xref: /linux/kernel/sched/fair.c (revision a58130ddc896e5a15e4de2bf50a1d89247118c23)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32 
33 #include <trace/events/sched.h>
34 
35 #include "sched.h"
36 
37 /*
38  * Targeted preemption latency for CPU-bound tasks:
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51 
52 /*
53  * The initial- and re-scaling of tunables is configurable
54  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55  *
56  * Options are:
57  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60  */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 	= SCHED_TUNABLESCALING_LOG;
63 
64 /*
65  * Minimal preemption granularity for CPU-bound tasks:
66  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 
71 /*
72  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73  */
74 static unsigned int sched_nr_latency = 8;
75 
76 /*
77  * After fork, child runs first. If set to 0 (default) then
78  * parent will (try to) run first.
79  */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81 
82 /*
83  * SCHED_OTHER wake-up granularity.
84  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85  *
86  * This option delays the preemption effects of decoupled workloads
87  * and reduces their over-scheduling. Synchronous workloads will still
88  * have immediate wakeup/sleep latencies.
89  */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 
95 /*
96  * The exponential sliding  window over which load is averaged for shares
97  * distribution.
98  * (default: 10msec)
99  */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101 
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105  * each time a cfs_rq requests quota.
106  *
107  * Note: in the case that the slice exceeds the runtime remaining (either due
108  * to consumption or the quota being specified to be smaller than the slice)
109  * we will always only issue the remaining available time.
110  *
111  * default: 5 msec, units: microseconds
112   */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115 
116 /*
117  * Increase the granularity value when there are more CPUs,
118  * because with more CPUs the 'effective latency' as visible
119  * to users decreases. But the relationship is not linear,
120  * so pick a second-best guess by going with the log2 of the
121  * number of CPUs.
122  *
123  * This idea comes from the SD scheduler of Con Kolivas:
124  */
125 static int get_update_sysctl_factor(void)
126 {
127 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 	unsigned int factor;
129 
130 	switch (sysctl_sched_tunable_scaling) {
131 	case SCHED_TUNABLESCALING_NONE:
132 		factor = 1;
133 		break;
134 	case SCHED_TUNABLESCALING_LINEAR:
135 		factor = cpus;
136 		break;
137 	case SCHED_TUNABLESCALING_LOG:
138 	default:
139 		factor = 1 + ilog2(cpus);
140 		break;
141 	}
142 
143 	return factor;
144 }
145 
146 static void update_sysctl(void)
147 {
148 	unsigned int factor = get_update_sysctl_factor();
149 
150 #define SET_SYSCTL(name) \
151 	(sysctl_##name = (factor) * normalized_sysctl_##name)
152 	SET_SYSCTL(sched_min_granularity);
153 	SET_SYSCTL(sched_latency);
154 	SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157 
158 void sched_init_granularity(void)
159 {
160 	update_sysctl();
161 }
162 
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST	(~0UL)
165 #else
166 # define WMULT_CONST	(1UL << 32)
167 #endif
168 
169 #define WMULT_SHIFT	32
170 
171 /*
172  * Shift right and round:
173  */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175 
176 /*
177  * delta *= weight / lw
178  */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 		struct load_weight *lw)
182 {
183 	u64 tmp;
184 
185 	/*
186 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 	 * 2^SCHED_LOAD_RESOLUTION.
189 	 */
190 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 		tmp = (u64)delta_exec * scale_load_down(weight);
192 	else
193 		tmp = (u64)delta_exec;
194 
195 	if (!lw->inv_weight) {
196 		unsigned long w = scale_load_down(lw->weight);
197 
198 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 			lw->inv_weight = 1;
200 		else if (unlikely(!w))
201 			lw->inv_weight = WMULT_CONST;
202 		else
203 			lw->inv_weight = WMULT_CONST / w;
204 	}
205 
206 	/*
207 	 * Check whether we'd overflow the 64-bit multiplication:
208 	 */
209 	if (unlikely(tmp > WMULT_CONST))
210 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 			WMULT_SHIFT/2);
212 	else
213 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214 
215 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217 
218 
219 const struct sched_class fair_sched_class;
220 
221 /**************************************************************
222  * CFS operations on generic schedulable entities:
223  */
224 
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226 
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 	return cfs_rq->rq;
231 }
232 
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se)	(!se->my_q)
235 
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 	WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 	return container_of(se, struct task_struct, se);
242 }
243 
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 		for (; se; se = se->parent)
247 
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 	return p->se.cfs_rq;
251 }
252 
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 	return se->cfs_rq;
257 }
258 
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 	return grp->my_q;
263 }
264 
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 				       int force_update);
267 
268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270 	if (!cfs_rq->on_list) {
271 		/*
272 		 * Ensure we either appear before our parent (if already
273 		 * enqueued) or force our parent to appear after us when it is
274 		 * enqueued.  The fact that we always enqueue bottom-up
275 		 * reduces this to two cases.
276 		 */
277 		if (cfs_rq->tg->parent &&
278 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
281 		} else {
282 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
284 		}
285 
286 		cfs_rq->on_list = 1;
287 		/* We should have no load, but we need to update last_decay. */
288 		update_cfs_rq_blocked_load(cfs_rq, 0);
289 	}
290 }
291 
292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 	if (cfs_rq->on_list) {
295 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 		cfs_rq->on_list = 0;
297 	}
298 }
299 
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303 
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308 	if (se->cfs_rq == pse->cfs_rq)
309 		return 1;
310 
311 	return 0;
312 }
313 
314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316 	return se->parent;
317 }
318 
319 /* return depth at which a sched entity is present in the hierarchy */
320 static inline int depth_se(struct sched_entity *se)
321 {
322 	int depth = 0;
323 
324 	for_each_sched_entity(se)
325 		depth++;
326 
327 	return depth;
328 }
329 
330 static void
331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333 	int se_depth, pse_depth;
334 
335 	/*
336 	 * preemption test can be made between sibling entities who are in the
337 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 	 * both tasks until we find their ancestors who are siblings of common
339 	 * parent.
340 	 */
341 
342 	/* First walk up until both entities are at same depth */
343 	se_depth = depth_se(*se);
344 	pse_depth = depth_se(*pse);
345 
346 	while (se_depth > pse_depth) {
347 		se_depth--;
348 		*se = parent_entity(*se);
349 	}
350 
351 	while (pse_depth > se_depth) {
352 		pse_depth--;
353 		*pse = parent_entity(*pse);
354 	}
355 
356 	while (!is_same_group(*se, *pse)) {
357 		*se = parent_entity(*se);
358 		*pse = parent_entity(*pse);
359 	}
360 }
361 
362 #else	/* !CONFIG_FAIR_GROUP_SCHED */
363 
364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366 	return container_of(se, struct task_struct, se);
367 }
368 
369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371 	return container_of(cfs_rq, struct rq, cfs);
372 }
373 
374 #define entity_is_task(se)	1
375 
376 #define for_each_sched_entity(se) \
377 		for (; se; se = NULL)
378 
379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381 	return &task_rq(p)->cfs;
382 }
383 
384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386 	struct task_struct *p = task_of(se);
387 	struct rq *rq = task_rq(p);
388 
389 	return &rq->cfs;
390 }
391 
392 /* runqueue "owned" by this group */
393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395 	return NULL;
396 }
397 
398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401 
402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405 
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408 
409 static inline int
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 	return 1;
413 }
414 
415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417 	return NULL;
418 }
419 
420 static inline void
421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424 
425 #endif	/* CONFIG_FAIR_GROUP_SCHED */
426 
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429 
430 /**************************************************************
431  * Scheduling class tree data structure manipulation methods:
432  */
433 
434 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
435 {
436 	s64 delta = (s64)(vruntime - min_vruntime);
437 	if (delta > 0)
438 		min_vruntime = vruntime;
439 
440 	return min_vruntime;
441 }
442 
443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445 	s64 delta = (s64)(vruntime - min_vruntime);
446 	if (delta < 0)
447 		min_vruntime = vruntime;
448 
449 	return min_vruntime;
450 }
451 
452 static inline int entity_before(struct sched_entity *a,
453 				struct sched_entity *b)
454 {
455 	return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457 
458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460 	u64 vruntime = cfs_rq->min_vruntime;
461 
462 	if (cfs_rq->curr)
463 		vruntime = cfs_rq->curr->vruntime;
464 
465 	if (cfs_rq->rb_leftmost) {
466 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 						   struct sched_entity,
468 						   run_node);
469 
470 		if (!cfs_rq->curr)
471 			vruntime = se->vruntime;
472 		else
473 			vruntime = min_vruntime(vruntime, se->vruntime);
474 	}
475 
476 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 	smp_wmb();
479 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482 
483 /*
484  * Enqueue an entity into the rb-tree:
485  */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct sched_entity *entry;
491 	int leftmost = 1;
492 
493 	/*
494 	 * Find the right place in the rbtree:
495 	 */
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct sched_entity, run_node);
499 		/*
500 		 * We dont care about collisions. Nodes with
501 		 * the same key stay together.
502 		 */
503 		if (entity_before(se, entry)) {
504 			link = &parent->rb_left;
505 		} else {
506 			link = &parent->rb_right;
507 			leftmost = 0;
508 		}
509 	}
510 
511 	/*
512 	 * Maintain a cache of leftmost tree entries (it is frequently
513 	 * used):
514 	 */
515 	if (leftmost)
516 		cfs_rq->rb_leftmost = &se->run_node;
517 
518 	rb_link_node(&se->run_node, parent, link);
519 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521 
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 	if (cfs_rq->rb_leftmost == &se->run_node) {
525 		struct rb_node *next_node;
526 
527 		next_node = rb_next(&se->run_node);
528 		cfs_rq->rb_leftmost = next_node;
529 	}
530 
531 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533 
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 	struct rb_node *left = cfs_rq->rb_leftmost;
537 
538 	if (!left)
539 		return NULL;
540 
541 	return rb_entry(left, struct sched_entity, run_node);
542 }
543 
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 	struct rb_node *next = rb_next(&se->run_node);
547 
548 	if (!next)
549 		return NULL;
550 
551 	return rb_entry(next, struct sched_entity, run_node);
552 }
553 
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558 
559 	if (!last)
560 		return NULL;
561 
562 	return rb_entry(last, struct sched_entity, run_node);
563 }
564 
565 /**************************************************************
566  * Scheduling class statistics methods:
567  */
568 
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 		void __user *buffer, size_t *lenp,
571 		loff_t *ppos)
572 {
573 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 	int factor = get_update_sysctl_factor();
575 
576 	if (ret || !write)
577 		return ret;
578 
579 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 					sysctl_sched_min_granularity);
581 
582 #define WRT_SYSCTL(name) \
583 	(normalized_sysctl_##name = sysctl_##name / (factor))
584 	WRT_SYSCTL(sched_min_granularity);
585 	WRT_SYSCTL(sched_latency);
586 	WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588 
589 	return 0;
590 }
591 #endif
592 
593 /*
594  * delta /= w
595  */
596 static inline unsigned long
597 calc_delta_fair(unsigned long delta, struct sched_entity *se)
598 {
599 	if (unlikely(se->load.weight != NICE_0_LOAD))
600 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
601 
602 	return delta;
603 }
604 
605 /*
606  * The idea is to set a period in which each task runs once.
607  *
608  * When there are too many tasks (sched_nr_latency) we have to stretch
609  * this period because otherwise the slices get too small.
610  *
611  * p = (nr <= nl) ? l : l*nr/nl
612  */
613 static u64 __sched_period(unsigned long nr_running)
614 {
615 	u64 period = sysctl_sched_latency;
616 	unsigned long nr_latency = sched_nr_latency;
617 
618 	if (unlikely(nr_running > nr_latency)) {
619 		period = sysctl_sched_min_granularity;
620 		period *= nr_running;
621 	}
622 
623 	return period;
624 }
625 
626 /*
627  * We calculate the wall-time slice from the period by taking a part
628  * proportional to the weight.
629  *
630  * s = p*P[w/rw]
631  */
632 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
635 
636 	for_each_sched_entity(se) {
637 		struct load_weight *load;
638 		struct load_weight lw;
639 
640 		cfs_rq = cfs_rq_of(se);
641 		load = &cfs_rq->load;
642 
643 		if (unlikely(!se->on_rq)) {
644 			lw = cfs_rq->load;
645 
646 			update_load_add(&lw, se->load.weight);
647 			load = &lw;
648 		}
649 		slice = calc_delta_mine(slice, se->load.weight, load);
650 	}
651 	return slice;
652 }
653 
654 /*
655  * We calculate the vruntime slice of a to be inserted task
656  *
657  * vs = s/w
658  */
659 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
660 {
661 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
662 }
663 
664 /*
665  * Update the current task's runtime statistics. Skip current tasks that
666  * are not in our scheduling class.
667  */
668 static inline void
669 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
670 	      unsigned long delta_exec)
671 {
672 	unsigned long delta_exec_weighted;
673 
674 	schedstat_set(curr->statistics.exec_max,
675 		      max((u64)delta_exec, curr->statistics.exec_max));
676 
677 	curr->sum_exec_runtime += delta_exec;
678 	schedstat_add(cfs_rq, exec_clock, delta_exec);
679 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
680 
681 	curr->vruntime += delta_exec_weighted;
682 	update_min_vruntime(cfs_rq);
683 }
684 
685 static void update_curr(struct cfs_rq *cfs_rq)
686 {
687 	struct sched_entity *curr = cfs_rq->curr;
688 	u64 now = rq_of(cfs_rq)->clock_task;
689 	unsigned long delta_exec;
690 
691 	if (unlikely(!curr))
692 		return;
693 
694 	/*
695 	 * Get the amount of time the current task was running
696 	 * since the last time we changed load (this cannot
697 	 * overflow on 32 bits):
698 	 */
699 	delta_exec = (unsigned long)(now - curr->exec_start);
700 	if (!delta_exec)
701 		return;
702 
703 	__update_curr(cfs_rq, curr, delta_exec);
704 	curr->exec_start = now;
705 
706 	if (entity_is_task(curr)) {
707 		struct task_struct *curtask = task_of(curr);
708 
709 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
710 		cpuacct_charge(curtask, delta_exec);
711 		account_group_exec_runtime(curtask, delta_exec);
712 	}
713 
714 	account_cfs_rq_runtime(cfs_rq, delta_exec);
715 }
716 
717 static inline void
718 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
721 }
722 
723 /*
724  * Task is being enqueued - update stats:
725  */
726 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 	/*
729 	 * Are we enqueueing a waiting task? (for current tasks
730 	 * a dequeue/enqueue event is a NOP)
731 	 */
732 	if (se != cfs_rq->curr)
733 		update_stats_wait_start(cfs_rq, se);
734 }
735 
736 static void
737 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 {
739 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
740 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
741 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
742 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
743 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
744 #ifdef CONFIG_SCHEDSTATS
745 	if (entity_is_task(se)) {
746 		trace_sched_stat_wait(task_of(se),
747 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
748 	}
749 #endif
750 	schedstat_set(se->statistics.wait_start, 0);
751 }
752 
753 static inline void
754 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 	/*
757 	 * Mark the end of the wait period if dequeueing a
758 	 * waiting task:
759 	 */
760 	if (se != cfs_rq->curr)
761 		update_stats_wait_end(cfs_rq, se);
762 }
763 
764 /*
765  * We are picking a new current task - update its stats:
766  */
767 static inline void
768 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
769 {
770 	/*
771 	 * We are starting a new run period:
772 	 */
773 	se->exec_start = rq_of(cfs_rq)->clock_task;
774 }
775 
776 /**************************************************
777  * Scheduling class queueing methods:
778  */
779 
780 #ifdef CONFIG_NUMA_BALANCING
781 /*
782  * numa task sample period in ms
783  */
784 unsigned int sysctl_numa_balancing_scan_period_min = 100;
785 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
786 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
787 
788 /* Portion of address space to scan in MB */
789 unsigned int sysctl_numa_balancing_scan_size = 256;
790 
791 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
792 unsigned int sysctl_numa_balancing_scan_delay = 1000;
793 
794 static void task_numa_placement(struct task_struct *p)
795 {
796 	int seq = ACCESS_ONCE(p->mm->numa_scan_seq);
797 
798 	if (p->numa_scan_seq == seq)
799 		return;
800 	p->numa_scan_seq = seq;
801 
802 	/* FIXME: Scheduling placement policy hints go here */
803 }
804 
805 /*
806  * Got a PROT_NONE fault for a page on @node.
807  */
808 void task_numa_fault(int node, int pages, bool migrated)
809 {
810 	struct task_struct *p = current;
811 
812 	if (!sched_feat_numa(NUMA))
813 		return;
814 
815 	/* FIXME: Allocate task-specific structure for placement policy here */
816 
817 	/*
818 	 * If pages are properly placed (did not migrate) then scan slower.
819 	 * This is reset periodically in case of phase changes
820 	 */
821         if (!migrated)
822 		p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
823 			p->numa_scan_period + jiffies_to_msecs(10));
824 
825 	task_numa_placement(p);
826 }
827 
828 static void reset_ptenuma_scan(struct task_struct *p)
829 {
830 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
831 	p->mm->numa_scan_offset = 0;
832 }
833 
834 /*
835  * The expensive part of numa migration is done from task_work context.
836  * Triggered from task_tick_numa().
837  */
838 void task_numa_work(struct callback_head *work)
839 {
840 	unsigned long migrate, next_scan, now = jiffies;
841 	struct task_struct *p = current;
842 	struct mm_struct *mm = p->mm;
843 	struct vm_area_struct *vma;
844 	unsigned long start, end;
845 	long pages;
846 
847 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
848 
849 	work->next = work; /* protect against double add */
850 	/*
851 	 * Who cares about NUMA placement when they're dying.
852 	 *
853 	 * NOTE: make sure not to dereference p->mm before this check,
854 	 * exit_task_work() happens _after_ exit_mm() so we could be called
855 	 * without p->mm even though we still had it when we enqueued this
856 	 * work.
857 	 */
858 	if (p->flags & PF_EXITING)
859 		return;
860 
861 	/*
862 	 * We do not care about task placement until a task runs on a node
863 	 * other than the first one used by the address space. This is
864 	 * largely because migrations are driven by what CPU the task
865 	 * is running on. If it's never scheduled on another node, it'll
866 	 * not migrate so why bother trapping the fault.
867 	 */
868 	if (mm->first_nid == NUMA_PTE_SCAN_INIT)
869 		mm->first_nid = numa_node_id();
870 	if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
871 		/* Are we running on a new node yet? */
872 		if (numa_node_id() == mm->first_nid &&
873 		    !sched_feat_numa(NUMA_FORCE))
874 			return;
875 
876 		mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
877 	}
878 
879 	/*
880 	 * Reset the scan period if enough time has gone by. Objective is that
881 	 * scanning will be reduced if pages are properly placed. As tasks
882 	 * can enter different phases this needs to be re-examined. Lacking
883 	 * proper tracking of reference behaviour, this blunt hammer is used.
884 	 */
885 	migrate = mm->numa_next_reset;
886 	if (time_after(now, migrate)) {
887 		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
888 		next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
889 		xchg(&mm->numa_next_reset, next_scan);
890 	}
891 
892 	/*
893 	 * Enforce maximal scan/migration frequency..
894 	 */
895 	migrate = mm->numa_next_scan;
896 	if (time_before(now, migrate))
897 		return;
898 
899 	if (p->numa_scan_period == 0)
900 		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
901 
902 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
903 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
904 		return;
905 
906 	/*
907 	 * Do not set pte_numa if the current running node is rate-limited.
908 	 * This loses statistics on the fault but if we are unwilling to
909 	 * migrate to this node, it is less likely we can do useful work
910 	 */
911 	if (migrate_ratelimited(numa_node_id()))
912 		return;
913 
914 	start = mm->numa_scan_offset;
915 	pages = sysctl_numa_balancing_scan_size;
916 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
917 	if (!pages)
918 		return;
919 
920 	down_read(&mm->mmap_sem);
921 	vma = find_vma(mm, start);
922 	if (!vma) {
923 		reset_ptenuma_scan(p);
924 		start = 0;
925 		vma = mm->mmap;
926 	}
927 	for (; vma; vma = vma->vm_next) {
928 		if (!vma_migratable(vma))
929 			continue;
930 
931 		/* Skip small VMAs. They are not likely to be of relevance */
932 		if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
933 			continue;
934 
935 		do {
936 			start = max(start, vma->vm_start);
937 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
938 			end = min(end, vma->vm_end);
939 			pages -= change_prot_numa(vma, start, end);
940 
941 			start = end;
942 			if (pages <= 0)
943 				goto out;
944 		} while (end != vma->vm_end);
945 	}
946 
947 out:
948 	/*
949 	 * It is possible to reach the end of the VMA list but the last few VMAs are
950 	 * not guaranteed to the vma_migratable. If they are not, we would find the
951 	 * !migratable VMA on the next scan but not reset the scanner to the start
952 	 * so check it now.
953 	 */
954 	if (vma)
955 		mm->numa_scan_offset = start;
956 	else
957 		reset_ptenuma_scan(p);
958 	up_read(&mm->mmap_sem);
959 }
960 
961 /*
962  * Drive the periodic memory faults..
963  */
964 void task_tick_numa(struct rq *rq, struct task_struct *curr)
965 {
966 	struct callback_head *work = &curr->numa_work;
967 	u64 period, now;
968 
969 	/*
970 	 * We don't care about NUMA placement if we don't have memory.
971 	 */
972 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
973 		return;
974 
975 	/*
976 	 * Using runtime rather than walltime has the dual advantage that
977 	 * we (mostly) drive the selection from busy threads and that the
978 	 * task needs to have done some actual work before we bother with
979 	 * NUMA placement.
980 	 */
981 	now = curr->se.sum_exec_runtime;
982 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
983 
984 	if (now - curr->node_stamp > period) {
985 		if (!curr->node_stamp)
986 			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
987 		curr->node_stamp = now;
988 
989 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
990 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
991 			task_work_add(curr, work, true);
992 		}
993 	}
994 }
995 #else
996 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
997 {
998 }
999 #endif /* CONFIG_NUMA_BALANCING */
1000 
1001 static void
1002 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1003 {
1004 	update_load_add(&cfs_rq->load, se->load.weight);
1005 	if (!parent_entity(se))
1006 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1007 #ifdef CONFIG_SMP
1008 	if (entity_is_task(se))
1009 		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1010 #endif
1011 	cfs_rq->nr_running++;
1012 }
1013 
1014 static void
1015 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1016 {
1017 	update_load_sub(&cfs_rq->load, se->load.weight);
1018 	if (!parent_entity(se))
1019 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1020 	if (entity_is_task(se))
1021 		list_del_init(&se->group_node);
1022 	cfs_rq->nr_running--;
1023 }
1024 
1025 #ifdef CONFIG_FAIR_GROUP_SCHED
1026 # ifdef CONFIG_SMP
1027 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1028 {
1029 	long tg_weight;
1030 
1031 	/*
1032 	 * Use this CPU's actual weight instead of the last load_contribution
1033 	 * to gain a more accurate current total weight. See
1034 	 * update_cfs_rq_load_contribution().
