1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 /* 117 * Increase the granularity value when there are more CPUs, 118 * because with more CPUs the 'effective latency' as visible 119 * to users decreases. But the relationship is not linear, 120 * so pick a second-best guess by going with the log2 of the 121 * number of CPUs. 122 * 123 * This idea comes from the SD scheduler of Con Kolivas: 124 */ 125 static int get_update_sysctl_factor(void) 126 { 127 unsigned int cpus = min_t(int, num_online_cpus(), 8); 128 unsigned int factor; 129 130 switch (sysctl_sched_tunable_scaling) { 131 case SCHED_TUNABLESCALING_NONE: 132 factor = 1; 133 break; 134 case SCHED_TUNABLESCALING_LINEAR: 135 factor = cpus; 136 break; 137 case SCHED_TUNABLESCALING_LOG: 138 default: 139 factor = 1 + ilog2(cpus); 140 break; 141 } 142 143 return factor; 144 } 145 146 static void update_sysctl(void) 147 { 148 unsigned int factor = get_update_sysctl_factor(); 149 150 #define SET_SYSCTL(name) \ 151 (sysctl_##name = (factor) * normalized_sysctl_##name) 152 SET_SYSCTL(sched_min_granularity); 153 SET_SYSCTL(sched_latency); 154 SET_SYSCTL(sched_wakeup_granularity); 155 #undef SET_SYSCTL 156 } 157 158 void sched_init_granularity(void) 159 { 160 update_sysctl(); 161 } 162 163 #if BITS_PER_LONG == 32 164 # define WMULT_CONST (~0UL) 165 #else 166 # define WMULT_CONST (1UL << 32) 167 #endif 168 169 #define WMULT_SHIFT 32 170 171 /* 172 * Shift right and round: 173 */ 174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 175 176 /* 177 * delta *= weight / lw 178 */ 179 static unsigned long 180 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 181 struct load_weight *lw) 182 { 183 u64 tmp; 184 185 /* 186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 188 * 2^SCHED_LOAD_RESOLUTION. 189 */ 190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 191 tmp = (u64)delta_exec * scale_load_down(weight); 192 else 193 tmp = (u64)delta_exec; 194 195 if (!lw->inv_weight) { 196 unsigned long w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * Check whether we'd overflow the 64-bit multiplication: 208 */ 209 if (unlikely(tmp > WMULT_CONST)) 210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 211 WMULT_SHIFT/2); 212 else 213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 214 215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 216 } 217 218 219 const struct sched_class fair_sched_class; 220 221 /************************************************************** 222 * CFS operations on generic schedulable entities: 223 */ 224 225 #ifdef CONFIG_FAIR_GROUP_SCHED 226 227 /* cpu runqueue to which this cfs_rq is attached */ 228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 229 { 230 return cfs_rq->rq; 231 } 232 233 /* An entity is a task if it doesn't "own" a runqueue */ 234 #define entity_is_task(se) (!se->my_q) 235 236 static inline struct task_struct *task_of(struct sched_entity *se) 237 { 238 #ifdef CONFIG_SCHED_DEBUG 239 WARN_ON_ONCE(!entity_is_task(se)); 240 #endif 241 return container_of(se, struct task_struct, se); 242 } 243 244 /* Walk up scheduling entities hierarchy */ 245 #define for_each_sched_entity(se) \ 246 for (; se; se = se->parent) 247 248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 249 { 250 return p->se.cfs_rq; 251 } 252 253 /* runqueue on which this entity is (to be) queued */ 254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 255 { 256 return se->cfs_rq; 257 } 258 259 /* runqueue "owned" by this group */ 260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 261 { 262 return grp->my_q; 263 } 264 265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 266 int force_update); 267 268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 269 { 270 if (!cfs_rq->on_list) { 271 /* 272 * Ensure we either appear before our parent (if already 273 * enqueued) or force our parent to appear after us when it is 274 * enqueued. The fact that we always enqueue bottom-up 275 * reduces this to two cases. 276 */ 277 if (cfs_rq->tg->parent && 278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 280 &rq_of(cfs_rq)->leaf_cfs_rq_list); 281 } else { 282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 283 &rq_of(cfs_rq)->leaf_cfs_rq_list); 284 } 285 286 cfs_rq->on_list = 1; 287 /* We should have no load, but we need to update last_decay. */ 288 update_cfs_rq_blocked_load(cfs_rq, 0); 289 } 290 } 291 292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 293 { 294 if (cfs_rq->on_list) { 295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 296 cfs_rq->on_list = 0; 297 } 298 } 299 300 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 303 304 /* Do the two (enqueued) entities belong to the same group ? */ 305 static inline int 306 is_same_group(struct sched_entity *se, struct sched_entity *pse) 307 { 308 if (se->cfs_rq == pse->cfs_rq) 309 return 1; 310 311 return 0; 312 } 313 314 static inline struct sched_entity *parent_entity(struct sched_entity *se) 315 { 316 return se->parent; 317 } 318 319 /* return depth at which a sched entity is present in the hierarchy */ 320 static inline int depth_se(struct sched_entity *se) 321 { 322 int depth = 0; 323 324 for_each_sched_entity(se) 325 depth++; 326 327 return depth; 328 } 329 330 static void 331 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 332 { 333 int se_depth, pse_depth; 334 335 /* 336 * preemption test can be made between sibling entities who are in the 337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 338 * both tasks until we find their ancestors who are siblings of common 339 * parent. 340 */ 341 342 /* First walk up until both entities are at same depth */ 343 se_depth = depth_se(*se); 344 pse_depth = depth_se(*pse); 345 346 while (se_depth > pse_depth) { 347 se_depth--; 348 *se = parent_entity(*se); 349 } 350 351 while (pse_depth > se_depth) { 352 pse_depth--; 353 *pse = parent_entity(*pse); 354 } 355 356 while (!is_same_group(*se, *pse)) { 357 *se = parent_entity(*se); 358 *pse = parent_entity(*pse); 359 } 360 } 361 362 #else /* !CONFIG_FAIR_GROUP_SCHED */ 363 364 static inline struct task_struct *task_of(struct sched_entity *se) 365 { 366 return container_of(se, struct task_struct, se); 367 } 368 369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 370 { 371 return container_of(cfs_rq, struct rq, cfs); 372 } 373 374 #define entity_is_task(se) 1 375 376 #define for_each_sched_entity(se) \ 377 for (; se; se = NULL) 378 379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 380 { 381 return &task_rq(p)->cfs; 382 } 383 384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 385 { 386 struct task_struct *p = task_of(se); 387 struct rq *rq = task_rq(p); 388 389 return &rq->cfs; 390 } 391 392 /* runqueue "owned" by this group */ 393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 394 { 395 return NULL; 396 } 397 398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 399 { 400 } 401 402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 403 { 404 } 405 406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 408 409 static inline int 410 is_same_group(struct sched_entity *se, struct sched_entity *pse) 411 { 412 return 1; 413 } 414 415 static inline struct sched_entity *parent_entity(struct sched_entity *se) 416 { 417 return NULL; 418 } 419 420 static inline void 421 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 422 { 423 } 424 425 #endif /* CONFIG_FAIR_GROUP_SCHED */ 426 427 static __always_inline 428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec); 429 430 /************************************************************** 431 * Scheduling class tree data structure manipulation methods: 432 */ 433 434 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) 435 { 436 s64 delta = (s64)(vruntime - min_vruntime); 437 if (delta > 0) 438 min_vruntime = vruntime; 439 440 return min_vruntime; 441 } 442 443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 444 { 445 s64 delta = (s64)(vruntime - min_vruntime); 446 if (delta < 0) 447 min_vruntime = vruntime; 448 449 return min_vruntime; 450 } 451 452 static inline int entity_before(struct sched_entity *a, 453 struct sched_entity *b) 454 { 455 return (s64)(a->vruntime - b->vruntime) < 0; 456 } 457 458 static void update_min_vruntime(struct cfs_rq *cfs_rq) 459 { 460 u64 vruntime = cfs_rq->min_vruntime; 461 462 if (cfs_rq->curr) 463 vruntime = cfs_rq->curr->vruntime; 464 465 if (cfs_rq->rb_leftmost) { 466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 467 struct sched_entity, 468 run_node); 469 470 if (!cfs_rq->curr) 471 vruntime = se->vruntime; 472 else 473 vruntime = min_vruntime(vruntime, se->vruntime); 474 } 475 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline unsigned long 597 calc_delta_fair(unsigned long delta, struct sched_entity *se) 598 { 599 if (unlikely(se->load.weight != NICE_0_LOAD)) 600 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 601 602 return delta; 603 } 604 605 /* 606 * The idea is to set a period in which each task runs once. 607 * 608 * When there are too many tasks (sched_nr_latency) we have to stretch 609 * this period because otherwise the slices get too small. 610 * 611 * p = (nr <= nl) ? l : l*nr/nl 612 */ 613 static u64 __sched_period(unsigned long nr_running) 614 { 615 u64 period = sysctl_sched_latency; 616 unsigned long nr_latency = sched_nr_latency; 617 618 if (unlikely(nr_running > nr_latency)) { 619 period = sysctl_sched_min_granularity; 620 period *= nr_running; 621 } 622 623 return period; 624 } 625 626 /* 627 * We calculate the wall-time slice from the period by taking a part 628 * proportional to the weight. 629 * 630 * s = p*P[w/rw] 631 */ 632 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 633 { 634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 635 636 for_each_sched_entity(se) { 637 struct load_weight *load; 638 struct load_weight lw; 639 640 cfs_rq = cfs_rq_of(se); 641 load = &cfs_rq->load; 642 643 if (unlikely(!se->on_rq)) { 644 lw = cfs_rq->load; 645 646 update_load_add(&lw, se->load.weight); 647 load = &lw; 648 } 649 slice = calc_delta_mine(slice, se->load.weight, load); 650 } 651 return slice; 652 } 653 654 /* 655 * We calculate the vruntime slice of a to be inserted task 656 * 657 * vs = s/w 658 */ 659 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 660 { 661 return calc_delta_fair(sched_slice(cfs_rq, se), se); 662 } 663 664 /* 665 * Update the current task's runtime statistics. Skip current tasks that 666 * are not in our scheduling class. 667 */ 668 static inline void 669 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 670 unsigned long delta_exec) 671 { 672 unsigned long delta_exec_weighted; 673 674 schedstat_set(curr->statistics.exec_max, 675 max((u64)delta_exec, curr->statistics.exec_max)); 676 677 curr->sum_exec_runtime += delta_exec; 678 schedstat_add(cfs_rq, exec_clock, delta_exec); 679 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 680 681 curr->vruntime += delta_exec_weighted; 682 update_min_vruntime(cfs_rq); 683 } 684 685 static void update_curr(struct cfs_rq *cfs_rq) 686 { 687 struct sched_entity *curr = cfs_rq->curr; 688 u64 now = rq_of(cfs_rq)->clock_task; 689 unsigned long delta_exec; 690 691 if (unlikely(!curr)) 692 return; 693 694 /* 695 * Get the amount of time the current task was running 696 * since the last time we changed load (this cannot 697 * overflow on 32 bits): 698 */ 699 delta_exec = (unsigned long)(now - curr->exec_start); 700 if (!delta_exec) 701 return; 702 703 __update_curr(cfs_rq, curr, delta_exec); 704 curr->exec_start = now; 705 706 if (entity_is_task(curr)) { 707 struct task_struct *curtask = task_of(curr); 708 709 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 710 cpuacct_charge(curtask, delta_exec); 711 account_group_exec_runtime(curtask, delta_exec); 712 } 713 714 account_cfs_rq_runtime(cfs_rq, delta_exec); 715 } 716 717 static inline void 718 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 719 { 720 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); 721 } 722 723 /* 724 * Task is being enqueued - update stats: 725 */ 726 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 727 { 728 /* 729 * Are we enqueueing a waiting task? (for current tasks 730 * a dequeue/enqueue event is a NOP) 731 */ 732 if (se != cfs_rq->curr) 733 update_stats_wait_start(cfs_rq, se); 734 } 735 736 static void 737 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 738 { 739 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 740 rq_of(cfs_rq)->clock - se->statistics.wait_start)); 741 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 742 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 743 rq_of(cfs_rq)->clock - se->statistics.wait_start); 744 #ifdef CONFIG_SCHEDSTATS 745 if (entity_is_task(se)) { 746 trace_sched_stat_wait(task_of(se), 747 rq_of(cfs_rq)->clock - se->statistics.wait_start); 748 } 749 #endif 750 schedstat_set(se->statistics.wait_start, 0); 751 } 752 753 static inline void 754 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 755 { 756 /* 757 * Mark the end of the wait period if dequeueing a 758 * waiting task: 759 */ 760 if (se != cfs_rq->curr) 761 update_stats_wait_end(cfs_rq, se); 762 } 763 764 /* 765 * We are picking a new current task - update its stats: 766 */ 767 static inline void 768 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 769 { 770 /* 771 * We are starting a new run period: 772 */ 773 se->exec_start = rq_of(cfs_rq)->clock_task; 774 } 775 776 /************************************************** 777 * Scheduling class queueing methods: 778 */ 779 780 #ifdef CONFIG_NUMA_BALANCING 781 /* 782 * numa task sample period in ms 783 */ 784 unsigned int sysctl_numa_balancing_scan_period_min = 100; 785 unsigned int sysctl_numa_balancing_scan_period_max = 100*50; 786 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600; 787 788 /* Portion of address space to scan in MB */ 789 unsigned int sysctl_numa_balancing_scan_size = 256; 790 791 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 792 unsigned int sysctl_numa_balancing_scan_delay = 1000; 793 794 static void task_numa_placement(struct task_struct *p) 795 { 796 int seq = ACCESS_ONCE(p->mm->numa_scan_seq); 797 798 if (p->numa_scan_seq == seq) 799 return; 800 p->numa_scan_seq = seq; 801 802 /* FIXME: Scheduling placement policy hints go here */ 803 } 804 805 /* 806 * Got a PROT_NONE fault for a page on @node. 807 */ 808 void task_numa_fault(int node, int pages, bool migrated) 809 { 810 struct task_struct *p = current; 811 812 if (!sched_feat_numa(NUMA)) 813 return; 814 815 /* FIXME: Allocate task-specific structure for placement policy here */ 816 817 /* 818 * If pages are properly placed (did not migrate) then scan slower. 819 * This is reset periodically in case of phase changes 820 */ 821 if (!migrated) 822 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max, 823 p->numa_scan_period + jiffies_to_msecs(10)); 824 825 task_numa_placement(p); 826 } 827 828 static void reset_ptenuma_scan(struct task_struct *p) 829 { 830 ACCESS_ONCE(p->mm->numa_scan_seq)++; 831 p->mm->numa_scan_offset = 0; 832 } 833 834 /* 835 * The expensive part of numa migration is done from task_work context. 836 * Triggered from task_tick_numa(). 837 */ 838 void task_numa_work(struct callback_head *work) 839 { 840 unsigned long migrate, next_scan, now = jiffies; 841 struct task_struct *p = current; 842 struct mm_struct *mm = p->mm; 843 struct vm_area_struct *vma; 844 unsigned long start, end; 845 long pages; 846 847 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 848 849 work->next = work; /* protect against double add */ 850 /* 851 * Who cares about NUMA placement when they're dying. 852 * 853 * NOTE: make sure not to dereference p->mm before this check, 854 * exit_task_work() happens _after_ exit_mm() so we could be called 855 * without p->mm even though we still had it when we enqueued this 856 * work. 857 */ 858 if (p->flags & PF_EXITING) 859 return; 860 861 /* 862 * We do not care about task placement until a task runs on a node 863 * other than the first one used by the address space. This is 864 * largely because migrations are driven by what CPU the task 865 * is running on. If it's never scheduled on another node, it'll 866 * not migrate so why bother trapping the fault. 867 */ 868 if (mm->first_nid == NUMA_PTE_SCAN_INIT) 869 mm->first_nid = numa_node_id(); 870 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) { 871 /* Are we running on a new node yet? */ 872 if (numa_node_id() == mm->first_nid && 873 !sched_feat_numa(NUMA_FORCE)) 874 return; 875 876 mm->first_nid = NUMA_PTE_SCAN_ACTIVE; 877 } 878 879 /* 880 * Reset the scan period if enough time has gone by. Objective is that 881 * scanning will be reduced if pages are properly placed. As tasks 882 * can enter different phases this needs to be re-examined. Lacking 883 * proper tracking of reference behaviour, this blunt hammer is used. 884 */ 885 migrate = mm->numa_next_reset; 886 if (time_after(now, migrate)) { 887 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 888 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset); 889 xchg(&mm->numa_next_reset, next_scan); 890 } 891 892 /* 893 * Enforce maximal scan/migration frequency.. 894 */ 895 migrate = mm->numa_next_scan; 896 if (time_before(now, migrate)) 897 return; 898 899 if (p->numa_scan_period == 0) 900 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 901 902 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 903 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 904 return; 905 906 /* 907 * Do not set pte_numa if the current running node is rate-limited. 908 * This loses statistics on the fault but if we are unwilling to 909 * migrate to this node, it is less likely we can do useful work 910 */ 911 if (migrate_ratelimited(numa_node_id())) 912 return; 913 914 start = mm->numa_scan_offset; 915 pages = sysctl_numa_balancing_scan_size; 916 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 917 if (!pages) 918 return; 919 920 down_read(&mm->mmap_sem); 921 vma = find_vma(mm, start); 922 if (!vma) { 923 reset_ptenuma_scan(p); 924 start = 0; 925 vma = mm->mmap; 926 } 927 for (; vma; vma = vma->vm_next) { 928 if (!vma_migratable(vma)) 929 continue; 930 931 /* Skip small VMAs. They are not likely to be of relevance */ 932 if (vma->vm_end - vma->vm_start < HPAGE_SIZE) 933 continue; 934 935 do { 936 start = max(start, vma->vm_start); 937 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 938 end = min(end, vma->vm_end); 939 pages -= change_prot_numa(vma, start, end); 940 941 start = end; 942 if (pages <= 0) 943 goto out; 944 } while (end != vma->vm_end); 945 } 946 947 out: 948 /* 949 * It is possible to reach the end of the VMA list but the last few VMAs are 950 * not guaranteed to the vma_migratable. If they are not, we would find the 951 * !migratable VMA on the next scan but not reset the scanner to the start 952 * so check it now. 953 */ 954 if (vma) 955 mm->numa_scan_offset = start; 956 else 957 reset_ptenuma_scan(p); 958 up_read(&mm->mmap_sem); 959 } 960 961 /* 962 * Drive the periodic memory faults.. 963 */ 964 void task_tick_numa(struct rq *rq, struct task_struct *curr) 965 { 966 struct callback_head *work = &curr->numa_work; 967 u64 period, now; 968 969 /* 970 * We don't care about NUMA placement if we don't have memory. 971 */ 972 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 973 return; 974 975 /* 976 * Using runtime rather than walltime has the dual advantage that 977 * we (mostly) drive the selection from busy threads and that the 978 * task needs to have done some actual work before we bother with 979 * NUMA placement. 980 */ 981 now = curr->se.sum_exec_runtime; 982 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 983 984 if (now - curr->node_stamp > period) { 985 if (!curr->node_stamp) 986 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min; 987 curr->node_stamp = now; 988 989 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 990 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 991 task_work_add(curr, work, true); 992 } 993 } 994 } 995 #else 996 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 997 { 998 } 999 #endif /* CONFIG_NUMA_BALANCING */ 1000 1001 static void 1002 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1003 { 1004 update_load_add(&cfs_rq->load, se->load.weight); 1005 if (!parent_entity(se)) 1006 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1007 #ifdef CONFIG_SMP 1008 if (entity_is_task(se)) 1009 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks); 1010 #endif 1011 cfs_rq->nr_running++; 1012 } 1013 1014 static void 1015 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1016 { 1017 update_load_sub(&cfs_rq->load, se->load.weight); 1018 if (!parent_entity(se)) 1019 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 1020 if (entity_is_task(se)) 1021 list_del_init(&se->group_node); 1022 cfs_rq->nr_running--; 1023 } 1024 1025 #ifdef CONFIG_FAIR_GROUP_SCHED 1026 # ifdef CONFIG_SMP 1027 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 1028 { 1029 long tg_weight; 1030 1031 /* 1032 * Use this CPU's actual weight instead of the last load_contribution 1033 * to gain a more accurate current total weight. See 1034 * update_cfs_rq_load_contribution(). 