1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return task_has_idle_policy(task_of(se)); 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 783 } 784 785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 786 { 787 struct sched_entity *root = __pick_root_entity(cfs_rq); 788 struct sched_entity *curr = cfs_rq->curr; 789 u64 min_slice = ~0ULL; 790 791 if (curr && curr->on_rq) 792 min_slice = curr->slice; 793 794 if (root) 795 min_slice = min(min_slice, root->min_slice); 796 797 return min_slice; 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (vruntime_gt(min_vruntime, se, rse)) 812 se->min_vruntime = rse->min_vruntime; 813 } 814 } 815 816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 817 { 818 if (node) { 819 struct sched_entity *rse = __node_2_se(node); 820 if (rse->min_slice < se->min_slice) 821 se->min_slice = rse->min_slice; 822 } 823 } 824 825 /* 826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 827 */ 828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 829 { 830 u64 old_min_vruntime = se->min_vruntime; 831 u64 old_min_slice = se->min_slice; 832 struct rb_node *node = &se->run_node; 833 834 se->min_vruntime = se->vruntime; 835 __min_vruntime_update(se, node->rb_right); 836 __min_vruntime_update(se, node->rb_left); 837 838 se->min_slice = se->slice; 839 __min_slice_update(se, node->rb_right); 840 __min_slice_update(se, node->rb_left); 841 842 return se->min_vruntime == old_min_vruntime && 843 se->min_slice == old_min_slice; 844 } 845 846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 847 run_node, min_vruntime, min_vruntime_update); 848 849 /* 850 * Enqueue an entity into the rb-tree: 851 */ 852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 853 { 854 avg_vruntime_add(cfs_rq, se); 855 se->min_vruntime = se->vruntime; 856 se->min_slice = se->slice; 857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 858 __entity_less, &min_vruntime_cb); 859 } 860 861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 864 &min_vruntime_cb); 865 avg_vruntime_sub(cfs_rq, se); 866 } 867 868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 869 { 870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 871 872 if (!root) 873 return NULL; 874 875 return __node_2_se(root); 876 } 877 878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 881 882 if (!left) 883 return NULL; 884 885 return __node_2_se(left); 886 } 887 888 /* 889 * Earliest Eligible Virtual Deadline First 890 * 891 * In order to provide latency guarantees for different request sizes 892 * EEVDF selects the best runnable task from two criteria: 893 * 894 * 1) the task must be eligible (must be owed service) 895 * 896 * 2) from those tasks that meet 1), we select the one 897 * with the earliest virtual deadline. 898 * 899 * We can do this in O(log n) time due to an augmented RB-tree. The 900 * tree keeps the entries sorted on deadline, but also functions as a 901 * heap based on the vruntime by keeping: 902 * 903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 904 * 905 * Which allows tree pruning through eligibility. 906 */ 907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 908 { 909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 910 struct sched_entity *se = __pick_first_entity(cfs_rq); 911 struct sched_entity *curr = cfs_rq->curr; 912 struct sched_entity *best = NULL; 913 914 /* 915 * We can safely skip eligibility check if there is only one entity 916 * in this cfs_rq, saving some cycles. 917 */ 918 if (cfs_rq->nr_running == 1) 919 return curr && curr->on_rq ? curr : se; 920 921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 922 curr = NULL; 923 924 /* 925 * Once selected, run a task until it either becomes non-eligible or 926 * until it gets a new slice. See the HACK in set_next_entity(). 927 */ 928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 929 return curr; 930 931 /* Pick the leftmost entity if it's eligible */ 932 if (se && entity_eligible(cfs_rq, se)) { 933 best = se; 934 goto found; 935 } 936 937 /* Heap search for the EEVD entity */ 938 while (node) { 939 struct rb_node *left = node->rb_left; 940 941 /* 942 * Eligible entities in left subtree are always better 943 * choices, since they have earlier deadlines. 944 */ 945 if (left && vruntime_eligible(cfs_rq, 946 __node_2_se(left)->min_vruntime)) { 947 node = left; 948 continue; 949 } 950 951 se = __node_2_se(node); 952 953 /* 954 * The left subtree either is empty or has no eligible 955 * entity, so check the current node since it is the one 956 * with earliest deadline that might be eligible. 957 */ 958 if (entity_eligible(cfs_rq, se)) { 959 best = se; 960 break; 961 } 962 963 node = node->rb_right; 964 } 965 found: 966 if (!best || (curr && entity_before(curr, best))) 967 best = curr; 968 969 return best; 970 } 971 972 #ifdef CONFIG_SCHED_DEBUG 973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 974 { 975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 976 977 if (!last) 978 return NULL; 979 980 return __node_2_se(last); 981 } 982 983 /************************************************************** 984 * Scheduling class statistics methods: 985 */ 986 #ifdef CONFIG_SMP 987 int sched_update_scaling(void) 988 { 989 unsigned int factor = get_update_sysctl_factor(); 990 991 #define WRT_SYSCTL(name) \ 992 (normalized_sysctl_##name = sysctl_##name / (factor)) 993 WRT_SYSCTL(sched_base_slice); 994 #undef WRT_SYSCTL 995 996 return 0; 997 } 998 #endif 999 #endif 1000 1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1002 1003 /* 1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1005 * this is probably good enough. 1006 */ 1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1008 { 1009 if ((s64)(se->vruntime - se->deadline) < 0) 1010 return false; 1011 1012 /* 1013 * For EEVDF the virtual time slope is determined by w_i (iow. 1014 * nice) while the request time r_i is determined by 1015 * sysctl_sched_base_slice. 1016 */ 1017 if (!se->custom_slice) 1018 se->slice = sysctl_sched_base_slice; 1019 1020 /* 1021 * EEVDF: vd_i = ve_i + r_i / w_i 1022 */ 1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1024 1025 /* 1026 * The task has consumed its request, reschedule. 1027 */ 1028 return true; 1029 } 1030 1031 #include "pelt.h" 1032 #ifdef CONFIG_SMP 1033 1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1035 static unsigned long task_h_load(struct task_struct *p); 1036 static unsigned long capacity_of(int cpu); 1037 1038 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1039 void init_entity_runnable_average(struct sched_entity *se) 1040 { 1041 struct sched_avg *sa = &se->avg; 1042 1043 memset(sa, 0, sizeof(*sa)); 1044 1045 /* 1046 * Tasks are initialized with full load to be seen as heavy tasks until 1047 * they get a chance to stabilize to their real load level. 1048 * Group entities are initialized with zero load to reflect the fact that 1049 * nothing has been attached to the task group yet. 1050 */ 1051 if (entity_is_task(se)) 1052 sa->load_avg = scale_load_down(se->load.weight); 1053 1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1055 } 1056 1057 /* 1058 * With new tasks being created, their initial util_avgs are extrapolated 1059 * based on the cfs_rq's current util_avg: 1060 * 1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1062 * * se_weight(se) 1063 * 1064 * However, in many cases, the above util_avg does not give a desired 1065 * value. Moreover, the sum of the util_avgs may be divergent, such 1066 * as when the series is a harmonic series. 1067 * 1068 * To solve this problem, we also cap the util_avg of successive tasks to 1069 * only 1/2 of the left utilization budget: 1070 * 1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1072 * 1073 * where n denotes the nth task and cpu_scale the CPU capacity. 1074 * 1075 * For example, for a CPU with 1024 of capacity, a simplest series from 1076 * the beginning would be like: 1077 * 1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1080 * 1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1082 * if util_avg > util_avg_cap. 1083 */ 1084 void post_init_entity_util_avg(struct task_struct *p) 1085 { 1086 struct sched_entity *se = &p->se; 1087 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1088 struct sched_avg *sa = &se->avg; 1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1091 1092 if (p->sched_class != &fair_sched_class) { 1093 /* 1094 * For !fair tasks do: 1095 * 1096 update_cfs_rq_load_avg(now, cfs_rq); 1097 attach_entity_load_avg(cfs_rq, se); 1098 switched_from_fair(rq, p); 1099 * 1100 * such that the next switched_to_fair() has the 1101 * expected state. 1102 */ 1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1104 return; 1105 } 1106 1107 if (cap > 0) { 1108 if (cfs_rq->avg.util_avg != 0) { 1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1111 1112 if (sa->util_avg > cap) 1113 sa->util_avg = cap; 1114 } else { 1115 sa->util_avg = cap; 1116 } 1117 } 1118 1119 sa->runnable_avg = sa->util_avg; 1120 } 1121 1122 #else /* !CONFIG_SMP */ 1123 void init_entity_runnable_average(struct sched_entity *se) 1124 { 1125 } 1126 void post_init_entity_util_avg(struct task_struct *p) 1127 { 1128 } 1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1130 { 1131 } 1132 #endif /* CONFIG_SMP */ 1133 1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1135 { 1136 u64 now = rq_clock_task(rq); 1137 s64 delta_exec; 1138 1139 delta_exec = now - curr->exec_start; 1140 if (unlikely(delta_exec <= 0)) 1141 return delta_exec; 1142 1143 curr->exec_start = now; 1144 curr->sum_exec_runtime += delta_exec; 1145 1146 if (schedstat_enabled()) { 1147 struct sched_statistics *stats; 1148 1149 stats = __schedstats_from_se(curr); 1150 __schedstat_set(stats->exec_max, 1151 max(delta_exec, stats->exec_max)); 1152 } 1153 1154 return delta_exec; 1155 } 1156 1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1158 { 1159 trace_sched_stat_runtime(p, delta_exec); 1160 account_group_exec_runtime(p, delta_exec); 1161 cgroup_account_cputime(p, delta_exec); 1162 if (p->dl_server) 1163 dl_server_update(p->dl_server, delta_exec); 1164 } 1165 1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1167 { 1168 if (!sched_feat(PREEMPT_SHORT)) 1169 return false; 1170 1171 if (curr->vlag == curr->deadline) 1172 return false; 1173 1174 return !entity_eligible(cfs_rq, curr); 1175 } 1176 1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1178 struct sched_entity *pse, struct sched_entity *se) 1179 { 1180 if (!sched_feat(PREEMPT_SHORT)) 1181 return false; 1182 1183 if (pse->slice >= se->slice) 1184 return false; 1185 1186 if (!entity_eligible(cfs_rq, pse)) 1187 return false; 1188 1189 if (entity_before(pse, se)) 1190 return true; 1191 1192 if (!entity_eligible(cfs_rq, se)) 1193 return true; 1194 1195 return false; 1196 } 1197 1198 /* 1199 * Used by other classes to account runtime. 1200 */ 1201 s64 update_curr_common(struct rq *rq) 1202 { 1203 struct task_struct *curr = rq->curr; 1204 s64 delta_exec; 1205 1206 delta_exec = update_curr_se(rq, &curr->se); 1207 if (likely(delta_exec > 0)) 1208 update_curr_task(curr, delta_exec); 1209 1210 return delta_exec; 1211 } 1212 1213 /* 1214 * Update the current task's runtime statistics. 1215 */ 1216 static void update_curr(struct cfs_rq *cfs_rq) 1217 { 1218 struct sched_entity *curr = cfs_rq->curr; 1219 struct rq *rq = rq_of(cfs_rq); 1220 s64 delta_exec; 1221 bool resched; 1222 1223 if (unlikely(!curr)) 1224 return; 1225 1226 delta_exec = update_curr_se(rq, curr); 1227 if (unlikely(delta_exec <= 0)) 1228 return; 1229 1230 curr->vruntime += calc_delta_fair(delta_exec, curr); 1231 resched = update_deadline(cfs_rq, curr); 1232 update_min_vruntime(cfs_rq); 1233 1234 if (entity_is_task(curr)) { 1235 struct task_struct *p = task_of(curr); 1236 1237 update_curr_task(p, delta_exec); 1238 1239 /* 1240 * Any fair task that runs outside of fair_server should 1241 * account against fair_server such that it can account for 1242 * this time and possibly avoid running this period. 1243 */ 1244 if (p->dl_server != &rq->fair_server) 1245 dl_server_update(&rq->fair_server, delta_exec); 1246 } 1247 1248 account_cfs_rq_runtime(cfs_rq, delta_exec); 1249 1250 if (cfs_rq->nr_running == 1) 1251 return; 1252 1253 if (resched || did_preempt_short(cfs_rq, curr)) { 1254 resched_curr(rq); 1255 clear_buddies(cfs_rq, curr); 1256 } 1257 } 1258 1259 static void update_curr_fair(struct rq *rq) 1260 { 1261 update_curr(cfs_rq_of(&rq->curr->se)); 1262 } 1263 1264 static inline void 1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1266 { 1267 struct sched_statistics *stats; 1268 struct task_struct *p = NULL; 1269 1270 if (!schedstat_enabled()) 1271 return; 1272 1273 stats = __schedstats_from_se(se); 1274 1275 if (entity_is_task(se)) 1276 p = task_of(se); 1277 1278 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1279 } 1280 1281 static inline void 1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1283 { 1284 struct sched_statistics *stats; 1285 struct task_struct *p = NULL; 1286 1287 if (!schedstat_enabled()) 1288 return; 1289 1290 stats = __schedstats_from_se(se); 1291 1292 /* 1293 * When the sched_schedstat changes from 0 to 1, some sched se 1294 * maybe already in the runqueue, the se->statistics.wait_start 1295 * will be 0.So it will let the delta wrong. We need to avoid this 1296 * scenario. 1297 */ 1298 if (unlikely(!schedstat_val(stats->wait_start))) 1299 return; 1300 1301 if (entity_is_task(se)) 1302 p = task_of(se); 1303 1304 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1305 } 1306 1307 static inline void 1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1309 { 1310 struct sched_statistics *stats; 1311 struct task_struct *tsk = NULL; 1312 1313 if (!schedstat_enabled()) 1314 return; 1315 1316 stats = __schedstats_from_se(se); 1317 1318 if (entity_is_task(se)) 1319 tsk = task_of(se); 1320 1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1322 } 1323 1324 /* 1325 * Task is being enqueued - update stats: 1326 */ 1327 static inline void 1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1329 { 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 /* 1334 * Are we enqueueing a waiting task? (for current tasks 1335 * a dequeue/enqueue event is a NOP) 1336 */ 1337 if (se != cfs_rq->curr) 1338 update_stats_wait_start_fair(cfs_rq, se); 1339 1340 if (flags & ENQUEUE_WAKEUP) 1341 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1342 } 1343 1344 static inline void 1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1346 { 1347 1348 if (!schedstat_enabled()) 1349 return; 1350 1351 /* 1352 * Mark the end of the wait period if dequeueing a 1353 * waiting task: 1354 */ 1355 if (se != cfs_rq->curr) 1356 update_stats_wait_end_fair(cfs_rq, se); 1357 1358 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1359 struct task_struct *tsk = task_of(se); 1360 unsigned int state; 1361 1362 /* XXX racy against TTWU */ 1363 state = READ_ONCE(tsk->__state); 1364 if (state & TASK_INTERRUPTIBLE) 1365 __schedstat_set(tsk->stats.sleep_start, 1366 rq_clock(rq_of(cfs_rq))); 1367 if (state & TASK_UNINTERRUPTIBLE) 1368 __schedstat_set(tsk->stats.block_start, 1369 rq_clock(rq_of(cfs_rq))); 1370 } 1371 } 1372 1373 /* 1374 * We are picking a new current task - update its stats: 1375 */ 1376 static inline void 1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1378 { 1379 /* 1380 * We are starting a new run period: 1381 */ 1382 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1383 } 1384 1385 /************************************************** 1386 * Scheduling class queueing methods: 1387 */ 1388 1389 static inline bool is_core_idle(int cpu) 1390 { 1391 #ifdef CONFIG_SCHED_SMT 1392 int sibling; 1393 1394 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1395 if (cpu == sibling) 1396 continue; 1397 1398 if (!idle_cpu(sibling)) 1399 return false; 1400 } 1401 #endif 1402 1403 return true; 1404 } 1405 1406 #ifdef CONFIG_NUMA 1407 #define NUMA_IMBALANCE_MIN 2 1408 1409 static inline long 1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1411 { 1412 /* 1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1414 * threshold. Above this threshold, individual tasks may be contending 1415 * for both memory bandwidth and any shared HT resources. This is an 1416 * approximation as the number of running tasks may not be related to 1417 * the number of busy CPUs due to sched_setaffinity. 1418 */ 1419 if (dst_running > imb_numa_nr) 1420 return imbalance; 1421 1422 /* 1423 * Allow a small imbalance based on a simple pair of communicating 1424 * tasks that remain local when the destination is lightly loaded. 1425 */ 1426 if (imbalance <= NUMA_IMBALANCE_MIN) 1427 return 0; 1428 1429 return imbalance; 1430 } 1431 #endif /* CONFIG_NUMA */ 1432 1433 #ifdef CONFIG_NUMA_BALANCING 1434 /* 1435 * Approximate time to scan a full NUMA task in ms. The task scan period is 1436 * calculated based on the tasks virtual memory size and 1437 * numa_balancing_scan_size. 1438 */ 1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1441 1442 /* Portion of address space to scan in MB */ 1443 unsigned int sysctl_numa_balancing_scan_size = 256; 1444 1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1446 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1447 1448 /* The page with hint page fault latency < threshold in ms is considered hot */ 1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1450 1451 struct numa_group { 1452 refcount_t refcount; 1453 1454 spinlock_t lock; /* nr_tasks, tasks */ 1455 int nr_tasks; 1456 pid_t gid; 1457 int active_nodes; 1458 1459 struct rcu_head rcu; 1460 unsigned long total_faults; 1461 unsigned long max_faults_cpu; 1462 /* 1463 * faults[] array is split into two regions: faults_mem and faults_cpu. 1464 * 1465 * Faults_cpu is used to decide whether memory should move 1466 * towards the CPU. As a consequence, these stats are weighted 1467 * more by CPU use than by memory faults. 1468 */ 1469 unsigned long faults[]; 1470 }; 1471 1472 /* 1473 * For functions that can be called in multiple contexts that permit reading 1474 * ->numa_group (see struct task_struct for locking rules). 