xref: /linux/kernel/sched/fair.c (revision a513ad2d6de2dbf28465e4eae7d355a926944871)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32 
33 #include <trace/events/sched.h>
34 
35 #include "sched.h"
36 
37 /*
38  * Targeted preemption latency for CPU-bound tasks:
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51 
52 /*
53  * The initial- and re-scaling of tunables is configurable
54  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55  *
56  * Options are:
57  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60  */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 	= SCHED_TUNABLESCALING_LOG;
63 
64 /*
65  * Minimal preemption granularity for CPU-bound tasks:
66  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 
71 /*
72  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73  */
74 static unsigned int sched_nr_latency = 8;
75 
76 /*
77  * After fork, child runs first. If set to 0 (default) then
78  * parent will (try to) run first.
79  */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81 
82 /*
83  * SCHED_OTHER wake-up granularity.
84  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85  *
86  * This option delays the preemption effects of decoupled workloads
87  * and reduces their over-scheduling. Synchronous workloads will still
88  * have immediate wakeup/sleep latencies.
89  */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 
95 /*
96  * The exponential sliding  window over which load is averaged for shares
97  * distribution.
98  * (default: 10msec)
99  */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101 
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105  * each time a cfs_rq requests quota.
106  *
107  * Note: in the case that the slice exceeds the runtime remaining (either due
108  * to consumption or the quota being specified to be smaller than the slice)
109  * we will always only issue the remaining available time.
110  *
111  * default: 5 msec, units: microseconds
112   */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115 
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 	lw->weight += inc;
119 	lw->inv_weight = 0;
120 }
121 
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 	lw->weight -= dec;
125 	lw->inv_weight = 0;
126 }
127 
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 	lw->weight = w;
131 	lw->inv_weight = 0;
132 }
133 
134 /*
135  * Increase the granularity value when there are more CPUs,
136  * because with more CPUs the 'effective latency' as visible
137  * to users decreases. But the relationship is not linear,
138  * so pick a second-best guess by going with the log2 of the
139  * number of CPUs.
140  *
141  * This idea comes from the SD scheduler of Con Kolivas:
142  */
143 static int get_update_sysctl_factor(void)
144 {
145 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 	unsigned int factor;
147 
148 	switch (sysctl_sched_tunable_scaling) {
149 	case SCHED_TUNABLESCALING_NONE:
150 		factor = 1;
151 		break;
152 	case SCHED_TUNABLESCALING_LINEAR:
153 		factor = cpus;
154 		break;
155 	case SCHED_TUNABLESCALING_LOG:
156 	default:
157 		factor = 1 + ilog2(cpus);
158 		break;
159 	}
160 
161 	return factor;
162 }
163 
164 static void update_sysctl(void)
165 {
166 	unsigned int factor = get_update_sysctl_factor();
167 
168 #define SET_SYSCTL(name) \
169 	(sysctl_##name = (factor) * normalized_sysctl_##name)
170 	SET_SYSCTL(sched_min_granularity);
171 	SET_SYSCTL(sched_latency);
172 	SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175 
176 void sched_init_granularity(void)
177 {
178 	update_sysctl();
179 }
180 
181 #define WMULT_CONST	(~0U)
182 #define WMULT_SHIFT	32
183 
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 	unsigned long w;
187 
188 	if (likely(lw->inv_weight))
189 		return;
190 
191 	w = scale_load_down(lw->weight);
192 
193 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 		lw->inv_weight = 1;
195 	else if (unlikely(!w))
196 		lw->inv_weight = WMULT_CONST;
197 	else
198 		lw->inv_weight = WMULT_CONST / w;
199 }
200 
201 /*
202  * delta_exec * weight / lw.weight
203  *   OR
204  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205  *
206  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207  * we're guaranteed shift stays positive because inv_weight is guaranteed to
208  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209  *
210  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211  * weight/lw.weight <= 1, and therefore our shift will also be positive.
212  */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 	u64 fact = scale_load_down(weight);
216 	int shift = WMULT_SHIFT;
217 
218 	__update_inv_weight(lw);
219 
220 	if (unlikely(fact >> 32)) {
221 		while (fact >> 32) {
222 			fact >>= 1;
223 			shift--;
224 		}
225 	}
226 
227 	/* hint to use a 32x32->64 mul */
228 	fact = (u64)(u32)fact * lw->inv_weight;
229 
230 	while (fact >> 32) {
231 		fact >>= 1;
232 		shift--;
233 	}
234 
235 	return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237 
238 
239 const struct sched_class fair_sched_class;
240 
241 /**************************************************************
242  * CFS operations on generic schedulable entities:
243  */
244 
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 	return cfs_rq->rq;
251 }
252 
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se)	(!se->my_q)
255 
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 	WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 				       int force_update);
287 
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 	if (!cfs_rq->on_list) {
291 		/*
292 		 * Ensure we either appear before our parent (if already
293 		 * enqueued) or force our parent to appear after us when it is
294 		 * enqueued.  The fact that we always enqueue bottom-up
295 		 * reduces this to two cases.
296 		 */
297 		if (cfs_rq->tg->parent &&
298 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
301 		} else {
302 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304 		}
305 
306 		cfs_rq->on_list = 1;
307 		/* We should have no load, but we need to update last_decay. */
308 		update_cfs_rq_blocked_load(cfs_rq, 0);
309 	}
310 }
311 
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	if (cfs_rq->on_list) {
315 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 		cfs_rq->on_list = 0;
317 	}
318 }
319 
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323 
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 	if (se->cfs_rq == pse->cfs_rq)
329 		return se->cfs_rq;
330 
331 	return NULL;
332 }
333 
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 	return se->parent;
337 }
338 
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 	int se_depth, pse_depth;
343 
344 	/*
345 	 * preemption test can be made between sibling entities who are in the
346 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 	 * both tasks until we find their ancestors who are siblings of common
348 	 * parent.
349 	 */
350 
351 	/* First walk up until both entities are at same depth */
352 	se_depth = (*se)->depth;
353 	pse_depth = (*pse)->depth;
354 
355 	while (se_depth > pse_depth) {
356 		se_depth--;
357 		*se = parent_entity(*se);
358 	}
359 
360 	while (pse_depth > se_depth) {
361 		pse_depth--;
362 		*pse = parent_entity(*pse);
363 	}
364 
365 	while (!is_same_group(*se, *pse)) {
366 		*se = parent_entity(*se);
367 		*pse = parent_entity(*pse);
368 	}
369 }
370 
371 #else	/* !CONFIG_FAIR_GROUP_SCHED */
372 
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 	return container_of(se, struct task_struct, se);
376 }
377 
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 	return container_of(cfs_rq, struct rq, cfs);
381 }
382 
383 #define entity_is_task(se)	1
384 
385 #define for_each_sched_entity(se) \
386 		for (; se; se = NULL)
387 
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 	return &task_rq(p)->cfs;
391 }
392 
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 	struct task_struct *p = task_of(se);
396 	struct rq *rq = task_rq(p);
397 
398 	return &rq->cfs;
399 }
400 
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 	return NULL;
405 }
406 
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414 
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417 
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 	return NULL;
421 }
422 
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427 
428 #endif	/* CONFIG_FAIR_GROUP_SCHED */
429 
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 
433 /**************************************************************
434  * Scheduling class tree data structure manipulation methods:
435  */
436 
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 	s64 delta = (s64)(vruntime - max_vruntime);
440 	if (delta > 0)
441 		max_vruntime = vruntime;
442 
443 	return max_vruntime;
444 }
445 
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 	s64 delta = (s64)(vruntime - min_vruntime);
449 	if (delta < 0)
450 		min_vruntime = vruntime;
451 
452 	return min_vruntime;
453 }
454 
455 static inline int entity_before(struct sched_entity *a,
456 				struct sched_entity *b)
457 {
458 	return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460 
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 	u64 vruntime = cfs_rq->min_vruntime;
464 
465 	if (cfs_rq->curr)
466 		vruntime = cfs_rq->curr->vruntime;
467 
468 	if (cfs_rq->rb_leftmost) {
469 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 						   struct sched_entity,
471 						   run_node);
472 
473 		if (!cfs_rq->curr)
474 			vruntime = se->vruntime;
475 		else
476 			vruntime = min_vruntime(vruntime, se->vruntime);
477 	}
478 
479 	/* ensure we never gain time by being placed backwards. */
480 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 	smp_wmb();
483 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486 
487 /*
488  * Enqueue an entity into the rb-tree:
489  */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 	struct rb_node *parent = NULL;
494 	struct sched_entity *entry;
495 	int leftmost = 1;
496 
497 	/*
498 	 * Find the right place in the rbtree:
499 	 */
500 	while (*link) {
501 		parent = *link;
502 		entry = rb_entry(parent, struct sched_entity, run_node);
503 		/*
504 		 * We dont care about collisions. Nodes with
505 		 * the same key stay together.
506 		 */
507 		if (entity_before(se, entry)) {
508 			link = &parent->rb_left;
509 		} else {
510 			link = &parent->rb_right;
511 			leftmost = 0;
512 		}
513 	}
514 
515 	/*
516 	 * Maintain a cache of leftmost tree entries (it is frequently
517 	 * used):
518 	 */
519 	if (leftmost)
520 		cfs_rq->rb_leftmost = &se->run_node;
521 
522 	rb_link_node(&se->run_node, parent, link);
523 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525 
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 	if (cfs_rq->rb_leftmost == &se->run_node) {
529 		struct rb_node *next_node;
530 
531 		next_node = rb_next(&se->run_node);
532 		cfs_rq->rb_leftmost = next_node;
533 	}
534 
535 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537 
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 	struct rb_node *left = cfs_rq->rb_leftmost;
541 
542 	if (!left)
543 		return NULL;
544 
545 	return rb_entry(left, struct sched_entity, run_node);
546 }
547 
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 	struct rb_node *next = rb_next(&se->run_node);
551 
552 	if (!next)
553 		return NULL;
554 
555 	return rb_entry(next, struct sched_entity, run_node);
556 }
557 
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562 
563 	if (!last)
564 		return NULL;
565 
566 	return rb_entry(last, struct sched_entity, run_node);
567 }
568 
569 /**************************************************************
570  * Scheduling class statistics methods:
571  */
572 
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 		void __user *buffer, size_t *lenp,
575 		loff_t *ppos)
576 {
577 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 	int factor = get_update_sysctl_factor();
579 
580 	if (ret || !write)
581 		return ret;
582 
583 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 					sysctl_sched_min_granularity);
585 
586 #define WRT_SYSCTL(name) \
587 	(normalized_sysctl_##name = sysctl_##name / (factor))
588 	WRT_SYSCTL(sched_min_granularity);
589 	WRT_SYSCTL(sched_latency);
590 	WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592 
593 	return 0;
594 }
595 #endif
596 
597 /*
598  * delta /= w
599  */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 	if (unlikely(se->load.weight != NICE_0_LOAD))
603 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 
605 	return delta;
606 }
607 
608 /*
609  * The idea is to set a period in which each task runs once.
610  *
611  * When there are too many tasks (sched_nr_latency) we have to stretch
612  * this period because otherwise the slices get too small.
613  *
614  * p = (nr <= nl) ? l : l*nr/nl
615  */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 	u64 period = sysctl_sched_latency;
619 	unsigned long nr_latency = sched_nr_latency;
620 
621 	if (unlikely(nr_running > nr_latency)) {
622 		period = sysctl_sched_min_granularity;
623 		period *= nr_running;
624 	}
625 
626 	return period;
627 }
628 
629 /*
630  * We calculate the wall-time slice from the period by taking a part
631  * proportional to the weight.
632  *
633  * s = p*P[w/rw]
634  */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638 
639 	for_each_sched_entity(se) {
640 		struct load_weight *load;
641 		struct load_weight lw;
642 
643 		cfs_rq = cfs_rq_of(se);
644 		load = &cfs_rq->load;
645 
646 		if (unlikely(!se->on_rq)) {
647 			lw = cfs_rq->load;
648 
649 			update_load_add(&lw, se->load.weight);
650 			load = &lw;
651 		}
652 		slice = __calc_delta(slice, se->load.weight, load);
653 	}
654 	return slice;
655 }
656 
657 /*
658  * We calculate the vruntime slice of a to-be-inserted task.
659  *
660  * vs = s/w
661  */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666 
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669 
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671 
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 	u32 slice;
676 
677 	p->se.avg.decay_count = 0;
678 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 	p->se.avg.runnable_avg_sum = slice;
680 	p->se.avg.runnable_avg_period = slice;
681 	__update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688 
689 /*
690  * Update the current task's runtime statistics.
691  */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 	struct sched_entity *curr = cfs_rq->curr;
695 	u64 now = rq_clock_task(rq_of(cfs_rq));
696 	u64 delta_exec;
697 
698 	if (unlikely(!curr))
699 		return;
700 
701 	delta_exec = now - curr->exec_start;
702 	if (unlikely((s64)delta_exec <= 0))
703 		return;
704 
705 	curr->exec_start = now;
706 
707 	schedstat_set(curr->statistics.exec_max,
708 		      max(delta_exec, curr->statistics.exec_max));
709 
710 	curr->sum_exec_runtime += delta_exec;
711 	schedstat_add(cfs_rq, exec_clock, delta_exec);
712 
713 	curr->vruntime += calc_delta_fair(delta_exec, curr);
714 	update_min_vruntime(cfs_rq);
715 
716 	if (entity_is_task(curr)) {
717 		struct task_struct *curtask = task_of(curr);
718 
719 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 		cpuacct_charge(curtask, delta_exec);
721 		account_group_exec_runtime(curtask, delta_exec);
722 	}
723 
724 	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726 
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732 
733 /*
734  * Task is being enqueued - update stats:
735  */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	/*
739 	 * Are we enqueueing a waiting task? (for current tasks
740 	 * a dequeue/enqueue event is a NOP)
741 	 */
742 	if (se != cfs_rq->curr)
743 		update_stats_wait_start(cfs_rq, se);
744 }
745 
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 	if (entity_is_task(se)) {
756 		trace_sched_stat_wait(task_of(se),
757 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 	}
759 #endif
760 	schedstat_set(se->statistics.wait_start, 0);
761 }
762 
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 	/*
767 	 * Mark the end of the wait period if dequeueing a
768 	 * waiting task:
769 	 */
770 	if (se != cfs_rq->curr)
771 		update_stats_wait_end(cfs_rq, se);
772 }
773 
774 /*
775  * We are picking a new current task - update its stats:
776  */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 	/*
781 	 * We are starting a new run period:
782 	 */
783 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785 
786 /**************************************************
787  * Scheduling class queueing methods:
788  */
789 
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792  * Approximate time to scan a full NUMA task in ms. The task scan period is
793  * calculated based on the tasks virtual memory size and
794  * numa_balancing_scan_size.
795  */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801 
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804 
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 	unsigned long rss = 0;
808 	unsigned long nr_scan_pages;
809 
810 	/*
811 	 * Calculations based on RSS as non-present and empty pages are skipped
812 	 * by the PTE scanner and NUMA hinting faults should be trapped based
813 	 * on resident pages
814 	 */
815 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 	rss = get_mm_rss(p->mm);
817 	if (!rss)
818 		rss = nr_scan_pages;
819 
820 	rss = round_up(rss, nr_scan_pages);
821 	return rss / nr_scan_pages;
822 }
823 
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826 
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 	unsigned int scan, floor;
830 	unsigned int windows = 1;
831 
832 	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 	floor = 1000 / windows;
835 
836 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 	return max_t(unsigned int, floor, scan);
838 }
839 
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 	unsigned int smin = task_scan_min(p);
843 	unsigned int smax;
844 
845 	/* Watch for min being lower than max due to floor calculations */
846 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 	return max(smin, smax);
848 }
849 
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855 
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861 
862 struct numa_group {
863 	atomic_t refcount;
864 
865 	spinlock_t lock; /* nr_tasks, tasks */
866 	int nr_tasks;
867 	pid_t gid;
868 	struct list_head task_list;
869 
870 	struct rcu_head rcu;
871 	nodemask_t active_nodes;
872 	unsigned long total_faults;
873 	/*
874 	 * Faults_cpu is used to decide whether memory should move
875 	 * towards the CPU. As a consequence, these stats are weighted
876 	 * more by CPU use than by memory faults.
877 	 */
878 	unsigned long *faults_cpu;
879 	unsigned long faults[0];
880 };
881 
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884 
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887 
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890 
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 	return p->numa_group ? p->numa_group->gid : 0;
894 }
895 
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900 
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 	if (!p->numa_faults_memory)
904 		return 0;
905 
906 	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909 
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 	if (!p->numa_group)
913 		return 0;
914 
915 	return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 		p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918 
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 	return group->faults_cpu[task_faults_idx(nid, 0)] +
922 		group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924 
925 /*
926  * These return the fraction of accesses done by a particular task, or
927  * task group, on a particular numa node.  The group weight is given a
928  * larger multiplier, in order to group tasks together that are almost
929  * evenly spread out between numa nodes.
930  */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 	unsigned long total_faults;
934 
935 	if (!p->numa_faults_memory)
936 		return 0;
937 
938 	total_faults = p->total_numa_faults;
939 
940 	if (!total_faults)
941 		return 0;
942 
943 	return 1000 * task_faults(p, nid) / total_faults;
944 }
945 
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 	if (!p->numa_group || !p->numa_group->total_faults)
949 		return 0;
950 
951 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953 
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 				int src_nid, int dst_cpu)
956 {
957 	struct numa_group *ng = p->numa_group;
958 	int dst_nid = cpu_to_node(dst_cpu);
959 	int last_cpupid, this_cpupid;
960 
961 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962 
963 	/*
964 	 * Multi-stage node selection is used in conjunction with a periodic
965 	 * migration fault to build a temporal task<->page relation. By using
966 	 * a two-stage filter we remove short/unlikely relations.
967 	 *
968 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 	 * a task's usage of a particular page (n_p) per total usage of this
970 	 * page (n_t) (in a given time-span) to a probability.
971 	 *
972 	 * Our periodic faults will sample this probability and getting the
973 	 * same result twice in a row, given these samples are fully
974 	 * independent, is then given by P(n)^2, provided our sample period
975 	 * is sufficiently short compared to the usage pattern.
976 	 *
977 	 * This quadric squishes small probabilities, making it less likely we
978 	 * act on an unlikely task<->page relation.
979 	 */
980 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 	if (!cpupid_pid_unset(last_cpupid) &&
982 				cpupid_to_nid(last_cpupid) != dst_nid)
983 		return false;
984 
985 	/* Always allow migrate on private faults */
986 	if (cpupid_match_pid(p, last_cpupid))
987 		return true;
988 
989 	/* A shared fault, but p->numa_group has not been set up yet. */
990 	if (!ng)
991 		return true;
992 
993 	/*
994 	 * Do not migrate if the destination is not a node that
995 	 * is actively used by this numa group.
996 	 */
997 	if (!node_isset(dst_nid, ng->active_nodes))
998 		return false;
999 
1000 	/*
1001 	 * Source is a node that is not actively used by this
1002 	 * numa group, while the destination is. Migrate.
1003 	 */
1004 	if (!node_isset(src_nid, ng->active_nodes))
1005 		return true;
1006 
1007 	/*
1008 	 * Both source and destination are nodes in active
1009 	 * use by this numa group. Maximize memory bandwidth
1010 	 * by migrating from more heavily used groups, to less
1011 	 * heavily used ones, spreading the load around.
1012 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 	 */
1014 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016 
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long power_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022 
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 	unsigned long nr_running;
1026 	unsigned long load;
1027 
1028 	/* Total compute capacity of CPUs on a node */
1029 	unsigned long power;
1030 
1031 	/* Approximate capacity in terms of runnable tasks on a node */
1032 	unsigned long capacity;
1033 	int has_capacity;
1034 };
1035 
1036 /*
1037  * XXX borrowed from update_sg_lb_stats
1038  */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 	int cpu, cpus = 0;
1042 
1043 	memset(ns, 0, sizeof(*ns));
1044 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 		struct rq *rq = cpu_rq(cpu);
1046 
1047 		ns->nr_running += rq->nr_running;
1048 		ns->load += weighted_cpuload(cpu);
1049 		ns->power += power_of(cpu);
1050 
1051 		cpus++;
1052 	}
1053 
1054 	/*
1055 	 * If we raced with hotplug and there are no CPUs left in our mask
1056 	 * the @ns structure is NULL'ed and task_numa_compare() will
1057 	 * not find this node attractive.
1058 	 *
1059 	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 	 * and bail there.
1061 	 */
1062 	if (!cpus)
1063 		return;
1064 
1065 	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 	ns->has_capacity = (ns->nr_running < ns->capacity);
1068 }
1069 
1070 struct task_numa_env {
1071 	struct task_struct *p;
1072 
1073 	int src_cpu, src_nid;
1074 	int dst_cpu, dst_nid;
1075 
1076 	struct numa_stats src_stats, dst_stats;
1077 
1078 	int imbalance_pct;
1079 
1080 	struct task_struct *best_task;
1081 	long best_imp;
1082 	int best_cpu;
1083 };
1084 
1085 static void task_numa_assign(struct task_numa_env *env,
1086 			     struct task_struct *p, long imp)
1087 {
1088 	if (env->best_task)
1089 		put_task_struct(env->best_task);
1090 	if (p)
1091 		get_task_struct(p);
1092 
1093 	env->best_task = p;
1094 	env->best_imp = imp;
1095 	env->best_cpu = env->dst_cpu;
1096 }
1097 
1098 /*
1099  * This checks if the overall compute and NUMA accesses of the system would
1100  * be improved if the source tasks was migrated to the target dst_cpu taking
1101  * into account that it might be best if task running on the dst_cpu should
1102  * be exchanged with the source task
1103  */
1104 static void task_numa_compare(struct task_numa_env *env,
1105 			      long taskimp, long groupimp)
1106 {
1107 	struct rq *src_rq = cpu_rq(env->src_cpu);
1108 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 	struct task_struct *cur;
1110 	long dst_load, src_load;
1111 	long load;
1112 	long imp = (groupimp > 0) ? groupimp : taskimp;
1113 
1114 	rcu_read_lock();
1115 	cur = ACCESS_ONCE(dst_rq->curr);
1116 	if (cur->pid == 0) /* idle */
1117 		cur = NULL;
1118 
1119 	/*
1120 	 * "imp" is the fault differential for the source task between the
1121 	 * source and destination node. Calculate the total differential for
1122 	 * the source task and potential destination task. The more negative
1123 	 * the value is, the more rmeote accesses that would be expected to
1124 	 * be incurred if the tasks were swapped.
1125 	 */
1126 	if (cur) {
1127 		/* Skip this swap candidate if cannot move to the source cpu */
1128 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 			goto unlock;
1130 
1131 		/*
1132 		 * If dst and source tasks are in the same NUMA group, or not
1133 		 * in any group then look only at task weights.
1134 		 */
1135 		if (cur->numa_group == env->p->numa_group) {
1136 			imp = taskimp + task_weight(cur, env->src_nid) -
1137 			      task_weight(cur, env->dst_nid);
1138 			/*
1139 			 * Add some hysteresis to prevent swapping the
1140 			 * tasks within a group over tiny differences.
1141 			 */
1142 			if (cur->numa_group)
1143 				imp -= imp/16;
1144 		} else {
1145 			/*
1146 			 * Compare the group weights. If a task is all by
1147 			 * itself (not part of a group), use the task weight
1148 			 * instead.
1149 			 */
1150 			if (env->p->numa_group)
1151 				imp = groupimp;
1152 			else
1153 				imp = taskimp;
1154 
1155 			if (cur->numa_group)
1156 				imp += group_weight(cur, env->src_nid) -
1157 				       group_weight(cur, env->dst_nid);
1158 			else
1159 				imp += task_weight(cur, env->src_nid) -
1160 				       task_weight(cur, env->dst_nid);
1161 		}
1162 	}
1163 
1164 	if (imp < env->best_imp)
1165 		goto unlock;
1166 
1167 	if (!cur) {
1168 		/* Is there capacity at our destination? */
1169 		if (env->src_stats.has_capacity &&
1170 		    !env->dst_stats.has_capacity)
1171 			goto unlock;
1172 
1173 		goto balance;
1174 	}
1175 
1176 	/* Balance doesn't matter much if we're running a task per cpu */
1177 	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 		goto assign;
1179 
1180 	/*
1181 	 * In the overloaded case, try and keep the load balanced.
1182 	 */
1183 balance:
1184 	dst_load = env->dst_stats.load;
1185 	src_load = env->src_stats.load;
1186 
1187 	/* XXX missing power terms */
1188 	load = task_h_load(env->p);
1189 	dst_load += load;
1190 	src_load -= load;
1191 
1192 	if (cur) {
1193 		load = task_h_load(cur);
1194 		dst_load -= load;
1195 		src_load += load;
1196 	}
1197 
1198 	/* make src_load the smaller */
1199 	if (dst_load < src_load)
1200 		swap(dst_load, src_load);
1201 
1202 	if (src_load * env->imbalance_pct < dst_load * 100)
1203 		goto unlock;
1204 
1205 assign:
1206 	task_numa_assign(env, cur, imp);
1207 unlock:
1208 	rcu_read_unlock();
1209 }
1210 
1211 static void task_numa_find_cpu(struct task_numa_env *env,
1212 				long taskimp, long groupimp)
1213 {
1214 	int cpu;
1215 
1216 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 		/* Skip this CPU if the source task cannot migrate */
1218 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 			continue;
1220 
1221 		env->dst_cpu = cpu;
1222 		task_numa_compare(env, taskimp, groupimp);
1223 	}
1224 }
1225 
1226 static int task_numa_migrate(struct task_struct *p)
1227 {
1228 	struct task_numa_env env = {
1229 		.p = p,
1230 
1231 		.src_cpu = task_cpu(p),
1232 		.src_nid = task_node(p),
1233 
1234 		.imbalance_pct = 112,
1235 
1236 		.best_task = NULL,
1237 		.best_imp = 0,
1238 		.best_cpu = -1
1239 	};
1240 	struct sched_domain *sd;
1241 	unsigned long taskweight, groupweight;
1242 	int nid, ret;
1243 	long taskimp, groupimp;
1244 
1245 	/*
1246 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 	 * imbalance and would be the first to start moving tasks about.
1248 	 *
1249 	 * And we want to avoid any moving of tasks about, as that would create
1250 	 * random movement of tasks -- counter the numa conditions we're trying
1251 	 * to satisfy here.
1252 	 */
1253 	rcu_read_lock();
1254 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255 	if (sd)
1256 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257 	rcu_read_unlock();
1258 
1259 	/*
1260 	 * Cpusets can break the scheduler domain tree into smaller
1261 	 * balance domains, some of which do not cross NUMA boundaries.
1262 	 * Tasks that are "trapped" in such domains cannot be migrated
1263 	 * elsewhere, so there is no point in (re)trying.
1264 	 */
1265 	if (unlikely(!sd)) {
1266 		p->numa_preferred_nid = task_node(p);
1267 		return -EINVAL;
1268 	}
1269 
1270 	taskweight = task_weight(p, env.src_nid);
1271 	groupweight = group_weight(p, env.src_nid);
1272 	update_numa_stats(&env.src_stats, env.src_nid);
1273 	env.dst_nid = p->numa_preferred_nid;
1274 	taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 	groupimp = group_weight(p, env.dst_nid) - groupweight;
1276 	update_numa_stats(&env.dst_stats, env.dst_nid);
1277 
1278 	/* If the preferred nid has capacity, try to use it. */
1279 	if (env.dst_stats.has_capacity)
1280 		task_numa_find_cpu(&env, taskimp, groupimp);
1281 
1282 	/* No space available on the preferred nid. Look elsewhere. */
1283 	if (env.best_cpu == -1) {
1284 		for_each_online_node(nid) {
1285 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 				continue;
1287 
1288 			/* Only consider nodes where both task and groups benefit */
1289 			taskimp = task_weight(p, nid) - taskweight;
1290 			groupimp = group_weight(p, nid) - groupweight;
1291 			if (taskimp < 0 && groupimp < 0)
1292 				continue;
1293 
1294 			env.dst_nid = nid;
1295 			update_numa_stats(&env.dst_stats, env.dst_nid);
1296 			task_numa_find_cpu(&env, taskimp, groupimp);
1297 		}
1298 	}
1299 
1300 	/* No better CPU than the current one was found. */
1301 	if (env.best_cpu == -1)
1302 		return -EAGAIN;
1303 
1304 	sched_setnuma(p, env.dst_nid);
1305 
1306 	/*
1307 	 * Reset the scan period if the task is being rescheduled on an
1308 	 * alternative node to recheck if the tasks is now properly placed.