1035 */ 1036 tg_weight = atomic64_read(&tg->load_avg); 1037 tg_weight -= cfs_rq->tg_load_contrib; 1038 tg_weight += cfs_rq->load.weight; 1039 1040 return tg_weight; 1041 } 1042 1043 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1044 { 1045 long tg_weight, load, shares; 1046 1047 tg_weight = calc_tg_weight(tg, cfs_rq); 1048 load = cfs_rq->load.weight; 1049 1050 shares = (tg->shares * load); 1051 if (tg_weight) 1052 shares /= tg_weight; 1053 1054 if (shares < MIN_SHARES) 1055 shares = MIN_SHARES; 1056 if (shares > tg->shares) 1057 shares = tg->shares; 1058 1059 return shares; 1060 } 1061 # else /* CONFIG_SMP */ 1062 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1063 { 1064 return tg->shares; 1065 } 1066 # endif /* CONFIG_SMP */ 1067 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 1068 unsigned long weight) 1069 { 1070 if (se->on_rq) { 1071 /* commit outstanding execution time */ 1072 if (cfs_rq->curr == se) 1073 update_curr(cfs_rq); 1074 account_entity_dequeue(cfs_rq, se); 1075 } 1076 1077 update_load_set(&se->load, weight); 1078 1079 if (se->on_rq) 1080 account_entity_enqueue(cfs_rq, se); 1081 } 1082 1083 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 1084 1085 static void update_cfs_shares(struct cfs_rq *cfs_rq) 1086 { 1087 struct task_group *tg; 1088 struct sched_entity *se; 1089 long shares; 1090 1091 tg = cfs_rq->tg; 1092 se = tg->se[cpu_of(rq_of(cfs_rq))]; 1093 if (!se || throttled_hierarchy(cfs_rq)) 1094 return; 1095 #ifndef CONFIG_SMP 1096 if (likely(se->load.weight == tg->shares)) 1097 return; 1098 #endif 1099 shares = calc_cfs_shares(cfs_rq, tg); 1100 1101 reweight_entity(cfs_rq_of(se), se, shares); 1102 } 1103 #else /* CONFIG_FAIR_GROUP_SCHED */ 1104 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 1105 { 1106 } 1107 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1108 1109 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */ 1110 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1111 /* 1112 * We choose a half-life close to 1 scheduling period. 1113 * Note: The tables below are dependent on this value. 1114 */ 1115 #define LOAD_AVG_PERIOD 32 1116 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 1117 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 1118 1119 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 1120 static const u32 runnable_avg_yN_inv[] = { 1121 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 1122 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 1123 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 1124 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 1125 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 1126 0x85aac367, 0x82cd8698, 1127 }; 1128 1129 /* 1130 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 1131 * over-estimates when re-combining. 1132 */ 1133 static const u32 runnable_avg_yN_sum[] = { 1134 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 1135 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 1136 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 1137 }; 1138 1139 /* 1140 * Approximate: 1141 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 1142 */ 1143 static __always_inline u64 decay_load(u64 val, u64 n) 1144 { 1145 unsigned int local_n; 1146 1147 if (!n) 1148 return val; 1149 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 1150 return 0; 1151 1152 /* after bounds checking we can collapse to 32-bit */ 1153 local_n = n; 1154 1155 /* 1156 * As y^PERIOD = 1/2, we can combine 1157 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 1158 * With a look-up table which covers k^n (n<PERIOD) 1159 * 1160 * To achieve constant time decay_load. 1161 */ 1162 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 1163 val >>= local_n / LOAD_AVG_PERIOD; 1164 local_n %= LOAD_AVG_PERIOD; 1165 } 1166 1167 val *= runnable_avg_yN_inv[local_n]; 1168 /* We don't use SRR here since we always want to round down. */ 1169 return val >> 32; 1170 } 1171 1172 /* 1173 * For updates fully spanning n periods, the contribution to runnable 1174 * average will be: \Sum 1024*y^n 1175 * 1176 * We can compute this reasonably efficiently by combining: 1177 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 1178 */ 1179 static u32 __compute_runnable_contrib(u64 n) 1180 { 1181 u32 contrib = 0; 1182 1183 if (likely(n <= LOAD_AVG_PERIOD)) 1184 return runnable_avg_yN_sum[n]; 1185 else if (unlikely(n >= LOAD_AVG_MAX_N)) 1186 return LOAD_AVG_MAX; 1187 1188 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 1189 do { 1190 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 1191 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 1192 1193 n -= LOAD_AVG_PERIOD; 1194 } while (n > LOAD_AVG_PERIOD); 1195 1196 contrib = decay_load(contrib, n); 1197 return contrib + runnable_avg_yN_sum[n]; 1198 } 1199 1200 /* 1201 * We can represent the historical contribution to runnable average as the 1202 * coefficients of a geometric series. To do this we sub-divide our runnable 1203 * history into segments of approximately 1ms (1024us); label the segment that 1204 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 1205 * 1206 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 1207 * p0 p1 p2 1208 * (now) (~1ms ago) (~2ms ago) 1209 * 1210 * Let u_i denote the fraction of p_i that the entity was runnable. 1211 * 1212 * We then designate the fractions u_i as our co-efficients, yielding the 1213 * following representation of historical load: 1214 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 1215 * 1216 * We choose y based on the with of a reasonably scheduling period, fixing: 1217 * y^32 = 0.5 1218 * 1219 * This means that the contribution to load ~32ms ago (u_32) will be weighted 1220 * approximately half as much as the contribution to load within the last ms 1221 * (u_0). 1222 * 1223 * When a period "rolls over" and we have new u_0`, multiplying the previous 1224 * sum again by y is sufficient to update: 1225 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 1226 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 1227 */ 1228 static __always_inline int __update_entity_runnable_avg(u64 now, 1229 struct sched_avg *sa, 1230 int runnable) 1231 { 1232 u64 delta, periods; 1233 u32 runnable_contrib; 1234 int delta_w, decayed = 0; 1235 1236 delta = now - sa->last_runnable_update; 1237 /* 1238 * This should only happen when time goes backwards, which it 1239 * unfortunately does during sched clock init when we swap over to TSC. 1240 */ 1241 if ((s64)delta < 0) { 1242 sa->last_runnable_update = now; 1243 return 0; 1244 } 1245 1246 /* 1247 * Use 1024ns as the unit of measurement since it's a reasonable 1248 * approximation of 1us and fast to compute. 1249 */ 1250 delta >>= 10; 1251 if (!delta) 1252 return 0; 1253 sa->last_runnable_update = now; 1254 1255 /* delta_w is the amount already accumulated against our next period */ 1256 delta_w = sa->runnable_avg_period % 1024; 1257 if (delta + delta_w >= 1024) { 1258 /* period roll-over */ 1259 decayed = 1; 1260 1261 /* 1262 * Now that we know we're crossing a period boundary, figure 1263 * out how much from delta we need to complete the current 1264 * period and accrue it. 1265 */ 1266 delta_w = 1024 - delta_w; 1267 if (runnable) 1268 sa->runnable_avg_sum += delta_w; 1269 sa->runnable_avg_period += delta_w; 1270 1271 delta -= delta_w; 1272 1273 /* Figure out how many additional periods this update spans */ 1274 periods = delta / 1024; 1275 delta %= 1024; 1276 1277 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 1278 periods + 1); 1279 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 1280 periods + 1); 1281 1282 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 1283 runnable_contrib = __compute_runnable_contrib(periods); 1284 if (runnable) 1285 sa->runnable_avg_sum += runnable_contrib; 1286 sa->runnable_avg_period += runnable_contrib; 1287 } 1288 1289 /* Remainder of delta accrued against u_0` */ 1290 if (runnable) 1291 sa->runnable_avg_sum += delta; 1292 sa->runnable_avg_period += delta; 1293 1294 return decayed; 1295 } 1296 1297 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 1298 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 1299 { 1300 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1301 u64 decays = atomic64_read(&cfs_rq->decay_counter); 1302 1303 decays -= se->avg.decay_count; 1304 if (!decays) 1305 return 0; 1306 1307 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 1308 se->avg.decay_count = 0; 1309 1310 return decays; 1311 } 1312 1313 #ifdef CONFIG_FAIR_GROUP_SCHED 1314 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1315 int force_update) 1316 { 1317 struct task_group *tg = cfs_rq->tg; 1318 s64 tg_contrib; 1319 1320 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 1321 tg_contrib -= cfs_rq->tg_load_contrib; 1322 1323 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 1324 atomic64_add(tg_contrib, &tg->load_avg); 1325 cfs_rq->tg_load_contrib += tg_contrib; 1326 } 1327 } 1328 1329 /* 1330 * Aggregate cfs_rq runnable averages into an equivalent task_group 1331 * representation for computing load contributions. 1332 */ 1333 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1334 struct cfs_rq *cfs_rq) 1335 { 1336 struct task_group *tg = cfs_rq->tg; 1337 long contrib; 1338 1339 /* The fraction of a cpu used by this cfs_rq */ 1340 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT, 1341 sa->runnable_avg_period + 1); 1342 contrib -= cfs_rq->tg_runnable_contrib; 1343 1344 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 1345 atomic_add(contrib, &tg->runnable_avg); 1346 cfs_rq->tg_runnable_contrib += contrib; 1347 } 1348 } 1349 1350 static inline void __update_group_entity_contrib(struct sched_entity *se) 1351 { 1352 struct cfs_rq *cfs_rq = group_cfs_rq(se); 1353 struct task_group *tg = cfs_rq->tg; 1354 int runnable_avg; 1355 1356 u64 contrib; 1357 1358 contrib = cfs_rq->tg_load_contrib * tg->shares; 1359 se->avg.load_avg_contrib = div64_u64(contrib, 1360 atomic64_read(&tg->load_avg) + 1); 1361 1362 /* 1363 * For group entities we need to compute a correction term in the case 1364 * that they are consuming <1 cpu so that we would contribute the same 1365 * load as a task of equal weight. 1366 * 1367 * Explicitly co-ordinating this measurement would be expensive, but 1368 * fortunately the sum of each cpus contribution forms a usable 1369 * lower-bound on the true value. 1370 * 1371 * Consider the aggregate of 2 contributions. Either they are disjoint 1372 * (and the sum represents true value) or they are disjoint and we are 1373 * understating by the aggregate of their overlap. 1374 * 1375 * Extending this to N cpus, for a given overlap, the maximum amount we 1376 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 1377 * cpus that overlap for this interval and w_i is the interval width. 1378 * 1379 * On a small machine; the first term is well-bounded which bounds the 1380 * total error since w_i is a subset of the period. Whereas on a 1381 * larger machine, while this first term can be larger, if w_i is the 1382 * of consequential size guaranteed to see n_i*w_i quickly converge to 1383 * our upper bound of 1-cpu. 1384 */ 1385 runnable_avg = atomic_read(&tg->runnable_avg); 1386 if (runnable_avg < NICE_0_LOAD) { 1387 se->avg.load_avg_contrib *= runnable_avg; 1388 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 1389 } 1390 } 1391 #else 1392 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1393 int force_update) {} 1394 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1395 struct cfs_rq *cfs_rq) {} 1396 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 1397 #endif 1398 1399 static inline void __update_task_entity_contrib(struct sched_entity *se) 1400 { 1401 u32 contrib; 1402 1403 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 1404 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 1405 contrib /= (se->avg.runnable_avg_period + 1); 1406 se->avg.load_avg_contrib = scale_load(contrib); 1407 } 1408 1409 /* Compute the current contribution to load_avg by se, return any delta */ 1410 static long __update_entity_load_avg_contrib(struct sched_entity *se) 1411 { 1412 long old_contrib = se->avg.load_avg_contrib; 1413 1414 if (entity_is_task(se)) { 1415 __update_task_entity_contrib(se); 1416 } else { 1417 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 1418 __update_group_entity_contrib(se); 1419 } 1420 1421 return se->avg.load_avg_contrib - old_contrib; 1422 } 1423 1424 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 1425 long load_contrib) 1426 { 1427 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 1428 cfs_rq->blocked_load_avg -= load_contrib; 1429 else 1430 cfs_rq->blocked_load_avg = 0; 1431 } 1432 1433 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 1434 1435 /* Update a sched_entity's runnable average */ 1436 static inline void update_entity_load_avg(struct sched_entity *se, 1437 int update_cfs_rq) 1438 { 1439 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1440 long contrib_delta; 1441 u64 now; 1442 1443 /* 1444 * For a group entity we need to use their owned cfs_rq_clock_task() in 1445 * case they are the parent of a throttled hierarchy. 1446 */ 1447 if (entity_is_task(se)) 1448 now = cfs_rq_clock_task(cfs_rq); 1449 else 1450 now = cfs_rq_clock_task(group_cfs_rq(se)); 1451 1452 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 1453 return; 1454 1455 contrib_delta = __update_entity_load_avg_contrib(se); 1456 1457 if (!update_cfs_rq) 1458 return; 1459 1460 if (se->on_rq) 1461 cfs_rq->runnable_load_avg += contrib_delta; 1462 else 1463 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 1464 } 1465 1466 /* 1467 * Decay the load contributed by all blocked children and account this so that 1468 * their contribution may appropriately discounted when they wake up. 1469 */ 1470 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 1471 { 1472 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 1473 u64 decays; 1474 1475 decays = now - cfs_rq->last_decay; 1476 if (!decays && !force_update) 1477 return; 1478 1479 if (atomic64_read(&cfs_rq->removed_load)) { 1480 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0); 1481 subtract_blocked_load_contrib(cfs_rq, removed_load); 1482 } 1483 1484 if (decays) { 1485 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 1486 decays); 1487 atomic64_add(decays, &cfs_rq->decay_counter); 1488 cfs_rq->last_decay = now; 1489 } 1490 1491 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 1492 } 1493 1494 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 1495 { 1496 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable); 1497 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 1498 } 1499 1500 /* Add the load generated by se into cfs_rq's child load-average */ 1501 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1502 struct sched_entity *se, 1503 int wakeup) 1504 { 1505 /* 1506 * We track migrations using entity decay_count <= 0, on a wake-up 1507 * migration we use a negative decay count to track the remote decays 1508 * accumulated while sleeping. 1509 */ 1510 if (unlikely(se->avg.decay_count <= 0)) { 1511 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task; 1512 if (se->avg.decay_count) { 1513 /* 1514 * In a wake-up migration we have to approximate the 1515 * time sleeping. This is because we can't synchronize 1516 * clock_task between the two cpus, and it is not 1517 * guaranteed to be read-safe. Instead, we can 1518 * approximate this using our carried decays, which are 1519 * explicitly atomically readable. 1520 */ 1521 se->avg.last_runnable_update -= (-se->avg.decay_count) 1522 << 20; 1523 update_entity_load_avg(se, 0); 1524 /* Indicate that we're now synchronized and on-rq */ 1525 se->avg.decay_count = 0; 1526 } 1527 wakeup = 0; 1528 } else { 1529 __synchronize_entity_decay(se); 1530 } 1531 1532 /* migrated tasks did not contribute to our blocked load */ 1533 if (wakeup) { 1534 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 1535 update_entity_load_avg(se, 0); 1536 } 1537 1538 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 1539 /* we force update consideration on load-balancer moves */ 1540 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 1541 } 1542 1543 /* 1544 * Remove se's load from this cfs_rq child load-average, if the entity is 1545 * transitioning to a blocked state we track its projected decay using 1546 * blocked_load_avg. 1547 */ 1548 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1549 struct sched_entity *se, 1550 int sleep) 1551 { 1552 update_entity_load_avg(se, 1); 1553 /* we force update consideration on load-balancer moves */ 1554 update_cfs_rq_blocked_load(cfs_rq, !sleep); 1555 1556 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 1557 if (sleep) { 1558 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 1559 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 1560 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 1561 } 1562 #else 1563 static inline void update_entity_load_avg(struct sched_entity *se, 1564 int update_cfs_rq) {} 1565 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 1566 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1567 struct sched_entity *se, 1568 int wakeup) {} 1569 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1570 struct sched_entity *se, 1571 int sleep) {} 1572 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 1573 int force_update) {} 1574 #endif 1575 1576 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 1577 { 1578 #ifdef CONFIG_SCHEDSTATS 1579 struct task_struct *tsk = NULL; 1580 1581 if (entity_is_task(se)) 1582 tsk = task_of(se); 1583 1584 if (se->statistics.sleep_start) { 1585 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; 1586 1587 if ((s64)delta < 0) 1588 delta = 0; 1589 1590 if (unlikely(delta > se->statistics.sleep_max)) 1591 se->statistics.sleep_max = delta; 1592 1593 se->statistics.sleep_start = 0; 1594 se->statistics.sum_sleep_runtime += delta; 1595 1596 if (tsk) { 1597 account_scheduler_latency(tsk, delta >> 10, 1); 1598 trace_sched_stat_sleep(tsk, delta); 1599 } 1600 } 1601 if (se->statistics.block_start) { 1602 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; 1603 1604 if ((s64)delta < 0) 1605 delta = 0; 1606 1607 if (unlikely(delta > se->statistics.block_max)) 1608 se->statistics.block_max = delta; 1609 1610 se->statistics.block_start = 0; 1611 se->statistics.sum_sleep_runtime += delta; 1612 1613 if (tsk) { 1614 if (tsk->in_iowait) { 1615 se->statistics.iowait_sum += delta; 1616 se->statistics.iowait_count++; 1617 trace_sched_stat_iowait(tsk, delta); 1618 } 1619 1620 trace_sched_stat_blocked(tsk, delta); 1621 1622 /* 1623 * Blocking time is in units of nanosecs, so shift by 1624 * 20 to get a milliseconds-range estimation of the 1625 * amount of time that the task spent sleeping: 1626 */ 1627 if (unlikely(prof_on == SLEEP_PROFILING)) { 1628 profile_hits(SLEEP_PROFILING, 1629 (void *)get_wchan(tsk), 1630 delta >> 20); 1631 } 1632 account_scheduler_latency(tsk, delta >> 10, 0); 1633 } 1634 } 1635 #endif 1636 } 1637 1638 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1639 { 1640 #ifdef CONFIG_SCHED_DEBUG 1641 s64 d = se->vruntime - cfs_rq->min_vruntime; 1642 1643 if (d < 0) 1644 d = -d; 1645 1646 if (d > 3*sysctl_sched_latency) 1647 schedstat_inc(cfs_rq, nr_spread_over); 1648 #endif 1649 } 1650 1651 static void 1652 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1653 { 1654 u64 vruntime = cfs_rq->min_vruntime; 1655 1656 /* 1657 * The 'current' period is already promised to the current tasks, 1658 * however the extra weight of the new task will slow them down a 1659 * little, place the new task so that it fits in the slot that 1660 * stays open at the end. 1661 */ 1662 if (initial && sched_feat(START_DEBIT)) 1663 vruntime += sched_vslice(cfs_rq, se); 1664 1665 /* sleeps up to a single latency don't count. */ 1666 if (!initial) { 1667 unsigned long thresh = sysctl_sched_latency; 1668 1669 /* 1670 * Halve their sleep time's effect, to allow 1671 * for a gentler effect of sleepers: 1672 */ 1673 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1674 thresh >>= 1; 1675 1676 vruntime -= thresh; 1677 } 1678 1679 /* ensure we never gain time by being placed backwards. */ 1680 vruntime = max_vruntime(se->vruntime, vruntime); 1681 1682 se->vruntime = vruntime; 1683 } 1684 1685 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1686 1687 static void 1688 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1689 { 1690 /* 1691 * Update the normalized vruntime before updating min_vruntime 1692 * through callig update_curr(). 1693 */ 1694 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1695 se->vruntime += cfs_rq->min_vruntime; 1696 1697 /* 1698 * Update run-time statistics of the 'current'. 