1475 */ 1476 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1477 { 1478 return rcu_dereference_check(p->numa_group, p == current || 1479 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1480 } 1481 1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1483 { 1484 return rcu_dereference_protected(p->numa_group, p == current); 1485 } 1486 1487 static inline unsigned long group_faults_priv(struct numa_group *ng); 1488 static inline unsigned long group_faults_shared(struct numa_group *ng); 1489 1490 static unsigned int task_nr_scan_windows(struct task_struct *p) 1491 { 1492 unsigned long rss = 0; 1493 unsigned long nr_scan_pages; 1494 1495 /* 1496 * Calculations based on RSS as non-present and empty pages are skipped 1497 * by the PTE scanner and NUMA hinting faults should be trapped based 1498 * on resident pages 1499 */ 1500 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1501 rss = get_mm_rss(p->mm); 1502 if (!rss) 1503 rss = nr_scan_pages; 1504 1505 rss = round_up(rss, nr_scan_pages); 1506 return rss / nr_scan_pages; 1507 } 1508 1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1510 #define MAX_SCAN_WINDOW 2560 1511 1512 static unsigned int task_scan_min(struct task_struct *p) 1513 { 1514 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1515 unsigned int scan, floor; 1516 unsigned int windows = 1; 1517 1518 if (scan_size < MAX_SCAN_WINDOW) 1519 windows = MAX_SCAN_WINDOW / scan_size; 1520 floor = 1000 / windows; 1521 1522 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1523 return max_t(unsigned int, floor, scan); 1524 } 1525 1526 static unsigned int task_scan_start(struct task_struct *p) 1527 { 1528 unsigned long smin = task_scan_min(p); 1529 unsigned long period = smin; 1530 struct numa_group *ng; 1531 1532 /* Scale the maximum scan period with the amount of shared memory. */ 1533 rcu_read_lock(); 1534 ng = rcu_dereference(p->numa_group); 1535 if (ng) { 1536 unsigned long shared = group_faults_shared(ng); 1537 unsigned long private = group_faults_priv(ng); 1538 1539 period *= refcount_read(&ng->refcount); 1540 period *= shared + 1; 1541 period /= private + shared + 1; 1542 } 1543 rcu_read_unlock(); 1544 1545 return max(smin, period); 1546 } 1547 1548 static unsigned int task_scan_max(struct task_struct *p) 1549 { 1550 unsigned long smin = task_scan_min(p); 1551 unsigned long smax; 1552 struct numa_group *ng; 1553 1554 /* Watch for min being lower than max due to floor calculations */ 1555 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1556 1557 /* Scale the maximum scan period with the amount of shared memory. */ 1558 ng = deref_curr_numa_group(p); 1559 if (ng) { 1560 unsigned long shared = group_faults_shared(ng); 1561 unsigned long private = group_faults_priv(ng); 1562 unsigned long period = smax; 1563 1564 period *= refcount_read(&ng->refcount); 1565 period *= shared + 1; 1566 period /= private + shared + 1; 1567 1568 smax = max(smax, period); 1569 } 1570 1571 return max(smin, smax); 1572 } 1573 1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1575 { 1576 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1577 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1578 } 1579 1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1581 { 1582 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1583 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1584 } 1585 1586 /* Shared or private faults. */ 1587 #define NR_NUMA_HINT_FAULT_TYPES 2 1588 1589 /* Memory and CPU locality */ 1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1591 1592 /* Averaged statistics, and temporary buffers. */ 1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1594 1595 pid_t task_numa_group_id(struct task_struct *p) 1596 { 1597 struct numa_group *ng; 1598 pid_t gid = 0; 1599 1600 rcu_read_lock(); 1601 ng = rcu_dereference(p->numa_group); 1602 if (ng) 1603 gid = ng->gid; 1604 rcu_read_unlock(); 1605 1606 return gid; 1607 } 1608 1609 /* 1610 * The averaged statistics, shared & private, memory & CPU, 1611 * occupy the first half of the array. The second half of the 1612 * array is for current counters, which are averaged into the 1613 * first set by task_numa_placement. 1614 */ 1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1616 { 1617 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1618 } 1619 1620 static inline unsigned long task_faults(struct task_struct *p, int nid) 1621 { 1622 if (!p->numa_faults) 1623 return 0; 1624 1625 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1626 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1627 } 1628 1629 static inline unsigned long group_faults(struct task_struct *p, int nid) 1630 { 1631 struct numa_group *ng = deref_task_numa_group(p); 1632 1633 if (!ng) 1634 return 0; 1635 1636 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1637 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1638 } 1639 1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1641 { 1642 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1643 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1644 } 1645 1646 static inline unsigned long group_faults_priv(struct numa_group *ng) 1647 { 1648 unsigned long faults = 0; 1649 int node; 1650 1651 for_each_online_node(node) { 1652 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1653 } 1654 1655 return faults; 1656 } 1657 1658 static inline unsigned long group_faults_shared(struct numa_group *ng) 1659 { 1660 unsigned long faults = 0; 1661 int node; 1662 1663 for_each_online_node(node) { 1664 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1665 } 1666 1667 return faults; 1668 } 1669 1670 /* 1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1672 * considered part of a numa group's pseudo-interleaving set. Migrations 1673 * between these nodes are slowed down, to allow things to settle down. 1674 */ 1675 #define ACTIVE_NODE_FRACTION 3 1676 1677 static bool numa_is_active_node(int nid, struct numa_group *ng) 1678 { 1679 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1680 } 1681 1682 /* Handle placement on systems where not all nodes are directly connected. */ 1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1684 int lim_dist, bool task) 1685 { 1686 unsigned long score = 0; 1687 int node, max_dist; 1688 1689 /* 1690 * All nodes are directly connected, and the same distance 1691 * from each other. No need for fancy placement algorithms. 1692 */ 1693 if (sched_numa_topology_type == NUMA_DIRECT) 1694 return 0; 1695 1696 /* sched_max_numa_distance may be changed in parallel. */ 1697 max_dist = READ_ONCE(sched_max_numa_distance); 1698 /* 1699 * This code is called for each node, introducing N^2 complexity, 1700 * which should be OK given the number of nodes rarely exceeds 8. 1701 */ 1702 for_each_online_node(node) { 1703 unsigned long faults; 1704 int dist = node_distance(nid, node); 1705 1706 /* 1707 * The furthest away nodes in the system are not interesting 1708 * for placement; nid was already counted. 1709 */ 1710 if (dist >= max_dist || node == nid) 1711 continue; 1712 1713 /* 1714 * On systems with a backplane NUMA topology, compare groups 1715 * of nodes, and move tasks towards the group with the most 1716 * memory accesses. When comparing two nodes at distance 1717 * "hoplimit", only nodes closer by than "hoplimit" are part 1718 * of each group. Skip other nodes. 1719 */ 1720 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1721 continue; 1722 1723 /* Add up the faults from nearby nodes. */ 1724 if (task) 1725 faults = task_faults(p, node); 1726 else 1727 faults = group_faults(p, node); 1728 1729 /* 1730 * On systems with a glueless mesh NUMA topology, there are 1731 * no fixed "groups of nodes". Instead, nodes that are not 1732 * directly connected bounce traffic through intermediate 1733 * nodes; a numa_group can occupy any set of nodes. 1734 * The further away a node is, the less the faults count. 1735 * This seems to result in good task placement. 1736 */ 1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1738 faults *= (max_dist - dist); 1739 faults /= (max_dist - LOCAL_DISTANCE); 1740 } 1741 1742 score += faults; 1743 } 1744 1745 return score; 1746 } 1747 1748 /* 1749 * These return the fraction of accesses done by a particular task, or 1750 * task group, on a particular numa node. The group weight is given a 1751 * larger multiplier, in order to group tasks together that are almost 1752 * evenly spread out between numa nodes. 1753 */ 1754 static inline unsigned long task_weight(struct task_struct *p, int nid, 1755 int dist) 1756 { 1757 unsigned long faults, total_faults; 1758 1759 if (!p->numa_faults) 1760 return 0; 1761 1762 total_faults = p->total_numa_faults; 1763 1764 if (!total_faults) 1765 return 0; 1766 1767 faults = task_faults(p, nid); 1768 faults += score_nearby_nodes(p, nid, dist, true); 1769 1770 return 1000 * faults / total_faults; 1771 } 1772 1773 static inline unsigned long group_weight(struct task_struct *p, int nid, 1774 int dist) 1775 { 1776 struct numa_group *ng = deref_task_numa_group(p); 1777 unsigned long faults, total_faults; 1778 1779 if (!ng) 1780 return 0; 1781 1782 total_faults = ng->total_faults; 1783 1784 if (!total_faults) 1785 return 0; 1786 1787 faults = group_faults(p, nid); 1788 faults += score_nearby_nodes(p, nid, dist, false); 1789 1790 return 1000 * faults / total_faults; 1791 } 1792 1793 /* 1794 * If memory tiering mode is enabled, cpupid of slow memory page is 1795 * used to record scan time instead of CPU and PID. When tiering mode 1796 * is disabled at run time, the scan time (in cpupid) will be 1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1798 * access out of array bound. 1799 */ 1800 static inline bool cpupid_valid(int cpupid) 1801 { 1802 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1803 } 1804 1805 /* 1806 * For memory tiering mode, if there are enough free pages (more than 1807 * enough watermark defined here) in fast memory node, to take full 1808 * advantage of fast memory capacity, all recently accessed slow 1809 * memory pages will be migrated to fast memory node without 1810 * considering hot threshold. 1811 */ 1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1813 { 1814 int z; 1815 unsigned long enough_wmark; 1816 1817 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1818 pgdat->node_present_pages >> 4); 1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1820 struct zone *zone = pgdat->node_zones + z; 1821 1822 if (!populated_zone(zone)) 1823 continue; 1824 1825 if (zone_watermark_ok(zone, 0, 1826 promo_wmark_pages(zone) + enough_wmark, 1827 ZONE_MOVABLE, 0)) 1828 return true; 1829 } 1830 return false; 1831 } 1832 1833 /* 1834 * For memory tiering mode, when page tables are scanned, the scan 1835 * time will be recorded in struct page in addition to make page 1836 * PROT_NONE for slow memory page. So when the page is accessed, in 1837 * hint page fault handler, the hint page fault latency is calculated 1838 * via, 1839 * 1840 * hint page fault latency = hint page fault time - scan time 1841 * 1842 * The smaller the hint page fault latency, the higher the possibility 1843 * for the page to be hot. 1844 */ 1845 static int numa_hint_fault_latency(struct folio *folio) 1846 { 1847 int last_time, time; 1848 1849 time = jiffies_to_msecs(jiffies); 1850 last_time = folio_xchg_access_time(folio, time); 1851 1852 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1853 } 1854 1855 /* 1856 * For memory tiering mode, too high promotion/demotion throughput may 1857 * hurt application latency. So we provide a mechanism to rate limit 1858 * the number of pages that are tried to be promoted. 1859 */ 1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1861 unsigned long rate_limit, int nr) 1862 { 1863 unsigned long nr_cand; 1864 unsigned int now, start; 1865 1866 now = jiffies_to_msecs(jiffies); 1867 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1868 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1869 start = pgdat->nbp_rl_start; 1870 if (now - start > MSEC_PER_SEC && 1871 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1872 pgdat->nbp_rl_nr_cand = nr_cand; 1873 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1874 return true; 1875 return false; 1876 } 1877 1878 #define NUMA_MIGRATION_ADJUST_STEPS 16 1879 1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1881 unsigned long rate_limit, 1882 unsigned int ref_th) 1883 { 1884 unsigned int now, start, th_period, unit_th, th; 1885 unsigned long nr_cand, ref_cand, diff_cand; 1886 1887 now = jiffies_to_msecs(jiffies); 1888 th_period = sysctl_numa_balancing_scan_period_max; 1889 start = pgdat->nbp_th_start; 1890 if (now - start > th_period && 1891 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1892 ref_cand = rate_limit * 1893 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1894 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1895 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1896 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1897 th = pgdat->nbp_threshold ? : ref_th; 1898 if (diff_cand > ref_cand * 11 / 10) 1899 th = max(th - unit_th, unit_th); 1900 else if (diff_cand < ref_cand * 9 / 10) 1901 th = min(th + unit_th, ref_th * 2); 1902 pgdat->nbp_th_nr_cand = nr_cand; 1903 pgdat->nbp_threshold = th; 1904 } 1905 } 1906 1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1908 int src_nid, int dst_cpu) 1909 { 1910 struct numa_group *ng = deref_curr_numa_group(p); 1911 int dst_nid = cpu_to_node(dst_cpu); 1912 int last_cpupid, this_cpupid; 1913 1914 /* 1915 * Cannot migrate to memoryless nodes. 1916 */ 1917 if (!node_state(dst_nid, N_MEMORY)) 1918 return false; 1919 1920 /* 1921 * The pages in slow memory node should be migrated according 1922 * to hot/cold instead of private/shared. 1923 */ 1924 if (folio_use_access_time(folio)) { 1925 struct pglist_data *pgdat; 1926 unsigned long rate_limit; 1927 unsigned int latency, th, def_th; 1928 1929 pgdat = NODE_DATA(dst_nid); 1930 if (pgdat_free_space_enough(pgdat)) { 1931 /* workload changed, reset hot threshold */ 1932 pgdat->nbp_threshold = 0; 1933 return true; 1934 } 1935 1936 def_th = sysctl_numa_balancing_hot_threshold; 1937 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1938 (20 - PAGE_SHIFT); 1939 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1940 1941 th = pgdat->nbp_threshold ? : def_th; 1942 latency = numa_hint_fault_latency(folio); 1943 if (latency >= th) 1944 return false; 1945 1946 return !numa_promotion_rate_limit(pgdat, rate_limit, 1947 folio_nr_pages(folio)); 1948 } 1949 1950 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1951 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1952 1953 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1954 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1955 return false; 1956 1957 /* 1958 * Allow first faults or private faults to migrate immediately early in 1959 * the lifetime of a task. The magic number 4 is based on waiting for 1960 * two full passes of the "multi-stage node selection" test that is 1961 * executed below. 1962 */ 1963 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1964 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1965 return true; 1966 1967 /* 1968 * Multi-stage node selection is used in conjunction with a periodic 1969 * migration fault to build a temporal task<->page relation. By using 1970 * a two-stage filter we remove short/unlikely relations. 1971 * 1972 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1973 * a task's usage of a particular page (n_p) per total usage of this 1974 * page (n_t) (in a given time-span) to a probability. 1975 * 1976 * Our periodic faults will sample this probability and getting the 1977 * same result twice in a row, given these samples are fully 1978 * independent, is then given by P(n)^2, provided our sample period 1979 * is sufficiently short compared to the usage pattern. 1980 * 1981 * This quadric squishes small probabilities, making it less likely we 1982 * act on an unlikely task<->page relation. 1983 */ 1984 if (!cpupid_pid_unset(last_cpupid) && 1985 cpupid_to_nid(last_cpupid) != dst_nid) 1986 return false; 1987 1988 /* Always allow migrate on private faults */ 1989 if (cpupid_match_pid(p, last_cpupid)) 1990 return true; 1991 1992 /* A shared fault, but p->numa_group has not been set up yet. */ 1993 if (!ng) 1994 return true; 1995 1996 /* 1997 * Destination node is much more heavily used than the source 1998 * node? Allow migration. 1999 */ 2000 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2001 ACTIVE_NODE_FRACTION) 2002 return true; 2003 2004 /* 2005 * Distribute memory according to CPU & memory use on each node, 2006 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2007 * 2008 * faults_cpu(dst) 3 faults_cpu(src) 2009 * --------------- * - > --------------- 2010 * faults_mem(dst) 4 faults_mem(src) 2011 */ 2012 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2013 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2014 } 2015 2016 /* 2017 * 'numa_type' describes the node at the moment of load balancing. 2018 */ 2019 enum numa_type { 2020 /* The node has spare capacity that can be used to run more tasks. */ 2021 node_has_spare = 0, 2022 /* 2023 * The node is fully used and the tasks don't compete for more CPU 2024 * cycles. Nevertheless, some tasks might wait before running. 2025 */ 2026 node_fully_busy, 2027 /* 2028 * The node is overloaded and can't provide expected CPU cycles to all 2029 * tasks. 2030 */ 2031 node_overloaded 2032 }; 2033 2034 /* Cached statistics for all CPUs within a node */ 2035 struct numa_stats { 2036 unsigned long load; 2037 unsigned long runnable; 2038 unsigned long util; 2039 /* Total compute capacity of CPUs on a node */ 2040 unsigned long compute_capacity; 2041 unsigned int nr_running; 2042 unsigned int weight; 2043 enum numa_type node_type; 2044 int idle_cpu; 2045 }; 2046 2047 struct task_numa_env { 2048 struct task_struct *p; 2049 2050 int src_cpu, src_nid; 2051 int dst_cpu, dst_nid; 2052 int imb_numa_nr; 2053 2054 struct numa_stats src_stats, dst_stats; 2055 2056 int imbalance_pct; 2057 int dist; 2058 2059 struct task_struct *best_task; 2060 long best_imp; 2061 int best_cpu; 2062 }; 2063 2064 static unsigned long cpu_load(struct rq *rq); 2065 static unsigned long cpu_runnable(struct rq *rq); 2066 2067 static inline enum 2068 numa_type numa_classify(unsigned int imbalance_pct, 2069 struct numa_stats *ns) 2070 { 2071 if ((ns->nr_running > ns->weight) && 2072 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2073 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2074 return node_overloaded; 2075 2076 if ((ns->nr_running < ns->weight) || 2077 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2078 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2079 return node_has_spare; 2080 2081 return node_fully_busy; 2082 } 2083 2084 #ifdef CONFIG_SCHED_SMT 2085 /* Forward declarations of select_idle_sibling helpers */ 2086 static inline bool test_idle_cores(int cpu); 2087 static inline int numa_idle_core(int idle_core, int cpu) 2088 { 2089 if (!static_branch_likely(&sched_smt_present) || 2090 idle_core >= 0 || !test_idle_cores(cpu)) 2091 return idle_core; 2092 2093 /* 2094 * Prefer cores instead of packing HT siblings 2095 * and triggering future load balancing. 