1035 	 */
1036 	tg_weight = atomic64_read(&tg->load_avg);
1037 	tg_weight -= cfs_rq->tg_load_contrib;
1038 	tg_weight += cfs_rq->load.weight;
1039 
1040 	return tg_weight;
1041 }
1042 
1043 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1044 {
1045 	long tg_weight, load, shares;
1046 
1047 	tg_weight = calc_tg_weight(tg, cfs_rq);
1048 	load = cfs_rq->load.weight;
1049 
1050 	shares = (tg->shares * load);
1051 	if (tg_weight)
1052 		shares /= tg_weight;
1053 
1054 	if (shares < MIN_SHARES)
1055 		shares = MIN_SHARES;
1056 	if (shares > tg->shares)
1057 		shares = tg->shares;
1058 
1059 	return shares;
1060 }
1061 # else /* CONFIG_SMP */
1062 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1063 {
1064 	return tg->shares;
1065 }
1066 # endif /* CONFIG_SMP */
1067 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1068 			    unsigned long weight)
1069 {
1070 	if (se->on_rq) {
1071 		/* commit outstanding execution time */
1072 		if (cfs_rq->curr == se)
1073 			update_curr(cfs_rq);
1074 		account_entity_dequeue(cfs_rq, se);
1075 	}
1076 
1077 	update_load_set(&se->load, weight);
1078 
1079 	if (se->on_rq)
1080 		account_entity_enqueue(cfs_rq, se);
1081 }
1082 
1083 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1084 
1085 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1086 {
1087 	struct task_group *tg;
1088 	struct sched_entity *se;
1089 	long shares;
1090 
1091 	tg = cfs_rq->tg;
1092 	se = tg->se[cpu_of(rq_of(cfs_rq))];
1093 	if (!se || throttled_hierarchy(cfs_rq))
1094 		return;
1095 #ifndef CONFIG_SMP
1096 	if (likely(se->load.weight == tg->shares))
1097 		return;
1098 #endif
1099 	shares = calc_cfs_shares(cfs_rq, tg);
1100 
1101 	reweight_entity(cfs_rq_of(se), se, shares);
1102 }
1103 #else /* CONFIG_FAIR_GROUP_SCHED */
1104 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1105 {
1106 }
1107 #endif /* CONFIG_FAIR_GROUP_SCHED */
1108 
1109 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1110 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1111 /*
1112  * We choose a half-life close to 1 scheduling period.
1113  * Note: The tables below are dependent on this value.
1114  */
1115 #define LOAD_AVG_PERIOD 32
1116 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1117 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1118 
1119 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1120 static const u32 runnable_avg_yN_inv[] = {
1121 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1122 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1123 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1124 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1125 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1126 	0x85aac367, 0x82cd8698,
1127 };
1128 
1129 /*
1130  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
1131  * over-estimates when re-combining.
1132  */
1133 static const u32 runnable_avg_yN_sum[] = {
1134 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1135 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1136 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1137 };
1138 
1139 /*
1140  * Approximate:
1141  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
1142  */
1143 static __always_inline u64 decay_load(u64 val, u64 n)
1144 {
1145 	unsigned int local_n;
1146 
1147 	if (!n)
1148 		return val;
1149 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1150 		return 0;
1151 
1152 	/* after bounds checking we can collapse to 32-bit */
1153 	local_n = n;
1154 
1155 	/*
1156 	 * As y^PERIOD = 1/2, we can combine
1157 	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1158 	 * With a look-up table which covers k^n (n<PERIOD)
1159 	 *
1160 	 * To achieve constant time decay_load.
1161 	 */
1162 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1163 		val >>= local_n / LOAD_AVG_PERIOD;
1164 		local_n %= LOAD_AVG_PERIOD;
1165 	}
1166 
1167 	val *= runnable_avg_yN_inv[local_n];
1168 	/* We don't use SRR here since we always want to round down. */
1169 	return val >> 32;
1170 }
1171 
1172 /*
1173  * For updates fully spanning n periods, the contribution to runnable
1174  * average will be: \Sum 1024*y^n
1175  *
1176  * We can compute this reasonably efficiently by combining:
1177  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
1178  */
1179 static u32 __compute_runnable_contrib(u64 n)
1180 {
1181 	u32 contrib = 0;
1182 
1183 	if (likely(n <= LOAD_AVG_PERIOD))
1184 		return runnable_avg_yN_sum[n];
1185 	else if (unlikely(n >= LOAD_AVG_MAX_N))
1186 		return LOAD_AVG_MAX;
1187 
1188 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1189 	do {
1190 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1191 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1192 
1193 		n -= LOAD_AVG_PERIOD;
1194 	} while (n > LOAD_AVG_PERIOD);
1195 
1196 	contrib = decay_load(contrib, n);
1197 	return contrib + runnable_avg_yN_sum[n];
1198 }
1199 
1200 /*
1201  * We can represent the historical contribution to runnable average as the
1202  * coefficients of a geometric series.  To do this we sub-divide our runnable
1203  * history into segments of approximately 1ms (1024us); label the segment that
1204  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1205  *
1206  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1207  *      p0            p1           p2
1208  *     (now)       (~1ms ago)  (~2ms ago)
1209  *
1210  * Let u_i denote the fraction of p_i that the entity was runnable.
1211  *
1212  * We then designate the fractions u_i as our co-efficients, yielding the
1213  * following representation of historical load:
1214  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1215  *
1216  * We choose y based on the with of a reasonably scheduling period, fixing:
1217  *   y^32 = 0.5
1218  *
1219  * This means that the contribution to load ~32ms ago (u_32) will be weighted
1220  * approximately half as much as the contribution to load within the last ms
1221  * (u_0).
1222  *
1223  * When a period "rolls over" and we have new u_0`, multiplying the previous
1224  * sum again by y is sufficient to update:
1225  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1226  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1227  */
1228 static __always_inline int __update_entity_runnable_avg(u64 now,
1229 							struct sched_avg *sa,
1230 							int runnable)
1231 {
1232 	u64 delta, periods;
1233 	u32 runnable_contrib;
1234 	int delta_w, decayed = 0;
1235 
1236 	delta = now - sa->last_runnable_update;
1237 	/*
1238 	 * This should only happen when time goes backwards, which it
1239 	 * unfortunately does during sched clock init when we swap over to TSC.
1240 	 */
1241 	if ((s64)delta < 0) {
1242 		sa->last_runnable_update = now;
1243 		return 0;
1244 	}
1245 
1246 	/*
1247 	 * Use 1024ns as the unit of measurement since it's a reasonable
1248 	 * approximation of 1us and fast to compute.
1249 	 */
1250 	delta >>= 10;
1251 	if (!delta)
1252 		return 0;
1253 	sa->last_runnable_update = now;
1254 
1255 	/* delta_w is the amount already accumulated against our next period */
1256 	delta_w = sa->runnable_avg_period % 1024;
1257 	if (delta + delta_w >= 1024) {
1258 		/* period roll-over */
1259 		decayed = 1;
1260 
1261 		/*
1262 		 * Now that we know we're crossing a period boundary, figure
1263 		 * out how much from delta we need to complete the current
1264 		 * period and accrue it.
1265 		 */
1266 		delta_w = 1024 - delta_w;
1267 		if (runnable)
1268 			sa->runnable_avg_sum += delta_w;
1269 		sa->runnable_avg_period += delta_w;
1270 
1271 		delta -= delta_w;
1272 
1273 		/* Figure out how many additional periods this update spans */
1274 		periods = delta / 1024;
1275 		delta %= 1024;
1276 
1277 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1278 						  periods + 1);
1279 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1280 						     periods + 1);
1281 
1282 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
1283 		runnable_contrib = __compute_runnable_contrib(periods);
1284 		if (runnable)
1285 			sa->runnable_avg_sum += runnable_contrib;
1286 		sa->runnable_avg_period += runnable_contrib;
1287 	}
1288 
1289 	/* Remainder of delta accrued against u_0` */
1290 	if (runnable)
1291 		sa->runnable_avg_sum += delta;
1292 	sa->runnable_avg_period += delta;
1293 
1294 	return decayed;
1295 }
1296 
1297 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1298 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1299 {
1300 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1301 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
1302 
1303 	decays -= se->avg.decay_count;
1304 	if (!decays)
1305 		return 0;
1306 
1307 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1308 	se->avg.decay_count = 0;
1309 
1310 	return decays;
1311 }
1312 
1313 #ifdef CONFIG_FAIR_GROUP_SCHED
1314 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1315 						 int force_update)
1316 {
1317 	struct task_group *tg = cfs_rq->tg;
1318 	s64 tg_contrib;
1319 
1320 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1321 	tg_contrib -= cfs_rq->tg_load_contrib;
1322 
1323 	if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1324 		atomic64_add(tg_contrib, &tg->load_avg);
1325 		cfs_rq->tg_load_contrib += tg_contrib;
1326 	}
1327 }
1328 
1329 /*
1330  * Aggregate cfs_rq runnable averages into an equivalent task_group
1331  * representation for computing load contributions.
1332  */
1333 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1334 						  struct cfs_rq *cfs_rq)
1335 {
1336 	struct task_group *tg = cfs_rq->tg;
1337 	long contrib;
1338 
1339 	/* The fraction of a cpu used by this cfs_rq */
1340 	contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1341 			  sa->runnable_avg_period + 1);
1342 	contrib -= cfs_rq->tg_runnable_contrib;
1343 
1344 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1345 		atomic_add(contrib, &tg->runnable_avg);
1346 		cfs_rq->tg_runnable_contrib += contrib;
1347 	}
1348 }
1349 
1350 static inline void __update_group_entity_contrib(struct sched_entity *se)
1351 {
1352 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
1353 	struct task_group *tg = cfs_rq->tg;
1354 	int runnable_avg;
1355 
1356 	u64 contrib;
1357 
1358 	contrib = cfs_rq->tg_load_contrib * tg->shares;
1359 	se->avg.load_avg_contrib = div64_u64(contrib,
1360 					     atomic64_read(&tg->load_avg) + 1);
1361 
1362 	/*
1363 	 * For group entities we need to compute a correction term in the case
1364 	 * that they are consuming <1 cpu so that we would contribute the same
1365 	 * load as a task of equal weight.
1366 	 *
1367 	 * Explicitly co-ordinating this measurement would be expensive, but
1368 	 * fortunately the sum of each cpus contribution forms a usable
1369 	 * lower-bound on the true value.
1370 	 *
1371 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
1372 	 * (and the sum represents true value) or they are disjoint and we are
1373 	 * understating by the aggregate of their overlap.
1374 	 *
1375 	 * Extending this to N cpus, for a given overlap, the maximum amount we
1376 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1377 	 * cpus that overlap for this interval and w_i is the interval width.
1378 	 *
1379 	 * On a small machine; the first term is well-bounded which bounds the
1380 	 * total error since w_i is a subset of the period.  Whereas on a
1381 	 * larger machine, while this first term can be larger, if w_i is the
1382 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
1383 	 * our upper bound of 1-cpu.
1384 	 */
1385 	runnable_avg = atomic_read(&tg->runnable_avg);
1386 	if (runnable_avg < NICE_0_LOAD) {
1387 		se->avg.load_avg_contrib *= runnable_avg;
1388 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1389 	}
1390 }
1391 #else
1392 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1393 						 int force_update) {}
1394 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1395 						  struct cfs_rq *cfs_rq) {}
1396 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1397 #endif
1398 
1399 static inline void __update_task_entity_contrib(struct sched_entity *se)
1400 {
1401 	u32 contrib;
1402 
1403 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1404 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1405 	contrib /= (se->avg.runnable_avg_period + 1);
1406 	se->avg.load_avg_contrib = scale_load(contrib);
1407 }
1408 
1409 /* Compute the current contribution to load_avg by se, return any delta */
1410 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1411 {
1412 	long old_contrib = se->avg.load_avg_contrib;
1413 
1414 	if (entity_is_task(se)) {
1415 		__update_task_entity_contrib(se);
1416 	} else {
1417 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1418 		__update_group_entity_contrib(se);
1419 	}
1420 
1421 	return se->avg.load_avg_contrib - old_contrib;
1422 }
1423 
1424 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1425 						 long load_contrib)
1426 {
1427 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
1428 		cfs_rq->blocked_load_avg -= load_contrib;
1429 	else
1430 		cfs_rq->blocked_load_avg = 0;
1431 }
1432 
1433 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1434 
1435 /* Update a sched_entity's runnable average */
1436 static inline void update_entity_load_avg(struct sched_entity *se,
1437 					  int update_cfs_rq)
1438 {
1439 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1440 	long contrib_delta;
1441 	u64 now;
1442 
1443 	/*
1444 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
1445 	 * case they are the parent of a throttled hierarchy.
1446 	 */
1447 	if (entity_is_task(se))
1448 		now = cfs_rq_clock_task(cfs_rq);
1449 	else
1450 		now = cfs_rq_clock_task(group_cfs_rq(se));
1451 
1452 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1453 		return;
1454 
1455 	contrib_delta = __update_entity_load_avg_contrib(se);
1456 
1457 	if (!update_cfs_rq)
1458 		return;
1459 
1460 	if (se->on_rq)
1461 		cfs_rq->runnable_load_avg += contrib_delta;
1462 	else
1463 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1464 }
1465 
1466 /*
1467  * Decay the load contributed by all blocked children and account this so that
1468  * their contribution may appropriately discounted when they wake up.
1469  */
1470 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1471 {
1472 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1473 	u64 decays;
1474 
1475 	decays = now - cfs_rq->last_decay;
1476 	if (!decays && !force_update)
1477 		return;
1478 
1479 	if (atomic64_read(&cfs_rq->removed_load)) {
1480 		u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1481 		subtract_blocked_load_contrib(cfs_rq, removed_load);
1482 	}
1483 
1484 	if (decays) {
1485 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1486 						      decays);
1487 		atomic64_add(decays, &cfs_rq->decay_counter);
1488 		cfs_rq->last_decay = now;
1489 	}
1490 
1491 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1492 }
1493 
1494 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1495 {
1496 	__update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1497 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
1498 }
1499 
1500 /* Add the load generated by se into cfs_rq's child load-average */
1501 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1502 						  struct sched_entity *se,
1503 						  int wakeup)
1504 {
1505 	/*
1506 	 * We track migrations using entity decay_count <= 0, on a wake-up
1507 	 * migration we use a negative decay count to track the remote decays
1508 	 * accumulated while sleeping.
1509 	 */
1510 	if (unlikely(se->avg.decay_count <= 0)) {
1511 		se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1512 		if (se->avg.decay_count) {
1513 			/*
1514 			 * In a wake-up migration we have to approximate the
1515 			 * time sleeping.  This is because we can't synchronize
1516 			 * clock_task between the two cpus, and it is not
1517 			 * guaranteed to be read-safe.  Instead, we can
1518 			 * approximate this using our carried decays, which are
1519 			 * explicitly atomically readable.
1520 			 */
1521 			se->avg.last_runnable_update -= (-se->avg.decay_count)
1522 							<< 20;
1523 			update_entity_load_avg(se, 0);
1524 			/* Indicate that we're now synchronized and on-rq */
1525 			se->avg.decay_count = 0;
1526 		}
1527 		wakeup = 0;
1528 	} else {
1529 		__synchronize_entity_decay(se);
1530 	}
1531 
1532 	/* migrated tasks did not contribute to our blocked load */
1533 	if (wakeup) {
1534 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1535 		update_entity_load_avg(se, 0);
1536 	}
1537 
1538 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1539 	/* we force update consideration on load-balancer moves */
1540 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1541 }
1542 
1543 /*
1544  * Remove se's load from this cfs_rq child load-average, if the entity is
1545  * transitioning to a blocked state we track its projected decay using
1546  * blocked_load_avg.
1547  */
1548 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1549 						  struct sched_entity *se,
1550 						  int sleep)
1551 {
1552 	update_entity_load_avg(se, 1);
1553 	/* we force update consideration on load-balancer moves */
1554 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
1555 
1556 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1557 	if (sleep) {
1558 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1559 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1560 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
1561 }
1562 #else
1563 static inline void update_entity_load_avg(struct sched_entity *se,
1564 					  int update_cfs_rq) {}
1565 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1566 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1567 					   struct sched_entity *se,
1568 					   int wakeup) {}
1569 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1570 					   struct sched_entity *se,
1571 					   int sleep) {}
1572 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1573 					      int force_update) {}
1574 #endif
1575 
1576 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1577 {
1578 #ifdef CONFIG_SCHEDSTATS
1579 	struct task_struct *tsk = NULL;
1580 
1581 	if (entity_is_task(se))
1582 		tsk = task_of(se);
1583 
1584 	if (se->statistics.sleep_start) {
1585 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1586 
1587 		if ((s64)delta < 0)
1588 			delta = 0;
1589 
1590 		if (unlikely(delta > se->statistics.sleep_max))
1591 			se->statistics.sleep_max = delta;
1592 
1593 		se->statistics.sleep_start = 0;
1594 		se->statistics.sum_sleep_runtime += delta;
1595 
1596 		if (tsk) {
1597 			account_scheduler_latency(tsk, delta >> 10, 1);
1598 			trace_sched_stat_sleep(tsk, delta);
1599 		}
1600 	}
1601 	if (se->statistics.block_start) {
1602 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1603 
1604 		if ((s64)delta < 0)
1605 			delta = 0;
1606 
1607 		if (unlikely(delta > se->statistics.block_max))
1608 			se->statistics.block_max = delta;
1609 
1610 		se->statistics.block_start = 0;
1611 		se->statistics.sum_sleep_runtime += delta;
1612 
1613 		if (tsk) {
1614 			if (tsk->in_iowait) {
1615 				se->statistics.iowait_sum += delta;
1616 				se->statistics.iowait_count++;
1617 				trace_sched_stat_iowait(tsk, delta);
1618 			}
1619 
1620 			trace_sched_stat_blocked(tsk, delta);
1621 
1622 			/*
1623 			 * Blocking time is in units of nanosecs, so shift by
1624 			 * 20 to get a milliseconds-range estimation of the
1625 			 * amount of time that the task spent sleeping:
1626 			 */
1627 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1628 				profile_hits(SLEEP_PROFILING,
1629 						(void *)get_wchan(tsk),
1630 						delta >> 20);
1631 			}
1632 			account_scheduler_latency(tsk, delta >> 10, 0);
1633 		}
1634 	}
1635 #endif
1636 }
1637 
1638 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1639 {
1640 #ifdef CONFIG_SCHED_DEBUG
1641 	s64 d = se->vruntime - cfs_rq->min_vruntime;
1642 
1643 	if (d < 0)
1644 		d = -d;
1645 
1646 	if (d > 3*sysctl_sched_latency)
1647 		schedstat_inc(cfs_rq, nr_spread_over);
1648 #endif
1649 }
1650 
1651 static void
1652 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1653 {
1654 	u64 vruntime = cfs_rq->min_vruntime;
1655 
1656 	/*
1657 	 * The 'current' period is already promised to the current tasks,
1658 	 * however the extra weight of the new task will slow them down a
1659 	 * little, place the new task so that it fits in the slot that
1660 	 * stays open at the end.
1661 	 */
1662 	if (initial && sched_feat(START_DEBIT))
1663 		vruntime += sched_vslice(cfs_rq, se);
1664 
1665 	/* sleeps up to a single latency don't count. */
1666 	if (!initial) {
1667 		unsigned long thresh = sysctl_sched_latency;
1668 
1669 		/*
1670 		 * Halve their sleep time's effect, to allow
1671 		 * for a gentler effect of sleepers:
1672 		 */
1673 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
1674 			thresh >>= 1;
1675 
1676 		vruntime -= thresh;
1677 	}
1678 
1679 	/* ensure we never gain time by being placed backwards. */
1680 	vruntime = max_vruntime(se->vruntime, vruntime);
1681 
1682 	se->vruntime = vruntime;
1683 }
1684 
1685 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1686 
1687 static void
1688 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1689 {
1690 	/*
1691 	 * Update the normalized vruntime before updating min_vruntime
1692 	 * through callig update_curr().
1693 	 */
1694 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1695 		se->vruntime += cfs_rq->min_vruntime;
1696 
1697 	/*
1698 	 * Update run-time statistics of the 'current'.
1699 	 */
1700 	update_curr(cfs_rq);
1701 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1702 	account_entity_enqueue(cfs_rq, se);
1703 	update_cfs_shares(cfs_rq);
1704 
1705 	if (flags & ENQUEUE_WAKEUP) {
1706 		place_entity(cfs_rq, se, 0);
1707 		enqueue_sleeper(cfs_rq, se);
1708 	}
1709 
1710 	update_stats_enqueue(cfs_rq, se);
1711 	check_spread(cfs_rq, se);
1712 	if (se != cfs_rq->curr)
1713 		__enqueue_entity(cfs_rq, se);
1714 	se->on_rq = 1;
1715 
1716 	if (cfs_rq->nr_running == 1) {
1717 		list_add_leaf_cfs_rq(cfs_rq);
1718 		check_enqueue_throttle(cfs_rq);
1719 	}
1720 }
1721 
1722 static void __clear_buddies_last(struct sched_entity *se)
1723 {
1724 	for_each_sched_entity(se) {
1725 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1726 		if (cfs_rq->last == se)
1727 			cfs_rq->last = NULL;
1728 		else
1729 			break;
1730 	}
1731 }
1732 
1733 static void __clear_buddies_next(struct sched_entity *se)
1734 {
1735 	for_each_sched_entity(se) {
1736 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1737 		if (cfs_rq->next == se)
1738 			cfs_rq->next = NULL;
1739 		else
1740 			break;
1741 	}
1742 }
1743 
1744 static void __clear_buddies_skip(struct sched_entity *se)
1745 {
1746 	for_each_sched_entity(se) {
1747 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1748 		if (cfs_rq->skip == se)
1749 			cfs_rq->skip = NULL;
1750 		else
1751 			break;
1752 	}
1753 }
1754 
1755 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1756 {
1757 	if (cfs_rq->last == se)
1758 		__clear_buddies_last(se);
1759 
1760 	if (cfs_rq->next == se)
1761 		__clear_buddies_next(se);
1762 
1763 	if (cfs_rq->skip == se)
1764 		__clear_buddies_skip(se);
1765 }
1766 
1767 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1768 
1769 static void
1770 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1771 {
1772 	/*
1773 	 * Update run-time statistics of the 'current'.
1774 	 */
1775 	update_curr(cfs_rq);
1776 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1777 
1778 	update_stats_dequeue(cfs_rq, se);
1779 	if (flags & DEQUEUE_SLEEP) {
1780 #ifdef CONFIG_SCHEDSTATS
1781 		if (entity_is_task(se)) {
1782 			struct task_struct *tsk = task_of(se);
1783 
1784 			if (tsk->state & TASK_INTERRUPTIBLE)
1785 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1786 			if (tsk->state & TASK_UNINTERRUPTIBLE)
1787 				se->statistics.block_start = rq_of(cfs_rq)->clock;
1788 		}
1789 #endif
1790 	}
1791 
1792 	clear_buddies(cfs_rq, se);
1793 
1794 	if (se != cfs_rq->curr)
1795 		__dequeue_entity(cfs_rq, se);
1796 	se->on_rq = 0;
1797 	account_entity_dequeue(cfs_rq, se);
1798 
1799 	/*
1800 	 * Normalize the entity after updating the min_vruntime because the
1801 	 * update can refer to the ->curr item and we need to reflect this
1802 	 * movement in our normalized position.