1699 */ 1700 update_curr(cfs_rq); 1701 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 1702 account_entity_enqueue(cfs_rq, se); 1703 update_cfs_shares(cfs_rq); 1704 1705 if (flags & ENQUEUE_WAKEUP) { 1706 place_entity(cfs_rq, se, 0); 1707 enqueue_sleeper(cfs_rq, se); 1708 } 1709 1710 update_stats_enqueue(cfs_rq, se); 1711 check_spread(cfs_rq, se); 1712 if (se != cfs_rq->curr) 1713 __enqueue_entity(cfs_rq, se); 1714 se->on_rq = 1; 1715 1716 if (cfs_rq->nr_running == 1) { 1717 list_add_leaf_cfs_rq(cfs_rq); 1718 check_enqueue_throttle(cfs_rq); 1719 } 1720 } 1721 1722 static void __clear_buddies_last(struct sched_entity *se) 1723 { 1724 for_each_sched_entity(se) { 1725 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1726 if (cfs_rq->last == se) 1727 cfs_rq->last = NULL; 1728 else 1729 break; 1730 } 1731 } 1732 1733 static void __clear_buddies_next(struct sched_entity *se) 1734 { 1735 for_each_sched_entity(se) { 1736 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1737 if (cfs_rq->next == se) 1738 cfs_rq->next = NULL; 1739 else 1740 break; 1741 } 1742 } 1743 1744 static void __clear_buddies_skip(struct sched_entity *se) 1745 { 1746 for_each_sched_entity(se) { 1747 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1748 if (cfs_rq->skip == se) 1749 cfs_rq->skip = NULL; 1750 else 1751 break; 1752 } 1753 } 1754 1755 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1756 { 1757 if (cfs_rq->last == se) 1758 __clear_buddies_last(se); 1759 1760 if (cfs_rq->next == se) 1761 __clear_buddies_next(se); 1762 1763 if (cfs_rq->skip == se) 1764 __clear_buddies_skip(se); 1765 } 1766 1767 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1768 1769 static void 1770 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1771 { 1772 /* 1773 * Update run-time statistics of the 'current'. 1774 */ 1775 update_curr(cfs_rq); 1776 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 1777 1778 update_stats_dequeue(cfs_rq, se); 1779 if (flags & DEQUEUE_SLEEP) { 1780 #ifdef CONFIG_SCHEDSTATS 1781 if (entity_is_task(se)) { 1782 struct task_struct *tsk = task_of(se); 1783 1784 if (tsk->state & TASK_INTERRUPTIBLE) 1785 se->statistics.sleep_start = rq_of(cfs_rq)->clock; 1786 if (tsk->state & TASK_UNINTERRUPTIBLE) 1787 se->statistics.block_start = rq_of(cfs_rq)->clock; 1788 } 1789 #endif 1790 } 1791 1792 clear_buddies(cfs_rq, se); 1793 1794 if (se != cfs_rq->curr) 1795 __dequeue_entity(cfs_rq, se); 1796 se->on_rq = 0; 1797 account_entity_dequeue(cfs_rq, se); 1798 1799 /* 1800 * Normalize the entity after updating the min_vruntime because the 1801 * update can refer to the ->curr item and we need to reflect this 1802 * movement in our normalized position. 1803 */ 1804 if (!(flags & DEQUEUE_SLEEP)) 1805 se->vruntime -= cfs_rq->min_vruntime; 1806 1807 /* return excess runtime on last dequeue */ 1808 return_cfs_rq_runtime(cfs_rq); 1809 1810 update_min_vruntime(cfs_rq); 1811 update_cfs_shares(cfs_rq); 1812 } 1813 1814 /* 1815 * Preempt the current task with a newly woken task if needed: 1816 */ 1817 static void 1818 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1819 { 1820 unsigned long ideal_runtime, delta_exec; 1821 struct sched_entity *se; 1822 s64 delta; 1823 1824 ideal_runtime = sched_slice(cfs_rq, curr); 1825 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1826 if (delta_exec > ideal_runtime) { 1827 resched_task(rq_of(cfs_rq)->curr); 1828 /* 1829 * The current task ran long enough, ensure it doesn't get 1830 * re-elected due to buddy favours. 1831 */ 1832 clear_buddies(cfs_rq, curr); 1833 return; 1834 } 1835 1836 /* 1837 * Ensure that a task that missed wakeup preemption by a 1838 * narrow margin doesn't have to wait for a full slice. 1839 * This also mitigates buddy induced latencies under load. 1840 */ 1841 if (delta_exec < sysctl_sched_min_granularity) 1842 return; 1843 1844 se = __pick_first_entity(cfs_rq); 1845 delta = curr->vruntime - se->vruntime; 1846 1847 if (delta < 0) 1848 return; 1849 1850 if (delta > ideal_runtime) 1851 resched_task(rq_of(cfs_rq)->curr); 1852 } 1853 1854 static void 1855 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1856 { 1857 /* 'current' is not kept within the tree. */ 1858 if (se->on_rq) { 1859 /* 1860 * Any task has to be enqueued before it get to execute on 1861 * a CPU. So account for the time it spent waiting on the 1862 * runqueue. 1863 */ 1864 update_stats_wait_end(cfs_rq, se); 1865 __dequeue_entity(cfs_rq, se); 1866 } 1867 1868 update_stats_curr_start(cfs_rq, se); 1869 cfs_rq->curr = se; 1870 #ifdef CONFIG_SCHEDSTATS 1871 /* 1872 * Track our maximum slice length, if the CPU's load is at 1873 * least twice that of our own weight (i.e. dont track it 1874 * when there are only lesser-weight tasks around): 1875 */ 1876 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1877 se->statistics.slice_max = max(se->statistics.slice_max, 1878 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1879 } 1880 #endif 1881 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1882 } 1883 1884 static int 1885 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1886 1887 /* 1888 * Pick the next process, keeping these things in mind, in this order: 1889 * 1) keep things fair between processes/task groups 1890 * 2) pick the "next" process, since someone really wants that to run 1891 * 3) pick the "last" process, for cache locality 1892 * 4) do not run the "skip" process, if something else is available 1893 */ 1894 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1895 { 1896 struct sched_entity *se = __pick_first_entity(cfs_rq); 1897 struct sched_entity *left = se; 1898 1899 /* 1900 * Avoid running the skip buddy, if running something else can 1901 * be done without getting too unfair. 1902 */ 1903 if (cfs_rq->skip == se) { 1904 struct sched_entity *second = __pick_next_entity(se); 1905 if (second && wakeup_preempt_entity(second, left) < 1) 1906 se = second; 1907 } 1908 1909 /* 1910 * Prefer last buddy, try to return the CPU to a preempted task. 1911 */ 1912 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1913 se = cfs_rq->last; 1914 1915 /* 1916 * Someone really wants this to run. If it's not unfair, run it. 1917 */ 1918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1919 se = cfs_rq->next; 1920 1921 clear_buddies(cfs_rq, se); 1922 1923 return se; 1924 } 1925 1926 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1927 1928 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 1929 { 1930 /* 1931 * If still on the runqueue then deactivate_task() 1932 * was not called and update_curr() has to be done: 1933 */ 1934 if (prev->on_rq) 1935 update_curr(cfs_rq); 1936 1937 /* throttle cfs_rqs exceeding runtime */ 1938 check_cfs_rq_runtime(cfs_rq); 1939 1940 check_spread(cfs_rq, prev); 1941 if (prev->on_rq) { 1942 update_stats_wait_start(cfs_rq, prev); 1943 /* Put 'current' back into the tree. */ 1944 __enqueue_entity(cfs_rq, prev); 1945 /* in !on_rq case, update occurred at dequeue */ 1946 update_entity_load_avg(prev, 1); 1947 } 1948 cfs_rq->curr = NULL; 1949 } 1950 1951 static void 1952 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 1953 { 1954 /* 1955 * Update run-time statistics of the 'current'. 1956 */ 1957 update_curr(cfs_rq); 1958 1959 /* 1960 * Ensure that runnable average is periodically updated. 1961 */ 1962 update_entity_load_avg(curr, 1); 1963 update_cfs_rq_blocked_load(cfs_rq, 1); 1964 1965 #ifdef CONFIG_SCHED_HRTICK 1966 /* 1967 * queued ticks are scheduled to match the slice, so don't bother 1968 * validating it and just reschedule. 1969 */ 1970 if (queued) { 1971 resched_task(rq_of(cfs_rq)->curr); 1972 return; 1973 } 1974 /* 1975 * don't let the period tick interfere with the hrtick preemption 1976 */ 1977 if (!sched_feat(DOUBLE_TICK) && 1978 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 1979 return; 1980 #endif 1981 1982 if (cfs_rq->nr_running > 1) 1983 check_preempt_tick(cfs_rq, curr); 1984 } 1985 1986 1987 /************************************************** 1988 * CFS bandwidth control machinery 1989 */ 1990 1991 #ifdef CONFIG_CFS_BANDWIDTH 1992 1993 #ifdef HAVE_JUMP_LABEL 1994 static struct static_key __cfs_bandwidth_used; 1995 1996 static inline bool cfs_bandwidth_used(void) 1997 { 1998 return static_key_false(&__cfs_bandwidth_used); 1999 } 2000 2001 void account_cfs_bandwidth_used(int enabled, int was_enabled) 2002 { 2003 /* only need to count groups transitioning between enabled/!enabled */ 2004 if (enabled && !was_enabled) 2005 static_key_slow_inc(&__cfs_bandwidth_used); 2006 else if (!enabled && was_enabled) 2007 static_key_slow_dec(&__cfs_bandwidth_used); 2008 } 2009 #else /* HAVE_JUMP_LABEL */ 2010 static bool cfs_bandwidth_used(void) 2011 { 2012 return true; 2013 } 2014 2015 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 2016 #endif /* HAVE_JUMP_LABEL */ 2017 2018 /* 2019 * default period for cfs group bandwidth. 2020 * default: 0.1s, units: nanoseconds 2021 */ 2022 static inline u64 default_cfs_period(void) 2023 { 2024 return 100000000ULL; 2025 } 2026 2027 static inline u64 sched_cfs_bandwidth_slice(void) 2028 { 2029 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 2030 } 2031 2032 /* 2033 * Replenish runtime according to assigned quota and update expiration time. 2034 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 2035 * additional synchronization around rq->lock. 2036 * 2037 * requires cfs_b->lock 2038 */ 2039 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 2040 { 2041 u64 now; 2042 2043 if (cfs_b->quota == RUNTIME_INF) 2044 return; 2045 2046 now = sched_clock_cpu(smp_processor_id()); 2047 cfs_b->runtime = cfs_b->quota; 2048 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 2049 } 2050 2051 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2052 { 2053 return &tg->cfs_bandwidth; 2054 } 2055 2056 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 2057 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2058 { 2059 if (unlikely(cfs_rq->throttle_count)) 2060 return cfs_rq->throttled_clock_task; 2061 2062 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time; 2063 } 2064 2065 /* returns 0 on failure to allocate runtime */ 2066 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2067 { 2068 struct task_group *tg = cfs_rq->tg; 2069 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 2070 u64 amount = 0, min_amount, expires; 2071 2072 /* note: this is a positive sum as runtime_remaining <= 0 */ 2073 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 2074 2075 raw_spin_lock(&cfs_b->lock); 2076 if (cfs_b->quota == RUNTIME_INF) 2077 amount = min_amount; 2078 else { 2079 /* 2080 * If the bandwidth pool has become inactive, then at least one 2081 * period must have elapsed since the last consumption. 2082 * Refresh the global state and ensure bandwidth timer becomes 2083 * active. 2084 */ 2085 if (!cfs_b->timer_active) { 2086 __refill_cfs_bandwidth_runtime(cfs_b); 2087 __start_cfs_bandwidth(cfs_b); 2088 } 2089 2090 if (cfs_b->runtime > 0) { 2091 amount = min(cfs_b->runtime, min_amount); 2092 cfs_b->runtime -= amount; 2093 cfs_b->idle = 0; 2094 } 2095 } 2096 expires = cfs_b->runtime_expires; 2097 raw_spin_unlock(&cfs_b->lock); 2098 2099 cfs_rq->runtime_remaining += amount; 2100 /* 2101 * we may have advanced our local expiration to account for allowed 2102 * spread between our sched_clock and the one on which runtime was 2103 * issued. 2104 */ 2105 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 2106 cfs_rq->runtime_expires = expires; 2107 2108 return cfs_rq->runtime_remaining > 0; 2109 } 2110 2111 /* 2112 * Note: This depends on the synchronization provided by sched_clock and the 2113 * fact that rq->clock snapshots this value. 2114 */ 2115 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2116 { 2117 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2118 struct rq *rq = rq_of(cfs_rq); 2119 2120 /* if the deadline is ahead of our clock, nothing to do */ 2121 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) 2122 return; 2123 2124 if (cfs_rq->runtime_remaining < 0) 2125 return; 2126 2127 /* 2128 * If the local deadline has passed we have to consider the 2129 * possibility that our sched_clock is 'fast' and the global deadline 2130 * has not truly expired. 2131 * 2132 * Fortunately we can check determine whether this the case by checking 2133 * whether the global deadline has advanced. 2134 */ 2135 2136 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 2137 /* extend local deadline, drift is bounded above by 2 ticks */ 2138 cfs_rq->runtime_expires += TICK_NSEC; 2139 } else { 2140 /* global deadline is ahead, expiration has passed */ 2141 cfs_rq->runtime_remaining = 0; 2142 } 2143 } 2144 2145 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2146 unsigned long delta_exec) 2147 { 2148 /* dock delta_exec before expiring quota (as it could span periods) */ 2149 cfs_rq->runtime_remaining -= delta_exec; 2150 expire_cfs_rq_runtime(cfs_rq); 2151 2152 if (likely(cfs_rq->runtime_remaining > 0)) 2153 return; 2154 2155 /* 2156 * if we're unable to extend our runtime we resched so that the active 2157 * hierarchy can be throttled 2158 */ 2159 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 2160 resched_task(rq_of(cfs_rq)->curr); 2161 } 2162 2163 static __always_inline 2164 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) 2165 { 2166 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 2167 return; 2168 2169 __account_cfs_rq_runtime(cfs_rq, delta_exec); 2170 } 2171 2172 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2173 { 2174 return cfs_bandwidth_used() && cfs_rq->throttled; 2175 } 2176 2177 /* check whether cfs_rq, or any parent, is throttled */ 2178 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2179 { 2180 return cfs_bandwidth_used() && cfs_rq->throttle_count; 2181 } 2182 2183 /* 2184 * Ensure that neither of the group entities corresponding to src_cpu or 2185 * dest_cpu are members of a throttled hierarchy when performing group 2186 * load-balance operations. 2187 */ 2188 static inline int throttled_lb_pair(struct task_group *tg, 2189 int src_cpu, int dest_cpu) 2190 { 2191 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 2192 2193 src_cfs_rq = tg->cfs_rq[src_cpu]; 2194 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 2195 2196 return throttled_hierarchy(src_cfs_rq) || 2197 throttled_hierarchy(dest_cfs_rq); 2198 } 2199 2200 /* updated child weight may affect parent so we have to do this bottom up */ 2201 static int tg_unthrottle_up(struct task_group *tg, void *data) 2202 { 2203 struct rq *rq = data; 2204 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2205 2206 cfs_rq->throttle_count--; 2207 #ifdef CONFIG_SMP 2208 if (!cfs_rq->throttle_count) { 2209 /* adjust cfs_rq_clock_task() */ 2210 cfs_rq->throttled_clock_task_time += rq->clock_task - 2211 cfs_rq->throttled_clock_task; 2212 } 2213 #endif 2214 2215 return 0; 2216 } 2217 2218 static int tg_throttle_down(struct task_group *tg, void *data) 2219 { 2220 struct rq *rq = data; 2221 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2222 2223 /* group is entering throttled state, stop time */ 2224 if (!cfs_rq->throttle_count) 2225 cfs_rq->throttled_clock_task = rq->clock_task; 2226 cfs_rq->throttle_count++; 2227 2228 return 0; 2229 } 2230 2231 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 2232 { 2233 struct rq *rq = rq_of(cfs_rq); 2234 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2235 struct sched_entity *se; 2236 long task_delta, dequeue = 1; 2237 2238 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 2239 2240 /* freeze hierarchy runnable averages while throttled */ 2241 rcu_read_lock(); 2242 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 2243 rcu_read_unlock(); 2244 2245 task_delta = cfs_rq->h_nr_running; 2246 for_each_sched_entity(se) { 2247 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 2248 /* throttled entity or throttle-on-deactivate */ 2249 if (!se->on_rq) 2250 break; 2251 2252 if (dequeue) 2253 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 2254 qcfs_rq->h_nr_running -= task_delta; 2255 2256 if (qcfs_rq->load.weight) 2257 dequeue = 0; 2258 } 2259 2260 if (!se) 2261 rq->nr_running -= task_delta; 2262 2263 cfs_rq->throttled = 1; 2264 cfs_rq->throttled_clock = rq->clock; 2265 raw_spin_lock(&cfs_b->lock); 2266 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 2267 raw_spin_unlock(&cfs_b->lock); 2268 } 2269 2270 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 2271 { 2272 struct rq *rq = rq_of(cfs_rq); 2273 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2274 struct sched_entity *se; 2275 int enqueue = 1; 2276 long task_delta; 2277 2278 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 2279 2280 cfs_rq->throttled = 0; 2281 raw_spin_lock(&cfs_b->lock); 2282 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock; 2283 list_del_rcu(&cfs_rq->throttled_list); 2284 raw_spin_unlock(&cfs_b->lock); 2285 2286 update_rq_clock(rq); 2287 /* update hierarchical throttle state */ 2288 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 2289 2290 if (!cfs_rq->load.weight) 2291 return; 2292 2293 task_delta = cfs_rq->h_nr_running; 2294 for_each_sched_entity(se) { 2295 if (se->on_rq) 2296 enqueue = 0; 2297 2298 cfs_rq = cfs_rq_of(se); 2299 if (enqueue) 2300 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 2301 cfs_rq->h_nr_running += task_delta; 2302 2303 if (cfs_rq_throttled(cfs_rq)) 2304 break; 2305 } 2306 2307 if (!se) 2308 rq->nr_running += task_delta; 2309 2310 /* determine whether we need to wake up potentially idle cpu */ 2311 if (rq->curr == rq->idle && rq->cfs.nr_running) 2312 resched_task(rq->curr); 2313 } 2314 2315 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 2316 u64 remaining, u64 expires) 2317 { 2318 struct cfs_rq *cfs_rq; 2319 u64 runtime = remaining; 2320 2321 rcu_read_lock(); 2322 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 2323 throttled_list) { 2324 struct rq *rq = rq_of(cfs_rq); 2325 2326 raw_spin_lock(&rq->lock); 2327 if (!cfs_rq_throttled(cfs_rq)) 2328 goto next; 2329 2330 runtime = -cfs_rq->runtime_remaining + 1; 2331 if (runtime > remaining) 2332 runtime = remaining; 2333 remaining -= runtime; 2334 2335 cfs_rq->runtime_remaining += runtime; 2336 cfs_rq->runtime_expires = expires; 2337 2338 /* we check whether we're throttled above */ 2339 if (cfs_rq->runtime_remaining > 0) 2340 unthrottle_cfs_rq(cfs_rq); 2341 2342 next: 2343 raw_spin_unlock(&rq->lock); 2344 2345 if (!remaining) 2346 break; 2347 } 2348 rcu_read_unlock(); 2349 2350 return remaining; 2351 } 2352 2353 /* 2354 * Responsible for refilling a task_group's bandwidth and unthrottling its 2355 * cfs_rqs as appropriate. If there has been no activity within the last 2356 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 2357 * used to track this state. 2358 */ 2359 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 2360 { 2361 u64 runtime, runtime_expires; 2362 int idle = 1, throttled; 2363 2364 raw_spin_lock(&cfs_b->lock); 2365 /* no need to continue the timer with no bandwidth constraint */ 2366 if (cfs_b->quota == RUNTIME_INF) 2367 goto out_unlock; 2368 2369 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2370 /* idle depends on !throttled (for the case of a large deficit) */ 2371 idle = cfs_b->idle && !throttled; 2372 cfs_b->nr_periods += overrun; 2373 2374 /* if we're going inactive then everything else can be deferred */ 2375 if (idle) 2376 goto out_unlock; 2377 2378 __refill_cfs_bandwidth_runtime(cfs_b); 2379 2380 if (!throttled) { 2381 /* mark as potentially idle for the upcoming period */ 2382 cfs_b->idle = 1; 2383 goto out_unlock; 2384 } 2385 2386 /* account preceding periods in which throttling occurred */ 2387 cfs_b->nr_throttled += overrun; 2388 2389 /* 2390 * There are throttled entities so we must first use the new bandwidth 2391 * to unthrottle them before making it generally available. This 2392 * ensures that all existing debts will be paid before a new cfs_rq is 2393 * allowed to run. 2394 */ 2395 runtime = cfs_b->runtime; 2396 runtime_expires = cfs_b->runtime_expires; 2397 cfs_b->runtime = 0; 2398 2399 /* 2400 * This check is repeated as we are holding onto the new bandwidth 2401 * while we unthrottle. This can potentially race with an unthrottled 2402 * group trying to acquire new bandwidth from the global pool. 2403 */ 2404 while (throttled && runtime > 0) { 2405 raw_spin_unlock(&cfs_b->lock); 2406 /* we can't nest cfs_b->lock while distributing bandwidth */ 2407 runtime = distribute_cfs_runtime(cfs_b, runtime, 2408 runtime_expires); 2409 raw_spin_lock(&cfs_b->lock); 2410 2411 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2412 } 2413 2414 /* return (any) remaining runtime */ 2415 cfs_b->runtime = runtime; 2416 /* 2417 * While we are ensured activity in the period following an 2418 * unthrottle, this also covers the case in which the new bandwidth is 2419 * insufficient to cover the existing bandwidth deficit. (Forcing the 2420 * timer to remain active while there are any throttled entities.) 