2096 */ 2097 if (is_core_idle(cpu)) 2098 idle_core = cpu; 2099 2100 return idle_core; 2101 } 2102 #else 2103 static inline int numa_idle_core(int idle_core, int cpu) 2104 { 2105 return idle_core; 2106 } 2107 #endif 2108 2109 /* 2110 * Gather all necessary information to make NUMA balancing placement 2111 * decisions that are compatible with standard load balancer. This 2112 * borrows code and logic from update_sg_lb_stats but sharing a 2113 * common implementation is impractical. 2114 */ 2115 static void update_numa_stats(struct task_numa_env *env, 2116 struct numa_stats *ns, int nid, 2117 bool find_idle) 2118 { 2119 int cpu, idle_core = -1; 2120 2121 memset(ns, 0, sizeof(*ns)); 2122 ns->idle_cpu = -1; 2123 2124 rcu_read_lock(); 2125 for_each_cpu(cpu, cpumask_of_node(nid)) { 2126 struct rq *rq = cpu_rq(cpu); 2127 2128 ns->load += cpu_load(rq); 2129 ns->runnable += cpu_runnable(rq); 2130 ns->util += cpu_util_cfs(cpu); 2131 ns->nr_running += rq->cfs.h_nr_running; 2132 ns->compute_capacity += capacity_of(cpu); 2133 2134 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2135 if (READ_ONCE(rq->numa_migrate_on) || 2136 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2137 continue; 2138 2139 if (ns->idle_cpu == -1) 2140 ns->idle_cpu = cpu; 2141 2142 idle_core = numa_idle_core(idle_core, cpu); 2143 } 2144 } 2145 rcu_read_unlock(); 2146 2147 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2148 2149 ns->node_type = numa_classify(env->imbalance_pct, ns); 2150 2151 if (idle_core >= 0) 2152 ns->idle_cpu = idle_core; 2153 } 2154 2155 static void task_numa_assign(struct task_numa_env *env, 2156 struct task_struct *p, long imp) 2157 { 2158 struct rq *rq = cpu_rq(env->dst_cpu); 2159 2160 /* Check if run-queue part of active NUMA balance. */ 2161 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2162 int cpu; 2163 int start = env->dst_cpu; 2164 2165 /* Find alternative idle CPU. */ 2166 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2167 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2168 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2169 continue; 2170 } 2171 2172 env->dst_cpu = cpu; 2173 rq = cpu_rq(env->dst_cpu); 2174 if (!xchg(&rq->numa_migrate_on, 1)) 2175 goto assign; 2176 } 2177 2178 /* Failed to find an alternative idle CPU */ 2179 return; 2180 } 2181 2182 assign: 2183 /* 2184 * Clear previous best_cpu/rq numa-migrate flag, since task now 2185 * found a better CPU to move/swap. 2186 */ 2187 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2188 rq = cpu_rq(env->best_cpu); 2189 WRITE_ONCE(rq->numa_migrate_on, 0); 2190 } 2191 2192 if (env->best_task) 2193 put_task_struct(env->best_task); 2194 if (p) 2195 get_task_struct(p); 2196 2197 env->best_task = p; 2198 env->best_imp = imp; 2199 env->best_cpu = env->dst_cpu; 2200 } 2201 2202 static bool load_too_imbalanced(long src_load, long dst_load, 2203 struct task_numa_env *env) 2204 { 2205 long imb, old_imb; 2206 long orig_src_load, orig_dst_load; 2207 long src_capacity, dst_capacity; 2208 2209 /* 2210 * The load is corrected for the CPU capacity available on each node. 2211 * 2212 * src_load dst_load 2213 * ------------ vs --------- 2214 * src_capacity dst_capacity 2215 */ 2216 src_capacity = env->src_stats.compute_capacity; 2217 dst_capacity = env->dst_stats.compute_capacity; 2218 2219 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2220 2221 orig_src_load = env->src_stats.load; 2222 orig_dst_load = env->dst_stats.load; 2223 2224 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2225 2226 /* Would this change make things worse? */ 2227 return (imb > old_imb); 2228 } 2229 2230 /* 2231 * Maximum NUMA importance can be 1998 (2*999); 2232 * SMALLIMP @ 30 would be close to 1998/64. 2233 * Used to deter task migration. 2234 */ 2235 #define SMALLIMP 30 2236 2237 /* 2238 * This checks if the overall compute and NUMA accesses of the system would 2239 * be improved if the source tasks was migrated to the target dst_cpu taking 2240 * into account that it might be best if task running on the dst_cpu should 2241 * be exchanged with the source task 2242 */ 2243 static bool task_numa_compare(struct task_numa_env *env, 2244 long taskimp, long groupimp, bool maymove) 2245 { 2246 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2247 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2248 long imp = p_ng ? groupimp : taskimp; 2249 struct task_struct *cur; 2250 long src_load, dst_load; 2251 int dist = env->dist; 2252 long moveimp = imp; 2253 long load; 2254 bool stopsearch = false; 2255 2256 if (READ_ONCE(dst_rq->numa_migrate_on)) 2257 return false; 2258 2259 rcu_read_lock(); 2260 cur = rcu_dereference(dst_rq->curr); 2261 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2262 cur = NULL; 2263 2264 /* 2265 * Because we have preemption enabled we can get migrated around and 2266 * end try selecting ourselves (current == env->p) as a swap candidate. 2267 */ 2268 if (cur == env->p) { 2269 stopsearch = true; 2270 goto unlock; 2271 } 2272 2273 if (!cur) { 2274 if (maymove && moveimp >= env->best_imp) 2275 goto assign; 2276 else 2277 goto unlock; 2278 } 2279 2280 /* Skip this swap candidate if cannot move to the source cpu. */ 2281 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2282 goto unlock; 2283 2284 /* 2285 * Skip this swap candidate if it is not moving to its preferred 2286 * node and the best task is. 2287 */ 2288 if (env->best_task && 2289 env->best_task->numa_preferred_nid == env->src_nid && 2290 cur->numa_preferred_nid != env->src_nid) { 2291 goto unlock; 2292 } 2293 2294 /* 2295 * "imp" is the fault differential for the source task between the 2296 * source and destination node. Calculate the total differential for 2297 * the source task and potential destination task. The more negative 2298 * the value is, the more remote accesses that would be expected to 2299 * be incurred if the tasks were swapped. 2300 * 2301 * If dst and source tasks are in the same NUMA group, or not 2302 * in any group then look only at task weights. 2303 */ 2304 cur_ng = rcu_dereference(cur->numa_group); 2305 if (cur_ng == p_ng) { 2306 /* 2307 * Do not swap within a group or between tasks that have 2308 * no group if there is spare capacity. Swapping does 2309 * not address the load imbalance and helps one task at 2310 * the cost of punishing another. 2311 */ 2312 if (env->dst_stats.node_type == node_has_spare) 2313 goto unlock; 2314 2315 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2316 task_weight(cur, env->dst_nid, dist); 2317 /* 2318 * Add some hysteresis to prevent swapping the 2319 * tasks within a group over tiny differences. 2320 */ 2321 if (cur_ng) 2322 imp -= imp / 16; 2323 } else { 2324 /* 2325 * Compare the group weights. If a task is all by itself 2326 * (not part of a group), use the task weight instead. 2327 */ 2328 if (cur_ng && p_ng) 2329 imp += group_weight(cur, env->src_nid, dist) - 2330 group_weight(cur, env->dst_nid, dist); 2331 else 2332 imp += task_weight(cur, env->src_nid, dist) - 2333 task_weight(cur, env->dst_nid, dist); 2334 } 2335 2336 /* Discourage picking a task already on its preferred node */ 2337 if (cur->numa_preferred_nid == env->dst_nid) 2338 imp -= imp / 16; 2339 2340 /* 2341 * Encourage picking a task that moves to its preferred node. 2342 * This potentially makes imp larger than it's maximum of 2343 * 1998 (see SMALLIMP and task_weight for why) but in this 2344 * case, it does not matter. 2345 */ 2346 if (cur->numa_preferred_nid == env->src_nid) 2347 imp += imp / 8; 2348 2349 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2350 imp = moveimp; 2351 cur = NULL; 2352 goto assign; 2353 } 2354 2355 /* 2356 * Prefer swapping with a task moving to its preferred node over a 2357 * task that is not. 2358 */ 2359 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2360 env->best_task->numa_preferred_nid != env->src_nid) { 2361 goto assign; 2362 } 2363 2364 /* 2365 * If the NUMA importance is less than SMALLIMP, 2366 * task migration might only result in ping pong 2367 * of tasks and also hurt performance due to cache 2368 * misses. 2369 */ 2370 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2371 goto unlock; 2372 2373 /* 2374 * In the overloaded case, try and keep the load balanced. 2375 */ 2376 load = task_h_load(env->p) - task_h_load(cur); 2377 if (!load) 2378 goto assign; 2379 2380 dst_load = env->dst_stats.load + load; 2381 src_load = env->src_stats.load - load; 2382 2383 if (load_too_imbalanced(src_load, dst_load, env)) 2384 goto unlock; 2385 2386 assign: 2387 /* Evaluate an idle CPU for a task numa move. */ 2388 if (!cur) { 2389 int cpu = env->dst_stats.idle_cpu; 2390 2391 /* Nothing cached so current CPU went idle since the search. */ 2392 if (cpu < 0) 2393 cpu = env->dst_cpu; 2394 2395 /* 2396 * If the CPU is no longer truly idle and the previous best CPU 2397 * is, keep using it. 2398 */ 2399 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2400 idle_cpu(env->best_cpu)) { 2401 cpu = env->best_cpu; 2402 } 2403 2404 env->dst_cpu = cpu; 2405 } 2406 2407 task_numa_assign(env, cur, imp); 2408 2409 /* 2410 * If a move to idle is allowed because there is capacity or load 2411 * balance improves then stop the search. While a better swap 2412 * candidate may exist, a search is not free. 2413 */ 2414 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2415 stopsearch = true; 2416 2417 /* 2418 * If a swap candidate must be identified and the current best task 2419 * moves its preferred node then stop the search. 2420 */ 2421 if (!maymove && env->best_task && 2422 env->best_task->numa_preferred_nid == env->src_nid) { 2423 stopsearch = true; 2424 } 2425 unlock: 2426 rcu_read_unlock(); 2427 2428 return stopsearch; 2429 } 2430 2431 static void task_numa_find_cpu(struct task_numa_env *env, 2432 long taskimp, long groupimp) 2433 { 2434 bool maymove = false; 2435 int cpu; 2436 2437 /* 2438 * If dst node has spare capacity, then check if there is an 2439 * imbalance that would be overruled by the load balancer. 2440 */ 2441 if (env->dst_stats.node_type == node_has_spare) { 2442 unsigned int imbalance; 2443 int src_running, dst_running; 2444 2445 /* 2446 * Would movement cause an imbalance? Note that if src has 2447 * more running tasks that the imbalance is ignored as the 2448 * move improves the imbalance from the perspective of the 2449 * CPU load balancer. 2450 * */ 2451 src_running = env->src_stats.nr_running - 1; 2452 dst_running = env->dst_stats.nr_running + 1; 2453 imbalance = max(0, dst_running - src_running); 2454 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2455 env->imb_numa_nr); 2456 2457 /* Use idle CPU if there is no imbalance */ 2458 if (!imbalance) { 2459 maymove = true; 2460 if (env->dst_stats.idle_cpu >= 0) { 2461 env->dst_cpu = env->dst_stats.idle_cpu; 2462 task_numa_assign(env, NULL, 0); 2463 return; 2464 } 2465 } 2466 } else { 2467 long src_load, dst_load, load; 2468 /* 2469 * If the improvement from just moving env->p direction is better 2470 * than swapping tasks around, check if a move is possible. 2471 */ 2472 load = task_h_load(env->p); 2473 dst_load = env->dst_stats.load + load; 2474 src_load = env->src_stats.load - load; 2475 maymove = !load_too_imbalanced(src_load, dst_load, env); 2476 } 2477 2478 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2479 /* Skip this CPU if the source task cannot migrate */ 2480 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2481 continue; 2482 2483 env->dst_cpu = cpu; 2484 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2485 break; 2486 } 2487 } 2488 2489 static int task_numa_migrate(struct task_struct *p) 2490 { 2491 struct task_numa_env env = { 2492 .p = p, 2493 2494 .src_cpu = task_cpu(p), 2495 .src_nid = task_node(p), 2496 2497 .imbalance_pct = 112, 2498 2499 .best_task = NULL, 2500 .best_imp = 0, 2501 .best_cpu = -1, 2502 }; 2503 unsigned long taskweight, groupweight; 2504 struct sched_domain *sd; 2505 long taskimp, groupimp; 2506 struct numa_group *ng; 2507 struct rq *best_rq; 2508 int nid, ret, dist; 2509 2510 /* 2511 * Pick the lowest SD_NUMA domain, as that would have the smallest 2512 * imbalance and would be the first to start moving tasks about. 2513 * 2514 * And we want to avoid any moving of tasks about, as that would create 2515 * random movement of tasks -- counter the numa conditions we're trying 2516 * to satisfy here. 2517 */ 2518 rcu_read_lock(); 2519 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2520 if (sd) { 2521 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2522 env.imb_numa_nr = sd->imb_numa_nr; 2523 } 2524 rcu_read_unlock(); 2525 2526 /* 2527 * Cpusets can break the scheduler domain tree into smaller 2528 * balance domains, some of which do not cross NUMA boundaries. 2529 * Tasks that are "trapped" in such domains cannot be migrated 2530 * elsewhere, so there is no point in (re)trying. 2531 */ 2532 if (unlikely(!sd)) { 2533 sched_setnuma(p, task_node(p)); 2534 return -EINVAL; 2535 } 2536 2537 env.dst_nid = p->numa_preferred_nid; 2538 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2539 taskweight = task_weight(p, env.src_nid, dist); 2540 groupweight = group_weight(p, env.src_nid, dist); 2541 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2542 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2543 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2544 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2545 2546 /* Try to find a spot on the preferred nid. */ 2547 task_numa_find_cpu(&env, taskimp, groupimp); 2548 2549 /* 2550 * Look at other nodes in these cases: 2551 * - there is no space available on the preferred_nid 2552 * - the task is part of a numa_group that is interleaved across 2553 * multiple NUMA nodes; in order to better consolidate the group, 2554 * we need to check other locations. 2555 */ 2556 ng = deref_curr_numa_group(p); 2557 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2558 for_each_node_state(nid, N_CPU) { 2559 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2560 continue; 2561 2562 dist = node_distance(env.src_nid, env.dst_nid); 2563 if (sched_numa_topology_type == NUMA_BACKPLANE && 2564 dist != env.dist) { 2565 taskweight = task_weight(p, env.src_nid, dist); 2566 groupweight = group_weight(p, env.src_nid, dist); 2567 } 2568 2569 /* Only consider nodes where both task and groups benefit */ 2570 taskimp = task_weight(p, nid, dist) - taskweight; 2571 groupimp = group_weight(p, nid, dist) - groupweight; 2572 if (taskimp < 0 && groupimp < 0) 2573 continue; 2574 2575 env.dist = dist; 2576 env.dst_nid = nid; 2577 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2578 task_numa_find_cpu(&env, taskimp, groupimp); 2579 } 2580 } 2581 2582 /* 2583 * If the task is part of a workload that spans multiple NUMA nodes, 2584 * and is migrating into one of the workload's active nodes, remember 2585 * this node as the task's preferred numa node, so the workload can 2586 * settle down. 2587 * A task that migrated to a second choice node will be better off 2588 * trying for a better one later. Do not set the preferred node here. 2589 */ 2590 if (ng) { 2591 if (env.best_cpu == -1) 2592 nid = env.src_nid; 2593 else 2594 nid = cpu_to_node(env.best_cpu); 2595 2596 if (nid != p->numa_preferred_nid) 2597 sched_setnuma(p, nid); 2598 } 2599 2600 /* No better CPU than the current one was found. */ 2601 if (env.best_cpu == -1) { 2602 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2603 return -EAGAIN; 2604 } 2605 2606 best_rq = cpu_rq(env.best_cpu); 2607 if (env.best_task == NULL) { 2608 ret = migrate_task_to(p, env.best_cpu); 2609 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2610 if (ret != 0) 2611 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2612 return ret; 2613 } 2614 2615 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2616 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2617 2618 if (ret != 0) 2619 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2620 put_task_struct(env.best_task); 2621 return ret; 2622 } 2623 2624 /* Attempt to migrate a task to a CPU on the preferred node. */ 2625 static void numa_migrate_preferred(struct task_struct *p) 2626 { 2627 unsigned long interval = HZ; 2628 2629 /* This task has no NUMA fault statistics yet */ 2630 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2631 return; 2632 2633 /* Periodically retry migrating the task to the preferred node */ 2634 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2635 p->numa_migrate_retry = jiffies + interval; 2636 2637 /* Success if task is already running on preferred CPU */ 2638 if (task_node(p) == p->numa_preferred_nid) 2639 return; 2640 2641 /* Otherwise, try migrate to a CPU on the preferred node */ 2642 task_numa_migrate(p); 2643 } 2644 2645 /* 2646 * Find out how many nodes the workload is actively running on. Do this by 2647 * tracking the nodes from which NUMA hinting faults are triggered. This can 2648 * be different from the set of nodes where the workload's memory is currently 2649 * located. 2650 */ 2651 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2652 { 2653 unsigned long faults, max_faults = 0; 2654 int nid, active_nodes = 0; 2655 2656 for_each_node_state(nid, N_CPU) { 2657 faults = group_faults_cpu(numa_group, nid); 2658 if (faults > max_faults) 2659 max_faults = faults; 2660 } 2661 2662 for_each_node_state(nid, N_CPU) { 2663 faults = group_faults_cpu(numa_group, nid); 2664 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2665 active_nodes++; 2666 } 2667 2668 numa_group->max_faults_cpu = max_faults; 2669 numa_group->active_nodes = active_nodes; 2670 } 2671 2672 /* 2673 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2674 * increments. The more local the fault statistics are, the higher the scan 2675 * period will be for the next scan window. If local/(local+remote) ratio is 2676 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2677 * the scan period will decrease. Aim for 70% local accesses. 2678 */ 2679 #define NUMA_PERIOD_SLOTS 10 2680 #define NUMA_PERIOD_THRESHOLD 7 2681 2682 /* 2683 * Increase the scan period (slow down scanning) if the majority of 2684 * our memory is already on our local node, or if the majority of 2685 * the page accesses are shared with other processes. 2686 * Otherwise, decrease the scan period. 