xref: /linux/kernel/sched/fair.c (revision a594533df0f6ca391da003f43d53b336a2d23ffa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 
51 #include <asm/switch_to.h>
52 
53 #include <linux/sched/cond_resched.h>
54 
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58 
59 /*
60  * Targeted preemption latency for CPU-bound tasks:
61  *
62  * NOTE: this latency value is not the same as the concept of
63  * 'timeslice length' - timeslices in CFS are of variable length
64  * and have no persistent notion like in traditional, time-slice
65  * based scheduling concepts.
66  *
67  * (to see the precise effective timeslice length of your workload,
68  *  run vmstat and monitor the context-switches (cs) field)
69  *
70  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
71  */
72 unsigned int sysctl_sched_latency			= 6000000ULL;
73 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
74 
75 /*
76  * The initial- and re-scaling of tunables is configurable
77  *
78  * Options are:
79  *
80  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
81  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
82  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
83  *
84  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
85  */
86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
87 
88 /*
89  * Minimal preemption granularity for CPU-bound tasks:
90  *
91  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
92  */
93 unsigned int sysctl_sched_min_granularity			= 750000ULL;
94 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
95 
96 /*
97  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
98  * Applies only when SCHED_IDLE tasks compete with normal tasks.
99  *
100  * (default: 0.75 msec)
101  */
102 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
103 
104 /*
105  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
106  */
107 static unsigned int sched_nr_latency = 8;
108 
109 /*
110  * After fork, child runs first. If set to 0 (default) then
111  * parent will (try to) run first.
112  */
113 unsigned int sysctl_sched_child_runs_first __read_mostly;
114 
115 /*
116  * SCHED_OTHER wake-up granularity.
117  *
118  * This option delays the preemption effects of decoupled workloads
119  * and reduces their over-scheduling. Synchronous workloads will still
120  * have immediate wakeup/sleep latencies.
121  *
122  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
123  */
124 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
125 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
126 
127 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
128 
129 int sched_thermal_decay_shift;
130 static int __init setup_sched_thermal_decay_shift(char *str)
131 {
132 	int _shift = 0;
133 
134 	if (kstrtoint(str, 0, &_shift))
135 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
136 
137 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
138 	return 1;
139 }
140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
141 
142 #ifdef CONFIG_SMP
143 /*
144  * For asym packing, by default the lower numbered CPU has higher priority.
145  */
146 int __weak arch_asym_cpu_priority(int cpu)
147 {
148 	return -cpu;
149 }
150 
151 /*
152  * The margin used when comparing utilization with CPU capacity.
153  *
154  * (default: ~20%)
155  */
156 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
157 
158 /*
159  * The margin used when comparing CPU capacities.
160  * is 'cap1' noticeably greater than 'cap2'
161  *
162  * (default: ~5%)
163  */
164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
165 #endif
166 
167 #ifdef CONFIG_CFS_BANDWIDTH
168 /*
169  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
170  * each time a cfs_rq requests quota.
171  *
172  * Note: in the case that the slice exceeds the runtime remaining (either due
173  * to consumption or the quota being specified to be smaller than the slice)
174  * we will always only issue the remaining available time.
175  *
176  * (default: 5 msec, units: microseconds)
177  */
178 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
179 #endif
180 
181 #ifdef CONFIG_SYSCTL
182 static struct ctl_table sched_fair_sysctls[] = {
183 	{
184 		.procname       = "sched_child_runs_first",
185 		.data           = &sysctl_sched_child_runs_first,
186 		.maxlen         = sizeof(unsigned int),
187 		.mode           = 0644,
188 		.proc_handler   = proc_dointvec,
189 	},
190 #ifdef CONFIG_CFS_BANDWIDTH
191 	{
192 		.procname       = "sched_cfs_bandwidth_slice_us",
193 		.data           = &sysctl_sched_cfs_bandwidth_slice,
194 		.maxlen         = sizeof(unsigned int),
195 		.mode           = 0644,
196 		.proc_handler   = proc_dointvec_minmax,
197 		.extra1         = SYSCTL_ONE,
198 	},
199 #endif
200 	{}
201 };
202 
203 static int __init sched_fair_sysctl_init(void)
204 {
205 	register_sysctl_init("kernel", sched_fair_sysctls);
206 	return 0;
207 }
208 late_initcall(sched_fair_sysctl_init);
209 #endif
210 
211 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
212 {
213 	lw->weight += inc;
214 	lw->inv_weight = 0;
215 }
216 
217 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
218 {
219 	lw->weight -= dec;
220 	lw->inv_weight = 0;
221 }
222 
223 static inline void update_load_set(struct load_weight *lw, unsigned long w)
224 {
225 	lw->weight = w;
226 	lw->inv_weight = 0;
227 }
228 
229 /*
230  * Increase the granularity value when there are more CPUs,
231  * because with more CPUs the 'effective latency' as visible
232  * to users decreases. But the relationship is not linear,
233  * so pick a second-best guess by going with the log2 of the
234  * number of CPUs.
235  *
236  * This idea comes from the SD scheduler of Con Kolivas:
237  */
238 static unsigned int get_update_sysctl_factor(void)
239 {
240 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
241 	unsigned int factor;
242 
243 	switch (sysctl_sched_tunable_scaling) {
244 	case SCHED_TUNABLESCALING_NONE:
245 		factor = 1;
246 		break;
247 	case SCHED_TUNABLESCALING_LINEAR:
248 		factor = cpus;
249 		break;
250 	case SCHED_TUNABLESCALING_LOG:
251 	default:
252 		factor = 1 + ilog2(cpus);
253 		break;
254 	}
255 
256 	return factor;
257 }
258 
259 static void update_sysctl(void)
260 {
261 	unsigned int factor = get_update_sysctl_factor();
262 
263 #define SET_SYSCTL(name) \
264 	(sysctl_##name = (factor) * normalized_sysctl_##name)
265 	SET_SYSCTL(sched_min_granularity);
266 	SET_SYSCTL(sched_latency);
267 	SET_SYSCTL(sched_wakeup_granularity);
268 #undef SET_SYSCTL
269 }
270 
271 void __init sched_init_granularity(void)
272 {
273 	update_sysctl();
274 }
275 
276 #define WMULT_CONST	(~0U)
277 #define WMULT_SHIFT	32
278 
279 static void __update_inv_weight(struct load_weight *lw)
280 {
281 	unsigned long w;
282 
283 	if (likely(lw->inv_weight))
284 		return;
285 
286 	w = scale_load_down(lw->weight);
287 
288 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
289 		lw->inv_weight = 1;
290 	else if (unlikely(!w))
291 		lw->inv_weight = WMULT_CONST;
292 	else
293 		lw->inv_weight = WMULT_CONST / w;
294 }
295 
296 /*
297  * delta_exec * weight / lw.weight
298  *   OR
299  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
300  *
301  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
302  * we're guaranteed shift stays positive because inv_weight is guaranteed to
303  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
304  *
305  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
306  * weight/lw.weight <= 1, and therefore our shift will also be positive.
307  */
308 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
309 {
310 	u64 fact = scale_load_down(weight);
311 	u32 fact_hi = (u32)(fact >> 32);
312 	int shift = WMULT_SHIFT;
313 	int fs;
314 
315 	__update_inv_weight(lw);
316 
317 	if (unlikely(fact_hi)) {
318 		fs = fls(fact_hi);
319 		shift -= fs;
320 		fact >>= fs;
321 	}
322 
323 	fact = mul_u32_u32(fact, lw->inv_weight);
324 
325 	fact_hi = (u32)(fact >> 32);
326 	if (fact_hi) {
327 		fs = fls(fact_hi);
328 		shift -= fs;
329 		fact >>= fs;
330 	}
331 
332 	return mul_u64_u32_shr(delta_exec, fact, shift);
333 }
334 
335 
336 const struct sched_class fair_sched_class;
337 
338 /**************************************************************
339  * CFS operations on generic schedulable entities:
340  */
341 
342 #ifdef CONFIG_FAIR_GROUP_SCHED
343 
344 /* Walk up scheduling entities hierarchy */
345 #define for_each_sched_entity(se) \
346 		for (; se; se = se->parent)
347 
348 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
349 {
350 	struct rq *rq = rq_of(cfs_rq);
351 	int cpu = cpu_of(rq);
352 
353 	if (cfs_rq->on_list)
354 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
355 
356 	cfs_rq->on_list = 1;
357 
358 	/*
359 	 * Ensure we either appear before our parent (if already
360 	 * enqueued) or force our parent to appear after us when it is
361 	 * enqueued. The fact that we always enqueue bottom-up
362 	 * reduces this to two cases and a special case for the root
363 	 * cfs_rq. Furthermore, it also means that we will always reset
364 	 * tmp_alone_branch either when the branch is connected
365 	 * to a tree or when we reach the top of the tree
366 	 */
367 	if (cfs_rq->tg->parent &&
368 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
369 		/*
370 		 * If parent is already on the list, we add the child
371 		 * just before. Thanks to circular linked property of
372 		 * the list, this means to put the child at the tail
373 		 * of the list that starts by parent.
374 		 */
375 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
376 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
377 		/*
378 		 * The branch is now connected to its tree so we can
379 		 * reset tmp_alone_branch to the beginning of the
380 		 * list.
381 		 */
382 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
383 		return true;
384 	}
385 
386 	if (!cfs_rq->tg->parent) {
387 		/*
388 		 * cfs rq without parent should be put
389 		 * at the tail of the list.
390 		 */
391 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
392 			&rq->leaf_cfs_rq_list);
393 		/*
394 		 * We have reach the top of a tree so we can reset
395 		 * tmp_alone_branch to the beginning of the list.
396 		 */
397 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
398 		return true;
399 	}
400 
401 	/*
402 	 * The parent has not already been added so we want to
403 	 * make sure that it will be put after us.
404 	 * tmp_alone_branch points to the begin of the branch
405 	 * where we will add parent.
406 	 */
407 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
408 	/*
409 	 * update tmp_alone_branch to points to the new begin
410 	 * of the branch
411 	 */
412 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
413 	return false;
414 }
415 
416 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 	if (cfs_rq->on_list) {
419 		struct rq *rq = rq_of(cfs_rq);
420 
421 		/*
422 		 * With cfs_rq being unthrottled/throttled during an enqueue,
423 		 * it can happen the tmp_alone_branch points the a leaf that
424 		 * we finally want to del. In this case, tmp_alone_branch moves
425 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
426 		 * at the end of the enqueue.
427 		 */
428 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
429 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
430 
431 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
432 		cfs_rq->on_list = 0;
433 	}
434 }
435 
436 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
437 {
438 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
439 }
440 
441 /* Iterate thr' all leaf cfs_rq's on a runqueue */
442 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
443 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
444 				 leaf_cfs_rq_list)
445 
446 /* Do the two (enqueued) entities belong to the same group ? */
447 static inline struct cfs_rq *
448 is_same_group(struct sched_entity *se, struct sched_entity *pse)
449 {
450 	if (se->cfs_rq == pse->cfs_rq)
451 		return se->cfs_rq;
452 
453 	return NULL;
454 }
455 
456 static inline struct sched_entity *parent_entity(struct sched_entity *se)
457 {
458 	return se->parent;
459 }
460 
461 static void
462 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
463 {
464 	int se_depth, pse_depth;
465 
466 	/*
467 	 * preemption test can be made between sibling entities who are in the
468 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
469 	 * both tasks until we find their ancestors who are siblings of common
470 	 * parent.
471 	 */
472 
473 	/* First walk up until both entities are at same depth */
474 	se_depth = (*se)->depth;
475 	pse_depth = (*pse)->depth;
476 
477 	while (se_depth > pse_depth) {
478 		se_depth--;
479 		*se = parent_entity(*se);
480 	}
481 
482 	while (pse_depth > se_depth) {
483 		pse_depth--;
484 		*pse = parent_entity(*pse);
485 	}
486 
487 	while (!is_same_group(*se, *pse)) {
488 		*se = parent_entity(*se);
489 		*pse = parent_entity(*pse);
490 	}
491 }
492 
493 static int tg_is_idle(struct task_group *tg)
494 {
495 	return tg->idle > 0;
496 }
497 
498 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
499 {
500 	return cfs_rq->idle > 0;
501 }
502 
503 static int se_is_idle(struct sched_entity *se)
504 {
505 	if (entity_is_task(se))
506 		return task_has_idle_policy(task_of(se));
507 	return cfs_rq_is_idle(group_cfs_rq(se));
508 }
509 
510 #else	/* !CONFIG_FAIR_GROUP_SCHED */
511 
512 #define for_each_sched_entity(se) \
513 		for (; se; se = NULL)
514 
515 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 	return true;
518 }
519 
520 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
521 {
522 }
523 
524 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
525 {
526 }
527 
528 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
529 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
530 
531 static inline struct sched_entity *parent_entity(struct sched_entity *se)
532 {
533 	return NULL;
534 }
535 
536 static inline void
537 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
538 {
539 }
540 
541 static inline int tg_is_idle(struct task_group *tg)
542 {
543 	return 0;
544 }
545 
546 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
547 {
548 	return 0;
549 }
550 
551 static int se_is_idle(struct sched_entity *se)
552 {
553 	return 0;
554 }
555 
556 #endif	/* CONFIG_FAIR_GROUP_SCHED */
557 
558 static __always_inline
559 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
560 
561 /**************************************************************
562  * Scheduling class tree data structure manipulation methods:
563  */
564 
565 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
566 {
567 	s64 delta = (s64)(vruntime - max_vruntime);
568 	if (delta > 0)
569 		max_vruntime = vruntime;
570 
571 	return max_vruntime;
572 }
573 
574 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
575 {
576 	s64 delta = (s64)(vruntime - min_vruntime);
577 	if (delta < 0)
578 		min_vruntime = vruntime;
579 
580 	return min_vruntime;
581 }
582 
583 static inline bool entity_before(struct sched_entity *a,
584 				struct sched_entity *b)
585 {
586 	return (s64)(a->vruntime - b->vruntime) < 0;
587 }
588 
589 #define __node_2_se(node) \
590 	rb_entry((node), struct sched_entity, run_node)
591 
592 static void update_min_vruntime(struct cfs_rq *cfs_rq)
593 {
594 	struct sched_entity *curr = cfs_rq->curr;
595 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
596 
597 	u64 vruntime = cfs_rq->min_vruntime;
598 
599 	if (curr) {
600 		if (curr->on_rq)
601 			vruntime = curr->vruntime;
602 		else
603 			curr = NULL;
604 	}
605 
606 	if (leftmost) { /* non-empty tree */
607 		struct sched_entity *se = __node_2_se(leftmost);
608 
609 		if (!curr)
610 			vruntime = se->vruntime;
611 		else
612 			vruntime = min_vruntime(vruntime, se->vruntime);
613 	}
614 
615 	/* ensure we never gain time by being placed backwards. */
616 	u64_u32_store(cfs_rq->min_vruntime,
617 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
618 }
619 
620 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
621 {
622 	return entity_before(__node_2_se(a), __node_2_se(b));
623 }
624 
625 /*
626  * Enqueue an entity into the rb-tree:
627  */
628 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
631 }
632 
633 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
636 }
637 
638 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
639 {
640 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
641 
642 	if (!left)
643 		return NULL;
644 
645 	return __node_2_se(left);
646 }
647 
648 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
649 {
650 	struct rb_node *next = rb_next(&se->run_node);
651 
652 	if (!next)
653 		return NULL;
654 
655 	return __node_2_se(next);
656 }
657 
658 #ifdef CONFIG_SCHED_DEBUG
659 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
660 {
661 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
662 
663 	if (!last)
664 		return NULL;
665 
666 	return __node_2_se(last);
667 }
668 
669 /**************************************************************
670  * Scheduling class statistics methods:
671  */
672 
673 int sched_update_scaling(void)
674 {
675 	unsigned int factor = get_update_sysctl_factor();
676 
677 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
678 					sysctl_sched_min_granularity);
679 
680 #define WRT_SYSCTL(name) \
681 	(normalized_sysctl_##name = sysctl_##name / (factor))
682 	WRT_SYSCTL(sched_min_granularity);
683 	WRT_SYSCTL(sched_latency);
684 	WRT_SYSCTL(sched_wakeup_granularity);
685 #undef WRT_SYSCTL
686 
687 	return 0;
688 }
689 #endif
690 
691 /*
692  * delta /= w
693  */
694 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
695 {
696 	if (unlikely(se->load.weight != NICE_0_LOAD))
697 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
698 
699 	return delta;
700 }
701 
702 /*
703  * The idea is to set a period in which each task runs once.
704  *
705  * When there are too many tasks (sched_nr_latency) we have to stretch
706  * this period because otherwise the slices get too small.
707  *
708  * p = (nr <= nl) ? l : l*nr/nl
709  */
710 static u64 __sched_period(unsigned long nr_running)
711 {
712 	if (unlikely(nr_running > sched_nr_latency))
713 		return nr_running * sysctl_sched_min_granularity;
714 	else
715 		return sysctl_sched_latency;
716 }
717 
718 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
719 
720 /*
721  * We calculate the wall-time slice from the period by taking a part
722  * proportional to the weight.
723  *
724  * s = p*P[w/rw]
725  */
726 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 	unsigned int nr_running = cfs_rq->nr_running;
729 	struct sched_entity *init_se = se;
730 	unsigned int min_gran;
731 	u64 slice;
732 
733 	if (sched_feat(ALT_PERIOD))
734 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
735 
736 	slice = __sched_period(nr_running + !se->on_rq);
737 
738 	for_each_sched_entity(se) {
739 		struct load_weight *load;
740 		struct load_weight lw;
741 		struct cfs_rq *qcfs_rq;
742 
743 		qcfs_rq = cfs_rq_of(se);
744 		load = &qcfs_rq->load;
745 
746 		if (unlikely(!se->on_rq)) {
747 			lw = qcfs_rq->load;
748 
749 			update_load_add(&lw, se->load.weight);
750 			load = &lw;
751 		}
752 		slice = __calc_delta(slice, se->load.weight, load);
753 	}
754 
755 	if (sched_feat(BASE_SLICE)) {
756 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
757 			min_gran = sysctl_sched_idle_min_granularity;
758 		else
759 			min_gran = sysctl_sched_min_granularity;
760 
761 		slice = max_t(u64, slice, min_gran);
762 	}
763 
764 	return slice;
765 }
766 
767 /*
768  * We calculate the vruntime slice of a to-be-inserted task.
769  *
770  * vs = s/w
771  */
772 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
775 }
776 
777 #include "pelt.h"
778 #ifdef CONFIG_SMP
779 
780 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
781 static unsigned long task_h_load(struct task_struct *p);
782 static unsigned long capacity_of(int cpu);
783 
784 /* Give new sched_entity start runnable values to heavy its load in infant time */
785 void init_entity_runnable_average(struct sched_entity *se)
786 {
787 	struct sched_avg *sa = &se->avg;
788 
789 	memset(sa, 0, sizeof(*sa));
790 
791 	/*
792 	 * Tasks are initialized with full load to be seen as heavy tasks until
793 	 * they get a chance to stabilize to their real load level.
794 	 * Group entities are initialized with zero load to reflect the fact that
795 	 * nothing has been attached to the task group yet.
796 	 */
797 	if (entity_is_task(se))
798 		sa->load_avg = scale_load_down(se->load.weight);
799 
800 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
801 }
802 
803 /*
804  * With new tasks being created, their initial util_avgs are extrapolated
805  * based on the cfs_rq's current util_avg:
806  *
807  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
808  *
809  * However, in many cases, the above util_avg does not give a desired
810  * value. Moreover, the sum of the util_avgs may be divergent, such
811  * as when the series is a harmonic series.
812  *
813  * To solve this problem, we also cap the util_avg of successive tasks to
814  * only 1/2 of the left utilization budget:
815  *
816  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
817  *
818  * where n denotes the nth task and cpu_scale the CPU capacity.
819  *
820  * For example, for a CPU with 1024 of capacity, a simplest series from
821  * the beginning would be like:
822  *
823  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
824  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
825  *
826  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
827  * if util_avg > util_avg_cap.
828  */
829 void post_init_entity_util_avg(struct task_struct *p)
830 {
831 	struct sched_entity *se = &p->se;
832 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
833 	struct sched_avg *sa = &se->avg;
834 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
835 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
836 
837 	if (p->sched_class != &fair_sched_class) {
838 		/*
839 		 * For !fair tasks do:
840 		 *
841 		update_cfs_rq_load_avg(now, cfs_rq);
842 		attach_entity_load_avg(cfs_rq, se);
843 		switched_from_fair(rq, p);
844 		 *
845 		 * such that the next switched_to_fair() has the
846 		 * expected state.
847 		 */
848 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
849 		return;
850 	}
851 
852 	if (cap > 0) {
853 		if (cfs_rq->avg.util_avg != 0) {
854 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
855 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
856 
857 			if (sa->util_avg > cap)
858 				sa->util_avg = cap;
859 		} else {
860 			sa->util_avg = cap;
861 		}
862 	}
863 
864 	sa->runnable_avg = sa->util_avg;
865 }
866 
867 #else /* !CONFIG_SMP */
868 void init_entity_runnable_average(struct sched_entity *se)
869 {
870 }
871 void post_init_entity_util_avg(struct task_struct *p)
872 {
873 }
874 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
875 {
876 }
877 #endif /* CONFIG_SMP */
878 
879 /*
880  * Update the current task's runtime statistics.
881  */
882 static void update_curr(struct cfs_rq *cfs_rq)
883 {
884 	struct sched_entity *curr = cfs_rq->curr;
885 	u64 now = rq_clock_task(rq_of(cfs_rq));
886 	u64 delta_exec;
887 
888 	if (unlikely(!curr))
889 		return;
890 
891 	delta_exec = now - curr->exec_start;
892 	if (unlikely((s64)delta_exec <= 0))
893 		return;
894 
895 	curr->exec_start = now;
896 
897 	if (schedstat_enabled()) {
898 		struct sched_statistics *stats;
899 
900 		stats = __schedstats_from_se(curr);
901 		__schedstat_set(stats->exec_max,
902 				max(delta_exec, stats->exec_max));
903 	}
904 
905 	curr->sum_exec_runtime += delta_exec;
906 	schedstat_add(cfs_rq->exec_clock, delta_exec);
907 
908 	curr->vruntime += calc_delta_fair(delta_exec, curr);
909 	update_min_vruntime(cfs_rq);
910 
911 	if (entity_is_task(curr)) {
912 		struct task_struct *curtask = task_of(curr);
913 
914 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
915 		cgroup_account_cputime(curtask, delta_exec);
916 		account_group_exec_runtime(curtask, delta_exec);
917 	}
918 
919 	account_cfs_rq_runtime(cfs_rq, delta_exec);
920 }
921 
922 static void update_curr_fair(struct rq *rq)
923 {
924 	update_curr(cfs_rq_of(&rq->curr->se));
925 }
926 
927 static inline void
928 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
929 {
930 	struct sched_statistics *stats;
931 	struct task_struct *p = NULL;
932 
933 	if (!schedstat_enabled())
934 		return;
935 
936 	stats = __schedstats_from_se(se);
937 
938 	if (entity_is_task(se))
939 		p = task_of(se);
940 
941 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
942 }
943 
944 static inline void
945 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
946 {
947 	struct sched_statistics *stats;
948 	struct task_struct *p = NULL;
949 
950 	if (!schedstat_enabled())
951 		return;
952 
953 	stats = __schedstats_from_se(se);
954 
955 	/*
956 	 * When the sched_schedstat changes from 0 to 1, some sched se
957 	 * maybe already in the runqueue, the se->statistics.wait_start
958 	 * will be 0.So it will let the delta wrong. We need to avoid this
959 	 * scenario.
960 	 */
961 	if (unlikely(!schedstat_val(stats->wait_start)))
962 		return;
963 
964 	if (entity_is_task(se))
965 		p = task_of(se);
966 
967 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
968 }
969 
970 static inline void
971 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
972 {
973 	struct sched_statistics *stats;
974 	struct task_struct *tsk = NULL;
975 
976 	if (!schedstat_enabled())
977 		return;
978 
979 	stats = __schedstats_from_se(se);
980 
981 	if (entity_is_task(se))
982 		tsk = task_of(se);
983 
984 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
985 }
986 
987 /*
988  * Task is being enqueued - update stats:
989  */
990 static inline void
991 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
992 {
993 	if (!schedstat_enabled())
994 		return;
995 
996 	/*
997 	 * Are we enqueueing a waiting task? (for current tasks
998 	 * a dequeue/enqueue event is a NOP)
999 	 */
1000 	if (se != cfs_rq->curr)
1001 		update_stats_wait_start_fair(cfs_rq, se);
1002 
1003 	if (flags & ENQUEUE_WAKEUP)
1004 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1005 }
1006 
1007 static inline void
1008 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1009 {
1010 
1011 	if (!schedstat_enabled())
1012 		return;
1013 
1014 	/*
1015 	 * Mark the end of the wait period if dequeueing a
1016 	 * waiting task:
1017 	 */
1018 	if (se != cfs_rq->curr)
1019 		update_stats_wait_end_fair(cfs_rq, se);
1020 
1021 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1022 		struct task_struct *tsk = task_of(se);
1023 		unsigned int state;
1024 
1025 		/* XXX racy against TTWU */
1026 		state = READ_ONCE(tsk->__state);
1027 		if (state & TASK_INTERRUPTIBLE)
1028 			__schedstat_set(tsk->stats.sleep_start,
1029 				      rq_clock(rq_of(cfs_rq)));
1030 		if (state & TASK_UNINTERRUPTIBLE)
1031 			__schedstat_set(tsk->stats.block_start,
1032 				      rq_clock(rq_of(cfs_rq)));
1033 	}
1034 }
1035 
1036 /*
1037  * We are picking a new current task - update its stats:
1038  */
1039 static inline void
1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1041 {
1042 	/*
1043 	 * We are starting a new run period:
1044 	 */
1045 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1046 }
1047 
1048 /**************************************************
1049  * Scheduling class queueing methods:
1050  */
1051 
1052 #ifdef CONFIG_NUMA
1053 #define NUMA_IMBALANCE_MIN 2
1054 
1055 static inline long
1056 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1057 {
1058 	/*
1059 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1060 	 * threshold. Above this threshold, individual tasks may be contending
1061 	 * for both memory bandwidth and any shared HT resources.  This is an
1062 	 * approximation as the number of running tasks may not be related to
1063 	 * the number of busy CPUs due to sched_setaffinity.
1064 	 */
1065 	if (dst_running > imb_numa_nr)
1066 		return imbalance;
1067 
1068 	/*
1069 	 * Allow a small imbalance based on a simple pair of communicating
1070 	 * tasks that remain local when the destination is lightly loaded.
1071 	 */
1072 	if (imbalance <= NUMA_IMBALANCE_MIN)
1073 		return 0;
1074 
1075 	return imbalance;
1076 }
1077 #endif /* CONFIG_NUMA */
1078 
1079 #ifdef CONFIG_NUMA_BALANCING
1080 /*
1081  * Approximate time to scan a full NUMA task in ms. The task scan period is
1082  * calculated based on the tasks virtual memory size and
1083  * numa_balancing_scan_size.
1084  */
1085 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1086 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1087 
1088 /* Portion of address space to scan in MB */
1089 unsigned int sysctl_numa_balancing_scan_size = 256;
1090 
1091 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1092 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1093 
1094 /* The page with hint page fault latency < threshold in ms is considered hot */
1095 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1096 
1097 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
1098 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
1099 
1100 struct numa_group {
1101 	refcount_t refcount;
1102 
1103 	spinlock_t lock; /* nr_tasks, tasks */
1104 	int nr_tasks;
1105 	pid_t gid;
1106 	int active_nodes;
1107 
1108 	struct rcu_head rcu;
1109 	unsigned long total_faults;
1110 	unsigned long max_faults_cpu;
1111 	/*
1112 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1113 	 *
1114 	 * Faults_cpu is used to decide whether memory should move
1115 	 * towards the CPU. As a consequence, these stats are weighted
1116 	 * more by CPU use than by memory faults.
1117 	 */
1118 	unsigned long faults[];
1119 };
1120 
1121 /*
1122  * For functions that can be called in multiple contexts that permit reading
1123  * ->numa_group (see struct task_struct for locking rules).
1124  */
1125 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1126 {
1127 	return rcu_dereference_check(p->numa_group, p == current ||
1128 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1129 }
1130 
1131 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1132 {
1133 	return rcu_dereference_protected(p->numa_group, p == current);
1134 }
1135 
1136 static inline unsigned long group_faults_priv(struct numa_group *ng);
1137 static inline unsigned long group_faults_shared(struct numa_group *ng);
1138 
1139 static unsigned int task_nr_scan_windows(struct task_struct *p)
1140 {
1141 	unsigned long rss = 0;
1142 	unsigned long nr_scan_pages;
1143 
1144 	/*
1145 	 * Calculations based on RSS as non-present and empty pages are skipped
1146 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1147 	 * on resident pages
1148 	 */
1149 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1150 	rss = get_mm_rss(p->mm);
1151 	if (!rss)
1152 		rss = nr_scan_pages;
1153 
1154 	rss = round_up(rss, nr_scan_pages);
1155 	return rss / nr_scan_pages;
1156 }
1157 
1158 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1159 #define MAX_SCAN_WINDOW 2560
1160 
1161 static unsigned int task_scan_min(struct task_struct *p)
1162 {
1163 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1164 	unsigned int scan, floor;
1165 	unsigned int windows = 1;
1166 
1167 	if (scan_size < MAX_SCAN_WINDOW)
1168 		windows = MAX_SCAN_WINDOW / scan_size;
1169 	floor = 1000 / windows;
1170 
1171 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1172 	return max_t(unsigned int, floor, scan);
1173 }
1174 
1175 static unsigned int task_scan_start(struct task_struct *p)
1176 {
1177 	unsigned long smin = task_scan_min(p);
1178 	unsigned long period = smin;
1179 	struct numa_group *ng;
1180 
1181 	/* Scale the maximum scan period with the amount of shared memory. */
1182 	rcu_read_lock();
1183 	ng = rcu_dereference(p->numa_group);
1184 	if (ng) {
1185 		unsigned long shared = group_faults_shared(ng);
1186 		unsigned long private = group_faults_priv(ng);
1187 
1188 		period *= refcount_read(&ng->refcount);
1189 		period *= shared + 1;
1190 		period /= private + shared + 1;
1191 	}
1192 	rcu_read_unlock();
1193 
1194 	return max(smin, period);
1195 }
1196 
1197 static unsigned int task_scan_max(struct task_struct *p)
1198 {
1199 	unsigned long smin = task_scan_min(p);
1200 	unsigned long smax;
1201 	struct numa_group *ng;
1202 
1203 	/* Watch for min being lower than max due to floor calculations */
1204 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1205 
1206 	/* Scale the maximum scan period with the amount of shared memory. */
1207 	ng = deref_curr_numa_group(p);
1208 	if (ng) {
1209 		unsigned long shared = group_faults_shared(ng);
1210 		unsigned long private = group_faults_priv(ng);
1211 		unsigned long period = smax;
1212 
1213 		period *= refcount_read(&ng->refcount);
1214 		period *= shared + 1;
1215 		period /= private + shared + 1;
1216 
1217 		smax = max(smax, period);
1218 	}
1219 
1220 	return max(smin, smax);
1221 }
1222 
1223 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1224 {
1225 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1226 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1227 }
1228 
1229 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1230 {
1231 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1232 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1233 }
1234 
1235 /* Shared or private faults. */
1236 #define NR_NUMA_HINT_FAULT_TYPES 2
1237 
1238 /* Memory and CPU locality */
1239 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1240 
1241 /* Averaged statistics, and temporary buffers. */
1242 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1243 
1244 pid_t task_numa_group_id(struct task_struct *p)
1245 {
1246 	struct numa_group *ng;
1247 	pid_t gid = 0;
1248 
1249 	rcu_read_lock();
1250 	ng = rcu_dereference(p->numa_group);
1251 	if (ng)
1252 		gid = ng->gid;
1253 	rcu_read_unlock();
1254 
1255 	return gid;
1256 }
1257 
1258 /*
1259  * The averaged statistics, shared & private, memory & CPU,
1260  * occupy the first half of the array. The second half of the
1261  * array is for current counters, which are averaged into the
1262  * first set by task_numa_placement.
1263  */
1264 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1265 {
1266 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1267 }
1268 
1269 static inline unsigned long task_faults(struct task_struct *p, int nid)
1270 {
1271 	if (!p->numa_faults)
1272 		return 0;
1273 
1274 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1275 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1276 }
1277 
1278 static inline unsigned long group_faults(struct task_struct *p, int nid)
1279 {
1280 	struct numa_group *ng = deref_task_numa_group(p);
1281 
1282 	if (!ng)
1283 		return 0;
1284 
1285 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1286 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1287 }
1288 
1289 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1290 {
1291 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1292 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1293 }
1294 
1295 static inline unsigned long group_faults_priv(struct numa_group *ng)
1296 {
1297 	unsigned long faults = 0;
1298 	int node;
1299 
1300 	for_each_online_node(node) {
1301 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1302 	}
1303 
1304 	return faults;
1305 }
1306 
1307 static inline unsigned long group_faults_shared(struct numa_group *ng)
1308 {
1309 	unsigned long faults = 0;
1310 	int node;
1311 
1312 	for_each_online_node(node) {
1313 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1314 	}
1315 
1316 	return faults;
1317 }
1318 
1319 /*
1320  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1321  * considered part of a numa group's pseudo-interleaving set. Migrations
1322  * between these nodes are slowed down, to allow things to settle down.
1323  */
1324 #define ACTIVE_NODE_FRACTION 3
1325 
1326 static bool numa_is_active_node(int nid, struct numa_group *ng)
1327 {
1328 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1329 }
1330 
1331 /* Handle placement on systems where not all nodes are directly connected. */
1332 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1333 					int lim_dist, bool task)
1334 {
1335 	unsigned long score = 0;
1336 	int node, max_dist;
1337 
1338 	/*
1339 	 * All nodes are directly connected, and the same distance
1340 	 * from each other. No need for fancy placement algorithms.
1341 	 */
1342 	if (sched_numa_topology_type == NUMA_DIRECT)
1343 		return 0;
1344 
1345 	/* sched_max_numa_distance may be changed in parallel. */
1346 	max_dist = READ_ONCE(sched_max_numa_distance);
1347 	/*
1348 	 * This code is called for each node, introducing N^2 complexity,
1349 	 * which should be ok given the number of nodes rarely exceeds 8.
1350 	 */
1351 	for_each_online_node(node) {
1352 		unsigned long faults;
1353 		int dist = node_distance(nid, node);
1354 
1355 		/*
1356 		 * The furthest away nodes in the system are not interesting
1357 		 * for placement; nid was already counted.
1358 		 */
1359 		if (dist >= max_dist || node == nid)
1360 			continue;
1361 
1362 		/*
1363 		 * On systems with a backplane NUMA topology, compare groups
1364 		 * of nodes, and move tasks towards the group with the most
1365 		 * memory accesses. When comparing two nodes at distance
1366 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1367 		 * of each group. Skip other nodes.
1368 		 */
1369 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1370 			continue;
1371 
1372 		/* Add up the faults from nearby nodes. */
1373 		if (task)
1374 			faults = task_faults(p, node);
1375 		else
1376 			faults = group_faults(p, node);
1377 
1378 		/*
1379 		 * On systems with a glueless mesh NUMA topology, there are
1380 		 * no fixed "groups of nodes". Instead, nodes that are not
1381 		 * directly connected bounce traffic through intermediate
1382 		 * nodes; a numa_group can occupy any set of nodes.
1383 		 * The further away a node is, the less the faults count.
1384 		 * This seems to result in good task placement.
1385 		 */
1386 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1387 			faults *= (max_dist - dist);
1388 			faults /= (max_dist - LOCAL_DISTANCE);
1389 		}
1390 
1391 		score += faults;
1392 	}
1393 
1394 	return score;
1395 }
1396 
1397 /*
1398  * These return the fraction of accesses done by a particular task, or
1399  * task group, on a particular numa node.  The group weight is given a
1400  * larger multiplier, in order to group tasks together that are almost
1401  * evenly spread out between numa nodes.
1402  */
1403 static inline unsigned long task_weight(struct task_struct *p, int nid,
1404 					int dist)
1405 {
1406 	unsigned long faults, total_faults;
1407 
1408 	if (!p->numa_faults)
1409 		return 0;
1410 
1411 	total_faults = p->total_numa_faults;
1412 
1413 	if (!total_faults)
1414 		return 0;
1415 
1416 	faults = task_faults(p, nid);
1417 	faults += score_nearby_nodes(p, nid, dist, true);
1418 
1419 	return 1000 * faults / total_faults;
1420 }
1421 
1422 static inline unsigned long group_weight(struct task_struct *p, int nid,
1423 					 int dist)
1424 {
1425 	struct numa_group *ng = deref_task_numa_group(p);
1426 	unsigned long faults, total_faults;
1427 
1428 	if (!ng)
1429 		return 0;
1430 
1431 	total_faults = ng->total_faults;
1432 
1433 	if (!total_faults)
1434 		return 0;
1435 
1436 	faults = group_faults(p, nid);
1437 	faults += score_nearby_nodes(p, nid, dist, false);
1438 
1439 	return 1000 * faults / total_faults;
1440 }
1441 
1442 /*
1443  * If memory tiering mode is enabled, cpupid of slow memory page is
1444  * used to record scan time instead of CPU and PID.  When tiering mode
1445  * is disabled at run time, the scan time (in cpupid) will be
1446  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1447  * access out of array bound.
1448  */
1449 static inline bool cpupid_valid(int cpupid)
1450 {
1451 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1452 }
1453 
1454 /*
1455  * For memory tiering mode, if there are enough free pages (more than
1456  * enough watermark defined here) in fast memory node, to take full
1457  * advantage of fast memory capacity, all recently accessed slow
1458  * memory pages will be migrated to fast memory node without
1459  * considering hot threshold.
1460  */
1461 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1462 {
1463 	int z;
1464 	unsigned long enough_wmark;
1465 
1466 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1467 			   pgdat->node_present_pages >> 4);
1468 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1469 		struct zone *zone = pgdat->node_zones + z;
1470 
1471 		if (!populated_zone(zone))
1472 			continue;
1473 
1474 		if (zone_watermark_ok(zone, 0,
1475 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1476 				      ZONE_MOVABLE, 0))
1477 			return true;
1478 	}
1479 	return false;
1480 }
1481 
1482 /*
1483  * For memory tiering mode, when page tables are scanned, the scan
1484  * time will be recorded in struct page in addition to make page
1485  * PROT_NONE for slow memory page.  So when the page is accessed, in
1486  * hint page fault handler, the hint page fault latency is calculated
1487  * via,
1488  *
1489  *	hint page fault latency = hint page fault time - scan time
1490  *
1491  * The smaller the hint page fault latency, the higher the possibility
1492  * for the page to be hot.
1493  */
1494 static int numa_hint_fault_latency(struct page *page)
1495 {
1496 	int last_time, time;
1497 
1498 	time = jiffies_to_msecs(jiffies);
1499 	last_time = xchg_page_access_time(page, time);
1500 
1501 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1502 }
1503 
1504 /*
1505  * For memory tiering mode, too high promotion/demotion throughput may
1506  * hurt application latency.  So we provide a mechanism to rate limit
1507  * the number of pages that are tried to be promoted.
1508  */
1509 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1510 				      unsigned long rate_limit, int nr)
1511 {
1512 	unsigned long nr_cand;
1513 	unsigned int now, start;
1514 
1515 	now = jiffies_to_msecs(jiffies);
1516 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1517 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1518 	start = pgdat->nbp_rl_start;
1519 	if (now - start > MSEC_PER_SEC &&
1520 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1521 		pgdat->nbp_rl_nr_cand = nr_cand;
1522 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1523 		return true;
1524 	return false;
1525 }
1526 
1527 #define NUMA_MIGRATION_ADJUST_STEPS	16
1528 
1529 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1530 					    unsigned long rate_limit,
1531 					    unsigned int ref_th)
1532 {
1533 	unsigned int now, start, th_period, unit_th, th;
1534 	unsigned long nr_cand, ref_cand, diff_cand;
1535 
1536 	now = jiffies_to_msecs(jiffies);
1537 	th_period = sysctl_numa_balancing_scan_period_max;
1538 	start = pgdat->nbp_th_start;
1539 	if (now - start > th_period &&
1540 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1541 		ref_cand = rate_limit *
1542 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1543 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1544 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1545 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1546 		th = pgdat->nbp_threshold ? : ref_th;
1547 		if (diff_cand > ref_cand * 11 / 10)
1548 			th = max(th - unit_th, unit_th);
1549 		else if (diff_cand < ref_cand * 9 / 10)
1550 			th = min(th + unit_th, ref_th * 2);
1551 		pgdat->nbp_th_nr_cand = nr_cand;
1552 		pgdat->nbp_threshold = th;
1553 	}
1554 }
1555 
1556 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1557 				int src_nid, int dst_cpu)
1558 {
1559 	struct numa_group *ng = deref_curr_numa_group(p);
1560 	int dst_nid = cpu_to_node(dst_cpu);
1561 	int last_cpupid, this_cpupid;
1562 
1563 	/*
1564 	 * The pages in slow memory node should be migrated according
1565 	 * to hot/cold instead of private/shared.
1566 	 */
1567 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1568 	    !node_is_toptier(src_nid)) {
1569 		struct pglist_data *pgdat;
1570 		unsigned long rate_limit;
1571 		unsigned int latency, th, def_th;
1572 
1573 		pgdat = NODE_DATA(dst_nid);
1574 		if (pgdat_free_space_enough(pgdat)) {
1575 			/* workload changed, reset hot threshold */
1576 			pgdat->nbp_threshold = 0;
1577 			return true;
1578 		}
1579 
1580 		def_th = sysctl_numa_balancing_hot_threshold;
1581 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1582 			(20 - PAGE_SHIFT);
1583 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1584 
1585 		th = pgdat->nbp_threshold ? : def_th;
1586 		latency = numa_hint_fault_latency(page);
1587 		if (latency >= th)
1588 			return false;
1589 
1590 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1591 						  thp_nr_pages(page));
1592 	}
1593 
1594 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1595 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1596 
1597 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1598 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1599 		return false;
1600 
1601 	/*
1602 	 * Allow first faults or private faults to migrate immediately early in
1603 	 * the lifetime of a task. The magic number 4 is based on waiting for
1604 	 * two full passes of the "multi-stage node selection" test that is
1605 	 * executed below.
1606 	 */
1607 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1608 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1609 		return true;
1610 
1611 	/*
1612 	 * Multi-stage node selection is used in conjunction with a periodic
1613 	 * migration fault to build a temporal task<->page relation. By using
1614 	 * a two-stage filter we remove short/unlikely relations.
1615 	 *
1616 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1617 	 * a task's usage of a particular page (n_p) per total usage of this
1618 	 * page (n_t) (in a given time-span) to a probability.
1619 	 *
1620 	 * Our periodic faults will sample this probability and getting the
1621 	 * same result twice in a row, given these samples are fully
1622 	 * independent, is then given by P(n)^2, provided our sample period
1623 	 * is sufficiently short compared to the usage pattern.
1624 	 *
1625 	 * This quadric squishes small probabilities, making it less likely we
1626 	 * act on an unlikely task<->page relation.
1627 	 */
1628 	if (!cpupid_pid_unset(last_cpupid) &&
1629 				cpupid_to_nid(last_cpupid) != dst_nid)
1630 		return false;
1631 
1632 	/* Always allow migrate on private faults */
1633 	if (cpupid_match_pid(p, last_cpupid))
1634 		return true;
1635 
1636 	/* A shared fault, but p->numa_group has not been set up yet. */
1637 	if (!ng)
1638 		return true;
1639 
1640 	/*
1641 	 * Destination node is much more heavily used than the source
1642 	 * node? Allow migration.
1643 	 */
1644 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1645 					ACTIVE_NODE_FRACTION)
1646 		return true;
1647 
1648 	/*
1649 	 * Distribute memory according to CPU & memory use on each node,
1650 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1651 	 *
1652 	 * faults_cpu(dst)   3   faults_cpu(src)
1653 	 * --------------- * - > ---------------
1654 	 * faults_mem(dst)   4   faults_mem(src)
1655 	 */
1656 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1657 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1658 }
1659 
1660 /*
1661  * 'numa_type' describes the node at the moment of load balancing.
1662  */
1663 enum numa_type {
1664 	/* The node has spare capacity that can be used to run more tasks.  */
1665 	node_has_spare = 0,
1666 	/*
1667 	 * The node is fully used and the tasks don't compete for more CPU
1668 	 * cycles. Nevertheless, some tasks might wait before running.
1669 	 */
1670 	node_fully_busy,
1671 	/*
1672 	 * The node is overloaded and can't provide expected CPU cycles to all
1673 	 * tasks.
1674 	 */
1675 	node_overloaded
1676 };
1677 
1678 /* Cached statistics for all CPUs within a node */
1679 struct numa_stats {
1680 	unsigned long load;
1681 	unsigned long runnable;
1682 	unsigned long util;
1683 	/* Total compute capacity of CPUs on a node */
1684 	unsigned long compute_capacity;
1685 	unsigned int nr_running;
1686 	unsigned int weight;
1687 	enum numa_type node_type;
1688 	int idle_cpu;
1689 };
1690 
1691 static inline bool is_core_idle(int cpu)
1692 {
1693 #ifdef CONFIG_SCHED_SMT
1694 	int sibling;
1695 
1696 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1697 		if (cpu == sibling)
1698 			continue;
1699 
1700 		if (!idle_cpu(sibling))
1701 			return false;
1702 	}
1703 #endif
1704 
1705 	return true;
1706 }
1707 
1708 struct task_numa_env {
1709 	struct task_struct *p;
1710 
1711 	int src_cpu, src_nid;
1712 	int dst_cpu, dst_nid;
1713 	int imb_numa_nr;
1714 
1715 	struct numa_stats src_stats, dst_stats;
1716 
1717 	int imbalance_pct;
1718 	int dist;
1719 
1720 	struct task_struct *best_task;
1721 	long best_imp;
1722 	int best_cpu;
1723 };
1724 
1725 static unsigned long cpu_load(struct rq *rq);
1726 static unsigned long cpu_runnable(struct rq *rq);
1727 
1728 static inline enum
1729 numa_type numa_classify(unsigned int imbalance_pct,
1730 			 struct numa_stats *ns)
1731 {
1732 	if ((ns->nr_running > ns->weight) &&
1733 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1734 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1735 		return node_overloaded;
1736 
1737 	if ((ns->nr_running < ns->weight) ||
1738 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1739 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1740 		return node_has_spare;
1741 
1742 	return node_fully_busy;
1743 }
1744 
1745 #ifdef CONFIG_SCHED_SMT
1746 /* Forward declarations of select_idle_sibling helpers */
1747 static inline bool test_idle_cores(int cpu);
1748 static inline int numa_idle_core(int idle_core, int cpu)
1749 {
1750 	if (!static_branch_likely(&sched_smt_present) ||
1751 	    idle_core >= 0 || !test_idle_cores(cpu))
1752 		return idle_core;
1753 
1754 	/*
1755 	 * Prefer cores instead of packing HT siblings
1756 	 * and triggering future load balancing.
