173 	 * priority CPUs in order to pack all tasks in the highest priority
11174 	 * CPUs. When done between cores, do it only if the whole core if the
11175 	 * whole core is idle.
11176 	 *
11177 	 * If @env::src_cpu is an SMT core with busy siblings, let
11178 	 * the lower priority @env::dst_cpu help it. Do not follow
11179 	 * CPU priority.
11180 	 */
11181 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11182 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11183 		!sched_use_asym_prio(env->sd, env->src_cpu));
11184 }
11185 
11186 static inline bool
11187 imbalanced_active_balance(struct lb_env *env)
11188 {
11189 	struct sched_domain *sd = env->sd;
11190 
11191 	/*
11192 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11193 	 * distribution of the load on the system but also the even distribution of the
11194 	 * threads on a system with spare capacity
11195 	 */
11196 	if ((env->migration_type == migrate_task) &&
11197 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11198 		return 1;
11199 
11200 	return 0;
11201 }
11202 
11203 static int need_active_balance(struct lb_env *env)
11204 {
11205 	struct sched_domain *sd = env->sd;
11206 
11207 	if (asym_active_balance(env))
11208 		return 1;
11209 
11210 	if (imbalanced_active_balance(env))
11211 		return 1;
11212 
11213 	/*
11214 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11215 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11216 	 * because of other sched_class or IRQs if more capacity stays
11217 	 * available on dst_cpu.
11218 	 */
11219 	if (env->idle &&
11220 	    (env->src_rq->cfs.h_nr_running == 1)) {
11221 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11222 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11223 			return 1;
11224 	}
11225 
11226 	if (env->migration_type == migrate_misfit)
11227 		return 1;
11228 
11229 	return 0;
11230 }
11231 
11232 static int active_load_balance_cpu_stop(void *data);
11233 
11234 static int should_we_balance(struct lb_env *env)
11235 {
11236 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11237 	struct sched_group *sg = env->sd->groups;
11238 	int cpu, idle_smt = -1;
11239 
11240 	/*
11241 	 * Ensure the balancing environment is consistent; can happen
11242 	 * when the softirq triggers 'during' hotplug.
11243 	 */
11244 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11245 		return 0;
11246 
11247 	/*
11248 	 * In the newly idle case, we will allow all the CPUs
11249 	 * to do the newly idle load balance.
11250 	 *
11251 	 * However, we bail out if we already have tasks or a wakeup pending,
11252 	 * to optimize wakeup latency.
11253 	 */
11254 	if (env->idle == CPU_NEWLY_IDLE) {
11255 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11256 			return 0;
11257 		return 1;
11258 	}
11259 
11260 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11261 	/* Try to find first idle CPU */
11262 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11263 		if (!idle_cpu(cpu))
11264 			continue;
11265 
11266 		/*
11267 		 * Don't balance to idle SMT in busy core right away when
11268 		 * balancing cores, but remember the first idle SMT CPU for
11269 		 * later consideration.  Find CPU on an idle core first.
11270 		 */
11271 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11272 			if (idle_smt == -1)
11273 				idle_smt = cpu;
11274 			/*
11275 			 * If the core is not idle, and first SMT sibling which is
11276 			 * idle has been found, then its not needed to check other
11277 			 * SMT siblings for idleness:
11278 			 */
11279 #ifdef CONFIG_SCHED_SMT
11280 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11281 #endif
11282 			continue;
11283 		}
11284 
11285 		/*
11286 		 * Are we the first idle core in a non-SMT domain or higher,
11287 		 * or the first idle CPU in a SMT domain?
11288 		 */
11289 		return cpu == env->dst_cpu;
11290 	}
11291 
11292 	/* Are we the first idle CPU with busy siblings? */
11293 	if (idle_smt != -1)
11294 		return idle_smt == env->dst_cpu;
11295 
11296 	/* Are we the first CPU of this group ? */
11297 	return group_balance_cpu(sg) == env->dst_cpu;
11298 }
11299 
11300 /*
11301  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11302  * tasks if there is an imbalance.
11303  */
11304 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11305 			struct sched_domain *sd, enum cpu_idle_type idle,
11306 			int *continue_balancing)
11307 {
11308 	int ld_moved, cur_ld_moved, active_balance = 0;
11309 	struct sched_domain *sd_parent = sd->parent;
11310 	struct sched_group *group;
11311 	struct rq *busiest;
11312 	struct rq_flags rf;
11313 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11314 	struct lb_env env = {
11315 		.sd		= sd,
11316 		.dst_cpu	= this_cpu,
11317 		.dst_rq		= this_rq,
11318 		.dst_grpmask    = group_balance_mask(sd->groups),
11319 		.idle		= idle,
11320 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11321 		.cpus		= cpus,
11322 		.fbq_type	= all,
11323 		.tasks		= LIST_HEAD_INIT(env.tasks),
11324 	};
11325 
11326 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11327 
11328 	schedstat_inc(sd->lb_count[idle]);
11329 
11330 redo:
11331 	if (!should_we_balance(&env)) {
11332 		*continue_balancing = 0;
11333 		goto out_balanced;
11334 	}
11335 
11336 	group = sched_balance_find_src_group(&env);
11337 	if (!group) {
11338 		schedstat_inc(sd->lb_nobusyg[idle]);
11339 		goto out_balanced;
11340 	}
11341 
11342 	busiest = sched_balance_find_src_rq(&env, group);
11343 	if (!busiest) {
11344 		schedstat_inc(sd->lb_nobusyq[idle]);
11345 		goto out_balanced;
11346 	}
11347 
11348 	WARN_ON_ONCE(busiest == env.dst_rq);
11349 
11350 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11351 
11352 	env.src_cpu = busiest->cpu;
11353 	env.src_rq = busiest;
11354 
11355 	ld_moved = 0;
11356 	/* Clear this flag as soon as we find a pullable task */
11357 	env.flags |= LBF_ALL_PINNED;
11358 	if (busiest->nr_running > 1) {
11359 		/*
11360 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11361 		 * an imbalance but busiest->nr_running <= 1, the group is
11362 		 * still unbalanced. ld_moved simply stays zero, so it is
11363 		 * correctly treated as an imbalance.
11364 		 */
11365 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11366 
11367 more_balance:
11368 		rq_lock_irqsave(busiest, &rf);
11369 		update_rq_clock(busiest);
11370 
11371 		/*
11372 		 * cur_ld_moved - load moved in current iteration
11373 		 * ld_moved     - cumulative load moved across iterations
11374 		 */
11375 		cur_ld_moved = detach_tasks(&env);
11376 
11377 		/*
11378 		 * We've detached some tasks from busiest_rq. Every
11379 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11380 		 * unlock busiest->lock, and we are able to be sure
11381 		 * that nobody can manipulate the tasks in parallel.
11382 		 * See task_rq_lock() family for the details.
11383 		 */
11384 
11385 		rq_unlock(busiest, &rf);
11386 
11387 		if (cur_ld_moved) {
11388 			attach_tasks(&env);
11389 			ld_moved += cur_ld_moved;
11390 		}
11391 
11392 		local_irq_restore(rf.flags);
11393 
11394 		if (env.flags & LBF_NEED_BREAK) {
11395 			env.flags &= ~LBF_NEED_BREAK;
11396 			/* Stop if we tried all running tasks */
11397 			if (env.loop < busiest->nr_running)
11398 				goto more_balance;
11399 		}
11400 
11401 		/*
11402 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11403 		 * us and move them to an alternate dst_cpu in our sched_group
11404 		 * where they can run. The upper limit on how many times we
11405 		 * iterate on same src_cpu is dependent on number of CPUs in our
11406 		 * sched_group.
11407 		 *
11408 		 * This changes load balance semantics a bit on who can move
11409 		 * load to a given_cpu. In addition to the given_cpu itself
11410 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11411 		 * nohz-idle), we now have balance_cpu in a position to move
11412 		 * load to given_cpu. In rare situations, this may cause
11413 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11414 		 * _independently_ and at _same_ time to move some load to
11415 		 * given_cpu) causing excess load to be moved to given_cpu.
11416 		 * This however should not happen so much in practice and
11417 		 * moreover subsequent load balance cycles should correct the
11418 		 * excess load moved.
11419 		 */
11420 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11421 
11422 			/* Prevent to re-select dst_cpu via env's CPUs */
11423 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11424 
11425 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11426 			env.dst_cpu	 = env.new_dst_cpu;
11427 			env.flags	&= ~LBF_DST_PINNED;
11428 			env.loop	 = 0;
11429 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11430 
11431 			/*
11432 			 * Go back to "more_balance" rather than "redo" since we
11433 			 * need to continue with same src_cpu.
