xref: /linux/kernel/sched/fair.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 #endif
119 
120 #ifdef CONFIG_CFS_BANDWIDTH
121 /*
122  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123  * each time a cfs_rq requests quota.
124  *
125  * Note: in the case that the slice exceeds the runtime remaining (either due
126  * to consumption or the quota being specified to be smaller than the slice)
127  * we will always only issue the remaining available time.
128  *
129  * (default: 5 msec, units: microseconds)
130  */
131 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
132 #endif
133 
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 	lw->weight += inc;
137 	lw->inv_weight = 0;
138 }
139 
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 	lw->weight -= dec;
143 	lw->inv_weight = 0;
144 }
145 
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 	lw->weight = w;
149 	lw->inv_weight = 0;
150 }
151 
152 /*
153  * Increase the granularity value when there are more CPUs,
154  * because with more CPUs the 'effective latency' as visible
155  * to users decreases. But the relationship is not linear,
156  * so pick a second-best guess by going with the log2 of the
157  * number of CPUs.
158  *
159  * This idea comes from the SD scheduler of Con Kolivas:
160  */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 	unsigned int factor;
165 
166 	switch (sysctl_sched_tunable_scaling) {
167 	case SCHED_TUNABLESCALING_NONE:
168 		factor = 1;
169 		break;
170 	case SCHED_TUNABLESCALING_LINEAR:
171 		factor = cpus;
172 		break;
173 	case SCHED_TUNABLESCALING_LOG:
174 	default:
175 		factor = 1 + ilog2(cpus);
176 		break;
177 	}
178 
179 	return factor;
180 }
181 
182 static void update_sysctl(void)
183 {
184 	unsigned int factor = get_update_sysctl_factor();
185 
186 #define SET_SYSCTL(name) \
187 	(sysctl_##name = (factor) * normalized_sysctl_##name)
188 	SET_SYSCTL(sched_min_granularity);
189 	SET_SYSCTL(sched_latency);
190 	SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193 
194 void __init sched_init_granularity(void)
195 {
196 	update_sysctl();
197 }
198 
199 #define WMULT_CONST	(~0U)
200 #define WMULT_SHIFT	32
201 
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 	unsigned long w;
205 
206 	if (likely(lw->inv_weight))
207 		return;
208 
209 	w = scale_load_down(lw->weight);
210 
211 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 		lw->inv_weight = 1;
213 	else if (unlikely(!w))
214 		lw->inv_weight = WMULT_CONST;
215 	else
216 		lw->inv_weight = WMULT_CONST / w;
217 }
218 
219 /*
220  * delta_exec * weight / lw.weight
221  *   OR
222  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223  *
224  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225  * we're guaranteed shift stays positive because inv_weight is guaranteed to
226  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227  *
228  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229  * weight/lw.weight <= 1, and therefore our shift will also be positive.
230  */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 	u64 fact = scale_load_down(weight);
234 	int shift = WMULT_SHIFT;
235 
236 	__update_inv_weight(lw);
237 
238 	if (unlikely(fact >> 32)) {
239 		while (fact >> 32) {
240 			fact >>= 1;
241 			shift--;
242 		}
243 	}
244 
245 	fact = mul_u32_u32(fact, lw->inv_weight);
246 
247 	while (fact >> 32) {
248 		fact >>= 1;
249 		shift--;
250 	}
251 
252 	return mul_u64_u32_shr(delta_exec, fact, shift);
253 }
254 
255 
256 const struct sched_class fair_sched_class;
257 
258 /**************************************************************
259  * CFS operations on generic schedulable entities:
260  */
261 
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 static inline struct task_struct *task_of(struct sched_entity *se)
264 {
265 	SCHED_WARN_ON(!entity_is_task(se));
266 	return container_of(se, struct task_struct, se);
267 }
268 
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 		for (; se; se = se->parent)
272 
273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 {
275 	return p->se.cfs_rq;
276 }
277 
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 {
281 	return se->cfs_rq;
282 }
283 
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 {
287 	return grp->my_q;
288 }
289 
290 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
291 {
292 	if (!path)
293 		return;
294 
295 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
296 		autogroup_path(cfs_rq->tg, path, len);
297 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
298 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
299 	else
300 		strlcpy(path, "(null)", len);
301 }
302 
303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304 {
305 	struct rq *rq = rq_of(cfs_rq);
306 	int cpu = cpu_of(rq);
307 
308 	if (cfs_rq->on_list)
309 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
310 
311 	cfs_rq->on_list = 1;
312 
313 	/*
314 	 * Ensure we either appear before our parent (if already
315 	 * enqueued) or force our parent to appear after us when it is
316 	 * enqueued. The fact that we always enqueue bottom-up
317 	 * reduces this to two cases and a special case for the root
318 	 * cfs_rq. Furthermore, it also means that we will always reset
319 	 * tmp_alone_branch either when the branch is connected
320 	 * to a tree or when we reach the top of the tree
321 	 */
322 	if (cfs_rq->tg->parent &&
323 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
324 		/*
325 		 * If parent is already on the list, we add the child
326 		 * just before. Thanks to circular linked property of
327 		 * the list, this means to put the child at the tail
328 		 * of the list that starts by parent.
329 		 */
330 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
332 		/*
333 		 * The branch is now connected to its tree so we can
334 		 * reset tmp_alone_branch to the beginning of the
335 		 * list.
336 		 */
337 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
338 		return true;
339 	}
340 
341 	if (!cfs_rq->tg->parent) {
342 		/*
343 		 * cfs rq without parent should be put
344 		 * at the tail of the list.
345 		 */
346 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 			&rq->leaf_cfs_rq_list);
348 		/*
349 		 * We have reach the top of a tree so we can reset
350 		 * tmp_alone_branch to the beginning of the list.
351 		 */
352 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
353 		return true;
354 	}
355 
356 	/*
357 	 * The parent has not already been added so we want to
358 	 * make sure that it will be put after us.
359 	 * tmp_alone_branch points to the begin of the branch
360 	 * where we will add parent.
361 	 */
362 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
363 	/*
364 	 * update tmp_alone_branch to points to the new begin
365 	 * of the branch
366 	 */
367 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
368 	return false;
369 }
370 
371 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
372 {
373 	if (cfs_rq->on_list) {
374 		struct rq *rq = rq_of(cfs_rq);
375 
376 		/*
377 		 * With cfs_rq being unthrottled/throttled during an enqueue,
378 		 * it can happen the tmp_alone_branch points the a leaf that
379 		 * we finally want to del. In this case, tmp_alone_branch moves
380 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 		 * at the end of the enqueue.
382 		 */
383 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
384 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
385 
386 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
387 		cfs_rq->on_list = 0;
388 	}
389 }
390 
391 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
392 {
393 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
394 }
395 
396 /* Iterate thr' all leaf cfs_rq's on a runqueue */
397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
398 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
399 				 leaf_cfs_rq_list)
400 
401 /* Do the two (enqueued) entities belong to the same group ? */
402 static inline struct cfs_rq *
403 is_same_group(struct sched_entity *se, struct sched_entity *pse)
404 {
405 	if (se->cfs_rq == pse->cfs_rq)
406 		return se->cfs_rq;
407 
408 	return NULL;
409 }
410 
411 static inline struct sched_entity *parent_entity(struct sched_entity *se)
412 {
413 	return se->parent;
414 }
415 
416 static void
417 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
418 {
419 	int se_depth, pse_depth;
420 
421 	/*
422 	 * preemption test can be made between sibling entities who are in the
423 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 	 * both tasks until we find their ancestors who are siblings of common
425 	 * parent.
426 	 */
427 
428 	/* First walk up until both entities are at same depth */
429 	se_depth = (*se)->depth;
430 	pse_depth = (*pse)->depth;
431 
432 	while (se_depth > pse_depth) {
433 		se_depth--;
434 		*se = parent_entity(*se);
435 	}
436 
437 	while (pse_depth > se_depth) {
438 		pse_depth--;
439 		*pse = parent_entity(*pse);
440 	}
441 
442 	while (!is_same_group(*se, *pse)) {
443 		*se = parent_entity(*se);
444 		*pse = parent_entity(*pse);
445 	}
446 }
447 
448 #else	/* !CONFIG_FAIR_GROUP_SCHED */
449 
450 static inline struct task_struct *task_of(struct sched_entity *se)
451 {
452 	return container_of(se, struct task_struct, se);
453 }
454 
455 #define for_each_sched_entity(se) \
456 		for (; se; se = NULL)
457 
458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
459 {
460 	return &task_rq(p)->cfs;
461 }
462 
463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
464 {
465 	struct task_struct *p = task_of(se);
466 	struct rq *rq = task_rq(p);
467 
468 	return &rq->cfs;
469 }
470 
471 /* runqueue "owned" by this group */
472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
473 {
474 	return NULL;
475 }
476 
477 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
478 {
479 	if (path)
480 		strlcpy(path, "(null)", len);
481 }
482 
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 	return true;
486 }
487 
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491 
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495 
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498 
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 	return NULL;
502 }
503 
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508 
509 #endif	/* CONFIG_FAIR_GROUP_SCHED */
510 
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
513 
514 /**************************************************************
515  * Scheduling class tree data structure manipulation methods:
516  */
517 
518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
519 {
520 	s64 delta = (s64)(vruntime - max_vruntime);
521 	if (delta > 0)
522 		max_vruntime = vruntime;
523 
524 	return max_vruntime;
525 }
526 
527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
528 {
529 	s64 delta = (s64)(vruntime - min_vruntime);
530 	if (delta < 0)
531 		min_vruntime = vruntime;
532 
533 	return min_vruntime;
534 }
535 
536 static inline int entity_before(struct sched_entity *a,
537 				struct sched_entity *b)
538 {
539 	return (s64)(a->vruntime - b->vruntime) < 0;
540 }
541 
542 static void update_min_vruntime(struct cfs_rq *cfs_rq)
543 {
544 	struct sched_entity *curr = cfs_rq->curr;
545 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
546 
547 	u64 vruntime = cfs_rq->min_vruntime;
548 
549 	if (curr) {
550 		if (curr->on_rq)
551 			vruntime = curr->vruntime;
552 		else
553 			curr = NULL;
554 	}
555 
556 	if (leftmost) { /* non-empty tree */
557 		struct sched_entity *se;
558 		se = rb_entry(leftmost, struct sched_entity, run_node);
559 
560 		if (!curr)
561 			vruntime = se->vruntime;
562 		else
563 			vruntime = min_vruntime(vruntime, se->vruntime);
564 	}
565 
566 	/* ensure we never gain time by being placed backwards. */
567 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
568 #ifndef CONFIG_64BIT
569 	smp_wmb();
570 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
571 #endif
572 }
573 
574 /*
575  * Enqueue an entity into the rb-tree:
576  */
577 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
578 {
579 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
580 	struct rb_node *parent = NULL;
581 	struct sched_entity *entry;
582 	bool leftmost = true;
583 
584 	/*
585 	 * Find the right place in the rbtree:
586 	 */
587 	while (*link) {
588 		parent = *link;
589 		entry = rb_entry(parent, struct sched_entity, run_node);
590 		/*
591 		 * We dont care about collisions. Nodes with
592 		 * the same key stay together.
593 		 */
594 		if (entity_before(se, entry)) {
595 			link = &parent->rb_left;
596 		} else {
597 			link = &parent->rb_right;
598 			leftmost = false;
599 		}
600 	}
601 
602 	rb_link_node(&se->run_node, parent, link);
603 	rb_insert_color_cached(&se->run_node,
604 			       &cfs_rq->tasks_timeline, leftmost);
605 }
606 
607 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
608 {
609 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
610 }
611 
612 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
613 {
614 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
615 
616 	if (!left)
617 		return NULL;
618 
619 	return rb_entry(left, struct sched_entity, run_node);
620 }
621 
622 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
623 {
624 	struct rb_node *next = rb_next(&se->run_node);
625 
626 	if (!next)
627 		return NULL;
628 
629 	return rb_entry(next, struct sched_entity, run_node);
630 }
631 
632 #ifdef CONFIG_SCHED_DEBUG
633 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
634 {
635 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
636 
637 	if (!last)
638 		return NULL;
639 
640 	return rb_entry(last, struct sched_entity, run_node);
641 }
642 
643 /**************************************************************
644  * Scheduling class statistics methods:
645  */
646 
647 int sched_proc_update_handler(struct ctl_table *table, int write,
648 		void *buffer, size_t *lenp, loff_t *ppos)
649 {
650 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
651 	unsigned int factor = get_update_sysctl_factor();
652 
653 	if (ret || !write)
654 		return ret;
655 
656 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
657 					sysctl_sched_min_granularity);
658 
659 #define WRT_SYSCTL(name) \
660 	(normalized_sysctl_##name = sysctl_##name / (factor))
661 	WRT_SYSCTL(sched_min_granularity);
662 	WRT_SYSCTL(sched_latency);
663 	WRT_SYSCTL(sched_wakeup_granularity);
664 #undef WRT_SYSCTL
665 
666 	return 0;
667 }
668 #endif
669 
670 /*
671  * delta /= w
672  */
673 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
674 {
675 	if (unlikely(se->load.weight != NICE_0_LOAD))
676 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
677 
678 	return delta;
679 }
680 
681 /*
682  * The idea is to set a period in which each task runs once.
683  *
684  * When there are too many tasks (sched_nr_latency) we have to stretch
685  * this period because otherwise the slices get too small.
686  *
687  * p = (nr <= nl) ? l : l*nr/nl
688  */
689 static u64 __sched_period(unsigned long nr_running)
690 {
691 	if (unlikely(nr_running > sched_nr_latency))
692 		return nr_running * sysctl_sched_min_granularity;
693 	else
694 		return sysctl_sched_latency;
695 }
696 
697 /*
698  * We calculate the wall-time slice from the period by taking a part
699  * proportional to the weight.
700  *
701  * s = p*P[w/rw]
702  */
703 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
704 {
705 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
706 
707 	for_each_sched_entity(se) {
708 		struct load_weight *load;
709 		struct load_weight lw;
710 
711 		cfs_rq = cfs_rq_of(se);
712 		load = &cfs_rq->load;
713 
714 		if (unlikely(!se->on_rq)) {
715 			lw = cfs_rq->load;
716 
717 			update_load_add(&lw, se->load.weight);
718 			load = &lw;
719 		}
720 		slice = __calc_delta(slice, se->load.weight, load);
721 	}
722 	return slice;
723 }
724 
725 /*
726  * We calculate the vruntime slice of a to-be-inserted task.
727  *
728  * vs = s/w
729  */
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 }
734 
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
737 
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
741 
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
744 {
745 	struct sched_avg *sa = &se->avg;
746 
747 	memset(sa, 0, sizeof(*sa));
748 
749 	/*
750 	 * Tasks are initialized with full load to be seen as heavy tasks until
751 	 * they get a chance to stabilize to their real load level.
752 	 * Group entities are initialized with zero load to reflect the fact that
753 	 * nothing has been attached to the task group yet.
754 	 */
755 	if (entity_is_task(se))
756 		sa->load_avg = scale_load_down(se->load.weight);
757 
758 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760 
761 static void attach_entity_cfs_rq(struct sched_entity *se);
762 
763 /*
764  * With new tasks being created, their initial util_avgs are extrapolated
765  * based on the cfs_rq's current util_avg:
766  *
767  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768  *
769  * However, in many cases, the above util_avg does not give a desired
770  * value. Moreover, the sum of the util_avgs may be divergent, such
771  * as when the series is a harmonic series.
772  *
773  * To solve this problem, we also cap the util_avg of successive tasks to
774  * only 1/2 of the left utilization budget:
775  *
776  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
777  *
778  * where n denotes the nth task and cpu_scale the CPU capacity.
779  *
780  * For example, for a CPU with 1024 of capacity, a simplest series from
781  * the beginning would be like:
782  *
783  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
784  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785  *
786  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787  * if util_avg > util_avg_cap.
788  */
789 void post_init_entity_util_avg(struct task_struct *p)
790 {
791 	struct sched_entity *se = &p->se;
792 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 	struct sched_avg *sa = &se->avg;
794 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
796 
797 	if (cap > 0) {
798 		if (cfs_rq->avg.util_avg != 0) {
799 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
800 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801 
802 			if (sa->util_avg > cap)
803 				sa->util_avg = cap;
804 		} else {
805 			sa->util_avg = cap;
806 		}
807 	}
808 
809 	sa->runnable_avg = cpu_scale;
810 
811 	if (p->sched_class != &fair_sched_class) {
812 		/*
813 		 * For !fair tasks do:
814 		 *
815 		update_cfs_rq_load_avg(now, cfs_rq);
816 		attach_entity_load_avg(cfs_rq, se);
817 		switched_from_fair(rq, p);
818 		 *
819 		 * such that the next switched_to_fair() has the
820 		 * expected state.
821 		 */
822 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 		return;
824 	}
825 
826 	attach_entity_cfs_rq(se);
827 }
828 
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837 {
838 }
839 #endif /* CONFIG_SMP */
840 
841 /*
842  * Update the current task's runtime statistics.
843  */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 	struct sched_entity *curr = cfs_rq->curr;
847 	u64 now = rq_clock_task(rq_of(cfs_rq));
848 	u64 delta_exec;
849 
850 	if (unlikely(!curr))
851 		return;
852 
853 	delta_exec = now - curr->exec_start;
854 	if (unlikely((s64)delta_exec <= 0))
855 		return;
856 
857 	curr->exec_start = now;
858 
859 	schedstat_set(curr->statistics.exec_max,
860 		      max(delta_exec, curr->statistics.exec_max));
861 
862 	curr->sum_exec_runtime += delta_exec;
863 	schedstat_add(cfs_rq->exec_clock, delta_exec);
864 
865 	curr->vruntime += calc_delta_fair(delta_exec, curr);
866 	update_min_vruntime(cfs_rq);
867 
868 	if (entity_is_task(curr)) {
869 		struct task_struct *curtask = task_of(curr);
870 
871 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872 		cgroup_account_cputime(curtask, delta_exec);
873 		account_group_exec_runtime(curtask, delta_exec);
874 	}
875 
876 	account_cfs_rq_runtime(cfs_rq, delta_exec);
877 }
878 
879 static void update_curr_fair(struct rq *rq)
880 {
881 	update_curr(cfs_rq_of(&rq->curr->se));
882 }
883 
884 static inline void
885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 {
887 	u64 wait_start, prev_wait_start;
888 
889 	if (!schedstat_enabled())
890 		return;
891 
892 	wait_start = rq_clock(rq_of(cfs_rq));
893 	prev_wait_start = schedstat_val(se->statistics.wait_start);
894 
895 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 	    likely(wait_start > prev_wait_start))
897 		wait_start -= prev_wait_start;
898 
899 	__schedstat_set(se->statistics.wait_start, wait_start);
900 }
901 
902 static inline void
903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904 {
905 	struct task_struct *p;
906 	u64 delta;
907 
908 	if (!schedstat_enabled())
909 		return;
910 
911 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
912 
913 	if (entity_is_task(se)) {
914 		p = task_of(se);
915 		if (task_on_rq_migrating(p)) {
916 			/*
917 			 * Preserve migrating task's wait time so wait_start
918 			 * time stamp can be adjusted to accumulate wait time
919 			 * prior to migration.
920 			 */
921 			__schedstat_set(se->statistics.wait_start, delta);
922 			return;
923 		}
924 		trace_sched_stat_wait(p, delta);
925 	}
926 
927 	__schedstat_set(se->statistics.wait_max,
928 		      max(schedstat_val(se->statistics.wait_max), delta));
929 	__schedstat_inc(se->statistics.wait_count);
930 	__schedstat_add(se->statistics.wait_sum, delta);
931 	__schedstat_set(se->statistics.wait_start, 0);
932 }
933 
934 static inline void
935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936 {
937 	struct task_struct *tsk = NULL;
938 	u64 sleep_start, block_start;
939 
940 	if (!schedstat_enabled())
941 		return;
942 
943 	sleep_start = schedstat_val(se->statistics.sleep_start);
944 	block_start = schedstat_val(se->statistics.block_start);
945 
946 	if (entity_is_task(se))
947 		tsk = task_of(se);
948 
949 	if (sleep_start) {
950 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
951 
952 		if ((s64)delta < 0)
953 			delta = 0;
954 
955 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 			__schedstat_set(se->statistics.sleep_max, delta);
957 
958 		__schedstat_set(se->statistics.sleep_start, 0);
959 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
960 
961 		if (tsk) {
962 			account_scheduler_latency(tsk, delta >> 10, 1);
963 			trace_sched_stat_sleep(tsk, delta);
964 		}
965 	}
966 	if (block_start) {
967 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
968 
969 		if ((s64)delta < 0)
970 			delta = 0;
971 
972 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 			__schedstat_set(se->statistics.block_max, delta);
974 
975 		__schedstat_set(se->statistics.block_start, 0);
976 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
977 
978 		if (tsk) {
979 			if (tsk->in_iowait) {
980 				__schedstat_add(se->statistics.iowait_sum, delta);
981 				__schedstat_inc(se->statistics.iowait_count);
982 				trace_sched_stat_iowait(tsk, delta);
983 			}
984 
985 			trace_sched_stat_blocked(tsk, delta);
986 
987 			/*
988 			 * Blocking time is in units of nanosecs, so shift by
989 			 * 20 to get a milliseconds-range estimation of the
990 			 * amount of time that the task spent sleeping:
991 			 */
992 			if (unlikely(prof_on == SLEEP_PROFILING)) {
993 				profile_hits(SLEEP_PROFILING,
994 						(void *)get_wchan(tsk),
995 						delta >> 20);
996 			}
997 			account_scheduler_latency(tsk, delta >> 10, 0);
998 		}
999 	}
1000 }
1001 
1002 /*
1003  * Task is being enqueued - update stats:
1004  */
1005 static inline void
1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007 {
1008 	if (!schedstat_enabled())
1009 		return;
1010 
1011 	/*
1012 	 * Are we enqueueing a waiting task? (for current tasks
1013 	 * a dequeue/enqueue event is a NOP)
1014 	 */
1015 	if (se != cfs_rq->curr)
1016 		update_stats_wait_start(cfs_rq, se);
1017 
1018 	if (flags & ENQUEUE_WAKEUP)
1019 		update_stats_enqueue_sleeper(cfs_rq, se);
1020 }
1021 
1022 static inline void
1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025 
1026 	if (!schedstat_enabled())
1027 		return;
1028 
1029 	/*
1030 	 * Mark the end of the wait period if dequeueing a
1031 	 * waiting task:
1032 	 */
1033 	if (se != cfs_rq->curr)
1034 		update_stats_wait_end(cfs_rq, se);
1035 
1036 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 		struct task_struct *tsk = task_of(se);
1038 
1039 		if (tsk->state & TASK_INTERRUPTIBLE)
1040 			__schedstat_set(se->statistics.sleep_start,
1041 				      rq_clock(rq_of(cfs_rq)));
1042 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1043 			__schedstat_set(se->statistics.block_start,
1044 				      rq_clock(rq_of(cfs_rq)));
1045 	}
1046 }
1047 
1048 /*
1049  * We are picking a new current task - update its stats:
1050  */
1051 static inline void
1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 {
1054 	/*
1055 	 * We are starting a new run period:
1056 	 */
1057 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 }
1059 
1060 /**************************************************
1061  * Scheduling class queueing methods:
1062  */
1063 
1064 #ifdef CONFIG_NUMA_BALANCING
1065 /*
1066  * Approximate time to scan a full NUMA task in ms. The task scan period is
1067  * calculated based on the tasks virtual memory size and
1068  * numa_balancing_scan_size.
1069  */
1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1072 
1073 /* Portion of address space to scan in MB */
1074 unsigned int sysctl_numa_balancing_scan_size = 256;
1075 
1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1078 
1079 struct numa_group {
1080 	refcount_t refcount;
1081 
1082 	spinlock_t lock; /* nr_tasks, tasks */
1083 	int nr_tasks;
1084 	pid_t gid;
1085 	int active_nodes;
1086 
1087 	struct rcu_head rcu;
1088 	unsigned long total_faults;
1089 	unsigned long max_faults_cpu;
1090 	/*
1091 	 * Faults_cpu is used to decide whether memory should move
1092 	 * towards the CPU. As a consequence, these stats are weighted
1093 	 * more by CPU use than by memory faults.
1094 	 */
1095 	unsigned long *faults_cpu;
1096 	unsigned long faults[];
1097 };
1098 
1099 /*
1100  * For functions that can be called in multiple contexts that permit reading
1101  * ->numa_group (see struct task_struct for locking rules).
1102  */
1103 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1104 {
1105 	return rcu_dereference_check(p->numa_group, p == current ||
1106 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1107 }
1108 
1109 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1110 {
1111 	return rcu_dereference_protected(p->numa_group, p == current);
1112 }
1113 
1114 static inline unsigned long group_faults_priv(struct numa_group *ng);
1115 static inline unsigned long group_faults_shared(struct numa_group *ng);
1116 
1117 static unsigned int task_nr_scan_windows(struct task_struct *p)
1118 {
1119 	unsigned long rss = 0;
1120 	unsigned long nr_scan_pages;
1121 
1122 	/*
1123 	 * Calculations based on RSS as non-present and empty pages are skipped
1124 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1125 	 * on resident pages
1126 	 */
1127 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1128 	rss = get_mm_rss(p->mm);
1129 	if (!rss)
1130 		rss = nr_scan_pages;
1131 
1132 	rss = round_up(rss, nr_scan_pages);
1133 	return rss / nr_scan_pages;
1134 }
1135 
1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1137 #define MAX_SCAN_WINDOW 2560
1138 
1139 static unsigned int task_scan_min(struct task_struct *p)
1140 {
1141 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1142 	unsigned int scan, floor;
1143 	unsigned int windows = 1;
1144 
1145 	if (scan_size < MAX_SCAN_WINDOW)
1146 		windows = MAX_SCAN_WINDOW / scan_size;
1147 	floor = 1000 / windows;
1148 
1149 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1150 	return max_t(unsigned int, floor, scan);
1151 }
1152 
1153 static unsigned int task_scan_start(struct task_struct *p)
1154 {
1155 	unsigned long smin = task_scan_min(p);
1156 	unsigned long period = smin;
1157 	struct numa_group *ng;
1158 
1159 	/* Scale the maximum scan period with the amount of shared memory. */
1160 	rcu_read_lock();
1161 	ng = rcu_dereference(p->numa_group);
1162 	if (ng) {
1163 		unsigned long shared = group_faults_shared(ng);
1164 		unsigned long private = group_faults_priv(ng);
1165 
1166 		period *= refcount_read(&ng->refcount);
1167 		period *= shared + 1;
1168 		period /= private + shared + 1;
1169 	}
1170 	rcu_read_unlock();
1171 
1172 	return max(smin, period);
1173 }
1174 
1175 static unsigned int task_scan_max(struct task_struct *p)
1176 {
1177 	unsigned long smin = task_scan_min(p);
1178 	unsigned long smax;
1179 	struct numa_group *ng;
1180 
1181 	/* Watch for min being lower than max due to floor calculations */
1182 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1183 
1184 	/* Scale the maximum scan period with the amount of shared memory. */
1185 	ng = deref_curr_numa_group(p);
1186 	if (ng) {
1187 		unsigned long shared = group_faults_shared(ng);
1188 		unsigned long private = group_faults_priv(ng);
1189 		unsigned long period = smax;
1190 
1191 		period *= refcount_read(&ng->refcount);
1192 		period *= shared + 1;
1193 		period /= private + shared + 1;
1194 
1195 		smax = max(smax, period);
1196 	}
1197 
1198 	return max(smin, smax);
1199 }
1200 
1201 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1202 {
1203 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1204 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1205 }
1206 
1207 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1208 {
1209 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1210 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1211 }
1212 
1213 /* Shared or private faults. */
1214 #define NR_NUMA_HINT_FAULT_TYPES 2
1215 
1216 /* Memory and CPU locality */
1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1218 
1219 /* Averaged statistics, and temporary buffers. */
1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1221 
1222 pid_t task_numa_group_id(struct task_struct *p)
1223 {
1224 	struct numa_group *ng;
1225 	pid_t gid = 0;
1226 
1227 	rcu_read_lock();
1228 	ng = rcu_dereference(p->numa_group);
1229 	if (ng)
1230 		gid = ng->gid;
1231 	rcu_read_unlock();
1232 
1233 	return gid;
1234 }
1235 
1236 /*
1237  * The averaged statistics, shared & private, memory & CPU,
1238  * occupy the first half of the array. The second half of the
1239  * array is for current counters, which are averaged into the
1240  * first set by task_numa_placement.
1241  */
1242 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1243 {
1244 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1245 }
1246 
1247 static inline unsigned long task_faults(struct task_struct *p, int nid)
1248 {
1249 	if (!p->numa_faults)
1250 		return 0;
1251 
1252 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1254 }
1255 
1256 static inline unsigned long group_faults(struct task_struct *p, int nid)
1257 {
1258 	struct numa_group *ng = deref_task_numa_group(p);
1259 
1260 	if (!ng)
1261 		return 0;
1262 
1263 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1264 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1265 }
1266 
1267 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1268 {
1269 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1271 }
1272 
1273 static inline unsigned long group_faults_priv(struct numa_group *ng)
1274 {
1275 	unsigned long faults = 0;
1276 	int node;
1277 
1278 	for_each_online_node(node) {
1279 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1280 	}
1281 
1282 	return faults;
1283 }
1284 
1285 static inline unsigned long group_faults_shared(struct numa_group *ng)
1286 {
1287 	unsigned long faults = 0;
1288 	int node;
1289 
1290 	for_each_online_node(node) {
1291 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1292 	}
1293 
1294 	return faults;
1295 }
1296 
1297 /*
1298  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1299  * considered part of a numa group's pseudo-interleaving set. Migrations
1300  * between these nodes are slowed down, to allow things to settle down.
1301  */
1302 #define ACTIVE_NODE_FRACTION 3
1303 
1304 static bool numa_is_active_node(int nid, struct numa_group *ng)
1305 {
1306 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1307 }
1308 
1309 /* Handle placement on systems where not all nodes are directly connected. */
1310 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1311 					int maxdist, bool task)
1312 {
1313 	unsigned long score = 0;
1314 	int node;
1315 
1316 	/*
1317 	 * All nodes are directly connected, and the same distance
1318 	 * from each other. No need for fancy placement algorithms.
1319 	 */
1320 	if (sched_numa_topology_type == NUMA_DIRECT)
1321 		return 0;
1322 
1323 	/*
1324 	 * This code is called for each node, introducing N^2 complexity,
1325 	 * which should be ok given the number of nodes rarely exceeds 8.
1326 	 */
1327 	for_each_online_node(node) {
1328 		unsigned long faults;
1329 		int dist = node_distance(nid, node);
1330 
1331 		/*
1332 		 * The furthest away nodes in the system are not interesting
1333 		 * for placement; nid was already counted.
1334 		 */
1335 		if (dist == sched_max_numa_distance || node == nid)
1336 			continue;
1337 
1338 		/*
1339 		 * On systems with a backplane NUMA topology, compare groups
1340 		 * of nodes, and move tasks towards the group with the most
1341 		 * memory accesses. When comparing two nodes at distance
1342 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1343 		 * of each group. Skip other nodes.
1344 		 */
1345 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1346 					dist >= maxdist)
1347 			continue;
1348 
1349 		/* Add up the faults from nearby nodes. */
1350 		if (task)
1351 			faults = task_faults(p, node);
1352 		else
1353 			faults = group_faults(p, node);
1354 
1355 		/*
1356 		 * On systems with a glueless mesh NUMA topology, there are
1357 		 * no fixed "groups of nodes". Instead, nodes that are not
1358 		 * directly connected bounce traffic through intermediate
1359 		 * nodes; a numa_group can occupy any set of nodes.
1360 		 * The further away a node is, the less the faults count.
1361 		 * This seems to result in good task placement.
1362 		 */
1363 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1364 			faults *= (sched_max_numa_distance - dist);
1365 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1366 		}
1367 
1368 		score += faults;
1369 	}
1370 
1371 	return score;
1372 }
1373 
1374 /*
1375  * These return the fraction of accesses done by a particular task, or
1376  * task group, on a particular numa node.  The group weight is given a
1377  * larger multiplier, in order to group tasks together that are almost
1378  * evenly spread out between numa nodes.
1379  */
1380 static inline unsigned long task_weight(struct task_struct *p, int nid,
1381 					int dist)
1382 {
1383 	unsigned long faults, total_faults;
1384 
1385 	if (!p->numa_faults)
1386 		return 0;
1387 
1388 	total_faults = p->total_numa_faults;
1389 
1390 	if (!total_faults)
1391 		return 0;
1392 
1393 	faults = task_faults(p, nid);
1394 	faults += score_nearby_nodes(p, nid, dist, true);
1395 
1396 	return 1000 * faults / total_faults;
1397 }
1398 
1399 static inline unsigned long group_weight(struct task_struct *p, int nid,
1400 					 int dist)
1401 {
1402 	struct numa_group *ng = deref_task_numa_group(p);
1403 	unsigned long faults, total_faults;
1404 
1405 	if (!ng)
1406 		return 0;
1407 
1408 	total_faults = ng->total_faults;
1409 
1410 	if (!total_faults)
1411 		return 0;
1412 
1413 	faults = group_faults(p, nid);
1414 	faults += score_nearby_nodes(p, nid, dist, false);
1415 
1416 	return 1000 * faults / total_faults;
1417 }
1418 
1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1420 				int src_nid, int dst_cpu)
1421 {
1422 	struct numa_group *ng = deref_curr_numa_group(p);
1423 	int dst_nid = cpu_to_node(dst_cpu);
1424 	int last_cpupid, this_cpupid;
1425 
1426 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1427 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1428 
1429 	/*
1430 	 * Allow first faults or private faults to migrate immediately early in
1431 	 * the lifetime of a task. The magic number 4 is based on waiting for
1432 	 * two full passes of the "multi-stage node selection" test that is
1433 	 * executed below.
1434 	 */
1435 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1436 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1437 		return true;
1438 
1439 	/*
1440 	 * Multi-stage node selection is used in conjunction with a periodic
1441 	 * migration fault to build a temporal task<->page relation. By using
1442 	 * a two-stage filter we remove short/unlikely relations.
1443 	 *
1444 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 	 * a task's usage of a particular page (n_p) per total usage of this
1446 	 * page (n_t) (in a given time-span) to a probability.
1447 	 *
1448 	 * Our periodic faults will sample this probability and getting the
1449 	 * same result twice in a row, given these samples are fully
1450 	 * independent, is then given by P(n)^2, provided our sample period
1451 	 * is sufficiently short compared to the usage pattern.
1452 	 *
1453 	 * This quadric squishes small probabilities, making it less likely we
1454 	 * act on an unlikely task<->page relation.
1455 	 */
1456 	if (!cpupid_pid_unset(last_cpupid) &&
1457 				cpupid_to_nid(last_cpupid) != dst_nid)
1458 		return false;
1459 
1460 	/* Always allow migrate on private faults */
1461 	if (cpupid_match_pid(p, last_cpupid))
1462 		return true;
1463 
1464 	/* A shared fault, but p->numa_group has not been set up yet. */
1465 	if (!ng)
1466 		return true;
1467 
1468 	/*
1469 	 * Destination node is much more heavily used than the source
1470 	 * node? Allow migration.
1471 	 */
1472 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1473 					ACTIVE_NODE_FRACTION)
1474 		return true;
1475 
1476 	/*
1477 	 * Distribute memory according to CPU & memory use on each node,
1478 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1479 	 *
1480 	 * faults_cpu(dst)   3   faults_cpu(src)
1481 	 * --------------- * - > ---------------
1482 	 * faults_mem(dst)   4   faults_mem(src)
1483 	 */
1484 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1485 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1486 }
1487 
1488 /*
1489  * 'numa_type' describes the node at the moment of load balancing.
1490  */
1491 enum numa_type {
1492 	/* The node has spare capacity that can be used to run more tasks.  */
1493 	node_has_spare = 0,
1494 	/*
1495 	 * The node is fully used and the tasks don't compete for more CPU
1496 	 * cycles. Nevertheless, some tasks might wait before running.
1497 	 */
1498 	node_fully_busy,
1499 	/*
1500 	 * The node is overloaded and can't provide expected CPU cycles to all
1501 	 * tasks.
1502 	 */
1503 	node_overloaded
1504 };
1505 
1506 /* Cached statistics for all CPUs within a node */
1507 struct numa_stats {
1508 	unsigned long load;
1509 	unsigned long util;
1510 	/* Total compute capacity of CPUs on a node */
1511 	unsigned long compute_capacity;
1512 	unsigned int nr_running;
1513 	unsigned int weight;
1514 	enum numa_type node_type;
1515 	int idle_cpu;
1516 };
1517 
1518 static inline bool is_core_idle(int cpu)
1519 {
1520 #ifdef CONFIG_SCHED_SMT
1521 	int sibling;
1522 
1523 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1524 		if (cpu == sibling)
1525 			continue;
1526 
1527 		if (!idle_cpu(cpu))
1528 			return false;
1529 	}
1530 #endif
1531 
1532 	return true;
1533 }
1534 
1535 struct task_numa_env {
1536 	struct task_struct *p;
1537 
1538 	int src_cpu, src_nid;
1539 	int dst_cpu, dst_nid;
1540 
1541 	struct numa_stats src_stats, dst_stats;
1542 
1543 	int imbalance_pct;
1544 	int dist;
1545 
1546 	struct task_struct *best_task;
1547 	long best_imp;
1548 	int best_cpu;
1549 };
1550 
1551 static unsigned long cpu_load(struct rq *rq);
1552 static unsigned long cpu_util(int cpu);
1553 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
1554 
1555 static inline enum
1556 numa_type numa_classify(unsigned int imbalance_pct,
1557 			 struct numa_stats *ns)
1558 {
1559 	if ((ns->nr_running > ns->weight) &&
1560 	    ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1561 		return node_overloaded;
1562 
1563 	if ((ns->nr_running < ns->weight) ||
1564 	    ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1565 		return node_has_spare;
1566 
1567 	return node_fully_busy;
1568 }
1569 
1570 #ifdef CONFIG_SCHED_SMT
1571 /* Forward declarations of select_idle_sibling helpers */
1572 static inline bool test_idle_cores(int cpu, bool def);
1573 static inline int numa_idle_core(int idle_core, int cpu)
1574 {
1575 	if (!static_branch_likely(&sched_smt_present) ||
1576 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1577 		return idle_core;
1578 
1579 	/*
1580 	 * Prefer cores instead of packing HT siblings
1581 	 * and triggering future load balancing.
1582 	 */
1583 	if (is_core_idle(cpu))
1584 		idle_core = cpu;
1585 
1586 	return idle_core;
1587 }
1588 #else
1589 static inline int numa_idle_core(int idle_core, int cpu)
1590 {
1591 	return idle_core;
1592 }
1593 #endif
1594 
1595 /*
1596  * Gather all necessary information to make NUMA balancing placement
1597  * decisions that are compatible with standard load balancer. This
1598  * borrows code and logic from update_sg_lb_stats but sharing a
1599  * common implementation is impractical.
1600  */
1601 static void update_numa_stats(struct task_numa_env *env,
1602 			      struct numa_stats *ns, int nid,
1603 			      bool find_idle)
1604 {
1605 	int cpu, idle_core = -1;
1606 
1607 	memset(ns, 0, sizeof(*ns));
1608 	ns->idle_cpu = -1;
1609 
1610 	rcu_read_lock();
1611 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1612 		struct rq *rq = cpu_rq(cpu);
1613 
1614 		ns->load += cpu_load(rq);
1615 		ns->util += cpu_util(cpu);
1616 		ns->nr_running += rq->cfs.h_nr_running;
1617 		ns->compute_capacity += capacity_of(cpu);
1618 
1619 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1620 			if (READ_ONCE(rq->numa_migrate_on) ||
1621 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1622 				continue;
1623 
1624 			if (ns->idle_cpu == -1)
1625 				ns->idle_cpu = cpu;
1626 
1627 			idle_core = numa_idle_core(idle_core, cpu);
1628 		}
1629 	}
1630 	rcu_read_unlock();
1631 
1632 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1633 
1634 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1635 
1636 	if (idle_core >= 0)
1637 		ns->idle_cpu = idle_core;
1638 }
1639 
1640 static void task_numa_assign(struct task_numa_env *env,
1641 			     struct task_struct *p, long imp)
1642 {
1643 	struct rq *rq = cpu_rq(env->dst_cpu);
1644 
1645 	/* Check if run-queue part of active NUMA balance. */
1646 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1647 		int cpu;
1648 		int start = env->dst_cpu;
1649 
1650 		/* Find alternative idle CPU. */
1651 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1652 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1653 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1654 				continue;
1655 			}
1656 
1657 			env->dst_cpu = cpu;
1658 			rq = cpu_rq(env->dst_cpu);
1659 			if (!xchg(&rq->numa_migrate_on, 1))
1660 				goto assign;
1661 		}
1662 
1663 		/* Failed to find an alternative idle CPU */
1664 		return;
1665 	}
1666 
1667 assign:
1668 	/*
1669 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1670 	 * found a better CPU to move/swap.
1671 	 */
1672 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1673 		rq = cpu_rq(env->best_cpu);
1674 		WRITE_ONCE(rq->numa_migrate_on, 0);
1675 	}
1676 
1677 	if (env->best_task)
1678 		put_task_struct(env->best_task);
1679 	if (p)
1680 		get_task_struct(p);
1681 
1682 	env->best_task = p;
1683 	env->best_imp = imp;
1684 	env->best_cpu = env->dst_cpu;
1685 }
1686 
1687 static bool load_too_imbalanced(long src_load, long dst_load,
1688 				struct task_numa_env *env)
1689 {
1690 	long imb, old_imb;
1691 	long orig_src_load, orig_dst_load;
1692 	long src_capacity, dst_capacity;
1693 
1694 	/*
1695 	 * The load is corrected for the CPU capacity available on each node.