1757 	 */
1758 	if (is_core_idle(cpu))
1759 		idle_core = cpu;
1760 
1761 	return idle_core;
1762 }
1763 #else
1764 static inline int numa_idle_core(int idle_core, int cpu)
1765 {
1766 	return idle_core;
1767 }
1768 #endif
1769 
1770 /*
1771  * Gather all necessary information to make NUMA balancing placement
1772  * decisions that are compatible with standard load balancer. This
1773  * borrows code and logic from update_sg_lb_stats but sharing a
1774  * common implementation is impractical.
1775  */
1776 static void update_numa_stats(struct task_numa_env *env,
1777 			      struct numa_stats *ns, int nid,
1778 			      bool find_idle)
1779 {
1780 	int cpu, idle_core = -1;
1781 
1782 	memset(ns, 0, sizeof(*ns));
1783 	ns->idle_cpu = -1;
1784 
1785 	rcu_read_lock();
1786 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1787 		struct rq *rq = cpu_rq(cpu);
1788 
1789 		ns->load += cpu_load(rq);
1790 		ns->runnable += cpu_runnable(rq);
1791 		ns->util += cpu_util_cfs(cpu);
1792 		ns->nr_running += rq->cfs.h_nr_running;
1793 		ns->compute_capacity += capacity_of(cpu);
1794 
1795 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1796 			if (READ_ONCE(rq->numa_migrate_on) ||
1797 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1798 				continue;
1799 
1800 			if (ns->idle_cpu == -1)
1801 				ns->idle_cpu = cpu;
1802 
1803 			idle_core = numa_idle_core(idle_core, cpu);
1804 		}
1805 	}
1806 	rcu_read_unlock();
1807 
1808 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1809 
1810 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1811 
1812 	if (idle_core >= 0)
1813 		ns->idle_cpu = idle_core;
1814 }
1815 
1816 static void task_numa_assign(struct task_numa_env *env,
1817 			     struct task_struct *p, long imp)
1818 {
1819 	struct rq *rq = cpu_rq(env->dst_cpu);
1820 
1821 	/* Check if run-queue part of active NUMA balance. */
1822 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1823 		int cpu;
1824 		int start = env->dst_cpu;
1825 
1826 		/* Find alternative idle CPU. */
1827 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1828 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1829 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1830 				continue;
1831 			}
1832 
1833 			env->dst_cpu = cpu;
1834 			rq = cpu_rq(env->dst_cpu);
1835 			if (!xchg(&rq->numa_migrate_on, 1))
1836 				goto assign;
1837 		}
1838 
1839 		/* Failed to find an alternative idle CPU */
1840 		return;
1841 	}
1842 
1843 assign:
1844 	/*
1845 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1846 	 * found a better CPU to move/swap.
1847 	 */
1848 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1849 		rq = cpu_rq(env->best_cpu);
1850 		WRITE_ONCE(rq->numa_migrate_on, 0);
1851 	}
1852 
1853 	if (env->best_task)
1854 		put_task_struct(env->best_task);
1855 	if (p)
1856 		get_task_struct(p);
1857 
1858 	env->best_task = p;
1859 	env->best_imp = imp;
1860 	env->best_cpu = env->dst_cpu;
1861 }
1862 
1863 static bool load_too_imbalanced(long src_load, long dst_load,
1864 				struct task_numa_env *env)
1865 {
1866 	long imb, old_imb;
1867 	long orig_src_load, orig_dst_load;
1868 	long src_capacity, dst_capacity;
1869 
1870 	/*
1871 	 * The load is corrected for the CPU capacity available on each node.
1872 	 *
1873 	 * src_load        dst_load
1874 	 * ------------ vs ---------
1875 	 * src_capacity    dst_capacity
1876 	 */
1877 	src_capacity = env->src_stats.compute_capacity;
1878 	dst_capacity = env->dst_stats.compute_capacity;
1879 
1880 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1881 
1882 	orig_src_load = env->src_stats.load;
1883 	orig_dst_load = env->dst_stats.load;
1884 
1885 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1886 
1887 	/* Would this change make things worse? */
1888 	return (imb > old_imb);
1889 }
1890 
1891 /*
1892  * Maximum NUMA importance can be 1998 (2*999);
1893  * SMALLIMP @ 30 would be close to 1998/64.
1894  * Used to deter task migration.
1895  */
1896 #define SMALLIMP	30
1897 
1898 /*
1899  * This checks if the overall compute and NUMA accesses of the system would
1900  * be improved if the source tasks was migrated to the target dst_cpu taking
1901  * into account that it might be best if task running on the dst_cpu should
1902  * be exchanged with the source task
1903  */
1904 static bool task_numa_compare(struct task_numa_env *env,
1905 			      long taskimp, long groupimp, bool maymove)
1906 {
1907 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1908 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1909 	long imp = p_ng ? groupimp : taskimp;
1910 	struct task_struct *cur;
1911 	long src_load, dst_load;
1912 	int dist = env->dist;
1913 	long moveimp = imp;
1914 	long load;
1915 	bool stopsearch = false;
1916 
1917 	if (READ_ONCE(dst_rq->numa_migrate_on))
1918 		return false;
1919 
1920 	rcu_read_lock();
1921 	cur = rcu_dereference(dst_rq->curr);
1922 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1923 		cur = NULL;
1924 
1925 	/*
1926 	 * Because we have preemption enabled we can get migrated around and
1927 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1928 	 */
1929 	if (cur == env->p) {
1930 		stopsearch = true;
1931 		goto unlock;
1932 	}
1933 
1934 	if (!cur) {
1935 		if (maymove && moveimp >= env->best_imp)
1936 			goto assign;
1937 		else
1938 			goto unlock;
1939 	}
1940 
1941 	/* Skip this swap candidate if cannot move to the source cpu. */
1942 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1943 		goto unlock;
1944 
1945 	/*
1946 	 * Skip this swap candidate if it is not moving to its preferred
1947 	 * node and the best task is.
1948 	 */
1949 	if (env->best_task &&
1950 	    env->best_task->numa_preferred_nid == env->src_nid &&
1951 	    cur->numa_preferred_nid != env->src_nid) {
1952 		goto unlock;
1953 	}
1954 
1955 	/*
1956 	 * "imp" is the fault differential for the source task between the
1957 	 * source and destination node. Calculate the total differential for
1958 	 * the source task and potential destination task. The more negative
1959 	 * the value is, the more remote accesses that would be expected to
1960 	 * be incurred if the tasks were swapped.
1961 	 *
1962 	 * If dst and source tasks are in the same NUMA group, or not
1963 	 * in any group then look only at task weights.
1964 	 */
1965 	cur_ng = rcu_dereference(cur->numa_group);
1966 	if (cur_ng == p_ng) {
1967 		/*
1968 		 * Do not swap within a group or between tasks that have
1969 		 * no group if there is spare capacity. Swapping does
1970 		 * not address the load imbalance and helps one task at
1971 		 * the cost of punishing another.
1972 		 */
1973 		if (env->dst_stats.node_type == node_has_spare)
1974 			goto unlock;
1975 
1976 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1977 		      task_weight(cur, env->dst_nid, dist);
1978 		/*
1979 		 * Add some hysteresis to prevent swapping the
1980 		 * tasks within a group over tiny differences.
1981 		 */
1982 		if (cur_ng)
1983 			imp -= imp / 16;
1984 	} else {
1985 		/*
1986 		 * Compare the group weights. If a task is all by itself
1987 		 * (not part of a group), use the task weight instead.
1988 		 */
1989 		if (cur_ng && p_ng)
1990 			imp += group_weight(cur, env->src_nid, dist) -
1991 			       group_weight(cur, env->dst_nid, dist);
1992 		else
1993 			imp += task_weight(cur, env->src_nid, dist) -
1994 			       task_weight(cur, env->dst_nid, dist);
1995 	}
1996 
1997 	/* Discourage picking a task already on its preferred node */
1998 	if (cur->numa_preferred_nid == env->dst_nid)
1999 		imp -= imp / 16;
2000 
2001 	/*
2002 	 * Encourage picking a task that moves to its preferred node.
2003 	 * This potentially makes imp larger than it's maximum of
2004 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2005 	 * case, it does not matter.
2006 	 */
2007 	if (cur->numa_preferred_nid == env->src_nid)
2008 		imp += imp / 8;
2009 
2010 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2011 		imp = moveimp;
2012 		cur = NULL;
2013 		goto assign;
2014 	}
2015 
2016 	/*
2017 	 * Prefer swapping with a task moving to its preferred node over a
2018 	 * task that is not.
2019 	 */
2020 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2021 	    env->best_task->numa_preferred_nid != env->src_nid) {
2022 		goto assign;
2023 	}
2024 
2025 	/*
2026 	 * If the NUMA importance is less than SMALLIMP,
2027 	 * task migration might only result in ping pong
2028 	 * of tasks and also hurt performance due to cache
2029 	 * misses.
2030 	 */
2031 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2032 		goto unlock;
2033 
2034 	/*
2035 	 * In the overloaded case, try and keep the load balanced.
2036 	 */
2037 	load = task_h_load(env->p) - task_h_load(cur);
2038 	if (!load)
2039 		goto assign;
2040 
2041 	dst_load = env->dst_stats.load + load;
2042 	src_load = env->src_stats.load - load;
2043 
2044 	if (load_too_imbalanced(src_load, dst_load, env))
2045 		goto unlock;
2046 
2047 assign:
2048 	/* Evaluate an idle CPU for a task numa move. */
2049 	if (!cur) {
2050 		int cpu = env->dst_stats.idle_cpu;
2051 
2052 		/* Nothing cached so current CPU went idle since the search. */
2053 		if (cpu < 0)
2054 			cpu = env->dst_cpu;
2055 
2056 		/*
2057 		 * If the CPU is no longer truly idle and the previous best CPU
2058 		 * is, keep using it.
2059 		 */
2060 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2061 		    idle_cpu(env->best_cpu)) {
2062 			cpu = env->best_cpu;
2063 		}
2064 
2065 		env->dst_cpu = cpu;
2066 	}
2067 
2068 	task_numa_assign(env, cur, imp);
2069 
2070 	/*
2071 	 * If a move to idle is allowed because there is capacity or load
2072 	 * balance improves then stop the search. While a better swap
2073 	 * candidate may exist, a search is not free.
2074 	 */
2075 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2076 		stopsearch = true;
2077 
2078 	/*
2079 	 * If a swap candidate must be identified and the current best task
2080 	 * moves its preferred node then stop the search.
2081 	 */
2082 	if (!maymove && env->best_task &&
2083 	    env->best_task->numa_preferred_nid == env->src_nid) {
2084 		stopsearch = true;
2085 	}
2086 unlock:
2087 	rcu_read_unlock();
2088 
2089 	return stopsearch;
2090 }
2091 
2092 static void task_numa_find_cpu(struct task_numa_env *env,
2093 				long taskimp, long groupimp)
2094 {
2095 	bool maymove = false;
2096 	int cpu;
2097 
2098 	/*
2099 	 * If dst node has spare capacity, then check if there is an
2100 	 * imbalance that would be overruled by the load balancer.
2101 	 */
2102 	if (env->dst_stats.node_type == node_has_spare) {
2103 		unsigned int imbalance;
2104 		int src_running, dst_running;
2105 
2106 		/*
2107 		 * Would movement cause an imbalance? Note that if src has
2108 		 * more running tasks that the imbalance is ignored as the
2109 		 * move improves the imbalance from the perspective of the
2110 		 * CPU load balancer.
2111 		 * */
2112 		src_running = env->src_stats.nr_running - 1;
2113 		dst_running = env->dst_stats.nr_running + 1;
2114 		imbalance = max(0, dst_running - src_running);
2115 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2116 						  env->imb_numa_nr);
2117 
2118 		/* Use idle CPU if there is no imbalance */
2119 		if (!imbalance) {
2120 			maymove = true;
2121 			if (env->dst_stats.idle_cpu >= 0) {
2122 				env->dst_cpu = env->dst_stats.idle_cpu;
2123 				task_numa_assign(env, NULL, 0);
2124 				return;
2125 			}
2126 		}
2127 	} else {
2128 		long src_load, dst_load, load;
2129 		/*
2130 		 * If the improvement from just moving env->p direction is better
2131 		 * than swapping tasks around, check if a move is possible.
2132 		 */
2133 		load = task_h_load(env->p);
2134 		dst_load = env->dst_stats.load + load;
2135 		src_load = env->src_stats.load - load;
2136 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2137 	}
2138 
2139 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2140 		/* Skip this CPU if the source task cannot migrate */
2141 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2142 			continue;
2143 
2144 		env->dst_cpu = cpu;
2145 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2146 			break;
2147 	}
2148 }
2149 
2150 static int task_numa_migrate(struct task_struct *p)
2151 {
2152 	struct task_numa_env env = {
2153 		.p = p,
2154 
2155 		.src_cpu = task_cpu(p),
2156 		.src_nid = task_node(p),
2157 
2158 		.imbalance_pct = 112,
2159 
2160 		.best_task = NULL,
2161 		.best_imp = 0,
2162 		.best_cpu = -1,
2163 	};
2164 	unsigned long taskweight, groupweight;
2165 	struct sched_domain *sd;
2166 	long taskimp, groupimp;
2167 	struct numa_group *ng;
2168 	struct rq *best_rq;
2169 	int nid, ret, dist;
2170 
2171 	/*
2172 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2173 	 * imbalance and would be the first to start moving tasks about.
2174 	 *
2175 	 * And we want to avoid any moving of tasks about, as that would create
2176 	 * random movement of tasks -- counter the numa conditions we're trying
2177 	 * to satisfy here.
2178 	 */
2179 	rcu_read_lock();
2180 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2181 	if (sd) {
2182 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2183 		env.imb_numa_nr = sd->imb_numa_nr;
2184 	}
2185 	rcu_read_unlock();
2186 
2187 	/*
2188 	 * Cpusets can break the scheduler domain tree into smaller
2189 	 * balance domains, some of which do not cross NUMA boundaries.
2190 	 * Tasks that are "trapped" in such domains cannot be migrated
2191 	 * elsewhere, so there is no point in (re)trying.
2192 	 */
2193 	if (unlikely(!sd)) {
2194 		sched_setnuma(p, task_node(p));
2195 		return -EINVAL;
2196 	}
2197 
2198 	env.dst_nid = p->numa_preferred_nid;
2199 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2200 	taskweight = task_weight(p, env.src_nid, dist);
2201 	groupweight = group_weight(p, env.src_nid, dist);
2202 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2203 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2204 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2205 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2206 
2207 	/* Try to find a spot on the preferred nid. */
2208 	task_numa_find_cpu(&env, taskimp, groupimp);
2209 
2210 	/*
2211 	 * Look at other nodes in these cases:
2212 	 * - there is no space available on the preferred_nid
2213 	 * - the task is part of a numa_group that is interleaved across
2214 	 *   multiple NUMA nodes; in order to better consolidate the group,
2215 	 *   we need to check other locations.
2216 	 */
2217 	ng = deref_curr_numa_group(p);
2218 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2219 		for_each_node_state(nid, N_CPU) {
2220 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2221 				continue;
2222 
2223 			dist = node_distance(env.src_nid, env.dst_nid);
2224 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2225 						dist != env.dist) {
2226 				taskweight = task_weight(p, env.src_nid, dist);
2227 				groupweight = group_weight(p, env.src_nid, dist);
2228 			}
2229 
2230 			/* Only consider nodes where both task and groups benefit */
2231 			taskimp = task_weight(p, nid, dist) - taskweight;
2232 			groupimp = group_weight(p, nid, dist) - groupweight;
2233 			if (taskimp < 0 && groupimp < 0)
2234 				continue;
2235 
2236 			env.dist = dist;
2237 			env.dst_nid = nid;
2238 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2239 			task_numa_find_cpu(&env, taskimp, groupimp);
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * If the task is part of a workload that spans multiple NUMA nodes,
2245 	 * and is migrating into one of the workload's active nodes, remember
2246 	 * this node as the task's preferred numa node, so the workload can
2247 	 * settle down.
2248 	 * A task that migrated to a second choice node will be better off
2249 	 * trying for a better one later. Do not set the preferred node here.
2250 	 */
2251 	if (ng) {
2252 		if (env.best_cpu == -1)
2253 			nid = env.src_nid;
2254 		else
2255 			nid = cpu_to_node(env.best_cpu);
2256 
2257 		if (nid != p->numa_preferred_nid)
2258 			sched_setnuma(p, nid);
2259 	}
2260 
2261 	/* No better CPU than the current one was found. */
2262 	if (env.best_cpu == -1) {
2263 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2264 		return -EAGAIN;
2265 	}
2266 
2267 	best_rq = cpu_rq(env.best_cpu);
2268 	if (env.best_task == NULL) {
2269 		ret = migrate_task_to(p, env.best_cpu);
2270 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2271 		if (ret != 0)
2272 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2273 		return ret;
2274 	}
2275 
2276 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2277 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2278 
2279 	if (ret != 0)
2280 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2281 	put_task_struct(env.best_task);
2282 	return ret;
2283 }
2284 
2285 /* Attempt to migrate a task to a CPU on the preferred node. */
2286 static void numa_migrate_preferred(struct task_struct *p)
2287 {
2288 	unsigned long interval = HZ;
2289 
2290 	/* This task has no NUMA fault statistics yet */
2291 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2292 		return;
2293 
2294 	/* Periodically retry migrating the task to the preferred node */
2295 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2296 	p->numa_migrate_retry = jiffies + interval;
2297 
2298 	/* Success if task is already running on preferred CPU */
2299 	if (task_node(p) == p->numa_preferred_nid)
2300 		return;
2301 
2302 	/* Otherwise, try migrate to a CPU on the preferred node */
2303 	task_numa_migrate(p);
2304 }
2305 
2306 /*
2307  * Find out how many nodes the workload is actively running on. Do this by
2308  * tracking the nodes from which NUMA hinting faults are triggered. This can
2309  * be different from the set of nodes where the workload's memory is currently
2310  * located.
2311  */
2312 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2313 {
2314 	unsigned long faults, max_faults = 0;
2315 	int nid, active_nodes = 0;
2316 
2317 	for_each_node_state(nid, N_CPU) {
2318 		faults = group_faults_cpu(numa_group, nid);
2319 		if (faults > max_faults)
2320 			max_faults = faults;
2321 	}
2322 
2323 	for_each_node_state(nid, N_CPU) {
2324 		faults = group_faults_cpu(numa_group, nid);
2325 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2326 			active_nodes++;
2327 	}
2328 
2329 	numa_group->max_faults_cpu = max_faults;
2330 	numa_group->active_nodes = active_nodes;
2331 }
2332 
2333 /*
2334  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2335  * increments. The more local the fault statistics are, the higher the scan
2336  * period will be for the next scan window. If local/(local+remote) ratio is
2337  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2338  * the scan period will decrease. Aim for 70% local accesses.
2339  */
2340 #define NUMA_PERIOD_SLOTS 10
2341 #define NUMA_PERIOD_THRESHOLD 7
2342 
2343 /*
2344  * Increase the scan period (slow down scanning) if the majority of
2345  * our memory is already on our local node, or if the majority of
2346  * the page accesses are shared with other processes.
2347  * Otherwise, decrease the scan period.
2348  */
2349 static void update_task_scan_period(struct task_struct *p,
2350 			unsigned long shared, unsigned long private)
2351 {
2352 	unsigned int period_slot;
2353 	int lr_ratio, ps_ratio;
2354 	int diff;
2355 
2356 	unsigned long remote = p->numa_faults_locality[0];
2357 	unsigned long local = p->numa_faults_locality[1];
2358 
2359 	/*
2360 	 * If there were no record hinting faults then either the task is
2361 	 * completely idle or all activity is in areas that are not of interest
2362 	 * to automatic numa balancing. Related to that, if there were failed
2363 	 * migration then it implies we are migrating too quickly or the local
2364 	 * node is overloaded. In either case, scan slower
2365 	 */
2366 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2367 		p->numa_scan_period = min(p->numa_scan_period_max,
2368 			p->numa_scan_period << 1);
2369 
2370 		p->mm->numa_next_scan = jiffies +
2371 			msecs_to_jiffies(p->numa_scan_period);
2372 
2373 		return;
2374 	}
2375 
2376 	/*
2377 	 * Prepare to scale scan period relative to the current period.
2378 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2379 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2380 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2381 	 */
2382 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2383 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2384 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2385 
2386 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2387 		/*
2388 		 * Most memory accesses are local. There is no need to
2389 		 * do fast NUMA scanning, since memory is already local.
2390 		 */
2391 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2392 		if (!slot)
2393 			slot = 1;
2394 		diff = slot * period_slot;
2395 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2396 		/*
2397 		 * Most memory accesses are shared with other tasks.
2398 		 * There is no point in continuing fast NUMA scanning,
2399 		 * since other tasks may just move the memory elsewhere.
2400 		 */
2401 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2402 		if (!slot)
2403 			slot = 1;
2404 		diff = slot * period_slot;
2405 	} else {
2406 		/*
2407 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2408 		 * yet they are not on the local NUMA node. Speed up
2409 		 * NUMA scanning to get the memory moved over.
2410 		 */
2411 		int ratio = max(lr_ratio, ps_ratio);
2412 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2413 	}
2414 
2415 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2416 			task_scan_min(p), task_scan_max(p));
2417 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2418 }
2419 
2420 /*
2421  * Get the fraction of time the task has been running since the last
2422  * NUMA placement cycle. The scheduler keeps similar statistics, but
2423  * decays those on a 32ms period, which is orders of magnitude off
2424  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2425  * stats only if the task is so new there are no NUMA statistics yet.
2426  */
2427 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2428 {
2429 	u64 runtime, delta, now;
2430 	/* Use the start of this time slice to avoid calculations. */
2431 	now = p->se.exec_start;
2432 	runtime = p->se.sum_exec_runtime;
2433 
2434 	if (p->last_task_numa_placement) {
2435 		delta = runtime - p->last_sum_exec_runtime;
2436 		*period = now - p->last_task_numa_placement;
2437 
2438 		/* Avoid time going backwards, prevent potential divide error: */
2439 		if (unlikely((s64)*period < 0))
2440 			*period = 0;
2441 	} else {
2442 		delta = p->se.avg.load_sum;
2443 		*period = LOAD_AVG_MAX;
2444 	}
2445 
2446 	p->last_sum_exec_runtime = runtime;
2447 	p->last_task_numa_placement = now;
2448 
2449 	return delta;
2450 }
2451 
2452 /*
2453  * Determine the preferred nid for a task in a numa_group. This needs to
2454  * be done in a way that produces consistent results with group_weight,
2455  * otherwise workloads might not converge.
2456  */
2457 static int preferred_group_nid(struct task_struct *p, int nid)
2458 {
2459 	nodemask_t nodes;
2460 	int dist;
2461 
2462 	/* Direct connections between all NUMA nodes. */
2463 	if (sched_numa_topology_type == NUMA_DIRECT)
2464 		return nid;
2465 
2466 	/*
2467 	 * On a system with glueless mesh NUMA topology, group_weight
2468 	 * scores nodes according to the number of NUMA hinting faults on
2469 	 * both the node itself, and on nearby nodes.
2470 	 */
2471 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2472 		unsigned long score, max_score = 0;
2473 		int node, max_node = nid;
2474 
2475 		dist = sched_max_numa_distance;
2476 
2477 		for_each_node_state(node, N_CPU) {
2478 			score = group_weight(p, node, dist);
2479 			if (score > max_score) {
2480 				max_score = score;
2481 				max_node = node;
2482 			}
2483 		}
2484 		return max_node;
2485 	}
2486 
2487 	/*
2488 	 * Finding the preferred nid in a system with NUMA backplane
2489 	 * interconnect topology is more involved. The goal is to locate
2490 	 * tasks from numa_groups near each other in the system, and
2491 	 * untangle workloads from different sides of the system. This requires
2492 	 * searching down the hierarchy of node groups, recursively searching
2493 	 * inside the highest scoring group of nodes. The nodemask tricks
2494 	 * keep the complexity of the search down.
2495 	 */
2496 	nodes = node_states[N_CPU];
2497 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2498 		unsigned long max_faults = 0;
2499 		nodemask_t max_group = NODE_MASK_NONE;
2500 		int a, b;
2501 
2502 		/* Are there nodes at this distance from each other? */
2503 		if (!find_numa_distance(dist))
2504 			continue;
2505 
2506 		for_each_node_mask(a, nodes) {
2507 			unsigned long faults = 0;
2508 			nodemask_t this_group;
2509 			nodes_clear(this_group);
2510 
2511 			/* Sum group's NUMA faults; includes a==b case. */
2512 			for_each_node_mask(b, nodes) {
2513 				if (node_distance(a, b) < dist) {
2514 					faults += group_faults(p, b);
2515 					node_set(b, this_group);
2516 					node_clear(b, nodes);
2517 				}
2518 			}
2519 
2520 			/* Remember the top group. */
2521 			if (faults > max_faults) {
2522 				max_faults = faults;
2523 				max_group = this_group;
2524 				/*
2525 				 * subtle: at the smallest distance there is
2526 				 * just one node left in each "group", the
2527 				 * winner is the preferred nid.
2528 				 */
2529 				nid = a;
2530 			}
2531 		}
2532 		/* Next round, evaluate the nodes within max_group. */
2533 		if (!max_faults)
2534 			break;
2535 		nodes = max_group;
2536 	}
2537 	return nid;
2538 }
2539 
2540 static void task_numa_placement(struct task_struct *p)
2541 {
2542 	int seq, nid, max_nid = NUMA_NO_NODE;
2543 	unsigned long max_faults = 0;
2544 	unsigned long fault_types[2] = { 0, 0 };
2545 	unsigned long total_faults;
2546 	u64 runtime, period;
2547 	spinlock_t *group_lock = NULL;
2548 	struct numa_group *ng;
2549 
2550 	/*
2551 	 * The p->mm->numa_scan_seq field gets updated without
2552 	 * exclusive access. Use READ_ONCE() here to ensure
2553 	 * that the field is read in a single access:
2554 	 */
2555 	seq = READ_ONCE(p->mm->numa_scan_seq);
2556 	if (p->numa_scan_seq == seq)
2557 		return;
2558 	p->numa_scan_seq = seq;
2559 	p->numa_scan_period_max = task_scan_max(p);
2560 
2561 	total_faults = p->numa_faults_locality[0] +
2562 		       p->numa_faults_locality[1];
2563 	runtime = numa_get_avg_runtime(p, &period);
2564 
2565 	/* If the task is part of a group prevent parallel updates to group stats */
2566 	ng = deref_curr_numa_group(p);
2567 	if (ng) {
2568 		group_lock = &ng->lock;
2569 		spin_lock_irq(group_lock);
2570 	}
2571 
2572 	/* Find the node with the highest number of faults */
2573 	for_each_online_node(nid) {
2574 		/* Keep track of the offsets in numa_faults array */
2575 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2576 		unsigned long faults = 0, group_faults = 0;
2577 		int priv;
2578 
2579 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2580 			long diff, f_diff, f_weight;
2581 
2582 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2583 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2584 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2585 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2586 
2587 			/* Decay existing window, copy faults since last scan */
2588 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2589 			fault_types[priv] += p->numa_faults[membuf_idx];
2590 			p->numa_faults[membuf_idx] = 0;
2591 
2592 			/*
2593 			 * Normalize the faults_from, so all tasks in a group
2594 			 * count according to CPU use, instead of by the raw
2595 			 * number of faults. Tasks with little runtime have
2596 			 * little over-all impact on throughput, and thus their
2597 			 * faults are less important.
2598 			 */
2599 			f_weight = div64_u64(runtime << 16, period + 1);
2600 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2601 				   (total_faults + 1);
2602 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2603 			p->numa_faults[cpubuf_idx] = 0;
2604 
2605 			p->numa_faults[mem_idx] += diff;
2606 			p->numa_faults[cpu_idx] += f_diff;
2607 			faults += p->numa_faults[mem_idx];
2608 			p->total_numa_faults += diff;
2609 			if (ng) {
2610 				/*
2611 				 * safe because we can only change our own group
2612 				 *
2613 				 * mem_idx represents the offset for a given
2614 				 * nid and priv in a specific region because it
2615 				 * is at the beginning of the numa_faults array.
2616 				 */
2617 				ng->faults[mem_idx] += diff;
2618 				ng->faults[cpu_idx] += f_diff;
2619 				ng->total_faults += diff;
2620 				group_faults += ng->faults[mem_idx];
2621 			}
2622 		}
2623 
2624 		if (!ng) {
2625 			if (faults > max_faults) {
2626 				max_faults = faults;
2627 				max_nid = nid;
2628 			}
2629 		} else if (group_faults > max_faults) {
2630 			max_faults = group_faults;
2631 			max_nid = nid;
2632 		}
2633 	}
2634 
2635 	/* Cannot migrate task to CPU-less node */
2636 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2637 		int near_nid = max_nid;
2638 		int distance, near_distance = INT_MAX;
2639 
2640 		for_each_node_state(nid, N_CPU) {
2641 			distance = node_distance(max_nid, nid);
2642 			if (distance < near_distance) {
2643 				near_nid = nid;
2644 				near_distance = distance;
2645 			}
2646 		}
2647 		max_nid = near_nid;
2648 	}
2649 
2650 	if (ng) {
2651 		numa_group_count_active_nodes(ng);
2652 		spin_unlock_irq(group_lock);
2653 		max_nid = preferred_group_nid(p, max_nid);
2654 	}
2655 
2656 	if (max_faults) {
2657 		/* Set the new preferred node */
2658 		if (max_nid != p->numa_preferred_nid)
2659 			sched_setnuma(p, max_nid);
2660 	}
2661 
2662 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2663 }
2664 
2665 static inline int get_numa_group(struct numa_group *grp)
2666 {
2667 	return refcount_inc_not_zero(&grp->refcount);
2668 }
2669 
2670 static inline void put_numa_group(struct numa_group *grp)
2671 {
2672 	if (refcount_dec_and_test(&grp->refcount))
2673 		kfree_rcu(grp, rcu);
2674 }
2675 
2676 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2677 			int *priv)
2678 {
2679 	struct numa_group *grp, *my_grp;
2680 	struct task_struct *tsk;
2681 	bool join = false;
2682 	int cpu = cpupid_to_cpu(cpupid);
2683 	int i;
2684 
2685 	if (unlikely(!deref_curr_numa_group(p))) {
2686 		unsigned int size = sizeof(struct numa_group) +
2687 				    NR_NUMA_HINT_FAULT_STATS *
2688 				    nr_node_ids * sizeof(unsigned long);
2689 
2690 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2691 		if (!grp)
2692 			return;
2693 
2694 		refcount_set(&grp->refcount, 1);
2695 		grp->active_nodes = 1;
2696 		grp->max_faults_cpu = 0;
2697 		spin_lock_init(&grp->lock);
2698 		grp->gid = p->pid;
2699 
2700 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2701 			grp->faults[i] = p->numa_faults[i];
2702 
2703 		grp->total_faults = p->total_numa_faults;
2704 
2705 		grp->nr_tasks++;
2706 		rcu_assign_pointer(p->numa_group, grp);
2707 	}
2708 
2709 	rcu_read_lock();
2710 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2711 
2712 	if (!cpupid_match_pid(tsk, cpupid))
2713 		goto no_join;
2714 
2715 	grp = rcu_dereference(tsk->numa_group);
2716 	if (!grp)
2717 		goto no_join;
2718 
2719 	my_grp = deref_curr_numa_group(p);
2720 	if (grp == my_grp)
2721 		goto no_join;
2722 
2723 	/*
2724 	 * Only join the other group if its bigger; if we're the bigger group,
2725 	 * the other task will join us.
2726 	 */
2727 	if (my_grp->nr_tasks > grp->nr_tasks)
2728 		goto no_join;
2729 
2730 	/*
2731 	 * Tie-break on the grp address.
2732 	 */
2733 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2734 		goto no_join;
2735 
2736 	/* Always join threads in the same process. */
2737 	if (tsk->mm == current->mm)
2738 		join = true;
2739 
2740 	/* Simple filter to avoid false positives due to PID collisions */
2741 	if (flags & TNF_SHARED)
2742 		join = true;
2743 
2744 	/* Update priv based on whether false sharing was detected */
2745 	*priv = !join;
2746 
2747 	if (join && !get_numa_group(grp))
2748 		goto no_join;
2749 
2750 	rcu_read_unlock();
2751 
2752 	if (!join)
2753 		return;
2754 
2755 	WARN_ON_ONCE(irqs_disabled());
2756 	double_lock_irq(&my_grp->lock, &grp->lock);
2757 
2758 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2759 		my_grp->faults[i] -= p->numa_faults[i];
2760 		grp->faults[i] += p->numa_faults[i];
2761 	}
2762 	my_grp->total_faults -= p->total_numa_faults;
2763 	grp->total_faults += p->total_numa_faults;
2764 
2765 	my_grp->nr_tasks--;
2766 	grp->nr_tasks++;
2767 
2768 	spin_unlock(&my_grp->lock);
2769 	spin_unlock_irq(&grp->lock);
2770 
2771 	rcu_assign_pointer(p->numa_group, grp);
2772 
2773 	put_numa_group(my_grp);
2774 	return;
2775 
2776 no_join:
2777 	rcu_read_unlock();
2778 	return;
2779 }
2780 
2781 /*
2782  * Get rid of NUMA statistics associated with a task (either current or dead).
2783  * If @final is set, the task is dead and has reached refcount zero, so we can
2784  * safely free all relevant data structures. Otherwise, there might be
2785  * concurrent reads from places like load balancing and procfs, and we should
2786  * reset the data back to default state without freeing ->numa_faults.
2787  */
2788 void task_numa_free(struct task_struct *p, bool final)
2789 {
2790 	/* safe: p either is current or is being freed by current */
2791 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2792 	unsigned long *numa_faults = p->numa_faults;
2793 	unsigned long flags;
2794 	int i;
2795 
2796 	if (!numa_faults)
2797 		return;
2798 
2799 	if (grp) {
2800 		spin_lock_irqsave(&grp->lock, flags);
2801 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2802 			grp->faults[i] -= p->numa_faults[i];
2803 		grp->total_faults -= p->total_numa_faults;
2804 
2805 		grp->nr_tasks--;
2806 		spin_unlock_irqrestore(&grp->lock, flags);
2807 		RCU_INIT_POINTER(p->numa_group, NULL);
2808 		put_numa_group(grp);
2809 	}
2810 
2811 	if (final) {
2812 		p->numa_faults = NULL;
2813 		kfree(numa_faults);
2814 	} else {
2815 		p->total_numa_faults = 0;
2816 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2817 			numa_faults[i] = 0;
2818 	}
2819 }
2820 
2821 /*
2822  * Got a PROT_NONE fault for a page on @node.
2823  */
2824 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2825 {
2826 	struct task_struct *p = current;
2827 	bool migrated = flags & TNF_MIGRATED;
2828 	int cpu_node = task_node(current);
2829 	int local = !!(flags & TNF_FAULT_LOCAL);
2830 	struct numa_group *ng;
2831 	int priv;
2832 
2833 	if (!static_branch_likely(&sched_numa_balancing))
2834 		return;
2835 
2836 	/* for example, ksmd faulting in a user's mm */
2837 	if (!p->mm)
2838 		return;
2839 
2840 	/*
2841 	 * NUMA faults statistics are unnecessary for the slow memory
2842 	 * node for memory tiering mode.
2843 	 */
2844 	if (!node_is_toptier(mem_node) &&
2845 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2846 	     !cpupid_valid(last_cpupid)))
2847 		return;
2848 
2849 	/* Allocate buffer to track faults on a per-node basis */
2850 	if (unlikely(!p->numa_faults)) {
2851 		int size = sizeof(*p->numa_faults) *
2852 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2853 
2854 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2855 		if (!p->numa_faults)
2856 			return;
2857 
2858 		p->total_numa_faults = 0;
2859 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2860 	}
2861 
2862 	/*
2863 	 * First accesses are treated as private, otherwise consider accesses
2864 	 * to be private if the accessing pid has not changed
2865 	 */
2866 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2867 		priv = 1;
2868 	} else {
2869 		priv = cpupid_match_pid(p, last_cpupid);
2870 		if (!priv && !(flags & TNF_NO_GROUP))
2871 			task_numa_group(p, last_cpupid, flags, &priv);
2872 	}
2873 
2874 	/*
2875 	 * If a workload spans multiple NUMA nodes, a shared fault that
2876 	 * occurs wholly within the set of nodes that the workload is
2877 	 * actively using should be counted as local. This allows the
2878 	 * scan rate to slow down when a workload has settled down.
2879 	 */
2880 	ng = deref_curr_numa_group(p);
2881 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2882 				numa_is_active_node(cpu_node, ng) &&
2883 				numa_is_active_node(mem_node, ng))
2884 		local = 1;
2885 
2886 	/*
2887 	 * Retry to migrate task to preferred node periodically, in case it
2888 	 * previously failed, or the scheduler moved us.
2889 	 */
2890 	if (time_after(jiffies, p->numa_migrate_retry)) {
2891 		task_numa_placement(p);
2892 		numa_migrate_preferred(p);
2893 	}
2894 
2895 	if (migrated)
2896 		p->numa_pages_migrated += pages;
2897 	if (flags & TNF_MIGRATE_FAIL)
2898 		p->numa_faults_locality[2] += pages;
2899 
2900 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2901 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2902 	p->numa_faults_locality[local] += pages;
2903 }
2904 
2905 static void reset_ptenuma_scan(struct task_struct *p)
2906 {
2907 	/*
2908 	 * We only did a read acquisition of the mmap sem, so
2909 	 * p->mm->numa_scan_seq is written to without exclusive access
2910 	 * and the update is not guaranteed to be atomic. That's not
2911 	 * much of an issue though, since this is just used for
2912 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2913 	 * expensive, to avoid any form of compiler optimizations:
2914 	 */
2915 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2916 	p->mm->numa_scan_offset = 0;
2917 }
2918 
2919 /*
2920  * The expensive part of numa migration is done from task_work context.
2921  * Triggered from task_tick_numa().
2922  */
2923 static void task_numa_work(struct callback_head *work)
2924 {
2925 	unsigned long migrate, next_scan, now = jiffies;
2926 	struct task_struct *p = current;
2927 	struct mm_struct *mm = p->mm;
2928 	u64 runtime = p->se.sum_exec_runtime;
2929 	MA_STATE(mas, &mm->mm_mt, 0, 0);
2930 	struct vm_area_struct *vma;
2931 	unsigned long start, end;
2932 	unsigned long nr_pte_updates = 0;
2933 	long pages, virtpages;
2934 
2935 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2936 
2937 	work->next = work;
2938 	/*
2939 	 * Who cares about NUMA placement when they're dying.
2940 	 *
2941 	 * NOTE: make sure not to dereference p->mm before this check,
2942 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2943 	 * without p->mm even though we still had it when we enqueued this
2944 	 * work.
2945 	 */
2946 	if (p->flags & PF_EXITING)
2947 		return;
2948 
2949 	if (!mm->numa_next_scan) {
2950 		mm->numa_next_scan = now +
2951 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2952 	}
2953 
2954 	/*
2955 	 * Enforce maximal scan/migration frequency..
2956 	 */
2957 	migrate = mm->numa_next_scan;
2958 	if (time_before(now, migrate))
2959 		return;
2960 
2961 	if (p->numa_scan_period == 0) {
2962 		p->numa_scan_period_max = task_scan_max(p);
2963 		p->numa_scan_period = task_scan_start(p);
2964 	}
2965 
2966 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2967 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
2968 		return;
2969 
2970 	/*
2971 	 * Delay this task enough that another task of this mm will likely win
2972 	 * the next time around.
2973 	 */
2974 	p->node_stamp += 2 * TICK_NSEC;
2975 
2976 	start = mm->numa_scan_offset;
2977 	pages = sysctl_numa_balancing_scan_size;
2978 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2979 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2980 	if (!pages)
2981 		return;
2982 
2983 
2984 	if (!mmap_read_trylock(mm))
2985 		return;
2986 	mas_set(&mas, start);
2987 	vma = mas_find(&mas, ULONG_MAX);
2988 	if (!vma) {
2989 		reset_ptenuma_scan(p);
2990 		start = 0;
2991 		mas_set(&mas, start);
2992 		vma = mas_find(&mas, ULONG_MAX);
2993 	}
2994 
2995 	for (; vma; vma = mas_find(&mas, ULONG_MAX)) {
2996 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2997 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2998 			continue;
2999 		}
3000 
3001 		/*
3002 		 * Shared library pages mapped by multiple processes are not
3003 		 * migrated as it is expected they are cache replicated. Avoid
3004 		 * hinting faults in read-only file-backed mappings or the vdso
3005 		 * as migrating the pages will be of marginal benefit.
3006 		 */
3007 		if (!vma->vm_mm ||
3008 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3009 			continue;
3010 
3011 		/*
3012 		 * Skip inaccessible VMAs to avoid any confusion between
3013 		 * PROT_NONE and NUMA hinting ptes
3014 		 */
3015 		if (!vma_is_accessible(vma))
3016 			continue;
3017 
3018 		do {
3019 			start = max(start, vma->vm_start);
3020 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3021 			end = min(end, vma->vm_end);
3022 			nr_pte_updates = change_prot_numa(vma, start, end);
3023 
3024 			/*
3025 			 * Try to scan sysctl_numa_balancing_size worth of
3026 			 * hpages that have at least one present PTE that
3027 			 * is not already pte-numa. If the VMA contains
3028 			 * areas that are unused or already full of prot_numa
3029 			 * PTEs, scan up to virtpages, to skip through those
3030 			 * areas faster.
3031 			 */
3032 			if (nr_pte_updates)
3033 				pages -= (end - start) >> PAGE_SHIFT;
3034 			virtpages -= (end - start) >> PAGE_SHIFT;
3035 
3036 			start = end;
3037 			if (pages <= 0 || virtpages <= 0)
3038 				goto out;
3039 
3040 			cond_resched();
3041 		} while (end != vma->vm_end);
3042 	}
3043 
3044 out:
3045 	/*
3046 	 * It is possible to reach the end of the VMA list but the last few
3047 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3048 	 * would find the !migratable VMA on the next scan but not reset the
3049 	 * scanner to the start so check it now.
3050 	 */
3051 	if (vma)
3052 		mm->numa_scan_offset = start;
3053 	else
3054 		reset_ptenuma_scan(p);
3055 	mmap_read_unlock(mm);
3056 
3057 	/*
3058 	 * Make sure tasks use at least 32x as much time to run other code
3059 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3060 	 * Usually update_task_scan_period slows down scanning enough; on an
3061 	 * overloaded system we need to limit overhead on a per task basis.
3062 	 */
3063 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3064 		u64 diff = p->se.sum_exec_runtime - runtime;
3065 		p->node_stamp += 32 * diff;
3066 	}
3067 }
3068 
3069 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3070 {
3071 	int mm_users = 0;
3072 	struct mm_struct *mm = p->mm;
3073 
3074 	if (mm) {
3075 		mm_users = atomic_read(&mm->mm_users);
3076 		if (mm_users == 1) {
3077 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3078 			mm->numa_scan_seq = 0;
3079 		}
3080 	}
3081 	p->node_stamp			= 0;
3082 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3083 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3084 	p->numa_migrate_retry		= 0;
3085 	/* Protect against double add, see task_tick_numa and task_numa_work */
3086 	p->numa_work.next		= &p->numa_work;
3087 	p->numa_faults			= NULL;
3088 	p->numa_pages_migrated		= 0;
3089 	p->total_numa_faults		= 0;
3090 	RCU_INIT_POINTER(p->numa_group, NULL);
3091 	p->last_task_numa_placement	= 0;
3092 	p->last_sum_exec_runtime	= 0;
3093 
3094 	init_task_work(&p->numa_work, task_numa_work);
3095 
3096 	/* New address space, reset the preferred nid */
3097 	if (!(clone_flags & CLONE_VM)) {
3098 		p->numa_preferred_nid = NUMA_NO_NODE;
3099 		return;
3100 	}
3101 
3102 	/*
3103 	 * New thread, keep existing numa_preferred_nid which should be copied
3104 	 * already by arch_dup_task_struct but stagger when scans start.
3105 	 */
3106 	if (mm) {
3107 		unsigned int delay;
3108 
3109 		delay = min_t(unsigned int, task_scan_max(current),
3110 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3111 		delay += 2 * TICK_NSEC;
3112 		p->node_stamp = delay;
3113 	}
3114 }
3115 
3116 /*
3117  * Drive the periodic memory faults..
3118  */
3119 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3120 {
3121 	struct callback_head *work = &curr->numa_work;
3122 	u64 period, now;
3123 
3124 	/*
3125 	 * We don't care about NUMA placement if we don't have memory.
3126 	 */
3127 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3128 		return;
3129 
3130 	/*
3131 	 * Using runtime rather than walltime has the dual advantage that
3132 	 * we (mostly) drive the selection from busy threads and that the
3133 	 * task needs to have done some actual work before we bother with
3134 	 * NUMA placement.
3135 	 */
3136 	now = curr->se.sum_exec_runtime;
3137 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3138 
3139 	if (now > curr->node_stamp + period) {
3140 		if (!curr->node_stamp)
3141 			curr->numa_scan_period = task_scan_start(curr);
3142 		curr->node_stamp += period;
3143 
3144 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3145 			task_work_add(curr, work, TWA_RESUME);
3146 	}
3147 }
3148 
3149 static void update_scan_period(struct task_struct *p, int new_cpu)
3150 {
3151 	int src_nid = cpu_to_node(task_cpu(p));
3152 	int dst_nid = cpu_to_node(new_cpu);
3153 
3154 	if (!static_branch_likely(&sched_numa_balancing))
3155 		return;
3156 
3157 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3158 		return;
3159 
3160 	if (src_nid == dst_nid)
3161 		return;
3162 
3163 	/*
3164 	 * Allow resets if faults have been trapped before one scan
3165 	 * has completed. This is most likely due to a new task that
3166 	 * is pulled cross-node due to wakeups or load balancing.
3167 	 */
3168 	if (p->numa_scan_seq) {
3169 		/*
3170 		 * Avoid scan adjustments if moving to the preferred
3171 		 * node or if the task was not previously running on
3172 		 * the preferred node.