11434 			 */
11435 			goto more_balance;
11436 		}
11437 
11438 		/*
11439 		 * We failed to reach balance because of affinity.
11440 		 */
11441 		if (sd_parent) {
11442 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11443 
11444 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11445 				*group_imbalance = 1;
11446 		}
11447 
11448 		/* All tasks on this runqueue were pinned by CPU affinity */
11449 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11450 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11451 			/*
11452 			 * Attempting to continue load balancing at the current
11453 			 * sched_domain level only makes sense if there are
11454 			 * active CPUs remaining as possible busiest CPUs to
11455 			 * pull load from which are not contained within the
11456 			 * destination group that is receiving any migrated
11457 			 * load.
11458 			 */
11459 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11460 				env.loop = 0;
11461 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11462 				goto redo;
11463 			}
11464 			goto out_all_pinned;
11465 		}
11466 	}
11467 
11468 	if (!ld_moved) {
11469 		schedstat_inc(sd->lb_failed[idle]);
11470 		/*
11471 		 * Increment the failure counter only on periodic balance.
11472 		 * We do not want newidle balance, which can be very
11473 		 * frequent, pollute the failure counter causing
11474 		 * excessive cache_hot migrations and active balances.
11475 		 *
11476 		 * Similarly for migration_misfit which is not related to
11477 		 * load/util migration, don't pollute nr_balance_failed.
11478 		 */
11479 		if (idle != CPU_NEWLY_IDLE &&
11480 		    env.migration_type != migrate_misfit)
11481 			sd->nr_balance_failed++;
11482 
11483 		if (need_active_balance(&env)) {
11484 			unsigned long flags;
11485 
11486 			raw_spin_rq_lock_irqsave(busiest, flags);
11487 
11488 			/*
11489 			 * Don't kick the active_load_balance_cpu_stop,
11490 			 * if the curr task on busiest CPU can't be
11491 			 * moved to this_cpu:
11492 			 */
11493 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11494 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11495 				goto out_one_pinned;
11496 			}
11497 
11498 			/* Record that we found at least one task that could run on this_cpu */
11499 			env.flags &= ~LBF_ALL_PINNED;
11500 
11501 			/*
11502 			 * ->active_balance synchronizes accesses to
11503 			 * ->active_balance_work.  Once set, it's cleared
11504 			 * only after active load balance is finished.
11505 			 */
11506 			if (!busiest->active_balance) {
11507 				busiest->active_balance = 1;
11508 				busiest->push_cpu = this_cpu;
11509 				active_balance = 1;
11510 			}
11511 
11512 			preempt_disable();
11513 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11514 			if (active_balance) {
11515 				stop_one_cpu_nowait(cpu_of(busiest),
11516 					active_load_balance_cpu_stop, busiest,
11517 					&busiest->active_balance_work);
11518 			}
11519 			preempt_enable();
11520 		}
11521 	} else {
11522 		sd->nr_balance_failed = 0;
11523 	}
11524 
11525 	if (likely(!active_balance) || need_active_balance(&env)) {
11526 		/* We were unbalanced, so reset the balancing interval */
11527 		sd->balance_interval = sd->min_interval;
11528 	}
11529 
11530 	goto out;
11531 
11532 out_balanced:
11533 	/*
11534 	 * We reach balance although we may have faced some affinity
11535 	 * constraints. Clear the imbalance flag only if other tasks got
11536 	 * a chance to move and fix the imbalance.
11537 	 */
11538 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11539 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11540 
11541 		if (*group_imbalance)
11542 			*group_imbalance = 0;
11543 	}
11544 
11545 out_all_pinned:
11546 	/*
11547 	 * We reach balance because all tasks are pinned at this level so
11548 	 * we can't migrate them. Let the imbalance flag set so parent level
11549 	 * can try to migrate them.
11550 	 */
11551 	schedstat_inc(sd->lb_balanced[idle]);
11552 
11553 	sd->nr_balance_failed = 0;
11554 
11555 out_one_pinned:
11556 	ld_moved = 0;
11557 
11558 	/*
11559 	 * sched_balance_newidle() disregards balance intervals, so we could
11560 	 * repeatedly reach this code, which would lead to balance_interval
11561 	 * skyrocketing in a short amount of time. Skip the balance_interval
11562 	 * increase logic to avoid that.
11563 	 *
11564 	 * Similarly misfit migration which is not necessarily an indication of
11565 	 * the system being busy and requires lb to backoff to let it settle
11566 	 * down.
11567 	 */
11568 	if (env.idle == CPU_NEWLY_IDLE ||
11569 	    env.migration_type == migrate_misfit)
11570 		goto out;
11571 
11572 	/* tune up the balancing interval */
11573 	if ((env.flags & LBF_ALL_PINNED &&
11574 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11575 	    sd->balance_interval < sd->max_interval)
11576 		sd->balance_interval *= 2;
11577 out:
11578 	return ld_moved;
11579 }
11580 
11581 static inline unsigned long
11582 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11583 {
11584 	unsigned long interval = sd->balance_interval;
11585 
11586 	if (cpu_busy)
11587 		interval *= sd->busy_factor;
11588 
11589 	/* scale ms to jiffies */
11590 	interval = msecs_to_jiffies(interval);
11591 
11592 	/*
11593 	 * Reduce likelihood of busy balancing at higher domains racing with
11594 	 * balancing at lower domains by preventing their balancing periods
11595 	 * from being multiples of each other.
11596 	 */
11597 	if (cpu_busy)
11598 		interval -= 1;
11599 
11600 	interval = clamp(interval, 1UL, max_load_balance_interval);
11601 
11602 	return interval;
11603 }
11604 
11605 static inline void
11606 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11607 {
11608 	unsigned long interval, next;
11609 
11610 	/* used by idle balance, so cpu_busy = 0 */
11611 	interval = get_sd_balance_interval(sd, 0);
11612 	next = sd->last_balance + interval;
11613 
11614 	if (time_after(*next_balance, next))
11615 		*next_balance = next;
11616 }
11617 
11618 /*
11619  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11620  * running tasks off the busiest CPU onto idle CPUs. It requires at
11621  * least 1 task to be running on each physical CPU where possible, and
11622  * avoids physical / logical imbalances.
11623  */
11624 static int active_load_balance_cpu_stop(void *data)
11625 {
11626 	struct rq *busiest_rq = data;
11627 	int busiest_cpu = cpu_of(busiest_rq);
11628 	int target_cpu = busiest_rq->push_cpu;
11629 	struct rq *target_rq = cpu_rq(target_cpu);
11630 	struct sched_domain *sd;
11631 	struct task_struct *p = NULL;
11632 	struct rq_flags rf;
11633 
11634 	rq_lock_irq(busiest_rq, &rf);
11635 	/*
11636 	 * Between queueing the stop-work and running it is a hole in which
11637 	 * CPUs can become inactive. We should not move tasks from or to
11638 	 * inactive CPUs.
11639 	 */
11640 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11641 		goto out_unlock;
11642 
11643 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11644 	if (unlikely(busiest_cpu != smp_processor_id() ||
11645 		     !busiest_rq->active_balance))
11646 		goto out_unlock;
11647 
11648 	/* Is there any task to move? */
11649 	if (busiest_rq->nr_running <= 1)
11650 		goto out_unlock;
11651 
11652 	/*
11653 	 * This condition is "impossible", if it occurs
11654 	 * we need to fix it. Originally reported by
11655 	 * Bjorn Helgaas on a 128-CPU setup.
