1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 51 #include <asm/switch_to.h> 52 53 #include <linux/sched/cond_resched.h> 54 55 #include "sched.h" 56 #include "stats.h" 57 #include "autogroup.h" 58 59 /* 60 * Targeted preemption latency for CPU-bound tasks: 61 * 62 * NOTE: this latency value is not the same as the concept of 63 * 'timeslice length' - timeslices in CFS are of variable length 64 * and have no persistent notion like in traditional, time-slice 65 * based scheduling concepts. 66 * 67 * (to see the precise effective timeslice length of your workload, 68 * run vmstat and monitor the context-switches (cs) field) 69 * 70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_latency = 6000000ULL; 73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 74 75 /* 76 * The initial- and re-scaling of tunables is configurable 77 * 78 * Options are: 79 * 80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 83 * 84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 85 */ 86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 87 88 /* 89 * Minimal preemption granularity for CPU-bound tasks: 90 * 91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 92 */ 93 unsigned int sysctl_sched_min_granularity = 750000ULL; 94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 95 96 /* 97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 98 * Applies only when SCHED_IDLE tasks compete with normal tasks. 99 * 100 * (default: 0.75 msec) 101 */ 102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 103 104 /* 105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 106 */ 107 static unsigned int sched_nr_latency = 8; 108 109 /* 110 * After fork, child runs first. If set to 0 (default) then 111 * parent will (try to) run first. 112 */ 113 unsigned int sysctl_sched_child_runs_first __read_mostly; 114 115 /* 116 * SCHED_OTHER wake-up granularity. 117 * 118 * This option delays the preemption effects of decoupled workloads 119 * and reduces their over-scheduling. Synchronous workloads will still 120 * have immediate wakeup/sleep latencies. 121 * 122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 123 */ 124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 126 127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 128 129 int sched_thermal_decay_shift; 130 static int __init setup_sched_thermal_decay_shift(char *str) 131 { 132 int _shift = 0; 133 134 if (kstrtoint(str, 0, &_shift)) 135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 136 137 sched_thermal_decay_shift = clamp(_shift, 0, 10); 138 return 1; 139 } 140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 141 142 #ifdef CONFIG_SMP 143 /* 144 * For asym packing, by default the lower numbered CPU has higher priority. 145 */ 146 int __weak arch_asym_cpu_priority(int cpu) 147 { 148 return -cpu; 149 } 150 151 /* 152 * The margin used when comparing utilization with CPU capacity. 153 * 154 * (default: ~20%) 155 */ 156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 157 158 /* 159 * The margin used when comparing CPU capacities. 160 * is 'cap1' noticeably greater than 'cap2' 161 * 162 * (default: ~5%) 163 */ 164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 165 #endif 166 167 #ifdef CONFIG_CFS_BANDWIDTH 168 /* 169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 170 * each time a cfs_rq requests quota. 171 * 172 * Note: in the case that the slice exceeds the runtime remaining (either due 173 * to consumption or the quota being specified to be smaller than the slice) 174 * we will always only issue the remaining available time. 175 * 176 * (default: 5 msec, units: microseconds) 177 */ 178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 179 #endif 180 181 #ifdef CONFIG_SYSCTL 182 static struct ctl_table sched_fair_sysctls[] = { 183 { 184 .procname = "sched_child_runs_first", 185 .data = &sysctl_sched_child_runs_first, 186 .maxlen = sizeof(unsigned int), 187 .mode = 0644, 188 .proc_handler = proc_dointvec, 189 }, 190 #ifdef CONFIG_CFS_BANDWIDTH 191 { 192 .procname = "sched_cfs_bandwidth_slice_us", 193 .data = &sysctl_sched_cfs_bandwidth_slice, 194 .maxlen = sizeof(unsigned int), 195 .mode = 0644, 196 .proc_handler = proc_dointvec_minmax, 197 .extra1 = SYSCTL_ONE, 198 }, 199 #endif 200 {} 201 }; 202 203 static int __init sched_fair_sysctl_init(void) 204 { 205 register_sysctl_init("kernel", sched_fair_sysctls); 206 return 0; 207 } 208 late_initcall(sched_fair_sysctl_init); 209 #endif 210 211 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 212 { 213 lw->weight += inc; 214 lw->inv_weight = 0; 215 } 216 217 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 218 { 219 lw->weight -= dec; 220 lw->inv_weight = 0; 221 } 222 223 static inline void update_load_set(struct load_weight *lw, unsigned long w) 224 { 225 lw->weight = w; 226 lw->inv_weight = 0; 227 } 228 229 /* 230 * Increase the granularity value when there are more CPUs, 231 * because with more CPUs the 'effective latency' as visible 232 * to users decreases. But the relationship is not linear, 233 * so pick a second-best guess by going with the log2 of the 234 * number of CPUs. 235 * 236 * This idea comes from the SD scheduler of Con Kolivas: 237 */ 238 static unsigned int get_update_sysctl_factor(void) 239 { 240 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 241 unsigned int factor; 242 243 switch (sysctl_sched_tunable_scaling) { 244 case SCHED_TUNABLESCALING_NONE: 245 factor = 1; 246 break; 247 case SCHED_TUNABLESCALING_LINEAR: 248 factor = cpus; 249 break; 250 case SCHED_TUNABLESCALING_LOG: 251 default: 252 factor = 1 + ilog2(cpus); 253 break; 254 } 255 256 return factor; 257 } 258 259 static void update_sysctl(void) 260 { 261 unsigned int factor = get_update_sysctl_factor(); 262 263 #define SET_SYSCTL(name) \ 264 (sysctl_##name = (factor) * normalized_sysctl_##name) 265 SET_SYSCTL(sched_min_granularity); 266 SET_SYSCTL(sched_latency); 267 SET_SYSCTL(sched_wakeup_granularity); 268 #undef SET_SYSCTL 269 } 270 271 void __init sched_init_granularity(void) 272 { 273 update_sysctl(); 274 } 275 276 #define WMULT_CONST (~0U) 277 #define WMULT_SHIFT 32 278 279 static void __update_inv_weight(struct load_weight *lw) 280 { 281 unsigned long w; 282 283 if (likely(lw->inv_weight)) 284 return; 285 286 w = scale_load_down(lw->weight); 287 288 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 289 lw->inv_weight = 1; 290 else if (unlikely(!w)) 291 lw->inv_weight = WMULT_CONST; 292 else 293 lw->inv_weight = WMULT_CONST / w; 294 } 295 296 /* 297 * delta_exec * weight / lw.weight 298 * OR 299 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 300 * 301 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 302 * we're guaranteed shift stays positive because inv_weight is guaranteed to 303 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 304 * 305 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 306 * weight/lw.weight <= 1, and therefore our shift will also be positive. 307 */ 308 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 309 { 310 u64 fact = scale_load_down(weight); 311 u32 fact_hi = (u32)(fact >> 32); 312 int shift = WMULT_SHIFT; 313 int fs; 314 315 __update_inv_weight(lw); 316 317 if (unlikely(fact_hi)) { 318 fs = fls(fact_hi); 319 shift -= fs; 320 fact >>= fs; 321 } 322 323 fact = mul_u32_u32(fact, lw->inv_weight); 324 325 fact_hi = (u32)(fact >> 32); 326 if (fact_hi) { 327 fs = fls(fact_hi); 328 shift -= fs; 329 fact >>= fs; 330 } 331 332 return mul_u64_u32_shr(delta_exec, fact, shift); 333 } 334 335 336 const struct sched_class fair_sched_class; 337 338 /************************************************************** 339 * CFS operations on generic schedulable entities: 340 */ 341 342 #ifdef CONFIG_FAIR_GROUP_SCHED 343 344 /* Walk up scheduling entities hierarchy */ 345 #define for_each_sched_entity(se) \ 346 for (; se; se = se->parent) 347 348 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 349 { 350 struct rq *rq = rq_of(cfs_rq); 351 int cpu = cpu_of(rq); 352 353 if (cfs_rq->on_list) 354 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 355 356 cfs_rq->on_list = 1; 357 358 /* 359 * Ensure we either appear before our parent (if already 360 * enqueued) or force our parent to appear after us when it is 361 * enqueued. The fact that we always enqueue bottom-up 362 * reduces this to two cases and a special case for the root 363 * cfs_rq. Furthermore, it also means that we will always reset 364 * tmp_alone_branch either when the branch is connected 365 * to a tree or when we reach the top of the tree 366 */ 367 if (cfs_rq->tg->parent && 368 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 369 /* 370 * If parent is already on the list, we add the child 371 * just before. Thanks to circular linked property of 372 * the list, this means to put the child at the tail 373 * of the list that starts by parent. 374 */ 375 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 376 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 377 /* 378 * The branch is now connected to its tree so we can 379 * reset tmp_alone_branch to the beginning of the 380 * list. 381 */ 382 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 383 return true; 384 } 385 386 if (!cfs_rq->tg->parent) { 387 /* 388 * cfs rq without parent should be put 389 * at the tail of the list. 390 */ 391 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 392 &rq->leaf_cfs_rq_list); 393 /* 394 * We have reach the top of a tree so we can reset 395 * tmp_alone_branch to the beginning of the list. 396 */ 397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 398 return true; 399 } 400 401 /* 402 * The parent has not already been added so we want to 403 * make sure that it will be put after us. 404 * tmp_alone_branch points to the begin of the branch 405 * where we will add parent. 406 */ 407 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 408 /* 409 * update tmp_alone_branch to points to the new begin 410 * of the branch 411 */ 412 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 413 return false; 414 } 415 416 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 417 { 418 if (cfs_rq->on_list) { 419 struct rq *rq = rq_of(cfs_rq); 420 421 /* 422 * With cfs_rq being unthrottled/throttled during an enqueue, 423 * it can happen the tmp_alone_branch points the a leaf that 424 * we finally want to del. In this case, tmp_alone_branch moves 425 * to the prev element but it will point to rq->leaf_cfs_rq_list 426 * at the end of the enqueue. 427 */ 428 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 429 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 430 431 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 432 cfs_rq->on_list = 0; 433 } 434 } 435 436 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 437 { 438 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 439 } 440 441 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 442 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 443 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 444 leaf_cfs_rq_list) 445 446 /* Do the two (enqueued) entities belong to the same group ? */ 447 static inline struct cfs_rq * 448 is_same_group(struct sched_entity *se, struct sched_entity *pse) 449 { 450 if (se->cfs_rq == pse->cfs_rq) 451 return se->cfs_rq; 452 453 return NULL; 454 } 455 456 static inline struct sched_entity *parent_entity(struct sched_entity *se) 457 { 458 return se->parent; 459 } 460 461 static void 462 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 463 { 464 int se_depth, pse_depth; 465 466 /* 467 * preemption test can be made between sibling entities who are in the 468 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 469 * both tasks until we find their ancestors who are siblings of common 470 * parent. 471 */ 472 473 /* First walk up until both entities are at same depth */ 474 se_depth = (*se)->depth; 475 pse_depth = (*pse)->depth; 476 477 while (se_depth > pse_depth) { 478 se_depth--; 479 *se = parent_entity(*se); 480 } 481 482 while (pse_depth > se_depth) { 483 pse_depth--; 484 *pse = parent_entity(*pse); 485 } 486 487 while (!is_same_group(*se, *pse)) { 488 *se = parent_entity(*se); 489 *pse = parent_entity(*pse); 490 } 491 } 492 493 static int tg_is_idle(struct task_group *tg) 494 { 495 return tg->idle > 0; 496 } 497 498 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 499 { 500 return cfs_rq->idle > 0; 501 } 502 503 static int se_is_idle(struct sched_entity *se) 504 { 505 if (entity_is_task(se)) 506 return task_has_idle_policy(task_of(se)); 507 return cfs_rq_is_idle(group_cfs_rq(se)); 508 } 509 510 #else /* !CONFIG_FAIR_GROUP_SCHED */ 511 512 #define for_each_sched_entity(se) \ 513 for (; se; se = NULL) 514 515 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 516 { 517 return true; 518 } 519 520 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 521 { 522 } 523 524 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 525 { 526 } 527 528 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 529 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 530 531 static inline struct sched_entity *parent_entity(struct sched_entity *se) 532 { 533 return NULL; 534 } 535 536 static inline void 537 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 538 { 539 } 540 541 static inline int tg_is_idle(struct task_group *tg) 542 { 543 return 0; 544 } 545 546 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 547 { 548 return 0; 549 } 550 551 static int se_is_idle(struct sched_entity *se) 552 { 553 return 0; 554 } 555 556 #endif /* CONFIG_FAIR_GROUP_SCHED */ 557 558 static __always_inline 559 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 560 561 /************************************************************** 562 * Scheduling class tree data structure manipulation methods: 563 */ 564 565 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 566 { 567 s64 delta = (s64)(vruntime - max_vruntime); 568 if (delta > 0) 569 max_vruntime = vruntime; 570 571 return max_vruntime; 572 } 573 574 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 575 { 576 s64 delta = (s64)(vruntime - min_vruntime); 577 if (delta < 0) 578 min_vruntime = vruntime; 579 580 return min_vruntime; 581 } 582 583 static inline bool entity_before(struct sched_entity *a, 584 struct sched_entity *b) 585 { 586 return (s64)(a->vruntime - b->vruntime) < 0; 587 } 588 589 #define __node_2_se(node) \ 590 rb_entry((node), struct sched_entity, run_node) 591 592 static void update_min_vruntime(struct cfs_rq *cfs_rq) 593 { 594 struct sched_entity *curr = cfs_rq->curr; 595 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 596 597 u64 vruntime = cfs_rq->min_vruntime; 598 599 if (curr) { 600 if (curr->on_rq) 601 vruntime = curr->vruntime; 602 else 603 curr = NULL; 604 } 605 606 if (leftmost) { /* non-empty tree */ 607 struct sched_entity *se = __node_2_se(leftmost); 608 609 if (!curr) 610 vruntime = se->vruntime; 611 else 612 vruntime = min_vruntime(vruntime, se->vruntime); 613 } 614 615 /* ensure we never gain time by being placed backwards. */ 616 u64_u32_store(cfs_rq->min_vruntime, 617 max_vruntime(cfs_rq->min_vruntime, vruntime)); 618 } 619 620 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 621 { 622 return entity_before(__node_2_se(a), __node_2_se(b)); 623 } 624 625 /* 626 * Enqueue an entity into the rb-tree: 627 */ 628 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 629 { 630 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 631 } 632 633 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 634 { 635 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 636 } 637 638 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 639 { 640 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 641 642 if (!left) 643 return NULL; 644 645 return __node_2_se(left); 646 } 647 648 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 649 { 650 struct rb_node *next = rb_next(&se->run_node); 651 652 if (!next) 653 return NULL; 654 655 return __node_2_se(next); 656 } 657 658 #ifdef CONFIG_SCHED_DEBUG 659 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 660 { 661 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 662 663 if (!last) 664 return NULL; 665 666 return __node_2_se(last); 667 } 668 669 /************************************************************** 670 * Scheduling class statistics methods: 671 */ 672 673 int sched_update_scaling(void) 674 { 675 unsigned int factor = get_update_sysctl_factor(); 676 677 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 678 sysctl_sched_min_granularity); 679 680 #define WRT_SYSCTL(name) \ 681 (normalized_sysctl_##name = sysctl_##name / (factor)) 682 WRT_SYSCTL(sched_min_granularity); 683 WRT_SYSCTL(sched_latency); 684 WRT_SYSCTL(sched_wakeup_granularity); 685 #undef WRT_SYSCTL 686 687 return 0; 688 } 689 #endif 690 691 /* 692 * delta /= w 693 */ 694 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 695 { 696 if (unlikely(se->load.weight != NICE_0_LOAD)) 697 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 698 699 return delta; 700 } 701 702 /* 703 * The idea is to set a period in which each task runs once. 704 * 705 * When there are too many tasks (sched_nr_latency) we have to stretch 706 * this period because otherwise the slices get too small. 707 * 708 * p = (nr <= nl) ? l : l*nr/nl 709 */ 710 static u64 __sched_period(unsigned long nr_running) 711 { 712 if (unlikely(nr_running > sched_nr_latency)) 713 return nr_running * sysctl_sched_min_granularity; 714 else 715 return sysctl_sched_latency; 716 } 717 718 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 719 720 /* 721 * We calculate the wall-time slice from the period by taking a part 722 * proportional to the weight. 723 * 724 * s = p*P[w/rw] 725 */ 726 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 727 { 728 unsigned int nr_running = cfs_rq->nr_running; 729 struct sched_entity *init_se = se; 730 unsigned int min_gran; 731 u64 slice; 732 733 if (sched_feat(ALT_PERIOD)) 734 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 735 736 slice = __sched_period(nr_running + !se->on_rq); 737 738 for_each_sched_entity(se) { 739 struct load_weight *load; 740 struct load_weight lw; 741 struct cfs_rq *qcfs_rq; 742 743 qcfs_rq = cfs_rq_of(se); 744 load = &qcfs_rq->load; 745 746 if (unlikely(!se->on_rq)) { 747 lw = qcfs_rq->load; 748 749 update_load_add(&lw, se->load.weight); 750 load = &lw; 751 } 752 slice = __calc_delta(slice, se->load.weight, load); 753 } 754 755 if (sched_feat(BASE_SLICE)) { 756 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 757 min_gran = sysctl_sched_idle_min_granularity; 758 else 759 min_gran = sysctl_sched_min_granularity; 760 761 slice = max_t(u64, slice, min_gran); 762 } 763 764 return slice; 765 } 766 767 /* 768 * We calculate the vruntime slice of a to-be-inserted task. 769 * 770 * vs = s/w 771 */ 772 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 773 { 774 return calc_delta_fair(sched_slice(cfs_rq, se), se); 775 } 776 777 #include "pelt.h" 778 #ifdef CONFIG_SMP 779 780 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 781 static unsigned long task_h_load(struct task_struct *p); 782 static unsigned long capacity_of(int cpu); 783 784 /* Give new sched_entity start runnable values to heavy its load in infant time */ 785 void init_entity_runnable_average(struct sched_entity *se) 786 { 787 struct sched_avg *sa = &se->avg; 788 789 memset(sa, 0, sizeof(*sa)); 790 791 /* 792 * Tasks are initialized with full load to be seen as heavy tasks until 793 * they get a chance to stabilize to their real load level. 794 * Group entities are initialized with zero load to reflect the fact that 795 * nothing has been attached to the task group yet. 796 */ 797 if (entity_is_task(se)) 798 sa->load_avg = scale_load_down(se->load.weight); 799 800 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 801 } 802 803 /* 804 * With new tasks being created, their initial util_avgs are extrapolated 805 * based on the cfs_rq's current util_avg: 806 * 807 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 808 * 809 * However, in many cases, the above util_avg does not give a desired 810 * value. Moreover, the sum of the util_avgs may be divergent, such 811 * as when the series is a harmonic series. 812 * 813 * To solve this problem, we also cap the util_avg of successive tasks to 814 * only 1/2 of the left utilization budget: 815 * 816 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 817 * 818 * where n denotes the nth task and cpu_scale the CPU capacity. 819 * 820 * For example, for a CPU with 1024 of capacity, a simplest series from 821 * the beginning would be like: 822 * 823 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 824 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 825 * 826 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 827 * if util_avg > util_avg_cap. 828 */ 829 void post_init_entity_util_avg(struct task_struct *p) 830 { 831 struct sched_entity *se = &p->se; 832 struct cfs_rq *cfs_rq = cfs_rq_of(se); 833 struct sched_avg *sa = &se->avg; 834 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 835 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 836 837 if (p->sched_class != &fair_sched_class) { 838 /* 839 * For !fair tasks do: 840 * 841 update_cfs_rq_load_avg(now, cfs_rq); 842 attach_entity_load_avg(cfs_rq, se); 843 switched_from_fair(rq, p); 844 * 845 * such that the next switched_to_fair() has the 846 * expected state. 847 */ 848 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 849 return; 850 } 851 852 if (cap > 0) { 853 if (cfs_rq->avg.util_avg != 0) { 854 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 855 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 856 857 if (sa->util_avg > cap) 858 sa->util_avg = cap; 859 } else { 860 sa->util_avg = cap; 861 } 862 } 863 864 sa->runnable_avg = sa->util_avg; 865 } 866 867 #else /* !CONFIG_SMP */ 868 void init_entity_runnable_average(struct sched_entity *se) 869 { 870 } 871 void post_init_entity_util_avg(struct task_struct *p) 872 { 873 } 874 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 875 { 876 } 877 #endif /* CONFIG_SMP */ 878 879 /* 880 * Update the current task's runtime statistics. 881 */ 882 static void update_curr(struct cfs_rq *cfs_rq) 883 { 884 struct sched_entity *curr = cfs_rq->curr; 885 u64 now = rq_clock_task(rq_of(cfs_rq)); 886 u64 delta_exec; 887 888 if (unlikely(!curr)) 889 return; 890 891 delta_exec = now - curr->exec_start; 892 if (unlikely((s64)delta_exec <= 0)) 893 return; 894 895 curr->exec_start = now; 896 897 if (schedstat_enabled()) { 898 struct sched_statistics *stats; 899 900 stats = __schedstats_from_se(curr); 901 __schedstat_set(stats->exec_max, 902 max(delta_exec, stats->exec_max)); 903 } 904 905 curr->sum_exec_runtime += delta_exec; 906 schedstat_add(cfs_rq->exec_clock, delta_exec); 907 908 curr->vruntime += calc_delta_fair(delta_exec, curr); 909 update_min_vruntime(cfs_rq); 910 911 if (entity_is_task(curr)) { 912 struct task_struct *curtask = task_of(curr); 913 914 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 915 cgroup_account_cputime(curtask, delta_exec); 916 account_group_exec_runtime(curtask, delta_exec); 917 } 918 919 account_cfs_rq_runtime(cfs_rq, delta_exec); 920 } 921 922 static void update_curr_fair(struct rq *rq) 923 { 924 update_curr(cfs_rq_of(&rq->curr->se)); 925 } 926 927 static inline void 928 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 929 { 930 struct sched_statistics *stats; 931 struct task_struct *p = NULL; 932 933 if (!schedstat_enabled()) 934 return; 935 936 stats = __schedstats_from_se(se); 937 938 if (entity_is_task(se)) 939 p = task_of(se); 940 941 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 942 } 943 944 static inline void 945 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 946 { 947 struct sched_statistics *stats; 948 struct task_struct *p = NULL; 949 950 if (!schedstat_enabled()) 951 return; 952 953 stats = __schedstats_from_se(se); 954 955 /* 956 * When the sched_schedstat changes from 0 to 1, some sched se 957 * maybe already in the runqueue, the se->statistics.wait_start 958 * will be 0.So it will let the delta wrong. We need to avoid this 959 * scenario. 960 */ 961 if (unlikely(!schedstat_val(stats->wait_start))) 962 return; 963 964 if (entity_is_task(se)) 965 p = task_of(se); 966 967 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 968 } 969 970 static inline void 971 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 972 { 973 struct sched_statistics *stats; 974 struct task_struct *tsk = NULL; 975 976 if (!schedstat_enabled()) 977 return; 978 979 stats = __schedstats_from_se(se); 980 981 if (entity_is_task(se)) 982 tsk = task_of(se); 983 984 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 985 } 986 987 /* 988 * Task is being enqueued - update stats: 989 */ 990 static inline void 991 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 992 { 993 if (!schedstat_enabled()) 994 return; 995 996 /* 997 * Are we enqueueing a waiting task? (for current tasks 998 * a dequeue/enqueue event is a NOP) 999 */ 1000 if (se != cfs_rq->curr) 1001 update_stats_wait_start_fair(cfs_rq, se); 1002 1003 if (flags & ENQUEUE_WAKEUP) 1004 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1005 } 1006 1007 static inline void 1008 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1009 { 1010 1011 if (!schedstat_enabled()) 1012 return; 1013 1014 /* 1015 * Mark the end of the wait period if dequeueing a 1016 * waiting task: 1017 */ 1018 if (se != cfs_rq->curr) 1019 update_stats_wait_end_fair(cfs_rq, se); 1020 1021 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1022 struct task_struct *tsk = task_of(se); 1023 unsigned int state; 1024 1025 /* XXX racy against TTWU */ 1026 state = READ_ONCE(tsk->__state); 1027 if (state & TASK_INTERRUPTIBLE) 1028 __schedstat_set(tsk->stats.sleep_start, 1029 rq_clock(rq_of(cfs_rq))); 1030 if (state & TASK_UNINTERRUPTIBLE) 1031 __schedstat_set(tsk->stats.block_start, 1032 rq_clock(rq_of(cfs_rq))); 1033 } 1034 } 1035 1036 /* 1037 * We are picking a new current task - update its stats: 1038 */ 1039 static inline void 1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1041 { 1042 /* 1043 * We are starting a new run period: 1044 */ 1045 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1046 } 1047 1048 /************************************************** 1049 * Scheduling class queueing methods: 1050 */ 1051 1052 #ifdef CONFIG_NUMA 1053 #define NUMA_IMBALANCE_MIN 2 1054 1055 static inline long 1056 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1057 { 1058 /* 1059 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1060 * threshold. Above this threshold, individual tasks may be contending 1061 * for both memory bandwidth and any shared HT resources. This is an 1062 * approximation as the number of running tasks may not be related to 1063 * the number of busy CPUs due to sched_setaffinity. 1064 */ 1065 if (dst_running > imb_numa_nr) 1066 return imbalance; 1067 1068 /* 1069 * Allow a small imbalance based on a simple pair of communicating 1070 * tasks that remain local when the destination is lightly loaded. 1071 */ 1072 if (imbalance <= NUMA_IMBALANCE_MIN) 1073 return 0; 1074 1075 return imbalance; 1076 } 1077 #endif /* CONFIG_NUMA */ 1078 1079 #ifdef CONFIG_NUMA_BALANCING 1080 /* 1081 * Approximate time to scan a full NUMA task in ms. The task scan period is 1082 * calculated based on the tasks virtual memory size and 1083 * numa_balancing_scan_size. 1084 */ 1085 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1086 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1087 1088 /* Portion of address space to scan in MB */ 1089 unsigned int sysctl_numa_balancing_scan_size = 256; 1090 1091 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1092 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1093 1094 /* The page with hint page fault latency < threshold in ms is considered hot */ 1095 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1096 1097 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 1098 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 1099 1100 struct numa_group { 1101 refcount_t refcount; 1102 1103 spinlock_t lock; /* nr_tasks, tasks */ 1104 int nr_tasks; 1105 pid_t gid; 1106 int active_nodes; 1107 1108 struct rcu_head rcu; 1109 unsigned long total_faults; 1110 unsigned long max_faults_cpu; 1111 /* 1112 * faults[] array is split into two regions: faults_mem and faults_cpu. 1113 * 1114 * Faults_cpu is used to decide whether memory should move 1115 * towards the CPU. As a consequence, these stats are weighted 1116 * more by CPU use than by memory faults. 1117 */ 1118 unsigned long faults[]; 1119 }; 1120 1121 /* 1122 * For functions that can be called in multiple contexts that permit reading 1123 * ->numa_group (see struct task_struct for locking rules). 1124 */ 1125 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1126 { 1127 return rcu_dereference_check(p->numa_group, p == current || 1128 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1129 } 1130 1131 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1132 { 1133 return rcu_dereference_protected(p->numa_group, p == current); 1134 } 1135 1136 static inline unsigned long group_faults_priv(struct numa_group *ng); 1137 static inline unsigned long group_faults_shared(struct numa_group *ng); 1138 1139 static unsigned int task_nr_scan_windows(struct task_struct *p) 1140 { 1141 unsigned long rss = 0; 1142 unsigned long nr_scan_pages; 1143 1144 /* 1145 * Calculations based on RSS as non-present and empty pages are skipped 1146 * by the PTE scanner and NUMA hinting faults should be trapped based 1147 * on resident pages 1148 */ 1149 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1150 rss = get_mm_rss(p->mm); 1151 if (!rss) 1152 rss = nr_scan_pages; 1153 1154 rss = round_up(rss, nr_scan_pages); 1155 return rss / nr_scan_pages; 1156 } 1157 1158 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1159 #define MAX_SCAN_WINDOW 2560 1160 1161 static unsigned int task_scan_min(struct task_struct *p) 1162 { 1163 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1164 unsigned int scan, floor; 1165 unsigned int windows = 1; 1166 1167 if (scan_size < MAX_SCAN_WINDOW) 1168 windows = MAX_SCAN_WINDOW / scan_size; 1169 floor = 1000 / windows; 1170 1171 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1172 return max_t(unsigned int, floor, scan); 1173 } 1174 1175 static unsigned int task_scan_start(struct task_struct *p) 1176 { 1177 unsigned long smin = task_scan_min(p); 1178 unsigned long period = smin; 1179 struct numa_group *ng; 1180 1181 /* Scale the maximum scan period with the amount of shared memory. */ 1182 rcu_read_lock(); 1183 ng = rcu_dereference(p->numa_group); 1184 if (ng) { 1185 unsigned long shared = group_faults_shared(ng); 1186 unsigned long private = group_faults_priv(ng); 1187 1188 period *= refcount_read(&ng->refcount); 1189 period *= shared + 1; 1190 period /= private + shared + 1; 1191 } 1192 rcu_read_unlock(); 1193 1194 return max(smin, period); 1195 } 1196 1197 static unsigned int task_scan_max(struct task_struct *p) 1198 { 1199 unsigned long smin = task_scan_min(p); 1200 unsigned long smax; 1201 struct numa_group *ng; 1202 1203 /* Watch for min being lower than max due to floor calculations */ 1204 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1205 1206 /* Scale the maximum scan period with the amount of shared memory. */ 1207 ng = deref_curr_numa_group(p); 1208 if (ng) { 1209 unsigned long shared = group_faults_shared(ng); 1210 unsigned long private = group_faults_priv(ng); 1211 unsigned long period = smax; 1212 1213 period *= refcount_read(&ng->refcount); 1214 period *= shared + 1; 1215 period /= private + shared + 1; 1216 1217 smax = max(smax, period); 1218 } 1219 1220 return max(smin, smax); 1221 } 1222 1223 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1224 { 1225 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1226 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1227 } 1228 1229 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1230 { 1231 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1232 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1233 } 1234 1235 /* Shared or private faults. */ 1236 #define NR_NUMA_HINT_FAULT_TYPES 2 1237 1238 /* Memory and CPU locality */ 1239 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1240 1241 /* Averaged statistics, and temporary buffers. */ 1242 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1243 1244 pid_t task_numa_group_id(struct task_struct *p) 1245 { 1246 struct numa_group *ng; 1247 pid_t gid = 0; 1248 1249 rcu_read_lock(); 1250 ng = rcu_dereference(p->numa_group); 1251 if (ng) 1252 gid = ng->gid; 1253 rcu_read_unlock(); 1254 1255 return gid; 1256 } 1257 1258 /* 1259 * The averaged statistics, shared & private, memory & CPU, 1260 * occupy the first half of the array. The second half of the 1261 * array is for current counters, which are averaged into the 1262 * first set by task_numa_placement. 1263 */ 1264 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1265 { 1266 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1267 } 1268 1269 static inline unsigned long task_faults(struct task_struct *p, int nid) 1270 { 1271 if (!p->numa_faults) 1272 return 0; 1273 1274 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1275 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1276 } 1277 1278 static inline unsigned long group_faults(struct task_struct *p, int nid) 1279 { 1280 struct numa_group *ng = deref_task_numa_group(p); 1281 1282 if (!ng) 1283 return 0; 1284 1285 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1286 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1287 } 1288 1289 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1290 { 1291 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1292 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1293 } 1294 1295 static inline unsigned long group_faults_priv(struct numa_group *ng) 1296 { 1297 unsigned long faults = 0; 1298 int node; 1299 1300 for_each_online_node(node) { 1301 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1302 } 1303 1304 return faults; 1305 } 1306 1307 static inline unsigned long group_faults_shared(struct numa_group *ng) 1308 { 1309 unsigned long faults = 0; 1310 int node; 1311 1312 for_each_online_node(node) { 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1314 } 1315 1316 return faults; 1317 } 1318 1319 /* 1320 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1321 * considered part of a numa group's pseudo-interleaving set. Migrations 1322 * between these nodes are slowed down, to allow things to settle down. 1323 */ 1324 #define ACTIVE_NODE_FRACTION 3 1325 1326 static bool numa_is_active_node(int nid, struct numa_group *ng) 1327 { 1328 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1329 } 1330 1331 /* Handle placement on systems where not all nodes are directly connected. */ 1332 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1333 int lim_dist, bool task) 1334 { 1335 unsigned long score = 0; 1336 int node, max_dist; 1337 1338 /* 1339 * All nodes are directly connected, and the same distance 1340 * from each other. No need for fancy placement algorithms. 1341 */ 1342 if (sched_numa_topology_type == NUMA_DIRECT) 1343 return 0; 1344 1345 /* sched_max_numa_distance may be changed in parallel. */ 1346 max_dist = READ_ONCE(sched_max_numa_distance); 1347 /* 1348 * This code is called for each node, introducing N^2 complexity, 1349 * which should be ok given the number of nodes rarely exceeds 8. 1350 */ 1351 for_each_online_node(node) { 1352 unsigned long faults; 1353 int dist = node_distance(nid, node); 1354 1355 /* 1356 * The furthest away nodes in the system are not interesting 1357 * for placement; nid was already counted. 1358 */ 1359 if (dist >= max_dist || node == nid) 1360 continue; 1361 1362 /* 1363 * On systems with a backplane NUMA topology, compare groups 1364 * of nodes, and move tasks towards the group with the most 1365 * memory accesses. When comparing two nodes at distance 1366 * "hoplimit", only nodes closer by than "hoplimit" are part 1367 * of each group. Skip other nodes. 1368 */ 1369 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1370 continue; 1371 1372 /* Add up the faults from nearby nodes. */ 1373 if (task) 1374 faults = task_faults(p, node); 1375 else 1376 faults = group_faults(p, node); 1377 1378 /* 1379 * On systems with a glueless mesh NUMA topology, there are 1380 * no fixed "groups of nodes". Instead, nodes that are not 1381 * directly connected bounce traffic through intermediate 1382 * nodes; a numa_group can occupy any set of nodes. 1383 * The further away a node is, the less the faults count. 1384 * This seems to result in good task placement. 1385 */ 1386 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1387 faults *= (max_dist - dist); 1388 faults /= (max_dist - LOCAL_DISTANCE); 1389 } 1390 1391 score += faults; 1392 } 1393 1394 return score; 1395 } 1396 1397 /* 1398 * These return the fraction of accesses done by a particular task, or 1399 * task group, on a particular numa node. The group weight is given a 1400 * larger multiplier, in order to group tasks together that are almost 1401 * evenly spread out between numa nodes. 1402 */ 1403 static inline unsigned long task_weight(struct task_struct *p, int nid, 1404 int dist) 1405 { 1406 unsigned long faults, total_faults; 1407 1408 if (!p->numa_faults) 1409 return 0; 1410 1411 total_faults = p->total_numa_faults; 1412 1413 if (!total_faults) 1414 return 0; 1415 1416 faults = task_faults(p, nid); 1417 faults += score_nearby_nodes(p, nid, dist, true); 1418 1419 return 1000 * faults / total_faults; 1420 } 1421 1422 static inline unsigned long group_weight(struct task_struct *p, int nid, 1423 int dist) 1424 { 1425 struct numa_group *ng = deref_task_numa_group(p); 1426 unsigned long faults, total_faults; 1427 1428 if (!ng) 1429 return 0; 1430 1431 total_faults = ng->total_faults; 1432 1433 if (!total_faults) 1434 return 0; 1435 1436 faults = group_faults(p, nid); 1437 faults += score_nearby_nodes(p, nid, dist, false); 1438 1439 return 1000 * faults / total_faults; 1440 } 1441 1442 /* 1443 * If memory tiering mode is enabled, cpupid of slow memory page is 1444 * used to record scan time instead of CPU and PID. When tiering mode 1445 * is disabled at run time, the scan time (in cpupid) will be 1446 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1447 * access out of array bound. 1448 */ 1449 static inline bool cpupid_valid(int cpupid) 1450 { 1451 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1452 } 1453 1454 /* 1455 * For memory tiering mode, if there are enough free pages (more than 1456 * enough watermark defined here) in fast memory node, to take full 1457 * advantage of fast memory capacity, all recently accessed slow 1458 * memory pages will be migrated to fast memory node without 1459 * considering hot threshold. 1460 */ 1461 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1462 { 1463 int z; 1464 unsigned long enough_wmark; 1465 1466 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1467 pgdat->node_present_pages >> 4); 1468 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1469 struct zone *zone = pgdat->node_zones + z; 1470 1471 if (!populated_zone(zone)) 1472 continue; 1473 1474 if (zone_watermark_ok(zone, 0, 1475 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1476 ZONE_MOVABLE, 0)) 1477 return true; 1478 } 1479 return false; 1480 } 1481 1482 /* 1483 * For memory tiering mode, when page tables are scanned, the scan 1484 * time will be recorded in struct page in addition to make page 1485 * PROT_NONE for slow memory page. So when the page is accessed, in 1486 * hint page fault handler, the hint page fault latency is calculated 1487 * via, 1488 * 1489 * hint page fault latency = hint page fault time - scan time 1490 * 1491 * The smaller the hint page fault latency, the higher the possibility 1492 * for the page to be hot. 1493 */ 1494 static int numa_hint_fault_latency(struct page *page) 1495 { 1496 int last_time, time; 1497 1498 time = jiffies_to_msecs(jiffies); 1499 last_time = xchg_page_access_time(page, time); 1500 1501 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1502 } 1503 1504 /* 1505 * For memory tiering mode, too high promotion/demotion throughput may 1506 * hurt application latency. So we provide a mechanism to rate limit 1507 * the number of pages that are tried to be promoted. 1508 */ 1509 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1510 unsigned long rate_limit, int nr) 1511 { 1512 unsigned long nr_cand; 1513 unsigned int now, start; 1514 1515 now = jiffies_to_msecs(jiffies); 1516 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1517 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1518 start = pgdat->nbp_rl_start; 1519 if (now - start > MSEC_PER_SEC && 1520 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1521 pgdat->nbp_rl_nr_cand = nr_cand; 1522 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1523 return true; 1524 return false; 1525 } 1526 1527 #define NUMA_MIGRATION_ADJUST_STEPS 16 1528 1529 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1530 unsigned long rate_limit, 1531 unsigned int ref_th) 1532 { 1533 unsigned int now, start, th_period, unit_th, th; 1534 unsigned long nr_cand, ref_cand, diff_cand; 1535 1536 now = jiffies_to_msecs(jiffies); 1537 th_period = sysctl_numa_balancing_scan_period_max; 1538 start = pgdat->nbp_th_start; 1539 if (now - start > th_period && 1540 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1541 ref_cand = rate_limit * 1542 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1543 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1544 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1545 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1546 th = pgdat->nbp_threshold ? : ref_th; 1547 if (diff_cand > ref_cand * 11 / 10) 1548 th = max(th - unit_th, unit_th); 1549 else if (diff_cand < ref_cand * 9 / 10) 1550 th = min(th + unit_th, ref_th * 2); 1551 pgdat->nbp_th_nr_cand = nr_cand; 1552 pgdat->nbp_threshold = th; 1553 } 1554 } 1555 1556 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1557 int src_nid, int dst_cpu) 1558 { 1559 struct numa_group *ng = deref_curr_numa_group(p); 1560 int dst_nid = cpu_to_node(dst_cpu); 1561 int last_cpupid, this_cpupid; 1562 1563 /* 1564 * The pages in slow memory node should be migrated according 1565 * to hot/cold instead of private/shared. 1566 */ 1567 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1568 !node_is_toptier(src_nid)) { 1569 struct pglist_data *pgdat; 1570 unsigned long rate_limit; 1571 unsigned int latency, th, def_th; 1572 1573 pgdat = NODE_DATA(dst_nid); 1574 if (pgdat_free_space_enough(pgdat)) { 1575 /* workload changed, reset hot threshold */ 1576 pgdat->nbp_threshold = 0; 1577 return true; 1578 } 1579 1580 def_th = sysctl_numa_balancing_hot_threshold; 1581 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1582 (20 - PAGE_SHIFT); 1583 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1584 1585 th = pgdat->nbp_threshold ? : def_th; 1586 latency = numa_hint_fault_latency(page); 1587 if (latency >= th) 1588 return false; 1589 1590 return !numa_promotion_rate_limit(pgdat, rate_limit, 1591 thp_nr_pages(page)); 1592 } 1593 1594 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1595 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1596 1597 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1598 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1599 return false; 1600 1601 /* 1602 * Allow first faults or private faults to migrate immediately early in 1603 * the lifetime of a task. The magic number 4 is based on waiting for 1604 * two full passes of the "multi-stage node selection" test that is 1605 * executed below. 1606 */ 1607 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1608 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1609 return true; 1610 1611 /* 1612 * Multi-stage node selection is used in conjunction with a periodic 1613 * migration fault to build a temporal task<->page relation. By using 1614 * a two-stage filter we remove short/unlikely relations. 1615 * 1616 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1617 * a task's usage of a particular page (n_p) per total usage of this 1618 * page (n_t) (in a given time-span) to a probability. 1619 * 1620 * Our periodic faults will sample this probability and getting the 1621 * same result twice in a row, given these samples are fully 1622 * independent, is then given by P(n)^2, provided our sample period 1623 * is sufficiently short compared to the usage pattern. 1624 * 1625 * This quadric squishes small probabilities, making it less likely we 1626 * act on an unlikely task<->page relation. 1627 */ 1628 if (!cpupid_pid_unset(last_cpupid) && 1629 cpupid_to_nid(last_cpupid) != dst_nid) 1630 return false; 1631 1632 /* Always allow migrate on private faults */ 1633 if (cpupid_match_pid(p, last_cpupid)) 1634 return true; 1635 1636 /* A shared fault, but p->numa_group has not been set up yet. */ 1637 if (!ng) 1638 return true; 1639 1640 /* 1641 * Destination node is much more heavily used than the source 1642 * node? Allow migration. 1643 */ 1644 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1645 ACTIVE_NODE_FRACTION) 1646 return true; 1647 1648 /* 1649 * Distribute memory according to CPU & memory use on each node, 1650 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1651 * 1652 * faults_cpu(dst) 3 faults_cpu(src) 1653 * --------------- * - > --------------- 1654 * faults_mem(dst) 4 faults_mem(src) 1655 */ 1656 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1657 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1658 } 1659 1660 /* 1661 * 'numa_type' describes the node at the moment of load balancing. 1662 */ 1663 enum numa_type { 1664 /* The node has spare capacity that can be used to run more tasks. */ 1665 node_has_spare = 0, 1666 /* 1667 * The node is fully used and the tasks don't compete for more CPU 1668 * cycles. Nevertheless, some tasks might wait before running. 