1803 	 */
1804 	if (!(flags & DEQUEUE_SLEEP))
1805 		se->vruntime -= cfs_rq->min_vruntime;
1806 
1807 	/* return excess runtime on last dequeue */
1808 	return_cfs_rq_runtime(cfs_rq);
1809 
1810 	update_min_vruntime(cfs_rq);
1811 	update_cfs_shares(cfs_rq);
1812 }
1813 
1814 /*
1815  * Preempt the current task with a newly woken task if needed:
1816  */
1817 static void
1818 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1819 {
1820 	unsigned long ideal_runtime, delta_exec;
1821 	struct sched_entity *se;
1822 	s64 delta;
1823 
1824 	ideal_runtime = sched_slice(cfs_rq, curr);
1825 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1826 	if (delta_exec > ideal_runtime) {
1827 		resched_task(rq_of(cfs_rq)->curr);
1828 		/*
1829 		 * The current task ran long enough, ensure it doesn't get
1830 		 * re-elected due to buddy favours.
1831 		 */
1832 		clear_buddies(cfs_rq, curr);
1833 		return;
1834 	}
1835 
1836 	/*
1837 	 * Ensure that a task that missed wakeup preemption by a
1838 	 * narrow margin doesn't have to wait for a full slice.
1839 	 * This also mitigates buddy induced latencies under load.
1840 	 */
1841 	if (delta_exec < sysctl_sched_min_granularity)
1842 		return;
1843 
1844 	se = __pick_first_entity(cfs_rq);
1845 	delta = curr->vruntime - se->vruntime;
1846 
1847 	if (delta < 0)
1848 		return;
1849 
1850 	if (delta > ideal_runtime)
1851 		resched_task(rq_of(cfs_rq)->curr);
1852 }
1853 
1854 static void
1855 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1856 {
1857 	/* 'current' is not kept within the tree. */
1858 	if (se->on_rq) {
1859 		/*
1860 		 * Any task has to be enqueued before it get to execute on
1861 		 * a CPU. So account for the time it spent waiting on the
1862 		 * runqueue.
1863 		 */
1864 		update_stats_wait_end(cfs_rq, se);
1865 		__dequeue_entity(cfs_rq, se);
1866 	}
1867 
1868 	update_stats_curr_start(cfs_rq, se);
1869 	cfs_rq->curr = se;
1870 #ifdef CONFIG_SCHEDSTATS
1871 	/*
1872 	 * Track our maximum slice length, if the CPU's load is at
1873 	 * least twice that of our own weight (i.e. dont track it
1874 	 * when there are only lesser-weight tasks around):
1875 	 */
1876 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1877 		se->statistics.slice_max = max(se->statistics.slice_max,
1878 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1879 	}
1880 #endif
1881 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1882 }
1883 
1884 static int
1885 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1886 
1887 /*
1888  * Pick the next process, keeping these things in mind, in this order:
1889  * 1) keep things fair between processes/task groups
1890  * 2) pick the "next" process, since someone really wants that to run
1891  * 3) pick the "last" process, for cache locality
1892  * 4) do not run the "skip" process, if something else is available
1893  */
1894 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1895 {
1896 	struct sched_entity *se = __pick_first_entity(cfs_rq);
1897 	struct sched_entity *left = se;
1898 
1899 	/*
1900 	 * Avoid running the skip buddy, if running something else can
1901 	 * be done without getting too unfair.
1902 	 */
1903 	if (cfs_rq->skip == se) {
1904 		struct sched_entity *second = __pick_next_entity(se);
1905 		if (second && wakeup_preempt_entity(second, left) < 1)
1906 			se = second;
1907 	}
1908 
1909 	/*
1910 	 * Prefer last buddy, try to return the CPU to a preempted task.
1911 	 */
1912 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1913 		se = cfs_rq->last;
1914 
1915 	/*
1916 	 * Someone really wants this to run. If it's not unfair, run it.
1917 	 */
1918 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1919 		se = cfs_rq->next;
1920 
1921 	clear_buddies(cfs_rq, se);
1922 
1923 	return se;
1924 }
1925 
1926 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1927 
1928 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1929 {
1930 	/*
1931 	 * If still on the runqueue then deactivate_task()
1932 	 * was not called and update_curr() has to be done:
1933 	 */
1934 	if (prev->on_rq)
1935 		update_curr(cfs_rq);
1936 
1937 	/* throttle cfs_rqs exceeding runtime */
1938 	check_cfs_rq_runtime(cfs_rq);
1939 
1940 	check_spread(cfs_rq, prev);
1941 	if (prev->on_rq) {
1942 		update_stats_wait_start(cfs_rq, prev);
1943 		/* Put 'current' back into the tree. */
1944 		__enqueue_entity(cfs_rq, prev);
1945 		/* in !on_rq case, update occurred at dequeue */
1946 		update_entity_load_avg(prev, 1);
1947 	}
1948 	cfs_rq->curr = NULL;
1949 }
1950 
1951 static void
1952 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1953 {
1954 	/*
1955 	 * Update run-time statistics of the 'current'.
1956 	 */
1957 	update_curr(cfs_rq);
1958 
1959 	/*
1960 	 * Ensure that runnable average is periodically updated.
1961 	 */
1962 	update_entity_load_avg(curr, 1);
1963 	update_cfs_rq_blocked_load(cfs_rq, 1);
1964 
1965 #ifdef CONFIG_SCHED_HRTICK
1966 	/*
1967 	 * queued ticks are scheduled to match the slice, so don't bother
1968 	 * validating it and just reschedule.
1969 	 */
1970 	if (queued) {
1971 		resched_task(rq_of(cfs_rq)->curr);
1972 		return;
1973 	}
1974 	/*
1975 	 * don't let the period tick interfere with the hrtick preemption
1976 	 */
1977 	if (!sched_feat(DOUBLE_TICK) &&
1978 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1979 		return;
1980 #endif
1981 
1982 	if (cfs_rq->nr_running > 1)
1983 		check_preempt_tick(cfs_rq, curr);
1984 }
1985 
1986 
1987 /**************************************************
1988  * CFS bandwidth control machinery
1989  */
1990 
1991 #ifdef CONFIG_CFS_BANDWIDTH
1992 
1993 #ifdef HAVE_JUMP_LABEL
1994 static struct static_key __cfs_bandwidth_used;
1995 
1996 static inline bool cfs_bandwidth_used(void)
1997 {
1998 	return static_key_false(&__cfs_bandwidth_used);
1999 }
2000 
2001 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2002 {
2003 	/* only need to count groups transitioning between enabled/!enabled */
2004 	if (enabled && !was_enabled)
2005 		static_key_slow_inc(&__cfs_bandwidth_used);
2006 	else if (!enabled && was_enabled)
2007 		static_key_slow_dec(&__cfs_bandwidth_used);
2008 }
2009 #else /* HAVE_JUMP_LABEL */
2010 static bool cfs_bandwidth_used(void)
2011 {
2012 	return true;
2013 }
2014 
2015 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2016 #endif /* HAVE_JUMP_LABEL */
2017 
2018 /*
2019  * default period for cfs group bandwidth.
2020  * default: 0.1s, units: nanoseconds
2021  */
2022 static inline u64 default_cfs_period(void)
2023 {
2024 	return 100000000ULL;
2025 }
2026 
2027 static inline u64 sched_cfs_bandwidth_slice(void)
2028 {
2029 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2030 }
2031 
2032 /*
2033  * Replenish runtime according to assigned quota and update expiration time.
2034  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2035  * additional synchronization around rq->lock.
2036  *
2037  * requires cfs_b->lock
2038  */
2039 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2040 {
2041 	u64 now;
2042 
2043 	if (cfs_b->quota == RUNTIME_INF)
2044 		return;
2045 
2046 	now = sched_clock_cpu(smp_processor_id());
2047 	cfs_b->runtime = cfs_b->quota;
2048 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2049 }
2050 
2051 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2052 {
2053 	return &tg->cfs_bandwidth;
2054 }
2055 
2056 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2057 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2058 {
2059 	if (unlikely(cfs_rq->throttle_count))
2060 		return cfs_rq->throttled_clock_task;
2061 
2062 	return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2063 }
2064 
2065 /* returns 0 on failure to allocate runtime */
2066 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2067 {
2068 	struct task_group *tg = cfs_rq->tg;
2069 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2070 	u64 amount = 0, min_amount, expires;
2071 
2072 	/* note: this is a positive sum as runtime_remaining <= 0 */
2073 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2074 
2075 	raw_spin_lock(&cfs_b->lock);
2076 	if (cfs_b->quota == RUNTIME_INF)
2077 		amount = min_amount;
2078 	else {
2079 		/*
2080 		 * If the bandwidth pool has become inactive, then at least one
2081 		 * period must have elapsed since the last consumption.
2082 		 * Refresh the global state and ensure bandwidth timer becomes
2083 		 * active.
2084 		 */
2085 		if (!cfs_b->timer_active) {
2086 			__refill_cfs_bandwidth_runtime(cfs_b);
2087 			__start_cfs_bandwidth(cfs_b);
2088 		}
2089 
2090 		if (cfs_b->runtime > 0) {
2091 			amount = min(cfs_b->runtime, min_amount);
2092 			cfs_b->runtime -= amount;
2093 			cfs_b->idle = 0;
2094 		}
2095 	}
2096 	expires = cfs_b->runtime_expires;
2097 	raw_spin_unlock(&cfs_b->lock);
2098 
2099 	cfs_rq->runtime_remaining += amount;
2100 	/*
2101 	 * we may have advanced our local expiration to account for allowed
2102 	 * spread between our sched_clock and the one on which runtime was
2103 	 * issued.
2104 	 */
2105 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2106 		cfs_rq->runtime_expires = expires;
2107 
2108 	return cfs_rq->runtime_remaining > 0;
2109 }
2110 
2111 /*
2112  * Note: This depends on the synchronization provided by sched_clock and the
2113  * fact that rq->clock snapshots this value.
2114  */
2115 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2116 {
2117 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2118 	struct rq *rq = rq_of(cfs_rq);
2119 
2120 	/* if the deadline is ahead of our clock, nothing to do */
2121 	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2122 		return;
2123 
2124 	if (cfs_rq->runtime_remaining < 0)
2125 		return;
2126 
2127 	/*
2128 	 * If the local deadline has passed we have to consider the
2129 	 * possibility that our sched_clock is 'fast' and the global deadline
2130 	 * has not truly expired.
2131 	 *
2132 	 * Fortunately we can check determine whether this the case by checking
2133 	 * whether the global deadline has advanced.
2134 	 */
2135 
2136 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2137 		/* extend local deadline, drift is bounded above by 2 ticks */
2138 		cfs_rq->runtime_expires += TICK_NSEC;
2139 	} else {
2140 		/* global deadline is ahead, expiration has passed */
2141 		cfs_rq->runtime_remaining = 0;
2142 	}
2143 }
2144 
2145 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2146 				     unsigned long delta_exec)
2147 {
2148 	/* dock delta_exec before expiring quota (as it could span periods) */
2149 	cfs_rq->runtime_remaining -= delta_exec;
2150 	expire_cfs_rq_runtime(cfs_rq);
2151 
2152 	if (likely(cfs_rq->runtime_remaining > 0))
2153 		return;
2154 
2155 	/*
2156 	 * if we're unable to extend our runtime we resched so that the active
2157 	 * hierarchy can be throttled
2158 	 */
2159 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2160 		resched_task(rq_of(cfs_rq)->curr);
2161 }
2162 
2163 static __always_inline
2164 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2165 {
2166 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2167 		return;
2168 
2169 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
2170 }
2171 
2172 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2173 {
2174 	return cfs_bandwidth_used() && cfs_rq->throttled;
2175 }
2176 
2177 /* check whether cfs_rq, or any parent, is throttled */
2178 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2179 {
2180 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
2181 }
2182 
2183 /*
2184  * Ensure that neither of the group entities corresponding to src_cpu or
2185  * dest_cpu are members of a throttled hierarchy when performing group
2186  * load-balance operations.
2187  */
2188 static inline int throttled_lb_pair(struct task_group *tg,
2189 				    int src_cpu, int dest_cpu)
2190 {
2191 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2192 
2193 	src_cfs_rq = tg->cfs_rq[src_cpu];
2194 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
2195 
2196 	return throttled_hierarchy(src_cfs_rq) ||
2197 	       throttled_hierarchy(dest_cfs_rq);
2198 }
2199 
2200 /* updated child weight may affect parent so we have to do this bottom up */
2201 static int tg_unthrottle_up(struct task_group *tg, void *data)
2202 {
2203 	struct rq *rq = data;
2204 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2205 
2206 	cfs_rq->throttle_count--;
2207 #ifdef CONFIG_SMP
2208 	if (!cfs_rq->throttle_count) {
2209 		/* adjust cfs_rq_clock_task() */
2210 		cfs_rq->throttled_clock_task_time += rq->clock_task -
2211 					     cfs_rq->throttled_clock_task;
2212 	}
2213 #endif
2214 
2215 	return 0;
2216 }
2217 
2218 static int tg_throttle_down(struct task_group *tg, void *data)
2219 {
2220 	struct rq *rq = data;
2221 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2222 
2223 	/* group is entering throttled state, stop time */
2224 	if (!cfs_rq->throttle_count)
2225 		cfs_rq->throttled_clock_task = rq->clock_task;
2226 	cfs_rq->throttle_count++;
2227 
2228 	return 0;
2229 }
2230 
2231 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2232 {
2233 	struct rq *rq = rq_of(cfs_rq);
2234 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2235 	struct sched_entity *se;
2236 	long task_delta, dequeue = 1;
2237 
2238 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2239 
2240 	/* freeze hierarchy runnable averages while throttled */
2241 	rcu_read_lock();
2242 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2243 	rcu_read_unlock();
2244 
2245 	task_delta = cfs_rq->h_nr_running;
2246 	for_each_sched_entity(se) {
2247 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2248 		/* throttled entity or throttle-on-deactivate */
2249 		if (!se->on_rq)
2250 			break;
2251 
2252 		if (dequeue)
2253 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2254 		qcfs_rq->h_nr_running -= task_delta;
2255 
2256 		if (qcfs_rq->load.weight)
2257 			dequeue = 0;
2258 	}
2259 
2260 	if (!se)
2261 		rq->nr_running -= task_delta;
2262 
2263 	cfs_rq->throttled = 1;
2264 	cfs_rq->throttled_clock = rq->clock;
2265 	raw_spin_lock(&cfs_b->lock);
2266 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2267 	raw_spin_unlock(&cfs_b->lock);
2268 }
2269 
2270 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2271 {
2272 	struct rq *rq = rq_of(cfs_rq);
2273 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2274 	struct sched_entity *se;
2275 	int enqueue = 1;
2276 	long task_delta;
2277 
2278 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2279 
2280 	cfs_rq->throttled = 0;
2281 	raw_spin_lock(&cfs_b->lock);
2282 	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2283 	list_del_rcu(&cfs_rq->throttled_list);
2284 	raw_spin_unlock(&cfs_b->lock);
2285 
2286 	update_rq_clock(rq);
2287 	/* update hierarchical throttle state */
2288 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2289 
2290 	if (!cfs_rq->load.weight)
2291 		return;
2292 
2293 	task_delta = cfs_rq->h_nr_running;
2294 	for_each_sched_entity(se) {
2295 		if (se->on_rq)
2296 			enqueue = 0;
2297 
2298 		cfs_rq = cfs_rq_of(se);
2299 		if (enqueue)
2300 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2301 		cfs_rq->h_nr_running += task_delta;
2302 
2303 		if (cfs_rq_throttled(cfs_rq))
2304 			break;
2305 	}
2306 
2307 	if (!se)
2308 		rq->nr_running += task_delta;
2309 
2310 	/* determine whether we need to wake up potentially idle cpu */
2311 	if (rq->curr == rq->idle && rq->cfs.nr_running)
2312 		resched_task(rq->curr);
2313 }
2314 
2315 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2316 		u64 remaining, u64 expires)
2317 {
2318 	struct cfs_rq *cfs_rq;
2319 	u64 runtime = remaining;
2320 
2321 	rcu_read_lock();
2322 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2323 				throttled_list) {
2324 		struct rq *rq = rq_of(cfs_rq);
2325 
2326 		raw_spin_lock(&rq->lock);
2327 		if (!cfs_rq_throttled(cfs_rq))
2328 			goto next;
2329 
2330 		runtime = -cfs_rq->runtime_remaining + 1;
2331 		if (runtime > remaining)
2332 			runtime = remaining;
2333 		remaining -= runtime;
2334 
2335 		cfs_rq->runtime_remaining += runtime;
2336 		cfs_rq->runtime_expires = expires;
2337 
2338 		/* we check whether we're throttled above */
2339 		if (cfs_rq->runtime_remaining > 0)
2340 			unthrottle_cfs_rq(cfs_rq);
2341 
2342 next:
2343 		raw_spin_unlock(&rq->lock);
2344 
2345 		if (!remaining)
2346 			break;
2347 	}
2348 	rcu_read_unlock();
2349 
2350 	return remaining;
2351 }
2352 
2353 /*
2354  * Responsible for refilling a task_group's bandwidth and unthrottling its
2355  * cfs_rqs as appropriate. If there has been no activity within the last
2356  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2357  * used to track this state.
2358  */
2359 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2360 {
2361 	u64 runtime, runtime_expires;
2362 	int idle = 1, throttled;
2363 
2364 	raw_spin_lock(&cfs_b->lock);
2365 	/* no need to continue the timer with no bandwidth constraint */
2366 	if (cfs_b->quota == RUNTIME_INF)
2367 		goto out_unlock;
2368 
2369 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2370 	/* idle depends on !throttled (for the case of a large deficit) */
2371 	idle = cfs_b->idle && !throttled;
2372 	cfs_b->nr_periods += overrun;
2373 
2374 	/* if we're going inactive then everything else can be deferred */
2375 	if (idle)
2376 		goto out_unlock;
2377 
2378 	__refill_cfs_bandwidth_runtime(cfs_b);
2379 
2380 	if (!throttled) {
2381 		/* mark as potentially idle for the upcoming period */
2382 		cfs_b->idle = 1;
2383 		goto out_unlock;
2384 	}
2385 
2386 	/* account preceding periods in which throttling occurred */
2387 	cfs_b->nr_throttled += overrun;
2388 
2389 	/*
2390 	 * There are throttled entities so we must first use the new bandwidth
2391 	 * to unthrottle them before making it generally available.  This
2392 	 * ensures that all existing debts will be paid before a new cfs_rq is
2393 	 * allowed to run.
2394 	 */
2395 	runtime = cfs_b->runtime;
2396 	runtime_expires = cfs_b->runtime_expires;
2397 	cfs_b->runtime = 0;
2398 
2399 	/*
2400 	 * This check is repeated as we are holding onto the new bandwidth
2401 	 * while we unthrottle.  This can potentially race with an unthrottled
2402 	 * group trying to acquire new bandwidth from the global pool.
2403 	 */
2404 	while (throttled && runtime > 0) {
2405 		raw_spin_unlock(&cfs_b->lock);
2406 		/* we can't nest cfs_b->lock while distributing bandwidth */
2407 		runtime = distribute_cfs_runtime(cfs_b, runtime,
2408 						 runtime_expires);
2409 		raw_spin_lock(&cfs_b->lock);
2410 
2411 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2412 	}
2413 
2414 	/* return (any) remaining runtime */
2415 	cfs_b->runtime = runtime;
2416 	/*
2417 	 * While we are ensured activity in the period following an
2418 	 * unthrottle, this also covers the case in which the new bandwidth is
2419 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
2420 	 * timer to remain active while there are any throttled entities.)
2421 	 */
2422 	cfs_b->idle = 0;
2423 out_unlock:
2424 	if (idle)
2425 		cfs_b->timer_active = 0;
2426 	raw_spin_unlock(&cfs_b->lock);
2427 
2428 	return idle;
2429 }
2430 
2431 /* a cfs_rq won't donate quota below this amount */
2432 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2433 /* minimum remaining period time to redistribute slack quota */
2434 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2435 /* how long we wait to gather additional slack before distributing */
2436 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2437 
2438 /* are we near the end of the current quota period? */
2439 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2440 {
2441 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
2442 	u64 remaining;
2443 
2444 	/* if the call-back is running a quota refresh is already occurring */
2445 	if (hrtimer_callback_running(refresh_timer))
2446 		return 1;
2447 
2448 	/* is a quota refresh about to occur? */
2449 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2450 	if (remaining < min_expire)
2451 		return 1;
2452 
2453 	return 0;
2454 }
2455 
2456 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2457 {
2458 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2459 
2460 	/* if there's a quota refresh soon don't bother with slack */
2461 	if (runtime_refresh_within(cfs_b, min_left))
2462 		return;
2463 
2464 	start_bandwidth_timer(&cfs_b->slack_timer,
2465 				ns_to_ktime(cfs_bandwidth_slack_period));
2466 }
2467 
2468 /* we know any runtime found here is valid as update_curr() precedes return */
2469 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2470 {
2471 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2472 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2473 
2474 	if (slack_runtime <= 0)
2475 		return;
2476 
2477 	raw_spin_lock(&cfs_b->lock);
2478 	if (cfs_b->quota != RUNTIME_INF &&
2479 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2480 		cfs_b->runtime += slack_runtime;
2481 
2482 		/* we are under rq->lock, defer unthrottling using a timer */
2483 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2484 		    !list_empty(&cfs_b->throttled_cfs_rq))
2485 			start_cfs_slack_bandwidth(cfs_b);
2486 	}
2487 	raw_spin_unlock(&cfs_b->lock);
2488 
2489 	/* even if it's not valid for return we don't want to try again */
2490 	cfs_rq->runtime_remaining -= slack_runtime;
2491 }
2492 
2493 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2494 {
2495 	if (!cfs_bandwidth_used())
2496 		return;
2497 
2498 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2499 		return;
2500 
2501 	__return_cfs_rq_runtime(cfs_rq);
2502 }
2503 
2504 /*
2505  * This is done with a timer (instead of inline with bandwidth return) since
2506  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2507  */
2508 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2509 {
2510 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2511 	u64 expires;
2512 
2513 	/* confirm we're still not at a refresh boundary */
2514 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2515 		return;
2516 
2517 	raw_spin_lock(&cfs_b->lock);
2518 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2519 		runtime = cfs_b->runtime;
2520 		cfs_b->runtime = 0;
2521 	}
2522 	expires = cfs_b->runtime_expires;
2523 	raw_spin_unlock(&cfs_b->lock);
2524 
2525 	if (!runtime)
2526 		return;
2527 
2528 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2529 
2530 	raw_spin_lock(&cfs_b->lock);
2531 	if (expires == cfs_b->runtime_expires)
2532 		cfs_b->runtime = runtime;
2533 	raw_spin_unlock(&cfs_b->lock);
2534 }
2535 
2536 /*
2537  * When a group wakes up we want to make sure that its quota is not already
2538  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2539  * runtime as update_curr() throttling can not not trigger until it's on-rq.