11656 	 */
11657 	WARN_ON_ONCE(busiest_rq == target_rq);
11658 
11659 	/* Search for an sd spanning us and the target CPU. */
11660 	rcu_read_lock();
11661 	for_each_domain(target_cpu, sd) {
11662 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11663 			break;
11664 	}
11665 
11666 	if (likely(sd)) {
11667 		struct lb_env env = {
11668 			.sd		= sd,
11669 			.dst_cpu	= target_cpu,
11670 			.dst_rq		= target_rq,
11671 			.src_cpu	= busiest_rq->cpu,
11672 			.src_rq		= busiest_rq,
11673 			.idle		= CPU_IDLE,
11674 			.flags		= LBF_ACTIVE_LB,
11675 		};
11676 
11677 		schedstat_inc(sd->alb_count);
11678 		update_rq_clock(busiest_rq);
11679 
11680 		p = detach_one_task(&env);
11681 		if (p) {
11682 			schedstat_inc(sd->alb_pushed);
11683 			/* Active balancing done, reset the failure counter. */
11684 			sd->nr_balance_failed = 0;
11685 		} else {
11686 			schedstat_inc(sd->alb_failed);
11687 		}
11688 	}
11689 	rcu_read_unlock();
11690 out_unlock:
11691 	busiest_rq->active_balance = 0;
11692 	rq_unlock(busiest_rq, &rf);
11693 
11694 	if (p)
11695 		attach_one_task(target_rq, p);
11696 
11697 	local_irq_enable();
11698 
11699 	return 0;
11700 }
11701 
11702 /*
11703  * This flag serializes load-balancing passes over large domains
11704  * (above the NODE topology level) - only one load-balancing instance
11705  * may run at a time, to reduce overhead on very large systems with
11706  * lots of CPUs and large NUMA distances.
11707  *
11708  * - Note that load-balancing passes triggered while another one
11709  *   is executing are skipped and not re-tried.
11710  *
11711  * - Also note that this does not serialize rebalance_domains()
11712  *   execution, as non-SD_SERIALIZE domains will still be
11713  *   load-balanced in parallel.
11714  */
11715 static atomic_t sched_balance_running = ATOMIC_INIT(0);
11716 
11717 /*
11718  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
11719  * This trades load-balance latency on larger machines for less cross talk.
11720  */
11721 void update_max_interval(void)
11722 {
11723 	max_load_balance_interval = HZ*num_online_cpus()/10;
11724 }
11725 
11726 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11727 {
11728 	if (cost > sd->max_newidle_lb_cost) {
11729 		/*
11730 		 * Track max cost of a domain to make sure to not delay the
11731 		 * next wakeup on the CPU.
11732 		 */
11733 		sd->max_newidle_lb_cost = cost;
11734 		sd->last_decay_max_lb_cost = jiffies;
11735 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11736 		/*
11737 		 * Decay the newidle max times by ~1% per second to ensure that
11738 		 * it is not outdated and the current max cost is actually
11739 		 * shorter.
11740 		 */
11741 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11742 		sd->last_decay_max_lb_cost = jiffies;
11743 
11744 		return true;
11745 	}
11746 
11747 	return false;
11748 }
11749 
11750 /*
11751  * It checks each scheduling domain to see if it is due to be balanced,
11752  * and initiates a balancing operation if so.
11753  *
11754  * Balancing parameters are set up in init_sched_domains.
11755  */
11756 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
11757 {
11758 	int continue_balancing = 1;
11759 	int cpu = rq->cpu;
11760 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11761 	unsigned long interval;
11762 	struct sched_domain *sd;
11763 	/* Earliest time when we have to do rebalance again */
11764 	unsigned long next_balance = jiffies + 60*HZ;
11765 	int update_next_balance = 0;
11766 	int need_serialize, need_decay = 0;
11767 	u64 max_cost = 0;
11768 
11769 	rcu_read_lock();
11770 	for_each_domain(cpu, sd) {
11771 		/*
11772 		 * Decay the newidle max times here because this is a regular
11773 		 * visit to all the domains.
11774 		 */
11775 		need_decay = update_newidle_cost(sd, 0);
11776 		max_cost += sd->max_newidle_lb_cost;
11777 
11778 		/*
11779 		 * Stop the load balance at this level. There is another
11780 		 * CPU in our sched group which is doing load balancing more
11781 		 * actively.
11782 		 */
11783 		if (!continue_balancing) {
11784 			if (need_decay)
11785 				continue;
11786 			break;
11787 		}
11788 
11789 		interval = get_sd_balance_interval(sd, busy);
11790 
11791 		need_serialize = sd->flags & SD_SERIALIZE;
11792 		if (need_serialize) {
11793 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
11794 				goto out;
11795 		}
11796 
11797 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11798 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
11799 				/*
11800 				 * The LBF_DST_PINNED logic could have changed
11801 				 * env->dst_cpu, so we can't know our idle
11802 				 * state even if we migrated tasks. Update it.
11803 				 */
11804 				idle = idle_cpu(cpu);
11805 				busy = !idle && !sched_idle_cpu(cpu);
11806 			}
11807 			sd->last_balance = jiffies;
11808 			interval = get_sd_balance_interval(sd, busy);
11809 		}
11810 		if (need_serialize)
11811 			atomic_set_release(&sched_balance_running, 0);
11812 out:
11813 		if (time_after(next_balance, sd->last_balance + interval)) {
11814 			next_balance = sd->last_balance + interval;
11815 			update_next_balance = 1;
11816 		}
11817 	}
11818 	if (need_decay) {
11819 		/*
11820 		 * Ensure the rq-wide value also decays but keep it at a
11821 		 * reasonable floor to avoid funnies with rq->avg_idle.
11822 		 */
11823 		rq->max_idle_balance_cost =
11824 			max((u64)sysctl_sched_migration_cost, max_cost);
11825 	}
11826 	rcu_read_unlock();
11827 
11828 	/*
11829 	 * next_balance will be updated only when there is a need.
11830 	 * When the cpu is attached to null domain for ex, it will not be
11831 	 * updated.
11832 	 */
11833 	if (likely(update_next_balance))
11834 		rq->next_balance = next_balance;
11835 
11836 }
11837 
11838 static inline int on_null_domain(struct rq *rq)
11839 {
11840 	return unlikely(!rcu_dereference_sched(rq->sd));
11841 }
11842 
11843 #ifdef CONFIG_NO_HZ_COMMON
11844 /*
11845  * NOHZ idle load balancing (ILB) details:
11846  *
11847  * - When one of the busy CPUs notices that there may be an idle rebalancing
11848  *   needed, they will kick the idle load balancer, which then does idle
11849  *   load balancing for all the idle CPUs.
11850  *
11851  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11852  *   anywhere yet.
11853  */
11854 static inline int find_new_ilb(void)
11855 {
11856 	const struct cpumask *hk_mask;
11857 	int ilb_cpu;
11858 
11859 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11860 
11861 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11862 
11863 		if (ilb_cpu == smp_processor_id())
11864 			continue;
11865 
11866 		if (idle_cpu(ilb_cpu))
11867 			return ilb_cpu;
11868 	}
11869 
11870 	return -1;
11871 }
11872 
11873 /*
11874  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11875  * SMP function call (IPI).
11876  *
11877  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11878  */
11879 static void kick_ilb(unsigned int flags)
11880 {
11881 	int ilb_cpu;
11882 
11883 	/*
11884 	 * Increase nohz.next_balance only when if full ilb is triggered but
11885 	 * not if we only update stats.
11886 	 */
11887 	if (flags & NOHZ_BALANCE_KICK)
11888 		nohz.next_balance = jiffies+1;
11889 
11890 	ilb_cpu = find_new_ilb();
11891 	if (ilb_cpu < 0)
11892 		return;
11893 
11894 	/*
11895 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11896 	 * the first flag owns it; cleared by nohz_csd_func().
11897 	 */
11898 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11899 	if (flags & NOHZ_KICK_MASK)
11900 		return;
11901 
11902 	/*
11903 	 * This way we generate an IPI on the target CPU which
11904 	 * is idle, and the softirq performing NOHZ idle load balancing
11905 	 * will be run before returning from the IPI.
11906 	 */
11907 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11908 }
11909 
11910 /*
11911  * Current decision point for kicking the idle load balancer in the presence
11912  * of idle CPUs in the system.
11913  */
11914 static void nohz_balancer_kick(struct rq *rq)
11915 {
11916 	unsigned long now = jiffies;
11917 	struct sched_domain_shared *sds;
11918 	struct sched_domain *sd;
11919 	int nr_busy, i, cpu = rq->cpu;
11920 	unsigned int flags = 0;
11921 
11922 	if (unlikely(rq->idle_balance))
11923 		return;
11924 
11925 	/*
11926 	 * We may be recently in ticked or tickless idle mode. At the first
11927 	 * busy tick after returning from idle, we will update the busy stats.