2421 */ 2422 cfs_b->idle = 0; 2423 out_unlock: 2424 if (idle) 2425 cfs_b->timer_active = 0; 2426 raw_spin_unlock(&cfs_b->lock); 2427 2428 return idle; 2429 } 2430 2431 /* a cfs_rq won't donate quota below this amount */ 2432 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 2433 /* minimum remaining period time to redistribute slack quota */ 2434 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 2435 /* how long we wait to gather additional slack before distributing */ 2436 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 2437 2438 /* are we near the end of the current quota period? */ 2439 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 2440 { 2441 struct hrtimer *refresh_timer = &cfs_b->period_timer; 2442 u64 remaining; 2443 2444 /* if the call-back is running a quota refresh is already occurring */ 2445 if (hrtimer_callback_running(refresh_timer)) 2446 return 1; 2447 2448 /* is a quota refresh about to occur? */ 2449 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 2450 if (remaining < min_expire) 2451 return 1; 2452 2453 return 0; 2454 } 2455 2456 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 2457 { 2458 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 2459 2460 /* if there's a quota refresh soon don't bother with slack */ 2461 if (runtime_refresh_within(cfs_b, min_left)) 2462 return; 2463 2464 start_bandwidth_timer(&cfs_b->slack_timer, 2465 ns_to_ktime(cfs_bandwidth_slack_period)); 2466 } 2467 2468 /* we know any runtime found here is valid as update_curr() precedes return */ 2469 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2470 { 2471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2472 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 2473 2474 if (slack_runtime <= 0) 2475 return; 2476 2477 raw_spin_lock(&cfs_b->lock); 2478 if (cfs_b->quota != RUNTIME_INF && 2479 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 2480 cfs_b->runtime += slack_runtime; 2481 2482 /* we are under rq->lock, defer unthrottling using a timer */ 2483 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 2484 !list_empty(&cfs_b->throttled_cfs_rq)) 2485 start_cfs_slack_bandwidth(cfs_b); 2486 } 2487 raw_spin_unlock(&cfs_b->lock); 2488 2489 /* even if it's not valid for return we don't want to try again */ 2490 cfs_rq->runtime_remaining -= slack_runtime; 2491 } 2492 2493 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2494 { 2495 if (!cfs_bandwidth_used()) 2496 return; 2497 2498 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 2499 return; 2500 2501 __return_cfs_rq_runtime(cfs_rq); 2502 } 2503 2504 /* 2505 * This is done with a timer (instead of inline with bandwidth return) since 2506 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 2507 */ 2508 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 2509 { 2510 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 2511 u64 expires; 2512 2513 /* confirm we're still not at a refresh boundary */ 2514 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 2515 return; 2516 2517 raw_spin_lock(&cfs_b->lock); 2518 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 2519 runtime = cfs_b->runtime; 2520 cfs_b->runtime = 0; 2521 } 2522 expires = cfs_b->runtime_expires; 2523 raw_spin_unlock(&cfs_b->lock); 2524 2525 if (!runtime) 2526 return; 2527 2528 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 2529 2530 raw_spin_lock(&cfs_b->lock); 2531 if (expires == cfs_b->runtime_expires) 2532 cfs_b->runtime = runtime; 2533 raw_spin_unlock(&cfs_b->lock); 2534 } 2535 2536 /* 2537 * When a group wakes up we want to make sure that its quota is not already 2538 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 2539 * runtime as update_curr() throttling can not not trigger until it's on-rq. 2540 */ 2541 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 2542 { 2543 if (!cfs_bandwidth_used()) 2544 return; 2545 2546 /* an active group must be handled by the update_curr()->put() path */ 2547 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 2548 return; 2549 2550 /* ensure the group is not already throttled */ 2551 if (cfs_rq_throttled(cfs_rq)) 2552 return; 2553 2554 /* update runtime allocation */ 2555 account_cfs_rq_runtime(cfs_rq, 0); 2556 if (cfs_rq->runtime_remaining <= 0) 2557 throttle_cfs_rq(cfs_rq); 2558 } 2559 2560 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 2561 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2562 { 2563 if (!cfs_bandwidth_used()) 2564 return; 2565 2566 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 2567 return; 2568 2569 /* 2570 * it's possible for a throttled entity to be forced into a running 2571 * state (e.g. set_curr_task), in this case we're finished. 2572 */ 2573 if (cfs_rq_throttled(cfs_rq)) 2574 return; 2575 2576 throttle_cfs_rq(cfs_rq); 2577 } 2578 2579 static inline u64 default_cfs_period(void); 2580 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); 2581 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); 2582 2583 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 2584 { 2585 struct cfs_bandwidth *cfs_b = 2586 container_of(timer, struct cfs_bandwidth, slack_timer); 2587 do_sched_cfs_slack_timer(cfs_b); 2588 2589 return HRTIMER_NORESTART; 2590 } 2591 2592 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 2593 { 2594 struct cfs_bandwidth *cfs_b = 2595 container_of(timer, struct cfs_bandwidth, period_timer); 2596 ktime_t now; 2597 int overrun; 2598 int idle = 0; 2599 2600 for (;;) { 2601 now = hrtimer_cb_get_time(timer); 2602 overrun = hrtimer_forward(timer, now, cfs_b->period); 2603 2604 if (!overrun) 2605 break; 2606 2607 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2608 } 2609 2610 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2611 } 2612 2613 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2614 { 2615 raw_spin_lock_init(&cfs_b->lock); 2616 cfs_b->runtime = 0; 2617 cfs_b->quota = RUNTIME_INF; 2618 cfs_b->period = ns_to_ktime(default_cfs_period()); 2619 2620 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2621 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2622 cfs_b->period_timer.function = sched_cfs_period_timer; 2623 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2624 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2625 } 2626 2627 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2628 { 2629 cfs_rq->runtime_enabled = 0; 2630 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2631 } 2632 2633 /* requires cfs_b->lock, may release to reprogram timer */ 2634 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2635 { 2636 /* 2637 * The timer may be active because we're trying to set a new bandwidth 2638 * period or because we're racing with the tear-down path 2639 * (timer_active==0 becomes visible before the hrtimer call-back 2640 * terminates). In either case we ensure that it's re-programmed 2641 */ 2642 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2643 raw_spin_unlock(&cfs_b->lock); 2644 /* ensure cfs_b->lock is available while we wait */ 2645 hrtimer_cancel(&cfs_b->period_timer); 2646 2647 raw_spin_lock(&cfs_b->lock); 2648 /* if someone else restarted the timer then we're done */ 2649 if (cfs_b->timer_active) 2650 return; 2651 } 2652 2653 cfs_b->timer_active = 1; 2654 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2655 } 2656 2657 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2658 { 2659 hrtimer_cancel(&cfs_b->period_timer); 2660 hrtimer_cancel(&cfs_b->slack_timer); 2661 } 2662 2663 static void unthrottle_offline_cfs_rqs(struct rq *rq) 2664 { 2665 struct cfs_rq *cfs_rq; 2666 2667 for_each_leaf_cfs_rq(rq, cfs_rq) { 2668 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2669 2670 if (!cfs_rq->runtime_enabled) 2671 continue; 2672 2673 /* 2674 * clock_task is not advancing so we just need to make sure 2675 * there's some valid quota amount 2676 */ 2677 cfs_rq->runtime_remaining = cfs_b->quota; 2678 if (cfs_rq_throttled(cfs_rq)) 2679 unthrottle_cfs_rq(cfs_rq); 2680 } 2681 } 2682 2683 #else /* CONFIG_CFS_BANDWIDTH */ 2684 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2685 { 2686 return rq_of(cfs_rq)->clock_task; 2687 } 2688 2689 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2690 unsigned long delta_exec) {} 2691 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2692 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2693 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2694 2695 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2696 { 2697 return 0; 2698 } 2699 2700 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2701 { 2702 return 0; 2703 } 2704 2705 static inline int throttled_lb_pair(struct task_group *tg, 2706 int src_cpu, int dest_cpu) 2707 { 2708 return 0; 2709 } 2710 2711 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2712 2713 #ifdef CONFIG_FAIR_GROUP_SCHED 2714 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2715 #endif 2716 2717 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2718 { 2719 return NULL; 2720 } 2721 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2722 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2723 2724 #endif /* CONFIG_CFS_BANDWIDTH */ 2725 2726 /************************************************** 2727 * CFS operations on tasks: 2728 */ 2729 2730 #ifdef CONFIG_SCHED_HRTICK 2731 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2732 { 2733 struct sched_entity *se = &p->se; 2734 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2735 2736 WARN_ON(task_rq(p) != rq); 2737 2738 if (cfs_rq->nr_running > 1) { 2739 u64 slice = sched_slice(cfs_rq, se); 2740 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2741 s64 delta = slice - ran; 2742 2743 if (delta < 0) { 2744 if (rq->curr == p) 2745 resched_task(p); 2746 return; 2747 } 2748 2749 /* 2750 * Don't schedule slices shorter than 10000ns, that just 2751 * doesn't make sense. Rely on vruntime for fairness. 2752 */ 2753 if (rq->curr != p) 2754 delta = max_t(s64, 10000LL, delta); 2755 2756 hrtick_start(rq, delta); 2757 } 2758 } 2759 2760 /* 2761 * called from enqueue/dequeue and updates the hrtick when the 2762 * current task is from our class and nr_running is low enough 2763 * to matter. 2764 */ 2765 static void hrtick_update(struct rq *rq) 2766 { 2767 struct task_struct *curr = rq->curr; 2768 2769 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2770 return; 2771 2772 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2773 hrtick_start_fair(rq, curr); 2774 } 2775 #else /* !CONFIG_SCHED_HRTICK */ 2776 static inline void 2777 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2778 { 2779 } 2780 2781 static inline void hrtick_update(struct rq *rq) 2782 { 2783 } 2784 #endif 2785 2786 /* 2787 * The enqueue_task method is called before nr_running is 2788 * increased. Here we update the fair scheduling stats and 2789 * then put the task into the rbtree: 2790 */ 2791 static void 2792 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2793 { 2794 struct cfs_rq *cfs_rq; 2795 struct sched_entity *se = &p->se; 2796 2797 for_each_sched_entity(se) { 2798 if (se->on_rq) 2799 break; 2800 cfs_rq = cfs_rq_of(se); 2801 enqueue_entity(cfs_rq, se, flags); 2802 2803 /* 2804 * end evaluation on encountering a throttled cfs_rq 2805 * 2806 * note: in the case of encountering a throttled cfs_rq we will 2807 * post the final h_nr_running increment below. 2808 */ 2809 if (cfs_rq_throttled(cfs_rq)) 2810 break; 2811 cfs_rq->h_nr_running++; 2812 2813 flags = ENQUEUE_WAKEUP; 2814 } 2815 2816 for_each_sched_entity(se) { 2817 cfs_rq = cfs_rq_of(se); 2818 cfs_rq->h_nr_running++; 2819 2820 if (cfs_rq_throttled(cfs_rq)) 2821 break; 2822 2823 update_cfs_shares(cfs_rq); 2824 update_entity_load_avg(se, 1); 2825 } 2826 2827 if (!se) { 2828 update_rq_runnable_avg(rq, rq->nr_running); 2829 inc_nr_running(rq); 2830 } 2831 hrtick_update(rq); 2832 } 2833 2834 static void set_next_buddy(struct sched_entity *se); 2835 2836 /* 2837 * The dequeue_task method is called before nr_running is 2838 * decreased. We remove the task from the rbtree and 2839 * update the fair scheduling stats: 2840 */ 2841 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2842 { 2843 struct cfs_rq *cfs_rq; 2844 struct sched_entity *se = &p->se; 2845 int task_sleep = flags & DEQUEUE_SLEEP; 2846 2847 for_each_sched_entity(se) { 2848 cfs_rq = cfs_rq_of(se); 2849 dequeue_entity(cfs_rq, se, flags); 2850 2851 /* 2852 * end evaluation on encountering a throttled cfs_rq 2853 * 2854 * note: in the case of encountering a throttled cfs_rq we will 2855 * post the final h_nr_running decrement below. 2856 */ 2857 if (cfs_rq_throttled(cfs_rq)) 2858 break; 2859 cfs_rq->h_nr_running--; 2860 2861 /* Don't dequeue parent if it has other entities besides us */ 2862 if (cfs_rq->load.weight) { 2863 /* 2864 * Bias pick_next to pick a task from this cfs_rq, as 2865 * p is sleeping when it is within its sched_slice. 2866 */ 2867 if (task_sleep && parent_entity(se)) 2868 set_next_buddy(parent_entity(se)); 2869 2870 /* avoid re-evaluating load for this entity */ 2871 se = parent_entity(se); 2872 break; 2873 } 2874 flags |= DEQUEUE_SLEEP; 2875 } 2876 2877 for_each_sched_entity(se) { 2878 cfs_rq = cfs_rq_of(se); 2879 cfs_rq->h_nr_running--; 2880 2881 if (cfs_rq_throttled(cfs_rq)) 2882 break; 2883 2884 update_cfs_shares(cfs_rq); 2885 update_entity_load_avg(se, 1); 2886 } 2887 2888 if (!se) { 2889 dec_nr_running(rq); 2890 update_rq_runnable_avg(rq, 1); 2891 } 2892 hrtick_update(rq); 2893 } 2894 2895 #ifdef CONFIG_SMP 2896 /* Used instead of source_load when we know the type == 0 */ 2897 static unsigned long weighted_cpuload(const int cpu) 2898 { 2899 return cpu_rq(cpu)->load.weight; 2900 } 2901 2902 /* 2903 * Return a low guess at the load of a migration-source cpu weighted 2904 * according to the scheduling class and "nice" value. 2905 * 2906 * We want to under-estimate the load of migration sources, to 2907 * balance conservatively. 2908 */ 2909 static unsigned long source_load(int cpu, int type) 2910 { 2911 struct rq *rq = cpu_rq(cpu); 2912 unsigned long total = weighted_cpuload(cpu); 2913 2914 if (type == 0 || !sched_feat(LB_BIAS)) 2915 return total; 2916 2917 return min(rq->cpu_load[type-1], total); 2918 } 2919 2920 /* 2921 * Return a high guess at the load of a migration-target cpu weighted 2922 * according to the scheduling class and "nice" value. 2923 */ 2924 static unsigned long target_load(int cpu, int type) 2925 { 2926 struct rq *rq = cpu_rq(cpu); 2927 unsigned long total = weighted_cpuload(cpu); 2928 2929 if (type == 0 || !sched_feat(LB_BIAS)) 2930 return total; 2931 2932 return max(rq->cpu_load[type-1], total); 2933 } 2934 2935 static unsigned long power_of(int cpu) 2936 { 2937 return cpu_rq(cpu)->cpu_power; 2938 } 2939 2940 static unsigned long cpu_avg_load_per_task(int cpu) 2941 { 2942 struct rq *rq = cpu_rq(cpu); 2943 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 2944 2945 if (nr_running) 2946 return rq->load.weight / nr_running; 2947 2948 return 0; 2949 } 2950 2951 2952 static void task_waking_fair(struct task_struct *p) 2953 { 2954 struct sched_entity *se = &p->se; 2955 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2956 u64 min_vruntime; 2957 2958 #ifndef CONFIG_64BIT 2959 u64 min_vruntime_copy; 2960 2961 do { 2962 min_vruntime_copy = cfs_rq->min_vruntime_copy; 2963 smp_rmb(); 2964 min_vruntime = cfs_rq->min_vruntime; 2965 } while (min_vruntime != min_vruntime_copy); 2966 #else 2967 min_vruntime = cfs_rq->min_vruntime; 2968 #endif 2969 2970 se->vruntime -= min_vruntime; 2971 } 2972 2973 #ifdef CONFIG_FAIR_GROUP_SCHED 2974 /* 2975 * effective_load() calculates the load change as seen from the root_task_group 2976 * 2977 * Adding load to a group doesn't make a group heavier, but can cause movement 2978 * of group shares between cpus. Assuming the shares were perfectly aligned one 2979 * can calculate the shift in shares. 2980 * 2981 * Calculate the effective load difference if @wl is added (subtracted) to @tg 2982 * on this @cpu and results in a total addition (subtraction) of @wg to the 2983 * total group weight. 2984 * 2985 * Given a runqueue weight distribution (rw_i) we can compute a shares 2986 * distribution (s_i) using: 2987 * 2988 * s_i = rw_i / \Sum rw_j (1) 2989 * 2990 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 2991 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 2992 * shares distribution (s_i): 2993 * 2994 * rw_i = { 2, 4, 1, 0 } 2995 * s_i = { 2/7, 4/7, 1/7, 0 } 2996 * 2997 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 2998 * task used to run on and the CPU the waker is running on), we need to 2999 * compute the effect of waking a task on either CPU and, in case of a sync 3000 * wakeup, compute the effect of the current task going to sleep. 3001 * 3002 * So for a change of @wl to the local @cpu with an overall group weight change 3003 * of @wl we can compute the new shares distribution (s'_i) using: 3004 * 3005 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 3006 * 3007 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 3008 * differences in waking a task to CPU 0. The additional task changes the 3009 * weight and shares distributions like: 3010 * 3011 * rw'_i = { 3, 4, 1, 0 } 3012 * s'_i = { 3/8, 4/8, 1/8, 0 } 3013 * 3014 * We can then compute the difference in effective weight by using: 3015 * 3016 * dw_i = S * (s'_i - s_i) (3) 3017 * 3018 * Where 'S' is the group weight as seen by its parent. 3019 * 3020 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 3021 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 3022 * 4/7) times the weight of the group. 3023 */ 3024 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3025 { 3026 struct sched_entity *se = tg->se[cpu]; 3027 3028 if (!tg->parent) /* the trivial, non-cgroup case */ 3029 return wl; 3030 3031 for_each_sched_entity(se) { 3032 long w, W; 3033 3034 tg = se->my_q->tg; 3035 3036 /* 3037 * W = @wg + \Sum rw_j 3038 */ 3039 W = wg + calc_tg_weight(tg, se->my_q); 3040 3041 /* 3042 * w = rw_i + @wl 3043 */ 3044 w = se->my_q->load.weight + wl; 3045 3046 /* 3047 * wl = S * s'_i; see (2) 3048 */ 3049 if (W > 0 && w < W) 3050 wl = (w * tg->shares) / W; 3051 else 3052 wl = tg->shares; 3053 3054 /* 3055 * Per the above, wl is the new se->load.weight value; since 3056 * those are clipped to [MIN_SHARES, ...) do so now. See 3057 * calc_cfs_shares(). 3058 */ 3059 if (wl < MIN_SHARES) 3060 wl = MIN_SHARES; 3061 3062 /* 3063 * wl = dw_i = S * (s'_i - s_i); see (3) 3064 */ 3065 wl -= se->load.weight; 3066 3067 /* 3068 * Recursively apply this logic to all parent groups to compute 3069 * the final effective load change on the root group. Since 3070 * only the @tg group gets extra weight, all parent groups can 3071 * only redistribute existing shares. @wl is the shift in shares 3072 * resulting from this level per the above. 3073 */ 3074 wg = 0; 3075 } 3076 3077 return wl; 3078 } 3079 #else 3080 3081 static inline unsigned long effective_load(struct task_group *tg, int cpu, 3082 unsigned long wl, unsigned long wg) 3083 { 3084 return wl; 3085 } 3086 3087 #endif 3088 3089 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 3090 { 3091 s64 this_load, load; 3092 int idx, this_cpu, prev_cpu; 3093 unsigned long tl_per_task; 3094 struct task_group *tg; 3095 unsigned long weight; 3096 int balanced; 3097 3098 idx = sd->wake_idx; 3099 this_cpu = smp_processor_id(); 3100 prev_cpu = task_cpu(p); 3101 load = source_load(prev_cpu, idx); 3102 this_load = target_load(this_cpu, idx); 3103 3104 /* 3105 * If sync wakeup then subtract the (maximum possible) 3106 * effect of the currently running task from the load 3107 * of the current CPU: 3108 */ 3109 if (sync) { 3110 tg = task_group(current); 3111 weight = current->se.load.weight; 3112 3113 this_load += effective_load(tg, this_cpu, -weight, -weight); 3114 load += effective_load(tg, prev_cpu, 0, -weight); 3115 } 3116 3117 tg = task_group(p); 3118 weight = p->se.load.weight; 3119 3120 /* 3121 * In low-load situations, where prev_cpu is idle and this_cpu is idle 3122 * due to the sync cause above having dropped this_load to 0, we'll 3123 * always have an imbalance, but there's really nothing you can do 3124 * about that, so that's good too. 3125 * 3126 * Otherwise check if either cpus are near enough in load to allow this 3127 * task to be woken on this_cpu. 3128 */ 3129 if (this_load > 0) { 3130 s64 this_eff_load, prev_eff_load; 3131 3132 this_eff_load = 100; 3133 this_eff_load *= power_of(prev_cpu); 3134 this_eff_load *= this_load + 3135 effective_load(tg, this_cpu, weight, weight); 3136 3137 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 3138 prev_eff_load *= power_of(this_cpu); 3139 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 3140 3141 balanced = this_eff_load <= prev_eff_load; 3142 } else 3143 balanced = true; 3144 3145 /* 3146 * If the currently running task will sleep within 3147 * a reasonable amount of time then attract this newly 3148 * woken task: 3149 */ 3150 if (sync && balanced) 3151 return 1; 3152 3153 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 3154 tl_per_task = cpu_avg_load_per_task(this_cpu); 3155 3156 if (balanced || 3157 (this_load <= load && 3158 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 3159 /* 3160 * This domain has SD_WAKE_AFFINE and 3161 * p is cache cold in this domain, and 3162 * there is no bad imbalance. 3163 */ 3164 schedstat_inc(sd, ttwu_move_affine); 3165 schedstat_inc(p, se.statistics.nr_wakeups_affine); 3166 3167 return 1; 3168 } 3169 return 0; 3170 } 3171 3172 /* 3173 * find_idlest_group finds and returns the least busy CPU group within the 3174 * domain. 3175 */ 3176 static struct sched_group * 3177 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 3178 int this_cpu, int load_idx) 3179 { 3180 struct sched_group *idlest = NULL, *group = sd->groups; 3181 unsigned long min_load = ULONG_MAX, this_load = 0; 3182 int imbalance = 100 + (sd->imbalance_pct-100)/2; 3183 3184 do { 3185 unsigned long load, avg_load; 3186 int local_group; 3187 int i; 3188 3189 /* Skip over this group if it has no CPUs allowed */ 3190 if (!cpumask_intersects(sched_group_cpus(group), 3191 tsk_cpus_allowed(p))) 3192 continue; 3193 3194 local_group = cpumask_test_cpu(this_cpu, 3195 sched_group_cpus(group)); 3196 3197 /* Tally up the load of all CPUs in the group */ 3198 avg_load = 0; 3199 3200 for_each_cpu(i, sched_group_cpus(group)) { 3201 /* Bias balancing toward cpus of our domain */ 3202 if (local_group) 3203 load = source_load(i, load_idx); 3204 else 3205 load = target_load(i, load_idx); 3206 3207 avg_load += load; 3208 } 3209 3210 /* Adjust by relative CPU power of the group */ 3211 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 3212 3213 if (local_group) { 3214 this_load = avg_load; 3215 } else if (avg_load < min_load) { 3216 min_load = avg_load; 3217 idlest = group; 3218 } 3219 } while (group = group->next, group != sd->groups); 3220 3221 if (!idlest || 100*this_load < imbalance*min_load) 3222 return NULL; 3223 return idlest; 3224 } 3225 3226 /* 3227 * find_idlest_cpu - find the idlest cpu among the cpus in group. 