2540  */
2541 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2542 {
2543 	if (!cfs_bandwidth_used())
2544 		return;
2545 
2546 	/* an active group must be handled by the update_curr()->put() path */
2547 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2548 		return;
2549 
2550 	/* ensure the group is not already throttled */
2551 	if (cfs_rq_throttled(cfs_rq))
2552 		return;
2553 
2554 	/* update runtime allocation */
2555 	account_cfs_rq_runtime(cfs_rq, 0);
2556 	if (cfs_rq->runtime_remaining <= 0)
2557 		throttle_cfs_rq(cfs_rq);
2558 }
2559 
2560 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2561 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2562 {
2563 	if (!cfs_bandwidth_used())
2564 		return;
2565 
2566 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2567 		return;
2568 
2569 	/*
2570 	 * it's possible for a throttled entity to be forced into a running
2571 	 * state (e.g. set_curr_task), in this case we're finished.
2572 	 */
2573 	if (cfs_rq_throttled(cfs_rq))
2574 		return;
2575 
2576 	throttle_cfs_rq(cfs_rq);
2577 }
2578 
2579 static inline u64 default_cfs_period(void);
2580 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2581 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2582 
2583 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2584 {
2585 	struct cfs_bandwidth *cfs_b =
2586 		container_of(timer, struct cfs_bandwidth, slack_timer);
2587 	do_sched_cfs_slack_timer(cfs_b);
2588 
2589 	return HRTIMER_NORESTART;
2590 }
2591 
2592 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2593 {
2594 	struct cfs_bandwidth *cfs_b =
2595 		container_of(timer, struct cfs_bandwidth, period_timer);
2596 	ktime_t now;
2597 	int overrun;
2598 	int idle = 0;
2599 
2600 	for (;;) {
2601 		now = hrtimer_cb_get_time(timer);
2602 		overrun = hrtimer_forward(timer, now, cfs_b->period);
2603 
2604 		if (!overrun)
2605 			break;
2606 
2607 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
2608 	}
2609 
2610 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2611 }
2612 
2613 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2614 {
2615 	raw_spin_lock_init(&cfs_b->lock);
2616 	cfs_b->runtime = 0;
2617 	cfs_b->quota = RUNTIME_INF;
2618 	cfs_b->period = ns_to_ktime(default_cfs_period());
2619 
2620 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2621 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2622 	cfs_b->period_timer.function = sched_cfs_period_timer;
2623 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2624 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
2625 }
2626 
2627 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2628 {
2629 	cfs_rq->runtime_enabled = 0;
2630 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
2631 }
2632 
2633 /* requires cfs_b->lock, may release to reprogram timer */
2634 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2635 {
2636 	/*
2637 	 * The timer may be active because we're trying to set a new bandwidth
2638 	 * period or because we're racing with the tear-down path
2639 	 * (timer_active==0 becomes visible before the hrtimer call-back
2640 	 * terminates).  In either case we ensure that it's re-programmed
2641 	 */
2642 	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2643 		raw_spin_unlock(&cfs_b->lock);
2644 		/* ensure cfs_b->lock is available while we wait */
2645 		hrtimer_cancel(&cfs_b->period_timer);
2646 
2647 		raw_spin_lock(&cfs_b->lock);
2648 		/* if someone else restarted the timer then we're done */
2649 		if (cfs_b->timer_active)
2650 			return;
2651 	}
2652 
2653 	cfs_b->timer_active = 1;
2654 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2655 }
2656 
2657 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2658 {
2659 	hrtimer_cancel(&cfs_b->period_timer);
2660 	hrtimer_cancel(&cfs_b->slack_timer);
2661 }
2662 
2663 static void unthrottle_offline_cfs_rqs(struct rq *rq)
2664 {
2665 	struct cfs_rq *cfs_rq;
2666 
2667 	for_each_leaf_cfs_rq(rq, cfs_rq) {
2668 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2669 
2670 		if (!cfs_rq->runtime_enabled)
2671 			continue;
2672 
2673 		/*
2674 		 * clock_task is not advancing so we just need to make sure
2675 		 * there's some valid quota amount
2676 		 */
2677 		cfs_rq->runtime_remaining = cfs_b->quota;
2678 		if (cfs_rq_throttled(cfs_rq))
2679 			unthrottle_cfs_rq(cfs_rq);
2680 	}
2681 }
2682 
2683 #else /* CONFIG_CFS_BANDWIDTH */
2684 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2685 {
2686 	return rq_of(cfs_rq)->clock_task;
2687 }
2688 
2689 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2690 				     unsigned long delta_exec) {}
2691 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2692 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2693 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2694 
2695 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2696 {
2697 	return 0;
2698 }
2699 
2700 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2701 {
2702 	return 0;
2703 }
2704 
2705 static inline int throttled_lb_pair(struct task_group *tg,
2706 				    int src_cpu, int dest_cpu)
2707 {
2708 	return 0;
2709 }
2710 
2711 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2712 
2713 #ifdef CONFIG_FAIR_GROUP_SCHED
2714 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2715 #endif
2716 
2717 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2718 {
2719 	return NULL;
2720 }
2721 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2722 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2723 
2724 #endif /* CONFIG_CFS_BANDWIDTH */
2725 
2726 /**************************************************
2727  * CFS operations on tasks:
2728  */
2729 
2730 #ifdef CONFIG_SCHED_HRTICK
2731 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2732 {
2733 	struct sched_entity *se = &p->se;
2734 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2735 
2736 	WARN_ON(task_rq(p) != rq);
2737 
2738 	if (cfs_rq->nr_running > 1) {
2739 		u64 slice = sched_slice(cfs_rq, se);
2740 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2741 		s64 delta = slice - ran;
2742 
2743 		if (delta < 0) {
2744 			if (rq->curr == p)
2745 				resched_task(p);
2746 			return;
2747 		}
2748 
2749 		/*
2750 		 * Don't schedule slices shorter than 10000ns, that just
2751 		 * doesn't make sense. Rely on vruntime for fairness.
2752 		 */
2753 		if (rq->curr != p)
2754 			delta = max_t(s64, 10000LL, delta);
2755 
2756 		hrtick_start(rq, delta);
2757 	}
2758 }
2759 
2760 /*
2761  * called from enqueue/dequeue and updates the hrtick when the
2762  * current task is from our class and nr_running is low enough
2763  * to matter.
2764  */
2765 static void hrtick_update(struct rq *rq)
2766 {
2767 	struct task_struct *curr = rq->curr;
2768 
2769 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2770 		return;
2771 
2772 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2773 		hrtick_start_fair(rq, curr);
2774 }
2775 #else /* !CONFIG_SCHED_HRTICK */
2776 static inline void
2777 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2778 {
2779 }
2780 
2781 static inline void hrtick_update(struct rq *rq)
2782 {
2783 }
2784 #endif
2785 
2786 /*
2787  * The enqueue_task method is called before nr_running is
2788  * increased. Here we update the fair scheduling stats and
2789  * then put the task into the rbtree:
2790  */
2791 static void
2792 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2793 {
2794 	struct cfs_rq *cfs_rq;
2795 	struct sched_entity *se = &p->se;
2796 
2797 	for_each_sched_entity(se) {
2798 		if (se->on_rq)
2799 			break;
2800 		cfs_rq = cfs_rq_of(se);
2801 		enqueue_entity(cfs_rq, se, flags);
2802 
2803 		/*
2804 		 * end evaluation on encountering a throttled cfs_rq
2805 		 *
2806 		 * note: in the case of encountering a throttled cfs_rq we will
2807 		 * post the final h_nr_running increment below.
2808 		*/
2809 		if (cfs_rq_throttled(cfs_rq))
2810 			break;
2811 		cfs_rq->h_nr_running++;
2812 
2813 		flags = ENQUEUE_WAKEUP;
2814 	}
2815 
2816 	for_each_sched_entity(se) {
2817 		cfs_rq = cfs_rq_of(se);
2818 		cfs_rq->h_nr_running++;
2819 
2820 		if (cfs_rq_throttled(cfs_rq))
2821 			break;
2822 
2823 		update_cfs_shares(cfs_rq);
2824 		update_entity_load_avg(se, 1);
2825 	}
2826 
2827 	if (!se) {
2828 		update_rq_runnable_avg(rq, rq->nr_running);
2829 		inc_nr_running(rq);
2830 	}
2831 	hrtick_update(rq);
2832 }
2833 
2834 static void set_next_buddy(struct sched_entity *se);
2835 
2836 /*
2837  * The dequeue_task method is called before nr_running is
2838  * decreased. We remove the task from the rbtree and
2839  * update the fair scheduling stats:
2840  */
2841 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2842 {
2843 	struct cfs_rq *cfs_rq;
2844 	struct sched_entity *se = &p->se;
2845 	int task_sleep = flags & DEQUEUE_SLEEP;
2846 
2847 	for_each_sched_entity(se) {
2848 		cfs_rq = cfs_rq_of(se);
2849 		dequeue_entity(cfs_rq, se, flags);
2850 
2851 		/*
2852 		 * end evaluation on encountering a throttled cfs_rq
2853 		 *
2854 		 * note: in the case of encountering a throttled cfs_rq we will
2855 		 * post the final h_nr_running decrement below.
2856 		*/
2857 		if (cfs_rq_throttled(cfs_rq))
2858 			break;
2859 		cfs_rq->h_nr_running--;
2860 
2861 		/* Don't dequeue parent if it has other entities besides us */
2862 		if (cfs_rq->load.weight) {
2863 			/*
2864 			 * Bias pick_next to pick a task from this cfs_rq, as
2865 			 * p is sleeping when it is within its sched_slice.
2866 			 */
2867 			if (task_sleep && parent_entity(se))
2868 				set_next_buddy(parent_entity(se));
2869 
2870 			/* avoid re-evaluating load for this entity */
2871 			se = parent_entity(se);
2872 			break;
2873 		}
2874 		flags |= DEQUEUE_SLEEP;
2875 	}
2876 
2877 	for_each_sched_entity(se) {
2878 		cfs_rq = cfs_rq_of(se);
2879 		cfs_rq->h_nr_running--;
2880 
2881 		if (cfs_rq_throttled(cfs_rq))
2882 			break;
2883 
2884 		update_cfs_shares(cfs_rq);
2885 		update_entity_load_avg(se, 1);
2886 	}
2887 
2888 	if (!se) {
2889 		dec_nr_running(rq);
2890 		update_rq_runnable_avg(rq, 1);
2891 	}
2892 	hrtick_update(rq);
2893 }
2894 
2895 #ifdef CONFIG_SMP
2896 /* Used instead of source_load when we know the type == 0 */
2897 static unsigned long weighted_cpuload(const int cpu)
2898 {
2899 	return cpu_rq(cpu)->load.weight;
2900 }
2901 
2902 /*
2903  * Return a low guess at the load of a migration-source cpu weighted
2904  * according to the scheduling class and "nice" value.
2905  *
2906  * We want to under-estimate the load of migration sources, to
2907  * balance conservatively.
2908  */
2909 static unsigned long source_load(int cpu, int type)
2910 {
2911 	struct rq *rq = cpu_rq(cpu);
2912 	unsigned long total = weighted_cpuload(cpu);
2913 
2914 	if (type == 0 || !sched_feat(LB_BIAS))
2915 		return total;
2916 
2917 	return min(rq->cpu_load[type-1], total);
2918 }
2919 
2920 /*
2921  * Return a high guess at the load of a migration-target cpu weighted
2922  * according to the scheduling class and "nice" value.
2923  */
2924 static unsigned long target_load(int cpu, int type)
2925 {
2926 	struct rq *rq = cpu_rq(cpu);
2927 	unsigned long total = weighted_cpuload(cpu);
2928 
2929 	if (type == 0 || !sched_feat(LB_BIAS))
2930 		return total;
2931 
2932 	return max(rq->cpu_load[type-1], total);
2933 }
2934 
2935 static unsigned long power_of(int cpu)
2936 {
2937 	return cpu_rq(cpu)->cpu_power;
2938 }
2939 
2940 static unsigned long cpu_avg_load_per_task(int cpu)
2941 {
2942 	struct rq *rq = cpu_rq(cpu);
2943 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2944 
2945 	if (nr_running)
2946 		return rq->load.weight / nr_running;
2947 
2948 	return 0;
2949 }
2950 
2951 
2952 static void task_waking_fair(struct task_struct *p)
2953 {
2954 	struct sched_entity *se = &p->se;
2955 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2956 	u64 min_vruntime;
2957 
2958 #ifndef CONFIG_64BIT
2959 	u64 min_vruntime_copy;
2960 
2961 	do {
2962 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
2963 		smp_rmb();
2964 		min_vruntime = cfs_rq->min_vruntime;
2965 	} while (min_vruntime != min_vruntime_copy);
2966 #else
2967 	min_vruntime = cfs_rq->min_vruntime;
2968 #endif
2969 
2970 	se->vruntime -= min_vruntime;
2971 }
2972 
2973 #ifdef CONFIG_FAIR_GROUP_SCHED
2974 /*
2975  * effective_load() calculates the load change as seen from the root_task_group
2976  *
2977  * Adding load to a group doesn't make a group heavier, but can cause movement
2978  * of group shares between cpus. Assuming the shares were perfectly aligned one
2979  * can calculate the shift in shares.
2980  *
2981  * Calculate the effective load difference if @wl is added (subtracted) to @tg
2982  * on this @cpu and results in a total addition (subtraction) of @wg to the
2983  * total group weight.
2984  *
2985  * Given a runqueue weight distribution (rw_i) we can compute a shares
2986  * distribution (s_i) using:
2987  *
2988  *   s_i = rw_i / \Sum rw_j						(1)
2989  *
2990  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2991  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2992  * shares distribution (s_i):
2993  *
2994  *   rw_i = {   2,   4,   1,   0 }
2995  *   s_i  = { 2/7, 4/7, 1/7,   0 }
2996  *
2997  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2998  * task used to run on and the CPU the waker is running on), we need to
2999  * compute the effect of waking a task on either CPU and, in case of a sync
3000  * wakeup, compute the effect of the current task going to sleep.
3001  *
3002  * So for a change of @wl to the local @cpu with an overall group weight change
3003  * of @wl we can compute the new shares distribution (s'_i) using:
3004  *
3005  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
3006  *
3007  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3008  * differences in waking a task to CPU 0. The additional task changes the
3009  * weight and shares distributions like:
3010  *
3011  *   rw'_i = {   3,   4,   1,   0 }
3012  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
3013  *
3014  * We can then compute the difference in effective weight by using:
3015  *
3016  *   dw_i = S * (s'_i - s_i)						(3)
3017  *
3018  * Where 'S' is the group weight as seen by its parent.
3019  *
3020  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3021  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3022  * 4/7) times the weight of the group.
3023  */
3024 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3025 {
3026 	struct sched_entity *se = tg->se[cpu];
3027 
3028 	if (!tg->parent)	/* the trivial, non-cgroup case */
3029 		return wl;
3030 
3031 	for_each_sched_entity(se) {
3032 		long w, W;
3033 
3034 		tg = se->my_q->tg;
3035 
3036 		/*
3037 		 * W = @wg + \Sum rw_j
3038 		 */
3039 		W = wg + calc_tg_weight(tg, se->my_q);
3040 
3041 		/*
3042 		 * w = rw_i + @wl
3043 		 */
3044 		w = se->my_q->load.weight + wl;
3045 
3046 		/*
3047 		 * wl = S * s'_i; see (2)
3048 		 */
3049 		if (W > 0 && w < W)
3050 			wl = (w * tg->shares) / W;
3051 		else
3052 			wl = tg->shares;
3053 
3054 		/*
3055 		 * Per the above, wl is the new se->load.weight value; since
3056 		 * those are clipped to [MIN_SHARES, ...) do so now. See
3057 		 * calc_cfs_shares().
3058 		 */
3059 		if (wl < MIN_SHARES)
3060 			wl = MIN_SHARES;
3061 
3062 		/*
3063 		 * wl = dw_i = S * (s'_i - s_i); see (3)
3064 		 */
3065 		wl -= se->load.weight;
3066 
3067 		/*
3068 		 * Recursively apply this logic to all parent groups to compute
3069 		 * the final effective load change on the root group. Since
3070 		 * only the @tg group gets extra weight, all parent groups can
3071 		 * only redistribute existing shares. @wl is the shift in shares
3072 		 * resulting from this level per the above.
3073 		 */
3074 		wg = 0;
3075 	}
3076 
3077 	return wl;
3078 }
3079 #else
3080 
3081 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3082 		unsigned long wl, unsigned long wg)
3083 {
3084 	return wl;
3085 }
3086 
3087 #endif
3088 
3089 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3090 {
3091 	s64 this_load, load;
3092 	int idx, this_cpu, prev_cpu;
3093 	unsigned long tl_per_task;
3094 	struct task_group *tg;
3095 	unsigned long weight;
3096 	int balanced;
3097 
3098 	idx	  = sd->wake_idx;
3099 	this_cpu  = smp_processor_id();
3100 	prev_cpu  = task_cpu(p);
3101 	load	  = source_load(prev_cpu, idx);
3102 	this_load = target_load(this_cpu, idx);
3103 
3104 	/*
3105 	 * If sync wakeup then subtract the (maximum possible)
3106 	 * effect of the currently running task from the load
3107 	 * of the current CPU:
3108 	 */
3109 	if (sync) {
3110 		tg = task_group(current);
3111 		weight = current->se.load.weight;
3112 
3113 		this_load += effective_load(tg, this_cpu, -weight, -weight);
3114 		load += effective_load(tg, prev_cpu, 0, -weight);
3115 	}
3116 
3117 	tg = task_group(p);
3118 	weight = p->se.load.weight;
3119 
3120 	/*
3121 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3122 	 * due to the sync cause above having dropped this_load to 0, we'll
3123 	 * always have an imbalance, but there's really nothing you can do
3124 	 * about that, so that's good too.
3125 	 *
3126 	 * Otherwise check if either cpus are near enough in load to allow this
3127 	 * task to be woken on this_cpu.
3128 	 */
3129 	if (this_load > 0) {
3130 		s64 this_eff_load, prev_eff_load;
3131 
3132 		this_eff_load = 100;
3133 		this_eff_load *= power_of(prev_cpu);
3134 		this_eff_load *= this_load +
3135 			effective_load(tg, this_cpu, weight, weight);
3136 
3137 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3138 		prev_eff_load *= power_of(this_cpu);
3139 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3140 
3141 		balanced = this_eff_load <= prev_eff_load;
3142 	} else
3143 		balanced = true;
3144 
3145 	/*
3146 	 * If the currently running task will sleep within
3147 	 * a reasonable amount of time then attract this newly
3148 	 * woken task:
3149 	 */
3150 	if (sync && balanced)
3151 		return 1;
3152 
3153 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3154 	tl_per_task = cpu_avg_load_per_task(this_cpu);
3155 
3156 	if (balanced ||
3157 	    (this_load <= load &&
3158 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3159 		/*
3160 		 * This domain has SD_WAKE_AFFINE and
3161 		 * p is cache cold in this domain, and
3162 		 * there is no bad imbalance.
3163 		 */
3164 		schedstat_inc(sd, ttwu_move_affine);
3165 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
3166 
3167 		return 1;
3168 	}
3169 	return 0;
3170 }
3171 
3172 /*
3173  * find_idlest_group finds and returns the least busy CPU group within the
3174  * domain.
3175  */
3176 static struct sched_group *
3177 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3178 		  int this_cpu, int load_idx)
3179 {
3180 	struct sched_group *idlest = NULL, *group = sd->groups;
3181 	unsigned long min_load = ULONG_MAX, this_load = 0;
3182 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
3183 
3184 	do {
3185 		unsigned long load, avg_load;
3186 		int local_group;
3187 		int i;
3188 
3189 		/* Skip over this group if it has no CPUs allowed */
3190 		if (!cpumask_intersects(sched_group_cpus(group),
3191 					tsk_cpus_allowed(p)))
3192 			continue;
3193 
3194 		local_group = cpumask_test_cpu(this_cpu,
3195 					       sched_group_cpus(group));
3196 
3197 		/* Tally up the load of all CPUs in the group */
3198 		avg_load = 0;
3199 
3200 		for_each_cpu(i, sched_group_cpus(group)) {
3201 			/* Bias balancing toward cpus of our domain */
3202 			if (local_group)
3203 				load = source_load(i, load_idx);
3204 			else
3205 				load = target_load(i, load_idx);
3206 
3207 			avg_load += load;
3208 		}
3209 
3210 		/* Adjust by relative CPU power of the group */
3211 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3212 
3213 		if (local_group) {
3214 			this_load = avg_load;
3215 		} else if (avg_load < min_load) {
3216 			min_load = avg_load;
3217 			idlest = group;
3218 		}
3219 	} while (group = group->next, group != sd->groups);
3220 
3221 	if (!idlest || 100*this_load < imbalance*min_load)
3222 		return NULL;
3223 	return idlest;
3224 }
3225 
3226 /*
3227  * find_idlest_cpu - find the idlest cpu among the cpus in group.
3228  */
3229 static int
3230 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3231 {
3232 	unsigned long load, min_load = ULONG_MAX;
3233 	int idlest = -1;
3234 	int i;
3235 
3236 	/* Traverse only the allowed CPUs */
3237 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3238 		load = weighted_cpuload(i);
3239 
3240 		if (load < min_load || (load == min_load && i == this_cpu)) {
3241 			min_load = load;
3242 			idlest = i;
3243 		}
3244 	}
3245 
3246 	return idlest;
3247 }
3248 
3249 /*
3250  * Try and locate an idle CPU in the sched_domain.
3251  */
3252 static int select_idle_sibling(struct task_struct *p, int target)
3253 {
3254 	int cpu = smp_processor_id();
3255 	int prev_cpu = task_cpu(p);
3256 	struct sched_domain *sd;
3257 	struct sched_group *sg;
3258 	int i;
3259 
3260 	/*
3261 	 * If the task is going to be woken-up on this cpu and if it is
3262 	 * already idle, then it is the right target.
3263 	 */
3264 	if (target == cpu && idle_cpu(cpu))
3265 		return cpu;
3266 
3267 	/*
3268 	 * If the task is going to be woken-up on the cpu where it previously
3269 	 * ran and if it is currently idle, then it the right target.
3270 	 */
3271 	if (target == prev_cpu && idle_cpu(prev_cpu))
3272 		return prev_cpu;
3273 
3274 	/*
3275 	 * Otherwise, iterate the domains and find an elegible idle cpu.
3276 	 */
3277 	sd = rcu_dereference(per_cpu(sd_llc, target));
3278 	for_each_lower_domain(sd) {
3279 		sg = sd->groups;
3280 		do {
3281 			if (!cpumask_intersects(sched_group_cpus(sg),
3282 						tsk_cpus_allowed(p)))
3283 				goto next;
3284 
3285 			for_each_cpu(i, sched_group_cpus(sg)) {
3286 				if (!idle_cpu(i))
3287 					goto next;
3288 			}
3289 
3290 			target = cpumask_first_and(sched_group_cpus(sg),
3291 					tsk_cpus_allowed(p));
3292 			goto done;
3293 next:
3294 			sg = sg->next;
3295 		} while (sg != sd->groups);
3296 	}
3297 done:
3298 	return target;
3299 }
3300 
3301 /*
3302  * sched_balance_self: balance the current task (running on cpu) in domains
3303  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3304  * SD_BALANCE_EXEC.