11928 	 */
11929 	nohz_balance_exit_idle(rq);
11930 
11931 	/*
11932 	 * None are in tickless mode and hence no need for NOHZ idle load
11933 	 * balancing:
11934 	 */
11935 	if (likely(!atomic_read(&nohz.nr_cpus)))
11936 		return;
11937 
11938 	if (READ_ONCE(nohz.has_blocked) &&
11939 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11940 		flags = NOHZ_STATS_KICK;
11941 
11942 	if (time_before(now, nohz.next_balance))
11943 		goto out;
11944 
11945 	if (rq->nr_running >= 2) {
11946 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11947 		goto out;
11948 	}
11949 
11950 	rcu_read_lock();
11951 
11952 	sd = rcu_dereference(rq->sd);
11953 	if (sd) {
11954 		/*
11955 		 * If there's a runnable CFS task and the current CPU has reduced
11956 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11957 		 */
11958 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11959 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11960 			goto unlock;
11961 		}
11962 	}
11963 
11964 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11965 	if (sd) {
11966 		/*
11967 		 * When ASYM_PACKING; see if there's a more preferred CPU
11968 		 * currently idle; in which case, kick the ILB to move tasks
11969 		 * around.
11970 		 *
11971 		 * When balancing between cores, all the SMT siblings of the
11972 		 * preferred CPU must be idle.
11973 		 */
11974 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11975 			if (sched_asym(sd, i, cpu)) {
11976 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11977 				goto unlock;
11978 			}
11979 		}
11980 	}
11981 
11982 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11983 	if (sd) {
11984 		/*
11985 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11986 		 * to run the misfit task on.
11987 		 */
11988 		if (check_misfit_status(rq)) {
11989 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11990 			goto unlock;
11991 		}
11992 
11993 		/*
11994 		 * For asymmetric systems, we do not want to nicely balance
11995 		 * cache use, instead we want to embrace asymmetry and only
11996 		 * ensure tasks have enough CPU capacity.
11997 		 *
11998 		 * Skip the LLC logic because it's not relevant in that case.
11999 		 */
12000 		goto unlock;
12001 	}
12002 
12003 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12004 	if (sds) {
12005 		/*
12006 		 * If there is an imbalance between LLC domains (IOW we could
12007 		 * increase the overall cache utilization), we need a less-loaded LLC
12008 		 * domain to pull some load from. Likewise, we may need to spread
12009 		 * load within the current LLC domain (e.g. packed SMT cores but
12010 		 * other CPUs are idle). We can't really know from here how busy
12011 		 * the others are - so just get a NOHZ balance going if it looks
12012 		 * like this LLC domain has tasks we could move.
12013 		 */
12014 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12015 		if (nr_busy > 1) {
12016 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12017 			goto unlock;
12018 		}
12019 	}
12020 unlock:
12021 	rcu_read_unlock();
12022 out:
12023 	if (READ_ONCE(nohz.needs_update))
12024 		flags |= NOHZ_NEXT_KICK;
12025 
12026 	if (flags)
12027 		kick_ilb(flags);
12028 }
12029 
12030 static void set_cpu_sd_state_busy(int cpu)
12031 {
12032 	struct sched_domain *sd;
12033 
12034 	rcu_read_lock();
12035 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12036 
12037 	if (!sd || !sd->nohz_idle)
12038 		goto unlock;
12039 	sd->nohz_idle = 0;
12040 
12041 	atomic_inc(&sd->shared->nr_busy_cpus);
12042 unlock:
12043 	rcu_read_unlock();
12044 }
12045 
12046 void nohz_balance_exit_idle(struct rq *rq)
12047 {
12048 	SCHED_WARN_ON(rq != this_rq());
12049 
12050 	if (likely(!rq->nohz_tick_stopped))
12051 		return;
12052 
12053 	rq->nohz_tick_stopped = 0;
12054 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12055 	atomic_dec(&nohz.nr_cpus);
12056 
12057 	set_cpu_sd_state_busy(rq->cpu);
12058 }
12059 
12060 static void set_cpu_sd_state_idle(int cpu)
12061 {
12062 	struct sched_domain *sd;
12063 
12064 	rcu_read_lock();
12065 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12066 
12067 	if (!sd || sd->nohz_idle)
12068 		goto unlock;
12069 	sd->nohz_idle = 1;
12070 
12071 	atomic_dec(&sd->shared->nr_busy_cpus);
12072 unlock:
12073 	rcu_read_unlock();
12074 }
12075 
12076 /*
12077  * This routine will record that the CPU is going idle with tick stopped.
12078  * This info will be used in performing idle load balancing in the future.
12079  */
12080 void nohz_balance_enter_idle(int cpu)
12081 {
12082 	struct rq *rq = cpu_rq(cpu);
12083 
12084 	SCHED_WARN_ON(cpu != smp_processor_id());
12085 
12086 	/* If this CPU is going down, then nothing needs to be done: */
12087 	if (!cpu_active(cpu))
12088 		return;
12089 
12090 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12091 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12092 		return;
12093 
12094 	/*
12095 	 * Can be set safely without rq->lock held
12096 	 * If a clear happens, it will have evaluated last additions because
12097 	 * rq->lock is held during the check and the clear
12098 	 */
12099 	rq->has_blocked_load = 1;
12100 
12101 	/*
12102 	 * The tick is still stopped but load could have been added in the
12103 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12104 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12105 	 * of nohz.has_blocked can only happen after checking the new load
12106 	 */
12107 	if (rq->nohz_tick_stopped)
12108 		goto out;
12109 
12110 	/* If we're a completely isolated CPU, we don't play: */
12111 	if (on_null_domain(rq))
12112 		return;
12113 
12114 	rq->nohz_tick_stopped = 1;
12115 
12116 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12117 	atomic_inc(&nohz.nr_cpus);
12118 
12119 	/*
12120 	 * Ensures that if nohz_idle_balance() fails to observe our
12121 	 * @idle_cpus_mask store, it must observe the @has_blocked
12122 	 * and @needs_update stores.
12123 	 */
12124 	smp_mb__after_atomic();
12125 
12126 	set_cpu_sd_state_idle(cpu);
12127 
12128 	WRITE_ONCE(nohz.needs_update, 1);
12129 out:
12130 	/*
12131 	 * Each time a cpu enter idle, we assume that it has blocked load and
12132 	 * enable the periodic update of the load of idle CPUs
12133 	 */
12134 	WRITE_ONCE(nohz.has_blocked, 1);
12135 }
12136 
12137 static bool update_nohz_stats(struct rq *rq)
12138 {
12139 	unsigned int cpu = rq->cpu;
12140 
12141 	if (!rq->has_blocked_load)
12142 		return false;
12143 
12144 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12145 		return false;
12146 
12147 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12148 		return true;
12149 
12150 	sched_balance_update_blocked_averages(cpu);
12151 
12152 	return rq->has_blocked_load;
12153 }
12154 
12155 /*
12156  * Internal function that runs load balance for all idle CPUs. The load balance
12157  * can be a simple update of blocked load or a complete load balance with
12158  * tasks movement depending of flags.
12159  */
12160 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12161 {
12162 	/* Earliest time when we have to do rebalance again */
12163 	unsigned long now = jiffies;
12164 	unsigned long next_balance = now + 60*HZ;
12165 	bool has_blocked_load = false;
12166 	int update_next_balance = 0;
12167 	int this_cpu = this_rq->cpu;
12168 	int balance_cpu;
12169 	struct rq *rq;
12170 
12171 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12172 
12173 	/*
12174 	 * We assume there will be no idle load after this update and clear
12175 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12176 	 * set the has_blocked flag and trigger another update of idle load.
12177 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12178 	 * setting the flag, we are sure to not clear the state and not
12179 	 * check the load of an idle cpu.
12180 	 *
12181 	 * Same applies to idle_cpus_mask vs needs_update.
12182 	 */
12183 	if (flags & NOHZ_STATS_KICK)
12184 		WRITE_ONCE(nohz.has_blocked, 0);
12185 	if (flags & NOHZ_NEXT_KICK)
12186 		WRITE_ONCE(nohz.needs_update, 0);
12187 
12188 	/*
12189 	 * Ensures that if we miss the CPU, we must see the has_blocked
12190 	 * store from nohz_balance_enter_idle().
12191 	 */
12192 	smp_mb();
12193 
12194 	/*
12195 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12196 	 * chance for other idle cpu to pull load.
12197 	 */
12198 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12199 		if (!idle_cpu(balance_cpu))
12200 			continue;
12201 
12202 		/*
12203 		 * If this CPU gets work to do, stop the load balancing
12204 		 * work being done for other CPUs. Next load
12205 		 * balancing owner will pick it up.