1309 	 */
1310 	p->numa_scan_period = task_scan_min(p);
1311 
1312 	if (env.best_task == NULL) {
1313 		ret = migrate_task_to(p, env.best_cpu);
1314 		if (ret != 0)
1315 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1316 		return ret;
1317 	}
1318 
1319 	ret = migrate_swap(p, env.best_task);
1320 	if (ret != 0)
1321 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322 	put_task_struct(env.best_task);
1323 	return ret;
1324 }
1325 
1326 /* Attempt to migrate a task to a CPU on the preferred node. */
1327 static void numa_migrate_preferred(struct task_struct *p)
1328 {
1329 	/* This task has no NUMA fault statistics yet */
1330 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1331 		return;
1332 
1333 	/* Periodically retry migrating the task to the preferred node */
1334 	p->numa_migrate_retry = jiffies + HZ;
1335 
1336 	/* Success if task is already running on preferred CPU */
1337 	if (task_node(p) == p->numa_preferred_nid)
1338 		return;
1339 
1340 	/* Otherwise, try migrate to a CPU on the preferred node */
1341 	task_numa_migrate(p);
1342 }
1343 
1344 /*
1345  * Find the nodes on which the workload is actively running. We do this by
1346  * tracking the nodes from which NUMA hinting faults are triggered. This can
1347  * be different from the set of nodes where the workload's memory is currently
1348  * located.
1349  *
1350  * The bitmask is used to make smarter decisions on when to do NUMA page
1351  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352  * are added when they cause over 6/16 of the maximum number of faults, but
1353  * only removed when they drop below 3/16.
1354  */
1355 static void update_numa_active_node_mask(struct numa_group *numa_group)
1356 {
1357 	unsigned long faults, max_faults = 0;
1358 	int nid;
1359 
1360 	for_each_online_node(nid) {
1361 		faults = group_faults_cpu(numa_group, nid);
1362 		if (faults > max_faults)
1363 			max_faults = faults;
1364 	}
1365 
1366 	for_each_online_node(nid) {
1367 		faults = group_faults_cpu(numa_group, nid);
1368 		if (!node_isset(nid, numa_group->active_nodes)) {
1369 			if (faults > max_faults * 6 / 16)
1370 				node_set(nid, numa_group->active_nodes);
1371 		} else if (faults < max_faults * 3 / 16)
1372 			node_clear(nid, numa_group->active_nodes);
1373 	}
1374 }
1375 
1376 /*
1377  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378  * increments. The more local the fault statistics are, the higher the scan
1379  * period will be for the next scan window. If local/remote ratio is below
1380  * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381  * scan period will decrease
1382  */
1383 #define NUMA_PERIOD_SLOTS 10
1384 #define NUMA_PERIOD_THRESHOLD 3
1385 
1386 /*
1387  * Increase the scan period (slow down scanning) if the majority of
1388  * our memory is already on our local node, or if the majority of
1389  * the page accesses are shared with other processes.
1390  * Otherwise, decrease the scan period.
1391  */
1392 static void update_task_scan_period(struct task_struct *p,
1393 			unsigned long shared, unsigned long private)
1394 {
1395 	unsigned int period_slot;
1396 	int ratio;
1397 	int diff;
1398 
1399 	unsigned long remote = p->numa_faults_locality[0];
1400 	unsigned long local = p->numa_faults_locality[1];
1401 
1402 	/*
1403 	 * If there were no record hinting faults then either the task is
1404 	 * completely idle or all activity is areas that are not of interest
1405 	 * to automatic numa balancing. Scan slower
1406 	 */
1407 	if (local + shared == 0) {
1408 		p->numa_scan_period = min(p->numa_scan_period_max,
1409 			p->numa_scan_period << 1);
1410 
1411 		p->mm->numa_next_scan = jiffies +
1412 			msecs_to_jiffies(p->numa_scan_period);
1413 
1414 		return;
1415 	}
1416 
1417 	/*
1418 	 * Prepare to scale scan period relative to the current period.
1419 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 	 */
1423 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 		if (!slot)
1428 			slot = 1;
1429 		diff = slot * period_slot;
1430 	} else {
1431 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432 
1433 		/*
1434 		 * Scale scan rate increases based on sharing. There is an
1435 		 * inverse relationship between the degree of sharing and
1436 		 * the adjustment made to the scanning period. Broadly
1437 		 * speaking the intent is that there is little point
1438 		 * scanning faster if shared accesses dominate as it may
1439 		 * simply bounce migrations uselessly
1440 		 */
1441 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 	}
1444 
1445 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 			task_scan_min(p), task_scan_max(p));
1447 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448 }
1449 
1450 /*
1451  * Get the fraction of time the task has been running since the last
1452  * NUMA placement cycle. The scheduler keeps similar statistics, but
1453  * decays those on a 32ms period, which is orders of magnitude off
1454  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455  * stats only if the task is so new there are no NUMA statistics yet.
1456  */
1457 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458 {
1459 	u64 runtime, delta, now;
1460 	/* Use the start of this time slice to avoid calculations. */
1461 	now = p->se.exec_start;
1462 	runtime = p->se.sum_exec_runtime;
1463 
1464 	if (p->last_task_numa_placement) {
1465 		delta = runtime - p->last_sum_exec_runtime;
1466 		*period = now - p->last_task_numa_placement;
1467 	} else {
1468 		delta = p->se.avg.runnable_avg_sum;
1469 		*period = p->se.avg.runnable_avg_period;
1470 	}
1471 
1472 	p->last_sum_exec_runtime = runtime;
1473 	p->last_task_numa_placement = now;
1474 
1475 	return delta;
1476 }
1477 
1478 static void task_numa_placement(struct task_struct *p)
1479 {
1480 	int seq, nid, max_nid = -1, max_group_nid = -1;
1481 	unsigned long max_faults = 0, max_group_faults = 0;
1482 	unsigned long fault_types[2] = { 0, 0 };
1483 	unsigned long total_faults;
1484 	u64 runtime, period;
1485 	spinlock_t *group_lock = NULL;
1486 
1487 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1488 	if (p->numa_scan_seq == seq)
1489 		return;
1490 	p->numa_scan_seq = seq;
1491 	p->numa_scan_period_max = task_scan_max(p);
1492 
1493 	total_faults = p->numa_faults_locality[0] +
1494 		       p->numa_faults_locality[1];
1495 	runtime = numa_get_avg_runtime(p, &period);
1496 
1497 	/* If the task is part of a group prevent parallel updates to group stats */
1498 	if (p->numa_group) {
1499 		group_lock = &p->numa_group->lock;
1500 		spin_lock_irq(group_lock);
1501 	}
1502 
1503 	/* Find the node with the highest number of faults */
1504 	for_each_online_node(nid) {
1505 		unsigned long faults = 0, group_faults = 0;
1506 		int priv, i;
1507 
1508 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509 			long diff, f_diff, f_weight;
1510 
1511 			i = task_faults_idx(nid, priv);
1512 
1513 			/* Decay existing window, copy faults since last scan */
1514 			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515 			fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 			p->numa_faults_buffer_memory[i] = 0;
1517 
1518 			/*
1519 			 * Normalize the faults_from, so all tasks in a group
1520 			 * count according to CPU use, instead of by the raw
1521 			 * number of faults. Tasks with little runtime have
1522 			 * little over-all impact on throughput, and thus their
1523 			 * faults are less important.
1524 			 */
1525 			f_weight = div64_u64(runtime << 16, period + 1);
1526 			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 				   (total_faults + 1);
1528 			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529 			p->numa_faults_buffer_cpu[i] = 0;
1530 
1531 			p->numa_faults_memory[i] += diff;
1532 			p->numa_faults_cpu[i] += f_diff;
1533 			faults += p->numa_faults_memory[i];
1534 			p->total_numa_faults += diff;
1535 			if (p->numa_group) {
1536 				/* safe because we can only change our own group */
1537 				p->numa_group->faults[i] += diff;
1538 				p->numa_group->faults_cpu[i] += f_diff;
1539 				p->numa_group->total_faults += diff;
1540 				group_faults += p->numa_group->faults[i];
1541 			}
1542 		}
1543 
1544 		if (faults > max_faults) {
1545 			max_faults = faults;
1546 			max_nid = nid;
1547 		}
1548 
1549 		if (group_faults > max_group_faults) {
1550 			max_group_faults = group_faults;
1551 			max_group_nid = nid;
1552 		}
1553 	}
1554 
1555 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1556 
1557 	if (p->numa_group) {
1558 		update_numa_active_node_mask(p->numa_group);
1559 		/*
1560 		 * If the preferred task and group nids are different,
1561 		 * iterate over the nodes again to find the best place.
1562 		 */
1563 		if (max_nid != max_group_nid) {
1564 			unsigned long weight, max_weight = 0;
1565 
1566 			for_each_online_node(nid) {
1567 				weight = task_weight(p, nid) + group_weight(p, nid);
1568 				if (weight > max_weight) {
1569 					max_weight = weight;
1570 					max_nid = nid;
1571 				}
1572 			}
1573 		}
1574 
1575 		spin_unlock_irq(group_lock);
1576 	}
1577 
1578 	/* Preferred node as the node with the most faults */
1579 	if (max_faults && max_nid != p->numa_preferred_nid) {
1580 		/* Update the preferred nid and migrate task if possible */
1581 		sched_setnuma(p, max_nid);
1582 		numa_migrate_preferred(p);
1583 	}
1584 }
1585 
1586 static inline int get_numa_group(struct numa_group *grp)
1587 {
1588 	return atomic_inc_not_zero(&grp->refcount);
1589 }
1590 
1591 static inline void put_numa_group(struct numa_group *grp)
1592 {
1593 	if (atomic_dec_and_test(&grp->refcount))
1594 		kfree_rcu(grp, rcu);
1595 }
1596 
1597 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 			int *priv)
1599 {
1600 	struct numa_group *grp, *my_grp;
1601 	struct task_struct *tsk;
1602 	bool join = false;
1603 	int cpu = cpupid_to_cpu(cpupid);
1604 	int i;
1605 
1606 	if (unlikely(!p->numa_group)) {
1607 		unsigned int size = sizeof(struct numa_group) +
1608 				    4*nr_node_ids*sizeof(unsigned long);
1609 
1610 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 		if (!grp)
1612 			return;
1613 
1614 		atomic_set(&grp->refcount, 1);
1615 		spin_lock_init(&grp->lock);
1616 		INIT_LIST_HEAD(&grp->task_list);
1617 		grp->gid = p->pid;
1618 		/* Second half of the array tracks nids where faults happen */
1619 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 						nr_node_ids;
1621 
1622 		node_set(task_node(current), grp->active_nodes);
1623 
1624 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625 			grp->faults[i] = p->numa_faults_memory[i];
1626 
1627 		grp->total_faults = p->total_numa_faults;
1628 
1629 		list_add(&p->numa_entry, &grp->task_list);
1630 		grp->nr_tasks++;
1631 		rcu_assign_pointer(p->numa_group, grp);
1632 	}
1633 
1634 	rcu_read_lock();
1635 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636 
1637 	if (!cpupid_match_pid(tsk, cpupid))
1638 		goto no_join;
1639 
1640 	grp = rcu_dereference(tsk->numa_group);
1641 	if (!grp)
1642 		goto no_join;
1643 
1644 	my_grp = p->numa_group;
1645 	if (grp == my_grp)
1646 		goto no_join;
1647 
1648 	/*
1649 	 * Only join the other group if its bigger; if we're the bigger group,
1650 	 * the other task will join us.
1651 	 */
1652 	if (my_grp->nr_tasks > grp->nr_tasks)
1653 		goto no_join;
1654 
1655 	/*
1656 	 * Tie-break on the grp address.
1657 	 */
1658 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1659 		goto no_join;
1660 
1661 	/* Always join threads in the same process. */
1662 	if (tsk->mm == current->mm)
1663 		join = true;
1664 
1665 	/* Simple filter to avoid false positives due to PID collisions */
1666 	if (flags & TNF_SHARED)
1667 		join = true;
1668 
1669 	/* Update priv based on whether false sharing was detected */
1670 	*priv = !join;
1671 
1672 	if (join && !get_numa_group(grp))
1673 		goto no_join;
1674 
1675 	rcu_read_unlock();
1676 
1677 	if (!join)
1678 		return;
1679 
1680 	BUG_ON(irqs_disabled());
1681 	double_lock_irq(&my_grp->lock, &grp->lock);
1682 
1683 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1684 		my_grp->faults[i] -= p->numa_faults_memory[i];
1685 		grp->faults[i] += p->numa_faults_memory[i];
1686 	}
1687 	my_grp->total_faults -= p->total_numa_faults;
1688 	grp->total_faults += p->total_numa_faults;
1689 
1690 	list_move(&p->numa_entry, &grp->task_list);
1691 	my_grp->nr_tasks--;
1692 	grp->nr_tasks++;
1693 
1694 	spin_unlock(&my_grp->lock);
1695 	spin_unlock_irq(&grp->lock);
1696 
1697 	rcu_assign_pointer(p->numa_group, grp);
1698 
1699 	put_numa_group(my_grp);
1700 	return;
1701 
1702 no_join:
1703 	rcu_read_unlock();
1704 	return;
1705 }
1706 
1707 void task_numa_free(struct task_struct *p)
1708 {
1709 	struct numa_group *grp = p->numa_group;
1710 	int i;
1711 	void *numa_faults = p->numa_faults_memory;
1712 
1713 	if (grp) {
1714 		spin_lock_irq(&grp->lock);
1715 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1716 			grp->faults[i] -= p->numa_faults_memory[i];
1717 		grp->total_faults -= p->total_numa_faults;
1718 
1719 		list_del(&p->numa_entry);
1720 		grp->nr_tasks--;
1721 		spin_unlock_irq(&grp->lock);
1722 		rcu_assign_pointer(p->numa_group, NULL);
1723 		put_numa_group(grp);
1724 	}
1725 
1726 	p->numa_faults_memory = NULL;
1727 	p->numa_faults_buffer_memory = NULL;
1728 	p->numa_faults_cpu= NULL;
1729 	p->numa_faults_buffer_cpu = NULL;
1730 	kfree(numa_faults);
1731 }
1732 
1733 /*
1734  * Got a PROT_NONE fault for a page on @node.
1735  */
1736 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1737 {
1738 	struct task_struct *p = current;
1739 	bool migrated = flags & TNF_MIGRATED;
1740 	int cpu_node = task_node(current);
1741 	int priv;
1742 
1743 	if (!numabalancing_enabled)
1744 		return;
1745 
1746 	/* for example, ksmd faulting in a user's mm */
1747 	if (!p->mm)
1748 		return;
1749 
1750 	/* Do not worry about placement if exiting */
1751 	if (p->state == TASK_DEAD)
1752 		return;
1753 
1754 	/* Allocate buffer to track faults on a per-node basis */
1755 	if (unlikely(!p->numa_faults_memory)) {
1756 		int size = sizeof(*p->numa_faults_memory) *
1757 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1758 
1759 		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1760 		if (!p->numa_faults_memory)
1761 			return;
1762 
1763 		BUG_ON(p->numa_faults_buffer_memory);
1764 		/*
1765 		 * The averaged statistics, shared & private, memory & cpu,
1766 		 * occupy the first half of the array. The second half of the
1767 		 * array is for current counters, which are averaged into the
1768 		 * first set by task_numa_placement.
1769 		 */
1770 		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1771 		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1772 		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1773 		p->total_numa_faults = 0;
1774 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1775 	}
1776 
1777 	/*
1778 	 * First accesses are treated as private, otherwise consider accesses
1779 	 * to be private if the accessing pid has not changed
1780 	 */
1781 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1782 		priv = 1;
1783 	} else {
1784 		priv = cpupid_match_pid(p, last_cpupid);
1785 		if (!priv && !(flags & TNF_NO_GROUP))
1786 			task_numa_group(p, last_cpupid, flags, &priv);
1787 	}
1788 
1789 	task_numa_placement(p);
1790 
1791 	/*
1792 	 * Retry task to preferred node migration periodically, in case it
1793 	 * case it previously failed, or the scheduler moved us.
1794 	 */
1795 	if (time_after(jiffies, p->numa_migrate_retry))
1796 		numa_migrate_preferred(p);
1797 
1798 	if (migrated)
1799 		p->numa_pages_migrated += pages;
1800 
1801 	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1802 	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1803 	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1804 }
1805 
1806 static void reset_ptenuma_scan(struct task_struct *p)
1807 {
1808 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1809 	p->mm->numa_scan_offset = 0;
1810 }
1811 
1812 /*
1813  * The expensive part of numa migration is done from task_work context.
1814  * Triggered from task_tick_numa().
1815  */
1816 void task_numa_work(struct callback_head *work)
1817 {
1818 	unsigned long migrate, next_scan, now = jiffies;
1819 	struct task_struct *p = current;
1820 	struct mm_struct *mm = p->mm;
1821 	struct vm_area_struct *vma;
1822 	unsigned long start, end;
1823 	unsigned long nr_pte_updates = 0;
1824 	long pages;
1825 
1826 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1827 
1828 	work->next = work; /* protect against double add */
1829 	/*
1830 	 * Who cares about NUMA placement when they're dying.
1831 	 *
1832 	 * NOTE: make sure not to dereference p->mm before this check,
1833 	 * exit_task_work() happens _after_ exit_mm() so we could be called
1834 	 * without p->mm even though we still had it when we enqueued this
1835 	 * work.
1836 	 */
1837 	if (p->flags & PF_EXITING)
1838 		return;
1839 
1840 	if (!mm->numa_next_scan) {
1841 		mm->numa_next_scan = now +
1842 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1843 	}
1844 
1845 	/*
1846 	 * Enforce maximal scan/migration frequency..
1847 	 */
1848 	migrate = mm->numa_next_scan;
1849 	if (time_before(now, migrate))
1850 		return;
1851 
1852 	if (p->numa_scan_period == 0) {
1853 		p->numa_scan_period_max = task_scan_max(p);
1854 		p->numa_scan_period = task_scan_min(p);
1855 	}
1856 
1857 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1858 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1859 		return;
1860 
1861 	/*
1862 	 * Delay this task enough that another task of this mm will likely win
1863 	 * the next time around.
1864 	 */
1865 	p->node_stamp += 2 * TICK_NSEC;
1866 
1867 	start = mm->numa_scan_offset;
1868 	pages = sysctl_numa_balancing_scan_size;
1869 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1870 	if (!pages)
1871 		return;
1872 
1873 	down_read(&mm->mmap_sem);
1874 	vma = find_vma(mm, start);
1875 	if (!vma) {
1876 		reset_ptenuma_scan(p);
1877 		start = 0;
1878 		vma = mm->mmap;
1879 	}
1880 	for (; vma; vma = vma->vm_next) {
1881 		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1882 			continue;
1883 
1884 		/*
1885 		 * Shared library pages mapped by multiple processes are not
1886 		 * migrated as it is expected they are cache replicated. Avoid
1887 		 * hinting faults in read-only file-backed mappings or the vdso
1888 		 * as migrating the pages will be of marginal benefit.
1889 		 */
1890 		if (!vma->vm_mm ||
1891 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1892 			continue;
1893 
1894 		/*
1895 		 * Skip inaccessible VMAs to avoid any confusion between
1896 		 * PROT_NONE and NUMA hinting ptes
1897 		 */
1898 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1899 			continue;
1900 
1901 		do {
1902 			start = max(start, vma->vm_start);
1903 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1904 			end = min(end, vma->vm_end);
1905 			nr_pte_updates += change_prot_numa(vma, start, end);
1906 
1907 			/*
1908 			 * Scan sysctl_numa_balancing_scan_size but ensure that
1909 			 * at least one PTE is updated so that unused virtual
1910 			 * address space is quickly skipped.
1911 			 */
1912 			if (nr_pte_updates)
1913 				pages -= (end - start) >> PAGE_SHIFT;
1914 
1915 			start = end;
1916 			if (pages <= 0)
1917 				goto out;
1918 
1919 			cond_resched();
1920 		} while (end != vma->vm_end);
1921 	}
1922 
1923 out:
1924 	/*
1925 	 * It is possible to reach the end of the VMA list but the last few
1926 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1927 	 * would find the !migratable VMA on the next scan but not reset the
1928 	 * scanner to the start so check it now.
1929 	 */
1930 	if (vma)
1931 		mm->numa_scan_offset = start;
1932 	else
1933 		reset_ptenuma_scan(p);
1934 	up_read(&mm->mmap_sem);
1935 }
1936 
1937 /*
1938  * Drive the periodic memory faults..
1939  */
1940 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1941 {
1942 	struct callback_head *work = &curr->numa_work;
1943 	u64 period, now;
1944 
1945 	/*
1946 	 * We don't care about NUMA placement if we don't have memory.
1947 	 */
1948 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1949 		return;
1950 
1951 	/*
1952 	 * Using runtime rather than walltime has the dual advantage that
1953 	 * we (mostly) drive the selection from busy threads and that the
1954 	 * task needs to have done some actual work before we bother with
1955 	 * NUMA placement.
1956 	 */
1957 	now = curr->se.sum_exec_runtime;
1958 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1959 
1960 	if (now - curr->node_stamp > period) {
1961 		if (!curr->node_stamp)
1962 			curr->numa_scan_period = task_scan_min(curr);
1963 		curr->node_stamp += period;
1964 
1965 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1966 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1967 			task_work_add(curr, work, true);
1968 		}
1969 	}
1970 }
1971 #else
1972 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1973 {
1974 }
1975 
1976 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1977 {
1978 }
1979 
1980 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1981 {
1982 }
1983 #endif /* CONFIG_NUMA_BALANCING */
1984 
1985 static void
1986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1987 {
1988 	update_load_add(&cfs_rq->load, se->load.weight);
1989 	if (!parent_entity(se))
1990 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1991 #ifdef CONFIG_SMP
1992 	if (entity_is_task(se)) {
1993 		struct rq *rq = rq_of(cfs_rq);
1994 
1995 		account_numa_enqueue(rq, task_of(se));
1996 		list_add(&se->group_node, &rq->cfs_tasks);
1997 	}
1998 #endif
1999 	cfs_rq->nr_running++;
2000 }
2001 
2002 static void
2003 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2004 {
2005 	update_load_sub(&cfs_rq->load, se->load.weight);
2006 	if (!parent_entity(se))
2007 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2008 	if (entity_is_task(se)) {
2009 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2010 		list_del_init(&se->group_node);
2011 	}
2012 	cfs_rq->nr_running--;
2013 }
2014 
2015 #ifdef CONFIG_FAIR_GROUP_SCHED
2016 # ifdef CONFIG_SMP
2017 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2018 {
2019 	long tg_weight;
2020 
2021 	/*
2022 	 * Use this CPU's actual weight instead of the last load_contribution
2023 	 * to gain a more accurate current total weight. See
2024 	 * update_cfs_rq_load_contribution().
2025 	 */
2026 	tg_weight = atomic_long_read(&tg->load_avg);
2027 	tg_weight -= cfs_rq->tg_load_contrib;
2028 	tg_weight += cfs_rq->load.weight;
2029 
2030 	return tg_weight;
2031 }
2032 
2033 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2034 {
2035 	long tg_weight, load, shares;
2036 
2037 	tg_weight = calc_tg_weight(tg, cfs_rq);
2038 	load = cfs_rq->load.weight;
2039 
2040 	shares = (tg->shares * load);
2041 	if (tg_weight)
2042 		shares /= tg_weight;
2043 
2044 	if (shares < MIN_SHARES)
2045 		shares = MIN_SHARES;
2046 	if (shares > tg->shares)
2047 		shares = tg->shares;
2048 
2049 	return shares;
2050 }
2051 # else /* CONFIG_SMP */
2052 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2053 {
2054 	return tg->shares;
2055 }
2056 # endif /* CONFIG_SMP */
2057 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2058 			    unsigned long weight)
2059 {
2060 	if (se->on_rq) {
2061 		/* commit outstanding execution time */
2062 		if (cfs_rq->curr == se)
2063 			update_curr(cfs_rq);
2064 		account_entity_dequeue(cfs_rq, se);
2065 	}
2066 
2067 	update_load_set(&se->load, weight);
2068 
2069 	if (se->on_rq)
2070 		account_entity_enqueue(cfs_rq, se);
2071 }
2072 
2073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2074 
2075 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2076 {
2077 	struct task_group *tg;
2078 	struct sched_entity *se;
2079 	long shares;
2080 
2081 	tg = cfs_rq->tg;
2082 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2083 	if (!se || throttled_hierarchy(cfs_rq))
2084 		return;
2085 #ifndef CONFIG_SMP
2086 	if (likely(se->load.weight == tg->shares))
2087 		return;
2088 #endif
2089 	shares = calc_cfs_shares(cfs_rq, tg);
2090 
2091 	reweight_entity(cfs_rq_of(se), se, shares);
2092 }
2093 #else /* CONFIG_FAIR_GROUP_SCHED */
2094 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2095 {
2096 }
2097 #endif /* CONFIG_FAIR_GROUP_SCHED */
2098 
2099 #ifdef CONFIG_SMP
2100 /*
2101  * We choose a half-life close to 1 scheduling period.
2102  * Note: The tables below are dependent on this value.
2103  */
2104 #define LOAD_AVG_PERIOD 32
2105 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2106 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2107 
2108 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2109 static const u32 runnable_avg_yN_inv[] = {
2110 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2111 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2112 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2113 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2114 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2115 	0x85aac367, 0x82cd8698,
2116 };
2117 
2118 /*
2119  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2120  * over-estimates when re-combining.
2121  */
2122 static const u32 runnable_avg_yN_sum[] = {
2123 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2124 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2125 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2126 };
2127 
2128 /*
2129  * Approximate:
2130  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2131  */
2132 static __always_inline u64 decay_load(u64 val, u64 n)
2133 {
2134 	unsigned int local_n;
2135 
2136 	if (!n)
2137 		return val;
2138 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2139 		return 0;
2140 
2141 	/* after bounds checking we can collapse to 32-bit */
2142 	local_n = n;
2143 
2144 	/*
2145 	 * As y^PERIOD = 1/2, we can combine
2146 	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2147 	 * With a look-up table which covers k^n (n<PERIOD)
2148 	 *
2149 	 * To achieve constant time decay_load.
2150 	 */
2151 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2152 		val >>= local_n / LOAD_AVG_PERIOD;
2153 		local_n %= LOAD_AVG_PERIOD;
2154 	}
2155 
2156 	val *= runnable_avg_yN_inv[local_n];
2157 	/* We don't use SRR here since we always want to round down. */
2158 	return val >> 32;
2159 }
2160 
2161 /*
2162  * For updates fully spanning n periods, the contribution to runnable
2163  * average will be: \Sum 1024*y^n
2164  *
2165  * We can compute this reasonably efficiently by combining:
2166  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2167  */
2168 static u32 __compute_runnable_contrib(u64 n)
2169 {
2170 	u32 contrib = 0;
2171 
2172 	if (likely(n <= LOAD_AVG_PERIOD))
2173 		return runnable_avg_yN_sum[n];
2174 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2175 		return LOAD_AVG_MAX;
2176 
2177 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2178 	do {
2179 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2180 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2181 
2182 		n -= LOAD_AVG_PERIOD;
2183 	} while (n > LOAD_AVG_PERIOD);
2184 
2185 	contrib = decay_load(contrib, n);
2186 	return contrib + runnable_avg_yN_sum[n];
2187 }
2188 
2189 /*
2190  * We can represent the historical contribution to runnable average as the
2191  * coefficients of a geometric series.  To do this we sub-divide our runnable
2192  * history into segments of approximately 1ms (1024us); label the segment that
2193  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2194  *
2195  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2196  *      p0            p1           p2
2197  *     (now)       (~1ms ago)  (~2ms ago)
2198  *
2199  * Let u_i denote the fraction of p_i that the entity was runnable.
2200  *
2201  * We then designate the fractions u_i as our co-efficients, yielding the
2202  * following representation of historical load:
2203  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2204  *
2205  * We choose y based on the with of a reasonably scheduling period, fixing:
2206  *   y^32 = 0.5
2207  *
2208  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2209  * approximately half as much as the contribution to load within the last ms
2210  * (u_0).