2687 */ 2688 static void update_task_scan_period(struct task_struct *p, 2689 unsigned long shared, unsigned long private) 2690 { 2691 unsigned int period_slot; 2692 int lr_ratio, ps_ratio; 2693 int diff; 2694 2695 unsigned long remote = p->numa_faults_locality[0]; 2696 unsigned long local = p->numa_faults_locality[1]; 2697 2698 /* 2699 * If there were no record hinting faults then either the task is 2700 * completely idle or all activity is in areas that are not of interest 2701 * to automatic numa balancing. Related to that, if there were failed 2702 * migration then it implies we are migrating too quickly or the local 2703 * node is overloaded. In either case, scan slower 2704 */ 2705 if (local + shared == 0 || p->numa_faults_locality[2]) { 2706 p->numa_scan_period = min(p->numa_scan_period_max, 2707 p->numa_scan_period << 1); 2708 2709 p->mm->numa_next_scan = jiffies + 2710 msecs_to_jiffies(p->numa_scan_period); 2711 2712 return; 2713 } 2714 2715 /* 2716 * Prepare to scale scan period relative to the current period. 2717 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2718 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2719 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2720 */ 2721 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2722 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2723 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2724 2725 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2726 /* 2727 * Most memory accesses are local. There is no need to 2728 * do fast NUMA scanning, since memory is already local. 2729 */ 2730 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2731 if (!slot) 2732 slot = 1; 2733 diff = slot * period_slot; 2734 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2735 /* 2736 * Most memory accesses are shared with other tasks. 2737 * There is no point in continuing fast NUMA scanning, 2738 * since other tasks may just move the memory elsewhere. 2739 */ 2740 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2741 if (!slot) 2742 slot = 1; 2743 diff = slot * period_slot; 2744 } else { 2745 /* 2746 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2747 * yet they are not on the local NUMA node. Speed up 2748 * NUMA scanning to get the memory moved over. 2749 */ 2750 int ratio = max(lr_ratio, ps_ratio); 2751 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2752 } 2753 2754 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2755 task_scan_min(p), task_scan_max(p)); 2756 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2757 } 2758 2759 /* 2760 * Get the fraction of time the task has been running since the last 2761 * NUMA placement cycle. The scheduler keeps similar statistics, but 2762 * decays those on a 32ms period, which is orders of magnitude off 2763 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2764 * stats only if the task is so new there are no NUMA statistics yet. 2765 */ 2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2767 { 2768 u64 runtime, delta, now; 2769 /* Use the start of this time slice to avoid calculations. */ 2770 now = p->se.exec_start; 2771 runtime = p->se.sum_exec_runtime; 2772 2773 if (p->last_task_numa_placement) { 2774 delta = runtime - p->last_sum_exec_runtime; 2775 *period = now - p->last_task_numa_placement; 2776 2777 /* Avoid time going backwards, prevent potential divide error: */ 2778 if (unlikely((s64)*period < 0)) 2779 *period = 0; 2780 } else { 2781 delta = p->se.avg.load_sum; 2782 *period = LOAD_AVG_MAX; 2783 } 2784 2785 p->last_sum_exec_runtime = runtime; 2786 p->last_task_numa_placement = now; 2787 2788 return delta; 2789 } 2790 2791 /* 2792 * Determine the preferred nid for a task in a numa_group. This needs to 2793 * be done in a way that produces consistent results with group_weight, 2794 * otherwise workloads might not converge. 2795 */ 2796 static int preferred_group_nid(struct task_struct *p, int nid) 2797 { 2798 nodemask_t nodes; 2799 int dist; 2800 2801 /* Direct connections between all NUMA nodes. */ 2802 if (sched_numa_topology_type == NUMA_DIRECT) 2803 return nid; 2804 2805 /* 2806 * On a system with glueless mesh NUMA topology, group_weight 2807 * scores nodes according to the number of NUMA hinting faults on 2808 * both the node itself, and on nearby nodes. 2809 */ 2810 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2811 unsigned long score, max_score = 0; 2812 int node, max_node = nid; 2813 2814 dist = sched_max_numa_distance; 2815 2816 for_each_node_state(node, N_CPU) { 2817 score = group_weight(p, node, dist); 2818 if (score > max_score) { 2819 max_score = score; 2820 max_node = node; 2821 } 2822 } 2823 return max_node; 2824 } 2825 2826 /* 2827 * Finding the preferred nid in a system with NUMA backplane 2828 * interconnect topology is more involved. The goal is to locate 2829 * tasks from numa_groups near each other in the system, and 2830 * untangle workloads from different sides of the system. This requires 2831 * searching down the hierarchy of node groups, recursively searching 2832 * inside the highest scoring group of nodes. The nodemask tricks 2833 * keep the complexity of the search down. 2834 */ 2835 nodes = node_states[N_CPU]; 2836 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2837 unsigned long max_faults = 0; 2838 nodemask_t max_group = NODE_MASK_NONE; 2839 int a, b; 2840 2841 /* Are there nodes at this distance from each other? */ 2842 if (!find_numa_distance(dist)) 2843 continue; 2844 2845 for_each_node_mask(a, nodes) { 2846 unsigned long faults = 0; 2847 nodemask_t this_group; 2848 nodes_clear(this_group); 2849 2850 /* Sum group's NUMA faults; includes a==b case. */ 2851 for_each_node_mask(b, nodes) { 2852 if (node_distance(a, b) < dist) { 2853 faults += group_faults(p, b); 2854 node_set(b, this_group); 2855 node_clear(b, nodes); 2856 } 2857 } 2858 2859 /* Remember the top group. */ 2860 if (faults > max_faults) { 2861 max_faults = faults; 2862 max_group = this_group; 2863 /* 2864 * subtle: at the smallest distance there is 2865 * just one node left in each "group", the 2866 * winner is the preferred nid. 2867 */ 2868 nid = a; 2869 } 2870 } 2871 /* Next round, evaluate the nodes within max_group. */ 2872 if (!max_faults) 2873 break; 2874 nodes = max_group; 2875 } 2876 return nid; 2877 } 2878 2879 static void task_numa_placement(struct task_struct *p) 2880 { 2881 int seq, nid, max_nid = NUMA_NO_NODE; 2882 unsigned long max_faults = 0; 2883 unsigned long fault_types[2] = { 0, 0 }; 2884 unsigned long total_faults; 2885 u64 runtime, period; 2886 spinlock_t *group_lock = NULL; 2887 struct numa_group *ng; 2888 2889 /* 2890 * The p->mm->numa_scan_seq field gets updated without 2891 * exclusive access. Use READ_ONCE() here to ensure 2892 * that the field is read in a single access: 2893 */ 2894 seq = READ_ONCE(p->mm->numa_scan_seq); 2895 if (p->numa_scan_seq == seq) 2896 return; 2897 p->numa_scan_seq = seq; 2898 p->numa_scan_period_max = task_scan_max(p); 2899 2900 total_faults = p->numa_faults_locality[0] + 2901 p->numa_faults_locality[1]; 2902 runtime = numa_get_avg_runtime(p, &period); 2903 2904 /* If the task is part of a group prevent parallel updates to group stats */ 2905 ng = deref_curr_numa_group(p); 2906 if (ng) { 2907 group_lock = &ng->lock; 2908 spin_lock_irq(group_lock); 2909 } 2910 2911 /* Find the node with the highest number of faults */ 2912 for_each_online_node(nid) { 2913 /* Keep track of the offsets in numa_faults array */ 2914 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2915 unsigned long faults = 0, group_faults = 0; 2916 int priv; 2917 2918 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2919 long diff, f_diff, f_weight; 2920 2921 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2922 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2923 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2924 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2925 2926 /* Decay existing window, copy faults since last scan */ 2927 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2928 fault_types[priv] += p->numa_faults[membuf_idx]; 2929 p->numa_faults[membuf_idx] = 0; 2930 2931 /* 2932 * Normalize the faults_from, so all tasks in a group 2933 * count according to CPU use, instead of by the raw 2934 * number of faults. Tasks with little runtime have 2935 * little over-all impact on throughput, and thus their 2936 * faults are less important. 2937 */ 2938 f_weight = div64_u64(runtime << 16, period + 1); 2939 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2940 (total_faults + 1); 2941 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2942 p->numa_faults[cpubuf_idx] = 0; 2943 2944 p->numa_faults[mem_idx] += diff; 2945 p->numa_faults[cpu_idx] += f_diff; 2946 faults += p->numa_faults[mem_idx]; 2947 p->total_numa_faults += diff; 2948 if (ng) { 2949 /* 2950 * safe because we can only change our own group 2951 * 2952 * mem_idx represents the offset for a given 2953 * nid and priv in a specific region because it 2954 * is at the beginning of the numa_faults array. 2955 */ 2956 ng->faults[mem_idx] += diff; 2957 ng->faults[cpu_idx] += f_diff; 2958 ng->total_faults += diff; 2959 group_faults += ng->faults[mem_idx]; 2960 } 2961 } 2962 2963 if (!ng) { 2964 if (faults > max_faults) { 2965 max_faults = faults; 2966 max_nid = nid; 2967 } 2968 } else if (group_faults > max_faults) { 2969 max_faults = group_faults; 2970 max_nid = nid; 2971 } 2972 } 2973 2974 /* Cannot migrate task to CPU-less node */ 2975 max_nid = numa_nearest_node(max_nid, N_CPU); 2976 2977 if (ng) { 2978 numa_group_count_active_nodes(ng); 2979 spin_unlock_irq(group_lock); 2980 max_nid = preferred_group_nid(p, max_nid); 2981 } 2982 2983 if (max_faults) { 2984 /* Set the new preferred node */ 2985 if (max_nid != p->numa_preferred_nid) 2986 sched_setnuma(p, max_nid); 2987 } 2988 2989 update_task_scan_period(p, fault_types[0], fault_types[1]); 2990 } 2991 2992 static inline int get_numa_group(struct numa_group *grp) 2993 { 2994 return refcount_inc_not_zero(&grp->refcount); 2995 } 2996 2997 static inline void put_numa_group(struct numa_group *grp) 2998 { 2999 if (refcount_dec_and_test(&grp->refcount)) 3000 kfree_rcu(grp, rcu); 3001 } 3002 3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3004 int *priv) 3005 { 3006 struct numa_group *grp, *my_grp; 3007 struct task_struct *tsk; 3008 bool join = false; 3009 int cpu = cpupid_to_cpu(cpupid); 3010 int i; 3011 3012 if (unlikely(!deref_curr_numa_group(p))) { 3013 unsigned int size = sizeof(struct numa_group) + 3014 NR_NUMA_HINT_FAULT_STATS * 3015 nr_node_ids * sizeof(unsigned long); 3016 3017 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3018 if (!grp) 3019 return; 3020 3021 refcount_set(&grp->refcount, 1); 3022 grp->active_nodes = 1; 3023 grp->max_faults_cpu = 0; 3024 spin_lock_init(&grp->lock); 3025 grp->gid = p->pid; 3026 3027 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3028 grp->faults[i] = p->numa_faults[i]; 3029 3030 grp->total_faults = p->total_numa_faults; 3031 3032 grp->nr_tasks++; 3033 rcu_assign_pointer(p->numa_group, grp); 3034 } 3035 3036 rcu_read_lock(); 3037 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3038 3039 if (!cpupid_match_pid(tsk, cpupid)) 3040 goto no_join; 3041 3042 grp = rcu_dereference(tsk->numa_group); 3043 if (!grp) 3044 goto no_join; 3045 3046 my_grp = deref_curr_numa_group(p); 3047 if (grp == my_grp) 3048 goto no_join; 3049 3050 /* 3051 * Only join the other group if its bigger; if we're the bigger group, 3052 * the other task will join us. 3053 */ 3054 if (my_grp->nr_tasks > grp->nr_tasks) 3055 goto no_join; 3056 3057 /* 3058 * Tie-break on the grp address. 3059 */ 3060 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3061 goto no_join; 3062 3063 /* Always join threads in the same process. */ 3064 if (tsk->mm == current->mm) 3065 join = true; 3066 3067 /* Simple filter to avoid false positives due to PID collisions */ 3068 if (flags & TNF_SHARED) 3069 join = true; 3070 3071 /* Update priv based on whether false sharing was detected */ 3072 *priv = !join; 3073 3074 if (join && !get_numa_group(grp)) 3075 goto no_join; 3076 3077 rcu_read_unlock(); 3078 3079 if (!join) 3080 return; 3081 3082 WARN_ON_ONCE(irqs_disabled()); 3083 double_lock_irq(&my_grp->lock, &grp->lock); 3084 3085 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3086 my_grp->faults[i] -= p->numa_faults[i]; 3087 grp->faults[i] += p->numa_faults[i]; 3088 } 3089 my_grp->total_faults -= p->total_numa_faults; 3090 grp->total_faults += p->total_numa_faults; 3091 3092 my_grp->nr_tasks--; 3093 grp->nr_tasks++; 3094 3095 spin_unlock(&my_grp->lock); 3096 spin_unlock_irq(&grp->lock); 3097 3098 rcu_assign_pointer(p->numa_group, grp); 3099 3100 put_numa_group(my_grp); 3101 return; 3102 3103 no_join: 3104 rcu_read_unlock(); 3105 return; 3106 } 3107 3108 /* 3109 * Get rid of NUMA statistics associated with a task (either current or dead). 3110 * If @final is set, the task is dead and has reached refcount zero, so we can 3111 * safely free all relevant data structures. Otherwise, there might be 3112 * concurrent reads from places like load balancing and procfs, and we should 3113 * reset the data back to default state without freeing ->numa_faults. 3114 */ 3115 void task_numa_free(struct task_struct *p, bool final) 3116 { 3117 /* safe: p either is current or is being freed by current */ 3118 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3119 unsigned long *numa_faults = p->numa_faults; 3120 unsigned long flags; 3121 int i; 3122 3123 if (!numa_faults) 3124 return; 3125 3126 if (grp) { 3127 spin_lock_irqsave(&grp->lock, flags); 3128 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3129 grp->faults[i] -= p->numa_faults[i]; 3130 grp->total_faults -= p->total_numa_faults; 3131 3132 grp->nr_tasks--; 3133 spin_unlock_irqrestore(&grp->lock, flags); 3134 RCU_INIT_POINTER(p->numa_group, NULL); 3135 put_numa_group(grp); 3136 } 3137 3138 if (final) { 3139 p->numa_faults = NULL; 3140 kfree(numa_faults); 3141 } else { 3142 p->total_numa_faults = 0; 3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3144 numa_faults[i] = 0; 3145 } 3146 } 3147 3148 /* 3149 * Got a PROT_NONE fault for a page on @node. 3150 */ 3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3152 { 3153 struct task_struct *p = current; 3154 bool migrated = flags & TNF_MIGRATED; 3155 int cpu_node = task_node(current); 3156 int local = !!(flags & TNF_FAULT_LOCAL); 3157 struct numa_group *ng; 3158 int priv; 3159 3160 if (!static_branch_likely(&sched_numa_balancing)) 3161 return; 3162 3163 /* for example, ksmd faulting in a user's mm */ 3164 if (!p->mm) 3165 return; 3166 3167 /* 3168 * NUMA faults statistics are unnecessary for the slow memory 3169 * node for memory tiering mode. 3170 */ 3171 if (!node_is_toptier(mem_node) && 3172 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3173 !cpupid_valid(last_cpupid))) 3174 return; 3175 3176 /* Allocate buffer to track faults on a per-node basis */ 3177 if (unlikely(!p->numa_faults)) { 3178 int size = sizeof(*p->numa_faults) * 3179 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3180 3181 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3182 if (!p->numa_faults) 3183 return; 3184 3185 p->total_numa_faults = 0; 3186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3187 } 3188 3189 /* 3190 * First accesses are treated as private, otherwise consider accesses 3191 * to be private if the accessing pid has not changed 3192 */ 3193 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3194 priv = 1; 3195 } else { 3196 priv = cpupid_match_pid(p, last_cpupid); 3197 if (!priv && !(flags & TNF_NO_GROUP)) 3198 task_numa_group(p, last_cpupid, flags, &priv); 3199 } 3200 3201 /* 3202 * If a workload spans multiple NUMA nodes, a shared fault that 3203 * occurs wholly within the set of nodes that the workload is 3204 * actively using should be counted as local. This allows the 3205 * scan rate to slow down when a workload has settled down. 3206 */ 3207 ng = deref_curr_numa_group(p); 3208 if (!priv && !local && ng && ng->active_nodes > 1 && 3209 numa_is_active_node(cpu_node, ng) && 3210 numa_is_active_node(mem_node, ng)) 3211 local = 1; 3212 3213 /* 3214 * Retry to migrate task to preferred node periodically, in case it 3215 * previously failed, or the scheduler moved us. 3216 */ 3217 if (time_after(jiffies, p->numa_migrate_retry)) { 3218 task_numa_placement(p); 3219 numa_migrate_preferred(p); 3220 } 3221 3222 if (migrated) 3223 p->numa_pages_migrated += pages; 3224 if (flags & TNF_MIGRATE_FAIL) 3225 p->numa_faults_locality[2] += pages; 3226 3227 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3228 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3229 p->numa_faults_locality[local] += pages; 3230 } 3231 3232 static void reset_ptenuma_scan(struct task_struct *p) 3233 { 3234 /* 3235 * We only did a read acquisition of the mmap sem, so 3236 * p->mm->numa_scan_seq is written to without exclusive access 3237 * and the update is not guaranteed to be atomic. That's not 3238 * much of an issue though, since this is just used for 3239 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3240 * expensive, to avoid any form of compiler optimizations: 3241 */ 3242 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3243 p->mm->numa_scan_offset = 0; 3244 } 3245 3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3247 { 3248 unsigned long pids; 3249 /* 3250 * Allow unconditional access first two times, so that all the (pages) 3251 * of VMAs get prot_none fault introduced irrespective of accesses. 3252 * This is also done to avoid any side effect of task scanning 3253 * amplifying the unfairness of disjoint set of VMAs' access. 3254 */ 3255 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3256 return true; 3257 3258 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3259 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3260 return true; 3261 3262 /* 3263 * Complete a scan that has already started regardless of PID access, or 3264 * some VMAs may never be scanned in multi-threaded applications: 3265 */ 3266 if (mm->numa_scan_offset > vma->vm_start) { 3267 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3268 return true; 3269 } 3270 3271 /* 3272 * This vma has not been accessed for a while, and if the number 3273 * the threads in the same process is low, which means no other 3274 * threads can help scan this vma, force a vma scan. 3275 */ 3276 if (READ_ONCE(mm->numa_scan_seq) > 3277 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3278 return true; 3279 3280 return false; 3281 } 3282 3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3284 3285 /* 3286 * The expensive part of numa migration is done from task_work context. 3287 * Triggered from task_tick_numa(). 3288 */ 3289 static void task_numa_work(struct callback_head *work) 3290 { 3291 unsigned long migrate, next_scan, now = jiffies; 3292 struct task_struct *p = current; 3293 struct mm_struct *mm = p->mm; 3294 u64 runtime = p->se.sum_exec_runtime; 3295 struct vm_area_struct *vma; 3296 unsigned long start, end; 3297 unsigned long nr_pte_updates = 0; 3298 long pages, virtpages; 3299 struct vma_iterator vmi; 3300 bool vma_pids_skipped; 3301 bool vma_pids_forced = false; 3302 3303 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3304 3305 work->next = work; 3306 /* 3307 * Who cares about NUMA placement when they're dying. 