12206 		 */
12207 		if (need_resched()) {
12208 			if (flags & NOHZ_STATS_KICK)
12209 				has_blocked_load = true;
12210 			if (flags & NOHZ_NEXT_KICK)
12211 				WRITE_ONCE(nohz.needs_update, 1);
12212 			goto abort;
12213 		}
12214 
12215 		rq = cpu_rq(balance_cpu);
12216 
12217 		if (flags & NOHZ_STATS_KICK)
12218 			has_blocked_load |= update_nohz_stats(rq);
12219 
12220 		/*
12221 		 * If time for next balance is due,
12222 		 * do the balance.
12223 		 */
12224 		if (time_after_eq(jiffies, rq->next_balance)) {
12225 			struct rq_flags rf;
12226 
12227 			rq_lock_irqsave(rq, &rf);
12228 			update_rq_clock(rq);
12229 			rq_unlock_irqrestore(rq, &rf);
12230 
12231 			if (flags & NOHZ_BALANCE_KICK)
12232 				sched_balance_domains(rq, CPU_IDLE);
12233 		}
12234 
12235 		if (time_after(next_balance, rq->next_balance)) {
12236 			next_balance = rq->next_balance;
12237 			update_next_balance = 1;
12238 		}
12239 	}
12240 
12241 	/*
12242 	 * next_balance will be updated only when there is a need.
12243 	 * When the CPU is attached to null domain for ex, it will not be
12244 	 * updated.
12245 	 */
12246 	if (likely(update_next_balance))
12247 		nohz.next_balance = next_balance;
12248 
12249 	if (flags & NOHZ_STATS_KICK)
12250 		WRITE_ONCE(nohz.next_blocked,
12251 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12252 
12253 abort:
12254 	/* There is still blocked load, enable periodic update */
12255 	if (has_blocked_load)
12256 		WRITE_ONCE(nohz.has_blocked, 1);
12257 }
12258 
12259 /*
12260  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12261  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12262  */
12263 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12264 {
12265 	unsigned int flags = this_rq->nohz_idle_balance;
12266 
12267 	if (!flags)
12268 		return false;
12269 
12270 	this_rq->nohz_idle_balance = 0;
12271 
12272 	if (idle != CPU_IDLE)
12273 		return false;
12274 
12275 	_nohz_idle_balance(this_rq, flags);
12276 
12277 	return true;
12278 }
12279 
12280 /*
12281  * Check if we need to directly run the ILB for updating blocked load before
12282  * entering idle state. Here we run ILB directly without issuing IPIs.
12283  *
12284  * Note that when this function is called, the tick may not yet be stopped on
12285  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12286  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12287  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12288  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12289  * called from this function on (this) CPU that's not yet in the mask. That's
12290  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12291  * updating the blocked load of already idle CPUs without waking up one of
12292  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12293  * cpu about to enter idle, because it can take a long time.
12294  */
12295 void nohz_run_idle_balance(int cpu)
12296 {
12297 	unsigned int flags;
12298 
12299 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12300 
12301 	/*
12302 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12303 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12304 	 */
12305 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12306 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12307 }
12308 
12309 static void nohz_newidle_balance(struct rq *this_rq)
12310 {
12311 	int this_cpu = this_rq->cpu;
12312 
12313 	/*
12314 	 * This CPU doesn't want to be disturbed by scheduler
12315 	 * housekeeping
12316 	 */
12317 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12318 		return;
12319 
12320 	/* Will wake up very soon. No time for doing anything else*/
12321 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12322 		return;
12323 
12324 	/* Don't need to update blocked load of idle CPUs*/
12325 	if (!READ_ONCE(nohz.has_blocked) ||
12326 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12327 		return;
12328 
12329 	/*
12330 	 * Set the need to trigger ILB in order to update blocked load
12331 	 * before entering idle state.
12332 	 */
12333 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12334 }
12335 
12336 #else /* !CONFIG_NO_HZ_COMMON */
12337 static inline void nohz_balancer_kick(struct rq *rq) { }
12338 
12339 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12340 {
12341 	return false;
12342 }
12343 
12344 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12345 #endif /* CONFIG_NO_HZ_COMMON */
12346 
12347 /*
12348  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12349  * idle. Attempts to pull tasks from other CPUs.
12350  *
12351  * Returns:
12352  *   < 0 - we released the lock and there are !fair tasks present
12353  *     0 - failed, no new tasks
12354  *   > 0 - success, new (fair) tasks present
12355  */
12356 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12357 {
12358 	unsigned long next_balance = jiffies + HZ;
12359 	int this_cpu = this_rq->cpu;
12360 	int continue_balancing = 1;
12361 	u64 t0, t1, curr_cost = 0;
12362 	struct sched_domain *sd;
12363 	int pulled_task = 0;
12364 
12365 	update_misfit_status(NULL, this_rq);
12366 
12367 	/*
12368 	 * There is a task waiting to run. No need to search for one.
12369 	 * Return 0; the task will be enqueued when switching to idle.
12370 	 */
12371 	if (this_rq->ttwu_pending)
12372 		return 0;
12373 
12374 	/*
12375 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12376 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12377 	 * as idle time.
12378 	 */
12379 	this_rq->idle_stamp = rq_clock(this_rq);
12380 
12381 	/*
12382 	 * Do not pull tasks towards !active CPUs...
12383 	 */
12384 	if (!cpu_active(this_cpu))
12385 		return 0;
12386 
12387 	/*
12388 	 * This is OK, because current is on_cpu, which avoids it being picked
12389 	 * for load-balance and preemption/IRQs are still disabled avoiding
12390 	 * further scheduler activity on it and we're being very careful to
12391 	 * re-start the picking loop.
12392 	 */
12393 	rq_unpin_lock(this_rq, rf);
12394 
12395 	rcu_read_lock();
12396 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12397 
12398 	if (!get_rd_overloaded(this_rq->rd) ||
12399 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12400 
12401 		if (sd)
12402 			update_next_balance(sd, &next_balance);
12403 		rcu_read_unlock();
12404 
12405 		goto out;
12406 	}
12407 	rcu_read_unlock();
12408 
12409 	raw_spin_rq_unlock(this_rq);
12410 
12411 	t0 = sched_clock_cpu(this_cpu);
12412 	sched_balance_update_blocked_averages(this_cpu);
12413 
12414 	rcu_read_lock();
12415 	for_each_domain(this_cpu, sd) {
12416 		u64 domain_cost;
12417 
12418 		update_next_balance(sd, &next_balance);
12419 
12420 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12421 			break;
12422 
12423 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12424 
12425 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12426 						   sd, CPU_NEWLY_IDLE,
12427 						   &continue_balancing);
12428 
12429 			t1 = sched_clock_cpu(this_cpu);
12430 			domain_cost = t1 - t0;
12431 			update_newidle_cost(sd, domain_cost);
12432 
12433 			curr_cost += domain_cost;
12434 			t0 = t1;
12435 		}
12436 
12437 		/*
12438 		 * Stop searching for tasks to pull if there are
12439 		 * now runnable tasks on this rq.
12440 		 */
12441 		if (pulled_task || !continue_balancing)
12442 			break;
12443 	}
12444 	rcu_read_unlock();
12445 
12446 	raw_spin_rq_lock(this_rq);
12447 
12448 	if (curr_cost > this_rq->max_idle_balance_cost)
12449 		this_rq->max_idle_balance_cost = curr_cost;
12450 
12451 	/*
12452 	 * While browsing the domains, we released the rq lock, a task could
12453 	 * have been enqueued in the meantime. Since we're not going idle,
12454 	 * pretend we pulled a task.
12455 	 */
12456 	if (this_rq->cfs.h_nr_running && !pulled_task)
12457 		pulled_task = 1;
12458 
12459 	/* Is there a task of a high priority class? */
12460 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12461 		pulled_task = -1;
12462 
12463 out:
12464 	/* Move the next balance forward */
12465 	if (time_after(this_rq->next_balance, next_balance))
12466 		this_rq->next_balance = next_balance;
12467 
12468 	if (pulled_task)
12469 		this_rq->idle_stamp = 0;
12470 	else
12471 		nohz_newidle_balance(this_rq);
12472 
12473 	rq_repin_lock(this_rq, rf);
12474 
12475 	return pulled_task;
12476 }
12477 
12478 /*
12479  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12480  *
12481  * - directly from the local scheduler_tick() for periodic load balancing
12482  *
12483  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12484  *   through the SMP cross-call nohz_csd_func()
12485  */
12486 static __latent_entropy void sched_balance_softirq(struct softirq_action *h)
12487 {
12488 	struct rq *this_rq = this_rq();
12489 	enum cpu_idle_type idle = this_rq->idle_balance;
12490 	/*
12491 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12492 	 * balancing on behalf of the other idle CPUs whose ticks are
12493 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12494 	 * give the idle CPUs a chance to load balance. Else we may
12495 	 * load balance only within the local sched_domain hierarchy
12496 	 * and abort nohz_idle_balance altogether if we pull some load.