2211  *
2212  * When a period "rolls over" and we have new u_0`, multiplying the previous
2213  * sum again by y is sufficient to update:
2214  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2215  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2216  */
2217 static __always_inline int __update_entity_runnable_avg(u64 now,
2218 							struct sched_avg *sa,
2219 							int runnable)
2220 {
2221 	u64 delta, periods;
2222 	u32 runnable_contrib;
2223 	int delta_w, decayed = 0;
2224 
2225 	delta = now - sa->last_runnable_update;
2226 	/*
2227 	 * This should only happen when time goes backwards, which it
2228 	 * unfortunately does during sched clock init when we swap over to TSC.
2229 	 */
2230 	if ((s64)delta < 0) {
2231 		sa->last_runnable_update = now;
2232 		return 0;
2233 	}
2234 
2235 	/*
2236 	 * Use 1024ns as the unit of measurement since it's a reasonable
2237 	 * approximation of 1us and fast to compute.
2238 	 */
2239 	delta >>= 10;
2240 	if (!delta)
2241 		return 0;
2242 	sa->last_runnable_update = now;
2243 
2244 	/* delta_w is the amount already accumulated against our next period */
2245 	delta_w = sa->runnable_avg_period % 1024;
2246 	if (delta + delta_w >= 1024) {
2247 		/* period roll-over */
2248 		decayed = 1;
2249 
2250 		/*
2251 		 * Now that we know we're crossing a period boundary, figure
2252 		 * out how much from delta we need to complete the current
2253 		 * period and accrue it.
2254 		 */
2255 		delta_w = 1024 - delta_w;
2256 		if (runnable)
2257 			sa->runnable_avg_sum += delta_w;
2258 		sa->runnable_avg_period += delta_w;
2259 
2260 		delta -= delta_w;
2261 
2262 		/* Figure out how many additional periods this update spans */
2263 		periods = delta / 1024;
2264 		delta %= 1024;
2265 
2266 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2267 						  periods + 1);
2268 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2269 						     periods + 1);
2270 
2271 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2272 		runnable_contrib = __compute_runnable_contrib(periods);
2273 		if (runnable)
2274 			sa->runnable_avg_sum += runnable_contrib;
2275 		sa->runnable_avg_period += runnable_contrib;
2276 	}
2277 
2278 	/* Remainder of delta accrued against u_0` */
2279 	if (runnable)
2280 		sa->runnable_avg_sum += delta;
2281 	sa->runnable_avg_period += delta;
2282 
2283 	return decayed;
2284 }
2285 
2286 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2287 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2288 {
2289 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2290 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2291 
2292 	decays -= se->avg.decay_count;
2293 	if (!decays)
2294 		return 0;
2295 
2296 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2297 	se->avg.decay_count = 0;
2298 
2299 	return decays;
2300 }
2301 
2302 #ifdef CONFIG_FAIR_GROUP_SCHED
2303 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2304 						 int force_update)
2305 {
2306 	struct task_group *tg = cfs_rq->tg;
2307 	long tg_contrib;
2308 
2309 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2310 	tg_contrib -= cfs_rq->tg_load_contrib;
2311 
2312 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2313 		atomic_long_add(tg_contrib, &tg->load_avg);
2314 		cfs_rq->tg_load_contrib += tg_contrib;
2315 	}
2316 }
2317 
2318 /*
2319  * Aggregate cfs_rq runnable averages into an equivalent task_group
2320  * representation for computing load contributions.
2321  */
2322 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2323 						  struct cfs_rq *cfs_rq)
2324 {
2325 	struct task_group *tg = cfs_rq->tg;
2326 	long contrib;
2327 
2328 	/* The fraction of a cpu used by this cfs_rq */
2329 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2330 			  sa->runnable_avg_period + 1);
2331 	contrib -= cfs_rq->tg_runnable_contrib;
2332 
2333 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2334 		atomic_add(contrib, &tg->runnable_avg);
2335 		cfs_rq->tg_runnable_contrib += contrib;
2336 	}
2337 }
2338 
2339 static inline void __update_group_entity_contrib(struct sched_entity *se)
2340 {
2341 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2342 	struct task_group *tg = cfs_rq->tg;
2343 	int runnable_avg;
2344 
2345 	u64 contrib;
2346 
2347 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2348 	se->avg.load_avg_contrib = div_u64(contrib,
2349 				     atomic_long_read(&tg->load_avg) + 1);
2350 
2351 	/*
2352 	 * For group entities we need to compute a correction term in the case
2353 	 * that they are consuming <1 cpu so that we would contribute the same
2354 	 * load as a task of equal weight.
2355 	 *
2356 	 * Explicitly co-ordinating this measurement would be expensive, but
2357 	 * fortunately the sum of each cpus contribution forms a usable
2358 	 * lower-bound on the true value.
2359 	 *
2360 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2361 	 * (and the sum represents true value) or they are disjoint and we are
2362 	 * understating by the aggregate of their overlap.
2363 	 *
2364 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2365 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2366 	 * cpus that overlap for this interval and w_i is the interval width.
2367 	 *
2368 	 * On a small machine; the first term is well-bounded which bounds the
2369 	 * total error since w_i is a subset of the period.  Whereas on a
2370 	 * larger machine, while this first term can be larger, if w_i is the
2371 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2372 	 * our upper bound of 1-cpu.
2373 	 */
2374 	runnable_avg = atomic_read(&tg->runnable_avg);
2375 	if (runnable_avg < NICE_0_LOAD) {
2376 		se->avg.load_avg_contrib *= runnable_avg;
2377 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2378 	}
2379 }
2380 
2381 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2382 {
2383 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2384 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2385 }
2386 #else /* CONFIG_FAIR_GROUP_SCHED */
2387 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2388 						 int force_update) {}
2389 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2390 						  struct cfs_rq *cfs_rq) {}
2391 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2392 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2393 #endif /* CONFIG_FAIR_GROUP_SCHED */
2394 
2395 static inline void __update_task_entity_contrib(struct sched_entity *se)
2396 {
2397 	u32 contrib;
2398 
2399 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2400 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2401 	contrib /= (se->avg.runnable_avg_period + 1);
2402 	se->avg.load_avg_contrib = scale_load(contrib);
2403 }
2404 
2405 /* Compute the current contribution to load_avg by se, return any delta */
2406 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2407 {
2408 	long old_contrib = se->avg.load_avg_contrib;
2409 
2410 	if (entity_is_task(se)) {
2411 		__update_task_entity_contrib(se);
2412 	} else {
2413 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2414 		__update_group_entity_contrib(se);
2415 	}
2416 
2417 	return se->avg.load_avg_contrib - old_contrib;
2418 }
2419 
2420 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2421 						 long load_contrib)
2422 {
2423 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2424 		cfs_rq->blocked_load_avg -= load_contrib;
2425 	else
2426 		cfs_rq->blocked_load_avg = 0;
2427 }
2428 
2429 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2430 
2431 /* Update a sched_entity's runnable average */
2432 static inline void update_entity_load_avg(struct sched_entity *se,
2433 					  int update_cfs_rq)
2434 {
2435 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2436 	long contrib_delta;
2437 	u64 now;
2438 
2439 	/*
2440 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2441 	 * case they are the parent of a throttled hierarchy.
2442 	 */
2443 	if (entity_is_task(se))
2444 		now = cfs_rq_clock_task(cfs_rq);
2445 	else
2446 		now = cfs_rq_clock_task(group_cfs_rq(se));
2447 
2448 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2449 		return;
2450 
2451 	contrib_delta = __update_entity_load_avg_contrib(se);
2452 
2453 	if (!update_cfs_rq)
2454 		return;
2455 
2456 	if (se->on_rq)
2457 		cfs_rq->runnable_load_avg += contrib_delta;
2458 	else
2459 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2460 }
2461 
2462 /*
2463  * Decay the load contributed by all blocked children and account this so that
2464  * their contribution may appropriately discounted when they wake up.
2465  */
2466 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2467 {
2468 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2469 	u64 decays;
2470 
2471 	decays = now - cfs_rq->last_decay;
2472 	if (!decays && !force_update)
2473 		return;
2474 
2475 	if (atomic_long_read(&cfs_rq->removed_load)) {
2476 		unsigned long removed_load;
2477 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2478 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2479 	}
2480 
2481 	if (decays) {
2482 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2483 						      decays);
2484 		atomic64_add(decays, &cfs_rq->decay_counter);
2485 		cfs_rq->last_decay = now;
2486 	}
2487 
2488 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2489 }
2490 
2491 /* Add the load generated by se into cfs_rq's child load-average */
2492 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2493 						  struct sched_entity *se,
2494 						  int wakeup)
2495 {
2496 	/*
2497 	 * We track migrations using entity decay_count <= 0, on a wake-up
2498 	 * migration we use a negative decay count to track the remote decays
2499 	 * accumulated while sleeping.
2500 	 *
2501 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2502 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2503 	 * constructed load_avg_contrib.
2504 	 */
2505 	if (unlikely(se->avg.decay_count <= 0)) {
2506 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2507 		if (se->avg.decay_count) {
2508 			/*
2509 			 * In a wake-up migration we have to approximate the
2510 			 * time sleeping.  This is because we can't synchronize
2511 			 * clock_task between the two cpus, and it is not
2512 			 * guaranteed to be read-safe.  Instead, we can
2513 			 * approximate this using our carried decays, which are
2514 			 * explicitly atomically readable.
2515 			 */
2516 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2517 							<< 20;
2518 			update_entity_load_avg(se, 0);
2519 			/* Indicate that we're now synchronized and on-rq */
2520 			se->avg.decay_count = 0;
2521 		}
2522 		wakeup = 0;
2523 	} else {
2524 		__synchronize_entity_decay(se);
2525 	}
2526 
2527 	/* migrated tasks did not contribute to our blocked load */
2528 	if (wakeup) {
2529 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2530 		update_entity_load_avg(se, 0);
2531 	}
2532 
2533 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2534 	/* we force update consideration on load-balancer moves */
2535 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2536 }
2537 
2538 /*
2539  * Remove se's load from this cfs_rq child load-average, if the entity is
2540  * transitioning to a blocked state we track its projected decay using
2541  * blocked_load_avg.
2542  */
2543 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2544 						  struct sched_entity *se,
2545 						  int sleep)
2546 {
2547 	update_entity_load_avg(se, 1);
2548 	/* we force update consideration on load-balancer moves */
2549 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2550 
2551 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2552 	if (sleep) {
2553 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2554 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2555 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2556 }
2557 
2558 /*
2559  * Update the rq's load with the elapsed running time before entering
2560  * idle. if the last scheduled task is not a CFS task, idle_enter will
2561  * be the only way to update the runnable statistic.
2562  */
2563 void idle_enter_fair(struct rq *this_rq)
2564 {
2565 	update_rq_runnable_avg(this_rq, 1);
2566 }
2567 
2568 /*
2569  * Update the rq's load with the elapsed idle time before a task is
2570  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2571  * be the only way to update the runnable statistic.
2572  */
2573 void idle_exit_fair(struct rq *this_rq)
2574 {
2575 	update_rq_runnable_avg(this_rq, 0);
2576 }
2577 
2578 static int idle_balance(struct rq *this_rq);
2579 
2580 #else /* CONFIG_SMP */
2581 
2582 static inline void update_entity_load_avg(struct sched_entity *se,
2583 					  int update_cfs_rq) {}
2584 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2585 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2586 					   struct sched_entity *se,
2587 					   int wakeup) {}
2588 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2589 					   struct sched_entity *se,
2590 					   int sleep) {}
2591 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2592 					      int force_update) {}
2593 
2594 static inline int idle_balance(struct rq *rq)
2595 {
2596 	return 0;
2597 }
2598 
2599 #endif /* CONFIG_SMP */
2600 
2601 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602 {
2603 #ifdef CONFIG_SCHEDSTATS
2604 	struct task_struct *tsk = NULL;
2605 
2606 	if (entity_is_task(se))
2607 		tsk = task_of(se);
2608 
2609 	if (se->statistics.sleep_start) {
2610 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2611 
2612 		if ((s64)delta < 0)
2613 			delta = 0;
2614 
2615 		if (unlikely(delta > se->statistics.sleep_max))
2616 			se->statistics.sleep_max = delta;
2617 
2618 		se->statistics.sleep_start = 0;
2619 		se->statistics.sum_sleep_runtime += delta;
2620 
2621 		if (tsk) {
2622 			account_scheduler_latency(tsk, delta >> 10, 1);
2623 			trace_sched_stat_sleep(tsk, delta);
2624 		}
2625 	}
2626 	if (se->statistics.block_start) {
2627 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2628 
2629 		if ((s64)delta < 0)
2630 			delta = 0;
2631 
2632 		if (unlikely(delta > se->statistics.block_max))
2633 			se->statistics.block_max = delta;
2634 
2635 		se->statistics.block_start = 0;
2636 		se->statistics.sum_sleep_runtime += delta;
2637 
2638 		if (tsk) {
2639 			if (tsk->in_iowait) {
2640 				se->statistics.iowait_sum += delta;
2641 				se->statistics.iowait_count++;
2642 				trace_sched_stat_iowait(tsk, delta);
2643 			}
2644 
2645 			trace_sched_stat_blocked(tsk, delta);
2646 
2647 			/*
2648 			 * Blocking time is in units of nanosecs, so shift by
2649 			 * 20 to get a milliseconds-range estimation of the
2650 			 * amount of time that the task spent sleeping:
2651 			 */
2652 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2653 				profile_hits(SLEEP_PROFILING,
2654 						(void *)get_wchan(tsk),
2655 						delta >> 20);
2656 			}
2657 			account_scheduler_latency(tsk, delta >> 10, 0);
2658 		}
2659 	}
2660 #endif
2661 }
2662 
2663 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2664 {
2665 #ifdef CONFIG_SCHED_DEBUG
2666 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2667 
2668 	if (d < 0)
2669 		d = -d;
2670 
2671 	if (d > 3*sysctl_sched_latency)
2672 		schedstat_inc(cfs_rq, nr_spread_over);
2673 #endif
2674 }
2675 
2676 static void
2677 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2678 {
2679 	u64 vruntime = cfs_rq->min_vruntime;
2680 
2681 	/*
2682 	 * The 'current' period is already promised to the current tasks,
2683 	 * however the extra weight of the new task will slow them down a
2684 	 * little, place the new task so that it fits in the slot that
2685 	 * stays open at the end.
2686 	 */
2687 	if (initial && sched_feat(START_DEBIT))
2688 		vruntime += sched_vslice(cfs_rq, se);
2689 
2690 	/* sleeps up to a single latency don't count. */
2691 	if (!initial) {
2692 		unsigned long thresh = sysctl_sched_latency;
2693 
2694 		/*
2695 		 * Halve their sleep time's effect, to allow
2696 		 * for a gentler effect of sleepers:
2697 		 */
2698 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2699 			thresh >>= 1;
2700 
2701 		vruntime -= thresh;
2702 	}
2703 
2704 	/* ensure we never gain time by being placed backwards. */
2705 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2706 }
2707 
2708 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2709 
2710 static void
2711 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2712 {
2713 	/*
2714 	 * Update the normalized vruntime before updating min_vruntime
2715 	 * through calling update_curr().
2716 	 */
2717 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2718 		se->vruntime += cfs_rq->min_vruntime;
2719 
2720 	/*
2721 	 * Update run-time statistics of the 'current'.
2722 	 */
2723 	update_curr(cfs_rq);
2724 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2725 	account_entity_enqueue(cfs_rq, se);
2726 	update_cfs_shares(cfs_rq);
2727 
2728 	if (flags & ENQUEUE_WAKEUP) {
2729 		place_entity(cfs_rq, se, 0);
2730 		enqueue_sleeper(cfs_rq, se);
2731 	}
2732 
2733 	update_stats_enqueue(cfs_rq, se);
2734 	check_spread(cfs_rq, se);
2735 	if (se != cfs_rq->curr)
2736 		__enqueue_entity(cfs_rq, se);
2737 	se->on_rq = 1;
2738 
2739 	if (cfs_rq->nr_running == 1) {
2740 		list_add_leaf_cfs_rq(cfs_rq);
2741 		check_enqueue_throttle(cfs_rq);
2742 	}
2743 }
2744 
2745 static void __clear_buddies_last(struct sched_entity *se)
2746 {
2747 	for_each_sched_entity(se) {
2748 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2749 		if (cfs_rq->last != se)
2750 			break;
2751 
2752 		cfs_rq->last = NULL;
2753 	}
2754 }
2755 
2756 static void __clear_buddies_next(struct sched_entity *se)
2757 {
2758 	for_each_sched_entity(se) {
2759 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2760 		if (cfs_rq->next != se)
2761 			break;
2762 
2763 		cfs_rq->next = NULL;
2764 	}
2765 }
2766 
2767 static void __clear_buddies_skip(struct sched_entity *se)
2768 {
2769 	for_each_sched_entity(se) {
2770 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2771 		if (cfs_rq->skip != se)
2772 			break;
2773 
2774 		cfs_rq->skip = NULL;
2775 	}
2776 }
2777 
2778 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2779 {
2780 	if (cfs_rq->last == se)
2781 		__clear_buddies_last(se);
2782 
2783 	if (cfs_rq->next == se)
2784 		__clear_buddies_next(se);
2785 
2786 	if (cfs_rq->skip == se)
2787 		__clear_buddies_skip(se);
2788 }
2789 
2790 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2791 
2792 static void
2793 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2794 {
2795 	/*
2796 	 * Update run-time statistics of the 'current'.
2797 	 */
2798 	update_curr(cfs_rq);
2799 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2800 
2801 	update_stats_dequeue(cfs_rq, se);
2802 	if (flags & DEQUEUE_SLEEP) {
2803 #ifdef CONFIG_SCHEDSTATS
2804 		if (entity_is_task(se)) {
2805 			struct task_struct *tsk = task_of(se);
2806 
2807 			if (tsk->state & TASK_INTERRUPTIBLE)
2808 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2809 			if (tsk->state & TASK_UNINTERRUPTIBLE)
2810 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2811 		}
2812 #endif
2813 	}
2814 
2815 	clear_buddies(cfs_rq, se);
2816 
2817 	if (se != cfs_rq->curr)
2818 		__dequeue_entity(cfs_rq, se);
2819 	se->on_rq = 0;
2820 	account_entity_dequeue(cfs_rq, se);
2821 
2822 	/*
2823 	 * Normalize the entity after updating the min_vruntime because the
2824 	 * update can refer to the ->curr item and we need to reflect this
2825 	 * movement in our normalized position.
2826 	 */
2827 	if (!(flags & DEQUEUE_SLEEP))
2828 		se->vruntime -= cfs_rq->min_vruntime;
2829 
2830 	/* return excess runtime on last dequeue */
2831 	return_cfs_rq_runtime(cfs_rq);
2832 
2833 	update_min_vruntime(cfs_rq);
2834 	update_cfs_shares(cfs_rq);
2835 }
2836 
2837 /*
2838  * Preempt the current task with a newly woken task if needed:
2839  */
2840 static void
2841 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2842 {
2843 	unsigned long ideal_runtime, delta_exec;
2844 	struct sched_entity *se;
2845 	s64 delta;
2846 
2847 	ideal_runtime = sched_slice(cfs_rq, curr);
2848 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2849 	if (delta_exec > ideal_runtime) {
2850 		resched_task(rq_of(cfs_rq)->curr);
2851 		/*
2852 		 * The current task ran long enough, ensure it doesn't get
2853 		 * re-elected due to buddy favours.
2854 		 */
2855 		clear_buddies(cfs_rq, curr);
2856 		return;
2857 	}
2858 
2859 	/*
2860 	 * Ensure that a task that missed wakeup preemption by a
2861 	 * narrow margin doesn't have to wait for a full slice.
2862 	 * This also mitigates buddy induced latencies under load.
2863 	 */
2864 	if (delta_exec < sysctl_sched_min_granularity)
2865 		return;
2866 
2867 	se = __pick_first_entity(cfs_rq);
2868 	delta = curr->vruntime - se->vruntime;
2869 
2870 	if (delta < 0)
2871 		return;
2872 
2873 	if (delta > ideal_runtime)
2874 		resched_task(rq_of(cfs_rq)->curr);
2875 }
2876 
2877 static void
2878 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2879 {
2880 	/* 'current' is not kept within the tree. */
2881 	if (se->on_rq) {
2882 		/*
2883 		 * Any task has to be enqueued before it get to execute on
2884 		 * a CPU. So account for the time it spent waiting on the
2885 		 * runqueue.
2886 		 */
2887 		update_stats_wait_end(cfs_rq, se);
2888 		__dequeue_entity(cfs_rq, se);
2889 	}
2890 
2891 	update_stats_curr_start(cfs_rq, se);
2892 	cfs_rq->curr = se;
2893 #ifdef CONFIG_SCHEDSTATS
2894 	/*
2895 	 * Track our maximum slice length, if the CPU's load is at
2896 	 * least twice that of our own weight (i.e. dont track it
2897 	 * when there are only lesser-weight tasks around):
2898 	 */
2899 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2900 		se->statistics.slice_max = max(se->statistics.slice_max,
2901 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
2902 	}
2903 #endif
2904 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2905 }
2906 
2907 static int
2908 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2909 
2910 /*
2911  * Pick the next process, keeping these things in mind, in this order:
2912  * 1) keep things fair between processes/task groups
2913  * 2) pick the "next" process, since someone really wants that to run
2914  * 3) pick the "last" process, for cache locality
2915  * 4) do not run the "skip" process, if something else is available
2916  */
2917 static struct sched_entity *
2918 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2919 {
2920 	struct sched_entity *left = __pick_first_entity(cfs_rq);
2921 	struct sched_entity *se;
2922 
2923 	/*
2924 	 * If curr is set we have to see if its left of the leftmost entity
2925 	 * still in the tree, provided there was anything in the tree at all.
2926 	 */
2927 	if (!left || (curr && entity_before(curr, left)))
2928 		left = curr;
2929 
2930 	se = left; /* ideally we run the leftmost entity */
2931 
2932 	/*
2933 	 * Avoid running the skip buddy, if running something else can
2934 	 * be done without getting too unfair.
2935 	 */
2936 	if (cfs_rq->skip == se) {
2937 		struct sched_entity *second;
2938 
2939 		if (se == curr) {
2940 			second = __pick_first_entity(cfs_rq);
2941 		} else {
2942 			second = __pick_next_entity(se);
2943 			if (!second || (curr && entity_before(curr, second)))
2944 				second = curr;
2945 		}
2946 
2947 		if (second && wakeup_preempt_entity(second, left) < 1)
2948 			se = second;
2949 	}
2950 
2951 	/*
2952 	 * Prefer last buddy, try to return the CPU to a preempted task.
2953 	 */
2954 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2955 		se = cfs_rq->last;
2956 
2957 	/*
2958 	 * Someone really wants this to run. If it's not unfair, run it.
2959 	 */
2960 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2961 		se = cfs_rq->next;
2962 
2963 	clear_buddies(cfs_rq, se);
2964 
2965 	return se;
2966 }
2967 
2968 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2969 
2970 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2971 {
2972 	/*
2973 	 * If still on the runqueue then deactivate_task()
2974 	 * was not called and update_curr() has to be done:
2975 	 */
2976 	if (prev->on_rq)
2977 		update_curr(cfs_rq);
2978 
2979 	/* throttle cfs_rqs exceeding runtime */
2980 	check_cfs_rq_runtime(cfs_rq);
2981 
2982 	check_spread(cfs_rq, prev);
2983 	if (prev->on_rq) {
2984 		update_stats_wait_start(cfs_rq, prev);
2985 		/* Put 'current' back into the tree. */
2986 		__enqueue_entity(cfs_rq, prev);
2987 		/* in !on_rq case, update occurred at dequeue */
2988 		update_entity_load_avg(prev, 1);
2989 	}
2990 	cfs_rq->curr = NULL;
2991 }
2992 
2993 static void
2994 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2995 {
2996 	/*
2997 	 * Update run-time statistics of the 'current'.
2998 	 */
2999 	update_curr(cfs_rq);
3000 
3001 	/*
3002 	 * Ensure that runnable average is periodically updated.
3003 	 */
3004 	update_entity_load_avg(curr, 1);
3005 	update_cfs_rq_blocked_load(cfs_rq, 1);
3006 	update_cfs_shares(cfs_rq);
3007 
3008 #ifdef CONFIG_SCHED_HRTICK
3009 	/*
3010 	 * queued ticks are scheduled to match the slice, so don't bother
3011 	 * validating it and just reschedule.
3012 	 */
3013 	if (queued) {
3014 		resched_task(rq_of(cfs_rq)->curr);
3015 		return;
3016 	}
3017 	/*
3018 	 * don't let the period tick interfere with the hrtick preemption
3019 	 */
3020 	if (!sched_feat(DOUBLE_TICK) &&
3021 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3022 		return;
3023 #endif
3024 
3025 	if (cfs_rq->nr_running > 1)
3026 		check_preempt_tick(cfs_rq, curr);
3027 }
3028 
3029 
3030 /**************************************************
3031  * CFS bandwidth control machinery
3032  */
3033 
3034 #ifdef CONFIG_CFS_BANDWIDTH
3035 
3036 #ifdef HAVE_JUMP_LABEL
3037 static struct static_key __cfs_bandwidth_used;
3038 
3039 static inline bool cfs_bandwidth_used(void)
3040 {
3041 	return static_key_false(&__cfs_bandwidth_used);
3042 }
3043 
3044 void cfs_bandwidth_usage_inc(void)
3045 {
3046 	static_key_slow_inc(&__cfs_bandwidth_used);
3047 }
3048 
3049 void cfs_bandwidth_usage_dec(void)
3050 {
3051 	static_key_slow_dec(&__cfs_bandwidth_used);
3052 }
3053 #else /* HAVE_JUMP_LABEL */
3054 static bool cfs_bandwidth_used(void)
3055 {
3056 	return true;
3057 }
3058 
3059 void cfs_bandwidth_usage_inc(void) {}
3060 void cfs_bandwidth_usage_dec(void) {}
3061 #endif /* HAVE_JUMP_LABEL */
3062 
3063 /*
3064  * default period for cfs group bandwidth.
3065  * default: 0.1s, units: nanoseconds
3066  */
3067 static inline u64 default_cfs_period(void)
3068 {
3069 	return 100000000ULL;
3070 }
3071 
3072 static inline u64 sched_cfs_bandwidth_slice(void)
3073 {
3074 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3075 }
3076 
3077 /*
3078  * Replenish runtime according to assigned quota and update expiration time.
3079  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3080  * additional synchronization around rq->lock.
3081  *
3082  * requires cfs_b->lock
3083  */
3084 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3085 {
3086 	u64 now;
3087 
3088 	if (cfs_b->quota == RUNTIME_INF)
3089 		return;
3090 
3091 	now = sched_clock_cpu(smp_processor_id());
3092 	cfs_b->runtime = cfs_b->quota;
3093 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3094 }
3095 
3096 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3097 {
3098 	return &tg->cfs_bandwidth;
3099 }
3100 
3101 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3102 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3103 {
3104 	if (unlikely(cfs_rq->throttle_count))
3105 		return cfs_rq->throttled_clock_task;
3106 
3107 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3108 }
3109 
3110 /* returns 0 on failure to allocate runtime */
3111 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3112 {
3113 	struct task_group *tg = cfs_rq->tg;
3114 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3115 	u64 amount = 0, min_amount, expires;
3116 
3117 	/* note: this is a positive sum as runtime_remaining <= 0 */
3118 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3119 
3120 	raw_spin_lock(&cfs_b->lock);
3121 	if (cfs_b->quota == RUNTIME_INF)
3122 		amount = min_amount;
3123 	else {
3124 		/*
3125 		 * If the bandwidth pool has become inactive, then at least one
3126 		 * period must have elapsed since the last consumption.
3127 		 * Refresh the global state and ensure bandwidth timer becomes
3128 		 * active.