3228 */ 3229 static int 3230 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 3231 { 3232 unsigned long load, min_load = ULONG_MAX; 3233 int idlest = -1; 3234 int i; 3235 3236 /* Traverse only the allowed CPUs */ 3237 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 3238 load = weighted_cpuload(i); 3239 3240 if (load < min_load || (load == min_load && i == this_cpu)) { 3241 min_load = load; 3242 idlest = i; 3243 } 3244 } 3245 3246 return idlest; 3247 } 3248 3249 /* 3250 * Try and locate an idle CPU in the sched_domain. 3251 */ 3252 static int select_idle_sibling(struct task_struct *p, int target) 3253 { 3254 int cpu = smp_processor_id(); 3255 int prev_cpu = task_cpu(p); 3256 struct sched_domain *sd; 3257 struct sched_group *sg; 3258 int i; 3259 3260 /* 3261 * If the task is going to be woken-up on this cpu and if it is 3262 * already idle, then it is the right target. 3263 */ 3264 if (target == cpu && idle_cpu(cpu)) 3265 return cpu; 3266 3267 /* 3268 * If the task is going to be woken-up on the cpu where it previously 3269 * ran and if it is currently idle, then it the right target. 3270 */ 3271 if (target == prev_cpu && idle_cpu(prev_cpu)) 3272 return prev_cpu; 3273 3274 /* 3275 * Otherwise, iterate the domains and find an elegible idle cpu. 3276 */ 3277 sd = rcu_dereference(per_cpu(sd_llc, target)); 3278 for_each_lower_domain(sd) { 3279 sg = sd->groups; 3280 do { 3281 if (!cpumask_intersects(sched_group_cpus(sg), 3282 tsk_cpus_allowed(p))) 3283 goto next; 3284 3285 for_each_cpu(i, sched_group_cpus(sg)) { 3286 if (!idle_cpu(i)) 3287 goto next; 3288 } 3289 3290 target = cpumask_first_and(sched_group_cpus(sg), 3291 tsk_cpus_allowed(p)); 3292 goto done; 3293 next: 3294 sg = sg->next; 3295 } while (sg != sd->groups); 3296 } 3297 done: 3298 return target; 3299 } 3300 3301 /* 3302 * sched_balance_self: balance the current task (running on cpu) in domains 3303 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 3304 * SD_BALANCE_EXEC. 3305 * 3306 * Balance, ie. select the least loaded group. 3307 * 3308 * Returns the target CPU number, or the same CPU if no balancing is needed. 3309 * 3310 * preempt must be disabled. 3311 */ 3312 static int 3313 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 3314 { 3315 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 3316 int cpu = smp_processor_id(); 3317 int prev_cpu = task_cpu(p); 3318 int new_cpu = cpu; 3319 int want_affine = 0; 3320 int sync = wake_flags & WF_SYNC; 3321 3322 if (p->nr_cpus_allowed == 1) 3323 return prev_cpu; 3324 3325 if (sd_flag & SD_BALANCE_WAKE) { 3326 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 3327 want_affine = 1; 3328 new_cpu = prev_cpu; 3329 } 3330 3331 rcu_read_lock(); 3332 for_each_domain(cpu, tmp) { 3333 if (!(tmp->flags & SD_LOAD_BALANCE)) 3334 continue; 3335 3336 /* 3337 * If both cpu and prev_cpu are part of this domain, 3338 * cpu is a valid SD_WAKE_AFFINE target. 3339 */ 3340 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 3341 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 3342 affine_sd = tmp; 3343 break; 3344 } 3345 3346 if (tmp->flags & sd_flag) 3347 sd = tmp; 3348 } 3349 3350 if (affine_sd) { 3351 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 3352 prev_cpu = cpu; 3353 3354 new_cpu = select_idle_sibling(p, prev_cpu); 3355 goto unlock; 3356 } 3357 3358 while (sd) { 3359 int load_idx = sd->forkexec_idx; 3360 struct sched_group *group; 3361 int weight; 3362 3363 if (!(sd->flags & sd_flag)) { 3364 sd = sd->child; 3365 continue; 3366 } 3367 3368 if (sd_flag & SD_BALANCE_WAKE) 3369 load_idx = sd->wake_idx; 3370 3371 group = find_idlest_group(sd, p, cpu, load_idx); 3372 if (!group) { 3373 sd = sd->child; 3374 continue; 3375 } 3376 3377 new_cpu = find_idlest_cpu(group, p, cpu); 3378 if (new_cpu == -1 || new_cpu == cpu) { 3379 /* Now try balancing at a lower domain level of cpu */ 3380 sd = sd->child; 3381 continue; 3382 } 3383 3384 /* Now try balancing at a lower domain level of new_cpu */ 3385 cpu = new_cpu; 3386 weight = sd->span_weight; 3387 sd = NULL; 3388 for_each_domain(cpu, tmp) { 3389 if (weight <= tmp->span_weight) 3390 break; 3391 if (tmp->flags & sd_flag) 3392 sd = tmp; 3393 } 3394 /* while loop will break here if sd == NULL */ 3395 } 3396 unlock: 3397 rcu_read_unlock(); 3398 3399 return new_cpu; 3400 } 3401 3402 /* 3403 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 3404 * removed when useful for applications beyond shares distribution (e.g. 3405 * load-balance). 3406 */ 3407 #ifdef CONFIG_FAIR_GROUP_SCHED 3408 /* 3409 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 3410 * cfs_rq_of(p) references at time of call are still valid and identify the 3411 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 3412 * other assumptions, including the state of rq->lock, should be made. 3413 */ 3414 static void 3415 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 3416 { 3417 struct sched_entity *se = &p->se; 3418 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3419 3420 /* 3421 * Load tracking: accumulate removed load so that it can be processed 3422 * when we next update owning cfs_rq under rq->lock. Tasks contribute 3423 * to blocked load iff they have a positive decay-count. It can never 3424 * be negative here since on-rq tasks have decay-count == 0. 3425 */ 3426 if (se->avg.decay_count) { 3427 se->avg.decay_count = -__synchronize_entity_decay(se); 3428 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load); 3429 } 3430 } 3431 #endif 3432 #endif /* CONFIG_SMP */ 3433 3434 static unsigned long 3435 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 3436 { 3437 unsigned long gran = sysctl_sched_wakeup_granularity; 3438 3439 /* 3440 * Since its curr running now, convert the gran from real-time 3441 * to virtual-time in his units. 3442 * 3443 * By using 'se' instead of 'curr' we penalize light tasks, so 3444 * they get preempted easier. That is, if 'se' < 'curr' then 3445 * the resulting gran will be larger, therefore penalizing the 3446 * lighter, if otoh 'se' > 'curr' then the resulting gran will 3447 * be smaller, again penalizing the lighter task. 3448 * 3449 * This is especially important for buddies when the leftmost 3450 * task is higher priority than the buddy. 3451 */ 3452 return calc_delta_fair(gran, se); 3453 } 3454 3455 /* 3456 * Should 'se' preempt 'curr'. 3457 * 3458 * |s1 3459 * |s2 3460 * |s3 3461 * g 3462 * |<--->|c 3463 * 3464 * w(c, s1) = -1 3465 * w(c, s2) = 0 3466 * w(c, s3) = 1 3467 * 3468 */ 3469 static int 3470 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 3471 { 3472 s64 gran, vdiff = curr->vruntime - se->vruntime; 3473 3474 if (vdiff <= 0) 3475 return -1; 3476 3477 gran = wakeup_gran(curr, se); 3478 if (vdiff > gran) 3479 return 1; 3480 3481 return 0; 3482 } 3483 3484 static void set_last_buddy(struct sched_entity *se) 3485 { 3486 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3487 return; 3488 3489 for_each_sched_entity(se) 3490 cfs_rq_of(se)->last = se; 3491 } 3492 3493 static void set_next_buddy(struct sched_entity *se) 3494 { 3495 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3496 return; 3497 3498 for_each_sched_entity(se) 3499 cfs_rq_of(se)->next = se; 3500 } 3501 3502 static void set_skip_buddy(struct sched_entity *se) 3503 { 3504 for_each_sched_entity(se) 3505 cfs_rq_of(se)->skip = se; 3506 } 3507 3508 /* 3509 * Preempt the current task with a newly woken task if needed: 3510 */ 3511 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 3512 { 3513 struct task_struct *curr = rq->curr; 3514 struct sched_entity *se = &curr->se, *pse = &p->se; 3515 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3516 int scale = cfs_rq->nr_running >= sched_nr_latency; 3517 int next_buddy_marked = 0; 3518 3519 if (unlikely(se == pse)) 3520 return; 3521 3522 /* 3523 * This is possible from callers such as move_task(), in which we 3524 * unconditionally check_prempt_curr() after an enqueue (which may have 3525 * lead to a throttle). This both saves work and prevents false 3526 * next-buddy nomination below. 3527 */ 3528 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 3529 return; 3530 3531 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 3532 set_next_buddy(pse); 3533 next_buddy_marked = 1; 3534 } 3535 3536 /* 3537 * We can come here with TIF_NEED_RESCHED already set from new task 3538 * wake up path. 3539 * 3540 * Note: this also catches the edge-case of curr being in a throttled 3541 * group (e.g. via set_curr_task), since update_curr() (in the 3542 * enqueue of curr) will have resulted in resched being set. This 3543 * prevents us from potentially nominating it as a false LAST_BUDDY 3544 * below. 3545 */ 3546 if (test_tsk_need_resched(curr)) 3547 return; 3548 3549 /* Idle tasks are by definition preempted by non-idle tasks. */ 3550 if (unlikely(curr->policy == SCHED_IDLE) && 3551 likely(p->policy != SCHED_IDLE)) 3552 goto preempt; 3553 3554 /* 3555 * Batch and idle tasks do not preempt non-idle tasks (their preemption 3556 * is driven by the tick): 3557 */ 3558 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 3559 return; 3560 3561 find_matching_se(&se, &pse); 3562 update_curr(cfs_rq_of(se)); 3563 BUG_ON(!pse); 3564 if (wakeup_preempt_entity(se, pse) == 1) { 3565 /* 3566 * Bias pick_next to pick the sched entity that is 3567 * triggering this preemption. 3568 */ 3569 if (!next_buddy_marked) 3570 set_next_buddy(pse); 3571 goto preempt; 3572 } 3573 3574 return; 3575 3576 preempt: 3577 resched_task(curr); 3578 /* 3579 * Only set the backward buddy when the current task is still 3580 * on the rq. This can happen when a wakeup gets interleaved 3581 * with schedule on the ->pre_schedule() or idle_balance() 3582 * point, either of which can * drop the rq lock. 3583 * 3584 * Also, during early boot the idle thread is in the fair class, 3585 * for obvious reasons its a bad idea to schedule back to it. 3586 */ 3587 if (unlikely(!se->on_rq || curr == rq->idle)) 3588 return; 3589 3590 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 3591 set_last_buddy(se); 3592 } 3593 3594 static struct task_struct *pick_next_task_fair(struct rq *rq) 3595 { 3596 struct task_struct *p; 3597 struct cfs_rq *cfs_rq = &rq->cfs; 3598 struct sched_entity *se; 3599 3600 if (!cfs_rq->nr_running) 3601 return NULL; 3602 3603 do { 3604 se = pick_next_entity(cfs_rq); 3605 set_next_entity(cfs_rq, se); 3606 cfs_rq = group_cfs_rq(se); 3607 } while (cfs_rq); 3608 3609 p = task_of(se); 3610 if (hrtick_enabled(rq)) 3611 hrtick_start_fair(rq, p); 3612 3613 return p; 3614 } 3615 3616 /* 3617 * Account for a descheduled task: 3618 */ 3619 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 3620 { 3621 struct sched_entity *se = &prev->se; 3622 struct cfs_rq *cfs_rq; 3623 3624 for_each_sched_entity(se) { 3625 cfs_rq = cfs_rq_of(se); 3626 put_prev_entity(cfs_rq, se); 3627 } 3628 } 3629 3630 /* 3631 * sched_yield() is very simple 3632 * 3633 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3634 */ 3635 static void yield_task_fair(struct rq *rq) 3636 { 3637 struct task_struct *curr = rq->curr; 3638 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3639 struct sched_entity *se = &curr->se; 3640 3641 /* 3642 * Are we the only task in the tree? 3643 */ 3644 if (unlikely(rq->nr_running == 1)) 3645 return; 3646 3647 clear_buddies(cfs_rq, se); 3648 3649 if (curr->policy != SCHED_BATCH) { 3650 update_rq_clock(rq); 3651 /* 3652 * Update run-time statistics of the 'current'. 3653 */ 3654 update_curr(cfs_rq); 3655 /* 3656 * Tell update_rq_clock() that we've just updated, 3657 * so we don't do microscopic update in schedule() 3658 * and double the fastpath cost. 3659 */ 3660 rq->skip_clock_update = 1; 3661 } 3662 3663 set_skip_buddy(se); 3664 } 3665 3666 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3667 { 3668 struct sched_entity *se = &p->se; 3669 3670 /* throttled hierarchies are not runnable */ 3671 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3672 return false; 3673 3674 /* Tell the scheduler that we'd really like pse to run next. */ 3675 set_next_buddy(se); 3676 3677 yield_task_fair(rq); 3678 3679 return true; 3680 } 3681 3682 #ifdef CONFIG_SMP 3683 /************************************************** 3684 * Fair scheduling class load-balancing methods. 3685 * 3686 * BASICS 3687 * 3688 * The purpose of load-balancing is to achieve the same basic fairness the 3689 * per-cpu scheduler provides, namely provide a proportional amount of compute 3690 * time to each task. This is expressed in the following equation: 3691 * 3692 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 3693 * 3694 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 3695 * W_i,0 is defined as: 3696 * 3697 * W_i,0 = \Sum_j w_i,j (2) 3698 * 3699 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 3700 * is derived from the nice value as per prio_to_weight[]. 3701 * 3702 * The weight average is an exponential decay average of the instantaneous 3703 * weight: 3704 * 3705 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 3706 * 3707 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 3708 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 3709 * can also include other factors [XXX]. 3710 * 3711 * To achieve this balance we define a measure of imbalance which follows 3712 * directly from (1): 3713 * 3714 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 3715 * 3716 * We them move tasks around to minimize the imbalance. In the continuous 3717 * function space it is obvious this converges, in the discrete case we get 3718 * a few fun cases generally called infeasible weight scenarios. 3719 * 3720 * [XXX expand on: 3721 * - infeasible weights; 3722 * - local vs global optima in the discrete case. ] 3723 * 3724 * 3725 * SCHED DOMAINS 3726 * 3727 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 3728 * for all i,j solution, we create a tree of cpus that follows the hardware 3729 * topology where each level pairs two lower groups (or better). This results 3730 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 3731 * tree to only the first of the previous level and we decrease the frequency 3732 * of load-balance at each level inv. proportional to the number of cpus in 3733 * the groups. 3734 * 3735 * This yields: 3736 * 3737 * log_2 n 1 n 3738 * \Sum { --- * --- * 2^i } = O(n) (5) 3739 * i = 0 2^i 2^i 3740 * `- size of each group 3741 * | | `- number of cpus doing load-balance 3742 * | `- freq 3743 * `- sum over all levels 3744 * 3745 * Coupled with a limit on how many tasks we can migrate every balance pass, 3746 * this makes (5) the runtime complexity of the balancer. 3747 * 3748 * An important property here is that each CPU is still (indirectly) connected 3749 * to every other cpu in at most O(log n) steps: 3750 * 3751 * The adjacency matrix of the resulting graph is given by: 3752 * 3753 * log_2 n 3754 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 3755 * k = 0 3756 * 3757 * And you'll find that: 3758 * 3759 * A^(log_2 n)_i,j != 0 for all i,j (7) 3760 * 3761 * Showing there's indeed a path between every cpu in at most O(log n) steps. 3762 * The task movement gives a factor of O(m), giving a convergence complexity 3763 * of: 3764 * 3765 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 3766 * 3767 * 3768 * WORK CONSERVING 3769 * 3770 * In order to avoid CPUs going idle while there's still work to do, new idle 3771 * balancing is more aggressive and has the newly idle cpu iterate up the domain 3772 * tree itself instead of relying on other CPUs to bring it work. 3773 * 3774 * This adds some complexity to both (5) and (8) but it reduces the total idle 3775 * time. 3776 * 3777 * [XXX more?] 3778 * 3779 * 3780 * CGROUPS 3781 * 3782 * Cgroups make a horror show out of (2), instead of a simple sum we get: 3783 * 3784 * s_k,i 3785 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 3786 * S_k 3787 * 3788 * Where 3789 * 3790 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 3791 * 3792 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 3793 * 3794 * The big problem is S_k, its a global sum needed to compute a local (W_i) 3795 * property. 3796 * 3797 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 3798 * rewrite all of this once again.] 3799 */ 3800 3801 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 3802 3803 #define LBF_ALL_PINNED 0x01 3804 #define LBF_NEED_BREAK 0x02 3805 #define LBF_SOME_PINNED 0x04 3806 3807 struct lb_env { 3808 struct sched_domain *sd; 3809 3810 struct rq *src_rq; 3811 int src_cpu; 3812 3813 int dst_cpu; 3814 struct rq *dst_rq; 3815 3816 struct cpumask *dst_grpmask; 3817 int new_dst_cpu; 3818 enum cpu_idle_type idle; 3819 long imbalance; 3820 /* The set of CPUs under consideration for load-balancing */ 3821 struct cpumask *cpus; 3822 3823 unsigned int flags; 3824 3825 unsigned int loop; 3826 unsigned int loop_break; 3827 unsigned int loop_max; 3828 }; 3829 3830 /* 3831 * move_task - move a task from one runqueue to another runqueue. 3832 * Both runqueues must be locked. 3833 */ 3834 static void move_task(struct task_struct *p, struct lb_env *env) 3835 { 3836 deactivate_task(env->src_rq, p, 0); 3837 set_task_cpu(p, env->dst_cpu); 3838 activate_task(env->dst_rq, p, 0); 3839 check_preempt_curr(env->dst_rq, p, 0); 3840 } 3841 3842 /* 3843 * Is this task likely cache-hot: 3844 */ 3845 static int 3846 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3847 { 3848 s64 delta; 3849 3850 if (p->sched_class != &fair_sched_class) 3851 return 0; 3852 3853 if (unlikely(p->policy == SCHED_IDLE)) 3854 return 0; 3855 3856 /* 3857 * Buddy candidates are cache hot: 3858 */ 3859 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3860 (&p->se == cfs_rq_of(&p->se)->next || 3861 &p->se == cfs_rq_of(&p->se)->last)) 3862 return 1; 3863 3864 if (sysctl_sched_migration_cost == -1) 3865 return 1; 3866 if (sysctl_sched_migration_cost == 0) 3867 return 0; 3868 3869 delta = now - p->se.exec_start; 3870 3871 return delta < (s64)sysctl_sched_migration_cost; 3872 } 3873 3874 /* 3875 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3876 */ 3877 static 3878 int can_migrate_task(struct task_struct *p, struct lb_env *env) 3879 { 3880 int tsk_cache_hot = 0; 3881 /* 3882 * We do not migrate tasks that are: 3883 * 1) running (obviously), or 3884 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3885 * 3) are cache-hot on their current CPU. 3886 */ 3887 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 3888 int new_dst_cpu; 3889 3890 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3891 3892 /* 3893 * Remember if this task can be migrated to any other cpu in 3894 * our sched_group. We may want to revisit it if we couldn't 3895 * meet load balance goals by pulling other tasks on src_cpu. 3896 * 3897 * Also avoid computing new_dst_cpu if we have already computed 3898 * one in current iteration. 3899 */ 3900 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED)) 3901 return 0; 3902 3903 new_dst_cpu = cpumask_first_and(env->dst_grpmask, 3904 tsk_cpus_allowed(p)); 3905 if (new_dst_cpu < nr_cpu_ids) { 3906 env->flags |= LBF_SOME_PINNED; 3907 env->new_dst_cpu = new_dst_cpu; 3908 } 3909 return 0; 3910 } 3911 3912 /* Record that we found atleast one task that could run on dst_cpu */ 3913 env->flags &= ~LBF_ALL_PINNED; 3914 3915 if (task_running(env->src_rq, p)) { 3916 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 3917 return 0; 3918 } 3919 3920 /* 3921 * Aggressive migration if: 3922 * 1) task is cache cold, or 3923 * 2) too many balance attempts have failed. 3924 */ 3925 3926 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd); 3927 if (!tsk_cache_hot || 3928 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 3929 #ifdef CONFIG_SCHEDSTATS 3930 if (tsk_cache_hot) { 3931 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 3932 schedstat_inc(p, se.statistics.nr_forced_migrations); 3933 } 3934 #endif 3935 return 1; 3936 } 3937 3938 if (tsk_cache_hot) { 3939 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 3940 return 0; 3941 } 3942 return 1; 3943 } 3944 3945 /* 3946 * move_one_task tries to move exactly one task from busiest to this_rq, as 3947 * part of active balancing operations within "domain". 3948 * Returns 1 if successful and 0 otherwise. 3949 * 3950 * Called with both runqueues locked. 3951 */ 3952 static int move_one_task(struct lb_env *env) 3953 { 3954 struct task_struct *p, *n; 3955 3956 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 3957 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu)) 3958 continue; 3959 3960 if (!can_migrate_task(p, env)) 3961 continue; 3962 3963 move_task(p, env); 3964 /* 3965 * Right now, this is only the second place move_task() 3966 * is called, so we can safely collect move_task() 3967 * stats here rather than inside move_task(). 3968 */ 3969 schedstat_inc(env->sd, lb_gained[env->idle]); 3970 return 1; 3971 } 3972 return 0; 3973 } 3974 3975 static unsigned long task_h_load(struct task_struct *p); 3976 3977 static const unsigned int sched_nr_migrate_break = 32; 3978 3979 /* 3980 * move_tasks tries to move up to imbalance weighted load from busiest to 3981 * this_rq, as part of a balancing operation within domain "sd". 