12497 	 */
12498 	if (nohz_idle_balance(this_rq, idle))
12499 		return;
12500 
12501 	/* normal load balance */
12502 	sched_balance_update_blocked_averages(this_rq->cpu);
12503 	sched_balance_domains(this_rq, idle);
12504 }
12505 
12506 /*
12507  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12508  */
12509 void sched_balance_trigger(struct rq *rq)
12510 {
12511 	/*
12512 	 * Don't need to rebalance while attached to NULL domain or
12513 	 * runqueue CPU is not active
12514 	 */
12515 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12516 		return;
12517 
12518 	if (time_after_eq(jiffies, rq->next_balance))
12519 		raise_softirq(SCHED_SOFTIRQ);
12520 
12521 	nohz_balancer_kick(rq);
12522 }
12523 
12524 static void rq_online_fair(struct rq *rq)
12525 {
12526 	update_sysctl();
12527 
12528 	update_runtime_enabled(rq);
12529 }
12530 
12531 static void rq_offline_fair(struct rq *rq)
12532 {
12533 	update_sysctl();
12534 
12535 	/* Ensure any throttled groups are reachable by pick_next_task */
12536 	unthrottle_offline_cfs_rqs(rq);
12537 
12538 	/* Ensure that we remove rq contribution to group share: */
12539 	clear_tg_offline_cfs_rqs(rq);
12540 }
12541 
12542 #endif /* CONFIG_SMP */
12543 
12544 #ifdef CONFIG_SCHED_CORE
12545 static inline bool
12546 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12547 {
12548 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12549 	u64 slice = se->slice;
12550 
12551 	return (rtime * min_nr_tasks > slice);
12552 }
12553 
12554 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12555 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12556 {
12557 	if (!sched_core_enabled(rq))
12558 		return;
12559 
12560 	/*
12561 	 * If runqueue has only one task which used up its slice and
12562 	 * if the sibling is forced idle, then trigger schedule to
12563 	 * give forced idle task a chance.
12564 	 *
12565 	 * sched_slice() considers only this active rq and it gets the
12566 	 * whole slice. But during force idle, we have siblings acting
12567 	 * like a single runqueue and hence we need to consider runnable
12568 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12569 	 * go through the forced idle rq, but that would be a perf hit.
12570 	 * We can assume that the forced idle CPU has at least
12571 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12572 	 * if we need to give up the CPU.
12573 	 */
12574 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12575 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12576 		resched_curr(rq);
12577 }
12578 
12579 /*
12580  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12581  */
12582 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12583 			 bool forceidle)
12584 {
12585 	for_each_sched_entity(se) {
12586 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12587 
12588 		if (forceidle) {
12589 			if (cfs_rq->forceidle_seq == fi_seq)
12590 				break;
12591 			cfs_rq->forceidle_seq = fi_seq;
12592 		}
12593 
12594 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12595 	}
12596 }
12597 
12598 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12599 {
12600 	struct sched_entity *se = &p->se;
12601 
12602 	if (p->sched_class != &fair_sched_class)
12603 		return;
12604 
12605 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12606 }
12607 
12608 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12609 			bool in_fi)
12610 {
12611 	struct rq *rq = task_rq(a);
12612 	const struct sched_entity *sea = &a->se;
12613 	const struct sched_entity *seb = &b->se;
12614 	struct cfs_rq *cfs_rqa;
12615 	struct cfs_rq *cfs_rqb;
12616 	s64 delta;
12617 
12618 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12619 
12620 #ifdef CONFIG_FAIR_GROUP_SCHED
12621 	/*
12622 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12623 	 * are immediate siblings.
12624 	 */
12625 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12626 		int sea_depth = sea->depth;
12627 		int seb_depth = seb->depth;
12628 
12629 		if (sea_depth >= seb_depth)
12630 			sea = parent_entity(sea);
12631 		if (sea_depth <= seb_depth)
12632 			seb = parent_entity(seb);
12633 	}
12634 
12635 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12636 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12637 
12638 	cfs_rqa = sea->cfs_rq;
12639 	cfs_rqb = seb->cfs_rq;
12640 #else
12641 	cfs_rqa = &task_rq(a)->cfs;
12642 	cfs_rqb = &task_rq(b)->cfs;
12643 #endif
12644 
12645 	/*
12646 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12647 	 * min_vruntime_fi, which would have been updated in prior calls
12648 	 * to se_fi_update().
12649 	 */
12650 	delta = (s64)(sea->vruntime - seb->vruntime) +
12651 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12652 
12653 	return delta > 0;
12654 }
12655 
12656 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12657 {
12658 	struct cfs_rq *cfs_rq;
12659 
12660 #ifdef CONFIG_FAIR_GROUP_SCHED
12661 	cfs_rq = task_group(p)->cfs_rq[cpu];
12662 #else
12663 	cfs_rq = &cpu_rq(cpu)->cfs;
12664 #endif
12665 	return throttled_hierarchy(cfs_rq);
12666 }
12667 #else
12668 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12669 #endif
12670 
12671 /*
12672  * scheduler tick hitting a task of our scheduling class.
12673  *
12674  * NOTE: This function can be called remotely by the tick offload that
12675  * goes along full dynticks. Therefore no local assumption can be made
12676  * and everything must be accessed through the @rq and @curr passed in
12677  * parameters.
12678  */
12679 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12680 {
12681 	struct cfs_rq *cfs_rq;
12682 	struct sched_entity *se = &curr->se;
12683 
12684 	for_each_sched_entity(se) {
12685 		cfs_rq = cfs_rq_of(se);
12686 		entity_tick(cfs_rq, se, queued);
12687 	}
12688 
12689 	if (static_branch_unlikely(&sched_numa_balancing))
12690 		task_tick_numa(rq, curr);
12691 
12692 	update_misfit_status(curr, rq);
12693 	check_update_overutilized_status(task_rq(curr));
12694 
12695 	task_tick_core(rq, curr);
12696 }
12697 
12698 /*
12699  * called on fork with the child task as argument from the parent's context
12700  *  - child not yet on the tasklist
12701  *  - preemption disabled
12702  */
12703 static void task_fork_fair(struct task_struct *p)
12704 {
12705 	struct sched_entity *se = &p->se, *curr;
12706 	struct cfs_rq *cfs_rq;
12707 	struct rq *rq = this_rq();
12708 	struct rq_flags rf;
12709 
12710 	rq_lock(rq, &rf);
12711 	update_rq_clock(rq);
12712 
12713 	set_task_max_allowed_capacity(p);
12714 
12715 	cfs_rq = task_cfs_rq(current);
12716 	curr = cfs_rq->curr;
12717 	if (curr)
12718 		update_curr(cfs_rq);
12719 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12720 	rq_unlock(rq, &rf);
12721 }
12722 
12723 /*
12724  * Priority of the task has changed. Check to see if we preempt
12725  * the current task.