3129 		 */
3130 		if (!cfs_b->timer_active) {
3131 			__refill_cfs_bandwidth_runtime(cfs_b);
3132 			__start_cfs_bandwidth(cfs_b);
3133 		}
3134 
3135 		if (cfs_b->runtime > 0) {
3136 			amount = min(cfs_b->runtime, min_amount);
3137 			cfs_b->runtime -= amount;
3138 			cfs_b->idle = 0;
3139 		}
3140 	}
3141 	expires = cfs_b->runtime_expires;
3142 	raw_spin_unlock(&cfs_b->lock);
3143 
3144 	cfs_rq->runtime_remaining += amount;
3145 	/*
3146 	 * we may have advanced our local expiration to account for allowed
3147 	 * spread between our sched_clock and the one on which runtime was
3148 	 * issued.
3149 	 */
3150 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3151 		cfs_rq->runtime_expires = expires;
3152 
3153 	return cfs_rq->runtime_remaining > 0;
3154 }
3155 
3156 /*
3157  * Note: This depends on the synchronization provided by sched_clock and the
3158  * fact that rq->clock snapshots this value.
3159  */
3160 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3161 {
3162 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3163 
3164 	/* if the deadline is ahead of our clock, nothing to do */
3165 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3166 		return;
3167 
3168 	if (cfs_rq->runtime_remaining < 0)
3169 		return;
3170 
3171 	/*
3172 	 * If the local deadline has passed we have to consider the
3173 	 * possibility that our sched_clock is 'fast' and the global deadline
3174 	 * has not truly expired.
3175 	 *
3176 	 * Fortunately we can check determine whether this the case by checking
3177 	 * whether the global deadline has advanced.
3178 	 */
3179 
3180 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3181 		/* extend local deadline, drift is bounded above by 2 ticks */
3182 		cfs_rq->runtime_expires += TICK_NSEC;
3183 	} else {
3184 		/* global deadline is ahead, expiration has passed */
3185 		cfs_rq->runtime_remaining = 0;
3186 	}
3187 }
3188 
3189 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3190 {
3191 	/* dock delta_exec before expiring quota (as it could span periods) */
3192 	cfs_rq->runtime_remaining -= delta_exec;
3193 	expire_cfs_rq_runtime(cfs_rq);
3194 
3195 	if (likely(cfs_rq->runtime_remaining > 0))
3196 		return;
3197 
3198 	/*
3199 	 * if we're unable to extend our runtime we resched so that the active
3200 	 * hierarchy can be throttled
3201 	 */
3202 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3203 		resched_task(rq_of(cfs_rq)->curr);
3204 }
3205 
3206 static __always_inline
3207 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3208 {
3209 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3210 		return;
3211 
3212 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3213 }
3214 
3215 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3216 {
3217 	return cfs_bandwidth_used() && cfs_rq->throttled;
3218 }
3219 
3220 /* check whether cfs_rq, or any parent, is throttled */
3221 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3222 {
3223 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3224 }
3225 
3226 /*
3227  * Ensure that neither of the group entities corresponding to src_cpu or
3228  * dest_cpu are members of a throttled hierarchy when performing group
3229  * load-balance operations.
3230  */
3231 static inline int throttled_lb_pair(struct task_group *tg,
3232 				    int src_cpu, int dest_cpu)
3233 {
3234 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3235 
3236 	src_cfs_rq = tg->cfs_rq[src_cpu];
3237 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3238 
3239 	return throttled_hierarchy(src_cfs_rq) ||
3240 	       throttled_hierarchy(dest_cfs_rq);
3241 }
3242 
3243 /* updated child weight may affect parent so we have to do this bottom up */
3244 static int tg_unthrottle_up(struct task_group *tg, void *data)
3245 {
3246 	struct rq *rq = data;
3247 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3248 
3249 	cfs_rq->throttle_count--;
3250 #ifdef CONFIG_SMP
3251 	if (!cfs_rq->throttle_count) {
3252 		/* adjust cfs_rq_clock_task() */
3253 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3254 					     cfs_rq->throttled_clock_task;
3255 	}
3256 #endif
3257 
3258 	return 0;
3259 }
3260 
3261 static int tg_throttle_down(struct task_group *tg, void *data)
3262 {
3263 	struct rq *rq = data;
3264 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3265 
3266 	/* group is entering throttled state, stop time */
3267 	if (!cfs_rq->throttle_count)
3268 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3269 	cfs_rq->throttle_count++;
3270 
3271 	return 0;
3272 }
3273 
3274 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3275 {
3276 	struct rq *rq = rq_of(cfs_rq);
3277 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3278 	struct sched_entity *se;
3279 	long task_delta, dequeue = 1;
3280 
3281 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3282 
3283 	/* freeze hierarchy runnable averages while throttled */
3284 	rcu_read_lock();
3285 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3286 	rcu_read_unlock();
3287 
3288 	task_delta = cfs_rq->h_nr_running;
3289 	for_each_sched_entity(se) {
3290 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3291 		/* throttled entity or throttle-on-deactivate */
3292 		if (!se->on_rq)
3293 			break;
3294 
3295 		if (dequeue)
3296 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3297 		qcfs_rq->h_nr_running -= task_delta;
3298 
3299 		if (qcfs_rq->load.weight)
3300 			dequeue = 0;
3301 	}
3302 
3303 	if (!se)
3304 		rq->nr_running -= task_delta;
3305 
3306 	cfs_rq->throttled = 1;
3307 	cfs_rq->throttled_clock = rq_clock(rq);
3308 	raw_spin_lock(&cfs_b->lock);
3309 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3310 	if (!cfs_b->timer_active)
3311 		__start_cfs_bandwidth(cfs_b);
3312 	raw_spin_unlock(&cfs_b->lock);
3313 }
3314 
3315 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3316 {
3317 	struct rq *rq = rq_of(cfs_rq);
3318 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3319 	struct sched_entity *se;
3320 	int enqueue = 1;
3321 	long task_delta;
3322 
3323 	se = cfs_rq->tg->se[cpu_of(rq)];
3324 
3325 	cfs_rq->throttled = 0;
3326 
3327 	update_rq_clock(rq);
3328 
3329 	raw_spin_lock(&cfs_b->lock);
3330 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3331 	list_del_rcu(&cfs_rq->throttled_list);
3332 	raw_spin_unlock(&cfs_b->lock);
3333 
3334 	/* update hierarchical throttle state */
3335 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3336 
3337 	if (!cfs_rq->load.weight)
3338 		return;
3339 
3340 	task_delta = cfs_rq->h_nr_running;
3341 	for_each_sched_entity(se) {
3342 		if (se->on_rq)
3343 			enqueue = 0;
3344 
3345 		cfs_rq = cfs_rq_of(se);
3346 		if (enqueue)
3347 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3348 		cfs_rq->h_nr_running += task_delta;
3349 
3350 		if (cfs_rq_throttled(cfs_rq))
3351 			break;
3352 	}
3353 
3354 	if (!se)
3355 		rq->nr_running += task_delta;
3356 
3357 	/* determine whether we need to wake up potentially idle cpu */
3358 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3359 		resched_task(rq->curr);
3360 }
3361 
3362 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3363 		u64 remaining, u64 expires)
3364 {
3365 	struct cfs_rq *cfs_rq;
3366 	u64 runtime = remaining;
3367 
3368 	rcu_read_lock();
3369 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3370 				throttled_list) {
3371 		struct rq *rq = rq_of(cfs_rq);
3372 
3373 		raw_spin_lock(&rq->lock);
3374 		if (!cfs_rq_throttled(cfs_rq))
3375 			goto next;
3376 
3377 		runtime = -cfs_rq->runtime_remaining + 1;
3378 		if (runtime > remaining)
3379 			runtime = remaining;
3380 		remaining -= runtime;
3381 
3382 		cfs_rq->runtime_remaining += runtime;
3383 		cfs_rq->runtime_expires = expires;
3384 
3385 		/* we check whether we're throttled above */
3386 		if (cfs_rq->runtime_remaining > 0)
3387 			unthrottle_cfs_rq(cfs_rq);
3388 
3389 next:
3390 		raw_spin_unlock(&rq->lock);
3391 
3392 		if (!remaining)
3393 			break;
3394 	}
3395 	rcu_read_unlock();
3396 
3397 	return remaining;
3398 }
3399 
3400 /*
3401  * Responsible for refilling a task_group's bandwidth and unthrottling its
3402  * cfs_rqs as appropriate. If there has been no activity within the last
3403  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3404  * used to track this state.
3405  */
3406 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3407 {
3408 	u64 runtime, runtime_expires;
3409 	int idle = 1, throttled;
3410 
3411 	raw_spin_lock(&cfs_b->lock);
3412 	/* no need to continue the timer with no bandwidth constraint */
3413 	if (cfs_b->quota == RUNTIME_INF)
3414 		goto out_unlock;
3415 
3416 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3417 	/* idle depends on !throttled (for the case of a large deficit) */
3418 	idle = cfs_b->idle && !throttled;
3419 	cfs_b->nr_periods += overrun;
3420 
3421 	/* if we're going inactive then everything else can be deferred */
3422 	if (idle)
3423 		goto out_unlock;
3424 
3425 	/*
3426 	 * if we have relooped after returning idle once, we need to update our
3427 	 * status as actually running, so that other cpus doing
3428 	 * __start_cfs_bandwidth will stop trying to cancel us.
3429 	 */
3430 	cfs_b->timer_active = 1;
3431 
3432 	__refill_cfs_bandwidth_runtime(cfs_b);
3433 
3434 	if (!throttled) {
3435 		/* mark as potentially idle for the upcoming period */
3436 		cfs_b->idle = 1;
3437 		goto out_unlock;
3438 	}
3439 
3440 	/* account preceding periods in which throttling occurred */
3441 	cfs_b->nr_throttled += overrun;
3442 
3443 	/*
3444 	 * There are throttled entities so we must first use the new bandwidth
3445 	 * to unthrottle them before making it generally available.  This
3446 	 * ensures that all existing debts will be paid before a new cfs_rq is
3447 	 * allowed to run.
3448 	 */
3449 	runtime = cfs_b->runtime;
3450 	runtime_expires = cfs_b->runtime_expires;
3451 	cfs_b->runtime = 0;
3452 
3453 	/*
3454 	 * This check is repeated as we are holding onto the new bandwidth
3455 	 * while we unthrottle.  This can potentially race with an unthrottled
3456 	 * group trying to acquire new bandwidth from the global pool.
3457 	 */
3458 	while (throttled && runtime > 0) {
3459 		raw_spin_unlock(&cfs_b->lock);
3460 		/* we can't nest cfs_b->lock while distributing bandwidth */
3461 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3462 						 runtime_expires);
3463 		raw_spin_lock(&cfs_b->lock);
3464 
3465 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3466 	}
3467 
3468 	/* return (any) remaining runtime */
3469 	cfs_b->runtime = runtime;
3470 	/*
3471 	 * While we are ensured activity in the period following an
3472 	 * unthrottle, this also covers the case in which the new bandwidth is
3473 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3474 	 * timer to remain active while there are any throttled entities.)
3475 	 */
3476 	cfs_b->idle = 0;
3477 out_unlock:
3478 	if (idle)
3479 		cfs_b->timer_active = 0;
3480 	raw_spin_unlock(&cfs_b->lock);
3481 
3482 	return idle;
3483 }
3484 
3485 /* a cfs_rq won't donate quota below this amount */
3486 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3487 /* minimum remaining period time to redistribute slack quota */
3488 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3489 /* how long we wait to gather additional slack before distributing */
3490 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3491 
3492 /*
3493  * Are we near the end of the current quota period?
3494  *
3495  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3496  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3497  * migrate_hrtimers, base is never cleared, so we are fine.
3498  */
3499 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3500 {
3501 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3502 	u64 remaining;
3503 
3504 	/* if the call-back is running a quota refresh is already occurring */
3505 	if (hrtimer_callback_running(refresh_timer))
3506 		return 1;
3507 
3508 	/* is a quota refresh about to occur? */
3509 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3510 	if (remaining < min_expire)
3511 		return 1;
3512 
3513 	return 0;
3514 }
3515 
3516 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3517 {
3518 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3519 
3520 	/* if there's a quota refresh soon don't bother with slack */
3521 	if (runtime_refresh_within(cfs_b, min_left))
3522 		return;
3523 
3524 	start_bandwidth_timer(&cfs_b->slack_timer,
3525 				ns_to_ktime(cfs_bandwidth_slack_period));
3526 }
3527 
3528 /* we know any runtime found here is valid as update_curr() precedes return */
3529 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3530 {
3531 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3532 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3533 
3534 	if (slack_runtime <= 0)
3535 		return;
3536 
3537 	raw_spin_lock(&cfs_b->lock);
3538 	if (cfs_b->quota != RUNTIME_INF &&
3539 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3540 		cfs_b->runtime += slack_runtime;
3541 
3542 		/* we are under rq->lock, defer unthrottling using a timer */
3543 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3544 		    !list_empty(&cfs_b->throttled_cfs_rq))
3545 			start_cfs_slack_bandwidth(cfs_b);
3546 	}
3547 	raw_spin_unlock(&cfs_b->lock);
3548 
3549 	/* even if it's not valid for return we don't want to try again */
3550 	cfs_rq->runtime_remaining -= slack_runtime;
3551 }
3552 
3553 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3554 {
3555 	if (!cfs_bandwidth_used())
3556 		return;
3557 
3558 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3559 		return;
3560 
3561 	__return_cfs_rq_runtime(cfs_rq);
3562 }
3563 
3564 /*
3565  * This is done with a timer (instead of inline with bandwidth return) since
3566  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3567  */
3568 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3569 {
3570 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3571 	u64 expires;
3572 
3573 	/* confirm we're still not at a refresh boundary */
3574 	raw_spin_lock(&cfs_b->lock);
3575 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3576 		raw_spin_unlock(&cfs_b->lock);
3577 		return;
3578 	}
3579 
3580 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3581 		runtime = cfs_b->runtime;
3582 		cfs_b->runtime = 0;
3583 	}
3584 	expires = cfs_b->runtime_expires;
3585 	raw_spin_unlock(&cfs_b->lock);
3586 
3587 	if (!runtime)
3588 		return;
3589 
3590 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3591 
3592 	raw_spin_lock(&cfs_b->lock);
3593 	if (expires == cfs_b->runtime_expires)
3594 		cfs_b->runtime = runtime;
3595 	raw_spin_unlock(&cfs_b->lock);
3596 }
3597 
3598 /*
3599  * When a group wakes up we want to make sure that its quota is not already
3600  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3601  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3602  */
3603 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3604 {
3605 	if (!cfs_bandwidth_used())
3606 		return;
3607 
3608 	/* an active group must be handled by the update_curr()->put() path */
3609 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3610 		return;
3611 
3612 	/* ensure the group is not already throttled */
3613 	if (cfs_rq_throttled(cfs_rq))
3614 		return;
3615 
3616 	/* update runtime allocation */
3617 	account_cfs_rq_runtime(cfs_rq, 0);
3618 	if (cfs_rq->runtime_remaining <= 0)
3619 		throttle_cfs_rq(cfs_rq);
3620 }
3621 
3622 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3623 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624 {
3625 	if (!cfs_bandwidth_used())
3626 		return false;
3627 
3628 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3629 		return false;
3630 
3631 	/*
3632 	 * it's possible for a throttled entity to be forced into a running
3633 	 * state (e.g. set_curr_task), in this case we're finished.
3634 	 */
3635 	if (cfs_rq_throttled(cfs_rq))
3636 		return true;
3637 
3638 	throttle_cfs_rq(cfs_rq);
3639 	return true;
3640 }
3641 
3642 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3643 {
3644 	struct cfs_bandwidth *cfs_b =
3645 		container_of(timer, struct cfs_bandwidth, slack_timer);
3646 	do_sched_cfs_slack_timer(cfs_b);
3647 
3648 	return HRTIMER_NORESTART;
3649 }
3650 
3651 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3652 {
3653 	struct cfs_bandwidth *cfs_b =
3654 		container_of(timer, struct cfs_bandwidth, period_timer);
3655 	ktime_t now;
3656 	int overrun;
3657 	int idle = 0;
3658 
3659 	for (;;) {
3660 		now = hrtimer_cb_get_time(timer);
3661 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3662 
3663 		if (!overrun)
3664 			break;
3665 
3666 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3667 	}
3668 
3669 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3670 }
3671 
3672 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3673 {
3674 	raw_spin_lock_init(&cfs_b->lock);
3675 	cfs_b->runtime = 0;
3676 	cfs_b->quota = RUNTIME_INF;
3677 	cfs_b->period = ns_to_ktime(default_cfs_period());
3678 
3679 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3680 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3681 	cfs_b->period_timer.function = sched_cfs_period_timer;
3682 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3683 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3684 }
3685 
3686 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3687 {
3688 	cfs_rq->runtime_enabled = 0;
3689 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3690 }
3691 
3692 /* requires cfs_b->lock, may release to reprogram timer */
3693 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3694 {
3695 	/*
3696 	 * The timer may be active because we're trying to set a new bandwidth
3697 	 * period or because we're racing with the tear-down path
3698 	 * (timer_active==0 becomes visible before the hrtimer call-back
3699 	 * terminates).  In either case we ensure that it's re-programmed
3700 	 */
3701 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3702 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3703 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3704 		raw_spin_unlock(&cfs_b->lock);
3705 		cpu_relax();
3706 		raw_spin_lock(&cfs_b->lock);
3707 		/* if someone else restarted the timer then we're done */
3708 		if (cfs_b->timer_active)
3709 			return;
3710 	}
3711 
3712 	cfs_b->timer_active = 1;
3713 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3714 }
3715 
3716 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3717 {
3718 	hrtimer_cancel(&cfs_b->period_timer);
3719 	hrtimer_cancel(&cfs_b->slack_timer);
3720 }
3721 
3722 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3723 {
3724 	struct cfs_rq *cfs_rq;
3725 
3726 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3727 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3728 
3729 		if (!cfs_rq->runtime_enabled)
3730 			continue;
3731 
3732 		/*
3733 		 * clock_task is not advancing so we just need to make sure
3734 		 * there's some valid quota amount
3735 		 */
3736 		cfs_rq->runtime_remaining = cfs_b->quota;
3737 		if (cfs_rq_throttled(cfs_rq))
3738 			unthrottle_cfs_rq(cfs_rq);
3739 	}
3740 }
3741 
3742 #else /* CONFIG_CFS_BANDWIDTH */
3743 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3744 {
3745 	return rq_clock_task(rq_of(cfs_rq));
3746 }
3747 
3748 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3749 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3750 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3751 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3752 
3753 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3754 {
3755 	return 0;
3756 }
3757 
3758 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3759 {
3760 	return 0;
3761 }
3762 
3763 static inline int throttled_lb_pair(struct task_group *tg,
3764 				    int src_cpu, int dest_cpu)
3765 {
3766 	return 0;
3767 }
3768 
3769 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3770 
3771 #ifdef CONFIG_FAIR_GROUP_SCHED
3772 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3773 #endif
3774 
3775 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3776 {
3777 	return NULL;
3778 }
3779 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3780 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3781 
3782 #endif /* CONFIG_CFS_BANDWIDTH */
3783 
3784 /**************************************************
3785  * CFS operations on tasks:
3786  */
3787 
3788 #ifdef CONFIG_SCHED_HRTICK
3789 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3790 {
3791 	struct sched_entity *se = &p->se;
3792 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3793 
3794 	WARN_ON(task_rq(p) != rq);
3795 
3796 	if (cfs_rq->nr_running > 1) {
3797 		u64 slice = sched_slice(cfs_rq, se);
3798 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3799 		s64 delta = slice - ran;
3800 
3801 		if (delta < 0) {
3802 			if (rq->curr == p)
3803 				resched_task(p);
3804 			return;
3805 		}
3806 
3807 		/*
3808 		 * Don't schedule slices shorter than 10000ns, that just
3809 		 * doesn't make sense. Rely on vruntime for fairness.
3810 		 */
3811 		if (rq->curr != p)
3812 			delta = max_t(s64, 10000LL, delta);
3813 
3814 		hrtick_start(rq, delta);
3815 	}
3816 }
3817 
3818 /*
3819  * called from enqueue/dequeue and updates the hrtick when the
3820  * current task is from our class and nr_running is low enough
3821  * to matter.
3822  */
3823 static void hrtick_update(struct rq *rq)
3824 {
3825 	struct task_struct *curr = rq->curr;
3826 
3827 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3828 		return;
3829 
3830 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3831 		hrtick_start_fair(rq, curr);
3832 }
3833 #else /* !CONFIG_SCHED_HRTICK */
3834 static inline void
3835 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3836 {
3837 }
3838 
3839 static inline void hrtick_update(struct rq *rq)
3840 {
3841 }
3842 #endif
3843 
3844 /*
3845  * The enqueue_task method is called before nr_running is
3846  * increased. Here we update the fair scheduling stats and
3847  * then put the task into the rbtree:
3848  */
3849 static void
3850 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3851 {
3852 	struct cfs_rq *cfs_rq;
3853 	struct sched_entity *se = &p->se;
3854 
3855 	for_each_sched_entity(se) {
3856 		if (se->on_rq)
3857 			break;
3858 		cfs_rq = cfs_rq_of(se);
3859 		enqueue_entity(cfs_rq, se, flags);
3860 
3861 		/*
3862 		 * end evaluation on encountering a throttled cfs_rq
3863 		 *
3864 		 * note: in the case of encountering a throttled cfs_rq we will
3865 		 * post the final h_nr_running increment below.
3866 		*/
3867 		if (cfs_rq_throttled(cfs_rq))
3868 			break;
3869 		cfs_rq->h_nr_running++;
3870 
3871 		flags = ENQUEUE_WAKEUP;
3872 	}
3873 
3874 	for_each_sched_entity(se) {
3875 		cfs_rq = cfs_rq_of(se);
3876 		cfs_rq->h_nr_running++;
3877 
3878 		if (cfs_rq_throttled(cfs_rq))
3879 			break;
3880 
3881 		update_cfs_shares(cfs_rq);
3882 		update_entity_load_avg(se, 1);
3883 	}
3884 
3885 	if (!se) {
3886 		update_rq_runnable_avg(rq, rq->nr_running);
3887 		inc_nr_running(rq);
3888 	}
3889 	hrtick_update(rq);
3890 }
3891 
3892 static void set_next_buddy(struct sched_entity *se);
3893 
3894 /*
3895  * The dequeue_task method is called before nr_running is
3896  * decreased. We remove the task from the rbtree and
3897  * update the fair scheduling stats:
3898  */
3899 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3900 {
3901 	struct cfs_rq *cfs_rq;
3902 	struct sched_entity *se = &p->se;
3903 	int task_sleep = flags & DEQUEUE_SLEEP;
3904 
3905 	for_each_sched_entity(se) {
3906 		cfs_rq = cfs_rq_of(se);
3907 		dequeue_entity(cfs_rq, se, flags);
3908 
3909 		/*
3910 		 * end evaluation on encountering a throttled cfs_rq
3911 		 *
3912 		 * note: in the case of encountering a throttled cfs_rq we will
3913 		 * post the final h_nr_running decrement below.
3914 		*/
3915 		if (cfs_rq_throttled(cfs_rq))
3916 			break;
3917 		cfs_rq->h_nr_running--;
3918 
3919 		/* Don't dequeue parent if it has other entities besides us */
3920 		if (cfs_rq->load.weight) {
3921 			/*
3922 			 * Bias pick_next to pick a task from this cfs_rq, as
3923 			 * p is sleeping when it is within its sched_slice.
3924 			 */
3925 			if (task_sleep && parent_entity(se))
3926 				set_next_buddy(parent_entity(se));
3927 
3928 			/* avoid re-evaluating load for this entity */
3929 			se = parent_entity(se);
3930 			break;
3931 		}
3932 		flags |= DEQUEUE_SLEEP;
3933 	}
3934 
3935 	for_each_sched_entity(se) {
3936 		cfs_rq = cfs_rq_of(se);
3937 		cfs_rq->h_nr_running--;
3938 
3939 		if (cfs_rq_throttled(cfs_rq))
3940 			break;
3941 
3942 		update_cfs_shares(cfs_rq);
3943 		update_entity_load_avg(se, 1);
3944 	}
3945 
3946 	if (!se) {
3947 		dec_nr_running(rq);
3948 		update_rq_runnable_avg(rq, 1);
3949 	}
3950 	hrtick_update(rq);
3951 }
3952 
3953 #ifdef CONFIG_SMP
3954 /* Used instead of source_load when we know the type == 0 */
3955 static unsigned long weighted_cpuload(const int cpu)
3956 {
3957 	return cpu_rq(cpu)->cfs.runnable_load_avg;
3958 }
3959 
3960 /*
3961  * Return a low guess at the load of a migration-source cpu weighted
3962  * according to the scheduling class and "nice" value.
3963  *
3964  * We want to under-estimate the load of migration sources, to
3965  * balance conservatively.
3966  */
3967 static unsigned long source_load(int cpu, int type)
3968 {
3969 	struct rq *rq = cpu_rq(cpu);
3970 	unsigned long total = weighted_cpuload(cpu);
3971 
3972 	if (type == 0 || !sched_feat(LB_BIAS))
3973 		return total;
3974 
3975 	return min(rq->cpu_load[type-1], total);
3976 }
3977 
3978 /*
3979  * Return a high guess at the load of a migration-target cpu weighted
3980  * according to the scheduling class and "nice" value.
3981  */
3982 static unsigned long target_load(int cpu, int type)
3983 {
3984 	struct rq *rq = cpu_rq(cpu);
3985 	unsigned long total = weighted_cpuload(cpu);
3986 
3987 	if (type == 0 || !sched_feat(LB_BIAS))
3988 		return total;
3989 
3990 	return max(rq->cpu_load[type-1], total);
3991 }
3992 
3993 static unsigned long power_of(int cpu)
3994 {
3995 	return cpu_rq(cpu)->cpu_power;
3996 }
3997 
3998 static unsigned long cpu_avg_load_per_task(int cpu)
3999 {
4000 	struct rq *rq = cpu_rq(cpu);
4001 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4002 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4003 
4004 	if (nr_running)
4005 		return load_avg / nr_running;
4006 
4007 	return 0;
4008 }
4009 
4010 static void record_wakee(struct task_struct *p)
4011 {
4012 	/*
4013 	 * Rough decay (wiping) for cost saving, don't worry
4014 	 * about the boundary, really active task won't care
4015 	 * about the loss.
4016 	 */
4017 	if (jiffies > current->wakee_flip_decay_ts + HZ) {
4018 		current->wakee_flips = 0;
4019 		current->wakee_flip_decay_ts = jiffies;
4020 	}
4021 
4022 	if (current->last_wakee != p) {
4023 		current->last_wakee = p;
4024 		current->wakee_flips++;
4025 	}
4026 }
4027 
4028 static void task_waking_fair(struct task_struct *p)
4029 {
4030 	struct sched_entity *se = &p->se;
4031 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4032 	u64 min_vruntime;
4033 
4034 #ifndef CONFIG_64BIT
4035 	u64 min_vruntime_copy;
4036 
4037 	do {
4038 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4039 		smp_rmb();
4040 		min_vruntime = cfs_rq->min_vruntime;
4041 	} while (min_vruntime != min_vruntime_copy);
4042 #else
4043 	min_vruntime = cfs_rq->min_vruntime;
4044 #endif
4045 
4046 	se->vruntime -= min_vruntime;
4047 	record_wakee(p);
4048 }
4049 
4050 #ifdef CONFIG_FAIR_GROUP_SCHED
4051 /*
4052  * effective_load() calculates the load change as seen from the root_task_group
4053  *
4054  * Adding load to a group doesn't make a group heavier, but can cause movement
4055  * of group shares between cpus. Assuming the shares were perfectly aligned one
4056  * can calculate the shift in shares.
4057  *
4058  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4059  * on this @cpu and results in a total addition (subtraction) of @wg to the
4060  * total group weight.
4061  *
4062  * Given a runqueue weight distribution (rw_i) we can compute a shares
4063  * distribution (s_i) using:
4064  *
4065  *   s_i = rw_i / \Sum rw_j						(1)
4066  *
4067  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4068  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4069  * shares distribution (s_i):
4070  *
4071  *   rw_i = {   2,   4,   1,   0 }
4072  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4073  *
4074  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4075  * task used to run on and the CPU the waker is running on), we need to
4076  * compute the effect of waking a task on either CPU and, in case of a sync
4077  * wakeup, compute the effect of the current task going to sleep.