1696 	 *
1697 	 * src_load        dst_load
1698 	 * ------------ vs ---------
1699 	 * src_capacity    dst_capacity
1700 	 */
1701 	src_capacity = env->src_stats.compute_capacity;
1702 	dst_capacity = env->dst_stats.compute_capacity;
1703 
1704 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1705 
1706 	orig_src_load = env->src_stats.load;
1707 	orig_dst_load = env->dst_stats.load;
1708 
1709 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1710 
1711 	/* Would this change make things worse? */
1712 	return (imb > old_imb);
1713 }
1714 
1715 /*
1716  * Maximum NUMA importance can be 1998 (2*999);
1717  * SMALLIMP @ 30 would be close to 1998/64.
1718  * Used to deter task migration.
1719  */
1720 #define SMALLIMP	30
1721 
1722 /*
1723  * This checks if the overall compute and NUMA accesses of the system would
1724  * be improved if the source tasks was migrated to the target dst_cpu taking
1725  * into account that it might be best if task running on the dst_cpu should
1726  * be exchanged with the source task
1727  */
1728 static bool task_numa_compare(struct task_numa_env *env,
1729 			      long taskimp, long groupimp, bool maymove)
1730 {
1731 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1732 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1733 	long imp = p_ng ? groupimp : taskimp;
1734 	struct task_struct *cur;
1735 	long src_load, dst_load;
1736 	int dist = env->dist;
1737 	long moveimp = imp;
1738 	long load;
1739 	bool stopsearch = false;
1740 
1741 	if (READ_ONCE(dst_rq->numa_migrate_on))
1742 		return false;
1743 
1744 	rcu_read_lock();
1745 	cur = rcu_dereference(dst_rq->curr);
1746 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1747 		cur = NULL;
1748 
1749 	/*
1750 	 * Because we have preemption enabled we can get migrated around and
1751 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1752 	 */
1753 	if (cur == env->p) {
1754 		stopsearch = true;
1755 		goto unlock;
1756 	}
1757 
1758 	if (!cur) {
1759 		if (maymove && moveimp >= env->best_imp)
1760 			goto assign;
1761 		else
1762 			goto unlock;
1763 	}
1764 
1765 	/* Skip this swap candidate if cannot move to the source cpu. */
1766 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1767 		goto unlock;
1768 
1769 	/*
1770 	 * Skip this swap candidate if it is not moving to its preferred
1771 	 * node and the best task is.
1772 	 */
1773 	if (env->best_task &&
1774 	    env->best_task->numa_preferred_nid == env->src_nid &&
1775 	    cur->numa_preferred_nid != env->src_nid) {
1776 		goto unlock;
1777 	}
1778 
1779 	/*
1780 	 * "imp" is the fault differential for the source task between the
1781 	 * source and destination node. Calculate the total differential for
1782 	 * the source task and potential destination task. The more negative
1783 	 * the value is, the more remote accesses that would be expected to
1784 	 * be incurred if the tasks were swapped.
1785 	 *
1786 	 * If dst and source tasks are in the same NUMA group, or not
1787 	 * in any group then look only at task weights.
1788 	 */
1789 	cur_ng = rcu_dereference(cur->numa_group);
1790 	if (cur_ng == p_ng) {
1791 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1792 		      task_weight(cur, env->dst_nid, dist);
1793 		/*
1794 		 * Add some hysteresis to prevent swapping the
1795 		 * tasks within a group over tiny differences.
1796 		 */
1797 		if (cur_ng)
1798 			imp -= imp / 16;
1799 	} else {
1800 		/*
1801 		 * Compare the group weights. If a task is all by itself
1802 		 * (not part of a group), use the task weight instead.
1803 		 */
1804 		if (cur_ng && p_ng)
1805 			imp += group_weight(cur, env->src_nid, dist) -
1806 			       group_weight(cur, env->dst_nid, dist);
1807 		else
1808 			imp += task_weight(cur, env->src_nid, dist) -
1809 			       task_weight(cur, env->dst_nid, dist);
1810 	}
1811 
1812 	/* Discourage picking a task already on its preferred node */
1813 	if (cur->numa_preferred_nid == env->dst_nid)
1814 		imp -= imp / 16;
1815 
1816 	/*
1817 	 * Encourage picking a task that moves to its preferred node.
1818 	 * This potentially makes imp larger than it's maximum of
1819 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1820 	 * case, it does not matter.
1821 	 */
1822 	if (cur->numa_preferred_nid == env->src_nid)
1823 		imp += imp / 8;
1824 
1825 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1826 		imp = moveimp;
1827 		cur = NULL;
1828 		goto assign;
1829 	}
1830 
1831 	/*
1832 	 * Prefer swapping with a task moving to its preferred node over a
1833 	 * task that is not.
1834 	 */
1835 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1836 	    env->best_task->numa_preferred_nid != env->src_nid) {
1837 		goto assign;
1838 	}
1839 
1840 	/*
1841 	 * If the NUMA importance is less than SMALLIMP,
1842 	 * task migration might only result in ping pong
1843 	 * of tasks and also hurt performance due to cache
1844 	 * misses.
1845 	 */
1846 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1847 		goto unlock;
1848 
1849 	/*
1850 	 * In the overloaded case, try and keep the load balanced.
1851 	 */
1852 	load = task_h_load(env->p) - task_h_load(cur);
1853 	if (!load)
1854 		goto assign;
1855 
1856 	dst_load = env->dst_stats.load + load;
1857 	src_load = env->src_stats.load - load;
1858 
1859 	if (load_too_imbalanced(src_load, dst_load, env))
1860 		goto unlock;
1861 
1862 assign:
1863 	/* Evaluate an idle CPU for a task numa move. */
1864 	if (!cur) {
1865 		int cpu = env->dst_stats.idle_cpu;
1866 
1867 		/* Nothing cached so current CPU went idle since the search. */
1868 		if (cpu < 0)
1869 			cpu = env->dst_cpu;
1870 
1871 		/*
1872 		 * If the CPU is no longer truly idle and the previous best CPU
1873 		 * is, keep using it.
1874 		 */
1875 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1876 		    idle_cpu(env->best_cpu)) {
1877 			cpu = env->best_cpu;
1878 		}
1879 
1880 		env->dst_cpu = cpu;
1881 	}
1882 
1883 	task_numa_assign(env, cur, imp);
1884 
1885 	/*
1886 	 * If a move to idle is allowed because there is capacity or load
1887 	 * balance improves then stop the search. While a better swap
1888 	 * candidate may exist, a search is not free.
1889 	 */
1890 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1891 		stopsearch = true;
1892 
1893 	/*
1894 	 * If a swap candidate must be identified and the current best task
1895 	 * moves its preferred node then stop the search.
1896 	 */
1897 	if (!maymove && env->best_task &&
1898 	    env->best_task->numa_preferred_nid == env->src_nid) {
1899 		stopsearch = true;
1900 	}
1901 unlock:
1902 	rcu_read_unlock();
1903 
1904 	return stopsearch;
1905 }
1906 
1907 static void task_numa_find_cpu(struct task_numa_env *env,
1908 				long taskimp, long groupimp)
1909 {
1910 	bool maymove = false;
1911 	int cpu;
1912 
1913 	/*
1914 	 * If dst node has spare capacity, then check if there is an
1915 	 * imbalance that would be overruled by the load balancer.
1916 	 */
1917 	if (env->dst_stats.node_type == node_has_spare) {
1918 		unsigned int imbalance;
1919 		int src_running, dst_running;
1920 
1921 		/*
1922 		 * Would movement cause an imbalance? Note that if src has
1923 		 * more running tasks that the imbalance is ignored as the
1924 		 * move improves the imbalance from the perspective of the
1925 		 * CPU load balancer.
1926 		 * */
1927 		src_running = env->src_stats.nr_running - 1;
1928 		dst_running = env->dst_stats.nr_running + 1;
1929 		imbalance = max(0, dst_running - src_running);
1930 		imbalance = adjust_numa_imbalance(imbalance, src_running);
1931 
1932 		/* Use idle CPU if there is no imbalance */
1933 		if (!imbalance) {
1934 			maymove = true;
1935 			if (env->dst_stats.idle_cpu >= 0) {
1936 				env->dst_cpu = env->dst_stats.idle_cpu;
1937 				task_numa_assign(env, NULL, 0);
1938 				return;
1939 			}
1940 		}
1941 	} else {
1942 		long src_load, dst_load, load;
1943 		/*
1944 		 * If the improvement from just moving env->p direction is better
1945 		 * than swapping tasks around, check if a move is possible.
1946 		 */
1947 		load = task_h_load(env->p);
1948 		dst_load = env->dst_stats.load + load;
1949 		src_load = env->src_stats.load - load;
1950 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1951 	}
1952 
1953 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 		/* Skip this CPU if the source task cannot migrate */
1955 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1956 			continue;
1957 
1958 		env->dst_cpu = cpu;
1959 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1960 			break;
1961 	}
1962 }
1963 
1964 static int task_numa_migrate(struct task_struct *p)
1965 {
1966 	struct task_numa_env env = {
1967 		.p = p,
1968 
1969 		.src_cpu = task_cpu(p),
1970 		.src_nid = task_node(p),
1971 
1972 		.imbalance_pct = 112,
1973 
1974 		.best_task = NULL,
1975 		.best_imp = 0,
1976 		.best_cpu = -1,
1977 	};
1978 	unsigned long taskweight, groupweight;
1979 	struct sched_domain *sd;
1980 	long taskimp, groupimp;
1981 	struct numa_group *ng;
1982 	struct rq *best_rq;
1983 	int nid, ret, dist;
1984 
1985 	/*
1986 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 	 * imbalance and would be the first to start moving tasks about.
1988 	 *
1989 	 * And we want to avoid any moving of tasks about, as that would create
1990 	 * random movement of tasks -- counter the numa conditions we're trying
1991 	 * to satisfy here.
1992 	 */
1993 	rcu_read_lock();
1994 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1995 	if (sd)
1996 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1997 	rcu_read_unlock();
1998 
1999 	/*
2000 	 * Cpusets can break the scheduler domain tree into smaller
2001 	 * balance domains, some of which do not cross NUMA boundaries.
2002 	 * Tasks that are "trapped" in such domains cannot be migrated
2003 	 * elsewhere, so there is no point in (re)trying.
2004 	 */
2005 	if (unlikely(!sd)) {
2006 		sched_setnuma(p, task_node(p));
2007 		return -EINVAL;
2008 	}
2009 
2010 	env.dst_nid = p->numa_preferred_nid;
2011 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 	taskweight = task_weight(p, env.src_nid, dist);
2013 	groupweight = group_weight(p, env.src_nid, dist);
2014 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2015 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2017 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2018 
2019 	/* Try to find a spot on the preferred nid. */
2020 	task_numa_find_cpu(&env, taskimp, groupimp);
2021 
2022 	/*
2023 	 * Look at other nodes in these cases:
2024 	 * - there is no space available on the preferred_nid
2025 	 * - the task is part of a numa_group that is interleaved across
2026 	 *   multiple NUMA nodes; in order to better consolidate the group,
2027 	 *   we need to check other locations.
2028 	 */
2029 	ng = deref_curr_numa_group(p);
2030 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2031 		for_each_online_node(nid) {
2032 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033 				continue;
2034 
2035 			dist = node_distance(env.src_nid, env.dst_nid);
2036 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037 						dist != env.dist) {
2038 				taskweight = task_weight(p, env.src_nid, dist);
2039 				groupweight = group_weight(p, env.src_nid, dist);
2040 			}
2041 
2042 			/* Only consider nodes where both task and groups benefit */
2043 			taskimp = task_weight(p, nid, dist) - taskweight;
2044 			groupimp = group_weight(p, nid, dist) - groupweight;
2045 			if (taskimp < 0 && groupimp < 0)
2046 				continue;
2047 
2048 			env.dist = dist;
2049 			env.dst_nid = nid;
2050 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2051 			task_numa_find_cpu(&env, taskimp, groupimp);
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * If the task is part of a workload that spans multiple NUMA nodes,
2057 	 * and is migrating into one of the workload's active nodes, remember
2058 	 * this node as the task's preferred numa node, so the workload can
2059 	 * settle down.
2060 	 * A task that migrated to a second choice node will be better off
2061 	 * trying for a better one later. Do not set the preferred node here.
2062 	 */
2063 	if (ng) {
2064 		if (env.best_cpu == -1)
2065 			nid = env.src_nid;
2066 		else
2067 			nid = cpu_to_node(env.best_cpu);
2068 
2069 		if (nid != p->numa_preferred_nid)
2070 			sched_setnuma(p, nid);
2071 	}
2072 
2073 	/* No better CPU than the current one was found. */
2074 	if (env.best_cpu == -1) {
2075 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2076 		return -EAGAIN;
2077 	}
2078 
2079 	best_rq = cpu_rq(env.best_cpu);
2080 	if (env.best_task == NULL) {
2081 		ret = migrate_task_to(p, env.best_cpu);
2082 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2083 		if (ret != 0)
2084 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2085 		return ret;
2086 	}
2087 
2088 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2089 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2090 
2091 	if (ret != 0)
2092 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2093 	put_task_struct(env.best_task);
2094 	return ret;
2095 }
2096 
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct *p)
2099 {
2100 	unsigned long interval = HZ;
2101 
2102 	/* This task has no NUMA fault statistics yet */
2103 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2104 		return;
2105 
2106 	/* Periodically retry migrating the task to the preferred node */
2107 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2108 	p->numa_migrate_retry = jiffies + interval;
2109 
2110 	/* Success if task is already running on preferred CPU */
2111 	if (task_node(p) == p->numa_preferred_nid)
2112 		return;
2113 
2114 	/* Otherwise, try migrate to a CPU on the preferred node */
2115 	task_numa_migrate(p);
2116 }
2117 
2118 /*
2119  * Find out how many nodes on the workload is actively running on. Do this by
2120  * tracking the nodes from which NUMA hinting faults are triggered. This can
2121  * be different from the set of nodes where the workload's memory is currently
2122  * located.
2123  */
2124 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2125 {
2126 	unsigned long faults, max_faults = 0;
2127 	int nid, active_nodes = 0;
2128 
2129 	for_each_online_node(nid) {
2130 		faults = group_faults_cpu(numa_group, nid);
2131 		if (faults > max_faults)
2132 			max_faults = faults;
2133 	}
2134 
2135 	for_each_online_node(nid) {
2136 		faults = group_faults_cpu(numa_group, nid);
2137 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138 			active_nodes++;
2139 	}
2140 
2141 	numa_group->max_faults_cpu = max_faults;
2142 	numa_group->active_nodes = active_nodes;
2143 }
2144 
2145 /*
2146  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147  * increments. The more local the fault statistics are, the higher the scan
2148  * period will be for the next scan window. If local/(local+remote) ratio is
2149  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150  * the scan period will decrease. Aim for 70% local accesses.
2151  */
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2154 
2155 /*
2156  * Increase the scan period (slow down scanning) if the majority of
2157  * our memory is already on our local node, or if the majority of
2158  * the page accesses are shared with other processes.
2159  * Otherwise, decrease the scan period.
2160  */
2161 static void update_task_scan_period(struct task_struct *p,
2162 			unsigned long shared, unsigned long private)
2163 {
2164 	unsigned int period_slot;
2165 	int lr_ratio, ps_ratio;
2166 	int diff;
2167 
2168 	unsigned long remote = p->numa_faults_locality[0];
2169 	unsigned long local = p->numa_faults_locality[1];
2170 
2171 	/*
2172 	 * If there were no record hinting faults then either the task is
2173 	 * completely idle or all activity is areas that are not of interest
2174 	 * to automatic numa balancing. Related to that, if there were failed
2175 	 * migration then it implies we are migrating too quickly or the local
2176 	 * node is overloaded. In either case, scan slower
2177 	 */
2178 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2179 		p->numa_scan_period = min(p->numa_scan_period_max,
2180 			p->numa_scan_period << 1);
2181 
2182 		p->mm->numa_next_scan = jiffies +
2183 			msecs_to_jiffies(p->numa_scan_period);
2184 
2185 		return;
2186 	}
2187 
2188 	/*
2189 	 * Prepare to scale scan period relative to the current period.
2190 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2193 	 */
2194 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2195 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2197 
2198 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2199 		/*
2200 		 * Most memory accesses are local. There is no need to
2201 		 * do fast NUMA scanning, since memory is already local.
2202 		 */
2203 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204 		if (!slot)
2205 			slot = 1;
2206 		diff = slot * period_slot;
2207 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2208 		/*
2209 		 * Most memory accesses are shared with other tasks.
2210 		 * There is no point in continuing fast NUMA scanning,
2211 		 * since other tasks may just move the memory elsewhere.
2212 		 */
2213 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2214 		if (!slot)
2215 			slot = 1;
2216 		diff = slot * period_slot;
2217 	} else {
2218 		/*
2219 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 		 * yet they are not on the local NUMA node. Speed up
2221 		 * NUMA scanning to get the memory moved over.
2222 		 */
2223 		int ratio = max(lr_ratio, ps_ratio);
2224 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2225 	}
2226 
2227 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 			task_scan_min(p), task_scan_max(p));
2229 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2230 }
2231 
2232 /*
2233  * Get the fraction of time the task has been running since the last
2234  * NUMA placement cycle. The scheduler keeps similar statistics, but
2235  * decays those on a 32ms period, which is orders of magnitude off
2236  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237  * stats only if the task is so new there are no NUMA statistics yet.
2238  */
2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2240 {
2241 	u64 runtime, delta, now;
2242 	/* Use the start of this time slice to avoid calculations. */
2243 	now = p->se.exec_start;
2244 	runtime = p->se.sum_exec_runtime;
2245 
2246 	if (p->last_task_numa_placement) {
2247 		delta = runtime - p->last_sum_exec_runtime;
2248 		*period = now - p->last_task_numa_placement;
2249 
2250 		/* Avoid time going backwards, prevent potential divide error: */
2251 		if (unlikely((s64)*period < 0))
2252 			*period = 0;
2253 	} else {
2254 		delta = p->se.avg.load_sum;
2255 		*period = LOAD_AVG_MAX;
2256 	}
2257 
2258 	p->last_sum_exec_runtime = runtime;
2259 	p->last_task_numa_placement = now;
2260 
2261 	return delta;
2262 }
2263 
2264 /*
2265  * Determine the preferred nid for a task in a numa_group. This needs to
2266  * be done in a way that produces consistent results with group_weight,
2267  * otherwise workloads might not converge.
2268  */
2269 static int preferred_group_nid(struct task_struct *p, int nid)
2270 {
2271 	nodemask_t nodes;
2272 	int dist;
2273 
2274 	/* Direct connections between all NUMA nodes. */
2275 	if (sched_numa_topology_type == NUMA_DIRECT)
2276 		return nid;
2277 
2278 	/*
2279 	 * On a system with glueless mesh NUMA topology, group_weight
2280 	 * scores nodes according to the number of NUMA hinting faults on
2281 	 * both the node itself, and on nearby nodes.
2282 	 */
2283 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 		unsigned long score, max_score = 0;
2285 		int node, max_node = nid;
2286 
2287 		dist = sched_max_numa_distance;
2288 
2289 		for_each_online_node(node) {
2290 			score = group_weight(p, node, dist);
2291 			if (score > max_score) {
2292 				max_score = score;
2293 				max_node = node;
2294 			}
2295 		}
2296 		return max_node;
2297 	}
2298 
2299 	/*
2300 	 * Finding the preferred nid in a system with NUMA backplane
2301 	 * interconnect topology is more involved. The goal is to locate
2302 	 * tasks from numa_groups near each other in the system, and
2303 	 * untangle workloads from different sides of the system. This requires
2304 	 * searching down the hierarchy of node groups, recursively searching
2305 	 * inside the highest scoring group of nodes. The nodemask tricks
2306 	 * keep the complexity of the search down.
2307 	 */
2308 	nodes = node_online_map;
2309 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 		unsigned long max_faults = 0;
2311 		nodemask_t max_group = NODE_MASK_NONE;
2312 		int a, b;
2313 
2314 		/* Are there nodes at this distance from each other? */
2315 		if (!find_numa_distance(dist))
2316 			continue;
2317 
2318 		for_each_node_mask(a, nodes) {
2319 			unsigned long faults = 0;
2320 			nodemask_t this_group;
2321 			nodes_clear(this_group);
2322 
2323 			/* Sum group's NUMA faults; includes a==b case. */
2324 			for_each_node_mask(b, nodes) {
2325 				if (node_distance(a, b) < dist) {
2326 					faults += group_faults(p, b);
2327 					node_set(b, this_group);
2328 					node_clear(b, nodes);
2329 				}
2330 			}
2331 
2332 			/* Remember the top group. */
2333 			if (faults > max_faults) {
2334 				max_faults = faults;
2335 				max_group = this_group;
2336 				/*
2337 				 * subtle: at the smallest distance there is
2338 				 * just one node left in each "group", the
2339 				 * winner is the preferred nid.
2340 				 */
2341 				nid = a;
2342 			}
2343 		}
2344 		/* Next round, evaluate the nodes within max_group. */
2345 		if (!max_faults)
2346 			break;
2347 		nodes = max_group;
2348 	}
2349 	return nid;
2350 }
2351 
2352 static void task_numa_placement(struct task_struct *p)
2353 {
2354 	int seq, nid, max_nid = NUMA_NO_NODE;
2355 	unsigned long max_faults = 0;
2356 	unsigned long fault_types[2] = { 0, 0 };
2357 	unsigned long total_faults;
2358 	u64 runtime, period;
2359 	spinlock_t *group_lock = NULL;
2360 	struct numa_group *ng;
2361 
2362 	/*
2363 	 * The p->mm->numa_scan_seq field gets updated without
2364 	 * exclusive access. Use READ_ONCE() here to ensure
2365 	 * that the field is read in a single access:
2366 	 */
2367 	seq = READ_ONCE(p->mm->numa_scan_seq);
2368 	if (p->numa_scan_seq == seq)
2369 		return;
2370 	p->numa_scan_seq = seq;
2371 	p->numa_scan_period_max = task_scan_max(p);
2372 
2373 	total_faults = p->numa_faults_locality[0] +
2374 		       p->numa_faults_locality[1];
2375 	runtime = numa_get_avg_runtime(p, &period);
2376 
2377 	/* If the task is part of a group prevent parallel updates to group stats */
2378 	ng = deref_curr_numa_group(p);
2379 	if (ng) {
2380 		group_lock = &ng->lock;
2381 		spin_lock_irq(group_lock);
2382 	}
2383 
2384 	/* Find the node with the highest number of faults */
2385 	for_each_online_node(nid) {
2386 		/* Keep track of the offsets in numa_faults array */
2387 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2388 		unsigned long faults = 0, group_faults = 0;
2389 		int priv;
2390 
2391 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2392 			long diff, f_diff, f_weight;
2393 
2394 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2398 
2399 			/* Decay existing window, copy faults since last scan */
2400 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 			fault_types[priv] += p->numa_faults[membuf_idx];
2402 			p->numa_faults[membuf_idx] = 0;
2403 
2404 			/*
2405 			 * Normalize the faults_from, so all tasks in a group
2406 			 * count according to CPU use, instead of by the raw
2407 			 * number of faults. Tasks with little runtime have
2408 			 * little over-all impact on throughput, and thus their
2409 			 * faults are less important.
2410 			 */
2411 			f_weight = div64_u64(runtime << 16, period + 1);
2412 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2413 				   (total_faults + 1);
2414 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 			p->numa_faults[cpubuf_idx] = 0;
2416 
2417 			p->numa_faults[mem_idx] += diff;
2418 			p->numa_faults[cpu_idx] += f_diff;
2419 			faults += p->numa_faults[mem_idx];
2420 			p->total_numa_faults += diff;
2421 			if (ng) {
2422 				/*
2423 				 * safe because we can only change our own group
2424 				 *
2425 				 * mem_idx represents the offset for a given
2426 				 * nid and priv in a specific region because it
2427 				 * is at the beginning of the numa_faults array.
2428 				 */
2429 				ng->faults[mem_idx] += diff;
2430 				ng->faults_cpu[mem_idx] += f_diff;
2431 				ng->total_faults += diff;
2432 				group_faults += ng->faults[mem_idx];
2433 			}
2434 		}
2435 
2436 		if (!ng) {
2437 			if (faults > max_faults) {
2438 				max_faults = faults;
2439 				max_nid = nid;
2440 			}
2441 		} else if (group_faults > max_faults) {
2442 			max_faults = group_faults;
2443 			max_nid = nid;
2444 		}
2445 	}
2446 
2447 	if (ng) {
2448 		numa_group_count_active_nodes(ng);
2449 		spin_unlock_irq(group_lock);
2450 		max_nid = preferred_group_nid(p, max_nid);
2451 	}
2452 
2453 	if (max_faults) {
2454 		/* Set the new preferred node */
2455 		if (max_nid != p->numa_preferred_nid)
2456 			sched_setnuma(p, max_nid);
2457 	}
2458 
2459 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2460 }
2461 
2462 static inline int get_numa_group(struct numa_group *grp)
2463 {
2464 	return refcount_inc_not_zero(&grp->refcount);
2465 }
2466 
2467 static inline void put_numa_group(struct numa_group *grp)
2468 {
2469 	if (refcount_dec_and_test(&grp->refcount))
2470 		kfree_rcu(grp, rcu);
2471 }
2472 
2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474 			int *priv)
2475 {
2476 	struct numa_group *grp, *my_grp;
2477 	struct task_struct *tsk;
2478 	bool join = false;
2479 	int cpu = cpupid_to_cpu(cpupid);
2480 	int i;
2481 
2482 	if (unlikely(!deref_curr_numa_group(p))) {
2483 		unsigned int size = sizeof(struct numa_group) +
2484 				    4*nr_node_ids*sizeof(unsigned long);
2485 
2486 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487 		if (!grp)
2488 			return;
2489 
2490 		refcount_set(&grp->refcount, 1);
2491 		grp->active_nodes = 1;
2492 		grp->max_faults_cpu = 0;
2493 		spin_lock_init(&grp->lock);
2494 		grp->gid = p->pid;
2495 		/* Second half of the array tracks nids where faults happen */
2496 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497 						nr_node_ids;
2498 
2499 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2500 			grp->faults[i] = p->numa_faults[i];
2501 
2502 		grp->total_faults = p->total_numa_faults;
2503 
2504 		grp->nr_tasks++;
2505 		rcu_assign_pointer(p->numa_group, grp);
2506 	}
2507 
2508 	rcu_read_lock();
2509 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2510 
2511 	if (!cpupid_match_pid(tsk, cpupid))
2512 		goto no_join;
2513 
2514 	grp = rcu_dereference(tsk->numa_group);
2515 	if (!grp)
2516 		goto no_join;
2517 
2518 	my_grp = deref_curr_numa_group(p);
2519 	if (grp == my_grp)
2520 		goto no_join;
2521 
2522 	/*
2523 	 * Only join the other group if its bigger; if we're the bigger group,
2524 	 * the other task will join us.
2525 	 */
2526 	if (my_grp->nr_tasks > grp->nr_tasks)
2527 		goto no_join;
2528 
2529 	/*
2530 	 * Tie-break on the grp address.
2531 	 */
2532 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2533 		goto no_join;
2534 
2535 	/* Always join threads in the same process. */
2536 	if (tsk->mm == current->mm)
2537 		join = true;
2538 
2539 	/* Simple filter to avoid false positives due to PID collisions */
2540 	if (flags & TNF_SHARED)
2541 		join = true;
2542 
2543 	/* Update priv based on whether false sharing was detected */
2544 	*priv = !join;
2545 
2546 	if (join && !get_numa_group(grp))
2547 		goto no_join;
2548 
2549 	rcu_read_unlock();
2550 
2551 	if (!join)
2552 		return;
2553 
2554 	BUG_ON(irqs_disabled());
2555 	double_lock_irq(&my_grp->lock, &grp->lock);
2556 
2557 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2558 		my_grp->faults[i] -= p->numa_faults[i];
2559 		grp->faults[i] += p->numa_faults[i];
2560 	}
2561 	my_grp->total_faults -= p->total_numa_faults;
2562 	grp->total_faults += p->total_numa_faults;
2563 
2564 	my_grp->nr_tasks--;
2565 	grp->nr_tasks++;
2566 
2567 	spin_unlock(&my_grp->lock);
2568 	spin_unlock_irq(&grp->lock);
2569 
2570 	rcu_assign_pointer(p->numa_group, grp);
2571 
2572 	put_numa_group(my_grp);
2573 	return;
2574 
2575 no_join:
2576 	rcu_read_unlock();
2577 	return;
2578 }
2579 
2580 /*
2581  * Get rid of NUMA staticstics associated with a task (either current or dead).
2582  * If @final is set, the task is dead and has reached refcount zero, so we can
2583  * safely free all relevant data structures. Otherwise, there might be
2584  * concurrent reads from places like load balancing and procfs, and we should
2585  * reset the data back to default state without freeing ->numa_faults.
2586  */
2587 void task_numa_free(struct task_struct *p, bool final)
2588 {
2589 	/* safe: p either is current or is being freed by current */
2590 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2591 	unsigned long *numa_faults = p->numa_faults;
2592 	unsigned long flags;
2593 	int i;
2594 
2595 	if (!numa_faults)
2596 		return;
2597 
2598 	if (grp) {
2599 		spin_lock_irqsave(&grp->lock, flags);
2600 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2601 			grp->faults[i] -= p->numa_faults[i];
2602 		grp->total_faults -= p->total_numa_faults;
2603 
2604 		grp->nr_tasks--;
2605 		spin_unlock_irqrestore(&grp->lock, flags);
2606 		RCU_INIT_POINTER(p->numa_group, NULL);
2607 		put_numa_group(grp);
2608 	}
2609 
2610 	if (final) {
2611 		p->numa_faults = NULL;
2612 		kfree(numa_faults);
2613 	} else {
2614 		p->total_numa_faults = 0;
2615 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616 			numa_faults[i] = 0;
2617 	}
2618 }
2619 
2620 /*
2621  * Got a PROT_NONE fault for a page on @node.
2622  */
2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2624 {
2625 	struct task_struct *p = current;
2626 	bool migrated = flags & TNF_MIGRATED;
2627 	int cpu_node = task_node(current);
2628 	int local = !!(flags & TNF_FAULT_LOCAL);
2629 	struct numa_group *ng;
2630 	int priv;
2631 
2632 	if (!static_branch_likely(&sched_numa_balancing))
2633 		return;
2634 
2635 	/* for example, ksmd faulting in a user's mm */
2636 	if (!p->mm)
2637 		return;
2638 
2639 	/* Allocate buffer to track faults on a per-node basis */
2640 	if (unlikely(!p->numa_faults)) {
2641 		int size = sizeof(*p->numa_faults) *
2642 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2643 
2644 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 		if (!p->numa_faults)
2646 			return;
2647 
2648 		p->total_numa_faults = 0;
2649 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2650 	}
2651 
2652 	/*
2653 	 * First accesses are treated as private, otherwise consider accesses
2654 	 * to be private if the accessing pid has not changed
2655 	 */
2656 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657 		priv = 1;
2658 	} else {
2659 		priv = cpupid_match_pid(p, last_cpupid);
2660 		if (!priv && !(flags & TNF_NO_GROUP))
2661 			task_numa_group(p, last_cpupid, flags, &priv);
2662 	}
2663 
2664 	/*
2665 	 * If a workload spans multiple NUMA nodes, a shared fault that
2666 	 * occurs wholly within the set of nodes that the workload is
2667 	 * actively using should be counted as local. This allows the
2668 	 * scan rate to slow down when a workload has settled down.
2669 	 */
2670 	ng = deref_curr_numa_group(p);
2671 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 				numa_is_active_node(cpu_node, ng) &&
2673 				numa_is_active_node(mem_node, ng))
2674 		local = 1;
2675 
2676 	/*
2677 	 * Retry to migrate task to preferred node periodically, in case it
2678 	 * previously failed, or the scheduler moved us.
2679 	 */
2680 	if (time_after(jiffies, p->numa_migrate_retry)) {
2681 		task_numa_placement(p);
2682 		numa_migrate_preferred(p);
2683 	}
2684 
2685 	if (migrated)
2686 		p->numa_pages_migrated += pages;
2687 	if (flags & TNF_MIGRATE_FAIL)
2688 		p->numa_faults_locality[2] += pages;
2689 
2690 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2692 	p->numa_faults_locality[local] += pages;
2693 }
2694 
2695 static void reset_ptenuma_scan(struct task_struct *p)
2696 {
2697 	/*
2698 	 * We only did a read acquisition of the mmap sem, so
2699 	 * p->mm->numa_scan_seq is written to without exclusive access
2700 	 * and the update is not guaranteed to be atomic. That's not
2701 	 * much of an issue though, since this is just used for
2702 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 	 * expensive, to avoid any form of compiler optimizations:
2704 	 */
2705 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2706 	p->mm->numa_scan_offset = 0;
2707 }
2708 
2709 /*
2710  * The expensive part of numa migration is done from task_work context.
2711  * Triggered from task_tick_numa().
2712  */
2713 static void task_numa_work(struct callback_head *work)
2714 {
2715 	unsigned long migrate, next_scan, now = jiffies;
2716 	struct task_struct *p = current;
2717 	struct mm_struct *mm = p->mm;
2718 	u64 runtime = p->se.sum_exec_runtime;
2719 	struct vm_area_struct *vma;
2720 	unsigned long start, end;
2721 	unsigned long nr_pte_updates = 0;
2722 	long pages, virtpages;
2723 
2724 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2725 
2726 	work->next = work;
2727 	/*
2728 	 * Who cares about NUMA placement when they're dying.
2729 	 *
2730 	 * NOTE: make sure not to dereference p->mm before this check,
2731 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 	 * without p->mm even though we still had it when we enqueued this
2733 	 * work.
2734 	 */
2735 	if (p->flags & PF_EXITING)
2736 		return;
2737 
2738 	if (!mm->numa_next_scan) {
2739 		mm->numa_next_scan = now +
2740 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2741 	}
2742 
2743 	/*
2744 	 * Enforce maximal scan/migration frequency..
2745 	 */
2746 	migrate = mm->numa_next_scan;
2747 	if (time_before(now, migrate))
2748 		return;
2749 
2750 	if (p->numa_scan_period == 0) {
2751 		p->numa_scan_period_max = task_scan_max(p);
2752 		p->numa_scan_period = task_scan_start(p);
2753 	}
2754 
2755 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2756 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757 		return;
2758 
2759 	/*
2760 	 * Delay this task enough that another task of this mm will likely win
2761 	 * the next time around.
2762 	 */
2763 	p->node_stamp += 2 * TICK_NSEC;
2764 
2765 	start = mm->numa_scan_offset;
2766 	pages = sysctl_numa_balancing_scan_size;
2767 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2768 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2769 	if (!pages)
2770 		return;
2771 
2772 
2773 	if (!mmap_read_trylock(mm))
2774 		return;
2775 	vma = find_vma(mm, start);
2776 	if (!vma) {
2777 		reset_ptenuma_scan(p);
2778 		start = 0;
2779 		vma = mm->mmap;
2780 	}
2781 	for (; vma; vma = vma->vm_next) {
2782 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2783 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2784 			continue;
2785 		}
2786 
2787 		/*
2788 		 * Shared library pages mapped by multiple processes are not
2789 		 * migrated as it is expected they are cache replicated. Avoid
2790 		 * hinting faults in read-only file-backed mappings or the vdso
2791 		 * as migrating the pages will be of marginal benefit.
2792 		 */
2793 		if (!vma->vm_mm ||
2794 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795 			continue;
2796 
2797 		/*
2798 		 * Skip inaccessible VMAs to avoid any confusion between
2799 		 * PROT_NONE and NUMA hinting ptes
2800 		 */
2801 		if (!vma_is_accessible(vma))
2802 			continue;
2803 
2804 		do {
2805 			start = max(start, vma->vm_start);
2806 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 			end = min(end, vma->vm_end);
2808 			nr_pte_updates = change_prot_numa(vma, start, end);
2809 
2810 			/*
2811 			 * Try to scan sysctl_numa_balancing_size worth of
2812 			 * hpages that have at least one present PTE that
2813 			 * is not already pte-numa. If the VMA contains
2814 			 * areas that are unused or already full of prot_numa
2815 			 * PTEs, scan up to virtpages, to skip through those
2816 			 * areas faster.
2817 			 */
2818 			if (nr_pte_updates)
2819 				pages -= (end - start) >> PAGE_SHIFT;
2820 			virtpages -= (end - start) >> PAGE_SHIFT;
2821 
2822 			start = end;
2823 			if (pages <= 0 || virtpages <= 0)
2824 				goto out;
2825 
2826 			cond_resched();
2827 		} while (end != vma->vm_end);
2828 	}
2829 
2830 out:
2831 	/*
2832 	 * It is possible to reach the end of the VMA list but the last few
2833 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 	 * would find the !migratable VMA on the next scan but not reset the
2835 	 * scanner to the start so check it now.
2836 	 */
2837 	if (vma)
2838 		mm->numa_scan_offset = start;
2839 	else
2840 		reset_ptenuma_scan(p);
2841 	mmap_read_unlock(mm);
2842 
2843 	/*
2844 	 * Make sure tasks use at least 32x as much time to run other code
2845 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 	 * Usually update_task_scan_period slows down scanning enough; on an
2847 	 * overloaded system we need to limit overhead on a per task basis.
2848 	 */
2849 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 		u64 diff = p->se.sum_exec_runtime - runtime;
2851 		p->node_stamp += 32 * diff;
2852 	}
2853 }
2854 
2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2856 {
2857 	int mm_users = 0;
2858 	struct mm_struct *mm = p->mm;
2859 
2860 	if (mm) {
2861 		mm_users = atomic_read(&mm->mm_users);
2862 		if (mm_users == 1) {
2863 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 			mm->numa_scan_seq = 0;
2865 		}
2866 	}
2867 	p->node_stamp			= 0;
2868 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2869 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2870 	/* Protect against double add, see task_tick_numa and task_numa_work */
2871 	p->numa_work.next		= &p->numa_work;
2872 	p->numa_faults			= NULL;
2873 	RCU_INIT_POINTER(p->numa_group, NULL);
2874 	p->last_task_numa_placement	= 0;
2875 	p->last_sum_exec_runtime	= 0;
2876 
2877 	init_task_work(&p->numa_work, task_numa_work);
2878 
2879 	/* New address space, reset the preferred nid */
2880 	if (!(clone_flags & CLONE_VM)) {
2881 		p->numa_preferred_nid = NUMA_NO_NODE;
2882 		return;
2883 	}
2884 
2885 	/*
2886 	 * New thread, keep existing numa_preferred_nid which should be copied
2887 	 * already by arch_dup_task_struct but stagger when scans start.
2888 	 */
2889 	if (mm) {
2890 		unsigned int delay;
2891 
2892 		delay = min_t(unsigned int, task_scan_max(current),
2893 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 		delay += 2 * TICK_NSEC;
2895 		p->node_stamp = delay;
2896 	}
2897 }
2898 
2899 /*
2900  * Drive the periodic memory faults..
2901  */
2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2903 {
2904 	struct callback_head *work = &curr->numa_work;
2905 	u64 period, now;
2906 
2907 	/*
2908 	 * We don't care about NUMA placement if we don't have memory.
2909 	 */
2910 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2911 		return;
2912 
2913 	/*
2914 	 * Using runtime rather than walltime has the dual advantage that
2915 	 * we (mostly) drive the selection from busy threads and that the
2916 	 * task needs to have done some actual work before we bother with
2917 	 * NUMA placement.
2918 	 */
2919 	now = curr->se.sum_exec_runtime;
2920 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2921 
2922 	if (now > curr->node_stamp + period) {
2923 		if (!curr->node_stamp)
2924 			curr->numa_scan_period = task_scan_start(curr);
2925 		curr->node_stamp += period;
2926 
2927 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2928 			task_work_add(curr, work, true);
2929 	}
2930 }
2931 
2932 static void update_scan_period(struct task_struct *p, int new_cpu)
2933 {
2934 	int src_nid = cpu_to_node(task_cpu(p));
2935 	int dst_nid = cpu_to_node(new_cpu);
2936 
2937 	if (!static_branch_likely(&sched_numa_balancing))
2938 		return;
2939 
2940 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941 		return;
2942 
2943 	if (src_nid == dst_nid)
2944 		return;
2945 
2946 	/*
2947 	 * Allow resets if faults have been trapped before one scan
2948 	 * has completed. This is most likely due to a new task that
2949 	 * is pulled cross-node due to wakeups or load balancing.
2950 	 */
2951 	if (p->numa_scan_seq) {
2952 		/*
2953 		 * Avoid scan adjustments if moving to the preferred
2954 		 * node or if the task was not previously running on
2955 		 * the preferred node.
2956 		 */
2957 		if (dst_nid == p->numa_preferred_nid ||
2958 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 			src_nid != p->numa_preferred_nid))
2960 			return;
2961 	}
2962 
2963 	p->numa_scan_period = task_scan_start(p);
2964 }
2965 
2966 #else
2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2968 {
2969 }
2970 
2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2972 {
2973 }
2974 
2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2976 {
2977 }
2978 
2979 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2980 {
2981 }
2982 
2983 #endif /* CONFIG_NUMA_BALANCING */
2984 
2985 static void
2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987 {
2988 	update_load_add(&cfs_rq->load, se->load.weight);
2989 #ifdef CONFIG_SMP
2990 	if (entity_is_task(se)) {
2991 		struct rq *rq = rq_of(cfs_rq);
2992 
2993 		account_numa_enqueue(rq, task_of(se));
2994 		list_add(&se->group_node, &rq->cfs_tasks);
2995 	}
2996 #endif
2997 	cfs_rq->nr_running++;
2998 }
2999 
3000 static void
3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 {
3003 	update_load_sub(&cfs_rq->load, se->load.weight);
3004 #ifdef CONFIG_SMP
3005 	if (entity_is_task(se)) {
3006 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3007 		list_del_init(&se->group_node);
3008 	}
3009 #endif
3010 	cfs_rq->nr_running--;
3011 }
3012 
3013 /*
3014  * Signed add and clamp on underflow.