12726  */
12727 static void
12728 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12729 {
12730 	if (!task_on_rq_queued(p))
12731 		return;
12732 
12733 	if (rq->cfs.nr_running == 1)
12734 		return;
12735 
12736 	/*
12737 	 * Reschedule if we are currently running on this runqueue and
12738 	 * our priority decreased, or if we are not currently running on
12739 	 * this runqueue and our priority is higher than the current's
12740 	 */
12741 	if (task_current(rq, p)) {
12742 		if (p->prio > oldprio)
12743 			resched_curr(rq);
12744 	} else
12745 		wakeup_preempt(rq, p, 0);
12746 }
12747 
12748 #ifdef CONFIG_FAIR_GROUP_SCHED
12749 /*
12750  * Propagate the changes of the sched_entity across the tg tree to make it
12751  * visible to the root
12752  */
12753 static void propagate_entity_cfs_rq(struct sched_entity *se)
12754 {
12755 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12756 
12757 	if (cfs_rq_throttled(cfs_rq))
12758 		return;
12759 
12760 	if (!throttled_hierarchy(cfs_rq))
12761 		list_add_leaf_cfs_rq(cfs_rq);
12762 
12763 	/* Start to propagate at parent */
12764 	se = se->parent;
12765 
12766 	for_each_sched_entity(se) {
12767 		cfs_rq = cfs_rq_of(se);
12768 
12769 		update_load_avg(cfs_rq, se, UPDATE_TG);
12770 
12771 		if (cfs_rq_throttled(cfs_rq))
12772 			break;
12773 
12774 		if (!throttled_hierarchy(cfs_rq))
12775 			list_add_leaf_cfs_rq(cfs_rq);
12776 	}
12777 }
12778 #else
12779 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12780 #endif
12781 
12782 static void detach_entity_cfs_rq(struct sched_entity *se)
12783 {
12784 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12785 
12786 #ifdef CONFIG_SMP
12787 	/*
12788 	 * In case the task sched_avg hasn't been attached:
12789 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12790 	 * - A task which has been woken up by try_to_wake_up() but is
12791 	 *   waiting for actually being woken up by sched_ttwu_pending().
12792 	 */
12793 	if (!se->avg.last_update_time)
12794 		return;
12795 #endif
12796 
12797 	/* Catch up with the cfs_rq and remove our load when we leave */
12798 	update_load_avg(cfs_rq, se, 0);
12799 	detach_entity_load_avg(cfs_rq, se);
12800 	update_tg_load_avg(cfs_rq);
12801 	propagate_entity_cfs_rq(se);
12802 }
12803 
12804 static void attach_entity_cfs_rq(struct sched_entity *se)
12805 {
12806 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12807 
12808 	/* Synchronize entity with its cfs_rq */
12809 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12810 	attach_entity_load_avg(cfs_rq, se);
12811 	update_tg_load_avg(cfs_rq);
12812 	propagate_entity_cfs_rq(se);
12813 }
12814 
12815 static void detach_task_cfs_rq(struct task_struct *p)
12816 {
12817 	struct sched_entity *se = &p->se;
12818 
12819 	detach_entity_cfs_rq(se);
12820 }
12821 
12822 static void attach_task_cfs_rq(struct task_struct *p)
12823 {
12824 	struct sched_entity *se = &p->se;
12825 
12826 	attach_entity_cfs_rq(se);
12827 }
12828 
12829 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12830 {
12831 	detach_task_cfs_rq(p);
12832 }
12833 
12834 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12835 {
12836 	attach_task_cfs_rq(p);
12837 
12838 	set_task_max_allowed_capacity(p);
12839 
12840 	if (task_on_rq_queued(p)) {
12841 		/*
12842 		 * We were most likely switched from sched_rt, so
12843 		 * kick off the schedule if running, otherwise just see
12844 		 * if we can still preempt the current task.
12845 		 */
12846 		if (task_current(rq, p))
12847 			resched_curr(rq);
12848 		else
12849 			wakeup_preempt(rq, p, 0);
12850 	}
12851 }
12852 
12853 /* Account for a task changing its policy or group.
12854  *
12855  * This routine is mostly called to set cfs_rq->curr field when a task
12856  * migrates between groups/classes.
12857  */
12858 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12859 {
12860 	struct sched_entity *se = &p->se;
12861 
12862 #ifdef CONFIG_SMP
12863 	if (task_on_rq_queued(p)) {
12864 		/*
12865 		 * Move the next running task to the front of the list, so our
12866 		 * cfs_tasks list becomes MRU one.
12867 		 */
12868 		list_move(&se->group_node, &rq->cfs_tasks);
12869 	}
12870 #endif
12871 
12872 	for_each_sched_entity(se) {
12873 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12874 
12875 		set_next_entity(cfs_rq, se);
12876 		/* ensure bandwidth has been allocated on our new cfs_rq */
12877 		account_cfs_rq_runtime(cfs_rq, 0);
12878 	}
12879 }
12880 
12881 void init_cfs_rq(struct cfs_rq *cfs_rq)
12882 {
12883 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12884 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12885 #ifdef CONFIG_SMP
12886 	raw_spin_lock_init(&cfs_rq->removed.lock);
12887 #endif
12888 }
12889 
12890 #ifdef CONFIG_FAIR_GROUP_SCHED
12891 static void task_change_group_fair(struct task_struct *p)
12892 {
12893 	/*
12894 	 * We couldn't detach or attach a forked task which
12895 	 * hasn't been woken up by wake_up_new_task().
12896 	 */
12897 	if (READ_ONCE(p->__state) == TASK_NEW)
12898 		return;
12899 
12900 	detach_task_cfs_rq(p);
12901 
12902 #ifdef CONFIG_SMP
12903 	/* Tell se's cfs_rq has been changed -- migrated */
12904 	p->se.avg.last_update_time = 0;
12905 #endif
12906 	set_task_rq(p, task_cpu(p));
12907 	attach_task_cfs_rq(p);
12908 }
12909 
12910 void free_fair_sched_group(struct task_group *tg)
12911 {
12912 	int i;
12913 
12914 	for_each_possible_cpu(i) {
12915 		if (tg->cfs_rq)
12916 			kfree(tg->cfs_rq[i]);
12917 		if (tg->se)
12918 			kfree(tg->se[i]);
12919 	}
12920 
12921 	kfree(tg->cfs_rq);
12922 	kfree(tg->se);
12923 }
12924 
12925 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12926 {
12927 	struct sched_entity *se;
12928 	struct cfs_rq *cfs_rq;
12929 	int i;
12930 
12931 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12932 	if (!tg->cfs_rq)
12933 		goto err;
12934 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12935 	if (!tg->se)
12936 		goto err;
12937 
12938 	tg->shares = NICE_0_LOAD;
12939 
12940 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12941 
12942 	for_each_possible_cpu(i) {
12943 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12944 				      GFP_KERNEL, cpu_to_node(i));
12945 		if (!cfs_rq)
12946 			goto err;
12947 
12948 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12949 				  GFP_KERNEL, cpu_to_node(i));
12950 		if (!se)
12951 			goto err_free_rq;
12952 
12953 		init_cfs_rq(cfs_rq);
12954 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12955 		init_entity_runnable_average(se);
12956 	}
12957 
12958 	return 1;
12959 
12960 err_free_rq:
12961 	kfree(cfs_rq);
12962 err:
12963 	return 0;
12964 }
12965 
12966 void online_fair_sched_group(struct task_group *tg)
12967 {
12968 	struct sched_entity *se;
12969 	struct rq_flags rf;
12970 	struct rq *rq;
12971 	int i;
12972 
12973 	for_each_possible_cpu(i) {
12974 		rq = cpu_rq(i);
12975 		se = tg->se[i];
12976 		rq_lock_irq(rq, &rf);
12977 		update_rq_clock(rq);
12978 		attach_entity_cfs_rq(se);
12979 		sync_throttle(tg, i);
12980 		rq_unlock_irq(rq, &rf);
12981 	}
12982 }
12983 
12984 void unregister_fair_sched_group(struct task_group *tg)
12985 {
12986 	unsigned long flags;
12987 	struct rq *rq;
12988 	int cpu;
12989 
12990 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12991 
12992 	for_each_possible_cpu(cpu) {
12993 		if (tg->se[cpu])
12994 			remove_entity_load_avg(tg->se[cpu]);
12995 
12996 		/*
12997 		 * Only empty task groups can be destroyed; so we can speculatively
12998 		 * check on_list without danger of it being re-added.
12999 		 */
13000 		if (!tg->cfs_rq[cpu]->on_list)
13001 			continue;
13002 
13003 		rq = cpu_rq(cpu);
13004 
13005 		raw_spin_rq_lock_irqsave(rq, flags);
13006 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
13007 		raw_spin_rq_unlock_irqrestore(rq, flags);
13008 	}
13009 }
13010 
13011 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13012 			struct sched_entity *se, int cpu,
13013 			struct sched_entity *parent)
13014 {
13015 	struct rq *rq = cpu_rq(cpu);
13016 
13017 	cfs_rq->tg = tg;
13018 	cfs_rq->rq = rq;
13019 	init_cfs_rq_runtime(cfs_rq);
13020 
13021 	tg->cfs_rq[cpu] = cfs_rq;
13022 	tg->se[cpu] = se;
13023 
13024 	/* se could be NULL for root_task_group */
13025 	if (!se)
13026 		return;
13027 
13028 	if (!parent) {
13029 		se->cfs_rq = &rq->cfs;
13030 		se->depth = 0;
13031 	} else {
13032 		se->cfs_rq = parent->my_q;
13033 		se->depth = parent->depth + 1;
13034 	}
13035 
13036 	se->my_q = cfs_rq;
13037 	/* guarantee group entities always have weight */
13038 	update_load_set(&se->load, NICE_0_LOAD);
13039 	se->parent = parent;
13040 }
13041 
13042 static DEFINE_MUTEX(shares_mutex);
13043 
13044 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13045 {
13046 	int i;
13047 
13048 	lockdep_assert_held(&shares_mutex);
13049 
13050 	/*
13051 	 * We can't change the weight of the root cgroup.