1669 */ 1670 node_fully_busy, 1671 /* 1672 * The node is overloaded and can't provide expected CPU cycles to all 1673 * tasks. 1674 */ 1675 node_overloaded 1676 }; 1677 1678 /* Cached statistics for all CPUs within a node */ 1679 struct numa_stats { 1680 unsigned long load; 1681 unsigned long runnable; 1682 unsigned long util; 1683 /* Total compute capacity of CPUs on a node */ 1684 unsigned long compute_capacity; 1685 unsigned int nr_running; 1686 unsigned int weight; 1687 enum numa_type node_type; 1688 int idle_cpu; 1689 }; 1690 1691 static inline bool is_core_idle(int cpu) 1692 { 1693 #ifdef CONFIG_SCHED_SMT 1694 int sibling; 1695 1696 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1697 if (cpu == sibling) 1698 continue; 1699 1700 if (!idle_cpu(sibling)) 1701 return false; 1702 } 1703 #endif 1704 1705 return true; 1706 } 1707 1708 struct task_numa_env { 1709 struct task_struct *p; 1710 1711 int src_cpu, src_nid; 1712 int dst_cpu, dst_nid; 1713 int imb_numa_nr; 1714 1715 struct numa_stats src_stats, dst_stats; 1716 1717 int imbalance_pct; 1718 int dist; 1719 1720 struct task_struct *best_task; 1721 long best_imp; 1722 int best_cpu; 1723 }; 1724 1725 static unsigned long cpu_load(struct rq *rq); 1726 static unsigned long cpu_runnable(struct rq *rq); 1727 1728 static inline enum 1729 numa_type numa_classify(unsigned int imbalance_pct, 1730 struct numa_stats *ns) 1731 { 1732 if ((ns->nr_running > ns->weight) && 1733 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1734 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1735 return node_overloaded; 1736 1737 if ((ns->nr_running < ns->weight) || 1738 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1739 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1740 return node_has_spare; 1741 1742 return node_fully_busy; 1743 } 1744 1745 #ifdef CONFIG_SCHED_SMT 1746 /* Forward declarations of select_idle_sibling helpers */ 1747 static inline bool test_idle_cores(int cpu); 1748 static inline int numa_idle_core(int idle_core, int cpu) 1749 { 1750 if (!static_branch_likely(&sched_smt_present) || 1751 idle_core >= 0 || !test_idle_cores(cpu)) 1752 return idle_core; 1753 1754 /* 1755 * Prefer cores instead of packing HT siblings 1756 * and triggering future load balancing. 1757 */ 1758 if (is_core_idle(cpu)) 1759 idle_core = cpu; 1760 1761 return idle_core; 1762 } 1763 #else 1764 static inline int numa_idle_core(int idle_core, int cpu) 1765 { 1766 return idle_core; 1767 } 1768 #endif 1769 1770 /* 1771 * Gather all necessary information to make NUMA balancing placement 1772 * decisions that are compatible with standard load balancer. This 1773 * borrows code and logic from update_sg_lb_stats but sharing a 1774 * common implementation is impractical. 1775 */ 1776 static void update_numa_stats(struct task_numa_env *env, 1777 struct numa_stats *ns, int nid, 1778 bool find_idle) 1779 { 1780 int cpu, idle_core = -1; 1781 1782 memset(ns, 0, sizeof(*ns)); 1783 ns->idle_cpu = -1; 1784 1785 rcu_read_lock(); 1786 for_each_cpu(cpu, cpumask_of_node(nid)) { 1787 struct rq *rq = cpu_rq(cpu); 1788 1789 ns->load += cpu_load(rq); 1790 ns->runnable += cpu_runnable(rq); 1791 ns->util += cpu_util_cfs(cpu); 1792 ns->nr_running += rq->cfs.h_nr_running; 1793 ns->compute_capacity += capacity_of(cpu); 1794 1795 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1796 if (READ_ONCE(rq->numa_migrate_on) || 1797 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1798 continue; 1799 1800 if (ns->idle_cpu == -1) 1801 ns->idle_cpu = cpu; 1802 1803 idle_core = numa_idle_core(idle_core, cpu); 1804 } 1805 } 1806 rcu_read_unlock(); 1807 1808 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1809 1810 ns->node_type = numa_classify(env->imbalance_pct, ns); 1811 1812 if (idle_core >= 0) 1813 ns->idle_cpu = idle_core; 1814 } 1815 1816 static void task_numa_assign(struct task_numa_env *env, 1817 struct task_struct *p, long imp) 1818 { 1819 struct rq *rq = cpu_rq(env->dst_cpu); 1820 1821 /* Check if run-queue part of active NUMA balance. */ 1822 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1823 int cpu; 1824 int start = env->dst_cpu; 1825 1826 /* Find alternative idle CPU. */ 1827 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1828 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1829 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1830 continue; 1831 } 1832 1833 env->dst_cpu = cpu; 1834 rq = cpu_rq(env->dst_cpu); 1835 if (!xchg(&rq->numa_migrate_on, 1)) 1836 goto assign; 1837 } 1838 1839 /* Failed to find an alternative idle CPU */ 1840 return; 1841 } 1842 1843 assign: 1844 /* 1845 * Clear previous best_cpu/rq numa-migrate flag, since task now 1846 * found a better CPU to move/swap. 1847 */ 1848 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1849 rq = cpu_rq(env->best_cpu); 1850 WRITE_ONCE(rq->numa_migrate_on, 0); 1851 } 1852 1853 if (env->best_task) 1854 put_task_struct(env->best_task); 1855 if (p) 1856 get_task_struct(p); 1857 1858 env->best_task = p; 1859 env->best_imp = imp; 1860 env->best_cpu = env->dst_cpu; 1861 } 1862 1863 static bool load_too_imbalanced(long src_load, long dst_load, 1864 struct task_numa_env *env) 1865 { 1866 long imb, old_imb; 1867 long orig_src_load, orig_dst_load; 1868 long src_capacity, dst_capacity; 1869 1870 /* 1871 * The load is corrected for the CPU capacity available on each node. 1872 * 1873 * src_load dst_load 1874 * ------------ vs --------- 1875 * src_capacity dst_capacity 1876 */ 1877 src_capacity = env->src_stats.compute_capacity; 1878 dst_capacity = env->dst_stats.compute_capacity; 1879 1880 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1881 1882 orig_src_load = env->src_stats.load; 1883 orig_dst_load = env->dst_stats.load; 1884 1885 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1886 1887 /* Would this change make things worse? */ 1888 return (imb > old_imb); 1889 } 1890 1891 /* 1892 * Maximum NUMA importance can be 1998 (2*999); 1893 * SMALLIMP @ 30 would be close to 1998/64. 1894 * Used to deter task migration. 1895 */ 1896 #define SMALLIMP 30 1897 1898 /* 1899 * This checks if the overall compute and NUMA accesses of the system would 1900 * be improved if the source tasks was migrated to the target dst_cpu taking 1901 * into account that it might be best if task running on the dst_cpu should 1902 * be exchanged with the source task 1903 */ 1904 static bool task_numa_compare(struct task_numa_env *env, 1905 long taskimp, long groupimp, bool maymove) 1906 { 1907 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1908 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1909 long imp = p_ng ? groupimp : taskimp; 1910 struct task_struct *cur; 1911 long src_load, dst_load; 1912 int dist = env->dist; 1913 long moveimp = imp; 1914 long load; 1915 bool stopsearch = false; 1916 1917 if (READ_ONCE(dst_rq->numa_migrate_on)) 1918 return false; 1919 1920 rcu_read_lock(); 1921 cur = rcu_dereference(dst_rq->curr); 1922 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1923 cur = NULL; 1924 1925 /* 1926 * Because we have preemption enabled we can get migrated around and 1927 * end try selecting ourselves (current == env->p) as a swap candidate. 1928 */ 1929 if (cur == env->p) { 1930 stopsearch = true; 1931 goto unlock; 1932 } 1933 1934 if (!cur) { 1935 if (maymove && moveimp >= env->best_imp) 1936 goto assign; 1937 else 1938 goto unlock; 1939 } 1940 1941 /* Skip this swap candidate if cannot move to the source cpu. */ 1942 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1943 goto unlock; 1944 1945 /* 1946 * Skip this swap candidate if it is not moving to its preferred 1947 * node and the best task is. 1948 */ 1949 if (env->best_task && 1950 env->best_task->numa_preferred_nid == env->src_nid && 1951 cur->numa_preferred_nid != env->src_nid) { 1952 goto unlock; 1953 } 1954 1955 /* 1956 * "imp" is the fault differential for the source task between the 1957 * source and destination node. Calculate the total differential for 1958 * the source task and potential destination task. The more negative 1959 * the value is, the more remote accesses that would be expected to 1960 * be incurred if the tasks were swapped. 1961 * 1962 * If dst and source tasks are in the same NUMA group, or not 1963 * in any group then look only at task weights. 1964 */ 1965 cur_ng = rcu_dereference(cur->numa_group); 1966 if (cur_ng == p_ng) { 1967 /* 1968 * Do not swap within a group or between tasks that have 1969 * no group if there is spare capacity. Swapping does 1970 * not address the load imbalance and helps one task at 1971 * the cost of punishing another. 1972 */ 1973 if (env->dst_stats.node_type == node_has_spare) 1974 goto unlock; 1975 1976 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1977 task_weight(cur, env->dst_nid, dist); 1978 /* 1979 * Add some hysteresis to prevent swapping the 1980 * tasks within a group over tiny differences. 1981 */ 1982 if (cur_ng) 1983 imp -= imp / 16; 1984 } else { 1985 /* 1986 * Compare the group weights. If a task is all by itself 1987 * (not part of a group), use the task weight instead. 1988 */ 1989 if (cur_ng && p_ng) 1990 imp += group_weight(cur, env->src_nid, dist) - 1991 group_weight(cur, env->dst_nid, dist); 1992 else 1993 imp += task_weight(cur, env->src_nid, dist) - 1994 task_weight(cur, env->dst_nid, dist); 1995 } 1996 1997 /* Discourage picking a task already on its preferred node */ 1998 if (cur->numa_preferred_nid == env->dst_nid) 1999 imp -= imp / 16; 2000 2001 /* 2002 * Encourage picking a task that moves to its preferred node. 2003 * This potentially makes imp larger than it's maximum of 2004 * 1998 (see SMALLIMP and task_weight for why) but in this 2005 * case, it does not matter. 2006 */ 2007 if (cur->numa_preferred_nid == env->src_nid) 2008 imp += imp / 8; 2009 2010 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2011 imp = moveimp; 2012 cur = NULL; 2013 goto assign; 2014 } 2015 2016 /* 2017 * Prefer swapping with a task moving to its preferred node over a 2018 * task that is not. 2019 */ 2020 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2021 env->best_task->numa_preferred_nid != env->src_nid) { 2022 goto assign; 2023 } 2024 2025 /* 2026 * If the NUMA importance is less than SMALLIMP, 2027 * task migration might only result in ping pong 2028 * of tasks and also hurt performance due to cache 2029 * misses. 2030 */ 2031 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2032 goto unlock; 2033 2034 /* 2035 * In the overloaded case, try and keep the load balanced. 2036 */ 2037 load = task_h_load(env->p) - task_h_load(cur); 2038 if (!load) 2039 goto assign; 2040 2041 dst_load = env->dst_stats.load + load; 2042 src_load = env->src_stats.load - load; 2043 2044 if (load_too_imbalanced(src_load, dst_load, env)) 2045 goto unlock; 2046 2047 assign: 2048 /* Evaluate an idle CPU for a task numa move. */ 2049 if (!cur) { 2050 int cpu = env->dst_stats.idle_cpu; 2051 2052 /* Nothing cached so current CPU went idle since the search. */ 2053 if (cpu < 0) 2054 cpu = env->dst_cpu; 2055 2056 /* 2057 * If the CPU is no longer truly idle and the previous best CPU 2058 * is, keep using it. 2059 */ 2060 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2061 idle_cpu(env->best_cpu)) { 2062 cpu = env->best_cpu; 2063 } 2064 2065 env->dst_cpu = cpu; 2066 } 2067 2068 task_numa_assign(env, cur, imp); 2069 2070 /* 2071 * If a move to idle is allowed because there is capacity or load 2072 * balance improves then stop the search. While a better swap 2073 * candidate may exist, a search is not free. 2074 */ 2075 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2076 stopsearch = true; 2077 2078 /* 2079 * If a swap candidate must be identified and the current best task 2080 * moves its preferred node then stop the search. 2081 */ 2082 if (!maymove && env->best_task && 2083 env->best_task->numa_preferred_nid == env->src_nid) { 2084 stopsearch = true; 2085 } 2086 unlock: 2087 rcu_read_unlock(); 2088 2089 return stopsearch; 2090 } 2091 2092 static void task_numa_find_cpu(struct task_numa_env *env, 2093 long taskimp, long groupimp) 2094 { 2095 bool maymove = false; 2096 int cpu; 2097 2098 /* 2099 * If dst node has spare capacity, then check if there is an 2100 * imbalance that would be overruled by the load balancer. 2101 */ 2102 if (env->dst_stats.node_type == node_has_spare) { 2103 unsigned int imbalance; 2104 int src_running, dst_running; 2105 2106 /* 2107 * Would movement cause an imbalance? Note that if src has 2108 * more running tasks that the imbalance is ignored as the 2109 * move improves the imbalance from the perspective of the 2110 * CPU load balancer. 2111 * */ 2112 src_running = env->src_stats.nr_running - 1; 2113 dst_running = env->dst_stats.nr_running + 1; 2114 imbalance = max(0, dst_running - src_running); 2115 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2116 env->imb_numa_nr); 2117 2118 /* Use idle CPU if there is no imbalance */ 2119 if (!imbalance) { 2120 maymove = true; 2121 if (env->dst_stats.idle_cpu >= 0) { 2122 env->dst_cpu = env->dst_stats.idle_cpu; 2123 task_numa_assign(env, NULL, 0); 2124 return; 2125 } 2126 } 2127 } else { 2128 long src_load, dst_load, load; 2129 /* 2130 * If the improvement from just moving env->p direction is better 2131 * than swapping tasks around, check if a move is possible. 2132 */ 2133 load = task_h_load(env->p); 2134 dst_load = env->dst_stats.load + load; 2135 src_load = env->src_stats.load - load; 2136 maymove = !load_too_imbalanced(src_load, dst_load, env); 2137 } 2138 2139 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2140 /* Skip this CPU if the source task cannot migrate */ 2141 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2142 continue; 2143 2144 env->dst_cpu = cpu; 2145 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2146 break; 2147 } 2148 } 2149 2150 static int task_numa_migrate(struct task_struct *p) 2151 { 2152 struct task_numa_env env = { 2153 .p = p, 2154 2155 .src_cpu = task_cpu(p), 2156 .src_nid = task_node(p), 2157 2158 .imbalance_pct = 112, 2159 2160 .best_task = NULL, 2161 .best_imp = 0, 2162 .best_cpu = -1, 2163 }; 2164 unsigned long taskweight, groupweight; 2165 struct sched_domain *sd; 2166 long taskimp, groupimp; 2167 struct numa_group *ng; 2168 struct rq *best_rq; 2169 int nid, ret, dist; 2170 2171 /* 2172 * Pick the lowest SD_NUMA domain, as that would have the smallest 2173 * imbalance and would be the first to start moving tasks about. 2174 * 2175 * And we want to avoid any moving of tasks about, as that would create 2176 * random movement of tasks -- counter the numa conditions we're trying 2177 * to satisfy here. 2178 */ 2179 rcu_read_lock(); 2180 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2181 if (sd) { 2182 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2183 env.imb_numa_nr = sd->imb_numa_nr; 2184 } 2185 rcu_read_unlock(); 2186 2187 /* 2188 * Cpusets can break the scheduler domain tree into smaller 2189 * balance domains, some of which do not cross NUMA boundaries. 2190 * Tasks that are "trapped" in such domains cannot be migrated 2191 * elsewhere, so there is no point in (re)trying. 2192 */ 2193 if (unlikely(!sd)) { 2194 sched_setnuma(p, task_node(p)); 2195 return -EINVAL; 2196 } 2197 2198 env.dst_nid = p->numa_preferred_nid; 2199 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2200 taskweight = task_weight(p, env.src_nid, dist); 2201 groupweight = group_weight(p, env.src_nid, dist); 2202 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2203 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2204 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2205 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2206 2207 /* Try to find a spot on the preferred nid. */ 2208 task_numa_find_cpu(&env, taskimp, groupimp); 2209 2210 /* 2211 * Look at other nodes in these cases: 2212 * - there is no space available on the preferred_nid 2213 * - the task is part of a numa_group that is interleaved across 2214 * multiple NUMA nodes; in order to better consolidate the group, 2215 * we need to check other locations. 2216 */ 2217 ng = deref_curr_numa_group(p); 2218 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2219 for_each_node_state(nid, N_CPU) { 2220 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2221 continue; 2222 2223 dist = node_distance(env.src_nid, env.dst_nid); 2224 if (sched_numa_topology_type == NUMA_BACKPLANE && 2225 dist != env.dist) { 2226 taskweight = task_weight(p, env.src_nid, dist); 2227 groupweight = group_weight(p, env.src_nid, dist); 2228 } 2229 2230 /* Only consider nodes where both task and groups benefit */ 2231 taskimp = task_weight(p, nid, dist) - taskweight; 2232 groupimp = group_weight(p, nid, dist) - groupweight; 2233 if (taskimp < 0 && groupimp < 0) 2234 continue; 2235 2236 env.dist = dist; 2237 env.dst_nid = nid; 2238 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2239 task_numa_find_cpu(&env, taskimp, groupimp); 2240 } 2241 } 2242 2243 /* 2244 * If the task is part of a workload that spans multiple NUMA nodes, 2245 * and is migrating into one of the workload's active nodes, remember 2246 * this node as the task's preferred numa node, so the workload can 2247 * settle down. 2248 * A task that migrated to a second choice node will be better off 2249 * trying for a better one later. Do not set the preferred node here. 2250 */ 2251 if (ng) { 2252 if (env.best_cpu == -1) 2253 nid = env.src_nid; 2254 else 2255 nid = cpu_to_node(env.best_cpu); 2256 2257 if (nid != p->numa_preferred_nid) 2258 sched_setnuma(p, nid); 2259 } 2260 2261 /* No better CPU than the current one was found. */ 2262 if (env.best_cpu == -1) { 2263 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2264 return -EAGAIN; 2265 } 2266 2267 best_rq = cpu_rq(env.best_cpu); 2268 if (env.best_task == NULL) { 2269 ret = migrate_task_to(p, env.best_cpu); 2270 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2271 if (ret != 0) 2272 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2273 return ret; 2274 } 2275 2276 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2277 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2278 2279 if (ret != 0) 2280 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2281 put_task_struct(env.best_task); 2282 return ret; 2283 } 2284 2285 /* Attempt to migrate a task to a CPU on the preferred node. */ 2286 static void numa_migrate_preferred(struct task_struct *p) 2287 { 2288 unsigned long interval = HZ; 2289 2290 /* This task has no NUMA fault statistics yet */ 2291 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2292 return; 2293 2294 /* Periodically retry migrating the task to the preferred node */ 2295 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2296 p->numa_migrate_retry = jiffies + interval; 2297 2298 /* Success if task is already running on preferred CPU */ 2299 if (task_node(p) == p->numa_preferred_nid) 2300 return; 2301 2302 /* Otherwise, try migrate to a CPU on the preferred node */ 2303 task_numa_migrate(p); 2304 } 2305 2306 /* 2307 * Find out how many nodes the workload is actively running on. Do this by 2308 * tracking the nodes from which NUMA hinting faults are triggered. This can 2309 * be different from the set of nodes where the workload's memory is currently 2310 * located. 2311 */ 2312 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2313 { 2314 unsigned long faults, max_faults = 0; 2315 int nid, active_nodes = 0; 2316 2317 for_each_node_state(nid, N_CPU) { 2318 faults = group_faults_cpu(numa_group, nid); 2319 if (faults > max_faults) 2320 max_faults = faults; 2321 } 2322 2323 for_each_node_state(nid, N_CPU) { 2324 faults = group_faults_cpu(numa_group, nid); 2325 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2326 active_nodes++; 2327 } 2328 2329 numa_group->max_faults_cpu = max_faults; 2330 numa_group->active_nodes = active_nodes; 2331 } 2332 2333 /* 2334 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2335 * increments. The more local the fault statistics are, the higher the scan 2336 * period will be for the next scan window. If local/(local+remote) ratio is 2337 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2338 * the scan period will decrease. Aim for 70% local accesses. 2339 */ 2340 #define NUMA_PERIOD_SLOTS 10 2341 #define NUMA_PERIOD_THRESHOLD 7 2342 2343 /* 2344 * Increase the scan period (slow down scanning) if the majority of 2345 * our memory is already on our local node, or if the majority of 2346 * the page accesses are shared with other processes. 2347 * Otherwise, decrease the scan period. 2348 */ 2349 static void update_task_scan_period(struct task_struct *p, 2350 unsigned long shared, unsigned long private) 2351 { 2352 unsigned int period_slot; 2353 int lr_ratio, ps_ratio; 2354 int diff; 2355 2356 unsigned long remote = p->numa_faults_locality[0]; 2357 unsigned long local = p->numa_faults_locality[1]; 2358 2359 /* 2360 * If there were no record hinting faults then either the task is 2361 * completely idle or all activity is in areas that are not of interest 2362 * to automatic numa balancing. Related to that, if there were failed 2363 * migration then it implies we are migrating too quickly or the local 2364 * node is overloaded. In either case, scan slower 2365 */ 2366 if (local + shared == 0 || p->numa_faults_locality[2]) { 2367 p->numa_scan_period = min(p->numa_scan_period_max, 2368 p->numa_scan_period << 1); 2369 2370 p->mm->numa_next_scan = jiffies + 2371 msecs_to_jiffies(p->numa_scan_period); 2372 2373 return; 2374 } 2375 2376 /* 2377 * Prepare to scale scan period relative to the current period. 2378 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2379 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2380 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2381 */ 2382 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2383 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2384 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2385 2386 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2387 /* 2388 * Most memory accesses are local. There is no need to 2389 * do fast NUMA scanning, since memory is already local. 2390 */ 2391 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2392 if (!slot) 2393 slot = 1; 2394 diff = slot * period_slot; 2395 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2396 /* 2397 * Most memory accesses are shared with other tasks. 2398 * There is no point in continuing fast NUMA scanning, 2399 * since other tasks may just move the memory elsewhere. 2400 */ 2401 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2402 if (!slot) 2403 slot = 1; 2404 diff = slot * period_slot; 2405 } else { 2406 /* 2407 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2408 * yet they are not on the local NUMA node. Speed up 2409 * NUMA scanning to get the memory moved over. 2410 */ 2411 int ratio = max(lr_ratio, ps_ratio); 2412 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2413 } 2414 2415 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2416 task_scan_min(p), task_scan_max(p)); 2417 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2418 } 2419 2420 /* 2421 * Get the fraction of time the task has been running since the last 2422 * NUMA placement cycle. The scheduler keeps similar statistics, but 2423 * decays those on a 32ms period, which is orders of magnitude off 2424 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2425 * stats only if the task is so new there are no NUMA statistics yet. 2426 */ 2427 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2428 { 2429 u64 runtime, delta, now; 2430 /* Use the start of this time slice to avoid calculations. */ 2431 now = p->se.exec_start; 2432 runtime = p->se.sum_exec_runtime; 2433 2434 if (p->last_task_numa_placement) { 2435 delta = runtime - p->last_sum_exec_runtime; 2436 *period = now - p->last_task_numa_placement; 2437 2438 /* Avoid time going backwards, prevent potential divide error: */ 2439 if (unlikely((s64)*period < 0)) 2440 *period = 0; 2441 } else { 2442 delta = p->se.avg.load_sum; 2443 *period = LOAD_AVG_MAX; 2444 } 2445 2446 p->last_sum_exec_runtime = runtime; 2447 p->last_task_numa_placement = now; 2448 2449 return delta; 2450 } 2451 2452 /* 2453 * Determine the preferred nid for a task in a numa_group. This needs to 2454 * be done in a way that produces consistent results with group_weight, 2455 * otherwise workloads might not converge. 2456 */ 2457 static int preferred_group_nid(struct task_struct *p, int nid) 2458 { 2459 nodemask_t nodes; 2460 int dist; 2461 2462 /* Direct connections between all NUMA nodes. */ 2463 if (sched_numa_topology_type == NUMA_DIRECT) 2464 return nid; 2465 2466 /* 2467 * On a system with glueless mesh NUMA topology, group_weight 2468 * scores nodes according to the number of NUMA hinting faults on 2469 * both the node itself, and on nearby nodes. 2470 */ 2471 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2472 unsigned long score, max_score = 0; 2473 int node, max_node = nid; 2474 2475 dist = sched_max_numa_distance; 2476 2477 for_each_node_state(node, N_CPU) { 2478 score = group_weight(p, node, dist); 2479 if (score > max_score) { 2480 max_score = score; 2481 max_node = node; 2482 } 2483 } 2484 return max_node; 2485 } 2486 2487 /* 2488 * Finding the preferred nid in a system with NUMA backplane 2489 * interconnect topology is more involved. The goal is to locate 2490 * tasks from numa_groups near each other in the system, and 2491 * untangle workloads from different sides of the system. This requires 2492 * searching down the hierarchy of node groups, recursively searching 2493 * inside the highest scoring group of nodes. The nodemask tricks 2494 * keep the complexity of the search down. 2495 */ 2496 nodes = node_states[N_CPU]; 2497 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2498 unsigned long max_faults = 0; 2499 nodemask_t max_group = NODE_MASK_NONE; 2500 int a, b; 2501 2502 /* Are there nodes at this distance from each other? */ 2503 if (!find_numa_distance(dist)) 2504 continue; 2505 2506 for_each_node_mask(a, nodes) { 2507 unsigned long faults = 0; 2508 nodemask_t this_group; 2509 nodes_clear(this_group); 2510 2511 /* Sum group's NUMA faults; includes a==b case. */ 2512 for_each_node_mask(b, nodes) { 2513 if (node_distance(a, b) < dist) { 2514 faults += group_faults(p, b); 2515 node_set(b, this_group); 2516 node_clear(b, nodes); 2517 } 2518 } 2519 2520 /* Remember the top group. */ 2521 if (faults > max_faults) { 2522 max_faults = faults; 2523 max_group = this_group; 2524 /* 2525 * subtle: at the smallest distance there is 2526 * just one node left in each "group", the 2527 * winner is the preferred nid. 2528 */ 2529 nid = a; 2530 } 2531 } 2532 /* Next round, evaluate the nodes within max_group. */ 2533 if (!max_faults) 2534 break; 2535 nodes = max_group; 2536 } 2537 return nid; 2538 } 2539 2540 static void task_numa_placement(struct task_struct *p) 2541 { 2542 int seq, nid, max_nid = NUMA_NO_NODE; 2543 unsigned long max_faults = 0; 2544 unsigned long fault_types[2] = { 0, 0 }; 2545 unsigned long total_faults; 2546 u64 runtime, period; 2547 spinlock_t *group_lock = NULL; 2548 struct numa_group *ng; 2549 2550 /* 2551 * The p->mm->numa_scan_seq field gets updated without 2552 * exclusive access. Use READ_ONCE() here to ensure 2553 * that the field is read in a single access: 2554 */ 2555 seq = READ_ONCE(p->mm->numa_scan_seq); 2556 if (p->numa_scan_seq == seq) 2557 return; 2558 p->numa_scan_seq = seq; 2559 p->numa_scan_period_max = task_scan_max(p); 2560 2561 total_faults = p->numa_faults_locality[0] + 2562 p->numa_faults_locality[1]; 2563 runtime = numa_get_avg_runtime(p, &period); 2564 2565 /* If the task is part of a group prevent parallel updates to group stats */ 2566 ng = deref_curr_numa_group(p); 2567 if (ng) { 2568 group_lock = &ng->lock; 2569 spin_lock_irq(group_lock); 2570 } 2571 2572 /* Find the node with the highest number of faults */ 2573 for_each_online_node(nid) { 2574 /* Keep track of the offsets in numa_faults array */ 2575 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2576 unsigned long faults = 0, group_faults = 0; 2577 int priv; 2578 2579 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2580 long diff, f_diff, f_weight; 2581 2582 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2583 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2584 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2585 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2586 2587 /* Decay existing window, copy faults since last scan */ 2588 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2589 fault_types[priv] += p->numa_faults[membuf_idx]; 2590 p->numa_faults[membuf_idx] = 0; 2591 2592 /* 2593 * Normalize the faults_from, so all tasks in a group 2594 * count according to CPU use, instead of by the raw 2595 * number of faults. Tasks with little runtime have 2596 * little over-all impact on throughput, and thus their 2597 * faults are less important. 2598 */ 2599 f_weight = div64_u64(runtime << 16, period + 1); 2600 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2601 (total_faults + 1); 2602 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2603 p->numa_faults[cpubuf_idx] = 0; 2604 2605 p->numa_faults[mem_idx] += diff; 2606 p->numa_faults[cpu_idx] += f_diff; 2607 faults += p->numa_faults[mem_idx]; 2608 p->total_numa_faults += diff; 2609 if (ng) { 2610 /* 2611 * safe because we can only change our own group 2612 * 2613 * mem_idx represents the offset for a given 2614 * nid and priv in a specific region because it 2615 * is at the beginning of the numa_faults array. 2616 */ 2617 ng->faults[mem_idx] += diff; 2618 ng->faults[cpu_idx] += f_diff; 2619 ng->total_faults += diff; 2620 group_faults += ng->faults[mem_idx]; 2621 } 2622 } 2623 2624 if (!ng) { 2625 if (faults > max_faults) { 2626 max_faults = faults; 2627 max_nid = nid; 2628 } 2629 } else if (group_faults > max_faults) { 2630 max_faults = group_faults; 2631 max_nid = nid; 2632 } 2633 } 2634 2635 /* Cannot migrate task to CPU-less node */ 2636 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2637 int near_nid = max_nid; 2638 int distance, near_distance = INT_MAX; 2639 2640 for_each_node_state(nid, N_CPU) { 2641 distance = node_distance(max_nid, nid); 2642 if (distance < near_distance) { 2643 near_nid = nid; 2644 near_distance = distance; 2645 } 2646 } 2647 max_nid = near_nid; 2648 } 2649 2650 if (ng) { 2651 numa_group_count_active_nodes(ng); 2652 spin_unlock_irq(group_lock); 2653 max_nid = preferred_group_nid(p, max_nid); 2654 } 2655 2656 if (max_faults) { 2657 /* Set the new preferred node */ 2658 if (max_nid != p->numa_preferred_nid) 2659 sched_setnuma(p, max_nid); 2660 } 2661 2662 update_task_scan_period(p, fault_types[0], fault_types[1]); 2663 } 2664 2665 static inline int get_numa_group(struct numa_group *grp) 2666 { 2667 return refcount_inc_not_zero(&grp->refcount); 2668 } 2669 2670 static inline void put_numa_group(struct numa_group *grp) 2671 { 2672 if (refcount_dec_and_test(&grp->refcount)) 2673 kfree_rcu(grp, rcu); 2674 } 2675 2676 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2677 int *priv) 2678 { 2679 struct numa_group *grp, *my_grp; 2680 struct task_struct *tsk; 2681 bool join = false; 2682 int cpu = cpupid_to_cpu(cpupid); 2683 int i; 2684 2685 if (unlikely(!deref_curr_numa_group(p))) { 2686 unsigned int size = sizeof(struct numa_group) + 2687 NR_NUMA_HINT_FAULT_STATS * 2688 nr_node_ids * sizeof(unsigned long); 2689 2690 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2691 if (!grp) 2692 return; 2693 2694 refcount_set(&grp->refcount, 1); 2695 grp->active_nodes = 1; 2696 grp->max_faults_cpu = 0; 2697 spin_lock_init(&grp->lock); 2698 grp->gid = p->pid; 2699 2700 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2701 grp->faults[i] = p->numa_faults[i]; 2702 2703 grp->total_faults = p->total_numa_faults; 2704 2705 grp->nr_tasks++; 2706 rcu_assign_pointer(p->numa_group, grp); 2707 } 2708 2709 rcu_read_lock(); 2710 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2711 2712 if (!cpupid_match_pid(tsk, cpupid)) 2713 goto no_join; 2714 2715 grp = rcu_dereference(tsk->numa_group); 2716 if (!grp) 2717 goto no_join; 2718 2719 my_grp = deref_curr_numa_group(p); 2720 if (grp == my_grp) 2721 goto no_join; 2722 2723 /* 2724 * Only join the other group if its bigger; if we're the bigger group, 2725 * the other task will join us. 2726 */ 2727 if (my_grp->nr_tasks > grp->nr_tasks) 2728 goto no_join; 2729 2730 /* 2731 * Tie-break on the grp address. 2732 */ 2733 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2734 goto no_join; 2735 2736 /* Always join threads in the same process. */ 2737 if (tsk->mm == current->mm) 2738 join = true; 2739 2740 /* Simple filter to avoid false positives due to PID collisions */ 2741 if (flags & TNF_SHARED) 2742 join = true; 2743 2744 /* Update priv based on whether false sharing was detected */ 2745 *priv = !join; 2746 2747 if (join && !get_numa_group(grp)) 2748 goto no_join; 2749 2750 rcu_read_unlock(); 2751 2752 if (!join) 2753 return; 2754 2755 WARN_ON_ONCE(irqs_disabled()); 2756 double_lock_irq(&my_grp->lock, &grp->lock); 2757 2758 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2759 my_grp->faults[i] -= p->numa_faults[i]; 2760 grp->faults[i] += p->numa_faults[i]; 2761 } 2762 my_grp->total_faults -= p->total_numa_faults; 2763 grp->total_faults += p->total_numa_faults; 2764 2765 my_grp->nr_tasks--; 2766 grp->nr_tasks++; 2767 2768 spin_unlock(&my_grp->lock); 2769 spin_unlock_irq(&grp->lock); 2770 2771 rcu_assign_pointer(p->numa_group, grp); 2772 2773 put_numa_group(my_grp); 2774 return; 2775 2776 no_join: 2777 rcu_read_unlock(); 2778 return; 2779 } 2780 2781 /* 2782 * Get rid of NUMA statistics associated with a task (either current or dead). 2783 * If @final is set, the task is dead and has reached refcount zero, so we can 2784 * safely free all relevant data structures. Otherwise, there might be 2785 * concurrent reads from places like load balancing and procfs, and we should 2786 * reset the data back to default state without freeing ->numa_faults. 2787 */ 2788 void task_numa_free(struct task_struct *p, bool final) 2789 { 2790 /* safe: p either is current or is being freed by current */ 2791 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2792 unsigned long *numa_faults = p->numa_faults; 2793 unsigned long flags; 2794 int i; 2795 2796 if (!numa_faults) 2797 return; 2798 2799 if (grp) { 2800 spin_lock_irqsave(&grp->lock, flags); 2801 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2802 grp->faults[i] -= p->numa_faults[i]; 2803 grp->total_faults -= p->total_numa_faults; 2804 2805 grp->nr_tasks--; 2806 spin_unlock_irqrestore(&grp->lock, flags); 2807 RCU_INIT_POINTER(p->numa_group, NULL); 2808 put_numa_group(grp); 2809 } 2810 2811 if (final) { 2812 p->numa_faults = NULL; 2813 kfree(numa_faults); 2814 } else { 2815 p->total_numa_faults = 0; 2816 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2817 numa_faults[i] = 0; 2818 } 2819 } 2820 2821 /* 2822 * Got a PROT_NONE fault for a page on @node. 2823 */ 2824 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2825 { 2826 struct task_struct *p = current; 2827 bool migrated = flags & TNF_MIGRATED; 2828 int cpu_node = task_node(current); 2829 int local = !!(flags & TNF_FAULT_LOCAL); 2830 struct numa_group *ng; 2831 int priv; 2832 2833 if (!static_branch_likely(&sched_numa_balancing)) 2834 return; 2835 2836 /* for example, ksmd faulting in a user's mm */ 2837 if (!p->mm) 2838 return; 2839 2840 /* 2841 * NUMA faults statistics are unnecessary for the slow memory 2842 * node for memory tiering mode. 2843 */ 2844 if (!node_is_toptier(mem_node) && 2845 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 2846 !cpupid_valid(last_cpupid))) 2847 return; 2848 2849 /* Allocate buffer to track faults on a per-node basis */ 2850 if (unlikely(!p->numa_faults)) { 2851 int size = sizeof(*p->numa_faults) * 2852 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2853 2854 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2855 if (!p->numa_faults) 2856 return; 2857 2858 p->total_numa_faults = 0; 2859 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2860 } 2861 2862 /* 2863 * First accesses are treated as private, otherwise consider accesses 2864 * to be private if the accessing pid has not changed 2865 */ 2866 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2867 priv = 1; 2868 } else { 2869 priv = cpupid_match_pid(p, last_cpupid); 2870 if (!priv && !(flags & TNF_NO_GROUP)) 2871 task_numa_group(p, last_cpupid, flags, &priv); 2872 } 2873 2874 /* 2875 * If a workload spans multiple NUMA nodes, a shared fault that 2876 * occurs wholly within the set of nodes that the workload is 2877 * actively using should be counted as local. This allows the 2878 * scan rate to slow down when a workload has settled down. 2879 */ 2880 ng = deref_curr_numa_group(p); 2881 if (!priv && !local && ng && ng->active_nodes > 1 && 2882 numa_is_active_node(cpu_node, ng) && 2883 numa_is_active_node(mem_node, ng)) 2884 local = 1; 2885 2886 /* 2887 * Retry to migrate task to preferred node periodically, in case it 2888 * previously failed, or the scheduler moved us. 2889 */ 2890 if (time_after(jiffies, p->numa_migrate_retry)) { 2891 task_numa_placement(p); 2892 numa_migrate_preferred(p); 2893 } 2894 2895 if (migrated) 2896 p->numa_pages_migrated += pages; 2897 if (flags & TNF_MIGRATE_FAIL) 2898 p->numa_faults_locality[2] += pages; 2899 2900 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2901 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2902 p->numa_faults_locality[local] += pages; 2903 } 2904 2905 static void reset_ptenuma_scan(struct task_struct *p) 2906 { 2907 /* 2908 * We only did a read acquisition of the mmap sem, so 2909 * p->mm->numa_scan_seq is written to without exclusive access 2910 * and the update is not guaranteed to be atomic. That's not 2911 * much of an issue though, since this is just used for 2912 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2913 * expensive, to avoid any form of compiler optimizations: 2914 */ 2915 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2916 p->mm->numa_scan_offset = 0; 2917 } 2918 2919 /* 2920 * The expensive part of numa migration is done from task_work context. 2921 * Triggered from task_tick_numa(). 2922 */ 2923 static void task_numa_work(struct callback_head *work) 2924 { 2925 unsigned long migrate, next_scan, now = jiffies; 2926 struct task_struct *p = current; 2927 struct mm_struct *mm = p->mm; 2928 u64 runtime = p->se.sum_exec_runtime; 2929 MA_STATE(mas, &mm->mm_mt, 0, 0); 2930 struct vm_area_struct *vma; 2931 unsigned long start, end; 2932 unsigned long nr_pte_updates = 0; 2933 long pages, virtpages; 2934 2935 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2936 2937 work->next = work; 2938 /* 2939 * Who cares about NUMA placement when they're dying. 2940 * 2941 * NOTE: make sure not to dereference p->mm before this check, 2942 * exit_task_work() happens _after_ exit_mm() so we could be called 2943 * without p->mm even though we still had it when we enqueued this 2944 * work. 2945 */ 2946 if (p->flags & PF_EXITING) 2947 return; 2948 2949 if (!mm->numa_next_scan) { 2950 mm->numa_next_scan = now + 2951 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2952 } 2953 2954 /* 2955 * Enforce maximal scan/migration frequency.. 2956 */ 2957 migrate = mm->numa_next_scan; 2958 if (time_before(now, migrate)) 2959 return; 2960 2961 if (p->numa_scan_period == 0) { 2962 p->numa_scan_period_max = task_scan_max(p); 2963 p->numa_scan_period = task_scan_start(p); 2964 } 2965 2966 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2967 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 2968 return; 2969 2970 /* 2971 * Delay this task enough that another task of this mm will likely win 2972 * the next time around. 2973 */ 2974 p->node_stamp += 2 * TICK_NSEC; 2975 2976 start = mm->numa_scan_offset; 2977 pages = sysctl_numa_balancing_scan_size; 2978 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2979 virtpages = pages * 8; /* Scan up to this much virtual space */ 2980 if (!pages) 2981 return; 2982 2983 2984 if (!mmap_read_trylock(mm)) 2985 return; 2986 mas_set(&mas, start); 2987 vma = mas_find(&mas, ULONG_MAX); 2988 if (!vma) { 2989 reset_ptenuma_scan(p); 2990 start = 0; 2991 mas_set(&mas, start); 2992 vma = mas_find(&mas, ULONG_MAX); 2993 } 2994 2995 for (; vma; vma = mas_find(&mas, ULONG_MAX)) { 2996 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2997 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2998 continue; 2999 } 3000 3001 /* 3002 * Shared library pages mapped by multiple processes are not 3003 * migrated as it is expected they are cache replicated. Avoid 3004 * hinting faults in read-only file-backed mappings or the vdso 3005 * as migrating the pages will be of marginal benefit. 3006 */ 3007 if (!vma->vm_mm || 3008 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3009 continue; 3010 3011 /* 3012 * Skip inaccessible VMAs to avoid any confusion between 3013 * PROT_NONE and NUMA hinting ptes 3014 */ 3015 if (!vma_is_accessible(vma)) 3016 continue; 3017 3018 do { 3019 start = max(start, vma->vm_start); 3020 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3021 end = min(end, vma->vm_end); 3022 nr_pte_updates = change_prot_numa(vma, start, end); 3023 3024 /* 3025 * Try to scan sysctl_numa_balancing_size worth of 3026 * hpages that have at least one present PTE that 3027 * is not already pte-numa. If the VMA contains 3028 * areas that are unused or already full of prot_numa 3029 * PTEs, scan up to virtpages, to skip through those 3030 * areas faster. 3031 */ 3032 if (nr_pte_updates) 3033 pages -= (end - start) >> PAGE_SHIFT; 3034 virtpages -= (end - start) >> PAGE_SHIFT; 3035 3036 start = end; 3037 if (pages <= 0 || virtpages <= 0) 3038 goto out; 3039 3040 cond_resched(); 3041 } while (end != vma->vm_end); 3042 } 3043 3044 out: 3045 /* 3046 * It is possible to reach the end of the VMA list but the last few 3047 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3048 * would find the !migratable VMA on the next scan but not reset the 3049 * scanner to the start so check it now. 3050 */ 3051 if (vma) 3052 mm->numa_scan_offset = start; 3053 else 3054 reset_ptenuma_scan(p); 3055 mmap_read_unlock(mm); 3056 3057 /* 3058 * Make sure tasks use at least 32x as much time to run other code 3059 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3060 * Usually update_task_scan_period slows down scanning enough; on an 3061 * overloaded system we need to limit overhead on a per task basis. 3062 */ 3063 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3064 u64 diff = p->se.sum_exec_runtime - runtime; 3065 p->node_stamp += 32 * diff; 3066 } 3067 } 3068 3069 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3070 { 3071 int mm_users = 0; 3072 struct mm_struct *mm = p->mm; 3073 3074 if (mm) { 3075 mm_users = atomic_read(&mm->mm_users); 3076 if (mm_users == 1) { 3077 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3078 mm->numa_scan_seq = 0; 3079 } 3080 } 3081 p->node_stamp = 0; 3082 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3083 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3084 p->numa_migrate_retry = 0; 3085 /* Protect against double add, see task_tick_numa and task_numa_work */ 3086 p->numa_work.next = &p->numa_work; 3087 p->numa_faults = NULL; 3088 p->numa_pages_migrated = 0; 3089 p->total_numa_faults = 0; 3090 RCU_INIT_POINTER(p->numa_group, NULL); 3091 p->last_task_numa_placement = 0; 3092 p->last_sum_exec_runtime = 0; 3093 3094 init_task_work(&p->numa_work, task_numa_work); 3095 3096 /* New address space, reset the preferred nid */ 3097 if (!(clone_flags & CLONE_VM)) { 3098 p->numa_preferred_nid = NUMA_NO_NODE; 3099 return; 3100 } 3101 3102 /* 3103 * New thread, keep existing numa_preferred_nid which should be copied 3104 * already by arch_dup_task_struct but stagger when scans start. 3105 */ 3106 if (mm) { 3107 unsigned int delay; 3108 3109 delay = min_t(unsigned int, task_scan_max(current), 3110 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3111 delay += 2 * TICK_NSEC; 3112 p->node_stamp = delay; 3113 } 3114 } 3115 3116 /* 3117 * Drive the periodic memory faults.. 3118 */ 3119 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3120 { 3121 struct callback_head *work = &curr->numa_work; 3122 u64 period, now; 3123 3124 /* 3125 * We don't care about NUMA placement if we don't have memory. 3126 */ 3127 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3128 return; 3129 3130 /* 3131 * Using runtime rather than walltime has the dual advantage that 3132 * we (mostly) drive the selection from busy threads and that the 3133 * task needs to have done some actual work before we bother with 3134 * NUMA placement. 3135 */ 3136 now = curr->se.sum_exec_runtime; 3137 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3138 3139 if (now > curr->node_stamp + period) { 3140 if (!curr->node_stamp) 3141 curr->numa_scan_period = task_scan_start(curr); 3142 curr->node_stamp += period; 3143 3144 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3145 task_work_add(curr, work, TWA_RESUME); 3146 } 3147 } 3148 3149 static void update_scan_period(struct task_struct *p, int new_cpu) 3150 { 3151 int src_nid = cpu_to_node(task_cpu(p)); 3152 int dst_nid = cpu_to_node(new_cpu); 3153 3154 if (!static_branch_likely(&sched_numa_balancing)) 3155 return; 3156 3157 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3158 return; 3159 3160 if (src_nid == dst_nid) 3161 return; 3162 3163 /* 3164 * Allow resets if faults have been trapped before one scan 3165 * has completed. This is most likely due to a new task that 3166 * is pulled cross-node due to wakeups or load balancing. 