3305  *
3306  * Balance, ie. select the least loaded group.
3307  *
3308  * Returns the target CPU number, or the same CPU if no balancing is needed.
3309  *
3310  * preempt must be disabled.
3311  */
3312 static int
3313 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3314 {
3315 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3316 	int cpu = smp_processor_id();
3317 	int prev_cpu = task_cpu(p);
3318 	int new_cpu = cpu;
3319 	int want_affine = 0;
3320 	int sync = wake_flags & WF_SYNC;
3321 
3322 	if (p->nr_cpus_allowed == 1)
3323 		return prev_cpu;
3324 
3325 	if (sd_flag & SD_BALANCE_WAKE) {
3326 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3327 			want_affine = 1;
3328 		new_cpu = prev_cpu;
3329 	}
3330 
3331 	rcu_read_lock();
3332 	for_each_domain(cpu, tmp) {
3333 		if (!(tmp->flags & SD_LOAD_BALANCE))
3334 			continue;
3335 
3336 		/*
3337 		 * If both cpu and prev_cpu are part of this domain,
3338 		 * cpu is a valid SD_WAKE_AFFINE target.
3339 		 */
3340 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3341 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3342 			affine_sd = tmp;
3343 			break;
3344 		}
3345 
3346 		if (tmp->flags & sd_flag)
3347 			sd = tmp;
3348 	}
3349 
3350 	if (affine_sd) {
3351 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3352 			prev_cpu = cpu;
3353 
3354 		new_cpu = select_idle_sibling(p, prev_cpu);
3355 		goto unlock;
3356 	}
3357 
3358 	while (sd) {
3359 		int load_idx = sd->forkexec_idx;
3360 		struct sched_group *group;
3361 		int weight;
3362 
3363 		if (!(sd->flags & sd_flag)) {
3364 			sd = sd->child;
3365 			continue;
3366 		}
3367 
3368 		if (sd_flag & SD_BALANCE_WAKE)
3369 			load_idx = sd->wake_idx;
3370 
3371 		group = find_idlest_group(sd, p, cpu, load_idx);
3372 		if (!group) {
3373 			sd = sd->child;
3374 			continue;
3375 		}
3376 
3377 		new_cpu = find_idlest_cpu(group, p, cpu);
3378 		if (new_cpu == -1 || new_cpu == cpu) {
3379 			/* Now try balancing at a lower domain level of cpu */
3380 			sd = sd->child;
3381 			continue;
3382 		}
3383 
3384 		/* Now try balancing at a lower domain level of new_cpu */
3385 		cpu = new_cpu;
3386 		weight = sd->span_weight;
3387 		sd = NULL;
3388 		for_each_domain(cpu, tmp) {
3389 			if (weight <= tmp->span_weight)
3390 				break;
3391 			if (tmp->flags & sd_flag)
3392 				sd = tmp;
3393 		}
3394 		/* while loop will break here if sd == NULL */
3395 	}
3396 unlock:
3397 	rcu_read_unlock();
3398 
3399 	return new_cpu;
3400 }
3401 
3402 /*
3403  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3404  * removed when useful for applications beyond shares distribution (e.g.
3405  * load-balance).
3406  */
3407 #ifdef CONFIG_FAIR_GROUP_SCHED
3408 /*
3409  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3410  * cfs_rq_of(p) references at time of call are still valid and identify the
3411  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
3412  * other assumptions, including the state of rq->lock, should be made.
3413  */
3414 static void
3415 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3416 {
3417 	struct sched_entity *se = &p->se;
3418 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3419 
3420 	/*
3421 	 * Load tracking: accumulate removed load so that it can be processed
3422 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
3423 	 * to blocked load iff they have a positive decay-count.  It can never
3424 	 * be negative here since on-rq tasks have decay-count == 0.
3425 	 */
3426 	if (se->avg.decay_count) {
3427 		se->avg.decay_count = -__synchronize_entity_decay(se);
3428 		atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3429 	}
3430 }
3431 #endif
3432 #endif /* CONFIG_SMP */
3433 
3434 static unsigned long
3435 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3436 {
3437 	unsigned long gran = sysctl_sched_wakeup_granularity;
3438 
3439 	/*
3440 	 * Since its curr running now, convert the gran from real-time
3441 	 * to virtual-time in his units.
3442 	 *
3443 	 * By using 'se' instead of 'curr' we penalize light tasks, so
3444 	 * they get preempted easier. That is, if 'se' < 'curr' then
3445 	 * the resulting gran will be larger, therefore penalizing the
3446 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3447 	 * be smaller, again penalizing the lighter task.
3448 	 *
3449 	 * This is especially important for buddies when the leftmost
3450 	 * task is higher priority than the buddy.
3451 	 */
3452 	return calc_delta_fair(gran, se);
3453 }
3454 
3455 /*
3456  * Should 'se' preempt 'curr'.
3457  *
3458  *             |s1
3459  *        |s2
3460  *   |s3
3461  *         g
3462  *      |<--->|c
3463  *
3464  *  w(c, s1) = -1
3465  *  w(c, s2) =  0
3466  *  w(c, s3) =  1
3467  *
3468  */
3469 static int
3470 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3471 {
3472 	s64 gran, vdiff = curr->vruntime - se->vruntime;
3473 
3474 	if (vdiff <= 0)
3475 		return -1;
3476 
3477 	gran = wakeup_gran(curr, se);
3478 	if (vdiff > gran)
3479 		return 1;
3480 
3481 	return 0;
3482 }
3483 
3484 static void set_last_buddy(struct sched_entity *se)
3485 {
3486 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3487 		return;
3488 
3489 	for_each_sched_entity(se)
3490 		cfs_rq_of(se)->last = se;
3491 }
3492 
3493 static void set_next_buddy(struct sched_entity *se)
3494 {
3495 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3496 		return;
3497 
3498 	for_each_sched_entity(se)
3499 		cfs_rq_of(se)->next = se;
3500 }
3501 
3502 static void set_skip_buddy(struct sched_entity *se)
3503 {
3504 	for_each_sched_entity(se)
3505 		cfs_rq_of(se)->skip = se;
3506 }
3507 
3508 /*
3509  * Preempt the current task with a newly woken task if needed:
3510  */
3511 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3512 {
3513 	struct task_struct *curr = rq->curr;
3514 	struct sched_entity *se = &curr->se, *pse = &p->se;
3515 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3516 	int scale = cfs_rq->nr_running >= sched_nr_latency;
3517 	int next_buddy_marked = 0;
3518 
3519 	if (unlikely(se == pse))
3520 		return;
3521 
3522 	/*
3523 	 * This is possible from callers such as move_task(), in which we
3524 	 * unconditionally check_prempt_curr() after an enqueue (which may have
3525 	 * lead to a throttle).  This both saves work and prevents false
3526 	 * next-buddy nomination below.
3527 	 */
3528 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3529 		return;
3530 
3531 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3532 		set_next_buddy(pse);
3533 		next_buddy_marked = 1;
3534 	}
3535 
3536 	/*
3537 	 * We can come here with TIF_NEED_RESCHED already set from new task
3538 	 * wake up path.
3539 	 *
3540 	 * Note: this also catches the edge-case of curr being in a throttled
3541 	 * group (e.g. via set_curr_task), since update_curr() (in the
3542 	 * enqueue of curr) will have resulted in resched being set.  This
3543 	 * prevents us from potentially nominating it as a false LAST_BUDDY
3544 	 * below.
3545 	 */
3546 	if (test_tsk_need_resched(curr))
3547 		return;
3548 
3549 	/* Idle tasks are by definition preempted by non-idle tasks. */
3550 	if (unlikely(curr->policy == SCHED_IDLE) &&
3551 	    likely(p->policy != SCHED_IDLE))
3552 		goto preempt;
3553 
3554 	/*
3555 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3556 	 * is driven by the tick):
3557 	 */
3558 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3559 		return;
3560 
3561 	find_matching_se(&se, &pse);
3562 	update_curr(cfs_rq_of(se));
3563 	BUG_ON(!pse);
3564 	if (wakeup_preempt_entity(se, pse) == 1) {
3565 		/*
3566 		 * Bias pick_next to pick the sched entity that is
3567 		 * triggering this preemption.
3568 		 */
3569 		if (!next_buddy_marked)
3570 			set_next_buddy(pse);
3571 		goto preempt;
3572 	}
3573 
3574 	return;
3575 
3576 preempt:
3577 	resched_task(curr);
3578 	/*
3579 	 * Only set the backward buddy when the current task is still
3580 	 * on the rq. This can happen when a wakeup gets interleaved
3581 	 * with schedule on the ->pre_schedule() or idle_balance()
3582 	 * point, either of which can * drop the rq lock.
3583 	 *
3584 	 * Also, during early boot the idle thread is in the fair class,
3585 	 * for obvious reasons its a bad idea to schedule back to it.
3586 	 */
3587 	if (unlikely(!se->on_rq || curr == rq->idle))
3588 		return;
3589 
3590 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3591 		set_last_buddy(se);
3592 }
3593 
3594 static struct task_struct *pick_next_task_fair(struct rq *rq)
3595 {
3596 	struct task_struct *p;
3597 	struct cfs_rq *cfs_rq = &rq->cfs;
3598 	struct sched_entity *se;
3599 
3600 	if (!cfs_rq->nr_running)
3601 		return NULL;
3602 
3603 	do {
3604 		se = pick_next_entity(cfs_rq);
3605 		set_next_entity(cfs_rq, se);
3606 		cfs_rq = group_cfs_rq(se);
3607 	} while (cfs_rq);
3608 
3609 	p = task_of(se);
3610 	if (hrtick_enabled(rq))
3611 		hrtick_start_fair(rq, p);
3612 
3613 	return p;
3614 }
3615 
3616 /*
3617  * Account for a descheduled task:
3618  */
3619 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3620 {
3621 	struct sched_entity *se = &prev->se;
3622 	struct cfs_rq *cfs_rq;
3623 
3624 	for_each_sched_entity(se) {
3625 		cfs_rq = cfs_rq_of(se);
3626 		put_prev_entity(cfs_rq, se);
3627 	}
3628 }
3629 
3630 /*
3631  * sched_yield() is very simple
3632  *
3633  * The magic of dealing with the ->skip buddy is in pick_next_entity.
3634  */
3635 static void yield_task_fair(struct rq *rq)
3636 {
3637 	struct task_struct *curr = rq->curr;
3638 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3639 	struct sched_entity *se = &curr->se;
3640 
3641 	/*
3642 	 * Are we the only task in the tree?
3643 	 */
3644 	if (unlikely(rq->nr_running == 1))
3645 		return;
3646 
3647 	clear_buddies(cfs_rq, se);
3648 
3649 	if (curr->policy != SCHED_BATCH) {
3650 		update_rq_clock(rq);
3651 		/*
3652 		 * Update run-time statistics of the 'current'.
3653 		 */
3654 		update_curr(cfs_rq);
3655 		/*
3656 		 * Tell update_rq_clock() that we've just updated,
3657 		 * so we don't do microscopic update in schedule()
3658 		 * and double the fastpath cost.
3659 		 */
3660 		 rq->skip_clock_update = 1;
3661 	}
3662 
3663 	set_skip_buddy(se);
3664 }
3665 
3666 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3667 {
3668 	struct sched_entity *se = &p->se;
3669 
3670 	/* throttled hierarchies are not runnable */
3671 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3672 		return false;
3673 
3674 	/* Tell the scheduler that we'd really like pse to run next. */
3675 	set_next_buddy(se);
3676 
3677 	yield_task_fair(rq);
3678 
3679 	return true;
3680 }
3681 
3682 #ifdef CONFIG_SMP
3683 /**************************************************
3684  * Fair scheduling class load-balancing methods.
3685  *
3686  * BASICS
3687  *
3688  * The purpose of load-balancing is to achieve the same basic fairness the
3689  * per-cpu scheduler provides, namely provide a proportional amount of compute
3690  * time to each task. This is expressed in the following equation:
3691  *
3692  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
3693  *
3694  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3695  * W_i,0 is defined as:
3696  *
3697  *   W_i,0 = \Sum_j w_i,j                                             (2)
3698  *
3699  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3700  * is derived from the nice value as per prio_to_weight[].
3701  *
3702  * The weight average is an exponential decay average of the instantaneous
3703  * weight:
3704  *
3705  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
3706  *
3707  * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3708  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3709  * can also include other factors [XXX].
3710  *
3711  * To achieve this balance we define a measure of imbalance which follows
3712  * directly from (1):
3713  *
3714  *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
3715  *
3716  * We them move tasks around to minimize the imbalance. In the continuous
3717  * function space it is obvious this converges, in the discrete case we get
3718  * a few fun cases generally called infeasible weight scenarios.
3719  *
3720  * [XXX expand on:
3721  *     - infeasible weights;
3722  *     - local vs global optima in the discrete case. ]
3723  *
3724  *
3725  * SCHED DOMAINS
3726  *
3727  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3728  * for all i,j solution, we create a tree of cpus that follows the hardware
3729  * topology where each level pairs two lower groups (or better). This results
3730  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3731  * tree to only the first of the previous level and we decrease the frequency
3732  * of load-balance at each level inv. proportional to the number of cpus in
3733  * the groups.
3734  *
3735  * This yields:
3736  *
3737  *     log_2 n     1     n
3738  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
3739  *     i = 0      2^i   2^i
3740  *                               `- size of each group
3741  *         |         |     `- number of cpus doing load-balance
3742  *         |         `- freq
3743  *         `- sum over all levels
3744  *
3745  * Coupled with a limit on how many tasks we can migrate every balance pass,
3746  * this makes (5) the runtime complexity of the balancer.
3747  *
3748  * An important property here is that each CPU is still (indirectly) connected
3749  * to every other cpu in at most O(log n) steps:
3750  *
3751  * The adjacency matrix of the resulting graph is given by:
3752  *
3753  *             log_2 n
3754  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
3755  *             k = 0
3756  *
3757  * And you'll find that:
3758  *
3759  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
3760  *
3761  * Showing there's indeed a path between every cpu in at most O(log n) steps.
3762  * The task movement gives a factor of O(m), giving a convergence complexity
3763  * of:
3764  *
3765  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
3766  *
3767  *
3768  * WORK CONSERVING
3769  *
3770  * In order to avoid CPUs going idle while there's still work to do, new idle
3771  * balancing is more aggressive and has the newly idle cpu iterate up the domain
3772  * tree itself instead of relying on other CPUs to bring it work.
3773  *
3774  * This adds some complexity to both (5) and (8) but it reduces the total idle
3775  * time.
3776  *
3777  * [XXX more?]
3778  *
3779  *
3780  * CGROUPS
3781  *
3782  * Cgroups make a horror show out of (2), instead of a simple sum we get:
3783  *
3784  *                                s_k,i
3785  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
3786  *                                 S_k
3787  *
3788  * Where
3789  *
3790  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
3791  *
3792  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3793  *
3794  * The big problem is S_k, its a global sum needed to compute a local (W_i)
3795  * property.
3796  *
3797  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3798  *      rewrite all of this once again.]
3799  */
3800 
3801 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3802 
3803 #define LBF_ALL_PINNED	0x01
3804 #define LBF_NEED_BREAK	0x02
3805 #define LBF_SOME_PINNED 0x04
3806 
3807 struct lb_env {
3808 	struct sched_domain	*sd;
3809 
3810 	struct rq		*src_rq;
3811 	int			src_cpu;
3812 
3813 	int			dst_cpu;
3814 	struct rq		*dst_rq;
3815 
3816 	struct cpumask		*dst_grpmask;
3817 	int			new_dst_cpu;
3818 	enum cpu_idle_type	idle;
3819 	long			imbalance;
3820 	/* The set of CPUs under consideration for load-balancing */
3821 	struct cpumask		*cpus;
3822 
3823 	unsigned int		flags;
3824 
3825 	unsigned int		loop;
3826 	unsigned int		loop_break;
3827 	unsigned int		loop_max;
3828 };
3829 
3830 /*
3831  * move_task - move a task from one runqueue to another runqueue.
3832  * Both runqueues must be locked.
3833  */
3834 static void move_task(struct task_struct *p, struct lb_env *env)
3835 {
3836 	deactivate_task(env->src_rq, p, 0);
3837 	set_task_cpu(p, env->dst_cpu);
3838 	activate_task(env->dst_rq, p, 0);
3839 	check_preempt_curr(env->dst_rq, p, 0);
3840 }
3841 
3842 /*
3843  * Is this task likely cache-hot:
3844  */
3845 static int
3846 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3847 {
3848 	s64 delta;
3849 
3850 	if (p->sched_class != &fair_sched_class)
3851 		return 0;
3852 
3853 	if (unlikely(p->policy == SCHED_IDLE))
3854 		return 0;
3855 
3856 	/*
3857 	 * Buddy candidates are cache hot:
3858 	 */
3859 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3860 			(&p->se == cfs_rq_of(&p->se)->next ||
3861 			 &p->se == cfs_rq_of(&p->se)->last))
3862 		return 1;
3863 
3864 	if (sysctl_sched_migration_cost == -1)
3865 		return 1;
3866 	if (sysctl_sched_migration_cost == 0)
3867 		return 0;
3868 
3869 	delta = now - p->se.exec_start;
3870 
3871 	return delta < (s64)sysctl_sched_migration_cost;
3872 }
3873 
3874 /*
3875  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3876  */
3877 static
3878 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3879 {
3880 	int tsk_cache_hot = 0;
3881 	/*
3882 	 * We do not migrate tasks that are:
3883 	 * 1) running (obviously), or
3884 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3885 	 * 3) are cache-hot on their current CPU.
3886 	 */
3887 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3888 		int new_dst_cpu;
3889 
3890 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3891 
3892 		/*
3893 		 * Remember if this task can be migrated to any other cpu in
3894 		 * our sched_group. We may want to revisit it if we couldn't
3895 		 * meet load balance goals by pulling other tasks on src_cpu.
3896 		 *
3897 		 * Also avoid computing new_dst_cpu if we have already computed
3898 		 * one in current iteration.
3899 		 */
3900 		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3901 			return 0;
3902 
3903 		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3904 						tsk_cpus_allowed(p));
3905 		if (new_dst_cpu < nr_cpu_ids) {
3906 			env->flags |= LBF_SOME_PINNED;
3907 			env->new_dst_cpu = new_dst_cpu;
3908 		}
3909 		return 0;
3910 	}
3911 
3912 	/* Record that we found atleast one task that could run on dst_cpu */
3913 	env->flags &= ~LBF_ALL_PINNED;
3914 
3915 	if (task_running(env->src_rq, p)) {
3916 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3917 		return 0;
3918 	}
3919 
3920 	/*
3921 	 * Aggressive migration if:
3922 	 * 1) task is cache cold, or
3923 	 * 2) too many balance attempts have failed.
3924 	 */
3925 
3926 	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3927 	if (!tsk_cache_hot ||
3928 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3929 #ifdef CONFIG_SCHEDSTATS
3930 		if (tsk_cache_hot) {
3931 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3932 			schedstat_inc(p, se.statistics.nr_forced_migrations);
3933 		}
3934 #endif
3935 		return 1;
3936 	}
3937 
3938 	if (tsk_cache_hot) {
3939 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3940 		return 0;
3941 	}
3942 	return 1;
3943 }
3944 
3945 /*
3946  * move_one_task tries to move exactly one task from busiest to this_rq, as
3947  * part of active balancing operations within "domain".
3948  * Returns 1 if successful and 0 otherwise.
3949  *
3950  * Called with both runqueues locked.
3951  */
3952 static int move_one_task(struct lb_env *env)
3953 {
3954 	struct task_struct *p, *n;
3955 
3956 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3957 		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3958 			continue;
3959 
3960 		if (!can_migrate_task(p, env))
3961 			continue;
3962 
3963 		move_task(p, env);
3964 		/*
3965 		 * Right now, this is only the second place move_task()
3966 		 * is called, so we can safely collect move_task()
3967 		 * stats here rather than inside move_task().
3968 		 */
3969 		schedstat_inc(env->sd, lb_gained[env->idle]);
3970 		return 1;
3971 	}
3972 	return 0;
3973 }
3974 
3975 static unsigned long task_h_load(struct task_struct *p);
3976 
3977 static const unsigned int sched_nr_migrate_break = 32;
3978 
3979 /*
3980  * move_tasks tries to move up to imbalance weighted load from busiest to
3981  * this_rq, as part of a balancing operation within domain "sd".
3982  * Returns 1 if successful and 0 otherwise.
3983  *
3984  * Called with both runqueues locked.
3985  */
3986 static int move_tasks(struct lb_env *env)
3987 {
3988 	struct list_head *tasks = &env->src_rq->cfs_tasks;
3989 	struct task_struct *p;
3990 	unsigned long load;
3991 	int pulled = 0;
3992 
3993 	if (env->imbalance <= 0)
3994 		return 0;
3995 
3996 	while (!list_empty(tasks)) {
3997 		p = list_first_entry(tasks, struct task_struct, se.group_node);
3998 
3999 		env->loop++;
4000 		/* We've more or less seen every task there is, call it quits */
4001 		if (env->loop > env->loop_max)
4002 			break;
4003 
4004 		/* take a breather every nr_migrate tasks */
4005 		if (env->loop > env->loop_break) {
4006 			env->loop_break += sched_nr_migrate_break;
4007 			env->flags |= LBF_NEED_BREAK;
4008 			break;
4009 		}
4010 
4011 		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4012 			goto next;
4013 
4014 		load = task_h_load(p);
4015 
4016 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4017 			goto next;
4018 
4019 		if ((load / 2) > env->imbalance)
4020 			goto next;
4021 
4022 		if (!can_migrate_task(p, env))
4023 			goto next;
4024 
4025 		move_task(p, env);
4026 		pulled++;
4027 		env->imbalance -= load;
4028 
4029 #ifdef CONFIG_PREEMPT
4030 		/*
4031 		 * NEWIDLE balancing is a source of latency, so preemptible
4032 		 * kernels will stop after the first task is pulled to minimize
4033 		 * the critical section.
4034 		 */
4035 		if (env->idle == CPU_NEWLY_IDLE)
4036 			break;
4037 #endif
4038 
4039 		/*
4040 		 * We only want to steal up to the prescribed amount of
4041 		 * weighted load.
4042 		 */
4043 		if (env->imbalance <= 0)
4044 			break;
4045 
4046 		continue;
4047 next:
4048 		list_move_tail(&p->se.group_node, tasks);
4049 	}
4050 
4051 	/*
4052 	 * Right now, this is one of only two places move_task() is called,
4053 	 * so we can safely collect move_task() stats here rather than
4054 	 * inside move_task().
4055 	 */
4056 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
4057 
4058 	return pulled;
4059 }
4060 
4061 #ifdef CONFIG_FAIR_GROUP_SCHED
4062 /*
4063  * update tg->load_weight by folding this cpu's load_avg
4064  */
4065 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4066 {
4067 	struct sched_entity *se = tg->se[cpu];
4068 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4069 
4070 	/* throttled entities do not contribute to load */
4071 	if (throttled_hierarchy(cfs_rq))
4072 		return;
4073 
4074 	update_cfs_rq_blocked_load(cfs_rq, 1);
4075 
4076 	if (se) {
4077 		update_entity_load_avg(se, 1);
4078 		/*
4079 		 * We pivot on our runnable average having decayed to zero for
4080 		 * list removal.  This generally implies that all our children
4081 		 * have also been removed (modulo rounding error or bandwidth
4082 		 * control); however, such cases are rare and we can fix these
4083 		 * at enqueue.