3173 		 */
3174 		if (dst_nid == p->numa_preferred_nid ||
3175 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3176 			src_nid != p->numa_preferred_nid))
3177 			return;
3178 	}
3179 
3180 	p->numa_scan_period = task_scan_start(p);
3181 }
3182 
3183 #else
3184 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3185 {
3186 }
3187 
3188 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3189 {
3190 }
3191 
3192 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3193 {
3194 }
3195 
3196 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3197 {
3198 }
3199 
3200 #endif /* CONFIG_NUMA_BALANCING */
3201 
3202 static void
3203 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3204 {
3205 	update_load_add(&cfs_rq->load, se->load.weight);
3206 #ifdef CONFIG_SMP
3207 	if (entity_is_task(se)) {
3208 		struct rq *rq = rq_of(cfs_rq);
3209 
3210 		account_numa_enqueue(rq, task_of(se));
3211 		list_add(&se->group_node, &rq->cfs_tasks);
3212 	}
3213 #endif
3214 	cfs_rq->nr_running++;
3215 	if (se_is_idle(se))
3216 		cfs_rq->idle_nr_running++;
3217 }
3218 
3219 static void
3220 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3221 {
3222 	update_load_sub(&cfs_rq->load, se->load.weight);
3223 #ifdef CONFIG_SMP
3224 	if (entity_is_task(se)) {
3225 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3226 		list_del_init(&se->group_node);
3227 	}
3228 #endif
3229 	cfs_rq->nr_running--;
3230 	if (se_is_idle(se))
3231 		cfs_rq->idle_nr_running--;
3232 }
3233 
3234 /*
3235  * Signed add and clamp on underflow.
3236  *
3237  * Explicitly do a load-store to ensure the intermediate value never hits
3238  * memory. This allows lockless observations without ever seeing the negative
3239  * values.
3240  */
3241 #define add_positive(_ptr, _val) do {                           \
3242 	typeof(_ptr) ptr = (_ptr);                              \
3243 	typeof(_val) val = (_val);                              \
3244 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3245 								\
3246 	res = var + val;                                        \
3247 								\
3248 	if (val < 0 && res > var)                               \
3249 		res = 0;                                        \
3250 								\
3251 	WRITE_ONCE(*ptr, res);                                  \
3252 } while (0)
3253 
3254 /*
3255  * Unsigned subtract and clamp on underflow.
3256  *
3257  * Explicitly do a load-store to ensure the intermediate value never hits
3258  * memory. This allows lockless observations without ever seeing the negative
3259  * values.
3260  */
3261 #define sub_positive(_ptr, _val) do {				\
3262 	typeof(_ptr) ptr = (_ptr);				\
3263 	typeof(*ptr) val = (_val);				\
3264 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3265 	res = var - val;					\
3266 	if (res > var)						\
3267 		res = 0;					\
3268 	WRITE_ONCE(*ptr, res);					\
3269 } while (0)
3270 
3271 /*
3272  * Remove and clamp on negative, from a local variable.
3273  *
3274  * A variant of sub_positive(), which does not use explicit load-store
3275  * and is thus optimized for local variable updates.
3276  */
3277 #define lsub_positive(_ptr, _val) do {				\
3278 	typeof(_ptr) ptr = (_ptr);				\
3279 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3280 } while (0)
3281 
3282 #ifdef CONFIG_SMP
3283 static inline void
3284 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3285 {
3286 	cfs_rq->avg.load_avg += se->avg.load_avg;
3287 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3288 }
3289 
3290 static inline void
3291 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3292 {
3293 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3294 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3295 	/* See update_cfs_rq_load_avg() */
3296 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3297 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3298 }
3299 #else
3300 static inline void
3301 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3302 static inline void
3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3304 #endif
3305 
3306 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3307 			    unsigned long weight)
3308 {
3309 	if (se->on_rq) {
3310 		/* commit outstanding execution time */
3311 		if (cfs_rq->curr == se)
3312 			update_curr(cfs_rq);
3313 		update_load_sub(&cfs_rq->load, se->load.weight);
3314 	}
3315 	dequeue_load_avg(cfs_rq, se);
3316 
3317 	update_load_set(&se->load, weight);
3318 
3319 #ifdef CONFIG_SMP
3320 	do {
3321 		u32 divider = get_pelt_divider(&se->avg);
3322 
3323 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3324 	} while (0);
3325 #endif
3326 
3327 	enqueue_load_avg(cfs_rq, se);
3328 	if (se->on_rq)
3329 		update_load_add(&cfs_rq->load, se->load.weight);
3330 
3331 }
3332 
3333 void reweight_task(struct task_struct *p, int prio)
3334 {
3335 	struct sched_entity *se = &p->se;
3336 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3337 	struct load_weight *load = &se->load;
3338 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3339 
3340 	reweight_entity(cfs_rq, se, weight);
3341 	load->inv_weight = sched_prio_to_wmult[prio];
3342 }
3343 
3344 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3345 
3346 #ifdef CONFIG_FAIR_GROUP_SCHED
3347 #ifdef CONFIG_SMP
3348 /*
3349  * All this does is approximate the hierarchical proportion which includes that
3350  * global sum we all love to hate.
3351  *
3352  * That is, the weight of a group entity, is the proportional share of the
3353  * group weight based on the group runqueue weights. That is:
3354  *
3355  *                     tg->weight * grq->load.weight
3356  *   ge->load.weight = -----------------------------               (1)
3357  *                       \Sum grq->load.weight
3358  *
3359  * Now, because computing that sum is prohibitively expensive to compute (been
3360  * there, done that) we approximate it with this average stuff. The average
3361  * moves slower and therefore the approximation is cheaper and more stable.
3362  *
3363  * So instead of the above, we substitute:
3364  *
3365  *   grq->load.weight -> grq->avg.load_avg                         (2)
3366  *
3367  * which yields the following:
3368  *
3369  *                     tg->weight * grq->avg.load_avg
3370  *   ge->load.weight = ------------------------------              (3)
3371  *                             tg->load_avg
3372  *
3373  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3374  *
3375  * That is shares_avg, and it is right (given the approximation (2)).
3376  *
3377  * The problem with it is that because the average is slow -- it was designed
3378  * to be exactly that of course -- this leads to transients in boundary
3379  * conditions. In specific, the case where the group was idle and we start the
3380  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3381  * yielding bad latency etc..
3382  *
3383  * Now, in that special case (1) reduces to:
3384  *
3385  *                     tg->weight * grq->load.weight
3386  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3387  *                         grp->load.weight
3388  *
3389  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3390  *
3391  * So what we do is modify our approximation (3) to approach (4) in the (near)
3392  * UP case, like:
3393  *
3394  *   ge->load.weight =
3395  *
3396  *              tg->weight * grq->load.weight
3397  *     ---------------------------------------------------         (5)
3398  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3399  *
3400  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3401  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3402  *
3403  *
3404  *                     tg->weight * grq->load.weight
3405  *   ge->load.weight = -----------------------------		   (6)
3406  *                             tg_load_avg'
3407  *
3408  * Where:
3409  *
3410  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3411  *                  max(grq->load.weight, grq->avg.load_avg)
3412  *
3413  * And that is shares_weight and is icky. In the (near) UP case it approaches
3414  * (4) while in the normal case it approaches (3). It consistently
3415  * overestimates the ge->load.weight and therefore:
3416  *
3417  *   \Sum ge->load.weight >= tg->weight
3418  *
3419  * hence icky!
3420  */
3421 static long calc_group_shares(struct cfs_rq *cfs_rq)
3422 {
3423 	long tg_weight, tg_shares, load, shares;
3424 	struct task_group *tg = cfs_rq->tg;
3425 
3426 	tg_shares = READ_ONCE(tg->shares);
3427 
3428 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3429 
3430 	tg_weight = atomic_long_read(&tg->load_avg);
3431 
3432 	/* Ensure tg_weight >= load */
3433 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3434 	tg_weight += load;
3435 
3436 	shares = (tg_shares * load);
3437 	if (tg_weight)
3438 		shares /= tg_weight;
3439 
3440 	/*
3441 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3442 	 * of a group with small tg->shares value. It is a floor value which is
3443 	 * assigned as a minimum load.weight to the sched_entity representing
3444 	 * the group on a CPU.
3445 	 *
3446 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3447 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3448 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3449 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3450 	 * instead of 0.
3451 	 */
3452 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3453 }
3454 #endif /* CONFIG_SMP */
3455 
3456 /*
3457  * Recomputes the group entity based on the current state of its group
3458  * runqueue.
3459  */
3460 static void update_cfs_group(struct sched_entity *se)
3461 {
3462 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3463 	long shares;
3464 
3465 	if (!gcfs_rq)
3466 		return;
3467 
3468 	if (throttled_hierarchy(gcfs_rq))
3469 		return;
3470 
3471 #ifndef CONFIG_SMP
3472 	shares = READ_ONCE(gcfs_rq->tg->shares);
3473 
3474 	if (likely(se->load.weight == shares))
3475 		return;
3476 #else
3477 	shares   = calc_group_shares(gcfs_rq);
3478 #endif
3479 
3480 	reweight_entity(cfs_rq_of(se), se, shares);
3481 }
3482 
3483 #else /* CONFIG_FAIR_GROUP_SCHED */
3484 static inline void update_cfs_group(struct sched_entity *se)
3485 {
3486 }
3487 #endif /* CONFIG_FAIR_GROUP_SCHED */
3488 
3489 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3490 {
3491 	struct rq *rq = rq_of(cfs_rq);
3492 
3493 	if (&rq->cfs == cfs_rq) {
3494 		/*
3495 		 * There are a few boundary cases this might miss but it should
3496 		 * get called often enough that that should (hopefully) not be
3497 		 * a real problem.
3498 		 *
3499 		 * It will not get called when we go idle, because the idle
3500 		 * thread is a different class (!fair), nor will the utilization
3501 		 * number include things like RT tasks.
3502 		 *
3503 		 * As is, the util number is not freq-invariant (we'd have to
3504 		 * implement arch_scale_freq_capacity() for that).
3505 		 *
3506 		 * See cpu_util_cfs().
3507 		 */
3508 		cpufreq_update_util(rq, flags);
3509 	}
3510 }
3511 
3512 #ifdef CONFIG_SMP
3513 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3514 {
3515 	if (sa->load_sum)
3516 		return false;
3517 
3518 	if (sa->util_sum)
3519 		return false;
3520 
3521 	if (sa->runnable_sum)
3522 		return false;
3523 
3524 	/*
3525 	 * _avg must be null when _sum are null because _avg = _sum / divider
3526 	 * Make sure that rounding and/or propagation of PELT values never
3527 	 * break this.
3528 	 */
3529 	SCHED_WARN_ON(sa->load_avg ||
3530 		      sa->util_avg ||
3531 		      sa->runnable_avg);
3532 
3533 	return true;
3534 }
3535 
3536 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3537 {
3538 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3539 				 cfs_rq->last_update_time_copy);
3540 }
3541 #ifdef CONFIG_FAIR_GROUP_SCHED
3542 /*
3543  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3544  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3545  * bottom-up, we only have to test whether the cfs_rq before us on the list
3546  * is our child.
3547  * If cfs_rq is not on the list, test whether a child needs its to be added to
3548  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3549  */
3550 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3551 {
3552 	struct cfs_rq *prev_cfs_rq;
3553 	struct list_head *prev;
3554 
3555 	if (cfs_rq->on_list) {
3556 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3557 	} else {
3558 		struct rq *rq = rq_of(cfs_rq);
3559 
3560 		prev = rq->tmp_alone_branch;
3561 	}
3562 
3563 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3564 
3565 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3566 }
3567 
3568 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3569 {
3570 	if (cfs_rq->load.weight)
3571 		return false;
3572 
3573 	if (!load_avg_is_decayed(&cfs_rq->avg))
3574 		return false;
3575 
3576 	if (child_cfs_rq_on_list(cfs_rq))
3577 		return false;
3578 
3579 	return true;
3580 }
3581 
3582 /**
3583  * update_tg_load_avg - update the tg's load avg
3584  * @cfs_rq: the cfs_rq whose avg changed
3585  *
3586  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3587  * However, because tg->load_avg is a global value there are performance
3588  * considerations.
3589  *
3590  * In order to avoid having to look at the other cfs_rq's, we use a
3591  * differential update where we store the last value we propagated. This in
3592  * turn allows skipping updates if the differential is 'small'.
3593  *
3594  * Updating tg's load_avg is necessary before update_cfs_share().
3595  */
3596 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3597 {
3598 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3599 
3600 	/*
3601 	 * No need to update load_avg for root_task_group as it is not used.
3602 	 */
3603 	if (cfs_rq->tg == &root_task_group)
3604 		return;
3605 
3606 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3607 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3608 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3609 	}
3610 }
3611 
3612 /*
3613  * Called within set_task_rq() right before setting a task's CPU. The
3614  * caller only guarantees p->pi_lock is held; no other assumptions,
3615  * including the state of rq->lock, should be made.
3616  */
3617 void set_task_rq_fair(struct sched_entity *se,
3618 		      struct cfs_rq *prev, struct cfs_rq *next)
3619 {
3620 	u64 p_last_update_time;
3621 	u64 n_last_update_time;
3622 
3623 	if (!sched_feat(ATTACH_AGE_LOAD))
3624 		return;
3625 
3626 	/*
3627 	 * We are supposed to update the task to "current" time, then its up to
3628 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3629 	 * getting what current time is, so simply throw away the out-of-date
3630 	 * time. This will result in the wakee task is less decayed, but giving
3631 	 * the wakee more load sounds not bad.
3632 	 */
3633 	if (!(se->avg.last_update_time && prev))
3634 		return;
3635 
3636 	p_last_update_time = cfs_rq_last_update_time(prev);
3637 	n_last_update_time = cfs_rq_last_update_time(next);
3638 
3639 	__update_load_avg_blocked_se(p_last_update_time, se);
3640 	se->avg.last_update_time = n_last_update_time;
3641 }
3642 
3643 /*
3644  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3645  * propagate its contribution. The key to this propagation is the invariant
3646  * that for each group:
3647  *
3648  *   ge->avg == grq->avg						(1)
3649  *
3650  * _IFF_ we look at the pure running and runnable sums. Because they
3651  * represent the very same entity, just at different points in the hierarchy.
3652  *
3653  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3654  * and simply copies the running/runnable sum over (but still wrong, because
3655  * the group entity and group rq do not have their PELT windows aligned).
3656  *
3657  * However, update_tg_cfs_load() is more complex. So we have:
3658  *
3659  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3660  *
3661  * And since, like util, the runnable part should be directly transferable,
3662  * the following would _appear_ to be the straight forward approach:
3663  *
3664  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3665  *
3666  * And per (1) we have:
3667  *
3668  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3669  *
3670  * Which gives:
3671  *
3672  *                      ge->load.weight * grq->avg.load_avg
3673  *   ge->avg.load_avg = -----------------------------------		(4)
3674  *                               grq->load.weight
3675  *
3676  * Except that is wrong!
3677  *
3678  * Because while for entities historical weight is not important and we
3679  * really only care about our future and therefore can consider a pure
3680  * runnable sum, runqueues can NOT do this.
3681  *
3682  * We specifically want runqueues to have a load_avg that includes
3683  * historical weights. Those represent the blocked load, the load we expect
3684  * to (shortly) return to us. This only works by keeping the weights as
3685  * integral part of the sum. We therefore cannot decompose as per (3).
3686  *
3687  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3688  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3689  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3690  * runnable section of these tasks overlap (or not). If they were to perfectly
3691  * align the rq as a whole would be runnable 2/3 of the time. If however we
3692  * always have at least 1 runnable task, the rq as a whole is always runnable.
3693  *
3694  * So we'll have to approximate.. :/
3695  *
3696  * Given the constraint:
3697  *
3698  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3699  *
3700  * We can construct a rule that adds runnable to a rq by assuming minimal
3701  * overlap.
3702  *
3703  * On removal, we'll assume each task is equally runnable; which yields:
3704  *
3705  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3706  *
3707  * XXX: only do this for the part of runnable > running ?
3708  *
3709  */
3710 static inline void
3711 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3712 {
3713 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3714 	u32 new_sum, divider;
3715 
3716 	/* Nothing to update */
3717 	if (!delta_avg)
3718 		return;
3719 
3720 	/*
3721 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3722 	 * See ___update_load_avg() for details.
3723 	 */
3724 	divider = get_pelt_divider(&cfs_rq->avg);
3725 
3726 
3727 	/* Set new sched_entity's utilization */
3728 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3729 	new_sum = se->avg.util_avg * divider;
3730 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3731 	se->avg.util_sum = new_sum;
3732 
3733 	/* Update parent cfs_rq utilization */
3734 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3735 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3736 
3737 	/* See update_cfs_rq_load_avg() */
3738 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3739 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3740 }
3741 
3742 static inline void
3743 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3744 {
3745 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3746 	u32 new_sum, divider;
3747 
3748 	/* Nothing to update */
3749 	if (!delta_avg)
3750 		return;
3751 
3752 	/*
3753 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3754 	 * See ___update_load_avg() for details.
3755 	 */
3756 	divider = get_pelt_divider(&cfs_rq->avg);
3757 
3758 	/* Set new sched_entity's runnable */
3759 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3760 	new_sum = se->avg.runnable_avg * divider;
3761 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3762 	se->avg.runnable_sum = new_sum;
3763 
3764 	/* Update parent cfs_rq runnable */
3765 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3766 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3767 	/* See update_cfs_rq_load_avg() */
3768 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3769 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3770 }
3771 
3772 static inline void
3773 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3774 {
3775 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3776 	unsigned long load_avg;
3777 	u64 load_sum = 0;
3778 	s64 delta_sum;
3779 	u32 divider;
3780 
3781 	if (!runnable_sum)
3782 		return;
3783 
3784 	gcfs_rq->prop_runnable_sum = 0;
3785 
3786 	/*
3787 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3788 	 * See ___update_load_avg() for details.
3789 	 */
3790 	divider = get_pelt_divider(&cfs_rq->avg);
3791 
3792 	if (runnable_sum >= 0) {
3793 		/*
3794 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3795 		 * the CPU is saturated running == runnable.
3796 		 */
3797 		runnable_sum += se->avg.load_sum;
3798 		runnable_sum = min_t(long, runnable_sum, divider);
3799 	} else {
3800 		/*
3801 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3802 		 * assuming all tasks are equally runnable.
3803 		 */
3804 		if (scale_load_down(gcfs_rq->load.weight)) {
3805 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3806 				scale_load_down(gcfs_rq->load.weight));
3807 		}
3808 
3809 		/* But make sure to not inflate se's runnable */
3810 		runnable_sum = min(se->avg.load_sum, load_sum);
3811 	}
3812 
3813 	/*
3814 	 * runnable_sum can't be lower than running_sum
3815 	 * Rescale running sum to be in the same range as runnable sum
3816 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3817 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3818 	 */
3819 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3820 	runnable_sum = max(runnable_sum, running_sum);
3821 
3822 	load_sum = se_weight(se) * runnable_sum;
3823 	load_avg = div_u64(load_sum, divider);
3824 
3825 	delta_avg = load_avg - se->avg.load_avg;
3826 	if (!delta_avg)
3827 		return;
3828 
3829 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3830 
3831 	se->avg.load_sum = runnable_sum;
3832 	se->avg.load_avg = load_avg;
3833 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3834 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3835 	/* See update_cfs_rq_load_avg() */
3836 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3837 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3838 }
3839 
3840 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3841 {
3842 	cfs_rq->propagate = 1;
3843 	cfs_rq->prop_runnable_sum += runnable_sum;
3844 }
3845 
3846 /* Update task and its cfs_rq load average */
3847 static inline int propagate_entity_load_avg(struct sched_entity *se)
3848 {
3849 	struct cfs_rq *cfs_rq, *gcfs_rq;
3850 
3851 	if (entity_is_task(se))
3852 		return 0;
3853 
3854 	gcfs_rq = group_cfs_rq(se);
3855 	if (!gcfs_rq->propagate)
3856 		return 0;
3857 
3858 	gcfs_rq->propagate = 0;
3859 
3860 	cfs_rq = cfs_rq_of(se);
3861 
3862 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3863 
3864 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3865 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3866 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3867 
3868 	trace_pelt_cfs_tp(cfs_rq);
3869 	trace_pelt_se_tp(se);
3870 
3871 	return 1;
3872 }
3873 
3874 /*
3875  * Check if we need to update the load and the utilization of a blocked
3876  * group_entity:
3877  */
3878 static inline bool skip_blocked_update(struct sched_entity *se)
3879 {
3880 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3881 
3882 	/*
3883 	 * If sched_entity still have not zero load or utilization, we have to
3884 	 * decay it:
3885 	 */
3886 	if (se->avg.load_avg || se->avg.util_avg)
3887 		return false;
3888 
3889 	/*
3890 	 * If there is a pending propagation, we have to update the load and
3891 	 * the utilization of the sched_entity:
3892 	 */
3893 	if (gcfs_rq->propagate)
3894 		return false;
3895 
3896 	/*
3897 	 * Otherwise, the load and the utilization of the sched_entity is
3898 	 * already zero and there is no pending propagation, so it will be a
3899 	 * waste of time to try to decay it:
3900 	 */
3901 	return true;
3902 }
3903 
3904 #else /* CONFIG_FAIR_GROUP_SCHED */
3905 
3906 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3907 
3908 static inline int propagate_entity_load_avg(struct sched_entity *se)
3909 {
3910 	return 0;
3911 }
3912 
3913 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3914 
3915 #endif /* CONFIG_FAIR_GROUP_SCHED */
3916 
3917 #ifdef CONFIG_NO_HZ_COMMON
3918 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3919 {
3920 	u64 throttled = 0, now, lut;
3921 	struct cfs_rq *cfs_rq;
3922 	struct rq *rq;
3923 	bool is_idle;
3924 
3925 	if (load_avg_is_decayed(&se->avg))
3926 		return;
3927 
3928 	cfs_rq = cfs_rq_of(se);
3929 	rq = rq_of(cfs_rq);
3930 
3931 	rcu_read_lock();
3932 	is_idle = is_idle_task(rcu_dereference(rq->curr));
3933 	rcu_read_unlock();
3934 
3935 	/*
3936 	 * The lag estimation comes with a cost we don't want to pay all the
3937 	 * time. Hence, limiting to the case where the source CPU is idle and
3938 	 * we know we are at the greatest risk to have an outdated clock.
3939 	 */
3940 	if (!is_idle)
3941 		return;
3942 
3943 	/*
3944 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3945 	 *
3946 	 *   last_update_time (the cfs_rq's last_update_time)
3947 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
3948 	 *      = rq_clock_pelt()@cfs_rq_idle
3949 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
3950 	 *
3951 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
3952 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3953 	 *
3954 	 *   rq_idle_lag (delta between now and rq's update)
3955 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
3956 	 *
3957 	 * We can then write:
3958 	 *
3959 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3960 	 *          sched_clock_cpu() - rq_clock()@rq_idle
3961 	 * Where:
3962 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3963 	 *      rq_clock()@rq_idle      is rq->clock_idle
3964 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
3965 	 *                              is cfs_rq->throttled_pelt_idle
3966 	 */
3967 
3968 #ifdef CONFIG_CFS_BANDWIDTH
3969 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3970 	/* The clock has been stopped for throttling */
3971 	if (throttled == U64_MAX)
3972 		return;
3973 #endif
3974 	now = u64_u32_load(rq->clock_pelt_idle);
3975 	/*
3976 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3977 	 * is observed the old clock_pelt_idle value and the new clock_idle,
3978 	 * which lead to an underestimation. The opposite would lead to an
3979 	 * overestimation.
3980 	 */
3981 	smp_rmb();
3982 	lut = cfs_rq_last_update_time(cfs_rq);
3983 
3984 	now -= throttled;
3985 	if (now < lut)
3986 		/*
3987 		 * cfs_rq->avg.last_update_time is more recent than our
3988 		 * estimation, let's use it.
3989 		 */
3990 		now = lut;
3991 	else
3992 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
3993 
3994 	__update_load_avg_blocked_se(now, se);
3995 }
3996 #else
3997 static void migrate_se_pelt_lag(struct sched_entity *se) {}
3998 #endif
3999 
4000 /**
4001  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4002  * @now: current time, as per cfs_rq_clock_pelt()
4003  * @cfs_rq: cfs_rq to update
4004  *
4005  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4006  * avg. The immediate corollary is that all (fair) tasks must be attached.
4007  *
4008  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4009  *
4010  * Return: true if the load decayed or we removed load.
4011  *
4012  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4013  * call update_tg_load_avg() when this function returns true.
4014  */
4015 static inline int
4016 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4017 {
4018 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4019 	struct sched_avg *sa = &cfs_rq->avg;
4020 	int decayed = 0;
4021 
4022 	if (cfs_rq->removed.nr) {
4023 		unsigned long r;
4024 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4025 
4026 		raw_spin_lock(&cfs_rq->removed.lock);
4027 		swap(cfs_rq->removed.util_avg, removed_util);
4028 		swap(cfs_rq->removed.load_avg, removed_load);
4029 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4030 		cfs_rq->removed.nr = 0;
4031 		raw_spin_unlock(&cfs_rq->removed.lock);
4032 
4033 		r = removed_load;
4034 		sub_positive(&sa->load_avg, r);
4035 		sub_positive(&sa->load_sum, r * divider);
4036 		/* See sa->util_sum below */
4037 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4038 
4039 		r = removed_util;
4040 		sub_positive(&sa->util_avg, r);
4041 		sub_positive(&sa->util_sum, r * divider);
4042 		/*
4043 		 * Because of rounding, se->util_sum might ends up being +1 more than
4044 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4045 		 * a lot of tasks with the rounding problem between 2 updates of
4046 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4047 		 * cfs_util_avg is not.
4048 		 * Check that util_sum is still above its lower bound for the new
4049 		 * util_avg. Given that period_contrib might have moved since the last
4050 		 * sync, we are only sure that util_sum must be above or equal to
4051 		 *    util_avg * minimum possible divider
4052 		 */
4053 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4054 
4055 		r = removed_runnable;
4056 		sub_positive(&sa->runnable_avg, r);
4057 		sub_positive(&sa->runnable_sum, r * divider);
4058 		/* See sa->util_sum above */
4059 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4060 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4061 
4062 		/*
4063 		 * removed_runnable is the unweighted version of removed_load so we
4064 		 * can use it to estimate removed_load_sum.
4065 		 */
4066 		add_tg_cfs_propagate(cfs_rq,
4067 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4068 
4069 		decayed = 1;
4070 	}
4071 
4072 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4073 	u64_u32_store_copy(sa->last_update_time,
4074 			   cfs_rq->last_update_time_copy,
4075 			   sa->last_update_time);
4076 	return decayed;
4077 }
4078 
4079 /**
4080  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4081  * @cfs_rq: cfs_rq to attach to
4082  * @se: sched_entity to attach
4083  *
4084  * Must call update_cfs_rq_load_avg() before this, since we rely on
4085  * cfs_rq->avg.last_update_time being current.
4086  */
4087 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4088 {
4089 	/*
4090 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4091 	 * See ___update_load_avg() for details.
4092 	 */
4093 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4094 
4095 	/*
4096 	 * When we attach the @se to the @cfs_rq, we must align the decay
4097 	 * window because without that, really weird and wonderful things can
4098 	 * happen.
4099 	 *
4100 	 * XXX illustrate
4101 	 */
4102 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4103 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4104 
4105 	/*
4106 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4107 	 * period_contrib. This isn't strictly correct, but since we're
4108 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4109 	 * _sum a little.
4110 	 */
4111 	se->avg.util_sum = se->avg.util_avg * divider;
4112 
4113 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4114 
4115 	se->avg.load_sum = se->avg.load_avg * divider;
4116 	if (se_weight(se) < se->avg.load_sum)
4117 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4118 	else
4119 		se->avg.load_sum = 1;
4120 
4121 	enqueue_load_avg(cfs_rq, se);
4122 	cfs_rq->avg.util_avg += se->avg.util_avg;
4123 	cfs_rq->avg.util_sum += se->avg.util_sum;
4124 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4125 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4126 
4127 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4128 
4129 	cfs_rq_util_change(cfs_rq, 0);
4130 
4131 	trace_pelt_cfs_tp(cfs_rq);
4132 }
4133 
4134 /**
4135  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4136  * @cfs_rq: cfs_rq to detach from
4137  * @se: sched_entity to detach
4138  *
4139  * Must call update_cfs_rq_load_avg() before this, since we rely on
4140  * cfs_rq->avg.last_update_time being current.
4141  */
4142 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4143 {
4144 	dequeue_load_avg(cfs_rq, se);
4145 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4146 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4147 	/* See update_cfs_rq_load_avg() */
4148 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4149 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4150 
4151 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4152 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4153 	/* See update_cfs_rq_load_avg() */
4154 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4155 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4156 
4157 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4158 
4159 	cfs_rq_util_change(cfs_rq, 0);
4160 
4161 	trace_pelt_cfs_tp(cfs_rq);
4162 }
4163 
4164 /*
4165  * Optional action to be done while updating the load average
4166  */
4167 #define UPDATE_TG	0x1
4168 #define SKIP_AGE_LOAD	0x2
4169 #define DO_ATTACH	0x4
4170 #define DO_DETACH	0x8
4171 
4172 /* Update task and its cfs_rq load average */
4173 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4174 {
4175 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4176 	int decayed;
4177 
4178 	/*
4179 	 * Track task load average for carrying it to new CPU after migrated, and
4180 	 * track group sched_entity load average for task_h_load calc in migration
4181 	 */
4182 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4183 		__update_load_avg_se(now, cfs_rq, se);
4184 
4185 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4186 	decayed |= propagate_entity_load_avg(se);
4187 
4188 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4189 
4190 		/*
4191 		 * DO_ATTACH means we're here from enqueue_entity().
4192 		 * !last_update_time means we've passed through
4193 		 * migrate_task_rq_fair() indicating we migrated.
4194 		 *
4195 		 * IOW we're enqueueing a task on a new CPU.
4196 		 */
4197 		attach_entity_load_avg(cfs_rq, se);
4198 		update_tg_load_avg(cfs_rq);
4199 
4200 	} else if (flags & DO_DETACH) {
4201 		/*
4202 		 * DO_DETACH means we're here from dequeue_entity()
4203 		 * and we are migrating task out of the CPU.
4204 		 */
4205 		detach_entity_load_avg(cfs_rq, se);
4206 		update_tg_load_avg(cfs_rq);
4207 	} else if (decayed) {
4208 		cfs_rq_util_change(cfs_rq, 0);
4209 
4210 		if (flags & UPDATE_TG)
4211 			update_tg_load_avg(cfs_rq);
4212 	}
4213 }
4214 
4215 /*
4216  * Synchronize entity load avg of dequeued entity without locking
4217  * the previous rq.
4218  */
4219 static void sync_entity_load_avg(struct sched_entity *se)
4220 {
4221 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4222 	u64 last_update_time;
4223 
4224 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4225 	__update_load_avg_blocked_se(last_update_time, se);
4226 }
4227 
4228 /*
4229  * Task first catches up with cfs_rq, and then subtract
4230  * itself from the cfs_rq (task must be off the queue now).
4231  */
4232 static void remove_entity_load_avg(struct sched_entity *se)
4233 {
4234 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4235 	unsigned long flags;
4236 
4237 	/*
4238 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4239 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4240 	 * so we can remove unconditionally.
4241 	 */
4242 
4243 	sync_entity_load_avg(se);
4244 
4245 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4246 	++cfs_rq->removed.nr;
4247 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4248 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4249 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4250 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4251 }
4252 
4253 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4254 {
4255 	return cfs_rq->avg.runnable_avg;
4256 }
4257 
4258 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4259 {
4260 	return cfs_rq->avg.load_avg;
4261 }
4262 
4263 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4264 
4265 static inline unsigned long task_util(struct task_struct *p)
4266 {
4267 	return READ_ONCE(p->se.avg.util_avg);
4268 }
4269 
4270 static inline unsigned long _task_util_est(struct task_struct *p)
4271 {
4272 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4273 
4274 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4275 }
4276 
4277 static inline unsigned long task_util_est(struct task_struct *p)
4278 {
4279 	return max(task_util(p), _task_util_est(p));
4280 }
4281 
4282 #ifdef CONFIG_UCLAMP_TASK
4283 static inline unsigned long uclamp_task_util(struct task_struct *p,
4284 					     unsigned long uclamp_min,
4285 					     unsigned long uclamp_max)
4286 {
4287 	return clamp(task_util_est(p), uclamp_min, uclamp_max);
4288 }
4289 #else
4290 static inline unsigned long uclamp_task_util(struct task_struct *p,
4291 					     unsigned long uclamp_min,
4292 					     unsigned long uclamp_max)
4293 {
4294 	return task_util_est(p);
4295 }
4296 #endif
4297 
4298 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4299 				    struct task_struct *p)
4300 {
4301 	unsigned int enqueued;
4302 
4303 	if (!sched_feat(UTIL_EST))
4304 		return;
4305 
4306 	/* Update root cfs_rq's estimated utilization */
4307 	enqueued  = cfs_rq->avg.util_est.enqueued;
4308 	enqueued += _task_util_est(p);
4309 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4310 
4311 	trace_sched_util_est_cfs_tp(cfs_rq);
4312 }
4313 
4314 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4315 				    struct task_struct *p)
4316 {
4317 	unsigned int enqueued;
4318 
4319 	if (!sched_feat(UTIL_EST))
4320 		return;
4321 
4322 	/* Update root cfs_rq's estimated utilization */
4323 	enqueued  = cfs_rq->avg.util_est.enqueued;
4324 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4325 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4326 
4327 	trace_sched_util_est_cfs_tp(cfs_rq);
4328 }
4329 
4330 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4331 
4332 /*
4333  * Check if a (signed) value is within a specified (unsigned) margin,
4334  * based on the observation that:
4335  *
4336  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4337  *
4338  * NOTE: this only works when value + margin < INT_MAX.
4339  */
4340 static inline bool within_margin(int value, int margin)
4341 {
4342 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4343 }
4344 
4345 static inline void util_est_update(struct cfs_rq *cfs_rq,
4346 				   struct task_struct *p,
4347 				   bool task_sleep)
4348 {
4349 	long last_ewma_diff, last_enqueued_diff;
4350 	struct util_est ue;
4351 
4352 	if (!sched_feat(UTIL_EST))
4353 		return;
4354 
4355 	/*
4356 	 * Skip update of task's estimated utilization when the task has not
4357 	 * yet completed an activation, e.g. being migrated.
4358 	 */
4359 	if (!task_sleep)
4360 		return;
4361 
4362 	/*
4363 	 * If the PELT values haven't changed since enqueue time,
4364 	 * skip the util_est update.
4365 	 */
4366 	ue = p->se.avg.util_est;
4367 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4368 		return;
4369 
4370 	last_enqueued_diff = ue.enqueued;
4371 
4372 	/*
4373 	 * Reset EWMA on utilization increases, the moving average is used only
4374 	 * to smooth utilization decreases.
4375 	 */
4376 	ue.enqueued = task_util(p);
4377 	if (sched_feat(UTIL_EST_FASTUP)) {
4378 		if (ue.ewma < ue.enqueued) {
4379 			ue.ewma = ue.enqueued;
4380 			goto done;
4381 		}
4382 	}
4383 
4384 	/*
4385 	 * Skip update of task's estimated utilization when its members are
4386 	 * already ~1% close to its last activation value.
4387 	 */
4388 	last_ewma_diff = ue.enqueued - ue.ewma;
4389 	last_enqueued_diff -= ue.enqueued;
4390 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4391 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4392 			goto done;
4393 
4394 		return;
4395 	}
4396 
4397 	/*
4398 	 * To avoid overestimation of actual task utilization, skip updates if
4399 	 * we cannot grant there is idle time in this CPU.
4400 	 */
4401 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4402 		return;
4403 
4404 	/*
4405 	 * Update Task's estimated utilization
4406 	 *
4407 	 * When *p completes an activation we can consolidate another sample
4408 	 * of the task size. This is done by storing the current PELT value
4409 	 * as ue.enqueued and by using this value to update the Exponential
4410 	 * Weighted Moving Average (EWMA):
4411 	 *
4412 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4413 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4414 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4415 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4416 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4417 	 *
4418 	 * Where 'w' is the weight of new samples, which is configured to be
4419 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4420 	 */
4421 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4422 	ue.ewma  += last_ewma_diff;
4423 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4424 done:
4425 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4426 	WRITE_ONCE(p->se.avg.util_est, ue);
4427 
4428 	trace_sched_util_est_se_tp(&p->se);
4429 }
4430 
4431 static inline int util_fits_cpu(unsigned long util,
4432 				unsigned long uclamp_min,
4433 				unsigned long uclamp_max,
4434 				int cpu)
4435 {
4436 	unsigned long capacity_orig, capacity_orig_thermal;
4437 	unsigned long capacity = capacity_of(cpu);
4438 	bool fits, uclamp_max_fits;
4439 
4440 	/*
4441 	 * Check if the real util fits without any uclamp boost/cap applied.
4442 	 */
4443 	fits = fits_capacity(util, capacity);
4444 
4445 	if (!uclamp_is_used())
4446 		return fits;
4447 
4448 	/*
4449 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4450 	 * uclamp_max. We only care about capacity pressure (by using
4451 	 * capacity_of()) for comparing against the real util.
4452 	 *
4453 	 * If a task is boosted to 1024 for example, we don't want a tiny
4454 	 * pressure to skew the check whether it fits a CPU or not.
4455 	 *
4456 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4457 	 * should fit a little cpu even if there's some pressure.
4458 	 *
4459 	 * Only exception is for thermal pressure since it has a direct impact
4460 	 * on available OPP of the system.
4461 	 *
4462 	 * We honour it for uclamp_min only as a drop in performance level
4463 	 * could result in not getting the requested minimum performance level.
4464 	 *
4465 	 * For uclamp_max, we can tolerate a drop in performance level as the
4466 	 * goal is to cap the task. So it's okay if it's getting less.
4467 	 *
4468 	 * In case of capacity inversion we should honour the inverted capacity
4469 	 * for both uclamp_min and uclamp_max all the time.
4470 	 */
4471 	capacity_orig = cpu_in_capacity_inversion(cpu);
4472 	if (capacity_orig) {
4473 		capacity_orig_thermal = capacity_orig;
4474 	} else {
4475 		capacity_orig = capacity_orig_of(cpu);
4476 		capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4477 	}
4478 
4479 	/*
4480 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4481 	 * But we do have some corner cases to cater for..
4482 	 *
4483 	 *
4484 	 *                                 C=z
4485 	 *   |                             ___
4486 	 *   |                  C=y       |   |
4487 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4488 	 *   |      C=x        |   |      |   |
4489 	 *   |      ___        |   |      |   |
4490 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4491 	 *   |     |   |       |   |      |   |
4492 	 *   |     |   |       |   |      |   |
4493 	 *   +----------------------------------------
4494 	 *         cpu0        cpu1       cpu2
4495 	 *
4496 	 *   In the above example if a task is capped to a specific performance
4497 	 *   point, y, then when:
4498 	 *
4499 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4500 	 *     to cpu1
4501 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4502 	 *     uclamp_max request.
4503 	 *
4504 	 *   which is what we're enforcing here. A task always fits if
4505 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4506 	 *   the normal upmigration rules should withhold still.
4507 	 *
4508 	 *   Only exception is when we are on max capacity, then we need to be
4509 	 *   careful not to block overutilized state. This is so because:
4510 	 *
4511 	 *     1. There's no concept of capping at max_capacity! We can't go
4512 	 *        beyond this performance level anyway.
4513 	 *     2. The system is being saturated when we're operating near
4514 	 *        max capacity, it doesn't make sense to block overutilized.
4515 	 */
4516 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4517 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4518 	fits = fits || uclamp_max_fits;
4519 
4520 	/*
4521 	 *
4522 	 *                                 C=z
4523 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4524 	 *   |                  C=y       |   |
4525 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4526 	 *   |      C=x        |   |      |   |
4527 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4528 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4529 	 *   |     |   |       |   |      |   |
4530 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4531 	 *   +----------------------------------------
4532 	 *         cpu0        cpu1       cpu2
4533 	 *
4534 	 * a) If util > uclamp_max, then we're capped, we don't care about
4535 	 *    actual fitness value here. We only care if uclamp_max fits
4536 	 *    capacity without taking margin/pressure into account.
4537 	 *    See comment above.
4538 	 *
4539 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4540 	 *    fits_capacity() rules apply. Except we need to ensure that we
4541 	 *    enforce we remain within uclamp_max, see comment above.
4542 	 *
4543 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4544 	 *    need to take into account the boosted value fits the CPU without
4545 	 *    taking margin/pressure into account.
4546 	 *
4547 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4548 	 * just need to consider an extra check for case (c) after ensuring we
4549 	 * handle the case uclamp_min > uclamp_max.
4550 	 */
4551 	uclamp_min = min(uclamp_min, uclamp_max);
4552 	if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
4553 		fits = fits && (uclamp_min <= capacity_orig_thermal);
4554 
4555 	return fits;
4556 }
4557 
4558 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4559 {
4560 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4561 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4562 	unsigned long util = task_util_est(p);
4563 	return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
4564 }
4565 
4566 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4567 {
4568 	if (!sched_asym_cpucap_active())
4569 		return;
4570 
4571 	if (!p || p->nr_cpus_allowed == 1) {
4572 		rq->misfit_task_load = 0;
4573 		return;
4574 	}
4575 
4576 	if (task_fits_cpu(p, cpu_of(rq))) {
4577 		rq->misfit_task_load = 0;
4578 		return;
4579 	}
4580 
4581 	/*
4582 	 * Make sure that misfit_task_load will not be null even if
4583 	 * task_h_load() returns 0.
4584 	 */
4585 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4586 }
4587 
4588 #else /* CONFIG_SMP */
4589 
4590 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4591 {
4592 	return true;
4593 }
4594 
4595 #define UPDATE_TG	0x0
4596 #define SKIP_AGE_LOAD	0x0
4597 #define DO_ATTACH	0x0
4598 #define DO_DETACH	0x0
4599 
4600 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4601 {
4602 	cfs_rq_util_change(cfs_rq, 0);
4603 }
4604 
4605 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4606 
4607 static inline void
4608 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4609 static inline void
4610 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4611 
4612 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4613 {
4614 	return 0;
4615 }
4616 
4617 static inline void
4618 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4619 
4620 static inline void
4621 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4622 
4623 static inline void
4624 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4625 		bool task_sleep) {}
4626 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4627 
4628 #endif /* CONFIG_SMP */
4629 
4630 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4631 {
4632 #ifdef CONFIG_SCHED_DEBUG
4633 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4634 
4635 	if (d < 0)
4636 		d = -d;
4637 
4638 	if (d > 3*sysctl_sched_latency)
4639 		schedstat_inc(cfs_rq->nr_spread_over);
4640 #endif
4641 }
4642 
4643 static void
4644 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4645 {
4646 	u64 vruntime = cfs_rq->min_vruntime;
4647 
4648 	/*
4649 	 * The 'current' period is already promised to the current tasks,
4650 	 * however the extra weight of the new task will slow them down a
4651 	 * little, place the new task so that it fits in the slot that
4652 	 * stays open at the end.
4653 	 */
4654 	if (initial && sched_feat(START_DEBIT))
4655 		vruntime += sched_vslice(cfs_rq, se);
4656 
4657 	/* sleeps up to a single latency don't count. */
4658 	if (!initial) {
4659 		unsigned long thresh;
4660 
4661 		if (se_is_idle(se))
4662 			thresh = sysctl_sched_min_granularity;
4663 		else
4664 			thresh = sysctl_sched_latency;
4665 
4666 		/*
4667 		 * Halve their sleep time's effect, to allow
4668 		 * for a gentler effect of sleepers:
4669 		 */
4670 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4671 			thresh >>= 1;
4672 
4673 		vruntime -= thresh;
4674 	}
4675 
4676 	/* ensure we never gain time by being placed backwards. */
4677 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4678 }
4679 
4680 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4681 
4682 static inline bool cfs_bandwidth_used(void);
4683 
4684 /*
4685  * MIGRATION
4686  *
4687  *	dequeue
4688  *	  update_curr()
4689  *	    update_min_vruntime()
4690  *	  vruntime -= min_vruntime
4691  *
4692  *	enqueue
4693  *	  update_curr()
4694  *	    update_min_vruntime()
4695  *	  vruntime += min_vruntime
4696  *
4697  * this way the vruntime transition between RQs is done when both
4698  * min_vruntime are up-to-date.
4699  *
4700  * WAKEUP (remote)
4701  *
4702  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4703  *	  vruntime -= min_vruntime
4704  *
4705  *	enqueue
4706  *	  update_curr()
4707  *	    update_min_vruntime()
4708  *	  vruntime += min_vruntime
4709  *
4710  * this way we don't have the most up-to-date min_vruntime on the originating
4711  * CPU and an up-to-date min_vruntime on the destination CPU.
4712  */
4713 
4714 static void
4715 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4716 {
4717 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4718 	bool curr = cfs_rq->curr == se;
4719 
4720 	/*
4721 	 * If we're the current task, we must renormalise before calling
4722 	 * update_curr().
4723 	 */
4724 	if (renorm && curr)
4725 		se->vruntime += cfs_rq->min_vruntime;
4726 
4727 	update_curr(cfs_rq);
4728 
4729 	/*
4730 	 * Otherwise, renormalise after, such that we're placed at the current
4731 	 * moment in time, instead of some random moment in the past. Being
4732 	 * placed in the past could significantly boost this task to the
4733 	 * fairness detriment of existing tasks.
4734 	 */
4735 	if (renorm && !curr)
4736 		se->vruntime += cfs_rq->min_vruntime;
4737 
4738 	/*
4739 	 * When enqueuing a sched_entity, we must:
4740 	 *   - Update loads to have both entity and cfs_rq synced with now.
4741 	 *   - For group_entity, update its runnable_weight to reflect the new
4742 	 *     h_nr_running of its group cfs_rq.