3015  *
3016  * Explicitly do a load-store to ensure the intermediate value never hits
3017  * memory. This allows lockless observations without ever seeing the negative
3018  * values.
3019  */
3020 #define add_positive(_ptr, _val) do {                           \
3021 	typeof(_ptr) ptr = (_ptr);                              \
3022 	typeof(_val) val = (_val);                              \
3023 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3024 								\
3025 	res = var + val;                                        \
3026 								\
3027 	if (val < 0 && res > var)                               \
3028 		res = 0;                                        \
3029 								\
3030 	WRITE_ONCE(*ptr, res);                                  \
3031 } while (0)
3032 
3033 /*
3034  * Unsigned subtract and clamp on underflow.
3035  *
3036  * Explicitly do a load-store to ensure the intermediate value never hits
3037  * memory. This allows lockless observations without ever seeing the negative
3038  * values.
3039  */
3040 #define sub_positive(_ptr, _val) do {				\
3041 	typeof(_ptr) ptr = (_ptr);				\
3042 	typeof(*ptr) val = (_val);				\
3043 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3044 	res = var - val;					\
3045 	if (res > var)						\
3046 		res = 0;					\
3047 	WRITE_ONCE(*ptr, res);					\
3048 } while (0)
3049 
3050 /*
3051  * Remove and clamp on negative, from a local variable.
3052  *
3053  * A variant of sub_positive(), which does not use explicit load-store
3054  * and is thus optimized for local variable updates.
3055  */
3056 #define lsub_positive(_ptr, _val) do {				\
3057 	typeof(_ptr) ptr = (_ptr);				\
3058 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3059 } while (0)
3060 
3061 #ifdef CONFIG_SMP
3062 static inline void
3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3064 {
3065 	cfs_rq->avg.load_avg += se->avg.load_avg;
3066 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3067 }
3068 
3069 static inline void
3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071 {
3072 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3073 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3074 }
3075 #else
3076 static inline void
3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078 static inline void
3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3080 #endif
3081 
3082 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3083 			    unsigned long weight)
3084 {
3085 	if (se->on_rq) {
3086 		/* commit outstanding execution time */
3087 		if (cfs_rq->curr == se)
3088 			update_curr(cfs_rq);
3089 		account_entity_dequeue(cfs_rq, se);
3090 	}
3091 	dequeue_load_avg(cfs_rq, se);
3092 
3093 	update_load_set(&se->load, weight);
3094 
3095 #ifdef CONFIG_SMP
3096 	do {
3097 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
3098 
3099 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3100 	} while (0);
3101 #endif
3102 
3103 	enqueue_load_avg(cfs_rq, se);
3104 	if (se->on_rq)
3105 		account_entity_enqueue(cfs_rq, se);
3106 
3107 }
3108 
3109 void reweight_task(struct task_struct *p, int prio)
3110 {
3111 	struct sched_entity *se = &p->se;
3112 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3113 	struct load_weight *load = &se->load;
3114 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3115 
3116 	reweight_entity(cfs_rq, se, weight);
3117 	load->inv_weight = sched_prio_to_wmult[prio];
3118 }
3119 
3120 #ifdef CONFIG_FAIR_GROUP_SCHED
3121 #ifdef CONFIG_SMP
3122 /*
3123  * All this does is approximate the hierarchical proportion which includes that
3124  * global sum we all love to hate.
3125  *
3126  * That is, the weight of a group entity, is the proportional share of the
3127  * group weight based on the group runqueue weights. That is:
3128  *
3129  *                     tg->weight * grq->load.weight
3130  *   ge->load.weight = -----------------------------               (1)
3131  *			  \Sum grq->load.weight
3132  *
3133  * Now, because computing that sum is prohibitively expensive to compute (been
3134  * there, done that) we approximate it with this average stuff. The average
3135  * moves slower and therefore the approximation is cheaper and more stable.
3136  *
3137  * So instead of the above, we substitute:
3138  *
3139  *   grq->load.weight -> grq->avg.load_avg                         (2)
3140  *
3141  * which yields the following:
3142  *
3143  *                     tg->weight * grq->avg.load_avg
3144  *   ge->load.weight = ------------------------------              (3)
3145  *				tg->load_avg
3146  *
3147  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3148  *
3149  * That is shares_avg, and it is right (given the approximation (2)).
3150  *
3151  * The problem with it is that because the average is slow -- it was designed
3152  * to be exactly that of course -- this leads to transients in boundary
3153  * conditions. In specific, the case where the group was idle and we start the
3154  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3155  * yielding bad latency etc..
3156  *
3157  * Now, in that special case (1) reduces to:
3158  *
3159  *                     tg->weight * grq->load.weight
3160  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3161  *			    grp->load.weight
3162  *
3163  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3164  *
3165  * So what we do is modify our approximation (3) to approach (4) in the (near)
3166  * UP case, like:
3167  *
3168  *   ge->load.weight =
3169  *
3170  *              tg->weight * grq->load.weight
3171  *     ---------------------------------------------------         (5)
3172  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3173  *
3174  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3175  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3176  *
3177  *
3178  *                     tg->weight * grq->load.weight
3179  *   ge->load.weight = -----------------------------		   (6)
3180  *				tg_load_avg'
3181  *
3182  * Where:
3183  *
3184  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3185  *                  max(grq->load.weight, grq->avg.load_avg)
3186  *
3187  * And that is shares_weight and is icky. In the (near) UP case it approaches
3188  * (4) while in the normal case it approaches (3). It consistently
3189  * overestimates the ge->load.weight and therefore:
3190  *
3191  *   \Sum ge->load.weight >= tg->weight
3192  *
3193  * hence icky!
3194  */
3195 static long calc_group_shares(struct cfs_rq *cfs_rq)
3196 {
3197 	long tg_weight, tg_shares, load, shares;
3198 	struct task_group *tg = cfs_rq->tg;
3199 
3200 	tg_shares = READ_ONCE(tg->shares);
3201 
3202 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3203 
3204 	tg_weight = atomic_long_read(&tg->load_avg);
3205 
3206 	/* Ensure tg_weight >= load */
3207 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3208 	tg_weight += load;
3209 
3210 	shares = (tg_shares * load);
3211 	if (tg_weight)
3212 		shares /= tg_weight;
3213 
3214 	/*
3215 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3216 	 * of a group with small tg->shares value. It is a floor value which is
3217 	 * assigned as a minimum load.weight to the sched_entity representing
3218 	 * the group on a CPU.
3219 	 *
3220 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3221 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3222 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3223 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3224 	 * instead of 0.
3225 	 */
3226 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3227 }
3228 #endif /* CONFIG_SMP */
3229 
3230 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3231 
3232 /*
3233  * Recomputes the group entity based on the current state of its group
3234  * runqueue.
3235  */
3236 static void update_cfs_group(struct sched_entity *se)
3237 {
3238 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3239 	long shares;
3240 
3241 	if (!gcfs_rq)
3242 		return;
3243 
3244 	if (throttled_hierarchy(gcfs_rq))
3245 		return;
3246 
3247 #ifndef CONFIG_SMP
3248 	shares = READ_ONCE(gcfs_rq->tg->shares);
3249 
3250 	if (likely(se->load.weight == shares))
3251 		return;
3252 #else
3253 	shares   = calc_group_shares(gcfs_rq);
3254 #endif
3255 
3256 	reweight_entity(cfs_rq_of(se), se, shares);
3257 }
3258 
3259 #else /* CONFIG_FAIR_GROUP_SCHED */
3260 static inline void update_cfs_group(struct sched_entity *se)
3261 {
3262 }
3263 #endif /* CONFIG_FAIR_GROUP_SCHED */
3264 
3265 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3266 {
3267 	struct rq *rq = rq_of(cfs_rq);
3268 
3269 	if (&rq->cfs == cfs_rq) {
3270 		/*
3271 		 * There are a few boundary cases this might miss but it should
3272 		 * get called often enough that that should (hopefully) not be
3273 		 * a real problem.
3274 		 *
3275 		 * It will not get called when we go idle, because the idle
3276 		 * thread is a different class (!fair), nor will the utilization
3277 		 * number include things like RT tasks.
3278 		 *
3279 		 * As is, the util number is not freq-invariant (we'd have to
3280 		 * implement arch_scale_freq_capacity() for that).
3281 		 *
3282 		 * See cpu_util().
3283 		 */
3284 		cpufreq_update_util(rq, flags);
3285 	}
3286 }
3287 
3288 #ifdef CONFIG_SMP
3289 #ifdef CONFIG_FAIR_GROUP_SCHED
3290 /**
3291  * update_tg_load_avg - update the tg's load avg
3292  * @cfs_rq: the cfs_rq whose avg changed
3293  * @force: update regardless of how small the difference
3294  *
3295  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3296  * However, because tg->load_avg is a global value there are performance
3297  * considerations.
3298  *
3299  * In order to avoid having to look at the other cfs_rq's, we use a
3300  * differential update where we store the last value we propagated. This in
3301  * turn allows skipping updates if the differential is 'small'.
3302  *
3303  * Updating tg's load_avg is necessary before update_cfs_share().
3304  */
3305 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3306 {
3307 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3308 
3309 	/*
3310 	 * No need to update load_avg for root_task_group as it is not used.
3311 	 */
3312 	if (cfs_rq->tg == &root_task_group)
3313 		return;
3314 
3315 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3316 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3317 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3318 	}
3319 }
3320 
3321 /*
3322  * Called within set_task_rq() right before setting a task's CPU. The
3323  * caller only guarantees p->pi_lock is held; no other assumptions,
3324  * including the state of rq->lock, should be made.
3325  */
3326 void set_task_rq_fair(struct sched_entity *se,
3327 		      struct cfs_rq *prev, struct cfs_rq *next)
3328 {
3329 	u64 p_last_update_time;
3330 	u64 n_last_update_time;
3331 
3332 	if (!sched_feat(ATTACH_AGE_LOAD))
3333 		return;
3334 
3335 	/*
3336 	 * We are supposed to update the task to "current" time, then its up to
3337 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3338 	 * getting what current time is, so simply throw away the out-of-date
3339 	 * time. This will result in the wakee task is less decayed, but giving
3340 	 * the wakee more load sounds not bad.
3341 	 */
3342 	if (!(se->avg.last_update_time && prev))
3343 		return;
3344 
3345 #ifndef CONFIG_64BIT
3346 	{
3347 		u64 p_last_update_time_copy;
3348 		u64 n_last_update_time_copy;
3349 
3350 		do {
3351 			p_last_update_time_copy = prev->load_last_update_time_copy;
3352 			n_last_update_time_copy = next->load_last_update_time_copy;
3353 
3354 			smp_rmb();
3355 
3356 			p_last_update_time = prev->avg.last_update_time;
3357 			n_last_update_time = next->avg.last_update_time;
3358 
3359 		} while (p_last_update_time != p_last_update_time_copy ||
3360 			 n_last_update_time != n_last_update_time_copy);
3361 	}
3362 #else
3363 	p_last_update_time = prev->avg.last_update_time;
3364 	n_last_update_time = next->avg.last_update_time;
3365 #endif
3366 	__update_load_avg_blocked_se(p_last_update_time, se);
3367 	se->avg.last_update_time = n_last_update_time;
3368 }
3369 
3370 
3371 /*
3372  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3373  * propagate its contribution. The key to this propagation is the invariant
3374  * that for each group:
3375  *
3376  *   ge->avg == grq->avg						(1)
3377  *
3378  * _IFF_ we look at the pure running and runnable sums. Because they
3379  * represent the very same entity, just at different points in the hierarchy.
3380  *
3381  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3382  * and simply copies the running/runnable sum over (but still wrong, because
3383  * the group entity and group rq do not have their PELT windows aligned).
3384  *
3385  * However, update_tg_cfs_load() is more complex. So we have:
3386  *
3387  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3388  *
3389  * And since, like util, the runnable part should be directly transferable,
3390  * the following would _appear_ to be the straight forward approach:
3391  *
3392  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3393  *
3394  * And per (1) we have:
3395  *
3396  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3397  *
3398  * Which gives:
3399  *
3400  *                      ge->load.weight * grq->avg.load_avg
3401  *   ge->avg.load_avg = -----------------------------------		(4)
3402  *                               grq->load.weight
3403  *
3404  * Except that is wrong!
3405  *
3406  * Because while for entities historical weight is not important and we
3407  * really only care about our future and therefore can consider a pure
3408  * runnable sum, runqueues can NOT do this.
3409  *
3410  * We specifically want runqueues to have a load_avg that includes
3411  * historical weights. Those represent the blocked load, the load we expect
3412  * to (shortly) return to us. This only works by keeping the weights as
3413  * integral part of the sum. We therefore cannot decompose as per (3).
3414  *
3415  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3416  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3417  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3418  * runnable section of these tasks overlap (or not). If they were to perfectly
3419  * align the rq as a whole would be runnable 2/3 of the time. If however we
3420  * always have at least 1 runnable task, the rq as a whole is always runnable.
3421  *
3422  * So we'll have to approximate.. :/
3423  *
3424  * Given the constraint:
3425  *
3426  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3427  *
3428  * We can construct a rule that adds runnable to a rq by assuming minimal
3429  * overlap.
3430  *
3431  * On removal, we'll assume each task is equally runnable; which yields:
3432  *
3433  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3434  *
3435  * XXX: only do this for the part of runnable > running ?
3436  *
3437  */
3438 
3439 static inline void
3440 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3441 {
3442 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3443 	/*
3444 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3445 	 * See ___update_load_avg() for details.
3446 	 */
3447 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3448 
3449 	/* Nothing to update */
3450 	if (!delta)
3451 		return;
3452 
3453 	/* Set new sched_entity's utilization */
3454 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3455 	se->avg.util_sum = se->avg.util_avg * divider;
3456 
3457 	/* Update parent cfs_rq utilization */
3458 	add_positive(&cfs_rq->avg.util_avg, delta);
3459 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3460 }
3461 
3462 static inline void
3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464 {
3465 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3466 	/*
3467 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3468 	 * See ___update_load_avg() for details.
3469 	 */
3470 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3471 
3472 	/* Nothing to update */
3473 	if (!delta)
3474 		return;
3475 
3476 	/* Set new sched_entity's runnable */
3477 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3478 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3479 
3480 	/* Update parent cfs_rq runnable */
3481 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3482 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3483 }
3484 
3485 static inline void
3486 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3487 {
3488 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3489 	unsigned long load_avg;
3490 	u64 load_sum = 0;
3491 	s64 delta_sum;
3492 	u32 divider;
3493 
3494 	if (!runnable_sum)
3495 		return;
3496 
3497 	gcfs_rq->prop_runnable_sum = 0;
3498 
3499 	/*
3500 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3501 	 * See ___update_load_avg() for details.
3502 	 */
3503 	divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3504 
3505 	if (runnable_sum >= 0) {
3506 		/*
3507 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3508 		 * the CPU is saturated running == runnable.
3509 		 */
3510 		runnable_sum += se->avg.load_sum;
3511 		runnable_sum = min_t(long, runnable_sum, divider);
3512 	} else {
3513 		/*
3514 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3515 		 * assuming all tasks are equally runnable.
3516 		 */
3517 		if (scale_load_down(gcfs_rq->load.weight)) {
3518 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3519 				scale_load_down(gcfs_rq->load.weight));
3520 		}
3521 
3522 		/* But make sure to not inflate se's runnable */
3523 		runnable_sum = min(se->avg.load_sum, load_sum);
3524 	}
3525 
3526 	/*
3527 	 * runnable_sum can't be lower than running_sum
3528 	 * Rescale running sum to be in the same range as runnable sum
3529 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3530 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3531 	 */
3532 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3533 	runnable_sum = max(runnable_sum, running_sum);
3534 
3535 	load_sum = (s64)se_weight(se) * runnable_sum;
3536 	load_avg = div_s64(load_sum, divider);
3537 
3538 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3539 	delta_avg = load_avg - se->avg.load_avg;
3540 
3541 	se->avg.load_sum = runnable_sum;
3542 	se->avg.load_avg = load_avg;
3543 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3544 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3545 }
3546 
3547 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3548 {
3549 	cfs_rq->propagate = 1;
3550 	cfs_rq->prop_runnable_sum += runnable_sum;
3551 }
3552 
3553 /* Update task and its cfs_rq load average */
3554 static inline int propagate_entity_load_avg(struct sched_entity *se)
3555 {
3556 	struct cfs_rq *cfs_rq, *gcfs_rq;
3557 
3558 	if (entity_is_task(se))
3559 		return 0;
3560 
3561 	gcfs_rq = group_cfs_rq(se);
3562 	if (!gcfs_rq->propagate)
3563 		return 0;
3564 
3565 	gcfs_rq->propagate = 0;
3566 
3567 	cfs_rq = cfs_rq_of(se);
3568 
3569 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3570 
3571 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3572 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3573 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3574 
3575 	trace_pelt_cfs_tp(cfs_rq);
3576 	trace_pelt_se_tp(se);
3577 
3578 	return 1;
3579 }
3580 
3581 /*
3582  * Check if we need to update the load and the utilization of a blocked
3583  * group_entity:
3584  */
3585 static inline bool skip_blocked_update(struct sched_entity *se)
3586 {
3587 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3588 
3589 	/*
3590 	 * If sched_entity still have not zero load or utilization, we have to
3591 	 * decay it:
3592 	 */
3593 	if (se->avg.load_avg || se->avg.util_avg)
3594 		return false;
3595 
3596 	/*
3597 	 * If there is a pending propagation, we have to update the load and
3598 	 * the utilization of the sched_entity:
3599 	 */
3600 	if (gcfs_rq->propagate)
3601 		return false;
3602 
3603 	/*
3604 	 * Otherwise, the load and the utilization of the sched_entity is
3605 	 * already zero and there is no pending propagation, so it will be a
3606 	 * waste of time to try to decay it:
3607 	 */
3608 	return true;
3609 }
3610 
3611 #else /* CONFIG_FAIR_GROUP_SCHED */
3612 
3613 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3614 
3615 static inline int propagate_entity_load_avg(struct sched_entity *se)
3616 {
3617 	return 0;
3618 }
3619 
3620 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3621 
3622 #endif /* CONFIG_FAIR_GROUP_SCHED */
3623 
3624 /**
3625  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3626  * @now: current time, as per cfs_rq_clock_pelt()
3627  * @cfs_rq: cfs_rq to update
3628  *
3629  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3630  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3631  * post_init_entity_util_avg().
3632  *
3633  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3634  *
3635  * Returns true if the load decayed or we removed load.
3636  *
3637  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3638  * call update_tg_load_avg() when this function returns true.
3639  */
3640 static inline int
3641 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3642 {
3643 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3644 	struct sched_avg *sa = &cfs_rq->avg;
3645 	int decayed = 0;
3646 
3647 	if (cfs_rq->removed.nr) {
3648 		unsigned long r;
3649 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3650 
3651 		raw_spin_lock(&cfs_rq->removed.lock);
3652 		swap(cfs_rq->removed.util_avg, removed_util);
3653 		swap(cfs_rq->removed.load_avg, removed_load);
3654 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3655 		cfs_rq->removed.nr = 0;
3656 		raw_spin_unlock(&cfs_rq->removed.lock);
3657 
3658 		r = removed_load;
3659 		sub_positive(&sa->load_avg, r);
3660 		sub_positive(&sa->load_sum, r * divider);
3661 
3662 		r = removed_util;
3663 		sub_positive(&sa->util_avg, r);
3664 		sub_positive(&sa->util_sum, r * divider);
3665 
3666 		r = removed_runnable;
3667 		sub_positive(&sa->runnable_avg, r);
3668 		sub_positive(&sa->runnable_sum, r * divider);
3669 
3670 		/*
3671 		 * removed_runnable is the unweighted version of removed_load so we
3672 		 * can use it to estimate removed_load_sum.
3673 		 */
3674 		add_tg_cfs_propagate(cfs_rq,
3675 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3676 
3677 		decayed = 1;
3678 	}
3679 
3680 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3681 
3682 #ifndef CONFIG_64BIT
3683 	smp_wmb();
3684 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3685 #endif
3686 
3687 	return decayed;
3688 }
3689 
3690 /**
3691  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3692  * @cfs_rq: cfs_rq to attach to
3693  * @se: sched_entity to attach
3694  *
3695  * Must call update_cfs_rq_load_avg() before this, since we rely on
3696  * cfs_rq->avg.last_update_time being current.
3697  */
3698 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3699 {
3700 	/*
3701 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3702 	 * See ___update_load_avg() for details.
3703 	 */
3704 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3705 
3706 	/*
3707 	 * When we attach the @se to the @cfs_rq, we must align the decay
3708 	 * window because without that, really weird and wonderful things can
3709 	 * happen.
3710 	 *
3711 	 * XXX illustrate
3712 	 */
3713 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3714 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3715 
3716 	/*
3717 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3718 	 * period_contrib. This isn't strictly correct, but since we're
3719 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3720 	 * _sum a little.
3721 	 */
3722 	se->avg.util_sum = se->avg.util_avg * divider;
3723 
3724 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3725 
3726 	se->avg.load_sum = divider;
3727 	if (se_weight(se)) {
3728 		se->avg.load_sum =
3729 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3730 	}
3731 
3732 	enqueue_load_avg(cfs_rq, se);
3733 	cfs_rq->avg.util_avg += se->avg.util_avg;
3734 	cfs_rq->avg.util_sum += se->avg.util_sum;
3735 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3736 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3737 
3738 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3739 
3740 	cfs_rq_util_change(cfs_rq, 0);
3741 
3742 	trace_pelt_cfs_tp(cfs_rq);
3743 }
3744 
3745 /**
3746  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3747  * @cfs_rq: cfs_rq to detach from
3748  * @se: sched_entity to detach
3749  *
3750  * Must call update_cfs_rq_load_avg() before this, since we rely on
3751  * cfs_rq->avg.last_update_time being current.
3752  */
3753 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3754 {
3755 	dequeue_load_avg(cfs_rq, se);
3756 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3757 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3758 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3759 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3760 
3761 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3762 
3763 	cfs_rq_util_change(cfs_rq, 0);
3764 
3765 	trace_pelt_cfs_tp(cfs_rq);
3766 }
3767 
3768 /*
3769  * Optional action to be done while updating the load average
3770  */
3771 #define UPDATE_TG	0x1
3772 #define SKIP_AGE_LOAD	0x2
3773 #define DO_ATTACH	0x4
3774 
3775 /* Update task and its cfs_rq load average */
3776 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3777 {
3778 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3779 	int decayed;
3780 
3781 	/*
3782 	 * Track task load average for carrying it to new CPU after migrated, and
3783 	 * track group sched_entity load average for task_h_load calc in migration
3784 	 */
3785 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3786 		__update_load_avg_se(now, cfs_rq, se);
3787 
3788 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3789 	decayed |= propagate_entity_load_avg(se);
3790 
3791 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3792 
3793 		/*
3794 		 * DO_ATTACH means we're here from enqueue_entity().
3795 		 * !last_update_time means we've passed through
3796 		 * migrate_task_rq_fair() indicating we migrated.
3797 		 *
3798 		 * IOW we're enqueueing a task on a new CPU.
3799 		 */
3800 		attach_entity_load_avg(cfs_rq, se);
3801 		update_tg_load_avg(cfs_rq, 0);
3802 
3803 	} else if (decayed) {
3804 		cfs_rq_util_change(cfs_rq, 0);
3805 
3806 		if (flags & UPDATE_TG)
3807 			update_tg_load_avg(cfs_rq, 0);
3808 	}
3809 }
3810 
3811 #ifndef CONFIG_64BIT
3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3813 {
3814 	u64 last_update_time_copy;
3815 	u64 last_update_time;
3816 
3817 	do {
3818 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3819 		smp_rmb();
3820 		last_update_time = cfs_rq->avg.last_update_time;
3821 	} while (last_update_time != last_update_time_copy);
3822 
3823 	return last_update_time;
3824 }
3825 #else
3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3827 {
3828 	return cfs_rq->avg.last_update_time;
3829 }
3830 #endif
3831 
3832 /*
3833  * Synchronize entity load avg of dequeued entity without locking
3834  * the previous rq.
3835  */
3836 static void sync_entity_load_avg(struct sched_entity *se)
3837 {
3838 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3839 	u64 last_update_time;
3840 
3841 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3842 	__update_load_avg_blocked_se(last_update_time, se);
3843 }
3844 
3845 /*
3846  * Task first catches up with cfs_rq, and then subtract
3847  * itself from the cfs_rq (task must be off the queue now).
3848  */
3849 static void remove_entity_load_avg(struct sched_entity *se)
3850 {
3851 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3852 	unsigned long flags;
3853 
3854 	/*
3855 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3856 	 * post_init_entity_util_avg() which will have added things to the
3857 	 * cfs_rq, so we can remove unconditionally.
3858 	 */
3859 
3860 	sync_entity_load_avg(se);
3861 
3862 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3863 	++cfs_rq->removed.nr;
3864 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3865 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3866 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3867 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3868 }
3869 
3870 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3871 {
3872 	return cfs_rq->avg.runnable_avg;
3873 }
3874 
3875 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3876 {
3877 	return cfs_rq->avg.load_avg;
3878 }
3879 
3880 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3881 
3882 static inline unsigned long task_util(struct task_struct *p)
3883 {
3884 	return READ_ONCE(p->se.avg.util_avg);
3885 }
3886 
3887 static inline unsigned long _task_util_est(struct task_struct *p)
3888 {
3889 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3890 
3891 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3892 }
3893 
3894 static inline unsigned long task_util_est(struct task_struct *p)
3895 {
3896 	return max(task_util(p), _task_util_est(p));
3897 }
3898 
3899 #ifdef CONFIG_UCLAMP_TASK
3900 static inline unsigned long uclamp_task_util(struct task_struct *p)
3901 {
3902 	return clamp(task_util_est(p),
3903 		     uclamp_eff_value(p, UCLAMP_MIN),
3904 		     uclamp_eff_value(p, UCLAMP_MAX));
3905 }
3906 #else
3907 static inline unsigned long uclamp_task_util(struct task_struct *p)
3908 {
3909 	return task_util_est(p);
3910 }
3911 #endif
3912 
3913 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3914 				    struct task_struct *p)
3915 {
3916 	unsigned int enqueued;
3917 
3918 	if (!sched_feat(UTIL_EST))
3919 		return;
3920 
3921 	/* Update root cfs_rq's estimated utilization */
3922 	enqueued  = cfs_rq->avg.util_est.enqueued;
3923 	enqueued += _task_util_est(p);
3924 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3925 }
3926 
3927 /*
3928  * Check if a (signed) value is within a specified (unsigned) margin,
3929  * based on the observation that:
3930  *
3931  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3932  *
3933  * NOTE: this only works when value + maring < INT_MAX.
3934  */
3935 static inline bool within_margin(int value, int margin)
3936 {
3937 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3938 }
3939 
3940 static void
3941 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3942 {
3943 	long last_ewma_diff;
3944 	struct util_est ue;
3945 	int cpu;
3946 
3947 	if (!sched_feat(UTIL_EST))
3948 		return;
3949 
3950 	/* Update root cfs_rq's estimated utilization */
3951 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3952 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3953 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3954 
3955 	/*
3956 	 * Skip update of task's estimated utilization when the task has not
3957 	 * yet completed an activation, e.g. being migrated.
3958 	 */
3959 	if (!task_sleep)
3960 		return;
3961 
3962 	/*
3963 	 * If the PELT values haven't changed since enqueue time,
3964 	 * skip the util_est update.
3965 	 */
3966 	ue = p->se.avg.util_est;
3967 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3968 		return;
3969 
3970 	/*
3971 	 * Reset EWMA on utilization increases, the moving average is used only
3972 	 * to smooth utilization decreases.
3973 	 */
3974 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3975 	if (sched_feat(UTIL_EST_FASTUP)) {
3976 		if (ue.ewma < ue.enqueued) {
3977 			ue.ewma = ue.enqueued;
3978 			goto done;
3979 		}
3980 	}
3981 
3982 	/*
3983 	 * Skip update of task's estimated utilization when its EWMA is
3984 	 * already ~1% close to its last activation value.
3985 	 */
3986 	last_ewma_diff = ue.enqueued - ue.ewma;
3987 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3988 		return;
3989 
3990 	/*
3991 	 * To avoid overestimation of actual task utilization, skip updates if
3992 	 * we cannot grant there is idle time in this CPU.
3993 	 */
3994 	cpu = cpu_of(rq_of(cfs_rq));
3995 	if (task_util(p) > capacity_orig_of(cpu))
3996 		return;
3997 
3998 	/*
3999 	 * Update Task's estimated utilization
4000 	 *
4001 	 * When *p completes an activation we can consolidate another sample
4002 	 * of the task size. This is done by storing the current PELT value
4003 	 * as ue.enqueued and by using this value to update the Exponential
4004 	 * Weighted Moving Average (EWMA):
4005 	 *
4006 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4007 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4008 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4009 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4010 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4011 	 *
4012 	 * Where 'w' is the weight of new samples, which is configured to be
4013 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4014 	 */
4015 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4016 	ue.ewma  += last_ewma_diff;
4017 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4018 done:
4019 	WRITE_ONCE(p->se.avg.util_est, ue);
4020 }
4021 
4022 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4023 {
4024 	return fits_capacity(uclamp_task_util(p), capacity);
4025 }
4026 
4027 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4028 {
4029 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4030 		return;
4031 
4032 	if (!p) {
4033 		rq->misfit_task_load = 0;
4034 		return;
4035 	}
4036 
4037 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4038 		rq->misfit_task_load = 0;
4039 		return;
4040 	}
4041 
4042 	rq->misfit_task_load = task_h_load(p);
4043 }
4044 
4045 #else /* CONFIG_SMP */
4046 
4047 #define UPDATE_TG	0x0
4048 #define SKIP_AGE_LOAD	0x0
4049 #define DO_ATTACH	0x0
4050 
4051 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4052 {
4053 	cfs_rq_util_change(cfs_rq, 0);
4054 }
4055 
4056 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4057 
4058 static inline void
4059 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4060 static inline void
4061 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4062 
4063 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4064 {
4065 	return 0;
4066 }
4067 
4068 static inline void
4069 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4070 
4071 static inline void
4072 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4073 		 bool task_sleep) {}
4074 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4075 
4076 #endif /* CONFIG_SMP */
4077 
4078 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4079 {
4080 #ifdef CONFIG_SCHED_DEBUG
4081 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4082 
4083 	if (d < 0)
4084 		d = -d;
4085 
4086 	if (d > 3*sysctl_sched_latency)
4087 		schedstat_inc(cfs_rq->nr_spread_over);
4088 #endif
4089 }
4090 
4091 static void
4092 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4093 {
4094 	u64 vruntime = cfs_rq->min_vruntime;
4095 
4096 	/*
4097 	 * The 'current' period is already promised to the current tasks,
4098 	 * however the extra weight of the new task will slow them down a
4099 	 * little, place the new task so that it fits in the slot that
4100 	 * stays open at the end.
4101 	 */
4102 	if (initial && sched_feat(START_DEBIT))
4103 		vruntime += sched_vslice(cfs_rq, se);
4104 
4105 	/* sleeps up to a single latency don't count. */
4106 	if (!initial) {
4107 		unsigned long thresh = sysctl_sched_latency;
4108 
4109 		/*
4110 		 * Halve their sleep time's effect, to allow
4111 		 * for a gentler effect of sleepers:
4112 		 */
4113 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4114 			thresh >>= 1;
4115 
4116 		vruntime -= thresh;
4117 	}
4118 
4119 	/* ensure we never gain time by being placed backwards. */
4120 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4121 }
4122 
4123 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4124 
4125 static inline void check_schedstat_required(void)
4126 {
4127 #ifdef CONFIG_SCHEDSTATS
4128 	if (schedstat_enabled())
4129 		return;
4130 
4131 	/* Force schedstat enabled if a dependent tracepoint is active */
4132 	if (trace_sched_stat_wait_enabled()    ||
4133 			trace_sched_stat_sleep_enabled()   ||
4134 			trace_sched_stat_iowait_enabled()  ||
4135 			trace_sched_stat_blocked_enabled() ||
4136 			trace_sched_stat_runtime_enabled())  {
4137 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4138 			     "stat_blocked and stat_runtime require the "
4139 			     "kernel parameter schedstats=enable or "
4140 			     "kernel.sched_schedstats=1\n");
4141 	}
4142 #endif
4143 }
4144 
4145 static inline bool cfs_bandwidth_used(void);
4146 
4147 /*
4148  * MIGRATION
4149  *
4150  *	dequeue
4151  *	  update_curr()
4152  *	    update_min_vruntime()
4153  *	  vruntime -= min_vruntime
4154  *
4155  *	enqueue
4156  *	  update_curr()
4157  *	    update_min_vruntime()
4158  *	  vruntime += min_vruntime
4159  *
4160  * this way the vruntime transition between RQs is done when both
4161  * min_vruntime are up-to-date.
4162  *
4163  * WAKEUP (remote)
4164  *
4165  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4166  *	  vruntime -= min_vruntime
4167  *
4168  *	enqueue
4169  *	  update_curr()
4170  *	    update_min_vruntime()
4171  *	  vruntime += min_vruntime
4172  *
4173  * this way we don't have the most up-to-date min_vruntime on the originating
4174  * CPU and an up-to-date min_vruntime on the destination CPU.
4175  */
4176 
4177 static void
4178 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4179 {
4180 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4181 	bool curr = cfs_rq->curr == se;
4182 
4183 	/*
4184 	 * If we're the current task, we must renormalise before calling
4185 	 * update_curr().
4186 	 */
4187 	if (renorm && curr)
4188 		se->vruntime += cfs_rq->min_vruntime;
4189 
4190 	update_curr(cfs_rq);
4191 
4192 	/*
4193 	 * Otherwise, renormalise after, such that we're placed at the current
4194 	 * moment in time, instead of some random moment in the past. Being
4195 	 * placed in the past could significantly boost this task to the
4196 	 * fairness detriment of existing tasks.
4197 	 */
4198 	if (renorm && !curr)
4199 		se->vruntime += cfs_rq->min_vruntime;
4200 
4201 	/*
4202 	 * When enqueuing a sched_entity, we must:
4203 	 *   - Update loads to have both entity and cfs_rq synced with now.
4204 	 *   - Add its load to cfs_rq->runnable_avg
4205 	 *   - For group_entity, update its weight to reflect the new share of
4206 	 *     its group cfs_rq
4207 	 *   - Add its new weight to cfs_rq->load.weight
4208 	 */
4209 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4210 	se_update_runnable(se);
4211 	update_cfs_group(se);
4212 	account_entity_enqueue(cfs_rq, se);
4213 
4214 	if (flags & ENQUEUE_WAKEUP)
4215 		place_entity(cfs_rq, se, 0);
4216 
4217 	check_schedstat_required();
4218 	update_stats_enqueue(cfs_rq, se, flags);
4219 	check_spread(cfs_rq, se);
4220 	if (!curr)
4221 		__enqueue_entity(cfs_rq, se);
4222 	se->on_rq = 1;
4223 
4224 	/*
4225 	 * When bandwidth control is enabled, cfs might have been removed
4226 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4227 	 * add it unconditionnally.
4228 	 */
4229 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4230 		list_add_leaf_cfs_rq(cfs_rq);
4231 
4232 	if (cfs_rq->nr_running == 1)
4233 		check_enqueue_throttle(cfs_rq);
4234 }
4235 
4236 static void __clear_buddies_last(struct sched_entity *se)
4237 {
4238 	for_each_sched_entity(se) {
4239 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4240 		if (cfs_rq->last != se)
4241 			break;
4242 
4243 		cfs_rq->last = NULL;
4244 	}
4245 }
4246 
4247 static void __clear_buddies_next(struct sched_entity *se)
4248 {
4249 	for_each_sched_entity(se) {
4250 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4251 		if (cfs_rq->next != se)
4252 			break;
4253 
4254 		cfs_rq->next = NULL;
4255 	}
4256 }
4257 
4258 static void __clear_buddies_skip(struct sched_entity *se)
4259 {
4260 	for_each_sched_entity(se) {
4261 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4262 		if (cfs_rq->skip != se)
4263 			break;
4264 
4265 		cfs_rq->skip = NULL;
4266 	}
4267 }
4268 
4269 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4270 {
4271 	if (cfs_rq->last == se)
4272 		__clear_buddies_last(se);
4273 
4274 	if (cfs_rq->next == se)
4275 		__clear_buddies_next(se);
4276 
4277 	if (cfs_rq->skip == se)
4278 		__clear_buddies_skip(se);
4279 }
4280 
4281 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4282 
4283 static void
4284 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4285 {
4286 	/*
4287 	 * Update run-time statistics of the 'current'.
4288 	 */
4289 	update_curr(cfs_rq);
4290 
4291 	/*
4292 	 * When dequeuing a sched_entity, we must:
4293 	 *   - Update loads to have both entity and cfs_rq synced with now.
4294 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4295 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4296 	 *   - For group entity, update its weight to reflect the new share
4297 	 *     of its group cfs_rq.
4298 	 */
4299 	update_load_avg(cfs_rq, se, UPDATE_TG);
4300 	se_update_runnable(se);
4301 
4302 	update_stats_dequeue(cfs_rq, se, flags);
4303 
4304 	clear_buddies(cfs_rq, se);
4305 
4306 	if (se != cfs_rq->curr)
4307 		__dequeue_entity(cfs_rq, se);
4308 	se->on_rq = 0;
4309 	account_entity_dequeue(cfs_rq, se);
4310 
4311 	/*
4312 	 * Normalize after update_curr(); which will also have moved
4313 	 * min_vruntime if @se is the one holding it back. But before doing
4314 	 * update_min_vruntime() again, which will discount @se's position and
4315 	 * can move min_vruntime forward still more.
4316 	 */
4317 	if (!(flags & DEQUEUE_SLEEP))
4318 		se->vruntime -= cfs_rq->min_vruntime;
4319 
4320 	/* return excess runtime on last dequeue */
4321 	return_cfs_rq_runtime(cfs_rq);
4322 
4323 	update_cfs_group(se);
4324 
4325 	/*
4326 	 * Now advance min_vruntime if @se was the entity holding it back,
4327 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4328 	 * put back on, and if we advance min_vruntime, we'll be placed back
4329 	 * further than we started -- ie. we'll be penalized.
4330 	 */
4331 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4332 		update_min_vruntime(cfs_rq);
4333 }
4334 
4335 /*
4336  * Preempt the current task with a newly woken task if needed:
4337  */
4338 static void
4339 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4340 {
4341 	unsigned long ideal_runtime, delta_exec;
4342 	struct sched_entity *se;
4343 	s64 delta;
4344 
4345 	ideal_runtime = sched_slice(cfs_rq, curr);
4346 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4347 	if (delta_exec > ideal_runtime) {
4348 		resched_curr(rq_of(cfs_rq));
4349 		/*
4350 		 * The current task ran long enough, ensure it doesn't get
4351 		 * re-elected due to buddy favours.
4352 		 */
4353 		clear_buddies(cfs_rq, curr);
4354 		return;
4355 	}
4356 
4357 	/*
4358 	 * Ensure that a task that missed wakeup preemption by a
4359 	 * narrow margin doesn't have to wait for a full slice.
4360 	 * This also mitigates buddy induced latencies under load.
4361 	 */
4362 	if (delta_exec < sysctl_sched_min_granularity)
4363 		return;
4364 
4365 	se = __pick_first_entity(cfs_rq);
4366 	delta = curr->vruntime - se->vruntime;
4367 
4368 	if (delta < 0)
4369 		return;
4370 
4371 	if (delta > ideal_runtime)
4372 		resched_curr(rq_of(cfs_rq));
4373 }
4374 
4375 static void
4376 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4377 {
4378 	/* 'current' is not kept within the tree. */
4379 	if (se->on_rq) {
4380 		/*
4381 		 * Any task has to be enqueued before it get to execute on
4382 		 * a CPU. So account for the time it spent waiting on the
4383 		 * runqueue.
4384 		 */
4385 		update_stats_wait_end(cfs_rq, se);
4386 		__dequeue_entity(cfs_rq, se);
4387 		update_load_avg(cfs_rq, se, UPDATE_TG);
4388 	}
4389 
4390 	update_stats_curr_start(cfs_rq, se);
4391 	cfs_rq->curr = se;
4392 
4393 	/*
4394 	 * Track our maximum slice length, if the CPU's load is at
4395 	 * least twice that of our own weight (i.e. dont track it
4396 	 * when there are only lesser-weight tasks around):
4397 	 */
4398 	if (schedstat_enabled() &&
4399 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4400 		schedstat_set(se->statistics.slice_max,
4401 			max((u64)schedstat_val(se->statistics.slice_max),
4402 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4403 	}
4404 
4405 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4406 }
4407 
4408 static int
4409 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4410 
4411 /*
4412  * Pick the next process, keeping these things in mind, in this order:
4413  * 1) keep things fair between processes/task groups
4414  * 2) pick the "next" process, since someone really wants that to run
4415  * 3) pick the "last" process, for cache locality
4416  * 4) do not run the "skip" process, if something else is available
4417  */
4418 static struct sched_entity *
4419 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4420 {
4421 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4422 	struct sched_entity *se;
4423 
4424 	/*
4425 	 * If curr is set we have to see if its left of the leftmost entity
4426 	 * still in the tree, provided there was anything in the tree at all.