3308 * 3309 * NOTE: make sure not to dereference p->mm before this check, 3310 * exit_task_work() happens _after_ exit_mm() so we could be called 3311 * without p->mm even though we still had it when we enqueued this 3312 * work. 3313 */ 3314 if (p->flags & PF_EXITING) 3315 return; 3316 3317 if (!mm->numa_next_scan) { 3318 mm->numa_next_scan = now + 3319 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3320 } 3321 3322 /* 3323 * Enforce maximal scan/migration frequency.. 3324 */ 3325 migrate = mm->numa_next_scan; 3326 if (time_before(now, migrate)) 3327 return; 3328 3329 if (p->numa_scan_period == 0) { 3330 p->numa_scan_period_max = task_scan_max(p); 3331 p->numa_scan_period = task_scan_start(p); 3332 } 3333 3334 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3335 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3336 return; 3337 3338 /* 3339 * Delay this task enough that another task of this mm will likely win 3340 * the next time around. 3341 */ 3342 p->node_stamp += 2 * TICK_NSEC; 3343 3344 pages = sysctl_numa_balancing_scan_size; 3345 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3346 virtpages = pages * 8; /* Scan up to this much virtual space */ 3347 if (!pages) 3348 return; 3349 3350 3351 if (!mmap_read_trylock(mm)) 3352 return; 3353 3354 /* 3355 * VMAs are skipped if the current PID has not trapped a fault within 3356 * the VMA recently. Allow scanning to be forced if there is no 3357 * suitable VMA remaining. 3358 */ 3359 vma_pids_skipped = false; 3360 3361 retry_pids: 3362 start = mm->numa_scan_offset; 3363 vma_iter_init(&vmi, mm, start); 3364 vma = vma_next(&vmi); 3365 if (!vma) { 3366 reset_ptenuma_scan(p); 3367 start = 0; 3368 vma_iter_set(&vmi, start); 3369 vma = vma_next(&vmi); 3370 } 3371 3372 do { 3373 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3374 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3375 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3376 continue; 3377 } 3378 3379 /* 3380 * Shared library pages mapped by multiple processes are not 3381 * migrated as it is expected they are cache replicated. Avoid 3382 * hinting faults in read-only file-backed mappings or the vDSO 3383 * as migrating the pages will be of marginal benefit. 3384 */ 3385 if (!vma->vm_mm || 3386 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3387 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3388 continue; 3389 } 3390 3391 /* 3392 * Skip inaccessible VMAs to avoid any confusion between 3393 * PROT_NONE and NUMA hinting PTEs 3394 */ 3395 if (!vma_is_accessible(vma)) { 3396 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3397 continue; 3398 } 3399 3400 /* Initialise new per-VMA NUMAB state. */ 3401 if (!vma->numab_state) { 3402 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3403 GFP_KERNEL); 3404 if (!vma->numab_state) 3405 continue; 3406 3407 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3408 3409 vma->numab_state->next_scan = now + 3410 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3411 3412 /* Reset happens after 4 times scan delay of scan start */ 3413 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3414 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3415 3416 /* 3417 * Ensure prev_scan_seq does not match numa_scan_seq, 3418 * to prevent VMAs being skipped prematurely on the 3419 * first scan: 3420 */ 3421 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3422 } 3423 3424 /* 3425 * Scanning the VMAs of short lived tasks add more overhead. So 3426 * delay the scan for new VMAs. 3427 */ 3428 if (mm->numa_scan_seq && time_before(jiffies, 3429 vma->numab_state->next_scan)) { 3430 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3431 continue; 3432 } 3433 3434 /* RESET access PIDs regularly for old VMAs. */ 3435 if (mm->numa_scan_seq && 3436 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3437 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3438 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3439 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3440 vma->numab_state->pids_active[1] = 0; 3441 } 3442 3443 /* Do not rescan VMAs twice within the same sequence. */ 3444 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3445 mm->numa_scan_offset = vma->vm_end; 3446 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3447 continue; 3448 } 3449 3450 /* 3451 * Do not scan the VMA if task has not accessed it, unless no other 3452 * VMA candidate exists. 3453 */ 3454 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3455 vma_pids_skipped = true; 3456 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3457 continue; 3458 } 3459 3460 do { 3461 start = max(start, vma->vm_start); 3462 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3463 end = min(end, vma->vm_end); 3464 nr_pte_updates = change_prot_numa(vma, start, end); 3465 3466 /* 3467 * Try to scan sysctl_numa_balancing_size worth of 3468 * hpages that have at least one present PTE that 3469 * is not already PTE-numa. If the VMA contains 3470 * areas that are unused or already full of prot_numa 3471 * PTEs, scan up to virtpages, to skip through those 3472 * areas faster. 3473 */ 3474 if (nr_pte_updates) 3475 pages -= (end - start) >> PAGE_SHIFT; 3476 virtpages -= (end - start) >> PAGE_SHIFT; 3477 3478 start = end; 3479 if (pages <= 0 || virtpages <= 0) 3480 goto out; 3481 3482 cond_resched(); 3483 } while (end != vma->vm_end); 3484 3485 /* VMA scan is complete, do not scan until next sequence. */ 3486 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3487 3488 /* 3489 * Only force scan within one VMA at a time, to limit the 3490 * cost of scanning a potentially uninteresting VMA. 3491 */ 3492 if (vma_pids_forced) 3493 break; 3494 } for_each_vma(vmi, vma); 3495 3496 /* 3497 * If no VMAs are remaining and VMAs were skipped due to the PID 3498 * not accessing the VMA previously, then force a scan to ensure 3499 * forward progress: 3500 */ 3501 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3502 vma_pids_forced = true; 3503 goto retry_pids; 3504 } 3505 3506 out: 3507 /* 3508 * It is possible to reach the end of the VMA list but the last few 3509 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3510 * would find the !migratable VMA on the next scan but not reset the 3511 * scanner to the start so check it now. 3512 */ 3513 if (vma) 3514 mm->numa_scan_offset = start; 3515 else 3516 reset_ptenuma_scan(p); 3517 mmap_read_unlock(mm); 3518 3519 /* 3520 * Make sure tasks use at least 32x as much time to run other code 3521 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3522 * Usually update_task_scan_period slows down scanning enough; on an 3523 * overloaded system we need to limit overhead on a per task basis. 3524 */ 3525 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3526 u64 diff = p->se.sum_exec_runtime - runtime; 3527 p->node_stamp += 32 * diff; 3528 } 3529 } 3530 3531 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3532 { 3533 int mm_users = 0; 3534 struct mm_struct *mm = p->mm; 3535 3536 if (mm) { 3537 mm_users = atomic_read(&mm->mm_users); 3538 if (mm_users == 1) { 3539 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3540 mm->numa_scan_seq = 0; 3541 } 3542 } 3543 p->node_stamp = 0; 3544 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3545 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3546 p->numa_migrate_retry = 0; 3547 /* Protect against double add, see task_tick_numa and task_numa_work */ 3548 p->numa_work.next = &p->numa_work; 3549 p->numa_faults = NULL; 3550 p->numa_pages_migrated = 0; 3551 p->total_numa_faults = 0; 3552 RCU_INIT_POINTER(p->numa_group, NULL); 3553 p->last_task_numa_placement = 0; 3554 p->last_sum_exec_runtime = 0; 3555 3556 init_task_work(&p->numa_work, task_numa_work); 3557 3558 /* New address space, reset the preferred nid */ 3559 if (!(clone_flags & CLONE_VM)) { 3560 p->numa_preferred_nid = NUMA_NO_NODE; 3561 return; 3562 } 3563 3564 /* 3565 * New thread, keep existing numa_preferred_nid which should be copied 3566 * already by arch_dup_task_struct but stagger when scans start. 3567 */ 3568 if (mm) { 3569 unsigned int delay; 3570 3571 delay = min_t(unsigned int, task_scan_max(current), 3572 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3573 delay += 2 * TICK_NSEC; 3574 p->node_stamp = delay; 3575 } 3576 } 3577 3578 /* 3579 * Drive the periodic memory faults.. 3580 */ 3581 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3582 { 3583 struct callback_head *work = &curr->numa_work; 3584 u64 period, now; 3585 3586 /* 3587 * We don't care about NUMA placement if we don't have memory. 3588 */ 3589 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3590 return; 3591 3592 /* 3593 * Using runtime rather than walltime has the dual advantage that 3594 * we (mostly) drive the selection from busy threads and that the 3595 * task needs to have done some actual work before we bother with 3596 * NUMA placement. 3597 */ 3598 now = curr->se.sum_exec_runtime; 3599 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3600 3601 if (now > curr->node_stamp + period) { 3602 if (!curr->node_stamp) 3603 curr->numa_scan_period = task_scan_start(curr); 3604 curr->node_stamp += period; 3605 3606 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3607 task_work_add(curr, work, TWA_RESUME); 3608 } 3609 } 3610 3611 static void update_scan_period(struct task_struct *p, int new_cpu) 3612 { 3613 int src_nid = cpu_to_node(task_cpu(p)); 3614 int dst_nid = cpu_to_node(new_cpu); 3615 3616 if (!static_branch_likely(&sched_numa_balancing)) 3617 return; 3618 3619 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3620 return; 3621 3622 if (src_nid == dst_nid) 3623 return; 3624 3625 /* 3626 * Allow resets if faults have been trapped before one scan 3627 * has completed. This is most likely due to a new task that 3628 * is pulled cross-node due to wakeups or load balancing. 3629 */ 3630 if (p->numa_scan_seq) { 3631 /* 3632 * Avoid scan adjustments if moving to the preferred 3633 * node or if the task was not previously running on 3634 * the preferred node. 3635 */ 3636 if (dst_nid == p->numa_preferred_nid || 3637 (p->numa_preferred_nid != NUMA_NO_NODE && 3638 src_nid != p->numa_preferred_nid)) 3639 return; 3640 } 3641 3642 p->numa_scan_period = task_scan_start(p); 3643 } 3644 3645 #else 3646 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3647 { 3648 } 3649 3650 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3651 { 3652 } 3653 3654 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3655 { 3656 } 3657 3658 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3659 { 3660 } 3661 3662 #endif /* CONFIG_NUMA_BALANCING */ 3663 3664 static void 3665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3666 { 3667 update_load_add(&cfs_rq->load, se->load.weight); 3668 #ifdef CONFIG_SMP 3669 if (entity_is_task(se)) { 3670 struct rq *rq = rq_of(cfs_rq); 3671 3672 account_numa_enqueue(rq, task_of(se)); 3673 list_add(&se->group_node, &rq->cfs_tasks); 3674 } 3675 #endif 3676 cfs_rq->nr_running++; 3677 if (se_is_idle(se)) 3678 cfs_rq->idle_nr_running++; 3679 } 3680 3681 static void 3682 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3683 { 3684 update_load_sub(&cfs_rq->load, se->load.weight); 3685 #ifdef CONFIG_SMP 3686 if (entity_is_task(se)) { 3687 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3688 list_del_init(&se->group_node); 3689 } 3690 #endif 3691 cfs_rq->nr_running--; 3692 if (se_is_idle(se)) 3693 cfs_rq->idle_nr_running--; 3694 } 3695 3696 /* 3697 * Signed add and clamp on underflow. 3698 * 3699 * Explicitly do a load-store to ensure the intermediate value never hits 3700 * memory. This allows lockless observations without ever seeing the negative 3701 * values. 3702 */ 3703 #define add_positive(_ptr, _val) do { \ 3704 typeof(_ptr) ptr = (_ptr); \ 3705 typeof(_val) val = (_val); \ 3706 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3707 \ 3708 res = var + val; \ 3709 \ 3710 if (val < 0 && res > var) \ 3711 res = 0; \ 3712 \ 3713 WRITE_ONCE(*ptr, res); \ 3714 } while (0) 3715 3716 /* 3717 * Unsigned subtract and clamp on underflow. 3718 * 3719 * Explicitly do a load-store to ensure the intermediate value never hits 3720 * memory. This allows lockless observations without ever seeing the negative 3721 * values. 3722 */ 3723 #define sub_positive(_ptr, _val) do { \ 3724 typeof(_ptr) ptr = (_ptr); \ 3725 typeof(*ptr) val = (_val); \ 3726 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3727 res = var - val; \ 3728 if (res > var) \ 3729 res = 0; \ 3730 WRITE_ONCE(*ptr, res); \ 3731 } while (0) 3732 3733 /* 3734 * Remove and clamp on negative, from a local variable. 3735 * 3736 * A variant of sub_positive(), which does not use explicit load-store 3737 * and is thus optimized for local variable updates. 3738 */ 3739 #define lsub_positive(_ptr, _val) do { \ 3740 typeof(_ptr) ptr = (_ptr); \ 3741 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3742 } while (0) 3743 3744 #ifdef CONFIG_SMP 3745 static inline void 3746 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3747 { 3748 cfs_rq->avg.load_avg += se->avg.load_avg; 3749 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3750 } 3751 3752 static inline void 3753 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3754 { 3755 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3756 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3757 /* See update_cfs_rq_load_avg() */ 3758 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3759 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3760 } 3761 #else 3762 static inline void 3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3764 static inline void 3765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3766 #endif 3767 3768 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3769 unsigned long weight) 3770 { 3771 unsigned long old_weight = se->load.weight; 3772 s64 vlag, vslice; 3773 3774 /* 3775 * VRUNTIME 3776 * -------- 3777 * 3778 * COROLLARY #1: The virtual runtime of the entity needs to be 3779 * adjusted if re-weight at !0-lag point. 3780 * 3781 * Proof: For contradiction assume this is not true, so we can 3782 * re-weight without changing vruntime at !0-lag point. 3783 * 3784 * Weight VRuntime Avg-VRuntime 3785 * before w v V 3786 * after w' v' V' 3787 * 3788 * Since lag needs to be preserved through re-weight: 3789 * 3790 * lag = (V - v)*w = (V'- v')*w', where v = v' 3791 * ==> V' = (V - v)*w/w' + v (1) 3792 * 3793 * Let W be the total weight of the entities before reweight, 3794 * since V' is the new weighted average of entities: 3795 * 3796 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3797 * 3798 * by using (1) & (2) we obtain: 3799 * 3800 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3801 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3802 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3803 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3804 * 3805 * Since we are doing at !0-lag point which means V != v, we 3806 * can simplify (3): 3807 * 3808 * ==> W / (W + w' - w) = w / w' 3809 * ==> Ww' = Ww + ww' - ww 3810 * ==> W * (w' - w) = w * (w' - w) 3811 * ==> W = w (re-weight indicates w' != w) 3812 * 3813 * So the cfs_rq contains only one entity, hence vruntime of 3814 * the entity @v should always equal to the cfs_rq's weighted 3815 * average vruntime @V, which means we will always re-weight 3816 * at 0-lag point, thus breach assumption. Proof completed. 3817 * 3818 * 3819 * COROLLARY #2: Re-weight does NOT affect weighted average 3820 * vruntime of all the entities. 3821 * 3822 * Proof: According to corollary #1, Eq. (1) should be: 3823 * 3824 * (V - v)*w = (V' - v')*w' 3825 * ==> v' = V' - (V - v)*w/w' (4) 3826 * 3827 * According to the weighted average formula, we have: 3828 * 3829 * V' = (WV - wv + w'v') / (W - w + w') 3830 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3831 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3832 * = (WV + w'V' - Vw) / (W - w + w') 3833 * 3834 * ==> V'*(W - w + w') = WV + w'V' - Vw 3835 * ==> V' * (W - w) = (W - w) * V (5) 3836 * 3837 * If the entity is the only one in the cfs_rq, then reweight 3838 * always occurs at 0-lag point, so V won't change. Or else 3839 * there are other entities, hence W != w, then Eq. (5) turns 3840 * into V' = V. So V won't change in either case, proof done. 3841 * 3842 * 3843 * So according to corollary #1 & #2, the effect of re-weight 3844 * on vruntime should be: 3845 * 3846 * v' = V' - (V - v) * w / w' (4) 3847 * = V - (V - v) * w / w' 3848 * = V - vl * w / w' 3849 * = V - vl' 3850 */ 3851 if (avruntime != se->vruntime) { 3852 vlag = entity_lag(avruntime, se); 3853 vlag = div_s64(vlag * old_weight, weight); 3854 se->vruntime = avruntime - vlag; 3855 } 3856 3857 /* 3858 * DEADLINE 3859 * -------- 3860 * 3861 * When the weight changes, the virtual time slope changes and 3862 * we should adjust the relative virtual deadline accordingly. 3863 * 3864 * d' = v' + (d - v)*w/w' 3865 * = V' - (V - v)*w/w' + (d - v)*w/w' 3866 * = V - (V - v)*w/w' + (d - v)*w/w' 3867 * = V + (d - V)*w/w' 3868 */ 3869 vslice = (s64)(se->deadline - avruntime); 3870 vslice = div_s64(vslice * old_weight, weight); 3871 se->deadline = avruntime + vslice; 3872 } 3873 3874 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3875 unsigned long weight) 3876 { 3877 bool curr = cfs_rq->curr == se; 3878 u64 avruntime; 3879 3880 if (se->on_rq) { 3881 /* commit outstanding execution time */ 3882 update_curr(cfs_rq); 3883 avruntime = avg_vruntime(cfs_rq); 3884 if (!curr) 3885 __dequeue_entity(cfs_rq, se); 3886 update_load_sub(&cfs_rq->load, se->load.weight); 3887 } 3888 dequeue_load_avg(cfs_rq, se); 3889 3890 if (se->on_rq) { 3891 reweight_eevdf(se, avruntime, weight); 3892 } else { 3893 /* 3894 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3895 * we need to scale se->vlag when w_i changes. 3896 */ 3897 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3898 } 3899 3900 update_load_set(&se->load, weight); 3901 3902 #ifdef CONFIG_SMP 3903 do { 3904 u32 divider = get_pelt_divider(&se->avg); 3905 3906 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3907 } while (0); 3908 #endif 3909 3910 enqueue_load_avg(cfs_rq, se); 3911 if (se->on_rq) { 3912 update_load_add(&cfs_rq->load, se->load.weight); 3913 if (!curr) 3914 __enqueue_entity(cfs_rq, se); 3915 3916 /* 3917 * The entity's vruntime has been adjusted, so let's check 3918 * whether the rq-wide min_vruntime needs updated too. Since 3919 * the calculations above require stable min_vruntime rather 3920 * than up-to-date one, we do the update at the end of the 3921 * reweight process. 