4743 	 *   - For group_entity, update its weight to reflect the new share of
4744 	 *     its group cfs_rq
4745 	 *   - Add its new weight to cfs_rq->load.weight
4746 	 */
4747 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4748 	se_update_runnable(se);
4749 	update_cfs_group(se);
4750 	account_entity_enqueue(cfs_rq, se);
4751 
4752 	if (flags & ENQUEUE_WAKEUP)
4753 		place_entity(cfs_rq, se, 0);
4754 
4755 	check_schedstat_required();
4756 	update_stats_enqueue_fair(cfs_rq, se, flags);
4757 	check_spread(cfs_rq, se);
4758 	if (!curr)
4759 		__enqueue_entity(cfs_rq, se);
4760 	se->on_rq = 1;
4761 
4762 	if (cfs_rq->nr_running == 1) {
4763 		check_enqueue_throttle(cfs_rq);
4764 		if (!throttled_hierarchy(cfs_rq))
4765 			list_add_leaf_cfs_rq(cfs_rq);
4766 	}
4767 }
4768 
4769 static void __clear_buddies_last(struct sched_entity *se)
4770 {
4771 	for_each_sched_entity(se) {
4772 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4773 		if (cfs_rq->last != se)
4774 			break;
4775 
4776 		cfs_rq->last = NULL;
4777 	}
4778 }
4779 
4780 static void __clear_buddies_next(struct sched_entity *se)
4781 {
4782 	for_each_sched_entity(se) {
4783 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4784 		if (cfs_rq->next != se)
4785 			break;
4786 
4787 		cfs_rq->next = NULL;
4788 	}
4789 }
4790 
4791 static void __clear_buddies_skip(struct sched_entity *se)
4792 {
4793 	for_each_sched_entity(se) {
4794 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4795 		if (cfs_rq->skip != se)
4796 			break;
4797 
4798 		cfs_rq->skip = NULL;
4799 	}
4800 }
4801 
4802 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4803 {
4804 	if (cfs_rq->last == se)
4805 		__clear_buddies_last(se);
4806 
4807 	if (cfs_rq->next == se)
4808 		__clear_buddies_next(se);
4809 
4810 	if (cfs_rq->skip == se)
4811 		__clear_buddies_skip(se);
4812 }
4813 
4814 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4815 
4816 static void
4817 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4818 {
4819 	int action = UPDATE_TG;
4820 
4821 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4822 		action |= DO_DETACH;
4823 
4824 	/*
4825 	 * Update run-time statistics of the 'current'.
4826 	 */
4827 	update_curr(cfs_rq);
4828 
4829 	/*
4830 	 * When dequeuing a sched_entity, we must:
4831 	 *   - Update loads to have both entity and cfs_rq synced with now.
4832 	 *   - For group_entity, update its runnable_weight to reflect the new
4833 	 *     h_nr_running of its group cfs_rq.
4834 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4835 	 *   - For group entity, update its weight to reflect the new share
4836 	 *     of its group cfs_rq.
4837 	 */
4838 	update_load_avg(cfs_rq, se, action);
4839 	se_update_runnable(se);
4840 
4841 	update_stats_dequeue_fair(cfs_rq, se, flags);
4842 
4843 	clear_buddies(cfs_rq, se);
4844 
4845 	if (se != cfs_rq->curr)
4846 		__dequeue_entity(cfs_rq, se);
4847 	se->on_rq = 0;
4848 	account_entity_dequeue(cfs_rq, se);
4849 
4850 	/*
4851 	 * Normalize after update_curr(); which will also have moved
4852 	 * min_vruntime if @se is the one holding it back. But before doing
4853 	 * update_min_vruntime() again, which will discount @se's position and
4854 	 * can move min_vruntime forward still more.
4855 	 */
4856 	if (!(flags & DEQUEUE_SLEEP))
4857 		se->vruntime -= cfs_rq->min_vruntime;
4858 
4859 	/* return excess runtime on last dequeue */
4860 	return_cfs_rq_runtime(cfs_rq);
4861 
4862 	update_cfs_group(se);
4863 
4864 	/*
4865 	 * Now advance min_vruntime if @se was the entity holding it back,
4866 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4867 	 * put back on, and if we advance min_vruntime, we'll be placed back
4868 	 * further than we started -- ie. we'll be penalized.
4869 	 */
4870 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4871 		update_min_vruntime(cfs_rq);
4872 
4873 	if (cfs_rq->nr_running == 0)
4874 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4875 }
4876 
4877 /*
4878  * Preempt the current task with a newly woken task if needed:
4879  */
4880 static void
4881 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4882 {
4883 	unsigned long ideal_runtime, delta_exec;
4884 	struct sched_entity *se;
4885 	s64 delta;
4886 
4887 	ideal_runtime = sched_slice(cfs_rq, curr);
4888 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4889 	if (delta_exec > ideal_runtime) {
4890 		resched_curr(rq_of(cfs_rq));
4891 		/*
4892 		 * The current task ran long enough, ensure it doesn't get
4893 		 * re-elected due to buddy favours.
4894 		 */
4895 		clear_buddies(cfs_rq, curr);
4896 		return;
4897 	}
4898 
4899 	/*
4900 	 * Ensure that a task that missed wakeup preemption by a
4901 	 * narrow margin doesn't have to wait for a full slice.
4902 	 * This also mitigates buddy induced latencies under load.
4903 	 */
4904 	if (delta_exec < sysctl_sched_min_granularity)
4905 		return;
4906 
4907 	se = __pick_first_entity(cfs_rq);
4908 	delta = curr->vruntime - se->vruntime;
4909 
4910 	if (delta < 0)
4911 		return;
4912 
4913 	if (delta > ideal_runtime)
4914 		resched_curr(rq_of(cfs_rq));
4915 }
4916 
4917 static void
4918 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4919 {
4920 	clear_buddies(cfs_rq, se);
4921 
4922 	/* 'current' is not kept within the tree. */
4923 	if (se->on_rq) {
4924 		/*
4925 		 * Any task has to be enqueued before it get to execute on
4926 		 * a CPU. So account for the time it spent waiting on the
4927 		 * runqueue.
4928 		 */
4929 		update_stats_wait_end_fair(cfs_rq, se);
4930 		__dequeue_entity(cfs_rq, se);
4931 		update_load_avg(cfs_rq, se, UPDATE_TG);
4932 	}
4933 
4934 	update_stats_curr_start(cfs_rq, se);
4935 	cfs_rq->curr = se;
4936 
4937 	/*
4938 	 * Track our maximum slice length, if the CPU's load is at
4939 	 * least twice that of our own weight (i.e. dont track it
4940 	 * when there are only lesser-weight tasks around):
4941 	 */
4942 	if (schedstat_enabled() &&
4943 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4944 		struct sched_statistics *stats;
4945 
4946 		stats = __schedstats_from_se(se);
4947 		__schedstat_set(stats->slice_max,
4948 				max((u64)stats->slice_max,
4949 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4950 	}
4951 
4952 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4953 }
4954 
4955 static int
4956 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4957 
4958 /*
4959  * Pick the next process, keeping these things in mind, in this order:
4960  * 1) keep things fair between processes/task groups
4961  * 2) pick the "next" process, since someone really wants that to run
4962  * 3) pick the "last" process, for cache locality
4963  * 4) do not run the "skip" process, if something else is available
4964  */
4965 static struct sched_entity *
4966 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4967 {
4968 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4969 	struct sched_entity *se;
4970 
4971 	/*
4972 	 * If curr is set we have to see if its left of the leftmost entity
4973 	 * still in the tree, provided there was anything in the tree at all.
4974 	 */
4975 	if (!left || (curr && entity_before(curr, left)))
4976 		left = curr;
4977 
4978 	se = left; /* ideally we run the leftmost entity */
4979 
4980 	/*
4981 	 * Avoid running the skip buddy, if running something else can
4982 	 * be done without getting too unfair.
4983 	 */
4984 	if (cfs_rq->skip && cfs_rq->skip == se) {
4985 		struct sched_entity *second;
4986 
4987 		if (se == curr) {
4988 			second = __pick_first_entity(cfs_rq);
4989 		} else {
4990 			second = __pick_next_entity(se);
4991 			if (!second || (curr && entity_before(curr, second)))
4992 				second = curr;
4993 		}
4994 
4995 		if (second && wakeup_preempt_entity(second, left) < 1)
4996 			se = second;
4997 	}
4998 
4999 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
5000 		/*
5001 		 * Someone really wants this to run. If it's not unfair, run it.
5002 		 */
5003 		se = cfs_rq->next;
5004 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
5005 		/*
5006 		 * Prefer last buddy, try to return the CPU to a preempted task.
5007 		 */
5008 		se = cfs_rq->last;
5009 	}
5010 
5011 	return se;
5012 }
5013 
5014 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5015 
5016 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5017 {
5018 	/*
5019 	 * If still on the runqueue then deactivate_task()
5020 	 * was not called and update_curr() has to be done:
5021 	 */
5022 	if (prev->on_rq)
5023 		update_curr(cfs_rq);
5024 
5025 	/* throttle cfs_rqs exceeding runtime */
5026 	check_cfs_rq_runtime(cfs_rq);
5027 
5028 	check_spread(cfs_rq, prev);
5029 
5030 	if (prev->on_rq) {
5031 		update_stats_wait_start_fair(cfs_rq, prev);
5032 		/* Put 'current' back into the tree. */
5033 		__enqueue_entity(cfs_rq, prev);
5034 		/* in !on_rq case, update occurred at dequeue */
5035 		update_load_avg(cfs_rq, prev, 0);
5036 	}
5037 	cfs_rq->curr = NULL;
5038 }
5039 
5040 static void
5041 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5042 {
5043 	/*
5044 	 * Update run-time statistics of the 'current'.
5045 	 */
5046 	update_curr(cfs_rq);
5047 
5048 	/*
5049 	 * Ensure that runnable average is periodically updated.
5050 	 */
5051 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5052 	update_cfs_group(curr);
5053 
5054 #ifdef CONFIG_SCHED_HRTICK
5055 	/*
5056 	 * queued ticks are scheduled to match the slice, so don't bother
5057 	 * validating it and just reschedule.
5058 	 */
5059 	if (queued) {
5060 		resched_curr(rq_of(cfs_rq));
5061 		return;
5062 	}
5063 	/*
5064 	 * don't let the period tick interfere with the hrtick preemption
5065 	 */
5066 	if (!sched_feat(DOUBLE_TICK) &&
5067 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5068 		return;
5069 #endif
5070 
5071 	if (cfs_rq->nr_running > 1)
5072 		check_preempt_tick(cfs_rq, curr);
5073 }
5074 
5075 
5076 /**************************************************
5077  * CFS bandwidth control machinery
5078  */
5079 
5080 #ifdef CONFIG_CFS_BANDWIDTH
5081 
5082 #ifdef CONFIG_JUMP_LABEL
5083 static struct static_key __cfs_bandwidth_used;
5084 
5085 static inline bool cfs_bandwidth_used(void)
5086 {
5087 	return static_key_false(&__cfs_bandwidth_used);
5088 }
5089 
5090 void cfs_bandwidth_usage_inc(void)
5091 {
5092 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5093 }
5094 
5095 void cfs_bandwidth_usage_dec(void)
5096 {
5097 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5098 }
5099 #else /* CONFIG_JUMP_LABEL */
5100 static bool cfs_bandwidth_used(void)
5101 {
5102 	return true;
5103 }
5104 
5105 void cfs_bandwidth_usage_inc(void) {}
5106 void cfs_bandwidth_usage_dec(void) {}
5107 #endif /* CONFIG_JUMP_LABEL */
5108 
5109 /*
5110  * default period for cfs group bandwidth.
5111  * default: 0.1s, units: nanoseconds
5112  */
5113 static inline u64 default_cfs_period(void)
5114 {
5115 	return 100000000ULL;
5116 }
5117 
5118 static inline u64 sched_cfs_bandwidth_slice(void)
5119 {
5120 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5121 }
5122 
5123 /*
5124  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5125  * directly instead of rq->clock to avoid adding additional synchronization
5126  * around rq->lock.
5127  *
5128  * requires cfs_b->lock
5129  */
5130 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5131 {
5132 	s64 runtime;
5133 
5134 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5135 		return;
5136 
5137 	cfs_b->runtime += cfs_b->quota;
5138 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5139 	if (runtime > 0) {
5140 		cfs_b->burst_time += runtime;
5141 		cfs_b->nr_burst++;
5142 	}
5143 
5144 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5145 	cfs_b->runtime_snap = cfs_b->runtime;
5146 }
5147 
5148 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5149 {
5150 	return &tg->cfs_bandwidth;
5151 }
5152 
5153 /* returns 0 on failure to allocate runtime */
5154 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5155 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5156 {
5157 	u64 min_amount, amount = 0;
5158 
5159 	lockdep_assert_held(&cfs_b->lock);
5160 
5161 	/* note: this is a positive sum as runtime_remaining <= 0 */
5162 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5163 
5164 	if (cfs_b->quota == RUNTIME_INF)
5165 		amount = min_amount;
5166 	else {
5167 		start_cfs_bandwidth(cfs_b);
5168 
5169 		if (cfs_b->runtime > 0) {
5170 			amount = min(cfs_b->runtime, min_amount);
5171 			cfs_b->runtime -= amount;
5172 			cfs_b->idle = 0;
5173 		}
5174 	}
5175 
5176 	cfs_rq->runtime_remaining += amount;
5177 
5178 	return cfs_rq->runtime_remaining > 0;
5179 }
5180 
5181 /* returns 0 on failure to allocate runtime */
5182 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5183 {
5184 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5185 	int ret;
5186 
5187 	raw_spin_lock(&cfs_b->lock);
5188 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5189 	raw_spin_unlock(&cfs_b->lock);
5190 
5191 	return ret;
5192 }
5193 
5194 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5195 {
5196 	/* dock delta_exec before expiring quota (as it could span periods) */
5197 	cfs_rq->runtime_remaining -= delta_exec;
5198 
5199 	if (likely(cfs_rq->runtime_remaining > 0))
5200 		return;
5201 
5202 	if (cfs_rq->throttled)
5203 		return;
5204 	/*
5205 	 * if we're unable to extend our runtime we resched so that the active
5206 	 * hierarchy can be throttled
5207 	 */
5208 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5209 		resched_curr(rq_of(cfs_rq));
5210 }
5211 
5212 static __always_inline
5213 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5214 {
5215 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5216 		return;
5217 
5218 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5219 }
5220 
5221 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5222 {
5223 	return cfs_bandwidth_used() && cfs_rq->throttled;
5224 }
5225 
5226 /* check whether cfs_rq, or any parent, is throttled */
5227 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5228 {
5229 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5230 }
5231 
5232 /*
5233  * Ensure that neither of the group entities corresponding to src_cpu or
5234  * dest_cpu are members of a throttled hierarchy when performing group
5235  * load-balance operations.
5236  */
5237 static inline int throttled_lb_pair(struct task_group *tg,
5238 				    int src_cpu, int dest_cpu)
5239 {
5240 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5241 
5242 	src_cfs_rq = tg->cfs_rq[src_cpu];
5243 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5244 
5245 	return throttled_hierarchy(src_cfs_rq) ||
5246 	       throttled_hierarchy(dest_cfs_rq);
5247 }
5248 
5249 static int tg_unthrottle_up(struct task_group *tg, void *data)
5250 {
5251 	struct rq *rq = data;
5252 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5253 
5254 	cfs_rq->throttle_count--;
5255 	if (!cfs_rq->throttle_count) {
5256 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5257 					     cfs_rq->throttled_clock_pelt;
5258 
5259 		/* Add cfs_rq with load or one or more already running entities to the list */
5260 		if (!cfs_rq_is_decayed(cfs_rq))
5261 			list_add_leaf_cfs_rq(cfs_rq);
5262 	}
5263 
5264 	return 0;
5265 }
5266 
5267 static int tg_throttle_down(struct task_group *tg, void *data)
5268 {
5269 	struct rq *rq = data;
5270 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5271 
5272 	/* group is entering throttled state, stop time */
5273 	if (!cfs_rq->throttle_count) {
5274 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5275 		list_del_leaf_cfs_rq(cfs_rq);
5276 	}
5277 	cfs_rq->throttle_count++;
5278 
5279 	return 0;
5280 }
5281 
5282 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5283 {
5284 	struct rq *rq = rq_of(cfs_rq);
5285 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5286 	struct sched_entity *se;
5287 	long task_delta, idle_task_delta, dequeue = 1;
5288 
5289 	raw_spin_lock(&cfs_b->lock);
5290 	/* This will start the period timer if necessary */
5291 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5292 		/*
5293 		 * We have raced with bandwidth becoming available, and if we
5294 		 * actually throttled the timer might not unthrottle us for an
5295 		 * entire period. We additionally needed to make sure that any
5296 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5297 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5298 		 * for 1ns of runtime rather than just check cfs_b.
5299 		 */
5300 		dequeue = 0;
5301 	} else {
5302 		list_add_tail_rcu(&cfs_rq->throttled_list,
5303 				  &cfs_b->throttled_cfs_rq);
5304 	}
5305 	raw_spin_unlock(&cfs_b->lock);
5306 
5307 	if (!dequeue)
5308 		return false;  /* Throttle no longer required. */
5309 
5310 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5311 
5312 	/* freeze hierarchy runnable averages while throttled */
5313 	rcu_read_lock();
5314 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5315 	rcu_read_unlock();
5316 
5317 	task_delta = cfs_rq->h_nr_running;
5318 	idle_task_delta = cfs_rq->idle_h_nr_running;
5319 	for_each_sched_entity(se) {
5320 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5321 		/* throttled entity or throttle-on-deactivate */
5322 		if (!se->on_rq)
5323 			goto done;
5324 
5325 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5326 
5327 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5328 			idle_task_delta = cfs_rq->h_nr_running;
5329 
5330 		qcfs_rq->h_nr_running -= task_delta;
5331 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5332 
5333 		if (qcfs_rq->load.weight) {
5334 			/* Avoid re-evaluating load for this entity: */
5335 			se = parent_entity(se);
5336 			break;
5337 		}
5338 	}
5339 
5340 	for_each_sched_entity(se) {
5341 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5342 		/* throttled entity or throttle-on-deactivate */
5343 		if (!se->on_rq)
5344 			goto done;
5345 
5346 		update_load_avg(qcfs_rq, se, 0);
5347 		se_update_runnable(se);
5348 
5349 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5350 			idle_task_delta = cfs_rq->h_nr_running;
5351 
5352 		qcfs_rq->h_nr_running -= task_delta;
5353 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5354 	}
5355 
5356 	/* At this point se is NULL and we are at root level*/
5357 	sub_nr_running(rq, task_delta);
5358 
5359 done:
5360 	/*
5361 	 * Note: distribution will already see us throttled via the
5362 	 * throttled-list.  rq->lock protects completion.
5363 	 */
5364 	cfs_rq->throttled = 1;
5365 	cfs_rq->throttled_clock = rq_clock(rq);
5366 	return true;
5367 }
5368 
5369 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5370 {
5371 	struct rq *rq = rq_of(cfs_rq);
5372 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5373 	struct sched_entity *se;
5374 	long task_delta, idle_task_delta;
5375 
5376 	se = cfs_rq->tg->se[cpu_of(rq)];
5377 
5378 	cfs_rq->throttled = 0;
5379 
5380 	update_rq_clock(rq);
5381 
5382 	raw_spin_lock(&cfs_b->lock);
5383 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5384 	list_del_rcu(&cfs_rq->throttled_list);
5385 	raw_spin_unlock(&cfs_b->lock);
5386 
5387 	/* update hierarchical throttle state */
5388 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5389 
5390 	if (!cfs_rq->load.weight) {
5391 		if (!cfs_rq->on_list)
5392 			return;
5393 		/*
5394 		 * Nothing to run but something to decay (on_list)?
5395 		 * Complete the branch.
5396 		 */
5397 		for_each_sched_entity(se) {
5398 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5399 				break;
5400 		}
5401 		goto unthrottle_throttle;
5402 	}
5403 
5404 	task_delta = cfs_rq->h_nr_running;
5405 	idle_task_delta = cfs_rq->idle_h_nr_running;
5406 	for_each_sched_entity(se) {
5407 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5408 
5409 		if (se->on_rq)
5410 			break;
5411 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5412 
5413 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5414 			idle_task_delta = cfs_rq->h_nr_running;
5415 
5416 		qcfs_rq->h_nr_running += task_delta;
5417 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5418 
5419 		/* end evaluation on encountering a throttled cfs_rq */
5420 		if (cfs_rq_throttled(qcfs_rq))
5421 			goto unthrottle_throttle;
5422 	}
5423 
5424 	for_each_sched_entity(se) {
5425 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5426 
5427 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5428 		se_update_runnable(se);
5429 
5430 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5431 			idle_task_delta = cfs_rq->h_nr_running;
5432 
5433 		qcfs_rq->h_nr_running += task_delta;
5434 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5435 
5436 		/* end evaluation on encountering a throttled cfs_rq */
5437 		if (cfs_rq_throttled(qcfs_rq))
5438 			goto unthrottle_throttle;
5439 	}
5440 
5441 	/* At this point se is NULL and we are at root level*/
5442 	add_nr_running(rq, task_delta);
5443 
5444 unthrottle_throttle:
5445 	assert_list_leaf_cfs_rq(rq);
5446 
5447 	/* Determine whether we need to wake up potentially idle CPU: */
5448 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5449 		resched_curr(rq);
5450 }
5451 
5452 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5453 {
5454 	struct cfs_rq *cfs_rq;
5455 	u64 runtime, remaining = 1;
5456 
5457 	rcu_read_lock();
5458 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5459 				throttled_list) {
5460 		struct rq *rq = rq_of(cfs_rq);
5461 		struct rq_flags rf;
5462 
5463 		rq_lock_irqsave(rq, &rf);
5464 		if (!cfs_rq_throttled(cfs_rq))
5465 			goto next;
5466 
5467 		/* By the above check, this should never be true */
5468 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5469 
5470 		raw_spin_lock(&cfs_b->lock);
5471 		runtime = -cfs_rq->runtime_remaining + 1;
5472 		if (runtime > cfs_b->runtime)
5473 			runtime = cfs_b->runtime;
5474 		cfs_b->runtime -= runtime;
5475 		remaining = cfs_b->runtime;
5476 		raw_spin_unlock(&cfs_b->lock);
5477 
5478 		cfs_rq->runtime_remaining += runtime;
5479 
5480 		/* we check whether we're throttled above */
5481 		if (cfs_rq->runtime_remaining > 0)
5482 			unthrottle_cfs_rq(cfs_rq);
5483 
5484 next:
5485 		rq_unlock_irqrestore(rq, &rf);
5486 
5487 		if (!remaining)
5488 			break;
5489 	}
5490 	rcu_read_unlock();
5491 }
5492 
5493 /*
5494  * Responsible for refilling a task_group's bandwidth and unthrottling its
5495  * cfs_rqs as appropriate. If there has been no activity within the last
5496  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5497  * used to track this state.
5498  */
5499 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5500 {
5501 	int throttled;
5502 
5503 	/* no need to continue the timer with no bandwidth constraint */
5504 	if (cfs_b->quota == RUNTIME_INF)
5505 		goto out_deactivate;
5506 
5507 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5508 	cfs_b->nr_periods += overrun;
5509 
5510 	/* Refill extra burst quota even if cfs_b->idle */
5511 	__refill_cfs_bandwidth_runtime(cfs_b);
5512 
5513 	/*
5514 	 * idle depends on !throttled (for the case of a large deficit), and if
5515 	 * we're going inactive then everything else can be deferred
5516 	 */
5517 	if (cfs_b->idle && !throttled)
5518 		goto out_deactivate;
5519 
5520 	if (!throttled) {
5521 		/* mark as potentially idle for the upcoming period */
5522 		cfs_b->idle = 1;
5523 		return 0;
5524 	}
5525 
5526 	/* account preceding periods in which throttling occurred */
5527 	cfs_b->nr_throttled += overrun;
5528 
5529 	/*
5530 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5531 	 */
5532 	while (throttled && cfs_b->runtime > 0) {
5533 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5534 		/* we can't nest cfs_b->lock while distributing bandwidth */
5535 		distribute_cfs_runtime(cfs_b);
5536 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5537 
5538 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5539 	}
5540 
5541 	/*
5542 	 * While we are ensured activity in the period following an
5543 	 * unthrottle, this also covers the case in which the new bandwidth is
5544 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5545 	 * timer to remain active while there are any throttled entities.)
5546 	 */
5547 	cfs_b->idle = 0;
5548 
5549 	return 0;
5550 
5551 out_deactivate:
5552 	return 1;
5553 }
5554 
5555 /* a cfs_rq won't donate quota below this amount */
5556 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5557 /* minimum remaining period time to redistribute slack quota */
5558 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5559 /* how long we wait to gather additional slack before distributing */
5560 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5561 
5562 /*
5563  * Are we near the end of the current quota period?
5564  *
5565  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5566  * hrtimer base being cleared by hrtimer_start. In the case of
5567  * migrate_hrtimers, base is never cleared, so we are fine.
5568  */
5569 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5570 {
5571 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5572 	s64 remaining;
5573 
5574 	/* if the call-back is running a quota refresh is already occurring */
5575 	if (hrtimer_callback_running(refresh_timer))
5576 		return 1;
5577 
5578 	/* is a quota refresh about to occur? */
5579 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5580 	if (remaining < (s64)min_expire)
5581 		return 1;
5582 
5583 	return 0;
5584 }
5585 
5586 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5587 {
5588 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5589 
5590 	/* if there's a quota refresh soon don't bother with slack */
5591 	if (runtime_refresh_within(cfs_b, min_left))
5592 		return;
5593 
5594 	/* don't push forwards an existing deferred unthrottle */
5595 	if (cfs_b->slack_started)
5596 		return;
5597 	cfs_b->slack_started = true;
5598 
5599 	hrtimer_start(&cfs_b->slack_timer,
5600 			ns_to_ktime(cfs_bandwidth_slack_period),
5601 			HRTIMER_MODE_REL);
5602 }
5603 
5604 /* we know any runtime found here is valid as update_curr() precedes return */
5605 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5606 {
5607 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5608 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5609 
5610 	if (slack_runtime <= 0)
5611 		return;
5612 
5613 	raw_spin_lock(&cfs_b->lock);
5614 	if (cfs_b->quota != RUNTIME_INF) {
5615 		cfs_b->runtime += slack_runtime;
5616 
5617 		/* we are under rq->lock, defer unthrottling using a timer */
5618 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5619 		    !list_empty(&cfs_b->throttled_cfs_rq))
5620 			start_cfs_slack_bandwidth(cfs_b);
5621 	}
5622 	raw_spin_unlock(&cfs_b->lock);
5623 
5624 	/* even if it's not valid for return we don't want to try again */
5625 	cfs_rq->runtime_remaining -= slack_runtime;
5626 }
5627 
5628 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5629 {
5630 	if (!cfs_bandwidth_used())
5631 		return;
5632 
5633 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5634 		return;
5635 
5636 	__return_cfs_rq_runtime(cfs_rq);
5637 }
5638 
5639 /*
5640  * This is done with a timer (instead of inline with bandwidth return) since
5641  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5642  */
5643 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5644 {
5645 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5646 	unsigned long flags;
5647 
5648 	/* confirm we're still not at a refresh boundary */
5649 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5650 	cfs_b->slack_started = false;
5651 
5652 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5653 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5654 		return;
5655 	}
5656 
5657 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5658 		runtime = cfs_b->runtime;
5659 
5660 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5661 
5662 	if (!runtime)
5663 		return;
5664 
5665 	distribute_cfs_runtime(cfs_b);
5666 }
5667 
5668 /*
5669  * When a group wakes up we want to make sure that its quota is not already
5670  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5671  * runtime as update_curr() throttling can not trigger until it's on-rq.
5672  */
5673 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5674 {
5675 	if (!cfs_bandwidth_used())
5676 		return;
5677 
5678 	/* an active group must be handled by the update_curr()->put() path */
5679 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5680 		return;
5681 
5682 	/* ensure the group is not already throttled */
5683 	if (cfs_rq_throttled(cfs_rq))
5684 		return;
5685 
5686 	/* update runtime allocation */
5687 	account_cfs_rq_runtime(cfs_rq, 0);
5688 	if (cfs_rq->runtime_remaining <= 0)
5689 		throttle_cfs_rq(cfs_rq);
5690 }
5691 
5692 static void sync_throttle(struct task_group *tg, int cpu)
5693 {
5694 	struct cfs_rq *pcfs_rq, *cfs_rq;
5695 
5696 	if (!cfs_bandwidth_used())
5697 		return;
5698 
5699 	if (!tg->parent)
5700 		return;
5701 
5702 	cfs_rq = tg->cfs_rq[cpu];
5703 	pcfs_rq = tg->parent->cfs_rq[cpu];
5704 
5705 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5706 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5707 }
5708 
5709 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5710 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5711 {
5712 	if (!cfs_bandwidth_used())
5713 		return false;
5714 
5715 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5716 		return false;
5717 
5718 	/*
5719 	 * it's possible for a throttled entity to be forced into a running
5720 	 * state (e.g. set_curr_task), in this case we're finished.
5721 	 */
5722 	if (cfs_rq_throttled(cfs_rq))
5723 		return true;
5724 
5725 	return throttle_cfs_rq(cfs_rq);
5726 }
5727 
5728 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5729 {
5730 	struct cfs_bandwidth *cfs_b =
5731 		container_of(timer, struct cfs_bandwidth, slack_timer);
5732 
5733 	do_sched_cfs_slack_timer(cfs_b);
5734 
5735 	return HRTIMER_NORESTART;
5736 }
5737 
5738 extern const u64 max_cfs_quota_period;
5739 
5740 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5741 {
5742 	struct cfs_bandwidth *cfs_b =
5743 		container_of(timer, struct cfs_bandwidth, period_timer);
5744 	unsigned long flags;
5745 	int overrun;
5746 	int idle = 0;
5747 	int count = 0;
5748 
5749 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5750 	for (;;) {
5751 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5752 		if (!overrun)
5753 			break;
5754 
5755 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5756 
5757 		if (++count > 3) {
5758 			u64 new, old = ktime_to_ns(cfs_b->period);
5759 
5760 			/*
5761 			 * Grow period by a factor of 2 to avoid losing precision.
5762 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5763 			 * to fail.
5764 			 */
5765 			new = old * 2;
5766 			if (new < max_cfs_quota_period) {
5767 				cfs_b->period = ns_to_ktime(new);
5768 				cfs_b->quota *= 2;
5769 				cfs_b->burst *= 2;
5770 
5771 				pr_warn_ratelimited(
5772 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5773 					smp_processor_id(),
5774 					div_u64(new, NSEC_PER_USEC),
5775 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5776 			} else {
5777 				pr_warn_ratelimited(
5778 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5779 					smp_processor_id(),
5780 					div_u64(old, NSEC_PER_USEC),
5781 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5782 			}
5783 
5784 			/* reset count so we don't come right back in here */
5785 			count = 0;
5786 		}
5787 	}
5788 	if (idle)
5789 		cfs_b->period_active = 0;
5790 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5791 
5792 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5793 }
5794 
5795 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5796 {
5797 	raw_spin_lock_init(&cfs_b->lock);
5798 	cfs_b->runtime = 0;
5799 	cfs_b->quota = RUNTIME_INF;
5800 	cfs_b->period = ns_to_ktime(default_cfs_period());
5801 	cfs_b->burst = 0;
5802 
5803 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5804 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5805 	cfs_b->period_timer.function = sched_cfs_period_timer;
5806 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5807 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5808 	cfs_b->slack_started = false;
5809 }
5810 
5811 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5812 {
5813 	cfs_rq->runtime_enabled = 0;
5814 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5815 }
5816 
5817 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5818 {
5819 	lockdep_assert_held(&cfs_b->lock);
5820 
5821 	if (cfs_b->period_active)
5822 		return;
5823 
5824 	cfs_b->period_active = 1;
5825 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5826 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5827 }
5828 
5829 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5830 {
5831 	/* init_cfs_bandwidth() was not called */
5832 	if (!cfs_b->throttled_cfs_rq.next)
5833 		return;
5834 
5835 	hrtimer_cancel(&cfs_b->period_timer);
5836 	hrtimer_cancel(&cfs_b->slack_timer);
5837 }
5838 
5839 /*
5840  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5841  *
5842  * The race is harmless, since modifying bandwidth settings of unhooked group
5843  * bits doesn't do much.
5844  */
5845 
5846 /* cpu online callback */
5847 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5848 {
5849 	struct task_group *tg;
5850 
5851 	lockdep_assert_rq_held(rq);
5852 
5853 	rcu_read_lock();
5854 	list_for_each_entry_rcu(tg, &task_groups, list) {
5855 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5856 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5857 
5858 		raw_spin_lock(&cfs_b->lock);
5859 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5860 		raw_spin_unlock(&cfs_b->lock);
5861 	}
5862 	rcu_read_unlock();
5863 }
5864 
5865 /* cpu offline callback */
5866 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5867 {
5868 	struct task_group *tg;
5869 
5870 	lockdep_assert_rq_held(rq);
5871 
5872 	rcu_read_lock();
5873 	list_for_each_entry_rcu(tg, &task_groups, list) {
5874 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5875 
5876 		if (!cfs_rq->runtime_enabled)
5877 			continue;
5878 
5879 		/*
5880 		 * clock_task is not advancing so we just need to make sure
5881 		 * there's some valid quota amount
5882 		 */
5883 		cfs_rq->runtime_remaining = 1;
5884 		/*
5885 		 * Offline rq is schedulable till CPU is completely disabled
5886 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5887 		 */
5888 		cfs_rq->runtime_enabled = 0;
5889 
5890 		if (cfs_rq_throttled(cfs_rq))
5891 			unthrottle_cfs_rq(cfs_rq);
5892 	}
5893 	rcu_read_unlock();
5894 }
5895 
5896 #else /* CONFIG_CFS_BANDWIDTH */
5897 
5898 static inline bool cfs_bandwidth_used(void)
5899 {
5900 	return false;
5901 }
5902 
5903 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5904 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5905 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5906 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5907 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5908 
5909 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5910 {
5911 	return 0;
5912 }
5913 
5914 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5915 {
5916 	return 0;
5917 }
5918 
5919 static inline int throttled_lb_pair(struct task_group *tg,
5920 				    int src_cpu, int dest_cpu)
5921 {
5922 	return 0;
5923 }
5924 
5925 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5926 
5927 #ifdef CONFIG_FAIR_GROUP_SCHED
5928 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5929 #endif
5930 
5931 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5932 {
5933 	return NULL;
5934 }
5935 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5936 static inline void update_runtime_enabled(struct rq *rq) {}
5937 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5938 
5939 #endif /* CONFIG_CFS_BANDWIDTH */
5940 
5941 /**************************************************
5942  * CFS operations on tasks:
5943  */
5944 
5945 #ifdef CONFIG_SCHED_HRTICK
5946 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5947 {
5948 	struct sched_entity *se = &p->se;
5949 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5950 
5951 	SCHED_WARN_ON(task_rq(p) != rq);
5952 
5953 	if (rq->cfs.h_nr_running > 1) {
5954 		u64 slice = sched_slice(cfs_rq, se);
5955 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5956 		s64 delta = slice - ran;
5957 
5958 		if (delta < 0) {
5959 			if (task_current(rq, p))
5960 				resched_curr(rq);
5961 			return;
5962 		}
5963 		hrtick_start(rq, delta);
5964 	}
5965 }
5966 
5967 /*
5968  * called from enqueue/dequeue and updates the hrtick when the
5969  * current task is from our class and nr_running is low enough
5970  * to matter.
5971  */
5972 static void hrtick_update(struct rq *rq)
5973 {
5974 	struct task_struct *curr = rq->curr;
5975 
5976 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5977 		return;
5978 
5979 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5980 		hrtick_start_fair(rq, curr);
5981 }
5982 #else /* !CONFIG_SCHED_HRTICK */
5983 static inline void
5984 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5985 {
5986 }
5987 
5988 static inline void hrtick_update(struct rq *rq)
5989 {
5990 }
5991 #endif
5992 
5993 #ifdef CONFIG_SMP
5994 static inline bool cpu_overutilized(int cpu)
5995 {
5996 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
5997 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
5998 
5999 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6000 }
6001 
6002 static inline void update_overutilized_status(struct rq *rq)
6003 {
6004 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6005 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6006 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6007 	}
6008 }
6009 #else
6010 static inline void update_overutilized_status(struct rq *rq) { }
6011 #endif
6012 
6013 /* Runqueue only has SCHED_IDLE tasks enqueued */
6014 static int sched_idle_rq(struct rq *rq)
6015 {
6016 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6017 			rq->nr_running);
6018 }
6019 
6020 /*
6021  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
6022  * of idle_nr_running, which does not consider idle descendants of normal
6023  * entities.
6024  */
6025 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
6026 {
6027 	return cfs_rq->nr_running &&
6028 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
6029 }
6030 
6031 #ifdef CONFIG_SMP
6032 static int sched_idle_cpu(int cpu)
6033 {
6034 	return sched_idle_rq(cpu_rq(cpu));
6035 }
6036 #endif
6037 
6038 /*
6039  * The enqueue_task method is called before nr_running is
6040  * increased. Here we update the fair scheduling stats and
6041  * then put the task into the rbtree:
6042  */
6043 static void
6044 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6045 {
6046 	struct cfs_rq *cfs_rq;
6047 	struct sched_entity *se = &p->se;
6048 	int idle_h_nr_running = task_has_idle_policy(p);
6049 	int task_new = !(flags & ENQUEUE_WAKEUP);
6050 
6051 	/*
6052 	 * The code below (indirectly) updates schedutil which looks at
6053 	 * the cfs_rq utilization to select a frequency.
6054 	 * Let's add the task's estimated utilization to the cfs_rq's
6055 	 * estimated utilization, before we update schedutil.
6056 	 */
6057 	util_est_enqueue(&rq->cfs, p);
6058 
6059 	/*
6060 	 * If in_iowait is set, the code below may not trigger any cpufreq
6061 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6062 	 * passed.
6063 	 */
6064 	if (p->in_iowait)
6065 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6066 
6067 	for_each_sched_entity(se) {
6068 		if (se->on_rq)
6069 			break;
6070 		cfs_rq = cfs_rq_of(se);
6071 		enqueue_entity(cfs_rq, se, flags);
6072 
6073 		cfs_rq->h_nr_running++;
6074 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6075 
6076 		if (cfs_rq_is_idle(cfs_rq))
6077 			idle_h_nr_running = 1;
6078 
6079 		/* end evaluation on encountering a throttled cfs_rq */
6080 		if (cfs_rq_throttled(cfs_rq))
6081 			goto enqueue_throttle;
6082 
6083 		flags = ENQUEUE_WAKEUP;
6084 	}
6085 
6086 	for_each_sched_entity(se) {
6087 		cfs_rq = cfs_rq_of(se);
6088 
6089 		update_load_avg(cfs_rq, se, UPDATE_TG);
6090 		se_update_runnable(se);
6091 		update_cfs_group(se);
6092 
6093 		cfs_rq->h_nr_running++;
6094 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6095 
6096 		if (cfs_rq_is_idle(cfs_rq))
6097 			idle_h_nr_running = 1;
6098 
6099 		/* end evaluation on encountering a throttled cfs_rq */
6100 		if (cfs_rq_throttled(cfs_rq))
6101 			goto enqueue_throttle;
6102 	}
6103 
6104 	/* At this point se is NULL and we are at root level*/
6105 	add_nr_running(rq, 1);
6106 
6107 	/*
6108 	 * Since new tasks are assigned an initial util_avg equal to
6109 	 * half of the spare capacity of their CPU, tiny tasks have the
6110 	 * ability to cross the overutilized threshold, which will
6111 	 * result in the load balancer ruining all the task placement
6112 	 * done by EAS. As a way to mitigate that effect, do not account
6113 	 * for the first enqueue operation of new tasks during the
6114 	 * overutilized flag detection.
6115 	 *
6116 	 * A better way of solving this problem would be to wait for
6117 	 * the PELT signals of tasks to converge before taking them
6118 	 * into account, but that is not straightforward to implement,
6119 	 * and the following generally works well enough in practice.
6120 	 */
6121 	if (!task_new)
6122 		update_overutilized_status(rq);
6123 
6124 enqueue_throttle:
6125 	assert_list_leaf_cfs_rq(rq);
6126 
6127 	hrtick_update(rq);
6128 }
6129 
6130 static void set_next_buddy(struct sched_entity *se);
6131 
6132 /*
6133  * The dequeue_task method is called before nr_running is
6134  * decreased. We remove the task from the rbtree and
6135  * update the fair scheduling stats:
6136  */
6137 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6138 {
6139 	struct cfs_rq *cfs_rq;
6140 	struct sched_entity *se = &p->se;
6141 	int task_sleep = flags & DEQUEUE_SLEEP;
6142 	int idle_h_nr_running = task_has_idle_policy(p);
6143 	bool was_sched_idle = sched_idle_rq(rq);
6144 
6145 	util_est_dequeue(&rq->cfs, p);
6146 
6147 	for_each_sched_entity(se) {
6148 		cfs_rq = cfs_rq_of(se);
6149 		dequeue_entity(cfs_rq, se, flags);
6150 
6151 		cfs_rq->h_nr_running--;
6152 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6153 
6154 		if (cfs_rq_is_idle(cfs_rq))
6155 			idle_h_nr_running = 1;
6156 
6157 		/* end evaluation on encountering a throttled cfs_rq */
6158 		if (cfs_rq_throttled(cfs_rq))
6159 			goto dequeue_throttle;
6160 
6161 		/* Don't dequeue parent if it has other entities besides us */
6162 		if (cfs_rq->load.weight) {
6163 			/* Avoid re-evaluating load for this entity: */
6164 			se = parent_entity(se);
6165 			/*
6166 			 * Bias pick_next to pick a task from this cfs_rq, as
6167 			 * p is sleeping when it is within its sched_slice.
6168 			 */
6169 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6170 				set_next_buddy(se);
6171 			break;
6172 		}
6173 		flags |= DEQUEUE_SLEEP;
6174 	}
6175 
6176 	for_each_sched_entity(se) {
6177 		cfs_rq = cfs_rq_of(se);
6178 
6179 		update_load_avg(cfs_rq, se, UPDATE_TG);
6180 		se_update_runnable(se);
6181 		update_cfs_group(se);
6182 
6183 		cfs_rq->h_nr_running--;
6184 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6185 
6186 		if (cfs_rq_is_idle(cfs_rq))
6187 			idle_h_nr_running = 1;
6188 
6189 		/* end evaluation on encountering a throttled cfs_rq */
6190 		if (cfs_rq_throttled(cfs_rq))
6191 			goto dequeue_throttle;
6192 
6193 	}
6194 
6195 	/* At this point se is NULL and we are at root level*/
6196 	sub_nr_running(rq, 1);
6197 
6198 	/* balance early to pull high priority tasks */
6199 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6200 		rq->next_balance = jiffies;
6201 
6202 dequeue_throttle:
6203 	util_est_update(&rq->cfs, p, task_sleep);
6204 	hrtick_update(rq);
6205 }
6206 
6207 #ifdef CONFIG_SMP
6208 
6209 /* Working cpumask for: load_balance, load_balance_newidle. */
6210 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6211 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6212 
6213 #ifdef CONFIG_NO_HZ_COMMON
6214 
6215 static struct {
6216 	cpumask_var_t idle_cpus_mask;
6217 	atomic_t nr_cpus;
6218 	int has_blocked;		/* Idle CPUS has blocked load */
6219 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6220 	unsigned long next_balance;     /* in jiffy units */
6221 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6222 } nohz ____cacheline_aligned;
6223 
6224 #endif /* CONFIG_NO_HZ_COMMON */
6225 
6226 static unsigned long cpu_load(struct rq *rq)
6227 {
6228 	return cfs_rq_load_avg(&rq->cfs);
6229 }
6230 
6231 /*
6232  * cpu_load_without - compute CPU load without any contributions from *p
6233  * @cpu: the CPU which load is requested
6234  * @p: the task which load should be discounted
6235  *
6236  * The load of a CPU is defined by the load of tasks currently enqueued on that
6237  * CPU as well as tasks which are currently sleeping after an execution on that
6238  * CPU.
6239  *
6240  * This method returns the load of the specified CPU by discounting the load of
6241  * the specified task, whenever the task is currently contributing to the CPU
6242  * load.
6243  */
6244 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6245 {
6246 	struct cfs_rq *cfs_rq;
6247 	unsigned int load;
6248 
6249 	/* Task has no contribution or is new */
6250 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6251 		return cpu_load(rq);
6252 
6253 	cfs_rq = &rq->cfs;
6254 	load = READ_ONCE(cfs_rq->avg.load_avg);
6255 
6256 	/* Discount task's util from CPU's util */
6257 	lsub_positive(&load, task_h_load(p));
6258 
6259 	return load;
6260 }
6261 
6262 static unsigned long cpu_runnable(struct rq *rq)
6263 {
6264 	return cfs_rq_runnable_avg(&rq->cfs);
6265 }
6266 
6267 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6268 {
6269 	struct cfs_rq *cfs_rq;
6270 	unsigned int runnable;
6271 
6272 	/* Task has no contribution or is new */
6273 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6274 		return cpu_runnable(rq);
6275 
6276 	cfs_rq = &rq->cfs;
6277 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6278 
6279 	/* Discount task's runnable from CPU's runnable */
6280 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6281 
6282 	return runnable;
6283 }
6284 
6285 static unsigned long capacity_of(int cpu)
6286 {
6287 	return cpu_rq(cpu)->cpu_capacity;
6288 }
6289 
6290 static void record_wakee(struct task_struct *p)
6291 {
6292 	/*
6293 	 * Only decay a single time; tasks that have less then 1 wakeup per
6294 	 * jiffy will not have built up many flips.
6295 	 */
6296 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6297 		current->wakee_flips >>= 1;
6298 		current->wakee_flip_decay_ts = jiffies;
6299 	}
6300 
6301 	if (current->last_wakee != p) {
6302 		current->last_wakee = p;
6303 		current->wakee_flips++;
6304 	}
6305 }
6306 
6307 /*
6308  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6309  *
6310  * A waker of many should wake a different task than the one last awakened
6311  * at a frequency roughly N times higher than one of its wakees.
6312  *
6313  * In order to determine whether we should let the load spread vs consolidating
6314  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6315  * partner, and a factor of lls_size higher frequency in the other.
6316  *
6317  * With both conditions met, we can be relatively sure that the relationship is
6318  * non-monogamous, with partner count exceeding socket size.
6319  *
6320  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6321  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6322  * socket size.
6323  */
6324 static int wake_wide(struct task_struct *p)
6325 {
6326 	unsigned int master = current->wakee_flips;
6327 	unsigned int slave = p->wakee_flips;
6328 	int factor = __this_cpu_read(sd_llc_size);
6329 
6330 	if (master < slave)
6331 		swap(master, slave);
6332 	if (slave < factor || master < slave * factor)
6333 		return 0;
6334 	return 1;
6335 }
6336 
6337 /*
6338  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6339  * soonest. For the purpose of speed we only consider the waking and previous
6340  * CPU.
6341  *
6342  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6343  *			cache-affine and is (or	will be) idle.
6344  *
6345  * wake_affine_weight() - considers the weight to reflect the average
6346  *			  scheduling latency of the CPUs. This seems to work
6347  *			  for the overloaded case.
6348  */
6349 static int
6350 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6351 {
6352 	/*
6353 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6354 	 * context. Only allow the move if cache is shared. Otherwise an
6355 	 * interrupt intensive workload could force all tasks onto one
6356 	 * node depending on the IO topology or IRQ affinity settings.
6357 	 *
6358 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6359 	 * There is no guarantee that the cache hot data from an interrupt
6360 	 * is more important than cache hot data on the prev_cpu and from
6361 	 * a cpufreq perspective, it's better to have higher utilisation
6362 	 * on one CPU.