4427 	 */
4428 	if (!left || (curr && entity_before(curr, left)))
4429 		left = curr;
4430 
4431 	se = left; /* ideally we run the leftmost entity */
4432 
4433 	/*
4434 	 * Avoid running the skip buddy, if running something else can
4435 	 * be done without getting too unfair.
4436 	 */
4437 	if (cfs_rq->skip == se) {
4438 		struct sched_entity *second;
4439 
4440 		if (se == curr) {
4441 			second = __pick_first_entity(cfs_rq);
4442 		} else {
4443 			second = __pick_next_entity(se);
4444 			if (!second || (curr && entity_before(curr, second)))
4445 				second = curr;
4446 		}
4447 
4448 		if (second && wakeup_preempt_entity(second, left) < 1)
4449 			se = second;
4450 	}
4451 
4452 	/*
4453 	 * Prefer last buddy, try to return the CPU to a preempted task.
4454 	 */
4455 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4456 		se = cfs_rq->last;
4457 
4458 	/*
4459 	 * Someone really wants this to run. If it's not unfair, run it.
4460 	 */
4461 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4462 		se = cfs_rq->next;
4463 
4464 	clear_buddies(cfs_rq, se);
4465 
4466 	return se;
4467 }
4468 
4469 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4470 
4471 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4472 {
4473 	/*
4474 	 * If still on the runqueue then deactivate_task()
4475 	 * was not called and update_curr() has to be done:
4476 	 */
4477 	if (prev->on_rq)
4478 		update_curr(cfs_rq);
4479 
4480 	/* throttle cfs_rqs exceeding runtime */
4481 	check_cfs_rq_runtime(cfs_rq);
4482 
4483 	check_spread(cfs_rq, prev);
4484 
4485 	if (prev->on_rq) {
4486 		update_stats_wait_start(cfs_rq, prev);
4487 		/* Put 'current' back into the tree. */
4488 		__enqueue_entity(cfs_rq, prev);
4489 		/* in !on_rq case, update occurred at dequeue */
4490 		update_load_avg(cfs_rq, prev, 0);
4491 	}
4492 	cfs_rq->curr = NULL;
4493 }
4494 
4495 static void
4496 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4497 {
4498 	/*
4499 	 * Update run-time statistics of the 'current'.
4500 	 */
4501 	update_curr(cfs_rq);
4502 
4503 	/*
4504 	 * Ensure that runnable average is periodically updated.
4505 	 */
4506 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4507 	update_cfs_group(curr);
4508 
4509 #ifdef CONFIG_SCHED_HRTICK
4510 	/*
4511 	 * queued ticks are scheduled to match the slice, so don't bother
4512 	 * validating it and just reschedule.
4513 	 */
4514 	if (queued) {
4515 		resched_curr(rq_of(cfs_rq));
4516 		return;
4517 	}
4518 	/*
4519 	 * don't let the period tick interfere with the hrtick preemption
4520 	 */
4521 	if (!sched_feat(DOUBLE_TICK) &&
4522 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4523 		return;
4524 #endif
4525 
4526 	if (cfs_rq->nr_running > 1)
4527 		check_preempt_tick(cfs_rq, curr);
4528 }
4529 
4530 
4531 /**************************************************
4532  * CFS bandwidth control machinery
4533  */
4534 
4535 #ifdef CONFIG_CFS_BANDWIDTH
4536 
4537 #ifdef CONFIG_JUMP_LABEL
4538 static struct static_key __cfs_bandwidth_used;
4539 
4540 static inline bool cfs_bandwidth_used(void)
4541 {
4542 	return static_key_false(&__cfs_bandwidth_used);
4543 }
4544 
4545 void cfs_bandwidth_usage_inc(void)
4546 {
4547 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4548 }
4549 
4550 void cfs_bandwidth_usage_dec(void)
4551 {
4552 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4553 }
4554 #else /* CONFIG_JUMP_LABEL */
4555 static bool cfs_bandwidth_used(void)
4556 {
4557 	return true;
4558 }
4559 
4560 void cfs_bandwidth_usage_inc(void) {}
4561 void cfs_bandwidth_usage_dec(void) {}
4562 #endif /* CONFIG_JUMP_LABEL */
4563 
4564 /*
4565  * default period for cfs group bandwidth.
4566  * default: 0.1s, units: nanoseconds
4567  */
4568 static inline u64 default_cfs_period(void)
4569 {
4570 	return 100000000ULL;
4571 }
4572 
4573 static inline u64 sched_cfs_bandwidth_slice(void)
4574 {
4575 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4576 }
4577 
4578 /*
4579  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4580  * directly instead of rq->clock to avoid adding additional synchronization
4581  * around rq->lock.
4582  *
4583  * requires cfs_b->lock
4584  */
4585 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4586 {
4587 	if (cfs_b->quota != RUNTIME_INF)
4588 		cfs_b->runtime = cfs_b->quota;
4589 }
4590 
4591 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4592 {
4593 	return &tg->cfs_bandwidth;
4594 }
4595 
4596 /* returns 0 on failure to allocate runtime */
4597 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4598 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4599 {
4600 	u64 min_amount, amount = 0;
4601 
4602 	lockdep_assert_held(&cfs_b->lock);
4603 
4604 	/* note: this is a positive sum as runtime_remaining <= 0 */
4605 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4606 
4607 	if (cfs_b->quota == RUNTIME_INF)
4608 		amount = min_amount;
4609 	else {
4610 		start_cfs_bandwidth(cfs_b);
4611 
4612 		if (cfs_b->runtime > 0) {
4613 			amount = min(cfs_b->runtime, min_amount);
4614 			cfs_b->runtime -= amount;
4615 			cfs_b->idle = 0;
4616 		}
4617 	}
4618 
4619 	cfs_rq->runtime_remaining += amount;
4620 
4621 	return cfs_rq->runtime_remaining > 0;
4622 }
4623 
4624 /* returns 0 on failure to allocate runtime */
4625 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4626 {
4627 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4628 	int ret;
4629 
4630 	raw_spin_lock(&cfs_b->lock);
4631 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4632 	raw_spin_unlock(&cfs_b->lock);
4633 
4634 	return ret;
4635 }
4636 
4637 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4638 {
4639 	/* dock delta_exec before expiring quota (as it could span periods) */
4640 	cfs_rq->runtime_remaining -= delta_exec;
4641 
4642 	if (likely(cfs_rq->runtime_remaining > 0))
4643 		return;
4644 
4645 	if (cfs_rq->throttled)
4646 		return;
4647 	/*
4648 	 * if we're unable to extend our runtime we resched so that the active
4649 	 * hierarchy can be throttled
4650 	 */
4651 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4652 		resched_curr(rq_of(cfs_rq));
4653 }
4654 
4655 static __always_inline
4656 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4657 {
4658 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4659 		return;
4660 
4661 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4662 }
4663 
4664 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4665 {
4666 	return cfs_bandwidth_used() && cfs_rq->throttled;
4667 }
4668 
4669 /* check whether cfs_rq, or any parent, is throttled */
4670 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4671 {
4672 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4673 }
4674 
4675 /*
4676  * Ensure that neither of the group entities corresponding to src_cpu or
4677  * dest_cpu are members of a throttled hierarchy when performing group
4678  * load-balance operations.
4679  */
4680 static inline int throttled_lb_pair(struct task_group *tg,
4681 				    int src_cpu, int dest_cpu)
4682 {
4683 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4684 
4685 	src_cfs_rq = tg->cfs_rq[src_cpu];
4686 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4687 
4688 	return throttled_hierarchy(src_cfs_rq) ||
4689 	       throttled_hierarchy(dest_cfs_rq);
4690 }
4691 
4692 static int tg_unthrottle_up(struct task_group *tg, void *data)
4693 {
4694 	struct rq *rq = data;
4695 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4696 
4697 	cfs_rq->throttle_count--;
4698 	if (!cfs_rq->throttle_count) {
4699 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4700 					     cfs_rq->throttled_clock_task;
4701 
4702 		/* Add cfs_rq with already running entity in the list */
4703 		if (cfs_rq->nr_running >= 1)
4704 			list_add_leaf_cfs_rq(cfs_rq);
4705 	}
4706 
4707 	return 0;
4708 }
4709 
4710 static int tg_throttle_down(struct task_group *tg, void *data)
4711 {
4712 	struct rq *rq = data;
4713 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4714 
4715 	/* group is entering throttled state, stop time */
4716 	if (!cfs_rq->throttle_count) {
4717 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4718 		list_del_leaf_cfs_rq(cfs_rq);
4719 	}
4720 	cfs_rq->throttle_count++;
4721 
4722 	return 0;
4723 }
4724 
4725 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4726 {
4727 	struct rq *rq = rq_of(cfs_rq);
4728 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4729 	struct sched_entity *se;
4730 	long task_delta, idle_task_delta, dequeue = 1;
4731 
4732 	raw_spin_lock(&cfs_b->lock);
4733 	/* This will start the period timer if necessary */
4734 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4735 		/*
4736 		 * We have raced with bandwidth becoming available, and if we
4737 		 * actually throttled the timer might not unthrottle us for an
4738 		 * entire period. We additionally needed to make sure that any
4739 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4740 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4741 		 * for 1ns of runtime rather than just check cfs_b.
4742 		 */
4743 		dequeue = 0;
4744 	} else {
4745 		list_add_tail_rcu(&cfs_rq->throttled_list,
4746 				  &cfs_b->throttled_cfs_rq);
4747 	}
4748 	raw_spin_unlock(&cfs_b->lock);
4749 
4750 	if (!dequeue)
4751 		return false;  /* Throttle no longer required. */
4752 
4753 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4754 
4755 	/* freeze hierarchy runnable averages while throttled */
4756 	rcu_read_lock();
4757 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4758 	rcu_read_unlock();
4759 
4760 	task_delta = cfs_rq->h_nr_running;
4761 	idle_task_delta = cfs_rq->idle_h_nr_running;
4762 	for_each_sched_entity(se) {
4763 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4764 		/* throttled entity or throttle-on-deactivate */
4765 		if (!se->on_rq)
4766 			break;
4767 
4768 		if (dequeue) {
4769 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4770 		} else {
4771 			update_load_avg(qcfs_rq, se, 0);
4772 			se_update_runnable(se);
4773 		}
4774 
4775 		qcfs_rq->h_nr_running -= task_delta;
4776 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4777 
4778 		if (qcfs_rq->load.weight)
4779 			dequeue = 0;
4780 	}
4781 
4782 	if (!se)
4783 		sub_nr_running(rq, task_delta);
4784 
4785 	/*
4786 	 * Note: distribution will already see us throttled via the
4787 	 * throttled-list.  rq->lock protects completion.
4788 	 */
4789 	cfs_rq->throttled = 1;
4790 	cfs_rq->throttled_clock = rq_clock(rq);
4791 	return true;
4792 }
4793 
4794 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4795 {
4796 	struct rq *rq = rq_of(cfs_rq);
4797 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4798 	struct sched_entity *se;
4799 	long task_delta, idle_task_delta;
4800 
4801 	se = cfs_rq->tg->se[cpu_of(rq)];
4802 
4803 	cfs_rq->throttled = 0;
4804 
4805 	update_rq_clock(rq);
4806 
4807 	raw_spin_lock(&cfs_b->lock);
4808 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4809 	list_del_rcu(&cfs_rq->throttled_list);
4810 	raw_spin_unlock(&cfs_b->lock);
4811 
4812 	/* update hierarchical throttle state */
4813 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4814 
4815 	if (!cfs_rq->load.weight)
4816 		return;
4817 
4818 	task_delta = cfs_rq->h_nr_running;
4819 	idle_task_delta = cfs_rq->idle_h_nr_running;
4820 	for_each_sched_entity(se) {
4821 		if (se->on_rq)
4822 			break;
4823 		cfs_rq = cfs_rq_of(se);
4824 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4825 
4826 		cfs_rq->h_nr_running += task_delta;
4827 		cfs_rq->idle_h_nr_running += idle_task_delta;
4828 
4829 		/* end evaluation on encountering a throttled cfs_rq */
4830 		if (cfs_rq_throttled(cfs_rq))
4831 			goto unthrottle_throttle;
4832 	}
4833 
4834 	for_each_sched_entity(se) {
4835 		cfs_rq = cfs_rq_of(se);
4836 
4837 		update_load_avg(cfs_rq, se, UPDATE_TG);
4838 		se_update_runnable(se);
4839 
4840 		cfs_rq->h_nr_running += task_delta;
4841 		cfs_rq->idle_h_nr_running += idle_task_delta;
4842 
4843 
4844 		/* end evaluation on encountering a throttled cfs_rq */
4845 		if (cfs_rq_throttled(cfs_rq))
4846 			goto unthrottle_throttle;
4847 
4848 		/*
4849 		 * One parent has been throttled and cfs_rq removed from the
4850 		 * list. Add it back to not break the leaf list.
4851 		 */
4852 		if (throttled_hierarchy(cfs_rq))
4853 			list_add_leaf_cfs_rq(cfs_rq);
4854 	}
4855 
4856 	/* At this point se is NULL and we are at root level*/
4857 	add_nr_running(rq, task_delta);
4858 
4859 unthrottle_throttle:
4860 	/*
4861 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4862 	 * incomplete leaf list maintenance, resulting in triggering the
4863 	 * assertion below.
4864 	 */
4865 	for_each_sched_entity(se) {
4866 		cfs_rq = cfs_rq_of(se);
4867 
4868 		if (list_add_leaf_cfs_rq(cfs_rq))
4869 			break;
4870 	}
4871 
4872 	assert_list_leaf_cfs_rq(rq);
4873 
4874 	/* Determine whether we need to wake up potentially idle CPU: */
4875 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4876 		resched_curr(rq);
4877 }
4878 
4879 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4880 {
4881 	struct cfs_rq *cfs_rq;
4882 	u64 runtime, remaining = 1;
4883 
4884 	rcu_read_lock();
4885 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4886 				throttled_list) {
4887 		struct rq *rq = rq_of(cfs_rq);
4888 		struct rq_flags rf;
4889 
4890 		rq_lock_irqsave(rq, &rf);
4891 		if (!cfs_rq_throttled(cfs_rq))
4892 			goto next;
4893 
4894 		/* By the above check, this should never be true */
4895 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4896 
4897 		raw_spin_lock(&cfs_b->lock);
4898 		runtime = -cfs_rq->runtime_remaining + 1;
4899 		if (runtime > cfs_b->runtime)
4900 			runtime = cfs_b->runtime;
4901 		cfs_b->runtime -= runtime;
4902 		remaining = cfs_b->runtime;
4903 		raw_spin_unlock(&cfs_b->lock);
4904 
4905 		cfs_rq->runtime_remaining += runtime;
4906 
4907 		/* we check whether we're throttled above */
4908 		if (cfs_rq->runtime_remaining > 0)
4909 			unthrottle_cfs_rq(cfs_rq);
4910 
4911 next:
4912 		rq_unlock_irqrestore(rq, &rf);
4913 
4914 		if (!remaining)
4915 			break;
4916 	}
4917 	rcu_read_unlock();
4918 }
4919 
4920 /*
4921  * Responsible for refilling a task_group's bandwidth and unthrottling its
4922  * cfs_rqs as appropriate. If there has been no activity within the last
4923  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4924  * used to track this state.
4925  */
4926 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4927 {
4928 	int throttled;
4929 
4930 	/* no need to continue the timer with no bandwidth constraint */
4931 	if (cfs_b->quota == RUNTIME_INF)
4932 		goto out_deactivate;
4933 
4934 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4935 	cfs_b->nr_periods += overrun;
4936 
4937 	/*
4938 	 * idle depends on !throttled (for the case of a large deficit), and if
4939 	 * we're going inactive then everything else can be deferred
4940 	 */
4941 	if (cfs_b->idle && !throttled)
4942 		goto out_deactivate;
4943 
4944 	__refill_cfs_bandwidth_runtime(cfs_b);
4945 
4946 	if (!throttled) {
4947 		/* mark as potentially idle for the upcoming period */
4948 		cfs_b->idle = 1;
4949 		return 0;
4950 	}
4951 
4952 	/* account preceding periods in which throttling occurred */
4953 	cfs_b->nr_throttled += overrun;
4954 
4955 	/*
4956 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
4957 	 */
4958 	while (throttled && cfs_b->runtime > 0) {
4959 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4960 		/* we can't nest cfs_b->lock while distributing bandwidth */
4961 		distribute_cfs_runtime(cfs_b);
4962 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4963 
4964 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4965 	}
4966 
4967 	/*
4968 	 * While we are ensured activity in the period following an
4969 	 * unthrottle, this also covers the case in which the new bandwidth is
4970 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4971 	 * timer to remain active while there are any throttled entities.)
4972 	 */
4973 	cfs_b->idle = 0;
4974 
4975 	return 0;
4976 
4977 out_deactivate:
4978 	return 1;
4979 }
4980 
4981 /* a cfs_rq won't donate quota below this amount */
4982 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4983 /* minimum remaining period time to redistribute slack quota */
4984 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4985 /* how long we wait to gather additional slack before distributing */
4986 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4987 
4988 /*
4989  * Are we near the end of the current quota period?
4990  *
4991  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4992  * hrtimer base being cleared by hrtimer_start. In the case of
4993  * migrate_hrtimers, base is never cleared, so we are fine.
4994  */
4995 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4996 {
4997 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4998 	u64 remaining;
4999 
5000 	/* if the call-back is running a quota refresh is already occurring */
5001 	if (hrtimer_callback_running(refresh_timer))
5002 		return 1;
5003 
5004 	/* is a quota refresh about to occur? */
5005 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5006 	if (remaining < min_expire)
5007 		return 1;
5008 
5009 	return 0;
5010 }
5011 
5012 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5013 {
5014 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5015 
5016 	/* if there's a quota refresh soon don't bother with slack */
5017 	if (runtime_refresh_within(cfs_b, min_left))
5018 		return;
5019 
5020 	/* don't push forwards an existing deferred unthrottle */
5021 	if (cfs_b->slack_started)
5022 		return;
5023 	cfs_b->slack_started = true;
5024 
5025 	hrtimer_start(&cfs_b->slack_timer,
5026 			ns_to_ktime(cfs_bandwidth_slack_period),
5027 			HRTIMER_MODE_REL);
5028 }
5029 
5030 /* we know any runtime found here is valid as update_curr() precedes return */
5031 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5032 {
5033 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5034 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5035 
5036 	if (slack_runtime <= 0)
5037 		return;
5038 
5039 	raw_spin_lock(&cfs_b->lock);
5040 	if (cfs_b->quota != RUNTIME_INF) {
5041 		cfs_b->runtime += slack_runtime;
5042 
5043 		/* we are under rq->lock, defer unthrottling using a timer */
5044 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5045 		    !list_empty(&cfs_b->throttled_cfs_rq))
5046 			start_cfs_slack_bandwidth(cfs_b);
5047 	}
5048 	raw_spin_unlock(&cfs_b->lock);
5049 
5050 	/* even if it's not valid for return we don't want to try again */
5051 	cfs_rq->runtime_remaining -= slack_runtime;
5052 }
5053 
5054 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5055 {
5056 	if (!cfs_bandwidth_used())
5057 		return;
5058 
5059 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5060 		return;
5061 
5062 	__return_cfs_rq_runtime(cfs_rq);
5063 }
5064 
5065 /*
5066  * This is done with a timer (instead of inline with bandwidth return) since
5067  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5068  */
5069 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5070 {
5071 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5072 	unsigned long flags;
5073 
5074 	/* confirm we're still not at a refresh boundary */
5075 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5076 	cfs_b->slack_started = false;
5077 
5078 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5079 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5080 		return;
5081 	}
5082 
5083 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5084 		runtime = cfs_b->runtime;
5085 
5086 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5087 
5088 	if (!runtime)
5089 		return;
5090 
5091 	distribute_cfs_runtime(cfs_b);
5092 
5093 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5094 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5095 }
5096 
5097 /*
5098  * When a group wakes up we want to make sure that its quota is not already
5099  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5100  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5101  */
5102 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5103 {
5104 	if (!cfs_bandwidth_used())
5105 		return;
5106 
5107 	/* an active group must be handled by the update_curr()->put() path */
5108 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5109 		return;
5110 
5111 	/* ensure the group is not already throttled */
5112 	if (cfs_rq_throttled(cfs_rq))
5113 		return;
5114 
5115 	/* update runtime allocation */
5116 	account_cfs_rq_runtime(cfs_rq, 0);
5117 	if (cfs_rq->runtime_remaining <= 0)
5118 		throttle_cfs_rq(cfs_rq);
5119 }
5120 
5121 static void sync_throttle(struct task_group *tg, int cpu)
5122 {
5123 	struct cfs_rq *pcfs_rq, *cfs_rq;
5124 
5125 	if (!cfs_bandwidth_used())
5126 		return;
5127 
5128 	if (!tg->parent)
5129 		return;
5130 
5131 	cfs_rq = tg->cfs_rq[cpu];
5132 	pcfs_rq = tg->parent->cfs_rq[cpu];
5133 
5134 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5135 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5136 }
5137 
5138 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5139 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5140 {
5141 	if (!cfs_bandwidth_used())
5142 		return false;
5143 
5144 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5145 		return false;
5146 
5147 	/*
5148 	 * it's possible for a throttled entity to be forced into a running
5149 	 * state (e.g. set_curr_task), in this case we're finished.
5150 	 */
5151 	if (cfs_rq_throttled(cfs_rq))
5152 		return true;
5153 
5154 	return throttle_cfs_rq(cfs_rq);
5155 }
5156 
5157 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5158 {
5159 	struct cfs_bandwidth *cfs_b =
5160 		container_of(timer, struct cfs_bandwidth, slack_timer);
5161 
5162 	do_sched_cfs_slack_timer(cfs_b);
5163 
5164 	return HRTIMER_NORESTART;
5165 }
5166 
5167 extern const u64 max_cfs_quota_period;
5168 
5169 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5170 {
5171 	struct cfs_bandwidth *cfs_b =
5172 		container_of(timer, struct cfs_bandwidth, period_timer);
5173 	unsigned long flags;
5174 	int overrun;
5175 	int idle = 0;
5176 	int count = 0;
5177 
5178 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5179 	for (;;) {
5180 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5181 		if (!overrun)
5182 			break;
5183 
5184 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5185 
5186 		if (++count > 3) {
5187 			u64 new, old = ktime_to_ns(cfs_b->period);
5188 
5189 			/*
5190 			 * Grow period by a factor of 2 to avoid losing precision.
5191 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5192 			 * to fail.
5193 			 */
5194 			new = old * 2;
5195 			if (new < max_cfs_quota_period) {
5196 				cfs_b->period = ns_to_ktime(new);
5197 				cfs_b->quota *= 2;
5198 
5199 				pr_warn_ratelimited(
5200 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5201 					smp_processor_id(),
5202 					div_u64(new, NSEC_PER_USEC),
5203 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5204 			} else {
5205 				pr_warn_ratelimited(
5206 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5207 					smp_processor_id(),
5208 					div_u64(old, NSEC_PER_USEC),
5209 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5210 			}
5211 
5212 			/* reset count so we don't come right back in here */
5213 			count = 0;
5214 		}
5215 	}
5216 	if (idle)
5217 		cfs_b->period_active = 0;
5218 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5219 
5220 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5221 }
5222 
5223 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5224 {
5225 	raw_spin_lock_init(&cfs_b->lock);
5226 	cfs_b->runtime = 0;
5227 	cfs_b->quota = RUNTIME_INF;
5228 	cfs_b->period = ns_to_ktime(default_cfs_period());
5229 
5230 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5231 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5232 	cfs_b->period_timer.function = sched_cfs_period_timer;
5233 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5234 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5235 	cfs_b->slack_started = false;
5236 }
5237 
5238 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5239 {
5240 	cfs_rq->runtime_enabled = 0;
5241 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5242 }
5243 
5244 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5245 {
5246 	lockdep_assert_held(&cfs_b->lock);
5247 
5248 	if (cfs_b->period_active)
5249 		return;
5250 
5251 	cfs_b->period_active = 1;
5252 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5253 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5254 }
5255 
5256 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5257 {
5258 	/* init_cfs_bandwidth() was not called */
5259 	if (!cfs_b->throttled_cfs_rq.next)
5260 		return;
5261 
5262 	hrtimer_cancel(&cfs_b->period_timer);
5263 	hrtimer_cancel(&cfs_b->slack_timer);
5264 }
5265 
5266 /*
5267  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5268  *
5269  * The race is harmless, since modifying bandwidth settings of unhooked group
5270  * bits doesn't do much.
5271  */
5272 
5273 /* cpu online calback */
5274 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5275 {
5276 	struct task_group *tg;
5277 
5278 	lockdep_assert_held(&rq->lock);
5279 
5280 	rcu_read_lock();
5281 	list_for_each_entry_rcu(tg, &task_groups, list) {
5282 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5283 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5284 
5285 		raw_spin_lock(&cfs_b->lock);
5286 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5287 		raw_spin_unlock(&cfs_b->lock);
5288 	}
5289 	rcu_read_unlock();
5290 }
5291 
5292 /* cpu offline callback */
5293 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5294 {
5295 	struct task_group *tg;
5296 
5297 	lockdep_assert_held(&rq->lock);
5298 
5299 	rcu_read_lock();
5300 	list_for_each_entry_rcu(tg, &task_groups, list) {
5301 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5302 
5303 		if (!cfs_rq->runtime_enabled)
5304 			continue;
5305 
5306 		/*
5307 		 * clock_task is not advancing so we just need to make sure
5308 		 * there's some valid quota amount
5309 		 */
5310 		cfs_rq->runtime_remaining = 1;
5311 		/*
5312 		 * Offline rq is schedulable till CPU is completely disabled
5313 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5314 		 */
5315 		cfs_rq->runtime_enabled = 0;
5316 
5317 		if (cfs_rq_throttled(cfs_rq))
5318 			unthrottle_cfs_rq(cfs_rq);
5319 	}
5320 	rcu_read_unlock();
5321 }
5322 
5323 #else /* CONFIG_CFS_BANDWIDTH */
5324 
5325 static inline bool cfs_bandwidth_used(void)
5326 {
5327 	return false;
5328 }
5329 
5330 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5331 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5332 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5333 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5334 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5335 
5336 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5337 {
5338 	return 0;
5339 }
5340 
5341 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5342 {
5343 	return 0;
5344 }
5345 
5346 static inline int throttled_lb_pair(struct task_group *tg,
5347 				    int src_cpu, int dest_cpu)
5348 {
5349 	return 0;
5350 }
5351 
5352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5353 
5354 #ifdef CONFIG_FAIR_GROUP_SCHED
5355 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5356 #endif
5357 
5358 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5359 {
5360 	return NULL;
5361 }
5362 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5363 static inline void update_runtime_enabled(struct rq *rq) {}
5364 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5365 
5366 #endif /* CONFIG_CFS_BANDWIDTH */
5367 
5368 /**************************************************
5369  * CFS operations on tasks:
5370  */
5371 
5372 #ifdef CONFIG_SCHED_HRTICK
5373 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5374 {
5375 	struct sched_entity *se = &p->se;
5376 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5377 
5378 	SCHED_WARN_ON(task_rq(p) != rq);
5379 
5380 	if (rq->cfs.h_nr_running > 1) {
5381 		u64 slice = sched_slice(cfs_rq, se);
5382 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5383 		s64 delta = slice - ran;
5384 
5385 		if (delta < 0) {
5386 			if (rq->curr == p)
5387 				resched_curr(rq);
5388 			return;
5389 		}
5390 		hrtick_start(rq, delta);
5391 	}
5392 }
5393 
5394 /*
5395  * called from enqueue/dequeue and updates the hrtick when the
5396  * current task is from our class and nr_running is low enough
5397  * to matter.
5398  */
5399 static void hrtick_update(struct rq *rq)
5400 {
5401 	struct task_struct *curr = rq->curr;
5402 
5403 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5404 		return;
5405 
5406 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5407 		hrtick_start_fair(rq, curr);
5408 }
5409 #else /* !CONFIG_SCHED_HRTICK */
5410 static inline void
5411 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5412 {
5413 }
5414 
5415 static inline void hrtick_update(struct rq *rq)
5416 {
5417 }
5418 #endif
5419 
5420 #ifdef CONFIG_SMP
5421 static inline unsigned long cpu_util(int cpu);
5422 
5423 static inline bool cpu_overutilized(int cpu)
5424 {
5425 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5426 }
5427 
5428 static inline void update_overutilized_status(struct rq *rq)
5429 {
5430 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5431 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5432 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5433 	}
5434 }
5435 #else
5436 static inline void update_overutilized_status(struct rq *rq) { }
5437 #endif
5438 
5439 /* Runqueue only has SCHED_IDLE tasks enqueued */
5440 static int sched_idle_rq(struct rq *rq)
5441 {
5442 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5443 			rq->nr_running);
5444 }
5445 
5446 #ifdef CONFIG_SMP
5447 static int sched_idle_cpu(int cpu)
5448 {
5449 	return sched_idle_rq(cpu_rq(cpu));
5450 }
5451 #endif
5452 
5453 /*
5454  * The enqueue_task method is called before nr_running is
5455  * increased. Here we update the fair scheduling stats and
5456  * then put the task into the rbtree:
5457  */
5458 static void
5459 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5460 {
5461 	struct cfs_rq *cfs_rq;
5462 	struct sched_entity *se = &p->se;
5463 	int idle_h_nr_running = task_has_idle_policy(p);
5464 
5465 	/*
5466 	 * The code below (indirectly) updates schedutil which looks at
5467 	 * the cfs_rq utilization to select a frequency.
5468 	 * Let's add the task's estimated utilization to the cfs_rq's
5469 	 * estimated utilization, before we update schedutil.
5470 	 */
5471 	util_est_enqueue(&rq->cfs, p);
5472 
5473 	/*
5474 	 * If in_iowait is set, the code below may not trigger any cpufreq
5475 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5476 	 * passed.
5477 	 */
5478 	if (p->in_iowait)
5479 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5480 
5481 	for_each_sched_entity(se) {
5482 		if (se->on_rq)
5483 			break;
5484 		cfs_rq = cfs_rq_of(se);
5485 		enqueue_entity(cfs_rq, se, flags);
5486 
5487 		cfs_rq->h_nr_running++;
5488 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5489 
5490 		/* end evaluation on encountering a throttled cfs_rq */
5491 		if (cfs_rq_throttled(cfs_rq))
5492 			goto enqueue_throttle;
5493 
5494 		flags = ENQUEUE_WAKEUP;
5495 	}
5496 
5497 	for_each_sched_entity(se) {
5498 		cfs_rq = cfs_rq_of(se);
5499 
5500 		update_load_avg(cfs_rq, se, UPDATE_TG);
5501 		se_update_runnable(se);
5502 		update_cfs_group(se);
5503 
5504 		cfs_rq->h_nr_running++;
5505 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5506 
5507 		/* end evaluation on encountering a throttled cfs_rq */
5508 		if (cfs_rq_throttled(cfs_rq))
5509 			goto enqueue_throttle;
5510 
5511                /*
5512                 * One parent has been throttled and cfs_rq removed from the
5513                 * list. Add it back to not break the leaf list.
5514                 */
5515                if (throttled_hierarchy(cfs_rq))
5516                        list_add_leaf_cfs_rq(cfs_rq);
5517 	}
5518 
5519 	/* At this point se is NULL and we are at root level*/
5520 	add_nr_running(rq, 1);
5521 
5522 	/*
5523 	 * Since new tasks are assigned an initial util_avg equal to
5524 	 * half of the spare capacity of their CPU, tiny tasks have the
5525 	 * ability to cross the overutilized threshold, which will
5526 	 * result in the load balancer ruining all the task placement
5527 	 * done by EAS. As a way to mitigate that effect, do not account
5528 	 * for the first enqueue operation of new tasks during the
5529 	 * overutilized flag detection.
5530 	 *
5531 	 * A better way of solving this problem would be to wait for
5532 	 * the PELT signals of tasks to converge before taking them
5533 	 * into account, but that is not straightforward to implement,
5534 	 * and the following generally works well enough in practice.
5535 	 */
5536 	if (flags & ENQUEUE_WAKEUP)
5537 		update_overutilized_status(rq);
5538 
5539 enqueue_throttle:
5540 	if (cfs_bandwidth_used()) {
5541 		/*
5542 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5543 		 * breaks in the above iteration can result in incomplete
5544 		 * leaf list maintenance, resulting in triggering the assertion
5545 		 * below.
5546 		 */
5547 		for_each_sched_entity(se) {
5548 			cfs_rq = cfs_rq_of(se);
5549 
5550 			if (list_add_leaf_cfs_rq(cfs_rq))
5551 				break;
5552 		}
5553 	}
5554 
5555 	assert_list_leaf_cfs_rq(rq);
5556 
5557 	hrtick_update(rq);
5558 }
5559 
5560 static void set_next_buddy(struct sched_entity *se);
5561 
5562 /*
5563  * The dequeue_task method is called before nr_running is
5564  * decreased. We remove the task from the rbtree and
5565  * update the fair scheduling stats:
5566  */
5567 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5568 {
5569 	struct cfs_rq *cfs_rq;
5570 	struct sched_entity *se = &p->se;
5571 	int task_sleep = flags & DEQUEUE_SLEEP;
5572 	int idle_h_nr_running = task_has_idle_policy(p);
5573 	bool was_sched_idle = sched_idle_rq(rq);
5574 
5575 	for_each_sched_entity(se) {
5576 		cfs_rq = cfs_rq_of(se);
5577 		dequeue_entity(cfs_rq, se, flags);
5578 
5579 		cfs_rq->h_nr_running--;
5580 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5581 
5582 		/* end evaluation on encountering a throttled cfs_rq */
5583 		if (cfs_rq_throttled(cfs_rq))
5584 			goto dequeue_throttle;
5585 
5586 		/* Don't dequeue parent if it has other entities besides us */
5587 		if (cfs_rq->load.weight) {
5588 			/* Avoid re-evaluating load for this entity: */
5589 			se = parent_entity(se);
5590 			/*
5591 			 * Bias pick_next to pick a task from this cfs_rq, as
5592 			 * p is sleeping when it is within its sched_slice.
5593 			 */
5594 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5595 				set_next_buddy(se);
5596 			break;
5597 		}
5598 		flags |= DEQUEUE_SLEEP;
5599 	}
5600 
5601 	for_each_sched_entity(se) {
5602 		cfs_rq = cfs_rq_of(se);
5603 
5604 		update_load_avg(cfs_rq, se, UPDATE_TG);
5605 		se_update_runnable(se);
5606 		update_cfs_group(se);
5607 
5608 		cfs_rq->h_nr_running--;
5609 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5610 
5611 		/* end evaluation on encountering a throttled cfs_rq */
5612 		if (cfs_rq_throttled(cfs_rq))
5613 			goto dequeue_throttle;
5614 
5615 	}
5616 
5617 dequeue_throttle:
5618 	if (!se)
5619 		sub_nr_running(rq, 1);
5620 
5621 	/* balance early to pull high priority tasks */
5622 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5623 		rq->next_balance = jiffies;
5624 
5625 	util_est_dequeue(&rq->cfs, p, task_sleep);
5626 	hrtick_update(rq);
5627 }
5628 
5629 #ifdef CONFIG_SMP
5630 
5631 /* Working cpumask for: load_balance, load_balance_newidle. */
5632 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5633 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5634 
5635 #ifdef CONFIG_NO_HZ_COMMON
5636 
5637 static struct {
5638 	cpumask_var_t idle_cpus_mask;
5639 	atomic_t nr_cpus;
5640 	int has_blocked;		/* Idle CPUS has blocked load */
5641 	unsigned long next_balance;     /* in jiffy units */
5642 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5643 } nohz ____cacheline_aligned;
5644 
5645 #endif /* CONFIG_NO_HZ_COMMON */
5646 
5647 static unsigned long cpu_load(struct rq *rq)
5648 {
5649 	return cfs_rq_load_avg(&rq->cfs);
5650 }
5651 
5652 /*
5653  * cpu_load_without - compute CPU load without any contributions from *p
5654  * @cpu: the CPU which load is requested
5655  * @p: the task which load should be discounted
5656  *
5657  * The load of a CPU is defined by the load of tasks currently enqueued on that
5658  * CPU as well as tasks which are currently sleeping after an execution on that
5659  * CPU.
5660  *
5661  * This method returns the load of the specified CPU by discounting the load of
5662  * the specified task, whenever the task is currently contributing to the CPU
5663  * load.
5664  */
5665 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5666 {
5667 	struct cfs_rq *cfs_rq;
5668 	unsigned int load;
5669 
5670 	/* Task has no contribution or is new */
5671 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5672 		return cpu_load(rq);
5673 
5674 	cfs_rq = &rq->cfs;
5675 	load = READ_ONCE(cfs_rq->avg.load_avg);
5676 
5677 	/* Discount task's util from CPU's util */
5678 	lsub_positive(&load, task_h_load(p));
5679 
5680 	return load;
5681 }
5682 
5683 static unsigned long cpu_runnable(struct rq *rq)
5684 {
5685 	return cfs_rq_runnable_avg(&rq->cfs);
5686 }
5687 
5688 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5689 {
5690 	struct cfs_rq *cfs_rq;
5691 	unsigned int runnable;
5692 
5693 	/* Task has no contribution or is new */
5694 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5695 		return cpu_runnable(rq);
5696 
5697 	cfs_rq = &rq->cfs;
5698 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5699 
5700 	/* Discount task's runnable from CPU's runnable */
5701 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5702 
5703 	return runnable;
5704 }
5705 
5706 static unsigned long capacity_of(int cpu)
5707 {
5708 	return cpu_rq(cpu)->cpu_capacity;
5709 }
5710 
5711 static void record_wakee(struct task_struct *p)
5712 {
5713 	/*
5714 	 * Only decay a single time; tasks that have less then 1 wakeup per
5715 	 * jiffy will not have built up many flips.
5716 	 */
5717 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5718 		current->wakee_flips >>= 1;
5719 		current->wakee_flip_decay_ts = jiffies;
5720 	}
5721 
5722 	if (current->last_wakee != p) {
5723 		current->last_wakee = p;
5724 		current->wakee_flips++;
5725 	}
5726 }
5727 
5728 /*
5729  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5730  *
5731  * A waker of many should wake a different task than the one last awakened
5732  * at a frequency roughly N times higher than one of its wakees.
5733  *
5734  * In order to determine whether we should let the load spread vs consolidating
5735  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5736  * partner, and a factor of lls_size higher frequency in the other.
5737  *
5738  * With both conditions met, we can be relatively sure that the relationship is
5739  * non-monogamous, with partner count exceeding socket size.
5740  *
5741  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5742  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5743  * socket size.
5744  */
5745 static int wake_wide(struct task_struct *p)
5746 {
5747 	unsigned int master = current->wakee_flips;
5748 	unsigned int slave = p->wakee_flips;
5749 	int factor = __this_cpu_read(sd_llc_size);
5750 
5751 	if (master < slave)
5752 		swap(master, slave);
5753 	if (slave < factor || master < slave * factor)
5754 		return 0;
5755 	return 1;
5756 }
5757 
5758 /*
5759  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5760  * soonest. For the purpose of speed we only consider the waking and previous
5761  * CPU.
5762  *
5763  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5764  *			cache-affine and is (or	will be) idle.
5765  *
5766  * wake_affine_weight() - considers the weight to reflect the average
5767  *			  scheduling latency of the CPUs. This seems to work
5768  *			  for the overloaded case.
5769  */
5770 static int
5771 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5772 {
5773 	/*
5774 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5775 	 * context. Only allow the move if cache is shared. Otherwise an
5776 	 * interrupt intensive workload could force all tasks onto one
5777 	 * node depending on the IO topology or IRQ affinity settings.
5778 	 *
5779 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5780 	 * There is no guarantee that the cache hot data from an interrupt
5781 	 * is more important than cache hot data on the prev_cpu and from
5782 	 * a cpufreq perspective, it's better to have higher utilisation
5783 	 * on one CPU.
5784 	 */
5785 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5786 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5787 
5788 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5789 		return this_cpu;
5790 
5791 	return nr_cpumask_bits;
5792 }
5793 
5794 static int
5795 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5796 		   int this_cpu, int prev_cpu, int sync)
5797 {
5798 	s64 this_eff_load, prev_eff_load;
5799 	unsigned long task_load;
5800 
5801 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5802 
5803 	if (sync) {
5804 		unsigned long current_load = task_h_load(current);
5805 
5806 		if (current_load > this_eff_load)
5807 			return this_cpu;
5808 
5809 		this_eff_load -= current_load;
5810 	}
5811 
5812 	task_load = task_h_load(p);
5813 
5814 	this_eff_load += task_load;
5815 	if (sched_feat(WA_BIAS))
5816 		this_eff_load *= 100;
5817 	this_eff_load *= capacity_of(prev_cpu);
5818 
5819 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5820 	prev_eff_load -= task_load;
5821 	if (sched_feat(WA_BIAS))
5822 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5823 	prev_eff_load *= capacity_of(this_cpu);
5824 
5825 	/*
5826 	 * If sync, adjust the weight of prev_eff_load such that if
5827 	 * prev_eff == this_eff that select_idle_sibling() will consider
5828 	 * stacking the wakee on top of the waker if no other CPU is
5829 	 * idle.