3982 * Returns 1 if successful and 0 otherwise. 3983 * 3984 * Called with both runqueues locked. 3985 */ 3986 static int move_tasks(struct lb_env *env) 3987 { 3988 struct list_head *tasks = &env->src_rq->cfs_tasks; 3989 struct task_struct *p; 3990 unsigned long load; 3991 int pulled = 0; 3992 3993 if (env->imbalance <= 0) 3994 return 0; 3995 3996 while (!list_empty(tasks)) { 3997 p = list_first_entry(tasks, struct task_struct, se.group_node); 3998 3999 env->loop++; 4000 /* We've more or less seen every task there is, call it quits */ 4001 if (env->loop > env->loop_max) 4002 break; 4003 4004 /* take a breather every nr_migrate tasks */ 4005 if (env->loop > env->loop_break) { 4006 env->loop_break += sched_nr_migrate_break; 4007 env->flags |= LBF_NEED_BREAK; 4008 break; 4009 } 4010 4011 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 4012 goto next; 4013 4014 load = task_h_load(p); 4015 4016 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 4017 goto next; 4018 4019 if ((load / 2) > env->imbalance) 4020 goto next; 4021 4022 if (!can_migrate_task(p, env)) 4023 goto next; 4024 4025 move_task(p, env); 4026 pulled++; 4027 env->imbalance -= load; 4028 4029 #ifdef CONFIG_PREEMPT 4030 /* 4031 * NEWIDLE balancing is a source of latency, so preemptible 4032 * kernels will stop after the first task is pulled to minimize 4033 * the critical section. 4034 */ 4035 if (env->idle == CPU_NEWLY_IDLE) 4036 break; 4037 #endif 4038 4039 /* 4040 * We only want to steal up to the prescribed amount of 4041 * weighted load. 4042 */ 4043 if (env->imbalance <= 0) 4044 break; 4045 4046 continue; 4047 next: 4048 list_move_tail(&p->se.group_node, tasks); 4049 } 4050 4051 /* 4052 * Right now, this is one of only two places move_task() is called, 4053 * so we can safely collect move_task() stats here rather than 4054 * inside move_task(). 4055 */ 4056 schedstat_add(env->sd, lb_gained[env->idle], pulled); 4057 4058 return pulled; 4059 } 4060 4061 #ifdef CONFIG_FAIR_GROUP_SCHED 4062 /* 4063 * update tg->load_weight by folding this cpu's load_avg 4064 */ 4065 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 4066 { 4067 struct sched_entity *se = tg->se[cpu]; 4068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 4069 4070 /* throttled entities do not contribute to load */ 4071 if (throttled_hierarchy(cfs_rq)) 4072 return; 4073 4074 update_cfs_rq_blocked_load(cfs_rq, 1); 4075 4076 if (se) { 4077 update_entity_load_avg(se, 1); 4078 /* 4079 * We pivot on our runnable average having decayed to zero for 4080 * list removal. This generally implies that all our children 4081 * have also been removed (modulo rounding error or bandwidth 4082 * control); however, such cases are rare and we can fix these 4083 * at enqueue. 4084 * 4085 * TODO: fix up out-of-order children on enqueue. 4086 */ 4087 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 4088 list_del_leaf_cfs_rq(cfs_rq); 4089 } else { 4090 struct rq *rq = rq_of(cfs_rq); 4091 update_rq_runnable_avg(rq, rq->nr_running); 4092 } 4093 } 4094 4095 static void update_blocked_averages(int cpu) 4096 { 4097 struct rq *rq = cpu_rq(cpu); 4098 struct cfs_rq *cfs_rq; 4099 unsigned long flags; 4100 4101 raw_spin_lock_irqsave(&rq->lock, flags); 4102 update_rq_clock(rq); 4103 /* 4104 * Iterates the task_group tree in a bottom up fashion, see 4105 * list_add_leaf_cfs_rq() for details. 4106 */ 4107 for_each_leaf_cfs_rq(rq, cfs_rq) { 4108 /* 4109 * Note: We may want to consider periodically releasing 4110 * rq->lock about these updates so that creating many task 4111 * groups does not result in continually extending hold time. 4112 */ 4113 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 4114 } 4115 4116 raw_spin_unlock_irqrestore(&rq->lock, flags); 4117 } 4118 4119 /* 4120 * Compute the cpu's hierarchical load factor for each task group. 4121 * This needs to be done in a top-down fashion because the load of a child 4122 * group is a fraction of its parents load. 4123 */ 4124 static int tg_load_down(struct task_group *tg, void *data) 4125 { 4126 unsigned long load; 4127 long cpu = (long)data; 4128 4129 if (!tg->parent) { 4130 load = cpu_rq(cpu)->load.weight; 4131 } else { 4132 load = tg->parent->cfs_rq[cpu]->h_load; 4133 load *= tg->se[cpu]->load.weight; 4134 load /= tg->parent->cfs_rq[cpu]->load.weight + 1; 4135 } 4136 4137 tg->cfs_rq[cpu]->h_load = load; 4138 4139 return 0; 4140 } 4141 4142 static void update_h_load(long cpu) 4143 { 4144 struct rq *rq = cpu_rq(cpu); 4145 unsigned long now = jiffies; 4146 4147 if (rq->h_load_throttle == now) 4148 return; 4149 4150 rq->h_load_throttle = now; 4151 4152 rcu_read_lock(); 4153 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 4154 rcu_read_unlock(); 4155 } 4156 4157 static unsigned long task_h_load(struct task_struct *p) 4158 { 4159 struct cfs_rq *cfs_rq = task_cfs_rq(p); 4160 unsigned long load; 4161 4162 load = p->se.load.weight; 4163 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1); 4164 4165 return load; 4166 } 4167 #else 4168 static inline void update_blocked_averages(int cpu) 4169 { 4170 } 4171 4172 static inline void update_h_load(long cpu) 4173 { 4174 } 4175 4176 static unsigned long task_h_load(struct task_struct *p) 4177 { 4178 return p->se.load.weight; 4179 } 4180 #endif 4181 4182 /********** Helpers for find_busiest_group ************************/ 4183 /* 4184 * sd_lb_stats - Structure to store the statistics of a sched_domain 4185 * during load balancing. 4186 */ 4187 struct sd_lb_stats { 4188 struct sched_group *busiest; /* Busiest group in this sd */ 4189 struct sched_group *this; /* Local group in this sd */ 4190 unsigned long total_load; /* Total load of all groups in sd */ 4191 unsigned long total_pwr; /* Total power of all groups in sd */ 4192 unsigned long avg_load; /* Average load across all groups in sd */ 4193 4194 /** Statistics of this group */ 4195 unsigned long this_load; 4196 unsigned long this_load_per_task; 4197 unsigned long this_nr_running; 4198 unsigned long this_has_capacity; 4199 unsigned int this_idle_cpus; 4200 4201 /* Statistics of the busiest group */ 4202 unsigned int busiest_idle_cpus; 4203 unsigned long max_load; 4204 unsigned long busiest_load_per_task; 4205 unsigned long busiest_nr_running; 4206 unsigned long busiest_group_capacity; 4207 unsigned long busiest_has_capacity; 4208 unsigned int busiest_group_weight; 4209 4210 int group_imb; /* Is there imbalance in this sd */ 4211 }; 4212 4213 /* 4214 * sg_lb_stats - stats of a sched_group required for load_balancing 4215 */ 4216 struct sg_lb_stats { 4217 unsigned long avg_load; /*Avg load across the CPUs of the group */ 4218 unsigned long group_load; /* Total load over the CPUs of the group */ 4219 unsigned long sum_nr_running; /* Nr tasks running in the group */ 4220 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 4221 unsigned long group_capacity; 4222 unsigned long idle_cpus; 4223 unsigned long group_weight; 4224 int group_imb; /* Is there an imbalance in the group ? */ 4225 int group_has_capacity; /* Is there extra capacity in the group? */ 4226 }; 4227 4228 /** 4229 * get_sd_load_idx - Obtain the load index for a given sched domain. 4230 * @sd: The sched_domain whose load_idx is to be obtained. 4231 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 4232 */ 4233 static inline int get_sd_load_idx(struct sched_domain *sd, 4234 enum cpu_idle_type idle) 4235 { 4236 int load_idx; 4237 4238 switch (idle) { 4239 case CPU_NOT_IDLE: 4240 load_idx = sd->busy_idx; 4241 break; 4242 4243 case CPU_NEWLY_IDLE: 4244 load_idx = sd->newidle_idx; 4245 break; 4246 default: 4247 load_idx = sd->idle_idx; 4248 break; 4249 } 4250 4251 return load_idx; 4252 } 4253 4254 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 4255 { 4256 return SCHED_POWER_SCALE; 4257 } 4258 4259 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 4260 { 4261 return default_scale_freq_power(sd, cpu); 4262 } 4263 4264 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 4265 { 4266 unsigned long weight = sd->span_weight; 4267 unsigned long smt_gain = sd->smt_gain; 4268 4269 smt_gain /= weight; 4270 4271 return smt_gain; 4272 } 4273 4274 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 4275 { 4276 return default_scale_smt_power(sd, cpu); 4277 } 4278 4279 unsigned long scale_rt_power(int cpu) 4280 { 4281 struct rq *rq = cpu_rq(cpu); 4282 u64 total, available, age_stamp, avg; 4283 4284 /* 4285 * Since we're reading these variables without serialization make sure 4286 * we read them once before doing sanity checks on them. 4287 */ 4288 age_stamp = ACCESS_ONCE(rq->age_stamp); 4289 avg = ACCESS_ONCE(rq->rt_avg); 4290 4291 total = sched_avg_period() + (rq->clock - age_stamp); 4292 4293 if (unlikely(total < avg)) { 4294 /* Ensures that power won't end up being negative */ 4295 available = 0; 4296 } else { 4297 available = total - avg; 4298 } 4299 4300 if (unlikely((s64)total < SCHED_POWER_SCALE)) 4301 total = SCHED_POWER_SCALE; 4302 4303 total >>= SCHED_POWER_SHIFT; 4304 4305 return div_u64(available, total); 4306 } 4307 4308 static void update_cpu_power(struct sched_domain *sd, int cpu) 4309 { 4310 unsigned long weight = sd->span_weight; 4311 unsigned long power = SCHED_POWER_SCALE; 4312 struct sched_group *sdg = sd->groups; 4313 4314 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 4315 if (sched_feat(ARCH_POWER)) 4316 power *= arch_scale_smt_power(sd, cpu); 4317 else 4318 power *= default_scale_smt_power(sd, cpu); 4319 4320 power >>= SCHED_POWER_SHIFT; 4321 } 4322 4323 sdg->sgp->power_orig = power; 4324 4325 if (sched_feat(ARCH_POWER)) 4326 power *= arch_scale_freq_power(sd, cpu); 4327 else 4328 power *= default_scale_freq_power(sd, cpu); 4329 4330 power >>= SCHED_POWER_SHIFT; 4331 4332 power *= scale_rt_power(cpu); 4333 power >>= SCHED_POWER_SHIFT; 4334 4335 if (!power) 4336 power = 1; 4337 4338 cpu_rq(cpu)->cpu_power = power; 4339 sdg->sgp->power = power; 4340 } 4341 4342 void update_group_power(struct sched_domain *sd, int cpu) 4343 { 4344 struct sched_domain *child = sd->child; 4345 struct sched_group *group, *sdg = sd->groups; 4346 unsigned long power; 4347 unsigned long interval; 4348 4349 interval = msecs_to_jiffies(sd->balance_interval); 4350 interval = clamp(interval, 1UL, max_load_balance_interval); 4351 sdg->sgp->next_update = jiffies + interval; 4352 4353 if (!child) { 4354 update_cpu_power(sd, cpu); 4355 return; 4356 } 4357 4358 power = 0; 4359 4360 if (child->flags & SD_OVERLAP) { 4361 /* 4362 * SD_OVERLAP domains cannot assume that child groups 4363 * span the current group. 4364 */ 4365 4366 for_each_cpu(cpu, sched_group_cpus(sdg)) 4367 power += power_of(cpu); 4368 } else { 4369 /* 4370 * !SD_OVERLAP domains can assume that child groups 4371 * span the current group. 4372 */ 4373 4374 group = child->groups; 4375 do { 4376 power += group->sgp->power; 4377 group = group->next; 4378 } while (group != child->groups); 4379 } 4380 4381 sdg->sgp->power_orig = sdg->sgp->power = power; 4382 } 4383 4384 /* 4385 * Try and fix up capacity for tiny siblings, this is needed when 4386 * things like SD_ASYM_PACKING need f_b_g to select another sibling 4387 * which on its own isn't powerful enough. 4388 * 4389 * See update_sd_pick_busiest() and check_asym_packing(). 4390 */ 4391 static inline int 4392 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 4393 { 4394 /* 4395 * Only siblings can have significantly less than SCHED_POWER_SCALE 4396 */ 4397 if (!(sd->flags & SD_SHARE_CPUPOWER)) 4398 return 0; 4399 4400 /* 4401 * If ~90% of the cpu_power is still there, we're good. 4402 */ 4403 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 4404 return 1; 4405 4406 return 0; 4407 } 4408 4409 /** 4410 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 4411 * @env: The load balancing environment. 4412 * @group: sched_group whose statistics are to be updated. 4413 * @load_idx: Load index of sched_domain of this_cpu for load calc. 4414 * @local_group: Does group contain this_cpu. 4415 * @balance: Should we balance. 4416 * @sgs: variable to hold the statistics for this group. 4417 */ 4418 static inline void update_sg_lb_stats(struct lb_env *env, 4419 struct sched_group *group, int load_idx, 4420 int local_group, int *balance, struct sg_lb_stats *sgs) 4421 { 4422 unsigned long nr_running, max_nr_running, min_nr_running; 4423 unsigned long load, max_cpu_load, min_cpu_load; 4424 unsigned int balance_cpu = -1, first_idle_cpu = 0; 4425 unsigned long avg_load_per_task = 0; 4426 int i; 4427 4428 if (local_group) 4429 balance_cpu = group_balance_cpu(group); 4430 4431 /* Tally up the load of all CPUs in the group */ 4432 max_cpu_load = 0; 4433 min_cpu_load = ~0UL; 4434 max_nr_running = 0; 4435 min_nr_running = ~0UL; 4436 4437 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 4438 struct rq *rq = cpu_rq(i); 4439 4440 nr_running = rq->nr_running; 4441 4442 /* Bias balancing toward cpus of our domain */ 4443 if (local_group) { 4444 if (idle_cpu(i) && !first_idle_cpu && 4445 cpumask_test_cpu(i, sched_group_mask(group))) { 4446 first_idle_cpu = 1; 4447 balance_cpu = i; 4448 } 4449 4450 load = target_load(i, load_idx); 4451 } else { 4452 load = source_load(i, load_idx); 4453 if (load > max_cpu_load) 4454 max_cpu_load = load; 4455 if (min_cpu_load > load) 4456 min_cpu_load = load; 4457 4458 if (nr_running > max_nr_running) 4459 max_nr_running = nr_running; 4460 if (min_nr_running > nr_running) 4461 min_nr_running = nr_running; 4462 } 4463 4464 sgs->group_load += load; 4465 sgs->sum_nr_running += nr_running; 4466 sgs->sum_weighted_load += weighted_cpuload(i); 4467 if (idle_cpu(i)) 4468 sgs->idle_cpus++; 4469 } 4470 4471 /* 4472 * First idle cpu or the first cpu(busiest) in this sched group 4473 * is eligible for doing load balancing at this and above 4474 * domains. In the newly idle case, we will allow all the cpu's 4475 * to do the newly idle load balance. 4476 */ 4477 if (local_group) { 4478 if (env->idle != CPU_NEWLY_IDLE) { 4479 if (balance_cpu != env->dst_cpu) { 4480 *balance = 0; 4481 return; 4482 } 4483 update_group_power(env->sd, env->dst_cpu); 4484 } else if (time_after_eq(jiffies, group->sgp->next_update)) 4485 update_group_power(env->sd, env->dst_cpu); 4486 } 4487 4488 /* Adjust by relative CPU power of the group */ 4489 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; 4490 4491 /* 4492 * Consider the group unbalanced when the imbalance is larger 4493 * than the average weight of a task. 4494 * 4495 * APZ: with cgroup the avg task weight can vary wildly and 4496 * might not be a suitable number - should we keep a 4497 * normalized nr_running number somewhere that negates 4498 * the hierarchy? 4499 */ 4500 if (sgs->sum_nr_running) 4501 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 4502 4503 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && 4504 (max_nr_running - min_nr_running) > 1) 4505 sgs->group_imb = 1; 4506 4507 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, 4508 SCHED_POWER_SCALE); 4509 if (!sgs->group_capacity) 4510 sgs->group_capacity = fix_small_capacity(env->sd, group); 4511 sgs->group_weight = group->group_weight; 4512 4513 if (sgs->group_capacity > sgs->sum_nr_running) 4514 sgs->group_has_capacity = 1; 4515 } 4516 4517 /** 4518 * update_sd_pick_busiest - return 1 on busiest group 4519 * @env: The load balancing environment. 4520 * @sds: sched_domain statistics 4521 * @sg: sched_group candidate to be checked for being the busiest 4522 * @sgs: sched_group statistics 4523 * 4524 * Determine if @sg is a busier group than the previously selected 4525 * busiest group. 4526 */ 4527 static bool update_sd_pick_busiest(struct lb_env *env, 4528 struct sd_lb_stats *sds, 4529 struct sched_group *sg, 4530 struct sg_lb_stats *sgs) 4531 { 4532 if (sgs->avg_load <= sds->max_load) 4533 return false; 4534 4535 if (sgs->sum_nr_running > sgs->group_capacity) 4536 return true; 4537 4538 if (sgs->group_imb) 4539 return true; 4540 4541 /* 4542 * ASYM_PACKING needs to move all the work to the lowest 4543 * numbered CPUs in the group, therefore mark all groups 4544 * higher than ourself as busy. 4545 */ 4546 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 4547 env->dst_cpu < group_first_cpu(sg)) { 4548 if (!sds->busiest) 4549 return true; 4550 4551 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 4552 return true; 4553 } 4554 4555 return false; 4556 } 4557 4558 /** 4559 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 4560 * @env: The load balancing environment. 4561 * @balance: Should we balance. 4562 * @sds: variable to hold the statistics for this sched_domain. 4563 */ 4564 static inline void update_sd_lb_stats(struct lb_env *env, 4565 int *balance, struct sd_lb_stats *sds) 4566 { 4567 struct sched_domain *child = env->sd->child; 4568 struct sched_group *sg = env->sd->groups; 4569 struct sg_lb_stats sgs; 4570 int load_idx, prefer_sibling = 0; 4571 4572 if (child && child->flags & SD_PREFER_SIBLING) 4573 prefer_sibling = 1; 4574 4575 load_idx = get_sd_load_idx(env->sd, env->idle); 4576 4577 do { 4578 int local_group; 4579 4580 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 4581 memset(&sgs, 0, sizeof(sgs)); 4582 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs); 4583 4584 if (local_group && !(*balance)) 4585 return; 4586 4587 sds->total_load += sgs.group_load; 4588 sds->total_pwr += sg->sgp->power; 4589 4590 /* 4591 * In case the child domain prefers tasks go to siblings 4592 * first, lower the sg capacity to one so that we'll try 4593 * and move all the excess tasks away. We lower the capacity 4594 * of a group only if the local group has the capacity to fit 4595 * these excess tasks, i.e. nr_running < group_capacity. The 4596 * extra check prevents the case where you always pull from the 4597 * heaviest group when it is already under-utilized (possible 4598 * with a large weight task outweighs the tasks on the system). 4599 */ 4600 if (prefer_sibling && !local_group && sds->this_has_capacity) 4601 sgs.group_capacity = min(sgs.group_capacity, 1UL); 4602 4603 if (local_group) { 4604 sds->this_load = sgs.avg_load; 4605 sds->this = sg; 4606 sds->this_nr_running = sgs.sum_nr_running; 4607 sds->this_load_per_task = sgs.sum_weighted_load; 4608 sds->this_has_capacity = sgs.group_has_capacity; 4609 sds->this_idle_cpus = sgs.idle_cpus; 4610 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) { 4611 sds->max_load = sgs.avg_load; 4612 sds->busiest = sg; 4613 sds->busiest_nr_running = sgs.sum_nr_running; 4614 sds->busiest_idle_cpus = sgs.idle_cpus; 4615 sds->busiest_group_capacity = sgs.group_capacity; 4616 sds->busiest_load_per_task = sgs.sum_weighted_load; 4617 sds->busiest_has_capacity = sgs.group_has_capacity; 4618 sds->busiest_group_weight = sgs.group_weight; 4619 sds->group_imb = sgs.group_imb; 4620 } 4621 4622 sg = sg->next; 4623 } while (sg != env->sd->groups); 4624 } 4625 4626 /** 4627 * check_asym_packing - Check to see if the group is packed into the 4628 * sched doman. 4629 * 4630 * This is primarily intended to used at the sibling level. Some 4631 * cores like POWER7 prefer to use lower numbered SMT threads. In the 4632 * case of POWER7, it can move to lower SMT modes only when higher 4633 * threads are idle. When in lower SMT modes, the threads will 4634 * perform better since they share less core resources. Hence when we 4635 * have idle threads, we want them to be the higher ones. 4636 * 4637 * This packing function is run on idle threads. It checks to see if 4638 * the busiest CPU in this domain (core in the P7 case) has a higher 4639 * CPU number than the packing function is being run on. Here we are 4640 * assuming lower CPU number will be equivalent to lower a SMT thread 4641 * number. 4642 * 4643 * Returns 1 when packing is required and a task should be moved to 4644 * this CPU. The amount of the imbalance is returned in *imbalance. 4645 * 4646 * @env: The load balancing environment. 4647 * @sds: Statistics of the sched_domain which is to be packed 4648 */ 4649 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 4650 { 4651 int busiest_cpu; 4652 4653 if (!(env->sd->flags & SD_ASYM_PACKING)) 4654 return 0; 4655 4656 if (!sds->busiest) 4657 return 0; 4658 4659 busiest_cpu = group_first_cpu(sds->busiest); 4660 if (env->dst_cpu > busiest_cpu) 4661 return 0; 4662 4663 env->imbalance = DIV_ROUND_CLOSEST( 4664 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE); 4665 4666 return 1; 4667 } 4668 4669 /** 4670 * fix_small_imbalance - Calculate the minor imbalance that exists 4671 * amongst the groups of a sched_domain, during 4672 * load balancing. 4673 * @env: The load balancing environment. 