4078  *
4079  * So for a change of @wl to the local @cpu with an overall group weight change
4080  * of @wl we can compute the new shares distribution (s'_i) using:
4081  *
4082  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4083  *
4084  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4085  * differences in waking a task to CPU 0. The additional task changes the
4086  * weight and shares distributions like:
4087  *
4088  *   rw'_i = {   3,   4,   1,   0 }
4089  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4090  *
4091  * We can then compute the difference in effective weight by using:
4092  *
4093  *   dw_i = S * (s'_i - s_i)						(3)
4094  *
4095  * Where 'S' is the group weight as seen by its parent.
4096  *
4097  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4098  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4099  * 4/7) times the weight of the group.
4100  */
4101 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4102 {
4103 	struct sched_entity *se = tg->se[cpu];
4104 
4105 	if (!tg->parent)	/* the trivial, non-cgroup case */
4106 		return wl;
4107 
4108 	for_each_sched_entity(se) {
4109 		long w, W;
4110 
4111 		tg = se->my_q->tg;
4112 
4113 		/*
4114 		 * W = @wg + \Sum rw_j
4115 		 */
4116 		W = wg + calc_tg_weight(tg, se->my_q);
4117 
4118 		/*
4119 		 * w = rw_i + @wl
4120 		 */
4121 		w = se->my_q->load.weight + wl;
4122 
4123 		/*
4124 		 * wl = S * s'_i; see (2)
4125 		 */
4126 		if (W > 0 && w < W)
4127 			wl = (w * tg->shares) / W;
4128 		else
4129 			wl = tg->shares;
4130 
4131 		/*
4132 		 * Per the above, wl is the new se->load.weight value; since
4133 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4134 		 * calc_cfs_shares().
4135 		 */
4136 		if (wl < MIN_SHARES)
4137 			wl = MIN_SHARES;
4138 
4139 		/*
4140 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4141 		 */
4142 		wl -= se->load.weight;
4143 
4144 		/*
4145 		 * Recursively apply this logic to all parent groups to compute
4146 		 * the final effective load change on the root group. Since
4147 		 * only the @tg group gets extra weight, all parent groups can
4148 		 * only redistribute existing shares. @wl is the shift in shares
4149 		 * resulting from this level per the above.
4150 		 */
4151 		wg = 0;
4152 	}
4153 
4154 	return wl;
4155 }
4156 #else
4157 
4158 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4159 {
4160 	return wl;
4161 }
4162 
4163 #endif
4164 
4165 static int wake_wide(struct task_struct *p)
4166 {
4167 	int factor = this_cpu_read(sd_llc_size);
4168 
4169 	/*
4170 	 * Yeah, it's the switching-frequency, could means many wakee or
4171 	 * rapidly switch, use factor here will just help to automatically
4172 	 * adjust the loose-degree, so bigger node will lead to more pull.
4173 	 */
4174 	if (p->wakee_flips > factor) {
4175 		/*
4176 		 * wakee is somewhat hot, it needs certain amount of cpu
4177 		 * resource, so if waker is far more hot, prefer to leave
4178 		 * it alone.
4179 		 */
4180 		if (current->wakee_flips > (factor * p->wakee_flips))
4181 			return 1;
4182 	}
4183 
4184 	return 0;
4185 }
4186 
4187 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4188 {
4189 	s64 this_load, load;
4190 	int idx, this_cpu, prev_cpu;
4191 	unsigned long tl_per_task;
4192 	struct task_group *tg;
4193 	unsigned long weight;
4194 	int balanced;
4195 
4196 	/*
4197 	 * If we wake multiple tasks be careful to not bounce
4198 	 * ourselves around too much.
4199 	 */
4200 	if (wake_wide(p))
4201 		return 0;
4202 
4203 	idx	  = sd->wake_idx;
4204 	this_cpu  = smp_processor_id();
4205 	prev_cpu  = task_cpu(p);
4206 	load	  = source_load(prev_cpu, idx);
4207 	this_load = target_load(this_cpu, idx);
4208 
4209 	/*
4210 	 * If sync wakeup then subtract the (maximum possible)
4211 	 * effect of the currently running task from the load
4212 	 * of the current CPU:
4213 	 */
4214 	if (sync) {
4215 		tg = task_group(current);
4216 		weight = current->se.load.weight;
4217 
4218 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4219 		load += effective_load(tg, prev_cpu, 0, -weight);
4220 	}
4221 
4222 	tg = task_group(p);
4223 	weight = p->se.load.weight;
4224 
4225 	/*
4226 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4227 	 * due to the sync cause above having dropped this_load to 0, we'll
4228 	 * always have an imbalance, but there's really nothing you can do
4229 	 * about that, so that's good too.
4230 	 *
4231 	 * Otherwise check if either cpus are near enough in load to allow this
4232 	 * task to be woken on this_cpu.
4233 	 */
4234 	if (this_load > 0) {
4235 		s64 this_eff_load, prev_eff_load;
4236 
4237 		this_eff_load = 100;
4238 		this_eff_load *= power_of(prev_cpu);
4239 		this_eff_load *= this_load +
4240 			effective_load(tg, this_cpu, weight, weight);
4241 
4242 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4243 		prev_eff_load *= power_of(this_cpu);
4244 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4245 
4246 		balanced = this_eff_load <= prev_eff_load;
4247 	} else
4248 		balanced = true;
4249 
4250 	/*
4251 	 * If the currently running task will sleep within
4252 	 * a reasonable amount of time then attract this newly
4253 	 * woken task:
4254 	 */
4255 	if (sync && balanced)
4256 		return 1;
4257 
4258 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4259 	tl_per_task = cpu_avg_load_per_task(this_cpu);
4260 
4261 	if (balanced ||
4262 	    (this_load <= load &&
4263 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4264 		/*
4265 		 * This domain has SD_WAKE_AFFINE and
4266 		 * p is cache cold in this domain, and
4267 		 * there is no bad imbalance.
4268 		 */
4269 		schedstat_inc(sd, ttwu_move_affine);
4270 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4271 
4272 		return 1;
4273 	}
4274 	return 0;
4275 }
4276 
4277 /*
4278  * find_idlest_group finds and returns the least busy CPU group within the
4279  * domain.
4280  */
4281 static struct sched_group *
4282 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4283 		  int this_cpu, int sd_flag)
4284 {
4285 	struct sched_group *idlest = NULL, *group = sd->groups;
4286 	unsigned long min_load = ULONG_MAX, this_load = 0;
4287 	int load_idx = sd->forkexec_idx;
4288 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4289 
4290 	if (sd_flag & SD_BALANCE_WAKE)
4291 		load_idx = sd->wake_idx;
4292 
4293 	do {
4294 		unsigned long load, avg_load;
4295 		int local_group;
4296 		int i;
4297 
4298 		/* Skip over this group if it has no CPUs allowed */
4299 		if (!cpumask_intersects(sched_group_cpus(group),
4300 					tsk_cpus_allowed(p)))
4301 			continue;
4302 
4303 		local_group = cpumask_test_cpu(this_cpu,
4304 					       sched_group_cpus(group));
4305 
4306 		/* Tally up the load of all CPUs in the group */
4307 		avg_load = 0;
4308 
4309 		for_each_cpu(i, sched_group_cpus(group)) {
4310 			/* Bias balancing toward cpus of our domain */
4311 			if (local_group)
4312 				load = source_load(i, load_idx);
4313 			else
4314 				load = target_load(i, load_idx);
4315 
4316 			avg_load += load;
4317 		}
4318 
4319 		/* Adjust by relative CPU power of the group */
4320 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4321 
4322 		if (local_group) {
4323 			this_load = avg_load;
4324 		} else if (avg_load < min_load) {
4325 			min_load = avg_load;
4326 			idlest = group;
4327 		}
4328 	} while (group = group->next, group != sd->groups);
4329 
4330 	if (!idlest || 100*this_load < imbalance*min_load)
4331 		return NULL;
4332 	return idlest;
4333 }
4334 
4335 /*
4336  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4337  */
4338 static int
4339 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4340 {
4341 	unsigned long load, min_load = ULONG_MAX;
4342 	int idlest = -1;
4343 	int i;
4344 
4345 	/* Traverse only the allowed CPUs */
4346 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4347 		load = weighted_cpuload(i);
4348 
4349 		if (load < min_load || (load == min_load && i == this_cpu)) {
4350 			min_load = load;
4351 			idlest = i;
4352 		}
4353 	}
4354 
4355 	return idlest;
4356 }
4357 
4358 /*
4359  * Try and locate an idle CPU in the sched_domain.
4360  */
4361 static int select_idle_sibling(struct task_struct *p, int target)
4362 {
4363 	struct sched_domain *sd;
4364 	struct sched_group *sg;
4365 	int i = task_cpu(p);
4366 
4367 	if (idle_cpu(target))
4368 		return target;
4369 
4370 	/*
4371 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4372 	 */
4373 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4374 		return i;
4375 
4376 	/*
4377 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4378 	 */
4379 	sd = rcu_dereference(per_cpu(sd_llc, target));
4380 	for_each_lower_domain(sd) {
4381 		sg = sd->groups;
4382 		do {
4383 			if (!cpumask_intersects(sched_group_cpus(sg),
4384 						tsk_cpus_allowed(p)))
4385 				goto next;
4386 
4387 			for_each_cpu(i, sched_group_cpus(sg)) {
4388 				if (i == target || !idle_cpu(i))
4389 					goto next;
4390 			}
4391 
4392 			target = cpumask_first_and(sched_group_cpus(sg),
4393 					tsk_cpus_allowed(p));
4394 			goto done;
4395 next:
4396 			sg = sg->next;
4397 		} while (sg != sd->groups);
4398 	}
4399 done:
4400 	return target;
4401 }
4402 
4403 /*
4404  * select_task_rq_fair: Select target runqueue for the waking task in domains
4405  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4406  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4407  *
4408  * Balances load by selecting the idlest cpu in the idlest group, or under
4409  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4410  *
4411  * Returns the target cpu number.
4412  *
4413  * preempt must be disabled.
4414  */
4415 static int
4416 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4417 {
4418 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4419 	int cpu = smp_processor_id();
4420 	int new_cpu = cpu;
4421 	int want_affine = 0;
4422 	int sync = wake_flags & WF_SYNC;
4423 
4424 	if (p->nr_cpus_allowed == 1)
4425 		return prev_cpu;
4426 
4427 	if (sd_flag & SD_BALANCE_WAKE) {
4428 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4429 			want_affine = 1;
4430 		new_cpu = prev_cpu;
4431 	}
4432 
4433 	rcu_read_lock();
4434 	for_each_domain(cpu, tmp) {
4435 		if (!(tmp->flags & SD_LOAD_BALANCE))
4436 			continue;
4437 
4438 		/*
4439 		 * If both cpu and prev_cpu are part of this domain,
4440 		 * cpu is a valid SD_WAKE_AFFINE target.
4441 		 */
4442 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4443 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4444 			affine_sd = tmp;
4445 			break;
4446 		}
4447 
4448 		if (tmp->flags & sd_flag)
4449 			sd = tmp;
4450 	}
4451 
4452 	if (affine_sd) {
4453 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4454 			prev_cpu = cpu;
4455 
4456 		new_cpu = select_idle_sibling(p, prev_cpu);
4457 		goto unlock;
4458 	}
4459 
4460 	while (sd) {
4461 		struct sched_group *group;
4462 		int weight;
4463 
4464 		if (!(sd->flags & sd_flag)) {
4465 			sd = sd->child;
4466 			continue;
4467 		}
4468 
4469 		group = find_idlest_group(sd, p, cpu, sd_flag);
4470 		if (!group) {
4471 			sd = sd->child;
4472 			continue;
4473 		}
4474 
4475 		new_cpu = find_idlest_cpu(group, p, cpu);
4476 		if (new_cpu == -1 || new_cpu == cpu) {
4477 			/* Now try balancing at a lower domain level of cpu */
4478 			sd = sd->child;
4479 			continue;
4480 		}
4481 
4482 		/* Now try balancing at a lower domain level of new_cpu */
4483 		cpu = new_cpu;
4484 		weight = sd->span_weight;
4485 		sd = NULL;
4486 		for_each_domain(cpu, tmp) {
4487 			if (weight <= tmp->span_weight)
4488 				break;
4489 			if (tmp->flags & sd_flag)
4490 				sd = tmp;
4491 		}
4492 		/* while loop will break here if sd == NULL */
4493 	}
4494 unlock:
4495 	rcu_read_unlock();
4496 
4497 	return new_cpu;
4498 }
4499 
4500 /*
4501  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4502  * cfs_rq_of(p) references at time of call are still valid and identify the
4503  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4504  * other assumptions, including the state of rq->lock, should be made.
4505  */
4506 static void
4507 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4508 {
4509 	struct sched_entity *se = &p->se;
4510 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4511 
4512 	/*
4513 	 * Load tracking: accumulate removed load so that it can be processed
4514 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4515 	 * to blocked load iff they have a positive decay-count.  It can never
4516 	 * be negative here since on-rq tasks have decay-count == 0.
4517 	 */
4518 	if (se->avg.decay_count) {
4519 		se->avg.decay_count = -__synchronize_entity_decay(se);
4520 		atomic_long_add(se->avg.load_avg_contrib,
4521 						&cfs_rq->removed_load);
4522 	}
4523 }
4524 #endif /* CONFIG_SMP */
4525 
4526 static unsigned long
4527 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4528 {
4529 	unsigned long gran = sysctl_sched_wakeup_granularity;
4530 
4531 	/*
4532 	 * Since its curr running now, convert the gran from real-time
4533 	 * to virtual-time in his units.
4534 	 *
4535 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4536 	 * they get preempted easier. That is, if 'se' < 'curr' then
4537 	 * the resulting gran will be larger, therefore penalizing the
4538 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4539 	 * be smaller, again penalizing the lighter task.
4540 	 *
4541 	 * This is especially important for buddies when the leftmost
4542 	 * task is higher priority than the buddy.
4543 	 */
4544 	return calc_delta_fair(gran, se);
4545 }
4546 
4547 /*
4548  * Should 'se' preempt 'curr'.
4549  *
4550  *             |s1
4551  *        |s2
4552  *   |s3
4553  *         g
4554  *      |<--->|c
4555  *
4556  *  w(c, s1) = -1
4557  *  w(c, s2) =  0
4558  *  w(c, s3) =  1
4559  *
4560  */
4561 static int
4562 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4563 {
4564 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4565 
4566 	if (vdiff <= 0)
4567 		return -1;
4568 
4569 	gran = wakeup_gran(curr, se);
4570 	if (vdiff > gran)
4571 		return 1;
4572 
4573 	return 0;
4574 }
4575 
4576 static void set_last_buddy(struct sched_entity *se)
4577 {
4578 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4579 		return;
4580 
4581 	for_each_sched_entity(se)
4582 		cfs_rq_of(se)->last = se;
4583 }
4584 
4585 static void set_next_buddy(struct sched_entity *se)
4586 {
4587 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4588 		return;
4589 
4590 	for_each_sched_entity(se)
4591 		cfs_rq_of(se)->next = se;
4592 }
4593 
4594 static void set_skip_buddy(struct sched_entity *se)
4595 {
4596 	for_each_sched_entity(se)
4597 		cfs_rq_of(se)->skip = se;
4598 }
4599 
4600 /*
4601  * Preempt the current task with a newly woken task if needed:
4602  */
4603 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4604 {
4605 	struct task_struct *curr = rq->curr;
4606 	struct sched_entity *se = &curr->se, *pse = &p->se;
4607 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4608 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4609 	int next_buddy_marked = 0;
4610 
4611 	if (unlikely(se == pse))
4612 		return;
4613 
4614 	/*
4615 	 * This is possible from callers such as move_task(), in which we
4616 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4617 	 * lead to a throttle).  This both saves work and prevents false
4618 	 * next-buddy nomination below.
4619 	 */
4620 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4621 		return;
4622 
4623 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4624 		set_next_buddy(pse);
4625 		next_buddy_marked = 1;
4626 	}
4627 
4628 	/*
4629 	 * We can come here with TIF_NEED_RESCHED already set from new task
4630 	 * wake up path.
4631 	 *
4632 	 * Note: this also catches the edge-case of curr being in a throttled
4633 	 * group (e.g. via set_curr_task), since update_curr() (in the
4634 	 * enqueue of curr) will have resulted in resched being set.  This
4635 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4636 	 * below.
4637 	 */
4638 	if (test_tsk_need_resched(curr))
4639 		return;
4640 
4641 	/* Idle tasks are by definition preempted by non-idle tasks. */
4642 	if (unlikely(curr->policy == SCHED_IDLE) &&
4643 	    likely(p->policy != SCHED_IDLE))
4644 		goto preempt;
4645 
4646 	/*
4647 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4648 	 * is driven by the tick):
4649 	 */
4650 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4651 		return;
4652 
4653 	find_matching_se(&se, &pse);
4654 	update_curr(cfs_rq_of(se));
4655 	BUG_ON(!pse);
4656 	if (wakeup_preempt_entity(se, pse) == 1) {
4657 		/*
4658 		 * Bias pick_next to pick the sched entity that is
4659 		 * triggering this preemption.
4660 		 */
4661 		if (!next_buddy_marked)
4662 			set_next_buddy(pse);
4663 		goto preempt;
4664 	}
4665 
4666 	return;
4667 
4668 preempt:
4669 	resched_task(curr);
4670 	/*
4671 	 * Only set the backward buddy when the current task is still
4672 	 * on the rq. This can happen when a wakeup gets interleaved
4673 	 * with schedule on the ->pre_schedule() or idle_balance()
4674 	 * point, either of which can * drop the rq lock.
4675 	 *
4676 	 * Also, during early boot the idle thread is in the fair class,
4677 	 * for obvious reasons its a bad idea to schedule back to it.
4678 	 */
4679 	if (unlikely(!se->on_rq || curr == rq->idle))
4680 		return;
4681 
4682 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4683 		set_last_buddy(se);
4684 }
4685 
4686 static struct task_struct *
4687 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4688 {
4689 	struct cfs_rq *cfs_rq = &rq->cfs;
4690 	struct sched_entity *se;
4691 	struct task_struct *p;
4692 	int new_tasks;
4693 
4694 again:
4695 #ifdef CONFIG_FAIR_GROUP_SCHED
4696 	if (!cfs_rq->nr_running)
4697 		goto idle;
4698 
4699 	if (prev->sched_class != &fair_sched_class)
4700 		goto simple;
4701 
4702 	/*
4703 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4704 	 * likely that a next task is from the same cgroup as the current.
4705 	 *
4706 	 * Therefore attempt to avoid putting and setting the entire cgroup
4707 	 * hierarchy, only change the part that actually changes.
4708 	 */
4709 
4710 	do {
4711 		struct sched_entity *curr = cfs_rq->curr;
4712 
4713 		/*
4714 		 * Since we got here without doing put_prev_entity() we also
4715 		 * have to consider cfs_rq->curr. If it is still a runnable
4716 		 * entity, update_curr() will update its vruntime, otherwise
4717 		 * forget we've ever seen it.
4718 		 */
4719 		if (curr && curr->on_rq)
4720 			update_curr(cfs_rq);
4721 		else
4722 			curr = NULL;
4723 
4724 		/*
4725 		 * This call to check_cfs_rq_runtime() will do the throttle and
4726 		 * dequeue its entity in the parent(s). Therefore the 'simple'
4727 		 * nr_running test will indeed be correct.
4728 		 */
4729 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4730 			goto simple;
4731 
4732 		se = pick_next_entity(cfs_rq, curr);
4733 		cfs_rq = group_cfs_rq(se);
4734 	} while (cfs_rq);
4735 
4736 	p = task_of(se);
4737 
4738 	/*
4739 	 * Since we haven't yet done put_prev_entity and if the selected task
4740 	 * is a different task than we started out with, try and touch the
4741 	 * least amount of cfs_rqs.
4742 	 */
4743 	if (prev != p) {
4744 		struct sched_entity *pse = &prev->se;
4745 
4746 		while (!(cfs_rq = is_same_group(se, pse))) {
4747 			int se_depth = se->depth;
4748 			int pse_depth = pse->depth;
4749 
4750 			if (se_depth <= pse_depth) {
4751 				put_prev_entity(cfs_rq_of(pse), pse);
4752 				pse = parent_entity(pse);
4753 			}
4754 			if (se_depth >= pse_depth) {
4755 				set_next_entity(cfs_rq_of(se), se);
4756 				se = parent_entity(se);
4757 			}
4758 		}
4759 
4760 		put_prev_entity(cfs_rq, pse);
4761 		set_next_entity(cfs_rq, se);
4762 	}
4763 
4764 	if (hrtick_enabled(rq))
4765 		hrtick_start_fair(rq, p);
4766 
4767 	return p;
4768 simple:
4769 	cfs_rq = &rq->cfs;
4770 #endif
4771 
4772 	if (!cfs_rq->nr_running)
4773 		goto idle;
4774 
4775 	put_prev_task(rq, prev);
4776 
4777 	do {
4778 		se = pick_next_entity(cfs_rq, NULL);
4779 		set_next_entity(cfs_rq, se);
4780 		cfs_rq = group_cfs_rq(se);
4781 	} while (cfs_rq);
4782 
4783 	p = task_of(se);
4784 
4785 	if (hrtick_enabled(rq))
4786 		hrtick_start_fair(rq, p);
4787 
4788 	return p;
4789 
4790 idle:
4791 	new_tasks = idle_balance(rq);
4792 	/*
4793 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4794 	 * possible for any higher priority task to appear. In that case we
4795 	 * must re-start the pick_next_entity() loop.
4796 	 */
4797 	if (new_tasks < 0)
4798 		return RETRY_TASK;
4799 
4800 	if (new_tasks > 0)
4801 		goto again;
4802 
4803 	return NULL;
4804 }
4805 
4806 /*
4807  * Account for a descheduled task:
4808  */
4809 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4810 {
4811 	struct sched_entity *se = &prev->se;
4812 	struct cfs_rq *cfs_rq;
4813 
4814 	for_each_sched_entity(se) {
4815 		cfs_rq = cfs_rq_of(se);
4816 		put_prev_entity(cfs_rq, se);
4817 	}
4818 }
4819 
4820 /*
4821  * sched_yield() is very simple
4822  *
4823  * The magic of dealing with the ->skip buddy is in pick_next_entity.
4824  */
4825 static void yield_task_fair(struct rq *rq)
4826 {
4827 	struct task_struct *curr = rq->curr;
4828 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4829 	struct sched_entity *se = &curr->se;
4830 
4831 	/*
4832 	 * Are we the only task in the tree?
4833 	 */
4834 	if (unlikely(rq->nr_running == 1))
4835 		return;
4836 
4837 	clear_buddies(cfs_rq, se);
4838 
4839 	if (curr->policy != SCHED_BATCH) {
4840 		update_rq_clock(rq);
4841 		/*
4842 		 * Update run-time statistics of the 'current'.
4843 		 */
4844 		update_curr(cfs_rq);
4845 		/*
4846 		 * Tell update_rq_clock() that we've just updated,
4847 		 * so we don't do microscopic update in schedule()
4848 		 * and double the fastpath cost.
4849 		 */
4850 		 rq->skip_clock_update = 1;
4851 	}
4852 
4853 	set_skip_buddy(se);
4854 }
4855 
4856 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4857 {
4858 	struct sched_entity *se = &p->se;
4859 
4860 	/* throttled hierarchies are not runnable */
4861 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4862 		return false;
4863 
4864 	/* Tell the scheduler that we'd really like pse to run next. */
4865 	set_next_buddy(se);
4866 
4867 	yield_task_fair(rq);
4868 
4869 	return true;
4870 }
4871 
4872 #ifdef CONFIG_SMP
4873 /**************************************************
4874  * Fair scheduling class load-balancing methods.
4875  *
4876  * BASICS
4877  *
4878  * The purpose of load-balancing is to achieve the same basic fairness the
4879  * per-cpu scheduler provides, namely provide a proportional amount of compute
4880  * time to each task. This is expressed in the following equation:
4881  *
4882  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4883  *
4884  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4885  * W_i,0 is defined as:
4886  *
4887  *   W_i,0 = \Sum_j w_i,j                                             (2)
4888  *
4889  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4890  * is derived from the nice value as per prio_to_weight[].
4891  *
4892  * The weight average is an exponential decay average of the instantaneous
4893  * weight:
4894  *
4895  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
4896  *
4897  * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4898  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4899  * can also include other factors [XXX].
4900  *
4901  * To achieve this balance we define a measure of imbalance which follows
4902  * directly from (1):
4903  *
4904  *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
4905  *
4906  * We them move tasks around to minimize the imbalance. In the continuous
4907  * function space it is obvious this converges, in the discrete case we get
4908  * a few fun cases generally called infeasible weight scenarios.
4909  *
4910  * [XXX expand on:
4911  *     - infeasible weights;
4912  *     - local vs global optima in the discrete case. ]
4913  *
4914  *
4915  * SCHED DOMAINS
4916  *
4917  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4918  * for all i,j solution, we create a tree of cpus that follows the hardware
4919  * topology where each level pairs two lower groups (or better). This results
4920  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4921  * tree to only the first of the previous level and we decrease the frequency
4922  * of load-balance at each level inv. proportional to the number of cpus in
4923  * the groups.
4924  *
4925  * This yields:
4926  *
4927  *     log_2 n     1     n
4928  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
4929  *     i = 0      2^i   2^i
4930  *                               `- size of each group
4931  *         |         |     `- number of cpus doing load-balance
4932  *         |         `- freq
4933  *         `- sum over all levels
4934  *
4935  * Coupled with a limit on how many tasks we can migrate every balance pass,
4936  * this makes (5) the runtime complexity of the balancer.
4937  *
4938  * An important property here is that each CPU is still (indirectly) connected
4939  * to every other cpu in at most O(log n) steps:
4940  *
4941  * The adjacency matrix of the resulting graph is given by:
4942  *
4943  *             log_2 n
4944  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
4945  *             k = 0
4946  *
4947  * And you'll find that:
4948  *
4949  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
4950  *
4951  * Showing there's indeed a path between every cpu in at most O(log n) steps.
4952  * The task movement gives a factor of O(m), giving a convergence complexity
4953  * of:
4954  *
4955  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
4956  *
4957  *
4958  * WORK CONSERVING
4959  *
4960  * In order to avoid CPUs going idle while there's still work to do, new idle
4961  * balancing is more aggressive and has the newly idle cpu iterate up the domain
4962  * tree itself instead of relying on other CPUs to bring it work.
4963  *
4964  * This adds some complexity to both (5) and (8) but it reduces the total idle
4965  * time.
4966  *
4967  * [XXX more?]
4968  *
4969  *
4970  * CGROUPS
4971  *
4972  * Cgroups make a horror show out of (2), instead of a simple sum we get:
4973  *
4974  *                                s_k,i
4975  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
4976  *                                 S_k
4977  *
4978  * Where
4979  *
4980  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
4981  *
4982  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4983  *
4984  * The big problem is S_k, its a global sum needed to compute a local (W_i)
4985  * property.
4986  *
4987  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4988  *      rewrite all of this once again.]
4989  */
4990 
4991 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4992 
4993 enum fbq_type { regular, remote, all };
4994 
4995 #define LBF_ALL_PINNED	0x01
4996 #define LBF_NEED_BREAK	0x02
4997 #define LBF_DST_PINNED  0x04
4998 #define LBF_SOME_PINNED	0x08
4999 
5000 struct lb_env {
5001 	struct sched_domain	*sd;
5002 
5003 	struct rq		*src_rq;
5004 	int			src_cpu;
5005 
5006 	int			dst_cpu;
5007 	struct rq		*dst_rq;
5008 
5009 	struct cpumask		*dst_grpmask;
5010 	int			new_dst_cpu;
5011 	enum cpu_idle_type	idle;
5012 	long			imbalance;
5013 	/* The set of CPUs under consideration for load-balancing */
5014 	struct cpumask		*cpus;
5015 
5016 	unsigned int		flags;
5017 
5018 	unsigned int		loop;
5019 	unsigned int		loop_break;
5020 	unsigned int		loop_max;
5021 
5022 	enum fbq_type		fbq_type;
5023 };
5024 
5025 /*
5026  * move_task - move a task from one runqueue to another runqueue.
5027  * Both runqueues must be locked.