6363 	 */
6364 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6365 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6366 
6367 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6368 		return this_cpu;
6369 
6370 	if (available_idle_cpu(prev_cpu))
6371 		return prev_cpu;
6372 
6373 	return nr_cpumask_bits;
6374 }
6375 
6376 static int
6377 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6378 		   int this_cpu, int prev_cpu, int sync)
6379 {
6380 	s64 this_eff_load, prev_eff_load;
6381 	unsigned long task_load;
6382 
6383 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6384 
6385 	if (sync) {
6386 		unsigned long current_load = task_h_load(current);
6387 
6388 		if (current_load > this_eff_load)
6389 			return this_cpu;
6390 
6391 		this_eff_load -= current_load;
6392 	}
6393 
6394 	task_load = task_h_load(p);
6395 
6396 	this_eff_load += task_load;
6397 	if (sched_feat(WA_BIAS))
6398 		this_eff_load *= 100;
6399 	this_eff_load *= capacity_of(prev_cpu);
6400 
6401 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6402 	prev_eff_load -= task_load;
6403 	if (sched_feat(WA_BIAS))
6404 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6405 	prev_eff_load *= capacity_of(this_cpu);
6406 
6407 	/*
6408 	 * If sync, adjust the weight of prev_eff_load such that if
6409 	 * prev_eff == this_eff that select_idle_sibling() will consider
6410 	 * stacking the wakee on top of the waker if no other CPU is
6411 	 * idle.
6412 	 */
6413 	if (sync)
6414 		prev_eff_load += 1;
6415 
6416 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6417 }
6418 
6419 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6420 		       int this_cpu, int prev_cpu, int sync)
6421 {
6422 	int target = nr_cpumask_bits;
6423 
6424 	if (sched_feat(WA_IDLE))
6425 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6426 
6427 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6428 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6429 
6430 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6431 	if (target == nr_cpumask_bits)
6432 		return prev_cpu;
6433 
6434 	schedstat_inc(sd->ttwu_move_affine);
6435 	schedstat_inc(p->stats.nr_wakeups_affine);
6436 	return target;
6437 }
6438 
6439 static struct sched_group *
6440 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6441 
6442 /*
6443  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6444  */
6445 static int
6446 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6447 {
6448 	unsigned long load, min_load = ULONG_MAX;
6449 	unsigned int min_exit_latency = UINT_MAX;
6450 	u64 latest_idle_timestamp = 0;
6451 	int least_loaded_cpu = this_cpu;
6452 	int shallowest_idle_cpu = -1;
6453 	int i;
6454 
6455 	/* Check if we have any choice: */
6456 	if (group->group_weight == 1)
6457 		return cpumask_first(sched_group_span(group));
6458 
6459 	/* Traverse only the allowed CPUs */
6460 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6461 		struct rq *rq = cpu_rq(i);
6462 
6463 		if (!sched_core_cookie_match(rq, p))
6464 			continue;
6465 
6466 		if (sched_idle_cpu(i))
6467 			return i;
6468 
6469 		if (available_idle_cpu(i)) {
6470 			struct cpuidle_state *idle = idle_get_state(rq);
6471 			if (idle && idle->exit_latency < min_exit_latency) {
6472 				/*
6473 				 * We give priority to a CPU whose idle state
6474 				 * has the smallest exit latency irrespective
6475 				 * of any idle timestamp.
6476 				 */
6477 				min_exit_latency = idle->exit_latency;
6478 				latest_idle_timestamp = rq->idle_stamp;
6479 				shallowest_idle_cpu = i;
6480 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6481 				   rq->idle_stamp > latest_idle_timestamp) {
6482 				/*
6483 				 * If equal or no active idle state, then
6484 				 * the most recently idled CPU might have
6485 				 * a warmer cache.
6486 				 */
6487 				latest_idle_timestamp = rq->idle_stamp;
6488 				shallowest_idle_cpu = i;
6489 			}
6490 		} else if (shallowest_idle_cpu == -1) {
6491 			load = cpu_load(cpu_rq(i));
6492 			if (load < min_load) {
6493 				min_load = load;
6494 				least_loaded_cpu = i;
6495 			}
6496 		}
6497 	}
6498 
6499 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6500 }
6501 
6502 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6503 				  int cpu, int prev_cpu, int sd_flag)
6504 {
6505 	int new_cpu = cpu;
6506 
6507 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6508 		return prev_cpu;
6509 
6510 	/*
6511 	 * We need task's util for cpu_util_without, sync it up to
6512 	 * prev_cpu's last_update_time.
6513 	 */
6514 	if (!(sd_flag & SD_BALANCE_FORK))
6515 		sync_entity_load_avg(&p->se);
6516 
6517 	while (sd) {
6518 		struct sched_group *group;
6519 		struct sched_domain *tmp;
6520 		int weight;
6521 
6522 		if (!(sd->flags & sd_flag)) {
6523 			sd = sd->child;
6524 			continue;
6525 		}
6526 
6527 		group = find_idlest_group(sd, p, cpu);
6528 		if (!group) {
6529 			sd = sd->child;
6530 			continue;
6531 		}
6532 
6533 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6534 		if (new_cpu == cpu) {
6535 			/* Now try balancing at a lower domain level of 'cpu': */
6536 			sd = sd->child;
6537 			continue;
6538 		}
6539 
6540 		/* Now try balancing at a lower domain level of 'new_cpu': */
6541 		cpu = new_cpu;
6542 		weight = sd->span_weight;
6543 		sd = NULL;
6544 		for_each_domain(cpu, tmp) {
6545 			if (weight <= tmp->span_weight)
6546 				break;
6547 			if (tmp->flags & sd_flag)
6548 				sd = tmp;
6549 		}
6550 	}
6551 
6552 	return new_cpu;
6553 }
6554 
6555 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6556 {
6557 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6558 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6559 		return cpu;
6560 
6561 	return -1;
6562 }
6563 
6564 #ifdef CONFIG_SCHED_SMT
6565 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6566 EXPORT_SYMBOL_GPL(sched_smt_present);
6567 
6568 static inline void set_idle_cores(int cpu, int val)
6569 {
6570 	struct sched_domain_shared *sds;
6571 
6572 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6573 	if (sds)
6574 		WRITE_ONCE(sds->has_idle_cores, val);
6575 }
6576 
6577 static inline bool test_idle_cores(int cpu)
6578 {
6579 	struct sched_domain_shared *sds;
6580 
6581 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6582 	if (sds)
6583 		return READ_ONCE(sds->has_idle_cores);
6584 
6585 	return false;
6586 }
6587 
6588 /*
6589  * Scans the local SMT mask to see if the entire core is idle, and records this
6590  * information in sd_llc_shared->has_idle_cores.
6591  *
6592  * Since SMT siblings share all cache levels, inspecting this limited remote
6593  * state should be fairly cheap.
6594  */
6595 void __update_idle_core(struct rq *rq)
6596 {
6597 	int core = cpu_of(rq);
6598 	int cpu;
6599 
6600 	rcu_read_lock();
6601 	if (test_idle_cores(core))
6602 		goto unlock;
6603 
6604 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6605 		if (cpu == core)
6606 			continue;
6607 
6608 		if (!available_idle_cpu(cpu))
6609 			goto unlock;
6610 	}
6611 
6612 	set_idle_cores(core, 1);
6613 unlock:
6614 	rcu_read_unlock();
6615 }
6616 
6617 /*
6618  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6619  * there are no idle cores left in the system; tracked through
6620  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6621  */
6622 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6623 {
6624 	bool idle = true;
6625 	int cpu;
6626 
6627 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6628 		if (!available_idle_cpu(cpu)) {
6629 			idle = false;
6630 			if (*idle_cpu == -1) {
6631 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6632 					*idle_cpu = cpu;
6633 					break;
6634 				}
6635 				continue;
6636 			}
6637 			break;
6638 		}
6639 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6640 			*idle_cpu = cpu;
6641 	}
6642 
6643 	if (idle)
6644 		return core;
6645 
6646 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6647 	return -1;
6648 }
6649 
6650 /*
6651  * Scan the local SMT mask for idle CPUs.
6652  */
6653 static int select_idle_smt(struct task_struct *p, int target)
6654 {
6655 	int cpu;
6656 
6657 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6658 		if (cpu == target)
6659 			continue;
6660 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6661 			return cpu;
6662 	}
6663 
6664 	return -1;
6665 }
6666 
6667 #else /* CONFIG_SCHED_SMT */
6668 
6669 static inline void set_idle_cores(int cpu, int val)
6670 {
6671 }
6672 
6673 static inline bool test_idle_cores(int cpu)
6674 {
6675 	return false;
6676 }
6677 
6678 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6679 {
6680 	return __select_idle_cpu(core, p);
6681 }
6682 
6683 static inline int select_idle_smt(struct task_struct *p, int target)
6684 {
6685 	return -1;
6686 }
6687 
6688 #endif /* CONFIG_SCHED_SMT */
6689 
6690 /*
6691  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6692  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6693  * average idle time for this rq (as found in rq->avg_idle).
6694  */
6695 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6696 {
6697 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6698 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6699 	struct sched_domain_shared *sd_share;
6700 	struct rq *this_rq = this_rq();
6701 	int this = smp_processor_id();
6702 	struct sched_domain *this_sd = NULL;
6703 	u64 time = 0;
6704 
6705 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6706 
6707 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6708 		u64 avg_cost, avg_idle, span_avg;
6709 		unsigned long now = jiffies;
6710 
6711 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6712 		if (!this_sd)
6713 			return -1;
6714 
6715 		/*
6716 		 * If we're busy, the assumption that the last idle period
6717 		 * predicts the future is flawed; age away the remaining
6718 		 * predicted idle time.
6719 		 */
6720 		if (unlikely(this_rq->wake_stamp < now)) {
6721 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6722 				this_rq->wake_stamp++;
6723 				this_rq->wake_avg_idle >>= 1;
6724 			}
6725 		}
6726 
6727 		avg_idle = this_rq->wake_avg_idle;
6728 		avg_cost = this_sd->avg_scan_cost + 1;
6729 
6730 		span_avg = sd->span_weight * avg_idle;
6731 		if (span_avg > 4*avg_cost)
6732 			nr = div_u64(span_avg, avg_cost);
6733 		else
6734 			nr = 4;
6735 
6736 		time = cpu_clock(this);
6737 	}
6738 
6739 	if (sched_feat(SIS_UTIL)) {
6740 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6741 		if (sd_share) {
6742 			/* because !--nr is the condition to stop scan */
6743 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6744 			/* overloaded LLC is unlikely to have idle cpu/core */
6745 			if (nr == 1)
6746 				return -1;
6747 		}
6748 	}
6749 
6750 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6751 		if (has_idle_core) {
6752 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6753 			if ((unsigned int)i < nr_cpumask_bits)
6754 				return i;
6755 
6756 		} else {
6757 			if (!--nr)
6758 				return -1;
6759 			idle_cpu = __select_idle_cpu(cpu, p);
6760 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6761 				break;
6762 		}
6763 	}
6764 
6765 	if (has_idle_core)
6766 		set_idle_cores(target, false);
6767 
6768 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
6769 		time = cpu_clock(this) - time;
6770 
6771 		/*
6772 		 * Account for the scan cost of wakeups against the average
6773 		 * idle time.
6774 		 */
6775 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6776 
6777 		update_avg(&this_sd->avg_scan_cost, time);
6778 	}
6779 
6780 	return idle_cpu;
6781 }
6782 
6783 /*
6784  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6785  * the task fits. If no CPU is big enough, but there are idle ones, try to
6786  * maximize capacity.
6787  */
6788 static int
6789 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6790 {
6791 	unsigned long task_util, util_min, util_max, best_cap = 0;
6792 	int cpu, best_cpu = -1;
6793 	struct cpumask *cpus;
6794 
6795 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6796 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6797 
6798 	task_util = task_util_est(p);
6799 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
6800 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
6801 
6802 	for_each_cpu_wrap(cpu, cpus, target) {
6803 		unsigned long cpu_cap = capacity_of(cpu);
6804 
6805 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6806 			continue;
6807 		if (util_fits_cpu(task_util, util_min, util_max, cpu))
6808 			return cpu;
6809 
6810 		if (cpu_cap > best_cap) {
6811 			best_cap = cpu_cap;
6812 			best_cpu = cpu;
6813 		}
6814 	}
6815 
6816 	return best_cpu;
6817 }
6818 
6819 static inline bool asym_fits_cpu(unsigned long util,
6820 				 unsigned long util_min,
6821 				 unsigned long util_max,
6822 				 int cpu)
6823 {
6824 	if (sched_asym_cpucap_active())
6825 		return util_fits_cpu(util, util_min, util_max, cpu);
6826 
6827 	return true;
6828 }
6829 
6830 /*
6831  * Try and locate an idle core/thread in the LLC cache domain.
6832  */
6833 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6834 {
6835 	bool has_idle_core = false;
6836 	struct sched_domain *sd;
6837 	unsigned long task_util, util_min, util_max;
6838 	int i, recent_used_cpu;
6839 
6840 	/*
6841 	 * On asymmetric system, update task utilization because we will check
6842 	 * that the task fits with cpu's capacity.
6843 	 */
6844 	if (sched_asym_cpucap_active()) {
6845 		sync_entity_load_avg(&p->se);
6846 		task_util = task_util_est(p);
6847 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
6848 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
6849 	}
6850 
6851 	/*
6852 	 * per-cpu select_rq_mask usage
6853 	 */
6854 	lockdep_assert_irqs_disabled();
6855 
6856 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6857 	    asym_fits_cpu(task_util, util_min, util_max, target))
6858 		return target;
6859 
6860 	/*
6861 	 * If the previous CPU is cache affine and idle, don't be stupid:
6862 	 */
6863 	if (prev != target && cpus_share_cache(prev, target) &&
6864 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6865 	    asym_fits_cpu(task_util, util_min, util_max, prev))
6866 		return prev;
6867 
6868 	/*
6869 	 * Allow a per-cpu kthread to stack with the wakee if the
6870 	 * kworker thread and the tasks previous CPUs are the same.
6871 	 * The assumption is that the wakee queued work for the
6872 	 * per-cpu kthread that is now complete and the wakeup is
6873 	 * essentially a sync wakeup. An obvious example of this
6874 	 * pattern is IO completions.
6875 	 */
6876 	if (is_per_cpu_kthread(current) &&
6877 	    in_task() &&
6878 	    prev == smp_processor_id() &&
6879 	    this_rq()->nr_running <= 1 &&
6880 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
6881 		return prev;
6882 	}
6883 
6884 	/* Check a recently used CPU as a potential idle candidate: */
6885 	recent_used_cpu = p->recent_used_cpu;
6886 	p->recent_used_cpu = prev;
6887 	if (recent_used_cpu != prev &&
6888 	    recent_used_cpu != target &&
6889 	    cpus_share_cache(recent_used_cpu, target) &&
6890 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6891 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6892 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
6893 		return recent_used_cpu;
6894 	}
6895 
6896 	/*
6897 	 * For asymmetric CPU capacity systems, our domain of interest is
6898 	 * sd_asym_cpucapacity rather than sd_llc.
6899 	 */
6900 	if (sched_asym_cpucap_active()) {
6901 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6902 		/*
6903 		 * On an asymmetric CPU capacity system where an exclusive
6904 		 * cpuset defines a symmetric island (i.e. one unique
6905 		 * capacity_orig value through the cpuset), the key will be set
6906 		 * but the CPUs within that cpuset will not have a domain with
6907 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6908 		 * capacity path.
6909 		 */
6910 		if (sd) {
6911 			i = select_idle_capacity(p, sd, target);
6912 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6913 		}
6914 	}
6915 
6916 	sd = rcu_dereference(per_cpu(sd_llc, target));
6917 	if (!sd)
6918 		return target;
6919 
6920 	if (sched_smt_active()) {
6921 		has_idle_core = test_idle_cores(target);
6922 
6923 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6924 			i = select_idle_smt(p, prev);
6925 			if ((unsigned int)i < nr_cpumask_bits)
6926 				return i;
6927 		}
6928 	}
6929 
6930 	i = select_idle_cpu(p, sd, has_idle_core, target);
6931 	if ((unsigned)i < nr_cpumask_bits)
6932 		return i;
6933 
6934 	return target;
6935 }
6936 
6937 /*
6938  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6939  * (@dst_cpu = -1) or migrated to @dst_cpu.
6940  */
6941 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6942 {
6943 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6944 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6945 
6946 	/*
6947 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6948 	 * contribution. If @p migrates from another CPU to @cpu add its
6949 	 * contribution. In all the other cases @cpu is not impacted by the
6950 	 * migration so its util_avg is already correct.
6951 	 */
6952 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6953 		lsub_positive(&util, task_util(p));
6954 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6955 		util += task_util(p);
6956 
6957 	if (sched_feat(UTIL_EST)) {
6958 		unsigned long util_est;
6959 
6960 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6961 
6962 		/*
6963 		 * During wake-up @p isn't enqueued yet and doesn't contribute
6964 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6965 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6966 		 * has been enqueued.
6967 		 *
6968 		 * During exec (@dst_cpu = -1) @p is enqueued and does
6969 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6970 		 * Remove it to "simulate" cpu_util without @p's contribution.
6971 		 *
6972 		 * Despite the task_on_rq_queued(@p) check there is still a
6973 		 * small window for a possible race when an exec
6974 		 * select_task_rq_fair() races with LB's detach_task().
6975 		 *
6976 		 *   detach_task()
6977 		 *     deactivate_task()
6978 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
6979 		 *       -------------------------------- A
6980 		 *       dequeue_task()                    \
6981 		 *         dequeue_task_fair()              + Race Time
6982 		 *           util_est_dequeue()            /
6983 		 *       -------------------------------- B
6984 		 *
6985 		 * The additional check "current == p" is required to further
6986 		 * reduce the race window.
6987 		 */
6988 		if (dst_cpu == cpu)
6989 			util_est += _task_util_est(p);
6990 		else if (unlikely(task_on_rq_queued(p) || current == p))
6991 			lsub_positive(&util_est, _task_util_est(p));
6992 
6993 		util = max(util, util_est);
6994 	}
6995 
6996 	return min(util, capacity_orig_of(cpu));
6997 }
6998 
6999 /*
7000  * cpu_util_without: compute cpu utilization without any contributions from *p
7001  * @cpu: the CPU which utilization is requested
7002  * @p: the task which utilization should be discounted
7003  *
7004  * The utilization of a CPU is defined by the utilization of tasks currently
7005  * enqueued on that CPU as well as tasks which are currently sleeping after an
7006  * execution on that CPU.
7007  *
7008  * This method returns the utilization of the specified CPU by discounting the
7009  * utilization of the specified task, whenever the task is currently
7010  * contributing to the CPU utilization.
7011  */
7012 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7013 {
7014 	/* Task has no contribution or is new */
7015 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7016 		return cpu_util_cfs(cpu);
7017 
7018 	return cpu_util_next(cpu, p, -1);
7019 }
7020 
7021 /*
7022  * energy_env - Utilization landscape for energy estimation.
7023  * @task_busy_time: Utilization contribution by the task for which we test the
7024  *                  placement. Given by eenv_task_busy_time().
7025  * @pd_busy_time:   Utilization of the whole perf domain without the task
7026  *                  contribution. Given by eenv_pd_busy_time().
7027  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7028  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7029  */
7030 struct energy_env {
7031 	unsigned long task_busy_time;
7032 	unsigned long pd_busy_time;
7033 	unsigned long cpu_cap;
7034 	unsigned long pd_cap;
7035 };
7036 
7037 /*
7038  * Compute the task busy time for compute_energy(). This time cannot be
7039  * injected directly into effective_cpu_util() because of the IRQ scaling.
7040  * The latter only makes sense with the most recent CPUs where the task has
7041  * run.
7042  */
7043 static inline void eenv_task_busy_time(struct energy_env *eenv,
7044 				       struct task_struct *p, int prev_cpu)
7045 {
7046 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7047 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7048 
7049 	if (unlikely(irq >= max_cap))
7050 		busy_time = max_cap;
7051 	else
7052 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7053 
7054 	eenv->task_busy_time = busy_time;
7055 }
7056 
7057 /*
7058  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7059  * utilization for each @pd_cpus, it however doesn't take into account
7060  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7061  * scale the EM reported power consumption at the (eventually clamped)
7062  * cpu_capacity.
7063  *
7064  * The contribution of the task @p for which we want to estimate the
7065  * energy cost is removed (by cpu_util_next()) and must be calculated
7066  * separately (see eenv_task_busy_time). This ensures:
7067  *
7068  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7069  *     the task on.
7070  *
7071  *   - A fair comparison between CPUs as the task contribution (task_util())
7072  *     will always be the same no matter which CPU utilization we rely on
7073  *     (util_avg or util_est).
7074  *
7075  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7076  * exceed @eenv->pd_cap.
7077  */
7078 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7079 				     struct cpumask *pd_cpus,
7080 				     struct task_struct *p)
7081 {
7082 	unsigned long busy_time = 0;
7083 	int cpu;
7084 
7085 	for_each_cpu(cpu, pd_cpus) {
7086 		unsigned long util = cpu_util_next(cpu, p, -1);
7087 
7088 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7089 	}
7090 
7091 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7092 }
7093 
7094 /*
7095  * Compute the maximum utilization for compute_energy() when the task @p
7096  * is placed on the cpu @dst_cpu.
7097  *
7098  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7099  * exceed @eenv->cpu_cap.
7100  */
7101 static inline unsigned long
7102 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7103 		 struct task_struct *p, int dst_cpu)
7104 {
7105 	unsigned long max_util = 0;
7106 	int cpu;
7107 
7108 	for_each_cpu(cpu, pd_cpus) {
7109 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7110 		unsigned long util = cpu_util_next(cpu, p, dst_cpu);
7111 		unsigned long cpu_util;
7112 
7113 		/*
7114 		 * Performance domain frequency: utilization clamping
7115 		 * must be considered since it affects the selection
7116 		 * of the performance domain frequency.
7117 		 * NOTE: in case RT tasks are running, by default the
7118 		 * FREQUENCY_UTIL's utilization can be max OPP.
7119 		 */
7120 		cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7121 		max_util = max(max_util, cpu_util);
7122 	}
7123 
7124 	return min(max_util, eenv->cpu_cap);
7125 }
7126 
7127 /*
7128  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7129  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7130  * contribution is ignored.
7131  */
7132 static inline unsigned long
7133 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7134 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7135 {
7136 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7137 	unsigned long busy_time = eenv->pd_busy_time;
7138 
7139 	if (dst_cpu >= 0)
7140 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7141 
7142 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7143 }
7144 
7145 /*
7146  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7147  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7148  * spare capacity in each performance domain and uses it as a potential
7149  * candidate to execute the task. Then, it uses the Energy Model to figure
7150  * out which of the CPU candidates is the most energy-efficient.
7151  *
7152  * The rationale for this heuristic is as follows. In a performance domain,
7153  * all the most energy efficient CPU candidates (according to the Energy
7154  * Model) are those for which we'll request a low frequency. When there are
7155  * several CPUs for which the frequency request will be the same, we don't
7156  * have enough data to break the tie between them, because the Energy Model
7157  * only includes active power costs. With this model, if we assume that
7158  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7159  * the maximum spare capacity in a performance domain is guaranteed to be among
7160  * the best candidates of the performance domain.
7161  *
7162  * In practice, it could be preferable from an energy standpoint to pack
7163  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7164  * but that could also hurt our chances to go cluster idle, and we have no
7165  * ways to tell with the current Energy Model if this is actually a good
7166  * idea or not. So, find_energy_efficient_cpu() basically favors
7167  * cluster-packing, and spreading inside a cluster. That should at least be
7168  * a good thing for latency, and this is consistent with the idea that most
7169  * of the energy savings of EAS come from the asymmetry of the system, and
7170  * not so much from breaking the tie between identical CPUs. That's also the
7171  * reason why EAS is enabled in the topology code only for systems where
7172  * SD_ASYM_CPUCAPACITY is set.
7173  *
7174  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7175  * they don't have any useful utilization data yet and it's not possible to
7176  * forecast their impact on energy consumption. Consequently, they will be
7177  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7178  * to be energy-inefficient in some use-cases. The alternative would be to
7179  * bias new tasks towards specific types of CPUs first, or to try to infer
7180  * their util_avg from the parent task, but those heuristics could hurt
7181  * other use-cases too. So, until someone finds a better way to solve this,
7182  * let's keep things simple by re-using the existing slow path.
7183  */
7184 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7185 {
7186 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7187 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7188 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7189 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7190 	struct root_domain *rd = this_rq()->rd;
7191 	int cpu, best_energy_cpu, target = -1;
7192 	struct sched_domain *sd;
7193 	struct perf_domain *pd;
7194 	struct energy_env eenv;
7195 
7196 	rcu_read_lock();
7197 	pd = rcu_dereference(rd->pd);
7198 	if (!pd || READ_ONCE(rd->overutilized))
7199 		goto unlock;
7200 
7201 	/*
7202 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7203 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7204 	 */
7205 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7206 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7207 		sd = sd->parent;
7208 	if (!sd)
7209 		goto unlock;
7210 
7211 	target = prev_cpu;
7212 
7213 	sync_entity_load_avg(&p->se);
7214 	if (!uclamp_task_util(p, p_util_min, p_util_max))
7215 		goto unlock;
7216 
7217 	eenv_task_busy_time(&eenv, p, prev_cpu);
7218 
7219 	for (; pd; pd = pd->next) {
7220 		unsigned long cpu_cap, cpu_thermal_cap, util;
7221 		unsigned long cur_delta, max_spare_cap = 0;
7222 		unsigned long rq_util_min, rq_util_max;
7223 		unsigned long util_min, util_max;
7224 		unsigned long prev_spare_cap = 0;
7225 		int max_spare_cap_cpu = -1;
7226 		unsigned long base_energy;
7227 
7228 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7229 
7230 		if (cpumask_empty(cpus))
7231 			continue;
7232 
7233 		/* Account thermal pressure for the energy estimation */
7234 		cpu = cpumask_first(cpus);
7235 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7236 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7237 
7238 		eenv.cpu_cap = cpu_thermal_cap;
7239 		eenv.pd_cap = 0;
7240 
7241 		for_each_cpu(cpu, cpus) {
7242 			eenv.pd_cap += cpu_thermal_cap;
7243 
7244 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7245 				continue;
7246 
7247 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7248 				continue;
7249 
7250 			util = cpu_util_next(cpu, p, cpu);
7251 			cpu_cap = capacity_of(cpu);
7252 
7253 			/*
7254 			 * Skip CPUs that cannot satisfy the capacity request.
7255 			 * IOW, placing the task there would make the CPU
7256 			 * overutilized. Take uclamp into account to see how
7257 			 * much capacity we can get out of the CPU; this is
7258 			 * aligned with sched_cpu_util().
7259 			 */
7260 			if (uclamp_is_used()) {
7261 				if (uclamp_rq_is_idle(cpu_rq(cpu))) {
7262 					util_min = p_util_min;
7263 					util_max = p_util_max;
7264 				} else {
7265 					/*
7266 					 * Open code uclamp_rq_util_with() except for
7267 					 * the clamp() part. Ie: apply max aggregation
7268 					 * only. util_fits_cpu() logic requires to
7269 					 * operate on non clamped util but must use the
7270 					 * max-aggregated uclamp_{min, max}.
7271 					 */
7272 					rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
7273 					rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
7274 
7275 					util_min = max(rq_util_min, p_util_min);
7276 					util_max = max(rq_util_max, p_util_max);
7277 				}
7278 			}
7279 			if (!util_fits_cpu(util, util_min, util_max, cpu))
7280 				continue;
7281 
7282 			lsub_positive(&cpu_cap, util);
7283 
7284 			if (cpu == prev_cpu) {
7285 				/* Always use prev_cpu as a candidate. */
7286 				prev_spare_cap = cpu_cap;
7287 			} else if (cpu_cap > max_spare_cap) {
7288 				/*
7289 				 * Find the CPU with the maximum spare capacity
7290 				 * among the remaining CPUs in the performance
7291 				 * domain.
7292 				 */
7293 				max_spare_cap = cpu_cap;
7294 				max_spare_cap_cpu = cpu;
7295 			}
7296 		}
7297 
7298 		if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
7299 			continue;
7300 
7301 		eenv_pd_busy_time(&eenv, cpus, p);
7302 		/* Compute the 'base' energy of the pd, without @p */
7303 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7304 
7305 		/* Evaluate the energy impact of using prev_cpu. */
7306 		if (prev_spare_cap > 0) {
7307 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7308 						    prev_cpu);
7309 			/* CPU utilization has changed */
7310 			if (prev_delta < base_energy)
7311 				goto unlock;
7312 			prev_delta -= base_energy;
7313 			best_delta = min(best_delta, prev_delta);
7314 		}
7315 
7316 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7317 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7318 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7319 						   max_spare_cap_cpu);
7320 			/* CPU utilization has changed */
7321 			if (cur_delta < base_energy)
7322 				goto unlock;
7323 			cur_delta -= base_energy;
7324 			if (cur_delta < best_delta) {
7325 				best_delta = cur_delta;
7326 				best_energy_cpu = max_spare_cap_cpu;
7327 			}
7328 		}
7329 	}
7330 	rcu_read_unlock();
7331 
7332 	if (best_delta < prev_delta)
7333 		target = best_energy_cpu;
7334 
7335 	return target;
7336 
7337 unlock:
7338 	rcu_read_unlock();
7339 
7340 	return target;
7341 }
7342 
7343 /*
7344  * select_task_rq_fair: Select target runqueue for the waking task in domains
7345  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7346  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7347  *
7348  * Balances load by selecting the idlest CPU in the idlest group, or under
7349  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7350  *
7351  * Returns the target CPU number.
7352  */
7353 static int
7354 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7355 {
7356 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7357 	struct sched_domain *tmp, *sd = NULL;
7358 	int cpu = smp_processor_id();
7359 	int new_cpu = prev_cpu;
7360 	int want_affine = 0;
7361 	/* SD_flags and WF_flags share the first nibble */
7362 	int sd_flag = wake_flags & 0xF;
7363 
7364 	/*
7365 	 * required for stable ->cpus_allowed
7366 	 */
7367 	lockdep_assert_held(&p->pi_lock);
7368 	if (wake_flags & WF_TTWU) {
7369 		record_wakee(p);
7370 
7371 		if (sched_energy_enabled()) {
7372 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7373 			if (new_cpu >= 0)
7374 				return new_cpu;
7375 			new_cpu = prev_cpu;
7376 		}
7377 
7378 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7379 	}
7380 
7381 	rcu_read_lock();
7382 	for_each_domain(cpu, tmp) {
7383 		/*
7384 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7385 		 * cpu is a valid SD_WAKE_AFFINE target.
7386 		 */
7387 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7388 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7389 			if (cpu != prev_cpu)
7390 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7391 
7392 			sd = NULL; /* Prefer wake_affine over balance flags */
7393 			break;
7394 		}
7395 
7396 		/*
7397 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7398 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7399 		 * will usually go to the fast path.
7400 		 */
7401 		if (tmp->flags & sd_flag)
7402 			sd = tmp;
7403 		else if (!want_affine)
7404 			break;
7405 	}
7406 
7407 	if (unlikely(sd)) {
7408 		/* Slow path */
7409 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7410 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7411 		/* Fast path */
7412 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7413 	}
7414 	rcu_read_unlock();
7415 
7416 	return new_cpu;
7417 }
7418 
7419 /*
7420  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7421  * cfs_rq_of(p) references at time of call are still valid and identify the
7422  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7423  */
7424 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7425 {
7426 	struct sched_entity *se = &p->se;
7427 
7428 	/*
7429 	 * As blocked tasks retain absolute vruntime the migration needs to
7430 	 * deal with this by subtracting the old and adding the new
7431 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7432 	 * the task on the new runqueue.
7433 	 */
7434 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7435 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7436 
7437 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7438 	}
7439 
7440 	if (!task_on_rq_migrating(p)) {
7441 		remove_entity_load_avg(se);
7442 
7443 		/*
7444 		 * Here, the task's PELT values have been updated according to
7445 		 * the current rq's clock. But if that clock hasn't been
7446 		 * updated in a while, a substantial idle time will be missed,
7447 		 * leading to an inflation after wake-up on the new rq.
7448 		 *
7449 		 * Estimate the missing time from the cfs_rq last_update_time
7450 		 * and update sched_avg to improve the PELT continuity after
7451 		 * migration.
7452 		 */
7453 		migrate_se_pelt_lag(se);
7454 	}
7455 
7456 	/* Tell new CPU we are migrated */
7457 	se->avg.last_update_time = 0;
7458 
7459 	/* We have migrated, no longer consider this task hot */
7460 	se->exec_start = 0;
7461 
7462 	update_scan_period(p, new_cpu);
7463 }
7464 
7465 static void task_dead_fair(struct task_struct *p)
7466 {
7467 	remove_entity_load_avg(&p->se);
7468 }
7469 
7470 static int
7471 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7472 {
7473 	if (rq->nr_running)
7474 		return 1;
7475 
7476 	return newidle_balance(rq, rf) != 0;
7477 }
7478 #endif /* CONFIG_SMP */
7479 
7480 static unsigned long wakeup_gran(struct sched_entity *se)
7481 {
7482 	unsigned long gran = sysctl_sched_wakeup_granularity;
7483 
7484 	/*
7485 	 * Since its curr running now, convert the gran from real-time
7486 	 * to virtual-time in his units.
7487 	 *
7488 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7489 	 * they get preempted easier. That is, if 'se' < 'curr' then
7490 	 * the resulting gran will be larger, therefore penalizing the
7491 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7492 	 * be smaller, again penalizing the lighter task.
7493 	 *
7494 	 * This is especially important for buddies when the leftmost
7495 	 * task is higher priority than the buddy.
7496 	 */
7497 	return calc_delta_fair(gran, se);
7498 }
7499 
7500 /*
7501  * Should 'se' preempt 'curr'.
7502  *
7503  *             |s1
7504  *        |s2
7505  *   |s3
7506  *         g
7507  *      |<--->|c
7508  *
7509  *  w(c, s1) = -1
7510  *  w(c, s2) =  0
7511  *  w(c, s3) =  1
7512  *
7513  */
7514 static int
7515 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7516 {
7517 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7518 
7519 	if (vdiff <= 0)
7520 		return -1;
7521 
7522 	gran = wakeup_gran(se);
7523 	if (vdiff > gran)
7524 		return 1;
7525 
7526 	return 0;
7527 }
7528 
7529 static void set_last_buddy(struct sched_entity *se)
7530 {
7531 	for_each_sched_entity(se) {
7532 		if (SCHED_WARN_ON(!se->on_rq))
7533 			return;
7534 		if (se_is_idle(se))
7535 			return;
7536 		cfs_rq_of(se)->last = se;
7537 	}
7538 }
7539 
7540 static void set_next_buddy(struct sched_entity *se)
7541 {
7542 	for_each_sched_entity(se) {
7543 		if (SCHED_WARN_ON(!se->on_rq))
7544 			return;
7545 		if (se_is_idle(se))
7546 			return;
7547 		cfs_rq_of(se)->next = se;
7548 	}
7549 }
7550 
7551 static void set_skip_buddy(struct sched_entity *se)
7552 {
7553 	for_each_sched_entity(se)
7554 		cfs_rq_of(se)->skip = se;
7555 }
7556 
7557 /*
7558  * Preempt the current task with a newly woken task if needed:
7559  */
7560 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7561 {
7562 	struct task_struct *curr = rq->curr;
7563 	struct sched_entity *se = &curr->se, *pse = &p->se;
7564 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7565 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7566 	int next_buddy_marked = 0;
7567 	int cse_is_idle, pse_is_idle;
7568 
7569 	if (unlikely(se == pse))
7570 		return;
7571 
7572 	/*
7573 	 * This is possible from callers such as attach_tasks(), in which we
7574 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7575 	 * lead to a throttle).  This both saves work and prevents false
7576 	 * next-buddy nomination below.
7577 	 */
7578 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7579 		return;
7580 
7581 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7582 		set_next_buddy(pse);
7583 		next_buddy_marked = 1;
7584 	}
7585 
7586 	/*
7587 	 * We can come here with TIF_NEED_RESCHED already set from new task
7588 	 * wake up path.
7589 	 *
7590 	 * Note: this also catches the edge-case of curr being in a throttled
7591 	 * group (e.g. via set_curr_task), since update_curr() (in the
7592 	 * enqueue of curr) will have resulted in resched being set.  This
7593 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7594 	 * below.
7595 	 */
7596 	if (test_tsk_need_resched(curr))
7597 		return;
7598 
7599 	/* Idle tasks are by definition preempted by non-idle tasks. */
7600 	if (unlikely(task_has_idle_policy(curr)) &&
7601 	    likely(!task_has_idle_policy(p)))
7602 		goto preempt;
7603 
7604 	/*
7605 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7606 	 * is driven by the tick):
7607 	 */
7608 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7609 		return;
7610 
7611 	find_matching_se(&se, &pse);
7612 	WARN_ON_ONCE(!pse);
7613 
7614 	cse_is_idle = se_is_idle(se);
7615 	pse_is_idle = se_is_idle(pse);
7616 
7617 	/*
7618 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7619 	 * in the inverse case).
7620 	 */
7621 	if (cse_is_idle && !pse_is_idle)
7622 		goto preempt;
7623 	if (cse_is_idle != pse_is_idle)
7624 		return;
7625 
7626 	update_curr(cfs_rq_of(se));
7627 	if (wakeup_preempt_entity(se, pse) == 1) {
7628 		/*
7629 		 * Bias pick_next to pick the sched entity that is
7630 		 * triggering this preemption.
7631 		 */
7632 		if (!next_buddy_marked)
7633 			set_next_buddy(pse);
7634 		goto preempt;
7635 	}
7636 
7637 	return;
7638 
7639 preempt:
7640 	resched_curr(rq);
7641 	/*
7642 	 * Only set the backward buddy when the current task is still
7643 	 * on the rq. This can happen when a wakeup gets interleaved
7644 	 * with schedule on the ->pre_schedule() or idle_balance()
7645 	 * point, either of which can * drop the rq lock.
7646 	 *
7647 	 * Also, during early boot the idle thread is in the fair class,
7648 	 * for obvious reasons its a bad idea to schedule back to it.
7649 	 */
7650 	if (unlikely(!se->on_rq || curr == rq->idle))
7651 		return;
7652 
7653 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7654 		set_last_buddy(se);
7655 }
7656 
7657 #ifdef CONFIG_SMP
7658 static struct task_struct *pick_task_fair(struct rq *rq)
7659 {
7660 	struct sched_entity *se;
7661 	struct cfs_rq *cfs_rq;
7662 
7663 again:
7664 	cfs_rq = &rq->cfs;
7665 	if (!cfs_rq->nr_running)
7666 		return NULL;
7667 
7668 	do {
7669 		struct sched_entity *curr = cfs_rq->curr;
7670 
7671 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7672 		if (curr) {
7673 			if (curr->on_rq)
7674 				update_curr(cfs_rq);
7675 			else
7676 				curr = NULL;
7677 
7678 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7679 				goto again;
7680 		}
7681 
7682 		se = pick_next_entity(cfs_rq, curr);
7683 		cfs_rq = group_cfs_rq(se);
7684 	} while (cfs_rq);
7685 
7686 	return task_of(se);
7687 }
7688 #endif
7689 
7690 struct task_struct *
7691 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7692 {
7693 	struct cfs_rq *cfs_rq = &rq->cfs;
7694 	struct sched_entity *se;
7695 	struct task_struct *p;
7696 	int new_tasks;
7697 
7698 again:
7699 	if (!sched_fair_runnable(rq))
7700 		goto idle;
7701 
7702 #ifdef CONFIG_FAIR_GROUP_SCHED
7703 	if (!prev || prev->sched_class != &fair_sched_class)
7704 		goto simple;
7705 
7706 	/*
7707 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7708 	 * likely that a next task is from the same cgroup as the current.
7709 	 *
7710 	 * Therefore attempt to avoid putting and setting the entire cgroup
7711 	 * hierarchy, only change the part that actually changes.
7712 	 */
7713 
7714 	do {
7715 		struct sched_entity *curr = cfs_rq->curr;
7716 
7717 		/*
7718 		 * Since we got here without doing put_prev_entity() we also
7719 		 * have to consider cfs_rq->curr. If it is still a runnable
7720 		 * entity, update_curr() will update its vruntime, otherwise
7721 		 * forget we've ever seen it.
7722 		 */
7723 		if (curr) {
7724 			if (curr->on_rq)
7725 				update_curr(cfs_rq);
7726 			else
7727 				curr = NULL;
7728 
7729 			/*
7730 			 * This call to check_cfs_rq_runtime() will do the
7731 			 * throttle and dequeue its entity in the parent(s).
7732 			 * Therefore the nr_running test will indeed
7733 			 * be correct.
7734 			 */
7735 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7736 				cfs_rq = &rq->cfs;
7737 
7738 				if (!cfs_rq->nr_running)
7739 					goto idle;
7740 
7741 				goto simple;
7742 			}
7743 		}
7744 
7745 		se = pick_next_entity(cfs_rq, curr);
7746 		cfs_rq = group_cfs_rq(se);
7747 	} while (cfs_rq);
7748 
7749 	p = task_of(se);
7750 
7751 	/*
7752 	 * Since we haven't yet done put_prev_entity and if the selected task
7753 	 * is a different task than we started out with, try and touch the
7754 	 * least amount of cfs_rqs.
7755 	 */
7756 	if (prev != p) {
7757 		struct sched_entity *pse = &prev->se;
7758 
7759 		while (!(cfs_rq = is_same_group(se, pse))) {
7760 			int se_depth = se->depth;
7761 			int pse_depth = pse->depth;
7762 
7763 			if (se_depth <= pse_depth) {
7764 				put_prev_entity(cfs_rq_of(pse), pse);
7765 				pse = parent_entity(pse);
7766 			}
7767 			if (se_depth >= pse_depth) {
7768 				set_next_entity(cfs_rq_of(se), se);
7769 				se = parent_entity(se);
7770 			}
7771 		}
7772 
7773 		put_prev_entity(cfs_rq, pse);
7774 		set_next_entity(cfs_rq, se);
7775 	}
7776 
7777 	goto done;
7778 simple:
7779 #endif
7780 	if (prev)
7781 		put_prev_task(rq, prev);
7782 
7783 	do {
7784 		se = pick_next_entity(cfs_rq, NULL);
7785 		set_next_entity(cfs_rq, se);
7786 		cfs_rq = group_cfs_rq(se);
7787 	} while (cfs_rq);
7788 
7789 	p = task_of(se);
7790 
7791 done: __maybe_unused;
7792 #ifdef CONFIG_SMP
7793 	/*
7794 	 * Move the next running task to the front of
7795 	 * the list, so our cfs_tasks list becomes MRU
7796 	 * one.
7797 	 */
7798 	list_move(&p->se.group_node, &rq->cfs_tasks);
7799 #endif
7800 
7801 	if (hrtick_enabled_fair(rq))
7802 		hrtick_start_fair(rq, p);
7803 
7804 	update_misfit_status(p, rq);
7805 
7806 	return p;
7807 
7808 idle:
7809 	if (!rf)
7810 		return NULL;
7811 
7812 	new_tasks = newidle_balance(rq, rf);
7813 
7814 	/*
7815 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7816 	 * possible for any higher priority task to appear. In that case we
7817 	 * must re-start the pick_next_entity() loop.
7818 	 */
7819 	if (new_tasks < 0)
7820 		return RETRY_TASK;
7821 
7822 	if (new_tasks > 0)
7823 		goto again;
7824 
7825 	/*
7826 	 * rq is about to be idle, check if we need to update the
7827 	 * lost_idle_time of clock_pelt
7828 	 */
7829 	update_idle_rq_clock_pelt(rq);
7830 
7831 	return NULL;
7832 }
7833 
7834 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7835 {
7836 	return pick_next_task_fair(rq, NULL, NULL);
7837 }
7838 
7839 /*
7840  * Account for a descheduled task:
7841  */
7842 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7843 {
7844 	struct sched_entity *se = &prev->se;
7845 	struct cfs_rq *cfs_rq;
7846 
7847 	for_each_sched_entity(se) {
7848 		cfs_rq = cfs_rq_of(se);
7849 		put_prev_entity(cfs_rq, se);
7850 	}
7851 }
7852 
7853 /*
7854  * sched_yield() is very simple
7855  *
7856  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7857  */
7858 static void yield_task_fair(struct rq *rq)
7859 {
7860 	struct task_struct *curr = rq->curr;
7861 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7862 	struct sched_entity *se = &curr->se;
7863 
7864 	/*
7865 	 * Are we the only task in the tree?
7866 	 */
7867 	if (unlikely(rq->nr_running == 1))
7868 		return;
7869 
7870 	clear_buddies(cfs_rq, se);
7871 
7872 	if (curr->policy != SCHED_BATCH) {
7873 		update_rq_clock(rq);
7874 		/*
7875 		 * Update run-time statistics of the 'current'.
7876 		 */
7877 		update_curr(cfs_rq);
7878 		/*
7879 		 * Tell update_rq_clock() that we've just updated,
7880 		 * so we don't do microscopic update in schedule()
7881 		 * and double the fastpath cost.
7882 		 */
7883 		rq_clock_skip_update(rq);
7884 	}
7885 
7886 	set_skip_buddy(se);
7887 }
7888 
7889 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7890 {
7891 	struct sched_entity *se = &p->se;
7892 
7893 	/* throttled hierarchies are not runnable */
7894 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7895 		return false;
7896 
7897 	/* Tell the scheduler that we'd really like pse to run next. */
7898 	set_next_buddy(se);
7899 
7900 	yield_task_fair(rq);
7901 
7902 	return true;
7903 }
7904 
7905 #ifdef CONFIG_SMP
7906 /**************************************************
7907  * Fair scheduling class load-balancing methods.
7908  *
7909  * BASICS
7910  *
7911  * The purpose of load-balancing is to achieve the same basic fairness the
7912  * per-CPU scheduler provides, namely provide a proportional amount of compute
7913  * time to each task. This is expressed in the following equation:
7914  *
7915  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7916  *
7917  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7918  * W_i,0 is defined as:
7919  *
7920  *   W_i,0 = \Sum_j w_i,j                                             (2)
7921  *
7922  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7923  * is derived from the nice value as per sched_prio_to_weight[].
7924  *
7925  * The weight average is an exponential decay average of the instantaneous
7926  * weight:
7927  *
7928  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7929  *
7930  * C_i is the compute capacity of CPU i, typically it is the
7931  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7932  * can also include other factors [XXX].
7933  *
7934  * To achieve this balance we define a measure of imbalance which follows
7935  * directly from (1):
7936  *
7937  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7938  *
7939  * We them move tasks around to minimize the imbalance. In the continuous
7940  * function space it is obvious this converges, in the discrete case we get
7941  * a few fun cases generally called infeasible weight scenarios.