4084 		 *
4085 		 * TODO: fix up out-of-order children on enqueue.
4086 		 */
4087 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4088 			list_del_leaf_cfs_rq(cfs_rq);
4089 	} else {
4090 		struct rq *rq = rq_of(cfs_rq);
4091 		update_rq_runnable_avg(rq, rq->nr_running);
4092 	}
4093 }
4094 
4095 static void update_blocked_averages(int cpu)
4096 {
4097 	struct rq *rq = cpu_rq(cpu);
4098 	struct cfs_rq *cfs_rq;
4099 	unsigned long flags;
4100 
4101 	raw_spin_lock_irqsave(&rq->lock, flags);
4102 	update_rq_clock(rq);
4103 	/*
4104 	 * Iterates the task_group tree in a bottom up fashion, see
4105 	 * list_add_leaf_cfs_rq() for details.
4106 	 */
4107 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4108 		/*
4109 		 * Note: We may want to consider periodically releasing
4110 		 * rq->lock about these updates so that creating many task
4111 		 * groups does not result in continually extending hold time.
4112 		 */
4113 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4114 	}
4115 
4116 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4117 }
4118 
4119 /*
4120  * Compute the cpu's hierarchical load factor for each task group.
4121  * This needs to be done in a top-down fashion because the load of a child
4122  * group is a fraction of its parents load.
4123  */
4124 static int tg_load_down(struct task_group *tg, void *data)
4125 {
4126 	unsigned long load;
4127 	long cpu = (long)data;
4128 
4129 	if (!tg->parent) {
4130 		load = cpu_rq(cpu)->load.weight;
4131 	} else {
4132 		load = tg->parent->cfs_rq[cpu]->h_load;
4133 		load *= tg->se[cpu]->load.weight;
4134 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4135 	}
4136 
4137 	tg->cfs_rq[cpu]->h_load = load;
4138 
4139 	return 0;
4140 }
4141 
4142 static void update_h_load(long cpu)
4143 {
4144 	struct rq *rq = cpu_rq(cpu);
4145 	unsigned long now = jiffies;
4146 
4147 	if (rq->h_load_throttle == now)
4148 		return;
4149 
4150 	rq->h_load_throttle = now;
4151 
4152 	rcu_read_lock();
4153 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4154 	rcu_read_unlock();
4155 }
4156 
4157 static unsigned long task_h_load(struct task_struct *p)
4158 {
4159 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
4160 	unsigned long load;
4161 
4162 	load = p->se.load.weight;
4163 	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4164 
4165 	return load;
4166 }
4167 #else
4168 static inline void update_blocked_averages(int cpu)
4169 {
4170 }
4171 
4172 static inline void update_h_load(long cpu)
4173 {
4174 }
4175 
4176 static unsigned long task_h_load(struct task_struct *p)
4177 {
4178 	return p->se.load.weight;
4179 }
4180 #endif
4181 
4182 /********** Helpers for find_busiest_group ************************/
4183 /*
4184  * sd_lb_stats - Structure to store the statistics of a sched_domain
4185  * 		during load balancing.
4186  */
4187 struct sd_lb_stats {
4188 	struct sched_group *busiest; /* Busiest group in this sd */
4189 	struct sched_group *this;  /* Local group in this sd */
4190 	unsigned long total_load;  /* Total load of all groups in sd */
4191 	unsigned long total_pwr;   /*	Total power of all groups in sd */
4192 	unsigned long avg_load;	   /* Average load across all groups in sd */
4193 
4194 	/** Statistics of this group */
4195 	unsigned long this_load;
4196 	unsigned long this_load_per_task;
4197 	unsigned long this_nr_running;
4198 	unsigned long this_has_capacity;
4199 	unsigned int  this_idle_cpus;
4200 
4201 	/* Statistics of the busiest group */
4202 	unsigned int  busiest_idle_cpus;
4203 	unsigned long max_load;
4204 	unsigned long busiest_load_per_task;
4205 	unsigned long busiest_nr_running;
4206 	unsigned long busiest_group_capacity;
4207 	unsigned long busiest_has_capacity;
4208 	unsigned int  busiest_group_weight;
4209 
4210 	int group_imb; /* Is there imbalance in this sd */
4211 };
4212 
4213 /*
4214  * sg_lb_stats - stats of a sched_group required for load_balancing
4215  */
4216 struct sg_lb_stats {
4217 	unsigned long avg_load; /*Avg load across the CPUs of the group */
4218 	unsigned long group_load; /* Total load over the CPUs of the group */
4219 	unsigned long sum_nr_running; /* Nr tasks running in the group */
4220 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4221 	unsigned long group_capacity;
4222 	unsigned long idle_cpus;
4223 	unsigned long group_weight;
4224 	int group_imb; /* Is there an imbalance in the group ? */
4225 	int group_has_capacity; /* Is there extra capacity in the group? */
4226 };
4227 
4228 /**
4229  * get_sd_load_idx - Obtain the load index for a given sched domain.
4230  * @sd: The sched_domain whose load_idx is to be obtained.
4231  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4232  */
4233 static inline int get_sd_load_idx(struct sched_domain *sd,
4234 					enum cpu_idle_type idle)
4235 {
4236 	int load_idx;
4237 
4238 	switch (idle) {
4239 	case CPU_NOT_IDLE:
4240 		load_idx = sd->busy_idx;
4241 		break;
4242 
4243 	case CPU_NEWLY_IDLE:
4244 		load_idx = sd->newidle_idx;
4245 		break;
4246 	default:
4247 		load_idx = sd->idle_idx;
4248 		break;
4249 	}
4250 
4251 	return load_idx;
4252 }
4253 
4254 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4255 {
4256 	return SCHED_POWER_SCALE;
4257 }
4258 
4259 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4260 {
4261 	return default_scale_freq_power(sd, cpu);
4262 }
4263 
4264 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4265 {
4266 	unsigned long weight = sd->span_weight;
4267 	unsigned long smt_gain = sd->smt_gain;
4268 
4269 	smt_gain /= weight;
4270 
4271 	return smt_gain;
4272 }
4273 
4274 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4275 {
4276 	return default_scale_smt_power(sd, cpu);
4277 }
4278 
4279 unsigned long scale_rt_power(int cpu)
4280 {
4281 	struct rq *rq = cpu_rq(cpu);
4282 	u64 total, available, age_stamp, avg;
4283 
4284 	/*
4285 	 * Since we're reading these variables without serialization make sure
4286 	 * we read them once before doing sanity checks on them.
4287 	 */
4288 	age_stamp = ACCESS_ONCE(rq->age_stamp);
4289 	avg = ACCESS_ONCE(rq->rt_avg);
4290 
4291 	total = sched_avg_period() + (rq->clock - age_stamp);
4292 
4293 	if (unlikely(total < avg)) {
4294 		/* Ensures that power won't end up being negative */
4295 		available = 0;
4296 	} else {
4297 		available = total - avg;
4298 	}
4299 
4300 	if (unlikely((s64)total < SCHED_POWER_SCALE))
4301 		total = SCHED_POWER_SCALE;
4302 
4303 	total >>= SCHED_POWER_SHIFT;
4304 
4305 	return div_u64(available, total);
4306 }
4307 
4308 static void update_cpu_power(struct sched_domain *sd, int cpu)
4309 {
4310 	unsigned long weight = sd->span_weight;
4311 	unsigned long power = SCHED_POWER_SCALE;
4312 	struct sched_group *sdg = sd->groups;
4313 
4314 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4315 		if (sched_feat(ARCH_POWER))
4316 			power *= arch_scale_smt_power(sd, cpu);
4317 		else
4318 			power *= default_scale_smt_power(sd, cpu);
4319 
4320 		power >>= SCHED_POWER_SHIFT;
4321 	}
4322 
4323 	sdg->sgp->power_orig = power;
4324 
4325 	if (sched_feat(ARCH_POWER))
4326 		power *= arch_scale_freq_power(sd, cpu);
4327 	else
4328 		power *= default_scale_freq_power(sd, cpu);
4329 
4330 	power >>= SCHED_POWER_SHIFT;
4331 
4332 	power *= scale_rt_power(cpu);
4333 	power >>= SCHED_POWER_SHIFT;
4334 
4335 	if (!power)
4336 		power = 1;
4337 
4338 	cpu_rq(cpu)->cpu_power = power;
4339 	sdg->sgp->power = power;
4340 }
4341 
4342 void update_group_power(struct sched_domain *sd, int cpu)
4343 {
4344 	struct sched_domain *child = sd->child;
4345 	struct sched_group *group, *sdg = sd->groups;
4346 	unsigned long power;
4347 	unsigned long interval;
4348 
4349 	interval = msecs_to_jiffies(sd->balance_interval);
4350 	interval = clamp(interval, 1UL, max_load_balance_interval);
4351 	sdg->sgp->next_update = jiffies + interval;
4352 
4353 	if (!child) {
4354 		update_cpu_power(sd, cpu);
4355 		return;
4356 	}
4357 
4358 	power = 0;
4359 
4360 	if (child->flags & SD_OVERLAP) {
4361 		/*
4362 		 * SD_OVERLAP domains cannot assume that child groups
4363 		 * span the current group.
4364 		 */
4365 
4366 		for_each_cpu(cpu, sched_group_cpus(sdg))
4367 			power += power_of(cpu);
4368 	} else  {
4369 		/*
4370 		 * !SD_OVERLAP domains can assume that child groups
4371 		 * span the current group.
4372 		 */
4373 
4374 		group = child->groups;
4375 		do {
4376 			power += group->sgp->power;
4377 			group = group->next;
4378 		} while (group != child->groups);
4379 	}
4380 
4381 	sdg->sgp->power_orig = sdg->sgp->power = power;
4382 }
4383 
4384 /*
4385  * Try and fix up capacity for tiny siblings, this is needed when
4386  * things like SD_ASYM_PACKING need f_b_g to select another sibling
4387  * which on its own isn't powerful enough.
4388  *
4389  * See update_sd_pick_busiest() and check_asym_packing().
4390  */
4391 static inline int
4392 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4393 {
4394 	/*
4395 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
4396 	 */
4397 	if (!(sd->flags & SD_SHARE_CPUPOWER))
4398 		return 0;
4399 
4400 	/*
4401 	 * If ~90% of the cpu_power is still there, we're good.
4402 	 */
4403 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4404 		return 1;
4405 
4406 	return 0;
4407 }
4408 
4409 /**
4410  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4411  * @env: The load balancing environment.
4412  * @group: sched_group whose statistics are to be updated.
4413  * @load_idx: Load index of sched_domain of this_cpu for load calc.
4414  * @local_group: Does group contain this_cpu.
4415  * @balance: Should we balance.
4416  * @sgs: variable to hold the statistics for this group.
4417  */
4418 static inline void update_sg_lb_stats(struct lb_env *env,
4419 			struct sched_group *group, int load_idx,
4420 			int local_group, int *balance, struct sg_lb_stats *sgs)
4421 {
4422 	unsigned long nr_running, max_nr_running, min_nr_running;
4423 	unsigned long load, max_cpu_load, min_cpu_load;
4424 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
4425 	unsigned long avg_load_per_task = 0;
4426 	int i;
4427 
4428 	if (local_group)
4429 		balance_cpu = group_balance_cpu(group);
4430 
4431 	/* Tally up the load of all CPUs in the group */
4432 	max_cpu_load = 0;
4433 	min_cpu_load = ~0UL;
4434 	max_nr_running = 0;
4435 	min_nr_running = ~0UL;
4436 
4437 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4438 		struct rq *rq = cpu_rq(i);
4439 
4440 		nr_running = rq->nr_running;
4441 
4442 		/* Bias balancing toward cpus of our domain */
4443 		if (local_group) {
4444 			if (idle_cpu(i) && !first_idle_cpu &&
4445 					cpumask_test_cpu(i, sched_group_mask(group))) {
4446 				first_idle_cpu = 1;
4447 				balance_cpu = i;
4448 			}
4449 
4450 			load = target_load(i, load_idx);
4451 		} else {
4452 			load = source_load(i, load_idx);
4453 			if (load > max_cpu_load)
4454 				max_cpu_load = load;
4455 			if (min_cpu_load > load)
4456 				min_cpu_load = load;
4457 
4458 			if (nr_running > max_nr_running)
4459 				max_nr_running = nr_running;
4460 			if (min_nr_running > nr_running)
4461 				min_nr_running = nr_running;
4462 		}
4463 
4464 		sgs->group_load += load;
4465 		sgs->sum_nr_running += nr_running;
4466 		sgs->sum_weighted_load += weighted_cpuload(i);
4467 		if (idle_cpu(i))
4468 			sgs->idle_cpus++;
4469 	}
4470 
4471 	/*
4472 	 * First idle cpu or the first cpu(busiest) in this sched group
4473 	 * is eligible for doing load balancing at this and above
4474 	 * domains. In the newly idle case, we will allow all the cpu's
4475 	 * to do the newly idle load balance.
4476 	 */
4477 	if (local_group) {
4478 		if (env->idle != CPU_NEWLY_IDLE) {
4479 			if (balance_cpu != env->dst_cpu) {
4480 				*balance = 0;
4481 				return;
4482 			}
4483 			update_group_power(env->sd, env->dst_cpu);
4484 		} else if (time_after_eq(jiffies, group->sgp->next_update))
4485 			update_group_power(env->sd, env->dst_cpu);
4486 	}
4487 
4488 	/* Adjust by relative CPU power of the group */
4489 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4490 
4491 	/*
4492 	 * Consider the group unbalanced when the imbalance is larger
4493 	 * than the average weight of a task.
4494 	 *
4495 	 * APZ: with cgroup the avg task weight can vary wildly and
4496 	 *      might not be a suitable number - should we keep a
4497 	 *      normalized nr_running number somewhere that negates
4498 	 *      the hierarchy?
4499 	 */
4500 	if (sgs->sum_nr_running)
4501 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4502 
4503 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4504 	    (max_nr_running - min_nr_running) > 1)
4505 		sgs->group_imb = 1;
4506 
4507 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4508 						SCHED_POWER_SCALE);
4509 	if (!sgs->group_capacity)
4510 		sgs->group_capacity = fix_small_capacity(env->sd, group);
4511 	sgs->group_weight = group->group_weight;
4512 
4513 	if (sgs->group_capacity > sgs->sum_nr_running)
4514 		sgs->group_has_capacity = 1;
4515 }
4516 
4517 /**
4518  * update_sd_pick_busiest - return 1 on busiest group
4519  * @env: The load balancing environment.
4520  * @sds: sched_domain statistics
4521  * @sg: sched_group candidate to be checked for being the busiest
4522  * @sgs: sched_group statistics
4523  *
4524  * Determine if @sg is a busier group than the previously selected
4525  * busiest group.
4526  */
4527 static bool update_sd_pick_busiest(struct lb_env *env,
4528 				   struct sd_lb_stats *sds,
4529 				   struct sched_group *sg,
4530 				   struct sg_lb_stats *sgs)
4531 {
4532 	if (sgs->avg_load <= sds->max_load)
4533 		return false;
4534 
4535 	if (sgs->sum_nr_running > sgs->group_capacity)
4536 		return true;
4537 
4538 	if (sgs->group_imb)
4539 		return true;
4540 
4541 	/*
4542 	 * ASYM_PACKING needs to move all the work to the lowest
4543 	 * numbered CPUs in the group, therefore mark all groups
4544 	 * higher than ourself as busy.
4545 	 */
4546 	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4547 	    env->dst_cpu < group_first_cpu(sg)) {
4548 		if (!sds->busiest)
4549 			return true;
4550 
4551 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4552 			return true;
4553 	}
4554 
4555 	return false;
4556 }
4557 
4558 /**
4559  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4560  * @env: The load balancing environment.
4561  * @balance: Should we balance.
4562  * @sds: variable to hold the statistics for this sched_domain.
4563  */
4564 static inline void update_sd_lb_stats(struct lb_env *env,
4565 					int *balance, struct sd_lb_stats *sds)
4566 {
4567 	struct sched_domain *child = env->sd->child;
4568 	struct sched_group *sg = env->sd->groups;
4569 	struct sg_lb_stats sgs;
4570 	int load_idx, prefer_sibling = 0;
4571 
4572 	if (child && child->flags & SD_PREFER_SIBLING)
4573 		prefer_sibling = 1;
4574 
4575 	load_idx = get_sd_load_idx(env->sd, env->idle);
4576 
4577 	do {
4578 		int local_group;
4579 
4580 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4581 		memset(&sgs, 0, sizeof(sgs));
4582 		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4583 
4584 		if (local_group && !(*balance))
4585 			return;
4586 
4587 		sds->total_load += sgs.group_load;
4588 		sds->total_pwr += sg->sgp->power;
4589 
4590 		/*
4591 		 * In case the child domain prefers tasks go to siblings
4592 		 * first, lower the sg capacity to one so that we'll try
4593 		 * and move all the excess tasks away. We lower the capacity
4594 		 * of a group only if the local group has the capacity to fit
4595 		 * these excess tasks, i.e. nr_running < group_capacity. The
4596 		 * extra check prevents the case where you always pull from the
4597 		 * heaviest group when it is already under-utilized (possible
4598 		 * with a large weight task outweighs the tasks on the system).
4599 		 */
4600 		if (prefer_sibling && !local_group && sds->this_has_capacity)
4601 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
4602 
4603 		if (local_group) {
4604 			sds->this_load = sgs.avg_load;
4605 			sds->this = sg;
4606 			sds->this_nr_running = sgs.sum_nr_running;
4607 			sds->this_load_per_task = sgs.sum_weighted_load;
4608 			sds->this_has_capacity = sgs.group_has_capacity;
4609 			sds->this_idle_cpus = sgs.idle_cpus;
4610 		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4611 			sds->max_load = sgs.avg_load;
4612 			sds->busiest = sg;
4613 			sds->busiest_nr_running = sgs.sum_nr_running;
4614 			sds->busiest_idle_cpus = sgs.idle_cpus;
4615 			sds->busiest_group_capacity = sgs.group_capacity;
4616 			sds->busiest_load_per_task = sgs.sum_weighted_load;
4617 			sds->busiest_has_capacity = sgs.group_has_capacity;
4618 			sds->busiest_group_weight = sgs.group_weight;
4619 			sds->group_imb = sgs.group_imb;
4620 		}
4621 
4622 		sg = sg->next;
4623 	} while (sg != env->sd->groups);
4624 }
4625 
4626 /**
4627  * check_asym_packing - Check to see if the group is packed into the
4628  *			sched doman.
4629  *
4630  * This is primarily intended to used at the sibling level.  Some
4631  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
4632  * case of POWER7, it can move to lower SMT modes only when higher
4633  * threads are idle.  When in lower SMT modes, the threads will
4634  * perform better since they share less core resources.  Hence when we
4635  * have idle threads, we want them to be the higher ones.
4636  *
4637  * This packing function is run on idle threads.  It checks to see if
4638  * the busiest CPU in this domain (core in the P7 case) has a higher
4639  * CPU number than the packing function is being run on.  Here we are
4640  * assuming lower CPU number will be equivalent to lower a SMT thread
4641  * number.
4642  *
4643  * Returns 1 when packing is required and a task should be moved to
4644  * this CPU.  The amount of the imbalance is returned in *imbalance.
4645  *
4646  * @env: The load balancing environment.
4647  * @sds: Statistics of the sched_domain which is to be packed
4648  */
4649 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4650 {
4651 	int busiest_cpu;
4652 
4653 	if (!(env->sd->flags & SD_ASYM_PACKING))
4654 		return 0;
4655 
4656 	if (!sds->busiest)
4657 		return 0;
4658 
4659 	busiest_cpu = group_first_cpu(sds->busiest);
4660 	if (env->dst_cpu > busiest_cpu)
4661 		return 0;
4662 
4663 	env->imbalance = DIV_ROUND_CLOSEST(
4664 		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4665 
4666 	return 1;
4667 }
4668 
4669 /**
4670  * fix_small_imbalance - Calculate the minor imbalance that exists
4671  *			amongst the groups of a sched_domain, during
4672  *			load balancing.
4673  * @env: The load balancing environment.
4674  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4675  */
4676 static inline
4677 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4678 {
4679 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
4680 	unsigned int imbn = 2;
4681 	unsigned long scaled_busy_load_per_task;
4682 
4683 	if (sds->this_nr_running) {
4684 		sds->this_load_per_task /= sds->this_nr_running;
4685 		if (sds->busiest_load_per_task >
4686 				sds->this_load_per_task)
4687 			imbn = 1;
4688 	} else {
4689 		sds->this_load_per_task =
4690 			cpu_avg_load_per_task(env->dst_cpu);
4691 	}
4692 
4693 	scaled_busy_load_per_task = sds->busiest_load_per_task
4694 					 * SCHED_POWER_SCALE;
4695 	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4696 
4697 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4698 			(scaled_busy_load_per_task * imbn)) {
4699 		env->imbalance = sds->busiest_load_per_task;
4700 		return;
4701 	}
4702 
4703 	/*
4704 	 * OK, we don't have enough imbalance to justify moving tasks,
4705 	 * however we may be able to increase total CPU power used by
4706 	 * moving them.
4707 	 */
4708 
4709 	pwr_now += sds->busiest->sgp->power *
4710 			min(sds->busiest_load_per_task, sds->max_load);
4711 	pwr_now += sds->this->sgp->power *
4712 			min(sds->this_load_per_task, sds->this_load);
4713 	pwr_now /= SCHED_POWER_SCALE;
4714 
4715 	/* Amount of load we'd subtract */
4716 	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4717 		sds->busiest->sgp->power;
4718 	if (sds->max_load > tmp)
4719 		pwr_move += sds->busiest->sgp->power *
4720 			min(sds->busiest_load_per_task, sds->max_load - tmp);
4721 
4722 	/* Amount of load we'd add */
4723 	if (sds->max_load * sds->busiest->sgp->power <
4724 		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4725 		tmp = (sds->max_load * sds->busiest->sgp->power) /
4726 			sds->this->sgp->power;
4727 	else
4728 		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4729 			sds->this->sgp->power;
4730 	pwr_move += sds->this->sgp->power *
4731 			min(sds->this_load_per_task, sds->this_load + tmp);
4732 	pwr_move /= SCHED_POWER_SCALE;
4733 
4734 	/* Move if we gain throughput */
4735 	if (pwr_move > pwr_now)
4736 		env->imbalance = sds->busiest_load_per_task;
4737 }
4738 
4739 /**
4740  * calculate_imbalance - Calculate the amount of imbalance present within the
4741  *			 groups of a given sched_domain during load balance.
4742  * @env: load balance environment
4743  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4744  */
4745 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4746 {
4747 	unsigned long max_pull, load_above_capacity = ~0UL;
4748 
4749 	sds->busiest_load_per_task /= sds->busiest_nr_running;
4750 	if (sds->group_imb) {
4751 		sds->busiest_load_per_task =
4752 			min(sds->busiest_load_per_task, sds->avg_load);
4753 	}
4754 
4755 	/*
4756 	 * In the presence of smp nice balancing, certain scenarios can have
4757 	 * max load less than avg load(as we skip the groups at or below
4758 	 * its cpu_power, while calculating max_load..)