5028  */
5029 static void move_task(struct task_struct *p, struct lb_env *env)
5030 {
5031 	deactivate_task(env->src_rq, p, 0);
5032 	set_task_cpu(p, env->dst_cpu);
5033 	activate_task(env->dst_rq, p, 0);
5034 	check_preempt_curr(env->dst_rq, p, 0);
5035 }
5036 
5037 /*
5038  * Is this task likely cache-hot:
5039  */
5040 static int
5041 task_hot(struct task_struct *p, u64 now)
5042 {
5043 	s64 delta;
5044 
5045 	if (p->sched_class != &fair_sched_class)
5046 		return 0;
5047 
5048 	if (unlikely(p->policy == SCHED_IDLE))
5049 		return 0;
5050 
5051 	/*
5052 	 * Buddy candidates are cache hot:
5053 	 */
5054 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5055 			(&p->se == cfs_rq_of(&p->se)->next ||
5056 			 &p->se == cfs_rq_of(&p->se)->last))
5057 		return 1;
5058 
5059 	if (sysctl_sched_migration_cost == -1)
5060 		return 1;
5061 	if (sysctl_sched_migration_cost == 0)
5062 		return 0;
5063 
5064 	delta = now - p->se.exec_start;
5065 
5066 	return delta < (s64)sysctl_sched_migration_cost;
5067 }
5068 
5069 #ifdef CONFIG_NUMA_BALANCING
5070 /* Returns true if the destination node has incurred more faults */
5071 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5072 {
5073 	int src_nid, dst_nid;
5074 
5075 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5076 	    !(env->sd->flags & SD_NUMA)) {
5077 		return false;
5078 	}
5079 
5080 	src_nid = cpu_to_node(env->src_cpu);
5081 	dst_nid = cpu_to_node(env->dst_cpu);
5082 
5083 	if (src_nid == dst_nid)
5084 		return false;
5085 
5086 	/* Always encourage migration to the preferred node. */
5087 	if (dst_nid == p->numa_preferred_nid)
5088 		return true;
5089 
5090 	/* If both task and group weight improve, this move is a winner. */
5091 	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5092 	    group_weight(p, dst_nid) > group_weight(p, src_nid))
5093 		return true;
5094 
5095 	return false;
5096 }
5097 
5098 
5099 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5100 {
5101 	int src_nid, dst_nid;
5102 
5103 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5104 		return false;
5105 
5106 	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5107 		return false;
5108 
5109 	src_nid = cpu_to_node(env->src_cpu);
5110 	dst_nid = cpu_to_node(env->dst_cpu);
5111 
5112 	if (src_nid == dst_nid)
5113 		return false;
5114 
5115 	/* Migrating away from the preferred node is always bad. */
5116 	if (src_nid == p->numa_preferred_nid)
5117 		return true;
5118 
5119 	/* If either task or group weight get worse, don't do it. */
5120 	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5121 	    group_weight(p, dst_nid) < group_weight(p, src_nid))
5122 		return true;
5123 
5124 	return false;
5125 }
5126 
5127 #else
5128 static inline bool migrate_improves_locality(struct task_struct *p,
5129 					     struct lb_env *env)
5130 {
5131 	return false;
5132 }
5133 
5134 static inline bool migrate_degrades_locality(struct task_struct *p,
5135 					     struct lb_env *env)
5136 {
5137 	return false;
5138 }
5139 #endif
5140 
5141 /*
5142  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5143  */
5144 static
5145 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5146 {
5147 	int tsk_cache_hot = 0;
5148 	/*
5149 	 * We do not migrate tasks that are:
5150 	 * 1) throttled_lb_pair, or
5151 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5152 	 * 3) running (obviously), or
5153 	 * 4) are cache-hot on their current CPU.
5154 	 */
5155 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5156 		return 0;
5157 
5158 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5159 		int cpu;
5160 
5161 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5162 
5163 		env->flags |= LBF_SOME_PINNED;
5164 
5165 		/*
5166 		 * Remember if this task can be migrated to any other cpu in
5167 		 * our sched_group. We may want to revisit it if we couldn't
5168 		 * meet load balance goals by pulling other tasks on src_cpu.
5169 		 *
5170 		 * Also avoid computing new_dst_cpu if we have already computed
5171 		 * one in current iteration.
5172 		 */
5173 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5174 			return 0;
5175 
5176 		/* Prevent to re-select dst_cpu via env's cpus */
5177 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5178 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5179 				env->flags |= LBF_DST_PINNED;
5180 				env->new_dst_cpu = cpu;
5181 				break;
5182 			}
5183 		}
5184 
5185 		return 0;
5186 	}
5187 
5188 	/* Record that we found atleast one task that could run on dst_cpu */
5189 	env->flags &= ~LBF_ALL_PINNED;
5190 
5191 	if (task_running(env->src_rq, p)) {
5192 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5193 		return 0;
5194 	}
5195 
5196 	/*
5197 	 * Aggressive migration if:
5198 	 * 1) destination numa is preferred
5199 	 * 2) task is cache cold, or
5200 	 * 3) too many balance attempts have failed.
5201 	 */
5202 	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5203 	if (!tsk_cache_hot)
5204 		tsk_cache_hot = migrate_degrades_locality(p, env);
5205 
5206 	if (migrate_improves_locality(p, env)) {
5207 #ifdef CONFIG_SCHEDSTATS
5208 		if (tsk_cache_hot) {
5209 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5210 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5211 		}
5212 #endif
5213 		return 1;
5214 	}
5215 
5216 	if (!tsk_cache_hot ||
5217 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5218 
5219 		if (tsk_cache_hot) {
5220 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5221 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5222 		}
5223 
5224 		return 1;
5225 	}
5226 
5227 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5228 	return 0;
5229 }
5230 
5231 /*
5232  * move_one_task tries to move exactly one task from busiest to this_rq, as
5233  * part of active balancing operations within "domain".
5234  * Returns 1 if successful and 0 otherwise.
5235  *
5236  * Called with both runqueues locked.
5237  */
5238 static int move_one_task(struct lb_env *env)
5239 {
5240 	struct task_struct *p, *n;
5241 
5242 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5243 		if (!can_migrate_task(p, env))
5244 			continue;
5245 
5246 		move_task(p, env);
5247 		/*
5248 		 * Right now, this is only the second place move_task()
5249 		 * is called, so we can safely collect move_task()
5250 		 * stats here rather than inside move_task().
5251 		 */
5252 		schedstat_inc(env->sd, lb_gained[env->idle]);
5253 		return 1;
5254 	}
5255 	return 0;
5256 }
5257 
5258 static const unsigned int sched_nr_migrate_break = 32;
5259 
5260 /*
5261  * move_tasks tries to move up to imbalance weighted load from busiest to
5262  * this_rq, as part of a balancing operation within domain "sd".
5263  * Returns 1 if successful and 0 otherwise.
5264  *
5265  * Called with both runqueues locked.
5266  */
5267 static int move_tasks(struct lb_env *env)
5268 {
5269 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5270 	struct task_struct *p;
5271 	unsigned long load;
5272 	int pulled = 0;
5273 
5274 	if (env->imbalance <= 0)
5275 		return 0;
5276 
5277 	while (!list_empty(tasks)) {
5278 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5279 
5280 		env->loop++;
5281 		/* We've more or less seen every task there is, call it quits */
5282 		if (env->loop > env->loop_max)
5283 			break;
5284 
5285 		/* take a breather every nr_migrate tasks */
5286 		if (env->loop > env->loop_break) {
5287 			env->loop_break += sched_nr_migrate_break;
5288 			env->flags |= LBF_NEED_BREAK;
5289 			break;
5290 		}
5291 
5292 		if (!can_migrate_task(p, env))
5293 			goto next;
5294 
5295 		load = task_h_load(p);
5296 
5297 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5298 			goto next;
5299 
5300 		if ((load / 2) > env->imbalance)
5301 			goto next;
5302 
5303 		move_task(p, env);
5304 		pulled++;
5305 		env->imbalance -= load;
5306 
5307 #ifdef CONFIG_PREEMPT
5308 		/*
5309 		 * NEWIDLE balancing is a source of latency, so preemptible
5310 		 * kernels will stop after the first task is pulled to minimize
5311 		 * the critical section.
5312 		 */
5313 		if (env->idle == CPU_NEWLY_IDLE)
5314 			break;
5315 #endif
5316 
5317 		/*
5318 		 * We only want to steal up to the prescribed amount of
5319 		 * weighted load.
5320 		 */
5321 		if (env->imbalance <= 0)
5322 			break;
5323 
5324 		continue;
5325 next:
5326 		list_move_tail(&p->se.group_node, tasks);
5327 	}
5328 
5329 	/*
5330 	 * Right now, this is one of only two places move_task() is called,
5331 	 * so we can safely collect move_task() stats here rather than
5332 	 * inside move_task().
5333 	 */
5334 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5335 
5336 	return pulled;
5337 }
5338 
5339 #ifdef CONFIG_FAIR_GROUP_SCHED
5340 /*
5341  * update tg->load_weight by folding this cpu's load_avg
5342  */
5343 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5344 {
5345 	struct sched_entity *se = tg->se[cpu];
5346 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5347 
5348 	/* throttled entities do not contribute to load */
5349 	if (throttled_hierarchy(cfs_rq))
5350 		return;
5351 
5352 	update_cfs_rq_blocked_load(cfs_rq, 1);
5353 
5354 	if (se) {
5355 		update_entity_load_avg(se, 1);
5356 		/*
5357 		 * We pivot on our runnable average having decayed to zero for
5358 		 * list removal.  This generally implies that all our children
5359 		 * have also been removed (modulo rounding error or bandwidth
5360 		 * control); however, such cases are rare and we can fix these
5361 		 * at enqueue.
5362 		 *
5363 		 * TODO: fix up out-of-order children on enqueue.
5364 		 */
5365 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5366 			list_del_leaf_cfs_rq(cfs_rq);
5367 	} else {
5368 		struct rq *rq = rq_of(cfs_rq);
5369 		update_rq_runnable_avg(rq, rq->nr_running);
5370 	}
5371 }
5372 
5373 static void update_blocked_averages(int cpu)
5374 {
5375 	struct rq *rq = cpu_rq(cpu);
5376 	struct cfs_rq *cfs_rq;
5377 	unsigned long flags;
5378 
5379 	raw_spin_lock_irqsave(&rq->lock, flags);
5380 	update_rq_clock(rq);
5381 	/*
5382 	 * Iterates the task_group tree in a bottom up fashion, see
5383 	 * list_add_leaf_cfs_rq() for details.
5384 	 */
5385 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5386 		/*
5387 		 * Note: We may want to consider periodically releasing
5388 		 * rq->lock about these updates so that creating many task
5389 		 * groups does not result in continually extending hold time.
5390 		 */
5391 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5392 	}
5393 
5394 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5395 }
5396 
5397 /*
5398  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5399  * This needs to be done in a top-down fashion because the load of a child
5400  * group is a fraction of its parents load.
5401  */
5402 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5403 {
5404 	struct rq *rq = rq_of(cfs_rq);
5405 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5406 	unsigned long now = jiffies;
5407 	unsigned long load;
5408 
5409 	if (cfs_rq->last_h_load_update == now)
5410 		return;
5411 
5412 	cfs_rq->h_load_next = NULL;
5413 	for_each_sched_entity(se) {
5414 		cfs_rq = cfs_rq_of(se);
5415 		cfs_rq->h_load_next = se;
5416 		if (cfs_rq->last_h_load_update == now)
5417 			break;
5418 	}
5419 
5420 	if (!se) {
5421 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5422 		cfs_rq->last_h_load_update = now;
5423 	}
5424 
5425 	while ((se = cfs_rq->h_load_next) != NULL) {
5426 		load = cfs_rq->h_load;
5427 		load = div64_ul(load * se->avg.load_avg_contrib,
5428 				cfs_rq->runnable_load_avg + 1);
5429 		cfs_rq = group_cfs_rq(se);
5430 		cfs_rq->h_load = load;
5431 		cfs_rq->last_h_load_update = now;
5432 	}
5433 }
5434 
5435 static unsigned long task_h_load(struct task_struct *p)
5436 {
5437 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5438 
5439 	update_cfs_rq_h_load(cfs_rq);
5440 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5441 			cfs_rq->runnable_load_avg + 1);
5442 }
5443 #else
5444 static inline void update_blocked_averages(int cpu)
5445 {
5446 }
5447 
5448 static unsigned long task_h_load(struct task_struct *p)
5449 {
5450 	return p->se.avg.load_avg_contrib;
5451 }
5452 #endif
5453 
5454 /********** Helpers for find_busiest_group ************************/
5455 /*
5456  * sg_lb_stats - stats of a sched_group required for load_balancing
5457  */
5458 struct sg_lb_stats {
5459 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5460 	unsigned long group_load; /* Total load over the CPUs of the group */
5461 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5462 	unsigned long load_per_task;
5463 	unsigned long group_power;
5464 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5465 	unsigned int group_capacity;
5466 	unsigned int idle_cpus;
5467 	unsigned int group_weight;
5468 	int group_imb; /* Is there an imbalance in the group ? */
5469 	int group_has_capacity; /* Is there extra capacity in the group? */
5470 #ifdef CONFIG_NUMA_BALANCING
5471 	unsigned int nr_numa_running;
5472 	unsigned int nr_preferred_running;
5473 #endif
5474 };
5475 
5476 /*
5477  * sd_lb_stats - Structure to store the statistics of a sched_domain
5478  *		 during load balancing.
5479  */
5480 struct sd_lb_stats {
5481 	struct sched_group *busiest;	/* Busiest group in this sd */
5482 	struct sched_group *local;	/* Local group in this sd */
5483 	unsigned long total_load;	/* Total load of all groups in sd */
5484 	unsigned long total_pwr;	/* Total power of all groups in sd */
5485 	unsigned long avg_load;	/* Average load across all groups in sd */
5486 
5487 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5488 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5489 };
5490 
5491 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5492 {
5493 	/*
5494 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5495 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5496 	 * We must however clear busiest_stat::avg_load because
5497 	 * update_sd_pick_busiest() reads this before assignment.
5498 	 */
5499 	*sds = (struct sd_lb_stats){
5500 		.busiest = NULL,
5501 		.local = NULL,
5502 		.total_load = 0UL,
5503 		.total_pwr = 0UL,
5504 		.busiest_stat = {
5505 			.avg_load = 0UL,
5506 		},
5507 	};
5508 }
5509 
5510 /**
5511  * get_sd_load_idx - Obtain the load index for a given sched domain.
5512  * @sd: The sched_domain whose load_idx is to be obtained.
5513  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5514  *
5515  * Return: The load index.
5516  */
5517 static inline int get_sd_load_idx(struct sched_domain *sd,
5518 					enum cpu_idle_type idle)
5519 {
5520 	int load_idx;
5521 
5522 	switch (idle) {
5523 	case CPU_NOT_IDLE:
5524 		load_idx = sd->busy_idx;
5525 		break;
5526 
5527 	case CPU_NEWLY_IDLE:
5528 		load_idx = sd->newidle_idx;
5529 		break;
5530 	default:
5531 		load_idx = sd->idle_idx;
5532 		break;
5533 	}
5534 
5535 	return load_idx;
5536 }
5537 
5538 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5539 {
5540 	return SCHED_POWER_SCALE;
5541 }
5542 
5543 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5544 {
5545 	return default_scale_freq_power(sd, cpu);
5546 }
5547 
5548 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5549 {
5550 	unsigned long weight = sd->span_weight;
5551 	unsigned long smt_gain = sd->smt_gain;
5552 
5553 	smt_gain /= weight;
5554 
5555 	return smt_gain;
5556 }
5557 
5558 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5559 {
5560 	return default_scale_smt_power(sd, cpu);
5561 }
5562 
5563 static unsigned long scale_rt_power(int cpu)
5564 {
5565 	struct rq *rq = cpu_rq(cpu);
5566 	u64 total, available, age_stamp, avg;
5567 
5568 	/*
5569 	 * Since we're reading these variables without serialization make sure
5570 	 * we read them once before doing sanity checks on them.
5571 	 */
5572 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5573 	avg = ACCESS_ONCE(rq->rt_avg);
5574 
5575 	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5576 
5577 	if (unlikely(total < avg)) {
5578 		/* Ensures that power won't end up being negative */
5579 		available = 0;
5580 	} else {
5581 		available = total - avg;
5582 	}
5583 
5584 	if (unlikely((s64)total < SCHED_POWER_SCALE))
5585 		total = SCHED_POWER_SCALE;
5586 
5587 	total >>= SCHED_POWER_SHIFT;
5588 
5589 	return div_u64(available, total);
5590 }
5591 
5592 static void update_cpu_power(struct sched_domain *sd, int cpu)
5593 {
5594 	unsigned long weight = sd->span_weight;
5595 	unsigned long power = SCHED_POWER_SCALE;
5596 	struct sched_group *sdg = sd->groups;
5597 
5598 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5599 		if (sched_feat(ARCH_POWER))
5600 			power *= arch_scale_smt_power(sd, cpu);
5601 		else
5602 			power *= default_scale_smt_power(sd, cpu);
5603 
5604 		power >>= SCHED_POWER_SHIFT;
5605 	}
5606 
5607 	sdg->sgp->power_orig = power;
5608 
5609 	if (sched_feat(ARCH_POWER))
5610 		power *= arch_scale_freq_power(sd, cpu);
5611 	else
5612 		power *= default_scale_freq_power(sd, cpu);
5613 
5614 	power >>= SCHED_POWER_SHIFT;
5615 
5616 	power *= scale_rt_power(cpu);
5617 	power >>= SCHED_POWER_SHIFT;
5618 
5619 	if (!power)
5620 		power = 1;
5621 
5622 	cpu_rq(cpu)->cpu_power = power;
5623 	sdg->sgp->power = power;
5624 }
5625 
5626 void update_group_power(struct sched_domain *sd, int cpu)
5627 {
5628 	struct sched_domain *child = sd->child;
5629 	struct sched_group *group, *sdg = sd->groups;
5630 	unsigned long power, power_orig;
5631 	unsigned long interval;
5632 
5633 	interval = msecs_to_jiffies(sd->balance_interval);
5634 	interval = clamp(interval, 1UL, max_load_balance_interval);
5635 	sdg->sgp->next_update = jiffies + interval;
5636 
5637 	if (!child) {
5638 		update_cpu_power(sd, cpu);
5639 		return;
5640 	}
5641 
5642 	power_orig = power = 0;
5643 
5644 	if (child->flags & SD_OVERLAP) {
5645 		/*
5646 		 * SD_OVERLAP domains cannot assume that child groups
5647 		 * span the current group.
5648 		 */
5649 
5650 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5651 			struct sched_group_power *sgp;
5652 			struct rq *rq = cpu_rq(cpu);
5653 
5654 			/*
5655 			 * build_sched_domains() -> init_sched_groups_power()
5656 			 * gets here before we've attached the domains to the
5657 			 * runqueues.
5658 			 *
5659 			 * Use power_of(), which is set irrespective of domains
5660 			 * in update_cpu_power().
5661 			 *
5662 			 * This avoids power/power_orig from being 0 and
5663 			 * causing divide-by-zero issues on boot.
5664 			 *
5665 			 * Runtime updates will correct power_orig.
5666 			 */
5667 			if (unlikely(!rq->sd)) {
5668 				power_orig += power_of(cpu);
5669 				power += power_of(cpu);
5670 				continue;
5671 			}
5672 
5673 			sgp = rq->sd->groups->sgp;
5674 			power_orig += sgp->power_orig;
5675 			power += sgp->power;
5676 		}
5677 	} else  {
5678 		/*
5679 		 * !SD_OVERLAP domains can assume that child groups
5680 		 * span the current group.
5681 		 */
5682 
5683 		group = child->groups;
5684 		do {
5685 			power_orig += group->sgp->power_orig;
5686 			power += group->sgp->power;
5687 			group = group->next;
5688 		} while (group != child->groups);
5689 	}
5690 
5691 	sdg->sgp->power_orig = power_orig;
5692 	sdg->sgp->power = power;
5693 }
5694 
5695 /*
5696  * Try and fix up capacity for tiny siblings, this is needed when
5697  * things like SD_ASYM_PACKING need f_b_g to select another sibling
5698  * which on its own isn't powerful enough.
5699  *
5700  * See update_sd_pick_busiest() and check_asym_packing().
5701  */
5702 static inline int
5703 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5704 {
5705 	/*
5706 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5707 	 */
5708 	if (!(sd->flags & SD_SHARE_CPUPOWER))
5709 		return 0;
5710 
5711 	/*
5712 	 * If ~90% of the cpu_power is still there, we're good.
5713 	 */
5714 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5715 		return 1;
5716 
5717 	return 0;
5718 }
5719 
5720 /*
5721  * Group imbalance indicates (and tries to solve) the problem where balancing
5722  * groups is inadequate due to tsk_cpus_allowed() constraints.
5723  *
5724  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5725  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5726  * Something like:
5727  *
5728  * 	{ 0 1 2 3 } { 4 5 6 7 }
5729  * 	        *     * * *
5730  *
5731  * If we were to balance group-wise we'd place two tasks in the first group and
5732  * two tasks in the second group. Clearly this is undesired as it will overload
5733  * cpu 3 and leave one of the cpus in the second group unused.
5734  *
5735  * The current solution to this issue is detecting the skew in the first group
5736  * by noticing the lower domain failed to reach balance and had difficulty
5737  * moving tasks due to affinity constraints.
5738  *
5739  * When this is so detected; this group becomes a candidate for busiest; see
5740  * update_sd_pick_busiest(). And calculate_imbalance() and
5741  * find_busiest_group() avoid some of the usual balance conditions to allow it
5742  * to create an effective group imbalance.
5743  *
5744  * This is a somewhat tricky proposition since the next run might not find the
5745  * group imbalance and decide the groups need to be balanced again. A most
5746  * subtle and fragile situation.
5747  */
5748 
5749 static inline int sg_imbalanced(struct sched_group *group)
5750 {
5751 	return group->sgp->imbalance;
5752 }
5753 
5754 /*
5755  * Compute the group capacity.
5756  *
5757  * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5758  * first dividing out the smt factor and computing the actual number of cores
5759  * and limit power unit capacity with that.
5760  */
5761 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5762 {
5763 	unsigned int capacity, smt, cpus;
5764 	unsigned int power, power_orig;
5765 
5766 	power = group->sgp->power;
5767 	power_orig = group->sgp->power_orig;
5768 	cpus = group->group_weight;
5769 
5770 	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5771 	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5772 	capacity = cpus / smt; /* cores */
5773 
5774 	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5775 	if (!capacity)
5776 		capacity = fix_small_capacity(env->sd, group);
5777 
5778 	return capacity;
5779 }
5780 
5781 /**
5782  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5783  * @env: The load balancing environment.
5784  * @group: sched_group whose statistics are to be updated.
5785  * @load_idx: Load index of sched_domain of this_cpu for load calc.
5786  * @local_group: Does group contain this_cpu.
5787  * @sgs: variable to hold the statistics for this group.
5788  */
5789 static inline void update_sg_lb_stats(struct lb_env *env,
5790 			struct sched_group *group, int load_idx,
5791 			int local_group, struct sg_lb_stats *sgs)
5792 {
5793 	unsigned long load;
5794 	int i;
5795 
5796 	memset(sgs, 0, sizeof(*sgs));
5797 
5798 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5799 		struct rq *rq = cpu_rq(i);
5800 
5801 		/* Bias balancing toward cpus of our domain */
5802 		if (local_group)
5803 			load = target_load(i, load_idx);
5804 		else
5805 			load = source_load(i, load_idx);
5806 
5807 		sgs->group_load += load;
5808 		sgs->sum_nr_running += rq->nr_running;
5809 #ifdef CONFIG_NUMA_BALANCING
5810 		sgs->nr_numa_running += rq->nr_numa_running;
5811 		sgs->nr_preferred_running += rq->nr_preferred_running;
5812 #endif
5813 		sgs->sum_weighted_load += weighted_cpuload(i);
5814 		if (idle_cpu(i))
5815 			sgs->idle_cpus++;
5816 	}
5817 
5818 	/* Adjust by relative CPU power of the group */
5819 	sgs->group_power = group->sgp->power;
5820 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5821 
5822 	if (sgs->sum_nr_running)
5823 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5824 
5825 	sgs->group_weight = group->group_weight;
5826 
5827 	sgs->group_imb = sg_imbalanced(group);
5828 	sgs->group_capacity = sg_capacity(env, group);
5829 
5830 	if (sgs->group_capacity > sgs->sum_nr_running)
5831 		sgs->group_has_capacity = 1;
5832 }
5833 
5834 /**
5835  * update_sd_pick_busiest - return 1 on busiest group
5836  * @env: The load balancing environment.
5837  * @sds: sched_domain statistics
5838  * @sg: sched_group candidate to be checked for being the busiest
5839  * @sgs: sched_group statistics
5840  *
5841  * Determine if @sg is a busier group than the previously selected
5842  * busiest group.
5843  *
5844  * Return: %true if @sg is a busier group than the previously selected
5845  * busiest group. %false otherwise.
5846  */
5847 static bool update_sd_pick_busiest(struct lb_env *env,
5848 				   struct sd_lb_stats *sds,
5849 				   struct sched_group *sg,
5850 				   struct sg_lb_stats *sgs)
5851 {
5852 	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5853 		return false;
5854 
5855 	if (sgs->sum_nr_running > sgs->group_capacity)
5856 		return true;
5857 
5858 	if (sgs->group_imb)
5859 		return true;
5860 
5861 	/*
5862 	 * ASYM_PACKING needs to move all the work to the lowest
5863 	 * numbered CPUs in the group, therefore mark all groups
5864 	 * higher than ourself as busy.
5865 	 */
5866 	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5867 	    env->dst_cpu < group_first_cpu(sg)) {
5868 		if (!sds->busiest)
5869 			return true;
5870 
5871 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5872 			return true;
5873 	}
5874 
5875 	return false;
5876 }
5877 
5878 #ifdef CONFIG_NUMA_BALANCING
5879 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5880 {
5881 	if (sgs->sum_nr_running > sgs->nr_numa_running)
5882 		return regular;
5883 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
5884 		return remote;
5885 	return all;
5886 }
5887 
5888 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5889 {
5890 	if (rq->nr_running > rq->nr_numa_running)
5891 		return regular;
5892 	if (rq->nr_running > rq->nr_preferred_running)
5893 		return remote;
5894 	return all;
5895 }
5896 #else
5897 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5898 {
5899 	return all;
5900 }
5901 
5902 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5903 {
5904 	return regular;
5905 }
5906 #endif /* CONFIG_NUMA_BALANCING */
5907 
5908 /**
5909  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5910  * @env: The load balancing environment.
5911  * @sds: variable to hold the statistics for this sched_domain.
5912  */
5913 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5914 {
5915 	struct sched_domain *child = env->sd->child;
5916 	struct sched_group *sg = env->sd->groups;
5917 	struct sg_lb_stats tmp_sgs;
5918 	int load_idx, prefer_sibling = 0;
5919 
5920 	if (child && child->flags & SD_PREFER_SIBLING)
5921 		prefer_sibling = 1;
5922 
5923 	load_idx = get_sd_load_idx(env->sd, env->idle);
5924 
5925 	do {
5926 		struct sg_lb_stats *sgs = &tmp_sgs;
5927 		int local_group;
5928 
5929 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5930 		if (local_group) {
5931 			sds->local = sg;
5932 			sgs = &sds->local_stat;
5933 
5934 			if (env->idle != CPU_NEWLY_IDLE ||
5935 			    time_after_eq(jiffies, sg->sgp->next_update))
5936 				update_group_power(env->sd, env->dst_cpu);
5937 		}
5938 
5939 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5940 
5941 		if (local_group)
5942 			goto next_group;
5943 
5944 		/*
5945 		 * In case the child domain prefers tasks go to siblings
5946 		 * first, lower the sg capacity to one so that we'll try
5947 		 * and move all the excess tasks away. We lower the capacity
5948 		 * of a group only if the local group has the capacity to fit
5949 		 * these excess tasks, i.e. nr_running < group_capacity. The
5950 		 * extra check prevents the case where you always pull from the
5951 		 * heaviest group when it is already under-utilized (possible
5952 		 * with a large weight task outweighs the tasks on the system).