3922 */ 3923 update_min_vruntime(cfs_rq); 3924 } 3925 } 3926 3927 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3928 const struct load_weight *lw) 3929 { 3930 struct sched_entity *se = &p->se; 3931 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3932 struct load_weight *load = &se->load; 3933 3934 reweight_entity(cfs_rq, se, lw->weight); 3935 load->inv_weight = lw->inv_weight; 3936 } 3937 3938 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3939 3940 #ifdef CONFIG_FAIR_GROUP_SCHED 3941 #ifdef CONFIG_SMP 3942 /* 3943 * All this does is approximate the hierarchical proportion which includes that 3944 * global sum we all love to hate. 3945 * 3946 * That is, the weight of a group entity, is the proportional share of the 3947 * group weight based on the group runqueue weights. That is: 3948 * 3949 * tg->weight * grq->load.weight 3950 * ge->load.weight = ----------------------------- (1) 3951 * \Sum grq->load.weight 3952 * 3953 * Now, because computing that sum is prohibitively expensive to compute (been 3954 * there, done that) we approximate it with this average stuff. The average 3955 * moves slower and therefore the approximation is cheaper and more stable. 3956 * 3957 * So instead of the above, we substitute: 3958 * 3959 * grq->load.weight -> grq->avg.load_avg (2) 3960 * 3961 * which yields the following: 3962 * 3963 * tg->weight * grq->avg.load_avg 3964 * ge->load.weight = ------------------------------ (3) 3965 * tg->load_avg 3966 * 3967 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3968 * 3969 * That is shares_avg, and it is right (given the approximation (2)). 3970 * 3971 * The problem with it is that because the average is slow -- it was designed 3972 * to be exactly that of course -- this leads to transients in boundary 3973 * conditions. In specific, the case where the group was idle and we start the 3974 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3975 * yielding bad latency etc.. 3976 * 3977 * Now, in that special case (1) reduces to: 3978 * 3979 * tg->weight * grq->load.weight 3980 * ge->load.weight = ----------------------------- = tg->weight (4) 3981 * grp->load.weight 3982 * 3983 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3984 * 3985 * So what we do is modify our approximation (3) to approach (4) in the (near) 3986 * UP case, like: 3987 * 3988 * ge->load.weight = 3989 * 3990 * tg->weight * grq->load.weight 3991 * --------------------------------------------------- (5) 3992 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3993 * 3994 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3995 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3996 * 3997 * 3998 * tg->weight * grq->load.weight 3999 * ge->load.weight = ----------------------------- (6) 4000 * tg_load_avg' 4001 * 4002 * Where: 4003 * 4004 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 4005 * max(grq->load.weight, grq->avg.load_avg) 4006 * 4007 * And that is shares_weight and is icky. In the (near) UP case it approaches 4008 * (4) while in the normal case it approaches (3). It consistently 4009 * overestimates the ge->load.weight and therefore: 4010 * 4011 * \Sum ge->load.weight >= tg->weight 4012 * 4013 * hence icky! 4014 */ 4015 static long calc_group_shares(struct cfs_rq *cfs_rq) 4016 { 4017 long tg_weight, tg_shares, load, shares; 4018 struct task_group *tg = cfs_rq->tg; 4019 4020 tg_shares = READ_ONCE(tg->shares); 4021 4022 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 4023 4024 tg_weight = atomic_long_read(&tg->load_avg); 4025 4026 /* Ensure tg_weight >= load */ 4027 tg_weight -= cfs_rq->tg_load_avg_contrib; 4028 tg_weight += load; 4029 4030 shares = (tg_shares * load); 4031 if (tg_weight) 4032 shares /= tg_weight; 4033 4034 /* 4035 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 4036 * of a group with small tg->shares value. It is a floor value which is 4037 * assigned as a minimum load.weight to the sched_entity representing 4038 * the group on a CPU. 4039 * 4040 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 4041 * on an 8-core system with 8 tasks each runnable on one CPU shares has 4042 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 4043 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 4044 * instead of 0. 4045 */ 4046 return clamp_t(long, shares, MIN_SHARES, tg_shares); 4047 } 4048 #endif /* CONFIG_SMP */ 4049 4050 /* 4051 * Recomputes the group entity based on the current state of its group 4052 * runqueue. 4053 */ 4054 static void update_cfs_group(struct sched_entity *se) 4055 { 4056 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4057 long shares; 4058 4059 if (!gcfs_rq) 4060 return; 4061 4062 if (throttled_hierarchy(gcfs_rq)) 4063 return; 4064 4065 #ifndef CONFIG_SMP 4066 shares = READ_ONCE(gcfs_rq->tg->shares); 4067 #else 4068 shares = calc_group_shares(gcfs_rq); 4069 #endif 4070 if (unlikely(se->load.weight != shares)) 4071 reweight_entity(cfs_rq_of(se), se, shares); 4072 } 4073 4074 #else /* CONFIG_FAIR_GROUP_SCHED */ 4075 static inline void update_cfs_group(struct sched_entity *se) 4076 { 4077 } 4078 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4079 4080 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4081 { 4082 struct rq *rq = rq_of(cfs_rq); 4083 4084 if (&rq->cfs == cfs_rq) { 4085 /* 4086 * There are a few boundary cases this might miss but it should 4087 * get called often enough that that should (hopefully) not be 4088 * a real problem. 4089 * 4090 * It will not get called when we go idle, because the idle 4091 * thread is a different class (!fair), nor will the utilization 4092 * number include things like RT tasks. 4093 * 4094 * As is, the util number is not freq-invariant (we'd have to 4095 * implement arch_scale_freq_capacity() for that). 4096 * 4097 * See cpu_util_cfs(). 4098 */ 4099 cpufreq_update_util(rq, flags); 4100 } 4101 } 4102 4103 #ifdef CONFIG_SMP 4104 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4105 { 4106 if (sa->load_sum) 4107 return false; 4108 4109 if (sa->util_sum) 4110 return false; 4111 4112 if (sa->runnable_sum) 4113 return false; 4114 4115 /* 4116 * _avg must be null when _sum are null because _avg = _sum / divider 4117 * Make sure that rounding and/or propagation of PELT values never 4118 * break this. 4119 */ 4120 SCHED_WARN_ON(sa->load_avg || 4121 sa->util_avg || 4122 sa->runnable_avg); 4123 4124 return true; 4125 } 4126 4127 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4128 { 4129 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4130 cfs_rq->last_update_time_copy); 4131 } 4132 #ifdef CONFIG_FAIR_GROUP_SCHED 4133 /* 4134 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4135 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4136 * bottom-up, we only have to test whether the cfs_rq before us on the list 4137 * is our child. 4138 * If cfs_rq is not on the list, test whether a child needs its to be added to 4139 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4140 */ 4141 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4142 { 4143 struct cfs_rq *prev_cfs_rq; 4144 struct list_head *prev; 4145 4146 if (cfs_rq->on_list) { 4147 prev = cfs_rq->leaf_cfs_rq_list.prev; 4148 } else { 4149 struct rq *rq = rq_of(cfs_rq); 4150 4151 prev = rq->tmp_alone_branch; 4152 } 4153 4154 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4155 4156 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4157 } 4158 4159 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4160 { 4161 if (cfs_rq->load.weight) 4162 return false; 4163 4164 if (!load_avg_is_decayed(&cfs_rq->avg)) 4165 return false; 4166 4167 if (child_cfs_rq_on_list(cfs_rq)) 4168 return false; 4169 4170 return true; 4171 } 4172 4173 /** 4174 * update_tg_load_avg - update the tg's load avg 4175 * @cfs_rq: the cfs_rq whose avg changed 4176 * 4177 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4178 * However, because tg->load_avg is a global value there are performance 4179 * considerations. 4180 * 4181 * In order to avoid having to look at the other cfs_rq's, we use a 4182 * differential update where we store the last value we propagated. This in 4183 * turn allows skipping updates if the differential is 'small'. 4184 * 4185 * Updating tg's load_avg is necessary before update_cfs_share(). 4186 */ 4187 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4188 { 4189 long delta; 4190 u64 now; 4191 4192 /* 4193 * No need to update load_avg for root_task_group as it is not used. 4194 */ 4195 if (cfs_rq->tg == &root_task_group) 4196 return; 4197 4198 /* rq has been offline and doesn't contribute to the share anymore: */ 4199 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4200 return; 4201 4202 /* 4203 * For migration heavy workloads, access to tg->load_avg can be 4204 * unbound. Limit the update rate to at most once per ms. 4205 */ 4206 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4207 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4208 return; 4209 4210 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4211 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4212 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4213 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4214 cfs_rq->last_update_tg_load_avg = now; 4215 } 4216 } 4217 4218 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4219 { 4220 long delta; 4221 u64 now; 4222 4223 /* 4224 * No need to update load_avg for root_task_group, as it is not used. 4225 */ 4226 if (cfs_rq->tg == &root_task_group) 4227 return; 4228 4229 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4230 delta = 0 - cfs_rq->tg_load_avg_contrib; 4231 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4232 cfs_rq->tg_load_avg_contrib = 0; 4233 cfs_rq->last_update_tg_load_avg = now; 4234 } 4235 4236 /* CPU offline callback: */ 4237 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4238 { 4239 struct task_group *tg; 4240 4241 lockdep_assert_rq_held(rq); 4242 4243 /* 4244 * The rq clock has already been updated in 4245 * set_rq_offline(), so we should skip updating 4246 * the rq clock again in unthrottle_cfs_rq(). 4247 */ 4248 rq_clock_start_loop_update(rq); 4249 4250 rcu_read_lock(); 4251 list_for_each_entry_rcu(tg, &task_groups, list) { 4252 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4253 4254 clear_tg_load_avg(cfs_rq); 4255 } 4256 rcu_read_unlock(); 4257 4258 rq_clock_stop_loop_update(rq); 4259 } 4260 4261 /* 4262 * Called within set_task_rq() right before setting a task's CPU. The 4263 * caller only guarantees p->pi_lock is held; no other assumptions, 4264 * including the state of rq->lock, should be made. 4265 */ 4266 void set_task_rq_fair(struct sched_entity *se, 4267 struct cfs_rq *prev, struct cfs_rq *next) 4268 { 4269 u64 p_last_update_time; 4270 u64 n_last_update_time; 4271 4272 if (!sched_feat(ATTACH_AGE_LOAD)) 4273 return; 4274 4275 /* 4276 * We are supposed to update the task to "current" time, then its up to 4277 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4278 * getting what current time is, so simply throw away the out-of-date 4279 * time. This will result in the wakee task is less decayed, but giving 4280 * the wakee more load sounds not bad. 4281 */ 4282 if (!(se->avg.last_update_time && prev)) 4283 return; 4284 4285 p_last_update_time = cfs_rq_last_update_time(prev); 4286 n_last_update_time = cfs_rq_last_update_time(next); 4287 4288 __update_load_avg_blocked_se(p_last_update_time, se); 4289 se->avg.last_update_time = n_last_update_time; 4290 } 4291 4292 /* 4293 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4294 * propagate its contribution. The key to this propagation is the invariant 4295 * that for each group: 4296 * 4297 * ge->avg == grq->avg (1) 4298 * 4299 * _IFF_ we look at the pure running and runnable sums. Because they 4300 * represent the very same entity, just at different points in the hierarchy. 4301 * 4302 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4303 * and simply copies the running/runnable sum over (but still wrong, because 4304 * the group entity and group rq do not have their PELT windows aligned). 4305 * 4306 * However, update_tg_cfs_load() is more complex. So we have: 4307 * 4308 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4309 * 4310 * And since, like util, the runnable part should be directly transferable, 4311 * the following would _appear_ to be the straight forward approach: 4312 * 4313 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4314 * 4315 * And per (1) we have: 4316 * 4317 * ge->avg.runnable_avg == grq->avg.runnable_avg 4318 * 4319 * Which gives: 4320 * 4321 * ge->load.weight * grq->avg.load_avg 4322 * ge->avg.load_avg = ----------------------------------- (4) 4323 * grq->load.weight 4324 * 4325 * Except that is wrong! 4326 * 4327 * Because while for entities historical weight is not important and we 4328 * really only care about our future and therefore can consider a pure 4329 * runnable sum, runqueues can NOT do this. 4330 * 4331 * We specifically want runqueues to have a load_avg that includes 4332 * historical weights. Those represent the blocked load, the load we expect 4333 * to (shortly) return to us. This only works by keeping the weights as 4334 * integral part of the sum. We therefore cannot decompose as per (3). 4335 * 4336 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4337 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4338 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4339 * runnable section of these tasks overlap (or not). If they were to perfectly 4340 * align the rq as a whole would be runnable 2/3 of the time. If however we 4341 * always have at least 1 runnable task, the rq as a whole is always runnable. 4342 * 4343 * So we'll have to approximate.. :/ 4344 * 4345 * Given the constraint: 4346 * 4347 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4348 * 4349 * We can construct a rule that adds runnable to a rq by assuming minimal 4350 * overlap. 4351 * 4352 * On removal, we'll assume each task is equally runnable; which yields: 4353 * 4354 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4355 * 4356 * XXX: only do this for the part of runnable > running ? 4357 * 4358 */ 4359 static inline void 4360 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4361 { 4362 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4363 u32 new_sum, divider; 4364 4365 /* Nothing to update */ 4366 if (!delta_avg) 4367 return; 4368 4369 /* 4370 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4371 * See ___update_load_avg() for details. 4372 */ 4373 divider = get_pelt_divider(&cfs_rq->avg); 4374 4375 4376 /* Set new sched_entity's utilization */ 4377 se->avg.util_avg = gcfs_rq->avg.util_avg; 4378 new_sum = se->avg.util_avg * divider; 4379 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4380 se->avg.util_sum = new_sum; 4381 4382 /* Update parent cfs_rq utilization */ 4383 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4384 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4385 4386 /* See update_cfs_rq_load_avg() */ 4387 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4388 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4389 } 4390 4391 static inline void 4392 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4393 { 4394 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4395 u32 new_sum, divider; 4396 4397 /* Nothing to update */ 4398 if (!delta_avg) 4399 return; 4400 4401 /* 4402 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4403 * See ___update_load_avg() for details. 4404 */ 4405 divider = get_pelt_divider(&cfs_rq->avg); 4406 4407 /* Set new sched_entity's runnable */ 4408 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4409 new_sum = se->avg.runnable_avg * divider; 4410 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4411 se->avg.runnable_sum = new_sum; 4412 4413 /* Update parent cfs_rq runnable */ 4414 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4415 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4416 /* See update_cfs_rq_load_avg() */ 4417 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4418 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4419 } 4420 4421 static inline void 4422 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4423 { 4424 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4425 unsigned long load_avg; 4426 u64 load_sum = 0; 4427 s64 delta_sum; 4428 u32 divider; 4429 4430 if (!runnable_sum) 4431 return; 4432 4433 gcfs_rq->prop_runnable_sum = 0; 4434 4435 /* 4436 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4437 * See ___update_load_avg() for details. 4438 */ 4439 divider = get_pelt_divider(&cfs_rq->avg); 4440 4441 if (runnable_sum >= 0) { 4442 /* 4443 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4444 * the CPU is saturated running == runnable. 4445 */ 4446 runnable_sum += se->avg.load_sum; 4447 runnable_sum = min_t(long, runnable_sum, divider); 4448 } else { 4449 /* 4450 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4451 * assuming all tasks are equally runnable. 