4759 	 */
4760 	if (sds->max_load < sds->avg_load) {
4761 		env->imbalance = 0;
4762 		return fix_small_imbalance(env, sds);
4763 	}
4764 
4765 	if (!sds->group_imb) {
4766 		/*
4767 		 * Don't want to pull so many tasks that a group would go idle.
4768 		 */
4769 		load_above_capacity = (sds->busiest_nr_running -
4770 						sds->busiest_group_capacity);
4771 
4772 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4773 
4774 		load_above_capacity /= sds->busiest->sgp->power;
4775 	}
4776 
4777 	/*
4778 	 * We're trying to get all the cpus to the average_load, so we don't
4779 	 * want to push ourselves above the average load, nor do we wish to
4780 	 * reduce the max loaded cpu below the average load. At the same time,
4781 	 * we also don't want to reduce the group load below the group capacity
4782 	 * (so that we can implement power-savings policies etc). Thus we look
4783 	 * for the minimum possible imbalance.
4784 	 * Be careful of negative numbers as they'll appear as very large values
4785 	 * with unsigned longs.
4786 	 */
4787 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4788 
4789 	/* How much load to actually move to equalise the imbalance */
4790 	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4791 		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4792 			/ SCHED_POWER_SCALE;
4793 
4794 	/*
4795 	 * if *imbalance is less than the average load per runnable task
4796 	 * there is no guarantee that any tasks will be moved so we'll have
4797 	 * a think about bumping its value to force at least one task to be
4798 	 * moved
4799 	 */
4800 	if (env->imbalance < sds->busiest_load_per_task)
4801 		return fix_small_imbalance(env, sds);
4802 
4803 }
4804 
4805 /******* find_busiest_group() helpers end here *********************/
4806 
4807 /**
4808  * find_busiest_group - Returns the busiest group within the sched_domain
4809  * if there is an imbalance. If there isn't an imbalance, and
4810  * the user has opted for power-savings, it returns a group whose
4811  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4812  * such a group exists.
4813  *
4814  * Also calculates the amount of weighted load which should be moved
4815  * to restore balance.
4816  *
4817  * @env: The load balancing environment.
4818  * @balance: Pointer to a variable indicating if this_cpu
4819  *	is the appropriate cpu to perform load balancing at this_level.
4820  *
4821  * Returns:	- the busiest group if imbalance exists.
4822  *		- If no imbalance and user has opted for power-savings balance,
4823  *		   return the least loaded group whose CPUs can be
4824  *		   put to idle by rebalancing its tasks onto our group.
4825  */
4826 static struct sched_group *
4827 find_busiest_group(struct lb_env *env, int *balance)
4828 {
4829 	struct sd_lb_stats sds;
4830 
4831 	memset(&sds, 0, sizeof(sds));
4832 
4833 	/*
4834 	 * Compute the various statistics relavent for load balancing at
4835 	 * this level.
4836 	 */
4837 	update_sd_lb_stats(env, balance, &sds);
4838 
4839 	/*
4840 	 * this_cpu is not the appropriate cpu to perform load balancing at
4841 	 * this level.
4842 	 */
4843 	if (!(*balance))
4844 		goto ret;
4845 
4846 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4847 	    check_asym_packing(env, &sds))
4848 		return sds.busiest;
4849 
4850 	/* There is no busy sibling group to pull tasks from */
4851 	if (!sds.busiest || sds.busiest_nr_running == 0)
4852 		goto out_balanced;
4853 
4854 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4855 
4856 	/*
4857 	 * If the busiest group is imbalanced the below checks don't
4858 	 * work because they assumes all things are equal, which typically
4859 	 * isn't true due to cpus_allowed constraints and the like.
4860 	 */
4861 	if (sds.group_imb)
4862 		goto force_balance;
4863 
4864 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4865 	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4866 			!sds.busiest_has_capacity)
4867 		goto force_balance;
4868 
4869 	/*
4870 	 * If the local group is more busy than the selected busiest group
4871 	 * don't try and pull any tasks.
4872 	 */
4873 	if (sds.this_load >= sds.max_load)
4874 		goto out_balanced;
4875 
4876 	/*
4877 	 * Don't pull any tasks if this group is already above the domain
4878 	 * average load.
4879 	 */
4880 	if (sds.this_load >= sds.avg_load)
4881 		goto out_balanced;
4882 
4883 	if (env->idle == CPU_IDLE) {
4884 		/*
4885 		 * This cpu is idle. If the busiest group load doesn't
4886 		 * have more tasks than the number of available cpu's and
4887 		 * there is no imbalance between this and busiest group
4888 		 * wrt to idle cpu's, it is balanced.
4889 		 */
4890 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4891 		    sds.busiest_nr_running <= sds.busiest_group_weight)
4892 			goto out_balanced;
4893 	} else {
4894 		/*
4895 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4896 		 * imbalance_pct to be conservative.
4897 		 */
4898 		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4899 			goto out_balanced;
4900 	}
4901 
4902 force_balance:
4903 	/* Looks like there is an imbalance. Compute it */
4904 	calculate_imbalance(env, &sds);
4905 	return sds.busiest;
4906 
4907 out_balanced:
4908 ret:
4909 	env->imbalance = 0;
4910 	return NULL;
4911 }
4912 
4913 /*
4914  * find_busiest_queue - find the busiest runqueue among the cpus in group.
4915  */
4916 static struct rq *find_busiest_queue(struct lb_env *env,
4917 				     struct sched_group *group)
4918 {
4919 	struct rq *busiest = NULL, *rq;
4920 	unsigned long max_load = 0;
4921 	int i;
4922 
4923 	for_each_cpu(i, sched_group_cpus(group)) {
4924 		unsigned long power = power_of(i);
4925 		unsigned long capacity = DIV_ROUND_CLOSEST(power,
4926 							   SCHED_POWER_SCALE);
4927 		unsigned long wl;
4928 
4929 		if (!capacity)
4930 			capacity = fix_small_capacity(env->sd, group);
4931 
4932 		if (!cpumask_test_cpu(i, env->cpus))
4933 			continue;
4934 
4935 		rq = cpu_rq(i);
4936 		wl = weighted_cpuload(i);
4937 
4938 		/*
4939 		 * When comparing with imbalance, use weighted_cpuload()
4940 		 * which is not scaled with the cpu power.
4941 		 */
4942 		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4943 			continue;
4944 
4945 		/*
4946 		 * For the load comparisons with the other cpu's, consider
4947 		 * the weighted_cpuload() scaled with the cpu power, so that
4948 		 * the load can be moved away from the cpu that is potentially
4949 		 * running at a lower capacity.
4950 		 */
4951 		wl = (wl * SCHED_POWER_SCALE) / power;
4952 
4953 		if (wl > max_load) {
4954 			max_load = wl;
4955 			busiest = rq;
4956 		}
4957 	}
4958 
4959 	return busiest;
4960 }
4961 
4962 /*
4963  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4964  * so long as it is large enough.
4965  */
4966 #define MAX_PINNED_INTERVAL	512
4967 
4968 /* Working cpumask for load_balance and load_balance_newidle. */
4969 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4970 
4971 static int need_active_balance(struct lb_env *env)
4972 {
4973 	struct sched_domain *sd = env->sd;
4974 
4975 	if (env->idle == CPU_NEWLY_IDLE) {
4976 
4977 		/*
4978 		 * ASYM_PACKING needs to force migrate tasks from busy but
4979 		 * higher numbered CPUs in order to pack all tasks in the
4980 		 * lowest numbered CPUs.
4981 		 */
4982 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4983 			return 1;
4984 	}
4985 
4986 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4987 }
4988 
4989 static int active_load_balance_cpu_stop(void *data);
4990 
4991 /*
4992  * Check this_cpu to ensure it is balanced within domain. Attempt to move
4993  * tasks if there is an imbalance.
4994  */
4995 static int load_balance(int this_cpu, struct rq *this_rq,
4996 			struct sched_domain *sd, enum cpu_idle_type idle,
4997 			int *balance)
4998 {
4999 	int ld_moved, cur_ld_moved, active_balance = 0;
5000 	int lb_iterations, max_lb_iterations;
5001 	struct sched_group *group;
5002 	struct rq *busiest;
5003 	unsigned long flags;
5004 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5005 
5006 	struct lb_env env = {
5007 		.sd		= sd,
5008 		.dst_cpu	= this_cpu,
5009 		.dst_rq		= this_rq,
5010 		.dst_grpmask    = sched_group_cpus(sd->groups),
5011 		.idle		= idle,
5012 		.loop_break	= sched_nr_migrate_break,
5013 		.cpus		= cpus,
5014 	};
5015 
5016 	cpumask_copy(cpus, cpu_active_mask);
5017 	max_lb_iterations = cpumask_weight(env.dst_grpmask);
5018 
5019 	schedstat_inc(sd, lb_count[idle]);
5020 
5021 redo:
5022 	group = find_busiest_group(&env, balance);
5023 
5024 	if (*balance == 0)
5025 		goto out_balanced;
5026 
5027 	if (!group) {
5028 		schedstat_inc(sd, lb_nobusyg[idle]);
5029 		goto out_balanced;
5030 	}
5031 
5032 	busiest = find_busiest_queue(&env, group);
5033 	if (!busiest) {
5034 		schedstat_inc(sd, lb_nobusyq[idle]);
5035 		goto out_balanced;
5036 	}
5037 
5038 	BUG_ON(busiest == env.dst_rq);
5039 
5040 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5041 
5042 	ld_moved = 0;
5043 	lb_iterations = 1;
5044 	if (busiest->nr_running > 1) {
5045 		/*
5046 		 * Attempt to move tasks. If find_busiest_group has found
5047 		 * an imbalance but busiest->nr_running <= 1, the group is
5048 		 * still unbalanced. ld_moved simply stays zero, so it is
5049 		 * correctly treated as an imbalance.
5050 		 */
5051 		env.flags |= LBF_ALL_PINNED;
5052 		env.src_cpu   = busiest->cpu;
5053 		env.src_rq    = busiest;
5054 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5055 
5056 		update_h_load(env.src_cpu);
5057 more_balance:
5058 		local_irq_save(flags);
5059 		double_rq_lock(env.dst_rq, busiest);
5060 
5061 		/*
5062 		 * cur_ld_moved - load moved in current iteration
5063 		 * ld_moved     - cumulative load moved across iterations
5064 		 */
5065 		cur_ld_moved = move_tasks(&env);
5066 		ld_moved += cur_ld_moved;
5067 		double_rq_unlock(env.dst_rq, busiest);
5068 		local_irq_restore(flags);
5069 
5070 		if (env.flags & LBF_NEED_BREAK) {
5071 			env.flags &= ~LBF_NEED_BREAK;
5072 			goto more_balance;
5073 		}
5074 
5075 		/*
5076 		 * some other cpu did the load balance for us.
5077 		 */
5078 		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5079 			resched_cpu(env.dst_cpu);
5080 
5081 		/*
5082 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5083 		 * us and move them to an alternate dst_cpu in our sched_group
5084 		 * where they can run. The upper limit on how many times we
5085 		 * iterate on same src_cpu is dependent on number of cpus in our
5086 		 * sched_group.
5087 		 *
5088 		 * This changes load balance semantics a bit on who can move
5089 		 * load to a given_cpu. In addition to the given_cpu itself
5090 		 * (or a ilb_cpu acting on its behalf where given_cpu is
5091 		 * nohz-idle), we now have balance_cpu in a position to move
5092 		 * load to given_cpu. In rare situations, this may cause
5093 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5094 		 * _independently_ and at _same_ time to move some load to
5095 		 * given_cpu) causing exceess load to be moved to given_cpu.
5096 		 * This however should not happen so much in practice and
5097 		 * moreover subsequent load balance cycles should correct the
5098 		 * excess load moved.
5099 		 */
5100 		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5101 				lb_iterations++ < max_lb_iterations) {
5102 
5103 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
5104 			env.dst_cpu	 = env.new_dst_cpu;
5105 			env.flags	&= ~LBF_SOME_PINNED;
5106 			env.loop	 = 0;
5107 			env.loop_break	 = sched_nr_migrate_break;
5108 			/*
5109 			 * Go back to "more_balance" rather than "redo" since we
5110 			 * need to continue with same src_cpu.
5111 			 */
5112 			goto more_balance;
5113 		}
5114 
5115 		/* All tasks on this runqueue were pinned by CPU affinity */
5116 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
5117 			cpumask_clear_cpu(cpu_of(busiest), cpus);
5118 			if (!cpumask_empty(cpus)) {
5119 				env.loop = 0;
5120 				env.loop_break = sched_nr_migrate_break;
5121 				goto redo;
5122 			}
5123 			goto out_balanced;
5124 		}
5125 	}
5126 
5127 	if (!ld_moved) {
5128 		schedstat_inc(sd, lb_failed[idle]);
5129 		/*
5130 		 * Increment the failure counter only on periodic balance.
5131 		 * We do not want newidle balance, which can be very
5132 		 * frequent, pollute the failure counter causing
5133 		 * excessive cache_hot migrations and active balances.
5134 		 */
5135 		if (idle != CPU_NEWLY_IDLE)
5136 			sd->nr_balance_failed++;
5137 
5138 		if (need_active_balance(&env)) {
5139 			raw_spin_lock_irqsave(&busiest->lock, flags);
5140 
5141 			/* don't kick the active_load_balance_cpu_stop,
5142 			 * if the curr task on busiest cpu can't be
5143 			 * moved to this_cpu
5144 			 */
5145 			if (!cpumask_test_cpu(this_cpu,
5146 					tsk_cpus_allowed(busiest->curr))) {
5147 				raw_spin_unlock_irqrestore(&busiest->lock,
5148 							    flags);
5149 				env.flags |= LBF_ALL_PINNED;
5150 				goto out_one_pinned;
5151 			}
5152 
5153 			/*
5154 			 * ->active_balance synchronizes accesses to
5155 			 * ->active_balance_work.  Once set, it's cleared
5156 			 * only after active load balance is finished.
5157 			 */
5158 			if (!busiest->active_balance) {
5159 				busiest->active_balance = 1;
5160 				busiest->push_cpu = this_cpu;
5161 				active_balance = 1;
5162 			}
5163 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
5164 
5165 			if (active_balance) {
5166 				stop_one_cpu_nowait(cpu_of(busiest),
5167 					active_load_balance_cpu_stop, busiest,
5168 					&busiest->active_balance_work);
5169 			}
5170 
5171 			/*
5172 			 * We've kicked active balancing, reset the failure
5173 			 * counter.
5174 			 */
5175 			sd->nr_balance_failed = sd->cache_nice_tries+1;
5176 		}
5177 	} else
5178 		sd->nr_balance_failed = 0;
5179 
5180 	if (likely(!active_balance)) {
5181 		/* We were unbalanced, so reset the balancing interval */
5182 		sd->balance_interval = sd->min_interval;
5183 	} else {
5184 		/*
5185 		 * If we've begun active balancing, start to back off. This
5186 		 * case may not be covered by the all_pinned logic if there
5187 		 * is only 1 task on the busy runqueue (because we don't call
5188 		 * move_tasks).
5189 		 */
5190 		if (sd->balance_interval < sd->max_interval)
5191 			sd->balance_interval *= 2;
5192 	}
5193 
5194 	goto out;
5195 
5196 out_balanced:
5197 	schedstat_inc(sd, lb_balanced[idle]);
5198 
5199 	sd->nr_balance_failed = 0;
5200 
5201 out_one_pinned:
5202 	/* tune up the balancing interval */
5203 	if (((env.flags & LBF_ALL_PINNED) &&
5204 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
5205 			(sd->balance_interval < sd->max_interval))
5206 		sd->balance_interval *= 2;
5207 
5208 	ld_moved = 0;
5209 out:
5210 	return ld_moved;
5211 }
5212 
5213 /*
5214  * idle_balance is called by schedule() if this_cpu is about to become
5215  * idle. Attempts to pull tasks from other CPUs.
5216  */
5217 void idle_balance(int this_cpu, struct rq *this_rq)
5218 {
5219 	struct sched_domain *sd;
5220 	int pulled_task = 0;
5221 	unsigned long next_balance = jiffies + HZ;
5222 
5223 	this_rq->idle_stamp = this_rq->clock;
5224 
5225 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
5226 		return;
5227 
5228 	update_rq_runnable_avg(this_rq, 1);
5229 
5230 	/*
5231 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
5232 	 */
5233 	raw_spin_unlock(&this_rq->lock);
5234 
5235 	update_blocked_averages(this_cpu);
5236 	rcu_read_lock();
5237 	for_each_domain(this_cpu, sd) {
5238 		unsigned long interval;
5239 		int balance = 1;
5240 
5241 		if (!(sd->flags & SD_LOAD_BALANCE))
5242 			continue;
5243 
5244 		if (sd->flags & SD_BALANCE_NEWIDLE) {
5245 			/* If we've pulled tasks over stop searching: */
5246 			pulled_task = load_balance(this_cpu, this_rq,
5247 						   sd, CPU_NEWLY_IDLE, &balance);
5248 		}
5249 
5250 		interval = msecs_to_jiffies(sd->balance_interval);
5251 		if (time_after(next_balance, sd->last_balance + interval))
5252 			next_balance = sd->last_balance + interval;
5253 		if (pulled_task) {
5254 			this_rq->idle_stamp = 0;
5255 			break;
5256 		}
5257 	}
5258 	rcu_read_unlock();
5259 
5260 	raw_spin_lock(&this_rq->lock);
5261 
5262 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5263 		/*
5264 		 * We are going idle. next_balance may be set based on
5265 		 * a busy processor. So reset next_balance.
5266 		 */
5267 		this_rq->next_balance = next_balance;
5268 	}
5269 }
5270 
5271 /*
5272  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5273  * running tasks off the busiest CPU onto idle CPUs. It requires at
5274  * least 1 task to be running on each physical CPU where possible, and
5275  * avoids physical / logical imbalances.
5276  */
5277 static int active_load_balance_cpu_stop(void *data)
5278 {
5279 	struct rq *busiest_rq = data;
5280 	int busiest_cpu = cpu_of(busiest_rq);
5281 	int target_cpu = busiest_rq->push_cpu;
5282 	struct rq *target_rq = cpu_rq(target_cpu);
5283 	struct sched_domain *sd;
5284 
5285 	raw_spin_lock_irq(&busiest_rq->lock);
5286 
5287 	/* make sure the requested cpu hasn't gone down in the meantime */
5288 	if (unlikely(busiest_cpu != smp_processor_id() ||
5289 		     !busiest_rq->active_balance))
5290 		goto out_unlock;
5291 
5292 	/* Is there any task to move? */
5293 	if (busiest_rq->nr_running <= 1)
5294 		goto out_unlock;
5295 
5296 	/*
5297 	 * This condition is "impossible", if it occurs
5298 	 * we need to fix it. Originally reported by
5299 	 * Bjorn Helgaas on a 128-cpu setup.
5300 	 */
5301 	BUG_ON(busiest_rq == target_rq);
5302 
5303 	/* move a task from busiest_rq to target_rq */
5304 	double_lock_balance(busiest_rq, target_rq);
5305 
5306 	/* Search for an sd spanning us and the target CPU. */
5307 	rcu_read_lock();
5308 	for_each_domain(target_cpu, sd) {
5309 		if ((sd->flags & SD_LOAD_BALANCE) &&
5310 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5311 				break;
5312 	}
5313 
5314 	if (likely(sd)) {
5315 		struct lb_env env = {
5316 			.sd		= sd,
5317 			.dst_cpu	= target_cpu,
5318 			.dst_rq		= target_rq,
5319 			.src_cpu	= busiest_rq->cpu,
5320 			.src_rq		= busiest_rq,
5321 			.idle		= CPU_IDLE,
5322 		};
5323 
5324 		schedstat_inc(sd, alb_count);
5325 
5326 		if (move_one_task(&env))
5327 			schedstat_inc(sd, alb_pushed);
5328 		else
5329 			schedstat_inc(sd, alb_failed);
5330 	}
5331 	rcu_read_unlock();
5332 	double_unlock_balance(busiest_rq, target_rq);
5333 out_unlock:
5334 	busiest_rq->active_balance = 0;
5335 	raw_spin_unlock_irq(&busiest_rq->lock);
5336 	return 0;
5337 }
5338 
5339 #ifdef CONFIG_NO_HZ
5340 /*
5341  * idle load balancing details
5342  * - When one of the busy CPUs notice that there may be an idle rebalancing
5343  *   needed, they will kick the idle load balancer, which then does idle
5344  *   load balancing for all the idle CPUs.
5345  */
5346 static struct {
5347 	cpumask_var_t idle_cpus_mask;
5348 	atomic_t nr_cpus;
5349 	unsigned long next_balance;     /* in jiffy units */
5350 } nohz ____cacheline_aligned;
5351 
5352 static inline int find_new_ilb(int call_cpu)
5353 {
5354 	int ilb = cpumask_first(nohz.idle_cpus_mask);
5355 
5356 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
5357 		return ilb;
5358 
5359 	return nr_cpu_ids;
5360 }
5361 
5362 /*
5363  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5364  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5365  * CPU (if there is one).
5366  */
5367 static void nohz_balancer_kick(int cpu)
5368 {
5369 	int ilb_cpu;
5370 
5371 	nohz.next_balance++;
5372 
5373 	ilb_cpu = find_new_ilb(cpu);
5374 
5375 	if (ilb_cpu >= nr_cpu_ids)
5376 		return;
5377 
5378 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5379 		return;
5380 	/*
5381 	 * Use smp_send_reschedule() instead of resched_cpu().
5382 	 * This way we generate a sched IPI on the target cpu which
5383 	 * is idle. And the softirq performing nohz idle load balance
5384 	 * will be run before returning from the IPI.
5385 	 */
5386 	smp_send_reschedule(ilb_cpu);
5387 	return;
5388 }
5389 
5390 static inline void nohz_balance_exit_idle(int cpu)
5391 {
5392 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5393 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5394 		atomic_dec(&nohz.nr_cpus);
5395 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5396 	}
5397 }
5398 
5399 static inline void set_cpu_sd_state_busy(void)
5400 {
5401 	struct sched_domain *sd;
5402 	int cpu = smp_processor_id();
5403 
5404 	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5405 		return;
5406 	clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5407 
5408 	rcu_read_lock();
5409 	for_each_domain(cpu, sd)
5410 		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5411 	rcu_read_unlock();
5412 }
5413 
5414 void set_cpu_sd_state_idle(void)
5415 {
5416 	struct sched_domain *sd;
5417 	int cpu = smp_processor_id();
5418 
5419 	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5420 		return;
5421 	set_bit(NOHZ_IDLE, nohz_flags(cpu));
5422 
5423 	rcu_read_lock();
5424 	for_each_domain(cpu, sd)
5425 		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5426 	rcu_read_unlock();
5427 }
5428 
5429 /*
5430  * This routine will record that the cpu is going idle with tick stopped.
5431  * This info will be used in performing idle load balancing in the future.