5953 		 */
5954 		if (prefer_sibling && sds->local &&
5955 		    sds->local_stat.group_has_capacity)
5956 			sgs->group_capacity = min(sgs->group_capacity, 1U);
5957 
5958 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5959 			sds->busiest = sg;
5960 			sds->busiest_stat = *sgs;
5961 		}
5962 
5963 next_group:
5964 		/* Now, start updating sd_lb_stats */
5965 		sds->total_load += sgs->group_load;
5966 		sds->total_pwr += sgs->group_power;
5967 
5968 		sg = sg->next;
5969 	} while (sg != env->sd->groups);
5970 
5971 	if (env->sd->flags & SD_NUMA)
5972 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5973 }
5974 
5975 /**
5976  * check_asym_packing - Check to see if the group is packed into the
5977  *			sched doman.
5978  *
5979  * This is primarily intended to used at the sibling level.  Some
5980  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
5981  * case of POWER7, it can move to lower SMT modes only when higher
5982  * threads are idle.  When in lower SMT modes, the threads will
5983  * perform better since they share less core resources.  Hence when we
5984  * have idle threads, we want them to be the higher ones.
5985  *
5986  * This packing function is run on idle threads.  It checks to see if
5987  * the busiest CPU in this domain (core in the P7 case) has a higher
5988  * CPU number than the packing function is being run on.  Here we are
5989  * assuming lower CPU number will be equivalent to lower a SMT thread
5990  * number.
5991  *
5992  * Return: 1 when packing is required and a task should be moved to
5993  * this CPU.  The amount of the imbalance is returned in *imbalance.
5994  *
5995  * @env: The load balancing environment.
5996  * @sds: Statistics of the sched_domain which is to be packed
5997  */
5998 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5999 {
6000 	int busiest_cpu;
6001 
6002 	if (!(env->sd->flags & SD_ASYM_PACKING))
6003 		return 0;
6004 
6005 	if (!sds->busiest)
6006 		return 0;
6007 
6008 	busiest_cpu = group_first_cpu(sds->busiest);
6009 	if (env->dst_cpu > busiest_cpu)
6010 		return 0;
6011 
6012 	env->imbalance = DIV_ROUND_CLOSEST(
6013 		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6014 		SCHED_POWER_SCALE);
6015 
6016 	return 1;
6017 }
6018 
6019 /**
6020  * fix_small_imbalance - Calculate the minor imbalance that exists
6021  *			amongst the groups of a sched_domain, during
6022  *			load balancing.
6023  * @env: The load balancing environment.
6024  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6025  */
6026 static inline
6027 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6028 {
6029 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
6030 	unsigned int imbn = 2;
6031 	unsigned long scaled_busy_load_per_task;
6032 	struct sg_lb_stats *local, *busiest;
6033 
6034 	local = &sds->local_stat;
6035 	busiest = &sds->busiest_stat;
6036 
6037 	if (!local->sum_nr_running)
6038 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6039 	else if (busiest->load_per_task > local->load_per_task)
6040 		imbn = 1;
6041 
6042 	scaled_busy_load_per_task =
6043 		(busiest->load_per_task * SCHED_POWER_SCALE) /
6044 		busiest->group_power;
6045 
6046 	if (busiest->avg_load + scaled_busy_load_per_task >=
6047 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6048 		env->imbalance = busiest->load_per_task;
6049 		return;
6050 	}
6051 
6052 	/*
6053 	 * OK, we don't have enough imbalance to justify moving tasks,
6054 	 * however we may be able to increase total CPU power used by
6055 	 * moving them.
6056 	 */
6057 
6058 	pwr_now += busiest->group_power *
6059 			min(busiest->load_per_task, busiest->avg_load);
6060 	pwr_now += local->group_power *
6061 			min(local->load_per_task, local->avg_load);
6062 	pwr_now /= SCHED_POWER_SCALE;
6063 
6064 	/* Amount of load we'd subtract */
6065 	if (busiest->avg_load > scaled_busy_load_per_task) {
6066 		pwr_move += busiest->group_power *
6067 			    min(busiest->load_per_task,
6068 				busiest->avg_load - scaled_busy_load_per_task);
6069 	}
6070 
6071 	/* Amount of load we'd add */
6072 	if (busiest->avg_load * busiest->group_power <
6073 	    busiest->load_per_task * SCHED_POWER_SCALE) {
6074 		tmp = (busiest->avg_load * busiest->group_power) /
6075 		      local->group_power;
6076 	} else {
6077 		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6078 		      local->group_power;
6079 	}
6080 	pwr_move += local->group_power *
6081 		    min(local->load_per_task, local->avg_load + tmp);
6082 	pwr_move /= SCHED_POWER_SCALE;
6083 
6084 	/* Move if we gain throughput */
6085 	if (pwr_move > pwr_now)
6086 		env->imbalance = busiest->load_per_task;
6087 }
6088 
6089 /**
6090  * calculate_imbalance - Calculate the amount of imbalance present within the
6091  *			 groups of a given sched_domain during load balance.
6092  * @env: load balance environment
6093  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6094  */
6095 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6096 {
6097 	unsigned long max_pull, load_above_capacity = ~0UL;
6098 	struct sg_lb_stats *local, *busiest;
6099 
6100 	local = &sds->local_stat;
6101 	busiest = &sds->busiest_stat;
6102 
6103 	if (busiest->group_imb) {
6104 		/*
6105 		 * In the group_imb case we cannot rely on group-wide averages
6106 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6107 		 */
6108 		busiest->load_per_task =
6109 			min(busiest->load_per_task, sds->avg_load);
6110 	}
6111 
6112 	/*
6113 	 * In the presence of smp nice balancing, certain scenarios can have
6114 	 * max load less than avg load(as we skip the groups at or below
6115 	 * its cpu_power, while calculating max_load..)
6116 	 */
6117 	if (busiest->avg_load <= sds->avg_load ||
6118 	    local->avg_load >= sds->avg_load) {
6119 		env->imbalance = 0;
6120 		return fix_small_imbalance(env, sds);
6121 	}
6122 
6123 	if (!busiest->group_imb) {
6124 		/*
6125 		 * Don't want to pull so many tasks that a group would go idle.
6126 		 * Except of course for the group_imb case, since then we might
6127 		 * have to drop below capacity to reach cpu-load equilibrium.
6128 		 */
6129 		load_above_capacity =
6130 			(busiest->sum_nr_running - busiest->group_capacity);
6131 
6132 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6133 		load_above_capacity /= busiest->group_power;
6134 	}
6135 
6136 	/*
6137 	 * We're trying to get all the cpus to the average_load, so we don't
6138 	 * want to push ourselves above the average load, nor do we wish to
6139 	 * reduce the max loaded cpu below the average load. At the same time,
6140 	 * we also don't want to reduce the group load below the group capacity
6141 	 * (so that we can implement power-savings policies etc). Thus we look
6142 	 * for the minimum possible imbalance.
6143 	 */
6144 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6145 
6146 	/* How much load to actually move to equalise the imbalance */
6147 	env->imbalance = min(
6148 		max_pull * busiest->group_power,
6149 		(sds->avg_load - local->avg_load) * local->group_power
6150 	) / SCHED_POWER_SCALE;
6151 
6152 	/*
6153 	 * if *imbalance is less than the average load per runnable task
6154 	 * there is no guarantee that any tasks will be moved so we'll have
6155 	 * a think about bumping its value to force at least one task to be
6156 	 * moved
6157 	 */
6158 	if (env->imbalance < busiest->load_per_task)
6159 		return fix_small_imbalance(env, sds);
6160 }
6161 
6162 /******* find_busiest_group() helpers end here *********************/
6163 
6164 /**
6165  * find_busiest_group - Returns the busiest group within the sched_domain
6166  * if there is an imbalance. If there isn't an imbalance, and
6167  * the user has opted for power-savings, it returns a group whose
6168  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6169  * such a group exists.
6170  *
6171  * Also calculates the amount of weighted load which should be moved
6172  * to restore balance.
6173  *
6174  * @env: The load balancing environment.
6175  *
6176  * Return:	- The busiest group if imbalance exists.
6177  *		- If no imbalance and user has opted for power-savings balance,
6178  *		   return the least loaded group whose CPUs can be
6179  *		   put to idle by rebalancing its tasks onto our group.
6180  */
6181 static struct sched_group *find_busiest_group(struct lb_env *env)
6182 {
6183 	struct sg_lb_stats *local, *busiest;
6184 	struct sd_lb_stats sds;
6185 
6186 	init_sd_lb_stats(&sds);
6187 
6188 	/*
6189 	 * Compute the various statistics relavent for load balancing at
6190 	 * this level.
6191 	 */
6192 	update_sd_lb_stats(env, &sds);
6193 	local = &sds.local_stat;
6194 	busiest = &sds.busiest_stat;
6195 
6196 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6197 	    check_asym_packing(env, &sds))
6198 		return sds.busiest;
6199 
6200 	/* There is no busy sibling group to pull tasks from */
6201 	if (!sds.busiest || busiest->sum_nr_running == 0)
6202 		goto out_balanced;
6203 
6204 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6205 
6206 	/*
6207 	 * If the busiest group is imbalanced the below checks don't
6208 	 * work because they assume all things are equal, which typically
6209 	 * isn't true due to cpus_allowed constraints and the like.
6210 	 */
6211 	if (busiest->group_imb)
6212 		goto force_balance;
6213 
6214 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6215 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6216 	    !busiest->group_has_capacity)
6217 		goto force_balance;
6218 
6219 	/*
6220 	 * If the local group is more busy than the selected busiest group
6221 	 * don't try and pull any tasks.
6222 	 */
6223 	if (local->avg_load >= busiest->avg_load)
6224 		goto out_balanced;
6225 
6226 	/*
6227 	 * Don't pull any tasks if this group is already above the domain
6228 	 * average load.
6229 	 */
6230 	if (local->avg_load >= sds.avg_load)
6231 		goto out_balanced;
6232 
6233 	if (env->idle == CPU_IDLE) {
6234 		/*
6235 		 * This cpu is idle. If the busiest group load doesn't
6236 		 * have more tasks than the number of available cpu's and
6237 		 * there is no imbalance between this and busiest group
6238 		 * wrt to idle cpu's, it is balanced.
6239 		 */
6240 		if ((local->idle_cpus < busiest->idle_cpus) &&
6241 		    busiest->sum_nr_running <= busiest->group_weight)
6242 			goto out_balanced;
6243 	} else {
6244 		/*
6245 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6246 		 * imbalance_pct to be conservative.
6247 		 */
6248 		if (100 * busiest->avg_load <=
6249 				env->sd->imbalance_pct * local->avg_load)
6250 			goto out_balanced;
6251 	}
6252 
6253 force_balance:
6254 	/* Looks like there is an imbalance. Compute it */
6255 	calculate_imbalance(env, &sds);
6256 	return sds.busiest;
6257 
6258 out_balanced:
6259 	env->imbalance = 0;
6260 	return NULL;
6261 }
6262 
6263 /*
6264  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6265  */
6266 static struct rq *find_busiest_queue(struct lb_env *env,
6267 				     struct sched_group *group)
6268 {
6269 	struct rq *busiest = NULL, *rq;
6270 	unsigned long busiest_load = 0, busiest_power = 1;
6271 	int i;
6272 
6273 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6274 		unsigned long power, capacity, wl;
6275 		enum fbq_type rt;
6276 
6277 		rq = cpu_rq(i);
6278 		rt = fbq_classify_rq(rq);
6279 
6280 		/*
6281 		 * We classify groups/runqueues into three groups:
6282 		 *  - regular: there are !numa tasks
6283 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6284 		 *  - all:     there is no distinction
6285 		 *
6286 		 * In order to avoid migrating ideally placed numa tasks,
6287 		 * ignore those when there's better options.
6288 		 *
6289 		 * If we ignore the actual busiest queue to migrate another
6290 		 * task, the next balance pass can still reduce the busiest
6291 		 * queue by moving tasks around inside the node.
6292 		 *
6293 		 * If we cannot move enough load due to this classification
6294 		 * the next pass will adjust the group classification and
6295 		 * allow migration of more tasks.
6296 		 *
6297 		 * Both cases only affect the total convergence complexity.
6298 		 */
6299 		if (rt > env->fbq_type)
6300 			continue;
6301 
6302 		power = power_of(i);
6303 		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6304 		if (!capacity)
6305 			capacity = fix_small_capacity(env->sd, group);
6306 
6307 		wl = weighted_cpuload(i);
6308 
6309 		/*
6310 		 * When comparing with imbalance, use weighted_cpuload()
6311 		 * which is not scaled with the cpu power.
6312 		 */
6313 		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6314 			continue;
6315 
6316 		/*
6317 		 * For the load comparisons with the other cpu's, consider
6318 		 * the weighted_cpuload() scaled with the cpu power, so that
6319 		 * the load can be moved away from the cpu that is potentially
6320 		 * running at a lower capacity.
6321 		 *
6322 		 * Thus we're looking for max(wl_i / power_i), crosswise
6323 		 * multiplication to rid ourselves of the division works out
6324 		 * to: wl_i * power_j > wl_j * power_i;  where j is our
6325 		 * previous maximum.
6326 		 */
6327 		if (wl * busiest_power > busiest_load * power) {
6328 			busiest_load = wl;
6329 			busiest_power = power;
6330 			busiest = rq;
6331 		}
6332 	}
6333 
6334 	return busiest;
6335 }
6336 
6337 /*
6338  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6339  * so long as it is large enough.
6340  */
6341 #define MAX_PINNED_INTERVAL	512
6342 
6343 /* Working cpumask for load_balance and load_balance_newidle. */
6344 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6345 
6346 static int need_active_balance(struct lb_env *env)
6347 {
6348 	struct sched_domain *sd = env->sd;
6349 
6350 	if (env->idle == CPU_NEWLY_IDLE) {
6351 
6352 		/*
6353 		 * ASYM_PACKING needs to force migrate tasks from busy but
6354 		 * higher numbered CPUs in order to pack all tasks in the
6355 		 * lowest numbered CPUs.
6356 		 */
6357 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6358 			return 1;
6359 	}
6360 
6361 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6362 }
6363 
6364 static int active_load_balance_cpu_stop(void *data);
6365 
6366 static int should_we_balance(struct lb_env *env)
6367 {
6368 	struct sched_group *sg = env->sd->groups;
6369 	struct cpumask *sg_cpus, *sg_mask;
6370 	int cpu, balance_cpu = -1;
6371 
6372 	/*
6373 	 * In the newly idle case, we will allow all the cpu's
6374 	 * to do the newly idle load balance.
6375 	 */
6376 	if (env->idle == CPU_NEWLY_IDLE)
6377 		return 1;
6378 
6379 	sg_cpus = sched_group_cpus(sg);
6380 	sg_mask = sched_group_mask(sg);
6381 	/* Try to find first idle cpu */
6382 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6383 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6384 			continue;
6385 
6386 		balance_cpu = cpu;
6387 		break;
6388 	}
6389 
6390 	if (balance_cpu == -1)
6391 		balance_cpu = group_balance_cpu(sg);
6392 
6393 	/*
6394 	 * First idle cpu or the first cpu(busiest) in this sched group
6395 	 * is eligible for doing load balancing at this and above domains.
6396 	 */
6397 	return balance_cpu == env->dst_cpu;
6398 }
6399 
6400 /*
6401  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6402  * tasks if there is an imbalance.
6403  */
6404 static int load_balance(int this_cpu, struct rq *this_rq,
6405 			struct sched_domain *sd, enum cpu_idle_type idle,
6406 			int *continue_balancing)
6407 {
6408 	int ld_moved, cur_ld_moved, active_balance = 0;
6409 	struct sched_domain *sd_parent = sd->parent;
6410 	struct sched_group *group;
6411 	struct rq *busiest;
6412 	unsigned long flags;
6413 	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6414 
6415 	struct lb_env env = {
6416 		.sd		= sd,
6417 		.dst_cpu	= this_cpu,
6418 		.dst_rq		= this_rq,
6419 		.dst_grpmask    = sched_group_cpus(sd->groups),
6420 		.idle		= idle,
6421 		.loop_break	= sched_nr_migrate_break,
6422 		.cpus		= cpus,
6423 		.fbq_type	= all,
6424 	};
6425 
6426 	/*
6427 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6428 	 * other cpus in our group
6429 	 */
6430 	if (idle == CPU_NEWLY_IDLE)
6431 		env.dst_grpmask = NULL;
6432 
6433 	cpumask_copy(cpus, cpu_active_mask);
6434 
6435 	schedstat_inc(sd, lb_count[idle]);
6436 
6437 redo:
6438 	if (!should_we_balance(&env)) {
6439 		*continue_balancing = 0;
6440 		goto out_balanced;
6441 	}
6442 
6443 	group = find_busiest_group(&env);
6444 	if (!group) {
6445 		schedstat_inc(sd, lb_nobusyg[idle]);
6446 		goto out_balanced;
6447 	}
6448 
6449 	busiest = find_busiest_queue(&env, group);
6450 	if (!busiest) {
6451 		schedstat_inc(sd, lb_nobusyq[idle]);
6452 		goto out_balanced;
6453 	}
6454 
6455 	BUG_ON(busiest == env.dst_rq);
6456 
6457 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6458 
6459 	ld_moved = 0;
6460 	if (busiest->nr_running > 1) {
6461 		/*
6462 		 * Attempt to move tasks. If find_busiest_group has found
6463 		 * an imbalance but busiest->nr_running <= 1, the group is
6464 		 * still unbalanced. ld_moved simply stays zero, so it is
6465 		 * correctly treated as an imbalance.
6466 		 */
6467 		env.flags |= LBF_ALL_PINNED;
6468 		env.src_cpu   = busiest->cpu;
6469 		env.src_rq    = busiest;
6470 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6471 
6472 more_balance:
6473 		local_irq_save(flags);
6474 		double_rq_lock(env.dst_rq, busiest);
6475 
6476 		/*
6477 		 * cur_ld_moved - load moved in current iteration
6478 		 * ld_moved     - cumulative load moved across iterations
6479 		 */
6480 		cur_ld_moved = move_tasks(&env);
6481 		ld_moved += cur_ld_moved;
6482 		double_rq_unlock(env.dst_rq, busiest);
6483 		local_irq_restore(flags);
6484 
6485 		/*
6486 		 * some other cpu did the load balance for us.
6487 		 */
6488 		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6489 			resched_cpu(env.dst_cpu);
6490 
6491 		if (env.flags & LBF_NEED_BREAK) {
6492 			env.flags &= ~LBF_NEED_BREAK;
6493 			goto more_balance;
6494 		}
6495 
6496 		/*
6497 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6498 		 * us and move them to an alternate dst_cpu in our sched_group
6499 		 * where they can run. The upper limit on how many times we
6500 		 * iterate on same src_cpu is dependent on number of cpus in our
6501 		 * sched_group.
6502 		 *
6503 		 * This changes load balance semantics a bit on who can move
6504 		 * load to a given_cpu. In addition to the given_cpu itself
6505 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6506 		 * nohz-idle), we now have balance_cpu in a position to move
6507 		 * load to given_cpu. In rare situations, this may cause
6508 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6509 		 * _independently_ and at _same_ time to move some load to
6510 		 * given_cpu) causing exceess load to be moved to given_cpu.
6511 		 * This however should not happen so much in practice and
6512 		 * moreover subsequent load balance cycles should correct the
6513 		 * excess load moved.
6514 		 */
6515 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6516 
6517 			/* Prevent to re-select dst_cpu via env's cpus */
6518 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6519 
6520 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6521 			env.dst_cpu	 = env.new_dst_cpu;
6522 			env.flags	&= ~LBF_DST_PINNED;
6523 			env.loop	 = 0;
6524 			env.loop_break	 = sched_nr_migrate_break;
6525 
6526 			/*
6527 			 * Go back to "more_balance" rather than "redo" since we
6528 			 * need to continue with same src_cpu.
6529 			 */
6530 			goto more_balance;
6531 		}
6532 
6533 		/*
6534 		 * We failed to reach balance because of affinity.
6535 		 */
6536 		if (sd_parent) {
6537 			int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6538 
6539 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6540 				*group_imbalance = 1;
6541 			} else if (*group_imbalance)
6542 				*group_imbalance = 0;
6543 		}
6544 
6545 		/* All tasks on this runqueue were pinned by CPU affinity */
6546 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6547 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6548 			if (!cpumask_empty(cpus)) {
6549 				env.loop = 0;
6550 				env.loop_break = sched_nr_migrate_break;
6551 				goto redo;
6552 			}
6553 			goto out_balanced;
6554 		}
6555 	}
6556 
6557 	if (!ld_moved) {
6558 		schedstat_inc(sd, lb_failed[idle]);
6559 		/*
6560 		 * Increment the failure counter only on periodic balance.
6561 		 * We do not want newidle balance, which can be very
6562 		 * frequent, pollute the failure counter causing
6563 		 * excessive cache_hot migrations and active balances.
6564 		 */
6565 		if (idle != CPU_NEWLY_IDLE)
6566 			sd->nr_balance_failed++;
6567 
6568 		if (need_active_balance(&env)) {
6569 			raw_spin_lock_irqsave(&busiest->lock, flags);
6570 
6571 			/* don't kick the active_load_balance_cpu_stop,
6572 			 * if the curr task on busiest cpu can't be
6573 			 * moved to this_cpu
6574 			 */
6575 			if (!cpumask_test_cpu(this_cpu,
6576 					tsk_cpus_allowed(busiest->curr))) {
6577 				raw_spin_unlock_irqrestore(&busiest->lock,
6578 							    flags);
6579 				env.flags |= LBF_ALL_PINNED;
6580 				goto out_one_pinned;
6581 			}
6582 
6583 			/*
6584 			 * ->active_balance synchronizes accesses to
6585 			 * ->active_balance_work.  Once set, it's cleared
6586 			 * only after active load balance is finished.
6587 			 */
6588 			if (!busiest->active_balance) {
6589 				busiest->active_balance = 1;
6590 				busiest->push_cpu = this_cpu;
6591 				active_balance = 1;
6592 			}
6593 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6594 
6595 			if (active_balance) {
6596 				stop_one_cpu_nowait(cpu_of(busiest),
6597 					active_load_balance_cpu_stop, busiest,
6598 					&busiest->active_balance_work);
6599 			}
6600 
6601 			/*
6602 			 * We've kicked active balancing, reset the failure
6603 			 * counter.
6604 			 */
6605 			sd->nr_balance_failed = sd->cache_nice_tries+1;
6606 		}
6607 	} else
6608 		sd->nr_balance_failed = 0;
6609 
6610 	if (likely(!active_balance)) {
6611 		/* We were unbalanced, so reset the balancing interval */
6612 		sd->balance_interval = sd->min_interval;
6613 	} else {
6614 		/*
6615 		 * If we've begun active balancing, start to back off. This
6616 		 * case may not be covered by the all_pinned logic if there
6617 		 * is only 1 task on the busy runqueue (because we don't call
6618 		 * move_tasks).
6619 		 */
6620 		if (sd->balance_interval < sd->max_interval)
6621 			sd->balance_interval *= 2;
6622 	}
6623 
6624 	goto out;
6625 
6626 out_balanced:
6627 	schedstat_inc(sd, lb_balanced[idle]);
6628 
6629 	sd->nr_balance_failed = 0;
6630 
6631 out_one_pinned:
6632 	/* tune up the balancing interval */
6633 	if (((env.flags & LBF_ALL_PINNED) &&
6634 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6635 			(sd->balance_interval < sd->max_interval))
6636 		sd->balance_interval *= 2;
6637 
6638 	ld_moved = 0;
6639 out:
6640 	return ld_moved;
6641 }
6642 
6643 /*
6644  * idle_balance is called by schedule() if this_cpu is about to become
6645  * idle. Attempts to pull tasks from other CPUs.
6646  */
6647 static int idle_balance(struct rq *this_rq)
6648 {
6649 	struct sched_domain *sd;
6650 	int pulled_task = 0;
6651 	unsigned long next_balance = jiffies + HZ;
6652 	u64 curr_cost = 0;
6653 	int this_cpu = this_rq->cpu;
6654 
6655 	idle_enter_fair(this_rq);
6656 	/*
6657 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6658 	 * measure the duration of idle_balance() as idle time.
6659 	 */
6660 	this_rq->idle_stamp = rq_clock(this_rq);
6661 
6662 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
6663 		goto out;
6664 
6665 	/*
6666 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6667 	 */
6668 	raw_spin_unlock(&this_rq->lock);
6669 
6670 	update_blocked_averages(this_cpu);
6671 	rcu_read_lock();
6672 	for_each_domain(this_cpu, sd) {
6673 		unsigned long interval;
6674 		int continue_balancing = 1;
6675 		u64 t0, domain_cost;
6676 
6677 		if (!(sd->flags & SD_LOAD_BALANCE))
6678 			continue;
6679 
6680 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6681 			break;
6682 
6683 		if (sd->flags & SD_BALANCE_NEWIDLE) {
6684 			t0 = sched_clock_cpu(this_cpu);
6685 
6686 			/* If we've pulled tasks over stop searching: */
6687 			pulled_task = load_balance(this_cpu, this_rq,
6688 						   sd, CPU_NEWLY_IDLE,
6689 						   &continue_balancing);
6690 
6691 			domain_cost = sched_clock_cpu(this_cpu) - t0;
6692 			if (domain_cost > sd->max_newidle_lb_cost)
6693 				sd->max_newidle_lb_cost = domain_cost;
6694 
6695 			curr_cost += domain_cost;
6696 		}
6697 
6698 		interval = msecs_to_jiffies(sd->balance_interval);
6699 		if (time_after(next_balance, sd->last_balance + interval))
6700 			next_balance = sd->last_balance + interval;
6701 		if (pulled_task)
6702 			break;
6703 	}
6704 	rcu_read_unlock();
6705 
6706 	raw_spin_lock(&this_rq->lock);
6707 
6708 	/*
6709 	 * While browsing the domains, we released the rq lock.
6710 	 * A task could have be enqueued in the meantime
6711 	 */
6712 	if (this_rq->cfs.h_nr_running && !pulled_task) {
6713 		pulled_task = 1;
6714 		goto out;
6715 	}
6716 
6717 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6718 		/*
6719 		 * We are going idle. next_balance may be set based on
6720 		 * a busy processor. So reset next_balance.
6721 		 */
6722 		this_rq->next_balance = next_balance;
6723 	}
6724 
6725 	if (curr_cost > this_rq->max_idle_balance_cost)
6726 		this_rq->max_idle_balance_cost = curr_cost;
6727 
6728 out:
6729 	/* Is there a task of a high priority class? */
6730 	if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6731 	    ((this_rq->stop && this_rq->stop->on_rq) ||
6732 	     this_rq->dl.dl_nr_running ||
6733 	     (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6734 		pulled_task = -1;
6735 
6736 	if (pulled_task) {
6737 		idle_exit_fair(this_rq);
6738 		this_rq->idle_stamp = 0;
6739 	}
6740 
6741 	return pulled_task;
6742 }
6743 
6744 /*
6745  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6746  * running tasks off the busiest CPU onto idle CPUs. It requires at
6747  * least 1 task to be running on each physical CPU where possible, and
6748  * avoids physical / logical imbalances.
6749  */
6750 static int active_load_balance_cpu_stop(void *data)
6751 {
6752 	struct rq *busiest_rq = data;
6753 	int busiest_cpu = cpu_of(busiest_rq);
6754 	int target_cpu = busiest_rq->push_cpu;
6755 	struct rq *target_rq = cpu_rq(target_cpu);
6756 	struct sched_domain *sd;
6757 
6758 	raw_spin_lock_irq(&busiest_rq->lock);
6759 
6760 	/* make sure the requested cpu hasn't gone down in the meantime */
6761 	if (unlikely(busiest_cpu != smp_processor_id() ||
6762 		     !busiest_rq->active_balance))
6763 		goto out_unlock;
6764 
6765 	/* Is there any task to move? */
6766 	if (busiest_rq->nr_running <= 1)
6767 		goto out_unlock;
6768 
6769 	/*
6770 	 * This condition is "impossible", if it occurs
6771 	 * we need to fix it. Originally reported by
6772 	 * Bjorn Helgaas on a 128-cpu setup.