4452 */ 4453 if (scale_load_down(gcfs_rq->load.weight)) { 4454 load_sum = div_u64(gcfs_rq->avg.load_sum, 4455 scale_load_down(gcfs_rq->load.weight)); 4456 } 4457 4458 /* But make sure to not inflate se's runnable */ 4459 runnable_sum = min(se->avg.load_sum, load_sum); 4460 } 4461 4462 /* 4463 * runnable_sum can't be lower than running_sum 4464 * Rescale running sum to be in the same range as runnable sum 4465 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4466 * runnable_sum is in [0 : LOAD_AVG_MAX] 4467 */ 4468 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4469 runnable_sum = max(runnable_sum, running_sum); 4470 4471 load_sum = se_weight(se) * runnable_sum; 4472 load_avg = div_u64(load_sum, divider); 4473 4474 delta_avg = load_avg - se->avg.load_avg; 4475 if (!delta_avg) 4476 return; 4477 4478 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4479 4480 se->avg.load_sum = runnable_sum; 4481 se->avg.load_avg = load_avg; 4482 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4483 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4484 /* See update_cfs_rq_load_avg() */ 4485 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4486 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4487 } 4488 4489 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4490 { 4491 cfs_rq->propagate = 1; 4492 cfs_rq->prop_runnable_sum += runnable_sum; 4493 } 4494 4495 /* Update task and its cfs_rq load average */ 4496 static inline int propagate_entity_load_avg(struct sched_entity *se) 4497 { 4498 struct cfs_rq *cfs_rq, *gcfs_rq; 4499 4500 if (entity_is_task(se)) 4501 return 0; 4502 4503 gcfs_rq = group_cfs_rq(se); 4504 if (!gcfs_rq->propagate) 4505 return 0; 4506 4507 gcfs_rq->propagate = 0; 4508 4509 cfs_rq = cfs_rq_of(se); 4510 4511 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4512 4513 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4514 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4515 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4516 4517 trace_pelt_cfs_tp(cfs_rq); 4518 trace_pelt_se_tp(se); 4519 4520 return 1; 4521 } 4522 4523 /* 4524 * Check if we need to update the load and the utilization of a blocked 4525 * group_entity: 4526 */ 4527 static inline bool skip_blocked_update(struct sched_entity *se) 4528 { 4529 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4530 4531 /* 4532 * If sched_entity still have not zero load or utilization, we have to 4533 * decay it: 4534 */ 4535 if (se->avg.load_avg || se->avg.util_avg) 4536 return false; 4537 4538 /* 4539 * If there is a pending propagation, we have to update the load and 4540 * the utilization of the sched_entity: 4541 */ 4542 if (gcfs_rq->propagate) 4543 return false; 4544 4545 /* 4546 * Otherwise, the load and the utilization of the sched_entity is 4547 * already zero and there is no pending propagation, so it will be a 4548 * waste of time to try to decay it: 4549 */ 4550 return true; 4551 } 4552 4553 #else /* CONFIG_FAIR_GROUP_SCHED */ 4554 4555 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4556 4557 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4558 4559 static inline int propagate_entity_load_avg(struct sched_entity *se) 4560 { 4561 return 0; 4562 } 4563 4564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4565 4566 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4567 4568 #ifdef CONFIG_NO_HZ_COMMON 4569 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4570 { 4571 u64 throttled = 0, now, lut; 4572 struct cfs_rq *cfs_rq; 4573 struct rq *rq; 4574 bool is_idle; 4575 4576 if (load_avg_is_decayed(&se->avg)) 4577 return; 4578 4579 cfs_rq = cfs_rq_of(se); 4580 rq = rq_of(cfs_rq); 4581 4582 rcu_read_lock(); 4583 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4584 rcu_read_unlock(); 4585 4586 /* 4587 * The lag estimation comes with a cost we don't want to pay all the 4588 * time. Hence, limiting to the case where the source CPU is idle and 4589 * we know we are at the greatest risk to have an outdated clock. 4590 */ 4591 if (!is_idle) 4592 return; 4593 4594 /* 4595 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4596 * 4597 * last_update_time (the cfs_rq's last_update_time) 4598 * = cfs_rq_clock_pelt()@cfs_rq_idle 4599 * = rq_clock_pelt()@cfs_rq_idle 4600 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4601 * 4602 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4603 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4604 * 4605 * rq_idle_lag (delta between now and rq's update) 4606 * = sched_clock_cpu() - rq_clock()@rq_idle 4607 * 4608 * We can then write: 4609 * 4610 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4611 * sched_clock_cpu() - rq_clock()@rq_idle 4612 * Where: 4613 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4614 * rq_clock()@rq_idle is rq->clock_idle 4615 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4616 * is cfs_rq->throttled_pelt_idle 4617 */ 4618 4619 #ifdef CONFIG_CFS_BANDWIDTH 4620 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4621 /* The clock has been stopped for throttling */ 4622 if (throttled == U64_MAX) 4623 return; 4624 #endif 4625 now = u64_u32_load(rq->clock_pelt_idle); 4626 /* 4627 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4628 * is observed the old clock_pelt_idle value and the new clock_idle, 4629 * which lead to an underestimation. The opposite would lead to an 4630 * overestimation. 4631 */ 4632 smp_rmb(); 4633 lut = cfs_rq_last_update_time(cfs_rq); 4634 4635 now -= throttled; 4636 if (now < lut) 4637 /* 4638 * cfs_rq->avg.last_update_time is more recent than our 4639 * estimation, let's use it. 4640 */ 4641 now = lut; 4642 else 4643 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4644 4645 __update_load_avg_blocked_se(now, se); 4646 } 4647 #else 4648 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4649 #endif 4650 4651 /** 4652 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4653 * @now: current time, as per cfs_rq_clock_pelt() 4654 * @cfs_rq: cfs_rq to update 4655 * 4656 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4657 * avg. The immediate corollary is that all (fair) tasks must be attached. 4658 * 4659 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4660 * 4661 * Return: true if the load decayed or we removed load. 4662 * 4663 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4664 * call update_tg_load_avg() when this function returns true. 4665 */ 4666 static inline int 4667 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4668 { 4669 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4670 struct sched_avg *sa = &cfs_rq->avg; 4671 int decayed = 0; 4672 4673 if (cfs_rq->removed.nr) { 4674 unsigned long r; 4675 u32 divider = get_pelt_divider(&cfs_rq->avg); 4676 4677 raw_spin_lock(&cfs_rq->removed.lock); 4678 swap(cfs_rq->removed.util_avg, removed_util); 4679 swap(cfs_rq->removed.load_avg, removed_load); 4680 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4681 cfs_rq->removed.nr = 0; 4682 raw_spin_unlock(&cfs_rq->removed.lock); 4683 4684 r = removed_load; 4685 sub_positive(&sa->load_avg, r); 4686 sub_positive(&sa->load_sum, r * divider); 4687 /* See sa->util_sum below */ 4688 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4689 4690 r = removed_util; 4691 sub_positive(&sa->util_avg, r); 4692 sub_positive(&sa->util_sum, r * divider); 4693 /* 4694 * Because of rounding, se->util_sum might ends up being +1 more than 4695 * cfs->util_sum. Although this is not a problem by itself, detaching 4696 * a lot of tasks with the rounding problem between 2 updates of 4697 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4698 * cfs_util_avg is not. 4699 * Check that util_sum is still above its lower bound for the new 4700 * util_avg. Given that period_contrib might have moved since the last 4701 * sync, we are only sure that util_sum must be above or equal to 4702 * util_avg * minimum possible divider 4703 */ 4704 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4705 4706 r = removed_runnable; 4707 sub_positive(&sa->runnable_avg, r); 4708 sub_positive(&sa->runnable_sum, r * divider); 4709 /* See sa->util_sum above */ 4710 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4711 sa->runnable_avg * PELT_MIN_DIVIDER); 4712 4713 /* 4714 * removed_runnable is the unweighted version of removed_load so we 4715 * can use it to estimate removed_load_sum. 4716 */ 4717 add_tg_cfs_propagate(cfs_rq, 4718 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4719 4720 decayed = 1; 4721 } 4722 4723 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4724 u64_u32_store_copy(sa->last_update_time, 4725 cfs_rq->last_update_time_copy, 4726 sa->last_update_time); 4727 return decayed; 4728 } 4729 4730 /** 4731 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4732 * @cfs_rq: cfs_rq to attach to 4733 * @se: sched_entity to attach 4734 * 4735 * Must call update_cfs_rq_load_avg() before this, since we rely on 4736 * cfs_rq->avg.last_update_time being current. 4737 */ 4738 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4739 { 4740 /* 4741 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4742 * See ___update_load_avg() for details. 4743 */ 4744 u32 divider = get_pelt_divider(&cfs_rq->avg); 4745 4746 /* 4747 * When we attach the @se to the @cfs_rq, we must align the decay 4748 * window because without that, really weird and wonderful things can 4749 * happen. 4750 * 4751 * XXX illustrate 4752 */ 4753 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4754 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4755 4756 /* 4757 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4758 * period_contrib. This isn't strictly correct, but since we're 4759 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4760 * _sum a little. 4761 */ 4762 se->avg.util_sum = se->avg.util_avg * divider; 4763 4764 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4765 4766 se->avg.load_sum = se->avg.load_avg * divider; 4767 if (se_weight(se) < se->avg.load_sum) 4768 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4769 else 4770 se->avg.load_sum = 1; 4771 4772 enqueue_load_avg(cfs_rq, se); 4773 cfs_rq->avg.util_avg += se->avg.util_avg; 4774 cfs_rq->avg.util_sum += se->avg.util_sum; 4775 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4776 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4777 4778 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4779 4780 cfs_rq_util_change(cfs_rq, 0); 4781 4782 trace_pelt_cfs_tp(cfs_rq); 4783 } 4784 4785 /** 4786 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4787 * @cfs_rq: cfs_rq to detach from 4788 * @se: sched_entity to detach 4789 * 4790 * Must call update_cfs_rq_load_avg() before this, since we rely on 4791 * cfs_rq->avg.last_update_time being current. 4792 */ 4793 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4794 { 4795 dequeue_load_avg(cfs_rq, se); 4796 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4797 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4798 /* See update_cfs_rq_load_avg() */ 4799 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4800 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4801 4802 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4803 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4804 /* See update_cfs_rq_load_avg() */ 4805 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4806 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4807 4808 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4809 4810 cfs_rq_util_change(cfs_rq, 0); 4811 4812 trace_pelt_cfs_tp(cfs_rq); 4813 } 4814 4815 /* 4816 * Optional action to be done while updating the load average 4817 */ 4818 #define UPDATE_TG 0x1 4819 #define SKIP_AGE_LOAD 0x2 4820 #define DO_ATTACH 0x4 4821 #define DO_DETACH 0x8 4822 4823 /* Update task and its cfs_rq load average */ 4824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4825 { 4826 u64 now = cfs_rq_clock_pelt(cfs_rq); 4827 int decayed; 4828 4829 /* 4830 * Track task load average for carrying it to new CPU after migrated, and 4831 * track group sched_entity load average for task_h_load calculation in migration 4832 */ 4833 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4834 __update_load_avg_se(now, cfs_rq, se); 4835 4836 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4837 decayed |= propagate_entity_load_avg(se); 4838 4839 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4840 4841 /* 4842 * DO_ATTACH means we're here from enqueue_entity(). 4843 * !last_update_time means we've passed through 4844 * migrate_task_rq_fair() indicating we migrated. 4845 * 4846 * IOW we're enqueueing a task on a new CPU. 4847 */ 4848 attach_entity_load_avg(cfs_rq, se); 4849 update_tg_load_avg(cfs_rq); 4850 4851 } else if (flags & DO_DETACH) { 4852 /* 4853 * DO_DETACH means we're here from dequeue_entity() 4854 * and we are migrating task out of the CPU. 4855 */ 4856 detach_entity_load_avg(cfs_rq, se); 4857 update_tg_load_avg(cfs_rq); 4858 } else if (decayed) { 4859 cfs_rq_util_change(cfs_rq, 0); 4860 4861 if (flags & UPDATE_TG) 4862 update_tg_load_avg(cfs_rq); 4863 } 4864 } 4865 4866 /* 4867 * Synchronize entity load avg of dequeued entity without locking 4868 * the previous rq. 4869 */ 4870 static void sync_entity_load_avg(struct sched_entity *se) 4871 { 4872 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4873 u64 last_update_time; 4874 4875 last_update_time = cfs_rq_last_update_time(cfs_rq); 4876 __update_load_avg_blocked_se(last_update_time, se); 4877 } 4878 4879 /* 4880 * Task first catches up with cfs_rq, and then subtract 4881 * itself from the cfs_rq (task must be off the queue now). 4882 */ 4883 static void remove_entity_load_avg(struct sched_entity *se) 4884 { 4885 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4886 unsigned long flags; 4887 4888 /* 4889 * tasks cannot exit without having gone through wake_up_new_task() -> 4890 * enqueue_task_fair() which will have added things to the cfs_rq, 4891 * so we can remove unconditionally. 4892 */ 4893 4894 sync_entity_load_avg(se); 4895 4896 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4897 ++cfs_rq->removed.nr; 4898 cfs_rq->removed.util_avg += se->avg.util_avg; 4899 cfs_rq->removed.load_avg += se->avg.load_avg; 4900 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4901 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4902 } 4903 4904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4905 { 4906 return cfs_rq->avg.runnable_avg; 4907 } 4908 4909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4910 { 4911 return cfs_rq->avg.load_avg; 4912 } 4913 4914 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4915 4916 static inline unsigned long task_util(struct task_struct *p) 4917 { 4918 return READ_ONCE(p->se.avg.util_avg); 4919 } 4920 4921 static inline unsigned long task_runnable(struct task_struct *p) 4922 { 4923 return READ_ONCE(p->se.avg.runnable_avg); 4924 } 4925 4926 static inline unsigned long _task_util_est(struct task_struct *p) 4927 { 4928 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4929 } 4930 4931 static inline unsigned long task_util_est(struct task_struct *p) 4932 { 4933 return max(task_util(p), _task_util_est(p)); 4934 } 4935 4936 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4937 struct task_struct *p) 4938 { 4939 unsigned int enqueued; 4940 4941 if (!sched_feat(UTIL_EST)) 4942 return; 4943 4944 /* Update root cfs_rq's estimated utilization */ 4945 enqueued = cfs_rq->avg.util_est; 4946 enqueued += _task_util_est(p); 4947 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4948 4949 trace_sched_util_est_cfs_tp(cfs_rq); 4950 } 4951 4952 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4953 struct task_struct *p) 4954 { 4955 unsigned int enqueued; 4956 4957 if (!sched_feat(UTIL_EST)) 4958 return; 4959 4960 /* Update root cfs_rq's estimated utilization */ 4961 enqueued = cfs_rq->avg.util_est; 4962 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4963 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4964 4965 trace_sched_util_est_cfs_tp(cfs_rq); 4966 } 4967 4968 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4969 4970 static inline void util_est_update(struct cfs_rq *cfs_rq, 4971 struct task_struct *p, 4972 bool task_sleep) 4973 { 4974 unsigned int ewma, dequeued, last_ewma_diff; 4975 4976 if (!sched_feat(UTIL_EST)) 4977 return; 4978 4979 /* 4980 * Skip update of task's estimated utilization when the task has not 4981 * yet completed an activation, e.g. being migrated. 4982 */ 4983 if (!task_sleep) 4984 return; 4985 4986 /* Get current estimate of utilization */ 4987 ewma = READ_ONCE(p->se.avg.util_est); 4988 4989 /* 4990 * If the PELT values haven't changed since enqueue time, 4991 * skip the util_est update. 4992 */ 4993 if (ewma & UTIL_AVG_UNCHANGED) 4994 return; 4995 4996 /* Get utilization at dequeue */ 4997 dequeued = task_util(p); 4998 4999 /* 5000 * Reset EWMA on utilization increases, the moving average is used only 5001 * to smooth utilization decreases. 5002 */ 5003 if (ewma <= dequeued) { 5004 ewma = dequeued; 5005 goto done; 5006 } 5007 5008 /* 5009 * Skip update of task's estimated utilization when its members are 5010 * already ~1% close to its last activation value. 5011 */ 5012 last_ewma_diff = ewma - dequeued; 5013 if (last_ewma_diff < UTIL_EST_MARGIN) 5014 goto done; 5015 5016 /* 5017 * To avoid overestimation of actual task utilization, skip updates if 5018 * we cannot grant there is idle time in this CPU. 5019 */ 5020 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 5021 return; 5022 5023 /* 5024 * To avoid underestimate of task utilization, skip updates of EWMA if 5025 * we cannot grant that thread got all CPU time it wanted. 5026 */ 5027 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 5028 goto done; 5029 5030 5031 /* 5032 * Update Task's estimated utilization 5033 * 5034 * When *p completes an activation we can consolidate another sample 5035 * of the task size. This is done by using this value to update the 5036 * Exponential Weighted Moving Average (EWMA): 5037 * 5038 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 5039 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 5040 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 5041 * = w * ( -last_ewma_diff ) + ewma(t-1) 5042 * = w * (-last_ewma_diff + ewma(t-1) / w) 5043 * 5044 * Where 'w' is the weight of new samples, which is configured to be 5045 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 5046 */ 5047 ewma <<= UTIL_EST_WEIGHT_SHIFT; 5048 ewma -= last_ewma_diff; 5049 ewma >>= UTIL_EST_WEIGHT_SHIFT; 5050 done: 5051 ewma |= UTIL_AVG_UNCHANGED; 5052 WRITE_ONCE(p->se.avg.util_est, ewma); 5053 5054 trace_sched_util_est_se_tp(&p->se); 5055 } 5056 5057 static inline unsigned long get_actual_cpu_capacity(int cpu) 5058 { 5059 unsigned long capacity = arch_scale_cpu_capacity(cpu); 5060 5061 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 5062 5063 return capacity; 5064 } 5065 5066 static inline int util_fits_cpu(unsigned long util, 5067 unsigned long uclamp_min, 5068 unsigned long uclamp_max, 5069 int cpu) 5070 { 5071 unsigned long capacity = capacity_of(cpu); 5072 unsigned long capacity_orig; 5073 bool fits, uclamp_max_fits; 5074 5075 /* 5076 * Check if the real util fits without any uclamp boost/cap applied. 5077 */ 5078 fits = fits_capacity(util, capacity); 5079 5080 if (!uclamp_is_used()) 5081 return fits; 5082 5083 /* 5084 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5085 * uclamp_max. We only care about capacity pressure (by using 5086 * capacity_of()) for comparing against the real util. 5087 * 5088 * If a task is boosted to 1024 for example, we don't want a tiny 5089 * pressure to skew the check whether it fits a CPU or not. 5090 * 5091 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5092 * should fit a little cpu even if there's some pressure. 5093 * 5094 * Only exception is for HW or cpufreq pressure since it has a direct impact 5095 * on available OPP of the system. 5096 * 5097 * We honour it for uclamp_min only as a drop in performance level 5098 * could result in not getting the requested minimum performance level. 