5432  */
5433 void nohz_balance_enter_idle(int cpu)
5434 {
5435 	/*
5436 	 * If this cpu is going down, then nothing needs to be done.
5437 	 */
5438 	if (!cpu_active(cpu))
5439 		return;
5440 
5441 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5442 		return;
5443 
5444 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5445 	atomic_inc(&nohz.nr_cpus);
5446 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5447 }
5448 
5449 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5450 					unsigned long action, void *hcpu)
5451 {
5452 	switch (action & ~CPU_TASKS_FROZEN) {
5453 	case CPU_DYING:
5454 		nohz_balance_exit_idle(smp_processor_id());
5455 		return NOTIFY_OK;
5456 	default:
5457 		return NOTIFY_DONE;
5458 	}
5459 }
5460 #endif
5461 
5462 static DEFINE_SPINLOCK(balancing);
5463 
5464 /*
5465  * Scale the max load_balance interval with the number of CPUs in the system.
5466  * This trades load-balance latency on larger machines for less cross talk.
5467  */
5468 void update_max_interval(void)
5469 {
5470 	max_load_balance_interval = HZ*num_online_cpus()/10;
5471 }
5472 
5473 /*
5474  * It checks each scheduling domain to see if it is due to be balanced,
5475  * and initiates a balancing operation if so.
5476  *
5477  * Balancing parameters are set up in arch_init_sched_domains.
5478  */
5479 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5480 {
5481 	int balance = 1;
5482 	struct rq *rq = cpu_rq(cpu);
5483 	unsigned long interval;
5484 	struct sched_domain *sd;
5485 	/* Earliest time when we have to do rebalance again */
5486 	unsigned long next_balance = jiffies + 60*HZ;
5487 	int update_next_balance = 0;
5488 	int need_serialize;
5489 
5490 	update_blocked_averages(cpu);
5491 
5492 	rcu_read_lock();
5493 	for_each_domain(cpu, sd) {
5494 		if (!(sd->flags & SD_LOAD_BALANCE))
5495 			continue;
5496 
5497 		interval = sd->balance_interval;
5498 		if (idle != CPU_IDLE)
5499 			interval *= sd->busy_factor;
5500 
5501 		/* scale ms to jiffies */
5502 		interval = msecs_to_jiffies(interval);
5503 		interval = clamp(interval, 1UL, max_load_balance_interval);
5504 
5505 		need_serialize = sd->flags & SD_SERIALIZE;
5506 
5507 		if (need_serialize) {
5508 			if (!spin_trylock(&balancing))
5509 				goto out;
5510 		}
5511 
5512 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
5513 			if (load_balance(cpu, rq, sd, idle, &balance)) {
5514 				/*
5515 				 * We've pulled tasks over so either we're no
5516 				 * longer idle.
5517 				 */
5518 				idle = CPU_NOT_IDLE;
5519 			}
5520 			sd->last_balance = jiffies;
5521 		}
5522 		if (need_serialize)
5523 			spin_unlock(&balancing);
5524 out:
5525 		if (time_after(next_balance, sd->last_balance + interval)) {
5526 			next_balance = sd->last_balance + interval;
5527 			update_next_balance = 1;
5528 		}
5529 
5530 		/*
5531 		 * Stop the load balance at this level. There is another
5532 		 * CPU in our sched group which is doing load balancing more
5533 		 * actively.
5534 		 */
5535 		if (!balance)
5536 			break;
5537 	}
5538 	rcu_read_unlock();
5539 
5540 	/*
5541 	 * next_balance will be updated only when there is a need.
5542 	 * When the cpu is attached to null domain for ex, it will not be
5543 	 * updated.
5544 	 */
5545 	if (likely(update_next_balance))
5546 		rq->next_balance = next_balance;
5547 }
5548 
5549 #ifdef CONFIG_NO_HZ
5550 /*
5551  * In CONFIG_NO_HZ case, the idle balance kickee will do the
5552  * rebalancing for all the cpus for whom scheduler ticks are stopped.
5553  */
5554 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5555 {
5556 	struct rq *this_rq = cpu_rq(this_cpu);
5557 	struct rq *rq;
5558 	int balance_cpu;
5559 
5560 	if (idle != CPU_IDLE ||
5561 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5562 		goto end;
5563 
5564 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5565 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5566 			continue;
5567 
5568 		/*
5569 		 * If this cpu gets work to do, stop the load balancing
5570 		 * work being done for other cpus. Next load
5571 		 * balancing owner will pick it up.
5572 		 */
5573 		if (need_resched())
5574 			break;
5575 
5576 		rq = cpu_rq(balance_cpu);
5577 
5578 		raw_spin_lock_irq(&rq->lock);
5579 		update_rq_clock(rq);
5580 		update_idle_cpu_load(rq);
5581 		raw_spin_unlock_irq(&rq->lock);
5582 
5583 		rebalance_domains(balance_cpu, CPU_IDLE);
5584 
5585 		if (time_after(this_rq->next_balance, rq->next_balance))
5586 			this_rq->next_balance = rq->next_balance;
5587 	}
5588 	nohz.next_balance = this_rq->next_balance;
5589 end:
5590 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5591 }
5592 
5593 /*
5594  * Current heuristic for kicking the idle load balancer in the presence
5595  * of an idle cpu is the system.
5596  *   - This rq has more than one task.
5597  *   - At any scheduler domain level, this cpu's scheduler group has multiple
5598  *     busy cpu's exceeding the group's power.
5599  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5600  *     domain span are idle.
5601  */
5602 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5603 {
5604 	unsigned long now = jiffies;
5605 	struct sched_domain *sd;
5606 
5607 	if (unlikely(idle_cpu(cpu)))
5608 		return 0;
5609 
5610        /*
5611 	* We may be recently in ticked or tickless idle mode. At the first
5612 	* busy tick after returning from idle, we will update the busy stats.
5613 	*/
5614 	set_cpu_sd_state_busy();
5615 	nohz_balance_exit_idle(cpu);
5616 
5617 	/*
5618 	 * None are in tickless mode and hence no need for NOHZ idle load
5619 	 * balancing.
5620 	 */
5621 	if (likely(!atomic_read(&nohz.nr_cpus)))
5622 		return 0;
5623 
5624 	if (time_before(now, nohz.next_balance))
5625 		return 0;
5626 
5627 	if (rq->nr_running >= 2)
5628 		goto need_kick;
5629 
5630 	rcu_read_lock();
5631 	for_each_domain(cpu, sd) {
5632 		struct sched_group *sg = sd->groups;
5633 		struct sched_group_power *sgp = sg->sgp;
5634 		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5635 
5636 		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5637 			goto need_kick_unlock;
5638 
5639 		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5640 		    && (cpumask_first_and(nohz.idle_cpus_mask,
5641 					  sched_domain_span(sd)) < cpu))
5642 			goto need_kick_unlock;
5643 
5644 		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5645 			break;
5646 	}
5647 	rcu_read_unlock();
5648 	return 0;
5649 
5650 need_kick_unlock:
5651 	rcu_read_unlock();
5652 need_kick:
5653 	return 1;
5654 }
5655 #else
5656 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5657 #endif
5658 
5659 /*
5660  * run_rebalance_domains is triggered when needed from the scheduler tick.
5661  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5662  */
5663 static void run_rebalance_domains(struct softirq_action *h)
5664 {
5665 	int this_cpu = smp_processor_id();
5666 	struct rq *this_rq = cpu_rq(this_cpu);
5667 	enum cpu_idle_type idle = this_rq->idle_balance ?
5668 						CPU_IDLE : CPU_NOT_IDLE;
5669 
5670 	rebalance_domains(this_cpu, idle);
5671 
5672 	/*
5673 	 * If this cpu has a pending nohz_balance_kick, then do the
5674 	 * balancing on behalf of the other idle cpus whose ticks are
5675 	 * stopped.
5676 	 */
5677 	nohz_idle_balance(this_cpu, idle);
5678 }
5679 
5680 static inline int on_null_domain(int cpu)
5681 {
5682 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5683 }
5684 
5685 /*
5686  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5687  */
5688 void trigger_load_balance(struct rq *rq, int cpu)
5689 {
5690 	/* Don't need to rebalance while attached to NULL domain */
5691 	if (time_after_eq(jiffies, rq->next_balance) &&
5692 	    likely(!on_null_domain(cpu)))
5693 		raise_softirq(SCHED_SOFTIRQ);
5694 #ifdef CONFIG_NO_HZ
5695 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5696 		nohz_balancer_kick(cpu);
5697 #endif
5698 }
5699 
5700 static void rq_online_fair(struct rq *rq)
5701 {
5702 	update_sysctl();
5703 }
5704 
5705 static void rq_offline_fair(struct rq *rq)
5706 {
5707 	update_sysctl();
5708 
5709 	/* Ensure any throttled groups are reachable by pick_next_task */
5710 	unthrottle_offline_cfs_rqs(rq);
5711 }
5712 
5713 #endif /* CONFIG_SMP */
5714 
5715 /*
5716  * scheduler tick hitting a task of our scheduling class:
5717  */
5718 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5719 {
5720 	struct cfs_rq *cfs_rq;
5721 	struct sched_entity *se = &curr->se;
5722 
5723 	for_each_sched_entity(se) {
5724 		cfs_rq = cfs_rq_of(se);
5725 		entity_tick(cfs_rq, se, queued);
5726 	}
5727 
5728 	if (sched_feat_numa(NUMA))
5729 		task_tick_numa(rq, curr);
5730 
5731 	update_rq_runnable_avg(rq, 1);
5732 }
5733 
5734 /*
5735  * called on fork with the child task as argument from the parent's context
5736  *  - child not yet on the tasklist
5737  *  - preemption disabled
5738  */
5739 static void task_fork_fair(struct task_struct *p)
5740 {
5741 	struct cfs_rq *cfs_rq;
5742 	struct sched_entity *se = &p->se, *curr;
5743 	int this_cpu = smp_processor_id();
5744 	struct rq *rq = this_rq();
5745 	unsigned long flags;
5746 
5747 	raw_spin_lock_irqsave(&rq->lock, flags);
5748 
5749 	update_rq_clock(rq);
5750 
5751 	cfs_rq = task_cfs_rq(current);
5752 	curr = cfs_rq->curr;
5753 
5754 	if (unlikely(task_cpu(p) != this_cpu)) {
5755 		rcu_read_lock();
5756 		__set_task_cpu(p, this_cpu);
5757 		rcu_read_unlock();
5758 	}
5759 
5760 	update_curr(cfs_rq);
5761 
5762 	if (curr)
5763 		se->vruntime = curr->vruntime;
5764 	place_entity(cfs_rq, se, 1);
5765 
5766 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5767 		/*
5768 		 * Upon rescheduling, sched_class::put_prev_task() will place
5769 		 * 'current' within the tree based on its new key value.
5770 		 */
5771 		swap(curr->vruntime, se->vruntime);
5772 		resched_task(rq->curr);
5773 	}
5774 
5775 	se->vruntime -= cfs_rq->min_vruntime;
5776 
5777 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5778 }
5779 
5780 /*
5781  * Priority of the task has changed. Check to see if we preempt
5782  * the current task.
5783  */
5784 static void
5785 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5786 {
5787 	if (!p->se.on_rq)
5788 		return;
5789 
5790 	/*
5791 	 * Reschedule if we are currently running on this runqueue and
5792 	 * our priority decreased, or if we are not currently running on
5793 	 * this runqueue and our priority is higher than the current's
5794 	 */
5795 	if (rq->curr == p) {
5796 		if (p->prio > oldprio)
5797 			resched_task(rq->curr);
5798 	} else
5799 		check_preempt_curr(rq, p, 0);
5800 }
5801 
5802 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5803 {
5804 	struct sched_entity *se = &p->se;
5805 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5806 
5807 	/*
5808 	 * Ensure the task's vruntime is normalized, so that when its
5809 	 * switched back to the fair class the enqueue_entity(.flags=0) will
5810 	 * do the right thing.
5811 	 *
5812 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5813 	 * have normalized the vruntime, if it was !on_rq, then only when
5814 	 * the task is sleeping will it still have non-normalized vruntime.
5815 	 */
5816 	if (!se->on_rq && p->state != TASK_RUNNING) {
5817 		/*
5818 		 * Fix up our vruntime so that the current sleep doesn't
5819 		 * cause 'unlimited' sleep bonus.
5820 		 */
5821 		place_entity(cfs_rq, se, 0);
5822 		se->vruntime -= cfs_rq->min_vruntime;
5823 	}
5824 
5825 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5826 	/*
5827 	* Remove our load from contribution when we leave sched_fair
5828 	* and ensure we don't carry in an old decay_count if we
5829 	* switch back.
5830 	*/
5831 	if (p->se.avg.decay_count) {
5832 		struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5833 		__synchronize_entity_decay(&p->se);
5834 		subtract_blocked_load_contrib(cfs_rq,
5835 				p->se.avg.load_avg_contrib);
5836 	}
5837 #endif
5838 }
5839 
5840 /*
5841  * We switched to the sched_fair class.
5842  */
5843 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5844 {
5845 	if (!p->se.on_rq)
5846 		return;
5847 
5848 	/*
5849 	 * We were most likely switched from sched_rt, so
5850 	 * kick off the schedule if running, otherwise just see
5851 	 * if we can still preempt the current task.
5852 	 */
5853 	if (rq->curr == p)
5854 		resched_task(rq->curr);
5855 	else
5856 		check_preempt_curr(rq, p, 0);
5857 }
5858 
5859 /* Account for a task changing its policy or group.
5860  *
5861  * This routine is mostly called to set cfs_rq->curr field when a task
5862  * migrates between groups/classes.
5863  */
5864 static void set_curr_task_fair(struct rq *rq)
5865 {
5866 	struct sched_entity *se = &rq->curr->se;
5867 
5868 	for_each_sched_entity(se) {
5869 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5870 
5871 		set_next_entity(cfs_rq, se);
5872 		/* ensure bandwidth has been allocated on our new cfs_rq */
5873 		account_cfs_rq_runtime(cfs_rq, 0);
5874 	}
5875 }
5876 
5877 void init_cfs_rq(struct cfs_rq *cfs_rq)
5878 {
5879 	cfs_rq->tasks_timeline = RB_ROOT;
5880 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5881 #ifndef CONFIG_64BIT
5882 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5883 #endif
5884 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5885 	atomic64_set(&cfs_rq->decay_counter, 1);
5886 	atomic64_set(&cfs_rq->removed_load, 0);
5887 #endif
5888 }
5889 
5890 #ifdef CONFIG_FAIR_GROUP_SCHED
5891 static void task_move_group_fair(struct task_struct *p, int on_rq)
5892 {
5893 	struct cfs_rq *cfs_rq;
5894 	/*
5895 	 * If the task was not on the rq at the time of this cgroup movement
5896 	 * it must have been asleep, sleeping tasks keep their ->vruntime
5897 	 * absolute on their old rq until wakeup (needed for the fair sleeper
5898 	 * bonus in place_entity()).
5899 	 *
5900 	 * If it was on the rq, we've just 'preempted' it, which does convert
5901 	 * ->vruntime to a relative base.
5902 	 *
5903 	 * Make sure both cases convert their relative position when migrating
5904 	 * to another cgroup's rq. This does somewhat interfere with the
5905 	 * fair sleeper stuff for the first placement, but who cares.
5906 	 */
5907 	/*
5908 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
5909 	 * But there are some cases where it has already been normalized:
5910 	 *
5911 	 * - Moving a forked child which is waiting for being woken up by
5912 	 *   wake_up_new_task().
5913 	 * - Moving a task which has been woken up by try_to_wake_up() and
5914 	 *   waiting for actually being woken up by sched_ttwu_pending().
5915 	 *
5916 	 * To prevent boost or penalty in the new cfs_rq caused by delta
5917 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5918 	 */
5919 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5920 		on_rq = 1;
5921 
5922 	if (!on_rq)
5923 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5924 	set_task_rq(p, task_cpu(p));
5925 	if (!on_rq) {
5926 		cfs_rq = cfs_rq_of(&p->se);
5927 		p->se.vruntime += cfs_rq->min_vruntime;
5928 #ifdef CONFIG_SMP
5929 		/*
5930 		 * migrate_task_rq_fair() will have removed our previous
5931 		 * contribution, but we must synchronize for ongoing future
5932 		 * decay.
5933 		 */
5934 		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5935 		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5936 #endif
5937 	}
5938 }
5939 
5940 void free_fair_sched_group(struct task_group *tg)
5941 {
5942 	int i;
5943 
5944 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5945 
5946 	for_each_possible_cpu(i) {
5947 		if (tg->cfs_rq)
5948 			kfree(tg->cfs_rq[i]);
5949 		if (tg->se)
5950 			kfree(tg->se[i]);
5951 	}
5952 
5953 	kfree(tg->cfs_rq);
5954 	kfree(tg->se);
5955 }
5956 
5957 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5958 {
5959 	struct cfs_rq *cfs_rq;
5960 	struct sched_entity *se;
5961 	int i;
5962 
5963 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5964 	if (!tg->cfs_rq)
5965 		goto err;
5966 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5967 	if (!tg->se)
5968 		goto err;
5969 
5970 	tg->shares = NICE_0_LOAD;
5971 
5972 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5973 
5974 	for_each_possible_cpu(i) {
5975 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5976 				      GFP_KERNEL, cpu_to_node(i));
5977 		if (!cfs_rq)
5978 			goto err;
5979 
5980 		se = kzalloc_node(sizeof(struct sched_entity),
5981 				  GFP_KERNEL, cpu_to_node(i));
5982 		if (!se)
5983 			goto err_free_rq;
5984 
5985 		init_cfs_rq(cfs_rq);
5986 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5987 	}
5988 
5989 	return 1;
5990 
5991 err_free_rq:
5992 	kfree(cfs_rq);
5993 err:
5994 	return 0;
5995 }
5996 
5997 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5998 {
5999 	struct rq *rq = cpu_rq(cpu);
6000 	unsigned long flags;
6001 
6002 	/*
6003 	* Only empty task groups can be destroyed; so we can speculatively
6004 	* check on_list without danger of it being re-added.
6005 	*/
6006 	if (!tg->cfs_rq[cpu]->on_list)
6007 		return;
6008 
6009 	raw_spin_lock_irqsave(&rq->lock, flags);
6010 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6011 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6012 }
6013 
6014 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6015 			struct sched_entity *se, int cpu,
6016 			struct sched_entity *parent)
6017 {
6018 	struct rq *rq = cpu_rq(cpu);
6019 
6020 	cfs_rq->tg = tg;
6021 	cfs_rq->rq = rq;
6022 	init_cfs_rq_runtime(cfs_rq);
6023 
6024 	tg->cfs_rq[cpu] = cfs_rq;
6025 	tg->se[cpu] = se;
6026 
6027 	/* se could be NULL for root_task_group */
6028 	if (!se)
6029 		return;
6030 
6031 	if (!parent)
6032 		se->cfs_rq = &rq->cfs;
6033 	else
6034 		se->cfs_rq = parent->my_q;
6035 
6036 	se->my_q = cfs_rq;
6037 	update_load_set(&se->load, 0);
6038 	se->parent = parent;
6039 }
6040 
6041 static DEFINE_MUTEX(shares_mutex);
6042 
6043 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6044 {
6045 	int i;
6046 	unsigned long flags;
6047 
6048 	/*
6049 	 * We can't change the weight of the root cgroup.
6050 	 */
6051 	if (!tg->se[0])
6052 		return -EINVAL;
6053 
6054 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6055 
6056 	mutex_lock(&shares_mutex);
6057 	if (tg->shares == shares)
6058 		goto done;
6059 
6060 	tg->shares = shares;
6061 	for_each_possible_cpu(i) {
6062 		struct rq *rq = cpu_rq(i);
6063 		struct sched_entity *se;
6064 
6065 		se = tg->se[i];
6066 		/* Propagate contribution to hierarchy */
6067 		raw_spin_lock_irqsave(&rq->lock, flags);
6068 		for_each_sched_entity(se)
6069 			update_cfs_shares(group_cfs_rq(se));
6070 		raw_spin_unlock_irqrestore(&rq->lock, flags);
6071 	}
6072 
6073 done:
6074 	mutex_unlock(&shares_mutex);
6075 	return 0;
6076 }
6077 #else /* CONFIG_FAIR_GROUP_SCHED */
6078 
6079 void free_fair_sched_group(struct task_group *tg) { }
6080 
6081 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6082 {
6083 	return 1;
6084 }
6085 
6086 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6087 
6088 #endif /* CONFIG_FAIR_GROUP_SCHED */
6089 
6090 
6091 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6092 {
6093 	struct sched_entity *se = &task->se;
6094 	unsigned int rr_interval = 0;
6095 
6096 	/*
6097 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6098 	 * idle runqueue:
6099 	 */
6100 	if (rq->cfs.load.weight)
6101 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6102 
6103 	return rr_interval;
6104 }
6105 
6106 /*
6107  * All the scheduling class methods:
6108  */
6109 const struct sched_class fair_sched_class = {
6110 	.next			= &idle_sched_class,
6111 	.enqueue_task		= enqueue_task_fair,
6112 	.dequeue_task		= dequeue_task_fair,
6113 	.yield_task		= yield_task_fair,
6114 	.yield_to_task		= yield_to_task_fair,
6115 
6116 	.check_preempt_curr	= check_preempt_wakeup,
6117 
6118 	.pick_next_task		= pick_next_task_fair,
6119 	.put_prev_task		= put_prev_task_fair,
6120 
6121 #ifdef CONFIG_SMP
6122 	.select_task_rq		= select_task_rq_fair,
6123 #ifdef CONFIG_FAIR_GROUP_SCHED
6124 	.migrate_task_rq	= migrate_task_rq_fair,
6125 #endif
6126 	.rq_online		= rq_online_fair,
6127 	.rq_offline		= rq_offline_fair,
6128 
6129 	.task_waking		= task_waking_fair,
6130 #endif
6131 
6132 	.set_curr_task          = set_curr_task_fair,
6133 	.task_tick		= task_tick_fair,
6134 	.task_fork		= task_fork_fair,
6135 
6136 	.prio_changed		= prio_changed_fair,
6137 	.switched_from		= switched_from_fair,
6138 	.switched_to		= switched_to_fair,
6139 
6140 	.get_rr_interval	= get_rr_interval_fair,
6141 
6142 #ifdef CONFIG_FAIR_GROUP_SCHED
6143 	.task_move_group	= task_move_group_fair,
6144 #endif
6145 };
6146 
6147 #ifdef CONFIG_SCHED_DEBUG
6148 void print_cfs_stats(struct seq_file *m, int cpu)
6149 {
6150 	struct cfs_rq *cfs_rq;
6151 
6152 	rcu_read_lock();
6153 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6154 		print_cfs_rq(m, cpu, cfs_rq);
6155 	rcu_read_unlock();
6156 }
6157 #endif
6158 
6159 __init void init_sched_fair_class(void)
6160 {
6161 #ifdef CONFIG_SMP
6162 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6163 
6164 #ifdef CONFIG_NO_HZ
6165 	nohz.next_balance = jiffies;
6166 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6167 	cpu_notifier(sched_ilb_notifier, 0);
6168 #endif
6169 #endif /* SMP */
6170 
6171 }
6172