5830 	 */
5831 	if (sync)
5832 		prev_eff_load += 1;
5833 
5834 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5835 }
5836 
5837 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5838 		       int this_cpu, int prev_cpu, int sync)
5839 {
5840 	int target = nr_cpumask_bits;
5841 
5842 	if (sched_feat(WA_IDLE))
5843 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5844 
5845 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5846 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5847 
5848 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5849 	if (target == nr_cpumask_bits)
5850 		return prev_cpu;
5851 
5852 	schedstat_inc(sd->ttwu_move_affine);
5853 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5854 	return target;
5855 }
5856 
5857 static struct sched_group *
5858 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5859 
5860 /*
5861  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5862  */
5863 static int
5864 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5865 {
5866 	unsigned long load, min_load = ULONG_MAX;
5867 	unsigned int min_exit_latency = UINT_MAX;
5868 	u64 latest_idle_timestamp = 0;
5869 	int least_loaded_cpu = this_cpu;
5870 	int shallowest_idle_cpu = -1;
5871 	int i;
5872 
5873 	/* Check if we have any choice: */
5874 	if (group->group_weight == 1)
5875 		return cpumask_first(sched_group_span(group));
5876 
5877 	/* Traverse only the allowed CPUs */
5878 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5879 		if (sched_idle_cpu(i))
5880 			return i;
5881 
5882 		if (available_idle_cpu(i)) {
5883 			struct rq *rq = cpu_rq(i);
5884 			struct cpuidle_state *idle = idle_get_state(rq);
5885 			if (idle && idle->exit_latency < min_exit_latency) {
5886 				/*
5887 				 * We give priority to a CPU whose idle state
5888 				 * has the smallest exit latency irrespective
5889 				 * of any idle timestamp.
5890 				 */
5891 				min_exit_latency = idle->exit_latency;
5892 				latest_idle_timestamp = rq->idle_stamp;
5893 				shallowest_idle_cpu = i;
5894 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5895 				   rq->idle_stamp > latest_idle_timestamp) {
5896 				/*
5897 				 * If equal or no active idle state, then
5898 				 * the most recently idled CPU might have
5899 				 * a warmer cache.
5900 				 */
5901 				latest_idle_timestamp = rq->idle_stamp;
5902 				shallowest_idle_cpu = i;
5903 			}
5904 		} else if (shallowest_idle_cpu == -1) {
5905 			load = cpu_load(cpu_rq(i));
5906 			if (load < min_load) {
5907 				min_load = load;
5908 				least_loaded_cpu = i;
5909 			}
5910 		}
5911 	}
5912 
5913 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5914 }
5915 
5916 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5917 				  int cpu, int prev_cpu, int sd_flag)
5918 {
5919 	int new_cpu = cpu;
5920 
5921 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5922 		return prev_cpu;
5923 
5924 	/*
5925 	 * We need task's util for cpu_util_without, sync it up to
5926 	 * prev_cpu's last_update_time.
5927 	 */
5928 	if (!(sd_flag & SD_BALANCE_FORK))
5929 		sync_entity_load_avg(&p->se);
5930 
5931 	while (sd) {
5932 		struct sched_group *group;
5933 		struct sched_domain *tmp;
5934 		int weight;
5935 
5936 		if (!(sd->flags & sd_flag)) {
5937 			sd = sd->child;
5938 			continue;
5939 		}
5940 
5941 		group = find_idlest_group(sd, p, cpu);
5942 		if (!group) {
5943 			sd = sd->child;
5944 			continue;
5945 		}
5946 
5947 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5948 		if (new_cpu == cpu) {
5949 			/* Now try balancing at a lower domain level of 'cpu': */
5950 			sd = sd->child;
5951 			continue;
5952 		}
5953 
5954 		/* Now try balancing at a lower domain level of 'new_cpu': */
5955 		cpu = new_cpu;
5956 		weight = sd->span_weight;
5957 		sd = NULL;
5958 		for_each_domain(cpu, tmp) {
5959 			if (weight <= tmp->span_weight)
5960 				break;
5961 			if (tmp->flags & sd_flag)
5962 				sd = tmp;
5963 		}
5964 	}
5965 
5966 	return new_cpu;
5967 }
5968 
5969 #ifdef CONFIG_SCHED_SMT
5970 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5971 EXPORT_SYMBOL_GPL(sched_smt_present);
5972 
5973 static inline void set_idle_cores(int cpu, int val)
5974 {
5975 	struct sched_domain_shared *sds;
5976 
5977 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5978 	if (sds)
5979 		WRITE_ONCE(sds->has_idle_cores, val);
5980 }
5981 
5982 static inline bool test_idle_cores(int cpu, bool def)
5983 {
5984 	struct sched_domain_shared *sds;
5985 
5986 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5987 	if (sds)
5988 		return READ_ONCE(sds->has_idle_cores);
5989 
5990 	return def;
5991 }
5992 
5993 /*
5994  * Scans the local SMT mask to see if the entire core is idle, and records this
5995  * information in sd_llc_shared->has_idle_cores.
5996  *
5997  * Since SMT siblings share all cache levels, inspecting this limited remote
5998  * state should be fairly cheap.
5999  */
6000 void __update_idle_core(struct rq *rq)
6001 {
6002 	int core = cpu_of(rq);
6003 	int cpu;
6004 
6005 	rcu_read_lock();
6006 	if (test_idle_cores(core, true))
6007 		goto unlock;
6008 
6009 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6010 		if (cpu == core)
6011 			continue;
6012 
6013 		if (!available_idle_cpu(cpu))
6014 			goto unlock;
6015 	}
6016 
6017 	set_idle_cores(core, 1);
6018 unlock:
6019 	rcu_read_unlock();
6020 }
6021 
6022 /*
6023  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6024  * there are no idle cores left in the system; tracked through
6025  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6026  */
6027 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6028 {
6029 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6030 	int core, cpu;
6031 
6032 	if (!static_branch_likely(&sched_smt_present))
6033 		return -1;
6034 
6035 	if (!test_idle_cores(target, false))
6036 		return -1;
6037 
6038 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6039 
6040 	for_each_cpu_wrap(core, cpus, target) {
6041 		bool idle = true;
6042 
6043 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6044 			if (!available_idle_cpu(cpu)) {
6045 				idle = false;
6046 				break;
6047 			}
6048 		}
6049 		cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6050 
6051 		if (idle)
6052 			return core;
6053 	}
6054 
6055 	/*
6056 	 * Failed to find an idle core; stop looking for one.
6057 	 */
6058 	set_idle_cores(target, 0);
6059 
6060 	return -1;
6061 }
6062 
6063 /*
6064  * Scan the local SMT mask for idle CPUs.
6065  */
6066 static int select_idle_smt(struct task_struct *p, int target)
6067 {
6068 	int cpu;
6069 
6070 	if (!static_branch_likely(&sched_smt_present))
6071 		return -1;
6072 
6073 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6074 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6075 			continue;
6076 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6077 			return cpu;
6078 	}
6079 
6080 	return -1;
6081 }
6082 
6083 #else /* CONFIG_SCHED_SMT */
6084 
6085 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6086 {
6087 	return -1;
6088 }
6089 
6090 static inline int select_idle_smt(struct task_struct *p, int target)
6091 {
6092 	return -1;
6093 }
6094 
6095 #endif /* CONFIG_SCHED_SMT */
6096 
6097 /*
6098  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6099  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6100  * average idle time for this rq (as found in rq->avg_idle).
6101  */
6102 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6103 {
6104 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6105 	struct sched_domain *this_sd;
6106 	u64 avg_cost, avg_idle;
6107 	u64 time;
6108 	int this = smp_processor_id();
6109 	int cpu, nr = INT_MAX;
6110 
6111 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6112 	if (!this_sd)
6113 		return -1;
6114 
6115 	/*
6116 	 * Due to large variance we need a large fuzz factor; hackbench in
6117 	 * particularly is sensitive here.
6118 	 */
6119 	avg_idle = this_rq()->avg_idle / 512;
6120 	avg_cost = this_sd->avg_scan_cost + 1;
6121 
6122 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6123 		return -1;
6124 
6125 	if (sched_feat(SIS_PROP)) {
6126 		u64 span_avg = sd->span_weight * avg_idle;
6127 		if (span_avg > 4*avg_cost)
6128 			nr = div_u64(span_avg, avg_cost);
6129 		else
6130 			nr = 4;
6131 	}
6132 
6133 	time = cpu_clock(this);
6134 
6135 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6136 
6137 	for_each_cpu_wrap(cpu, cpus, target) {
6138 		if (!--nr)
6139 			return -1;
6140 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6141 			break;
6142 	}
6143 
6144 	time = cpu_clock(this) - time;
6145 	update_avg(&this_sd->avg_scan_cost, time);
6146 
6147 	return cpu;
6148 }
6149 
6150 /*
6151  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6152  * the task fits. If no CPU is big enough, but there are idle ones, try to
6153  * maximize capacity.
6154  */
6155 static int
6156 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6157 {
6158 	unsigned long best_cap = 0;
6159 	int cpu, best_cpu = -1;
6160 	struct cpumask *cpus;
6161 
6162 	sync_entity_load_avg(&p->se);
6163 
6164 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6165 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6166 
6167 	for_each_cpu_wrap(cpu, cpus, target) {
6168 		unsigned long cpu_cap = capacity_of(cpu);
6169 
6170 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6171 			continue;
6172 		if (task_fits_capacity(p, cpu_cap))
6173 			return cpu;
6174 
6175 		if (cpu_cap > best_cap) {
6176 			best_cap = cpu_cap;
6177 			best_cpu = cpu;
6178 		}
6179 	}
6180 
6181 	return best_cpu;
6182 }
6183 
6184 /*
6185  * Try and locate an idle core/thread in the LLC cache domain.
6186  */
6187 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6188 {
6189 	struct sched_domain *sd;
6190 	int i, recent_used_cpu;
6191 
6192 	/*
6193 	 * For asymmetric CPU capacity systems, our domain of interest is
6194 	 * sd_asym_cpucapacity rather than sd_llc.
6195 	 */
6196 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6197 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6198 		/*
6199 		 * On an asymmetric CPU capacity system where an exclusive
6200 		 * cpuset defines a symmetric island (i.e. one unique
6201 		 * capacity_orig value through the cpuset), the key will be set
6202 		 * but the CPUs within that cpuset will not have a domain with
6203 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6204 		 * capacity path.
6205 		 */
6206 		if (!sd)
6207 			goto symmetric;
6208 
6209 		i = select_idle_capacity(p, sd, target);
6210 		return ((unsigned)i < nr_cpumask_bits) ? i : target;
6211 	}
6212 
6213 symmetric:
6214 	if (available_idle_cpu(target) || sched_idle_cpu(target))
6215 		return target;
6216 
6217 	/*
6218 	 * If the previous CPU is cache affine and idle, don't be stupid:
6219 	 */
6220 	if (prev != target && cpus_share_cache(prev, target) &&
6221 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6222 		return prev;
6223 
6224 	/*
6225 	 * Allow a per-cpu kthread to stack with the wakee if the
6226 	 * kworker thread and the tasks previous CPUs are the same.
6227 	 * The assumption is that the wakee queued work for the
6228 	 * per-cpu kthread that is now complete and the wakeup is
6229 	 * essentially a sync wakeup. An obvious example of this
6230 	 * pattern is IO completions.
6231 	 */
6232 	if (is_per_cpu_kthread(current) &&
6233 	    prev == smp_processor_id() &&
6234 	    this_rq()->nr_running <= 1) {
6235 		return prev;
6236 	}
6237 
6238 	/* Check a recently used CPU as a potential idle candidate: */
6239 	recent_used_cpu = p->recent_used_cpu;
6240 	if (recent_used_cpu != prev &&
6241 	    recent_used_cpu != target &&
6242 	    cpus_share_cache(recent_used_cpu, target) &&
6243 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6244 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6245 		/*
6246 		 * Replace recent_used_cpu with prev as it is a potential
6247 		 * candidate for the next wake:
6248 		 */
6249 		p->recent_used_cpu = prev;
6250 		return recent_used_cpu;
6251 	}
6252 
6253 	sd = rcu_dereference(per_cpu(sd_llc, target));
6254 	if (!sd)
6255 		return target;
6256 
6257 	i = select_idle_core(p, sd, target);
6258 	if ((unsigned)i < nr_cpumask_bits)
6259 		return i;
6260 
6261 	i = select_idle_cpu(p, sd, target);
6262 	if ((unsigned)i < nr_cpumask_bits)
6263 		return i;
6264 
6265 	i = select_idle_smt(p, target);
6266 	if ((unsigned)i < nr_cpumask_bits)
6267 		return i;
6268 
6269 	return target;
6270 }
6271 
6272 /**
6273  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6274  * @cpu: the CPU to get the utilization of
6275  *
6276  * The unit of the return value must be the one of capacity so we can compare
6277  * the utilization with the capacity of the CPU that is available for CFS task
6278  * (ie cpu_capacity).
6279  *
6280  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6281  * recent utilization of currently non-runnable tasks on a CPU. It represents
6282  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6283  * capacity_orig is the cpu_capacity available at the highest frequency
6284  * (arch_scale_freq_capacity()).
6285  * The utilization of a CPU converges towards a sum equal to or less than the
6286  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6287  * the running time on this CPU scaled by capacity_curr.
6288  *
6289  * The estimated utilization of a CPU is defined to be the maximum between its
6290  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6291  * currently RUNNABLE on that CPU.
6292  * This allows to properly represent the expected utilization of a CPU which
6293  * has just got a big task running since a long sleep period. At the same time
6294  * however it preserves the benefits of the "blocked utilization" in
6295  * describing the potential for other tasks waking up on the same CPU.
6296  *
6297  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6298  * higher than capacity_orig because of unfortunate rounding in
6299  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6300  * the average stabilizes with the new running time. We need to check that the
6301  * utilization stays within the range of [0..capacity_orig] and cap it if
6302  * necessary. Without utilization capping, a group could be seen as overloaded
6303  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6304  * available capacity. We allow utilization to overshoot capacity_curr (but not
6305  * capacity_orig) as it useful for predicting the capacity required after task
6306  * migrations (scheduler-driven DVFS).
6307  *
6308  * Return: the (estimated) utilization for the specified CPU
6309  */
6310 static inline unsigned long cpu_util(int cpu)
6311 {
6312 	struct cfs_rq *cfs_rq;
6313 	unsigned int util;
6314 
6315 	cfs_rq = &cpu_rq(cpu)->cfs;
6316 	util = READ_ONCE(cfs_rq->avg.util_avg);
6317 
6318 	if (sched_feat(UTIL_EST))
6319 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6320 
6321 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6322 }
6323 
6324 /*
6325  * cpu_util_without: compute cpu utilization without any contributions from *p
6326  * @cpu: the CPU which utilization is requested
6327  * @p: the task which utilization should be discounted
6328  *
6329  * The utilization of a CPU is defined by the utilization of tasks currently
6330  * enqueued on that CPU as well as tasks which are currently sleeping after an
6331  * execution on that CPU.
6332  *
6333  * This method returns the utilization of the specified CPU by discounting the
6334  * utilization of the specified task, whenever the task is currently
6335  * contributing to the CPU utilization.
6336  */
6337 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6338 {
6339 	struct cfs_rq *cfs_rq;
6340 	unsigned int util;
6341 
6342 	/* Task has no contribution or is new */
6343 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6344 		return cpu_util(cpu);
6345 
6346 	cfs_rq = &cpu_rq(cpu)->cfs;
6347 	util = READ_ONCE(cfs_rq->avg.util_avg);
6348 
6349 	/* Discount task's util from CPU's util */
6350 	lsub_positive(&util, task_util(p));
6351 
6352 	/*
6353 	 * Covered cases:
6354 	 *
6355 	 * a) if *p is the only task sleeping on this CPU, then:
6356 	 *      cpu_util (== task_util) > util_est (== 0)
6357 	 *    and thus we return:
6358 	 *      cpu_util_without = (cpu_util - task_util) = 0
6359 	 *
6360 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6361 	 *    IDLE, then:
6362 	 *      cpu_util >= task_util
6363 	 *      cpu_util > util_est (== 0)
6364 	 *    and thus we discount *p's blocked utilization to return:
6365 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6366 	 *
6367 	 * c) if other tasks are RUNNABLE on that CPU and
6368 	 *      util_est > cpu_util
6369 	 *    then we use util_est since it returns a more restrictive
6370 	 *    estimation of the spare capacity on that CPU, by just
6371 	 *    considering the expected utilization of tasks already
6372 	 *    runnable on that CPU.
6373 	 *
6374 	 * Cases a) and b) are covered by the above code, while case c) is
6375 	 * covered by the following code when estimated utilization is
6376 	 * enabled.
6377 	 */
6378 	if (sched_feat(UTIL_EST)) {
6379 		unsigned int estimated =
6380 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6381 
6382 		/*
6383 		 * Despite the following checks we still have a small window
6384 		 * for a possible race, when an execl's select_task_rq_fair()
6385 		 * races with LB's detach_task():
6386 		 *
6387 		 *   detach_task()
6388 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6389 		 *     ---------------------------------- A
6390 		 *     deactivate_task()                   \
6391 		 *       dequeue_task()                     + RaceTime
6392 		 *         util_est_dequeue()              /
6393 		 *     ---------------------------------- B
6394 		 *
6395 		 * The additional check on "current == p" it's required to
6396 		 * properly fix the execl regression and it helps in further
6397 		 * reducing the chances for the above race.
6398 		 */
6399 		if (unlikely(task_on_rq_queued(p) || current == p))
6400 			lsub_positive(&estimated, _task_util_est(p));
6401 
6402 		util = max(util, estimated);
6403 	}
6404 
6405 	/*
6406 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6407 	 * clamp to the maximum CPU capacity to ensure consistency with
6408 	 * the cpu_util call.
6409 	 */
6410 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6411 }
6412 
6413 /*
6414  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6415  * to @dst_cpu.
6416  */
6417 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6418 {
6419 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6420 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6421 
6422 	/*
6423 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6424 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6425 	 * the other cases, @cpu is not impacted by the migration, so the
6426 	 * util_avg should already be correct.
6427 	 */
6428 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6429 		sub_positive(&util, task_util(p));
6430 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6431 		util += task_util(p);
6432 
6433 	if (sched_feat(UTIL_EST)) {
6434 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6435 
6436 		/*
6437 		 * During wake-up, the task isn't enqueued yet and doesn't
6438 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6439 		 * so just add it (if needed) to "simulate" what will be
6440 		 * cpu_util() after the task has been enqueued.
6441 		 */
6442 		if (dst_cpu == cpu)
6443 			util_est += _task_util_est(p);
6444 
6445 		util = max(util, util_est);
6446 	}
6447 
6448 	return min(util, capacity_orig_of(cpu));
6449 }
6450 
6451 /*
6452  * compute_energy(): Estimates the energy that @pd would consume if @p was
6453  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6454  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6455  * to compute what would be the energy if we decided to actually migrate that
6456  * task.
6457  */
6458 static long
6459 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6460 {
6461 	struct cpumask *pd_mask = perf_domain_span(pd);
6462 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6463 	unsigned long max_util = 0, sum_util = 0;
6464 	int cpu;
6465 
6466 	/*
6467 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6468 	 * of another rd if they belong to the same pd. So, account for the
6469 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6470 	 * instead of the rd span.
6471 	 *
6472 	 * If an entire pd is outside of the current rd, it will not appear in
6473 	 * its pd list and will not be accounted by compute_energy().
6474 	 */
6475 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6476 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6477 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6478 
6479 		/*
6480 		 * Busy time computation: utilization clamping is not
6481 		 * required since the ratio (sum_util / cpu_capacity)
6482 		 * is already enough to scale the EM reported power
6483 		 * consumption at the (eventually clamped) cpu_capacity.
6484 		 */
6485 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6486 					       ENERGY_UTIL, NULL);
6487 
6488 		/*
6489 		 * Performance domain frequency: utilization clamping
6490 		 * must be considered since it affects the selection
6491 		 * of the performance domain frequency.
6492 		 * NOTE: in case RT tasks are running, by default the
6493 		 * FREQUENCY_UTIL's utilization can be max OPP.
6494 		 */
6495 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6496 					      FREQUENCY_UTIL, tsk);
6497 		max_util = max(max_util, cpu_util);
6498 	}
6499 
6500 	return em_pd_energy(pd->em_pd, max_util, sum_util);
6501 }
6502 
6503 /*
6504  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6505  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6506  * spare capacity in each performance domain and uses it as a potential
6507  * candidate to execute the task. Then, it uses the Energy Model to figure
6508  * out which of the CPU candidates is the most energy-efficient.
6509  *
6510  * The rationale for this heuristic is as follows. In a performance domain,
6511  * all the most energy efficient CPU candidates (according to the Energy
6512  * Model) are those for which we'll request a low frequency. When there are
6513  * several CPUs for which the frequency request will be the same, we don't
6514  * have enough data to break the tie between them, because the Energy Model
6515  * only includes active power costs. With this model, if we assume that
6516  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6517  * the maximum spare capacity in a performance domain is guaranteed to be among
6518  * the best candidates of the performance domain.
6519  *
6520  * In practice, it could be preferable from an energy standpoint to pack
6521  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6522  * but that could also hurt our chances to go cluster idle, and we have no
6523  * ways to tell with the current Energy Model if this is actually a good
6524  * idea or not. So, find_energy_efficient_cpu() basically favors
6525  * cluster-packing, and spreading inside a cluster. That should at least be
6526  * a good thing for latency, and this is consistent with the idea that most
6527  * of the energy savings of EAS come from the asymmetry of the system, and
6528  * not so much from breaking the tie between identical CPUs. That's also the
6529  * reason why EAS is enabled in the topology code only for systems where
6530  * SD_ASYM_CPUCAPACITY is set.
6531  *
6532  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6533  * they don't have any useful utilization data yet and it's not possible to
6534  * forecast their impact on energy consumption. Consequently, they will be
6535  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6536  * to be energy-inefficient in some use-cases. The alternative would be to
6537  * bias new tasks towards specific types of CPUs first, or to try to infer
6538  * their util_avg from the parent task, but those heuristics could hurt
6539  * other use-cases too. So, until someone finds a better way to solve this,
6540  * let's keep things simple by re-using the existing slow path.
6541  */
6542 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6543 {
6544 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6545 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6546 	unsigned long cpu_cap, util, base_energy = 0;
6547 	int cpu, best_energy_cpu = prev_cpu;
6548 	struct sched_domain *sd;
6549 	struct perf_domain *pd;
6550 
6551 	rcu_read_lock();
6552 	pd = rcu_dereference(rd->pd);
6553 	if (!pd || READ_ONCE(rd->overutilized))
6554 		goto fail;
6555 
6556 	/*
6557 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6558 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6559 	 */
6560 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6561 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6562 		sd = sd->parent;
6563 	if (!sd)
6564 		goto fail;
6565 
6566 	sync_entity_load_avg(&p->se);
6567 	if (!task_util_est(p))
6568 		goto unlock;
6569 
6570 	for (; pd; pd = pd->next) {
6571 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6572 		unsigned long base_energy_pd;
6573 		int max_spare_cap_cpu = -1;
6574 
6575 		/* Compute the 'base' energy of the pd, without @p */
6576 		base_energy_pd = compute_energy(p, -1, pd);
6577 		base_energy += base_energy_pd;
6578 
6579 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6580 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6581 				continue;
6582 
6583 			util = cpu_util_next(cpu, p, cpu);
6584 			cpu_cap = capacity_of(cpu);
6585 			spare_cap = cpu_cap - util;
6586 
6587 			/*
6588 			 * Skip CPUs that cannot satisfy the capacity request.
6589 			 * IOW, placing the task there would make the CPU
6590 			 * overutilized. Take uclamp into account to see how
6591 			 * much capacity we can get out of the CPU; this is
6592 			 * aligned with schedutil_cpu_util().
6593 			 */
6594 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6595 			if (!fits_capacity(util, cpu_cap))
6596 				continue;
6597 
6598 			/* Always use prev_cpu as a candidate. */
6599 			if (cpu == prev_cpu) {
6600 				prev_delta = compute_energy(p, prev_cpu, pd);
6601 				prev_delta -= base_energy_pd;
6602 				best_delta = min(best_delta, prev_delta);
6603 			}
6604 
6605 			/*
6606 			 * Find the CPU with the maximum spare capacity in
6607 			 * the performance domain
6608 			 */
6609 			if (spare_cap > max_spare_cap) {
6610 				max_spare_cap = spare_cap;
6611 				max_spare_cap_cpu = cpu;
6612 			}
6613 		}
6614 
6615 		/* Evaluate the energy impact of using this CPU. */
6616 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6617 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6618 			cur_delta -= base_energy_pd;
6619 			if (cur_delta < best_delta) {
6620 				best_delta = cur_delta;
6621 				best_energy_cpu = max_spare_cap_cpu;
6622 			}
6623 		}
6624 	}
6625 unlock:
6626 	rcu_read_unlock();
6627 
6628 	/*
6629 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6630 	 * least 6% of the energy used by prev_cpu.
6631 	 */
6632 	if (prev_delta == ULONG_MAX)
6633 		return best_energy_cpu;
6634 
6635 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6636 		return best_energy_cpu;
6637 
6638 	return prev_cpu;
6639 
6640 fail:
6641 	rcu_read_unlock();
6642 
6643 	return -1;
6644 }
6645 
6646 /*
6647  * select_task_rq_fair: Select target runqueue for the waking task in domains
6648  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6649  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6650  *
6651  * Balances load by selecting the idlest CPU in the idlest group, or under
6652  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6653  *
6654  * Returns the target CPU number.
6655  *
6656  * preempt must be disabled.
6657  */
6658 static int
6659 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6660 {
6661 	struct sched_domain *tmp, *sd = NULL;
6662 	int cpu = smp_processor_id();
6663 	int new_cpu = prev_cpu;
6664 	int want_affine = 0;
6665 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6666 
6667 	if (sd_flag & SD_BALANCE_WAKE) {
6668 		record_wakee(p);
6669 
6670 		if (sched_energy_enabled()) {
6671 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6672 			if (new_cpu >= 0)
6673 				return new_cpu;
6674 			new_cpu = prev_cpu;
6675 		}
6676 
6677 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6678 	}
6679 
6680 	rcu_read_lock();
6681 	for_each_domain(cpu, tmp) {
6682 		/*
6683 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6684 		 * cpu is a valid SD_WAKE_AFFINE target.
6685 		 */
6686 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6687 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6688 			if (cpu != prev_cpu)
6689 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6690 
6691 			sd = NULL; /* Prefer wake_affine over balance flags */
6692 			break;
6693 		}
6694 
6695 		if (tmp->flags & sd_flag)
6696 			sd = tmp;
6697 		else if (!want_affine)
6698 			break;
6699 	}
6700 
6701 	if (unlikely(sd)) {
6702 		/* Slow path */
6703 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6704 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6705 		/* Fast path */
6706 
6707 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6708 
6709 		if (want_affine)
6710 			current->recent_used_cpu = cpu;
6711 	}
6712 	rcu_read_unlock();
6713 
6714 	return new_cpu;
6715 }
6716 
6717 static void detach_entity_cfs_rq(struct sched_entity *se);
6718 
6719 /*
6720  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6721  * cfs_rq_of(p) references at time of call are still valid and identify the
6722  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6723  */
6724 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6725 {
6726 	/*
6727 	 * As blocked tasks retain absolute vruntime the migration needs to
6728 	 * deal with this by subtracting the old and adding the new
6729 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6730 	 * the task on the new runqueue.
6731 	 */
6732 	if (p->state == TASK_WAKING) {
6733 		struct sched_entity *se = &p->se;
6734 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6735 		u64 min_vruntime;
6736 
6737 #ifndef CONFIG_64BIT
6738 		u64 min_vruntime_copy;
6739 
6740 		do {
6741 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6742 			smp_rmb();
6743 			min_vruntime = cfs_rq->min_vruntime;
6744 		} while (min_vruntime != min_vruntime_copy);
6745 #else
6746 		min_vruntime = cfs_rq->min_vruntime;
6747 #endif
6748 
6749 		se->vruntime -= min_vruntime;
6750 	}
6751 
6752 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6753 		/*
6754 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6755 		 * rq->lock and can modify state directly.
6756 		 */
6757 		lockdep_assert_held(&task_rq(p)->lock);
6758 		detach_entity_cfs_rq(&p->se);
6759 
6760 	} else {
6761 		/*
6762 		 * We are supposed to update the task to "current" time, then
6763 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6764 		 * have difficulty in getting what current time is, so simply
6765 		 * throw away the out-of-date time. This will result in the
6766 		 * wakee task is less decayed, but giving the wakee more load
6767 		 * sounds not bad.
6768 		 */
6769 		remove_entity_load_avg(&p->se);
6770 	}
6771 
6772 	/* Tell new CPU we are migrated */
6773 	p->se.avg.last_update_time = 0;
6774 
6775 	/* We have migrated, no longer consider this task hot */
6776 	p->se.exec_start = 0;
6777 
6778 	update_scan_period(p, new_cpu);
6779 }
6780 
6781 static void task_dead_fair(struct task_struct *p)
6782 {
6783 	remove_entity_load_avg(&p->se);
6784 }
6785 
6786 static int
6787 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6788 {
6789 	if (rq->nr_running)
6790 		return 1;
6791 
6792 	return newidle_balance(rq, rf) != 0;
6793 }
6794 #endif /* CONFIG_SMP */
6795 
6796 static unsigned long wakeup_gran(struct sched_entity *se)
6797 {
6798 	unsigned long gran = sysctl_sched_wakeup_granularity;
6799 
6800 	/*
6801 	 * Since its curr running now, convert the gran from real-time
6802 	 * to virtual-time in his units.
6803 	 *
6804 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6805 	 * they get preempted easier. That is, if 'se' < 'curr' then
6806 	 * the resulting gran will be larger, therefore penalizing the
6807 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6808 	 * be smaller, again penalizing the lighter task.
6809 	 *
6810 	 * This is especially important for buddies when the leftmost
6811 	 * task is higher priority than the buddy.
6812 	 */
6813 	return calc_delta_fair(gran, se);
6814 }
6815 
6816 /*
6817  * Should 'se' preempt 'curr'.
6818  *
6819  *             |s1
6820  *        |s2
6821  *   |s3
6822  *         g
6823  *      |<--->|c
6824  *
6825  *  w(c, s1) = -1
6826  *  w(c, s2) =  0
6827  *  w(c, s3) =  1
6828  *
6829  */
6830 static int
6831 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6832 {
6833 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6834 
6835 	if (vdiff <= 0)
6836 		return -1;
6837 
6838 	gran = wakeup_gran(se);
6839 	if (vdiff > gran)
6840 		return 1;
6841 
6842 	return 0;
6843 }
6844 
6845 static void set_last_buddy(struct sched_entity *se)
6846 {
6847 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6848 		return;
6849 
6850 	for_each_sched_entity(se) {
6851 		if (SCHED_WARN_ON(!se->on_rq))
6852 			return;
6853 		cfs_rq_of(se)->last = se;
6854 	}
6855 }
6856 
6857 static void set_next_buddy(struct sched_entity *se)
6858 {
6859 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6860 		return;
6861 
6862 	for_each_sched_entity(se) {
6863 		if (SCHED_WARN_ON(!se->on_rq))
6864 			return;
6865 		cfs_rq_of(se)->next = se;
6866 	}
6867 }
6868 
6869 static void set_skip_buddy(struct sched_entity *se)
6870 {
6871 	for_each_sched_entity(se)
6872 		cfs_rq_of(se)->skip = se;
6873 }
6874 
6875 /*
6876  * Preempt the current task with a newly woken task if needed:
6877  */
6878 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6879 {
6880 	struct task_struct *curr = rq->curr;
6881 	struct sched_entity *se = &curr->se, *pse = &p->se;
6882 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6883 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6884 	int next_buddy_marked = 0;
6885 
6886 	if (unlikely(se == pse))
6887 		return;
6888 
6889 	/*
6890 	 * This is possible from callers such as attach_tasks(), in which we
6891 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6892 	 * lead to a throttle).  This both saves work and prevents false
6893 	 * next-buddy nomination below.
6894 	 */
6895 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6896 		return;
6897 
6898 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6899 		set_next_buddy(pse);
6900 		next_buddy_marked = 1;
6901 	}
6902 
6903 	/*
6904 	 * We can come here with TIF_NEED_RESCHED already set from new task
6905 	 * wake up path.
6906 	 *
6907 	 * Note: this also catches the edge-case of curr being in a throttled
6908 	 * group (e.g. via set_curr_task), since update_curr() (in the
6909 	 * enqueue of curr) will have resulted in resched being set.  This
6910 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6911 	 * below.
6912 	 */
6913 	if (test_tsk_need_resched(curr))
6914 		return;
6915 
6916 	/* Idle tasks are by definition preempted by non-idle tasks. */
6917 	if (unlikely(task_has_idle_policy(curr)) &&
6918 	    likely(!task_has_idle_policy(p)))
6919 		goto preempt;
6920 
6921 	/*
6922 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6923 	 * is driven by the tick):
6924 	 */
6925 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6926 		return;
6927 
6928 	find_matching_se(&se, &pse);
6929 	update_curr(cfs_rq_of(se));
6930 	BUG_ON(!pse);
6931 	if (wakeup_preempt_entity(se, pse) == 1) {
6932 		/*
6933 		 * Bias pick_next to pick the sched entity that is
6934 		 * triggering this preemption.
6935 		 */
6936 		if (!next_buddy_marked)
6937 			set_next_buddy(pse);
6938 		goto preempt;
6939 	}
6940 
6941 	return;
6942 
6943 preempt:
6944 	resched_curr(rq);
6945 	/*
6946 	 * Only set the backward buddy when the current task is still
6947 	 * on the rq. This can happen when a wakeup gets interleaved
6948 	 * with schedule on the ->pre_schedule() or idle_balance()
6949 	 * point, either of which can * drop the rq lock.
6950 	 *
6951 	 * Also, during early boot the idle thread is in the fair class,
6952 	 * for obvious reasons its a bad idea to schedule back to it.
6953 	 */
6954 	if (unlikely(!se->on_rq || curr == rq->idle))
6955 		return;
6956 
6957 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6958 		set_last_buddy(se);
6959 }
6960 
6961 struct task_struct *
6962 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6963 {
6964 	struct cfs_rq *cfs_rq = &rq->cfs;
6965 	struct sched_entity *se;
6966 	struct task_struct *p;
6967 	int new_tasks;
6968 
6969 again:
6970 	if (!sched_fair_runnable(rq))
6971 		goto idle;
6972 
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6974 	if (!prev || prev->sched_class != &fair_sched_class)
6975 		goto simple;
6976 
6977 	/*
6978 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6979 	 * likely that a next task is from the same cgroup as the current.
6980 	 *
6981 	 * Therefore attempt to avoid putting and setting the entire cgroup
6982 	 * hierarchy, only change the part that actually changes.
6983 	 */
6984 
6985 	do {
6986 		struct sched_entity *curr = cfs_rq->curr;
6987 
6988 		/*
6989 		 * Since we got here without doing put_prev_entity() we also
6990 		 * have to consider cfs_rq->curr. If it is still a runnable
6991 		 * entity, update_curr() will update its vruntime, otherwise
6992 		 * forget we've ever seen it.
6993 		 */
6994 		if (curr) {
6995 			if (curr->on_rq)
6996 				update_curr(cfs_rq);
6997 			else
6998 				curr = NULL;
6999 
7000 			/*
7001 			 * This call to check_cfs_rq_runtime() will do the
7002 			 * throttle and dequeue its entity in the parent(s).
7003 			 * Therefore the nr_running test will indeed
7004 			 * be correct.
7005 			 */
7006 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7007 				cfs_rq = &rq->cfs;
7008 
7009 				if (!cfs_rq->nr_running)
7010 					goto idle;
7011 
7012 				goto simple;
7013 			}
7014 		}
7015 
7016 		se = pick_next_entity(cfs_rq, curr);
7017 		cfs_rq = group_cfs_rq(se);
7018 	} while (cfs_rq);
7019 
7020 	p = task_of(se);
7021 
7022 	/*
7023 	 * Since we haven't yet done put_prev_entity and if the selected task
7024 	 * is a different task than we started out with, try and touch the
7025 	 * least amount of cfs_rqs.
7026 	 */
7027 	if (prev != p) {
7028 		struct sched_entity *pse = &prev->se;
7029 
7030 		while (!(cfs_rq = is_same_group(se, pse))) {
7031 			int se_depth = se->depth;
7032 			int pse_depth = pse->depth;
7033 
7034 			if (se_depth <= pse_depth) {
7035 				put_prev_entity(cfs_rq_of(pse), pse);
7036 				pse = parent_entity(pse);
7037 			}
7038 			if (se_depth >= pse_depth) {
7039 				set_next_entity(cfs_rq_of(se), se);
7040 				se = parent_entity(se);
7041 			}
7042 		}
7043 
7044 		put_prev_entity(cfs_rq, pse);
7045 		set_next_entity(cfs_rq, se);
7046 	}
7047 
7048 	goto done;
7049 simple:
7050 #endif
7051 	if (prev)
7052 		put_prev_task(rq, prev);
7053 
7054 	do {
7055 		se = pick_next_entity(cfs_rq, NULL);
7056 		set_next_entity(cfs_rq, se);
7057 		cfs_rq = group_cfs_rq(se);
7058 	} while (cfs_rq);
7059 
7060 	p = task_of(se);
7061 
7062 done: __maybe_unused;
7063 #ifdef CONFIG_SMP
7064 	/*
7065 	 * Move the next running task to the front of
7066 	 * the list, so our cfs_tasks list becomes MRU
7067 	 * one.
7068 	 */
7069 	list_move(&p->se.group_node, &rq->cfs_tasks);
7070 #endif
7071 
7072 	if (hrtick_enabled(rq))
7073 		hrtick_start_fair(rq, p);
7074 
7075 	update_misfit_status(p, rq);
7076 
7077 	return p;
7078 
7079 idle:
7080 	if (!rf)
7081 		return NULL;
7082 
7083 	new_tasks = newidle_balance(rq, rf);
7084 
7085 	/*
7086 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7087 	 * possible for any higher priority task to appear. In that case we
7088 	 * must re-start the pick_next_entity() loop.
7089 	 */
7090 	if (new_tasks < 0)
7091 		return RETRY_TASK;
7092 
7093 	if (new_tasks > 0)
7094 		goto again;
7095 
7096 	/*
7097 	 * rq is about to be idle, check if we need to update the
7098 	 * lost_idle_time of clock_pelt
7099 	 */
7100 	update_idle_rq_clock_pelt(rq);
7101 
7102 	return NULL;
7103 }
7104 
7105 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7106 {
7107 	return pick_next_task_fair(rq, NULL, NULL);
7108 }
7109 
7110 /*
7111  * Account for a descheduled task:
7112  */
7113 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7114 {
7115 	struct sched_entity *se = &prev->se;
7116 	struct cfs_rq *cfs_rq;
7117 
7118 	for_each_sched_entity(se) {
7119 		cfs_rq = cfs_rq_of(se);
7120 		put_prev_entity(cfs_rq, se);
7121 	}
7122 }
7123 
7124 /*
7125  * sched_yield() is very simple
7126  *
7127  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7128  */
7129 static void yield_task_fair(struct rq *rq)
7130 {
7131 	struct task_struct *curr = rq->curr;
7132 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7133 	struct sched_entity *se = &curr->se;
7134 
7135 	/*
7136 	 * Are we the only task in the tree?
7137 	 */
7138 	if (unlikely(rq->nr_running == 1))
7139 		return;
7140 
7141 	clear_buddies(cfs_rq, se);
7142 
7143 	if (curr->policy != SCHED_BATCH) {
7144 		update_rq_clock(rq);
7145 		/*
7146 		 * Update run-time statistics of the 'current'.
7147 		 */
7148 		update_curr(cfs_rq);
7149 		/*
7150 		 * Tell update_rq_clock() that we've just updated,
7151 		 * so we don't do microscopic update in schedule()
7152 		 * and double the fastpath cost.
7153 		 */
7154 		rq_clock_skip_update(rq);
7155 	}
7156 
7157 	set_skip_buddy(se);
7158 }
7159 
7160 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7161 {
7162 	struct sched_entity *se = &p->se;
7163 
7164 	/* throttled hierarchies are not runnable */
7165 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7166 		return false;
7167 
7168 	/* Tell the scheduler that we'd really like pse to run next. */
7169 	set_next_buddy(se);
7170 
7171 	yield_task_fair(rq);
7172 
7173 	return true;
7174 }
7175 
7176 #ifdef CONFIG_SMP
7177 /**************************************************
7178  * Fair scheduling class load-balancing methods.
7179  *
7180  * BASICS
7181  *
7182  * The purpose of load-balancing is to achieve the same basic fairness the
7183  * per-CPU scheduler provides, namely provide a proportional amount of compute
7184  * time to each task. This is expressed in the following equation:
7185  *
7186  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7187  *
7188  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7189  * W_i,0 is defined as:
7190  *
7191  *   W_i,0 = \Sum_j w_i,j                                             (2)
7192  *
7193  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7194  * is derived from the nice value as per sched_prio_to_weight[].
7195  *
7196  * The weight average is an exponential decay average of the instantaneous
7197  * weight:
7198  *
7199  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7200  *
7201  * C_i is the compute capacity of CPU i, typically it is the
7202  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7203  * can also include other factors [XXX].
7204  *
7205  * To achieve this balance we define a measure of imbalance which follows
7206  * directly from (1):
7207  *
7208  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7209  *
7210  * We them move tasks around to minimize the imbalance. In the continuous
7211  * function space it is obvious this converges, in the discrete case we get
7212  * a few fun cases generally called infeasible weight scenarios.