3167 */ 3168 if (p->numa_scan_seq) { 3169 /* 3170 * Avoid scan adjustments if moving to the preferred 3171 * node or if the task was not previously running on 3172 * the preferred node. 3173 */ 3174 if (dst_nid == p->numa_preferred_nid || 3175 (p->numa_preferred_nid != NUMA_NO_NODE && 3176 src_nid != p->numa_preferred_nid)) 3177 return; 3178 } 3179 3180 p->numa_scan_period = task_scan_start(p); 3181 } 3182 3183 #else 3184 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3185 { 3186 } 3187 3188 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3189 { 3190 } 3191 3192 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3193 { 3194 } 3195 3196 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3197 { 3198 } 3199 3200 #endif /* CONFIG_NUMA_BALANCING */ 3201 3202 static void 3203 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3204 { 3205 update_load_add(&cfs_rq->load, se->load.weight); 3206 #ifdef CONFIG_SMP 3207 if (entity_is_task(se)) { 3208 struct rq *rq = rq_of(cfs_rq); 3209 3210 account_numa_enqueue(rq, task_of(se)); 3211 list_add(&se->group_node, &rq->cfs_tasks); 3212 } 3213 #endif 3214 cfs_rq->nr_running++; 3215 if (se_is_idle(se)) 3216 cfs_rq->idle_nr_running++; 3217 } 3218 3219 static void 3220 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3221 { 3222 update_load_sub(&cfs_rq->load, se->load.weight); 3223 #ifdef CONFIG_SMP 3224 if (entity_is_task(se)) { 3225 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3226 list_del_init(&se->group_node); 3227 } 3228 #endif 3229 cfs_rq->nr_running--; 3230 if (se_is_idle(se)) 3231 cfs_rq->idle_nr_running--; 3232 } 3233 3234 /* 3235 * Signed add and clamp on underflow. 3236 * 3237 * Explicitly do a load-store to ensure the intermediate value never hits 3238 * memory. This allows lockless observations without ever seeing the negative 3239 * values. 3240 */ 3241 #define add_positive(_ptr, _val) do { \ 3242 typeof(_ptr) ptr = (_ptr); \ 3243 typeof(_val) val = (_val); \ 3244 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3245 \ 3246 res = var + val; \ 3247 \ 3248 if (val < 0 && res > var) \ 3249 res = 0; \ 3250 \ 3251 WRITE_ONCE(*ptr, res); \ 3252 } while (0) 3253 3254 /* 3255 * Unsigned subtract and clamp on underflow. 3256 * 3257 * Explicitly do a load-store to ensure the intermediate value never hits 3258 * memory. This allows lockless observations without ever seeing the negative 3259 * values. 3260 */ 3261 #define sub_positive(_ptr, _val) do { \ 3262 typeof(_ptr) ptr = (_ptr); \ 3263 typeof(*ptr) val = (_val); \ 3264 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3265 res = var - val; \ 3266 if (res > var) \ 3267 res = 0; \ 3268 WRITE_ONCE(*ptr, res); \ 3269 } while (0) 3270 3271 /* 3272 * Remove and clamp on negative, from a local variable. 3273 * 3274 * A variant of sub_positive(), which does not use explicit load-store 3275 * and is thus optimized for local variable updates. 3276 */ 3277 #define lsub_positive(_ptr, _val) do { \ 3278 typeof(_ptr) ptr = (_ptr); \ 3279 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3280 } while (0) 3281 3282 #ifdef CONFIG_SMP 3283 static inline void 3284 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3285 { 3286 cfs_rq->avg.load_avg += se->avg.load_avg; 3287 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3288 } 3289 3290 static inline void 3291 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3292 { 3293 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3294 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3295 /* See update_cfs_rq_load_avg() */ 3296 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3297 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3298 } 3299 #else 3300 static inline void 3301 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3302 static inline void 3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3304 #endif 3305 3306 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3307 unsigned long weight) 3308 { 3309 if (se->on_rq) { 3310 /* commit outstanding execution time */ 3311 if (cfs_rq->curr == se) 3312 update_curr(cfs_rq); 3313 update_load_sub(&cfs_rq->load, se->load.weight); 3314 } 3315 dequeue_load_avg(cfs_rq, se); 3316 3317 update_load_set(&se->load, weight); 3318 3319 #ifdef CONFIG_SMP 3320 do { 3321 u32 divider = get_pelt_divider(&se->avg); 3322 3323 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3324 } while (0); 3325 #endif 3326 3327 enqueue_load_avg(cfs_rq, se); 3328 if (se->on_rq) 3329 update_load_add(&cfs_rq->load, se->load.weight); 3330 3331 } 3332 3333 void reweight_task(struct task_struct *p, int prio) 3334 { 3335 struct sched_entity *se = &p->se; 3336 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3337 struct load_weight *load = &se->load; 3338 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3339 3340 reweight_entity(cfs_rq, se, weight); 3341 load->inv_weight = sched_prio_to_wmult[prio]; 3342 } 3343 3344 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3345 3346 #ifdef CONFIG_FAIR_GROUP_SCHED 3347 #ifdef CONFIG_SMP 3348 /* 3349 * All this does is approximate the hierarchical proportion which includes that 3350 * global sum we all love to hate. 3351 * 3352 * That is, the weight of a group entity, is the proportional share of the 3353 * group weight based on the group runqueue weights. That is: 3354 * 3355 * tg->weight * grq->load.weight 3356 * ge->load.weight = ----------------------------- (1) 3357 * \Sum grq->load.weight 3358 * 3359 * Now, because computing that sum is prohibitively expensive to compute (been 3360 * there, done that) we approximate it with this average stuff. The average 3361 * moves slower and therefore the approximation is cheaper and more stable. 3362 * 3363 * So instead of the above, we substitute: 3364 * 3365 * grq->load.weight -> grq->avg.load_avg (2) 3366 * 3367 * which yields the following: 3368 * 3369 * tg->weight * grq->avg.load_avg 3370 * ge->load.weight = ------------------------------ (3) 3371 * tg->load_avg 3372 * 3373 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3374 * 3375 * That is shares_avg, and it is right (given the approximation (2)). 3376 * 3377 * The problem with it is that because the average is slow -- it was designed 3378 * to be exactly that of course -- this leads to transients in boundary 3379 * conditions. In specific, the case where the group was idle and we start the 3380 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3381 * yielding bad latency etc.. 3382 * 3383 * Now, in that special case (1) reduces to: 3384 * 3385 * tg->weight * grq->load.weight 3386 * ge->load.weight = ----------------------------- = tg->weight (4) 3387 * grp->load.weight 3388 * 3389 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3390 * 3391 * So what we do is modify our approximation (3) to approach (4) in the (near) 3392 * UP case, like: 3393 * 3394 * ge->load.weight = 3395 * 3396 * tg->weight * grq->load.weight 3397 * --------------------------------------------------- (5) 3398 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3399 * 3400 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3401 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3402 * 3403 * 3404 * tg->weight * grq->load.weight 3405 * ge->load.weight = ----------------------------- (6) 3406 * tg_load_avg' 3407 * 3408 * Where: 3409 * 3410 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3411 * max(grq->load.weight, grq->avg.load_avg) 3412 * 3413 * And that is shares_weight and is icky. In the (near) UP case it approaches 3414 * (4) while in the normal case it approaches (3). It consistently 3415 * overestimates the ge->load.weight and therefore: 3416 * 3417 * \Sum ge->load.weight >= tg->weight 3418 * 3419 * hence icky! 3420 */ 3421 static long calc_group_shares(struct cfs_rq *cfs_rq) 3422 { 3423 long tg_weight, tg_shares, load, shares; 3424 struct task_group *tg = cfs_rq->tg; 3425 3426 tg_shares = READ_ONCE(tg->shares); 3427 3428 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3429 3430 tg_weight = atomic_long_read(&tg->load_avg); 3431 3432 /* Ensure tg_weight >= load */ 3433 tg_weight -= cfs_rq->tg_load_avg_contrib; 3434 tg_weight += load; 3435 3436 shares = (tg_shares * load); 3437 if (tg_weight) 3438 shares /= tg_weight; 3439 3440 /* 3441 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3442 * of a group with small tg->shares value. It is a floor value which is 3443 * assigned as a minimum load.weight to the sched_entity representing 3444 * the group on a CPU. 3445 * 3446 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3447 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3448 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3449 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3450 * instead of 0. 3451 */ 3452 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3453 } 3454 #endif /* CONFIG_SMP */ 3455 3456 /* 3457 * Recomputes the group entity based on the current state of its group 3458 * runqueue. 3459 */ 3460 static void update_cfs_group(struct sched_entity *se) 3461 { 3462 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3463 long shares; 3464 3465 if (!gcfs_rq) 3466 return; 3467 3468 if (throttled_hierarchy(gcfs_rq)) 3469 return; 3470 3471 #ifndef CONFIG_SMP 3472 shares = READ_ONCE(gcfs_rq->tg->shares); 3473 3474 if (likely(se->load.weight == shares)) 3475 return; 3476 #else 3477 shares = calc_group_shares(gcfs_rq); 3478 #endif 3479 3480 reweight_entity(cfs_rq_of(se), se, shares); 3481 } 3482 3483 #else /* CONFIG_FAIR_GROUP_SCHED */ 3484 static inline void update_cfs_group(struct sched_entity *se) 3485 { 3486 } 3487 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3488 3489 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3490 { 3491 struct rq *rq = rq_of(cfs_rq); 3492 3493 if (&rq->cfs == cfs_rq) { 3494 /* 3495 * There are a few boundary cases this might miss but it should 3496 * get called often enough that that should (hopefully) not be 3497 * a real problem. 3498 * 3499 * It will not get called when we go idle, because the idle 3500 * thread is a different class (!fair), nor will the utilization 3501 * number include things like RT tasks. 3502 * 3503 * As is, the util number is not freq-invariant (we'd have to 3504 * implement arch_scale_freq_capacity() for that). 3505 * 3506 * See cpu_util_cfs(). 3507 */ 3508 cpufreq_update_util(rq, flags); 3509 } 3510 } 3511 3512 #ifdef CONFIG_SMP 3513 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3514 { 3515 if (sa->load_sum) 3516 return false; 3517 3518 if (sa->util_sum) 3519 return false; 3520 3521 if (sa->runnable_sum) 3522 return false; 3523 3524 /* 3525 * _avg must be null when _sum are null because _avg = _sum / divider 3526 * Make sure that rounding and/or propagation of PELT values never 3527 * break this. 3528 */ 3529 SCHED_WARN_ON(sa->load_avg || 3530 sa->util_avg || 3531 sa->runnable_avg); 3532 3533 return true; 3534 } 3535 3536 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3537 { 3538 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3539 cfs_rq->last_update_time_copy); 3540 } 3541 #ifdef CONFIG_FAIR_GROUP_SCHED 3542 /* 3543 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3544 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3545 * bottom-up, we only have to test whether the cfs_rq before us on the list 3546 * is our child. 3547 * If cfs_rq is not on the list, test whether a child needs its to be added to 3548 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3549 */ 3550 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3551 { 3552 struct cfs_rq *prev_cfs_rq; 3553 struct list_head *prev; 3554 3555 if (cfs_rq->on_list) { 3556 prev = cfs_rq->leaf_cfs_rq_list.prev; 3557 } else { 3558 struct rq *rq = rq_of(cfs_rq); 3559 3560 prev = rq->tmp_alone_branch; 3561 } 3562 3563 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3564 3565 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3566 } 3567 3568 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3569 { 3570 if (cfs_rq->load.weight) 3571 return false; 3572 3573 if (!load_avg_is_decayed(&cfs_rq->avg)) 3574 return false; 3575 3576 if (child_cfs_rq_on_list(cfs_rq)) 3577 return false; 3578 3579 return true; 3580 } 3581 3582 /** 3583 * update_tg_load_avg - update the tg's load avg 3584 * @cfs_rq: the cfs_rq whose avg changed 3585 * 3586 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3587 * However, because tg->load_avg is a global value there are performance 3588 * considerations. 3589 * 3590 * In order to avoid having to look at the other cfs_rq's, we use a 3591 * differential update where we store the last value we propagated. This in 3592 * turn allows skipping updates if the differential is 'small'. 3593 * 3594 * Updating tg's load_avg is necessary before update_cfs_share(). 3595 */ 3596 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3597 { 3598 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3599 3600 /* 3601 * No need to update load_avg for root_task_group as it is not used. 3602 */ 3603 if (cfs_rq->tg == &root_task_group) 3604 return; 3605 3606 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3607 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3608 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3609 } 3610 } 3611 3612 /* 3613 * Called within set_task_rq() right before setting a task's CPU. The 3614 * caller only guarantees p->pi_lock is held; no other assumptions, 3615 * including the state of rq->lock, should be made. 3616 */ 3617 void set_task_rq_fair(struct sched_entity *se, 3618 struct cfs_rq *prev, struct cfs_rq *next) 3619 { 3620 u64 p_last_update_time; 3621 u64 n_last_update_time; 3622 3623 if (!sched_feat(ATTACH_AGE_LOAD)) 3624 return; 3625 3626 /* 3627 * We are supposed to update the task to "current" time, then its up to 3628 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3629 * getting what current time is, so simply throw away the out-of-date 3630 * time. This will result in the wakee task is less decayed, but giving 3631 * the wakee more load sounds not bad. 3632 */ 3633 if (!(se->avg.last_update_time && prev)) 3634 return; 3635 3636 p_last_update_time = cfs_rq_last_update_time(prev); 3637 n_last_update_time = cfs_rq_last_update_time(next); 3638 3639 __update_load_avg_blocked_se(p_last_update_time, se); 3640 se->avg.last_update_time = n_last_update_time; 3641 } 3642 3643 /* 3644 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3645 * propagate its contribution. The key to this propagation is the invariant 3646 * that for each group: 3647 * 3648 * ge->avg == grq->avg (1) 3649 * 3650 * _IFF_ we look at the pure running and runnable sums. Because they 3651 * represent the very same entity, just at different points in the hierarchy. 3652 * 3653 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3654 * and simply copies the running/runnable sum over (but still wrong, because 3655 * the group entity and group rq do not have their PELT windows aligned). 3656 * 3657 * However, update_tg_cfs_load() is more complex. So we have: 3658 * 3659 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3660 * 3661 * And since, like util, the runnable part should be directly transferable, 3662 * the following would _appear_ to be the straight forward approach: 3663 * 3664 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3665 * 3666 * And per (1) we have: 3667 * 3668 * ge->avg.runnable_avg == grq->avg.runnable_avg 3669 * 3670 * Which gives: 3671 * 3672 * ge->load.weight * grq->avg.load_avg 3673 * ge->avg.load_avg = ----------------------------------- (4) 3674 * grq->load.weight 3675 * 3676 * Except that is wrong! 3677 * 3678 * Because while for entities historical weight is not important and we 3679 * really only care about our future and therefore can consider a pure 3680 * runnable sum, runqueues can NOT do this. 3681 * 3682 * We specifically want runqueues to have a load_avg that includes 3683 * historical weights. Those represent the blocked load, the load we expect 3684 * to (shortly) return to us. This only works by keeping the weights as 3685 * integral part of the sum. We therefore cannot decompose as per (3). 3686 * 3687 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3688 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3689 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3690 * runnable section of these tasks overlap (or not). If they were to perfectly 3691 * align the rq as a whole would be runnable 2/3 of the time. If however we 3692 * always have at least 1 runnable task, the rq as a whole is always runnable. 3693 * 3694 * So we'll have to approximate.. :/ 3695 * 3696 * Given the constraint: 3697 * 3698 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3699 * 3700 * We can construct a rule that adds runnable to a rq by assuming minimal 3701 * overlap. 3702 * 3703 * On removal, we'll assume each task is equally runnable; which yields: 3704 * 3705 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3706 * 3707 * XXX: only do this for the part of runnable > running ? 3708 * 3709 */ 3710 static inline void 3711 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3712 { 3713 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3714 u32 new_sum, divider; 3715 3716 /* Nothing to update */ 3717 if (!delta_avg) 3718 return; 3719 3720 /* 3721 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3722 * See ___update_load_avg() for details. 3723 */ 3724 divider = get_pelt_divider(&cfs_rq->avg); 3725 3726 3727 /* Set new sched_entity's utilization */ 3728 se->avg.util_avg = gcfs_rq->avg.util_avg; 3729 new_sum = se->avg.util_avg * divider; 3730 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3731 se->avg.util_sum = new_sum; 3732 3733 /* Update parent cfs_rq utilization */ 3734 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3735 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3736 3737 /* See update_cfs_rq_load_avg() */ 3738 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3739 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3740 } 3741 3742 static inline void 3743 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3744 { 3745 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3746 u32 new_sum, divider; 3747 3748 /* Nothing to update */ 3749 if (!delta_avg) 3750 return; 3751 3752 /* 3753 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3754 * See ___update_load_avg() for details. 3755 */ 3756 divider = get_pelt_divider(&cfs_rq->avg); 3757 3758 /* Set new sched_entity's runnable */ 3759 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3760 new_sum = se->avg.runnable_avg * divider; 3761 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3762 se->avg.runnable_sum = new_sum; 3763 3764 /* Update parent cfs_rq runnable */ 3765 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3766 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3767 /* See update_cfs_rq_load_avg() */ 3768 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3769 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3770 } 3771 3772 static inline void 3773 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3774 { 3775 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3776 unsigned long load_avg; 3777 u64 load_sum = 0; 3778 s64 delta_sum; 3779 u32 divider; 3780 3781 if (!runnable_sum) 3782 return; 3783 3784 gcfs_rq->prop_runnable_sum = 0; 3785 3786 /* 3787 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3788 * See ___update_load_avg() for details. 3789 */ 3790 divider = get_pelt_divider(&cfs_rq->avg); 3791 3792 if (runnable_sum >= 0) { 3793 /* 3794 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3795 * the CPU is saturated running == runnable. 3796 */ 3797 runnable_sum += se->avg.load_sum; 3798 runnable_sum = min_t(long, runnable_sum, divider); 3799 } else { 3800 /* 3801 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3802 * assuming all tasks are equally runnable. 3803 */ 3804 if (scale_load_down(gcfs_rq->load.weight)) { 3805 load_sum = div_u64(gcfs_rq->avg.load_sum, 3806 scale_load_down(gcfs_rq->load.weight)); 3807 } 3808 3809 /* But make sure to not inflate se's runnable */ 3810 runnable_sum = min(se->avg.load_sum, load_sum); 3811 } 3812 3813 /* 3814 * runnable_sum can't be lower than running_sum 3815 * Rescale running sum to be in the same range as runnable sum 3816 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3817 * runnable_sum is in [0 : LOAD_AVG_MAX] 3818 */ 3819 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3820 runnable_sum = max(runnable_sum, running_sum); 3821 3822 load_sum = se_weight(se) * runnable_sum; 3823 load_avg = div_u64(load_sum, divider); 3824 3825 delta_avg = load_avg - se->avg.load_avg; 3826 if (!delta_avg) 3827 return; 3828 3829 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3830 3831 se->avg.load_sum = runnable_sum; 3832 se->avg.load_avg = load_avg; 3833 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3834 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3835 /* See update_cfs_rq_load_avg() */ 3836 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3837 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3838 } 3839 3840 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3841 { 3842 cfs_rq->propagate = 1; 3843 cfs_rq->prop_runnable_sum += runnable_sum; 3844 } 3845 3846 /* Update task and its cfs_rq load average */ 3847 static inline int propagate_entity_load_avg(struct sched_entity *se) 3848 { 3849 struct cfs_rq *cfs_rq, *gcfs_rq; 3850 3851 if (entity_is_task(se)) 3852 return 0; 3853 3854 gcfs_rq = group_cfs_rq(se); 3855 if (!gcfs_rq->propagate) 3856 return 0; 3857 3858 gcfs_rq->propagate = 0; 3859 3860 cfs_rq = cfs_rq_of(se); 3861 3862 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3863 3864 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3865 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3866 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3867 3868 trace_pelt_cfs_tp(cfs_rq); 3869 trace_pelt_se_tp(se); 3870 3871 return 1; 3872 } 3873 3874 /* 3875 * Check if we need to update the load and the utilization of a blocked 3876 * group_entity: 3877 */ 3878 static inline bool skip_blocked_update(struct sched_entity *se) 3879 { 3880 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3881 3882 /* 3883 * If sched_entity still have not zero load or utilization, we have to 3884 * decay it: 3885 */ 3886 if (se->avg.load_avg || se->avg.util_avg) 3887 return false; 3888 3889 /* 3890 * If there is a pending propagation, we have to update the load and 3891 * the utilization of the sched_entity: 3892 */ 3893 if (gcfs_rq->propagate) 3894 return false; 3895 3896 /* 3897 * Otherwise, the load and the utilization of the sched_entity is 3898 * already zero and there is no pending propagation, so it will be a 3899 * waste of time to try to decay it: 3900 */ 3901 return true; 3902 } 3903 3904 #else /* CONFIG_FAIR_GROUP_SCHED */ 3905 3906 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3907 3908 static inline int propagate_entity_load_avg(struct sched_entity *se) 3909 { 3910 return 0; 3911 } 3912 3913 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3914 3915 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3916 3917 #ifdef CONFIG_NO_HZ_COMMON 3918 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3919 { 3920 u64 throttled = 0, now, lut; 3921 struct cfs_rq *cfs_rq; 3922 struct rq *rq; 3923 bool is_idle; 3924 3925 if (load_avg_is_decayed(&se->avg)) 3926 return; 3927 3928 cfs_rq = cfs_rq_of(se); 3929 rq = rq_of(cfs_rq); 3930 3931 rcu_read_lock(); 3932 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3933 rcu_read_unlock(); 3934 3935 /* 3936 * The lag estimation comes with a cost we don't want to pay all the 3937 * time. Hence, limiting to the case where the source CPU is idle and 3938 * we know we are at the greatest risk to have an outdated clock. 3939 */ 3940 if (!is_idle) 3941 return; 3942 3943 /* 3944 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3945 * 3946 * last_update_time (the cfs_rq's last_update_time) 3947 * = cfs_rq_clock_pelt()@cfs_rq_idle 3948 * = rq_clock_pelt()@cfs_rq_idle 3949 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3950 * 3951 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3952 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3953 * 3954 * rq_idle_lag (delta between now and rq's update) 3955 * = sched_clock_cpu() - rq_clock()@rq_idle 3956 * 3957 * We can then write: 3958 * 3959 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3960 * sched_clock_cpu() - rq_clock()@rq_idle 3961 * Where: 3962 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3963 * rq_clock()@rq_idle is rq->clock_idle 3964 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3965 * is cfs_rq->throttled_pelt_idle 3966 */ 3967 3968 #ifdef CONFIG_CFS_BANDWIDTH 3969 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3970 /* The clock has been stopped for throttling */ 3971 if (throttled == U64_MAX) 3972 return; 3973 #endif 3974 now = u64_u32_load(rq->clock_pelt_idle); 3975 /* 3976 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3977 * is observed the old clock_pelt_idle value and the new clock_idle, 3978 * which lead to an underestimation. The opposite would lead to an 3979 * overestimation. 3980 */ 3981 smp_rmb(); 3982 lut = cfs_rq_last_update_time(cfs_rq); 3983 3984 now -= throttled; 3985 if (now < lut) 3986 /* 3987 * cfs_rq->avg.last_update_time is more recent than our 3988 * estimation, let's use it. 3989 */ 3990 now = lut; 3991 else 3992 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 3993 3994 __update_load_avg_blocked_se(now, se); 3995 } 3996 #else 3997 static void migrate_se_pelt_lag(struct sched_entity *se) {} 3998 #endif 3999 4000 /** 4001 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4002 * @now: current time, as per cfs_rq_clock_pelt() 4003 * @cfs_rq: cfs_rq to update 4004 * 4005 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4006 * avg. The immediate corollary is that all (fair) tasks must be attached. 4007 * 4008 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4009 * 4010 * Return: true if the load decayed or we removed load. 4011 * 4012 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4013 * call update_tg_load_avg() when this function returns true. 4014 */ 4015 static inline int 4016 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4017 { 4018 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4019 struct sched_avg *sa = &cfs_rq->avg; 4020 int decayed = 0; 4021 4022 if (cfs_rq->removed.nr) { 4023 unsigned long r; 4024 u32 divider = get_pelt_divider(&cfs_rq->avg); 4025 4026 raw_spin_lock(&cfs_rq->removed.lock); 4027 swap(cfs_rq->removed.util_avg, removed_util); 4028 swap(cfs_rq->removed.load_avg, removed_load); 4029 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4030 cfs_rq->removed.nr = 0; 4031 raw_spin_unlock(&cfs_rq->removed.lock); 4032 4033 r = removed_load; 4034 sub_positive(&sa->load_avg, r); 4035 sub_positive(&sa->load_sum, r * divider); 4036 /* See sa->util_sum below */ 4037 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4038 4039 r = removed_util; 4040 sub_positive(&sa->util_avg, r); 4041 sub_positive(&sa->util_sum, r * divider); 4042 /* 4043 * Because of rounding, se->util_sum might ends up being +1 more than 4044 * cfs->util_sum. Although this is not a problem by itself, detaching 4045 * a lot of tasks with the rounding problem between 2 updates of 4046 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4047 * cfs_util_avg is not. 4048 * Check that util_sum is still above its lower bound for the new 4049 * util_avg. Given that period_contrib might have moved since the last 4050 * sync, we are only sure that util_sum must be above or equal to 4051 * util_avg * minimum possible divider 4052 */ 4053 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4054 4055 r = removed_runnable; 4056 sub_positive(&sa->runnable_avg, r); 4057 sub_positive(&sa->runnable_sum, r * divider); 4058 /* See sa->util_sum above */ 4059 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4060 sa->runnable_avg * PELT_MIN_DIVIDER); 4061 4062 /* 4063 * removed_runnable is the unweighted version of removed_load so we 4064 * can use it to estimate removed_load_sum. 4065 */ 4066 add_tg_cfs_propagate(cfs_rq, 4067 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4068 4069 decayed = 1; 4070 } 4071 4072 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4073 u64_u32_store_copy(sa->last_update_time, 4074 cfs_rq->last_update_time_copy, 4075 sa->last_update_time); 4076 return decayed; 4077 } 4078 4079 /** 4080 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4081 * @cfs_rq: cfs_rq to attach to 4082 * @se: sched_entity to attach 4083 * 4084 * Must call update_cfs_rq_load_avg() before this, since we rely on 4085 * cfs_rq->avg.last_update_time being current. 4086 */ 4087 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4088 { 4089 /* 4090 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4091 * See ___update_load_avg() for details. 4092 */ 4093 u32 divider = get_pelt_divider(&cfs_rq->avg); 4094 4095 /* 4096 * When we attach the @se to the @cfs_rq, we must align the decay 4097 * window because without that, really weird and wonderful things can 4098 * happen. 4099 * 4100 * XXX illustrate 4101 */ 4102 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4103 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4104 4105 /* 4106 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4107 * period_contrib. This isn't strictly correct, but since we're 4108 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4109 * _sum a little. 4110 */ 4111 se->avg.util_sum = se->avg.util_avg * divider; 4112 4113 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4114 4115 se->avg.load_sum = se->avg.load_avg * divider; 4116 if (se_weight(se) < se->avg.load_sum) 4117 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4118 else 4119 se->avg.load_sum = 1; 4120 4121 enqueue_load_avg(cfs_rq, se); 4122 cfs_rq->avg.util_avg += se->avg.util_avg; 4123 cfs_rq->avg.util_sum += se->avg.util_sum; 4124 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4125 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4126 4127 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4128 4129 cfs_rq_util_change(cfs_rq, 0); 4130 4131 trace_pelt_cfs_tp(cfs_rq); 4132 } 4133 4134 /** 4135 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4136 * @cfs_rq: cfs_rq to detach from 4137 * @se: sched_entity to detach 4138 * 4139 * Must call update_cfs_rq_load_avg() before this, since we rely on 4140 * cfs_rq->avg.last_update_time being current. 4141 */ 4142 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4143 { 4144 dequeue_load_avg(cfs_rq, se); 4145 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4146 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4147 /* See update_cfs_rq_load_avg() */ 4148 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4149 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4150 4151 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4152 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4153 /* See update_cfs_rq_load_avg() */ 4154 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4155 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4156 4157 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4158 4159 cfs_rq_util_change(cfs_rq, 0); 4160 4161 trace_pelt_cfs_tp(cfs_rq); 4162 } 4163 4164 /* 4165 * Optional action to be done while updating the load average 4166 */ 4167 #define UPDATE_TG 0x1 4168 #define SKIP_AGE_LOAD 0x2 4169 #define DO_ATTACH 0x4 4170 #define DO_DETACH 0x8 4171 4172 /* Update task and its cfs_rq load average */ 4173 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4174 { 4175 u64 now = cfs_rq_clock_pelt(cfs_rq); 4176 int decayed; 4177 4178 /* 4179 * Track task load average for carrying it to new CPU after migrated, and 4180 * track group sched_entity load average for task_h_load calc in migration 4181 */ 4182 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4183 __update_load_avg_se(now, cfs_rq, se); 4184 4185 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4186 decayed |= propagate_entity_load_avg(se); 4187 4188 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4189 4190 /* 4191 * DO_ATTACH means we're here from enqueue_entity(). 4192 * !last_update_time means we've passed through 4193 * migrate_task_rq_fair() indicating we migrated. 4194 * 4195 * IOW we're enqueueing a task on a new CPU. 4196 */ 4197 attach_entity_load_avg(cfs_rq, se); 4198 update_tg_load_avg(cfs_rq); 4199 4200 } else if (flags & DO_DETACH) { 4201 /* 4202 * DO_DETACH means we're here from dequeue_entity() 4203 * and we are migrating task out of the CPU. 4204 */ 4205 detach_entity_load_avg(cfs_rq, se); 4206 update_tg_load_avg(cfs_rq); 4207 } else if (decayed) { 4208 cfs_rq_util_change(cfs_rq, 0); 4209 4210 if (flags & UPDATE_TG) 4211 update_tg_load_avg(cfs_rq); 4212 } 4213 } 4214 4215 /* 4216 * Synchronize entity load avg of dequeued entity without locking 4217 * the previous rq. 4218 */ 4219 static void sync_entity_load_avg(struct sched_entity *se) 4220 { 4221 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4222 u64 last_update_time; 4223 4224 last_update_time = cfs_rq_last_update_time(cfs_rq); 4225 __update_load_avg_blocked_se(last_update_time, se); 4226 } 4227 4228 /* 4229 * Task first catches up with cfs_rq, and then subtract 4230 * itself from the cfs_rq (task must be off the queue now). 4231 */ 4232 static void remove_entity_load_avg(struct sched_entity *se) 4233 { 4234 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4235 unsigned long flags; 4236 4237 /* 4238 * tasks cannot exit without having gone through wake_up_new_task() -> 4239 * enqueue_task_fair() which will have added things to the cfs_rq, 4240 * so we can remove unconditionally. 4241 */ 4242 4243 sync_entity_load_avg(se); 4244 4245 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4246 ++cfs_rq->removed.nr; 4247 cfs_rq->removed.util_avg += se->avg.util_avg; 4248 cfs_rq->removed.load_avg += se->avg.load_avg; 4249 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4250 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4251 } 4252 4253 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4254 { 4255 return cfs_rq->avg.runnable_avg; 4256 } 4257 4258 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4259 { 4260 return cfs_rq->avg.load_avg; 4261 } 4262 4263 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4264 4265 static inline unsigned long task_util(struct task_struct *p) 4266 { 4267 return READ_ONCE(p->se.avg.util_avg); 4268 } 4269 4270 static inline unsigned long _task_util_est(struct task_struct *p) 4271 { 4272 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4273 4274 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4275 } 4276 4277 static inline unsigned long task_util_est(struct task_struct *p) 4278 { 4279 return max(task_util(p), _task_util_est(p)); 4280 } 4281 4282 #ifdef CONFIG_UCLAMP_TASK 4283 static inline unsigned long uclamp_task_util(struct task_struct *p, 4284 unsigned long uclamp_min, 4285 unsigned long uclamp_max) 4286 { 4287 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4288 } 4289 #else 4290 static inline unsigned long uclamp_task_util(struct task_struct *p, 4291 unsigned long uclamp_min, 4292 unsigned long uclamp_max) 4293 { 4294 return task_util_est(p); 4295 } 4296 #endif 4297 4298 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4299 struct task_struct *p) 4300 { 4301 unsigned int enqueued; 4302 4303 if (!sched_feat(UTIL_EST)) 4304 return; 4305 4306 /* Update root cfs_rq's estimated utilization */ 4307 enqueued = cfs_rq->avg.util_est.enqueued; 4308 enqueued += _task_util_est(p); 4309 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4310 4311 trace_sched_util_est_cfs_tp(cfs_rq); 4312 } 4313 4314 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4315 struct task_struct *p) 4316 { 4317 unsigned int enqueued; 4318 4319 if (!sched_feat(UTIL_EST)) 4320 return; 4321 4322 /* Update root cfs_rq's estimated utilization */ 4323 enqueued = cfs_rq->avg.util_est.enqueued; 4324 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4325 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4326 4327 trace_sched_util_est_cfs_tp(cfs_rq); 4328 } 4329 4330 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4331 4332 /* 4333 * Check if a (signed) value is within a specified (unsigned) margin, 4334 * based on the observation that: 4335 * 4336 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4337 * 4338 * NOTE: this only works when value + margin < INT_MAX. 4339 */ 4340 static inline bool within_margin(int value, int margin) 4341 { 4342 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4343 } 4344 4345 static inline void util_est_update(struct cfs_rq *cfs_rq, 4346 struct task_struct *p, 4347 bool task_sleep) 4348 { 4349 long last_ewma_diff, last_enqueued_diff; 4350 struct util_est ue; 4351 4352 if (!sched_feat(UTIL_EST)) 4353 return; 4354 4355 /* 4356 * Skip update of task's estimated utilization when the task has not 4357 * yet completed an activation, e.g. being migrated. 4358 */ 4359 if (!task_sleep) 4360 return; 4361 4362 /* 4363 * If the PELT values haven't changed since enqueue time, 4364 * skip the util_est update. 4365 */ 4366 ue = p->se.avg.util_est; 4367 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4368 return; 4369 4370 last_enqueued_diff = ue.enqueued; 4371 4372 /* 4373 * Reset EWMA on utilization increases, the moving average is used only 4374 * to smooth utilization decreases. 4375 */ 4376 ue.enqueued = task_util(p); 4377 if (sched_feat(UTIL_EST_FASTUP)) { 4378 if (ue.ewma < ue.enqueued) { 4379 ue.ewma = ue.enqueued; 4380 goto done; 4381 } 4382 } 4383 4384 /* 4385 * Skip update of task's estimated utilization when its members are 4386 * already ~1% close to its last activation value. 4387 */ 4388 last_ewma_diff = ue.enqueued - ue.ewma; 4389 last_enqueued_diff -= ue.enqueued; 4390 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4391 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4392 goto done; 4393 4394 return; 4395 } 4396 4397 /* 4398 * To avoid overestimation of actual task utilization, skip updates if 4399 * we cannot grant there is idle time in this CPU. 4400 */ 4401 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4402 return; 4403 4404 /* 4405 * Update Task's estimated utilization 4406 * 4407 * When *p completes an activation we can consolidate another sample 4408 * of the task size. This is done by storing the current PELT value 4409 * as ue.enqueued and by using this value to update the Exponential 4410 * Weighted Moving Average (EWMA): 4411 * 4412 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4413 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4414 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4415 * = w * ( last_ewma_diff ) + ewma(t-1) 4416 * = w * (last_ewma_diff + ewma(t-1) / w) 4417 * 4418 * Where 'w' is the weight of new samples, which is configured to be 4419 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4420 */ 4421 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4422 ue.ewma += last_ewma_diff; 4423 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4424 done: 4425 ue.enqueued |= UTIL_AVG_UNCHANGED; 4426 WRITE_ONCE(p->se.avg.util_est, ue); 4427 4428 trace_sched_util_est_se_tp(&p->se); 4429 } 4430 4431 static inline int util_fits_cpu(unsigned long util, 4432 unsigned long uclamp_min, 4433 unsigned long uclamp_max, 4434 int cpu) 4435 { 4436 unsigned long capacity_orig, capacity_orig_thermal; 4437 unsigned long capacity = capacity_of(cpu); 4438 bool fits, uclamp_max_fits; 4439 4440 /* 4441 * Check if the real util fits without any uclamp boost/cap applied. 4442 */ 4443 fits = fits_capacity(util, capacity); 4444 4445 if (!uclamp_is_used()) 4446 return fits; 4447 4448 /* 4449 * We must use capacity_orig_of() for comparing against uclamp_min and 4450 * uclamp_max. We only care about capacity pressure (by using 4451 * capacity_of()) for comparing against the real util. 4452 * 4453 * If a task is boosted to 1024 for example, we don't want a tiny 4454 * pressure to skew the check whether it fits a CPU or not. 4455 * 4456 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4457 * should fit a little cpu even if there's some pressure. 4458 * 4459 * Only exception is for thermal pressure since it has a direct impact 4460 * on available OPP of the system. 4461 * 4462 * We honour it for uclamp_min only as a drop in performance level 4463 * could result in not getting the requested minimum performance level. 4464 * 4465 * For uclamp_max, we can tolerate a drop in performance level as the 4466 * goal is to cap the task. So it's okay if it's getting less. 4467 * 4468 * In case of capacity inversion we should honour the inverted capacity 4469 * for both uclamp_min and uclamp_max all the time. 4470 */ 4471 capacity_orig = cpu_in_capacity_inversion(cpu); 4472 if (capacity_orig) { 4473 capacity_orig_thermal = capacity_orig; 4474 } else { 4475 capacity_orig = capacity_orig_of(cpu); 4476 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4477 } 4478 4479 /* 4480 * We want to force a task to fit a cpu as implied by uclamp_max. 4481 * But we do have some corner cases to cater for.. 4482 * 4483 * 4484 * C=z 4485 * | ___ 4486 * | C=y | | 4487 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4488 * | C=x | | | | 4489 * | ___ | | | | 4490 * | | | | | | | (util somewhere in this region) 4491 * | | | | | | | 4492 * | | | | | | | 4493 * +---------------------------------------- 4494 * cpu0 cpu1 cpu2 4495 * 4496 * In the above example if a task is capped to a specific performance 4497 * point, y, then when: 4498 * 4499 * * util = 80% of x then it does not fit on cpu0 and should migrate 4500 * to cpu1 4501 * * util = 80% of y then it is forced to fit on cpu1 to honour 4502 * uclamp_max request. 4503 * 4504 * which is what we're enforcing here. A task always fits if 4505 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4506 * the normal upmigration rules should withhold still. 4507 * 4508 * Only exception is when we are on max capacity, then we need to be 4509 * careful not to block overutilized state. This is so because: 4510 * 4511 * 1. There's no concept of capping at max_capacity! We can't go 4512 * beyond this performance level anyway. 4513 * 2. The system is being saturated when we're operating near 4514 * max capacity, it doesn't make sense to block overutilized. 4515 */ 4516 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4517 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4518 fits = fits || uclamp_max_fits; 4519 4520 /* 4521 * 4522 * C=z 4523 * | ___ (region a, capped, util >= uclamp_max) 4524 * | C=y | | 4525 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4526 * | C=x | | | | 4527 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4528 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4529 * | | | | | | | 4530 * | | | | | | | (region c, boosted, util < uclamp_min) 4531 * +---------------------------------------- 4532 * cpu0 cpu1 cpu2 4533 * 4534 * a) If util > uclamp_max, then we're capped, we don't care about 4535 * actual fitness value here. We only care if uclamp_max fits 4536 * capacity without taking margin/pressure into account. 4537 * See comment above. 4538 * 4539 * b) If uclamp_min <= util <= uclamp_max, then the normal 4540 * fits_capacity() rules apply. Except we need to ensure that we 4541 * enforce we remain within uclamp_max, see comment above. 4542 * 4543 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4544 * need to take into account the boosted value fits the CPU without 4545 * taking margin/pressure into account. 4546 * 4547 * Cases (a) and (b) are handled in the 'fits' variable already. We 4548 * just need to consider an extra check for case (c) after ensuring we 4549 * handle the case uclamp_min > uclamp_max. 4550 */ 4551 uclamp_min = min(uclamp_min, uclamp_max); 4552 if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE) 4553 fits = fits && (uclamp_min <= capacity_orig_thermal); 4554 4555 return fits; 4556 } 4557 4558 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4559 { 4560 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4561 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4562 unsigned long util = task_util_est(p); 4563 return util_fits_cpu(util, uclamp_min, uclamp_max, cpu); 4564 } 4565 4566 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4567 { 4568 if (!sched_asym_cpucap_active()) 4569 return; 4570 4571 if (!p || p->nr_cpus_allowed == 1) { 4572 rq->misfit_task_load = 0; 4573 return; 4574 } 4575 4576 if (task_fits_cpu(p, cpu_of(rq))) { 4577 rq->misfit_task_load = 0; 4578 return; 4579 } 4580 4581 /* 4582 * Make sure that misfit_task_load will not be null even if 4583 * task_h_load() returns 0. 