7942  *
7943  * [XXX expand on:
7944  *     - infeasible weights;
7945  *     - local vs global optima in the discrete case. ]
7946  *
7947  *
7948  * SCHED DOMAINS
7949  *
7950  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7951  * for all i,j solution, we create a tree of CPUs that follows the hardware
7952  * topology where each level pairs two lower groups (or better). This results
7953  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7954  * tree to only the first of the previous level and we decrease the frequency
7955  * of load-balance at each level inv. proportional to the number of CPUs in
7956  * the groups.
7957  *
7958  * This yields:
7959  *
7960  *     log_2 n     1     n
7961  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7962  *     i = 0      2^i   2^i
7963  *                               `- size of each group
7964  *         |         |     `- number of CPUs doing load-balance
7965  *         |         `- freq
7966  *         `- sum over all levels
7967  *
7968  * Coupled with a limit on how many tasks we can migrate every balance pass,
7969  * this makes (5) the runtime complexity of the balancer.
7970  *
7971  * An important property here is that each CPU is still (indirectly) connected
7972  * to every other CPU in at most O(log n) steps:
7973  *
7974  * The adjacency matrix of the resulting graph is given by:
7975  *
7976  *             log_2 n
7977  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7978  *             k = 0
7979  *
7980  * And you'll find that:
7981  *
7982  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7983  *
7984  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7985  * The task movement gives a factor of O(m), giving a convergence complexity
7986  * of:
7987  *
7988  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7989  *
7990  *
7991  * WORK CONSERVING
7992  *
7993  * In order to avoid CPUs going idle while there's still work to do, new idle
7994  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7995  * tree itself instead of relying on other CPUs to bring it work.
7996  *
7997  * This adds some complexity to both (5) and (8) but it reduces the total idle
7998  * time.
7999  *
8000  * [XXX more?]
8001  *
8002  *
8003  * CGROUPS
8004  *
8005  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8006  *
8007  *                                s_k,i
8008  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8009  *                                 S_k
8010  *
8011  * Where
8012  *
8013  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8014  *
8015  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8016  *
8017  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8018  * property.
8019  *
8020  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8021  *      rewrite all of this once again.]
8022  */
8023 
8024 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8025 
8026 enum fbq_type { regular, remote, all };
8027 
8028 /*
8029  * 'group_type' describes the group of CPUs at the moment of load balancing.
8030  *
8031  * The enum is ordered by pulling priority, with the group with lowest priority
8032  * first so the group_type can simply be compared when selecting the busiest
8033  * group. See update_sd_pick_busiest().
8034  */
8035 enum group_type {
8036 	/* The group has spare capacity that can be used to run more tasks.  */
8037 	group_has_spare = 0,
8038 	/*
8039 	 * The group is fully used and the tasks don't compete for more CPU
8040 	 * cycles. Nevertheless, some tasks might wait before running.
8041 	 */
8042 	group_fully_busy,
8043 	/*
8044 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8045 	 * more powerful CPU.
8046 	 */
8047 	group_misfit_task,
8048 	/*
8049 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8050 	 * and the task should be migrated to it instead of running on the
8051 	 * current CPU.
8052 	 */
8053 	group_asym_packing,
8054 	/*
8055 	 * The tasks' affinity constraints previously prevented the scheduler
8056 	 * from balancing the load across the system.
8057 	 */
8058 	group_imbalanced,
8059 	/*
8060 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8061 	 * tasks.
8062 	 */
8063 	group_overloaded
8064 };
8065 
8066 enum migration_type {
8067 	migrate_load = 0,
8068 	migrate_util,
8069 	migrate_task,
8070 	migrate_misfit
8071 };
8072 
8073 #define LBF_ALL_PINNED	0x01
8074 #define LBF_NEED_BREAK	0x02
8075 #define LBF_DST_PINNED  0x04
8076 #define LBF_SOME_PINNED	0x08
8077 #define LBF_ACTIVE_LB	0x10
8078 
8079 struct lb_env {
8080 	struct sched_domain	*sd;
8081 
8082 	struct rq		*src_rq;
8083 	int			src_cpu;
8084 
8085 	int			dst_cpu;
8086 	struct rq		*dst_rq;
8087 
8088 	struct cpumask		*dst_grpmask;
8089 	int			new_dst_cpu;
8090 	enum cpu_idle_type	idle;
8091 	long			imbalance;
8092 	/* The set of CPUs under consideration for load-balancing */
8093 	struct cpumask		*cpus;
8094 
8095 	unsigned int		flags;
8096 
8097 	unsigned int		loop;
8098 	unsigned int		loop_break;
8099 	unsigned int		loop_max;
8100 
8101 	enum fbq_type		fbq_type;
8102 	enum migration_type	migration_type;
8103 	struct list_head	tasks;
8104 };
8105 
8106 /*
8107  * Is this task likely cache-hot:
8108  */
8109 static int task_hot(struct task_struct *p, struct lb_env *env)
8110 {
8111 	s64 delta;
8112 
8113 	lockdep_assert_rq_held(env->src_rq);
8114 
8115 	if (p->sched_class != &fair_sched_class)
8116 		return 0;
8117 
8118 	if (unlikely(task_has_idle_policy(p)))
8119 		return 0;
8120 
8121 	/* SMT siblings share cache */
8122 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8123 		return 0;
8124 
8125 	/*
8126 	 * Buddy candidates are cache hot:
8127 	 */
8128 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8129 			(&p->se == cfs_rq_of(&p->se)->next ||
8130 			 &p->se == cfs_rq_of(&p->se)->last))
8131 		return 1;
8132 
8133 	if (sysctl_sched_migration_cost == -1)
8134 		return 1;
8135 
8136 	/*
8137 	 * Don't migrate task if the task's cookie does not match
8138 	 * with the destination CPU's core cookie.
8139 	 */
8140 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8141 		return 1;
8142 
8143 	if (sysctl_sched_migration_cost == 0)
8144 		return 0;
8145 
8146 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8147 
8148 	return delta < (s64)sysctl_sched_migration_cost;
8149 }
8150 
8151 #ifdef CONFIG_NUMA_BALANCING
8152 /*
8153  * Returns 1, if task migration degrades locality
8154  * Returns 0, if task migration improves locality i.e migration preferred.
8155  * Returns -1, if task migration is not affected by locality.
8156  */
8157 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8158 {
8159 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8160 	unsigned long src_weight, dst_weight;
8161 	int src_nid, dst_nid, dist;
8162 
8163 	if (!static_branch_likely(&sched_numa_balancing))
8164 		return -1;
8165 
8166 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8167 		return -1;
8168 
8169 	src_nid = cpu_to_node(env->src_cpu);
8170 	dst_nid = cpu_to_node(env->dst_cpu);
8171 
8172 	if (src_nid == dst_nid)
8173 		return -1;
8174 
8175 	/* Migrating away from the preferred node is always bad. */
8176 	if (src_nid == p->numa_preferred_nid) {
8177 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8178 			return 1;
8179 		else
8180 			return -1;
8181 	}
8182 
8183 	/* Encourage migration to the preferred node. */
8184 	if (dst_nid == p->numa_preferred_nid)
8185 		return 0;
8186 
8187 	/* Leaving a core idle is often worse than degrading locality. */
8188 	if (env->idle == CPU_IDLE)
8189 		return -1;
8190 
8191 	dist = node_distance(src_nid, dst_nid);
8192 	if (numa_group) {
8193 		src_weight = group_weight(p, src_nid, dist);
8194 		dst_weight = group_weight(p, dst_nid, dist);
8195 	} else {
8196 		src_weight = task_weight(p, src_nid, dist);
8197 		dst_weight = task_weight(p, dst_nid, dist);
8198 	}
8199 
8200 	return dst_weight < src_weight;
8201 }
8202 
8203 #else
8204 static inline int migrate_degrades_locality(struct task_struct *p,
8205 					     struct lb_env *env)
8206 {
8207 	return -1;
8208 }
8209 #endif
8210 
8211 /*
8212  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8213  */
8214 static
8215 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8216 {
8217 	int tsk_cache_hot;
8218 
8219 	lockdep_assert_rq_held(env->src_rq);
8220 
8221 	/*
8222 	 * We do not migrate tasks that are:
8223 	 * 1) throttled_lb_pair, or
8224 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8225 	 * 3) running (obviously), or
8226 	 * 4) are cache-hot on their current CPU.
8227 	 */
8228 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8229 		return 0;
8230 
8231 	/* Disregard pcpu kthreads; they are where they need to be. */
8232 	if (kthread_is_per_cpu(p))
8233 		return 0;
8234 
8235 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8236 		int cpu;
8237 
8238 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8239 
8240 		env->flags |= LBF_SOME_PINNED;
8241 
8242 		/*
8243 		 * Remember if this task can be migrated to any other CPU in
8244 		 * our sched_group. We may want to revisit it if we couldn't
8245 		 * meet load balance goals by pulling other tasks on src_cpu.
8246 		 *
8247 		 * Avoid computing new_dst_cpu
8248 		 * - for NEWLY_IDLE
8249 		 * - if we have already computed one in current iteration
8250 		 * - if it's an active balance
8251 		 */
8252 		if (env->idle == CPU_NEWLY_IDLE ||
8253 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8254 			return 0;
8255 
8256 		/* Prevent to re-select dst_cpu via env's CPUs: */
8257 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8258 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8259 				env->flags |= LBF_DST_PINNED;
8260 				env->new_dst_cpu = cpu;
8261 				break;
8262 			}
8263 		}
8264 
8265 		return 0;
8266 	}
8267 
8268 	/* Record that we found at least one task that could run on dst_cpu */
8269 	env->flags &= ~LBF_ALL_PINNED;
8270 
8271 	if (task_on_cpu(env->src_rq, p)) {
8272 		schedstat_inc(p->stats.nr_failed_migrations_running);
8273 		return 0;
8274 	}
8275 
8276 	/*
8277 	 * Aggressive migration if:
8278 	 * 1) active balance
8279 	 * 2) destination numa is preferred
8280 	 * 3) task is cache cold, or
8281 	 * 4) too many balance attempts have failed.
8282 	 */
8283 	if (env->flags & LBF_ACTIVE_LB)
8284 		return 1;
8285 
8286 	tsk_cache_hot = migrate_degrades_locality(p, env);
8287 	if (tsk_cache_hot == -1)
8288 		tsk_cache_hot = task_hot(p, env);
8289 
8290 	if (tsk_cache_hot <= 0 ||
8291 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8292 		if (tsk_cache_hot == 1) {
8293 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8294 			schedstat_inc(p->stats.nr_forced_migrations);
8295 		}
8296 		return 1;
8297 	}
8298 
8299 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8300 	return 0;
8301 }
8302 
8303 /*
8304  * detach_task() -- detach the task for the migration specified in env
8305  */
8306 static void detach_task(struct task_struct *p, struct lb_env *env)
8307 {
8308 	lockdep_assert_rq_held(env->src_rq);
8309 
8310 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8311 	set_task_cpu(p, env->dst_cpu);
8312 }
8313 
8314 /*
8315  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8316  * part of active balancing operations within "domain".
8317  *
8318  * Returns a task if successful and NULL otherwise.
8319  */
8320 static struct task_struct *detach_one_task(struct lb_env *env)
8321 {
8322 	struct task_struct *p;
8323 
8324 	lockdep_assert_rq_held(env->src_rq);
8325 
8326 	list_for_each_entry_reverse(p,
8327 			&env->src_rq->cfs_tasks, se.group_node) {
8328 		if (!can_migrate_task(p, env))
8329 			continue;
8330 
8331 		detach_task(p, env);
8332 
8333 		/*
8334 		 * Right now, this is only the second place where
8335 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8336 		 * so we can safely collect stats here rather than
8337 		 * inside detach_tasks().
8338 		 */
8339 		schedstat_inc(env->sd->lb_gained[env->idle]);
8340 		return p;
8341 	}
8342 	return NULL;
8343 }
8344 
8345 /*
8346  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8347  * busiest_rq, as part of a balancing operation within domain "sd".
8348  *
8349  * Returns number of detached tasks if successful and 0 otherwise.
8350  */
8351 static int detach_tasks(struct lb_env *env)
8352 {
8353 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8354 	unsigned long util, load;
8355 	struct task_struct *p;
8356 	int detached = 0;
8357 
8358 	lockdep_assert_rq_held(env->src_rq);
8359 
8360 	/*
8361 	 * Source run queue has been emptied by another CPU, clear
8362 	 * LBF_ALL_PINNED flag as we will not test any task.
8363 	 */
8364 	if (env->src_rq->nr_running <= 1) {
8365 		env->flags &= ~LBF_ALL_PINNED;
8366 		return 0;
8367 	}
8368 
8369 	if (env->imbalance <= 0)
8370 		return 0;
8371 
8372 	while (!list_empty(tasks)) {
8373 		/*
8374 		 * We don't want to steal all, otherwise we may be treated likewise,
8375 		 * which could at worst lead to a livelock crash.
8376 		 */
8377 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8378 			break;
8379 
8380 		env->loop++;
8381 		/*
8382 		 * We've more or less seen every task there is, call it quits
8383 		 * unless we haven't found any movable task yet.
8384 		 */
8385 		if (env->loop > env->loop_max &&
8386 		    !(env->flags & LBF_ALL_PINNED))
8387 			break;
8388 
8389 		/* take a breather every nr_migrate tasks */
8390 		if (env->loop > env->loop_break) {
8391 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8392 			env->flags |= LBF_NEED_BREAK;
8393 			break;
8394 		}
8395 
8396 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8397 
8398 		if (!can_migrate_task(p, env))
8399 			goto next;
8400 
8401 		switch (env->migration_type) {
8402 		case migrate_load:
8403 			/*
8404 			 * Depending of the number of CPUs and tasks and the
8405 			 * cgroup hierarchy, task_h_load() can return a null
8406 			 * value. Make sure that env->imbalance decreases
8407 			 * otherwise detach_tasks() will stop only after
8408 			 * detaching up to loop_max tasks.
8409 			 */
8410 			load = max_t(unsigned long, task_h_load(p), 1);
8411 
8412 			if (sched_feat(LB_MIN) &&
8413 			    load < 16 && !env->sd->nr_balance_failed)
8414 				goto next;
8415 
8416 			/*
8417 			 * Make sure that we don't migrate too much load.
8418 			 * Nevertheless, let relax the constraint if
8419 			 * scheduler fails to find a good waiting task to
8420 			 * migrate.
8421 			 */
8422 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8423 				goto next;
8424 
8425 			env->imbalance -= load;
8426 			break;
8427 
8428 		case migrate_util:
8429 			util = task_util_est(p);
8430 
8431 			if (util > env->imbalance)
8432 				goto next;
8433 
8434 			env->imbalance -= util;
8435 			break;
8436 
8437 		case migrate_task:
8438 			env->imbalance--;
8439 			break;
8440 
8441 		case migrate_misfit:
8442 			/* This is not a misfit task */
8443 			if (task_fits_cpu(p, env->src_cpu))
8444 				goto next;
8445 
8446 			env->imbalance = 0;
8447 			break;
8448 		}
8449 
8450 		detach_task(p, env);
8451 		list_add(&p->se.group_node, &env->tasks);
8452 
8453 		detached++;
8454 
8455 #ifdef CONFIG_PREEMPTION
8456 		/*
8457 		 * NEWIDLE balancing is a source of latency, so preemptible
8458 		 * kernels will stop after the first task is detached to minimize
8459 		 * the critical section.
8460 		 */
8461 		if (env->idle == CPU_NEWLY_IDLE)
8462 			break;
8463 #endif
8464 
8465 		/*
8466 		 * We only want to steal up to the prescribed amount of
8467 		 * load/util/tasks.
8468 		 */
8469 		if (env->imbalance <= 0)
8470 			break;
8471 
8472 		continue;
8473 next:
8474 		list_move(&p->se.group_node, tasks);
8475 	}
8476 
8477 	/*
8478 	 * Right now, this is one of only two places we collect this stat
8479 	 * so we can safely collect detach_one_task() stats here rather
8480 	 * than inside detach_one_task().
8481 	 */
8482 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8483 
8484 	return detached;
8485 }
8486 
8487 /*
8488  * attach_task() -- attach the task detached by detach_task() to its new rq.
8489  */
8490 static void attach_task(struct rq *rq, struct task_struct *p)
8491 {
8492 	lockdep_assert_rq_held(rq);
8493 
8494 	WARN_ON_ONCE(task_rq(p) != rq);
8495 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8496 	check_preempt_curr(rq, p, 0);
8497 }
8498 
8499 /*
8500  * attach_one_task() -- attaches the task returned from detach_one_task() to
8501  * its new rq.
8502  */
8503 static void attach_one_task(struct rq *rq, struct task_struct *p)
8504 {
8505 	struct rq_flags rf;
8506 
8507 	rq_lock(rq, &rf);
8508 	update_rq_clock(rq);
8509 	attach_task(rq, p);
8510 	rq_unlock(rq, &rf);
8511 }
8512 
8513 /*
8514  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8515  * new rq.
8516  */
8517 static void attach_tasks(struct lb_env *env)
8518 {
8519 	struct list_head *tasks = &env->tasks;
8520 	struct task_struct *p;
8521 	struct rq_flags rf;
8522 
8523 	rq_lock(env->dst_rq, &rf);
8524 	update_rq_clock(env->dst_rq);
8525 
8526 	while (!list_empty(tasks)) {
8527 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8528 		list_del_init(&p->se.group_node);
8529 
8530 		attach_task(env->dst_rq, p);
8531 	}
8532 
8533 	rq_unlock(env->dst_rq, &rf);
8534 }
8535 
8536 #ifdef CONFIG_NO_HZ_COMMON
8537 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8538 {
8539 	if (cfs_rq->avg.load_avg)
8540 		return true;
8541 
8542 	if (cfs_rq->avg.util_avg)
8543 		return true;
8544 
8545 	return false;
8546 }
8547 
8548 static inline bool others_have_blocked(struct rq *rq)
8549 {
8550 	if (READ_ONCE(rq->avg_rt.util_avg))
8551 		return true;
8552 
8553 	if (READ_ONCE(rq->avg_dl.util_avg))
8554 		return true;
8555 
8556 	if (thermal_load_avg(rq))
8557 		return true;
8558 
8559 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8560 	if (READ_ONCE(rq->avg_irq.util_avg))
8561 		return true;
8562 #endif
8563 
8564 	return false;
8565 }
8566 
8567 static inline void update_blocked_load_tick(struct rq *rq)
8568 {
8569 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8570 }
8571 
8572 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8573 {
8574 	if (!has_blocked)
8575 		rq->has_blocked_load = 0;
8576 }
8577 #else
8578 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8579 static inline bool others_have_blocked(struct rq *rq) { return false; }
8580 static inline void update_blocked_load_tick(struct rq *rq) {}
8581 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8582 #endif
8583 
8584 static bool __update_blocked_others(struct rq *rq, bool *done)
8585 {
8586 	const struct sched_class *curr_class;
8587 	u64 now = rq_clock_pelt(rq);
8588 	unsigned long thermal_pressure;
8589 	bool decayed;
8590 
8591 	/*
8592 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8593 	 * DL and IRQ signals have been updated before updating CFS.
8594 	 */
8595 	curr_class = rq->curr->sched_class;
8596 
8597 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8598 
8599 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8600 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8601 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8602 		  update_irq_load_avg(rq, 0);
8603 
8604 	if (others_have_blocked(rq))
8605 		*done = false;
8606 
8607 	return decayed;
8608 }
8609 
8610 #ifdef CONFIG_FAIR_GROUP_SCHED
8611 
8612 static bool __update_blocked_fair(struct rq *rq, bool *done)
8613 {
8614 	struct cfs_rq *cfs_rq, *pos;
8615 	bool decayed = false;
8616 	int cpu = cpu_of(rq);
8617 
8618 	/*
8619 	 * Iterates the task_group tree in a bottom up fashion, see
8620 	 * list_add_leaf_cfs_rq() for details.
8621 	 */
8622 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8623 		struct sched_entity *se;
8624 
8625 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8626 			update_tg_load_avg(cfs_rq);
8627 
8628 			if (cfs_rq->nr_running == 0)
8629 				update_idle_cfs_rq_clock_pelt(cfs_rq);
8630 
8631 			if (cfs_rq == &rq->cfs)
8632 				decayed = true;
8633 		}
8634 
8635 		/* Propagate pending load changes to the parent, if any: */
8636 		se = cfs_rq->tg->se[cpu];
8637 		if (se && !skip_blocked_update(se))
8638 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8639 
8640 		/*
8641 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8642 		 * decayed cfs_rqs linger on the list.
8643 		 */
8644 		if (cfs_rq_is_decayed(cfs_rq))
8645 			list_del_leaf_cfs_rq(cfs_rq);
8646 
8647 		/* Don't need periodic decay once load/util_avg are null */
8648 		if (cfs_rq_has_blocked(cfs_rq))
8649 			*done = false;
8650 	}
8651 
8652 	return decayed;
8653 }
8654 
8655 /*
8656  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8657  * This needs to be done in a top-down fashion because the load of a child
8658  * group is a fraction of its parents load.
8659  */
8660 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8661 {
8662 	struct rq *rq = rq_of(cfs_rq);
8663 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8664 	unsigned long now = jiffies;
8665 	unsigned long load;
8666 
8667 	if (cfs_rq->last_h_load_update == now)
8668 		return;
8669 
8670 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8671 	for_each_sched_entity(se) {
8672 		cfs_rq = cfs_rq_of(se);
8673 		WRITE_ONCE(cfs_rq->h_load_next, se);
8674 		if (cfs_rq->last_h_load_update == now)
8675 			break;
8676 	}
8677 
8678 	if (!se) {
8679 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8680 		cfs_rq->last_h_load_update = now;
8681 	}
8682 
8683 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8684 		load = cfs_rq->h_load;
8685 		load = div64_ul(load * se->avg.load_avg,
8686 			cfs_rq_load_avg(cfs_rq) + 1);
8687 		cfs_rq = group_cfs_rq(se);
8688 		cfs_rq->h_load = load;
8689 		cfs_rq->last_h_load_update = now;
8690 	}
8691 }
8692 
8693 static unsigned long task_h_load(struct task_struct *p)
8694 {
8695 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8696 
8697 	update_cfs_rq_h_load(cfs_rq);
8698 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8699 			cfs_rq_load_avg(cfs_rq) + 1);
8700 }
8701 #else
8702 static bool __update_blocked_fair(struct rq *rq, bool *done)
8703 {
8704 	struct cfs_rq *cfs_rq = &rq->cfs;
8705 	bool decayed;
8706 
8707 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8708 	if (cfs_rq_has_blocked(cfs_rq))
8709 		*done = false;
8710 
8711 	return decayed;
8712 }
8713 
8714 static unsigned long task_h_load(struct task_struct *p)
8715 {
8716 	return p->se.avg.load_avg;
8717 }
8718 #endif
8719 
8720 static void update_blocked_averages(int cpu)
8721 {
8722 	bool decayed = false, done = true;
8723 	struct rq *rq = cpu_rq(cpu);
8724 	struct rq_flags rf;
8725 
8726 	rq_lock_irqsave(rq, &rf);
8727 	update_blocked_load_tick(rq);
8728 	update_rq_clock(rq);
8729 
8730 	decayed |= __update_blocked_others(rq, &done);
8731 	decayed |= __update_blocked_fair(rq, &done);
8732 
8733 	update_blocked_load_status(rq, !done);
8734 	if (decayed)
8735 		cpufreq_update_util(rq, 0);
8736 	rq_unlock_irqrestore(rq, &rf);
8737 }
8738 
8739 /********** Helpers for find_busiest_group ************************/
8740 
8741 /*
8742  * sg_lb_stats - stats of a sched_group required for load_balancing
8743  */
8744 struct sg_lb_stats {
8745 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8746 	unsigned long group_load; /* Total load over the CPUs of the group */
8747 	unsigned long group_capacity;
8748 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8749 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8750 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8751 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8752 	unsigned int idle_cpus;
8753 	unsigned int group_weight;
8754 	enum group_type group_type;
8755 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8756 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8757 #ifdef CONFIG_NUMA_BALANCING
8758 	unsigned int nr_numa_running;
8759 	unsigned int nr_preferred_running;
8760 #endif
8761 };
8762 
8763 /*
8764  * sd_lb_stats - Structure to store the statistics of a sched_domain
8765  *		 during load balancing.
8766  */
8767 struct sd_lb_stats {
8768 	struct sched_group *busiest;	/* Busiest group in this sd */
8769 	struct sched_group *local;	/* Local group in this sd */
8770 	unsigned long total_load;	/* Total load of all groups in sd */
8771 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8772 	unsigned long avg_load;	/* Average load across all groups in sd */
8773 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8774 
8775 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8776 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8777 };
8778 
8779 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8780 {
8781 	/*
8782 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8783 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8784 	 * We must however set busiest_stat::group_type and
8785 	 * busiest_stat::idle_cpus to the worst busiest group because
8786 	 * update_sd_pick_busiest() reads these before assignment.
8787 	 */
8788 	*sds = (struct sd_lb_stats){
8789 		.busiest = NULL,
8790 		.local = NULL,
8791 		.total_load = 0UL,
8792 		.total_capacity = 0UL,
8793 		.busiest_stat = {
8794 			.idle_cpus = UINT_MAX,
8795 			.group_type = group_has_spare,
8796 		},
8797 	};
8798 }
8799 
8800 static unsigned long scale_rt_capacity(int cpu)
8801 {
8802 	struct rq *rq = cpu_rq(cpu);
8803 	unsigned long max = arch_scale_cpu_capacity(cpu);
8804 	unsigned long used, free;
8805 	unsigned long irq;
8806 
8807 	irq = cpu_util_irq(rq);
8808 
8809 	if (unlikely(irq >= max))
8810 		return 1;
8811 
8812 	/*
8813 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8814 	 * (running and not running) with weights 0 and 1024 respectively.
8815 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8816 	 * average uses the actual delta max capacity(load).
8817 	 */
8818 	used = READ_ONCE(rq->avg_rt.util_avg);
8819 	used += READ_ONCE(rq->avg_dl.util_avg);
8820 	used += thermal_load_avg(rq);
8821 
8822 	if (unlikely(used >= max))
8823 		return 1;
8824 
8825 	free = max - used;
8826 
8827 	return scale_irq_capacity(free, irq, max);
8828 }
8829 
8830 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8831 {
8832 	unsigned long capacity_orig = arch_scale_cpu_capacity(cpu);
8833 	unsigned long capacity = scale_rt_capacity(cpu);
8834 	struct sched_group *sdg = sd->groups;
8835 	struct rq *rq = cpu_rq(cpu);
8836 
8837 	rq->cpu_capacity_orig = capacity_orig;
8838 
8839 	if (!capacity)
8840 		capacity = 1;
8841 
8842 	rq->cpu_capacity = capacity;
8843 
8844 	/*
8845 	 * Detect if the performance domain is in capacity inversion state.
8846 	 *
8847 	 * Capacity inversion happens when another perf domain with equal or
8848 	 * lower capacity_orig_of() ends up having higher capacity than this
8849 	 * domain after subtracting thermal pressure.
8850 	 *
8851 	 * We only take into account thermal pressure in this detection as it's
8852 	 * the only metric that actually results in *real* reduction of
8853 	 * capacity due to performance points (OPPs) being dropped/become
8854 	 * unreachable due to thermal throttling.
8855 	 *
8856 	 * We assume:
8857 	 *   * That all cpus in a perf domain have the same capacity_orig
8858 	 *     (same uArch).
8859 	 *   * Thermal pressure will impact all cpus in this perf domain
8860 	 *     equally.
8861 	 */
8862 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
8863 		unsigned long inv_cap = capacity_orig - thermal_load_avg(rq);
8864 		struct perf_domain *pd = rcu_dereference(rq->rd->pd);
8865 
8866 		rq->cpu_capacity_inverted = 0;
8867 
8868 		for (; pd; pd = pd->next) {
8869 			struct cpumask *pd_span = perf_domain_span(pd);
8870 			unsigned long pd_cap_orig, pd_cap;
8871 
8872 			cpu = cpumask_any(pd_span);
8873 			pd_cap_orig = arch_scale_cpu_capacity(cpu);
8874 
8875 			if (capacity_orig < pd_cap_orig)
8876 				continue;
8877 
8878 			/*
8879 			 * handle the case of multiple perf domains have the
8880 			 * same capacity_orig but one of them is under higher
8881 			 * thermal pressure. We record it as capacity
8882 			 * inversion.
8883 			 */
8884 			if (capacity_orig == pd_cap_orig) {
8885 				pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu));
8886 
8887 				if (pd_cap > inv_cap) {
8888 					rq->cpu_capacity_inverted = inv_cap;
8889 					break;
8890 				}
8891 			} else if (pd_cap_orig > inv_cap) {
8892 				rq->cpu_capacity_inverted = inv_cap;
8893 				break;
8894 			}
8895 		}
8896 	}
8897 
8898 	trace_sched_cpu_capacity_tp(rq);
8899 
8900 	sdg->sgc->capacity = capacity;
8901 	sdg->sgc->min_capacity = capacity;
8902 	sdg->sgc->max_capacity = capacity;
8903 }
8904 
8905 void update_group_capacity(struct sched_domain *sd, int cpu)
8906 {
8907 	struct sched_domain *child = sd->child;
8908 	struct sched_group *group, *sdg = sd->groups;
8909 	unsigned long capacity, min_capacity, max_capacity;
8910 	unsigned long interval;
8911 
8912 	interval = msecs_to_jiffies(sd->balance_interval);
8913 	interval = clamp(interval, 1UL, max_load_balance_interval);
8914 	sdg->sgc->next_update = jiffies + interval;
8915 
8916 	if (!child) {
8917 		update_cpu_capacity(sd, cpu);
8918 		return;
8919 	}
8920 
8921 	capacity = 0;
8922 	min_capacity = ULONG_MAX;
8923 	max_capacity = 0;
8924 
8925 	if (child->flags & SD_OVERLAP) {
8926 		/*
8927 		 * SD_OVERLAP domains cannot assume that child groups
8928 		 * span the current group.
8929 		 */
8930 
8931 		for_each_cpu(cpu, sched_group_span(sdg)) {
8932 			unsigned long cpu_cap = capacity_of(cpu);
8933 
8934 			capacity += cpu_cap;
8935 			min_capacity = min(cpu_cap, min_capacity);
8936 			max_capacity = max(cpu_cap, max_capacity);
8937 		}
8938 	} else  {
8939 		/*
8940 		 * !SD_OVERLAP domains can assume that child groups
8941 		 * span the current group.
8942 		 */
8943 
8944 		group = child->groups;
8945 		do {
8946 			struct sched_group_capacity *sgc = group->sgc;
8947 
8948 			capacity += sgc->capacity;
8949 			min_capacity = min(sgc->min_capacity, min_capacity);
8950 			max_capacity = max(sgc->max_capacity, max_capacity);
8951 			group = group->next;
8952 		} while (group != child->groups);
8953 	}
8954 
8955 	sdg->sgc->capacity = capacity;
8956 	sdg->sgc->min_capacity = min_capacity;
8957 	sdg->sgc->max_capacity = max_capacity;
8958 }
8959 
8960 /*
8961  * Check whether the capacity of the rq has been noticeably reduced by side
8962  * activity. The imbalance_pct is used for the threshold.
8963  * Return true is the capacity is reduced
8964  */
8965 static inline int
8966 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8967 {
8968 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8969 				(rq->cpu_capacity_orig * 100));
8970 }
8971 
8972 /*
8973  * Check whether a rq has a misfit task and if it looks like we can actually
8974  * help that task: we can migrate the task to a CPU of higher capacity, or
8975  * the task's current CPU is heavily pressured.
8976  */
8977 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8978 {
8979 	return rq->misfit_task_load &&
8980 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8981 		 check_cpu_capacity(rq, sd));
8982 }
8983 
8984 /*
8985  * Group imbalance indicates (and tries to solve) the problem where balancing
8986  * groups is inadequate due to ->cpus_ptr constraints.
8987  *
8988  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8989  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8990  * Something like:
8991  *
8992  *	{ 0 1 2 3 } { 4 5 6 7 }
8993  *	        *     * * *
8994  *
8995  * If we were to balance group-wise we'd place two tasks in the first group and
8996  * two tasks in the second group. Clearly this is undesired as it will overload
8997  * cpu 3 and leave one of the CPUs in the second group unused.
8998  *
8999  * The current solution to this issue is detecting the skew in the first group
9000  * by noticing the lower domain failed to reach balance and had difficulty
9001  * moving tasks due to affinity constraints.
9002  *
9003  * When this is so detected; this group becomes a candidate for busiest; see
9004  * update_sd_pick_busiest(). And calculate_imbalance() and
9005  * find_busiest_group() avoid some of the usual balance conditions to allow it
9006  * to create an effective group imbalance.
9007  *
9008  * This is a somewhat tricky proposition since the next run might not find the
9009  * group imbalance and decide the groups need to be balanced again. A most
9010  * subtle and fragile situation.
9011  */
9012 
9013 static inline int sg_imbalanced(struct sched_group *group)
9014 {
9015 	return group->sgc->imbalance;
9016 }
9017 
9018 /*
9019  * group_has_capacity returns true if the group has spare capacity that could
9020  * be used by some tasks.
9021  * We consider that a group has spare capacity if the number of task is
9022  * smaller than the number of CPUs or if the utilization is lower than the
9023  * available capacity for CFS tasks.
9024  * For the latter, we use a threshold to stabilize the state, to take into
9025  * account the variance of the tasks' load and to return true if the available
9026  * capacity in meaningful for the load balancer.
9027  * As an example, an available capacity of 1% can appear but it doesn't make
9028  * any benefit for the load balance.
9029  */
9030 static inline bool
9031 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9032 {
9033 	if (sgs->sum_nr_running < sgs->group_weight)
9034 		return true;
9035 
9036 	if ((sgs->group_capacity * imbalance_pct) <
9037 			(sgs->group_runnable * 100))
9038 		return false;
9039 
9040 	if ((sgs->group_capacity * 100) >
9041 			(sgs->group_util * imbalance_pct))
9042 		return true;
9043 
9044 	return false;
9045 }
9046 
9047 /*
9048  *  group_is_overloaded returns true if the group has more tasks than it can
9049  *  handle.
9050  *  group_is_overloaded is not equals to !group_has_capacity because a group
9051  *  with the exact right number of tasks, has no more spare capacity but is not
9052  *  overloaded so both group_has_capacity and group_is_overloaded return
9053  *  false.
9054  */
9055 static inline bool
9056 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9057 {
9058 	if (sgs->sum_nr_running <= sgs->group_weight)
9059 		return false;
9060 
9061 	if ((sgs->group_capacity * 100) <
9062 			(sgs->group_util * imbalance_pct))
9063 		return true;
9064 
9065 	if ((sgs->group_capacity * imbalance_pct) <
9066 			(sgs->group_runnable * 100))
9067 		return true;
9068 
9069 	return false;
9070 }
9071 
9072 static inline enum
9073 group_type group_classify(unsigned int imbalance_pct,
9074 			  struct sched_group *group,
9075 			  struct sg_lb_stats *sgs)
9076 {
9077 	if (group_is_overloaded(imbalance_pct, sgs))
9078 		return group_overloaded;
9079 
9080 	if (sg_imbalanced(group))
9081 		return group_imbalanced;
9082 
9083 	if (sgs->group_asym_packing)
9084 		return group_asym_packing;
9085 
9086 	if (sgs->group_misfit_task_load)
9087 		return group_misfit_task;
9088 
9089 	if (!group_has_capacity(imbalance_pct, sgs))
9090 		return group_fully_busy;
9091 
9092 	return group_has_spare;
9093 }
9094 
9095 /**
9096  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
9097  * @dst_cpu:	Destination CPU of the load balancing
9098  * @sds:	Load-balancing data with statistics of the local group
9099  * @sgs:	Load-balancing statistics of the candidate busiest group
9100  * @sg:		The candidate busiest group
9101  *
9102  * Check the state of the SMT siblings of both @sds::local and @sg and decide
9103  * if @dst_cpu can pull tasks.
9104  *
9105  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
9106  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
9107  * only if @dst_cpu has higher priority.
9108  *
9109  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
9110  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
9111  * Bigger imbalances in the number of busy CPUs will be dealt with in
9112  * update_sd_pick_busiest().
9113  *
9114  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
9115  * of @dst_cpu are idle and @sg has lower priority.
9116  *
9117  * Return: true if @dst_cpu can pull tasks, false otherwise.
9118  */
9119 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
9120 				    struct sg_lb_stats *sgs,
9121 				    struct sched_group *sg)
9122 {
9123 #ifdef CONFIG_SCHED_SMT
9124 	bool local_is_smt, sg_is_smt;
9125 	int sg_busy_cpus;
9126 
9127 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
9128 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
9129 
9130 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
9131 
9132 	if (!local_is_smt) {
9133 		/*
9134 		 * If we are here, @dst_cpu is idle and does not have SMT
9135 		 * siblings. Pull tasks if candidate group has two or more
9136 		 * busy CPUs.
9137 		 */
9138 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
9139 			return true;
9140 
9141 		/*
9142 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
9143 		 * siblings and only one is busy. In such case, @dst_cpu
9144 		 * can help if it has higher priority and is idle (i.e.,
9145 		 * it has no running tasks).
9146 		 */
9147 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9148 	}
9149 
9150 	/* @dst_cpu has SMT siblings. */
9151 
9152 	if (sg_is_smt) {
9153 		int local_busy_cpus = sds->local->group_weight -
9154 				      sds->local_stat.idle_cpus;
9155 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
9156 
9157 		if (busy_cpus_delta == 1)
9158 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9159 
9160 		return false;
9161 	}
9162 
9163 	/*
9164 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
9165 	 * up with more than one busy SMT sibling and only pull tasks if there
9166 	 * are not busy CPUs (i.e., no CPU has running tasks).
9167 	 */
9168 	if (!sds->local_stat.sum_nr_running)
9169 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9170 
9171 	return false;
9172 #else
9173 	/* Always return false so that callers deal with non-SMT cases. */
9174 	return false;
9175 #endif
9176 }
9177 
9178 static inline bool
9179 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9180 	   struct sched_group *group)
9181 {
9182 	/* Only do SMT checks if either local or candidate have SMT siblings */
9183 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
9184 	    (group->flags & SD_SHARE_CPUCAPACITY))
9185 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
9186 
9187 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9188 }
9189 
9190 static inline bool
9191 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9192 {
9193 	/*
9194 	 * When there is more than 1 task, the group_overloaded case already
9195 	 * takes care of cpu with reduced capacity
9196 	 */
9197 	if (rq->cfs.h_nr_running != 1)
9198 		return false;
9199 
9200 	return check_cpu_capacity(rq, sd);
9201 }
9202 
9203 /**
9204  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9205  * @env: The load balancing environment.
9206  * @sds: Load-balancing data with statistics of the local group.
9207  * @group: sched_group whose statistics are to be updated.
9208  * @sgs: variable to hold the statistics for this group.
9209  * @sg_status: Holds flag indicating the status of the sched_group
9210  */
9211 static inline void update_sg_lb_stats(struct lb_env *env,
9212 				      struct sd_lb_stats *sds,
9213 				      struct sched_group *group,
9214 				      struct sg_lb_stats *sgs,
9215 				      int *sg_status)
9216 {
9217 	int i, nr_running, local_group;
9218 
9219 	memset(sgs, 0, sizeof(*sgs));
9220 
9221 	local_group = group == sds->local;
9222 
9223 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9224 		struct rq *rq = cpu_rq(i);
9225 		unsigned long load = cpu_load(rq);
9226 
9227 		sgs->group_load += load;
9228 		sgs->group_util += cpu_util_cfs(i);
9229 		sgs->group_runnable += cpu_runnable(rq);
9230 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9231 
9232 		nr_running = rq->nr_running;
9233 		sgs->sum_nr_running += nr_running;
9234 
9235 		if (nr_running > 1)
9236 			*sg_status |= SG_OVERLOAD;
9237 
9238 		if (cpu_overutilized(i))
9239 			*sg_status |= SG_OVERUTILIZED;
9240 
9241 #ifdef CONFIG_NUMA_BALANCING
9242 		sgs->nr_numa_running += rq->nr_numa_running;
9243 		sgs->nr_preferred_running += rq->nr_preferred_running;
9244 #endif
9245 		/*
9246 		 * No need to call idle_cpu() if nr_running is not 0
9247 		 */
9248 		if (!nr_running && idle_cpu(i)) {
9249 			sgs->idle_cpus++;
9250 			/* Idle cpu can't have misfit task */
9251 			continue;
9252 		}
9253 
9254 		if (local_group)
9255 			continue;
9256 
9257 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9258 			/* Check for a misfit task on the cpu */
9259 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9260 				sgs->group_misfit_task_load = rq->misfit_task_load;
9261 				*sg_status |= SG_OVERLOAD;
9262 			}
9263 		} else if ((env->idle != CPU_NOT_IDLE) &&
9264 			   sched_reduced_capacity(rq, env->sd)) {
9265 			/* Check for a task running on a CPU with reduced capacity */
9266 			if (sgs->group_misfit_task_load < load)
9267 				sgs->group_misfit_task_load = load;
9268 		}
9269 	}
9270 
9271 	sgs->group_capacity = group->sgc->capacity;
9272 
9273 	sgs->group_weight = group->group_weight;
9274 
9275 	/* Check if dst CPU is idle and preferred to this group */
9276 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9277 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9278 	    sched_asym(env, sds, sgs, group)) {
9279 		sgs->group_asym_packing = 1;
9280 	}
9281 
9282 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9283 
9284 	/* Computing avg_load makes sense only when group is overloaded */
9285 	if (sgs->group_type == group_overloaded)
9286 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9287 				sgs->group_capacity;
9288 }
9289 
9290 /**
9291  * update_sd_pick_busiest - return 1 on busiest group
9292  * @env: The load balancing environment.
9293  * @sds: sched_domain statistics
9294  * @sg: sched_group candidate to be checked for being the busiest
9295  * @sgs: sched_group statistics
9296  *
9297  * Determine if @sg is a busier group than the previously selected
9298  * busiest group.
9299  *
9300  * Return: %true if @sg is a busier group than the previously selected
9301  * busiest group. %false otherwise.
9302  */
9303 static bool update_sd_pick_busiest(struct lb_env *env,
9304 				   struct sd_lb_stats *sds,
9305 				   struct sched_group *sg,
9306 				   struct sg_lb_stats *sgs)
9307 {
9308 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9309 
9310 	/* Make sure that there is at least one task to pull */
9311 	if (!sgs->sum_h_nr_running)
9312 		return false;
9313 
9314 	/*
9315 	 * Don't try to pull misfit tasks we can't help.
9316 	 * We can use max_capacity here as reduction in capacity on some
9317 	 * CPUs in the group should either be possible to resolve
9318 	 * internally or be covered by avg_load imbalance (eventually).
9319 	 */
9320 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9321 	    (sgs->group_type == group_misfit_task) &&
9322 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9323 	     sds->local_stat.group_type != group_has_spare))
9324 		return false;
9325 
9326 	if (sgs->group_type > busiest->group_type)
9327 		return true;
9328 
9329 	if (sgs->group_type < busiest->group_type)
9330 		return false;
9331 
9332 	/*
9333 	 * The candidate and the current busiest group are the same type of
9334 	 * group. Let check which one is the busiest according to the type.
9335 	 */
9336 
9337 	switch (sgs->group_type) {
9338 	case group_overloaded:
9339 		/* Select the overloaded group with highest avg_load. */
9340 		if (sgs->avg_load <= busiest->avg_load)
9341 			return false;
9342 		break;
9343 
9344 	case group_imbalanced:
9345 		/*
9346 		 * Select the 1st imbalanced group as we don't have any way to
9347 		 * choose one more than another.
9348 		 */
9349 		return false;
9350 
9351 	case group_asym_packing:
9352 		/* Prefer to move from lowest priority CPU's work */
9353 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9354 			return false;
9355 		break;
9356 
9357 	case group_misfit_task:
9358 		/*
9359 		 * If we have more than one misfit sg go with the biggest
9360 		 * misfit.
9361 		 */
9362 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9363 			return false;
9364 		break;
9365 
9366 	case group_fully_busy:
9367 		/*
9368 		 * Select the fully busy group with highest avg_load. In
9369 		 * theory, there is no need to pull task from such kind of
9370 		 * group because tasks have all compute capacity that they need
9371 		 * but we can still improve the overall throughput by reducing
9372 		 * contention when accessing shared HW resources.
9373 		 *
9374 		 * XXX for now avg_load is not computed and always 0 so we
9375 		 * select the 1st one.
9376 		 */
9377 		if (sgs->avg_load <= busiest->avg_load)
9378 			return false;
9379 		break;
9380 
9381 	case group_has_spare:
9382 		/*
9383 		 * Select not overloaded group with lowest number of idle cpus
9384 		 * and highest number of running tasks. We could also compare
9385 		 * the spare capacity which is more stable but it can end up
9386 		 * that the group has less spare capacity but finally more idle
9387 		 * CPUs which means less opportunity to pull tasks.
9388 		 */
9389 		if (sgs->idle_cpus > busiest->idle_cpus)
9390 			return false;
9391 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9392 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9393 			return false;
9394 
9395 		break;
9396 	}
9397 
9398 	/*
9399 	 * Candidate sg has no more than one task per CPU and has higher
9400 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9401 	 * throughput. Maximize throughput, power/energy consequences are not
9402 	 * considered.
9403 	 */
9404 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9405 	    (sgs->group_type <= group_fully_busy) &&
9406 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9407 		return false;
9408 
9409 	return true;
9410 }
9411 
9412 #ifdef CONFIG_NUMA_BALANCING
9413 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9414 {
9415 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9416 		return regular;
9417 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9418 		return remote;
9419 	return all;
9420 }
9421 
9422 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9423 {
9424 	if (rq->nr_running > rq->nr_numa_running)
9425 		return regular;
9426 	if (rq->nr_running > rq->nr_preferred_running)
9427 		return remote;
9428 	return all;
9429 }
9430 #else
9431 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9432 {
9433 	return all;
9434 }
9435 
9436 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9437 {
9438 	return regular;
9439 }
9440 #endif /* CONFIG_NUMA_BALANCING */
9441 
9442 
9443 struct sg_lb_stats;
9444 
9445 /*
9446  * task_running_on_cpu - return 1 if @p is running on @cpu.
9447  */
9448 
9449 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9450 {
9451 	/* Task has no contribution or is new */
9452 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9453 		return 0;
9454 
9455 	if (task_on_rq_queued(p))
9456 		return 1;
9457 
9458 	return 0;
9459 }
9460 
9461 /**
9462  * idle_cpu_without - would a given CPU be idle without p ?
9463  * @cpu: the processor on which idleness is tested.
9464  * @p: task which should be ignored.
9465  *
9466  * Return: 1 if the CPU would be idle. 0 otherwise.