7213  *
7214  * [XXX expand on:
7215  *     - infeasible weights;
7216  *     - local vs global optima in the discrete case. ]
7217  *
7218  *
7219  * SCHED DOMAINS
7220  *
7221  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7222  * for all i,j solution, we create a tree of CPUs that follows the hardware
7223  * topology where each level pairs two lower groups (or better). This results
7224  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7225  * tree to only the first of the previous level and we decrease the frequency
7226  * of load-balance at each level inv. proportional to the number of CPUs in
7227  * the groups.
7228  *
7229  * This yields:
7230  *
7231  *     log_2 n     1     n
7232  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7233  *     i = 0      2^i   2^i
7234  *                               `- size of each group
7235  *         |         |     `- number of CPUs doing load-balance
7236  *         |         `- freq
7237  *         `- sum over all levels
7238  *
7239  * Coupled with a limit on how many tasks we can migrate every balance pass,
7240  * this makes (5) the runtime complexity of the balancer.
7241  *
7242  * An important property here is that each CPU is still (indirectly) connected
7243  * to every other CPU in at most O(log n) steps:
7244  *
7245  * The adjacency matrix of the resulting graph is given by:
7246  *
7247  *             log_2 n
7248  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7249  *             k = 0
7250  *
7251  * And you'll find that:
7252  *
7253  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7254  *
7255  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7256  * The task movement gives a factor of O(m), giving a convergence complexity
7257  * of:
7258  *
7259  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7260  *
7261  *
7262  * WORK CONSERVING
7263  *
7264  * In order to avoid CPUs going idle while there's still work to do, new idle
7265  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7266  * tree itself instead of relying on other CPUs to bring it work.
7267  *
7268  * This adds some complexity to both (5) and (8) but it reduces the total idle
7269  * time.
7270  *
7271  * [XXX more?]
7272  *
7273  *
7274  * CGROUPS
7275  *
7276  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7277  *
7278  *                                s_k,i
7279  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7280  *                                 S_k
7281  *
7282  * Where
7283  *
7284  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7285  *
7286  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7287  *
7288  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7289  * property.
7290  *
7291  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7292  *      rewrite all of this once again.]
7293  */
7294 
7295 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7296 
7297 enum fbq_type { regular, remote, all };
7298 
7299 /*
7300  * 'group_type' describes the group of CPUs at the moment of load balancing.
7301  *
7302  * The enum is ordered by pulling priority, with the group with lowest priority
7303  * first so the group_type can simply be compared when selecting the busiest
7304  * group. See update_sd_pick_busiest().
7305  */
7306 enum group_type {
7307 	/* The group has spare capacity that can be used to run more tasks.  */
7308 	group_has_spare = 0,
7309 	/*
7310 	 * The group is fully used and the tasks don't compete for more CPU
7311 	 * cycles. Nevertheless, some tasks might wait before running.
7312 	 */
7313 	group_fully_busy,
7314 	/*
7315 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7316 	 * and must be migrated to a more powerful CPU.
7317 	 */
7318 	group_misfit_task,
7319 	/*
7320 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7321 	 * and the task should be migrated to it instead of running on the
7322 	 * current CPU.
7323 	 */
7324 	group_asym_packing,
7325 	/*
7326 	 * The tasks' affinity constraints previously prevented the scheduler
7327 	 * from balancing the load across the system.
7328 	 */
7329 	group_imbalanced,
7330 	/*
7331 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7332 	 * tasks.
7333 	 */
7334 	group_overloaded
7335 };
7336 
7337 enum migration_type {
7338 	migrate_load = 0,
7339 	migrate_util,
7340 	migrate_task,
7341 	migrate_misfit
7342 };
7343 
7344 #define LBF_ALL_PINNED	0x01
7345 #define LBF_NEED_BREAK	0x02
7346 #define LBF_DST_PINNED  0x04
7347 #define LBF_SOME_PINNED	0x08
7348 #define LBF_NOHZ_STATS	0x10
7349 #define LBF_NOHZ_AGAIN	0x20
7350 
7351 struct lb_env {
7352 	struct sched_domain	*sd;
7353 
7354 	struct rq		*src_rq;
7355 	int			src_cpu;
7356 
7357 	int			dst_cpu;
7358 	struct rq		*dst_rq;
7359 
7360 	struct cpumask		*dst_grpmask;
7361 	int			new_dst_cpu;
7362 	enum cpu_idle_type	idle;
7363 	long			imbalance;
7364 	/* The set of CPUs under consideration for load-balancing */
7365 	struct cpumask		*cpus;
7366 
7367 	unsigned int		flags;
7368 
7369 	unsigned int		loop;
7370 	unsigned int		loop_break;
7371 	unsigned int		loop_max;
7372 
7373 	enum fbq_type		fbq_type;
7374 	enum migration_type	migration_type;
7375 	struct list_head	tasks;
7376 };
7377 
7378 /*
7379  * Is this task likely cache-hot:
7380  */
7381 static int task_hot(struct task_struct *p, struct lb_env *env)
7382 {
7383 	s64 delta;
7384 
7385 	lockdep_assert_held(&env->src_rq->lock);
7386 
7387 	if (p->sched_class != &fair_sched_class)
7388 		return 0;
7389 
7390 	if (unlikely(task_has_idle_policy(p)))
7391 		return 0;
7392 
7393 	/*
7394 	 * Buddy candidates are cache hot:
7395 	 */
7396 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7397 			(&p->se == cfs_rq_of(&p->se)->next ||
7398 			 &p->se == cfs_rq_of(&p->se)->last))
7399 		return 1;
7400 
7401 	if (sysctl_sched_migration_cost == -1)
7402 		return 1;
7403 	if (sysctl_sched_migration_cost == 0)
7404 		return 0;
7405 
7406 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7407 
7408 	return delta < (s64)sysctl_sched_migration_cost;
7409 }
7410 
7411 #ifdef CONFIG_NUMA_BALANCING
7412 /*
7413  * Returns 1, if task migration degrades locality
7414  * Returns 0, if task migration improves locality i.e migration preferred.
7415  * Returns -1, if task migration is not affected by locality.
7416  */
7417 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7418 {
7419 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7420 	unsigned long src_weight, dst_weight;
7421 	int src_nid, dst_nid, dist;
7422 
7423 	if (!static_branch_likely(&sched_numa_balancing))
7424 		return -1;
7425 
7426 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7427 		return -1;
7428 
7429 	src_nid = cpu_to_node(env->src_cpu);
7430 	dst_nid = cpu_to_node(env->dst_cpu);
7431 
7432 	if (src_nid == dst_nid)
7433 		return -1;
7434 
7435 	/* Migrating away from the preferred node is always bad. */
7436 	if (src_nid == p->numa_preferred_nid) {
7437 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7438 			return 1;
7439 		else
7440 			return -1;
7441 	}
7442 
7443 	/* Encourage migration to the preferred node. */
7444 	if (dst_nid == p->numa_preferred_nid)
7445 		return 0;
7446 
7447 	/* Leaving a core idle is often worse than degrading locality. */
7448 	if (env->idle == CPU_IDLE)
7449 		return -1;
7450 
7451 	dist = node_distance(src_nid, dst_nid);
7452 	if (numa_group) {
7453 		src_weight = group_weight(p, src_nid, dist);
7454 		dst_weight = group_weight(p, dst_nid, dist);
7455 	} else {
7456 		src_weight = task_weight(p, src_nid, dist);
7457 		dst_weight = task_weight(p, dst_nid, dist);
7458 	}
7459 
7460 	return dst_weight < src_weight;
7461 }
7462 
7463 #else
7464 static inline int migrate_degrades_locality(struct task_struct *p,
7465 					     struct lb_env *env)
7466 {
7467 	return -1;
7468 }
7469 #endif
7470 
7471 /*
7472  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7473  */
7474 static
7475 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7476 {
7477 	int tsk_cache_hot;
7478 
7479 	lockdep_assert_held(&env->src_rq->lock);
7480 
7481 	/*
7482 	 * We do not migrate tasks that are:
7483 	 * 1) throttled_lb_pair, or
7484 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7485 	 * 3) running (obviously), or
7486 	 * 4) are cache-hot on their current CPU.
7487 	 */
7488 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7489 		return 0;
7490 
7491 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7492 		int cpu;
7493 
7494 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7495 
7496 		env->flags |= LBF_SOME_PINNED;
7497 
7498 		/*
7499 		 * Remember if this task can be migrated to any other CPU in
7500 		 * our sched_group. We may want to revisit it if we couldn't
7501 		 * meet load balance goals by pulling other tasks on src_cpu.
7502 		 *
7503 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7504 		 * already computed one in current iteration.
7505 		 */
7506 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7507 			return 0;
7508 
7509 		/* Prevent to re-select dst_cpu via env's CPUs: */
7510 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7511 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7512 				env->flags |= LBF_DST_PINNED;
7513 				env->new_dst_cpu = cpu;
7514 				break;
7515 			}
7516 		}
7517 
7518 		return 0;
7519 	}
7520 
7521 	/* Record that we found atleast one task that could run on dst_cpu */
7522 	env->flags &= ~LBF_ALL_PINNED;
7523 
7524 	if (task_running(env->src_rq, p)) {
7525 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7526 		return 0;
7527 	}
7528 
7529 	/*
7530 	 * Aggressive migration if:
7531 	 * 1) destination numa is preferred
7532 	 * 2) task is cache cold, or
7533 	 * 3) too many balance attempts have failed.
7534 	 */
7535 	tsk_cache_hot = migrate_degrades_locality(p, env);
7536 	if (tsk_cache_hot == -1)
7537 		tsk_cache_hot = task_hot(p, env);
7538 
7539 	if (tsk_cache_hot <= 0 ||
7540 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7541 		if (tsk_cache_hot == 1) {
7542 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7543 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7544 		}
7545 		return 1;
7546 	}
7547 
7548 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7549 	return 0;
7550 }
7551 
7552 /*
7553  * detach_task() -- detach the task for the migration specified in env
7554  */
7555 static void detach_task(struct task_struct *p, struct lb_env *env)
7556 {
7557 	lockdep_assert_held(&env->src_rq->lock);
7558 
7559 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7560 	set_task_cpu(p, env->dst_cpu);
7561 }
7562 
7563 /*
7564  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7565  * part of active balancing operations within "domain".
7566  *
7567  * Returns a task if successful and NULL otherwise.
7568  */
7569 static struct task_struct *detach_one_task(struct lb_env *env)
7570 {
7571 	struct task_struct *p;
7572 
7573 	lockdep_assert_held(&env->src_rq->lock);
7574 
7575 	list_for_each_entry_reverse(p,
7576 			&env->src_rq->cfs_tasks, se.group_node) {
7577 		if (!can_migrate_task(p, env))
7578 			continue;
7579 
7580 		detach_task(p, env);
7581 
7582 		/*
7583 		 * Right now, this is only the second place where
7584 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7585 		 * so we can safely collect stats here rather than
7586 		 * inside detach_tasks().
7587 		 */
7588 		schedstat_inc(env->sd->lb_gained[env->idle]);
7589 		return p;
7590 	}
7591 	return NULL;
7592 }
7593 
7594 static const unsigned int sched_nr_migrate_break = 32;
7595 
7596 /*
7597  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7598  * busiest_rq, as part of a balancing operation within domain "sd".
7599  *
7600  * Returns number of detached tasks if successful and 0 otherwise.
7601  */
7602 static int detach_tasks(struct lb_env *env)
7603 {
7604 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7605 	unsigned long util, load;
7606 	struct task_struct *p;
7607 	int detached = 0;
7608 
7609 	lockdep_assert_held(&env->src_rq->lock);
7610 
7611 	if (env->imbalance <= 0)
7612 		return 0;
7613 
7614 	while (!list_empty(tasks)) {
7615 		/*
7616 		 * We don't want to steal all, otherwise we may be treated likewise,
7617 		 * which could at worst lead to a livelock crash.
7618 		 */
7619 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7620 			break;
7621 
7622 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7623 
7624 		env->loop++;
7625 		/* We've more or less seen every task there is, call it quits */
7626 		if (env->loop > env->loop_max)
7627 			break;
7628 
7629 		/* take a breather every nr_migrate tasks */
7630 		if (env->loop > env->loop_break) {
7631 			env->loop_break += sched_nr_migrate_break;
7632 			env->flags |= LBF_NEED_BREAK;
7633 			break;
7634 		}
7635 
7636 		if (!can_migrate_task(p, env))
7637 			goto next;
7638 
7639 		switch (env->migration_type) {
7640 		case migrate_load:
7641 			load = task_h_load(p);
7642 
7643 			if (sched_feat(LB_MIN) &&
7644 			    load < 16 && !env->sd->nr_balance_failed)
7645 				goto next;
7646 
7647 			/*
7648 			 * Make sure that we don't migrate too much load.
7649 			 * Nevertheless, let relax the constraint if
7650 			 * scheduler fails to find a good waiting task to
7651 			 * migrate.
7652 			 */
7653 			if (load/2 > env->imbalance &&
7654 			    env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7655 				goto next;
7656 
7657 			env->imbalance -= load;
7658 			break;
7659 
7660 		case migrate_util:
7661 			util = task_util_est(p);
7662 
7663 			if (util > env->imbalance)
7664 				goto next;
7665 
7666 			env->imbalance -= util;
7667 			break;
7668 
7669 		case migrate_task:
7670 			env->imbalance--;
7671 			break;
7672 
7673 		case migrate_misfit:
7674 			/* This is not a misfit task */
7675 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7676 				goto next;
7677 
7678 			env->imbalance = 0;
7679 			break;
7680 		}
7681 
7682 		detach_task(p, env);
7683 		list_add(&p->se.group_node, &env->tasks);
7684 
7685 		detached++;
7686 
7687 #ifdef CONFIG_PREEMPTION
7688 		/*
7689 		 * NEWIDLE balancing is a source of latency, so preemptible
7690 		 * kernels will stop after the first task is detached to minimize
7691 		 * the critical section.
7692 		 */
7693 		if (env->idle == CPU_NEWLY_IDLE)
7694 			break;
7695 #endif
7696 
7697 		/*
7698 		 * We only want to steal up to the prescribed amount of
7699 		 * load/util/tasks.
7700 		 */
7701 		if (env->imbalance <= 0)
7702 			break;
7703 
7704 		continue;
7705 next:
7706 		list_move(&p->se.group_node, tasks);
7707 	}
7708 
7709 	/*
7710 	 * Right now, this is one of only two places we collect this stat
7711 	 * so we can safely collect detach_one_task() stats here rather
7712 	 * than inside detach_one_task().
7713 	 */
7714 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7715 
7716 	return detached;
7717 }
7718 
7719 /*
7720  * attach_task() -- attach the task detached by detach_task() to its new rq.
7721  */
7722 static void attach_task(struct rq *rq, struct task_struct *p)
7723 {
7724 	lockdep_assert_held(&rq->lock);
7725 
7726 	BUG_ON(task_rq(p) != rq);
7727 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7728 	check_preempt_curr(rq, p, 0);
7729 }
7730 
7731 /*
7732  * attach_one_task() -- attaches the task returned from detach_one_task() to
7733  * its new rq.
7734  */
7735 static void attach_one_task(struct rq *rq, struct task_struct *p)
7736 {
7737 	struct rq_flags rf;
7738 
7739 	rq_lock(rq, &rf);
7740 	update_rq_clock(rq);
7741 	attach_task(rq, p);
7742 	rq_unlock(rq, &rf);
7743 }
7744 
7745 /*
7746  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7747  * new rq.
7748  */
7749 static void attach_tasks(struct lb_env *env)
7750 {
7751 	struct list_head *tasks = &env->tasks;
7752 	struct task_struct *p;
7753 	struct rq_flags rf;
7754 
7755 	rq_lock(env->dst_rq, &rf);
7756 	update_rq_clock(env->dst_rq);
7757 
7758 	while (!list_empty(tasks)) {
7759 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7760 		list_del_init(&p->se.group_node);
7761 
7762 		attach_task(env->dst_rq, p);
7763 	}
7764 
7765 	rq_unlock(env->dst_rq, &rf);
7766 }
7767 
7768 #ifdef CONFIG_NO_HZ_COMMON
7769 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7770 {
7771 	if (cfs_rq->avg.load_avg)
7772 		return true;
7773 
7774 	if (cfs_rq->avg.util_avg)
7775 		return true;
7776 
7777 	return false;
7778 }
7779 
7780 static inline bool others_have_blocked(struct rq *rq)
7781 {
7782 	if (READ_ONCE(rq->avg_rt.util_avg))
7783 		return true;
7784 
7785 	if (READ_ONCE(rq->avg_dl.util_avg))
7786 		return true;
7787 
7788 	if (thermal_load_avg(rq))
7789 		return true;
7790 
7791 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7792 	if (READ_ONCE(rq->avg_irq.util_avg))
7793 		return true;
7794 #endif
7795 
7796 	return false;
7797 }
7798 
7799 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7800 {
7801 	rq->last_blocked_load_update_tick = jiffies;
7802 
7803 	if (!has_blocked)
7804 		rq->has_blocked_load = 0;
7805 }
7806 #else
7807 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7808 static inline bool others_have_blocked(struct rq *rq) { return false; }
7809 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7810 #endif
7811 
7812 static bool __update_blocked_others(struct rq *rq, bool *done)
7813 {
7814 	const struct sched_class *curr_class;
7815 	u64 now = rq_clock_pelt(rq);
7816 	unsigned long thermal_pressure;
7817 	bool decayed;
7818 
7819 	/*
7820 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7821 	 * DL and IRQ signals have been updated before updating CFS.
7822 	 */
7823 	curr_class = rq->curr->sched_class;
7824 
7825 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7826 
7827 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7828 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7829 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7830 		  update_irq_load_avg(rq, 0);
7831 
7832 	if (others_have_blocked(rq))
7833 		*done = false;
7834 
7835 	return decayed;
7836 }
7837 
7838 #ifdef CONFIG_FAIR_GROUP_SCHED
7839 
7840 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7841 {
7842 	if (cfs_rq->load.weight)
7843 		return false;
7844 
7845 	if (cfs_rq->avg.load_sum)
7846 		return false;
7847 
7848 	if (cfs_rq->avg.util_sum)
7849 		return false;
7850 
7851 	if (cfs_rq->avg.runnable_sum)
7852 		return false;
7853 
7854 	return true;
7855 }
7856 
7857 static bool __update_blocked_fair(struct rq *rq, bool *done)
7858 {
7859 	struct cfs_rq *cfs_rq, *pos;
7860 	bool decayed = false;
7861 	int cpu = cpu_of(rq);
7862 
7863 	/*
7864 	 * Iterates the task_group tree in a bottom up fashion, see
7865 	 * list_add_leaf_cfs_rq() for details.
7866 	 */
7867 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7868 		struct sched_entity *se;
7869 
7870 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7871 			update_tg_load_avg(cfs_rq, 0);
7872 
7873 			if (cfs_rq == &rq->cfs)
7874 				decayed = true;
7875 		}
7876 
7877 		/* Propagate pending load changes to the parent, if any: */
7878 		se = cfs_rq->tg->se[cpu];
7879 		if (se && !skip_blocked_update(se))
7880 			update_load_avg(cfs_rq_of(se), se, 0);
7881 
7882 		/*
7883 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7884 		 * decayed cfs_rqs linger on the list.
7885 		 */
7886 		if (cfs_rq_is_decayed(cfs_rq))
7887 			list_del_leaf_cfs_rq(cfs_rq);
7888 
7889 		/* Don't need periodic decay once load/util_avg are null */
7890 		if (cfs_rq_has_blocked(cfs_rq))
7891 			*done = false;
7892 	}
7893 
7894 	return decayed;
7895 }
7896 
7897 /*
7898  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7899  * This needs to be done in a top-down fashion because the load of a child
7900  * group is a fraction of its parents load.
7901  */
7902 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7903 {
7904 	struct rq *rq = rq_of(cfs_rq);
7905 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7906 	unsigned long now = jiffies;
7907 	unsigned long load;
7908 
7909 	if (cfs_rq->last_h_load_update == now)
7910 		return;
7911 
7912 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7913 	for_each_sched_entity(se) {
7914 		cfs_rq = cfs_rq_of(se);
7915 		WRITE_ONCE(cfs_rq->h_load_next, se);
7916 		if (cfs_rq->last_h_load_update == now)
7917 			break;
7918 	}
7919 
7920 	if (!se) {
7921 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7922 		cfs_rq->last_h_load_update = now;
7923 	}
7924 
7925 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7926 		load = cfs_rq->h_load;
7927 		load = div64_ul(load * se->avg.load_avg,
7928 			cfs_rq_load_avg(cfs_rq) + 1);
7929 		cfs_rq = group_cfs_rq(se);
7930 		cfs_rq->h_load = load;
7931 		cfs_rq->last_h_load_update = now;
7932 	}
7933 }
7934 
7935 static unsigned long task_h_load(struct task_struct *p)
7936 {
7937 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7938 
7939 	update_cfs_rq_h_load(cfs_rq);
7940 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7941 			cfs_rq_load_avg(cfs_rq) + 1);
7942 }
7943 #else
7944 static bool __update_blocked_fair(struct rq *rq, bool *done)
7945 {
7946 	struct cfs_rq *cfs_rq = &rq->cfs;
7947 	bool decayed;
7948 
7949 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7950 	if (cfs_rq_has_blocked(cfs_rq))
7951 		*done = false;
7952 
7953 	return decayed;
7954 }
7955 
7956 static unsigned long task_h_load(struct task_struct *p)
7957 {
7958 	return p->se.avg.load_avg;
7959 }
7960 #endif
7961 
7962 static void update_blocked_averages(int cpu)
7963 {
7964 	bool decayed = false, done = true;
7965 	struct rq *rq = cpu_rq(cpu);
7966 	struct rq_flags rf;
7967 
7968 	rq_lock_irqsave(rq, &rf);
7969 	update_rq_clock(rq);
7970 
7971 	decayed |= __update_blocked_others(rq, &done);
7972 	decayed |= __update_blocked_fair(rq, &done);
7973 
7974 	update_blocked_load_status(rq, !done);
7975 	if (decayed)
7976 		cpufreq_update_util(rq, 0);
7977 	rq_unlock_irqrestore(rq, &rf);
7978 }
7979 
7980 /********** Helpers for find_busiest_group ************************/
7981 
7982 /*
7983  * sg_lb_stats - stats of a sched_group required for load_balancing
7984  */
7985 struct sg_lb_stats {
7986 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7987 	unsigned long group_load; /* Total load over the CPUs of the group */
7988 	unsigned long group_capacity;
7989 	unsigned long group_util; /* Total utilization over the CPUs of the group */
7990 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
7991 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
7992 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
7993 	unsigned int idle_cpus;
7994 	unsigned int group_weight;
7995 	enum group_type group_type;
7996 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
7997 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7998 #ifdef CONFIG_NUMA_BALANCING
7999 	unsigned int nr_numa_running;
8000 	unsigned int nr_preferred_running;
8001 #endif
8002 };
8003 
8004 /*
8005  * sd_lb_stats - Structure to store the statistics of a sched_domain
8006  *		 during load balancing.
8007  */
8008 struct sd_lb_stats {
8009 	struct sched_group *busiest;	/* Busiest group in this sd */
8010 	struct sched_group *local;	/* Local group in this sd */
8011 	unsigned long total_load;	/* Total load of all groups in sd */
8012 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8013 	unsigned long avg_load;	/* Average load across all groups in sd */
8014 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8015 
8016 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8017 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8018 };
8019 
8020 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8021 {
8022 	/*
8023 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8024 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8025 	 * We must however set busiest_stat::group_type and
8026 	 * busiest_stat::idle_cpus to the worst busiest group because
8027 	 * update_sd_pick_busiest() reads these before assignment.
8028 	 */
8029 	*sds = (struct sd_lb_stats){
8030 		.busiest = NULL,
8031 		.local = NULL,
8032 		.total_load = 0UL,
8033 		.total_capacity = 0UL,
8034 		.busiest_stat = {
8035 			.idle_cpus = UINT_MAX,
8036 			.group_type = group_has_spare,
8037 		},
8038 	};
8039 }
8040 
8041 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
8042 {
8043 	struct rq *rq = cpu_rq(cpu);
8044 	unsigned long max = arch_scale_cpu_capacity(cpu);
8045 	unsigned long used, free;
8046 	unsigned long irq;
8047 
8048 	irq = cpu_util_irq(rq);
8049 
8050 	if (unlikely(irq >= max))
8051 		return 1;
8052 
8053 	/*
8054 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8055 	 * (running and not running) with weights 0 and 1024 respectively.
8056 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8057 	 * average uses the actual delta max capacity(load).
8058 	 */
8059 	used = READ_ONCE(rq->avg_rt.util_avg);
8060 	used += READ_ONCE(rq->avg_dl.util_avg);
8061 	used += thermal_load_avg(rq);
8062 
8063 	if (unlikely(used >= max))
8064 		return 1;
8065 
8066 	free = max - used;
8067 
8068 	return scale_irq_capacity(free, irq, max);
8069 }
8070 
8071 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8072 {
8073 	unsigned long capacity = scale_rt_capacity(sd, cpu);
8074 	struct sched_group *sdg = sd->groups;
8075 
8076 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8077 
8078 	if (!capacity)
8079 		capacity = 1;
8080 
8081 	cpu_rq(cpu)->cpu_capacity = capacity;
8082 	sdg->sgc->capacity = capacity;
8083 	sdg->sgc->min_capacity = capacity;
8084 	sdg->sgc->max_capacity = capacity;
8085 }
8086 
8087 void update_group_capacity(struct sched_domain *sd, int cpu)
8088 {
8089 	struct sched_domain *child = sd->child;
8090 	struct sched_group *group, *sdg = sd->groups;
8091 	unsigned long capacity, min_capacity, max_capacity;
8092 	unsigned long interval;
8093 
8094 	interval = msecs_to_jiffies(sd->balance_interval);
8095 	interval = clamp(interval, 1UL, max_load_balance_interval);
8096 	sdg->sgc->next_update = jiffies + interval;
8097 
8098 	if (!child) {
8099 		update_cpu_capacity(sd, cpu);
8100 		return;
8101 	}
8102 
8103 	capacity = 0;
8104 	min_capacity = ULONG_MAX;
8105 	max_capacity = 0;
8106 
8107 	if (child->flags & SD_OVERLAP) {
8108 		/*
8109 		 * SD_OVERLAP domains cannot assume that child groups
8110 		 * span the current group.
8111 		 */
8112 
8113 		for_each_cpu(cpu, sched_group_span(sdg)) {
8114 			unsigned long cpu_cap = capacity_of(cpu);
8115 
8116 			capacity += cpu_cap;
8117 			min_capacity = min(cpu_cap, min_capacity);
8118 			max_capacity = max(cpu_cap, max_capacity);
8119 		}
8120 	} else  {
8121 		/*
8122 		 * !SD_OVERLAP domains can assume that child groups
8123 		 * span the current group.
8124 		 */
8125 
8126 		group = child->groups;
8127 		do {
8128 			struct sched_group_capacity *sgc = group->sgc;
8129 
8130 			capacity += sgc->capacity;
8131 			min_capacity = min(sgc->min_capacity, min_capacity);
8132 			max_capacity = max(sgc->max_capacity, max_capacity);
8133 			group = group->next;
8134 		} while (group != child->groups);
8135 	}
8136 
8137 	sdg->sgc->capacity = capacity;
8138 	sdg->sgc->min_capacity = min_capacity;
8139 	sdg->sgc->max_capacity = max_capacity;
8140 }
8141 
8142 /*
8143  * Check whether the capacity of the rq has been noticeably reduced by side
8144  * activity. The imbalance_pct is used for the threshold.
8145  * Return true is the capacity is reduced
8146  */
8147 static inline int
8148 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8149 {
8150 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8151 				(rq->cpu_capacity_orig * 100));
8152 }
8153 
8154 /*
8155  * Check whether a rq has a misfit task and if it looks like we can actually
8156  * help that task: we can migrate the task to a CPU of higher capacity, or
8157  * the task's current CPU is heavily pressured.
8158  */
8159 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8160 {
8161 	return rq->misfit_task_load &&
8162 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8163 		 check_cpu_capacity(rq, sd));
8164 }
8165 
8166 /*
8167  * Group imbalance indicates (and tries to solve) the problem where balancing
8168  * groups is inadequate due to ->cpus_ptr constraints.
8169  *
8170  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8171  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8172  * Something like:
8173  *
8174  *	{ 0 1 2 3 } { 4 5 6 7 }
8175  *	        *     * * *
8176  *
8177  * If we were to balance group-wise we'd place two tasks in the first group and
8178  * two tasks in the second group. Clearly this is undesired as it will overload
8179  * cpu 3 and leave one of the CPUs in the second group unused.
8180  *
8181  * The current solution to this issue is detecting the skew in the first group
8182  * by noticing the lower domain failed to reach balance and had difficulty
8183  * moving tasks due to affinity constraints.
8184  *
8185  * When this is so detected; this group becomes a candidate for busiest; see
8186  * update_sd_pick_busiest(). And calculate_imbalance() and
8187  * find_busiest_group() avoid some of the usual balance conditions to allow it
8188  * to create an effective group imbalance.
8189  *
8190  * This is a somewhat tricky proposition since the next run might not find the
8191  * group imbalance and decide the groups need to be balanced again. A most
8192  * subtle and fragile situation.
8193  */
8194 
8195 static inline int sg_imbalanced(struct sched_group *group)
8196 {
8197 	return group->sgc->imbalance;
8198 }
8199 
8200 /*
8201  * group_has_capacity returns true if the group has spare capacity that could
8202  * be used by some tasks.
8203  * We consider that a group has spare capacity if the  * number of task is
8204  * smaller than the number of CPUs or if the utilization is lower than the
8205  * available capacity for CFS tasks.
8206  * For the latter, we use a threshold to stabilize the state, to take into
8207  * account the variance of the tasks' load and to return true if the available
8208  * capacity in meaningful for the load balancer.
8209  * As an example, an available capacity of 1% can appear but it doesn't make
8210  * any benefit for the load balance.
8211  */
8212 static inline bool
8213 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8214 {
8215 	if (sgs->sum_nr_running < sgs->group_weight)
8216 		return true;
8217 
8218 	if ((sgs->group_capacity * imbalance_pct) <
8219 			(sgs->group_runnable * 100))
8220 		return false;
8221 
8222 	if ((sgs->group_capacity * 100) >
8223 			(sgs->group_util * imbalance_pct))
8224 		return true;
8225 
8226 	return false;
8227 }
8228 
8229 /*
8230  *  group_is_overloaded returns true if the group has more tasks than it can
8231  *  handle.
8232  *  group_is_overloaded is not equals to !group_has_capacity because a group
8233  *  with the exact right number of tasks, has no more spare capacity but is not
8234  *  overloaded so both group_has_capacity and group_is_overloaded return
8235  *  false.
8236  */
8237 static inline bool
8238 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8239 {
8240 	if (sgs->sum_nr_running <= sgs->group_weight)
8241 		return false;
8242 
8243 	if ((sgs->group_capacity * 100) <
8244 			(sgs->group_util * imbalance_pct))
8245 		return true;
8246 
8247 	if ((sgs->group_capacity * imbalance_pct) <
8248 			(sgs->group_runnable * 100))
8249 		return true;
8250 
8251 	return false;
8252 }
8253 
8254 /*
8255  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8256  * per-CPU capacity than sched_group ref.
8257  */
8258 static inline bool
8259 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8260 {
8261 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8262 }
8263 
8264 /*
8265  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8266  * per-CPU capacity_orig than sched_group ref.
8267  */
8268 static inline bool
8269 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8270 {
8271 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8272 }
8273 
8274 static inline enum
8275 group_type group_classify(unsigned int imbalance_pct,
8276 			  struct sched_group *group,
8277 			  struct sg_lb_stats *sgs)
8278 {
8279 	if (group_is_overloaded(imbalance_pct, sgs))
8280 		return group_overloaded;
8281 
8282 	if (sg_imbalanced(group))
8283 		return group_imbalanced;
8284 
8285 	if (sgs->group_asym_packing)
8286 		return group_asym_packing;
8287 
8288 	if (sgs->group_misfit_task_load)
8289 		return group_misfit_task;
8290 
8291 	if (!group_has_capacity(imbalance_pct, sgs))
8292 		return group_fully_busy;
8293 
8294 	return group_has_spare;
8295 }
8296 
8297 static bool update_nohz_stats(struct rq *rq, bool force)
8298 {
8299 #ifdef CONFIG_NO_HZ_COMMON
8300 	unsigned int cpu = rq->cpu;
8301 
8302 	if (!rq->has_blocked_load)
8303 		return false;
8304 
8305 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8306 		return false;
8307 
8308 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8309 		return true;
8310 
8311 	update_blocked_averages(cpu);
8312 
8313 	return rq->has_blocked_load;
8314 #else
8315 	return false;
8316 #endif
8317 }
8318 
8319 /**
8320  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8321  * @env: The load balancing environment.
8322  * @group: sched_group whose statistics are to be updated.
8323  * @sgs: variable to hold the statistics for this group.
8324  * @sg_status: Holds flag indicating the status of the sched_group
8325  */
8326 static inline void update_sg_lb_stats(struct lb_env *env,
8327 				      struct sched_group *group,
8328 				      struct sg_lb_stats *sgs,
8329 				      int *sg_status)
8330 {
8331 	int i, nr_running, local_group;
8332 
8333 	memset(sgs, 0, sizeof(*sgs));
8334 
8335 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8336 
8337 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8338 		struct rq *rq = cpu_rq(i);
8339 
8340 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8341 			env->flags |= LBF_NOHZ_AGAIN;
8342 
8343 		sgs->group_load += cpu_load(rq);
8344 		sgs->group_util += cpu_util(i);
8345 		sgs->group_runnable += cpu_runnable(rq);
8346 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8347 
8348 		nr_running = rq->nr_running;
8349 		sgs->sum_nr_running += nr_running;
8350 
8351 		if (nr_running > 1)
8352 			*sg_status |= SG_OVERLOAD;
8353 
8354 		if (cpu_overutilized(i))
8355 			*sg_status |= SG_OVERUTILIZED;
8356 
8357 #ifdef CONFIG_NUMA_BALANCING
8358 		sgs->nr_numa_running += rq->nr_numa_running;
8359 		sgs->nr_preferred_running += rq->nr_preferred_running;
8360 #endif
8361 		/*
8362 		 * No need to call idle_cpu() if nr_running is not 0
8363 		 */
8364 		if (!nr_running && idle_cpu(i)) {
8365 			sgs->idle_cpus++;
8366 			/* Idle cpu can't have misfit task */
8367 			continue;
8368 		}
8369 
8370 		if (local_group)
8371 			continue;
8372 
8373 		/* Check for a misfit task on the cpu */
8374 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8375 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8376 			sgs->group_misfit_task_load = rq->misfit_task_load;
8377 			*sg_status |= SG_OVERLOAD;
8378 		}
8379 	}
8380 
8381 	/* Check if dst CPU is idle and preferred to this group */
8382 	if (env->sd->flags & SD_ASYM_PACKING &&
8383 	    env->idle != CPU_NOT_IDLE &&
8384 	    sgs->sum_h_nr_running &&
8385 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8386 		sgs->group_asym_packing = 1;
8387 	}
8388 
8389 	sgs->group_capacity = group->sgc->capacity;
8390 
8391 	sgs->group_weight = group->group_weight;
8392 
8393 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8394 
8395 	/* Computing avg_load makes sense only when group is overloaded */
8396 	if (sgs->group_type == group_overloaded)
8397 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8398 				sgs->group_capacity;
8399 }
8400 
8401 /**
8402  * update_sd_pick_busiest - return 1 on busiest group
8403  * @env: The load balancing environment.
8404  * @sds: sched_domain statistics
8405  * @sg: sched_group candidate to be checked for being the busiest
8406  * @sgs: sched_group statistics
8407  *
8408  * Determine if @sg is a busier group than the previously selected
8409  * busiest group.
8410  *
8411  * Return: %true if @sg is a busier group than the previously selected
8412  * busiest group. %false otherwise.
8413  */
8414 static bool update_sd_pick_busiest(struct lb_env *env,
8415 				   struct sd_lb_stats *sds,
8416 				   struct sched_group *sg,
8417 				   struct sg_lb_stats *sgs)
8418 {
8419 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8420 
8421 	/* Make sure that there is at least one task to pull */
8422 	if (!sgs->sum_h_nr_running)
8423 		return false;
8424 
8425 	/*
8426 	 * Don't try to pull misfit tasks we can't help.
8427 	 * We can use max_capacity here as reduction in capacity on some
8428 	 * CPUs in the group should either be possible to resolve
8429 	 * internally or be covered by avg_load imbalance (eventually).
8430 	 */
8431 	if (sgs->group_type == group_misfit_task &&
8432 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8433 	     sds->local_stat.group_type != group_has_spare))
8434 		return false;
8435 
8436 	if (sgs->group_type > busiest->group_type)
8437 		return true;
8438 
8439 	if (sgs->group_type < busiest->group_type)
8440 		return false;
8441 
8442 	/*
8443 	 * The candidate and the current busiest group are the same type of
8444 	 * group. Let check which one is the busiest according to the type.
8445 	 */
8446 
8447 	switch (sgs->group_type) {
8448 	case group_overloaded:
8449 		/* Select the overloaded group with highest avg_load. */
8450 		if (sgs->avg_load <= busiest->avg_load)
8451 			return false;
8452 		break;
8453 
8454 	case group_imbalanced:
8455 		/*
8456 		 * Select the 1st imbalanced group as we don't have any way to
8457 		 * choose one more than another.
8458 		 */
8459 		return false;
8460 
8461 	case group_asym_packing:
8462 		/* Prefer to move from lowest priority CPU's work */
8463 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8464 			return false;
8465 		break;
8466 
8467 	case group_misfit_task:
8468 		/*
8469 		 * If we have more than one misfit sg go with the biggest
8470 		 * misfit.
8471 		 */
8472 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8473 			return false;
8474 		break;
8475 
8476 	case group_fully_busy:
8477 		/*
8478 		 * Select the fully busy group with highest avg_load. In
8479 		 * theory, there is no need to pull task from such kind of
8480 		 * group because tasks have all compute capacity that they need
8481 		 * but we can still improve the overall throughput by reducing
8482 		 * contention when accessing shared HW resources.
8483 		 *
8484 		 * XXX for now avg_load is not computed and always 0 so we
8485 		 * select the 1st one.
8486 		 */
8487 		if (sgs->avg_load <= busiest->avg_load)
8488 			return false;
8489 		break;
8490 
8491 	case group_has_spare:
8492 		/*
8493 		 * Select not overloaded group with lowest number of idle cpus
8494 		 * and highest number of running tasks. We could also compare
8495 		 * the spare capacity which is more stable but it can end up
8496 		 * that the group has less spare capacity but finally more idle
8497 		 * CPUs which means less opportunity to pull tasks.
8498 		 */
8499 		if (sgs->idle_cpus > busiest->idle_cpus)
8500 			return false;
8501 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8502 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8503 			return false;
8504 
8505 		break;
8506 	}
8507 
8508 	/*
8509 	 * Candidate sg has no more than one task per CPU and has higher
8510 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8511 	 * throughput. Maximize throughput, power/energy consequences are not
8512 	 * considered.
8513 	 */
8514 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8515 	    (sgs->group_type <= group_fully_busy) &&
8516 	    (group_smaller_min_cpu_capacity(sds->local, sg)))
8517 		return false;
8518 
8519 	return true;
8520 }
8521 
8522 #ifdef CONFIG_NUMA_BALANCING
8523 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8524 {
8525 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8526 		return regular;
8527 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8528 		return remote;
8529 	return all;
8530 }
8531 
8532 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8533 {
8534 	if (rq->nr_running > rq->nr_numa_running)
8535 		return regular;
8536 	if (rq->nr_running > rq->nr_preferred_running)
8537 		return remote;
8538 	return all;
8539 }
8540 #else
8541 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8542 {
8543 	return all;
8544 }
8545 
8546 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8547 {
8548 	return regular;
8549 }
8550 #endif /* CONFIG_NUMA_BALANCING */
8551 
8552 
8553 struct sg_lb_stats;
8554 
8555 /*
8556  * task_running_on_cpu - return 1 if @p is running on @cpu.
8557  */
8558 
8559 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8560 {
8561 	/* Task has no contribution or is new */
8562 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8563 		return 0;
8564 
8565 	if (task_on_rq_queued(p))
8566 		return 1;
8567 
8568 	return 0;
8569 }
8570 
8571 /**
8572  * idle_cpu_without - would a given CPU be idle without p ?
8573  * @cpu: the processor on which idleness is tested.
8574  * @p: task which should be ignored.
8575  *
8576  * Return: 1 if the CPU would be idle. 0 otherwise.
8577  */
8578 static int idle_cpu_without(int cpu, struct task_struct *p)
8579 {
8580 	struct rq *rq = cpu_rq(cpu);
8581 
8582 	if (rq->curr != rq->idle && rq->curr != p)
8583 		return 0;
8584 
8585 	/*
8586 	 * rq->nr_running can't be used but an updated version without the
8587 	 * impact of p on cpu must be used instead. The updated nr_running
8588 	 * be computed and tested before calling idle_cpu_without().
8589 	 */
8590 
8591 #ifdef CONFIG_SMP
8592 	if (rq->ttwu_pending)
8593 		return 0;
8594 #endif
8595 
8596 	return 1;
8597 }
8598 
8599 /*
8600  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8601  * @sd: The sched_domain level to look for idlest group.
8602  * @group: sched_group whose statistics are to be updated.
8603  * @sgs: variable to hold the statistics for this group.
8604  * @p: The task for which we look for the idlest group/CPU.