4584 */ 4585 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4586 } 4587 4588 #else /* CONFIG_SMP */ 4589 4590 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4591 { 4592 return true; 4593 } 4594 4595 #define UPDATE_TG 0x0 4596 #define SKIP_AGE_LOAD 0x0 4597 #define DO_ATTACH 0x0 4598 #define DO_DETACH 0x0 4599 4600 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4601 { 4602 cfs_rq_util_change(cfs_rq, 0); 4603 } 4604 4605 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4606 4607 static inline void 4608 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4609 static inline void 4610 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4611 4612 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4613 { 4614 return 0; 4615 } 4616 4617 static inline void 4618 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4619 4620 static inline void 4621 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4622 4623 static inline void 4624 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4625 bool task_sleep) {} 4626 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4627 4628 #endif /* CONFIG_SMP */ 4629 4630 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4631 { 4632 #ifdef CONFIG_SCHED_DEBUG 4633 s64 d = se->vruntime - cfs_rq->min_vruntime; 4634 4635 if (d < 0) 4636 d = -d; 4637 4638 if (d > 3*sysctl_sched_latency) 4639 schedstat_inc(cfs_rq->nr_spread_over); 4640 #endif 4641 } 4642 4643 static void 4644 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4645 { 4646 u64 vruntime = cfs_rq->min_vruntime; 4647 4648 /* 4649 * The 'current' period is already promised to the current tasks, 4650 * however the extra weight of the new task will slow them down a 4651 * little, place the new task so that it fits in the slot that 4652 * stays open at the end. 4653 */ 4654 if (initial && sched_feat(START_DEBIT)) 4655 vruntime += sched_vslice(cfs_rq, se); 4656 4657 /* sleeps up to a single latency don't count. */ 4658 if (!initial) { 4659 unsigned long thresh; 4660 4661 if (se_is_idle(se)) 4662 thresh = sysctl_sched_min_granularity; 4663 else 4664 thresh = sysctl_sched_latency; 4665 4666 /* 4667 * Halve their sleep time's effect, to allow 4668 * for a gentler effect of sleepers: 4669 */ 4670 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4671 thresh >>= 1; 4672 4673 vruntime -= thresh; 4674 } 4675 4676 /* ensure we never gain time by being placed backwards. */ 4677 se->vruntime = max_vruntime(se->vruntime, vruntime); 4678 } 4679 4680 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4681 4682 static inline bool cfs_bandwidth_used(void); 4683 4684 /* 4685 * MIGRATION 4686 * 4687 * dequeue 4688 * update_curr() 4689 * update_min_vruntime() 4690 * vruntime -= min_vruntime 4691 * 4692 * enqueue 4693 * update_curr() 4694 * update_min_vruntime() 4695 * vruntime += min_vruntime 4696 * 4697 * this way the vruntime transition between RQs is done when both 4698 * min_vruntime are up-to-date. 4699 * 4700 * WAKEUP (remote) 4701 * 4702 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4703 * vruntime -= min_vruntime 4704 * 4705 * enqueue 4706 * update_curr() 4707 * update_min_vruntime() 4708 * vruntime += min_vruntime 4709 * 4710 * this way we don't have the most up-to-date min_vruntime on the originating 4711 * CPU and an up-to-date min_vruntime on the destination CPU. 4712 */ 4713 4714 static void 4715 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4716 { 4717 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4718 bool curr = cfs_rq->curr == se; 4719 4720 /* 4721 * If we're the current task, we must renormalise before calling 4722 * update_curr(). 4723 */ 4724 if (renorm && curr) 4725 se->vruntime += cfs_rq->min_vruntime; 4726 4727 update_curr(cfs_rq); 4728 4729 /* 4730 * Otherwise, renormalise after, such that we're placed at the current 4731 * moment in time, instead of some random moment in the past. Being 4732 * placed in the past could significantly boost this task to the 4733 * fairness detriment of existing tasks. 4734 */ 4735 if (renorm && !curr) 4736 se->vruntime += cfs_rq->min_vruntime; 4737 4738 /* 4739 * When enqueuing a sched_entity, we must: 4740 * - Update loads to have both entity and cfs_rq synced with now. 4741 * - For group_entity, update its runnable_weight to reflect the new 4742 * h_nr_running of its group cfs_rq. 4743 * - For group_entity, update its weight to reflect the new share of 4744 * its group cfs_rq 4745 * - Add its new weight to cfs_rq->load.weight 4746 */ 4747 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4748 se_update_runnable(se); 4749 update_cfs_group(se); 4750 account_entity_enqueue(cfs_rq, se); 4751 4752 if (flags & ENQUEUE_WAKEUP) 4753 place_entity(cfs_rq, se, 0); 4754 4755 check_schedstat_required(); 4756 update_stats_enqueue_fair(cfs_rq, se, flags); 4757 check_spread(cfs_rq, se); 4758 if (!curr) 4759 __enqueue_entity(cfs_rq, se); 4760 se->on_rq = 1; 4761 4762 if (cfs_rq->nr_running == 1) { 4763 check_enqueue_throttle(cfs_rq); 4764 if (!throttled_hierarchy(cfs_rq)) 4765 list_add_leaf_cfs_rq(cfs_rq); 4766 } 4767 } 4768 4769 static void __clear_buddies_last(struct sched_entity *se) 4770 { 4771 for_each_sched_entity(se) { 4772 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4773 if (cfs_rq->last != se) 4774 break; 4775 4776 cfs_rq->last = NULL; 4777 } 4778 } 4779 4780 static void __clear_buddies_next(struct sched_entity *se) 4781 { 4782 for_each_sched_entity(se) { 4783 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4784 if (cfs_rq->next != se) 4785 break; 4786 4787 cfs_rq->next = NULL; 4788 } 4789 } 4790 4791 static void __clear_buddies_skip(struct sched_entity *se) 4792 { 4793 for_each_sched_entity(se) { 4794 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4795 if (cfs_rq->skip != se) 4796 break; 4797 4798 cfs_rq->skip = NULL; 4799 } 4800 } 4801 4802 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4803 { 4804 if (cfs_rq->last == se) 4805 __clear_buddies_last(se); 4806 4807 if (cfs_rq->next == se) 4808 __clear_buddies_next(se); 4809 4810 if (cfs_rq->skip == se) 4811 __clear_buddies_skip(se); 4812 } 4813 4814 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4815 4816 static void 4817 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4818 { 4819 int action = UPDATE_TG; 4820 4821 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4822 action |= DO_DETACH; 4823 4824 /* 4825 * Update run-time statistics of the 'current'. 4826 */ 4827 update_curr(cfs_rq); 4828 4829 /* 4830 * When dequeuing a sched_entity, we must: 4831 * - Update loads to have both entity and cfs_rq synced with now. 4832 * - For group_entity, update its runnable_weight to reflect the new 4833 * h_nr_running of its group cfs_rq. 4834 * - Subtract its previous weight from cfs_rq->load.weight. 4835 * - For group entity, update its weight to reflect the new share 4836 * of its group cfs_rq. 4837 */ 4838 update_load_avg(cfs_rq, se, action); 4839 se_update_runnable(se); 4840 4841 update_stats_dequeue_fair(cfs_rq, se, flags); 4842 4843 clear_buddies(cfs_rq, se); 4844 4845 if (se != cfs_rq->curr) 4846 __dequeue_entity(cfs_rq, se); 4847 se->on_rq = 0; 4848 account_entity_dequeue(cfs_rq, se); 4849 4850 /* 4851 * Normalize after update_curr(); which will also have moved 4852 * min_vruntime if @se is the one holding it back. But before doing 4853 * update_min_vruntime() again, which will discount @se's position and 4854 * can move min_vruntime forward still more. 4855 */ 4856 if (!(flags & DEQUEUE_SLEEP)) 4857 se->vruntime -= cfs_rq->min_vruntime; 4858 4859 /* return excess runtime on last dequeue */ 4860 return_cfs_rq_runtime(cfs_rq); 4861 4862 update_cfs_group(se); 4863 4864 /* 4865 * Now advance min_vruntime if @se was the entity holding it back, 4866 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4867 * put back on, and if we advance min_vruntime, we'll be placed back 4868 * further than we started -- ie. we'll be penalized. 4869 */ 4870 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4871 update_min_vruntime(cfs_rq); 4872 4873 if (cfs_rq->nr_running == 0) 4874 update_idle_cfs_rq_clock_pelt(cfs_rq); 4875 } 4876 4877 /* 4878 * Preempt the current task with a newly woken task if needed: 4879 */ 4880 static void 4881 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4882 { 4883 unsigned long ideal_runtime, delta_exec; 4884 struct sched_entity *se; 4885 s64 delta; 4886 4887 ideal_runtime = sched_slice(cfs_rq, curr); 4888 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4889 if (delta_exec > ideal_runtime) { 4890 resched_curr(rq_of(cfs_rq)); 4891 /* 4892 * The current task ran long enough, ensure it doesn't get 4893 * re-elected due to buddy favours. 4894 */ 4895 clear_buddies(cfs_rq, curr); 4896 return; 4897 } 4898 4899 /* 4900 * Ensure that a task that missed wakeup preemption by a 4901 * narrow margin doesn't have to wait for a full slice. 4902 * This also mitigates buddy induced latencies under load. 4903 */ 4904 if (delta_exec < sysctl_sched_min_granularity) 4905 return; 4906 4907 se = __pick_first_entity(cfs_rq); 4908 delta = curr->vruntime - se->vruntime; 4909 4910 if (delta < 0) 4911 return; 4912 4913 if (delta > ideal_runtime) 4914 resched_curr(rq_of(cfs_rq)); 4915 } 4916 4917 static void 4918 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4919 { 4920 clear_buddies(cfs_rq, se); 4921 4922 /* 'current' is not kept within the tree. */ 4923 if (se->on_rq) { 4924 /* 4925 * Any task has to be enqueued before it get to execute on 4926 * a CPU. So account for the time it spent waiting on the 4927 * runqueue. 4928 */ 4929 update_stats_wait_end_fair(cfs_rq, se); 4930 __dequeue_entity(cfs_rq, se); 4931 update_load_avg(cfs_rq, se, UPDATE_TG); 4932 } 4933 4934 update_stats_curr_start(cfs_rq, se); 4935 cfs_rq->curr = se; 4936 4937 /* 4938 * Track our maximum slice length, if the CPU's load is at 4939 * least twice that of our own weight (i.e. dont track it 4940 * when there are only lesser-weight tasks around): 4941 */ 4942 if (schedstat_enabled() && 4943 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4944 struct sched_statistics *stats; 4945 4946 stats = __schedstats_from_se(se); 4947 __schedstat_set(stats->slice_max, 4948 max((u64)stats->slice_max, 4949 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4950 } 4951 4952 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4953 } 4954 4955 static int 4956 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4957 4958 /* 4959 * Pick the next process, keeping these things in mind, in this order: 4960 * 1) keep things fair between processes/task groups 4961 * 2) pick the "next" process, since someone really wants that to run 4962 * 3) pick the "last" process, for cache locality 4963 * 4) do not run the "skip" process, if something else is available 4964 */ 4965 static struct sched_entity * 4966 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4967 { 4968 struct sched_entity *left = __pick_first_entity(cfs_rq); 4969 struct sched_entity *se; 4970 4971 /* 4972 * If curr is set we have to see if its left of the leftmost entity 4973 * still in the tree, provided there was anything in the tree at all. 4974 */ 4975 if (!left || (curr && entity_before(curr, left))) 4976 left = curr; 4977 4978 se = left; /* ideally we run the leftmost entity */ 4979 4980 /* 4981 * Avoid running the skip buddy, if running something else can 4982 * be done without getting too unfair. 4983 */ 4984 if (cfs_rq->skip && cfs_rq->skip == se) { 4985 struct sched_entity *second; 4986 4987 if (se == curr) { 4988 second = __pick_first_entity(cfs_rq); 4989 } else { 4990 second = __pick_next_entity(se); 4991 if (!second || (curr && entity_before(curr, second))) 4992 second = curr; 4993 } 4994 4995 if (second && wakeup_preempt_entity(second, left) < 1) 4996 se = second; 4997 } 4998 4999 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 5000 /* 5001 * Someone really wants this to run. If it's not unfair, run it. 5002 */ 5003 se = cfs_rq->next; 5004 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 5005 /* 5006 * Prefer last buddy, try to return the CPU to a preempted task. 5007 */ 5008 se = cfs_rq->last; 5009 } 5010 5011 return se; 5012 } 5013 5014 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5015 5016 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5017 { 5018 /* 5019 * If still on the runqueue then deactivate_task() 5020 * was not called and update_curr() has to be done: 5021 */ 5022 if (prev->on_rq) 5023 update_curr(cfs_rq); 5024 5025 /* throttle cfs_rqs exceeding runtime */ 5026 check_cfs_rq_runtime(cfs_rq); 5027 5028 check_spread(cfs_rq, prev); 5029 5030 if (prev->on_rq) { 5031 update_stats_wait_start_fair(cfs_rq, prev); 5032 /* Put 'current' back into the tree. */ 5033 __enqueue_entity(cfs_rq, prev); 5034 /* in !on_rq case, update occurred at dequeue */ 5035 update_load_avg(cfs_rq, prev, 0); 5036 } 5037 cfs_rq->curr = NULL; 5038 } 5039 5040 static void 5041 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5042 { 5043 /* 5044 * Update run-time statistics of the 'current'. 5045 */ 5046 update_curr(cfs_rq); 5047 5048 /* 5049 * Ensure that runnable average is periodically updated. 5050 */ 5051 update_load_avg(cfs_rq, curr, UPDATE_TG); 5052 update_cfs_group(curr); 5053 5054 #ifdef CONFIG_SCHED_HRTICK 5055 /* 5056 * queued ticks are scheduled to match the slice, so don't bother 5057 * validating it and just reschedule. 5058 */ 5059 if (queued) { 5060 resched_curr(rq_of(cfs_rq)); 5061 return; 5062 } 5063 /* 5064 * don't let the period tick interfere with the hrtick preemption 5065 */ 5066 if (!sched_feat(DOUBLE_TICK) && 5067 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5068 return; 5069 #endif 5070 5071 if (cfs_rq->nr_running > 1) 5072 check_preempt_tick(cfs_rq, curr); 5073 } 5074 5075 5076 /************************************************** 5077 * CFS bandwidth control machinery 5078 */ 5079 5080 #ifdef CONFIG_CFS_BANDWIDTH 5081 5082 #ifdef CONFIG_JUMP_LABEL 5083 static struct static_key __cfs_bandwidth_used; 5084 5085 static inline bool cfs_bandwidth_used(void) 5086 { 5087 return static_key_false(&__cfs_bandwidth_used); 5088 } 5089 5090 void cfs_bandwidth_usage_inc(void) 5091 { 5092 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5093 } 5094 5095 void cfs_bandwidth_usage_dec(void) 5096 { 5097 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5098 } 5099 #else /* CONFIG_JUMP_LABEL */ 5100 static bool cfs_bandwidth_used(void) 5101 { 5102 return true; 5103 } 5104 5105 void cfs_bandwidth_usage_inc(void) {} 5106 void cfs_bandwidth_usage_dec(void) {} 5107 #endif /* CONFIG_JUMP_LABEL */ 5108 5109 /* 5110 * default period for cfs group bandwidth. 5111 * default: 0.1s, units: nanoseconds 5112 */ 5113 static inline u64 default_cfs_period(void) 5114 { 5115 return 100000000ULL; 5116 } 5117 5118 static inline u64 sched_cfs_bandwidth_slice(void) 5119 { 5120 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5121 } 5122 5123 /* 5124 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5125 * directly instead of rq->clock to avoid adding additional synchronization 5126 * around rq->lock. 5127 * 5128 * requires cfs_b->lock 5129 */ 5130 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5131 { 5132 s64 runtime; 5133 5134 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5135 return; 5136 5137 cfs_b->runtime += cfs_b->quota; 5138 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5139 if (runtime > 0) { 5140 cfs_b->burst_time += runtime; 5141 cfs_b->nr_burst++; 5142 } 5143 5144 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5145 cfs_b->runtime_snap = cfs_b->runtime; 5146 } 5147 5148 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5149 { 5150 return &tg->cfs_bandwidth; 5151 } 5152 5153 /* returns 0 on failure to allocate runtime */ 5154 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5155 struct cfs_rq *cfs_rq, u64 target_runtime) 5156 { 5157 u64 min_amount, amount = 0; 5158 5159 lockdep_assert_held(&cfs_b->lock); 5160 5161 /* note: this is a positive sum as runtime_remaining <= 0 */ 5162 min_amount = target_runtime - cfs_rq->runtime_remaining; 5163 5164 if (cfs_b->quota == RUNTIME_INF) 5165 amount = min_amount; 5166 else { 5167 start_cfs_bandwidth(cfs_b); 5168 5169 if (cfs_b->runtime > 0) { 5170 amount = min(cfs_b->runtime, min_amount); 5171 cfs_b->runtime -= amount; 5172 cfs_b->idle = 0; 5173 } 5174 } 5175 5176 cfs_rq->runtime_remaining += amount; 5177 5178 return cfs_rq->runtime_remaining > 0; 5179 } 5180 5181 /* returns 0 on failure to allocate runtime */ 5182 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5183 { 5184 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5185 int ret; 5186 5187 raw_spin_lock(&cfs_b->lock); 5188 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5189 raw_spin_unlock(&cfs_b->lock); 5190 5191 return ret; 5192 } 5193 5194 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5195 { 5196 /* dock delta_exec before expiring quota (as it could span periods) */ 5197 cfs_rq->runtime_remaining -= delta_exec; 5198 5199 if (likely(cfs_rq->runtime_remaining > 0)) 5200 return; 5201 5202 if (cfs_rq->throttled) 5203 return; 5204 /* 5205 * if we're unable to extend our runtime we resched so that the active 5206 * hierarchy can be throttled 5207 */ 5208 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5209 resched_curr(rq_of(cfs_rq)); 5210 } 5211 5212 static __always_inline 5213 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5214 { 5215 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5216 return; 5217 5218 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5219 } 5220 5221 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5222 { 5223 return cfs_bandwidth_used() && cfs_rq->throttled; 5224 } 5225 5226 /* check whether cfs_rq, or any parent, is throttled */ 5227 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5228 { 5229 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5230 } 5231 5232 /* 5233 * Ensure that neither of the group entities corresponding to src_cpu or 5234 * dest_cpu are members of a throttled hierarchy when performing group 5235 * load-balance operations. 5236 */ 5237 static inline int throttled_lb_pair(struct task_group *tg, 5238 int src_cpu, int dest_cpu) 5239 { 5240 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5241 5242 src_cfs_rq = tg->cfs_rq[src_cpu]; 5243 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5244 5245 return throttled_hierarchy(src_cfs_rq) || 5246 throttled_hierarchy(dest_cfs_rq); 5247 } 5248 5249 static int tg_unthrottle_up(struct task_group *tg, void *data) 5250 { 5251 struct rq *rq = data; 5252 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5253 5254 cfs_rq->throttle_count--; 5255 if (!cfs_rq->throttle_count) { 5256 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5257 cfs_rq->throttled_clock_pelt; 5258 5259 /* Add cfs_rq with load or one or more already running entities to the list */ 5260 if (!cfs_rq_is_decayed(cfs_rq)) 5261 list_add_leaf_cfs_rq(cfs_rq); 5262 } 5263 5264 return 0; 5265 } 5266 5267 static int tg_throttle_down(struct task_group *tg, void *data) 5268 { 5269 struct rq *rq = data; 5270 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5271 5272 /* group is entering throttled state, stop time */ 5273 if (!cfs_rq->throttle_count) { 5274 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5275 list_del_leaf_cfs_rq(cfs_rq); 5276 } 5277 cfs_rq->throttle_count++; 5278 5279 return 0; 5280 } 5281 5282 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5283 { 5284 struct rq *rq = rq_of(cfs_rq); 5285 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5286 struct sched_entity *se; 5287 long task_delta, idle_task_delta, dequeue = 1; 5288 5289 raw_spin_lock(&cfs_b->lock); 5290 /* This will start the period timer if necessary */ 5291 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5292 /* 5293 * We have raced with bandwidth becoming available, and if we 5294 * actually throttled the timer might not unthrottle us for an 5295 * entire period. We additionally needed to make sure that any 5296 * subsequent check_cfs_rq_runtime calls agree not to throttle 5297 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5298 * for 1ns of runtime rather than just check cfs_b. 5299 */ 5300 dequeue = 0; 5301 } else { 5302 list_add_tail_rcu(&cfs_rq->throttled_list, 5303 &cfs_b->throttled_cfs_rq); 5304 } 5305 raw_spin_unlock(&cfs_b->lock); 5306 5307 if (!dequeue) 5308 return false; /* Throttle no longer required. */ 5309 5310 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5311 5312 /* freeze hierarchy runnable averages while throttled */ 5313 rcu_read_lock(); 5314 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5315 rcu_read_unlock(); 5316 5317 task_delta = cfs_rq->h_nr_running; 5318 idle_task_delta = cfs_rq->idle_h_nr_running; 5319 for_each_sched_entity(se) { 5320 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5321 /* throttled entity or throttle-on-deactivate */ 5322 if (!se->on_rq) 5323 goto done; 5324 5325 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5326 5327 if (cfs_rq_is_idle(group_cfs_rq(se))) 5328 idle_task_delta = cfs_rq->h_nr_running; 5329 5330 qcfs_rq->h_nr_running -= task_delta; 5331 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5332 5333 if (qcfs_rq->load.weight) { 5334 /* Avoid re-evaluating load for this entity: */ 5335 se = parent_entity(se); 5336 break; 5337 } 5338 } 5339 5340 for_each_sched_entity(se) { 5341 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5342 /* throttled entity or throttle-on-deactivate */ 5343 if (!se->on_rq) 5344 goto done; 5345 5346 update_load_avg(qcfs_rq, se, 0); 5347 se_update_runnable(se); 5348 5349 if (cfs_rq_is_idle(group_cfs_rq(se))) 5350 idle_task_delta = cfs_rq->h_nr_running; 5351 5352 qcfs_rq->h_nr_running -= task_delta; 5353 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5354 } 5355 5356 /* At this point se is NULL and we are at root level*/ 5357 sub_nr_running(rq, task_delta); 5358 5359 done: 5360 /* 5361 * Note: distribution will already see us throttled via the 5362 * throttled-list. rq->lock protects completion. 5363 */ 5364 cfs_rq->throttled = 1; 5365 cfs_rq->throttled_clock = rq_clock(rq); 5366 return true; 5367 } 5368 5369 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5370 { 5371 struct rq *rq = rq_of(cfs_rq); 5372 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5373 struct sched_entity *se; 5374 long task_delta, idle_task_delta; 5375 5376 se = cfs_rq->tg->se[cpu_of(rq)]; 5377 5378 cfs_rq->throttled = 0; 5379 5380 update_rq_clock(rq); 5381 5382 raw_spin_lock(&cfs_b->lock); 5383 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5384 list_del_rcu(&cfs_rq->throttled_list); 5385 raw_spin_unlock(&cfs_b->lock); 5386 5387 /* update hierarchical throttle state */ 5388 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5389 5390 if (!cfs_rq->load.weight) { 5391 if (!cfs_rq->on_list) 5392 return; 5393 /* 5394 * Nothing to run but something to decay (on_list)? 5395 * Complete the branch. 5396 */ 5397 for_each_sched_entity(se) { 5398 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5399 break; 5400 } 5401 goto unthrottle_throttle; 5402 } 5403 5404 task_delta = cfs_rq->h_nr_running; 5405 idle_task_delta = cfs_rq->idle_h_nr_running; 5406 for_each_sched_entity(se) { 5407 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5408 5409 if (se->on_rq) 5410 break; 5411 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5412 5413 if (cfs_rq_is_idle(group_cfs_rq(se))) 5414 idle_task_delta = cfs_rq->h_nr_running; 5415 5416 qcfs_rq->h_nr_running += task_delta; 5417 qcfs_rq->idle_h_nr_running += idle_task_delta; 5418 5419 /* end evaluation on encountering a throttled cfs_rq */ 5420 if (cfs_rq_throttled(qcfs_rq)) 5421 goto unthrottle_throttle; 5422 } 5423 5424 for_each_sched_entity(se) { 5425 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5426 5427 update_load_avg(qcfs_rq, se, UPDATE_TG); 5428 se_update_runnable(se); 5429 5430 if (cfs_rq_is_idle(group_cfs_rq(se))) 5431 idle_task_delta = cfs_rq->h_nr_running; 5432 5433 qcfs_rq->h_nr_running += task_delta; 5434 qcfs_rq->idle_h_nr_running += idle_task_delta; 5435 5436 /* end evaluation on encountering a throttled cfs_rq */ 5437 if (cfs_rq_throttled(qcfs_rq)) 5438 goto unthrottle_throttle; 5439 } 5440 5441 /* At this point se is NULL and we are at root level*/ 5442 add_nr_running(rq, task_delta); 5443 5444 unthrottle_throttle: 5445 assert_list_leaf_cfs_rq(rq); 5446 5447 /* Determine whether we need to wake up potentially idle CPU: */ 5448 if (rq->curr == rq->idle && rq->cfs.nr_running) 5449 resched_curr(rq); 5450 } 5451 5452 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5453 { 5454 struct cfs_rq *cfs_rq; 5455 u64 runtime, remaining = 1; 5456 5457 rcu_read_lock(); 5458 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5459 throttled_list) { 5460 struct rq *rq = rq_of(cfs_rq); 5461 struct rq_flags rf; 5462 5463 rq_lock_irqsave(rq, &rf); 5464 if (!cfs_rq_throttled(cfs_rq)) 5465 goto next; 5466 5467 /* By the above check, this should never be true */ 5468 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5469 5470 raw_spin_lock(&cfs_b->lock); 5471 runtime = -cfs_rq->runtime_remaining + 1; 5472 if (runtime > cfs_b->runtime) 5473 runtime = cfs_b->runtime; 5474 cfs_b->runtime -= runtime; 5475 remaining = cfs_b->runtime; 5476 raw_spin_unlock(&cfs_b->lock); 5477 5478 cfs_rq->runtime_remaining += runtime; 5479 5480 /* we check whether we're throttled above */ 5481 if (cfs_rq->runtime_remaining > 0) 5482 unthrottle_cfs_rq(cfs_rq); 5483 5484 next: 5485 rq_unlock_irqrestore(rq, &rf); 5486 5487 if (!remaining) 5488 break; 5489 } 5490 rcu_read_unlock(); 5491 } 5492 5493 /* 5494 * Responsible for refilling a task_group's bandwidth and unthrottling its 5495 * cfs_rqs as appropriate. If there has been no activity within the last 5496 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5497 * used to track this state. 5498 */ 5499 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5500 { 5501 int throttled; 5502 5503 /* no need to continue the timer with no bandwidth constraint */ 5504 if (cfs_b->quota == RUNTIME_INF) 5505 goto out_deactivate; 5506 5507 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5508 cfs_b->nr_periods += overrun; 5509 5510 /* Refill extra burst quota even if cfs_b->idle */ 5511 __refill_cfs_bandwidth_runtime(cfs_b); 5512 5513 /* 5514 * idle depends on !throttled (for the case of a large deficit), and if 5515 * we're going inactive then everything else can be deferred 5516 */ 5517 if (cfs_b->idle && !throttled) 5518 goto out_deactivate; 5519 5520 if (!throttled) { 5521 /* mark as potentially idle for the upcoming period */ 5522 cfs_b->idle = 1; 5523 return 0; 5524 } 5525 5526 /* account preceding periods in which throttling occurred */ 5527 cfs_b->nr_throttled += overrun; 5528 5529 /* 5530 * This check is repeated as we release cfs_b->lock while we unthrottle. 5531 */ 5532 while (throttled && cfs_b->runtime > 0) { 5533 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5534 /* we can't nest cfs_b->lock while distributing bandwidth */ 5535 distribute_cfs_runtime(cfs_b); 5536 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5537 5538 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5539 } 5540 5541 /* 5542 * While we are ensured activity in the period following an 5543 * unthrottle, this also covers the case in which the new bandwidth is 5544 * insufficient to cover the existing bandwidth deficit. (Forcing the 5545 * timer to remain active while there are any throttled entities.) 5546 */ 5547 cfs_b->idle = 0; 5548 5549 return 0; 5550 5551 out_deactivate: 5552 return 1; 5553 } 5554 5555 /* a cfs_rq won't donate quota below this amount */ 5556 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5557 /* minimum remaining period time to redistribute slack quota */ 5558 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5559 /* how long we wait to gather additional slack before distributing */ 5560 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5561 5562 /* 5563 * Are we near the end of the current quota period? 5564 * 5565 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5566 * hrtimer base being cleared by hrtimer_start. In the case of 5567 * migrate_hrtimers, base is never cleared, so we are fine. 5568 */ 5569 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5570 { 5571 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5572 s64 remaining; 5573 5574 /* if the call-back is running a quota refresh is already occurring */ 5575 if (hrtimer_callback_running(refresh_timer)) 5576 return 1; 5577 5578 /* is a quota refresh about to occur? */ 5579 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5580 if (remaining < (s64)min_expire) 5581 return 1; 5582 5583 return 0; 5584 } 5585 5586 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5587 { 5588 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5589 5590 /* if there's a quota refresh soon don't bother with slack */ 5591 if (runtime_refresh_within(cfs_b, min_left)) 5592 return; 5593 5594 /* don't push forwards an existing deferred unthrottle */ 5595 if (cfs_b->slack_started) 5596 return; 5597 cfs_b->slack_started = true; 5598 5599 hrtimer_start(&cfs_b->slack_timer, 5600 ns_to_ktime(cfs_bandwidth_slack_period), 5601 HRTIMER_MODE_REL); 5602 } 5603 5604 /* we know any runtime found here is valid as update_curr() precedes return */ 5605 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5606 { 5607 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5608 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5609 5610 if (slack_runtime <= 0) 5611 return; 5612 5613 raw_spin_lock(&cfs_b->lock); 5614 if (cfs_b->quota != RUNTIME_INF) { 5615 cfs_b->runtime += slack_runtime; 5616 5617 /* we are under rq->lock, defer unthrottling using a timer */ 5618 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5619 !list_empty(&cfs_b->throttled_cfs_rq)) 5620 start_cfs_slack_bandwidth(cfs_b); 5621 } 5622 raw_spin_unlock(&cfs_b->lock); 5623 5624 /* even if it's not valid for return we don't want to try again */ 5625 cfs_rq->runtime_remaining -= slack_runtime; 5626 } 5627 5628 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5629 { 5630 if (!cfs_bandwidth_used()) 5631 return; 5632 5633 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5634 return; 5635 5636 __return_cfs_rq_runtime(cfs_rq); 5637 } 5638 5639 /* 5640 * This is done with a timer (instead of inline with bandwidth return) since 5641 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5642 */ 5643 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5644 { 5645 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5646 unsigned long flags; 5647 5648 /* confirm we're still not at a refresh boundary */ 5649 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5650 cfs_b->slack_started = false; 5651 5652 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5653 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5654 return; 5655 } 5656 5657 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5658 runtime = cfs_b->runtime; 5659 5660 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5661 5662 if (!runtime) 5663 return; 5664 5665 distribute_cfs_runtime(cfs_b); 5666 } 5667 5668 /* 5669 * When a group wakes up we want to make sure that its quota is not already 5670 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5671 * runtime as update_curr() throttling can not trigger until it's on-rq. 5672 */ 5673 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5674 { 5675 if (!cfs_bandwidth_used()) 5676 return; 5677 5678 /* an active group must be handled by the update_curr()->put() path */ 5679 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5680 return; 5681 5682 /* ensure the group is not already throttled */ 5683 if (cfs_rq_throttled(cfs_rq)) 5684 return; 5685 5686 /* update runtime allocation */ 5687 account_cfs_rq_runtime(cfs_rq, 0); 5688 if (cfs_rq->runtime_remaining <= 0) 5689 throttle_cfs_rq(cfs_rq); 5690 } 5691 5692 static void sync_throttle(struct task_group *tg, int cpu) 5693 { 5694 struct cfs_rq *pcfs_rq, *cfs_rq; 5695 5696 if (!cfs_bandwidth_used()) 5697 return; 5698 5699 if (!tg->parent) 5700 return; 5701 5702 cfs_rq = tg->cfs_rq[cpu]; 5703 pcfs_rq = tg->parent->cfs_rq[cpu]; 5704 5705 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5706 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5707 } 5708 5709 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5710 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5711 { 5712 if (!cfs_bandwidth_used()) 5713 return false; 5714 5715 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5716 return false; 5717 5718 /* 5719 * it's possible for a throttled entity to be forced into a running 5720 * state (e.g. set_curr_task), in this case we're finished. 5721 */ 5722 if (cfs_rq_throttled(cfs_rq)) 5723 return true; 5724 5725 return throttle_cfs_rq(cfs_rq); 5726 } 5727 5728 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5729 { 5730 struct cfs_bandwidth *cfs_b = 5731 container_of(timer, struct cfs_bandwidth, slack_timer); 5732 5733 do_sched_cfs_slack_timer(cfs_b); 5734 5735 return HRTIMER_NORESTART; 5736 } 5737 5738 extern const u64 max_cfs_quota_period; 5739 5740 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5741 { 5742 struct cfs_bandwidth *cfs_b = 5743 container_of(timer, struct cfs_bandwidth, period_timer); 5744 unsigned long flags; 5745 int overrun; 5746 int idle = 0; 5747 int count = 0; 5748 5749 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5750 for (;;) { 5751 overrun = hrtimer_forward_now(timer, cfs_b->period); 5752 if (!overrun) 5753 break; 5754 5755 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5756 5757 if (++count > 3) { 5758 u64 new, old = ktime_to_ns(cfs_b->period); 5759 5760 /* 5761 * Grow period by a factor of 2 to avoid losing precision. 5762 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5763 * to fail. 5764 */ 5765 new = old * 2; 5766 if (new < max_cfs_quota_period) { 5767 cfs_b->period = ns_to_ktime(new); 5768 cfs_b->quota *= 2; 5769 cfs_b->burst *= 2; 5770 5771 pr_warn_ratelimited( 5772 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5773 smp_processor_id(), 5774 div_u64(new, NSEC_PER_USEC), 5775 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5776 } else { 5777 pr_warn_ratelimited( 5778 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5779 smp_processor_id(), 5780 div_u64(old, NSEC_PER_USEC), 5781 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5782 } 5783 5784 /* reset count so we don't come right back in here */ 5785 count = 0; 5786 } 5787 } 5788 if (idle) 5789 cfs_b->period_active = 0; 5790 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5791 5792 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5793 } 5794 5795 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5796 { 5797 raw_spin_lock_init(&cfs_b->lock); 5798 cfs_b->runtime = 0; 5799 cfs_b->quota = RUNTIME_INF; 5800 cfs_b->period = ns_to_ktime(default_cfs_period()); 5801 cfs_b->burst = 0; 5802 5803 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5804 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5805 cfs_b->period_timer.function = sched_cfs_period_timer; 5806 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5807 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5808 cfs_b->slack_started = false; 5809 } 5810 5811 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5812 { 5813 cfs_rq->runtime_enabled = 0; 5814 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5815 } 5816 5817 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5818 { 5819 lockdep_assert_held(&cfs_b->lock); 5820 5821 if (cfs_b->period_active) 5822 return; 5823 5824 cfs_b->period_active = 1; 5825 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5826 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5827 } 5828 5829 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5830 { 5831 /* init_cfs_bandwidth() was not called */ 5832 if (!cfs_b->throttled_cfs_rq.next) 5833 return; 5834 5835 hrtimer_cancel(&cfs_b->period_timer); 5836 hrtimer_cancel(&cfs_b->slack_timer); 5837 } 5838 5839 /* 5840 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5841 * 5842 * The race is harmless, since modifying bandwidth settings of unhooked group 5843 * bits doesn't do much. 5844 */ 5845 5846 /* cpu online callback */ 5847 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5848 { 5849 struct task_group *tg; 5850 5851 lockdep_assert_rq_held(rq); 5852 5853 rcu_read_lock(); 5854 list_for_each_entry_rcu(tg, &task_groups, list) { 5855 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5856 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5857 5858 raw_spin_lock(&cfs_b->lock); 5859 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5860 raw_spin_unlock(&cfs_b->lock); 5861 } 5862 rcu_read_unlock(); 5863 } 5864 5865 /* cpu offline callback */ 5866 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5867 { 5868 struct task_group *tg; 5869 5870 lockdep_assert_rq_held(rq); 5871 5872 rcu_read_lock(); 5873 list_for_each_entry_rcu(tg, &task_groups, list) { 5874 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5875 5876 if (!cfs_rq->runtime_enabled) 5877 continue; 5878 5879 /* 5880 * clock_task is not advancing so we just need to make sure 5881 * there's some valid quota amount 5882 */ 5883 cfs_rq->runtime_remaining = 1; 5884 /* 5885 * Offline rq is schedulable till CPU is completely disabled 5886 * in take_cpu_down(), so we prevent new cfs throttling here. 5887 */ 5888 cfs_rq->runtime_enabled = 0; 5889 5890 if (cfs_rq_throttled(cfs_rq)) 5891 unthrottle_cfs_rq(cfs_rq); 5892 } 5893 rcu_read_unlock(); 5894 } 5895 5896 #else /* CONFIG_CFS_BANDWIDTH */ 5897 5898 static inline bool cfs_bandwidth_used(void) 5899 { 5900 return false; 5901 } 5902 5903 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5904 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5905 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5906 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5907 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5908 5909 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5910 { 5911 return 0; 5912 } 5913 5914 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5915 { 5916 return 0; 5917 } 5918 5919 static inline int throttled_lb_pair(struct task_group *tg, 5920 int src_cpu, int dest_cpu) 5921 { 5922 return 0; 5923 } 5924 5925 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5926 5927 #ifdef CONFIG_FAIR_GROUP_SCHED 5928 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5929 #endif 5930 5931 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5932 { 5933 return NULL; 5934 } 5935 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5936 static inline void update_runtime_enabled(struct rq *rq) {} 5937 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5938 5939 #endif /* CONFIG_CFS_BANDWIDTH */ 5940 5941 /************************************************** 5942 * CFS operations on tasks: 5943 */ 5944 5945 #ifdef CONFIG_SCHED_HRTICK 5946 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5947 { 5948 struct sched_entity *se = &p->se; 5949 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5950 5951 SCHED_WARN_ON(task_rq(p) != rq); 5952 5953 if (rq->cfs.h_nr_running > 1) { 5954 u64 slice = sched_slice(cfs_rq, se); 5955 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5956 s64 delta = slice - ran; 5957 5958 if (delta < 0) { 5959 if (task_current(rq, p)) 5960 resched_curr(rq); 5961 return; 5962 } 5963 hrtick_start(rq, delta); 5964 } 5965 } 5966 5967 /* 5968 * called from enqueue/dequeue and updates the hrtick when the 5969 * current task is from our class and nr_running is low enough 5970 * to matter. 5971 */ 5972 static void hrtick_update(struct rq *rq) 5973 { 5974 struct task_struct *curr = rq->curr; 5975 5976 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5977 return; 5978 5979 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5980 hrtick_start_fair(rq, curr); 5981 } 5982 #else /* !CONFIG_SCHED_HRTICK */ 5983 static inline void 5984 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5985 { 5986 } 5987 5988 static inline void hrtick_update(struct rq *rq) 5989 { 5990 } 5991 #endif 5992 5993 #ifdef CONFIG_SMP 5994 static inline bool cpu_overutilized(int cpu) 5995 { 5996 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 5997 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 5998 5999 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6000 } 6001 6002 static inline void update_overutilized_status(struct rq *rq) 6003 { 6004 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6005 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6006 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6007 } 6008 } 6009 #else 6010 static inline void update_overutilized_status(struct rq *rq) { } 6011 #endif 6012 6013 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6014 static int sched_idle_rq(struct rq *rq) 6015 { 6016 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6017 rq->nr_running); 6018 } 6019 6020 /* 6021 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 6022 * of idle_nr_running, which does not consider idle descendants of normal 6023 * entities. 6024 */ 6025 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 6026 { 6027 return cfs_rq->nr_running && 6028 cfs_rq->nr_running == cfs_rq->idle_nr_running; 6029 } 6030 6031 #ifdef CONFIG_SMP 6032 static int sched_idle_cpu(int cpu) 6033 { 6034 return sched_idle_rq(cpu_rq(cpu)); 6035 } 6036 #endif 6037 6038 /* 6039 * The enqueue_task method is called before nr_running is 6040 * increased. Here we update the fair scheduling stats and 6041 * then put the task into the rbtree: 6042 */ 6043 static void 6044 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6045 { 6046 struct cfs_rq *cfs_rq; 6047 struct sched_entity *se = &p->se; 6048 int idle_h_nr_running = task_has_idle_policy(p); 6049 int task_new = !(flags & ENQUEUE_WAKEUP); 6050 6051 /* 6052 * The code below (indirectly) updates schedutil which looks at 6053 * the cfs_rq utilization to select a frequency. 6054 * Let's add the task's estimated utilization to the cfs_rq's 6055 * estimated utilization, before we update schedutil. 6056 */ 6057 util_est_enqueue(&rq->cfs, p); 6058 6059 /* 6060 * If in_iowait is set, the code below may not trigger any cpufreq 6061 * utilization updates, so do it here explicitly with the IOWAIT flag 6062 * passed. 6063 */ 6064 if (p->in_iowait) 6065 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6066 6067 for_each_sched_entity(se) { 6068 if (se->on_rq) 6069 break; 6070 cfs_rq = cfs_rq_of(se); 6071 enqueue_entity(cfs_rq, se, flags); 6072 6073 cfs_rq->h_nr_running++; 6074 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6075 6076 if (cfs_rq_is_idle(cfs_rq)) 6077 idle_h_nr_running = 1; 6078 6079 /* end evaluation on encountering a throttled cfs_rq */ 6080 if (cfs_rq_throttled(cfs_rq)) 6081 goto enqueue_throttle; 6082 6083 flags = ENQUEUE_WAKEUP; 6084 } 6085 6086 for_each_sched_entity(se) { 6087 cfs_rq = cfs_rq_of(se); 6088 6089 update_load_avg(cfs_rq, se, UPDATE_TG); 6090 se_update_runnable(se); 6091 update_cfs_group(se); 6092 6093 cfs_rq->h_nr_running++; 6094 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6095 6096 if (cfs_rq_is_idle(cfs_rq)) 6097 idle_h_nr_running = 1; 6098 6099 /* end evaluation on encountering a throttled cfs_rq */ 6100 if (cfs_rq_throttled(cfs_rq)) 6101 goto enqueue_throttle; 6102 } 6103 6104 /* At this point se is NULL and we are at root level*/ 6105 add_nr_running(rq, 1); 6106 6107 /* 6108 * Since new tasks are assigned an initial util_avg equal to 6109 * half of the spare capacity of their CPU, tiny tasks have the 6110 * ability to cross the overutilized threshold, which will 6111 * result in the load balancer ruining all the task placement 6112 * done by EAS. As a way to mitigate that effect, do not account 6113 * for the first enqueue operation of new tasks during the 6114 * overutilized flag detection. 6115 * 6116 * A better way of solving this problem would be to wait for 6117 * the PELT signals of tasks to converge before taking them 6118 * into account, but that is not straightforward to implement, 6119 * and the following generally works well enough in practice. 6120 */ 6121 if (!task_new) 6122 update_overutilized_status(rq); 6123 6124 enqueue_throttle: 6125 assert_list_leaf_cfs_rq(rq); 6126 6127 hrtick_update(rq); 6128 } 6129 6130 static void set_next_buddy(struct sched_entity *se); 6131 6132 /* 6133 * The dequeue_task method is called before nr_running is 6134 * decreased. We remove the task from the rbtree and 6135 * update the fair scheduling stats: 6136 */ 6137 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6138 { 6139 struct cfs_rq *cfs_rq; 6140 struct sched_entity *se = &p->se; 6141 int task_sleep = flags & DEQUEUE_SLEEP; 6142 int idle_h_nr_running = task_has_idle_policy(p); 6143 bool was_sched_idle = sched_idle_rq(rq); 6144 6145 util_est_dequeue(&rq->cfs, p); 6146 6147 for_each_sched_entity(se) { 6148 cfs_rq = cfs_rq_of(se); 6149 dequeue_entity(cfs_rq, se, flags); 6150 6151 cfs_rq->h_nr_running--; 6152 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6153 6154 if (cfs_rq_is_idle(cfs_rq)) 6155 idle_h_nr_running = 1; 6156 6157 /* end evaluation on encountering a throttled cfs_rq */ 6158 if (cfs_rq_throttled(cfs_rq)) 6159 goto dequeue_throttle; 6160 6161 /* Don't dequeue parent if it has other entities besides us */ 6162 if (cfs_rq->load.weight) { 6163 /* Avoid re-evaluating load for this entity: */ 6164 se = parent_entity(se); 6165 /* 6166 * Bias pick_next to pick a task from this cfs_rq, as 6167 * p is sleeping when it is within its sched_slice. 6168 */ 6169 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6170 set_next_buddy(se); 6171 break; 6172 } 6173 flags |= DEQUEUE_SLEEP; 6174 } 6175 6176 for_each_sched_entity(se) { 6177 cfs_rq = cfs_rq_of(se); 6178 6179 update_load_avg(cfs_rq, se, UPDATE_TG); 6180 se_update_runnable(se); 6181 update_cfs_group(se); 6182 6183 cfs_rq->h_nr_running--; 6184 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6185 6186 if (cfs_rq_is_idle(cfs_rq)) 6187 idle_h_nr_running = 1; 6188 6189 /* end evaluation on encountering a throttled cfs_rq */ 6190 if (cfs_rq_throttled(cfs_rq)) 6191 goto dequeue_throttle; 6192 6193 } 6194 6195 /* At this point se is NULL and we are at root level*/ 6196 sub_nr_running(rq, 1); 6197 6198 /* balance early to pull high priority tasks */ 6199 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6200 rq->next_balance = jiffies; 6201 6202 dequeue_throttle: 6203 util_est_update(&rq->cfs, p, task_sleep); 6204 hrtick_update(rq); 6205 } 6206 6207 #ifdef CONFIG_SMP 6208 6209 /* Working cpumask for: load_balance, load_balance_newidle. */ 6210 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6211 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6212 6213 #ifdef CONFIG_NO_HZ_COMMON 6214 6215 static struct { 6216 cpumask_var_t idle_cpus_mask; 6217 atomic_t nr_cpus; 6218 int has_blocked; /* Idle CPUS has blocked load */ 6219 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6220 unsigned long next_balance; /* in jiffy units */ 6221 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6222 } nohz ____cacheline_aligned; 6223 6224 #endif /* CONFIG_NO_HZ_COMMON */ 6225 6226 static unsigned long cpu_load(struct rq *rq) 6227 { 6228 return cfs_rq_load_avg(&rq->cfs); 6229 } 6230 6231 /* 6232 * cpu_load_without - compute CPU load without any contributions from *p 6233 * @cpu: the CPU which load is requested 6234 * @p: the task which load should be discounted 6235 * 6236 * The load of a CPU is defined by the load of tasks currently enqueued on that 6237 * CPU as well as tasks which are currently sleeping after an execution on that 6238 * CPU. 6239 * 6240 * This method returns the load of the specified CPU by discounting the load of 6241 * the specified task, whenever the task is currently contributing to the CPU 6242 * load. 6243 */ 6244 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6245 { 6246 struct cfs_rq *cfs_rq; 6247 unsigned int load; 6248 6249 /* Task has no contribution or is new */ 6250 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6251 return cpu_load(rq); 6252 6253 cfs_rq = &rq->cfs; 6254 load = READ_ONCE(cfs_rq->avg.load_avg); 6255 6256 /* Discount task's util from CPU's util */ 6257 lsub_positive(&load, task_h_load(p)); 6258 6259 return load; 6260 } 6261 6262 static unsigned long cpu_runnable(struct rq *rq) 6263 { 6264 return cfs_rq_runnable_avg(&rq->cfs); 6265 } 6266 6267 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6268 { 6269 struct cfs_rq *cfs_rq; 6270 unsigned int runnable; 6271 6272 /* Task has no contribution or is new */ 6273 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6274 return cpu_runnable(rq); 6275 6276 cfs_rq = &rq->cfs; 6277 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6278 6279 /* Discount task's runnable from CPU's runnable */ 6280 lsub_positive(&runnable, p->se.avg.runnable_avg); 6281 6282 return runnable; 6283 } 6284 6285 static unsigned long capacity_of(int cpu) 6286 { 6287 return cpu_rq(cpu)->cpu_capacity; 6288 } 6289 6290 static void record_wakee(struct task_struct *p) 6291 { 6292 /* 6293 * Only decay a single time; tasks that have less then 1 wakeup per 6294 * jiffy will not have built up many flips. 