13052 	 */
13053 	if (!tg->se[0])
13054 		return -EINVAL;
13055 
13056 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13057 
13058 	if (tg->shares == shares)
13059 		return 0;
13060 
13061 	tg->shares = shares;
13062 	for_each_possible_cpu(i) {
13063 		struct rq *rq = cpu_rq(i);
13064 		struct sched_entity *se = tg->se[i];
13065 		struct rq_flags rf;
13066 
13067 		/* Propagate contribution to hierarchy */
13068 		rq_lock_irqsave(rq, &rf);
13069 		update_rq_clock(rq);
13070 		for_each_sched_entity(se) {
13071 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13072 			update_cfs_group(se);
13073 		}
13074 		rq_unlock_irqrestore(rq, &rf);
13075 	}
13076 
13077 	return 0;
13078 }
13079 
13080 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13081 {
13082 	int ret;
13083 
13084 	mutex_lock(&shares_mutex);
13085 	if (tg_is_idle(tg))
13086 		ret = -EINVAL;
13087 	else
13088 		ret = __sched_group_set_shares(tg, shares);
13089 	mutex_unlock(&shares_mutex);
13090 
13091 	return ret;
13092 }
13093 
13094 int sched_group_set_idle(struct task_group *tg, long idle)
13095 {
13096 	int i;
13097 
13098 	if (tg == &root_task_group)
13099 		return -EINVAL;
13100 
13101 	if (idle < 0 || idle > 1)
13102 		return -EINVAL;
13103 
13104 	mutex_lock(&shares_mutex);
13105 
13106 	if (tg->idle == idle) {
13107 		mutex_unlock(&shares_mutex);
13108 		return 0;
13109 	}
13110 
13111 	tg->idle = idle;
13112 
13113 	for_each_possible_cpu(i) {
13114 		struct rq *rq = cpu_rq(i);
13115 		struct sched_entity *se = tg->se[i];
13116 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13117 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13118 		long idle_task_delta;
13119 		struct rq_flags rf;
13120 
13121 		rq_lock_irqsave(rq, &rf);
13122 
13123 		grp_cfs_rq->idle = idle;
13124 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13125 			goto next_cpu;
13126 
13127 		if (se->on_rq) {
13128 			parent_cfs_rq = cfs_rq_of(se);
13129 			if (cfs_rq_is_idle(grp_cfs_rq))
13130 				parent_cfs_rq->idle_nr_running++;
13131 			else
13132 				parent_cfs_rq->idle_nr_running--;
13133 		}
13134 
13135 		idle_task_delta = grp_cfs_rq->h_nr_running -
13136 				  grp_cfs_rq->idle_h_nr_running;
13137 		if (!cfs_rq_is_idle(grp_cfs_rq))
13138 			idle_task_delta *= -1;
13139 
13140 		for_each_sched_entity(se) {
13141 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13142 
13143 			if (!se->on_rq)
13144 				break;
13145 
13146 			cfs_rq->idle_h_nr_running += idle_task_delta;
13147 
13148 			/* Already accounted at parent level and above. */
13149 			if (cfs_rq_is_idle(cfs_rq))
13150 				break;
13151 		}
13152 
13153 next_cpu:
13154 		rq_unlock_irqrestore(rq, &rf);
13155 	}
13156 
13157 	/* Idle groups have minimum weight. */
13158 	if (tg_is_idle(tg))
13159 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13160 	else
13161 		__sched_group_set_shares(tg, NICE_0_LOAD);
13162 
13163 	mutex_unlock(&shares_mutex);
13164 	return 0;
13165 }
13166 
13167 #endif /* CONFIG_FAIR_GROUP_SCHED */
13168 
13169 
13170 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13171 {
13172 	struct sched_entity *se = &task->se;
13173 	unsigned int rr_interval = 0;
13174 
13175 	/*
13176 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13177 	 * idle runqueue:
13178 	 */
13179 	if (rq->cfs.load.weight)
13180 		rr_interval = NS_TO_JIFFIES(se->slice);
13181 
13182 	return rr_interval;
13183 }
13184 
13185 /*
13186  * All the scheduling class methods:
13187  */
13188 DEFINE_SCHED_CLASS(fair) = {
13189 
13190 	.enqueue_task		= enqueue_task_fair,
13191 	.dequeue_task		= dequeue_task_fair,
13192 	.yield_task		= yield_task_fair,
13193 	.yield_to_task		= yield_to_task_fair,
13194 
13195 	.wakeup_preempt		= check_preempt_wakeup_fair,
13196 
13197 	.pick_next_task		= __pick_next_task_fair,
13198 	.put_prev_task		= put_prev_task_fair,
13199 	.set_next_task          = set_next_task_fair,
13200 
13201 #ifdef CONFIG_SMP
13202 	.balance		= balance_fair,
13203 	.pick_task		= pick_task_fair,
13204 	.select_task_rq		= select_task_rq_fair,
13205 	.migrate_task_rq	= migrate_task_rq_fair,
13206 
13207 	.rq_online		= rq_online_fair,
13208 	.rq_offline		= rq_offline_fair,
13209 
13210 	.task_dead		= task_dead_fair,
13211 	.set_cpus_allowed	= set_cpus_allowed_fair,
13212 #endif
13213 
13214 	.task_tick		= task_tick_fair,
13215 	.task_fork		= task_fork_fair,
13216 
13217 	.prio_changed		= prio_changed_fair,
13218 	.switched_from		= switched_from_fair,
13219 	.switched_to		= switched_to_fair,
13220 
13221 	.get_rr_interval	= get_rr_interval_fair,
13222 
13223 	.update_curr		= update_curr_fair,
13224 
13225 #ifdef CONFIG_FAIR_GROUP_SCHED
13226 	.task_change_group	= task_change_group_fair,
13227 #endif
13228 
13229 #ifdef CONFIG_SCHED_CORE
13230 	.task_is_throttled	= task_is_throttled_fair,
13231 #endif
13232 
13233 #ifdef CONFIG_UCLAMP_TASK
13234 	.uclamp_enabled		= 1,
13235 #endif
13236 };
13237 
13238 #ifdef CONFIG_SCHED_DEBUG
13239 void print_cfs_stats(struct seq_file *m, int cpu)
13240 {
13241 	struct cfs_rq *cfs_rq, *pos;
13242 
13243 	rcu_read_lock();
13244 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13245 		print_cfs_rq(m, cpu, cfs_rq);
13246 	rcu_read_unlock();
13247 }
13248 
13249 #ifdef CONFIG_NUMA_BALANCING
13250 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13251 {
13252 	int node;
13253 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13254 	struct numa_group *ng;
13255 
13256 	rcu_read_lock();
13257 	ng = rcu_dereference(p->numa_group);
13258 	for_each_online_node(node) {
13259 		if (p->numa_faults) {
13260 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13261 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13262 		}
13263 		if (ng) {
13264 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13265 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13266 		}
13267 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13268 	}
13269 	rcu_read_unlock();
13270 }
13271 #endif /* CONFIG_NUMA_BALANCING */
13272 #endif /* CONFIG_SCHED_DEBUG */
13273 
13274 __init void init_sched_fair_class(void)
13275 {
13276 #ifdef CONFIG_SMP
13277 	int i;
13278 
13279 	for_each_possible_cpu(i) {
13280 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13281 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13282 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13283 					GFP_KERNEL, cpu_to_node(i));
13284 
13285 #ifdef CONFIG_CFS_BANDWIDTH
13286 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13287 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13288 #endif
13289 	}
13290 
13291 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13292 
13293 #ifdef CONFIG_NO_HZ_COMMON
13294 	nohz.next_balance = jiffies;
13295 	nohz.next_blocked = jiffies;
13296 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13297 #endif
13298 #endif /* SMP */
13299 
13300 }
13301