4674 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 4675 */ 4676 static inline 4677 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4678 { 4679 unsigned long tmp, pwr_now = 0, pwr_move = 0; 4680 unsigned int imbn = 2; 4681 unsigned long scaled_busy_load_per_task; 4682 4683 if (sds->this_nr_running) { 4684 sds->this_load_per_task /= sds->this_nr_running; 4685 if (sds->busiest_load_per_task > 4686 sds->this_load_per_task) 4687 imbn = 1; 4688 } else { 4689 sds->this_load_per_task = 4690 cpu_avg_load_per_task(env->dst_cpu); 4691 } 4692 4693 scaled_busy_load_per_task = sds->busiest_load_per_task 4694 * SCHED_POWER_SCALE; 4695 scaled_busy_load_per_task /= sds->busiest->sgp->power; 4696 4697 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 4698 (scaled_busy_load_per_task * imbn)) { 4699 env->imbalance = sds->busiest_load_per_task; 4700 return; 4701 } 4702 4703 /* 4704 * OK, we don't have enough imbalance to justify moving tasks, 4705 * however we may be able to increase total CPU power used by 4706 * moving them. 4707 */ 4708 4709 pwr_now += sds->busiest->sgp->power * 4710 min(sds->busiest_load_per_task, sds->max_load); 4711 pwr_now += sds->this->sgp->power * 4712 min(sds->this_load_per_task, sds->this_load); 4713 pwr_now /= SCHED_POWER_SCALE; 4714 4715 /* Amount of load we'd subtract */ 4716 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4717 sds->busiest->sgp->power; 4718 if (sds->max_load > tmp) 4719 pwr_move += sds->busiest->sgp->power * 4720 min(sds->busiest_load_per_task, sds->max_load - tmp); 4721 4722 /* Amount of load we'd add */ 4723 if (sds->max_load * sds->busiest->sgp->power < 4724 sds->busiest_load_per_task * SCHED_POWER_SCALE) 4725 tmp = (sds->max_load * sds->busiest->sgp->power) / 4726 sds->this->sgp->power; 4727 else 4728 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4729 sds->this->sgp->power; 4730 pwr_move += sds->this->sgp->power * 4731 min(sds->this_load_per_task, sds->this_load + tmp); 4732 pwr_move /= SCHED_POWER_SCALE; 4733 4734 /* Move if we gain throughput */ 4735 if (pwr_move > pwr_now) 4736 env->imbalance = sds->busiest_load_per_task; 4737 } 4738 4739 /** 4740 * calculate_imbalance - Calculate the amount of imbalance present within the 4741 * groups of a given sched_domain during load balance. 4742 * @env: load balance environment 4743 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 4744 */ 4745 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4746 { 4747 unsigned long max_pull, load_above_capacity = ~0UL; 4748 4749 sds->busiest_load_per_task /= sds->busiest_nr_running; 4750 if (sds->group_imb) { 4751 sds->busiest_load_per_task = 4752 min(sds->busiest_load_per_task, sds->avg_load); 4753 } 4754 4755 /* 4756 * In the presence of smp nice balancing, certain scenarios can have 4757 * max load less than avg load(as we skip the groups at or below 4758 * its cpu_power, while calculating max_load..) 4759 */ 4760 if (sds->max_load < sds->avg_load) { 4761 env->imbalance = 0; 4762 return fix_small_imbalance(env, sds); 4763 } 4764 4765 if (!sds->group_imb) { 4766 /* 4767 * Don't want to pull so many tasks that a group would go idle. 4768 */ 4769 load_above_capacity = (sds->busiest_nr_running - 4770 sds->busiest_group_capacity); 4771 4772 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4773 4774 load_above_capacity /= sds->busiest->sgp->power; 4775 } 4776 4777 /* 4778 * We're trying to get all the cpus to the average_load, so we don't 4779 * want to push ourselves above the average load, nor do we wish to 4780 * reduce the max loaded cpu below the average load. At the same time, 4781 * we also don't want to reduce the group load below the group capacity 4782 * (so that we can implement power-savings policies etc). Thus we look 4783 * for the minimum possible imbalance. 4784 * Be careful of negative numbers as they'll appear as very large values 4785 * with unsigned longs. 4786 */ 4787 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 4788 4789 /* How much load to actually move to equalise the imbalance */ 4790 env->imbalance = min(max_pull * sds->busiest->sgp->power, 4791 (sds->avg_load - sds->this_load) * sds->this->sgp->power) 4792 / SCHED_POWER_SCALE; 4793 4794 /* 4795 * if *imbalance is less than the average load per runnable task 4796 * there is no guarantee that any tasks will be moved so we'll have 4797 * a think about bumping its value to force at least one task to be 4798 * moved 4799 */ 4800 if (env->imbalance < sds->busiest_load_per_task) 4801 return fix_small_imbalance(env, sds); 4802 4803 } 4804 4805 /******* find_busiest_group() helpers end here *********************/ 4806 4807 /** 4808 * find_busiest_group - Returns the busiest group within the sched_domain 4809 * if there is an imbalance. If there isn't an imbalance, and 4810 * the user has opted for power-savings, it returns a group whose 4811 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4812 * such a group exists. 4813 * 4814 * Also calculates the amount of weighted load which should be moved 4815 * to restore balance. 4816 * 4817 * @env: The load balancing environment. 4818 * @balance: Pointer to a variable indicating if this_cpu 4819 * is the appropriate cpu to perform load balancing at this_level. 4820 * 4821 * Returns: - the busiest group if imbalance exists. 4822 * - If no imbalance and user has opted for power-savings balance, 4823 * return the least loaded group whose CPUs can be 4824 * put to idle by rebalancing its tasks onto our group. 4825 */ 4826 static struct sched_group * 4827 find_busiest_group(struct lb_env *env, int *balance) 4828 { 4829 struct sd_lb_stats sds; 4830 4831 memset(&sds, 0, sizeof(sds)); 4832 4833 /* 4834 * Compute the various statistics relavent for load balancing at 4835 * this level. 4836 */ 4837 update_sd_lb_stats(env, balance, &sds); 4838 4839 /* 4840 * this_cpu is not the appropriate cpu to perform load balancing at 4841 * this level. 4842 */ 4843 if (!(*balance)) 4844 goto ret; 4845 4846 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 4847 check_asym_packing(env, &sds)) 4848 return sds.busiest; 4849 4850 /* There is no busy sibling group to pull tasks from */ 4851 if (!sds.busiest || sds.busiest_nr_running == 0) 4852 goto out_balanced; 4853 4854 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4855 4856 /* 4857 * If the busiest group is imbalanced the below checks don't 4858 * work because they assumes all things are equal, which typically 4859 * isn't true due to cpus_allowed constraints and the like. 4860 */ 4861 if (sds.group_imb) 4862 goto force_balance; 4863 4864 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4865 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity && 4866 !sds.busiest_has_capacity) 4867 goto force_balance; 4868 4869 /* 4870 * If the local group is more busy than the selected busiest group 4871 * don't try and pull any tasks. 4872 */ 4873 if (sds.this_load >= sds.max_load) 4874 goto out_balanced; 4875 4876 /* 4877 * Don't pull any tasks if this group is already above the domain 4878 * average load. 4879 */ 4880 if (sds.this_load >= sds.avg_load) 4881 goto out_balanced; 4882 4883 if (env->idle == CPU_IDLE) { 4884 /* 4885 * This cpu is idle. If the busiest group load doesn't 4886 * have more tasks than the number of available cpu's and 4887 * there is no imbalance between this and busiest group 4888 * wrt to idle cpu's, it is balanced. 4889 */ 4890 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && 4891 sds.busiest_nr_running <= sds.busiest_group_weight) 4892 goto out_balanced; 4893 } else { 4894 /* 4895 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 4896 * imbalance_pct to be conservative. 4897 */ 4898 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load) 4899 goto out_balanced; 4900 } 4901 4902 force_balance: 4903 /* Looks like there is an imbalance. Compute it */ 4904 calculate_imbalance(env, &sds); 4905 return sds.busiest; 4906 4907 out_balanced: 4908 ret: 4909 env->imbalance = 0; 4910 return NULL; 4911 } 4912 4913 /* 4914 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4915 */ 4916 static struct rq *find_busiest_queue(struct lb_env *env, 4917 struct sched_group *group) 4918 { 4919 struct rq *busiest = NULL, *rq; 4920 unsigned long max_load = 0; 4921 int i; 4922 4923 for_each_cpu(i, sched_group_cpus(group)) { 4924 unsigned long power = power_of(i); 4925 unsigned long capacity = DIV_ROUND_CLOSEST(power, 4926 SCHED_POWER_SCALE); 4927 unsigned long wl; 4928 4929 if (!capacity) 4930 capacity = fix_small_capacity(env->sd, group); 4931 4932 if (!cpumask_test_cpu(i, env->cpus)) 4933 continue; 4934 4935 rq = cpu_rq(i); 4936 wl = weighted_cpuload(i); 4937 4938 /* 4939 * When comparing with imbalance, use weighted_cpuload() 4940 * which is not scaled with the cpu power. 4941 */ 4942 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 4943 continue; 4944 4945 /* 4946 * For the load comparisons with the other cpu's, consider 4947 * the weighted_cpuload() scaled with the cpu power, so that 4948 * the load can be moved away from the cpu that is potentially 4949 * running at a lower capacity. 4950 */ 4951 wl = (wl * SCHED_POWER_SCALE) / power; 4952 4953 if (wl > max_load) { 4954 max_load = wl; 4955 busiest = rq; 4956 } 4957 } 4958 4959 return busiest; 4960 } 4961 4962 /* 4963 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 4964 * so long as it is large enough. 4965 */ 4966 #define MAX_PINNED_INTERVAL 512 4967 4968 /* Working cpumask for load_balance and load_balance_newidle. */ 4969 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 4970 4971 static int need_active_balance(struct lb_env *env) 4972 { 4973 struct sched_domain *sd = env->sd; 4974 4975 if (env->idle == CPU_NEWLY_IDLE) { 4976 4977 /* 4978 * ASYM_PACKING needs to force migrate tasks from busy but 4979 * higher numbered CPUs in order to pack all tasks in the 4980 * lowest numbered CPUs. 4981 */ 4982 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 4983 return 1; 4984 } 4985 4986 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 4987 } 4988 4989 static int active_load_balance_cpu_stop(void *data); 4990 4991 /* 4992 * Check this_cpu to ensure it is balanced within domain. Attempt to move 4993 * tasks if there is an imbalance. 4994 */ 4995 static int load_balance(int this_cpu, struct rq *this_rq, 4996 struct sched_domain *sd, enum cpu_idle_type idle, 4997 int *balance) 4998 { 4999 int ld_moved, cur_ld_moved, active_balance = 0; 5000 int lb_iterations, max_lb_iterations; 5001 struct sched_group *group; 5002 struct rq *busiest; 5003 unsigned long flags; 5004 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 5005 5006 struct lb_env env = { 5007 .sd = sd, 5008 .dst_cpu = this_cpu, 5009 .dst_rq = this_rq, 5010 .dst_grpmask = sched_group_cpus(sd->groups), 5011 .idle = idle, 5012 .loop_break = sched_nr_migrate_break, 5013 .cpus = cpus, 5014 }; 5015 5016 cpumask_copy(cpus, cpu_active_mask); 5017 max_lb_iterations = cpumask_weight(env.dst_grpmask); 5018 5019 schedstat_inc(sd, lb_count[idle]); 5020 5021 redo: 5022 group = find_busiest_group(&env, balance); 5023 5024 if (*balance == 0) 5025 goto out_balanced; 5026 5027 if (!group) { 5028 schedstat_inc(sd, lb_nobusyg[idle]); 5029 goto out_balanced; 5030 } 5031 5032 busiest = find_busiest_queue(&env, group); 5033 if (!busiest) { 5034 schedstat_inc(sd, lb_nobusyq[idle]); 5035 goto out_balanced; 5036 } 5037 5038 BUG_ON(busiest == env.dst_rq); 5039 5040 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 5041 5042 ld_moved = 0; 5043 lb_iterations = 1; 5044 if (busiest->nr_running > 1) { 5045 /* 5046 * Attempt to move tasks. If find_busiest_group has found 5047 * an imbalance but busiest->nr_running <= 1, the group is 5048 * still unbalanced. ld_moved simply stays zero, so it is 5049 * correctly treated as an imbalance. 5050 */ 5051 env.flags |= LBF_ALL_PINNED; 5052 env.src_cpu = busiest->cpu; 5053 env.src_rq = busiest; 5054 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 5055 5056 update_h_load(env.src_cpu); 5057 more_balance: 5058 local_irq_save(flags); 5059 double_rq_lock(env.dst_rq, busiest); 5060 5061 /* 5062 * cur_ld_moved - load moved in current iteration 5063 * ld_moved - cumulative load moved across iterations 5064 */ 5065 cur_ld_moved = move_tasks(&env); 5066 ld_moved += cur_ld_moved; 5067 double_rq_unlock(env.dst_rq, busiest); 5068 local_irq_restore(flags); 5069 5070 if (env.flags & LBF_NEED_BREAK) { 5071 env.flags &= ~LBF_NEED_BREAK; 5072 goto more_balance; 5073 } 5074 5075 /* 5076 * some other cpu did the load balance for us. 5077 */ 5078 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 5079 resched_cpu(env.dst_cpu); 5080 5081 /* 5082 * Revisit (affine) tasks on src_cpu that couldn't be moved to 5083 * us and move them to an alternate dst_cpu in our sched_group 5084 * where they can run. The upper limit on how many times we 5085 * iterate on same src_cpu is dependent on number of cpus in our 5086 * sched_group. 5087 * 5088 * This changes load balance semantics a bit on who can move 5089 * load to a given_cpu. In addition to the given_cpu itself 5090 * (or a ilb_cpu acting on its behalf where given_cpu is 5091 * nohz-idle), we now have balance_cpu in a position to move 5092 * load to given_cpu. In rare situations, this may cause 5093 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 5094 * _independently_ and at _same_ time to move some load to 5095 * given_cpu) causing exceess load to be moved to given_cpu. 5096 * This however should not happen so much in practice and 5097 * moreover subsequent load balance cycles should correct the 5098 * excess load moved. 5099 */ 5100 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 && 5101 lb_iterations++ < max_lb_iterations) { 5102 5103 env.dst_rq = cpu_rq(env.new_dst_cpu); 5104 env.dst_cpu = env.new_dst_cpu; 5105 env.flags &= ~LBF_SOME_PINNED; 5106 env.loop = 0; 5107 env.loop_break = sched_nr_migrate_break; 5108 /* 5109 * Go back to "more_balance" rather than "redo" since we 5110 * need to continue with same src_cpu. 5111 */ 5112 goto more_balance; 5113 } 5114 5115 /* All tasks on this runqueue were pinned by CPU affinity */ 5116 if (unlikely(env.flags & LBF_ALL_PINNED)) { 5117 cpumask_clear_cpu(cpu_of(busiest), cpus); 5118 if (!cpumask_empty(cpus)) { 5119 env.loop = 0; 5120 env.loop_break = sched_nr_migrate_break; 5121 goto redo; 5122 } 5123 goto out_balanced; 5124 } 5125 } 5126 5127 if (!ld_moved) { 5128 schedstat_inc(sd, lb_failed[idle]); 5129 /* 5130 * Increment the failure counter only on periodic balance. 5131 * We do not want newidle balance, which can be very 5132 * frequent, pollute the failure counter causing 5133 * excessive cache_hot migrations and active balances. 5134 */ 5135 if (idle != CPU_NEWLY_IDLE) 5136 sd->nr_balance_failed++; 5137 5138 if (need_active_balance(&env)) { 5139 raw_spin_lock_irqsave(&busiest->lock, flags); 5140 5141 /* don't kick the active_load_balance_cpu_stop, 5142 * if the curr task on busiest cpu can't be 5143 * moved to this_cpu 5144 */ 5145 if (!cpumask_test_cpu(this_cpu, 5146 tsk_cpus_allowed(busiest->curr))) { 5147 raw_spin_unlock_irqrestore(&busiest->lock, 5148 flags); 5149 env.flags |= LBF_ALL_PINNED; 5150 goto out_one_pinned; 5151 } 5152 5153 /* 5154 * ->active_balance synchronizes accesses to 5155 * ->active_balance_work. Once set, it's cleared 5156 * only after active load balance is finished. 5157 */ 5158 if (!busiest->active_balance) { 5159 busiest->active_balance = 1; 5160 busiest->push_cpu = this_cpu; 5161 active_balance = 1; 5162 } 5163 raw_spin_unlock_irqrestore(&busiest->lock, flags); 5164 5165 if (active_balance) { 5166 stop_one_cpu_nowait(cpu_of(busiest), 5167 active_load_balance_cpu_stop, busiest, 5168 &busiest->active_balance_work); 5169 } 5170 5171 /* 5172 * We've kicked active balancing, reset the failure 5173 * counter. 5174 */ 5175 sd->nr_balance_failed = sd->cache_nice_tries+1; 5176 } 5177 } else 5178 sd->nr_balance_failed = 0; 5179 5180 if (likely(!active_balance)) { 5181 /* We were unbalanced, so reset the balancing interval */ 5182 sd->balance_interval = sd->min_interval; 5183 } else { 5184 /* 5185 * If we've begun active balancing, start to back off. This 5186 * case may not be covered by the all_pinned logic if there 5187 * is only 1 task on the busy runqueue (because we don't call 5188 * move_tasks). 5189 */ 5190 if (sd->balance_interval < sd->max_interval) 5191 sd->balance_interval *= 2; 5192 } 5193 5194 goto out; 5195 5196 out_balanced: 5197 schedstat_inc(sd, lb_balanced[idle]); 5198 5199 sd->nr_balance_failed = 0; 5200 5201 out_one_pinned: 5202 /* tune up the balancing interval */ 5203 if (((env.flags & LBF_ALL_PINNED) && 5204 sd->balance_interval < MAX_PINNED_INTERVAL) || 5205 (sd->balance_interval < sd->max_interval)) 5206 sd->balance_interval *= 2; 5207 5208 ld_moved = 0; 5209 out: 5210 return ld_moved; 5211 } 5212 5213 /* 5214 * idle_balance is called by schedule() if this_cpu is about to become 5215 * idle. Attempts to pull tasks from other CPUs. 5216 */ 5217 void idle_balance(int this_cpu, struct rq *this_rq) 5218 { 5219 struct sched_domain *sd; 5220 int pulled_task = 0; 5221 unsigned long next_balance = jiffies + HZ; 5222 5223 this_rq->idle_stamp = this_rq->clock; 5224 5225 if (this_rq->avg_idle < sysctl_sched_migration_cost) 5226 return; 5227 5228 update_rq_runnable_avg(this_rq, 1); 5229 5230 /* 5231 * Drop the rq->lock, but keep IRQ/preempt disabled. 5232 */ 5233 raw_spin_unlock(&this_rq->lock); 5234 5235 update_blocked_averages(this_cpu); 5236 rcu_read_lock(); 5237 for_each_domain(this_cpu, sd) { 5238 unsigned long interval; 5239 int balance = 1; 5240 5241 if (!(sd->flags & SD_LOAD_BALANCE)) 5242 continue; 5243 5244 if (sd->flags & SD_BALANCE_NEWIDLE) { 5245 /* If we've pulled tasks over stop searching: */ 5246 pulled_task = load_balance(this_cpu, this_rq, 5247 sd, CPU_NEWLY_IDLE, &balance); 5248 } 5249 5250 interval = msecs_to_jiffies(sd->balance_interval); 5251 if (time_after(next_balance, sd->last_balance + interval)) 5252 next_balance = sd->last_balance + interval; 5253 if (pulled_task) { 5254 this_rq->idle_stamp = 0; 5255 break; 5256 } 5257 } 5258 rcu_read_unlock(); 5259 5260 raw_spin_lock(&this_rq->lock); 5261 5262 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 5263 /* 5264 * We are going idle. next_balance may be set based on 5265 * a busy processor. So reset next_balance. 5266 */ 5267 this_rq->next_balance = next_balance; 5268 } 5269 } 5270 5271 /* 5272 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 5273 * running tasks off the busiest CPU onto idle CPUs. It requires at 5274 * least 1 task to be running on each physical CPU where possible, and 5275 * avoids physical / logical imbalances. 5276 */ 5277 static int active_load_balance_cpu_stop(void *data) 5278 { 5279 struct rq *busiest_rq = data; 5280 int busiest_cpu = cpu_of(busiest_rq); 5281 int target_cpu = busiest_rq->push_cpu; 5282 struct rq *target_rq = cpu_rq(target_cpu); 5283 struct sched_domain *sd; 5284 5285 raw_spin_lock_irq(&busiest_rq->lock); 5286 5287 /* make sure the requested cpu hasn't gone down in the meantime */ 5288 if (unlikely(busiest_cpu != smp_processor_id() || 5289 !busiest_rq->active_balance)) 5290 goto out_unlock; 5291 5292 /* Is there any task to move? */ 5293 if (busiest_rq->nr_running <= 1) 5294 goto out_unlock; 5295 5296 /* 5297 * This condition is "impossible", if it occurs 5298 * we need to fix it. Originally reported by 5299 * Bjorn Helgaas on a 128-cpu setup. 5300 */ 5301 BUG_ON(busiest_rq == target_rq); 5302 5303 /* move a task from busiest_rq to target_rq */ 5304 double_lock_balance(busiest_rq, target_rq); 5305 5306 /* Search for an sd spanning us and the target CPU. */ 5307 rcu_read_lock(); 5308 for_each_domain(target_cpu, sd) { 5309 if ((sd->flags & SD_LOAD_BALANCE) && 5310 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 5311 break; 5312 } 5313 5314 if (likely(sd)) { 5315 struct lb_env env = { 5316 .sd = sd, 5317 .dst_cpu = target_cpu, 5318 .dst_rq = target_rq, 5319 .src_cpu = busiest_rq->cpu, 5320 .src_rq = busiest_rq, 5321 .idle = CPU_IDLE, 5322 }; 5323 5324 schedstat_inc(sd, alb_count); 5325 5326 if (move_one_task(&env)) 5327 schedstat_inc(sd, alb_pushed); 5328 else 5329 schedstat_inc(sd, alb_failed); 5330 } 5331 rcu_read_unlock(); 5332 double_unlock_balance(busiest_rq, target_rq); 5333 out_unlock: 5334 busiest_rq->active_balance = 0; 5335 raw_spin_unlock_irq(&busiest_rq->lock); 5336 return 0; 5337 } 5338 5339 #ifdef CONFIG_NO_HZ 5340 /* 5341 * idle load balancing details 5342 * - When one of the busy CPUs notice that there may be an idle rebalancing 5343 * needed, they will kick the idle load balancer, which then does idle 5344 * load balancing for all the idle CPUs. 5345 */ 5346 static struct { 5347 cpumask_var_t idle_cpus_mask; 5348 atomic_t nr_cpus; 5349 unsigned long next_balance; /* in jiffy units */ 5350 } nohz ____cacheline_aligned; 5351 5352 static inline int find_new_ilb(int call_cpu) 5353 { 5354 int ilb = cpumask_first(nohz.idle_cpus_mask); 5355 5356 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 5357 return ilb; 5358 5359 return nr_cpu_ids; 5360 } 5361 5362 /* 5363 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 5364 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 5365 * CPU (if there is one). 5366 */ 5367 static void nohz_balancer_kick(int cpu) 5368 { 5369 int ilb_cpu; 5370 5371 nohz.next_balance++; 5372 5373 ilb_cpu = find_new_ilb(cpu); 5374 5375 if (ilb_cpu >= nr_cpu_ids) 5376 return; 5377 5378 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 5379 return; 5380 /* 5381 * Use smp_send_reschedule() instead of resched_cpu(). 