6295 */ 6296 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6297 current->wakee_flips >>= 1; 6298 current->wakee_flip_decay_ts = jiffies; 6299 } 6300 6301 if (current->last_wakee != p) { 6302 current->last_wakee = p; 6303 current->wakee_flips++; 6304 } 6305 } 6306 6307 /* 6308 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6309 * 6310 * A waker of many should wake a different task than the one last awakened 6311 * at a frequency roughly N times higher than one of its wakees. 6312 * 6313 * In order to determine whether we should let the load spread vs consolidating 6314 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6315 * partner, and a factor of lls_size higher frequency in the other. 6316 * 6317 * With both conditions met, we can be relatively sure that the relationship is 6318 * non-monogamous, with partner count exceeding socket size. 6319 * 6320 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6321 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6322 * socket size. 6323 */ 6324 static int wake_wide(struct task_struct *p) 6325 { 6326 unsigned int master = current->wakee_flips; 6327 unsigned int slave = p->wakee_flips; 6328 int factor = __this_cpu_read(sd_llc_size); 6329 6330 if (master < slave) 6331 swap(master, slave); 6332 if (slave < factor || master < slave * factor) 6333 return 0; 6334 return 1; 6335 } 6336 6337 /* 6338 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6339 * soonest. For the purpose of speed we only consider the waking and previous 6340 * CPU. 6341 * 6342 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6343 * cache-affine and is (or will be) idle. 6344 * 6345 * wake_affine_weight() - considers the weight to reflect the average 6346 * scheduling latency of the CPUs. This seems to work 6347 * for the overloaded case. 6348 */ 6349 static int 6350 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6351 { 6352 /* 6353 * If this_cpu is idle, it implies the wakeup is from interrupt 6354 * context. Only allow the move if cache is shared. Otherwise an 6355 * interrupt intensive workload could force all tasks onto one 6356 * node depending on the IO topology or IRQ affinity settings. 6357 * 6358 * If the prev_cpu is idle and cache affine then avoid a migration. 6359 * There is no guarantee that the cache hot data from an interrupt 6360 * is more important than cache hot data on the prev_cpu and from 6361 * a cpufreq perspective, it's better to have higher utilisation 6362 * on one CPU. 6363 */ 6364 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6365 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6366 6367 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6368 return this_cpu; 6369 6370 if (available_idle_cpu(prev_cpu)) 6371 return prev_cpu; 6372 6373 return nr_cpumask_bits; 6374 } 6375 6376 static int 6377 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6378 int this_cpu, int prev_cpu, int sync) 6379 { 6380 s64 this_eff_load, prev_eff_load; 6381 unsigned long task_load; 6382 6383 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6384 6385 if (sync) { 6386 unsigned long current_load = task_h_load(current); 6387 6388 if (current_load > this_eff_load) 6389 return this_cpu; 6390 6391 this_eff_load -= current_load; 6392 } 6393 6394 task_load = task_h_load(p); 6395 6396 this_eff_load += task_load; 6397 if (sched_feat(WA_BIAS)) 6398 this_eff_load *= 100; 6399 this_eff_load *= capacity_of(prev_cpu); 6400 6401 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6402 prev_eff_load -= task_load; 6403 if (sched_feat(WA_BIAS)) 6404 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6405 prev_eff_load *= capacity_of(this_cpu); 6406 6407 /* 6408 * If sync, adjust the weight of prev_eff_load such that if 6409 * prev_eff == this_eff that select_idle_sibling() will consider 6410 * stacking the wakee on top of the waker if no other CPU is 6411 * idle. 6412 */ 6413 if (sync) 6414 prev_eff_load += 1; 6415 6416 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6417 } 6418 6419 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6420 int this_cpu, int prev_cpu, int sync) 6421 { 6422 int target = nr_cpumask_bits; 6423 6424 if (sched_feat(WA_IDLE)) 6425 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6426 6427 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6428 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6429 6430 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6431 if (target == nr_cpumask_bits) 6432 return prev_cpu; 6433 6434 schedstat_inc(sd->ttwu_move_affine); 6435 schedstat_inc(p->stats.nr_wakeups_affine); 6436 return target; 6437 } 6438 6439 static struct sched_group * 6440 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6441 6442 /* 6443 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6444 */ 6445 static int 6446 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6447 { 6448 unsigned long load, min_load = ULONG_MAX; 6449 unsigned int min_exit_latency = UINT_MAX; 6450 u64 latest_idle_timestamp = 0; 6451 int least_loaded_cpu = this_cpu; 6452 int shallowest_idle_cpu = -1; 6453 int i; 6454 6455 /* Check if we have any choice: */ 6456 if (group->group_weight == 1) 6457 return cpumask_first(sched_group_span(group)); 6458 6459 /* Traverse only the allowed CPUs */ 6460 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6461 struct rq *rq = cpu_rq(i); 6462 6463 if (!sched_core_cookie_match(rq, p)) 6464 continue; 6465 6466 if (sched_idle_cpu(i)) 6467 return i; 6468 6469 if (available_idle_cpu(i)) { 6470 struct cpuidle_state *idle = idle_get_state(rq); 6471 if (idle && idle->exit_latency < min_exit_latency) { 6472 /* 6473 * We give priority to a CPU whose idle state 6474 * has the smallest exit latency irrespective 6475 * of any idle timestamp. 6476 */ 6477 min_exit_latency = idle->exit_latency; 6478 latest_idle_timestamp = rq->idle_stamp; 6479 shallowest_idle_cpu = i; 6480 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6481 rq->idle_stamp > latest_idle_timestamp) { 6482 /* 6483 * If equal or no active idle state, then 6484 * the most recently idled CPU might have 6485 * a warmer cache. 6486 */ 6487 latest_idle_timestamp = rq->idle_stamp; 6488 shallowest_idle_cpu = i; 6489 } 6490 } else if (shallowest_idle_cpu == -1) { 6491 load = cpu_load(cpu_rq(i)); 6492 if (load < min_load) { 6493 min_load = load; 6494 least_loaded_cpu = i; 6495 } 6496 } 6497 } 6498 6499 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6500 } 6501 6502 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6503 int cpu, int prev_cpu, int sd_flag) 6504 { 6505 int new_cpu = cpu; 6506 6507 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6508 return prev_cpu; 6509 6510 /* 6511 * We need task's util for cpu_util_without, sync it up to 6512 * prev_cpu's last_update_time. 6513 */ 6514 if (!(sd_flag & SD_BALANCE_FORK)) 6515 sync_entity_load_avg(&p->se); 6516 6517 while (sd) { 6518 struct sched_group *group; 6519 struct sched_domain *tmp; 6520 int weight; 6521 6522 if (!(sd->flags & sd_flag)) { 6523 sd = sd->child; 6524 continue; 6525 } 6526 6527 group = find_idlest_group(sd, p, cpu); 6528 if (!group) { 6529 sd = sd->child; 6530 continue; 6531 } 6532 6533 new_cpu = find_idlest_group_cpu(group, p, cpu); 6534 if (new_cpu == cpu) { 6535 /* Now try balancing at a lower domain level of 'cpu': */ 6536 sd = sd->child; 6537 continue; 6538 } 6539 6540 /* Now try balancing at a lower domain level of 'new_cpu': */ 6541 cpu = new_cpu; 6542 weight = sd->span_weight; 6543 sd = NULL; 6544 for_each_domain(cpu, tmp) { 6545 if (weight <= tmp->span_weight) 6546 break; 6547 if (tmp->flags & sd_flag) 6548 sd = tmp; 6549 } 6550 } 6551 6552 return new_cpu; 6553 } 6554 6555 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6556 { 6557 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6558 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6559 return cpu; 6560 6561 return -1; 6562 } 6563 6564 #ifdef CONFIG_SCHED_SMT 6565 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6566 EXPORT_SYMBOL_GPL(sched_smt_present); 6567 6568 static inline void set_idle_cores(int cpu, int val) 6569 { 6570 struct sched_domain_shared *sds; 6571 6572 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6573 if (sds) 6574 WRITE_ONCE(sds->has_idle_cores, val); 6575 } 6576 6577 static inline bool test_idle_cores(int cpu) 6578 { 6579 struct sched_domain_shared *sds; 6580 6581 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6582 if (sds) 6583 return READ_ONCE(sds->has_idle_cores); 6584 6585 return false; 6586 } 6587 6588 /* 6589 * Scans the local SMT mask to see if the entire core is idle, and records this 6590 * information in sd_llc_shared->has_idle_cores. 6591 * 6592 * Since SMT siblings share all cache levels, inspecting this limited remote 6593 * state should be fairly cheap. 6594 */ 6595 void __update_idle_core(struct rq *rq) 6596 { 6597 int core = cpu_of(rq); 6598 int cpu; 6599 6600 rcu_read_lock(); 6601 if (test_idle_cores(core)) 6602 goto unlock; 6603 6604 for_each_cpu(cpu, cpu_smt_mask(core)) { 6605 if (cpu == core) 6606 continue; 6607 6608 if (!available_idle_cpu(cpu)) 6609 goto unlock; 6610 } 6611 6612 set_idle_cores(core, 1); 6613 unlock: 6614 rcu_read_unlock(); 6615 } 6616 6617 /* 6618 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6619 * there are no idle cores left in the system; tracked through 6620 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6621 */ 6622 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6623 { 6624 bool idle = true; 6625 int cpu; 6626 6627 for_each_cpu(cpu, cpu_smt_mask(core)) { 6628 if (!available_idle_cpu(cpu)) { 6629 idle = false; 6630 if (*idle_cpu == -1) { 6631 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6632 *idle_cpu = cpu; 6633 break; 6634 } 6635 continue; 6636 } 6637 break; 6638 } 6639 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6640 *idle_cpu = cpu; 6641 } 6642 6643 if (idle) 6644 return core; 6645 6646 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6647 return -1; 6648 } 6649 6650 /* 6651 * Scan the local SMT mask for idle CPUs. 6652 */ 6653 static int select_idle_smt(struct task_struct *p, int target) 6654 { 6655 int cpu; 6656 6657 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6658 if (cpu == target) 6659 continue; 6660 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6661 return cpu; 6662 } 6663 6664 return -1; 6665 } 6666 6667 #else /* CONFIG_SCHED_SMT */ 6668 6669 static inline void set_idle_cores(int cpu, int val) 6670 { 6671 } 6672 6673 static inline bool test_idle_cores(int cpu) 6674 { 6675 return false; 6676 } 6677 6678 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6679 { 6680 return __select_idle_cpu(core, p); 6681 } 6682 6683 static inline int select_idle_smt(struct task_struct *p, int target) 6684 { 6685 return -1; 6686 } 6687 6688 #endif /* CONFIG_SCHED_SMT */ 6689 6690 /* 6691 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6692 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6693 * average idle time for this rq (as found in rq->avg_idle). 6694 */ 6695 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6696 { 6697 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6698 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6699 struct sched_domain_shared *sd_share; 6700 struct rq *this_rq = this_rq(); 6701 int this = smp_processor_id(); 6702 struct sched_domain *this_sd = NULL; 6703 u64 time = 0; 6704 6705 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6706 6707 if (sched_feat(SIS_PROP) && !has_idle_core) { 6708 u64 avg_cost, avg_idle, span_avg; 6709 unsigned long now = jiffies; 6710 6711 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6712 if (!this_sd) 6713 return -1; 6714 6715 /* 6716 * If we're busy, the assumption that the last idle period 6717 * predicts the future is flawed; age away the remaining 6718 * predicted idle time. 6719 */ 6720 if (unlikely(this_rq->wake_stamp < now)) { 6721 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6722 this_rq->wake_stamp++; 6723 this_rq->wake_avg_idle >>= 1; 6724 } 6725 } 6726 6727 avg_idle = this_rq->wake_avg_idle; 6728 avg_cost = this_sd->avg_scan_cost + 1; 6729 6730 span_avg = sd->span_weight * avg_idle; 6731 if (span_avg > 4*avg_cost) 6732 nr = div_u64(span_avg, avg_cost); 6733 else 6734 nr = 4; 6735 6736 time = cpu_clock(this); 6737 } 6738 6739 if (sched_feat(SIS_UTIL)) { 6740 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6741 if (sd_share) { 6742 /* because !--nr is the condition to stop scan */ 6743 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6744 /* overloaded LLC is unlikely to have idle cpu/core */ 6745 if (nr == 1) 6746 return -1; 6747 } 6748 } 6749 6750 for_each_cpu_wrap(cpu, cpus, target + 1) { 6751 if (has_idle_core) { 6752 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6753 if ((unsigned int)i < nr_cpumask_bits) 6754 return i; 6755 6756 } else { 6757 if (!--nr) 6758 return -1; 6759 idle_cpu = __select_idle_cpu(cpu, p); 6760 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6761 break; 6762 } 6763 } 6764 6765 if (has_idle_core) 6766 set_idle_cores(target, false); 6767 6768 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 6769 time = cpu_clock(this) - time; 6770 6771 /* 6772 * Account for the scan cost of wakeups against the average 6773 * idle time. 6774 */ 6775 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6776 6777 update_avg(&this_sd->avg_scan_cost, time); 6778 } 6779 6780 return idle_cpu; 6781 } 6782 6783 /* 6784 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6785 * the task fits. If no CPU is big enough, but there are idle ones, try to 6786 * maximize capacity. 6787 */ 6788 static int 6789 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6790 { 6791 unsigned long task_util, util_min, util_max, best_cap = 0; 6792 int cpu, best_cpu = -1; 6793 struct cpumask *cpus; 6794 6795 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6796 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6797 6798 task_util = task_util_est(p); 6799 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6800 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6801 6802 for_each_cpu_wrap(cpu, cpus, target) { 6803 unsigned long cpu_cap = capacity_of(cpu); 6804 6805 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6806 continue; 6807 if (util_fits_cpu(task_util, util_min, util_max, cpu)) 6808 return cpu; 6809 6810 if (cpu_cap > best_cap) { 6811 best_cap = cpu_cap; 6812 best_cpu = cpu; 6813 } 6814 } 6815 6816 return best_cpu; 6817 } 6818 6819 static inline bool asym_fits_cpu(unsigned long util, 6820 unsigned long util_min, 6821 unsigned long util_max, 6822 int cpu) 6823 { 6824 if (sched_asym_cpucap_active()) 6825 return util_fits_cpu(util, util_min, util_max, cpu); 6826 6827 return true; 6828 } 6829 6830 /* 6831 * Try and locate an idle core/thread in the LLC cache domain. 6832 */ 6833 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6834 { 6835 bool has_idle_core = false; 6836 struct sched_domain *sd; 6837 unsigned long task_util, util_min, util_max; 6838 int i, recent_used_cpu; 6839 6840 /* 6841 * On asymmetric system, update task utilization because we will check 6842 * that the task fits with cpu's capacity. 6843 */ 6844 if (sched_asym_cpucap_active()) { 6845 sync_entity_load_avg(&p->se); 6846 task_util = task_util_est(p); 6847 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6848 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6849 } 6850 6851 /* 6852 * per-cpu select_rq_mask usage 6853 */ 6854 lockdep_assert_irqs_disabled(); 6855 6856 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6857 asym_fits_cpu(task_util, util_min, util_max, target)) 6858 return target; 6859 6860 /* 6861 * If the previous CPU is cache affine and idle, don't be stupid: 6862 */ 6863 if (prev != target && cpus_share_cache(prev, target) && 6864 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6865 asym_fits_cpu(task_util, util_min, util_max, prev)) 6866 return prev; 6867 6868 /* 6869 * Allow a per-cpu kthread to stack with the wakee if the 6870 * kworker thread and the tasks previous CPUs are the same. 6871 * The assumption is that the wakee queued work for the 6872 * per-cpu kthread that is now complete and the wakeup is 6873 * essentially a sync wakeup. An obvious example of this 6874 * pattern is IO completions. 6875 */ 6876 if (is_per_cpu_kthread(current) && 6877 in_task() && 6878 prev == smp_processor_id() && 6879 this_rq()->nr_running <= 1 && 6880 asym_fits_cpu(task_util, util_min, util_max, prev)) { 6881 return prev; 6882 } 6883 6884 /* Check a recently used CPU as a potential idle candidate: */ 6885 recent_used_cpu = p->recent_used_cpu; 6886 p->recent_used_cpu = prev; 6887 if (recent_used_cpu != prev && 6888 recent_used_cpu != target && 6889 cpus_share_cache(recent_used_cpu, target) && 6890 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6891 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6892 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 6893 return recent_used_cpu; 6894 } 6895 6896 /* 6897 * For asymmetric CPU capacity systems, our domain of interest is 6898 * sd_asym_cpucapacity rather than sd_llc. 6899 */ 6900 if (sched_asym_cpucap_active()) { 6901 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6902 /* 6903 * On an asymmetric CPU capacity system where an exclusive 6904 * cpuset defines a symmetric island (i.e. one unique 6905 * capacity_orig value through the cpuset), the key will be set 6906 * but the CPUs within that cpuset will not have a domain with 6907 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6908 * capacity path. 6909 */ 6910 if (sd) { 6911 i = select_idle_capacity(p, sd, target); 6912 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6913 } 6914 } 6915 6916 sd = rcu_dereference(per_cpu(sd_llc, target)); 6917 if (!sd) 6918 return target; 6919 6920 if (sched_smt_active()) { 6921 has_idle_core = test_idle_cores(target); 6922 6923 if (!has_idle_core && cpus_share_cache(prev, target)) { 6924 i = select_idle_smt(p, prev); 6925 if ((unsigned int)i < nr_cpumask_bits) 6926 return i; 6927 } 6928 } 6929 6930 i = select_idle_cpu(p, sd, has_idle_core, target); 6931 if ((unsigned)i < nr_cpumask_bits) 6932 return i; 6933 6934 return target; 6935 } 6936 6937 /* 6938 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 6939 * (@dst_cpu = -1) or migrated to @dst_cpu. 6940 */ 6941 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6942 { 6943 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6944 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 6945 6946 /* 6947 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 6948 * contribution. If @p migrates from another CPU to @cpu add its 6949 * contribution. In all the other cases @cpu is not impacted by the 6950 * migration so its util_avg is already correct. 6951 */ 6952 if (task_cpu(p) == cpu && dst_cpu != cpu) 6953 lsub_positive(&util, task_util(p)); 6954 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6955 util += task_util(p); 6956 6957 if (sched_feat(UTIL_EST)) { 6958 unsigned long util_est; 6959 6960 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6961 6962 /* 6963 * During wake-up @p isn't enqueued yet and doesn't contribute 6964 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 6965 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 6966 * has been enqueued. 6967 * 6968 * During exec (@dst_cpu = -1) @p is enqueued and does 6969 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 6970 * Remove it to "simulate" cpu_util without @p's contribution. 6971 * 6972 * Despite the task_on_rq_queued(@p) check there is still a 6973 * small window for a possible race when an exec 6974 * select_task_rq_fair() races with LB's detach_task(). 6975 * 6976 * detach_task() 6977 * deactivate_task() 6978 * p->on_rq = TASK_ON_RQ_MIGRATING; 6979 * -------------------------------- A 6980 * dequeue_task() \ 6981 * dequeue_task_fair() + Race Time 6982 * util_est_dequeue() / 6983 * -------------------------------- B 6984 * 6985 * The additional check "current == p" is required to further 6986 * reduce the race window. 6987 */ 6988 if (dst_cpu == cpu) 6989 util_est += _task_util_est(p); 6990 else if (unlikely(task_on_rq_queued(p) || current == p)) 6991 lsub_positive(&util_est, _task_util_est(p)); 6992 6993 util = max(util, util_est); 6994 } 6995 6996 return min(util, capacity_orig_of(cpu)); 6997 } 6998 6999 /* 7000 * cpu_util_without: compute cpu utilization without any contributions from *p 7001 * @cpu: the CPU which utilization is requested 7002 * @p: the task which utilization should be discounted 7003 * 7004 * The utilization of a CPU is defined by the utilization of tasks currently 7005 * enqueued on that CPU as well as tasks which are currently sleeping after an 7006 * execution on that CPU. 7007 * 7008 * This method returns the utilization of the specified CPU by discounting the 7009 * utilization of the specified task, whenever the task is currently 7010 * contributing to the CPU utilization. 7011 */ 7012 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7013 { 7014 /* Task has no contribution or is new */ 7015 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7016 return cpu_util_cfs(cpu); 7017 7018 return cpu_util_next(cpu, p, -1); 7019 } 7020 7021 /* 7022 * energy_env - Utilization landscape for energy estimation. 7023 * @task_busy_time: Utilization contribution by the task for which we test the 7024 * placement. Given by eenv_task_busy_time(). 7025 * @pd_busy_time: Utilization of the whole perf domain without the task 7026 * contribution. Given by eenv_pd_busy_time(). 7027 * @cpu_cap: Maximum CPU capacity for the perf domain. 7028 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7029 */ 7030 struct energy_env { 7031 unsigned long task_busy_time; 7032 unsigned long pd_busy_time; 7033 unsigned long cpu_cap; 7034 unsigned long pd_cap; 7035 }; 7036 7037 /* 7038 * Compute the task busy time for compute_energy(). This time cannot be 7039 * injected directly into effective_cpu_util() because of the IRQ scaling. 7040 * The latter only makes sense with the most recent CPUs where the task has 7041 * run. 7042 */ 7043 static inline void eenv_task_busy_time(struct energy_env *eenv, 7044 struct task_struct *p, int prev_cpu) 7045 { 7046 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7047 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7048 7049 if (unlikely(irq >= max_cap)) 7050 busy_time = max_cap; 7051 else 7052 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7053 7054 eenv->task_busy_time = busy_time; 7055 } 7056 7057 /* 7058 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7059 * utilization for each @pd_cpus, it however doesn't take into account 7060 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7061 * scale the EM reported power consumption at the (eventually clamped) 7062 * cpu_capacity. 7063 * 7064 * The contribution of the task @p for which we want to estimate the 7065 * energy cost is removed (by cpu_util_next()) and must be calculated 7066 * separately (see eenv_task_busy_time). This ensures: 7067 * 7068 * - A stable PD utilization, no matter which CPU of that PD we want to place 7069 * the task on. 7070 * 7071 * - A fair comparison between CPUs as the task contribution (task_util()) 7072 * will always be the same no matter which CPU utilization we rely on 7073 * (util_avg or util_est). 7074 * 7075 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7076 * exceed @eenv->pd_cap. 7077 */ 7078 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7079 struct cpumask *pd_cpus, 7080 struct task_struct *p) 7081 { 7082 unsigned long busy_time = 0; 7083 int cpu; 7084 7085 for_each_cpu(cpu, pd_cpus) { 7086 unsigned long util = cpu_util_next(cpu, p, -1); 7087 7088 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7089 } 7090 7091 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7092 } 7093 7094 /* 7095 * Compute the maximum utilization for compute_energy() when the task @p 7096 * is placed on the cpu @dst_cpu. 7097 * 7098 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7099 * exceed @eenv->cpu_cap. 7100 */ 7101 static inline unsigned long 7102 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7103 struct task_struct *p, int dst_cpu) 7104 { 7105 unsigned long max_util = 0; 7106 int cpu; 7107 7108 for_each_cpu(cpu, pd_cpus) { 7109 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7110 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 7111 unsigned long cpu_util; 7112 7113 /* 7114 * Performance domain frequency: utilization clamping 7115 * must be considered since it affects the selection 7116 * of the performance domain frequency. 7117 * NOTE: in case RT tasks are running, by default the 7118 * FREQUENCY_UTIL's utilization can be max OPP. 7119 */ 7120 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7121 max_util = max(max_util, cpu_util); 7122 } 7123 7124 return min(max_util, eenv->cpu_cap); 7125 } 7126 7127 /* 7128 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7129 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7130 * contribution is ignored. 7131 */ 7132 static inline unsigned long 7133 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7134 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7135 { 7136 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7137 unsigned long busy_time = eenv->pd_busy_time; 7138 7139 if (dst_cpu >= 0) 7140 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7141 7142 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7143 } 7144 7145 /* 7146 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7147 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7148 * spare capacity in each performance domain and uses it as a potential 7149 * candidate to execute the task. Then, it uses the Energy Model to figure 7150 * out which of the CPU candidates is the most energy-efficient. 7151 * 7152 * The rationale for this heuristic is as follows. In a performance domain, 7153 * all the most energy efficient CPU candidates (according to the Energy 7154 * Model) are those for which we'll request a low frequency. When there are 7155 * several CPUs for which the frequency request will be the same, we don't 7156 * have enough data to break the tie between them, because the Energy Model 7157 * only includes active power costs. With this model, if we assume that 7158 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7159 * the maximum spare capacity in a performance domain is guaranteed to be among 7160 * the best candidates of the performance domain. 7161 * 7162 * In practice, it could be preferable from an energy standpoint to pack 7163 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7164 * but that could also hurt our chances to go cluster idle, and we have no 7165 * ways to tell with the current Energy Model if this is actually a good 7166 * idea or not. So, find_energy_efficient_cpu() basically favors 7167 * cluster-packing, and spreading inside a cluster. That should at least be 7168 * a good thing for latency, and this is consistent with the idea that most 7169 * of the energy savings of EAS come from the asymmetry of the system, and 7170 * not so much from breaking the tie between identical CPUs. That's also the 7171 * reason why EAS is enabled in the topology code only for systems where 7172 * SD_ASYM_CPUCAPACITY is set. 7173 * 7174 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7175 * they don't have any useful utilization data yet and it's not possible to 7176 * forecast their impact on energy consumption. Consequently, they will be 7177 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7178 * to be energy-inefficient in some use-cases. The alternative would be to 7179 * bias new tasks towards specific types of CPUs first, or to try to infer 7180 * their util_avg from the parent task, but those heuristics could hurt 7181 * other use-cases too. So, until someone finds a better way to solve this, 7182 * let's keep things simple by re-using the existing slow path. 7183 */ 7184 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7185 { 7186 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7187 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7188 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7189 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7190 struct root_domain *rd = this_rq()->rd; 7191 int cpu, best_energy_cpu, target = -1; 7192 struct sched_domain *sd; 7193 struct perf_domain *pd; 7194 struct energy_env eenv; 7195 7196 rcu_read_lock(); 7197 pd = rcu_dereference(rd->pd); 7198 if (!pd || READ_ONCE(rd->overutilized)) 7199 goto unlock; 7200 7201 /* 7202 * Energy-aware wake-up happens on the lowest sched_domain starting 7203 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7204 */ 7205 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7206 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7207 sd = sd->parent; 7208 if (!sd) 7209 goto unlock; 7210 7211 target = prev_cpu; 7212 7213 sync_entity_load_avg(&p->se); 7214 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7215 goto unlock; 7216 7217 eenv_task_busy_time(&eenv, p, prev_cpu); 7218 7219 for (; pd; pd = pd->next) { 7220 unsigned long cpu_cap, cpu_thermal_cap, util; 7221 unsigned long cur_delta, max_spare_cap = 0; 7222 unsigned long rq_util_min, rq_util_max; 7223 unsigned long util_min, util_max; 7224 unsigned long prev_spare_cap = 0; 7225 int max_spare_cap_cpu = -1; 7226 unsigned long base_energy; 7227 7228 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7229 7230 if (cpumask_empty(cpus)) 7231 continue; 7232 7233 /* Account thermal pressure for the energy estimation */ 7234 cpu = cpumask_first(cpus); 7235 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7236 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7237 7238 eenv.cpu_cap = cpu_thermal_cap; 7239 eenv.pd_cap = 0; 7240 7241 for_each_cpu(cpu, cpus) { 7242 eenv.pd_cap += cpu_thermal_cap; 7243 7244 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7245 continue; 7246 7247 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7248 continue; 7249 7250 util = cpu_util_next(cpu, p, cpu); 7251 cpu_cap = capacity_of(cpu); 7252 7253 /* 7254 * Skip CPUs that cannot satisfy the capacity request. 7255 * IOW, placing the task there would make the CPU 7256 * overutilized. Take uclamp into account to see how 7257 * much capacity we can get out of the CPU; this is 7258 * aligned with sched_cpu_util(). 7259 */ 7260 if (uclamp_is_used()) { 7261 if (uclamp_rq_is_idle(cpu_rq(cpu))) { 7262 util_min = p_util_min; 7263 util_max = p_util_max; 7264 } else { 7265 /* 7266 * Open code uclamp_rq_util_with() except for 7267 * the clamp() part. Ie: apply max aggregation 7268 * only. util_fits_cpu() logic requires to 7269 * operate on non clamped util but must use the 7270 * max-aggregated uclamp_{min, max}. 7271 */ 7272 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 7273 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 7274 7275 util_min = max(rq_util_min, p_util_min); 7276 util_max = max(rq_util_max, p_util_max); 7277 } 7278 } 7279 if (!util_fits_cpu(util, util_min, util_max, cpu)) 7280 continue; 7281 7282 lsub_positive(&cpu_cap, util); 7283 7284 if (cpu == prev_cpu) { 7285 /* Always use prev_cpu as a candidate. */ 7286 prev_spare_cap = cpu_cap; 7287 } else if (cpu_cap > max_spare_cap) { 7288 /* 7289 * Find the CPU with the maximum spare capacity 7290 * among the remaining CPUs in the performance 7291 * domain. 7292 */ 7293 max_spare_cap = cpu_cap; 7294 max_spare_cap_cpu = cpu; 7295 } 7296 } 7297 7298 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7299 continue; 7300 7301 eenv_pd_busy_time(&eenv, cpus, p); 7302 /* Compute the 'base' energy of the pd, without @p */ 7303 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7304 7305 /* Evaluate the energy impact of using prev_cpu. */ 7306 if (prev_spare_cap > 0) { 7307 prev_delta = compute_energy(&eenv, pd, cpus, p, 7308 prev_cpu); 7309 /* CPU utilization has changed */ 7310 if (prev_delta < base_energy) 7311 goto unlock; 7312 prev_delta -= base_energy; 7313 best_delta = min(best_delta, prev_delta); 7314 } 7315 7316 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7317 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7318 cur_delta = compute_energy(&eenv, pd, cpus, p, 7319 max_spare_cap_cpu); 7320 /* CPU utilization has changed */ 7321 if (cur_delta < base_energy) 7322 goto unlock; 7323 cur_delta -= base_energy; 7324 if (cur_delta < best_delta) { 7325 best_delta = cur_delta; 7326 best_energy_cpu = max_spare_cap_cpu; 7327 } 7328 } 7329 } 7330 rcu_read_unlock(); 7331 7332 if (best_delta < prev_delta) 7333 target = best_energy_cpu; 7334 7335 return target; 7336 7337 unlock: 7338 rcu_read_unlock(); 7339 7340 return target; 7341 } 7342 7343 /* 7344 * select_task_rq_fair: Select target runqueue for the waking task in domains 7345 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7346 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7347 * 7348 * Balances load by selecting the idlest CPU in the idlest group, or under 7349 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7350 * 7351 * Returns the target CPU number. 7352 */ 7353 static int 7354 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7355 { 7356 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7357 struct sched_domain *tmp, *sd = NULL; 7358 int cpu = smp_processor_id(); 7359 int new_cpu = prev_cpu; 7360 int want_affine = 0; 7361 /* SD_flags and WF_flags share the first nibble */ 7362 int sd_flag = wake_flags & 0xF; 7363 7364 /* 7365 * required for stable ->cpus_allowed 7366 */ 7367 lockdep_assert_held(&p->pi_lock); 7368 if (wake_flags & WF_TTWU) { 7369 record_wakee(p); 7370 7371 if (sched_energy_enabled()) { 7372 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7373 if (new_cpu >= 0) 7374 return new_cpu; 7375 new_cpu = prev_cpu; 7376 } 7377 7378 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7379 } 7380 7381 rcu_read_lock(); 7382 for_each_domain(cpu, tmp) { 7383 /* 7384 * If both 'cpu' and 'prev_cpu' are part of this domain, 7385 * cpu is a valid SD_WAKE_AFFINE target. 7386 */ 7387 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7388 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7389 if (cpu != prev_cpu) 7390 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7391 7392 sd = NULL; /* Prefer wake_affine over balance flags */ 7393 break; 7394 } 7395 7396 /* 7397 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7398 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7399 * will usually go to the fast path. 7400 */ 7401 if (tmp->flags & sd_flag) 7402 sd = tmp; 7403 else if (!want_affine) 7404 break; 7405 } 7406 7407 if (unlikely(sd)) { 7408 /* Slow path */ 7409 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7410 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7411 /* Fast path */ 7412 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7413 } 7414 rcu_read_unlock(); 7415 7416 return new_cpu; 7417 } 7418 7419 /* 7420 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7421 * cfs_rq_of(p) references at time of call are still valid and identify the 7422 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7423 */ 7424 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7425 { 7426 struct sched_entity *se = &p->se; 7427 7428 /* 7429 * As blocked tasks retain absolute vruntime the migration needs to 7430 * deal with this by subtracting the old and adding the new 7431 * min_vruntime -- the latter is done by enqueue_entity() when placing 7432 * the task on the new runqueue. 7433 */ 7434 if (READ_ONCE(p->__state) == TASK_WAKING) { 7435 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7436 7437 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7438 } 7439 7440 if (!task_on_rq_migrating(p)) { 7441 remove_entity_load_avg(se); 7442 7443 /* 7444 * Here, the task's PELT values have been updated according to 7445 * the current rq's clock. But if that clock hasn't been 7446 * updated in a while, a substantial idle time will be missed, 7447 * leading to an inflation after wake-up on the new rq. 7448 * 7449 * Estimate the missing time from the cfs_rq last_update_time 7450 * and update sched_avg to improve the PELT continuity after 7451 * migration. 7452 */ 7453 migrate_se_pelt_lag(se); 7454 } 7455 7456 /* Tell new CPU we are migrated */ 7457 se->avg.last_update_time = 0; 7458 7459 /* We have migrated, no longer consider this task hot */ 7460 se->exec_start = 0; 7461 7462 update_scan_period(p, new_cpu); 7463 } 7464 7465 static void task_dead_fair(struct task_struct *p) 7466 { 7467 remove_entity_load_avg(&p->se); 7468 } 7469 7470 static int 7471 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7472 { 7473 if (rq->nr_running) 7474 return 1; 7475 7476 return newidle_balance(rq, rf) != 0; 7477 } 7478 #endif /* CONFIG_SMP */ 7479 7480 static unsigned long wakeup_gran(struct sched_entity *se) 7481 { 7482 unsigned long gran = sysctl_sched_wakeup_granularity; 7483 7484 /* 7485 * Since its curr running now, convert the gran from real-time 7486 * to virtual-time in his units. 7487 * 7488 * By using 'se' instead of 'curr' we penalize light tasks, so 7489 * they get preempted easier. That is, if 'se' < 'curr' then 7490 * the resulting gran will be larger, therefore penalizing the 7491 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7492 * be smaller, again penalizing the lighter task. 7493 * 7494 * This is especially important for buddies when the leftmost 7495 * task is higher priority than the buddy. 7496 */ 7497 return calc_delta_fair(gran, se); 7498 } 7499 7500 /* 7501 * Should 'se' preempt 'curr'. 7502 * 7503 * |s1 7504 * |s2 7505 * |s3 7506 * g 7507 * |<--->|c 7508 * 7509 * w(c, s1) = -1 7510 * w(c, s2) = 0 7511 * w(c, s3) = 1 7512 * 7513 */ 7514 static int 7515 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7516 { 7517 s64 gran, vdiff = curr->vruntime - se->vruntime; 7518 7519 if (vdiff <= 0) 7520 return -1; 7521 7522 gran = wakeup_gran(se); 7523 if (vdiff > gran) 7524 return 1; 7525 7526 return 0; 7527 } 7528 7529 static void set_last_buddy(struct sched_entity *se) 7530 { 7531 for_each_sched_entity(se) { 7532 if (SCHED_WARN_ON(!se->on_rq)) 7533 return; 7534 if (se_is_idle(se)) 7535 return; 7536 cfs_rq_of(se)->last = se; 7537 } 7538 } 7539 7540 static void set_next_buddy(struct sched_entity *se) 7541 { 7542 for_each_sched_entity(se) { 7543 if (SCHED_WARN_ON(!se->on_rq)) 7544 return; 7545 if (se_is_idle(se)) 7546 return; 7547 cfs_rq_of(se)->next = se; 7548 } 7549 } 7550 7551 static void set_skip_buddy(struct sched_entity *se) 7552 { 7553 for_each_sched_entity(se) 7554 cfs_rq_of(se)->skip = se; 7555 } 7556 7557 /* 7558 * Preempt the current task with a newly woken task if needed: 7559 */ 7560 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7561 { 7562 struct task_struct *curr = rq->curr; 7563 struct sched_entity *se = &curr->se, *pse = &p->se; 7564 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7565 int scale = cfs_rq->nr_running >= sched_nr_latency; 7566 int next_buddy_marked = 0; 7567 int cse_is_idle, pse_is_idle; 7568 7569 if (unlikely(se == pse)) 7570 return; 7571 7572 /* 7573 * This is possible from callers such as attach_tasks(), in which we 7574 * unconditionally check_preempt_curr() after an enqueue (which may have 7575 * lead to a throttle). This both saves work and prevents false 7576 * next-buddy nomination below. 7577 */ 7578 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7579 return; 7580 7581 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7582 set_next_buddy(pse); 7583 next_buddy_marked = 1; 7584 } 7585 7586 /* 7587 * We can come here with TIF_NEED_RESCHED already set from new task 7588 * wake up path. 7589 * 7590 * Note: this also catches the edge-case of curr being in a throttled 7591 * group (e.g. via set_curr_task), since update_curr() (in the 7592 * enqueue of curr) will have resulted in resched being set. This 7593 * prevents us from potentially nominating it as a false LAST_BUDDY 7594 * below. 7595 */ 7596 if (test_tsk_need_resched(curr)) 7597 return; 7598 7599 /* Idle tasks are by definition preempted by non-idle tasks. */ 7600 if (unlikely(task_has_idle_policy(curr)) && 7601 likely(!task_has_idle_policy(p))) 7602 goto preempt; 7603 7604 /* 7605 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7606 * is driven by the tick): 7607 */ 7608 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7609 return; 7610 7611 find_matching_se(&se, &pse); 7612 WARN_ON_ONCE(!pse); 7613 7614 cse_is_idle = se_is_idle(se); 7615 pse_is_idle = se_is_idle(pse); 7616 7617 /* 7618 * Preempt an idle group in favor of a non-idle group (and don't preempt 7619 * in the inverse case). 7620 */ 7621 if (cse_is_idle && !pse_is_idle) 7622 goto preempt; 7623 if (cse_is_idle != pse_is_idle) 7624 return; 7625 7626 update_curr(cfs_rq_of(se)); 7627 if (wakeup_preempt_entity(se, pse) == 1) { 7628 /* 7629 * Bias pick_next to pick the sched entity that is 7630 * triggering this preemption. 7631 */ 7632 if (!next_buddy_marked) 7633 set_next_buddy(pse); 7634 goto preempt; 7635 } 7636 7637 return; 7638 7639 preempt: 7640 resched_curr(rq); 7641 /* 7642 * Only set the backward buddy when the current task is still 7643 * on the rq. This can happen when a wakeup gets interleaved 7644 * with schedule on the ->pre_schedule() or idle_balance() 7645 * point, either of which can * drop the rq lock. 7646 * 7647 * Also, during early boot the idle thread is in the fair class, 7648 * for obvious reasons its a bad idea to schedule back to it. 7649 */ 7650 if (unlikely(!se->on_rq || curr == rq->idle)) 7651 return; 7652 7653 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7654 set_last_buddy(se); 7655 } 7656 7657 #ifdef CONFIG_SMP 7658 static struct task_struct *pick_task_fair(struct rq *rq) 7659 { 7660 struct sched_entity *se; 7661 struct cfs_rq *cfs_rq; 7662 7663 again: 7664 cfs_rq = &rq->cfs; 7665 if (!cfs_rq->nr_running) 7666 return NULL; 7667 7668 do { 7669 struct sched_entity *curr = cfs_rq->curr; 7670 7671 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7672 if (curr) { 7673 if (curr->on_rq) 7674 update_curr(cfs_rq); 7675 else 7676 curr = NULL; 7677 7678 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7679 goto again; 7680 } 7681 7682 se = pick_next_entity(cfs_rq, curr); 7683 cfs_rq = group_cfs_rq(se); 7684 } while (cfs_rq); 7685 7686 return task_of(se); 7687 } 7688 #endif 7689 7690 struct task_struct * 7691 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7692 { 7693 struct cfs_rq *cfs_rq = &rq->cfs; 7694 struct sched_entity *se; 7695 struct task_struct *p; 7696 int new_tasks; 7697 7698 again: 7699 if (!sched_fair_runnable(rq)) 7700 goto idle; 7701 7702 #ifdef CONFIG_FAIR_GROUP_SCHED 7703 if (!prev || prev->sched_class != &fair_sched_class) 7704 goto simple; 7705 7706 /* 7707 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7708 * likely that a next task is from the same cgroup as the current. 7709 * 7710 * Therefore attempt to avoid putting and setting the entire cgroup 7711 * hierarchy, only change the part that actually changes. 7712 */ 7713 7714 do { 7715 struct sched_entity *curr = cfs_rq->curr; 7716 7717 /* 7718 * Since we got here without doing put_prev_entity() we also 7719 * have to consider cfs_rq->curr. If it is still a runnable 7720 * entity, update_curr() will update its vruntime, otherwise 7721 * forget we've ever seen it. 7722 */ 7723 if (curr) { 7724 if (curr->on_rq) 7725 update_curr(cfs_rq); 7726 else 7727 curr = NULL; 7728 7729 /* 7730 * This call to check_cfs_rq_runtime() will do the 7731 * throttle and dequeue its entity in the parent(s). 7732 * Therefore the nr_running test will indeed 7733 * be correct. 7734 */ 7735 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7736 cfs_rq = &rq->cfs; 7737 7738 if (!cfs_rq->nr_running) 7739 goto idle; 7740 7741 goto simple; 7742 } 7743 } 7744 7745 se = pick_next_entity(cfs_rq, curr); 7746 cfs_rq = group_cfs_rq(se); 7747 } while (cfs_rq); 7748 7749 p = task_of(se); 7750 7751 /* 7752 * Since we haven't yet done put_prev_entity and if the selected task 7753 * is a different task than we started out with, try and touch the 7754 * least amount of cfs_rqs. 7755 */ 7756 if (prev != p) { 7757 struct sched_entity *pse = &prev->se; 7758 7759 while (!