6773 	 */
6774 	BUG_ON(busiest_rq == target_rq);
6775 
6776 	/* move a task from busiest_rq to target_rq */
6777 	double_lock_balance(busiest_rq, target_rq);
6778 
6779 	/* Search for an sd spanning us and the target CPU. */
6780 	rcu_read_lock();
6781 	for_each_domain(target_cpu, sd) {
6782 		if ((sd->flags & SD_LOAD_BALANCE) &&
6783 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6784 				break;
6785 	}
6786 
6787 	if (likely(sd)) {
6788 		struct lb_env env = {
6789 			.sd		= sd,
6790 			.dst_cpu	= target_cpu,
6791 			.dst_rq		= target_rq,
6792 			.src_cpu	= busiest_rq->cpu,
6793 			.src_rq		= busiest_rq,
6794 			.idle		= CPU_IDLE,
6795 		};
6796 
6797 		schedstat_inc(sd, alb_count);
6798 
6799 		if (move_one_task(&env))
6800 			schedstat_inc(sd, alb_pushed);
6801 		else
6802 			schedstat_inc(sd, alb_failed);
6803 	}
6804 	rcu_read_unlock();
6805 	double_unlock_balance(busiest_rq, target_rq);
6806 out_unlock:
6807 	busiest_rq->active_balance = 0;
6808 	raw_spin_unlock_irq(&busiest_rq->lock);
6809 	return 0;
6810 }
6811 
6812 static inline int on_null_domain(struct rq *rq)
6813 {
6814 	return unlikely(!rcu_dereference_sched(rq->sd));
6815 }
6816 
6817 #ifdef CONFIG_NO_HZ_COMMON
6818 /*
6819  * idle load balancing details
6820  * - When one of the busy CPUs notice that there may be an idle rebalancing
6821  *   needed, they will kick the idle load balancer, which then does idle
6822  *   load balancing for all the idle CPUs.
6823  */
6824 static struct {
6825 	cpumask_var_t idle_cpus_mask;
6826 	atomic_t nr_cpus;
6827 	unsigned long next_balance;     /* in jiffy units */
6828 } nohz ____cacheline_aligned;
6829 
6830 static inline int find_new_ilb(void)
6831 {
6832 	int ilb = cpumask_first(nohz.idle_cpus_mask);
6833 
6834 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
6835 		return ilb;
6836 
6837 	return nr_cpu_ids;
6838 }
6839 
6840 /*
6841  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6842  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6843  * CPU (if there is one).
6844  */
6845 static void nohz_balancer_kick(void)
6846 {
6847 	int ilb_cpu;
6848 
6849 	nohz.next_balance++;
6850 
6851 	ilb_cpu = find_new_ilb();
6852 
6853 	if (ilb_cpu >= nr_cpu_ids)
6854 		return;
6855 
6856 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6857 		return;
6858 	/*
6859 	 * Use smp_send_reschedule() instead of resched_cpu().
6860 	 * This way we generate a sched IPI on the target cpu which
6861 	 * is idle. And the softirq performing nohz idle load balance
6862 	 * will be run before returning from the IPI.
6863 	 */
6864 	smp_send_reschedule(ilb_cpu);
6865 	return;
6866 }
6867 
6868 static inline void nohz_balance_exit_idle(int cpu)
6869 {
6870 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6871 		/*
6872 		 * Completely isolated CPUs don't ever set, so we must test.
6873 		 */
6874 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6875 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6876 			atomic_dec(&nohz.nr_cpus);
6877 		}
6878 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6879 	}
6880 }
6881 
6882 static inline void set_cpu_sd_state_busy(void)
6883 {
6884 	struct sched_domain *sd;
6885 	int cpu = smp_processor_id();
6886 
6887 	rcu_read_lock();
6888 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6889 
6890 	if (!sd || !sd->nohz_idle)
6891 		goto unlock;
6892 	sd->nohz_idle = 0;
6893 
6894 	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6895 unlock:
6896 	rcu_read_unlock();
6897 }
6898 
6899 void set_cpu_sd_state_idle(void)
6900 {
6901 	struct sched_domain *sd;
6902 	int cpu = smp_processor_id();
6903 
6904 	rcu_read_lock();
6905 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6906 
6907 	if (!sd || sd->nohz_idle)
6908 		goto unlock;
6909 	sd->nohz_idle = 1;
6910 
6911 	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6912 unlock:
6913 	rcu_read_unlock();
6914 }
6915 
6916 /*
6917  * This routine will record that the cpu is going idle with tick stopped.
6918  * This info will be used in performing idle load balancing in the future.
6919  */
6920 void nohz_balance_enter_idle(int cpu)
6921 {
6922 	/*
6923 	 * If this cpu is going down, then nothing needs to be done.
6924 	 */
6925 	if (!cpu_active(cpu))
6926 		return;
6927 
6928 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6929 		return;
6930 
6931 	/*
6932 	 * If we're a completely isolated CPU, we don't play.
6933 	 */
6934 	if (on_null_domain(cpu_rq(cpu)))
6935 		return;
6936 
6937 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6938 	atomic_inc(&nohz.nr_cpus);
6939 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6940 }
6941 
6942 static int sched_ilb_notifier(struct notifier_block *nfb,
6943 					unsigned long action, void *hcpu)
6944 {
6945 	switch (action & ~CPU_TASKS_FROZEN) {
6946 	case CPU_DYING:
6947 		nohz_balance_exit_idle(smp_processor_id());
6948 		return NOTIFY_OK;
6949 	default:
6950 		return NOTIFY_DONE;
6951 	}
6952 }
6953 #endif
6954 
6955 static DEFINE_SPINLOCK(balancing);
6956 
6957 /*
6958  * Scale the max load_balance interval with the number of CPUs in the system.
6959  * This trades load-balance latency on larger machines for less cross talk.
6960  */
6961 void update_max_interval(void)
6962 {
6963 	max_load_balance_interval = HZ*num_online_cpus()/10;
6964 }
6965 
6966 /*
6967  * It checks each scheduling domain to see if it is due to be balanced,
6968  * and initiates a balancing operation if so.
6969  *
6970  * Balancing parameters are set up in init_sched_domains.
6971  */
6972 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6973 {
6974 	int continue_balancing = 1;
6975 	int cpu = rq->cpu;
6976 	unsigned long interval;
6977 	struct sched_domain *sd;
6978 	/* Earliest time when we have to do rebalance again */
6979 	unsigned long next_balance = jiffies + 60*HZ;
6980 	int update_next_balance = 0;
6981 	int need_serialize, need_decay = 0;
6982 	u64 max_cost = 0;
6983 
6984 	update_blocked_averages(cpu);
6985 
6986 	rcu_read_lock();
6987 	for_each_domain(cpu, sd) {
6988 		/*
6989 		 * Decay the newidle max times here because this is a regular
6990 		 * visit to all the domains. Decay ~1% per second.
6991 		 */
6992 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6993 			sd->max_newidle_lb_cost =
6994 				(sd->max_newidle_lb_cost * 253) / 256;
6995 			sd->next_decay_max_lb_cost = jiffies + HZ;
6996 			need_decay = 1;
6997 		}
6998 		max_cost += sd->max_newidle_lb_cost;
6999 
7000 		if (!(sd->flags & SD_LOAD_BALANCE))
7001 			continue;
7002 
7003 		/*
7004 		 * Stop the load balance at this level. There is another
7005 		 * CPU in our sched group which is doing load balancing more
7006 		 * actively.
7007 		 */
7008 		if (!continue_balancing) {
7009 			if (need_decay)
7010 				continue;
7011 			break;
7012 		}
7013 
7014 		interval = sd->balance_interval;
7015 		if (idle != CPU_IDLE)
7016 			interval *= sd->busy_factor;
7017 
7018 		/* scale ms to jiffies */
7019 		interval = msecs_to_jiffies(interval);
7020 		interval = clamp(interval, 1UL, max_load_balance_interval);
7021 
7022 		need_serialize = sd->flags & SD_SERIALIZE;
7023 
7024 		if (need_serialize) {
7025 			if (!spin_trylock(&balancing))
7026 				goto out;
7027 		}
7028 
7029 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7030 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7031 				/*
7032 				 * The LBF_DST_PINNED logic could have changed
7033 				 * env->dst_cpu, so we can't know our idle
7034 				 * state even if we migrated tasks. Update it.
7035 				 */
7036 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7037 			}
7038 			sd->last_balance = jiffies;
7039 		}
7040 		if (need_serialize)
7041 			spin_unlock(&balancing);
7042 out:
7043 		if (time_after(next_balance, sd->last_balance + interval)) {
7044 			next_balance = sd->last_balance + interval;
7045 			update_next_balance = 1;
7046 		}
7047 	}
7048 	if (need_decay) {
7049 		/*
7050 		 * Ensure the rq-wide value also decays but keep it at a
7051 		 * reasonable floor to avoid funnies with rq->avg_idle.
7052 		 */
7053 		rq->max_idle_balance_cost =
7054 			max((u64)sysctl_sched_migration_cost, max_cost);
7055 	}
7056 	rcu_read_unlock();
7057 
7058 	/*
7059 	 * next_balance will be updated only when there is a need.
7060 	 * When the cpu is attached to null domain for ex, it will not be
7061 	 * updated.
7062 	 */
7063 	if (likely(update_next_balance))
7064 		rq->next_balance = next_balance;
7065 }
7066 
7067 #ifdef CONFIG_NO_HZ_COMMON
7068 /*
7069  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7070  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7071  */
7072 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7073 {
7074 	int this_cpu = this_rq->cpu;
7075 	struct rq *rq;
7076 	int balance_cpu;
7077 
7078 	if (idle != CPU_IDLE ||
7079 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7080 		goto end;
7081 
7082 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7083 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7084 			continue;
7085 
7086 		/*
7087 		 * If this cpu gets work to do, stop the load balancing
7088 		 * work being done for other cpus. Next load
7089 		 * balancing owner will pick it up.
7090 		 */
7091 		if (need_resched())
7092 			break;
7093 
7094 		rq = cpu_rq(balance_cpu);
7095 
7096 		raw_spin_lock_irq(&rq->lock);
7097 		update_rq_clock(rq);
7098 		update_idle_cpu_load(rq);
7099 		raw_spin_unlock_irq(&rq->lock);
7100 
7101 		rebalance_domains(rq, CPU_IDLE);
7102 
7103 		if (time_after(this_rq->next_balance, rq->next_balance))
7104 			this_rq->next_balance = rq->next_balance;
7105 	}
7106 	nohz.next_balance = this_rq->next_balance;
7107 end:
7108 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7109 }
7110 
7111 /*
7112  * Current heuristic for kicking the idle load balancer in the presence
7113  * of an idle cpu is the system.
7114  *   - This rq has more than one task.
7115  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7116  *     busy cpu's exceeding the group's power.
7117  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7118  *     domain span are idle.
7119  */
7120 static inline int nohz_kick_needed(struct rq *rq)
7121 {
7122 	unsigned long now = jiffies;
7123 	struct sched_domain *sd;
7124 	struct sched_group_power *sgp;
7125 	int nr_busy, cpu = rq->cpu;
7126 
7127 	if (unlikely(rq->idle_balance))
7128 		return 0;
7129 
7130        /*
7131 	* We may be recently in ticked or tickless idle mode. At the first
7132 	* busy tick after returning from idle, we will update the busy stats.
7133 	*/
7134 	set_cpu_sd_state_busy();
7135 	nohz_balance_exit_idle(cpu);
7136 
7137 	/*
7138 	 * None are in tickless mode and hence no need for NOHZ idle load
7139 	 * balancing.
7140 	 */
7141 	if (likely(!atomic_read(&nohz.nr_cpus)))
7142 		return 0;
7143 
7144 	if (time_before(now, nohz.next_balance))
7145 		return 0;
7146 
7147 	if (rq->nr_running >= 2)
7148 		goto need_kick;
7149 
7150 	rcu_read_lock();
7151 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7152 
7153 	if (sd) {
7154 		sgp = sd->groups->sgp;
7155 		nr_busy = atomic_read(&sgp->nr_busy_cpus);
7156 
7157 		if (nr_busy > 1)
7158 			goto need_kick_unlock;
7159 	}
7160 
7161 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7162 
7163 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7164 				  sched_domain_span(sd)) < cpu))
7165 		goto need_kick_unlock;
7166 
7167 	rcu_read_unlock();
7168 	return 0;
7169 
7170 need_kick_unlock:
7171 	rcu_read_unlock();
7172 need_kick:
7173 	return 1;
7174 }
7175 #else
7176 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7177 #endif
7178 
7179 /*
7180  * run_rebalance_domains is triggered when needed from the scheduler tick.
7181  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7182  */
7183 static void run_rebalance_domains(struct softirq_action *h)
7184 {
7185 	struct rq *this_rq = this_rq();
7186 	enum cpu_idle_type idle = this_rq->idle_balance ?
7187 						CPU_IDLE : CPU_NOT_IDLE;
7188 
7189 	rebalance_domains(this_rq, idle);
7190 
7191 	/*
7192 	 * If this cpu has a pending nohz_balance_kick, then do the
7193 	 * balancing on behalf of the other idle cpus whose ticks are
7194 	 * stopped.
7195 	 */
7196 	nohz_idle_balance(this_rq, idle);
7197 }
7198 
7199 /*
7200  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7201  */
7202 void trigger_load_balance(struct rq *rq)
7203 {
7204 	/* Don't need to rebalance while attached to NULL domain */
7205 	if (unlikely(on_null_domain(rq)))
7206 		return;
7207 
7208 	if (time_after_eq(jiffies, rq->next_balance))
7209 		raise_softirq(SCHED_SOFTIRQ);
7210 #ifdef CONFIG_NO_HZ_COMMON
7211 	if (nohz_kick_needed(rq))
7212 		nohz_balancer_kick();
7213 #endif
7214 }
7215 
7216 static void rq_online_fair(struct rq *rq)
7217 {
7218 	update_sysctl();
7219 }
7220 
7221 static void rq_offline_fair(struct rq *rq)
7222 {
7223 	update_sysctl();
7224 
7225 	/* Ensure any throttled groups are reachable by pick_next_task */
7226 	unthrottle_offline_cfs_rqs(rq);
7227 }
7228 
7229 #endif /* CONFIG_SMP */
7230 
7231 /*
7232  * scheduler tick hitting a task of our scheduling class:
7233  */
7234 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7235 {
7236 	struct cfs_rq *cfs_rq;
7237 	struct sched_entity *se = &curr->se;
7238 
7239 	for_each_sched_entity(se) {
7240 		cfs_rq = cfs_rq_of(se);
7241 		entity_tick(cfs_rq, se, queued);
7242 	}
7243 
7244 	if (numabalancing_enabled)
7245 		task_tick_numa(rq, curr);
7246 
7247 	update_rq_runnable_avg(rq, 1);
7248 }
7249 
7250 /*
7251  * called on fork with the child task as argument from the parent's context
7252  *  - child not yet on the tasklist
7253  *  - preemption disabled
7254  */
7255 static void task_fork_fair(struct task_struct *p)
7256 {
7257 	struct cfs_rq *cfs_rq;
7258 	struct sched_entity *se = &p->se, *curr;
7259 	int this_cpu = smp_processor_id();
7260 	struct rq *rq = this_rq();
7261 	unsigned long flags;
7262 
7263 	raw_spin_lock_irqsave(&rq->lock, flags);
7264 
7265 	update_rq_clock(rq);
7266 
7267 	cfs_rq = task_cfs_rq(current);
7268 	curr = cfs_rq->curr;
7269 
7270 	/*
7271 	 * Not only the cpu but also the task_group of the parent might have
7272 	 * been changed after parent->se.parent,cfs_rq were copied to
7273 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7274 	 * of child point to valid ones.
7275 	 */
7276 	rcu_read_lock();
7277 	__set_task_cpu(p, this_cpu);
7278 	rcu_read_unlock();
7279 
7280 	update_curr(cfs_rq);
7281 
7282 	if (curr)
7283 		se->vruntime = curr->vruntime;
7284 	place_entity(cfs_rq, se, 1);
7285 
7286 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7287 		/*
7288 		 * Upon rescheduling, sched_class::put_prev_task() will place
7289 		 * 'current' within the tree based on its new key value.
7290 		 */
7291 		swap(curr->vruntime, se->vruntime);
7292 		resched_task(rq->curr);
7293 	}
7294 
7295 	se->vruntime -= cfs_rq->min_vruntime;
7296 
7297 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7298 }
7299 
7300 /*
7301  * Priority of the task has changed. Check to see if we preempt
7302  * the current task.
7303  */
7304 static void
7305 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7306 {
7307 	if (!p->se.on_rq)
7308 		return;
7309 
7310 	/*
7311 	 * Reschedule if we are currently running on this runqueue and
7312 	 * our priority decreased, or if we are not currently running on
7313 	 * this runqueue and our priority is higher than the current's
7314 	 */
7315 	if (rq->curr == p) {
7316 		if (p->prio > oldprio)
7317 			resched_task(rq->curr);
7318 	} else
7319 		check_preempt_curr(rq, p, 0);
7320 }
7321 
7322 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7323 {
7324 	struct sched_entity *se = &p->se;
7325 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7326 
7327 	/*
7328 	 * Ensure the task's vruntime is normalized, so that when it's
7329 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7330 	 * do the right thing.
7331 	 *
7332 	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7333 	 * have normalized the vruntime, if it's !on_rq, then only when
7334 	 * the task is sleeping will it still have non-normalized vruntime.
7335 	 */
7336 	if (!p->on_rq && p->state != TASK_RUNNING) {
7337 		/*
7338 		 * Fix up our vruntime so that the current sleep doesn't
7339 		 * cause 'unlimited' sleep bonus.
7340 		 */
7341 		place_entity(cfs_rq, se, 0);
7342 		se->vruntime -= cfs_rq->min_vruntime;
7343 	}
7344 
7345 #ifdef CONFIG_SMP
7346 	/*
7347 	* Remove our load from contribution when we leave sched_fair
7348 	* and ensure we don't carry in an old decay_count if we
7349 	* switch back.
7350 	*/
7351 	if (se->avg.decay_count) {
7352 		__synchronize_entity_decay(se);
7353 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7354 	}
7355 #endif
7356 }
7357 
7358 /*
7359  * We switched to the sched_fair class.
7360  */
7361 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7362 {
7363 	struct sched_entity *se = &p->se;
7364 #ifdef CONFIG_FAIR_GROUP_SCHED
7365 	/*
7366 	 * Since the real-depth could have been changed (only FAIR
7367 	 * class maintain depth value), reset depth properly.
7368 	 */
7369 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7370 #endif
7371 	if (!se->on_rq)
7372 		return;
7373 
7374 	/*
7375 	 * We were most likely switched from sched_rt, so
7376 	 * kick off the schedule if running, otherwise just see
7377 	 * if we can still preempt the current task.
7378 	 */
7379 	if (rq->curr == p)
7380 		resched_task(rq->curr);
7381 	else
7382 		check_preempt_curr(rq, p, 0);
7383 }
7384 
7385 /* Account for a task changing its policy or group.
7386  *
7387  * This routine is mostly called to set cfs_rq->curr field when a task
7388  * migrates between groups/classes.
7389  */
7390 static void set_curr_task_fair(struct rq *rq)
7391 {
7392 	struct sched_entity *se = &rq->curr->se;
7393 
7394 	for_each_sched_entity(se) {
7395 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7396 
7397 		set_next_entity(cfs_rq, se);
7398 		/* ensure bandwidth has been allocated on our new cfs_rq */
7399 		account_cfs_rq_runtime(cfs_rq, 0);
7400 	}
7401 }
7402 
7403 void init_cfs_rq(struct cfs_rq *cfs_rq)
7404 {
7405 	cfs_rq->tasks_timeline = RB_ROOT;
7406 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7407 #ifndef CONFIG_64BIT
7408 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7409 #endif
7410 #ifdef CONFIG_SMP
7411 	atomic64_set(&cfs_rq->decay_counter, 1);
7412 	atomic_long_set(&cfs_rq->removed_load, 0);
7413 #endif
7414 }
7415 
7416 #ifdef CONFIG_FAIR_GROUP_SCHED
7417 static void task_move_group_fair(struct task_struct *p, int on_rq)
7418 {
7419 	struct sched_entity *se = &p->se;
7420 	struct cfs_rq *cfs_rq;
7421 
7422 	/*
7423 	 * If the task was not on the rq at the time of this cgroup movement
7424 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7425 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7426 	 * bonus in place_entity()).
7427 	 *
7428 	 * If it was on the rq, we've just 'preempted' it, which does convert
7429 	 * ->vruntime to a relative base.
7430 	 *
7431 	 * Make sure both cases convert their relative position when migrating
7432 	 * to another cgroup's rq. This does somewhat interfere with the
7433 	 * fair sleeper stuff for the first placement, but who cares.
7434 	 */
7435 	/*
7436 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
7437 	 * But there are some cases where it has already been normalized:
7438 	 *
7439 	 * - Moving a forked child which is waiting for being woken up by
7440 	 *   wake_up_new_task().
7441 	 * - Moving a task which has been woken up by try_to_wake_up() and
7442 	 *   waiting for actually being woken up by sched_ttwu_pending().
7443 	 *
7444 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7445 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7446 	 */
7447 	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7448 		on_rq = 1;
7449 
7450 	if (!on_rq)
7451 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7452 	set_task_rq(p, task_cpu(p));
7453 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7454 	if (!on_rq) {
7455 		cfs_rq = cfs_rq_of(se);
7456 		se->vruntime += cfs_rq->min_vruntime;
7457 #ifdef CONFIG_SMP
7458 		/*
7459 		 * migrate_task_rq_fair() will have removed our previous
7460 		 * contribution, but we must synchronize for ongoing future
7461 		 * decay.
7462 		 */
7463 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7464 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7465 #endif
7466 	}
7467 }
7468 
7469 void free_fair_sched_group(struct task_group *tg)
7470 {
7471 	int i;
7472 
7473 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7474 
7475 	for_each_possible_cpu(i) {
7476 		if (tg->cfs_rq)
7477 			kfree(tg->cfs_rq[i]);
7478 		if (tg->se)
7479 			kfree(tg->se[i]);
7480 	}
7481 
7482 	kfree(tg->cfs_rq);
7483 	kfree(tg->se);
7484 }
7485 
7486 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7487 {
7488 	struct cfs_rq *cfs_rq;
7489 	struct sched_entity *se;
7490 	int i;
7491 
7492 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7493 	if (!tg->cfs_rq)
7494 		goto err;
7495 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7496 	if (!tg->se)
7497 		goto err;
7498 
7499 	tg->shares = NICE_0_LOAD;
7500 
7501 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7502 
7503 	for_each_possible_cpu(i) {
7504 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7505 				      GFP_KERNEL, cpu_to_node(i));
7506 		if (!cfs_rq)
7507 			goto err;
7508 
7509 		se = kzalloc_node(sizeof(struct sched_entity),
7510 				  GFP_KERNEL, cpu_to_node(i));
7511 		if (!se)
7512 			goto err_free_rq;
7513 
7514 		init_cfs_rq(cfs_rq);
7515 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7516 	}
7517 
7518 	return 1;
7519 
7520 err_free_rq:
7521 	kfree(cfs_rq);
7522 err:
7523 	return 0;
7524 }
7525 
7526 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7527 {
7528 	struct rq *rq = cpu_rq(cpu);
7529 	unsigned long flags;
7530 
7531 	/*
7532 	* Only empty task groups can be destroyed; so we can speculatively
7533 	* check on_list without danger of it being re-added.
7534 	*/
7535 	if (!tg->cfs_rq[cpu]->on_list)
7536 		return;
7537 
7538 	raw_spin_lock_irqsave(&rq->lock, flags);
7539 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7541 }
7542 
7543 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7544 			struct sched_entity *se, int cpu,
7545 			struct sched_entity *parent)
7546 {
7547 	struct rq *rq = cpu_rq(cpu);
7548 
7549 	cfs_rq->tg = tg;
7550 	cfs_rq->rq = rq;
7551 	init_cfs_rq_runtime(cfs_rq);
7552 
7553 	tg->cfs_rq[cpu] = cfs_rq;
7554 	tg->se[cpu] = se;
7555 
7556 	/* se could be NULL for root_task_group */
7557 	if (!se)
7558 		return;
7559 
7560 	if (!parent) {
7561 		se->cfs_rq = &rq->cfs;
7562 		se->depth = 0;
7563 	} else {
7564 		se->cfs_rq = parent->my_q;
7565 		se->depth = parent->depth + 1;
7566 	}
7567 
7568 	se->my_q = cfs_rq;
7569 	/* guarantee group entities always have weight */
7570 	update_load_set(&se->load, NICE_0_LOAD);
7571 	se->parent = parent;
7572 }
7573 
7574 static DEFINE_MUTEX(shares_mutex);
7575 
7576 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7577 {
7578 	int i;
7579 	unsigned long flags;
7580 
7581 	/*
7582 	 * We can't change the weight of the root cgroup.
7583 	 */
7584 	if (!tg->se[0])
7585 		return -EINVAL;
7586 
7587 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7588 
7589 	mutex_lock(&shares_mutex);
7590 	if (tg->shares == shares)
7591 		goto done;
7592 
7593 	tg->shares = shares;
7594 	for_each_possible_cpu(i) {
7595 		struct rq *rq = cpu_rq(i);
7596 		struct sched_entity *se;
7597 
7598 		se = tg->se[i];
7599 		/* Propagate contribution to hierarchy */
7600 		raw_spin_lock_irqsave(&rq->lock, flags);
7601 
7602 		/* Possible calls to update_curr() need rq clock */
7603 		update_rq_clock(rq);
7604 		for_each_sched_entity(se)
7605 			update_cfs_shares(group_cfs_rq(se));
7606 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7607 	}
7608 
7609 done:
7610 	mutex_unlock(&shares_mutex);
7611 	return 0;
7612 }
7613 #else /* CONFIG_FAIR_GROUP_SCHED */
7614 
7615 void free_fair_sched_group(struct task_group *tg) { }
7616 
7617 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7618 {
7619 	return 1;
7620 }
7621 
7622 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7623 
7624 #endif /* CONFIG_FAIR_GROUP_SCHED */
7625 
7626 
7627 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7628 {
7629 	struct sched_entity *se = &task->se;
7630 	unsigned int rr_interval = 0;
7631 
7632 	/*
7633 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7634 	 * idle runqueue:
7635 	 */
7636 	if (rq->cfs.load.weight)
7637 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7638 
7639 	return rr_interval;
7640 }
7641 
7642 /*
7643  * All the scheduling class methods:
7644  */
7645 const struct sched_class fair_sched_class = {
7646 	.next			= &idle_sched_class,
7647 	.enqueue_task		= enqueue_task_fair,
7648 	.dequeue_task		= dequeue_task_fair,
7649 	.yield_task		= yield_task_fair,
7650 	.yield_to_task		= yield_to_task_fair,
7651 
7652 	.check_preempt_curr	= check_preempt_wakeup,
7653 
7654 	.pick_next_task		= pick_next_task_fair,
7655 	.put_prev_task		= put_prev_task_fair,
7656 
7657 #ifdef CONFIG_SMP
7658 	.select_task_rq		= select_task_rq_fair,
7659 	.migrate_task_rq	= migrate_task_rq_fair,
7660 
7661 	.rq_online		= rq_online_fair,
7662 	.rq_offline		= rq_offline_fair,
7663 
7664 	.task_waking		= task_waking_fair,
7665 #endif
7666 
7667 	.set_curr_task          = set_curr_task_fair,
7668 	.task_tick		= task_tick_fair,
7669 	.task_fork		= task_fork_fair,
7670 
7671 	.prio_changed		= prio_changed_fair,
7672 	.switched_from		= switched_from_fair,
7673 	.switched_to		= switched_to_fair,
7674 
7675 	.get_rr_interval	= get_rr_interval_fair,
7676 
7677 #ifdef CONFIG_FAIR_GROUP_SCHED
7678 	.task_move_group	= task_move_group_fair,
7679 #endif
7680 };
7681 
7682 #ifdef CONFIG_SCHED_DEBUG
7683 void print_cfs_stats(struct seq_file *m, int cpu)
7684 {
7685 	struct cfs_rq *cfs_rq;
7686 
7687 	rcu_read_lock();
7688 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7689 		print_cfs_rq(m, cpu, cfs_rq);
7690 	rcu_read_unlock();
7691 }
7692 #endif
7693 
7694 __init void init_sched_fair_class(void)
7695 {
7696 #ifdef CONFIG_SMP
7697 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7698 
7699 #ifdef CONFIG_NO_HZ_COMMON
7700 	nohz.next_balance = jiffies;
7701 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7702 	cpu_notifier(sched_ilb_notifier, 0);
7703 #endif
7704 #endif /* SMP */
7705 
7706 }
7707