5382 * This way we generate a sched IPI on the target cpu which 5383 * is idle. And the softirq performing nohz idle load balance 5384 * will be run before returning from the IPI. 5385 */ 5386 smp_send_reschedule(ilb_cpu); 5387 return; 5388 } 5389 5390 static inline void nohz_balance_exit_idle(int cpu) 5391 { 5392 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 5393 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 5394 atomic_dec(&nohz.nr_cpus); 5395 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5396 } 5397 } 5398 5399 static inline void set_cpu_sd_state_busy(void) 5400 { 5401 struct sched_domain *sd; 5402 int cpu = smp_processor_id(); 5403 5404 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) 5405 return; 5406 clear_bit(NOHZ_IDLE, nohz_flags(cpu)); 5407 5408 rcu_read_lock(); 5409 for_each_domain(cpu, sd) 5410 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 5411 rcu_read_unlock(); 5412 } 5413 5414 void set_cpu_sd_state_idle(void) 5415 { 5416 struct sched_domain *sd; 5417 int cpu = smp_processor_id(); 5418 5419 if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) 5420 return; 5421 set_bit(NOHZ_IDLE, nohz_flags(cpu)); 5422 5423 rcu_read_lock(); 5424 for_each_domain(cpu, sd) 5425 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 5426 rcu_read_unlock(); 5427 } 5428 5429 /* 5430 * This routine will record that the cpu is going idle with tick stopped. 5431 * This info will be used in performing idle load balancing in the future. 5432 */ 5433 void nohz_balance_enter_idle(int cpu) 5434 { 5435 /* 5436 * If this cpu is going down, then nothing needs to be done. 5437 */ 5438 if (!cpu_active(cpu)) 5439 return; 5440 5441 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 5442 return; 5443 5444 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 5445 atomic_inc(&nohz.nr_cpus); 5446 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5447 } 5448 5449 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, 5450 unsigned long action, void *hcpu) 5451 { 5452 switch (action & ~CPU_TASKS_FROZEN) { 5453 case CPU_DYING: 5454 nohz_balance_exit_idle(smp_processor_id()); 5455 return NOTIFY_OK; 5456 default: 5457 return NOTIFY_DONE; 5458 } 5459 } 5460 #endif 5461 5462 static DEFINE_SPINLOCK(balancing); 5463 5464 /* 5465 * Scale the max load_balance interval with the number of CPUs in the system. 5466 * This trades load-balance latency on larger machines for less cross talk. 5467 */ 5468 void update_max_interval(void) 5469 { 5470 max_load_balance_interval = HZ*num_online_cpus()/10; 5471 } 5472 5473 /* 5474 * It checks each scheduling domain to see if it is due to be balanced, 5475 * and initiates a balancing operation if so. 5476 * 5477 * Balancing parameters are set up in arch_init_sched_domains. 5478 */ 5479 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 5480 { 5481 int balance = 1; 5482 struct rq *rq = cpu_rq(cpu); 5483 unsigned long interval; 5484 struct sched_domain *sd; 5485 /* Earliest time when we have to do rebalance again */ 5486 unsigned long next_balance = jiffies + 60*HZ; 5487 int update_next_balance = 0; 5488 int need_serialize; 5489 5490 update_blocked_averages(cpu); 5491 5492 rcu_read_lock(); 5493 for_each_domain(cpu, sd) { 5494 if (!(sd->flags & SD_LOAD_BALANCE)) 5495 continue; 5496 5497 interval = sd->balance_interval; 5498 if (idle != CPU_IDLE) 5499 interval *= sd->busy_factor; 5500 5501 /* scale ms to jiffies */ 5502 interval = msecs_to_jiffies(interval); 5503 interval = clamp(interval, 1UL, max_load_balance_interval); 5504 5505 need_serialize = sd->flags & SD_SERIALIZE; 5506 5507 if (need_serialize) { 5508 if (!spin_trylock(&balancing)) 5509 goto out; 5510 } 5511 5512 if (time_after_eq(jiffies, sd->last_balance + interval)) { 5513 if (load_balance(cpu, rq, sd, idle, &balance)) { 5514 /* 5515 * We've pulled tasks over so either we're no 5516 * longer idle. 5517 */ 5518 idle = CPU_NOT_IDLE; 5519 } 5520 sd->last_balance = jiffies; 5521 } 5522 if (need_serialize) 5523 spin_unlock(&balancing); 5524 out: 5525 if (time_after(next_balance, sd->last_balance + interval)) { 5526 next_balance = sd->last_balance + interval; 5527 update_next_balance = 1; 5528 } 5529 5530 /* 5531 * Stop the load balance at this level. There is another 5532 * CPU in our sched group which is doing load balancing more 5533 * actively. 5534 */ 5535 if (!balance) 5536 break; 5537 } 5538 rcu_read_unlock(); 5539 5540 /* 5541 * next_balance will be updated only when there is a need. 5542 * When the cpu is attached to null domain for ex, it will not be 5543 * updated. 5544 */ 5545 if (likely(update_next_balance)) 5546 rq->next_balance = next_balance; 5547 } 5548 5549 #ifdef CONFIG_NO_HZ 5550 /* 5551 * In CONFIG_NO_HZ case, the idle balance kickee will do the 5552 * rebalancing for all the cpus for whom scheduler ticks are stopped. 5553 */ 5554 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 5555 { 5556 struct rq *this_rq = cpu_rq(this_cpu); 5557 struct rq *rq; 5558 int balance_cpu; 5559 5560 if (idle != CPU_IDLE || 5561 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 5562 goto end; 5563 5564 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 5565 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 5566 continue; 5567 5568 /* 5569 * If this cpu gets work to do, stop the load balancing 5570 * work being done for other cpus. Next load 5571 * balancing owner will pick it up. 5572 */ 5573 if (need_resched()) 5574 break; 5575 5576 rq = cpu_rq(balance_cpu); 5577 5578 raw_spin_lock_irq(&rq->lock); 5579 update_rq_clock(rq); 5580 update_idle_cpu_load(rq); 5581 raw_spin_unlock_irq(&rq->lock); 5582 5583 rebalance_domains(balance_cpu, CPU_IDLE); 5584 5585 if (time_after(this_rq->next_balance, rq->next_balance)) 5586 this_rq->next_balance = rq->next_balance; 5587 } 5588 nohz.next_balance = this_rq->next_balance; 5589 end: 5590 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 5591 } 5592 5593 /* 5594 * Current heuristic for kicking the idle load balancer in the presence 5595 * of an idle cpu is the system. 5596 * - This rq has more than one task. 5597 * - At any scheduler domain level, this cpu's scheduler group has multiple 5598 * busy cpu's exceeding the group's power. 5599 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 5600 * domain span are idle. 5601 */ 5602 static inline int nohz_kick_needed(struct rq *rq, int cpu) 5603 { 5604 unsigned long now = jiffies; 5605 struct sched_domain *sd; 5606 5607 if (unlikely(idle_cpu(cpu))) 5608 return 0; 5609 5610 /* 5611 * We may be recently in ticked or tickless idle mode. At the first 5612 * busy tick after returning from idle, we will update the busy stats. 5613 */ 5614 set_cpu_sd_state_busy(); 5615 nohz_balance_exit_idle(cpu); 5616 5617 /* 5618 * None are in tickless mode and hence no need for NOHZ idle load 5619 * balancing. 5620 */ 5621 if (likely(!atomic_read(&nohz.nr_cpus))) 5622 return 0; 5623 5624 if (time_before(now, nohz.next_balance)) 5625 return 0; 5626 5627 if (rq->nr_running >= 2) 5628 goto need_kick; 5629 5630 rcu_read_lock(); 5631 for_each_domain(cpu, sd) { 5632 struct sched_group *sg = sd->groups; 5633 struct sched_group_power *sgp = sg->sgp; 5634 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 5635 5636 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 5637 goto need_kick_unlock; 5638 5639 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 5640 && (cpumask_first_and(nohz.idle_cpus_mask, 5641 sched_domain_span(sd)) < cpu)) 5642 goto need_kick_unlock; 5643 5644 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 5645 break; 5646 } 5647 rcu_read_unlock(); 5648 return 0; 5649 5650 need_kick_unlock: 5651 rcu_read_unlock(); 5652 need_kick: 5653 return 1; 5654 } 5655 #else 5656 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 5657 #endif 5658 5659 /* 5660 * run_rebalance_domains is triggered when needed from the scheduler tick. 5661 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 5662 */ 5663 static void run_rebalance_domains(struct softirq_action *h) 5664 { 5665 int this_cpu = smp_processor_id(); 5666 struct rq *this_rq = cpu_rq(this_cpu); 5667 enum cpu_idle_type idle = this_rq->idle_balance ? 5668 CPU_IDLE : CPU_NOT_IDLE; 5669 5670 rebalance_domains(this_cpu, idle); 5671 5672 /* 5673 * If this cpu has a pending nohz_balance_kick, then do the 5674 * balancing on behalf of the other idle cpus whose ticks are 5675 * stopped. 5676 */ 5677 nohz_idle_balance(this_cpu, idle); 5678 } 5679 5680 static inline int on_null_domain(int cpu) 5681 { 5682 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 5683 } 5684 5685 /* 5686 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 5687 */ 5688 void trigger_load_balance(struct rq *rq, int cpu) 5689 { 5690 /* Don't need to rebalance while attached to NULL domain */ 5691 if (time_after_eq(jiffies, rq->next_balance) && 5692 likely(!on_null_domain(cpu))) 5693 raise_softirq(SCHED_SOFTIRQ); 5694 #ifdef CONFIG_NO_HZ 5695 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 5696 nohz_balancer_kick(cpu); 5697 #endif 5698 } 5699 5700 static void rq_online_fair(struct rq *rq) 5701 { 5702 update_sysctl(); 5703 } 5704 5705 static void rq_offline_fair(struct rq *rq) 5706 { 5707 update_sysctl(); 5708 5709 /* Ensure any throttled groups are reachable by pick_next_task */ 5710 unthrottle_offline_cfs_rqs(rq); 5711 } 5712 5713 #endif /* CONFIG_SMP */ 5714 5715 /* 5716 * scheduler tick hitting a task of our scheduling class: 5717 */ 5718 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 5719 { 5720 struct cfs_rq *cfs_rq; 5721 struct sched_entity *se = &curr->se; 5722 5723 for_each_sched_entity(se) { 5724 cfs_rq = cfs_rq_of(se); 5725 entity_tick(cfs_rq, se, queued); 5726 } 5727 5728 if (sched_feat_numa(NUMA)) 5729 task_tick_numa(rq, curr); 5730 5731 update_rq_runnable_avg(rq, 1); 5732 } 5733 5734 /* 5735 * called on fork with the child task as argument from the parent's context 5736 * - child not yet on the tasklist 5737 * - preemption disabled 5738 */ 5739 static void task_fork_fair(struct task_struct *p) 5740 { 5741 struct cfs_rq *cfs_rq; 5742 struct sched_entity *se = &p->se, *curr; 5743 int this_cpu = smp_processor_id(); 5744 struct rq *rq = this_rq(); 5745 unsigned long flags; 5746 5747 raw_spin_lock_irqsave(&rq->lock, flags); 5748 5749 update_rq_clock(rq); 5750 5751 cfs_rq = task_cfs_rq(current); 5752 curr = cfs_rq->curr; 5753 5754 if (unlikely(task_cpu(p) != this_cpu)) { 5755 rcu_read_lock(); 5756 __set_task_cpu(p, this_cpu); 5757 rcu_read_unlock(); 5758 } 5759 5760 update_curr(cfs_rq); 5761 5762 if (curr) 5763 se->vruntime = curr->vruntime; 5764 place_entity(cfs_rq, se, 1); 5765 5766 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 5767 /* 5768 * Upon rescheduling, sched_class::put_prev_task() will place 5769 * 'current' within the tree based on its new key value. 5770 */ 5771 swap(curr->vruntime, se->vruntime); 5772 resched_task(rq->curr); 5773 } 5774 5775 se->vruntime -= cfs_rq->min_vruntime; 5776 5777 raw_spin_unlock_irqrestore(&rq->lock, flags); 5778 } 5779 5780 /* 5781 * Priority of the task has changed. Check to see if we preempt 5782 * the current task. 5783 */ 5784 static void 5785 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 5786 { 5787 if (!p->se.on_rq) 5788 return; 5789 5790 /* 5791 * Reschedule if we are currently running on this runqueue and 5792 * our priority decreased, or if we are not currently running on 5793 * this runqueue and our priority is higher than the current's 5794 */ 5795 if (rq->curr == p) { 5796 if (p->prio > oldprio) 5797 resched_task(rq->curr); 5798 } else 5799 check_preempt_curr(rq, p, 0); 5800 } 5801 5802 static void switched_from_fair(struct rq *rq, struct task_struct *p) 5803 { 5804 struct sched_entity *se = &p->se; 5805 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5806 5807 /* 5808 * Ensure the task's vruntime is normalized, so that when its 5809 * switched back to the fair class the enqueue_entity(.flags=0) will 5810 * do the right thing. 5811 * 5812 * If it was on_rq, then the dequeue_entity(.flags=0) will already 5813 * have normalized the vruntime, if it was !on_rq, then only when 5814 * the task is sleeping will it still have non-normalized vruntime. 5815 */ 5816 if (!se->on_rq && p->state != TASK_RUNNING) { 5817 /* 5818 * Fix up our vruntime so that the current sleep doesn't 5819 * cause 'unlimited' sleep bonus. 5820 */ 5821 place_entity(cfs_rq, se, 0); 5822 se->vruntime -= cfs_rq->min_vruntime; 5823 } 5824 5825 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP) 5826 /* 5827 * Remove our load from contribution when we leave sched_fair 5828 * and ensure we don't carry in an old decay_count if we 5829 * switch back. 5830 */ 5831 if (p->se.avg.decay_count) { 5832 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se); 5833 __synchronize_entity_decay(&p->se); 5834 subtract_blocked_load_contrib(cfs_rq, 5835 p->se.avg.load_avg_contrib); 5836 } 5837 #endif 5838 } 5839 5840 /* 5841 * We switched to the sched_fair class. 5842 */ 5843 static void switched_to_fair(struct rq *rq, struct task_struct *p) 5844 { 5845 if (!p->se.on_rq) 5846 return; 5847 5848 /* 5849 * We were most likely switched from sched_rt, so 5850 * kick off the schedule if running, otherwise just see 5851 * if we can still preempt the current task. 5852 */ 5853 if (rq->curr == p) 5854 resched_task(rq->curr); 5855 else 5856 check_preempt_curr(rq, p, 0); 5857 } 5858 5859 /* Account for a task changing its policy or group. 5860 * 5861 * This routine is mostly called to set cfs_rq->curr field when a task 5862 * migrates between groups/classes. 5863 */ 5864 static void set_curr_task_fair(struct rq *rq) 5865 { 5866 struct sched_entity *se = &rq->curr->se; 5867 5868 for_each_sched_entity(se) { 5869 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5870 5871 set_next_entity(cfs_rq, se); 5872 /* ensure bandwidth has been allocated on our new cfs_rq */ 5873 account_cfs_rq_runtime(cfs_rq, 0); 5874 } 5875 } 5876 5877 void init_cfs_rq(struct cfs_rq *cfs_rq) 5878 { 5879 cfs_rq->tasks_timeline = RB_ROOT; 5880 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 5881 #ifndef CONFIG_64BIT 5882 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 5883 #endif 5884 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP) 5885 atomic64_set(&cfs_rq->decay_counter, 1); 5886 atomic64_set(&cfs_rq->removed_load, 0); 5887 #endif 5888 } 5889 5890 #ifdef CONFIG_FAIR_GROUP_SCHED 5891 static void task_move_group_fair(struct task_struct *p, int on_rq) 5892 { 5893 struct cfs_rq *cfs_rq; 5894 /* 5895 * If the task was not on the rq at the time of this cgroup movement 5896 * it must have been asleep, sleeping tasks keep their ->vruntime 5897 * absolute on their old rq until wakeup (needed for the fair sleeper 5898 * bonus in place_entity()). 5899 * 5900 * If it was on the rq, we've just 'preempted' it, which does convert 5901 * ->vruntime to a relative base. 5902 * 5903 * Make sure both cases convert their relative position when migrating 5904 * to another cgroup's rq. This does somewhat interfere with the 5905 * fair sleeper stuff for the first placement, but who cares. 5906 */ 5907 /* 5908 * When !on_rq, vruntime of the task has usually NOT been normalized. 5909 * But there are some cases where it has already been normalized: 5910 * 5911 * - Moving a forked child which is waiting for being woken up by 5912 * wake_up_new_task(). 5913 * - Moving a task which has been woken up by try_to_wake_up() and 5914 * waiting for actually being woken up by sched_ttwu_pending(). 5915 * 5916 * To prevent boost or penalty in the new cfs_rq caused by delta 5917 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 5918 */ 5919 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 5920 on_rq = 1; 5921 5922 if (!on_rq) 5923 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 5924 set_task_rq(p, task_cpu(p)); 5925 if (!on_rq) { 5926 cfs_rq = cfs_rq_of(&p->se); 5927 p->se.vruntime += cfs_rq->min_vruntime; 5928 #ifdef CONFIG_SMP 5929 /* 5930 * migrate_task_rq_fair() will have removed our previous 5931 * contribution, but we must synchronize for ongoing future 5932 * decay. 5933 */ 5934 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 5935 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; 5936 #endif 5937 } 5938 } 5939 5940 void free_fair_sched_group(struct task_group *tg) 5941 { 5942 int i; 5943 5944 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5945 5946 for_each_possible_cpu(i) { 5947 if (tg->cfs_rq) 5948 kfree(tg->cfs_rq[i]); 5949 if (tg->se) 5950 kfree(tg->se[i]); 5951 } 5952 5953 kfree(tg->cfs_rq); 5954 kfree(tg->se); 5955 } 5956 5957 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5958 { 5959 struct cfs_rq *cfs_rq; 5960 struct sched_entity *se; 5961 int i; 5962 5963 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 5964 if (!tg->cfs_rq) 5965 goto err; 5966 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 5967 if (!tg->se) 5968 goto err; 5969 5970 tg->shares = NICE_0_LOAD; 5971 5972 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5973 5974 for_each_possible_cpu(i) { 5975 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 5976 GFP_KERNEL, cpu_to_node(i)); 5977 if (!cfs_rq) 5978 goto err; 5979 5980 se = kzalloc_node(sizeof(struct sched_entity), 5981 GFP_KERNEL, cpu_to_node(i)); 5982 if (!se) 5983 goto err_free_rq; 5984 5985 init_cfs_rq(cfs_rq); 5986 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 5987 } 5988 5989 return 1; 5990 5991 err_free_rq: 5992 kfree(cfs_rq); 5993 err: 5994 return 0; 5995 } 5996 5997 void unregister_fair_sched_group(struct task_group *tg, int cpu) 5998 { 5999 struct rq *rq = cpu_rq(cpu); 6000 unsigned long flags; 6001 6002 /* 6003 * Only empty task groups can be destroyed; so we can speculatively 6004 * check on_list without danger of it being re-added. 6005 */ 6006 if (!tg->cfs_rq[cpu]->on_list) 6007 return; 6008 6009 raw_spin_lock_irqsave(&rq->lock, flags); 6010 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 6011 raw_spin_unlock_irqrestore(&rq->lock, flags); 6012 } 6013 6014 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 6015 struct sched_entity *se, int cpu, 6016 struct sched_entity *parent) 6017 { 6018 struct rq *rq = cpu_rq(cpu); 6019 6020 cfs_rq->tg = tg; 6021 cfs_rq->rq = rq; 6022 init_cfs_rq_runtime(cfs_rq); 6023 6024 tg->cfs_rq[cpu] = cfs_rq; 6025 tg->se[cpu] = se; 6026 6027 /* se could be NULL for root_task_group */ 6028 if (!se) 6029 return; 6030 6031 if (!parent) 6032 se->cfs_rq = &rq->cfs; 6033 else 6034 se->cfs_rq = parent->my_q; 6035 6036 se->my_q = cfs_rq; 6037 update_load_set(&se->load, 0); 6038 se->parent = parent; 6039 } 6040 6041 static DEFINE_MUTEX(shares_mutex); 6042 6043 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 6044 { 6045 int i; 6046 unsigned long flags; 6047 6048 /* 6049 * We can't change the weight of the root cgroup. 6050 */ 6051 if (!tg->se[0]) 6052 return -EINVAL; 6053 6054 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 6055 6056 mutex_lock(&shares_mutex); 6057 if (tg->shares == shares) 6058 goto done; 6059 6060 tg->shares = shares; 6061 for_each_possible_cpu(i) { 6062 struct rq *rq = cpu_rq(i); 6063 struct sched_entity *se; 6064 6065 se = tg->se[i]; 6066 /* Propagate contribution to hierarchy */ 6067 raw_spin_lock_irqsave(&rq->lock, flags); 6068 for_each_sched_entity(se) 6069 update_cfs_shares(group_cfs_rq(se)); 6070 raw_spin_unlock_irqrestore(&rq->lock, flags); 6071 } 6072 6073 done: 6074 mutex_unlock(&shares_mutex); 6075 return 0; 6076 } 6077 #else /* CONFIG_FAIR_GROUP_SCHED */ 6078 6079 void free_fair_sched_group(struct task_group *tg) { } 6080 6081 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 6082 { 6083 return 1; 6084 } 6085 6086 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 6087 6088 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6089 6090 6091 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 6092 { 6093 struct sched_entity *se = &task->se; 6094 unsigned int rr_interval = 0; 6095 6096 /* 6097 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 6098 * idle runqueue: 6099 */ 6100 if (rq->cfs.load.weight) 6101 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 6102 6103 return rr_interval; 6104 } 6105 6106 /* 6107 * All the scheduling class methods: 6108 */ 6109 const struct sched_class fair_sched_class = { 6110 .next = &idle_sched_class, 6111 .enqueue_task = enqueue_task_fair, 6112 .dequeue_task = dequeue_task_fair, 6113 .yield_task = yield_task_fair, 6114 .yield_to_task = yield_to_task_fair, 6115 6116 .check_preempt_curr = check_preempt_wakeup, 6117 6118 .pick_next_task = pick_next_task_fair, 6119 .put_prev_task = put_prev_task_fair, 6120 6121 #ifdef CONFIG_SMP 6122 .select_task_rq = select_task_rq_fair, 6123 #ifdef CONFIG_FAIR_GROUP_SCHED 6124 .migrate_task_rq = migrate_task_rq_fair, 6125 #endif 6126 .rq_online = rq_online_fair, 6127 .rq_offline = rq_offline_fair, 6128 6129 .task_waking = task_waking_fair, 6130 #endif 6131 6132 .set_curr_task = set_curr_task_fair, 6133 .task_tick = task_tick_fair, 6134 .task_fork = task_fork_fair, 6135 6136 .prio_changed = prio_changed_fair, 6137 .switched_from = switched_from_fair, 6138 .switched_to = switched_to_fair, 6139 6140 .get_rr_interval = get_rr_interval_fair, 6141 6142 #ifdef CONFIG_FAIR_GROUP_SCHED 6143 .task_move_group = task_move_group_fair, 6144 #endif 6145 }; 6146 6147 #ifdef CONFIG_SCHED_DEBUG 6148 void print_cfs_stats(struct seq_file *m, int cpu) 6149 { 6150 struct cfs_rq *cfs_rq; 6151 6152 rcu_read_lock(); 6153 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 6154 print_cfs_rq(m, cpu, cfs_rq); 6155 rcu_read_unlock(); 6156 } 6157 #endif 6158 6159 __init void init_sched_fair_class(void) 6160 { 6161 #ifdef CONFIG_SMP 6162 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 6163 6164 #ifdef CONFIG_NO_HZ 6165 nohz.next_balance = jiffies; 6166 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 6167 cpu_notifier(sched_ilb_notifier, 0); 6168 #endif 6169 #endif /* SMP */ 6170 6171 } 6172