(cfs_rq = is_same_group(se, pse))) { 7760 int se_depth = se->depth; 7761 int pse_depth = pse->depth; 7762 7763 if (se_depth <= pse_depth) { 7764 put_prev_entity(cfs_rq_of(pse), pse); 7765 pse = parent_entity(pse); 7766 } 7767 if (se_depth >= pse_depth) { 7768 set_next_entity(cfs_rq_of(se), se); 7769 se = parent_entity(se); 7770 } 7771 } 7772 7773 put_prev_entity(cfs_rq, pse); 7774 set_next_entity(cfs_rq, se); 7775 } 7776 7777 goto done; 7778 simple: 7779 #endif 7780 if (prev) 7781 put_prev_task(rq, prev); 7782 7783 do { 7784 se = pick_next_entity(cfs_rq, NULL); 7785 set_next_entity(cfs_rq, se); 7786 cfs_rq = group_cfs_rq(se); 7787 } while (cfs_rq); 7788 7789 p = task_of(se); 7790 7791 done: __maybe_unused; 7792 #ifdef CONFIG_SMP 7793 /* 7794 * Move the next running task to the front of 7795 * the list, so our cfs_tasks list becomes MRU 7796 * one. 7797 */ 7798 list_move(&p->se.group_node, &rq->cfs_tasks); 7799 #endif 7800 7801 if (hrtick_enabled_fair(rq)) 7802 hrtick_start_fair(rq, p); 7803 7804 update_misfit_status(p, rq); 7805 7806 return p; 7807 7808 idle: 7809 if (!rf) 7810 return NULL; 7811 7812 new_tasks = newidle_balance(rq, rf); 7813 7814 /* 7815 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7816 * possible for any higher priority task to appear. In that case we 7817 * must re-start the pick_next_entity() loop. 7818 */ 7819 if (new_tasks < 0) 7820 return RETRY_TASK; 7821 7822 if (new_tasks > 0) 7823 goto again; 7824 7825 /* 7826 * rq is about to be idle, check if we need to update the 7827 * lost_idle_time of clock_pelt 7828 */ 7829 update_idle_rq_clock_pelt(rq); 7830 7831 return NULL; 7832 } 7833 7834 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7835 { 7836 return pick_next_task_fair(rq, NULL, NULL); 7837 } 7838 7839 /* 7840 * Account for a descheduled task: 7841 */ 7842 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7843 { 7844 struct sched_entity *se = &prev->se; 7845 struct cfs_rq *cfs_rq; 7846 7847 for_each_sched_entity(se) { 7848 cfs_rq = cfs_rq_of(se); 7849 put_prev_entity(cfs_rq, se); 7850 } 7851 } 7852 7853 /* 7854 * sched_yield() is very simple 7855 * 7856 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7857 */ 7858 static void yield_task_fair(struct rq *rq) 7859 { 7860 struct task_struct *curr = rq->curr; 7861 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7862 struct sched_entity *se = &curr->se; 7863 7864 /* 7865 * Are we the only task in the tree? 7866 */ 7867 if (unlikely(rq->nr_running == 1)) 7868 return; 7869 7870 clear_buddies(cfs_rq, se); 7871 7872 if (curr->policy != SCHED_BATCH) { 7873 update_rq_clock(rq); 7874 /* 7875 * Update run-time statistics of the 'current'. 7876 */ 7877 update_curr(cfs_rq); 7878 /* 7879 * Tell update_rq_clock() that we've just updated, 7880 * so we don't do microscopic update in schedule() 7881 * and double the fastpath cost. 7882 */ 7883 rq_clock_skip_update(rq); 7884 } 7885 7886 set_skip_buddy(se); 7887 } 7888 7889 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7890 { 7891 struct sched_entity *se = &p->se; 7892 7893 /* throttled hierarchies are not runnable */ 7894 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7895 return false; 7896 7897 /* Tell the scheduler that we'd really like pse to run next. */ 7898 set_next_buddy(se); 7899 7900 yield_task_fair(rq); 7901 7902 return true; 7903 } 7904 7905 #ifdef CONFIG_SMP 7906 /************************************************** 7907 * Fair scheduling class load-balancing methods. 7908 * 7909 * BASICS 7910 * 7911 * The purpose of load-balancing is to achieve the same basic fairness the 7912 * per-CPU scheduler provides, namely provide a proportional amount of compute 7913 * time to each task. This is expressed in the following equation: 7914 * 7915 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7916 * 7917 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7918 * W_i,0 is defined as: 7919 * 7920 * W_i,0 = \Sum_j w_i,j (2) 7921 * 7922 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7923 * is derived from the nice value as per sched_prio_to_weight[]. 7924 * 7925 * The weight average is an exponential decay average of the instantaneous 7926 * weight: 7927 * 7928 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7929 * 7930 * C_i is the compute capacity of CPU i, typically it is the 7931 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7932 * can also include other factors [XXX]. 7933 * 7934 * To achieve this balance we define a measure of imbalance which follows 7935 * directly from (1): 7936 * 7937 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7938 * 7939 * We them move tasks around to minimize the imbalance. In the continuous 7940 * function space it is obvious this converges, in the discrete case we get 7941 * a few fun cases generally called infeasible weight scenarios. 7942 * 7943 * [XXX expand on: 7944 * - infeasible weights; 7945 * - local vs global optima in the discrete case. ] 7946 * 7947 * 7948 * SCHED DOMAINS 7949 * 7950 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7951 * for all i,j solution, we create a tree of CPUs that follows the hardware 7952 * topology where each level pairs two lower groups (or better). This results 7953 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7954 * tree to only the first of the previous level and we decrease the frequency 7955 * of load-balance at each level inv. proportional to the number of CPUs in 7956 * the groups. 7957 * 7958 * This yields: 7959 * 7960 * log_2 n 1 n 7961 * \Sum { --- * --- * 2^i } = O(n) (5) 7962 * i = 0 2^i 2^i 7963 * `- size of each group 7964 * | | `- number of CPUs doing load-balance 7965 * | `- freq 7966 * `- sum over all levels 7967 * 7968 * Coupled with a limit on how many tasks we can migrate every balance pass, 7969 * this makes (5) the runtime complexity of the balancer. 7970 * 7971 * An important property here is that each CPU is still (indirectly) connected 7972 * to every other CPU in at most O(log n) steps: 7973 * 7974 * The adjacency matrix of the resulting graph is given by: 7975 * 7976 * log_2 n 7977 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7978 * k = 0 7979 * 7980 * And you'll find that: 7981 * 7982 * A^(log_2 n)_i,j != 0 for all i,j (7) 7983 * 7984 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7985 * The task movement gives a factor of O(m), giving a convergence complexity 7986 * of: 7987 * 7988 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7989 * 7990 * 7991 * WORK CONSERVING 7992 * 7993 * In order to avoid CPUs going idle while there's still work to do, new idle 7994 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7995 * tree itself instead of relying on other CPUs to bring it work. 7996 * 7997 * This adds some complexity to both (5) and (8) but it reduces the total idle 7998 * time. 7999 * 8000 * [XXX more?] 8001 * 8002 * 8003 * CGROUPS 8004 * 8005 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8006 * 8007 * s_k,i 8008 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8009 * S_k 8010 * 8011 * Where 8012 * 8013 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8014 * 8015 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8016 * 8017 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8018 * property. 8019 * 8020 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8021 * rewrite all of this once again.] 8022 */ 8023 8024 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8025 8026 enum fbq_type { regular, remote, all }; 8027 8028 /* 8029 * 'group_type' describes the group of CPUs at the moment of load balancing. 8030 * 8031 * The enum is ordered by pulling priority, with the group with lowest priority 8032 * first so the group_type can simply be compared when selecting the busiest 8033 * group. See update_sd_pick_busiest(). 8034 */ 8035 enum group_type { 8036 /* The group has spare capacity that can be used to run more tasks. */ 8037 group_has_spare = 0, 8038 /* 8039 * The group is fully used and the tasks don't compete for more CPU 8040 * cycles. Nevertheless, some tasks might wait before running. 8041 */ 8042 group_fully_busy, 8043 /* 8044 * One task doesn't fit with CPU's capacity and must be migrated to a 8045 * more powerful CPU. 8046 */ 8047 group_misfit_task, 8048 /* 8049 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8050 * and the task should be migrated to it instead of running on the 8051 * current CPU. 8052 */ 8053 group_asym_packing, 8054 /* 8055 * The tasks' affinity constraints previously prevented the scheduler 8056 * from balancing the load across the system. 8057 */ 8058 group_imbalanced, 8059 /* 8060 * The CPU is overloaded and can't provide expected CPU cycles to all 8061 * tasks. 8062 */ 8063 group_overloaded 8064 }; 8065 8066 enum migration_type { 8067 migrate_load = 0, 8068 migrate_util, 8069 migrate_task, 8070 migrate_misfit 8071 }; 8072 8073 #define LBF_ALL_PINNED 0x01 8074 #define LBF_NEED_BREAK 0x02 8075 #define LBF_DST_PINNED 0x04 8076 #define LBF_SOME_PINNED 0x08 8077 #define LBF_ACTIVE_LB 0x10 8078 8079 struct lb_env { 8080 struct sched_domain *sd; 8081 8082 struct rq *src_rq; 8083 int src_cpu; 8084 8085 int dst_cpu; 8086 struct rq *dst_rq; 8087 8088 struct cpumask *dst_grpmask; 8089 int new_dst_cpu; 8090 enum cpu_idle_type idle; 8091 long imbalance; 8092 /* The set of CPUs under consideration for load-balancing */ 8093 struct cpumask *cpus; 8094 8095 unsigned int flags; 8096 8097 unsigned int loop; 8098 unsigned int loop_break; 8099 unsigned int loop_max; 8100 8101 enum fbq_type fbq_type; 8102 enum migration_type migration_type; 8103 struct list_head tasks; 8104 }; 8105 8106 /* 8107 * Is this task likely cache-hot: 8108 */ 8109 static int task_hot(struct task_struct *p, struct lb_env *env) 8110 { 8111 s64 delta; 8112 8113 lockdep_assert_rq_held(env->src_rq); 8114 8115 if (p->sched_class != &fair_sched_class) 8116 return 0; 8117 8118 if (unlikely(task_has_idle_policy(p))) 8119 return 0; 8120 8121 /* SMT siblings share cache */ 8122 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8123 return 0; 8124 8125 /* 8126 * Buddy candidates are cache hot: 8127 */ 8128 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8129 (&p->se == cfs_rq_of(&p->se)->next || 8130 &p->se == cfs_rq_of(&p->se)->last)) 8131 return 1; 8132 8133 if (sysctl_sched_migration_cost == -1) 8134 return 1; 8135 8136 /* 8137 * Don't migrate task if the task's cookie does not match 8138 * with the destination CPU's core cookie. 8139 */ 8140 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8141 return 1; 8142 8143 if (sysctl_sched_migration_cost == 0) 8144 return 0; 8145 8146 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8147 8148 return delta < (s64)sysctl_sched_migration_cost; 8149 } 8150 8151 #ifdef CONFIG_NUMA_BALANCING 8152 /* 8153 * Returns 1, if task migration degrades locality 8154 * Returns 0, if task migration improves locality i.e migration preferred. 8155 * Returns -1, if task migration is not affected by locality. 8156 */ 8157 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8158 { 8159 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8160 unsigned long src_weight, dst_weight; 8161 int src_nid, dst_nid, dist; 8162 8163 if (!static_branch_likely(&sched_numa_balancing)) 8164 return -1; 8165 8166 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8167 return -1; 8168 8169 src_nid = cpu_to_node(env->src_cpu); 8170 dst_nid = cpu_to_node(env->dst_cpu); 8171 8172 if (src_nid == dst_nid) 8173 return -1; 8174 8175 /* Migrating away from the preferred node is always bad. */ 8176 if (src_nid == p->numa_preferred_nid) { 8177 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8178 return 1; 8179 else 8180 return -1; 8181 } 8182 8183 /* Encourage migration to the preferred node. */ 8184 if (dst_nid == p->numa_preferred_nid) 8185 return 0; 8186 8187 /* Leaving a core idle is often worse than degrading locality. */ 8188 if (env->idle == CPU_IDLE) 8189 return -1; 8190 8191 dist = node_distance(src_nid, dst_nid); 8192 if (numa_group) { 8193 src_weight = group_weight(p, src_nid, dist); 8194 dst_weight = group_weight(p, dst_nid, dist); 8195 } else { 8196 src_weight = task_weight(p, src_nid, dist); 8197 dst_weight = task_weight(p, dst_nid, dist); 8198 } 8199 8200 return dst_weight < src_weight; 8201 } 8202 8203 #else 8204 static inline int migrate_degrades_locality(struct task_struct *p, 8205 struct lb_env *env) 8206 { 8207 return -1; 8208 } 8209 #endif 8210 8211 /* 8212 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8213 */ 8214 static 8215 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8216 { 8217 int tsk_cache_hot; 8218 8219 lockdep_assert_rq_held(env->src_rq); 8220 8221 /* 8222 * We do not migrate tasks that are: 8223 * 1) throttled_lb_pair, or 8224 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8225 * 3) running (obviously), or 8226 * 4) are cache-hot on their current CPU. 8227 */ 8228 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8229 return 0; 8230 8231 /* Disregard pcpu kthreads; they are where they need to be. */ 8232 if (kthread_is_per_cpu(p)) 8233 return 0; 8234 8235 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8236 int cpu; 8237 8238 schedstat_inc(p->stats.nr_failed_migrations_affine); 8239 8240 env->flags |= LBF_SOME_PINNED; 8241 8242 /* 8243 * Remember if this task can be migrated to any other CPU in 8244 * our sched_group. We may want to revisit it if we couldn't 8245 * meet load balance goals by pulling other tasks on src_cpu. 8246 * 8247 * Avoid computing new_dst_cpu 8248 * - for NEWLY_IDLE 8249 * - if we have already computed one in current iteration 8250 * - if it's an active balance 8251 */ 8252 if (env->idle == CPU_NEWLY_IDLE || 8253 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8254 return 0; 8255 8256 /* Prevent to re-select dst_cpu via env's CPUs: */ 8257 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8258 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8259 env->flags |= LBF_DST_PINNED; 8260 env->new_dst_cpu = cpu; 8261 break; 8262 } 8263 } 8264 8265 return 0; 8266 } 8267 8268 /* Record that we found at least one task that could run on dst_cpu */ 8269 env->flags &= ~LBF_ALL_PINNED; 8270 8271 if (task_on_cpu(env->src_rq, p)) { 8272 schedstat_inc(p->stats.nr_failed_migrations_running); 8273 return 0; 8274 } 8275 8276 /* 8277 * Aggressive migration if: 8278 * 1) active balance 8279 * 2) destination numa is preferred 8280 * 3) task is cache cold, or 8281 * 4) too many balance attempts have failed. 8282 */ 8283 if (env->flags & LBF_ACTIVE_LB) 8284 return 1; 8285 8286 tsk_cache_hot = migrate_degrades_locality(p, env); 8287 if (tsk_cache_hot == -1) 8288 tsk_cache_hot = task_hot(p, env); 8289 8290 if (tsk_cache_hot <= 0 || 8291 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8292 if (tsk_cache_hot == 1) { 8293 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8294 schedstat_inc(p->stats.nr_forced_migrations); 8295 } 8296 return 1; 8297 } 8298 8299 schedstat_inc(p->stats.nr_failed_migrations_hot); 8300 return 0; 8301 } 8302 8303 /* 8304 * detach_task() -- detach the task for the migration specified in env 8305 */ 8306 static void detach_task(struct task_struct *p, struct lb_env *env) 8307 { 8308 lockdep_assert_rq_held(env->src_rq); 8309 8310 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8311 set_task_cpu(p, env->dst_cpu); 8312 } 8313 8314 /* 8315 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8316 * part of active balancing operations within "domain". 8317 * 8318 * Returns a task if successful and NULL otherwise. 8319 */ 8320 static struct task_struct *detach_one_task(struct lb_env *env) 8321 { 8322 struct task_struct *p; 8323 8324 lockdep_assert_rq_held(env->src_rq); 8325 8326 list_for_each_entry_reverse(p, 8327 &env->src_rq->cfs_tasks, se.group_node) { 8328 if (!can_migrate_task(p, env)) 8329 continue; 8330 8331 detach_task(p, env); 8332 8333 /* 8334 * Right now, this is only the second place where 8335 * lb_gained[env->idle] is updated (other is detach_tasks) 8336 * so we can safely collect stats here rather than 8337 * inside detach_tasks(). 8338 */ 8339 schedstat_inc(env->sd->lb_gained[env->idle]); 8340 return p; 8341 } 8342 return NULL; 8343 } 8344 8345 /* 8346 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8347 * busiest_rq, as part of a balancing operation within domain "sd". 8348 * 8349 * Returns number of detached tasks if successful and 0 otherwise. 8350 */ 8351 static int detach_tasks(struct lb_env *env) 8352 { 8353 struct list_head *tasks = &env->src_rq->cfs_tasks; 8354 unsigned long util, load; 8355 struct task_struct *p; 8356 int detached = 0; 8357 8358 lockdep_assert_rq_held(env->src_rq); 8359 8360 /* 8361 * Source run queue has been emptied by another CPU, clear 8362 * LBF_ALL_PINNED flag as we will not test any task. 8363 */ 8364 if (env->src_rq->nr_running <= 1) { 8365 env->flags &= ~LBF_ALL_PINNED; 8366 return 0; 8367 } 8368 8369 if (env->imbalance <= 0) 8370 return 0; 8371 8372 while (!list_empty(tasks)) { 8373 /* 8374 * We don't want to steal all, otherwise we may be treated likewise, 8375 * which could at worst lead to a livelock crash. 8376 */ 8377 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8378 break; 8379 8380 env->loop++; 8381 /* 8382 * We've more or less seen every task there is, call it quits 8383 * unless we haven't found any movable task yet. 8384 */ 8385 if (env->loop > env->loop_max && 8386 !(env->flags & LBF_ALL_PINNED)) 8387 break; 8388 8389 /* take a breather every nr_migrate tasks */ 8390 if (env->loop > env->loop_break) { 8391 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8392 env->flags |= LBF_NEED_BREAK; 8393 break; 8394 } 8395 8396 p = list_last_entry(tasks, struct task_struct, se.group_node); 8397 8398 if (!can_migrate_task(p, env)) 8399 goto next; 8400 8401 switch (env->migration_type) { 8402 case migrate_load: 8403 /* 8404 * Depending of the number of CPUs and tasks and the 8405 * cgroup hierarchy, task_h_load() can return a null 8406 * value. Make sure that env->imbalance decreases 8407 * otherwise detach_tasks() will stop only after 8408 * detaching up to loop_max tasks. 8409 */ 8410 load = max_t(unsigned long, task_h_load(p), 1); 8411 8412 if (sched_feat(LB_MIN) && 8413 load < 16 && !env->sd->nr_balance_failed) 8414 goto next; 8415 8416 /* 8417 * Make sure that we don't migrate too much load. 8418 * Nevertheless, let relax the constraint if 8419 * scheduler fails to find a good waiting task to 8420 * migrate. 8421 */ 8422 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8423 goto next; 8424 8425 env->imbalance -= load; 8426 break; 8427 8428 case migrate_util: 8429 util = task_util_est(p); 8430 8431 if (util > env->imbalance) 8432 goto next; 8433 8434 env->imbalance -= util; 8435 break; 8436 8437 case migrate_task: 8438 env->imbalance--; 8439 break; 8440 8441 case migrate_misfit: 8442 /* This is not a misfit task */ 8443 if (task_fits_cpu(p, env->src_cpu)) 8444 goto next; 8445 8446 env->imbalance = 0; 8447 break; 8448 } 8449 8450 detach_task(p, env); 8451 list_add(&p->se.group_node, &env->tasks); 8452 8453 detached++; 8454 8455 #ifdef CONFIG_PREEMPTION 8456 /* 8457 * NEWIDLE balancing is a source of latency, so preemptible 8458 * kernels will stop after the first task is detached to minimize 8459 * the critical section. 8460 */ 8461 if (env->idle == CPU_NEWLY_IDLE) 8462 break; 8463 #endif 8464 8465 /* 8466 * We only want to steal up to the prescribed amount of 8467 * load/util/tasks. 8468 */ 8469 if (env->imbalance <= 0) 8470 break; 8471 8472 continue; 8473 next: 8474 list_move(&p->se.group_node, tasks); 8475 } 8476 8477 /* 8478 * Right now, this is one of only two places we collect this stat 8479 * so we can safely collect detach_one_task() stats here rather 8480 * than inside detach_one_task(). 8481 */ 8482 schedstat_add(env->sd->lb_gained[env->idle], detached); 8483 8484 return detached; 8485 } 8486 8487 /* 8488 * attach_task() -- attach the task detached by detach_task() to its new rq. 8489 */ 8490 static void attach_task(struct rq *rq, struct task_struct *p) 8491 { 8492 lockdep_assert_rq_held(rq); 8493 8494 WARN_ON_ONCE(task_rq(p) != rq); 8495 activate_task(rq, p, ENQUEUE_NOCLOCK); 8496 check_preempt_curr(rq, p, 0); 8497 } 8498 8499 /* 8500 * attach_one_task() -- attaches the task returned from detach_one_task() to 8501 * its new rq. 8502 */ 8503 static void attach_one_task(struct rq *rq, struct task_struct *p) 8504 { 8505 struct rq_flags rf; 8506 8507 rq_lock(rq, &rf); 8508 update_rq_clock(rq); 8509 attach_task(rq, p); 8510 rq_unlock(rq, &rf); 8511 } 8512 8513 /* 8514 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8515 * new rq. 8516 */ 8517 static void attach_tasks(struct lb_env *env) 8518 { 8519 struct list_head *tasks = &env->tasks; 8520 struct task_struct *p; 8521 struct rq_flags rf; 8522 8523 rq_lock(env->dst_rq, &rf); 8524 update_rq_clock(env->dst_rq); 8525 8526 while (!list_empty(tasks)) { 8527 p = list_first_entry(tasks, struct task_struct, se.group_node); 8528 list_del_init(&p->se.group_node); 8529 8530 attach_task(env->dst_rq, p); 8531 } 8532 8533 rq_unlock(env->dst_rq, &rf); 8534 } 8535 8536 #ifdef CONFIG_NO_HZ_COMMON 8537 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8538 { 8539 if (cfs_rq->avg.load_avg) 8540 return true; 8541 8542 if (cfs_rq->avg.util_avg) 8543 return true; 8544 8545 return false; 8546 } 8547 8548 static inline bool others_have_blocked(struct rq *rq) 8549 { 8550 if (READ_ONCE(rq->avg_rt.util_avg)) 8551 return true; 8552 8553 if (READ_ONCE(rq->avg_dl.util_avg)) 8554 return true; 8555 8556 if (thermal_load_avg(rq)) 8557 return true; 8558 8559 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8560 if (READ_ONCE(rq->avg_irq.util_avg)) 8561 return true; 8562 #endif 8563 8564 return false; 8565 } 8566 8567 static inline void update_blocked_load_tick(struct rq *rq) 8568 { 8569 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8570 } 8571 8572 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8573 { 8574 if (!has_blocked) 8575 rq->has_blocked_load = 0; 8576 } 8577 #else 8578 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8579 static inline bool others_have_blocked(struct rq *rq) { return false; } 8580 static inline void update_blocked_load_tick(struct rq *rq) {} 8581 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8582 #endif 8583 8584 static bool __update_blocked_others(struct rq *rq, bool *done) 8585 { 8586 const struct sched_class *curr_class; 8587 u64 now = rq_clock_pelt(rq); 8588 unsigned long thermal_pressure; 8589 bool decayed; 8590 8591 /* 8592 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8593 * DL and IRQ signals have been updated before updating CFS. 8594 */ 8595 curr_class = rq->curr->sched_class; 8596 8597 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8598 8599 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8600 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8601 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8602 update_irq_load_avg(rq, 0); 8603 8604 if (others_have_blocked(rq)) 8605 *done = false; 8606 8607 return decayed; 8608 } 8609 8610 #ifdef CONFIG_FAIR_GROUP_SCHED 8611 8612 static bool __update_blocked_fair(struct rq *rq, bool *done) 8613 { 8614 struct cfs_rq *cfs_rq, *pos; 8615 bool decayed = false; 8616 int cpu = cpu_of(rq); 8617 8618 /* 8619 * Iterates the task_group tree in a bottom up fashion, see 8620 * list_add_leaf_cfs_rq() for details. 8621 */ 8622 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8623 struct sched_entity *se; 8624 8625 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8626 update_tg_load_avg(cfs_rq); 8627 8628 if (cfs_rq->nr_running == 0) 8629 update_idle_cfs_rq_clock_pelt(cfs_rq); 8630 8631 if (cfs_rq == &rq->cfs) 8632 decayed = true; 8633 } 8634 8635 /* Propagate pending load changes to the parent, if any: */ 8636 se = cfs_rq->tg->se[cpu]; 8637 if (se && !skip_blocked_update(se)) 8638 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8639 8640 /* 8641 * There can be a lot of idle CPU cgroups. Don't let fully 8642 * decayed cfs_rqs linger on the list. 8643 */ 8644 if (cfs_rq_is_decayed(cfs_rq)) 8645 list_del_leaf_cfs_rq(cfs_rq); 8646 8647 /* Don't need periodic decay once load/util_avg are null */ 8648 if (cfs_rq_has_blocked(cfs_rq)) 8649 *done = false; 8650 } 8651 8652 return decayed; 8653 } 8654 8655 /* 8656 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8657 * This needs to be done in a top-down fashion because the load of a child 8658 * group is a fraction of its parents load. 8659 */ 8660 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8661 { 8662 struct rq *rq = rq_of(cfs_rq); 8663 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8664 unsigned long now = jiffies; 8665 unsigned long load; 8666 8667 if (cfs_rq->last_h_load_update == now) 8668 return; 8669 8670 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8671 for_each_sched_entity(se) { 8672 cfs_rq = cfs_rq_of(se); 8673 WRITE_ONCE(cfs_rq->h_load_next, se); 8674 if (cfs_rq->last_h_load_update == now) 8675 break; 8676 } 8677 8678 if (!se) { 8679 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8680 cfs_rq->last_h_load_update = now; 8681 } 8682 8683 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8684 load = cfs_rq->h_load; 8685 load = div64_ul(load * se->avg.load_avg, 8686 cfs_rq_load_avg(cfs_rq) + 1); 8687 cfs_rq = group_cfs_rq(se); 8688 cfs_rq->h_load = load; 8689 cfs_rq->last_h_load_update = now; 8690 } 8691 } 8692 8693 static unsigned long task_h_load(struct task_struct *p) 8694 { 8695 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8696 8697 update_cfs_rq_h_load(cfs_rq); 8698 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8699 cfs_rq_load_avg(cfs_rq) + 1); 8700 } 8701 #else 8702 static bool __update_blocked_fair(struct rq *rq, bool *done) 8703 { 8704 struct cfs_rq *cfs_rq = &rq->cfs; 8705 bool decayed; 8706 8707 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8708 if (cfs_rq_has_blocked(cfs_rq)) 8709 *done = false; 8710 8711 return decayed; 8712 } 8713 8714 static unsigned long task_h_load(struct task_struct *p) 8715 { 8716 return p->se.avg.load_avg; 8717 } 8718 #endif 8719 8720 static void update_blocked_averages(int cpu) 8721 { 8722 bool decayed = false, done = true; 8723 struct rq *rq = cpu_rq(cpu); 8724 struct rq_flags rf; 8725 8726 rq_lock_irqsave(rq, &rf); 8727 update_blocked_load_tick(rq); 8728 update_rq_clock(rq); 8729 8730 decayed |= __update_blocked_others(rq, &done); 8731 decayed |= __update_blocked_fair(rq, &done); 8732 8733 update_blocked_load_status(rq, !done); 8734 if (decayed) 8735 cpufreq_update_util(rq, 0); 8736 rq_unlock_irqrestore(rq, &rf); 8737 } 8738 8739 /********** Helpers for find_busiest_group ************************/ 8740 8741 /* 8742 * sg_lb_stats - stats of a sched_group required for load_balancing 8743 */ 8744 struct sg_lb_stats { 8745 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8746 unsigned long group_load; /* Total load over the CPUs of the group */ 8747 unsigned long group_capacity; 8748 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8749 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8750 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8751 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8752 unsigned int idle_cpus; 8753 unsigned int group_weight; 8754 enum group_type group_type; 8755 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8756 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8757 #ifdef CONFIG_NUMA_BALANCING 8758 unsigned int nr_numa_running; 8759 unsigned int nr_preferred_running; 8760 #endif 8761 }; 8762 8763 /* 8764 * sd_lb_stats - Structure to store the statistics of a sched_domain 8765 * during load balancing. 8766 */ 8767 struct sd_lb_stats { 8768 struct sched_group *busiest; /* Busiest group in this sd */ 8769 struct sched_group *local; /* Local group in this sd */ 8770 unsigned long total_load; /* Total load of all groups in sd */ 8771 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8772 unsigned long avg_load; /* Average load across all groups in sd */ 8773 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8774 8775 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8776 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8777 }; 8778 8779 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8780 { 8781 /* 8782 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8783 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8784 * We must however set busiest_stat::group_type and 8785 * busiest_stat::idle_cpus to the worst busiest group because 8786 * update_sd_pick_busiest() reads these before assignment. 8787 */ 8788 *sds = (struct sd_lb_stats){ 8789 .busiest = NULL, 8790 .local = NULL, 8791 .total_load = 0UL, 8792 .total_capacity = 0UL, 8793 .busiest_stat = { 8794 .idle_cpus = UINT_MAX, 8795 .group_type = group_has_spare, 8796 }, 8797 }; 8798 } 8799 8800 static unsigned long scale_rt_capacity(int cpu) 8801 { 8802 struct rq *rq = cpu_rq(cpu); 8803 unsigned long max = arch_scale_cpu_capacity(cpu); 8804 unsigned long used, free; 8805 unsigned long irq; 8806 8807 irq = cpu_util_irq(rq); 8808 8809 if (unlikely(irq >= max)) 8810 return 1; 8811 8812 /* 8813 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8814 * (running and not running) with weights 0 and 1024 respectively. 8815 * avg_thermal.load_avg tracks thermal pressure and the weighted 8816 * average uses the actual delta max capacity(load). 8817 */ 8818 used = READ_ONCE(rq->avg_rt.util_avg); 8819 used += READ_ONCE(rq->avg_dl.util_avg); 8820 used += thermal_load_avg(rq); 8821 8822 if (unlikely(used >= max)) 8823 return 1; 8824 8825 free = max - used; 8826 8827 return scale_irq_capacity(free, irq, max); 8828 } 8829 8830 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8831 { 8832 unsigned long capacity_orig = arch_scale_cpu_capacity(cpu); 8833 unsigned long capacity = scale_rt_capacity(cpu); 8834 struct sched_group *sdg = sd->groups; 8835 struct rq *rq = cpu_rq(cpu); 8836 8837 rq->cpu_capacity_orig = capacity_orig; 8838 8839 if (!capacity) 8840 capacity = 1; 8841 8842 rq->cpu_capacity = capacity; 8843 8844 /* 8845 * Detect if the performance domain is in capacity inversion state. 8846 * 8847 * Capacity inversion happens when another perf domain with equal or 8848 * lower capacity_orig_of() ends up having higher capacity than this 8849 * domain after subtracting thermal pressure. 8850 * 8851 * We only take into account thermal pressure in this detection as it's 8852 * the only metric that actually results in *real* reduction of 8853 * capacity due to performance points (OPPs) being dropped/become 8854 * unreachable due to thermal throttling. 8855 * 8856 * We assume: 8857 * * That all cpus in a perf domain have the same capacity_orig 8858 * (same uArch). 8859 * * Thermal pressure will impact all cpus in this perf domain 8860 * equally. 8861 */ 8862 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 8863 unsigned long inv_cap = capacity_orig - thermal_load_avg(rq); 8864 struct perf_domain *pd = rcu_dereference(rq->rd->pd); 8865 8866 rq->cpu_capacity_inverted = 0; 8867 8868 for (; pd; pd = pd->next) { 8869 struct cpumask *pd_span = perf_domain_span(pd); 8870 unsigned long pd_cap_orig, pd_cap; 8871 8872 cpu = cpumask_any(pd_span); 8873 pd_cap_orig = arch_scale_cpu_capacity(cpu); 8874 8875 if (capacity_orig < pd_cap_orig) 8876 continue; 8877 8878 /* 8879 * handle the case of multiple perf domains have the 8880 * same capacity_orig but one of them is under higher 8881 * thermal pressure. We record it as capacity 8882 * inversion. 8883 */ 8884 if (capacity_orig == pd_cap_orig) { 8885 pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu)); 8886 8887 if (pd_cap > inv_cap) { 8888 rq->cpu_capacity_inverted = inv_cap; 8889 break; 8890 } 8891 } else if (pd_cap_orig > inv_cap) { 8892 rq->cpu_capacity_inverted = inv_cap; 8893 break; 8894 } 8895 } 8896 } 8897 8898 trace_sched_cpu_capacity_tp(rq); 8899 8900 sdg->sgc->capacity = capacity; 8901 sdg->sgc->min_capacity = capacity; 8902 sdg->sgc->max_capacity = capacity; 8903 } 8904 8905 void update_group_capacity(struct sched_domain *sd, int cpu) 8906 { 8907 struct sched_domain *child = sd->child; 8908 struct sched_group *group, *sdg = sd->groups; 8909 unsigned long capacity, min_capacity, max_capacity; 8910 unsigned long interval; 8911 8912 interval = msecs_to_jiffies(sd->balance_interval); 8913 interval = clamp(interval, 1UL, max_load_balance_interval); 8914 sdg->sgc->next_update = jiffies + interval; 8915 8916 if (!child) { 8917 update_cpu_capacity(sd, cpu); 8918 return; 8919 } 8920 8921 capacity = 0; 8922 min_capacity = ULONG_MAX; 8923 max_capacity = 0; 8924 8925 if (child->flags & SD_OVERLAP) { 8926 /* 8927 * SD_OVERLAP domains cannot assume that child groups 8928 * span the current group. 8929 */ 8930 8931 for_each_cpu(cpu, sched_group_span(sdg)) { 8932 unsigned long cpu_cap = capacity_of(cpu); 8933 8934 capacity += cpu_cap; 8935 min_capacity = min(cpu_cap, min_capacity); 8936 max_capacity = max(cpu_cap, max_capacity); 8937 } 8938 } else { 8939 /* 8940 * !SD_OVERLAP domains can assume that child groups 8941 * span the current group. 8942 */ 8943 8944 group = child->groups; 8945 do { 8946 struct sched_group_capacity *sgc = group->sgc; 8947 8948 capacity += sgc->capacity; 8949 min_capacity = min(sgc->min_capacity, min_capacity); 8950 max_capacity = max(sgc->max_capacity, max_capacity); 8951 group = group->next; 8952 } while (group != child->groups); 8953 } 8954 8955 sdg->sgc->capacity = capacity; 8956 sdg->sgc->min_capacity = min_capacity; 8957 sdg->sgc->max_capacity = max_capacity; 8958 } 8959 8960 /* 8961 * Check whether the capacity of the rq has been noticeably reduced by side 8962 * activity. The imbalance_pct is used for the threshold. 8963 * Return true is the capacity is reduced 8964 */ 8965 static inline int 8966 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8967 { 8968 return ((rq->cpu_capacity * sd->imbalance_pct) < 8969 (rq->cpu_capacity_orig * 100)); 8970 } 8971 8972 /* 8973 * Check whether a rq has a misfit task and if it looks like we can actually 8974 * help that task: we can migrate the task to a CPU of higher capacity, or 8975 * the task's current CPU is heavily pressured. 8976 */ 8977 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8978 { 8979 return rq->misfit_task_load && 8980 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8981 check_cpu_capacity(rq, sd)); 8982 } 8983 8984 /* 8985 * Group imbalance indicates (and tries to solve) the problem where balancing 8986 * groups is inadequate due to ->cpus_ptr constraints. 8987 * 8988 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8989 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8990 * Something like: 8991 * 8992 * { 0 1 2 3 } { 4 5 6 7 } 8993 * * * * * 8994 * 8995 * If we were to balance group-wise we'd place two tasks in the first group and 8996 * two tasks in the second group. Clearly this is undesired as it will overload 8997 * cpu 3 and leave one of the CPUs in the second group unused. 8998 * 8999 * The current solution to this issue is detecting the skew in the first group 9000 * by noticing the lower domain failed to reach balance and had difficulty 9001 * moving tasks due to affinity constraints. 9002 * 9003 * When this is so detected; this group becomes a candidate for busiest; see 9004 * update_sd_pick_busiest(). And calculate_imbalance() and 9005 * find_busiest_group() avoid some of the usual balance conditions to allow it 9006 * to create an effective group imbalance. 9007 * 9008 * This is a somewhat tricky proposition since the next run might not find the 9009 * group imbalance and decide the groups need to be balanced again. A most 9010 * subtle and fragile situation. 9011 */ 9012 9013 static inline int sg_imbalanced(struct sched_group *group) 9014 { 9015 return group->sgc->imbalance; 9016 } 9017 9018 /* 9019 * group_has_capacity returns true if the group has spare capacity that could 9020 * be used by some tasks. 9021 * We consider that a group has spare capacity if the number of task is 9022 * smaller than the number of CPUs or if the utilization is lower than the 9023 * available capacity for CFS tasks. 9024 * For the latter, we use a threshold to stabilize the state, to take into 9025 * account the variance of the tasks' load and to return true if the available 9026 * capacity in meaningful for the load balancer. 9027 * As an example, an available capacity of 1% can appear but it doesn't make 9028 * any benefit for the load balance. 9029 */ 9030 static inline bool 9031 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9032 { 9033 if (sgs->sum_nr_running < sgs->group_weight) 9034 return true; 9035 9036 if ((sgs->group_capacity * imbalance_pct) < 9037 (sgs->group_runnable * 100)) 9038 return false; 9039 9040 if ((sgs->group_capacity * 100) > 9041 (sgs->group_util * imbalance_pct)) 9042 return true; 9043 9044 return false; 9045 } 9046 9047 /* 9048 * group_is_overloaded returns true if the group has more tasks than it can 9049 * handle. 9050 * group_is_overloaded is not equals to !group_has_capacity because a group 9051 * with the exact right number of tasks, has no more spare capacity but is not 9052 * overloaded so both group_has_capacity and group_is_overloaded return 9053 * false. 9054 */ 9055 static inline bool 9056 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9057 { 9058 if (sgs->sum_nr_running <= sgs->group_weight) 9059 return false; 9060 9061 if ((sgs->group_capacity * 100) < 9062 (sgs->group_util * imbalance_pct)) 9063 return true; 9064 9065 if ((sgs->group_capacity * imbalance_pct) < 9066 (sgs->group_runnable * 100)) 9067 return true; 9068 9069 return false; 9070 } 9071 9072 static inline enum 9073 group_type group_classify(unsigned int imbalance_pct, 9074 struct sched_group *group, 9075 struct sg_lb_stats *sgs) 9076 { 9077 if (group_is_overloaded(imbalance_pct, sgs)) 9078 return group_overloaded; 9079 9080 if (sg_imbalanced(group)) 9081 return group_imbalanced; 9082 9083 if (sgs->group_asym_packing) 9084 return group_asym_packing; 9085 9086 if (sgs->group_misfit_task_load) 9087 return group_misfit_task; 9088 9089 if (!group_has_capacity(imbalance_pct, sgs)) 9090 return group_fully_busy; 9091 9092 return group_has_spare; 9093 } 9094 9095 /** 9096 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 9097 * @dst_cpu: Destination CPU of the load balancing 9098 * @sds: Load-balancing data with statistics of the local group 9099 * @sgs: Load-balancing statistics of the candidate busiest group 9100 * @sg: The candidate busiest group 9101 * 9102 * Check the state of the SMT siblings of both @sds::local and @sg and decide 9103 * if @dst_cpu can pull tasks. 9104 * 9105 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 9106 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 9107 * only if @dst_cpu has higher priority. 9108 * 9109 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 9110 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 9111 * Bigger imbalances in the number of busy CPUs will be dealt with in 9112 * update_sd_pick_busiest(). 9113 * 9114 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 9115 * of @dst_cpu are idle and @sg has lower priority. 9116 * 9117 * Return: true if @dst_cpu can pull tasks, false otherwise. 9118 */ 9119 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 9120 struct sg_lb_stats *sgs, 9121 struct sched_group *sg) 9122 { 9123 #ifdef CONFIG_SCHED_SMT 9124 bool local_is_smt, sg_is_smt; 9125 int sg_busy_cpus; 9126 9127 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 9128 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 9129 9130 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 9131 9132 if (!local_is_smt) { 9133 /* 9134 * If we are here, @dst_cpu is idle and does not have SMT 9135 * siblings. Pull tasks if candidate group has two or more 9136 * busy CPUs. 9137 */ 9138 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 9139 return true; 9140 9141 /* 9142 * @dst_cpu does not have SMT siblings. @sg may have SMT 9143 * siblings and only one is busy. In such case, @dst_cpu 9144 * can help if it has higher priority and is idle (i.e., 9145 * it has no running tasks). 9146 */ 9147 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9148 } 9149 9150 /* @dst_cpu has SMT siblings. */ 9151 9152 if (sg_is_smt) { 9153 int local_busy_cpus = sds->local->group_weight - 9154 sds->local_stat.idle_cpus; 9155 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 9156 9157 if (busy_cpus_delta == 1) 9158 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9159 9160 return false; 9161 } 9162 9163 /* 9164 * @sg does not have SMT siblings. Ensure that @sds::local does not end 9165 * up with more than one busy SMT sibling and only pull tasks if there 9166 * are not busy CPUs (i.e., no CPU has running tasks). 9167 */ 9168 if (!sds->local_stat.sum_nr_running) 9169 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9170 9171 return false; 9172 #else 9173 /* Always return false so that callers deal with non-SMT cases. */ 9174 return false; 9175 #endif 9176 } 9177 9178 static inline bool 9179 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9180 struct sched_group *group) 9181 { 9182 /* Only do SMT checks if either local or candidate have SMT siblings */ 9183 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 9184 (group->flags & SD_SHARE_CPUCAPACITY)) 9185 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 9186 9187 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9188 } 9189 9190 static inline bool 9191 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9192 { 9193 /* 9194 * When there is more than 1 task, the group_overloaded case already 9195 * takes care of cpu with reduced capacity 9196 */ 9197 if (rq->cfs.h_nr_running != 1) 9198 return false; 9199 9200 return check_cpu_capacity(rq, sd); 9201 } 9202 9203 /** 9204 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9205 * @env: The load balancing environment. 9206 * @sds: Load-balancing data with statistics of the local group. 9207 * @group: sched_group whose statistics are to be updated. 9208 * @sgs: variable to hold the statistics for this group. 9209 * @sg_status: Holds flag indicating the status of the sched_group 9210 */ 9211 static inline void update_sg_lb_stats(struct lb_env *env, 9212 struct sd_lb_stats *sds, 9213 struct sched_group *group, 9214 struct sg_lb_stats *sgs, 9215 int *sg_status) 9216 { 9217 int i, nr_running, local_group; 9218 9219 memset(sgs, 0, sizeof(*sgs)); 9220 9221 local_group = group == sds->local; 9222 9223 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9224 struct rq *rq = cpu_rq(i); 9225 unsigned long load = cpu_load(rq); 9226 9227 sgs->group_load += load; 9228 sgs->group_util += cpu_util_cfs(i); 9229 sgs->group_runnable += cpu_runnable(rq); 9230 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9231 9232 nr_running = rq->nr_running; 9233 sgs->sum_nr_running += nr_running; 9234 9235 if (nr_running > 1) 9236 *sg_status |= SG_OVERLOAD; 9237 9238 if (cpu_overutilized(i)) 9239 *sg_status |= SG_OVERUTILIZED; 9240 9241 #ifdef CONFIG_NUMA_BALANCING 9242 sgs->nr_numa_running += rq->nr_numa_running; 9243 sgs->nr_preferred_running += rq->nr_preferred_running; 9244 #endif 9245 /* 9246 * No need to call idle_cpu() if nr_running is not 0 9247 */ 9248 if (!nr_running && idle_cpu(i)) { 9249 sgs->idle_cpus++; 9250 /* Idle cpu can't have misfit task */ 9251 continue; 9252 } 9253 9254 if (local_group) 9255 continue; 9256 9257 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9258 /* Check for a misfit task on the cpu */ 9259 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9260 sgs->group_misfit_task_load = rq->misfit_task_load; 9261 *sg_status |= SG_OVERLOAD; 9262 } 9263 } else if ((env->idle != CPU_NOT_IDLE) && 9264 sched_reduced_capacity(rq, env->sd)) { 9265 /* Check for a task running on a CPU with reduced capacity */ 9266 if (sgs->group_misfit_task_load < load) 9267 sgs->group_misfit_task_load = load; 9268 } 9269 } 9270 9271 sgs->group_capacity = group->sgc->capacity; 9272 9273 sgs->group_weight = group->group_weight; 9274 9275 /* Check if dst CPU is idle and preferred to this group */ 9276 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9277 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9278 sched_asym(env, sds, sgs, group)) { 9279 sgs->group_asym_packing = 1; 9280 } 9281 9282 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9283 9284 /* Computing avg_load makes sense only when group is overloaded */ 9285 if (sgs->group_type == group_overloaded) 9286 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9287 sgs->group_capacity; 9288 } 9289 9290 /** 9291 * update_sd_pick_busiest - return 1 on busiest group 9292 * @env: The load balancing environment. 9293 * @sds: sched_domain statistics 9294 * @sg: sched_group candidate to be checked for being the busiest 9295 * @sgs: sched_group statistics 9296 * 9297 * Determine if @sg is a busier group than the previously selected 9298 * busiest group. 9299 * 9300 * Return: %true if @sg is a busier group than the previously selected 9301 * busiest group. %false otherwise. 9302 */ 9303 static bool update_sd_pick_busiest(struct lb_env *env, 9304 struct sd_lb_stats *sds, 9305 struct sched_group *sg, 9306 struct sg_lb_stats *sgs) 9307 { 9308 struct sg_lb_stats *busiest = &sds->busiest_stat; 9309 9310 /* Make sure that there is at least one task to pull */ 9311 if (!sgs->sum_h_nr_running) 9312 return false; 9313 9314 /* 9315 * Don't try to pull misfit tasks we can't help. 9316 * We can use max_capacity here as reduction in capacity on some 9317 * CPUs in the group should either be possible to resolve 9318 * internally or be covered by avg_load imbalance (eventually). 9319 */ 9320 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9321 (sgs->group_type == group_misfit_task) && 9322 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9323 sds->local_stat.group_type != group_has_spare)) 9324 return false; 9325 9326 if (sgs->group_type > busiest->group_type) 9327 return true; 9328 9329 if (sgs->group_type < busiest->group_type) 9330 return false; 9331 9332 /* 9333 * The candidate and the current busiest group are the same type of 9334 * group. Let check which one is the busiest according to the type. 9335 */ 9336 9337 switch (sgs->group_type) { 9338 case group_overloaded: 9339 /* Select the overloaded group with highest avg_load. */ 9340 if (sgs->avg_load <= busiest->avg_load) 9341 return false; 9342 break; 9343 9344 case group_imbalanced: 9345 /* 9346 * Select the 1st imbalanced group as we don't have any way to 9347 * choose one more than another. 