9467  */
9468 static int idle_cpu_without(int cpu, struct task_struct *p)
9469 {
9470 	struct rq *rq = cpu_rq(cpu);
9471 
9472 	if (rq->curr != rq->idle && rq->curr != p)
9473 		return 0;
9474 
9475 	/*
9476 	 * rq->nr_running can't be used but an updated version without the
9477 	 * impact of p on cpu must be used instead. The updated nr_running
9478 	 * be computed and tested before calling idle_cpu_without().
9479 	 */
9480 
9481 #ifdef CONFIG_SMP
9482 	if (rq->ttwu_pending)
9483 		return 0;
9484 #endif
9485 
9486 	return 1;
9487 }
9488 
9489 /*
9490  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9491  * @sd: The sched_domain level to look for idlest group.
9492  * @group: sched_group whose statistics are to be updated.
9493  * @sgs: variable to hold the statistics for this group.
9494  * @p: The task for which we look for the idlest group/CPU.
9495  */
9496 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9497 					  struct sched_group *group,
9498 					  struct sg_lb_stats *sgs,
9499 					  struct task_struct *p)
9500 {
9501 	int i, nr_running;
9502 
9503 	memset(sgs, 0, sizeof(*sgs));
9504 
9505 	/* Assume that task can't fit any CPU of the group */
9506 	if (sd->flags & SD_ASYM_CPUCAPACITY)
9507 		sgs->group_misfit_task_load = 1;
9508 
9509 	for_each_cpu(i, sched_group_span(group)) {
9510 		struct rq *rq = cpu_rq(i);
9511 		unsigned int local;
9512 
9513 		sgs->group_load += cpu_load_without(rq, p);
9514 		sgs->group_util += cpu_util_without(i, p);
9515 		sgs->group_runnable += cpu_runnable_without(rq, p);
9516 		local = task_running_on_cpu(i, p);
9517 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9518 
9519 		nr_running = rq->nr_running - local;
9520 		sgs->sum_nr_running += nr_running;
9521 
9522 		/*
9523 		 * No need to call idle_cpu_without() if nr_running is not 0
9524 		 */
9525 		if (!nr_running && idle_cpu_without(i, p))
9526 			sgs->idle_cpus++;
9527 
9528 		/* Check if task fits in the CPU */
9529 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
9530 		    sgs->group_misfit_task_load &&
9531 		    task_fits_cpu(p, i))
9532 			sgs->group_misfit_task_load = 0;
9533 
9534 	}
9535 
9536 	sgs->group_capacity = group->sgc->capacity;
9537 
9538 	sgs->group_weight = group->group_weight;
9539 
9540 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9541 
9542 	/*
9543 	 * Computing avg_load makes sense only when group is fully busy or
9544 	 * overloaded
9545 	 */
9546 	if (sgs->group_type == group_fully_busy ||
9547 		sgs->group_type == group_overloaded)
9548 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9549 				sgs->group_capacity;
9550 }
9551 
9552 static bool update_pick_idlest(struct sched_group *idlest,
9553 			       struct sg_lb_stats *idlest_sgs,
9554 			       struct sched_group *group,
9555 			       struct sg_lb_stats *sgs)
9556 {
9557 	if (sgs->group_type < idlest_sgs->group_type)
9558 		return true;
9559 
9560 	if (sgs->group_type > idlest_sgs->group_type)
9561 		return false;
9562 
9563 	/*
9564 	 * The candidate and the current idlest group are the same type of
9565 	 * group. Let check which one is the idlest according to the type.
9566 	 */
9567 
9568 	switch (sgs->group_type) {
9569 	case group_overloaded:
9570 	case group_fully_busy:
9571 		/* Select the group with lowest avg_load. */
9572 		if (idlest_sgs->avg_load <= sgs->avg_load)
9573 			return false;
9574 		break;
9575 
9576 	case group_imbalanced:
9577 	case group_asym_packing:
9578 		/* Those types are not used in the slow wakeup path */
9579 		return false;
9580 
9581 	case group_misfit_task:
9582 		/* Select group with the highest max capacity */
9583 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9584 			return false;
9585 		break;
9586 
9587 	case group_has_spare:
9588 		/* Select group with most idle CPUs */
9589 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9590 			return false;
9591 
9592 		/* Select group with lowest group_util */
9593 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9594 			idlest_sgs->group_util <= sgs->group_util)
9595 			return false;
9596 
9597 		break;
9598 	}
9599 
9600 	return true;
9601 }
9602 
9603 /*
9604  * find_idlest_group() finds and returns the least busy CPU group within the
9605  * domain.
9606  *
9607  * Assumes p is allowed on at least one CPU in sd.
9608  */
9609 static struct sched_group *
9610 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9611 {
9612 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9613 	struct sg_lb_stats local_sgs, tmp_sgs;
9614 	struct sg_lb_stats *sgs;
9615 	unsigned long imbalance;
9616 	struct sg_lb_stats idlest_sgs = {
9617 			.avg_load = UINT_MAX,
9618 			.group_type = group_overloaded,
9619 	};
9620 
9621 	do {
9622 		int local_group;
9623 
9624 		/* Skip over this group if it has no CPUs allowed */
9625 		if (!cpumask_intersects(sched_group_span(group),
9626 					p->cpus_ptr))
9627 			continue;
9628 
9629 		/* Skip over this group if no cookie matched */
9630 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9631 			continue;
9632 
9633 		local_group = cpumask_test_cpu(this_cpu,
9634 					       sched_group_span(group));
9635 
9636 		if (local_group) {
9637 			sgs = &local_sgs;
9638 			local = group;
9639 		} else {
9640 			sgs = &tmp_sgs;
9641 		}
9642 
9643 		update_sg_wakeup_stats(sd, group, sgs, p);
9644 
9645 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9646 			idlest = group;
9647 			idlest_sgs = *sgs;
9648 		}
9649 
9650 	} while (group = group->next, group != sd->groups);
9651 
9652 
9653 	/* There is no idlest group to push tasks to */
9654 	if (!idlest)
9655 		return NULL;
9656 
9657 	/* The local group has been skipped because of CPU affinity */
9658 	if (!local)
9659 		return idlest;
9660 
9661 	/*
9662 	 * If the local group is idler than the selected idlest group
9663 	 * don't try and push the task.
9664 	 */
9665 	if (local_sgs.group_type < idlest_sgs.group_type)
9666 		return NULL;
9667 
9668 	/*
9669 	 * If the local group is busier than the selected idlest group
9670 	 * try and push the task.
9671 	 */
9672 	if (local_sgs.group_type > idlest_sgs.group_type)
9673 		return idlest;
9674 
9675 	switch (local_sgs.group_type) {
9676 	case group_overloaded:
9677 	case group_fully_busy:
9678 
9679 		/* Calculate allowed imbalance based on load */
9680 		imbalance = scale_load_down(NICE_0_LOAD) *
9681 				(sd->imbalance_pct-100) / 100;
9682 
9683 		/*
9684 		 * When comparing groups across NUMA domains, it's possible for
9685 		 * the local domain to be very lightly loaded relative to the
9686 		 * remote domains but "imbalance" skews the comparison making
9687 		 * remote CPUs look much more favourable. When considering
9688 		 * cross-domain, add imbalance to the load on the remote node
9689 		 * and consider staying local.
9690 		 */
9691 
9692 		if ((sd->flags & SD_NUMA) &&
9693 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9694 			return NULL;
9695 
9696 		/*
9697 		 * If the local group is less loaded than the selected
9698 		 * idlest group don't try and push any tasks.
9699 		 */
9700 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9701 			return NULL;
9702 
9703 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9704 			return NULL;
9705 		break;
9706 
9707 	case group_imbalanced:
9708 	case group_asym_packing:
9709 		/* Those type are not used in the slow wakeup path */
9710 		return NULL;
9711 
9712 	case group_misfit_task:
9713 		/* Select group with the highest max capacity */
9714 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9715 			return NULL;
9716 		break;
9717 
9718 	case group_has_spare:
9719 #ifdef CONFIG_NUMA
9720 		if (sd->flags & SD_NUMA) {
9721 			int imb_numa_nr = sd->imb_numa_nr;
9722 #ifdef CONFIG_NUMA_BALANCING
9723 			int idlest_cpu;
9724 			/*
9725 			 * If there is spare capacity at NUMA, try to select
9726 			 * the preferred node
9727 			 */
9728 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9729 				return NULL;
9730 
9731 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9732 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9733 				return idlest;
9734 #endif /* CONFIG_NUMA_BALANCING */
9735 			/*
9736 			 * Otherwise, keep the task close to the wakeup source
9737 			 * and improve locality if the number of running tasks
9738 			 * would remain below threshold where an imbalance is
9739 			 * allowed while accounting for the possibility the
9740 			 * task is pinned to a subset of CPUs. If there is a
9741 			 * real need of migration, periodic load balance will
9742 			 * take care of it.
9743 			 */
9744 			if (p->nr_cpus_allowed != NR_CPUS) {
9745 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9746 
9747 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9748 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9749 			}
9750 
9751 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9752 			if (!adjust_numa_imbalance(imbalance,
9753 						   local_sgs.sum_nr_running + 1,
9754 						   imb_numa_nr)) {
9755 				return NULL;
9756 			}
9757 		}
9758 #endif /* CONFIG_NUMA */
9759 
9760 		/*
9761 		 * Select group with highest number of idle CPUs. We could also
9762 		 * compare the utilization which is more stable but it can end
9763 		 * up that the group has less spare capacity but finally more
9764 		 * idle CPUs which means more opportunity to run task.
9765 		 */
9766 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9767 			return NULL;
9768 		break;
9769 	}
9770 
9771 	return idlest;
9772 }
9773 
9774 static void update_idle_cpu_scan(struct lb_env *env,
9775 				 unsigned long sum_util)
9776 {
9777 	struct sched_domain_shared *sd_share;
9778 	int llc_weight, pct;
9779 	u64 x, y, tmp;
9780 	/*
9781 	 * Update the number of CPUs to scan in LLC domain, which could
9782 	 * be used as a hint in select_idle_cpu(). The update of sd_share
9783 	 * could be expensive because it is within a shared cache line.
9784 	 * So the write of this hint only occurs during periodic load
9785 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9786 	 * can fire way more frequently than the former.
9787 	 */
9788 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9789 		return;
9790 
9791 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9792 	if (env->sd->span_weight != llc_weight)
9793 		return;
9794 
9795 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9796 	if (!sd_share)
9797 		return;
9798 
9799 	/*
9800 	 * The number of CPUs to search drops as sum_util increases, when
9801 	 * sum_util hits 85% or above, the scan stops.
9802 	 * The reason to choose 85% as the threshold is because this is the
9803 	 * imbalance_pct(117) when a LLC sched group is overloaded.
9804 	 *
9805 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
9806 	 * and y'= y / SCHED_CAPACITY_SCALE
9807 	 *
9808 	 * x is the ratio of sum_util compared to the CPU capacity:
9809 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9810 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
9811 	 * and the number of CPUs to scan is calculated by:
9812 	 *
9813 	 * nr_scan = llc_weight * y'                                    [2]
9814 	 *
9815 	 * When x hits the threshold of overloaded, AKA, when
9816 	 * x = 100 / pct, y drops to 0. According to [1],
9817 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9818 	 *
9819 	 * Scale x by SCHED_CAPACITY_SCALE:
9820 	 * x' = sum_util / llc_weight;                                  [3]
9821 	 *
9822 	 * and finally [1] becomes:
9823 	 * y = SCHED_CAPACITY_SCALE -
9824 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
9825 	 *
9826 	 */
9827 	/* equation [3] */
9828 	x = sum_util;
9829 	do_div(x, llc_weight);
9830 
9831 	/* equation [4] */
9832 	pct = env->sd->imbalance_pct;
9833 	tmp = x * x * pct * pct;
9834 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9835 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9836 	y = SCHED_CAPACITY_SCALE - tmp;
9837 
9838 	/* equation [2] */
9839 	y *= llc_weight;
9840 	do_div(y, SCHED_CAPACITY_SCALE);
9841 	if ((int)y != sd_share->nr_idle_scan)
9842 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9843 }
9844 
9845 /**
9846  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9847  * @env: The load balancing environment.
9848  * @sds: variable to hold the statistics for this sched_domain.
9849  */
9850 
9851 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9852 {
9853 	struct sched_domain *child = env->sd->child;
9854 	struct sched_group *sg = env->sd->groups;
9855 	struct sg_lb_stats *local = &sds->local_stat;
9856 	struct sg_lb_stats tmp_sgs;
9857 	unsigned long sum_util = 0;
9858 	int sg_status = 0;
9859 
9860 	do {
9861 		struct sg_lb_stats *sgs = &tmp_sgs;
9862 		int local_group;
9863 
9864 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9865 		if (local_group) {
9866 			sds->local = sg;
9867 			sgs = local;
9868 
9869 			if (env->idle != CPU_NEWLY_IDLE ||
9870 			    time_after_eq(jiffies, sg->sgc->next_update))
9871 				update_group_capacity(env->sd, env->dst_cpu);
9872 		}
9873 
9874 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9875 
9876 		if (local_group)
9877 			goto next_group;
9878 
9879 
9880 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9881 			sds->busiest = sg;
9882 			sds->busiest_stat = *sgs;
9883 		}
9884 
9885 next_group:
9886 		/* Now, start updating sd_lb_stats */
9887 		sds->total_load += sgs->group_load;
9888 		sds->total_capacity += sgs->group_capacity;
9889 
9890 		sum_util += sgs->group_util;
9891 		sg = sg->next;
9892 	} while (sg != env->sd->groups);
9893 
9894 	/* Tag domain that child domain prefers tasks go to siblings first */
9895 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9896 
9897 
9898 	if (env->sd->flags & SD_NUMA)
9899 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9900 
9901 	if (!env->sd->parent) {
9902 		struct root_domain *rd = env->dst_rq->rd;
9903 
9904 		/* update overload indicator if we are at root domain */
9905 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9906 
9907 		/* Update over-utilization (tipping point, U >= 0) indicator */
9908 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9909 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9910 	} else if (sg_status & SG_OVERUTILIZED) {
9911 		struct root_domain *rd = env->dst_rq->rd;
9912 
9913 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9914 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9915 	}
9916 
9917 	update_idle_cpu_scan(env, sum_util);
9918 }
9919 
9920 /**
9921  * calculate_imbalance - Calculate the amount of imbalance present within the
9922  *			 groups of a given sched_domain during load balance.
9923  * @env: load balance environment
9924  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9925  */
9926 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9927 {
9928 	struct sg_lb_stats *local, *busiest;
9929 
9930 	local = &sds->local_stat;
9931 	busiest = &sds->busiest_stat;
9932 
9933 	if (busiest->group_type == group_misfit_task) {
9934 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9935 			/* Set imbalance to allow misfit tasks to be balanced. */
9936 			env->migration_type = migrate_misfit;
9937 			env->imbalance = 1;
9938 		} else {
9939 			/*
9940 			 * Set load imbalance to allow moving task from cpu
9941 			 * with reduced capacity.
9942 			 */
9943 			env->migration_type = migrate_load;
9944 			env->imbalance = busiest->group_misfit_task_load;
9945 		}
9946 		return;
9947 	}
9948 
9949 	if (busiest->group_type == group_asym_packing) {
9950 		/*
9951 		 * In case of asym capacity, we will try to migrate all load to
9952 		 * the preferred CPU.
9953 		 */
9954 		env->migration_type = migrate_task;
9955 		env->imbalance = busiest->sum_h_nr_running;
9956 		return;
9957 	}
9958 
9959 	if (busiest->group_type == group_imbalanced) {
9960 		/*
9961 		 * In the group_imb case we cannot rely on group-wide averages
9962 		 * to ensure CPU-load equilibrium, try to move any task to fix
9963 		 * the imbalance. The next load balance will take care of
9964 		 * balancing back the system.
9965 		 */
9966 		env->migration_type = migrate_task;
9967 		env->imbalance = 1;
9968 		return;
9969 	}
9970 
9971 	/*
9972 	 * Try to use spare capacity of local group without overloading it or
9973 	 * emptying busiest.
9974 	 */
9975 	if (local->group_type == group_has_spare) {
9976 		if ((busiest->group_type > group_fully_busy) &&
9977 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9978 			/*
9979 			 * If busiest is overloaded, try to fill spare
9980 			 * capacity. This might end up creating spare capacity
9981 			 * in busiest or busiest still being overloaded but
9982 			 * there is no simple way to directly compute the
9983 			 * amount of load to migrate in order to balance the
9984 			 * system.
9985 			 */
9986 			env->migration_type = migrate_util;
9987 			env->imbalance = max(local->group_capacity, local->group_util) -
9988 					 local->group_util;
9989 
9990 			/*
9991 			 * In some cases, the group's utilization is max or even
9992 			 * higher than capacity because of migrations but the
9993 			 * local CPU is (newly) idle. There is at least one
9994 			 * waiting task in this overloaded busiest group. Let's
9995 			 * try to pull it.
9996 			 */
9997 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9998 				env->migration_type = migrate_task;
9999 				env->imbalance = 1;
10000 			}
10001 
10002 			return;
10003 		}
10004 
10005 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10006 			unsigned int nr_diff = busiest->sum_nr_running;
10007 			/*
10008 			 * When prefer sibling, evenly spread running tasks on
10009 			 * groups.
10010 			 */
10011 			env->migration_type = migrate_task;
10012 			lsub_positive(&nr_diff, local->sum_nr_running);
10013 			env->imbalance = nr_diff;
10014 		} else {
10015 
10016 			/*
10017 			 * If there is no overload, we just want to even the number of
10018 			 * idle cpus.
10019 			 */
10020 			env->migration_type = migrate_task;
10021 			env->imbalance = max_t(long, 0,
10022 					       (local->idle_cpus - busiest->idle_cpus));
10023 		}
10024 
10025 #ifdef CONFIG_NUMA
10026 		/* Consider allowing a small imbalance between NUMA groups */
10027 		if (env->sd->flags & SD_NUMA) {
10028 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10029 							       local->sum_nr_running + 1,
10030 							       env->sd->imb_numa_nr);
10031 		}
10032 #endif
10033 
10034 		/* Number of tasks to move to restore balance */
10035 		env->imbalance >>= 1;
10036 
10037 		return;
10038 	}
10039 
10040 	/*
10041 	 * Local is fully busy but has to take more load to relieve the
10042 	 * busiest group
10043 	 */
10044 	if (local->group_type < group_overloaded) {
10045 		/*
10046 		 * Local will become overloaded so the avg_load metrics are
10047 		 * finally needed.
10048 		 */
10049 
10050 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10051 				  local->group_capacity;
10052 
10053 		/*
10054 		 * If the local group is more loaded than the selected
10055 		 * busiest group don't try to pull any tasks.
10056 		 */
10057 		if (local->avg_load >= busiest->avg_load) {
10058 			env->imbalance = 0;
10059 			return;
10060 		}
10061 
10062 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10063 				sds->total_capacity;
10064 	}
10065 
10066 	/*
10067 	 * Both group are or will become overloaded and we're trying to get all
10068 	 * the CPUs to the average_load, so we don't want to push ourselves
10069 	 * above the average load, nor do we wish to reduce the max loaded CPU
10070 	 * below the average load. At the same time, we also don't want to
10071 	 * reduce the group load below the group capacity. Thus we look for
10072 	 * the minimum possible imbalance.
10073 	 */
10074 	env->migration_type = migrate_load;
10075 	env->imbalance = min(
10076 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10077 		(sds->avg_load - local->avg_load) * local->group_capacity
10078 	) / SCHED_CAPACITY_SCALE;
10079 }
10080 
10081 /******* find_busiest_group() helpers end here *********************/
10082 
10083 /*
10084  * Decision matrix according to the local and busiest group type:
10085  *
10086  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10087  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10088  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10089  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10090  * asym_packing     force     force      N/A    N/A  force      force
10091  * imbalanced       force     force      N/A    N/A  force      force
10092  * overloaded       force     force      N/A    N/A  force      avg_load
10093  *
10094  * N/A :      Not Applicable because already filtered while updating
10095  *            statistics.
10096  * balanced : The system is balanced for these 2 groups.
10097  * force :    Calculate the imbalance as load migration is probably needed.
10098  * avg_load : Only if imbalance is significant enough.
10099  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10100  *            different in groups.
10101  */
10102 
10103 /**
10104  * find_busiest_group - Returns the busiest group within the sched_domain
10105  * if there is an imbalance.
10106  * @env: The load balancing environment.
10107  *
10108  * Also calculates the amount of runnable load which should be moved
10109  * to restore balance.
10110  *
10111  * Return:	- The busiest group if imbalance exists.
10112  */
10113 static struct sched_group *find_busiest_group(struct lb_env *env)
10114 {
10115 	struct sg_lb_stats *local, *busiest;
10116 	struct sd_lb_stats sds;
10117 
10118 	init_sd_lb_stats(&sds);
10119 
10120 	/*
10121 	 * Compute the various statistics relevant for load balancing at
10122 	 * this level.
10123 	 */
10124 	update_sd_lb_stats(env, &sds);
10125 
10126 	if (sched_energy_enabled()) {
10127 		struct root_domain *rd = env->dst_rq->rd;
10128 
10129 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10130 			goto out_balanced;
10131 	}
10132 
10133 	local = &sds.local_stat;
10134 	busiest = &sds.busiest_stat;
10135 
10136 	/* There is no busy sibling group to pull tasks from */
10137 	if (!sds.busiest)
10138 		goto out_balanced;
10139 
10140 	/* Misfit tasks should be dealt with regardless of the avg load */
10141 	if (busiest->group_type == group_misfit_task)
10142 		goto force_balance;
10143 
10144 	/* ASYM feature bypasses nice load balance check */
10145 	if (busiest->group_type == group_asym_packing)
10146 		goto force_balance;
10147 
10148 	/*
10149 	 * If the busiest group is imbalanced the below checks don't
10150 	 * work because they assume all things are equal, which typically
10151 	 * isn't true due to cpus_ptr constraints and the like.
10152 	 */
10153 	if (busiest->group_type == group_imbalanced)
10154 		goto force_balance;
10155 
10156 	/*
10157 	 * If the local group is busier than the selected busiest group
10158 	 * don't try and pull any tasks.
10159 	 */
10160 	if (local->group_type > busiest->group_type)
10161 		goto out_balanced;
10162 
10163 	/*
10164 	 * When groups are overloaded, use the avg_load to ensure fairness
10165 	 * between tasks.
10166 	 */
10167 	if (local->group_type == group_overloaded) {
10168 		/*
10169 		 * If the local group is more loaded than the selected
10170 		 * busiest group don't try to pull any tasks.
10171 		 */
10172 		if (local->avg_load >= busiest->avg_load)
10173 			goto out_balanced;
10174 
10175 		/* XXX broken for overlapping NUMA groups */
10176 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10177 				sds.total_capacity;
10178 
10179 		/*
10180 		 * Don't pull any tasks if this group is already above the
10181 		 * domain average load.
10182 		 */
10183 		if (local->avg_load >= sds.avg_load)
10184 			goto out_balanced;
10185 
10186 		/*
10187 		 * If the busiest group is more loaded, use imbalance_pct to be
10188 		 * conservative.
10189 		 */
10190 		if (100 * busiest->avg_load <=
10191 				env->sd->imbalance_pct * local->avg_load)
10192 			goto out_balanced;
10193 	}
10194 
10195 	/* Try to move all excess tasks to child's sibling domain */
10196 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10197 	    busiest->sum_nr_running > local->sum_nr_running + 1)
10198 		goto force_balance;
10199 
10200 	if (busiest->group_type != group_overloaded) {
10201 		if (env->idle == CPU_NOT_IDLE)
10202 			/*
10203 			 * If the busiest group is not overloaded (and as a
10204 			 * result the local one too) but this CPU is already
10205 			 * busy, let another idle CPU try to pull task.
10206 			 */
10207 			goto out_balanced;
10208 
10209 		if (busiest->group_weight > 1 &&
10210 		    local->idle_cpus <= (busiest->idle_cpus + 1))
10211 			/*
10212 			 * If the busiest group is not overloaded
10213 			 * and there is no imbalance between this and busiest
10214 			 * group wrt idle CPUs, it is balanced. The imbalance
10215 			 * becomes significant if the diff is greater than 1
10216 			 * otherwise we might end up to just move the imbalance
10217 			 * on another group. Of course this applies only if
10218 			 * there is more than 1 CPU per group.
10219 			 */
10220 			goto out_balanced;
10221 
10222 		if (busiest->sum_h_nr_running == 1)
10223 			/*
10224 			 * busiest doesn't have any tasks waiting to run
10225 			 */
10226 			goto out_balanced;
10227 	}
10228 
10229 force_balance:
10230 	/* Looks like there is an imbalance. Compute it */
10231 	calculate_imbalance(env, &sds);
10232 	return env->imbalance ? sds.busiest : NULL;
10233 
10234 out_balanced:
10235 	env->imbalance = 0;
10236 	return NULL;
10237 }
10238 
10239 /*
10240  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10241  */
10242 static struct rq *find_busiest_queue(struct lb_env *env,
10243 				     struct sched_group *group)
10244 {
10245 	struct rq *busiest = NULL, *rq;
10246 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10247 	unsigned int busiest_nr = 0;
10248 	int i;
10249 
10250 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10251 		unsigned long capacity, load, util;
10252 		unsigned int nr_running;
10253 		enum fbq_type rt;
10254 
10255 		rq = cpu_rq(i);
10256 		rt = fbq_classify_rq(rq);
10257 
10258 		/*
10259 		 * We classify groups/runqueues into three groups:
10260 		 *  - regular: there are !numa tasks
10261 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10262 		 *  - all:     there is no distinction
10263 		 *
10264 		 * In order to avoid migrating ideally placed numa tasks,
10265 		 * ignore those when there's better options.
10266 		 *
10267 		 * If we ignore the actual busiest queue to migrate another
10268 		 * task, the next balance pass can still reduce the busiest
10269 		 * queue by moving tasks around inside the node.
10270 		 *
10271 		 * If we cannot move enough load due to this classification
10272 		 * the next pass will adjust the group classification and
10273 		 * allow migration of more tasks.
10274 		 *
10275 		 * Both cases only affect the total convergence complexity.
10276 		 */
10277 		if (rt > env->fbq_type)
10278 			continue;
10279 
10280 		nr_running = rq->cfs.h_nr_running;
10281 		if (!nr_running)
10282 			continue;
10283 
10284 		capacity = capacity_of(i);
10285 
10286 		/*
10287 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10288 		 * eventually lead to active_balancing high->low capacity.
10289 		 * Higher per-CPU capacity is considered better than balancing
10290 		 * average load.
10291 		 */
10292 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10293 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10294 		    nr_running == 1)
10295 			continue;
10296 
10297 		/* Make sure we only pull tasks from a CPU of lower priority */
10298 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10299 		    sched_asym_prefer(i, env->dst_cpu) &&
10300 		    nr_running == 1)
10301 			continue;
10302 
10303 		switch (env->migration_type) {
10304 		case migrate_load:
10305 			/*
10306 			 * When comparing with load imbalance, use cpu_load()
10307 			 * which is not scaled with the CPU capacity.
10308 			 */
10309 			load = cpu_load(rq);
10310 
10311 			if (nr_running == 1 && load > env->imbalance &&
10312 			    !check_cpu_capacity(rq, env->sd))
10313 				break;
10314 
10315 			/*
10316 			 * For the load comparisons with the other CPUs,
10317 			 * consider the cpu_load() scaled with the CPU
10318 			 * capacity, so that the load can be moved away
10319 			 * from the CPU that is potentially running at a
10320 			 * lower capacity.
10321 			 *
10322 			 * Thus we're looking for max(load_i / capacity_i),
10323 			 * crosswise multiplication to rid ourselves of the
10324 			 * division works out to:
10325 			 * load_i * capacity_j > load_j * capacity_i;
10326 			 * where j is our previous maximum.
10327 			 */
10328 			if (load * busiest_capacity > busiest_load * capacity) {
10329 				busiest_load = load;
10330 				busiest_capacity = capacity;
10331 				busiest = rq;
10332 			}
10333 			break;
10334 
10335 		case migrate_util:
10336 			util = cpu_util_cfs(i);
10337 
10338 			/*
10339 			 * Don't try to pull utilization from a CPU with one
10340 			 * running task. Whatever its utilization, we will fail
10341 			 * detach the task.
10342 			 */
10343 			if (nr_running <= 1)
10344 				continue;
10345 
10346 			if (busiest_util < util) {
10347 				busiest_util = util;
10348 				busiest = rq;
10349 			}
10350 			break;
10351 
10352 		case migrate_task:
10353 			if (busiest_nr < nr_running) {
10354 				busiest_nr = nr_running;
10355 				busiest = rq;
10356 			}
10357 			break;
10358 
10359 		case migrate_misfit:
10360 			/*
10361 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10362 			 * simply seek the "biggest" misfit task.
10363 			 */
10364 			if (rq->misfit_task_load > busiest_load) {
10365 				busiest_load = rq->misfit_task_load;
10366 				busiest = rq;
10367 			}
10368 
10369 			break;
10370 
10371 		}
10372 	}
10373 
10374 	return busiest;
10375 }
10376 
10377 /*
10378  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10379  * so long as it is large enough.
10380  */
10381 #define MAX_PINNED_INTERVAL	512
10382 
10383 static inline bool
10384 asym_active_balance(struct lb_env *env)
10385 {
10386 	/*
10387 	 * ASYM_PACKING needs to force migrate tasks from busy but
10388 	 * lower priority CPUs in order to pack all tasks in the
10389 	 * highest priority CPUs.
10390 	 */
10391 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10392 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
10393 }
10394 
10395 static inline bool
10396 imbalanced_active_balance(struct lb_env *env)
10397 {
10398 	struct sched_domain *sd = env->sd;
10399 
10400 	/*
10401 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10402 	 * distribution of the load on the system but also the even distribution of the
10403 	 * threads on a system with spare capacity
10404 	 */
10405 	if ((env->migration_type == migrate_task) &&
10406 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10407 		return 1;
10408 
10409 	return 0;
10410 }
10411 
10412 static int need_active_balance(struct lb_env *env)
10413 {
10414 	struct sched_domain *sd = env->sd;
10415 
10416 	if (asym_active_balance(env))
10417 		return 1;
10418 
10419 	if (imbalanced_active_balance(env))
10420 		return 1;
10421 
10422 	/*
10423 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10424 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10425 	 * because of other sched_class or IRQs if more capacity stays
10426 	 * available on dst_cpu.
10427 	 */
10428 	if ((env->idle != CPU_NOT_IDLE) &&
10429 	    (env->src_rq->cfs.h_nr_running == 1)) {
10430 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10431 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10432 			return 1;
10433 	}
10434 
10435 	if (env->migration_type == migrate_misfit)
10436 		return 1;
10437 
10438 	return 0;
10439 }
10440 
10441 static int active_load_balance_cpu_stop(void *data);
10442 
10443 static int should_we_balance(struct lb_env *env)
10444 {
10445 	struct sched_group *sg = env->sd->groups;
10446 	int cpu;
10447 
10448 	/*
10449 	 * Ensure the balancing environment is consistent; can happen
10450 	 * when the softirq triggers 'during' hotplug.
10451 	 */
10452 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10453 		return 0;
10454 
10455 	/*
10456 	 * In the newly idle case, we will allow all the CPUs
10457 	 * to do the newly idle load balance.
10458 	 *
10459 	 * However, we bail out if we already have tasks or a wakeup pending,
10460 	 * to optimize wakeup latency.
10461 	 */
10462 	if (env->idle == CPU_NEWLY_IDLE) {
10463 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10464 			return 0;
10465 		return 1;
10466 	}
10467 
10468 	/* Try to find first idle CPU */
10469 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10470 		if (!idle_cpu(cpu))
10471 			continue;
10472 
10473 		/* Are we the first idle CPU? */
10474 		return cpu == env->dst_cpu;
10475 	}
10476 
10477 	/* Are we the first CPU of this group ? */
10478 	return group_balance_cpu(sg) == env->dst_cpu;
10479 }
10480 
10481 /*
10482  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10483  * tasks if there is an imbalance.
10484  */
10485 static int load_balance(int this_cpu, struct rq *this_rq,
10486 			struct sched_domain *sd, enum cpu_idle_type idle,
10487 			int *continue_balancing)
10488 {
10489 	int ld_moved, cur_ld_moved, active_balance = 0;
10490 	struct sched_domain *sd_parent = sd->parent;
10491 	struct sched_group *group;
10492 	struct rq *busiest;
10493 	struct rq_flags rf;
10494 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10495 	struct lb_env env = {
10496 		.sd		= sd,
10497 		.dst_cpu	= this_cpu,
10498 		.dst_rq		= this_rq,
10499 		.dst_grpmask    = sched_group_span(sd->groups),
10500 		.idle		= idle,
10501 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
10502 		.cpus		= cpus,
10503 		.fbq_type	= all,
10504 		.tasks		= LIST_HEAD_INIT(env.tasks),
10505 	};
10506 
10507 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10508 
10509 	schedstat_inc(sd->lb_count[idle]);
10510 
10511 redo:
10512 	if (!should_we_balance(&env)) {
10513 		*continue_balancing = 0;
10514 		goto out_balanced;
10515 	}
10516 
10517 	group = find_busiest_group(&env);
10518 	if (!group) {
10519 		schedstat_inc(sd->lb_nobusyg[idle]);
10520 		goto out_balanced;
10521 	}
10522 
10523 	busiest = find_busiest_queue(&env, group);
10524 	if (!busiest) {
10525 		schedstat_inc(sd->lb_nobusyq[idle]);
10526 		goto out_balanced;
10527 	}
10528 
10529 	WARN_ON_ONCE(busiest == env.dst_rq);
10530 
10531 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10532 
10533 	env.src_cpu = busiest->cpu;
10534 	env.src_rq = busiest;
10535 
10536 	ld_moved = 0;
10537 	/* Clear this flag as soon as we find a pullable task */
10538 	env.flags |= LBF_ALL_PINNED;
10539 	if (busiest->nr_running > 1) {
10540 		/*
10541 		 * Attempt to move tasks. If find_busiest_group has found
10542 		 * an imbalance but busiest->nr_running <= 1, the group is
10543 		 * still unbalanced. ld_moved simply stays zero, so it is
10544 		 * correctly treated as an imbalance.
10545 		 */
10546 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10547 
10548 more_balance:
10549 		rq_lock_irqsave(busiest, &rf);
10550 		update_rq_clock(busiest);
10551 
10552 		/*
10553 		 * cur_ld_moved - load moved in current iteration
10554 		 * ld_moved     - cumulative load moved across iterations
10555 		 */
10556 		cur_ld_moved = detach_tasks(&env);
10557 
10558 		/*
10559 		 * We've detached some tasks from busiest_rq. Every
10560 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10561 		 * unlock busiest->lock, and we are able to be sure
10562 		 * that nobody can manipulate the tasks in parallel.
10563 		 * See task_rq_lock() family for the details.
10564 		 */
10565 
10566 		rq_unlock(busiest, &rf);
10567 
10568 		if (cur_ld_moved) {
10569 			attach_tasks(&env);
10570 			ld_moved += cur_ld_moved;
10571 		}
10572 
10573 		local_irq_restore(rf.flags);
10574 
10575 		if (env.flags & LBF_NEED_BREAK) {
10576 			env.flags &= ~LBF_NEED_BREAK;
10577 			/* Stop if we tried all running tasks */
10578 			if (env.loop < busiest->nr_running)
10579 				goto more_balance;
10580 		}
10581 
10582 		/*
10583 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10584 		 * us and move them to an alternate dst_cpu in our sched_group
10585 		 * where they can run. The upper limit on how many times we
10586 		 * iterate on same src_cpu is dependent on number of CPUs in our
10587 		 * sched_group.
10588 		 *
10589 		 * This changes load balance semantics a bit on who can move
10590 		 * load to a given_cpu. In addition to the given_cpu itself
10591 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10592 		 * nohz-idle), we now have balance_cpu in a position to move
10593 		 * load to given_cpu. In rare situations, this may cause
10594 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10595 		 * _independently_ and at _same_ time to move some load to
10596 		 * given_cpu) causing excess load to be moved to given_cpu.
10597 		 * This however should not happen so much in practice and
10598 		 * moreover subsequent load balance cycles should correct the
10599 		 * excess load moved.
10600 		 */
10601 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10602 
10603 			/* Prevent to re-select dst_cpu via env's CPUs */
10604 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10605 
10606 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10607 			env.dst_cpu	 = env.new_dst_cpu;
10608 			env.flags	&= ~LBF_DST_PINNED;
10609 			env.loop	 = 0;
10610 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
10611 
10612 			/*
10613 			 * Go back to "more_balance" rather than "redo" since we
10614 			 * need to continue with same src_cpu.
10615 			 */
10616 			goto more_balance;
10617 		}
10618 
10619 		/*
10620 		 * We failed to reach balance because of affinity.
10621 		 */
10622 		if (sd_parent) {
10623 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10624 
10625 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10626 				*group_imbalance = 1;
10627 		}
10628 
10629 		/* All tasks on this runqueue were pinned by CPU affinity */
10630 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10631 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10632 			/*
10633 			 * Attempting to continue load balancing at the current
10634 			 * sched_domain level only makes sense if there are
10635 			 * active CPUs remaining as possible busiest CPUs to
10636 			 * pull load from which are not contained within the
10637 			 * destination group that is receiving any migrated
10638 			 * load.
10639 			 */
10640 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10641 				env.loop = 0;
10642 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
10643 				goto redo;
10644 			}
10645 			goto out_all_pinned;
10646 		}
10647 	}
10648 
10649 	if (!ld_moved) {
10650 		schedstat_inc(sd->lb_failed[idle]);
10651 		/*
10652 		 * Increment the failure counter only on periodic balance.
10653 		 * We do not want newidle balance, which can be very
10654 		 * frequent, pollute the failure counter causing
10655 		 * excessive cache_hot migrations and active balances.
10656 		 */
10657 		if (idle != CPU_NEWLY_IDLE)
10658 			sd->nr_balance_failed++;
10659 
10660 		if (need_active_balance(&env)) {
10661 			unsigned long flags;
10662 
10663 			raw_spin_rq_lock_irqsave(busiest, flags);
10664 
10665 			/*
10666 			 * Don't kick the active_load_balance_cpu_stop,
10667 			 * if the curr task on busiest CPU can't be
10668 			 * moved to this_cpu:
10669 			 */
10670 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10671 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10672 				goto out_one_pinned;
10673 			}
10674 
10675 			/* Record that we found at least one task that could run on this_cpu */
10676 			env.flags &= ~LBF_ALL_PINNED;
10677 
10678 			/*
10679 			 * ->active_balance synchronizes accesses to
10680 			 * ->active_balance_work.  Once set, it's cleared
10681 			 * only after active load balance is finished.
10682 			 */
10683 			if (!busiest->active_balance) {
10684 				busiest->active_balance = 1;
10685 				busiest->push_cpu = this_cpu;
10686 				active_balance = 1;
10687 			}
10688 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10689 
10690 			if (active_balance) {
10691 				stop_one_cpu_nowait(cpu_of(busiest),
10692 					active_load_balance_cpu_stop, busiest,
10693 					&busiest->active_balance_work);
10694 			}
10695 		}
10696 	} else {
10697 		sd->nr_balance_failed = 0;
10698 	}
10699 
10700 	if (likely(!active_balance) || need_active_balance(&env)) {
10701 		/* We were unbalanced, so reset the balancing interval */
10702 		sd->balance_interval = sd->min_interval;
10703 	}
10704 
10705 	goto out;
10706 
10707 out_balanced:
10708 	/*
10709 	 * We reach balance although we may have faced some affinity
10710 	 * constraints. Clear the imbalance flag only if other tasks got
10711 	 * a chance to move and fix the imbalance.
10712 	 */
10713 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10714 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10715 
10716 		if (*group_imbalance)
10717 			*group_imbalance = 0;
10718 	}
10719 
10720 out_all_pinned:
10721 	/*
10722 	 * We reach balance because all tasks are pinned at this level so
10723 	 * we can't migrate them. Let the imbalance flag set so parent level
10724 	 * can try to migrate them.
10725 	 */
10726 	schedstat_inc(sd->lb_balanced[idle]);
10727 
10728 	sd->nr_balance_failed = 0;
10729 
10730 out_one_pinned:
10731 	ld_moved = 0;
10732 
10733 	/*
10734 	 * newidle_balance() disregards balance intervals, so we could
10735 	 * repeatedly reach this code, which would lead to balance_interval
10736 	 * skyrocketing in a short amount of time. Skip the balance_interval
10737 	 * increase logic to avoid that.
10738 	 */
10739 	if (env.idle == CPU_NEWLY_IDLE)
10740 		goto out;
10741 
10742 	/* tune up the balancing interval */
10743 	if ((env.flags & LBF_ALL_PINNED &&
10744 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10745 	    sd->balance_interval < sd->max_interval)
10746 		sd->balance_interval *= 2;
10747 out:
10748 	return ld_moved;
10749 }
10750 
10751 static inline unsigned long
10752 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10753 {
10754 	unsigned long interval = sd->balance_interval;
10755 
10756 	if (cpu_busy)
10757 		interval *= sd->busy_factor;
10758 
10759 	/* scale ms to jiffies */
10760 	interval = msecs_to_jiffies(interval);
10761 
10762 	/*
10763 	 * Reduce likelihood of busy balancing at higher domains racing with
10764 	 * balancing at lower domains by preventing their balancing periods
10765 	 * from being multiples of each other.
10766 	 */
10767 	if (cpu_busy)
10768 		interval -= 1;
10769 
10770 	interval = clamp(interval, 1UL, max_load_balance_interval);
10771 
10772 	return interval;
10773 }
10774 
10775 static inline void
10776 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10777 {
10778 	unsigned long interval, next;
10779 
10780 	/* used by idle balance, so cpu_busy = 0 */
10781 	interval = get_sd_balance_interval(sd, 0);
10782 	next = sd->last_balance + interval;
10783 
10784 	if (time_after(*next_balance, next))
10785 		*next_balance = next;
10786 }
10787 
10788 /*
10789  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10790  * running tasks off the busiest CPU onto idle CPUs. It requires at
10791  * least 1 task to be running on each physical CPU where possible, and
10792  * avoids physical / logical imbalances.
10793  */
10794 static int active_load_balance_cpu_stop(void *data)
10795 {
10796 	struct rq *busiest_rq = data;
10797 	int busiest_cpu = cpu_of(busiest_rq);
10798 	int target_cpu = busiest_rq->push_cpu;
10799 	struct rq *target_rq = cpu_rq(target_cpu);
10800 	struct sched_domain *sd;
10801 	struct task_struct *p = NULL;
10802 	struct rq_flags rf;
10803 
10804 	rq_lock_irq(busiest_rq, &rf);
10805 	/*
10806 	 * Between queueing the stop-work and running it is a hole in which
10807 	 * CPUs can become inactive. We should not move tasks from or to
10808 	 * inactive CPUs.
10809 	 */
10810 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10811 		goto out_unlock;
10812 
10813 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10814 	if (unlikely(busiest_cpu != smp_processor_id() ||
10815 		     !busiest_rq->active_balance))
10816 		goto out_unlock;
10817 
10818 	/* Is there any task to move? */
10819 	if (busiest_rq->nr_running <= 1)
10820 		goto out_unlock;
10821 
10822 	/*
10823 	 * This condition is "impossible", if it occurs
10824 	 * we need to fix it. Originally reported by
10825 	 * Bjorn Helgaas on a 128-CPU setup.
10826 	 */
10827 	WARN_ON_ONCE(busiest_rq == target_rq);
10828 
10829 	/* Search for an sd spanning us and the target CPU. */
10830 	rcu_read_lock();
10831 	for_each_domain(target_cpu, sd) {
10832 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10833 			break;
10834 	}
10835 
10836 	if (likely(sd)) {
10837 		struct lb_env env = {
10838 			.sd		= sd,
10839 			.dst_cpu	= target_cpu,
10840 			.dst_rq		= target_rq,
10841 			.src_cpu	= busiest_rq->cpu,
10842 			.src_rq		= busiest_rq,
10843 			.idle		= CPU_IDLE,
10844 			.flags		= LBF_ACTIVE_LB,
10845 		};
10846 
10847 		schedstat_inc(sd->alb_count);
10848 		update_rq_clock(busiest_rq);
10849 
10850 		p = detach_one_task(&env);
10851 		if (p) {
10852 			schedstat_inc(sd->alb_pushed);
10853 			/* Active balancing done, reset the failure counter. */
10854 			sd->nr_balance_failed = 0;
10855 		} else {
10856 			schedstat_inc(sd->alb_failed);
10857 		}
10858 	}
10859 	rcu_read_unlock();
10860 out_unlock:
10861 	busiest_rq->active_balance = 0;
10862 	rq_unlock(busiest_rq, &rf);
10863 
10864 	if (p)
10865 		attach_one_task(target_rq, p);
10866 
10867 	local_irq_enable();
10868 
10869 	return 0;
10870 }
10871 
10872 static DEFINE_SPINLOCK(balancing);
10873 
10874 /*
10875  * Scale the max load_balance interval with the number of CPUs in the system.
10876  * This trades load-balance latency on larger machines for less cross talk.
10877  */
10878 void update_max_interval(void)
10879 {
10880 	max_load_balance_interval = HZ*num_online_cpus()/10;
10881 }
10882 
10883 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10884 {
10885 	if (cost > sd->max_newidle_lb_cost) {
10886 		/*
10887 		 * Track max cost of a domain to make sure to not delay the
10888 		 * next wakeup on the CPU.
10889 		 */
10890 		sd->max_newidle_lb_cost = cost;
10891 		sd->last_decay_max_lb_cost = jiffies;
10892 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10893 		/*
10894 		 * Decay the newidle max times by ~1% per second to ensure that
10895 		 * it is not outdated and the current max cost is actually
10896 		 * shorter.
10897 		 */
10898 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10899 		sd->last_decay_max_lb_cost = jiffies;
10900 
10901 		return true;
10902 	}
10903 
10904 	return false;
10905 }
10906 
10907 /*
10908  * It checks each scheduling domain to see if it is due to be balanced,
10909  * and initiates a balancing operation if so.
10910  *
10911  * Balancing parameters are set up in init_sched_domains.
10912  */
10913 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10914 {
10915 	int continue_balancing = 1;
10916 	int cpu = rq->cpu;
10917 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10918 	unsigned long interval;
10919 	struct sched_domain *sd;
10920 	/* Earliest time when we have to do rebalance again */
10921 	unsigned long next_balance = jiffies + 60*HZ;
10922 	int update_next_balance = 0;
10923 	int need_serialize, need_decay = 0;
10924 	u64 max_cost = 0;
10925 
10926 	rcu_read_lock();
10927 	for_each_domain(cpu, sd) {
10928 		/*
10929 		 * Decay the newidle max times here because this is a regular
10930 		 * visit to all the domains.