8605  */
8606 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8607 					  struct sched_group *group,
8608 					  struct sg_lb_stats *sgs,
8609 					  struct task_struct *p)
8610 {
8611 	int i, nr_running;
8612 
8613 	memset(sgs, 0, sizeof(*sgs));
8614 
8615 	for_each_cpu(i, sched_group_span(group)) {
8616 		struct rq *rq = cpu_rq(i);
8617 		unsigned int local;
8618 
8619 		sgs->group_load += cpu_load_without(rq, p);
8620 		sgs->group_util += cpu_util_without(i, p);
8621 		sgs->group_runnable += cpu_runnable_without(rq, p);
8622 		local = task_running_on_cpu(i, p);
8623 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8624 
8625 		nr_running = rq->nr_running - local;
8626 		sgs->sum_nr_running += nr_running;
8627 
8628 		/*
8629 		 * No need to call idle_cpu_without() if nr_running is not 0
8630 		 */
8631 		if (!nr_running && idle_cpu_without(i, p))
8632 			sgs->idle_cpus++;
8633 
8634 	}
8635 
8636 	/* Check if task fits in the group */
8637 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8638 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8639 		sgs->group_misfit_task_load = 1;
8640 	}
8641 
8642 	sgs->group_capacity = group->sgc->capacity;
8643 
8644 	sgs->group_weight = group->group_weight;
8645 
8646 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8647 
8648 	/*
8649 	 * Computing avg_load makes sense only when group is fully busy or
8650 	 * overloaded
8651 	 */
8652 	if (sgs->group_type == group_fully_busy ||
8653 		sgs->group_type == group_overloaded)
8654 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8655 				sgs->group_capacity;
8656 }
8657 
8658 static bool update_pick_idlest(struct sched_group *idlest,
8659 			       struct sg_lb_stats *idlest_sgs,
8660 			       struct sched_group *group,
8661 			       struct sg_lb_stats *sgs)
8662 {
8663 	if (sgs->group_type < idlest_sgs->group_type)
8664 		return true;
8665 
8666 	if (sgs->group_type > idlest_sgs->group_type)
8667 		return false;
8668 
8669 	/*
8670 	 * The candidate and the current idlest group are the same type of
8671 	 * group. Let check which one is the idlest according to the type.
8672 	 */
8673 
8674 	switch (sgs->group_type) {
8675 	case group_overloaded:
8676 	case group_fully_busy:
8677 		/* Select the group with lowest avg_load. */
8678 		if (idlest_sgs->avg_load <= sgs->avg_load)
8679 			return false;
8680 		break;
8681 
8682 	case group_imbalanced:
8683 	case group_asym_packing:
8684 		/* Those types are not used in the slow wakeup path */
8685 		return false;
8686 
8687 	case group_misfit_task:
8688 		/* Select group with the highest max capacity */
8689 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8690 			return false;
8691 		break;
8692 
8693 	case group_has_spare:
8694 		/* Select group with most idle CPUs */
8695 		if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8696 			return false;
8697 		break;
8698 	}
8699 
8700 	return true;
8701 }
8702 
8703 /*
8704  * find_idlest_group() finds and returns the least busy CPU group within the
8705  * domain.
8706  *
8707  * Assumes p is allowed on at least one CPU in sd.
8708  */
8709 static struct sched_group *
8710 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8711 {
8712 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8713 	struct sg_lb_stats local_sgs, tmp_sgs;
8714 	struct sg_lb_stats *sgs;
8715 	unsigned long imbalance;
8716 	struct sg_lb_stats idlest_sgs = {
8717 			.avg_load = UINT_MAX,
8718 			.group_type = group_overloaded,
8719 	};
8720 
8721 	imbalance = scale_load_down(NICE_0_LOAD) *
8722 				(sd->imbalance_pct-100) / 100;
8723 
8724 	do {
8725 		int local_group;
8726 
8727 		/* Skip over this group if it has no CPUs allowed */
8728 		if (!cpumask_intersects(sched_group_span(group),
8729 					p->cpus_ptr))
8730 			continue;
8731 
8732 		local_group = cpumask_test_cpu(this_cpu,
8733 					       sched_group_span(group));
8734 
8735 		if (local_group) {
8736 			sgs = &local_sgs;
8737 			local = group;
8738 		} else {
8739 			sgs = &tmp_sgs;
8740 		}
8741 
8742 		update_sg_wakeup_stats(sd, group, sgs, p);
8743 
8744 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8745 			idlest = group;
8746 			idlest_sgs = *sgs;
8747 		}
8748 
8749 	} while (group = group->next, group != sd->groups);
8750 
8751 
8752 	/* There is no idlest group to push tasks to */
8753 	if (!idlest)
8754 		return NULL;
8755 
8756 	/* The local group has been skipped because of CPU affinity */
8757 	if (!local)
8758 		return idlest;
8759 
8760 	/*
8761 	 * If the local group is idler than the selected idlest group
8762 	 * don't try and push the task.
8763 	 */
8764 	if (local_sgs.group_type < idlest_sgs.group_type)
8765 		return NULL;
8766 
8767 	/*
8768 	 * If the local group is busier than the selected idlest group
8769 	 * try and push the task.
8770 	 */
8771 	if (local_sgs.group_type > idlest_sgs.group_type)
8772 		return idlest;
8773 
8774 	switch (local_sgs.group_type) {
8775 	case group_overloaded:
8776 	case group_fully_busy:
8777 		/*
8778 		 * When comparing groups across NUMA domains, it's possible for
8779 		 * the local domain to be very lightly loaded relative to the
8780 		 * remote domains but "imbalance" skews the comparison making
8781 		 * remote CPUs look much more favourable. When considering
8782 		 * cross-domain, add imbalance to the load on the remote node
8783 		 * and consider staying local.
8784 		 */
8785 
8786 		if ((sd->flags & SD_NUMA) &&
8787 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8788 			return NULL;
8789 
8790 		/*
8791 		 * If the local group is less loaded than the selected
8792 		 * idlest group don't try and push any tasks.
8793 		 */
8794 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8795 			return NULL;
8796 
8797 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8798 			return NULL;
8799 		break;
8800 
8801 	case group_imbalanced:
8802 	case group_asym_packing:
8803 		/* Those type are not used in the slow wakeup path */
8804 		return NULL;
8805 
8806 	case group_misfit_task:
8807 		/* Select group with the highest max capacity */
8808 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8809 			return NULL;
8810 		break;
8811 
8812 	case group_has_spare:
8813 		if (sd->flags & SD_NUMA) {
8814 #ifdef CONFIG_NUMA_BALANCING
8815 			int idlest_cpu;
8816 			/*
8817 			 * If there is spare capacity at NUMA, try to select
8818 			 * the preferred node
8819 			 */
8820 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8821 				return NULL;
8822 
8823 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8824 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8825 				return idlest;
8826 #endif
8827 			/*
8828 			 * Otherwise, keep the task on this node to stay close
8829 			 * its wakeup source and improve locality. If there is
8830 			 * a real need of migration, periodic load balance will
8831 			 * take care of it.
8832 			 */
8833 			if (local_sgs.idle_cpus)
8834 				return NULL;
8835 		}
8836 
8837 		/*
8838 		 * Select group with highest number of idle CPUs. We could also
8839 		 * compare the utilization which is more stable but it can end
8840 		 * up that the group has less spare capacity but finally more
8841 		 * idle CPUs which means more opportunity to run task.
8842 		 */
8843 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8844 			return NULL;
8845 		break;
8846 	}
8847 
8848 	return idlest;
8849 }
8850 
8851 /**
8852  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8853  * @env: The load balancing environment.
8854  * @sds: variable to hold the statistics for this sched_domain.
8855  */
8856 
8857 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8858 {
8859 	struct sched_domain *child = env->sd->child;
8860 	struct sched_group *sg = env->sd->groups;
8861 	struct sg_lb_stats *local = &sds->local_stat;
8862 	struct sg_lb_stats tmp_sgs;
8863 	int sg_status = 0;
8864 
8865 #ifdef CONFIG_NO_HZ_COMMON
8866 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8867 		env->flags |= LBF_NOHZ_STATS;
8868 #endif
8869 
8870 	do {
8871 		struct sg_lb_stats *sgs = &tmp_sgs;
8872 		int local_group;
8873 
8874 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8875 		if (local_group) {
8876 			sds->local = sg;
8877 			sgs = local;
8878 
8879 			if (env->idle != CPU_NEWLY_IDLE ||
8880 			    time_after_eq(jiffies, sg->sgc->next_update))
8881 				update_group_capacity(env->sd, env->dst_cpu);
8882 		}
8883 
8884 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8885 
8886 		if (local_group)
8887 			goto next_group;
8888 
8889 
8890 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8891 			sds->busiest = sg;
8892 			sds->busiest_stat = *sgs;
8893 		}
8894 
8895 next_group:
8896 		/* Now, start updating sd_lb_stats */
8897 		sds->total_load += sgs->group_load;
8898 		sds->total_capacity += sgs->group_capacity;
8899 
8900 		sg = sg->next;
8901 	} while (sg != env->sd->groups);
8902 
8903 	/* Tag domain that child domain prefers tasks go to siblings first */
8904 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8905 
8906 #ifdef CONFIG_NO_HZ_COMMON
8907 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8908 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8909 
8910 		WRITE_ONCE(nohz.next_blocked,
8911 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8912 	}
8913 #endif
8914 
8915 	if (env->sd->flags & SD_NUMA)
8916 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8917 
8918 	if (!env->sd->parent) {
8919 		struct root_domain *rd = env->dst_rq->rd;
8920 
8921 		/* update overload indicator if we are at root domain */
8922 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8923 
8924 		/* Update over-utilization (tipping point, U >= 0) indicator */
8925 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8926 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8927 	} else if (sg_status & SG_OVERUTILIZED) {
8928 		struct root_domain *rd = env->dst_rq->rd;
8929 
8930 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8931 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8932 	}
8933 }
8934 
8935 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8936 {
8937 	unsigned int imbalance_min;
8938 
8939 	/*
8940 	 * Allow a small imbalance based on a simple pair of communicating
8941 	 * tasks that remain local when the source domain is almost idle.
8942 	 */
8943 	imbalance_min = 2;
8944 	if (src_nr_running <= imbalance_min)
8945 		return 0;
8946 
8947 	return imbalance;
8948 }
8949 
8950 /**
8951  * calculate_imbalance - Calculate the amount of imbalance present within the
8952  *			 groups of a given sched_domain during load balance.
8953  * @env: load balance environment
8954  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8955  */
8956 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8957 {
8958 	struct sg_lb_stats *local, *busiest;
8959 
8960 	local = &sds->local_stat;
8961 	busiest = &sds->busiest_stat;
8962 
8963 	if (busiest->group_type == group_misfit_task) {
8964 		/* Set imbalance to allow misfit tasks to be balanced. */
8965 		env->migration_type = migrate_misfit;
8966 		env->imbalance = 1;
8967 		return;
8968 	}
8969 
8970 	if (busiest->group_type == group_asym_packing) {
8971 		/*
8972 		 * In case of asym capacity, we will try to migrate all load to
8973 		 * the preferred CPU.
8974 		 */
8975 		env->migration_type = migrate_task;
8976 		env->imbalance = busiest->sum_h_nr_running;
8977 		return;
8978 	}
8979 
8980 	if (busiest->group_type == group_imbalanced) {
8981 		/*
8982 		 * In the group_imb case we cannot rely on group-wide averages
8983 		 * to ensure CPU-load equilibrium, try to move any task to fix
8984 		 * the imbalance. The next load balance will take care of
8985 		 * balancing back the system.
8986 		 */
8987 		env->migration_type = migrate_task;
8988 		env->imbalance = 1;
8989 		return;
8990 	}
8991 
8992 	/*
8993 	 * Try to use spare capacity of local group without overloading it or
8994 	 * emptying busiest.
8995 	 */
8996 	if (local->group_type == group_has_spare) {
8997 		if (busiest->group_type > group_fully_busy) {
8998 			/*
8999 			 * If busiest is overloaded, try to fill spare
9000 			 * capacity. This might end up creating spare capacity
9001 			 * in busiest or busiest still being overloaded but
9002 			 * there is no simple way to directly compute the
9003 			 * amount of load to migrate in order to balance the
9004 			 * system.
9005 			 */
9006 			env->migration_type = migrate_util;
9007 			env->imbalance = max(local->group_capacity, local->group_util) -
9008 					 local->group_util;
9009 
9010 			/*
9011 			 * In some cases, the group's utilization is max or even
9012 			 * higher than capacity because of migrations but the
9013 			 * local CPU is (newly) idle. There is at least one
9014 			 * waiting task in this overloaded busiest group. Let's
9015 			 * try to pull it.
9016 			 */
9017 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9018 				env->migration_type = migrate_task;
9019 				env->imbalance = 1;
9020 			}
9021 
9022 			return;
9023 		}
9024 
9025 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9026 			unsigned int nr_diff = busiest->sum_nr_running;
9027 			/*
9028 			 * When prefer sibling, evenly spread running tasks on
9029 			 * groups.
9030 			 */
9031 			env->migration_type = migrate_task;
9032 			lsub_positive(&nr_diff, local->sum_nr_running);
9033 			env->imbalance = nr_diff >> 1;
9034 		} else {
9035 
9036 			/*
9037 			 * If there is no overload, we just want to even the number of
9038 			 * idle cpus.
9039 			 */
9040 			env->migration_type = migrate_task;
9041 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9042 						 busiest->idle_cpus) >> 1);
9043 		}
9044 
9045 		/* Consider allowing a small imbalance between NUMA groups */
9046 		if (env->sd->flags & SD_NUMA)
9047 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9048 						busiest->sum_nr_running);
9049 
9050 		return;
9051 	}
9052 
9053 	/*
9054 	 * Local is fully busy but has to take more load to relieve the
9055 	 * busiest group
9056 	 */
9057 	if (local->group_type < group_overloaded) {
9058 		/*
9059 		 * Local will become overloaded so the avg_load metrics are
9060 		 * finally needed.
9061 		 */
9062 
9063 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9064 				  local->group_capacity;
9065 
9066 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9067 				sds->total_capacity;
9068 		/*
9069 		 * If the local group is more loaded than the selected
9070 		 * busiest group don't try to pull any tasks.
9071 		 */
9072 		if (local->avg_load >= busiest->avg_load) {
9073 			env->imbalance = 0;
9074 			return;
9075 		}
9076 	}
9077 
9078 	/*
9079 	 * Both group are or will become overloaded and we're trying to get all
9080 	 * the CPUs to the average_load, so we don't want to push ourselves
9081 	 * above the average load, nor do we wish to reduce the max loaded CPU
9082 	 * below the average load. At the same time, we also don't want to
9083 	 * reduce the group load below the group capacity. Thus we look for
9084 	 * the minimum possible imbalance.
9085 	 */
9086 	env->migration_type = migrate_load;
9087 	env->imbalance = min(
9088 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9089 		(sds->avg_load - local->avg_load) * local->group_capacity
9090 	) / SCHED_CAPACITY_SCALE;
9091 }
9092 
9093 /******* find_busiest_group() helpers end here *********************/
9094 
9095 /*
9096  * Decision matrix according to the local and busiest group type:
9097  *
9098  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9099  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9100  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9101  * misfit_task      force     N/A        N/A    N/A  force      force
9102  * asym_packing     force     force      N/A    N/A  force      force
9103  * imbalanced       force     force      N/A    N/A  force      force
9104  * overloaded       force     force      N/A    N/A  force      avg_load
9105  *
9106  * N/A :      Not Applicable because already filtered while updating
9107  *            statistics.
9108  * balanced : The system is balanced for these 2 groups.
9109  * force :    Calculate the imbalance as load migration is probably needed.
9110  * avg_load : Only if imbalance is significant enough.
9111  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9112  *            different in groups.
9113  */
9114 
9115 /**
9116  * find_busiest_group - Returns the busiest group within the sched_domain
9117  * if there is an imbalance.
9118  *
9119  * Also calculates the amount of runnable load which should be moved
9120  * to restore balance.
9121  *
9122  * @env: The load balancing environment.
9123  *
9124  * Return:	- The busiest group if imbalance exists.
9125  */
9126 static struct sched_group *find_busiest_group(struct lb_env *env)
9127 {
9128 	struct sg_lb_stats *local, *busiest;
9129 	struct sd_lb_stats sds;
9130 
9131 	init_sd_lb_stats(&sds);
9132 
9133 	/*
9134 	 * Compute the various statistics relevant for load balancing at
9135 	 * this level.
9136 	 */
9137 	update_sd_lb_stats(env, &sds);
9138 
9139 	if (sched_energy_enabled()) {
9140 		struct root_domain *rd = env->dst_rq->rd;
9141 
9142 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9143 			goto out_balanced;
9144 	}
9145 
9146 	local = &sds.local_stat;
9147 	busiest = &sds.busiest_stat;
9148 
9149 	/* There is no busy sibling group to pull tasks from */
9150 	if (!sds.busiest)
9151 		goto out_balanced;
9152 
9153 	/* Misfit tasks should be dealt with regardless of the avg load */
9154 	if (busiest->group_type == group_misfit_task)
9155 		goto force_balance;
9156 
9157 	/* ASYM feature bypasses nice load balance check */
9158 	if (busiest->group_type == group_asym_packing)
9159 		goto force_balance;
9160 
9161 	/*
9162 	 * If the busiest group is imbalanced the below checks don't
9163 	 * work because they assume all things are equal, which typically
9164 	 * isn't true due to cpus_ptr constraints and the like.
9165 	 */
9166 	if (busiest->group_type == group_imbalanced)
9167 		goto force_balance;
9168 
9169 	/*
9170 	 * If the local group is busier than the selected busiest group
9171 	 * don't try and pull any tasks.
9172 	 */
9173 	if (local->group_type > busiest->group_type)
9174 		goto out_balanced;
9175 
9176 	/*
9177 	 * When groups are overloaded, use the avg_load to ensure fairness
9178 	 * between tasks.
9179 	 */
9180 	if (local->group_type == group_overloaded) {
9181 		/*
9182 		 * If the local group is more loaded than the selected
9183 		 * busiest group don't try to pull any tasks.
9184 		 */
9185 		if (local->avg_load >= busiest->avg_load)
9186 			goto out_balanced;
9187 
9188 		/* XXX broken for overlapping NUMA groups */
9189 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9190 				sds.total_capacity;
9191 
9192 		/*
9193 		 * Don't pull any tasks if this group is already above the
9194 		 * domain average load.
9195 		 */
9196 		if (local->avg_load >= sds.avg_load)
9197 			goto out_balanced;
9198 
9199 		/*
9200 		 * If the busiest group is more loaded, use imbalance_pct to be
9201 		 * conservative.
9202 		 */
9203 		if (100 * busiest->avg_load <=
9204 				env->sd->imbalance_pct * local->avg_load)
9205 			goto out_balanced;
9206 	}
9207 
9208 	/* Try to move all excess tasks to child's sibling domain */
9209 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9210 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9211 		goto force_balance;
9212 
9213 	if (busiest->group_type != group_overloaded) {
9214 		if (env->idle == CPU_NOT_IDLE)
9215 			/*
9216 			 * If the busiest group is not overloaded (and as a
9217 			 * result the local one too) but this CPU is already
9218 			 * busy, let another idle CPU try to pull task.
9219 			 */
9220 			goto out_balanced;
9221 
9222 		if (busiest->group_weight > 1 &&
9223 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9224 			/*
9225 			 * If the busiest group is not overloaded
9226 			 * and there is no imbalance between this and busiest
9227 			 * group wrt idle CPUs, it is balanced. The imbalance
9228 			 * becomes significant if the diff is greater than 1
9229 			 * otherwise we might end up to just move the imbalance
9230 			 * on another group. Of course this applies only if
9231 			 * there is more than 1 CPU per group.
9232 			 */
9233 			goto out_balanced;
9234 
9235 		if (busiest->sum_h_nr_running == 1)
9236 			/*
9237 			 * busiest doesn't have any tasks waiting to run
9238 			 */
9239 			goto out_balanced;
9240 	}
9241 
9242 force_balance:
9243 	/* Looks like there is an imbalance. Compute it */
9244 	calculate_imbalance(env, &sds);
9245 	return env->imbalance ? sds.busiest : NULL;
9246 
9247 out_balanced:
9248 	env->imbalance = 0;
9249 	return NULL;
9250 }
9251 
9252 /*
9253  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9254  */
9255 static struct rq *find_busiest_queue(struct lb_env *env,
9256 				     struct sched_group *group)
9257 {
9258 	struct rq *busiest = NULL, *rq;
9259 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9260 	unsigned int busiest_nr = 0;
9261 	int i;
9262 
9263 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9264 		unsigned long capacity, load, util;
9265 		unsigned int nr_running;
9266 		enum fbq_type rt;
9267 
9268 		rq = cpu_rq(i);
9269 		rt = fbq_classify_rq(rq);
9270 
9271 		/*
9272 		 * We classify groups/runqueues into three groups:
9273 		 *  - regular: there are !numa tasks
9274 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9275 		 *  - all:     there is no distinction
9276 		 *
9277 		 * In order to avoid migrating ideally placed numa tasks,
9278 		 * ignore those when there's better options.
9279 		 *
9280 		 * If we ignore the actual busiest queue to migrate another
9281 		 * task, the next balance pass can still reduce the busiest
9282 		 * queue by moving tasks around inside the node.
9283 		 *
9284 		 * If we cannot move enough load due to this classification
9285 		 * the next pass will adjust the group classification and
9286 		 * allow migration of more tasks.
9287 		 *
9288 		 * Both cases only affect the total convergence complexity.
9289 		 */
9290 		if (rt > env->fbq_type)
9291 			continue;
9292 
9293 		capacity = capacity_of(i);
9294 		nr_running = rq->cfs.h_nr_running;
9295 
9296 		/*
9297 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9298 		 * eventually lead to active_balancing high->low capacity.
9299 		 * Higher per-CPU capacity is considered better than balancing
9300 		 * average load.
9301 		 */
9302 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9303 		    capacity_of(env->dst_cpu) < capacity &&
9304 		    nr_running == 1)
9305 			continue;
9306 
9307 		switch (env->migration_type) {
9308 		case migrate_load:
9309 			/*
9310 			 * When comparing with load imbalance, use cpu_load()
9311 			 * which is not scaled with the CPU capacity.
9312 			 */
9313 			load = cpu_load(rq);
9314 
9315 			if (nr_running == 1 && load > env->imbalance &&
9316 			    !check_cpu_capacity(rq, env->sd))
9317 				break;
9318 
9319 			/*
9320 			 * For the load comparisons with the other CPUs,
9321 			 * consider the cpu_load() scaled with the CPU
9322 			 * capacity, so that the load can be moved away
9323 			 * from the CPU that is potentially running at a
9324 			 * lower capacity.
9325 			 *
9326 			 * Thus we're looking for max(load_i / capacity_i),
9327 			 * crosswise multiplication to rid ourselves of the
9328 			 * division works out to:
9329 			 * load_i * capacity_j > load_j * capacity_i;
9330 			 * where j is our previous maximum.
9331 			 */
9332 			if (load * busiest_capacity > busiest_load * capacity) {
9333 				busiest_load = load;
9334 				busiest_capacity = capacity;
9335 				busiest = rq;
9336 			}
9337 			break;
9338 
9339 		case migrate_util:
9340 			util = cpu_util(cpu_of(rq));
9341 
9342 			/*
9343 			 * Don't try to pull utilization from a CPU with one
9344 			 * running task. Whatever its utilization, we will fail
9345 			 * detach the task.
9346 			 */
9347 			if (nr_running <= 1)
9348 				continue;
9349 
9350 			if (busiest_util < util) {
9351 				busiest_util = util;
9352 				busiest = rq;
9353 			}
9354 			break;
9355 
9356 		case migrate_task:
9357 			if (busiest_nr < nr_running) {
9358 				busiest_nr = nr_running;
9359 				busiest = rq;
9360 			}
9361 			break;
9362 
9363 		case migrate_misfit:
9364 			/*
9365 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9366 			 * simply seek the "biggest" misfit task.
9367 			 */
9368 			if (rq->misfit_task_load > busiest_load) {
9369 				busiest_load = rq->misfit_task_load;
9370 				busiest = rq;
9371 			}
9372 
9373 			break;
9374 
9375 		}
9376 	}
9377 
9378 	return busiest;
9379 }
9380 
9381 /*
9382  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9383  * so long as it is large enough.
9384  */
9385 #define MAX_PINNED_INTERVAL	512
9386 
9387 static inline bool
9388 asym_active_balance(struct lb_env *env)
9389 {
9390 	/*
9391 	 * ASYM_PACKING needs to force migrate tasks from busy but
9392 	 * lower priority CPUs in order to pack all tasks in the
9393 	 * highest priority CPUs.
9394 	 */
9395 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9396 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9397 }
9398 
9399 static inline bool
9400 voluntary_active_balance(struct lb_env *env)
9401 {
9402 	struct sched_domain *sd = env->sd;
9403 
9404 	if (asym_active_balance(env))
9405 		return 1;
9406 
9407 	/*
9408 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9409 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9410 	 * because of other sched_class or IRQs if more capacity stays
9411 	 * available on dst_cpu.
9412 	 */
9413 	if ((env->idle != CPU_NOT_IDLE) &&
9414 	    (env->src_rq->cfs.h_nr_running == 1)) {
9415 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9416 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9417 			return 1;
9418 	}
9419 
9420 	if (env->migration_type == migrate_misfit)
9421 		return 1;
9422 
9423 	return 0;
9424 }
9425 
9426 static int need_active_balance(struct lb_env *env)
9427 {
9428 	struct sched_domain *sd = env->sd;
9429 
9430 	if (voluntary_active_balance(env))
9431 		return 1;
9432 
9433 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9434 }
9435 
9436 static int active_load_balance_cpu_stop(void *data);
9437 
9438 static int should_we_balance(struct lb_env *env)
9439 {
9440 	struct sched_group *sg = env->sd->groups;
9441 	int cpu;
9442 
9443 	/*
9444 	 * Ensure the balancing environment is consistent; can happen
9445 	 * when the softirq triggers 'during' hotplug.
9446 	 */
9447 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9448 		return 0;
9449 
9450 	/*
9451 	 * In the newly idle case, we will allow all the CPUs
9452 	 * to do the newly idle load balance.
9453 	 */
9454 	if (env->idle == CPU_NEWLY_IDLE)
9455 		return 1;
9456 
9457 	/* Try to find first idle CPU */
9458 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9459 		if (!idle_cpu(cpu))
9460 			continue;
9461 
9462 		/* Are we the first idle CPU? */
9463 		return cpu == env->dst_cpu;
9464 	}
9465 
9466 	/* Are we the first CPU of this group ? */
9467 	return group_balance_cpu(sg) == env->dst_cpu;
9468 }
9469 
9470 /*
9471  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9472  * tasks if there is an imbalance.
9473  */
9474 static int load_balance(int this_cpu, struct rq *this_rq,
9475 			struct sched_domain *sd, enum cpu_idle_type idle,
9476 			int *continue_balancing)
9477 {
9478 	int ld_moved, cur_ld_moved, active_balance = 0;
9479 	struct sched_domain *sd_parent = sd->parent;
9480 	struct sched_group *group;
9481 	struct rq *busiest;
9482 	struct rq_flags rf;
9483 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9484 
9485 	struct lb_env env = {
9486 		.sd		= sd,
9487 		.dst_cpu	= this_cpu,
9488 		.dst_rq		= this_rq,
9489 		.dst_grpmask    = sched_group_span(sd->groups),
9490 		.idle		= idle,
9491 		.loop_break	= sched_nr_migrate_break,
9492 		.cpus		= cpus,
9493 		.fbq_type	= all,
9494 		.tasks		= LIST_HEAD_INIT(env.tasks),
9495 	};
9496 
9497 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9498 
9499 	schedstat_inc(sd->lb_count[idle]);
9500 
9501 redo:
9502 	if (!should_we_balance(&env)) {
9503 		*continue_balancing = 0;
9504 		goto out_balanced;
9505 	}
9506 
9507 	group = find_busiest_group(&env);
9508 	if (!group) {
9509 		schedstat_inc(sd->lb_nobusyg[idle]);
9510 		goto out_balanced;
9511 	}
9512 
9513 	busiest = find_busiest_queue(&env, group);
9514 	if (!busiest) {
9515 		schedstat_inc(sd->lb_nobusyq[idle]);
9516 		goto out_balanced;
9517 	}
9518 
9519 	BUG_ON(busiest == env.dst_rq);
9520 
9521 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9522 
9523 	env.src_cpu = busiest->cpu;
9524 	env.src_rq = busiest;
9525 
9526 	ld_moved = 0;
9527 	if (busiest->nr_running > 1) {
9528 		/*
9529 		 * Attempt to move tasks. If find_busiest_group has found
9530 		 * an imbalance but busiest->nr_running <= 1, the group is
9531 		 * still unbalanced. ld_moved simply stays zero, so it is
9532 		 * correctly treated as an imbalance.
9533 		 */
9534 		env.flags |= LBF_ALL_PINNED;
9535 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9536 
9537 more_balance:
9538 		rq_lock_irqsave(busiest, &rf);
9539 		update_rq_clock(busiest);
9540 
9541 		/*
9542 		 * cur_ld_moved - load moved in current iteration
9543 		 * ld_moved     - cumulative load moved across iterations
9544 		 */
9545 		cur_ld_moved = detach_tasks(&env);
9546 
9547 		/*
9548 		 * We've detached some tasks from busiest_rq. Every
9549 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9550 		 * unlock busiest->lock, and we are able to be sure
9551 		 * that nobody can manipulate the tasks in parallel.
9552 		 * See task_rq_lock() family for the details.
9553 		 */
9554 
9555 		rq_unlock(busiest, &rf);
9556 
9557 		if (cur_ld_moved) {
9558 			attach_tasks(&env);
9559 			ld_moved += cur_ld_moved;
9560 		}
9561 
9562 		local_irq_restore(rf.flags);
9563 
9564 		if (env.flags & LBF_NEED_BREAK) {
9565 			env.flags &= ~LBF_NEED_BREAK;
9566 			goto more_balance;
9567 		}
9568 
9569 		/*
9570 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9571 		 * us and move them to an alternate dst_cpu in our sched_group
9572 		 * where they can run. The upper limit on how many times we
9573 		 * iterate on same src_cpu is dependent on number of CPUs in our
9574 		 * sched_group.
9575 		 *
9576 		 * This changes load balance semantics a bit on who can move
9577 		 * load to a given_cpu. In addition to the given_cpu itself
9578 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9579 		 * nohz-idle), we now have balance_cpu in a position to move
9580 		 * load to given_cpu. In rare situations, this may cause
9581 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9582 		 * _independently_ and at _same_ time to move some load to
9583 		 * given_cpu) causing exceess load to be moved to given_cpu.
9584 		 * This however should not happen so much in practice and
9585 		 * moreover subsequent load balance cycles should correct the
9586 		 * excess load moved.
9587 		 */
9588 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9589 
9590 			/* Prevent to re-select dst_cpu via env's CPUs */
9591 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9592 
9593 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9594 			env.dst_cpu	 = env.new_dst_cpu;
9595 			env.flags	&= ~LBF_DST_PINNED;
9596 			env.loop	 = 0;
9597 			env.loop_break	 = sched_nr_migrate_break;
9598 
9599 			/*
9600 			 * Go back to "more_balance" rather than "redo" since we
9601 			 * need to continue with same src_cpu.
9602 			 */
9603 			goto more_balance;
9604 		}
9605 
9606 		/*
9607 		 * We failed to reach balance because of affinity.
9608 		 */
9609 		if (sd_parent) {
9610 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9611 
9612 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9613 				*group_imbalance = 1;
9614 		}
9615 
9616 		/* All tasks on this runqueue were pinned by CPU affinity */
9617 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9618 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9619 			/*
9620 			 * Attempting to continue load balancing at the current
9621 			 * sched_domain level only makes sense if there are
9622 			 * active CPUs remaining as possible busiest CPUs to
9623 			 * pull load from which are not contained within the
9624 			 * destination group that is receiving any migrated
9625 			 * load.
9626 			 */
9627 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9628 				env.loop = 0;
9629 				env.loop_break = sched_nr_migrate_break;
9630 				goto redo;
9631 			}
9632 			goto out_all_pinned;
9633 		}
9634 	}
9635 
9636 	if (!ld_moved) {
9637 		schedstat_inc(sd->lb_failed[idle]);
9638 		/*
9639 		 * Increment the failure counter only on periodic balance.
9640 		 * We do not want newidle balance, which can be very
9641 		 * frequent, pollute the failure counter causing
9642 		 * excessive cache_hot migrations and active balances.
9643 		 */
9644 		if (idle != CPU_NEWLY_IDLE)
9645 			sd->nr_balance_failed++;
9646 
9647 		if (need_active_balance(&env)) {
9648 			unsigned long flags;
9649 
9650 			raw_spin_lock_irqsave(&busiest->lock, flags);
9651 
9652 			/*
9653 			 * Don't kick the active_load_balance_cpu_stop,
9654 			 * if the curr task on busiest CPU can't be
9655 			 * moved to this_cpu:
9656 			 */
9657 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9658 				raw_spin_unlock_irqrestore(&busiest->lock,
9659 							    flags);
9660 				env.flags |= LBF_ALL_PINNED;
9661 				goto out_one_pinned;
9662 			}
9663 
9664 			/*
9665 			 * ->active_balance synchronizes accesses to
9666 			 * ->active_balance_work.  Once set, it's cleared
9667 			 * only after active load balance is finished.
9668 			 */
9669 			if (!busiest->active_balance) {
9670 				busiest->active_balance = 1;
9671 				busiest->push_cpu = this_cpu;
9672 				active_balance = 1;
9673 			}
9674 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9675 
9676 			if (active_balance) {
9677 				stop_one_cpu_nowait(cpu_of(busiest),
9678 					active_load_balance_cpu_stop, busiest,
9679 					&busiest->active_balance_work);
9680 			}
9681 
9682 			/* We've kicked active balancing, force task migration. */
9683 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9684 		}
9685 	} else
9686 		sd->nr_balance_failed = 0;
9687 
9688 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9689 		/* We were unbalanced, so reset the balancing interval */
9690 		sd->balance_interval = sd->min_interval;
9691 	} else {
9692 		/*
9693 		 * If we've begun active balancing, start to back off. This
9694 		 * case may not be covered by the all_pinned logic if there
9695 		 * is only 1 task on the busy runqueue (because we don't call
9696 		 * detach_tasks).
9697 		 */
9698 		if (sd->balance_interval < sd->max_interval)
9699 			sd->balance_interval *= 2;
9700 	}
9701 
9702 	goto out;
9703 
9704 out_balanced:
9705 	/*
9706 	 * We reach balance although we may have faced some affinity
9707 	 * constraints. Clear the imbalance flag only if other tasks got
9708 	 * a chance to move and fix the imbalance.
9709 	 */
9710 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9711 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9712 
9713 		if (*group_imbalance)
9714 			*group_imbalance = 0;
9715 	}
9716 
9717 out_all_pinned:
9718 	/*
9719 	 * We reach balance because all tasks are pinned at this level so
9720 	 * we can't migrate them. Let the imbalance flag set so parent level
9721 	 * can try to migrate them.
9722 	 */
9723 	schedstat_inc(sd->lb_balanced[idle]);
9724 
9725 	sd->nr_balance_failed = 0;
9726 
9727 out_one_pinned:
9728 	ld_moved = 0;
9729 
9730 	/*
9731 	 * newidle_balance() disregards balance intervals, so we could
9732 	 * repeatedly reach this code, which would lead to balance_interval
9733 	 * skyrocketting in a short amount of time. Skip the balance_interval
9734 	 * increase logic to avoid that.
9735 	 */
9736 	if (env.idle == CPU_NEWLY_IDLE)
9737 		goto out;
9738 
9739 	/* tune up the balancing interval */
9740 	if ((env.flags & LBF_ALL_PINNED &&
9741 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9742 	    sd->balance_interval < sd->max_interval)
9743 		sd->balance_interval *= 2;
9744 out:
9745 	return ld_moved;
9746 }
9747 
9748 static inline unsigned long
9749 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9750 {
9751 	unsigned long interval = sd->balance_interval;
9752 
9753 	if (cpu_busy)
9754 		interval *= sd->busy_factor;
9755 
9756 	/* scale ms to jiffies */
9757 	interval = msecs_to_jiffies(interval);
9758 	interval = clamp(interval, 1UL, max_load_balance_interval);
9759 
9760 	return interval;
9761 }
9762 
9763 static inline void
9764 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9765 {
9766 	unsigned long interval, next;
9767 
9768 	/* used by idle balance, so cpu_busy = 0 */
9769 	interval = get_sd_balance_interval(sd, 0);
9770 	next = sd->last_balance + interval;
9771 
9772 	if (time_after(*next_balance, next))
9773 		*next_balance = next;
9774 }
9775 
9776 /*
9777  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9778  * running tasks off the busiest CPU onto idle CPUs. It requires at
9779  * least 1 task to be running on each physical CPU where possible, and
9780  * avoids physical / logical imbalances.
9781  */
9782 static int active_load_balance_cpu_stop(void *data)
9783 {
9784 	struct rq *busiest_rq = data;
9785 	int busiest_cpu = cpu_of(busiest_rq);
9786 	int target_cpu = busiest_rq->push_cpu;
9787 	struct rq *target_rq = cpu_rq(target_cpu);
9788 	struct sched_domain *sd;
9789 	struct task_struct *p = NULL;
9790 	struct rq_flags rf;
9791 
9792 	rq_lock_irq(busiest_rq, &rf);
9793 	/*
9794 	 * Between queueing the stop-work and running it is a hole in which
9795 	 * CPUs can become inactive. We should not move tasks from or to
9796 	 * inactive CPUs.
9797 	 */
9798 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9799 		goto out_unlock;
9800 
9801 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9802 	if (unlikely(busiest_cpu != smp_processor_id() ||
9803 		     !busiest_rq->active_balance))
9804 		goto out_unlock;
9805 
9806 	/* Is there any task to move? */
9807 	if (busiest_rq->nr_running <= 1)
9808 		goto out_unlock;
9809 
9810 	/*
9811 	 * This condition is "impossible", if it occurs
9812 	 * we need to fix it. Originally reported by
9813 	 * Bjorn Helgaas on a 128-CPU setup.
9814 	 */
9815 	BUG_ON(busiest_rq == target_rq);
9816 
9817 	/* Search for an sd spanning us and the target CPU. */
9818 	rcu_read_lock();
9819 	for_each_domain(target_cpu, sd) {
9820 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9821 			break;
9822 	}
9823 
9824 	if (likely(sd)) {
9825 		struct lb_env env = {
9826 			.sd		= sd,
9827 			.dst_cpu	= target_cpu,
9828 			.dst_rq		= target_rq,
9829 			.src_cpu	= busiest_rq->cpu,
9830 			.src_rq		= busiest_rq,
9831 			.idle		= CPU_IDLE,
9832 			/*
9833 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9834 			 * for active balancing. Since we have CPU_IDLE, but no
9835 			 * @dst_grpmask we need to make that test go away with lying
9836 			 * about DST_PINNED.
9837 			 */
9838 			.flags		= LBF_DST_PINNED,
9839 		};
9840 
9841 		schedstat_inc(sd->alb_count);
9842 		update_rq_clock(busiest_rq);
9843 
9844 		p = detach_one_task(&env);
9845 		if (p) {
9846 			schedstat_inc(sd->alb_pushed);
9847 			/* Active balancing done, reset the failure counter. */
9848 			sd->nr_balance_failed = 0;
9849 		} else {
9850 			schedstat_inc(sd->alb_failed);
9851 		}
9852 	}
9853 	rcu_read_unlock();
9854 out_unlock:
9855 	busiest_rq->active_balance = 0;
9856 	rq_unlock(busiest_rq, &rf);
9857 
9858 	if (p)
9859 		attach_one_task(target_rq, p);
9860 
9861 	local_irq_enable();
9862 
9863 	return 0;
9864 }
9865 
9866 static DEFINE_SPINLOCK(balancing);
9867 
9868 /*
9869  * Scale the max load_balance interval with the number of CPUs in the system.
9870  * This trades load-balance latency on larger machines for less cross talk.
9871  */
9872 void update_max_interval(void)
9873 {
9874 	max_load_balance_interval = HZ*num_online_cpus()/10;
9875 }
9876 
9877 /*
9878  * It checks each scheduling domain to see if it is due to be balanced,
9879  * and initiates a balancing operation if so.
9880  *
9881  * Balancing parameters are set up in init_sched_domains.
9882  */
9883 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9884 {
9885 	int continue_balancing = 1;
9886 	int cpu = rq->cpu;
9887 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9888 	unsigned long interval;
9889 	struct sched_domain *sd;
9890 	/* Earliest time when we have to do rebalance again */
9891 	unsigned long next_balance = jiffies + 60*HZ;
9892 	int update_next_balance = 0;
9893 	int need_serialize, need_decay = 0;
9894 	u64 max_cost = 0;
9895 
9896 	rcu_read_lock();
9897 	for_each_domain(cpu, sd) {
9898 		/*
9899 		 * Decay the newidle max times here because this is a regular
9900 		 * visit to all the domains. Decay ~1% per second.
9901 		 */
9902 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9903 			sd->max_newidle_lb_cost =
9904 				(sd->max_newidle_lb_cost * 253) / 256;
9905 			sd->next_decay_max_lb_cost = jiffies + HZ;
9906 			need_decay = 1;
9907 		}
9908 		max_cost += sd->max_newidle_lb_cost;
9909 
9910 		/*
9911 		 * Stop the load balance at this level. There is another
9912 		 * CPU in our sched group which is doing load balancing more
9913 		 * actively.