9348 */ 9349 return false; 9350 9351 case group_asym_packing: 9352 /* Prefer to move from lowest priority CPU's work */ 9353 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9354 return false; 9355 break; 9356 9357 case group_misfit_task: 9358 /* 9359 * If we have more than one misfit sg go with the biggest 9360 * misfit. 9361 */ 9362 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9363 return false; 9364 break; 9365 9366 case group_fully_busy: 9367 /* 9368 * Select the fully busy group with highest avg_load. In 9369 * theory, there is no need to pull task from such kind of 9370 * group because tasks have all compute capacity that they need 9371 * but we can still improve the overall throughput by reducing 9372 * contention when accessing shared HW resources. 9373 * 9374 * XXX for now avg_load is not computed and always 0 so we 9375 * select the 1st one. 9376 */ 9377 if (sgs->avg_load <= busiest->avg_load) 9378 return false; 9379 break; 9380 9381 case group_has_spare: 9382 /* 9383 * Select not overloaded group with lowest number of idle cpus 9384 * and highest number of running tasks. We could also compare 9385 * the spare capacity which is more stable but it can end up 9386 * that the group has less spare capacity but finally more idle 9387 * CPUs which means less opportunity to pull tasks. 9388 */ 9389 if (sgs->idle_cpus > busiest->idle_cpus) 9390 return false; 9391 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9392 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9393 return false; 9394 9395 break; 9396 } 9397 9398 /* 9399 * Candidate sg has no more than one task per CPU and has higher 9400 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9401 * throughput. Maximize throughput, power/energy consequences are not 9402 * considered. 9403 */ 9404 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9405 (sgs->group_type <= group_fully_busy) && 9406 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9407 return false; 9408 9409 return true; 9410 } 9411 9412 #ifdef CONFIG_NUMA_BALANCING 9413 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9414 { 9415 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9416 return regular; 9417 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9418 return remote; 9419 return all; 9420 } 9421 9422 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9423 { 9424 if (rq->nr_running > rq->nr_numa_running) 9425 return regular; 9426 if (rq->nr_running > rq->nr_preferred_running) 9427 return remote; 9428 return all; 9429 } 9430 #else 9431 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9432 { 9433 return all; 9434 } 9435 9436 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9437 { 9438 return regular; 9439 } 9440 #endif /* CONFIG_NUMA_BALANCING */ 9441 9442 9443 struct sg_lb_stats; 9444 9445 /* 9446 * task_running_on_cpu - return 1 if @p is running on @cpu. 9447 */ 9448 9449 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9450 { 9451 /* Task has no contribution or is new */ 9452 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9453 return 0; 9454 9455 if (task_on_rq_queued(p)) 9456 return 1; 9457 9458 return 0; 9459 } 9460 9461 /** 9462 * idle_cpu_without - would a given CPU be idle without p ? 9463 * @cpu: the processor on which idleness is tested. 9464 * @p: task which should be ignored. 9465 * 9466 * Return: 1 if the CPU would be idle. 0 otherwise. 9467 */ 9468 static int idle_cpu_without(int cpu, struct task_struct *p) 9469 { 9470 struct rq *rq = cpu_rq(cpu); 9471 9472 if (rq->curr != rq->idle && rq->curr != p) 9473 return 0; 9474 9475 /* 9476 * rq->nr_running can't be used but an updated version without the 9477 * impact of p on cpu must be used instead. The updated nr_running 9478 * be computed and tested before calling idle_cpu_without(). 9479 */ 9480 9481 #ifdef CONFIG_SMP 9482 if (rq->ttwu_pending) 9483 return 0; 9484 #endif 9485 9486 return 1; 9487 } 9488 9489 /* 9490 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9491 * @sd: The sched_domain level to look for idlest group. 9492 * @group: sched_group whose statistics are to be updated. 9493 * @sgs: variable to hold the statistics for this group. 9494 * @p: The task for which we look for the idlest group/CPU. 9495 */ 9496 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9497 struct sched_group *group, 9498 struct sg_lb_stats *sgs, 9499 struct task_struct *p) 9500 { 9501 int i, nr_running; 9502 9503 memset(sgs, 0, sizeof(*sgs)); 9504 9505 /* Assume that task can't fit any CPU of the group */ 9506 if (sd->flags & SD_ASYM_CPUCAPACITY) 9507 sgs->group_misfit_task_load = 1; 9508 9509 for_each_cpu(i, sched_group_span(group)) { 9510 struct rq *rq = cpu_rq(i); 9511 unsigned int local; 9512 9513 sgs->group_load += cpu_load_without(rq, p); 9514 sgs->group_util += cpu_util_without(i, p); 9515 sgs->group_runnable += cpu_runnable_without(rq, p); 9516 local = task_running_on_cpu(i, p); 9517 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9518 9519 nr_running = rq->nr_running - local; 9520 sgs->sum_nr_running += nr_running; 9521 9522 /* 9523 * No need to call idle_cpu_without() if nr_running is not 0 9524 */ 9525 if (!nr_running && idle_cpu_without(i, p)) 9526 sgs->idle_cpus++; 9527 9528 /* Check if task fits in the CPU */ 9529 if (sd->flags & SD_ASYM_CPUCAPACITY && 9530 sgs->group_misfit_task_load && 9531 task_fits_cpu(p, i)) 9532 sgs->group_misfit_task_load = 0; 9533 9534 } 9535 9536 sgs->group_capacity = group->sgc->capacity; 9537 9538 sgs->group_weight = group->group_weight; 9539 9540 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9541 9542 /* 9543 * Computing avg_load makes sense only when group is fully busy or 9544 * overloaded 9545 */ 9546 if (sgs->group_type == group_fully_busy || 9547 sgs->group_type == group_overloaded) 9548 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9549 sgs->group_capacity; 9550 } 9551 9552 static bool update_pick_idlest(struct sched_group *idlest, 9553 struct sg_lb_stats *idlest_sgs, 9554 struct sched_group *group, 9555 struct sg_lb_stats *sgs) 9556 { 9557 if (sgs->group_type < idlest_sgs->group_type) 9558 return true; 9559 9560 if (sgs->group_type > idlest_sgs->group_type) 9561 return false; 9562 9563 /* 9564 * The candidate and the current idlest group are the same type of 9565 * group. Let check which one is the idlest according to the type. 9566 */ 9567 9568 switch (sgs->group_type) { 9569 case group_overloaded: 9570 case group_fully_busy: 9571 /* Select the group with lowest avg_load. */ 9572 if (idlest_sgs->avg_load <= sgs->avg_load) 9573 return false; 9574 break; 9575 9576 case group_imbalanced: 9577 case group_asym_packing: 9578 /* Those types are not used in the slow wakeup path */ 9579 return false; 9580 9581 case group_misfit_task: 9582 /* Select group with the highest max capacity */ 9583 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9584 return false; 9585 break; 9586 9587 case group_has_spare: 9588 /* Select group with most idle CPUs */ 9589 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9590 return false; 9591 9592 /* Select group with lowest group_util */ 9593 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9594 idlest_sgs->group_util <= sgs->group_util) 9595 return false; 9596 9597 break; 9598 } 9599 9600 return true; 9601 } 9602 9603 /* 9604 * find_idlest_group() finds and returns the least busy CPU group within the 9605 * domain. 9606 * 9607 * Assumes p is allowed on at least one CPU in sd. 9608 */ 9609 static struct sched_group * 9610 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9611 { 9612 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9613 struct sg_lb_stats local_sgs, tmp_sgs; 9614 struct sg_lb_stats *sgs; 9615 unsigned long imbalance; 9616 struct sg_lb_stats idlest_sgs = { 9617 .avg_load = UINT_MAX, 9618 .group_type = group_overloaded, 9619 }; 9620 9621 do { 9622 int local_group; 9623 9624 /* Skip over this group if it has no CPUs allowed */ 9625 if (!cpumask_intersects(sched_group_span(group), 9626 p->cpus_ptr)) 9627 continue; 9628 9629 /* Skip over this group if no cookie matched */ 9630 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9631 continue; 9632 9633 local_group = cpumask_test_cpu(this_cpu, 9634 sched_group_span(group)); 9635 9636 if (local_group) { 9637 sgs = &local_sgs; 9638 local = group; 9639 } else { 9640 sgs = &tmp_sgs; 9641 } 9642 9643 update_sg_wakeup_stats(sd, group, sgs, p); 9644 9645 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9646 idlest = group; 9647 idlest_sgs = *sgs; 9648 } 9649 9650 } while (group = group->next, group != sd->groups); 9651 9652 9653 /* There is no idlest group to push tasks to */ 9654 if (!idlest) 9655 return NULL; 9656 9657 /* The local group has been skipped because of CPU affinity */ 9658 if (!local) 9659 return idlest; 9660 9661 /* 9662 * If the local group is idler than the selected idlest group 9663 * don't try and push the task. 9664 */ 9665 if (local_sgs.group_type < idlest_sgs.group_type) 9666 return NULL; 9667 9668 /* 9669 * If the local group is busier than the selected idlest group 9670 * try and push the task. 9671 */ 9672 if (local_sgs.group_type > idlest_sgs.group_type) 9673 return idlest; 9674 9675 switch (local_sgs.group_type) { 9676 case group_overloaded: 9677 case group_fully_busy: 9678 9679 /* Calculate allowed imbalance based on load */ 9680 imbalance = scale_load_down(NICE_0_LOAD) * 9681 (sd->imbalance_pct-100) / 100; 9682 9683 /* 9684 * When comparing groups across NUMA domains, it's possible for 9685 * the local domain to be very lightly loaded relative to the 9686 * remote domains but "imbalance" skews the comparison making 9687 * remote CPUs look much more favourable. When considering 9688 * cross-domain, add imbalance to the load on the remote node 9689 * and consider staying local. 9690 */ 9691 9692 if ((sd->flags & SD_NUMA) && 9693 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9694 return NULL; 9695 9696 /* 9697 * If the local group is less loaded than the selected 9698 * idlest group don't try and push any tasks. 9699 */ 9700 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9701 return NULL; 9702 9703 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9704 return NULL; 9705 break; 9706 9707 case group_imbalanced: 9708 case group_asym_packing: 9709 /* Those type are not used in the slow wakeup path */ 9710 return NULL; 9711 9712 case group_misfit_task: 9713 /* Select group with the highest max capacity */ 9714 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9715 return NULL; 9716 break; 9717 9718 case group_has_spare: 9719 #ifdef CONFIG_NUMA 9720 if (sd->flags & SD_NUMA) { 9721 int imb_numa_nr = sd->imb_numa_nr; 9722 #ifdef CONFIG_NUMA_BALANCING 9723 int idlest_cpu; 9724 /* 9725 * If there is spare capacity at NUMA, try to select 9726 * the preferred node 9727 */ 9728 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9729 return NULL; 9730 9731 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9732 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9733 return idlest; 9734 #endif /* CONFIG_NUMA_BALANCING */ 9735 /* 9736 * Otherwise, keep the task close to the wakeup source 9737 * and improve locality if the number of running tasks 9738 * would remain below threshold where an imbalance is 9739 * allowed while accounting for the possibility the 9740 * task is pinned to a subset of CPUs. If there is a 9741 * real need of migration, periodic load balance will 9742 * take care of it. 9743 */ 9744 if (p->nr_cpus_allowed != NR_CPUS) { 9745 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9746 9747 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9748 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9749 } 9750 9751 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9752 if (!adjust_numa_imbalance(imbalance, 9753 local_sgs.sum_nr_running + 1, 9754 imb_numa_nr)) { 9755 return NULL; 9756 } 9757 } 9758 #endif /* CONFIG_NUMA */ 9759 9760 /* 9761 * Select group with highest number of idle CPUs. We could also 9762 * compare the utilization which is more stable but it can end 9763 * up that the group has less spare capacity but finally more 9764 * idle CPUs which means more opportunity to run task. 9765 */ 9766 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9767 return NULL; 9768 break; 9769 } 9770 9771 return idlest; 9772 } 9773 9774 static void update_idle_cpu_scan(struct lb_env *env, 9775 unsigned long sum_util) 9776 { 9777 struct sched_domain_shared *sd_share; 9778 int llc_weight, pct; 9779 u64 x, y, tmp; 9780 /* 9781 * Update the number of CPUs to scan in LLC domain, which could 9782 * be used as a hint in select_idle_cpu(). The update of sd_share 9783 * could be expensive because it is within a shared cache line. 9784 * So the write of this hint only occurs during periodic load 9785 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9786 * can fire way more frequently than the former. 9787 */ 9788 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9789 return; 9790 9791 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9792 if (env->sd->span_weight != llc_weight) 9793 return; 9794 9795 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9796 if (!sd_share) 9797 return; 9798 9799 /* 9800 * The number of CPUs to search drops as sum_util increases, when 9801 * sum_util hits 85% or above, the scan stops. 9802 * The reason to choose 85% as the threshold is because this is the 9803 * imbalance_pct(117) when a LLC sched group is overloaded. 9804 * 9805 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9806 * and y'= y / SCHED_CAPACITY_SCALE 9807 * 9808 * x is the ratio of sum_util compared to the CPU capacity: 9809 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9810 * y' is the ratio of CPUs to be scanned in the LLC domain, 9811 * and the number of CPUs to scan is calculated by: 9812 * 9813 * nr_scan = llc_weight * y' [2] 9814 * 9815 * When x hits the threshold of overloaded, AKA, when 9816 * x = 100 / pct, y drops to 0. According to [1], 9817 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9818 * 9819 * Scale x by SCHED_CAPACITY_SCALE: 9820 * x' = sum_util / llc_weight; [3] 9821 * 9822 * and finally [1] becomes: 9823 * y = SCHED_CAPACITY_SCALE - 9824 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 9825 * 9826 */ 9827 /* equation [3] */ 9828 x = sum_util; 9829 do_div(x, llc_weight); 9830 9831 /* equation [4] */ 9832 pct = env->sd->imbalance_pct; 9833 tmp = x * x * pct * pct; 9834 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 9835 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 9836 y = SCHED_CAPACITY_SCALE - tmp; 9837 9838 /* equation [2] */ 9839 y *= llc_weight; 9840 do_div(y, SCHED_CAPACITY_SCALE); 9841 if ((int)y != sd_share->nr_idle_scan) 9842 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 9843 } 9844 9845 /** 9846 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9847 * @env: The load balancing environment. 9848 * @sds: variable to hold the statistics for this sched_domain. 9849 */ 9850 9851 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9852 { 9853 struct sched_domain *child = env->sd->child; 9854 struct sched_group *sg = env->sd->groups; 9855 struct sg_lb_stats *local = &sds->local_stat; 9856 struct sg_lb_stats tmp_sgs; 9857 unsigned long sum_util = 0; 9858 int sg_status = 0; 9859 9860 do { 9861 struct sg_lb_stats *sgs = &tmp_sgs; 9862 int local_group; 9863 9864 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9865 if (local_group) { 9866 sds->local = sg; 9867 sgs = local; 9868 9869 if (env->idle != CPU_NEWLY_IDLE || 9870 time_after_eq(jiffies, sg->sgc->next_update)) 9871 update_group_capacity(env->sd, env->dst_cpu); 9872 } 9873 9874 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9875 9876 if (local_group) 9877 goto next_group; 9878 9879 9880 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9881 sds->busiest = sg; 9882 sds->busiest_stat = *sgs; 9883 } 9884 9885 next_group: 9886 /* Now, start updating sd_lb_stats */ 9887 sds->total_load += sgs->group_load; 9888 sds->total_capacity += sgs->group_capacity; 9889 9890 sum_util += sgs->group_util; 9891 sg = sg->next; 9892 } while (sg != env->sd->groups); 9893 9894 /* Tag domain that child domain prefers tasks go to siblings first */ 9895 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9896 9897 9898 if (env->sd->flags & SD_NUMA) 9899 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9900 9901 if (!env->sd->parent) { 9902 struct root_domain *rd = env->dst_rq->rd; 9903 9904 /* update overload indicator if we are at root domain */ 9905 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9906 9907 /* Update over-utilization (tipping point, U >= 0) indicator */ 9908 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9909 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9910 } else if (sg_status & SG_OVERUTILIZED) { 9911 struct root_domain *rd = env->dst_rq->rd; 9912 9913 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9914 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9915 } 9916 9917 update_idle_cpu_scan(env, sum_util); 9918 } 9919 9920 /** 9921 * calculate_imbalance - Calculate the amount of imbalance present within the 9922 * groups of a given sched_domain during load balance. 9923 * @env: load balance environment 9924 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9925 */ 9926 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9927 { 9928 struct sg_lb_stats *local, *busiest; 9929 9930 local = &sds->local_stat; 9931 busiest = &sds->busiest_stat; 9932 9933 if (busiest->group_type == group_misfit_task) { 9934 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9935 /* Set imbalance to allow misfit tasks to be balanced. */ 9936 env->migration_type = migrate_misfit; 9937 env->imbalance = 1; 9938 } else { 9939 /* 9940 * Set load imbalance to allow moving task from cpu 9941 * with reduced capacity. 9942 */ 9943 env->migration_type = migrate_load; 9944 env->imbalance = busiest->group_misfit_task_load; 9945 } 9946 return; 9947 } 9948 9949 if (busiest->group_type == group_asym_packing) { 9950 /* 9951 * In case of asym capacity, we will try to migrate all load to 9952 * the preferred CPU. 9953 */ 9954 env->migration_type = migrate_task; 9955 env->imbalance = busiest->sum_h_nr_running; 9956 return; 9957 } 9958 9959 if (busiest->group_type == group_imbalanced) { 9960 /* 9961 * In the group_imb case we cannot rely on group-wide averages 9962 * to ensure CPU-load equilibrium, try to move any task to fix 9963 * the imbalance. The next load balance will take care of 9964 * balancing back the system. 9965 */ 9966 env->migration_type = migrate_task; 9967 env->imbalance = 1; 9968 return; 9969 } 9970 9971 /* 9972 * Try to use spare capacity of local group without overloading it or 9973 * emptying busiest. 9974 */ 9975 if (local->group_type == group_has_spare) { 9976 if ((busiest->group_type > group_fully_busy) && 9977 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9978 /* 9979 * If busiest is overloaded, try to fill spare 9980 * capacity. This might end up creating spare capacity 9981 * in busiest or busiest still being overloaded but 9982 * there is no simple way to directly compute the 9983 * amount of load to migrate in order to balance the 9984 * system. 9985 */ 9986 env->migration_type = migrate_util; 9987 env->imbalance = max(local->group_capacity, local->group_util) - 9988 local->group_util; 9989 9990 /* 9991 * In some cases, the group's utilization is max or even 9992 * higher than capacity because of migrations but the 9993 * local CPU is (newly) idle. There is at least one 9994 * waiting task in this overloaded busiest group. Let's 9995 * try to pull it. 9996 */ 9997 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9998 env->migration_type = migrate_task; 9999 env->imbalance = 1; 10000 } 10001 10002 return; 10003 } 10004 10005 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10006 unsigned int nr_diff = busiest->sum_nr_running; 10007 /* 10008 * When prefer sibling, evenly spread running tasks on 10009 * groups. 10010 */ 10011 env->migration_type = migrate_task; 10012 lsub_positive(&nr_diff, local->sum_nr_running); 10013 env->imbalance = nr_diff; 10014 } else { 10015 10016 /* 10017 * If there is no overload, we just want to even the number of 10018 * idle cpus. 10019 */ 10020 env->migration_type = migrate_task; 10021 env->imbalance = max_t(long, 0, 10022 (local->idle_cpus - busiest->idle_cpus)); 10023 } 10024 10025 #ifdef CONFIG_NUMA 10026 /* Consider allowing a small imbalance between NUMA groups */ 10027 if (env->sd->flags & SD_NUMA) { 10028 env->imbalance = adjust_numa_imbalance(env->imbalance, 10029 local->sum_nr_running + 1, 10030 env->sd->imb_numa_nr); 10031 } 10032 #endif 10033 10034 /* Number of tasks to move to restore balance */ 10035 env->imbalance >>= 1; 10036 10037 return; 10038 } 10039 10040 /* 10041 * Local is fully busy but has to take more load to relieve the 10042 * busiest group 10043 */ 10044 if (local->group_type < group_overloaded) { 10045 /* 10046 * Local will become overloaded so the avg_load metrics are 10047 * finally needed. 10048 */ 10049 10050 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10051 local->group_capacity; 10052 10053 /* 10054 * If the local group is more loaded than the selected 10055 * busiest group don't try to pull any tasks. 10056 */ 10057 if (local->avg_load >= busiest->avg_load) { 10058 env->imbalance = 0; 10059 return; 10060 } 10061 10062 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10063 sds->total_capacity; 10064 } 10065 10066 /* 10067 * Both group are or will become overloaded and we're trying to get all 10068 * the CPUs to the average_load, so we don't want to push ourselves 10069 * above the average load, nor do we wish to reduce the max loaded CPU 10070 * below the average load. At the same time, we also don't want to 10071 * reduce the group load below the group capacity. Thus we look for 10072 * the minimum possible imbalance. 10073 */ 10074 env->migration_type = migrate_load; 10075 env->imbalance = min( 10076 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10077 (sds->avg_load - local->avg_load) * local->group_capacity 10078 ) / SCHED_CAPACITY_SCALE; 10079 } 10080 10081 /******* find_busiest_group() helpers end here *********************/ 10082 10083 /* 10084 * Decision matrix according to the local and busiest group type: 10085 * 10086 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10087 * has_spare nr_idle balanced N/A N/A balanced balanced 10088 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10089 * misfit_task force N/A N/A N/A N/A N/A 10090 * asym_packing force force N/A N/A force force 10091 * imbalanced force force N/A N/A force force 10092 * overloaded force force N/A N/A force avg_load 10093 * 10094 * N/A : Not Applicable because already filtered while updating 10095 * statistics. 10096 * balanced : The system is balanced for these 2 groups. 10097 * force : Calculate the imbalance as load migration is probably needed. 10098 * avg_load : Only if imbalance is significant enough. 10099 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10100 * different in groups. 10101 */ 10102 10103 /** 10104 * find_busiest_group - Returns the busiest group within the sched_domain 10105 * if there is an imbalance. 10106 * @env: The load balancing environment. 10107 * 10108 * Also calculates the amount of runnable load which should be moved 10109 * to restore balance. 10110 * 10111 * Return: - The busiest group if imbalance exists. 10112 */ 10113 static struct sched_group *find_busiest_group(struct lb_env *env) 10114 { 10115 struct sg_lb_stats *local, *busiest; 10116 struct sd_lb_stats sds; 10117 10118 init_sd_lb_stats(&sds); 10119 10120 /* 10121 * Compute the various statistics relevant for load balancing at 10122 * this level. 10123 */ 10124 update_sd_lb_stats(env, &sds); 10125 10126 if (sched_energy_enabled()) { 10127 struct root_domain *rd = env->dst_rq->rd; 10128 10129 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10130 goto out_balanced; 10131 } 10132 10133 local = &sds.local_stat; 10134 busiest = &sds.busiest_stat; 10135 10136 /* There is no busy sibling group to pull tasks from */ 10137 if (!sds.busiest) 10138 goto out_balanced; 10139 10140 /* Misfit tasks should be dealt with regardless of the avg load */ 10141 if (busiest->group_type == group_misfit_task) 10142 goto force_balance; 10143 10144 /* ASYM feature bypasses nice load balance check */ 10145 if (busiest->group_type == group_asym_packing) 10146 goto force_balance; 10147 10148 /* 10149 * If the busiest group is imbalanced the below checks don't 10150 * work because they assume all things are equal, which typically 10151 * isn't true due to cpus_ptr constraints and the like. 10152 */ 10153 if (busiest->group_type == group_imbalanced) 10154 goto force_balance; 10155 10156 /* 10157 * If the local group is busier than the selected busiest group 10158 * don't try and pull any tasks. 10159 */ 10160 if (local->group_type > busiest->group_type) 10161 goto out_balanced; 10162 10163 /* 10164 * When groups are overloaded, use the avg_load to ensure fairness 10165 * between tasks. 10166 */ 10167 if (local->group_type == group_overloaded) { 10168 /* 10169 * If the local group is more loaded than the selected 10170 * busiest group don't try to pull any tasks. 10171 */ 10172 if (local->avg_load >= busiest->avg_load) 10173 goto out_balanced; 10174 10175 /* XXX broken for overlapping NUMA groups */ 10176 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10177 sds.total_capacity; 10178 10179 /* 10180 * Don't pull any tasks if this group is already above the 10181 * domain average load. 10182 */ 10183 if (local->avg_load >= sds.avg_load) 10184 goto out_balanced; 10185 10186 /* 10187 * If the busiest group is more loaded, use imbalance_pct to be 10188 * conservative. 10189 */ 10190 if (100 * busiest->avg_load <= 10191 env->sd->imbalance_pct * local->avg_load) 10192 goto out_balanced; 10193 } 10194 10195 /* Try to move all excess tasks to child's sibling domain */ 10196 if (sds.prefer_sibling && local->group_type == group_has_spare && 10197 busiest->sum_nr_running > local->sum_nr_running + 1) 10198 goto force_balance; 10199 10200 if (busiest->group_type != group_overloaded) { 10201 if (env->idle == CPU_NOT_IDLE) 10202 /* 10203 * If the busiest group is not overloaded (and as a 10204 * result the local one too) but this CPU is already 10205 * busy, let another idle CPU try to pull task. 10206 */ 10207 goto out_balanced; 10208 10209 if (busiest->group_weight > 1 && 10210 local->idle_cpus <= (busiest->idle_cpus + 1)) 10211 /* 10212 * If the busiest group is not overloaded 10213 * and there is no imbalance between this and busiest 10214 * group wrt idle CPUs, it is balanced. The imbalance 10215 * becomes significant if the diff is greater than 1 10216 * otherwise we might end up to just move the imbalance 10217 * on another group. Of course this applies only if 10218 * there is more than 1 CPU per group. 10219 */ 10220 goto out_balanced; 10221 10222 if (busiest->sum_h_nr_running == 1) 10223 /* 10224 * busiest doesn't have any tasks waiting to run 10225 */ 10226 goto out_balanced; 10227 } 10228 10229 force_balance: 10230 /* Looks like there is an imbalance. Compute it */ 10231 calculate_imbalance(env, &sds); 10232 return env->imbalance ? sds.busiest : NULL; 10233 10234 out_balanced: 10235 env->imbalance = 0; 10236 return NULL; 10237 } 10238 10239 /* 10240 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10241 */ 10242 static struct rq *find_busiest_queue(struct lb_env *env, 10243 struct sched_group *group) 10244 { 10245 struct rq *busiest = NULL, *rq; 10246 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10247 unsigned int busiest_nr = 0; 10248 int i; 10249 10250 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10251 unsigned long capacity, load, util; 10252 unsigned int nr_running; 10253 enum fbq_type rt; 10254 10255 rq = cpu_rq(i); 10256 rt = fbq_classify_rq(rq); 10257 10258 /* 10259 * We classify groups/runqueues into three groups: 10260 * - regular: there are !numa tasks 10261 * - remote: there are numa tasks that run on the 'wrong' node 10262 * - all: there is no distinction 10263 * 10264 * In order to avoid migrating ideally placed numa tasks, 10265 * ignore those when there's better options. 10266 * 10267 * If we ignore the actual busiest queue to migrate another 10268 * task, the next balance pass can still reduce the busiest 10269 * queue by moving tasks around inside the node. 10270 * 10271 * If we cannot move enough load due to this classification 10272 * the next pass will adjust the group classification and 10273 * allow migration of more tasks. 10274 * 10275 * Both cases only affect the total convergence complexity. 10276 */ 10277 if (rt > env->fbq_type) 10278 continue; 10279 10280 nr_running = rq->cfs.h_nr_running; 10281 if (!nr_running) 10282 continue; 10283 10284 capacity = capacity_of(i); 10285 10286 /* 10287 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10288 * eventually lead to active_balancing high->low capacity. 10289 * Higher per-CPU capacity is considered better than balancing 10290 * average load. 10291 */ 10292 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10293 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10294 nr_running == 1) 10295 continue; 10296 10297 /* Make sure we only pull tasks from a CPU of lower priority */ 10298 if ((env->sd->flags & SD_ASYM_PACKING) && 10299 sched_asym_prefer(i, env->dst_cpu) && 10300 nr_running == 1) 10301 continue; 10302 10303 switch (env->migration_type) { 10304 case migrate_load: 10305 /* 10306 * When comparing with load imbalance, use cpu_load() 10307 * which is not scaled with the CPU capacity. 10308 */ 10309 load = cpu_load(rq); 10310 10311 if (nr_running == 1 && load > env->imbalance && 10312 !check_cpu_capacity(rq, env->sd)) 10313 break; 10314 10315 /* 10316 * For the load comparisons with the other CPUs, 10317 * consider the cpu_load() scaled with the CPU 10318 * capacity, so that the load can be moved away 10319 * from the CPU that is potentially running at a 10320 * lower capacity. 10321 * 10322 * Thus we're looking for max(load_i / capacity_i), 10323 * crosswise multiplication to rid ourselves of the 10324 * division works out to: 10325 * load_i * capacity_j > load_j * capacity_i; 10326 * where j is our previous maximum. 10327 */ 10328 if (load * busiest_capacity > busiest_load * capacity) { 10329 busiest_load = load; 10330 busiest_capacity = capacity; 10331 busiest = rq; 10332 } 10333 break; 10334 10335 case migrate_util: 10336 util = cpu_util_cfs(i); 10337 10338 /* 10339 * Don't try to pull utilization from a CPU with one 10340 * running task. Whatever its utilization, we will fail 10341 * detach the task. 10342 */ 10343 if (nr_running <= 1) 10344 continue; 10345 10346 if (busiest_util < util) { 10347 busiest_util = util; 10348 busiest = rq; 10349 } 10350 break; 10351 10352 case migrate_task: 10353 if (busiest_nr < nr_running) { 10354 busiest_nr = nr_running; 10355 busiest = rq; 10356 } 10357 break; 10358 10359 case migrate_misfit: 10360 /* 10361 * For ASYM_CPUCAPACITY domains with misfit tasks we 10362 * simply seek the "biggest" misfit task. 10363 */ 10364 if (rq->misfit_task_load > busiest_load) { 10365 busiest_load = rq->misfit_task_load; 10366 busiest = rq; 10367 } 10368 10369 break; 10370 10371 } 10372 } 10373 10374 return busiest; 10375 } 10376 10377 /* 10378 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10379 * so long as it is large enough. 10380 */ 10381 #define MAX_PINNED_INTERVAL 512 10382 10383 static inline bool 10384 asym_active_balance(struct lb_env *env) 10385 { 10386 /* 10387 * ASYM_PACKING needs to force migrate tasks from busy but 10388 * lower priority CPUs in order to pack all tasks in the 10389 * highest priority CPUs. 10390 */ 10391 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10392 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10393 } 10394 10395 static inline bool 10396 imbalanced_active_balance(struct lb_env *env) 10397 { 10398 struct sched_domain *sd = env->sd; 10399 10400 /* 10401 * The imbalanced case includes the case of pinned tasks preventing a fair 10402 * distribution of the load on the system but also the even distribution of the 10403 * threads on a system with spare capacity 10404 */ 10405 if ((env->migration_type == migrate_task) && 10406 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10407 return 1; 10408 10409 return 0; 10410 } 10411 10412 static int need_active_balance(struct lb_env *env) 10413 { 10414 struct sched_domain *sd = env->sd; 10415 10416 if (asym_active_balance(env)) 10417 return 1; 10418 10419 if (imbalanced_active_balance(env)) 10420 return 1; 10421 10422 /* 10423 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10424 * It's worth migrating the task if the src_cpu's capacity is reduced 10425 * because of other sched_class or IRQs if more capacity stays 10426 * available on dst_cpu. 10427 */ 10428 if ((env->idle != CPU_NOT_IDLE) && 10429 (env->src_rq->cfs.h_nr_running == 1)) { 10430 if ((check_cpu_capacity(env->src_rq, sd)) && 10431 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10432 return 1; 10433 } 10434 10435 if (env->migration_type == migrate_misfit) 10436 return 1; 10437 10438 return 0; 10439 } 10440 10441 static int active_load_balance_cpu_stop(void *data); 10442 10443 static int should_we_balance(struct lb_env *env) 10444 { 10445 struct sched_group *sg = env->sd->groups; 10446 int cpu; 10447 10448 /* 10449 * Ensure the balancing environment is consistent; can happen 10450 * when the softirq triggers 'during' hotplug. 10451 */ 10452 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10453 return 0; 10454 10455 /* 10456 * In the newly idle case, we will allow all the CPUs 10457 * to do the newly idle load balance. 10458 * 10459 * However, we bail out if we already have tasks or a wakeup pending, 10460 * to optimize wakeup latency. 10461 */ 10462 if (env->idle == CPU_NEWLY_IDLE) { 10463 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10464 return 0; 10465 return 1; 10466 } 10467 10468 /* Try to find first idle CPU */ 10469 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10470 if (!idle_cpu(cpu)) 10471 continue; 10472 10473 /* Are we the first idle CPU? */ 10474 return cpu == env->dst_cpu; 10475 } 10476 10477 /* Are we the first CPU of this group ? */ 10478 return group_balance_cpu(sg) == env->dst_cpu; 10479 } 10480 10481 /* 10482 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10483 * tasks if there is an imbalance. 10484 */ 10485 static int load_balance(int this_cpu, struct rq *this_rq, 10486 struct sched_domain *sd, enum cpu_idle_type idle, 10487 int *continue_balancing) 10488 { 10489 int ld_moved, cur_ld_moved, active_balance = 0; 10490 struct sched_domain *sd_parent = sd->parent; 10491 struct sched_group *group; 10492 struct rq *busiest; 10493 struct rq_flags rf; 10494 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10495 struct lb_env env = { 10496 .sd = sd, 10497 .dst_cpu = this_cpu, 10498 .dst_rq = this_rq, 10499 .dst_grpmask = sched_group_span(sd->groups), 10500 .idle = idle, 10501 .loop_break = SCHED_NR_MIGRATE_BREAK, 10502 .cpus = cpus, 10503 .fbq_type = all, 10504 .tasks = LIST_HEAD_INIT(env.tasks), 10505 }; 10506 10507 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10508 10509 schedstat_inc(sd->lb_count[idle]); 10510 10511 redo: 10512 if (!should_we_balance(&env)) { 10513 *continue_balancing = 0; 10514 goto out_balanced; 10515 } 10516 10517 group = find_busiest_group(&env); 10518 if (!group) { 10519 schedstat_inc(sd->lb_nobusyg[idle]); 10520 goto out_balanced; 10521 } 10522 10523 busiest = find_busiest_queue(&env, group); 10524 if (!busiest) { 10525 schedstat_inc(sd->lb_nobusyq[idle]); 10526 goto out_balanced; 10527 } 10528 10529 WARN_ON_ONCE(busiest == env.dst_rq); 10530 10531 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10532 10533 env.src_cpu = busiest->cpu; 10534 env.src_rq = busiest; 10535 10536 ld_moved = 0; 10537 /* Clear this flag as soon as we find a pullable task */ 10538 env.flags |= LBF_ALL_PINNED; 10539 if (busiest->nr_running > 1) { 10540 /* 10541 * Attempt to move tasks. If find_busiest_group has found 10542 * an imbalance but busiest->nr_running <= 1, the group is 10543 * still unbalanced. ld_moved simply stays zero, so it is 10544 * correctly treated as an imbalance. 10545 */ 10546 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10547 10548 more_balance: 10549 rq_lock_irqsave(busiest, &rf); 10550 update_rq_clock(busiest); 10551 10552 /* 10553 * cur_ld_moved - load moved in current iteration 10554 * ld_moved - cumulative load moved across iterations 10555 */ 10556 cur_ld_moved = detach_tasks(&env); 10557 10558 /* 10559 * We've detached some tasks from busiest_rq. Every 10560 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10561 * unlock busiest->lock, and we are able to be sure 10562 * that nobody can manipulate the tasks in parallel. 10563 * See task_rq_lock() family for the details. 10564 */ 10565 10566 rq_unlock(busiest, &rf); 10567 10568 if (cur_ld_moved) { 10569 attach_tasks(&env); 10570 ld_moved += cur_ld_moved; 10571 } 10572 10573 local_irq_restore(rf.flags); 10574 10575 if (env.flags & LBF_NEED_BREAK) { 10576 env.flags &= ~LBF_NEED_BREAK; 10577 /* Stop if we tried all running tasks */ 10578 if (env.loop < busiest->nr_running) 10579 goto more_balance; 10580 } 10581 10582 /* 10583 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10584 * us and move them to an alternate dst_cpu in our sched_group 10585 * where they can run. The upper limit on how many times we 10586 * iterate on same src_cpu is dependent on number of CPUs in our 10587 * sched_group. 10588 * 10589 * This changes load balance semantics a bit on who can move 10590 * load to a given_cpu. In addition to the given_cpu itself 10591 * (or a ilb_cpu acting on its behalf where given_cpu is 10592 * nohz-idle), we now have balance_cpu in a position to move 10593 * load to given_cpu. In rare situations, this may cause 10594 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10595 * _independently_ and at _same_ time to move some load to 10596 * given_cpu) causing excess load to be moved to given_cpu. 10597 * This however should not happen so much in practice and 10598 * moreover subsequent load balance cycles should correct the 10599 * excess load moved. 10600 */ 10601 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10602 10603 /* Prevent to re-select dst_cpu via env's CPUs */ 10604 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10605 10606 env.dst_rq = cpu_rq(env.new_dst_cpu); 10607 env.dst_cpu = env.new_dst_cpu; 10608 env.flags &= ~LBF_DST_PINNED; 10609 env.loop = 0; 10610 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10611 10612 /* 10613 * Go back to "more_balance" rather than "redo" since we 10614 * need to continue with same src_cpu. 10615 */ 10616 goto more_balance; 10617 } 10618 10619 /* 10620 * We failed to reach balance because of affinity. 10621 */ 10622 if (sd_parent) { 10623 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10624 10625 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10626 *group_imbalance = 1; 10627 } 10628 10629 /* All tasks on this runqueue were pinned by CPU affinity */ 10630 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10631 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10632 /* 10633 * Attempting to continue load balancing at the current 10634 * sched_domain level only makes sense if there are 10635 * active CPUs remaining as possible busiest CPUs to 10636 * pull load from which are not contained within the 10637 * destination group that is receiving any migrated 10638 * load. 10639 */ 10640 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10641 env.loop = 0; 10642 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10643 goto redo; 10644 } 10645 goto out_all_pinned; 10646 } 10647 } 10648 10649 if (!ld_moved) { 10650 schedstat_inc(sd->lb_failed[idle]); 10651 /* 10652 * Increment the failure counter only on periodic balance. 10653 * We do not want newidle balance, which can be very 10654 * frequent, pollute the failure counter causing 10655 * excessive cache_hot migrations and active balances. 10656 */ 10657 if (idle != CPU_NEWLY_IDLE) 10658 sd->nr_balance_failed++; 10659 10660 if (need_active_balance(&env)) { 10661 unsigned long flags; 10662 10663 raw_spin_rq_lock_irqsave(busiest, flags); 10664 10665 /* 10666 * Don't kick the active_load_balance_cpu_stop, 10667 * if the curr task on busiest CPU can't be 10668 * moved to this_cpu: 10669 */ 10670 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10671 raw_spin_rq_unlock_irqrestore(busiest, flags); 10672 goto out_one_pinned; 10673 } 10674 10675 /* Record that we found at least one task that could run on this_cpu */ 10676 env.flags &= ~LBF_ALL_PINNED; 10677 10678 /* 10679 * ->active_balance synchronizes accesses to 10680 * ->active_balance_work. Once set, it's cleared 10681 * only after active load balance is finished. 10682 */ 10683 if (!busiest->active_balance) { 10684 busiest->active_balance = 1; 10685 busiest->push_cpu = this_cpu; 10686 active_balance = 1; 10687 } 10688 raw_spin_rq_unlock_irqrestore(busiest, flags); 10689 10690 if (active_balance) { 10691 stop_one_cpu_nowait(cpu_of(busiest), 10692 active_load_balance_cpu_stop, busiest, 10693 &busiest->active_balance_work); 10694 } 10695 } 10696 } else { 10697 sd->nr_balance_failed = 0; 10698 } 10699 10700 if (likely(!active_balance) || need_active_balance(&env)) { 10701 /* We were unbalanced, so reset the balancing interval */ 10702 sd->balance_interval = sd->min_interval; 10703 } 10704 10705 goto out; 10706 10707 out_balanced: 10708 /* 10709 * We reach balance although we may have faced some affinity 10710 * constraints. Clear the imbalance flag only if other tasks got 10711 * a chance to move and fix the imbalance. 10712 */ 10713 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10714 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10715 10716 if (*group_imbalance) 10717 *group_imbalance = 0; 10718 } 10719 10720 out_all_pinned: 10721 /* 10722 * We reach balance because all tasks are pinned at this level so 10723 * we can't migrate them. Let the imbalance flag set so parent level 10724 * can try to migrate them. 10725 */ 10726 schedstat_inc(sd->lb_balanced[idle]); 10727 10728 sd->nr_balance_failed = 0; 10729 10730 out_one_pinned: 10731 ld_moved = 0; 10732 10733 /* 10734 * newidle_balance() disregards balance intervals, so we could 10735 * repeatedly reach this code, which would lead to balance_interval 10736 * skyrocketing in a short amount of time. Skip the balance_interval 10737 * increase logic to avoid that. 10738 */ 10739 if (env.idle == CPU_NEWLY_IDLE) 10740 goto out; 10741 10742 /* tune up the balancing interval */ 10743 if ((env.flags & LBF_ALL_PINNED && 10744 sd->balance_interval < MAX_PINNED_INTERVAL) || 10745 sd->balance_interval < sd->max_interval) 10746 sd->balance_interval *= 2; 10747 out: 10748 return ld_moved; 10749 } 10750 10751 static inline unsigned long 10752 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10753 { 10754 unsigned long interval = sd->balance_interval; 10755 10756 if (cpu_busy) 10757 interval *= sd->busy_factor; 10758 10759 /* scale ms to jiffies */ 10760 interval = msecs_to_jiffies(interval); 10761 10762 /* 10763 * Reduce likelihood of busy balancing at higher domains racing with 10764 * balancing at lower domains by preventing their balancing periods 10765 * from being multiples of each other. 10766 */ 10767 if (cpu_busy) 10768 interval -= 1; 10769 10770 interval = clamp(interval, 1UL, max_load_balance_interval); 10771 10772 return interval; 10773 } 10774 10775 static inline void 10776 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10777 { 10778 unsigned long interval, next; 10779 10780 /* used by idle balance, so cpu_busy = 0 */ 10781 interval = get_sd_balance_interval(sd, 0); 10782 next = sd->last_balance + interval; 10783 10784 if (time_after(*next_balance, next)) 10785 *next_balance = next; 10786 } 10787 10788 /* 10789 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10790 * running tasks off the busiest CPU onto idle CPUs. It requires at 10791 * least 1 task to be running on each physical CPU where possible, and 10792 * avoids physical / logical imbalances. 10793 */ 10794 static int active_load_balance_cpu_stop(void *data) 10795 { 10796 struct rq *busiest_rq = data; 10797 int busiest_cpu = cpu_of(busiest_rq); 10798 int target_cpu = busiest_rq->push_cpu; 10799 struct rq *target_rq = cpu_rq(target_cpu); 10800 struct sched_domain *sd; 10801 struct task_struct *p = NULL; 10802 struct rq_flags rf; 10803 10804 rq_lock_irq(busiest_rq, &rf); 10805 /* 10806 * Between queueing the stop-work and running it is a hole in which 10807 * CPUs can become inactive. We should not move tasks from or to 10808 * inactive CPUs. 10809 */ 10810 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10811 goto out_unlock; 10812 10813 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10814 if (unlikely(busiest_cpu != smp_processor_id() || 10815 !busiest_rq->active_balance)) 10816 goto out_unlock; 10817 10818 /* Is there any task to move? */ 10819 if (busiest_rq->nr_running <= 1) 10820 goto out_unlock; 10821 10822 /* 10823 * This condition is "impossible", if it occurs 10824 * we need to fix it. Originally reported by 10825 * Bjorn Helgaas on a 128-CPU setup. 