10931 		 */
10932 		need_decay = update_newidle_cost(sd, 0);
10933 		max_cost += sd->max_newidle_lb_cost;
10934 
10935 		/*
10936 		 * Stop the load balance at this level. There is another
10937 		 * CPU in our sched group which is doing load balancing more
10938 		 * actively.
10939 		 */
10940 		if (!continue_balancing) {
10941 			if (need_decay)
10942 				continue;
10943 			break;
10944 		}
10945 
10946 		interval = get_sd_balance_interval(sd, busy);
10947 
10948 		need_serialize = sd->flags & SD_SERIALIZE;
10949 		if (need_serialize) {
10950 			if (!spin_trylock(&balancing))
10951 				goto out;
10952 		}
10953 
10954 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10955 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10956 				/*
10957 				 * The LBF_DST_PINNED logic could have changed
10958 				 * env->dst_cpu, so we can't know our idle
10959 				 * state even if we migrated tasks. Update it.
10960 				 */
10961 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10962 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10963 			}
10964 			sd->last_balance = jiffies;
10965 			interval = get_sd_balance_interval(sd, busy);
10966 		}
10967 		if (need_serialize)
10968 			spin_unlock(&balancing);
10969 out:
10970 		if (time_after(next_balance, sd->last_balance + interval)) {
10971 			next_balance = sd->last_balance + interval;
10972 			update_next_balance = 1;
10973 		}
10974 	}
10975 	if (need_decay) {
10976 		/*
10977 		 * Ensure the rq-wide value also decays but keep it at a
10978 		 * reasonable floor to avoid funnies with rq->avg_idle.
10979 		 */
10980 		rq->max_idle_balance_cost =
10981 			max((u64)sysctl_sched_migration_cost, max_cost);
10982 	}
10983 	rcu_read_unlock();
10984 
10985 	/*
10986 	 * next_balance will be updated only when there is a need.
10987 	 * When the cpu is attached to null domain for ex, it will not be
10988 	 * updated.
10989 	 */
10990 	if (likely(update_next_balance))
10991 		rq->next_balance = next_balance;
10992 
10993 }
10994 
10995 static inline int on_null_domain(struct rq *rq)
10996 {
10997 	return unlikely(!rcu_dereference_sched(rq->sd));
10998 }
10999 
11000 #ifdef CONFIG_NO_HZ_COMMON
11001 /*
11002  * idle load balancing details
11003  * - When one of the busy CPUs notice that there may be an idle rebalancing
11004  *   needed, they will kick the idle load balancer, which then does idle
11005  *   load balancing for all the idle CPUs.
11006  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11007  *   anywhere yet.
11008  */
11009 
11010 static inline int find_new_ilb(void)
11011 {
11012 	int ilb;
11013 	const struct cpumask *hk_mask;
11014 
11015 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11016 
11017 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11018 
11019 		if (ilb == smp_processor_id())
11020 			continue;
11021 
11022 		if (idle_cpu(ilb))
11023 			return ilb;
11024 	}
11025 
11026 	return nr_cpu_ids;
11027 }
11028 
11029 /*
11030  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11031  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11032  */
11033 static void kick_ilb(unsigned int flags)
11034 {
11035 	int ilb_cpu;
11036 
11037 	/*
11038 	 * Increase nohz.next_balance only when if full ilb is triggered but
11039 	 * not if we only update stats.
11040 	 */
11041 	if (flags & NOHZ_BALANCE_KICK)
11042 		nohz.next_balance = jiffies+1;
11043 
11044 	ilb_cpu = find_new_ilb();
11045 
11046 	if (ilb_cpu >= nr_cpu_ids)
11047 		return;
11048 
11049 	/*
11050 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11051 	 * the first flag owns it; cleared by nohz_csd_func().
11052 	 */
11053 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11054 	if (flags & NOHZ_KICK_MASK)
11055 		return;
11056 
11057 	/*
11058 	 * This way we generate an IPI on the target CPU which
11059 	 * is idle. And the softirq performing nohz idle load balance
11060 	 * will be run before returning from the IPI.
11061 	 */
11062 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11063 }
11064 
11065 /*
11066  * Current decision point for kicking the idle load balancer in the presence
11067  * of idle CPUs in the system.
11068  */
11069 static void nohz_balancer_kick(struct rq *rq)
11070 {
11071 	unsigned long now = jiffies;
11072 	struct sched_domain_shared *sds;
11073 	struct sched_domain *sd;
11074 	int nr_busy, i, cpu = rq->cpu;
11075 	unsigned int flags = 0;
11076 
11077 	if (unlikely(rq->idle_balance))
11078 		return;
11079 
11080 	/*
11081 	 * We may be recently in ticked or tickless idle mode. At the first
11082 	 * busy tick after returning from idle, we will update the busy stats.
11083 	 */
11084 	nohz_balance_exit_idle(rq);
11085 
11086 	/*
11087 	 * None are in tickless mode and hence no need for NOHZ idle load
11088 	 * balancing.
11089 	 */
11090 	if (likely(!atomic_read(&nohz.nr_cpus)))
11091 		return;
11092 
11093 	if (READ_ONCE(nohz.has_blocked) &&
11094 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11095 		flags = NOHZ_STATS_KICK;
11096 
11097 	if (time_before(now, nohz.next_balance))
11098 		goto out;
11099 
11100 	if (rq->nr_running >= 2) {
11101 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11102 		goto out;
11103 	}
11104 
11105 	rcu_read_lock();
11106 
11107 	sd = rcu_dereference(rq->sd);
11108 	if (sd) {
11109 		/*
11110 		 * If there's a CFS task and the current CPU has reduced
11111 		 * capacity; kick the ILB to see if there's a better CPU to run
11112 		 * on.
11113 		 */
11114 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11115 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11116 			goto unlock;
11117 		}
11118 	}
11119 
11120 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11121 	if (sd) {
11122 		/*
11123 		 * When ASYM_PACKING; see if there's a more preferred CPU
11124 		 * currently idle; in which case, kick the ILB to move tasks
11125 		 * around.
11126 		 */
11127 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11128 			if (sched_asym_prefer(i, cpu)) {
11129 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11130 				goto unlock;
11131 			}
11132 		}
11133 	}
11134 
11135 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11136 	if (sd) {
11137 		/*
11138 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11139 		 * to run the misfit task on.
11140 		 */
11141 		if (check_misfit_status(rq, sd)) {
11142 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11143 			goto unlock;
11144 		}
11145 
11146 		/*
11147 		 * For asymmetric systems, we do not want to nicely balance
11148 		 * cache use, instead we want to embrace asymmetry and only
11149 		 * ensure tasks have enough CPU capacity.
11150 		 *
11151 		 * Skip the LLC logic because it's not relevant in that case.
11152 		 */
11153 		goto unlock;
11154 	}
11155 
11156 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11157 	if (sds) {
11158 		/*
11159 		 * If there is an imbalance between LLC domains (IOW we could
11160 		 * increase the overall cache use), we need some less-loaded LLC
11161 		 * domain to pull some load. Likewise, we may need to spread
11162 		 * load within the current LLC domain (e.g. packed SMT cores but
11163 		 * other CPUs are idle). We can't really know from here how busy
11164 		 * the others are - so just get a nohz balance going if it looks
11165 		 * like this LLC domain has tasks we could move.
11166 		 */
11167 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11168 		if (nr_busy > 1) {
11169 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11170 			goto unlock;
11171 		}
11172 	}
11173 unlock:
11174 	rcu_read_unlock();
11175 out:
11176 	if (READ_ONCE(nohz.needs_update))
11177 		flags |= NOHZ_NEXT_KICK;
11178 
11179 	if (flags)
11180 		kick_ilb(flags);
11181 }
11182 
11183 static void set_cpu_sd_state_busy(int cpu)
11184 {
11185 	struct sched_domain *sd;
11186 
11187 	rcu_read_lock();
11188 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11189 
11190 	if (!sd || !sd->nohz_idle)
11191 		goto unlock;
11192 	sd->nohz_idle = 0;
11193 
11194 	atomic_inc(&sd->shared->nr_busy_cpus);
11195 unlock:
11196 	rcu_read_unlock();
11197 }
11198 
11199 void nohz_balance_exit_idle(struct rq *rq)
11200 {
11201 	SCHED_WARN_ON(rq != this_rq());
11202 
11203 	if (likely(!rq->nohz_tick_stopped))
11204 		return;
11205 
11206 	rq->nohz_tick_stopped = 0;
11207 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11208 	atomic_dec(&nohz.nr_cpus);
11209 
11210 	set_cpu_sd_state_busy(rq->cpu);
11211 }
11212 
11213 static void set_cpu_sd_state_idle(int cpu)
11214 {
11215 	struct sched_domain *sd;
11216 
11217 	rcu_read_lock();
11218 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11219 
11220 	if (!sd || sd->nohz_idle)
11221 		goto unlock;
11222 	sd->nohz_idle = 1;
11223 
11224 	atomic_dec(&sd->shared->nr_busy_cpus);
11225 unlock:
11226 	rcu_read_unlock();
11227 }
11228 
11229 /*
11230  * This routine will record that the CPU is going idle with tick stopped.
11231  * This info will be used in performing idle load balancing in the future.
11232  */
11233 void nohz_balance_enter_idle(int cpu)
11234 {
11235 	struct rq *rq = cpu_rq(cpu);
11236 
11237 	SCHED_WARN_ON(cpu != smp_processor_id());
11238 
11239 	/* If this CPU is going down, then nothing needs to be done: */
11240 	if (!cpu_active(cpu))
11241 		return;
11242 
11243 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11244 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11245 		return;
11246 
11247 	/*
11248 	 * Can be set safely without rq->lock held
11249 	 * If a clear happens, it will have evaluated last additions because
11250 	 * rq->lock is held during the check and the clear
11251 	 */
11252 	rq->has_blocked_load = 1;
11253 
11254 	/*
11255 	 * The tick is still stopped but load could have been added in the
11256 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11257 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11258 	 * of nohz.has_blocked can only happen after checking the new load
11259 	 */
11260 	if (rq->nohz_tick_stopped)
11261 		goto out;
11262 
11263 	/* If we're a completely isolated CPU, we don't play: */
11264 	if (on_null_domain(rq))
11265 		return;
11266 
11267 	rq->nohz_tick_stopped = 1;
11268 
11269 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11270 	atomic_inc(&nohz.nr_cpus);
11271 
11272 	/*
11273 	 * Ensures that if nohz_idle_balance() fails to observe our
11274 	 * @idle_cpus_mask store, it must observe the @has_blocked
11275 	 * and @needs_update stores.
11276 	 */
11277 	smp_mb__after_atomic();
11278 
11279 	set_cpu_sd_state_idle(cpu);
11280 
11281 	WRITE_ONCE(nohz.needs_update, 1);
11282 out:
11283 	/*
11284 	 * Each time a cpu enter idle, we assume that it has blocked load and
11285 	 * enable the periodic update of the load of idle cpus
11286 	 */
11287 	WRITE_ONCE(nohz.has_blocked, 1);
11288 }
11289 
11290 static bool update_nohz_stats(struct rq *rq)
11291 {
11292 	unsigned int cpu = rq->cpu;
11293 
11294 	if (!rq->has_blocked_load)
11295 		return false;
11296 
11297 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11298 		return false;
11299 
11300 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11301 		return true;
11302 
11303 	update_blocked_averages(cpu);
11304 
11305 	return rq->has_blocked_load;
11306 }
11307 
11308 /*
11309  * Internal function that runs load balance for all idle cpus. The load balance
11310  * can be a simple update of blocked load or a complete load balance with
11311  * tasks movement depending of flags.
11312  */
11313 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11314 {
11315 	/* Earliest time when we have to do rebalance again */
11316 	unsigned long now = jiffies;
11317 	unsigned long next_balance = now + 60*HZ;
11318 	bool has_blocked_load = false;
11319 	int update_next_balance = 0;
11320 	int this_cpu = this_rq->cpu;
11321 	int balance_cpu;
11322 	struct rq *rq;
11323 
11324 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11325 
11326 	/*
11327 	 * We assume there will be no idle load after this update and clear
11328 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11329 	 * set the has_blocked flag and trigger another update of idle load.
11330 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11331 	 * setting the flag, we are sure to not clear the state and not
11332 	 * check the load of an idle cpu.
11333 	 *
11334 	 * Same applies to idle_cpus_mask vs needs_update.
11335 	 */
11336 	if (flags & NOHZ_STATS_KICK)
11337 		WRITE_ONCE(nohz.has_blocked, 0);
11338 	if (flags & NOHZ_NEXT_KICK)
11339 		WRITE_ONCE(nohz.needs_update, 0);
11340 
11341 	/*
11342 	 * Ensures that if we miss the CPU, we must see the has_blocked
11343 	 * store from nohz_balance_enter_idle().
11344 	 */
11345 	smp_mb();
11346 
11347 	/*
11348 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11349 	 * chance for other idle cpu to pull load.
11350 	 */
11351 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11352 		if (!idle_cpu(balance_cpu))
11353 			continue;
11354 
11355 		/*
11356 		 * If this CPU gets work to do, stop the load balancing
11357 		 * work being done for other CPUs. Next load
11358 		 * balancing owner will pick it up.
11359 		 */
11360 		if (need_resched()) {
11361 			if (flags & NOHZ_STATS_KICK)
11362 				has_blocked_load = true;
11363 			if (flags & NOHZ_NEXT_KICK)
11364 				WRITE_ONCE(nohz.needs_update, 1);
11365 			goto abort;
11366 		}
11367 
11368 		rq = cpu_rq(balance_cpu);
11369 
11370 		if (flags & NOHZ_STATS_KICK)
11371 			has_blocked_load |= update_nohz_stats(rq);
11372 
11373 		/*
11374 		 * If time for next balance is due,
11375 		 * do the balance.
11376 		 */
11377 		if (time_after_eq(jiffies, rq->next_balance)) {
11378 			struct rq_flags rf;
11379 
11380 			rq_lock_irqsave(rq, &rf);
11381 			update_rq_clock(rq);
11382 			rq_unlock_irqrestore(rq, &rf);
11383 
11384 			if (flags & NOHZ_BALANCE_KICK)
11385 				rebalance_domains(rq, CPU_IDLE);
11386 		}
11387 
11388 		if (time_after(next_balance, rq->next_balance)) {
11389 			next_balance = rq->next_balance;
11390 			update_next_balance = 1;
11391 		}
11392 	}
11393 
11394 	/*
11395 	 * next_balance will be updated only when there is a need.
11396 	 * When the CPU is attached to null domain for ex, it will not be
11397 	 * updated.
11398 	 */
11399 	if (likely(update_next_balance))
11400 		nohz.next_balance = next_balance;
11401 
11402 	if (flags & NOHZ_STATS_KICK)
11403 		WRITE_ONCE(nohz.next_blocked,
11404 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11405 
11406 abort:
11407 	/* There is still blocked load, enable periodic update */
11408 	if (has_blocked_load)
11409 		WRITE_ONCE(nohz.has_blocked, 1);
11410 }
11411 
11412 /*
11413  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11414  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11415  */
11416 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11417 {
11418 	unsigned int flags = this_rq->nohz_idle_balance;
11419 
11420 	if (!flags)
11421 		return false;
11422 
11423 	this_rq->nohz_idle_balance = 0;
11424 
11425 	if (idle != CPU_IDLE)
11426 		return false;
11427 
11428 	_nohz_idle_balance(this_rq, flags);
11429 
11430 	return true;
11431 }
11432 
11433 /*
11434  * Check if we need to run the ILB for updating blocked load before entering
11435  * idle state.
11436  */
11437 void nohz_run_idle_balance(int cpu)
11438 {
11439 	unsigned int flags;
11440 
11441 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11442 
11443 	/*
11444 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11445 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11446 	 */
11447 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11448 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11449 }
11450 
11451 static void nohz_newidle_balance(struct rq *this_rq)
11452 {
11453 	int this_cpu = this_rq->cpu;
11454 
11455 	/*
11456 	 * This CPU doesn't want to be disturbed by scheduler
11457 	 * housekeeping
11458 	 */
11459 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11460 		return;
11461 
11462 	/* Will wake up very soon. No time for doing anything else*/
11463 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11464 		return;
11465 
11466 	/* Don't need to update blocked load of idle CPUs*/
11467 	if (!READ_ONCE(nohz.has_blocked) ||
11468 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11469 		return;
11470 
11471 	/*
11472 	 * Set the need to trigger ILB in order to update blocked load
11473 	 * before entering idle state.
11474 	 */
11475 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11476 }
11477 
11478 #else /* !CONFIG_NO_HZ_COMMON */
11479 static inline void nohz_balancer_kick(struct rq *rq) { }
11480 
11481 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11482 {
11483 	return false;
11484 }
11485 
11486 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11487 #endif /* CONFIG_NO_HZ_COMMON */
11488 
11489 /*
11490  * newidle_balance is called by schedule() if this_cpu is about to become
11491  * idle. Attempts to pull tasks from other CPUs.
11492  *
11493  * Returns:
11494  *   < 0 - we released the lock and there are !fair tasks present
11495  *     0 - failed, no new tasks
11496  *   > 0 - success, new (fair) tasks present
11497  */
11498 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11499 {
11500 	unsigned long next_balance = jiffies + HZ;
11501 	int this_cpu = this_rq->cpu;
11502 	u64 t0, t1, curr_cost = 0;
11503 	struct sched_domain *sd;
11504 	int pulled_task = 0;
11505 
11506 	update_misfit_status(NULL, this_rq);
11507 
11508 	/*
11509 	 * There is a task waiting to run. No need to search for one.
11510 	 * Return 0; the task will be enqueued when switching to idle.
11511 	 */
11512 	if (this_rq->ttwu_pending)
11513 		return 0;
11514 
11515 	/*
11516 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11517 	 * measure the duration of idle_balance() as idle time.
11518 	 */
11519 	this_rq->idle_stamp = rq_clock(this_rq);
11520 
11521 	/*
11522 	 * Do not pull tasks towards !active CPUs...
11523 	 */
11524 	if (!cpu_active(this_cpu))
11525 		return 0;
11526 
11527 	/*
11528 	 * This is OK, because current is on_cpu, which avoids it being picked
11529 	 * for load-balance and preemption/IRQs are still disabled avoiding
11530 	 * further scheduler activity on it and we're being very careful to
11531 	 * re-start the picking loop.
11532 	 */
11533 	rq_unpin_lock(this_rq, rf);
11534 
11535 	rcu_read_lock();
11536 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11537 
11538 	if (!READ_ONCE(this_rq->rd->overload) ||
11539 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11540 
11541 		if (sd)
11542 			update_next_balance(sd, &next_balance);
11543 		rcu_read_unlock();
11544 
11545 		goto out;
11546 	}
11547 	rcu_read_unlock();
11548 
11549 	raw_spin_rq_unlock(this_rq);
11550 
11551 	t0 = sched_clock_cpu(this_cpu);
11552 	update_blocked_averages(this_cpu);
11553 
11554 	rcu_read_lock();
11555 	for_each_domain(this_cpu, sd) {
11556 		int continue_balancing = 1;
11557 		u64 domain_cost;
11558 
11559 		update_next_balance(sd, &next_balance);
11560 
11561 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11562 			break;
11563 
11564 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11565 
11566 			pulled_task = load_balance(this_cpu, this_rq,
11567 						   sd, CPU_NEWLY_IDLE,
11568 						   &continue_balancing);
11569 
11570 			t1 = sched_clock_cpu(this_cpu);
11571 			domain_cost = t1 - t0;
11572 			update_newidle_cost(sd, domain_cost);
11573 
11574 			curr_cost += domain_cost;
11575 			t0 = t1;
11576 		}
11577 
11578 		/*
11579 		 * Stop searching for tasks to pull if there are
11580 		 * now runnable tasks on this rq.
11581 		 */
11582 		if (pulled_task || this_rq->nr_running > 0 ||
11583 		    this_rq->ttwu_pending)
11584 			break;
11585 	}
11586 	rcu_read_unlock();
11587 
11588 	raw_spin_rq_lock(this_rq);
11589 
11590 	if (curr_cost > this_rq->max_idle_balance_cost)
11591 		this_rq->max_idle_balance_cost = curr_cost;
11592 
11593 	/*
11594 	 * While browsing the domains, we released the rq lock, a task could
11595 	 * have been enqueued in the meantime. Since we're not going idle,
11596 	 * pretend we pulled a task.
11597 	 */
11598 	if (this_rq->cfs.h_nr_running && !pulled_task)
11599 		pulled_task = 1;
11600 
11601 	/* Is there a task of a high priority class? */
11602 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11603 		pulled_task = -1;
11604 
11605 out:
11606 	/* Move the next balance forward */
11607 	if (time_after(this_rq->next_balance, next_balance))
11608 		this_rq->next_balance = next_balance;
11609 
11610 	if (pulled_task)
11611 		this_rq->idle_stamp = 0;
11612 	else
11613 		nohz_newidle_balance(this_rq);
11614 
11615 	rq_repin_lock(this_rq, rf);
11616 
11617 	return pulled_task;
11618 }
11619 
11620 /*
11621  * run_rebalance_domains is triggered when needed from the scheduler tick.
11622  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11623  */
11624 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11625 {
11626 	struct rq *this_rq = this_rq();
11627 	enum cpu_idle_type idle = this_rq->idle_balance ?
11628 						CPU_IDLE : CPU_NOT_IDLE;
11629 
11630 	/*
11631 	 * If this CPU has a pending nohz_balance_kick, then do the
11632 	 * balancing on behalf of the other idle CPUs whose ticks are
11633 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11634 	 * give the idle CPUs a chance to load balance. Else we may
11635 	 * load balance only within the local sched_domain hierarchy
11636 	 * and abort nohz_idle_balance altogether if we pull some load.
11637 	 */
11638 	if (nohz_idle_balance(this_rq, idle))
11639 		return;
11640 
11641 	/* normal load balance */
11642 	update_blocked_averages(this_rq->cpu);
11643 	rebalance_domains(this_rq, idle);
11644 }
11645 
11646 /*
11647  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11648  */
11649 void trigger_load_balance(struct rq *rq)
11650 {
11651 	/*
11652 	 * Don't need to rebalance while attached to NULL domain or
11653 	 * runqueue CPU is not active
11654 	 */
11655 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11656 		return;
11657 
11658 	if (time_after_eq(jiffies, rq->next_balance))
11659 		raise_softirq(SCHED_SOFTIRQ);
11660 
11661 	nohz_balancer_kick(rq);
11662 }
11663 
11664 static void rq_online_fair(struct rq *rq)
11665 {
11666 	update_sysctl();
11667 
11668 	update_runtime_enabled(rq);
11669 }
11670 
11671 static void rq_offline_fair(struct rq *rq)
11672 {
11673 	update_sysctl();
11674 
11675 	/* Ensure any throttled groups are reachable by pick_next_task */
11676 	unthrottle_offline_cfs_rqs(rq);
11677 }
11678 
11679 #endif /* CONFIG_SMP */
11680 
11681 #ifdef CONFIG_SCHED_CORE
11682 static inline bool
11683 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11684 {
11685 	u64 slice = sched_slice(cfs_rq_of(se), se);
11686 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11687 
11688 	return (rtime * min_nr_tasks > slice);
11689 }
11690 
11691 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11692 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11693 {
11694 	if (!sched_core_enabled(rq))
11695 		return;
11696 
11697 	/*
11698 	 * If runqueue has only one task which used up its slice and
11699 	 * if the sibling is forced idle, then trigger schedule to
11700 	 * give forced idle task a chance.
11701 	 *
11702 	 * sched_slice() considers only this active rq and it gets the
11703 	 * whole slice. But during force idle, we have siblings acting
11704 	 * like a single runqueue and hence we need to consider runnable
11705 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11706 	 * go through the forced idle rq, but that would be a perf hit.
11707 	 * We can assume that the forced idle CPU has at least
11708 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11709 	 * if we need to give up the CPU.
11710 	 */
11711 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11712 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11713 		resched_curr(rq);
11714 }
11715 
11716 /*
11717  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11718  */
11719 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11720 {
11721 	for_each_sched_entity(se) {
11722 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11723 
11724 		if (forceidle) {
11725 			if (cfs_rq->forceidle_seq == fi_seq)
11726 				break;
11727 			cfs_rq->forceidle_seq = fi_seq;
11728 		}
11729 
11730 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11731 	}
11732 }
11733 
11734 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11735 {
11736 	struct sched_entity *se = &p->se;
11737 
11738 	if (p->sched_class != &fair_sched_class)
11739 		return;
11740 
11741 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11742 }
11743 
11744 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11745 {
11746 	struct rq *rq = task_rq(a);
11747 	struct sched_entity *sea = &a->se;
11748 	struct sched_entity *seb = &b->se;
11749 	struct cfs_rq *cfs_rqa;
11750 	struct cfs_rq *cfs_rqb;
11751 	s64 delta;
11752 
11753 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11754 
11755 #ifdef CONFIG_FAIR_GROUP_SCHED
11756 	/*
11757 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11758 	 * are immediate siblings.
11759 	 */
11760 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11761 		int sea_depth = sea->depth;
11762 		int seb_depth = seb->depth;
11763 
11764 		if (sea_depth >= seb_depth)
11765 			sea = parent_entity(sea);
11766 		if (sea_depth <= seb_depth)
11767 			seb = parent_entity(seb);
11768 	}
11769 
11770 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11771 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11772 
11773 	cfs_rqa = sea->cfs_rq;
11774 	cfs_rqb = seb->cfs_rq;
11775 #else
11776 	cfs_rqa = &task_rq(a)->cfs;
11777 	cfs_rqb = &task_rq(b)->cfs;
11778 #endif
11779 
11780 	/*
11781 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11782 	 * min_vruntime_fi, which would have been updated in prior calls
11783 	 * to se_fi_update().
11784 	 */
11785 	delta = (s64)(sea->vruntime - seb->vruntime) +
11786 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11787 
11788 	return delta > 0;
11789 }
11790 #else
11791 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11792 #endif
11793 
11794 /*
11795  * scheduler tick hitting a task of our scheduling class.
11796  *
11797  * NOTE: This function can be called remotely by the tick offload that
11798  * goes along full dynticks. Therefore no local assumption can be made
11799  * and everything must be accessed through the @rq and @curr passed in
11800  * parameters.
11801  */
11802 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11803 {
11804 	struct cfs_rq *cfs_rq;
11805 	struct sched_entity *se = &curr->se;
11806 
11807 	for_each_sched_entity(se) {
11808 		cfs_rq = cfs_rq_of(se);
11809 		entity_tick(cfs_rq, se, queued);
11810 	}
11811 
11812 	if (static_branch_unlikely(&sched_numa_balancing))
11813 		task_tick_numa(rq, curr);
11814 
11815 	update_misfit_status(curr, rq);
11816 	update_overutilized_status(task_rq(curr));
11817 
11818 	task_tick_core(rq, curr);
11819 }
11820 
11821 /*
11822  * called on fork with the child task as argument from the parent's context
11823  *  - child not yet on the tasklist
11824  *  - preemption disabled
11825  */
11826 static void task_fork_fair(struct task_struct *p)
11827 {
11828 	struct cfs_rq *cfs_rq;
11829 	struct sched_entity *se = &p->se, *curr;
11830 	struct rq *rq = this_rq();
11831 	struct rq_flags rf;
11832 
11833 	rq_lock(rq, &rf);
11834 	update_rq_clock(rq);
11835 
11836 	cfs_rq = task_cfs_rq(current);
11837 	curr = cfs_rq->curr;
11838 	if (curr) {
11839 		update_curr(cfs_rq);
11840 		se->vruntime = curr->vruntime;
11841 	}
11842 	place_entity(cfs_rq, se, 1);
11843 
11844 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11845 		/*
11846 		 * Upon rescheduling, sched_class::put_prev_task() will place
11847 		 * 'current' within the tree based on its new key value.
11848 		 */
11849 		swap(curr->vruntime, se->vruntime);
11850 		resched_curr(rq);
11851 	}
11852 
11853 	se->vruntime -= cfs_rq->min_vruntime;
11854 	rq_unlock(rq, &rf);
11855 }
11856 
11857 /*
11858  * Priority of the task has changed. Check to see if we preempt
11859  * the current task.
11860  */
11861 static void
11862 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11863 {
11864 	if (!task_on_rq_queued(p))
11865 		return;
11866 
11867 	if (rq->cfs.nr_running == 1)
11868 		return;
11869 
11870 	/*
11871 	 * Reschedule if we are currently running on this runqueue and
11872 	 * our priority decreased, or if we are not currently running on
11873 	 * this runqueue and our priority is higher than the current's
11874 	 */
11875 	if (task_current(rq, p)) {
11876 		if (p->prio > oldprio)
11877 			resched_curr(rq);
11878 	} else
11879 		check_preempt_curr(rq, p, 0);
11880 }
11881 
11882 static inline bool vruntime_normalized(struct task_struct *p)
11883 {
11884 	struct sched_entity *se = &p->se;
11885 
11886 	/*
11887 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11888 	 * the dequeue_entity(.flags=0) will already have normalized the
11889 	 * vruntime.
11890 	 */
11891 	if (p->on_rq)
11892 		return true;
11893 
11894 	/*
11895 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11896 	 * But there are some cases where it has already been normalized:
11897 	 *
11898 	 * - A forked child which is waiting for being woken up by
11899 	 *   wake_up_new_task().
11900 	 * - A task which has been woken up by try_to_wake_up() and
11901 	 *   waiting for actually being woken up by sched_ttwu_pending().
11902 	 */
11903 	if (!se->sum_exec_runtime ||
11904 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11905 		return true;
11906 
11907 	return false;
11908 }
11909 
11910 #ifdef CONFIG_FAIR_GROUP_SCHED
11911 /*
11912  * Propagate the changes of the sched_entity across the tg tree to make it
11913  * visible to the root
11914  */
11915 static void propagate_entity_cfs_rq(struct sched_entity *se)
11916 {
11917 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11918 
11919 	if (cfs_rq_throttled(cfs_rq))
11920 		return;
11921 
11922 	if (!throttled_hierarchy(cfs_rq))
11923 		list_add_leaf_cfs_rq(cfs_rq);
11924 
11925 	/* Start to propagate at parent */
11926 	se = se->parent;
11927 
11928 	for_each_sched_entity(se) {
11929 		cfs_rq = cfs_rq_of(se);
11930 
11931 		update_load_avg(cfs_rq, se, UPDATE_TG);
11932 
11933 		if (cfs_rq_throttled(cfs_rq))
11934 			break;
11935 
11936 		if (!throttled_hierarchy(cfs_rq))
11937 			list_add_leaf_cfs_rq(cfs_rq);
11938 	}
11939 }
11940 #else
11941 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11942 #endif
11943 
11944 static void detach_entity_cfs_rq(struct sched_entity *se)
11945 {
11946 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11947 
11948 #ifdef CONFIG_SMP
11949 	/*
11950 	 * In case the task sched_avg hasn't been attached:
11951 	 * - A forked task which hasn't been woken up by wake_up_new_task().
11952 	 * - A task which has been woken up by try_to_wake_up() but is
11953 	 *   waiting for actually being woken up by sched_ttwu_pending().
11954 	 */
11955 	if (!se->avg.last_update_time)
11956 		return;
11957 #endif
11958 
11959 	/* Catch up with the cfs_rq and remove our load when we leave */
11960 	update_load_avg(cfs_rq, se, 0);
11961 	detach_entity_load_avg(cfs_rq, se);
11962 	update_tg_load_avg(cfs_rq);
11963 	propagate_entity_cfs_rq(se);
11964 }
11965 
11966 static void attach_entity_cfs_rq(struct sched_entity *se)
11967 {
11968 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11969 
11970 	/* Synchronize entity with its cfs_rq */
11971 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11972 	attach_entity_load_avg(cfs_rq, se);
11973 	update_tg_load_avg(cfs_rq);
11974 	propagate_entity_cfs_rq(se);
11975 }
11976 
11977 static void detach_task_cfs_rq(struct task_struct *p)
11978 {
11979 	struct sched_entity *se = &p->se;
11980 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11981 
11982 	if (!vruntime_normalized(p)) {
11983 		/*
11984 		 * Fix up our vruntime so that the current sleep doesn't
11985 		 * cause 'unlimited' sleep bonus.
11986 		 */
11987 		place_entity(cfs_rq, se, 0);
11988 		se->vruntime -= cfs_rq->min_vruntime;
11989 	}
11990 
11991 	detach_entity_cfs_rq(se);
11992 }
11993 
11994 static void attach_task_cfs_rq(struct task_struct *p)
11995 {
11996 	struct sched_entity *se = &p->se;
11997 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11998 
11999 	attach_entity_cfs_rq(se);
12000 
12001 	if (!vruntime_normalized(p))
12002 		se->vruntime += cfs_rq->min_vruntime;
12003 }
12004 
12005 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12006 {
12007 	detach_task_cfs_rq(p);
12008 }
12009 
12010 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12011 {
12012 	attach_task_cfs_rq(p);
12013 
12014 	if (task_on_rq_queued(p)) {
12015 		/*
12016 		 * We were most likely switched from sched_rt, so
12017 		 * kick off the schedule if running, otherwise just see
12018 		 * if we can still preempt the current task.
12019 		 */
12020 		if (task_current(rq, p))
12021 			resched_curr(rq);
12022 		else
12023 			check_preempt_curr(rq, p, 0);
12024 	}
12025 }
12026 
12027 /* Account for a task changing its policy or group.
12028  *
12029  * This routine is mostly called to set cfs_rq->curr field when a task
12030  * migrates between groups/classes.
12031  */
12032 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12033 {
12034 	struct sched_entity *se = &p->se;
12035 
12036 #ifdef CONFIG_SMP
12037 	if (task_on_rq_queued(p)) {
12038 		/*
12039 		 * Move the next running task to the front of the list, so our
12040 		 * cfs_tasks list becomes MRU one.
12041 		 */
12042 		list_move(&se->group_node, &rq->cfs_tasks);
12043 	}
12044 #endif
12045 
12046 	for_each_sched_entity(se) {
12047 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12048 
12049 		set_next_entity(cfs_rq, se);
12050 		/* ensure bandwidth has been allocated on our new cfs_rq */
12051 		account_cfs_rq_runtime(cfs_rq, 0);
12052 	}
12053 }
12054 
12055 void init_cfs_rq(struct cfs_rq *cfs_rq)
12056 {
12057 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12058 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12059 #ifdef CONFIG_SMP
12060 	raw_spin_lock_init(&cfs_rq->removed.lock);
12061 #endif
12062 }
12063 
12064 #ifdef CONFIG_FAIR_GROUP_SCHED
12065 static void task_change_group_fair(struct task_struct *p)
12066 {
12067 	/*
12068 	 * We couldn't detach or attach a forked task which
12069 	 * hasn't been woken up by wake_up_new_task().
12070 	 */
12071 	if (READ_ONCE(p->__state) == TASK_NEW)
12072 		return;
12073 
12074 	detach_task_cfs_rq(p);
12075 
12076 #ifdef CONFIG_SMP
12077 	/* Tell se's cfs_rq has been changed -- migrated */
12078 	p->se.avg.last_update_time = 0;
12079 #endif
12080 	set_task_rq(p, task_cpu(p));
12081 	attach_task_cfs_rq(p);
12082 }
12083 
12084 void free_fair_sched_group(struct task_group *tg)
12085 {
12086 	int i;
12087 
12088 	for_each_possible_cpu(i) {
12089 		if (tg->cfs_rq)
12090 			kfree(tg->cfs_rq[i]);
12091 		if (tg->se)
12092 			kfree(tg->se[i]);
12093 	}
12094 
12095 	kfree(tg->cfs_rq);
12096 	kfree(tg->se);
12097 }
12098 
12099 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12100 {
12101 	struct sched_entity *se;
12102 	struct cfs_rq *cfs_rq;
12103 	int i;
12104 
12105 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12106 	if (!tg->cfs_rq)
12107 		goto err;
12108 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12109 	if (!tg->se)
12110 		goto err;
12111 
12112 	tg->shares = NICE_0_LOAD;
12113 
12114 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
12115 
12116 	for_each_possible_cpu(i) {
12117 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12118 				      GFP_KERNEL, cpu_to_node(i));
12119 		if (!cfs_rq)
12120 			goto err;
12121 
12122 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12123 				  GFP_KERNEL, cpu_to_node(i));
12124 		if (!se)
12125 			goto err_free_rq;
12126 
12127 		init_cfs_rq(cfs_rq);
12128 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12129 		init_entity_runnable_average(se);
12130 	}
12131 
12132 	return 1;
12133 
12134 err_free_rq:
12135 	kfree(cfs_rq);
12136 err:
12137 	return 0;
12138 }
12139 
12140 void online_fair_sched_group(struct task_group *tg)
12141 {
12142 	struct sched_entity *se;
12143 	struct rq_flags rf;
12144 	struct rq *rq;
12145 	int i;
12146 
12147 	for_each_possible_cpu(i) {
12148 		rq = cpu_rq(i);
12149 		se = tg->se[i];
12150 		rq_lock_irq(rq, &rf);
12151 		update_rq_clock(rq);
12152 		attach_entity_cfs_rq(se);
12153 		sync_throttle(tg, i);
12154 		rq_unlock_irq(rq, &rf);
12155 	}
12156 }
12157 
12158 void unregister_fair_sched_group(struct task_group *tg)
12159 {
12160 	unsigned long flags;
12161 	struct rq *rq;
12162 	int cpu;
12163 
12164 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12165 
12166 	for_each_possible_cpu(cpu) {
12167 		if (tg->se[cpu])
12168 			remove_entity_load_avg(tg->se[cpu]);
12169 
12170 		/*
12171 		 * Only empty task groups can be destroyed; so we can speculatively
12172 		 * check on_list without danger of it being re-added.
12173 		 */
12174 		if (!tg->cfs_rq[cpu]->on_list)
12175 			continue;
12176 
12177 		rq = cpu_rq(cpu);
12178 
12179 		raw_spin_rq_lock_irqsave(rq, flags);
12180 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12181 		raw_spin_rq_unlock_irqrestore(rq, flags);
12182 	}
12183 }
12184 
12185 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12186 			struct sched_entity *se, int cpu,
12187 			struct sched_entity *parent)
12188 {
12189 	struct rq *rq = cpu_rq(cpu);
12190 
12191 	cfs_rq->tg = tg;
12192 	cfs_rq->rq = rq;
12193 	init_cfs_rq_runtime(cfs_rq);
12194 
12195 	tg->cfs_rq[cpu] = cfs_rq;
12196 	tg->se[cpu] = se;
12197 
12198 	/* se could be NULL for root_task_group */
12199 	if (!se)
12200 		return;
12201 
12202 	if (!parent) {
12203 		se->cfs_rq = &rq->cfs;
12204 		se->depth = 0;
12205 	} else {
12206 		se->cfs_rq = parent->my_q;
12207 		se->depth = parent->depth + 1;
12208 	}
12209 
12210 	se->my_q = cfs_rq;
12211 	/* guarantee group entities always have weight */
12212 	update_load_set(&se->load, NICE_0_LOAD);
12213 	se->parent = parent;
12214 }
12215 
12216 static DEFINE_MUTEX(shares_mutex);
12217 
12218 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12219 {
12220 	int i;
12221 
12222 	lockdep_assert_held(&shares_mutex);
12223 
12224 	/*
12225 	 * We can't change the weight of the root cgroup.
12226 	 */
12227 	if (!tg->se[0])
12228 		return -EINVAL;
12229 
12230 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12231 
12232 	if (tg->shares == shares)
12233 		return 0;
12234 
12235 	tg->shares = shares;
12236 	for_each_possible_cpu(i) {
12237 		struct rq *rq = cpu_rq(i);
12238 		struct sched_entity *se = tg->se[i];
12239 		struct rq_flags rf;
12240 
12241 		/* Propagate contribution to hierarchy */
12242 		rq_lock_irqsave(rq, &rf);
12243 		update_rq_clock(rq);
12244 		for_each_sched_entity(se) {
12245 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12246 			update_cfs_group(se);
12247 		}
12248 		rq_unlock_irqrestore(rq, &rf);
12249 	}
12250 
12251 	return 0;
12252 }
12253 
12254 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12255 {
12256 	int ret;
12257 
12258 	mutex_lock(&shares_mutex);
12259 	if (tg_is_idle(tg))
12260 		ret = -EINVAL;
12261 	else
12262 		ret = __sched_group_set_shares(tg, shares);
12263 	mutex_unlock(&shares_mutex);
12264 
12265 	return ret;
12266 }
12267 
12268 int sched_group_set_idle(struct task_group *tg, long idle)
12269 {
12270 	int i;
12271 
12272 	if (tg == &root_task_group)
12273 		return -EINVAL;
12274 
12275 	if (idle < 0 || idle > 1)
12276 		return -EINVAL;
12277 
12278 	mutex_lock(&shares_mutex);
12279 
12280 	if (tg->idle == idle) {
12281 		mutex_unlock(&shares_mutex);
12282 		return 0;
12283 	}
12284 
12285 	tg->idle = idle;
12286 
12287 	for_each_possible_cpu(i) {
12288 		struct rq *rq = cpu_rq(i);
12289 		struct sched_entity *se = tg->se[i];
12290 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12291 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12292 		long idle_task_delta;
12293 		struct rq_flags rf;
12294 
12295 		rq_lock_irqsave(rq, &rf);
12296 
12297 		grp_cfs_rq->idle = idle;
12298 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12299 			goto next_cpu;
12300 
12301 		if (se->on_rq) {
12302 			parent_cfs_rq = cfs_rq_of(se);
12303 			if (cfs_rq_is_idle(grp_cfs_rq))
12304 				parent_cfs_rq->idle_nr_running++;
12305 			else
12306 				parent_cfs_rq->idle_nr_running--;
12307 		}
12308 
12309 		idle_task_delta = grp_cfs_rq->h_nr_running -
12310 				  grp_cfs_rq->idle_h_nr_running;
12311 		if (!cfs_rq_is_idle(grp_cfs_rq))
12312 			idle_task_delta *= -1;
12313 
12314 		for_each_sched_entity(se) {
12315 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12316 
12317 			if (!se->on_rq)
12318 				break;
12319 
12320 			cfs_rq->idle_h_nr_running += idle_task_delta;
12321 
12322 			/* Already accounted at parent level and above. */
12323 			if (cfs_rq_is_idle(cfs_rq))
12324 				break;
12325 		}
12326 
12327 next_cpu:
12328 		rq_unlock_irqrestore(rq, &rf);
12329 	}
12330 
12331 	/* Idle groups have minimum weight. */
12332 	if (tg_is_idle(tg))
12333 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12334 	else
12335 		__sched_group_set_shares(tg, NICE_0_LOAD);
12336 
12337 	mutex_unlock(&shares_mutex);
12338 	return 0;
12339 }
12340 
12341 #else /* CONFIG_FAIR_GROUP_SCHED */
12342 
12343 void free_fair_sched_group(struct task_group *tg) { }
12344 
12345 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12346 {
12347 	return 1;
12348 }
12349 
12350 void online_fair_sched_group(struct task_group *tg) { }
12351 
12352 void unregister_fair_sched_group(struct task_group *tg) { }
12353 
12354 #endif /* CONFIG_FAIR_GROUP_SCHED */
12355 
12356 
12357 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12358 {
12359 	struct sched_entity *se = &task->se;
12360 	unsigned int rr_interval = 0;
12361 
12362 	/*
12363 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12364 	 * idle runqueue:
12365 	 */
12366 	if (rq->cfs.load.weight)
12367 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12368 
12369 	return rr_interval;
12370 }
12371 
12372 /*
12373  * All the scheduling class methods:
12374  */
12375 DEFINE_SCHED_CLASS(fair) = {
12376 
12377 	.enqueue_task		= enqueue_task_fair,
12378 	.dequeue_task		= dequeue_task_fair,
12379 	.yield_task		= yield_task_fair,
12380 	.yield_to_task		= yield_to_task_fair,
12381 
12382 	.check_preempt_curr	= check_preempt_wakeup,
12383 
12384 	.pick_next_task		= __pick_next_task_fair,
12385 	.put_prev_task		= put_prev_task_fair,
12386 	.set_next_task          = set_next_task_fair,
12387 
12388 #ifdef CONFIG_SMP
12389 	.balance		= balance_fair,
12390 	.pick_task		= pick_task_fair,
12391 	.select_task_rq		= select_task_rq_fair,
12392 	.migrate_task_rq	= migrate_task_rq_fair,
12393 
12394 	.rq_online		= rq_online_fair,
12395 	.rq_offline		= rq_offline_fair,
12396 
12397 	.task_dead		= task_dead_fair,
12398 	.set_cpus_allowed	= set_cpus_allowed_common,
12399 #endif
12400 
12401 	.task_tick		= task_tick_fair,
12402 	.task_fork		= task_fork_fair,
12403 
12404 	.prio_changed		= prio_changed_fair,
12405 	.switched_from		= switched_from_fair,
12406 	.switched_to		= switched_to_fair,
12407 
12408 	.get_rr_interval	= get_rr_interval_fair,
12409 
12410 	.update_curr		= update_curr_fair,
12411 
12412 #ifdef CONFIG_FAIR_GROUP_SCHED
12413 	.task_change_group	= task_change_group_fair,
12414 #endif
12415 
12416 #ifdef CONFIG_UCLAMP_TASK
12417 	.uclamp_enabled		= 1,
12418 #endif
12419 };
12420 
12421 #ifdef CONFIG_SCHED_DEBUG
12422 void print_cfs_stats(struct seq_file *m, int cpu)
12423 {
12424 	struct cfs_rq *cfs_rq, *pos;
12425 
12426 	rcu_read_lock();
12427 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12428 		print_cfs_rq(m, cpu, cfs_rq);
12429 	rcu_read_unlock();
12430 }
12431 
12432 #ifdef CONFIG_NUMA_BALANCING
12433 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12434 {
12435 	int node;
12436 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12437 	struct numa_group *ng;
12438 
12439 	rcu_read_lock();
12440 	ng = rcu_dereference(p->numa_group);
12441 	for_each_online_node(node) {
12442 		if (p->numa_faults) {
12443 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12444 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12445 		}
12446 		if (ng) {
12447 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12448 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12449 		}
12450 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12451 	}
12452 	rcu_read_unlock();
12453 }
12454 #endif /* CONFIG_NUMA_BALANCING */
12455 #endif /* CONFIG_SCHED_DEBUG */
12456 
12457 __init void init_sched_fair_class(void)
12458 {
12459 #ifdef CONFIG_SMP
12460 	int i;
12461 
12462 	for_each_possible_cpu(i) {
12463 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12464 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12465 	}
12466 
12467 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12468 
12469 #ifdef CONFIG_NO_HZ_COMMON
12470 	nohz.next_balance = jiffies;
12471 	nohz.next_blocked = jiffies;
12472 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12473 #endif
12474 #endif /* SMP */
12475 
12476 }
12477