9914 		 */
9915 		if (!continue_balancing) {
9916 			if (need_decay)
9917 				continue;
9918 			break;
9919 		}
9920 
9921 		interval = get_sd_balance_interval(sd, busy);
9922 
9923 		need_serialize = sd->flags & SD_SERIALIZE;
9924 		if (need_serialize) {
9925 			if (!spin_trylock(&balancing))
9926 				goto out;
9927 		}
9928 
9929 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9930 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9931 				/*
9932 				 * The LBF_DST_PINNED logic could have changed
9933 				 * env->dst_cpu, so we can't know our idle
9934 				 * state even if we migrated tasks. Update it.
9935 				 */
9936 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9937 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9938 			}
9939 			sd->last_balance = jiffies;
9940 			interval = get_sd_balance_interval(sd, busy);
9941 		}
9942 		if (need_serialize)
9943 			spin_unlock(&balancing);
9944 out:
9945 		if (time_after(next_balance, sd->last_balance + interval)) {
9946 			next_balance = sd->last_balance + interval;
9947 			update_next_balance = 1;
9948 		}
9949 	}
9950 	if (need_decay) {
9951 		/*
9952 		 * Ensure the rq-wide value also decays but keep it at a
9953 		 * reasonable floor to avoid funnies with rq->avg_idle.
9954 		 */
9955 		rq->max_idle_balance_cost =
9956 			max((u64)sysctl_sched_migration_cost, max_cost);
9957 	}
9958 	rcu_read_unlock();
9959 
9960 	/*
9961 	 * next_balance will be updated only when there is a need.
9962 	 * When the cpu is attached to null domain for ex, it will not be
9963 	 * updated.
9964 	 */
9965 	if (likely(update_next_balance)) {
9966 		rq->next_balance = next_balance;
9967 
9968 #ifdef CONFIG_NO_HZ_COMMON
9969 		/*
9970 		 * If this CPU has been elected to perform the nohz idle
9971 		 * balance. Other idle CPUs have already rebalanced with
9972 		 * nohz_idle_balance() and nohz.next_balance has been
9973 		 * updated accordingly. This CPU is now running the idle load
9974 		 * balance for itself and we need to update the
9975 		 * nohz.next_balance accordingly.
9976 		 */
9977 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9978 			nohz.next_balance = rq->next_balance;
9979 #endif
9980 	}
9981 }
9982 
9983 static inline int on_null_domain(struct rq *rq)
9984 {
9985 	return unlikely(!rcu_dereference_sched(rq->sd));
9986 }
9987 
9988 #ifdef CONFIG_NO_HZ_COMMON
9989 /*
9990  * idle load balancing details
9991  * - When one of the busy CPUs notice that there may be an idle rebalancing
9992  *   needed, they will kick the idle load balancer, which then does idle
9993  *   load balancing for all the idle CPUs.
9994  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9995  *   anywhere yet.
9996  */
9997 
9998 static inline int find_new_ilb(void)
9999 {
10000 	int ilb;
10001 
10002 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10003 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10004 		if (idle_cpu(ilb))
10005 			return ilb;
10006 	}
10007 
10008 	return nr_cpu_ids;
10009 }
10010 
10011 /*
10012  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10013  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10014  */
10015 static void kick_ilb(unsigned int flags)
10016 {
10017 	int ilb_cpu;
10018 
10019 	nohz.next_balance++;
10020 
10021 	ilb_cpu = find_new_ilb();
10022 
10023 	if (ilb_cpu >= nr_cpu_ids)
10024 		return;
10025 
10026 	/*
10027 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10028 	 * the first flag owns it; cleared by nohz_csd_func().
10029 	 */
10030 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10031 	if (flags & NOHZ_KICK_MASK)
10032 		return;
10033 
10034 	/*
10035 	 * This way we generate an IPI on the target CPU which
10036 	 * is idle. And the softirq performing nohz idle load balance
10037 	 * will be run before returning from the IPI.
10038 	 */
10039 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10040 }
10041 
10042 /*
10043  * Current decision point for kicking the idle load balancer in the presence
10044  * of idle CPUs in the system.
10045  */
10046 static void nohz_balancer_kick(struct rq *rq)
10047 {
10048 	unsigned long now = jiffies;
10049 	struct sched_domain_shared *sds;
10050 	struct sched_domain *sd;
10051 	int nr_busy, i, cpu = rq->cpu;
10052 	unsigned int flags = 0;
10053 
10054 	if (unlikely(rq->idle_balance))
10055 		return;
10056 
10057 	/*
10058 	 * We may be recently in ticked or tickless idle mode. At the first
10059 	 * busy tick after returning from idle, we will update the busy stats.
10060 	 */
10061 	nohz_balance_exit_idle(rq);
10062 
10063 	/*
10064 	 * None are in tickless mode and hence no need for NOHZ idle load
10065 	 * balancing.
10066 	 */
10067 	if (likely(!atomic_read(&nohz.nr_cpus)))
10068 		return;
10069 
10070 	if (READ_ONCE(nohz.has_blocked) &&
10071 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10072 		flags = NOHZ_STATS_KICK;
10073 
10074 	if (time_before(now, nohz.next_balance))
10075 		goto out;
10076 
10077 	if (rq->nr_running >= 2) {
10078 		flags = NOHZ_KICK_MASK;
10079 		goto out;
10080 	}
10081 
10082 	rcu_read_lock();
10083 
10084 	sd = rcu_dereference(rq->sd);
10085 	if (sd) {
10086 		/*
10087 		 * If there's a CFS task and the current CPU has reduced
10088 		 * capacity; kick the ILB to see if there's a better CPU to run
10089 		 * on.
10090 		 */
10091 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10092 			flags = NOHZ_KICK_MASK;
10093 			goto unlock;
10094 		}
10095 	}
10096 
10097 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10098 	if (sd) {
10099 		/*
10100 		 * When ASYM_PACKING; see if there's a more preferred CPU
10101 		 * currently idle; in which case, kick the ILB to move tasks
10102 		 * around.
10103 		 */
10104 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10105 			if (sched_asym_prefer(i, cpu)) {
10106 				flags = NOHZ_KICK_MASK;
10107 				goto unlock;
10108 			}
10109 		}
10110 	}
10111 
10112 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10113 	if (sd) {
10114 		/*
10115 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10116 		 * to run the misfit task on.
10117 		 */
10118 		if (check_misfit_status(rq, sd)) {
10119 			flags = NOHZ_KICK_MASK;
10120 			goto unlock;
10121 		}
10122 
10123 		/*
10124 		 * For asymmetric systems, we do not want to nicely balance
10125 		 * cache use, instead we want to embrace asymmetry and only
10126 		 * ensure tasks have enough CPU capacity.
10127 		 *
10128 		 * Skip the LLC logic because it's not relevant in that case.
10129 		 */
10130 		goto unlock;
10131 	}
10132 
10133 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10134 	if (sds) {
10135 		/*
10136 		 * If there is an imbalance between LLC domains (IOW we could
10137 		 * increase the overall cache use), we need some less-loaded LLC
10138 		 * domain to pull some load. Likewise, we may need to spread
10139 		 * load within the current LLC domain (e.g. packed SMT cores but
10140 		 * other CPUs are idle). We can't really know from here how busy
10141 		 * the others are - so just get a nohz balance going if it looks
10142 		 * like this LLC domain has tasks we could move.
10143 		 */
10144 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10145 		if (nr_busy > 1) {
10146 			flags = NOHZ_KICK_MASK;
10147 			goto unlock;
10148 		}
10149 	}
10150 unlock:
10151 	rcu_read_unlock();
10152 out:
10153 	if (flags)
10154 		kick_ilb(flags);
10155 }
10156 
10157 static void set_cpu_sd_state_busy(int cpu)
10158 {
10159 	struct sched_domain *sd;
10160 
10161 	rcu_read_lock();
10162 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10163 
10164 	if (!sd || !sd->nohz_idle)
10165 		goto unlock;
10166 	sd->nohz_idle = 0;
10167 
10168 	atomic_inc(&sd->shared->nr_busy_cpus);
10169 unlock:
10170 	rcu_read_unlock();
10171 }
10172 
10173 void nohz_balance_exit_idle(struct rq *rq)
10174 {
10175 	SCHED_WARN_ON(rq != this_rq());
10176 
10177 	if (likely(!rq->nohz_tick_stopped))
10178 		return;
10179 
10180 	rq->nohz_tick_stopped = 0;
10181 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10182 	atomic_dec(&nohz.nr_cpus);
10183 
10184 	set_cpu_sd_state_busy(rq->cpu);
10185 }
10186 
10187 static void set_cpu_sd_state_idle(int cpu)
10188 {
10189 	struct sched_domain *sd;
10190 
10191 	rcu_read_lock();
10192 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10193 
10194 	if (!sd || sd->nohz_idle)
10195 		goto unlock;
10196 	sd->nohz_idle = 1;
10197 
10198 	atomic_dec(&sd->shared->nr_busy_cpus);
10199 unlock:
10200 	rcu_read_unlock();
10201 }
10202 
10203 /*
10204  * This routine will record that the CPU is going idle with tick stopped.
10205  * This info will be used in performing idle load balancing in the future.
10206  */
10207 void nohz_balance_enter_idle(int cpu)
10208 {
10209 	struct rq *rq = cpu_rq(cpu);
10210 
10211 	SCHED_WARN_ON(cpu != smp_processor_id());
10212 
10213 	/* If this CPU is going down, then nothing needs to be done: */
10214 	if (!cpu_active(cpu))
10215 		return;
10216 
10217 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10218 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10219 		return;
10220 
10221 	/*
10222 	 * Can be set safely without rq->lock held
10223 	 * If a clear happens, it will have evaluated last additions because
10224 	 * rq->lock is held during the check and the clear
10225 	 */
10226 	rq->has_blocked_load = 1;
10227 
10228 	/*
10229 	 * The tick is still stopped but load could have been added in the
10230 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10231 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10232 	 * of nohz.has_blocked can only happen after checking the new load
10233 	 */
10234 	if (rq->nohz_tick_stopped)
10235 		goto out;
10236 
10237 	/* If we're a completely isolated CPU, we don't play: */
10238 	if (on_null_domain(rq))
10239 		return;
10240 
10241 	rq->nohz_tick_stopped = 1;
10242 
10243 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10244 	atomic_inc(&nohz.nr_cpus);
10245 
10246 	/*
10247 	 * Ensures that if nohz_idle_balance() fails to observe our
10248 	 * @idle_cpus_mask store, it must observe the @has_blocked
10249 	 * store.
10250 	 */
10251 	smp_mb__after_atomic();
10252 
10253 	set_cpu_sd_state_idle(cpu);
10254 
10255 out:
10256 	/*
10257 	 * Each time a cpu enter idle, we assume that it has blocked load and
10258 	 * enable the periodic update of the load of idle cpus
10259 	 */
10260 	WRITE_ONCE(nohz.has_blocked, 1);
10261 }
10262 
10263 /*
10264  * Internal function that runs load balance for all idle cpus. The load balance
10265  * can be a simple update of blocked load or a complete load balance with
10266  * tasks movement depending of flags.
10267  * The function returns false if the loop has stopped before running
10268  * through all idle CPUs.
10269  */
10270 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10271 			       enum cpu_idle_type idle)
10272 {
10273 	/* Earliest time when we have to do rebalance again */
10274 	unsigned long now = jiffies;
10275 	unsigned long next_balance = now + 60*HZ;
10276 	bool has_blocked_load = false;
10277 	int update_next_balance = 0;
10278 	int this_cpu = this_rq->cpu;
10279 	int balance_cpu;
10280 	int ret = false;
10281 	struct rq *rq;
10282 
10283 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10284 
10285 	/*
10286 	 * We assume there will be no idle load after this update and clear
10287 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10288 	 * set the has_blocked flag and trig another update of idle load.
10289 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10290 	 * setting the flag, we are sure to not clear the state and not
10291 	 * check the load of an idle cpu.
10292 	 */
10293 	WRITE_ONCE(nohz.has_blocked, 0);
10294 
10295 	/*
10296 	 * Ensures that if we miss the CPU, we must see the has_blocked
10297 	 * store from nohz_balance_enter_idle().
10298 	 */
10299 	smp_mb();
10300 
10301 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10302 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10303 			continue;
10304 
10305 		/*
10306 		 * If this CPU gets work to do, stop the load balancing
10307 		 * work being done for other CPUs. Next load
10308 		 * balancing owner will pick it up.
10309 		 */
10310 		if (need_resched()) {
10311 			has_blocked_load = true;
10312 			goto abort;
10313 		}
10314 
10315 		rq = cpu_rq(balance_cpu);
10316 
10317 		has_blocked_load |= update_nohz_stats(rq, true);
10318 
10319 		/*
10320 		 * If time for next balance is due,
10321 		 * do the balance.
10322 		 */
10323 		if (time_after_eq(jiffies, rq->next_balance)) {
10324 			struct rq_flags rf;
10325 
10326 			rq_lock_irqsave(rq, &rf);
10327 			update_rq_clock(rq);
10328 			rq_unlock_irqrestore(rq, &rf);
10329 
10330 			if (flags & NOHZ_BALANCE_KICK)
10331 				rebalance_domains(rq, CPU_IDLE);
10332 		}
10333 
10334 		if (time_after(next_balance, rq->next_balance)) {
10335 			next_balance = rq->next_balance;
10336 			update_next_balance = 1;
10337 		}
10338 	}
10339 
10340 	/* Newly idle CPU doesn't need an update */
10341 	if (idle != CPU_NEWLY_IDLE) {
10342 		update_blocked_averages(this_cpu);
10343 		has_blocked_load |= this_rq->has_blocked_load;
10344 	}
10345 
10346 	if (flags & NOHZ_BALANCE_KICK)
10347 		rebalance_domains(this_rq, CPU_IDLE);
10348 
10349 	WRITE_ONCE(nohz.next_blocked,
10350 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10351 
10352 	/* The full idle balance loop has been done */
10353 	ret = true;
10354 
10355 abort:
10356 	/* There is still blocked load, enable periodic update */
10357 	if (has_blocked_load)
10358 		WRITE_ONCE(nohz.has_blocked, 1);
10359 
10360 	/*
10361 	 * next_balance will be updated only when there is a need.
10362 	 * When the CPU is attached to null domain for ex, it will not be
10363 	 * updated.
10364 	 */
10365 	if (likely(update_next_balance))
10366 		nohz.next_balance = next_balance;
10367 
10368 	return ret;
10369 }
10370 
10371 /*
10372  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10373  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10374  */
10375 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10376 {
10377 	unsigned int flags = this_rq->nohz_idle_balance;
10378 
10379 	if (!flags)
10380 		return false;
10381 
10382 	this_rq->nohz_idle_balance = 0;
10383 
10384 	if (idle != CPU_IDLE)
10385 		return false;
10386 
10387 	_nohz_idle_balance(this_rq, flags, idle);
10388 
10389 	return true;
10390 }
10391 
10392 static void nohz_newidle_balance(struct rq *this_rq)
10393 {
10394 	int this_cpu = this_rq->cpu;
10395 
10396 	/*
10397 	 * This CPU doesn't want to be disturbed by scheduler
10398 	 * housekeeping
10399 	 */
10400 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10401 		return;
10402 
10403 	/* Will wake up very soon. No time for doing anything else*/
10404 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10405 		return;
10406 
10407 	/* Don't need to update blocked load of idle CPUs*/
10408 	if (!READ_ONCE(nohz.has_blocked) ||
10409 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10410 		return;
10411 
10412 	raw_spin_unlock(&this_rq->lock);
10413 	/*
10414 	 * This CPU is going to be idle and blocked load of idle CPUs
10415 	 * need to be updated. Run the ilb locally as it is a good
10416 	 * candidate for ilb instead of waking up another idle CPU.
10417 	 * Kick an normal ilb if we failed to do the update.
10418 	 */
10419 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10420 		kick_ilb(NOHZ_STATS_KICK);
10421 	raw_spin_lock(&this_rq->lock);
10422 }
10423 
10424 #else /* !CONFIG_NO_HZ_COMMON */
10425 static inline void nohz_balancer_kick(struct rq *rq) { }
10426 
10427 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10428 {
10429 	return false;
10430 }
10431 
10432 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10433 #endif /* CONFIG_NO_HZ_COMMON */
10434 
10435 /*
10436  * idle_balance is called by schedule() if this_cpu is about to become
10437  * idle. Attempts to pull tasks from other CPUs.
10438  *
10439  * Returns:
10440  *   < 0 - we released the lock and there are !fair tasks present
10441  *     0 - failed, no new tasks
10442  *   > 0 - success, new (fair) tasks present
10443  */
10444 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10445 {
10446 	unsigned long next_balance = jiffies + HZ;
10447 	int this_cpu = this_rq->cpu;
10448 	struct sched_domain *sd;
10449 	int pulled_task = 0;
10450 	u64 curr_cost = 0;
10451 
10452 	update_misfit_status(NULL, this_rq);
10453 	/*
10454 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10455 	 * measure the duration of idle_balance() as idle time.
10456 	 */
10457 	this_rq->idle_stamp = rq_clock(this_rq);
10458 
10459 	/*
10460 	 * Do not pull tasks towards !active CPUs...
10461 	 */
10462 	if (!cpu_active(this_cpu))
10463 		return 0;
10464 
10465 	/*
10466 	 * This is OK, because current is on_cpu, which avoids it being picked
10467 	 * for load-balance and preemption/IRQs are still disabled avoiding
10468 	 * further scheduler activity on it and we're being very careful to
10469 	 * re-start the picking loop.
10470 	 */
10471 	rq_unpin_lock(this_rq, rf);
10472 
10473 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10474 	    !READ_ONCE(this_rq->rd->overload)) {
10475 
10476 		rcu_read_lock();
10477 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10478 		if (sd)
10479 			update_next_balance(sd, &next_balance);
10480 		rcu_read_unlock();
10481 
10482 		nohz_newidle_balance(this_rq);
10483 
10484 		goto out;
10485 	}
10486 
10487 	raw_spin_unlock(&this_rq->lock);
10488 
10489 	update_blocked_averages(this_cpu);
10490 	rcu_read_lock();
10491 	for_each_domain(this_cpu, sd) {
10492 		int continue_balancing = 1;
10493 		u64 t0, domain_cost;
10494 
10495 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10496 			update_next_balance(sd, &next_balance);
10497 			break;
10498 		}
10499 
10500 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10501 			t0 = sched_clock_cpu(this_cpu);
10502 
10503 			pulled_task = load_balance(this_cpu, this_rq,
10504 						   sd, CPU_NEWLY_IDLE,
10505 						   &continue_balancing);
10506 
10507 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10508 			if (domain_cost > sd->max_newidle_lb_cost)
10509 				sd->max_newidle_lb_cost = domain_cost;
10510 
10511 			curr_cost += domain_cost;
10512 		}
10513 
10514 		update_next_balance(sd, &next_balance);
10515 
10516 		/*
10517 		 * Stop searching for tasks to pull if there are
10518 		 * now runnable tasks on this rq.
10519 		 */
10520 		if (pulled_task || this_rq->nr_running > 0)
10521 			break;
10522 	}
10523 	rcu_read_unlock();
10524 
10525 	raw_spin_lock(&this_rq->lock);
10526 
10527 	if (curr_cost > this_rq->max_idle_balance_cost)
10528 		this_rq->max_idle_balance_cost = curr_cost;
10529 
10530 out:
10531 	/*
10532 	 * While browsing the domains, we released the rq lock, a task could
10533 	 * have been enqueued in the meantime. Since we're not going idle,
10534 	 * pretend we pulled a task.
10535 	 */
10536 	if (this_rq->cfs.h_nr_running && !pulled_task)
10537 		pulled_task = 1;
10538 
10539 	/* Move the next balance forward */
10540 	if (time_after(this_rq->next_balance, next_balance))
10541 		this_rq->next_balance = next_balance;
10542 
10543 	/* Is there a task of a high priority class? */
10544 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10545 		pulled_task = -1;
10546 
10547 	if (pulled_task)
10548 		this_rq->idle_stamp = 0;
10549 
10550 	rq_repin_lock(this_rq, rf);
10551 
10552 	return pulled_task;
10553 }
10554 
10555 /*
10556  * run_rebalance_domains is triggered when needed from the scheduler tick.
10557  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10558  */
10559 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10560 {
10561 	struct rq *this_rq = this_rq();
10562 	enum cpu_idle_type idle = this_rq->idle_balance ?
10563 						CPU_IDLE : CPU_NOT_IDLE;
10564 
10565 	/*
10566 	 * If this CPU has a pending nohz_balance_kick, then do the
10567 	 * balancing on behalf of the other idle CPUs whose ticks are
10568 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10569 	 * give the idle CPUs a chance to load balance. Else we may
10570 	 * load balance only within the local sched_domain hierarchy
10571 	 * and abort nohz_idle_balance altogether if we pull some load.
10572 	 */
10573 	if (nohz_idle_balance(this_rq, idle))
10574 		return;
10575 
10576 	/* normal load balance */
10577 	update_blocked_averages(this_rq->cpu);
10578 	rebalance_domains(this_rq, idle);
10579 }
10580 
10581 /*
10582  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10583  */
10584 void trigger_load_balance(struct rq *rq)
10585 {
10586 	/* Don't need to rebalance while attached to NULL domain */
10587 	if (unlikely(on_null_domain(rq)))
10588 		return;
10589 
10590 	if (time_after_eq(jiffies, rq->next_balance))
10591 		raise_softirq(SCHED_SOFTIRQ);
10592 
10593 	nohz_balancer_kick(rq);
10594 }
10595 
10596 static void rq_online_fair(struct rq *rq)
10597 {
10598 	update_sysctl();
10599 
10600 	update_runtime_enabled(rq);
10601 }
10602 
10603 static void rq_offline_fair(struct rq *rq)
10604 {
10605 	update_sysctl();
10606 
10607 	/* Ensure any throttled groups are reachable by pick_next_task */
10608 	unthrottle_offline_cfs_rqs(rq);
10609 }
10610 
10611 #endif /* CONFIG_SMP */
10612 
10613 /*
10614  * scheduler tick hitting a task of our scheduling class.
10615  *
10616  * NOTE: This function can be called remotely by the tick offload that
10617  * goes along full dynticks. Therefore no local assumption can be made
10618  * and everything must be accessed through the @rq and @curr passed in
10619  * parameters.
10620  */
10621 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10622 {
10623 	struct cfs_rq *cfs_rq;
10624 	struct sched_entity *se = &curr->se;
10625 
10626 	for_each_sched_entity(se) {
10627 		cfs_rq = cfs_rq_of(se);
10628 		entity_tick(cfs_rq, se, queued);
10629 	}
10630 
10631 	if (static_branch_unlikely(&sched_numa_balancing))
10632 		task_tick_numa(rq, curr);
10633 
10634 	update_misfit_status(curr, rq);
10635 	update_overutilized_status(task_rq(curr));
10636 }
10637 
10638 /*
10639  * called on fork with the child task as argument from the parent's context
10640  *  - child not yet on the tasklist
10641  *  - preemption disabled
10642  */
10643 static void task_fork_fair(struct task_struct *p)
10644 {
10645 	struct cfs_rq *cfs_rq;
10646 	struct sched_entity *se = &p->se, *curr;
10647 	struct rq *rq = this_rq();
10648 	struct rq_flags rf;
10649 
10650 	rq_lock(rq, &rf);
10651 	update_rq_clock(rq);
10652 
10653 	cfs_rq = task_cfs_rq(current);
10654 	curr = cfs_rq->curr;
10655 	if (curr) {
10656 		update_curr(cfs_rq);
10657 		se->vruntime = curr->vruntime;
10658 	}
10659 	place_entity(cfs_rq, se, 1);
10660 
10661 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10662 		/*
10663 		 * Upon rescheduling, sched_class::put_prev_task() will place
10664 		 * 'current' within the tree based on its new key value.
10665 		 */
10666 		swap(curr->vruntime, se->vruntime);
10667 		resched_curr(rq);
10668 	}
10669 
10670 	se->vruntime -= cfs_rq->min_vruntime;
10671 	rq_unlock(rq, &rf);
10672 }
10673 
10674 /*
10675  * Priority of the task has changed. Check to see if we preempt
10676  * the current task.
10677  */
10678 static void
10679 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10680 {
10681 	if (!task_on_rq_queued(p))
10682 		return;
10683 
10684 	if (rq->cfs.nr_running == 1)
10685 		return;
10686 
10687 	/*
10688 	 * Reschedule if we are currently running on this runqueue and
10689 	 * our priority decreased, or if we are not currently running on
10690 	 * this runqueue and our priority is higher than the current's
10691 	 */
10692 	if (rq->curr == p) {
10693 		if (p->prio > oldprio)
10694 			resched_curr(rq);
10695 	} else
10696 		check_preempt_curr(rq, p, 0);
10697 }
10698 
10699 static inline bool vruntime_normalized(struct task_struct *p)
10700 {
10701 	struct sched_entity *se = &p->se;
10702 
10703 	/*
10704 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10705 	 * the dequeue_entity(.flags=0) will already have normalized the
10706 	 * vruntime.
10707 	 */
10708 	if (p->on_rq)
10709 		return true;
10710 
10711 	/*
10712 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10713 	 * But there are some cases where it has already been normalized:
10714 	 *
10715 	 * - A forked child which is waiting for being woken up by
10716 	 *   wake_up_new_task().
10717 	 * - A task which has been woken up by try_to_wake_up() and
10718 	 *   waiting for actually being woken up by sched_ttwu_pending().
10719 	 */
10720 	if (!se->sum_exec_runtime ||
10721 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10722 		return true;
10723 
10724 	return false;
10725 }
10726 
10727 #ifdef CONFIG_FAIR_GROUP_SCHED
10728 /*
10729  * Propagate the changes of the sched_entity across the tg tree to make it
10730  * visible to the root
10731  */
10732 static void propagate_entity_cfs_rq(struct sched_entity *se)
10733 {
10734 	struct cfs_rq *cfs_rq;
10735 
10736 	/* Start to propagate at parent */
10737 	se = se->parent;
10738 
10739 	for_each_sched_entity(se) {
10740 		cfs_rq = cfs_rq_of(se);
10741 
10742 		if (cfs_rq_throttled(cfs_rq))
10743 			break;
10744 
10745 		update_load_avg(cfs_rq, se, UPDATE_TG);
10746 	}
10747 }
10748 #else
10749 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10750 #endif
10751 
10752 static void detach_entity_cfs_rq(struct sched_entity *se)
10753 {
10754 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10755 
10756 	/* Catch up with the cfs_rq and remove our load when we leave */
10757 	update_load_avg(cfs_rq, se, 0);
10758 	detach_entity_load_avg(cfs_rq, se);
10759 	update_tg_load_avg(cfs_rq, false);
10760 	propagate_entity_cfs_rq(se);
10761 }
10762 
10763 static void attach_entity_cfs_rq(struct sched_entity *se)
10764 {
10765 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10766 
10767 #ifdef CONFIG_FAIR_GROUP_SCHED
10768 	/*
10769 	 * Since the real-depth could have been changed (only FAIR
10770 	 * class maintain depth value), reset depth properly.
10771 	 */
10772 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10773 #endif
10774 
10775 	/* Synchronize entity with its cfs_rq */
10776 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10777 	attach_entity_load_avg(cfs_rq, se);
10778 	update_tg_load_avg(cfs_rq, false);
10779 	propagate_entity_cfs_rq(se);
10780 }
10781 
10782 static void detach_task_cfs_rq(struct task_struct *p)
10783 {
10784 	struct sched_entity *se = &p->se;
10785 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10786 
10787 	if (!vruntime_normalized(p)) {
10788 		/*
10789 		 * Fix up our vruntime so that the current sleep doesn't
10790 		 * cause 'unlimited' sleep bonus.
10791 		 */
10792 		place_entity(cfs_rq, se, 0);
10793 		se->vruntime -= cfs_rq->min_vruntime;
10794 	}
10795 
10796 	detach_entity_cfs_rq(se);
10797 }
10798 
10799 static void attach_task_cfs_rq(struct task_struct *p)
10800 {
10801 	struct sched_entity *se = &p->se;
10802 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10803 
10804 	attach_entity_cfs_rq(se);
10805 
10806 	if (!vruntime_normalized(p))
10807 		se->vruntime += cfs_rq->min_vruntime;
10808 }
10809 
10810 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10811 {
10812 	detach_task_cfs_rq(p);
10813 }
10814 
10815 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10816 {
10817 	attach_task_cfs_rq(p);
10818 
10819 	if (task_on_rq_queued(p)) {
10820 		/*
10821 		 * We were most likely switched from sched_rt, so
10822 		 * kick off the schedule if running, otherwise just see
10823 		 * if we can still preempt the current task.
10824 		 */
10825 		if (rq->curr == p)
10826 			resched_curr(rq);
10827 		else
10828 			check_preempt_curr(rq, p, 0);
10829 	}
10830 }
10831 
10832 /* Account for a task changing its policy or group.
10833  *
10834  * This routine is mostly called to set cfs_rq->curr field when a task
10835  * migrates between groups/classes.
10836  */
10837 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10838 {
10839 	struct sched_entity *se = &p->se;
10840 
10841 #ifdef CONFIG_SMP
10842 	if (task_on_rq_queued(p)) {
10843 		/*
10844 		 * Move the next running task to the front of the list, so our
10845 		 * cfs_tasks list becomes MRU one.
10846 		 */
10847 		list_move(&se->group_node, &rq->cfs_tasks);
10848 	}
10849 #endif
10850 
10851 	for_each_sched_entity(se) {
10852 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10853 
10854 		set_next_entity(cfs_rq, se);
10855 		/* ensure bandwidth has been allocated on our new cfs_rq */
10856 		account_cfs_rq_runtime(cfs_rq, 0);
10857 	}
10858 }
10859 
10860 void init_cfs_rq(struct cfs_rq *cfs_rq)
10861 {
10862 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10863 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10864 #ifndef CONFIG_64BIT
10865 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10866 #endif
10867 #ifdef CONFIG_SMP
10868 	raw_spin_lock_init(&cfs_rq->removed.lock);
10869 #endif
10870 }
10871 
10872 #ifdef CONFIG_FAIR_GROUP_SCHED
10873 static void task_set_group_fair(struct task_struct *p)
10874 {
10875 	struct sched_entity *se = &p->se;
10876 
10877 	set_task_rq(p, task_cpu(p));
10878 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10879 }
10880 
10881 static void task_move_group_fair(struct task_struct *p)
10882 {
10883 	detach_task_cfs_rq(p);
10884 	set_task_rq(p, task_cpu(p));
10885 
10886 #ifdef CONFIG_SMP
10887 	/* Tell se's cfs_rq has been changed -- migrated */
10888 	p->se.avg.last_update_time = 0;
10889 #endif
10890 	attach_task_cfs_rq(p);
10891 }
10892 
10893 static void task_change_group_fair(struct task_struct *p, int type)
10894 {
10895 	switch (type) {
10896 	case TASK_SET_GROUP:
10897 		task_set_group_fair(p);
10898 		break;
10899 
10900 	case TASK_MOVE_GROUP:
10901 		task_move_group_fair(p);
10902 		break;
10903 	}
10904 }
10905 
10906 void free_fair_sched_group(struct task_group *tg)
10907 {
10908 	int i;
10909 
10910 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10911 
10912 	for_each_possible_cpu(i) {
10913 		if (tg->cfs_rq)
10914 			kfree(tg->cfs_rq[i]);
10915 		if (tg->se)
10916 			kfree(tg->se[i]);
10917 	}
10918 
10919 	kfree(tg->cfs_rq);
10920 	kfree(tg->se);
10921 }
10922 
10923 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10924 {
10925 	struct sched_entity *se;
10926 	struct cfs_rq *cfs_rq;
10927 	int i;
10928 
10929 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10930 	if (!tg->cfs_rq)
10931 		goto err;
10932 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10933 	if (!tg->se)
10934 		goto err;
10935 
10936 	tg->shares = NICE_0_LOAD;
10937 
10938 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10939 
10940 	for_each_possible_cpu(i) {
10941 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10942 				      GFP_KERNEL, cpu_to_node(i));
10943 		if (!cfs_rq)
10944 			goto err;
10945 
10946 		se = kzalloc_node(sizeof(struct sched_entity),
10947 				  GFP_KERNEL, cpu_to_node(i));
10948 		if (!se)
10949 			goto err_free_rq;
10950 
10951 		init_cfs_rq(cfs_rq);
10952 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10953 		init_entity_runnable_average(se);
10954 	}
10955 
10956 	return 1;
10957 
10958 err_free_rq:
10959 	kfree(cfs_rq);
10960 err:
10961 	return 0;
10962 }
10963 
10964 void online_fair_sched_group(struct task_group *tg)
10965 {
10966 	struct sched_entity *se;
10967 	struct rq_flags rf;
10968 	struct rq *rq;
10969 	int i;
10970 
10971 	for_each_possible_cpu(i) {
10972 		rq = cpu_rq(i);
10973 		se = tg->se[i];
10974 		rq_lock_irq(rq, &rf);
10975 		update_rq_clock(rq);
10976 		attach_entity_cfs_rq(se);
10977 		sync_throttle(tg, i);
10978 		rq_unlock_irq(rq, &rf);
10979 	}
10980 }
10981 
10982 void unregister_fair_sched_group(struct task_group *tg)
10983 {
10984 	unsigned long flags;
10985 	struct rq *rq;
10986 	int cpu;
10987 
10988 	for_each_possible_cpu(cpu) {
10989 		if (tg->se[cpu])
10990 			remove_entity_load_avg(tg->se[cpu]);
10991 
10992 		/*
10993 		 * Only empty task groups can be destroyed; so we can speculatively
10994 		 * check on_list without danger of it being re-added.
10995 		 */
10996 		if (!tg->cfs_rq[cpu]->on_list)
10997 			continue;
10998 
10999 		rq = cpu_rq(cpu);
11000 
11001 		raw_spin_lock_irqsave(&rq->lock, flags);
11002 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11003 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11004 	}
11005 }
11006 
11007 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11008 			struct sched_entity *se, int cpu,
11009 			struct sched_entity *parent)
11010 {
11011 	struct rq *rq = cpu_rq(cpu);
11012 
11013 	cfs_rq->tg = tg;
11014 	cfs_rq->rq = rq;
11015 	init_cfs_rq_runtime(cfs_rq);
11016 
11017 	tg->cfs_rq[cpu] = cfs_rq;
11018 	tg->se[cpu] = se;
11019 
11020 	/* se could be NULL for root_task_group */
11021 	if (!se)
11022 		return;
11023 
11024 	if (!parent) {
11025 		se->cfs_rq = &rq->cfs;
11026 		se->depth = 0;
11027 	} else {
11028 		se->cfs_rq = parent->my_q;
11029 		se->depth = parent->depth + 1;
11030 	}
11031 
11032 	se->my_q = cfs_rq;
11033 	/* guarantee group entities always have weight */
11034 	update_load_set(&se->load, NICE_0_LOAD);
11035 	se->parent = parent;
11036 }
11037 
11038 static DEFINE_MUTEX(shares_mutex);
11039 
11040 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11041 {
11042 	int i;
11043 
11044 	/*
11045 	 * We can't change the weight of the root cgroup.
11046 	 */
11047 	if (!tg->se[0])
11048 		return -EINVAL;
11049 
11050 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11051 
11052 	mutex_lock(&shares_mutex);
11053 	if (tg->shares == shares)
11054 		goto done;
11055 
11056 	tg->shares = shares;
11057 	for_each_possible_cpu(i) {
11058 		struct rq *rq = cpu_rq(i);
11059 		struct sched_entity *se = tg->se[i];
11060 		struct rq_flags rf;
11061 
11062 		/* Propagate contribution to hierarchy */
11063 		rq_lock_irqsave(rq, &rf);
11064 		update_rq_clock(rq);
11065 		for_each_sched_entity(se) {
11066 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11067 			update_cfs_group(se);
11068 		}
11069 		rq_unlock_irqrestore(rq, &rf);
11070 	}
11071 
11072 done:
11073 	mutex_unlock(&shares_mutex);
11074 	return 0;
11075 }
11076 #else /* CONFIG_FAIR_GROUP_SCHED */
11077 
11078 void free_fair_sched_group(struct task_group *tg) { }
11079 
11080 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11081 {
11082 	return 1;
11083 }
11084 
11085 void online_fair_sched_group(struct task_group *tg) { }
11086 
11087 void unregister_fair_sched_group(struct task_group *tg) { }
11088 
11089 #endif /* CONFIG_FAIR_GROUP_SCHED */
11090 
11091 
11092 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11093 {
11094 	struct sched_entity *se = &task->se;
11095 	unsigned int rr_interval = 0;
11096 
11097 	/*
11098 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11099 	 * idle runqueue:
11100 	 */
11101 	if (rq->cfs.load.weight)
11102 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11103 
11104 	return rr_interval;
11105 }
11106 
11107 /*
11108  * All the scheduling class methods:
11109  */
11110 const struct sched_class fair_sched_class = {
11111 	.next			= &idle_sched_class,
11112 	.enqueue_task		= enqueue_task_fair,
11113 	.dequeue_task		= dequeue_task_fair,
11114 	.yield_task		= yield_task_fair,
11115 	.yield_to_task		= yield_to_task_fair,
11116 
11117 	.check_preempt_curr	= check_preempt_wakeup,
11118 
11119 	.pick_next_task		= __pick_next_task_fair,
11120 	.put_prev_task		= put_prev_task_fair,
11121 	.set_next_task          = set_next_task_fair,
11122 
11123 #ifdef CONFIG_SMP
11124 	.balance		= balance_fair,
11125 	.select_task_rq		= select_task_rq_fair,
11126 	.migrate_task_rq	= migrate_task_rq_fair,
11127 
11128 	.rq_online		= rq_online_fair,
11129 	.rq_offline		= rq_offline_fair,
11130 
11131 	.task_dead		= task_dead_fair,
11132 	.set_cpus_allowed	= set_cpus_allowed_common,
11133 #endif
11134 
11135 	.task_tick		= task_tick_fair,
11136 	.task_fork		= task_fork_fair,
11137 
11138 	.prio_changed		= prio_changed_fair,
11139 	.switched_from		= switched_from_fair,
11140 	.switched_to		= switched_to_fair,
11141 
11142 	.get_rr_interval	= get_rr_interval_fair,
11143 
11144 	.update_curr		= update_curr_fair,
11145 
11146 #ifdef CONFIG_FAIR_GROUP_SCHED
11147 	.task_change_group	= task_change_group_fair,
11148 #endif
11149 
11150 #ifdef CONFIG_UCLAMP_TASK
11151 	.uclamp_enabled		= 1,
11152 #endif
11153 };
11154 
11155 #ifdef CONFIG_SCHED_DEBUG
11156 void print_cfs_stats(struct seq_file *m, int cpu)
11157 {
11158 	struct cfs_rq *cfs_rq, *pos;
11159 
11160 	rcu_read_lock();
11161 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11162 		print_cfs_rq(m, cpu, cfs_rq);
11163 	rcu_read_unlock();
11164 }
11165 
11166 #ifdef CONFIG_NUMA_BALANCING
11167 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11168 {
11169 	int node;
11170 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11171 	struct numa_group *ng;
11172 
11173 	rcu_read_lock();
11174 	ng = rcu_dereference(p->numa_group);
11175 	for_each_online_node(node) {
11176 		if (p->numa_faults) {
11177 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11178 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11179 		}
11180 		if (ng) {
11181 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11182 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11183 		}
11184 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11185 	}
11186 	rcu_read_unlock();
11187 }
11188 #endif /* CONFIG_NUMA_BALANCING */
11189 #endif /* CONFIG_SCHED_DEBUG */
11190 
11191 __init void init_sched_fair_class(void)
11192 {
11193 #ifdef CONFIG_SMP
11194 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11195 
11196 #ifdef CONFIG_NO_HZ_COMMON
11197 	nohz.next_balance = jiffies;
11198 	nohz.next_blocked = jiffies;
11199 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11200 #endif
11201 #endif /* SMP */
11202 
11203 }
11204 
11205 /*
11206  * Helper functions to facilitate extracting info from tracepoints.
11207  */
11208 
11209 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11210 {
11211 #ifdef CONFIG_SMP
11212 	return cfs_rq ? &cfs_rq->avg : NULL;
11213 #else
11214 	return NULL;
11215 #endif
11216 }
11217 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11218 
11219 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11220 {
11221 	if (!cfs_rq) {
11222 		if (str)
11223 			strlcpy(str, "(null)", len);
11224 		else
11225 			return NULL;
11226 	}
11227 
11228 	cfs_rq_tg_path(cfs_rq, str, len);
11229 	return str;
11230 }
11231 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11232 
11233 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11234 {
11235 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11236 }
11237 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11238 
11239 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11240 {
11241 #ifdef CONFIG_SMP
11242 	return rq ? &rq->avg_rt : NULL;
11243 #else
11244 	return NULL;
11245 #endif
11246 }
11247 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11248 
11249 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11250 {
11251 #ifdef CONFIG_SMP
11252 	return rq ? &rq->avg_dl : NULL;
11253 #else
11254 	return NULL;
11255 #endif
11256 }
11257 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11258 
11259 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11260 {
11261 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11262 	return rq ? &rq->avg_irq : NULL;
11263 #else
11264 	return NULL;
11265 #endif
11266 }
11267 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11268 
11269 int sched_trace_rq_cpu(struct rq *rq)
11270 {
11271 	return rq ? cpu_of(rq) : -1;
11272 }
11273 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11274 
11275 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11276 {
11277 #ifdef CONFIG_SMP
11278 	return rd ? rd->span : NULL;
11279 #else
11280 	return NULL;
11281 #endif
11282 }
11283 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11284