10826 */ 10827 WARN_ON_ONCE(busiest_rq == target_rq); 10828 10829 /* Search for an sd spanning us and the target CPU. */ 10830 rcu_read_lock(); 10831 for_each_domain(target_cpu, sd) { 10832 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10833 break; 10834 } 10835 10836 if (likely(sd)) { 10837 struct lb_env env = { 10838 .sd = sd, 10839 .dst_cpu = target_cpu, 10840 .dst_rq = target_rq, 10841 .src_cpu = busiest_rq->cpu, 10842 .src_rq = busiest_rq, 10843 .idle = CPU_IDLE, 10844 .flags = LBF_ACTIVE_LB, 10845 }; 10846 10847 schedstat_inc(sd->alb_count); 10848 update_rq_clock(busiest_rq); 10849 10850 p = detach_one_task(&env); 10851 if (p) { 10852 schedstat_inc(sd->alb_pushed); 10853 /* Active balancing done, reset the failure counter. */ 10854 sd->nr_balance_failed = 0; 10855 } else { 10856 schedstat_inc(sd->alb_failed); 10857 } 10858 } 10859 rcu_read_unlock(); 10860 out_unlock: 10861 busiest_rq->active_balance = 0; 10862 rq_unlock(busiest_rq, &rf); 10863 10864 if (p) 10865 attach_one_task(target_rq, p); 10866 10867 local_irq_enable(); 10868 10869 return 0; 10870 } 10871 10872 static DEFINE_SPINLOCK(balancing); 10873 10874 /* 10875 * Scale the max load_balance interval with the number of CPUs in the system. 10876 * This trades load-balance latency on larger machines for less cross talk. 10877 */ 10878 void update_max_interval(void) 10879 { 10880 max_load_balance_interval = HZ*num_online_cpus()/10; 10881 } 10882 10883 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10884 { 10885 if (cost > sd->max_newidle_lb_cost) { 10886 /* 10887 * Track max cost of a domain to make sure to not delay the 10888 * next wakeup on the CPU. 10889 */ 10890 sd->max_newidle_lb_cost = cost; 10891 sd->last_decay_max_lb_cost = jiffies; 10892 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10893 /* 10894 * Decay the newidle max times by ~1% per second to ensure that 10895 * it is not outdated and the current max cost is actually 10896 * shorter. 10897 */ 10898 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10899 sd->last_decay_max_lb_cost = jiffies; 10900 10901 return true; 10902 } 10903 10904 return false; 10905 } 10906 10907 /* 10908 * It checks each scheduling domain to see if it is due to be balanced, 10909 * and initiates a balancing operation if so. 10910 * 10911 * Balancing parameters are set up in init_sched_domains. 10912 */ 10913 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10914 { 10915 int continue_balancing = 1; 10916 int cpu = rq->cpu; 10917 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10918 unsigned long interval; 10919 struct sched_domain *sd; 10920 /* Earliest time when we have to do rebalance again */ 10921 unsigned long next_balance = jiffies + 60*HZ; 10922 int update_next_balance = 0; 10923 int need_serialize, need_decay = 0; 10924 u64 max_cost = 0; 10925 10926 rcu_read_lock(); 10927 for_each_domain(cpu, sd) { 10928 /* 10929 * Decay the newidle max times here because this is a regular 10930 * visit to all the domains. 10931 */ 10932 need_decay = update_newidle_cost(sd, 0); 10933 max_cost += sd->max_newidle_lb_cost; 10934 10935 /* 10936 * Stop the load balance at this level. There is another 10937 * CPU in our sched group which is doing load balancing more 10938 * actively. 10939 */ 10940 if (!continue_balancing) { 10941 if (need_decay) 10942 continue; 10943 break; 10944 } 10945 10946 interval = get_sd_balance_interval(sd, busy); 10947 10948 need_serialize = sd->flags & SD_SERIALIZE; 10949 if (need_serialize) { 10950 if (!spin_trylock(&balancing)) 10951 goto out; 10952 } 10953 10954 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10955 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10956 /* 10957 * The LBF_DST_PINNED logic could have changed 10958 * env->dst_cpu, so we can't know our idle 10959 * state even if we migrated tasks. Update it. 10960 */ 10961 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10962 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10963 } 10964 sd->last_balance = jiffies; 10965 interval = get_sd_balance_interval(sd, busy); 10966 } 10967 if (need_serialize) 10968 spin_unlock(&balancing); 10969 out: 10970 if (time_after(next_balance, sd->last_balance + interval)) { 10971 next_balance = sd->last_balance + interval; 10972 update_next_balance = 1; 10973 } 10974 } 10975 if (need_decay) { 10976 /* 10977 * Ensure the rq-wide value also decays but keep it at a 10978 * reasonable floor to avoid funnies with rq->avg_idle. 10979 */ 10980 rq->max_idle_balance_cost = 10981 max((u64)sysctl_sched_migration_cost, max_cost); 10982 } 10983 rcu_read_unlock(); 10984 10985 /* 10986 * next_balance will be updated only when there is a need. 10987 * When the cpu is attached to null domain for ex, it will not be 10988 * updated. 10989 */ 10990 if (likely(update_next_balance)) 10991 rq->next_balance = next_balance; 10992 10993 } 10994 10995 static inline int on_null_domain(struct rq *rq) 10996 { 10997 return unlikely(!rcu_dereference_sched(rq->sd)); 10998 } 10999 11000 #ifdef CONFIG_NO_HZ_COMMON 11001 /* 11002 * idle load balancing details 11003 * - When one of the busy CPUs notice that there may be an idle rebalancing 11004 * needed, they will kick the idle load balancer, which then does idle 11005 * load balancing for all the idle CPUs. 11006 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11007 * anywhere yet. 11008 */ 11009 11010 static inline int find_new_ilb(void) 11011 { 11012 int ilb; 11013 const struct cpumask *hk_mask; 11014 11015 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11016 11017 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11018 11019 if (ilb == smp_processor_id()) 11020 continue; 11021 11022 if (idle_cpu(ilb)) 11023 return ilb; 11024 } 11025 11026 return nr_cpu_ids; 11027 } 11028 11029 /* 11030 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11031 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11032 */ 11033 static void kick_ilb(unsigned int flags) 11034 { 11035 int ilb_cpu; 11036 11037 /* 11038 * Increase nohz.next_balance only when if full ilb is triggered but 11039 * not if we only update stats. 11040 */ 11041 if (flags & NOHZ_BALANCE_KICK) 11042 nohz.next_balance = jiffies+1; 11043 11044 ilb_cpu = find_new_ilb(); 11045 11046 if (ilb_cpu >= nr_cpu_ids) 11047 return; 11048 11049 /* 11050 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11051 * the first flag owns it; cleared by nohz_csd_func(). 11052 */ 11053 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11054 if (flags & NOHZ_KICK_MASK) 11055 return; 11056 11057 /* 11058 * This way we generate an IPI on the target CPU which 11059 * is idle. And the softirq performing nohz idle load balance 11060 * will be run before returning from the IPI. 11061 */ 11062 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11063 } 11064 11065 /* 11066 * Current decision point for kicking the idle load balancer in the presence 11067 * of idle CPUs in the system. 11068 */ 11069 static void nohz_balancer_kick(struct rq *rq) 11070 { 11071 unsigned long now = jiffies; 11072 struct sched_domain_shared *sds; 11073 struct sched_domain *sd; 11074 int nr_busy, i, cpu = rq->cpu; 11075 unsigned int flags = 0; 11076 11077 if (unlikely(rq->idle_balance)) 11078 return; 11079 11080 /* 11081 * We may be recently in ticked or tickless idle mode. At the first 11082 * busy tick after returning from idle, we will update the busy stats. 11083 */ 11084 nohz_balance_exit_idle(rq); 11085 11086 /* 11087 * None are in tickless mode and hence no need for NOHZ idle load 11088 * balancing. 11089 */ 11090 if (likely(!atomic_read(&nohz.nr_cpus))) 11091 return; 11092 11093 if (READ_ONCE(nohz.has_blocked) && 11094 time_after(now, READ_ONCE(nohz.next_blocked))) 11095 flags = NOHZ_STATS_KICK; 11096 11097 if (time_before(now, nohz.next_balance)) 11098 goto out; 11099 11100 if (rq->nr_running >= 2) { 11101 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11102 goto out; 11103 } 11104 11105 rcu_read_lock(); 11106 11107 sd = rcu_dereference(rq->sd); 11108 if (sd) { 11109 /* 11110 * If there's a CFS task and the current CPU has reduced 11111 * capacity; kick the ILB to see if there's a better CPU to run 11112 * on. 11113 */ 11114 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11115 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11116 goto unlock; 11117 } 11118 } 11119 11120 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11121 if (sd) { 11122 /* 11123 * When ASYM_PACKING; see if there's a more preferred CPU 11124 * currently idle; in which case, kick the ILB to move tasks 11125 * around. 11126 */ 11127 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11128 if (sched_asym_prefer(i, cpu)) { 11129 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11130 goto unlock; 11131 } 11132 } 11133 } 11134 11135 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11136 if (sd) { 11137 /* 11138 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11139 * to run the misfit task on. 11140 */ 11141 if (check_misfit_status(rq, sd)) { 11142 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11143 goto unlock; 11144 } 11145 11146 /* 11147 * For asymmetric systems, we do not want to nicely balance 11148 * cache use, instead we want to embrace asymmetry and only 11149 * ensure tasks have enough CPU capacity. 11150 * 11151 * Skip the LLC logic because it's not relevant in that case. 11152 */ 11153 goto unlock; 11154 } 11155 11156 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11157 if (sds) { 11158 /* 11159 * If there is an imbalance between LLC domains (IOW we could 11160 * increase the overall cache use), we need some less-loaded LLC 11161 * domain to pull some load. Likewise, we may need to spread 11162 * load within the current LLC domain (e.g. packed SMT cores but 11163 * other CPUs are idle). We can't really know from here how busy 11164 * the others are - so just get a nohz balance going if it looks 11165 * like this LLC domain has tasks we could move. 11166 */ 11167 nr_busy = atomic_read(&sds->nr_busy_cpus); 11168 if (nr_busy > 1) { 11169 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11170 goto unlock; 11171 } 11172 } 11173 unlock: 11174 rcu_read_unlock(); 11175 out: 11176 if (READ_ONCE(nohz.needs_update)) 11177 flags |= NOHZ_NEXT_KICK; 11178 11179 if (flags) 11180 kick_ilb(flags); 11181 } 11182 11183 static void set_cpu_sd_state_busy(int cpu) 11184 { 11185 struct sched_domain *sd; 11186 11187 rcu_read_lock(); 11188 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11189 11190 if (!sd || !sd->nohz_idle) 11191 goto unlock; 11192 sd->nohz_idle = 0; 11193 11194 atomic_inc(&sd->shared->nr_busy_cpus); 11195 unlock: 11196 rcu_read_unlock(); 11197 } 11198 11199 void nohz_balance_exit_idle(struct rq *rq) 11200 { 11201 SCHED_WARN_ON(rq != this_rq()); 11202 11203 if (likely(!rq->nohz_tick_stopped)) 11204 return; 11205 11206 rq->nohz_tick_stopped = 0; 11207 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11208 atomic_dec(&nohz.nr_cpus); 11209 11210 set_cpu_sd_state_busy(rq->cpu); 11211 } 11212 11213 static void set_cpu_sd_state_idle(int cpu) 11214 { 11215 struct sched_domain *sd; 11216 11217 rcu_read_lock(); 11218 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11219 11220 if (!sd || sd->nohz_idle) 11221 goto unlock; 11222 sd->nohz_idle = 1; 11223 11224 atomic_dec(&sd->shared->nr_busy_cpus); 11225 unlock: 11226 rcu_read_unlock(); 11227 } 11228 11229 /* 11230 * This routine will record that the CPU is going idle with tick stopped. 11231 * This info will be used in performing idle load balancing in the future. 11232 */ 11233 void nohz_balance_enter_idle(int cpu) 11234 { 11235 struct rq *rq = cpu_rq(cpu); 11236 11237 SCHED_WARN_ON(cpu != smp_processor_id()); 11238 11239 /* If this CPU is going down, then nothing needs to be done: */ 11240 if (!cpu_active(cpu)) 11241 return; 11242 11243 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11244 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11245 return; 11246 11247 /* 11248 * Can be set safely without rq->lock held 11249 * If a clear happens, it will have evaluated last additions because 11250 * rq->lock is held during the check and the clear 11251 */ 11252 rq->has_blocked_load = 1; 11253 11254 /* 11255 * The tick is still stopped but load could have been added in the 11256 * meantime. We set the nohz.has_blocked flag to trig a check of the 11257 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11258 * of nohz.has_blocked can only happen after checking the new load 11259 */ 11260 if (rq->nohz_tick_stopped) 11261 goto out; 11262 11263 /* If we're a completely isolated CPU, we don't play: */ 11264 if (on_null_domain(rq)) 11265 return; 11266 11267 rq->nohz_tick_stopped = 1; 11268 11269 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11270 atomic_inc(&nohz.nr_cpus); 11271 11272 /* 11273 * Ensures that if nohz_idle_balance() fails to observe our 11274 * @idle_cpus_mask store, it must observe the @has_blocked 11275 * and @needs_update stores. 11276 */ 11277 smp_mb__after_atomic(); 11278 11279 set_cpu_sd_state_idle(cpu); 11280 11281 WRITE_ONCE(nohz.needs_update, 1); 11282 out: 11283 /* 11284 * Each time a cpu enter idle, we assume that it has blocked load and 11285 * enable the periodic update of the load of idle cpus 11286 */ 11287 WRITE_ONCE(nohz.has_blocked, 1); 11288 } 11289 11290 static bool update_nohz_stats(struct rq *rq) 11291 { 11292 unsigned int cpu = rq->cpu; 11293 11294 if (!rq->has_blocked_load) 11295 return false; 11296 11297 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11298 return false; 11299 11300 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11301 return true; 11302 11303 update_blocked_averages(cpu); 11304 11305 return rq->has_blocked_load; 11306 } 11307 11308 /* 11309 * Internal function that runs load balance for all idle cpus. The load balance 11310 * can be a simple update of blocked load or a complete load balance with 11311 * tasks movement depending of flags. 11312 */ 11313 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11314 { 11315 /* Earliest time when we have to do rebalance again */ 11316 unsigned long now = jiffies; 11317 unsigned long next_balance = now + 60*HZ; 11318 bool has_blocked_load = false; 11319 int update_next_balance = 0; 11320 int this_cpu = this_rq->cpu; 11321 int balance_cpu; 11322 struct rq *rq; 11323 11324 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11325 11326 /* 11327 * We assume there will be no idle load after this update and clear 11328 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11329 * set the has_blocked flag and trigger another update of idle load. 11330 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11331 * setting the flag, we are sure to not clear the state and not 11332 * check the load of an idle cpu. 11333 * 11334 * Same applies to idle_cpus_mask vs needs_update. 11335 */ 11336 if (flags & NOHZ_STATS_KICK) 11337 WRITE_ONCE(nohz.has_blocked, 0); 11338 if (flags & NOHZ_NEXT_KICK) 11339 WRITE_ONCE(nohz.needs_update, 0); 11340 11341 /* 11342 * Ensures that if we miss the CPU, we must see the has_blocked 11343 * store from nohz_balance_enter_idle(). 11344 */ 11345 smp_mb(); 11346 11347 /* 11348 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11349 * chance for other idle cpu to pull load. 11350 */ 11351 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11352 if (!idle_cpu(balance_cpu)) 11353 continue; 11354 11355 /* 11356 * If this CPU gets work to do, stop the load balancing 11357 * work being done for other CPUs. Next load 11358 * balancing owner will pick it up. 11359 */ 11360 if (need_resched()) { 11361 if (flags & NOHZ_STATS_KICK) 11362 has_blocked_load = true; 11363 if (flags & NOHZ_NEXT_KICK) 11364 WRITE_ONCE(nohz.needs_update, 1); 11365 goto abort; 11366 } 11367 11368 rq = cpu_rq(balance_cpu); 11369 11370 if (flags & NOHZ_STATS_KICK) 11371 has_blocked_load |= update_nohz_stats(rq); 11372 11373 /* 11374 * If time for next balance is due, 11375 * do the balance. 11376 */ 11377 if (time_after_eq(jiffies, rq->next_balance)) { 11378 struct rq_flags rf; 11379 11380 rq_lock_irqsave(rq, &rf); 11381 update_rq_clock(rq); 11382 rq_unlock_irqrestore(rq, &rf); 11383 11384 if (flags & NOHZ_BALANCE_KICK) 11385 rebalance_domains(rq, CPU_IDLE); 11386 } 11387 11388 if (time_after(next_balance, rq->next_balance)) { 11389 next_balance = rq->next_balance; 11390 update_next_balance = 1; 11391 } 11392 } 11393 11394 /* 11395 * next_balance will be updated only when there is a need. 11396 * When the CPU is attached to null domain for ex, it will not be 11397 * updated. 11398 */ 11399 if (likely(update_next_balance)) 11400 nohz.next_balance = next_balance; 11401 11402 if (flags & NOHZ_STATS_KICK) 11403 WRITE_ONCE(nohz.next_blocked, 11404 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11405 11406 abort: 11407 /* There is still blocked load, enable periodic update */ 11408 if (has_blocked_load) 11409 WRITE_ONCE(nohz.has_blocked, 1); 11410 } 11411 11412 /* 11413 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11414 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11415 */ 11416 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11417 { 11418 unsigned int flags = this_rq->nohz_idle_balance; 11419 11420 if (!flags) 11421 return false; 11422 11423 this_rq->nohz_idle_balance = 0; 11424 11425 if (idle != CPU_IDLE) 11426 return false; 11427 11428 _nohz_idle_balance(this_rq, flags); 11429 11430 return true; 11431 } 11432 11433 /* 11434 * Check if we need to run the ILB for updating blocked load before entering 11435 * idle state. 11436 */ 11437 void nohz_run_idle_balance(int cpu) 11438 { 11439 unsigned int flags; 11440 11441 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11442 11443 /* 11444 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11445 * (ie NOHZ_STATS_KICK set) and will do the same. 11446 */ 11447 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11448 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11449 } 11450 11451 static void nohz_newidle_balance(struct rq *this_rq) 11452 { 11453 int this_cpu = this_rq->cpu; 11454 11455 /* 11456 * This CPU doesn't want to be disturbed by scheduler 11457 * housekeeping 11458 */ 11459 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11460 return; 11461 11462 /* Will wake up very soon. No time for doing anything else*/ 11463 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11464 return; 11465 11466 /* Don't need to update blocked load of idle CPUs*/ 11467 if (!READ_ONCE(nohz.has_blocked) || 11468 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11469 return; 11470 11471 /* 11472 * Set the need to trigger ILB in order to update blocked load 11473 * before entering idle state. 11474 */ 11475 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11476 } 11477 11478 #else /* !CONFIG_NO_HZ_COMMON */ 11479 static inline void nohz_balancer_kick(struct rq *rq) { } 11480 11481 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11482 { 11483 return false; 11484 } 11485 11486 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11487 #endif /* CONFIG_NO_HZ_COMMON */ 11488 11489 /* 11490 * newidle_balance is called by schedule() if this_cpu is about to become 11491 * idle. Attempts to pull tasks from other CPUs. 11492 * 11493 * Returns: 11494 * < 0 - we released the lock and there are !fair tasks present 11495 * 0 - failed, no new tasks 11496 * > 0 - success, new (fair) tasks present 11497 */ 11498 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11499 { 11500 unsigned long next_balance = jiffies + HZ; 11501 int this_cpu = this_rq->cpu; 11502 u64 t0, t1, curr_cost = 0; 11503 struct sched_domain *sd; 11504 int pulled_task = 0; 11505 11506 update_misfit_status(NULL, this_rq); 11507 11508 /* 11509 * There is a task waiting to run. No need to search for one. 11510 * Return 0; the task will be enqueued when switching to idle. 11511 */ 11512 if (this_rq->ttwu_pending) 11513 return 0; 11514 11515 /* 11516 * We must set idle_stamp _before_ calling idle_balance(), such that we 11517 * measure the duration of idle_balance() as idle time. 11518 */ 11519 this_rq->idle_stamp = rq_clock(this_rq); 11520 11521 /* 11522 * Do not pull tasks towards !active CPUs... 11523 */ 11524 if (!cpu_active(this_cpu)) 11525 return 0; 11526 11527 /* 11528 * This is OK, because current is on_cpu, which avoids it being picked 11529 * for load-balance and preemption/IRQs are still disabled avoiding 11530 * further scheduler activity on it and we're being very careful to 11531 * re-start the picking loop. 11532 */ 11533 rq_unpin_lock(this_rq, rf); 11534 11535 rcu_read_lock(); 11536 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11537 11538 if (!READ_ONCE(this_rq->rd->overload) || 11539 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11540 11541 if (sd) 11542 update_next_balance(sd, &next_balance); 11543 rcu_read_unlock(); 11544 11545 goto out; 11546 } 11547 rcu_read_unlock(); 11548 11549 raw_spin_rq_unlock(this_rq); 11550 11551 t0 = sched_clock_cpu(this_cpu); 11552 update_blocked_averages(this_cpu); 11553 11554 rcu_read_lock(); 11555 for_each_domain(this_cpu, sd) { 11556 int continue_balancing = 1; 11557 u64 domain_cost; 11558 11559 update_next_balance(sd, &next_balance); 11560 11561 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11562 break; 11563 11564 if (sd->flags & SD_BALANCE_NEWIDLE) { 11565 11566 pulled_task = load_balance(this_cpu, this_rq, 11567 sd, CPU_NEWLY_IDLE, 11568 &continue_balancing); 11569 11570 t1 = sched_clock_cpu(this_cpu); 11571 domain_cost = t1 - t0; 11572 update_newidle_cost(sd, domain_cost); 11573 11574 curr_cost += domain_cost; 11575 t0 = t1; 11576 } 11577 11578 /* 11579 * Stop searching for tasks to pull if there are 11580 * now runnable tasks on this rq. 11581 */ 11582 if (pulled_task || this_rq->nr_running > 0 || 11583 this_rq->ttwu_pending) 11584 break; 11585 } 11586 rcu_read_unlock(); 11587 11588 raw_spin_rq_lock(this_rq); 11589 11590 if (curr_cost > this_rq->max_idle_balance_cost) 11591 this_rq->max_idle_balance_cost = curr_cost; 11592 11593 /* 11594 * While browsing the domains, we released the rq lock, a task could 11595 * have been enqueued in the meantime. Since we're not going idle, 11596 * pretend we pulled a task. 11597 */ 11598 if (this_rq->cfs.h_nr_running && !pulled_task) 11599 pulled_task = 1; 11600 11601 /* Is there a task of a high priority class? */ 11602 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11603 pulled_task = -1; 11604 11605 out: 11606 /* Move the next balance forward */ 11607 if (time_after(this_rq->next_balance, next_balance)) 11608 this_rq->next_balance = next_balance; 11609 11610 if (pulled_task) 11611 this_rq->idle_stamp = 0; 11612 else 11613 nohz_newidle_balance(this_rq); 11614 11615 rq_repin_lock(this_rq, rf); 11616 11617 return pulled_task; 11618 } 11619 11620 /* 11621 * run_rebalance_domains is triggered when needed from the scheduler tick. 11622 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11623 */ 11624 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11625 { 11626 struct rq *this_rq = this_rq(); 11627 enum cpu_idle_type idle = this_rq->idle_balance ? 11628 CPU_IDLE : CPU_NOT_IDLE; 11629 11630 /* 11631 * If this CPU has a pending nohz_balance_kick, then do the 11632 * balancing on behalf of the other idle CPUs whose ticks are 11633 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11634 * give the idle CPUs a chance to load balance. Else we may 11635 * load balance only within the local sched_domain hierarchy 11636 * and abort nohz_idle_balance altogether if we pull some load. 11637 */ 11638 if (nohz_idle_balance(this_rq, idle)) 11639 return; 11640 11641 /* normal load balance */ 11642 update_blocked_averages(this_rq->cpu); 11643 rebalance_domains(this_rq, idle); 11644 } 11645 11646 /* 11647 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11648 */ 11649 void trigger_load_balance(struct rq *rq) 11650 { 11651 /* 11652 * Don't need to rebalance while attached to NULL domain or 11653 * runqueue CPU is not active 11654 */ 11655 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11656 return; 11657 11658 if (time_after_eq(jiffies, rq->next_balance)) 11659 raise_softirq(SCHED_SOFTIRQ); 11660 11661 nohz_balancer_kick(rq); 11662 } 11663 11664 static void rq_online_fair(struct rq *rq) 11665 { 11666 update_sysctl(); 11667 11668 update_runtime_enabled(rq); 11669 } 11670 11671 static void rq_offline_fair(struct rq *rq) 11672 { 11673 update_sysctl(); 11674 11675 /* Ensure any throttled groups are reachable by pick_next_task */ 11676 unthrottle_offline_cfs_rqs(rq); 11677 } 11678 11679 #endif /* CONFIG_SMP */ 11680 11681 #ifdef CONFIG_SCHED_CORE 11682 static inline bool 11683 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11684 { 11685 u64 slice = sched_slice(cfs_rq_of(se), se); 11686 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11687 11688 return (rtime * min_nr_tasks > slice); 11689 } 11690 11691 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11692 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11693 { 11694 if (!sched_core_enabled(rq)) 11695 return; 11696 11697 /* 11698 * If runqueue has only one task which used up its slice and 11699 * if the sibling is forced idle, then trigger schedule to 11700 * give forced idle task a chance. 11701 * 11702 * sched_slice() considers only this active rq and it gets the 11703 * whole slice. But during force idle, we have siblings acting 11704 * like a single runqueue and hence we need to consider runnable 11705 * tasks on this CPU and the forced idle CPU. Ideally, we should 11706 * go through the forced idle rq, but that would be a perf hit. 11707 * We can assume that the forced idle CPU has at least 11708 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11709 * if we need to give up the CPU. 11710 */ 11711 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11712 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11713 resched_curr(rq); 11714 } 11715 11716 /* 11717 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11718 */ 11719 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11720 { 11721 for_each_sched_entity(se) { 11722 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11723 11724 if (forceidle) { 11725 if (cfs_rq->forceidle_seq == fi_seq) 11726 break; 11727 cfs_rq->forceidle_seq = fi_seq; 11728 } 11729 11730 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11731 } 11732 } 11733 11734 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11735 { 11736 struct sched_entity *se = &p->se; 11737 11738 if (p->sched_class != &fair_sched_class) 11739 return; 11740 11741 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11742 } 11743 11744 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11745 { 11746 struct rq *rq = task_rq(a); 11747 struct sched_entity *sea = &a->se; 11748 struct sched_entity *seb = &b->se; 11749 struct cfs_rq *cfs_rqa; 11750 struct cfs_rq *cfs_rqb; 11751 s64 delta; 11752 11753 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11754 11755 #ifdef CONFIG_FAIR_GROUP_SCHED 11756 /* 11757 * Find an se in the hierarchy for tasks a and b, such that the se's 11758 * are immediate siblings. 11759 */ 11760 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11761 int sea_depth = sea->depth; 11762 int seb_depth = seb->depth; 11763 11764 if (sea_depth >= seb_depth) 11765 sea = parent_entity(sea); 11766 if (sea_depth <= seb_depth) 11767 seb = parent_entity(seb); 11768 } 11769 11770 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11771 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11772 11773 cfs_rqa = sea->cfs_rq; 11774 cfs_rqb = seb->cfs_rq; 11775 #else 11776 cfs_rqa = &task_rq(a)->cfs; 11777 cfs_rqb = &task_rq(b)->cfs; 11778 #endif 11779 11780 /* 11781 * Find delta after normalizing se's vruntime with its cfs_rq's 11782 * min_vruntime_fi, which would have been updated in prior calls 11783 * to se_fi_update(). 11784 */ 11785 delta = (s64)(sea->vruntime - seb->vruntime) + 11786 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11787 11788 return delta > 0; 11789 } 11790 #else 11791 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11792 #endif 11793 11794 /* 11795 * scheduler tick hitting a task of our scheduling class. 11796 * 11797 * NOTE: This function can be called remotely by the tick offload that 11798 * goes along full dynticks. Therefore no local assumption can be made 11799 * and everything must be accessed through the @rq and @curr passed in 11800 * parameters. 11801 */ 11802 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11803 { 11804 struct cfs_rq *cfs_rq; 11805 struct sched_entity *se = &curr->se; 11806 11807 for_each_sched_entity(se) { 11808 cfs_rq = cfs_rq_of(se); 11809 entity_tick(cfs_rq, se, queued); 11810 } 11811 11812 if (static_branch_unlikely(&sched_numa_balancing)) 11813 task_tick_numa(rq, curr); 11814 11815 update_misfit_status(curr, rq); 11816 update_overutilized_status(task_rq(curr)); 11817 11818 task_tick_core(rq, curr); 11819 } 11820 11821 /* 11822 * called on fork with the child task as argument from the parent's context 11823 * - child not yet on the tasklist 11824 * - preemption disabled 11825 */ 11826 static void task_fork_fair(struct task_struct *p) 11827 { 11828 struct cfs_rq *cfs_rq; 11829 struct sched_entity *se = &p->se, *curr; 11830 struct rq *rq = this_rq(); 11831 struct rq_flags rf; 11832 11833 rq_lock(rq, &rf); 11834 update_rq_clock(rq); 11835 11836 cfs_rq = task_cfs_rq(current); 11837 curr = cfs_rq->curr; 11838 if (curr) { 11839 update_curr(cfs_rq); 11840 se->vruntime = curr->vruntime; 11841 } 11842 place_entity(cfs_rq, se, 1); 11843 11844 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11845 /* 11846 * Upon rescheduling, sched_class::put_prev_task() will place 11847 * 'current' within the tree based on its new key value. 11848 */ 11849 swap(curr->vruntime, se->vruntime); 11850 resched_curr(rq); 11851 } 11852 11853 se->vruntime -= cfs_rq->min_vruntime; 11854 rq_unlock(rq, &rf); 11855 } 11856 11857 /* 11858 * Priority of the task has changed. Check to see if we preempt 11859 * the current task. 11860 */ 11861 static void 11862 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11863 { 11864 if (!task_on_rq_queued(p)) 11865 return; 11866 11867 if (rq->cfs.nr_running == 1) 11868 return; 11869 11870 /* 11871 * Reschedule if we are currently running on this runqueue and 11872 * our priority decreased, or if we are not currently running on 11873 * this runqueue and our priority is higher than the current's 11874 */ 11875 if (task_current(rq, p)) { 11876 if (p->prio > oldprio) 11877 resched_curr(rq); 11878 } else 11879 check_preempt_curr(rq, p, 0); 11880 } 11881 11882 static inline bool vruntime_normalized(struct task_struct *p) 11883 { 11884 struct sched_entity *se = &p->se; 11885 11886 /* 11887 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11888 * the dequeue_entity(.flags=0) will already have normalized the 11889 * vruntime. 11890 */ 11891 if (p->on_rq) 11892 return true; 11893 11894 /* 11895 * When !on_rq, vruntime of the task has usually NOT been normalized. 11896 * But there are some cases where it has already been normalized: 11897 * 11898 * - A forked child which is waiting for being woken up by 11899 * wake_up_new_task(). 11900 * - A task which has been woken up by try_to_wake_up() and 11901 * waiting for actually being woken up by sched_ttwu_pending(). 11902 */ 11903 if (!se->sum_exec_runtime || 11904 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11905 return true; 11906 11907 return false; 11908 } 11909 11910 #ifdef CONFIG_FAIR_GROUP_SCHED 11911 /* 11912 * Propagate the changes of the sched_entity across the tg tree to make it 11913 * visible to the root 11914 */ 11915 static void propagate_entity_cfs_rq(struct sched_entity *se) 11916 { 11917 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11918 11919 if (cfs_rq_throttled(cfs_rq)) 11920 return; 11921 11922 if (!throttled_hierarchy(cfs_rq)) 11923 list_add_leaf_cfs_rq(cfs_rq); 11924 11925 /* Start to propagate at parent */ 11926 se = se->parent; 11927 11928 for_each_sched_entity(se) { 11929 cfs_rq = cfs_rq_of(se); 11930 11931 update_load_avg(cfs_rq, se, UPDATE_TG); 11932 11933 if (cfs_rq_throttled(cfs_rq)) 11934 break; 11935 11936 if (!throttled_hierarchy(cfs_rq)) 11937 list_add_leaf_cfs_rq(cfs_rq); 11938 } 11939 } 11940 #else 11941 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11942 #endif 11943 11944 static void detach_entity_cfs_rq(struct sched_entity *se) 11945 { 11946 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11947 11948 #ifdef CONFIG_SMP 11949 /* 11950 * In case the task sched_avg hasn't been attached: 11951 * - A forked task which hasn't been woken up by wake_up_new_task(). 11952 * - A task which has been woken up by try_to_wake_up() but is 11953 * waiting for actually being woken up by sched_ttwu_pending(). 11954 */ 11955 if (!se->avg.last_update_time) 11956 return; 11957 #endif 11958 11959 /* Catch up with the cfs_rq and remove our load when we leave */ 11960 update_load_avg(cfs_rq, se, 0); 11961 detach_entity_load_avg(cfs_rq, se); 11962 update_tg_load_avg(cfs_rq); 11963 propagate_entity_cfs_rq(se); 11964 } 11965 11966 static void attach_entity_cfs_rq(struct sched_entity *se) 11967 { 11968 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11969 11970 /* Synchronize entity with its cfs_rq */ 11971 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11972 attach_entity_load_avg(cfs_rq, se); 11973 update_tg_load_avg(cfs_rq); 11974 propagate_entity_cfs_rq(se); 11975 } 11976 11977 static void detach_task_cfs_rq(struct task_struct *p) 11978 { 11979 struct sched_entity *se = &p->se; 11980 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11981 11982 if (!vruntime_normalized(p)) { 11983 /* 11984 * Fix up our vruntime so that the current sleep doesn't 11985 * cause 'unlimited' sleep bonus. 11986 */ 11987 place_entity(cfs_rq, se, 0); 11988 se->vruntime -= cfs_rq->min_vruntime; 11989 } 11990 11991 detach_entity_cfs_rq(se); 11992 } 11993 11994 static void attach_task_cfs_rq(struct task_struct *p) 11995 { 11996 struct sched_entity *se = &p->se; 11997 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11998 11999 attach_entity_cfs_rq(se); 12000 12001 if (!vruntime_normalized(p)) 12002 se->vruntime += cfs_rq->min_vruntime; 12003 } 12004 12005 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12006 { 12007 detach_task_cfs_rq(p); 12008 } 12009 12010 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12011 { 12012 attach_task_cfs_rq(p); 12013 12014 if (task_on_rq_queued(p)) { 12015 /* 12016 * We were most likely switched from sched_rt, so 12017 * kick off the schedule if running, otherwise just see 12018 * if we can still preempt the current task. 12019 */ 12020 if (task_current(rq, p)) 12021 resched_curr(rq); 12022 else 12023 check_preempt_curr(rq, p, 0); 12024 } 12025 } 12026 12027 /* Account for a task changing its policy or group. 12028 * 12029 * This routine is mostly called to set cfs_rq->curr field when a task 12030 * migrates between groups/classes. 12031 */ 12032 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12033 { 12034 struct sched_entity *se = &p->se; 12035 12036 #ifdef CONFIG_SMP 12037 if (task_on_rq_queued(p)) { 12038 /* 12039 * Move the next running task to the front of the list, so our 12040 * cfs_tasks list becomes MRU one. 12041 */ 12042 list_move(&se->group_node, &rq->cfs_tasks); 12043 } 12044 #endif 12045 12046 for_each_sched_entity(se) { 12047 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12048 12049 set_next_entity(cfs_rq, se); 12050 /* ensure bandwidth has been allocated on our new cfs_rq */ 12051 account_cfs_rq_runtime(cfs_rq, 0); 12052 } 12053 } 12054 12055 void init_cfs_rq(struct cfs_rq *cfs_rq) 12056 { 12057 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12058 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12059 #ifdef CONFIG_SMP 12060 raw_spin_lock_init(&cfs_rq->removed.lock); 12061 #endif 12062 } 12063 12064 #ifdef CONFIG_FAIR_GROUP_SCHED 12065 static void task_change_group_fair(struct task_struct *p) 12066 { 12067 /* 12068 * We couldn't detach or attach a forked task which 12069 * hasn't been woken up by wake_up_new_task(). 12070 */ 12071 if (READ_ONCE(p->__state) == TASK_NEW) 12072 return; 12073 12074 detach_task_cfs_rq(p); 12075 12076 #ifdef CONFIG_SMP 12077 /* Tell se's cfs_rq has been changed -- migrated */ 12078 p->se.avg.last_update_time = 0; 12079 #endif 12080 set_task_rq(p, task_cpu(p)); 12081 attach_task_cfs_rq(p); 12082 } 12083 12084 void free_fair_sched_group(struct task_group *tg) 12085 { 12086 int i; 12087 12088 for_each_possible_cpu(i) { 12089 if (tg->cfs_rq) 12090 kfree(tg->cfs_rq[i]); 12091 if (tg->se) 12092 kfree(tg->se[i]); 12093 } 12094 12095 kfree(tg->cfs_rq); 12096 kfree(tg->se); 12097 } 12098 12099 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12100 { 12101 struct sched_entity *se; 12102 struct cfs_rq *cfs_rq; 12103 int i; 12104 12105 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12106 if (!tg->cfs_rq) 12107 goto err; 12108 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12109 if (!tg->se) 12110 goto err; 12111 12112 tg->shares = NICE_0_LOAD; 12113 12114 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12115 12116 for_each_possible_cpu(i) { 12117 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12118 GFP_KERNEL, cpu_to_node(i)); 12119 if (!cfs_rq) 12120 goto err; 12121 12122 se = kzalloc_node(sizeof(struct sched_entity_stats), 12123 GFP_KERNEL, cpu_to_node(i)); 12124 if (!se) 12125 goto err_free_rq; 12126 12127 init_cfs_rq(cfs_rq); 12128 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12129 init_entity_runnable_average(se); 12130 } 12131 12132 return 1; 12133 12134 err_free_rq: 12135 kfree(cfs_rq); 12136 err: 12137 return 0; 12138 } 12139 12140 void online_fair_sched_group(struct task_group *tg) 12141 { 12142 struct sched_entity *se; 12143 struct rq_flags rf; 12144 struct rq *rq; 12145 int i; 12146 12147 for_each_possible_cpu(i) { 12148 rq = cpu_rq(i); 12149 se = tg->se[i]; 12150 rq_lock_irq(rq, &rf); 12151 update_rq_clock(rq); 12152 attach_entity_cfs_rq(se); 12153 sync_throttle(tg, i); 12154 rq_unlock_irq(rq, &rf); 12155 } 12156 } 12157 12158 void unregister_fair_sched_group(struct task_group *tg) 12159 { 12160 unsigned long flags; 12161 struct rq *rq; 12162 int cpu; 12163 12164 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12165 12166 for_each_possible_cpu(cpu) { 12167 if (tg->se[cpu]) 12168 remove_entity_load_avg(tg->se[cpu]); 12169 12170 /* 12171 * Only empty task groups can be destroyed; so we can speculatively 12172 * check on_list without danger of it being re-added. 12173 */ 12174 if (!tg->cfs_rq[cpu]->on_list) 12175 continue; 12176 12177 rq = cpu_rq(cpu); 12178 12179 raw_spin_rq_lock_irqsave(rq, flags); 12180 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12181 raw_spin_rq_unlock_irqrestore(rq, flags); 12182 } 12183 } 12184 12185 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12186 struct sched_entity *se, int cpu, 12187 struct sched_entity *parent) 12188 { 12189 struct rq *rq = cpu_rq(cpu); 12190 12191 cfs_rq->tg = tg; 12192 cfs_rq->rq = rq; 12193 init_cfs_rq_runtime(cfs_rq); 12194 12195 tg->cfs_rq[cpu] = cfs_rq; 12196 tg->se[cpu] = se; 12197 12198 /* se could be NULL for root_task_group */ 12199 if (!se) 12200 return; 12201 12202 if (!parent) { 12203 se->cfs_rq = &rq->cfs; 12204 se->depth = 0; 12205 } else { 12206 se->cfs_rq = parent->my_q; 12207 se->depth = parent->depth + 1; 12208 } 12209 12210 se->my_q = cfs_rq; 12211 /* guarantee group entities always have weight */ 12212 update_load_set(&se->load, NICE_0_LOAD); 12213 se->parent = parent; 12214 } 12215 12216 static DEFINE_MUTEX(shares_mutex); 12217 12218 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12219 { 12220 int i; 12221 12222 lockdep_assert_held(&shares_mutex); 12223 12224 /* 12225 * We can't change the weight of the root cgroup. 12226 */ 12227 if (!tg->se[0]) 12228 return -EINVAL; 12229 12230 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12231 12232 if (tg->shares == shares) 12233 return 0; 12234 12235 tg->shares = shares; 12236 for_each_possible_cpu(i) { 12237 struct rq *rq = cpu_rq(i); 12238 struct sched_entity *se = tg->se[i]; 12239 struct rq_flags rf; 12240 12241 /* Propagate contribution to hierarchy */ 12242 rq_lock_irqsave(rq, &rf); 12243 update_rq_clock(rq); 12244 for_each_sched_entity(se) { 12245 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12246 update_cfs_group(se); 12247 } 12248 rq_unlock_irqrestore(rq, &rf); 12249 } 12250 12251 return 0; 12252 } 12253 12254 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12255 { 12256 int ret; 12257 12258 mutex_lock(&shares_mutex); 12259 if (tg_is_idle(tg)) 12260 ret = -EINVAL; 12261 else 12262 ret = __sched_group_set_shares(tg, shares); 12263 mutex_unlock(&shares_mutex); 12264 12265 return ret; 12266 } 12267 12268 int sched_group_set_idle(struct task_group *tg, long idle) 12269 { 12270 int i; 12271 12272 if (tg == &root_task_group) 12273 return -EINVAL; 12274 12275 if (idle < 0 || idle > 1) 12276 return -EINVAL; 12277 12278 mutex_lock(&shares_mutex); 12279 12280 if (tg->idle == idle) { 12281 mutex_unlock(&shares_mutex); 12282 return 0; 12283 } 12284 12285 tg->idle = idle; 12286 12287 for_each_possible_cpu(i) { 12288 struct rq *rq = cpu_rq(i); 12289 struct sched_entity *se = tg->se[i]; 12290 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12291 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12292 long idle_task_delta; 12293 struct rq_flags rf; 12294 12295 rq_lock_irqsave(rq, &rf); 12296 12297 grp_cfs_rq->idle = idle; 12298 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12299 goto next_cpu; 12300 12301 if (se->on_rq) { 12302 parent_cfs_rq = cfs_rq_of(se); 12303 if (cfs_rq_is_idle(grp_cfs_rq)) 12304 parent_cfs_rq->idle_nr_running++; 12305 else 12306 parent_cfs_rq->idle_nr_running--; 12307 } 12308 12309 idle_task_delta = grp_cfs_rq->h_nr_running - 12310 grp_cfs_rq->idle_h_nr_running; 12311 if (!cfs_rq_is_idle(grp_cfs_rq)) 12312 idle_task_delta *= -1; 12313 12314 for_each_sched_entity(se) { 12315 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12316 12317 if (!se->on_rq) 12318 break; 12319 12320 cfs_rq->idle_h_nr_running += idle_task_delta; 12321 12322 /* Already accounted at parent level and above. */ 12323 if (cfs_rq_is_idle(cfs_rq)) 12324 break; 12325 } 12326 12327 next_cpu: 12328 rq_unlock_irqrestore(rq, &rf); 12329 } 12330 12331 /* Idle groups have minimum weight. */ 12332 if (tg_is_idle(tg)) 12333 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12334 else 12335 __sched_group_set_shares(tg, NICE_0_LOAD); 12336 12337 mutex_unlock(&shares_mutex); 12338 return 0; 12339 } 12340 12341 #else /* CONFIG_FAIR_GROUP_SCHED */ 12342 12343 void free_fair_sched_group(struct task_group *tg) { } 12344 12345 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12346 { 12347 return 1; 12348 } 12349 12350 void online_fair_sched_group(struct task_group *tg) { } 12351 12352 void unregister_fair_sched_group(struct task_group *tg) { } 12353 12354 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12355 12356 12357 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12358 { 12359 struct sched_entity *se = &task->se; 12360 unsigned int rr_interval = 0; 12361 12362 /* 12363 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12364 * idle runqueue: 12365 */ 12366 if (rq->cfs.load.weight) 12367 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 12368 12369 return rr_interval; 12370 } 12371 12372 /* 12373 * All the scheduling class methods: 12374 */ 12375 DEFINE_SCHED_CLASS(fair) = { 12376 12377 .enqueue_task = enqueue_task_fair, 12378 .dequeue_task = dequeue_task_fair, 12379 .yield_task = yield_task_fair, 12380 .yield_to_task = yield_to_task_fair, 12381 12382 .check_preempt_curr = check_preempt_wakeup, 12383 12384 .pick_next_task = __pick_next_task_fair, 12385 .put_prev_task = put_prev_task_fair, 12386 .set_next_task = set_next_task_fair, 12387 12388 #ifdef CONFIG_SMP 12389 .balance = balance_fair, 12390 .pick_task = pick_task_fair, 12391 .select_task_rq = select_task_rq_fair, 12392 .migrate_task_rq = migrate_task_rq_fair, 12393 12394 .rq_online = rq_online_fair, 12395 .rq_offline = rq_offline_fair, 12396 12397 .task_dead = task_dead_fair, 12398 .set_cpus_allowed = set_cpus_allowed_common, 12399 #endif 12400 12401 .task_tick = task_tick_fair, 12402 .task_fork = task_fork_fair, 12403 12404 .prio_changed = prio_changed_fair, 12405 .switched_from = switched_from_fair, 12406 .switched_to = switched_to_fair, 12407 12408 .get_rr_interval = get_rr_interval_fair, 12409 12410 .update_curr = update_curr_fair, 12411 12412 #ifdef CONFIG_FAIR_GROUP_SCHED 12413 .task_change_group = task_change_group_fair, 12414 #endif 12415 12416 #ifdef CONFIG_UCLAMP_TASK 12417 .uclamp_enabled = 1, 12418 #endif 12419 }; 12420 12421 #ifdef CONFIG_SCHED_DEBUG 12422 void print_cfs_stats(struct seq_file *m, int cpu) 12423 { 12424 struct cfs_rq *cfs_rq, *pos; 12425 12426 rcu_read_lock(); 12427 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12428 print_cfs_rq(m, cpu, cfs_rq); 12429 rcu_read_unlock(); 12430 } 12431 12432 #ifdef CONFIG_NUMA_BALANCING 12433 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12434 { 12435 int node; 12436 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12437 struct numa_group *ng; 12438 12439 rcu_read_lock(); 12440 ng = rcu_dereference(p->numa_group); 12441 for_each_online_node(node) { 12442 if (p->numa_faults) { 12443 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12444 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12445 } 12446 if (ng) { 12447 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12448 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12449 } 12450 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12451 } 12452 rcu_read_unlock(); 12453 } 12454 #endif /* CONFIG_NUMA_BALANCING */ 12455 #endif /* CONFIG_SCHED_DEBUG */ 12456 12457 __init void init_sched_fair_class(void) 12458 { 12459 #ifdef CONFIG_SMP 12460 int i; 12461 12462 for_each_possible_cpu(i) { 12463 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12464 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12465 } 12466 12467 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12468 12469 #ifdef CONFIG_NO_HZ_COMMON 12470 nohz.next_balance = jiffies; 12471 nohz.next_blocked = jiffies; 12472 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12473 #endif 12474 #endif /* SMP */ 12475 12476 } 12477