5099 * 5100 * For uclamp_max, we can tolerate a drop in performance level as the 5101 * goal is to cap the task. So it's okay if it's getting less. 5102 */ 5103 capacity_orig = arch_scale_cpu_capacity(cpu); 5104 5105 /* 5106 * We want to force a task to fit a cpu as implied by uclamp_max. 5107 * But we do have some corner cases to cater for.. 5108 * 5109 * 5110 * C=z 5111 * | ___ 5112 * | C=y | | 5113 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5114 * | C=x | | | | 5115 * | ___ | | | | 5116 * | | | | | | | (util somewhere in this region) 5117 * | | | | | | | 5118 * | | | | | | | 5119 * +---------------------------------------- 5120 * CPU0 CPU1 CPU2 5121 * 5122 * In the above example if a task is capped to a specific performance 5123 * point, y, then when: 5124 * 5125 * * util = 80% of x then it does not fit on CPU0 and should migrate 5126 * to CPU1 5127 * * util = 80% of y then it is forced to fit on CPU1 to honour 5128 * uclamp_max request. 5129 * 5130 * which is what we're enforcing here. A task always fits if 5131 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5132 * the normal upmigration rules should withhold still. 5133 * 5134 * Only exception is when we are on max capacity, then we need to be 5135 * careful not to block overutilized state. This is so because: 5136 * 5137 * 1. There's no concept of capping at max_capacity! We can't go 5138 * beyond this performance level anyway. 5139 * 2. The system is being saturated when we're operating near 5140 * max capacity, it doesn't make sense to block overutilized. 5141 */ 5142 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5143 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5144 fits = fits || uclamp_max_fits; 5145 5146 /* 5147 * 5148 * C=z 5149 * | ___ (region a, capped, util >= uclamp_max) 5150 * | C=y | | 5151 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5152 * | C=x | | | | 5153 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5154 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5155 * | | | | | | | 5156 * | | | | | | | (region c, boosted, util < uclamp_min) 5157 * +---------------------------------------- 5158 * CPU0 CPU1 CPU2 5159 * 5160 * a) If util > uclamp_max, then we're capped, we don't care about 5161 * actual fitness value here. We only care if uclamp_max fits 5162 * capacity without taking margin/pressure into account. 5163 * See comment above. 5164 * 5165 * b) If uclamp_min <= util <= uclamp_max, then the normal 5166 * fits_capacity() rules apply. Except we need to ensure that we 5167 * enforce we remain within uclamp_max, see comment above. 5168 * 5169 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5170 * need to take into account the boosted value fits the CPU without 5171 * taking margin/pressure into account. 5172 * 5173 * Cases (a) and (b) are handled in the 'fits' variable already. We 5174 * just need to consider an extra check for case (c) after ensuring we 5175 * handle the case uclamp_min > uclamp_max. 5176 */ 5177 uclamp_min = min(uclamp_min, uclamp_max); 5178 if (fits && (util < uclamp_min) && 5179 (uclamp_min > get_actual_cpu_capacity(cpu))) 5180 return -1; 5181 5182 return fits; 5183 } 5184 5185 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5186 { 5187 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5188 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5189 unsigned long util = task_util_est(p); 5190 /* 5191 * Return true only if the cpu fully fits the task requirements, which 5192 * include the utilization but also the performance hints. 5193 */ 5194 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5195 } 5196 5197 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5198 { 5199 int cpu = cpu_of(rq); 5200 5201 if (!sched_asym_cpucap_active()) 5202 return; 5203 5204 /* 5205 * Affinity allows us to go somewhere higher? Or are we on biggest 5206 * available CPU already? Or do we fit into this CPU ? 5207 */ 5208 if (!p || (p->nr_cpus_allowed == 1) || 5209 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5210 task_fits_cpu(p, cpu)) { 5211 5212 rq->misfit_task_load = 0; 5213 return; 5214 } 5215 5216 /* 5217 * Make sure that misfit_task_load will not be null even if 5218 * task_h_load() returns 0. 5219 */ 5220 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5221 } 5222 5223 #else /* CONFIG_SMP */ 5224 5225 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5226 { 5227 return !cfs_rq->nr_running; 5228 } 5229 5230 #define UPDATE_TG 0x0 5231 #define SKIP_AGE_LOAD 0x0 5232 #define DO_ATTACH 0x0 5233 #define DO_DETACH 0x0 5234 5235 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5236 { 5237 cfs_rq_util_change(cfs_rq, 0); 5238 } 5239 5240 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5241 5242 static inline void 5243 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5244 static inline void 5245 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5246 5247 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5248 { 5249 return 0; 5250 } 5251 5252 static inline void 5253 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5254 5255 static inline void 5256 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5257 5258 static inline void 5259 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5260 bool task_sleep) {} 5261 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5262 5263 #endif /* CONFIG_SMP */ 5264 5265 static void 5266 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5267 { 5268 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5269 s64 lag = 0; 5270 5271 if (!se->custom_slice) 5272 se->slice = sysctl_sched_base_slice; 5273 vslice = calc_delta_fair(se->slice, se); 5274 5275 /* 5276 * Due to how V is constructed as the weighted average of entities, 5277 * adding tasks with positive lag, or removing tasks with negative lag 5278 * will move 'time' backwards, this can screw around with the lag of 5279 * other tasks. 5280 * 5281 * EEVDF: placement strategy #1 / #2 5282 */ 5283 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5284 struct sched_entity *curr = cfs_rq->curr; 5285 unsigned long load; 5286 5287 lag = se->vlag; 5288 5289 /* 5290 * If we want to place a task and preserve lag, we have to 5291 * consider the effect of the new entity on the weighted 5292 * average and compensate for this, otherwise lag can quickly 5293 * evaporate. 5294 * 5295 * Lag is defined as: 5296 * 5297 * lag_i = S - s_i = w_i * (V - v_i) 5298 * 5299 * To avoid the 'w_i' term all over the place, we only track 5300 * the virtual lag: 5301 * 5302 * vl_i = V - v_i <=> v_i = V - vl_i 5303 * 5304 * And we take V to be the weighted average of all v: 5305 * 5306 * V = (\Sum w_j*v_j) / W 5307 * 5308 * Where W is: \Sum w_j 5309 * 5310 * Then, the weighted average after adding an entity with lag 5311 * vl_i is given by: 5312 * 5313 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5314 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5315 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5316 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5317 * = V - w_i*vl_i / (W + w_i) 5318 * 5319 * And the actual lag after adding an entity with vl_i is: 5320 * 5321 * vl'_i = V' - v_i 5322 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5323 * = vl_i - w_i*vl_i / (W + w_i) 5324 * 5325 * Which is strictly less than vl_i. So in order to preserve lag 5326 * we should inflate the lag before placement such that the 5327 * effective lag after placement comes out right. 5328 * 5329 * As such, invert the above relation for vl'_i to get the vl_i 5330 * we need to use such that the lag after placement is the lag 5331 * we computed before dequeue. 5332 * 5333 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5334 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5335 * 5336 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5337 * = W*vl_i 5338 * 5339 * vl_i = (W + w_i)*vl'_i / W 5340 */ 5341 load = cfs_rq->avg_load; 5342 if (curr && curr->on_rq) 5343 load += scale_load_down(curr->load.weight); 5344 5345 lag *= load + scale_load_down(se->load.weight); 5346 if (WARN_ON_ONCE(!load)) 5347 load = 1; 5348 lag = div_s64(lag, load); 5349 } 5350 5351 se->vruntime = vruntime - lag; 5352 5353 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) { 5354 se->deadline += se->vruntime; 5355 se->rel_deadline = 0; 5356 return; 5357 } 5358 5359 /* 5360 * When joining the competition; the existing tasks will be, 5361 * on average, halfway through their slice, as such start tasks 5362 * off with half a slice to ease into the competition. 5363 */ 5364 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5365 vslice /= 2; 5366 5367 /* 5368 * EEVDF: vd_i = ve_i + r_i/w_i 5369 */ 5370 se->deadline = se->vruntime + vslice; 5371 } 5372 5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5374 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5375 5376 static inline bool cfs_bandwidth_used(void); 5377 5378 static void 5379 requeue_delayed_entity(struct sched_entity *se); 5380 5381 static void 5382 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5383 { 5384 bool curr = cfs_rq->curr == se; 5385 5386 /* 5387 * If we're the current task, we must renormalise before calling 5388 * update_curr(). 5389 */ 5390 if (curr) 5391 place_entity(cfs_rq, se, flags); 5392 5393 update_curr(cfs_rq); 5394 5395 /* 5396 * When enqueuing a sched_entity, we must: 5397 * - Update loads to have both entity and cfs_rq synced with now. 5398 * - For group_entity, update its runnable_weight to reflect the new 5399 * h_nr_running of its group cfs_rq. 5400 * - For group_entity, update its weight to reflect the new share of 5401 * its group cfs_rq 5402 * - Add its new weight to cfs_rq->load.weight 5403 */ 5404 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5405 se_update_runnable(se); 5406 /* 5407 * XXX update_load_avg() above will have attached us to the pelt sum; 5408 * but update_cfs_group() here will re-adjust the weight and have to 5409 * undo/redo all that. Seems wasteful. 5410 */ 5411 update_cfs_group(se); 5412 5413 /* 5414 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5415 * we can place the entity. 5416 */ 5417 if (!curr) 5418 place_entity(cfs_rq, se, flags); 5419 5420 account_entity_enqueue(cfs_rq, se); 5421 5422 /* Entity has migrated, no longer consider this task hot */ 5423 if (flags & ENQUEUE_MIGRATED) 5424 se->exec_start = 0; 5425 5426 check_schedstat_required(); 5427 update_stats_enqueue_fair(cfs_rq, se, flags); 5428 if (!curr) 5429 __enqueue_entity(cfs_rq, se); 5430 se->on_rq = 1; 5431 5432 if (cfs_rq->nr_running == 1) { 5433 check_enqueue_throttle(cfs_rq); 5434 if (!throttled_hierarchy(cfs_rq)) { 5435 list_add_leaf_cfs_rq(cfs_rq); 5436 } else { 5437 #ifdef CONFIG_CFS_BANDWIDTH 5438 struct rq *rq = rq_of(cfs_rq); 5439 5440 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5441 cfs_rq->throttled_clock = rq_clock(rq); 5442 if (!cfs_rq->throttled_clock_self) 5443 cfs_rq->throttled_clock_self = rq_clock(rq); 5444 #endif 5445 } 5446 } 5447 } 5448 5449 static void __clear_buddies_next(struct sched_entity *se) 5450 { 5451 for_each_sched_entity(se) { 5452 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5453 if (cfs_rq->next != se) 5454 break; 5455 5456 cfs_rq->next = NULL; 5457 } 5458 } 5459 5460 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5461 { 5462 if (cfs_rq->next == se) 5463 __clear_buddies_next(se); 5464 } 5465 5466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5467 5468 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5469 { 5470 se->sched_delayed = 0; 5471 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5472 se->vlag = 0; 5473 } 5474 5475 static bool 5476 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5477 { 5478 bool sleep = flags & DEQUEUE_SLEEP; 5479 5480 update_curr(cfs_rq); 5481 5482 if (flags & DEQUEUE_DELAYED) { 5483 SCHED_WARN_ON(!se->sched_delayed); 5484 } else { 5485 bool delay = sleep; 5486 /* 5487 * DELAY_DEQUEUE relies on spurious wakeups, special task 5488 * states must not suffer spurious wakeups, excempt them. 5489 */ 5490 if (flags & DEQUEUE_SPECIAL) 5491 delay = false; 5492 5493 SCHED_WARN_ON(delay && se->sched_delayed); 5494 5495 if (sched_feat(DELAY_DEQUEUE) && delay && 5496 !entity_eligible(cfs_rq, se)) { 5497 if (cfs_rq->next == se) 5498 cfs_rq->next = NULL; 5499 update_load_avg(cfs_rq, se, 0); 5500 se->sched_delayed = 1; 5501 return false; 5502 } 5503 } 5504 5505 int action = UPDATE_TG; 5506 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5507 action |= DO_DETACH; 5508 5509 /* 5510 * When dequeuing a sched_entity, we must: 5511 * - Update loads to have both entity and cfs_rq synced with now. 5512 * - For group_entity, update its runnable_weight to reflect the new 5513 * h_nr_running of its group cfs_rq. 5514 * - Subtract its previous weight from cfs_rq->load.weight. 5515 * - For group entity, update its weight to reflect the new share 5516 * of its group cfs_rq. 5517 */ 5518 update_load_avg(cfs_rq, se, action); 5519 se_update_runnable(se); 5520 5521 update_stats_dequeue_fair(cfs_rq, se, flags); 5522 5523 clear_buddies(cfs_rq, se); 5524 5525 update_entity_lag(cfs_rq, se); 5526 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5527 se->deadline -= se->vruntime; 5528 se->rel_deadline = 1; 5529 } 5530 5531 if (se != cfs_rq->curr) 5532 __dequeue_entity(cfs_rq, se); 5533 se->on_rq = 0; 5534 account_entity_dequeue(cfs_rq, se); 5535 5536 /* return excess runtime on last dequeue */ 5537 return_cfs_rq_runtime(cfs_rq); 5538 5539 update_cfs_group(se); 5540 5541 /* 5542 * Now advance min_vruntime if @se was the entity holding it back, 5543 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5544 * put back on, and if we advance min_vruntime, we'll be placed back 5545 * further than we started -- i.e. we'll be penalized. 5546 */ 5547 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5548 update_min_vruntime(cfs_rq); 5549 5550 if (flags & DEQUEUE_DELAYED) 5551 finish_delayed_dequeue_entity(se); 5552 5553 if (cfs_rq->nr_running == 0) 5554 update_idle_cfs_rq_clock_pelt(cfs_rq); 5555 5556 return true; 5557 } 5558 5559 static void 5560 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5561 { 5562 clear_buddies(cfs_rq, se); 5563 5564 /* 'current' is not kept within the tree. */ 5565 if (se->on_rq) { 5566 /* 5567 * Any task has to be enqueued before it get to execute on 5568 * a CPU. So account for the time it spent waiting on the 5569 * runqueue. 5570 */ 5571 update_stats_wait_end_fair(cfs_rq, se); 5572 __dequeue_entity(cfs_rq, se); 5573 update_load_avg(cfs_rq, se, UPDATE_TG); 5574 /* 5575 * HACK, stash a copy of deadline at the point of pick in vlag, 5576 * which isn't used until dequeue. 5577 */ 5578 se->vlag = se->deadline; 5579 } 5580 5581 update_stats_curr_start(cfs_rq, se); 5582 SCHED_WARN_ON(cfs_rq->curr); 5583 cfs_rq->curr = se; 5584 5585 /* 5586 * Track our maximum slice length, if the CPU's load is at 5587 * least twice that of our own weight (i.e. don't track it 5588 * when there are only lesser-weight tasks around): 5589 */ 5590 if (schedstat_enabled() && 5591 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5592 struct sched_statistics *stats; 5593 5594 stats = __schedstats_from_se(se); 5595 __schedstat_set(stats->slice_max, 5596 max((u64)stats->slice_max, 5597 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5598 } 5599 5600 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5601 } 5602 5603 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5604 5605 /* 5606 * Pick the next process, keeping these things in mind, in this order: 5607 * 1) keep things fair between processes/task groups 5608 * 2) pick the "next" process, since someone really wants that to run 5609 * 3) pick the "last" process, for cache locality 5610 * 4) do not run the "skip" process, if something else is available 5611 */ 5612 static struct sched_entity * 5613 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5614 { 5615 /* 5616 * Enabling NEXT_BUDDY will affect latency but not fairness. 5617 */ 5618 if (sched_feat(NEXT_BUDDY) && 5619 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5620 /* ->next will never be delayed */ 5621 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5622 return cfs_rq->next; 5623 } 5624 5625 struct sched_entity *se = pick_eevdf(cfs_rq); 5626 if (se->sched_delayed) { 5627 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5628 SCHED_WARN_ON(se->sched_delayed); 5629 SCHED_WARN_ON(se->on_rq); 5630 return NULL; 5631 } 5632 return se; 5633 } 5634 5635 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5636 5637 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5638 { 5639 /* 5640 * If still on the runqueue then deactivate_task() 5641 * was not called and update_curr() has to be done: 5642 */ 5643 if (prev->on_rq) 5644 update_curr(cfs_rq); 5645 5646 /* throttle cfs_rqs exceeding runtime */ 5647 check_cfs_rq_runtime(cfs_rq); 5648 5649 if (prev->on_rq) { 5650 update_stats_wait_start_fair(cfs_rq, prev); 5651 /* Put 'current' back into the tree. */ 5652 __enqueue_entity(cfs_rq, prev); 5653 /* in !on_rq case, update occurred at dequeue */ 5654 update_load_avg(cfs_rq, prev, 0); 5655 } 5656 SCHED_WARN_ON(cfs_rq->curr != prev); 5657 cfs_rq->curr = NULL; 5658 } 5659 5660 static void 5661 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5662 { 5663 /* 5664 * Update run-time statistics of the 'current'. 5665 */ 5666 update_curr(cfs_rq); 5667 5668 /* 5669 * Ensure that runnable average is periodically updated. 5670 */ 5671 update_load_avg(cfs_rq, curr, UPDATE_TG); 5672 update_cfs_group(curr); 5673 5674 #ifdef CONFIG_SCHED_HRTICK 5675 /* 5676 * queued ticks are scheduled to match the slice, so don't bother 5677 * validating it and just reschedule. 5678 */ 5679 if (queued) { 5680 resched_curr(rq_of(cfs_rq)); 5681 return; 5682 } 5683 /* 5684 * don't let the period tick interfere with the hrtick preemption 5685 */ 5686 if (!sched_feat(DOUBLE_TICK) && 5687 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5688 return; 5689 #endif 5690 } 5691 5692 5693 /************************************************** 5694 * CFS bandwidth control machinery 5695 */ 5696 5697 #ifdef CONFIG_CFS_BANDWIDTH 5698 5699 #ifdef CONFIG_JUMP_LABEL 5700 static struct static_key __cfs_bandwidth_used; 5701 5702 static inline bool cfs_bandwidth_used(void) 5703 { 5704 return static_key_false(&__cfs_bandwidth_used); 5705 } 5706 5707 void cfs_bandwidth_usage_inc(void) 5708 { 5709 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5710 } 5711 5712 void cfs_bandwidth_usage_dec(void) 5713 { 5714 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5715 } 5716 #else /* CONFIG_JUMP_LABEL */ 5717 static bool cfs_bandwidth_used(void) 5718 { 5719 return true; 5720 } 5721 5722 void cfs_bandwidth_usage_inc(void) {} 5723 void cfs_bandwidth_usage_dec(void) {} 5724 #endif /* CONFIG_JUMP_LABEL */ 5725 5726 /* 5727 * default period for cfs group bandwidth. 5728 * default: 0.1s, units: nanoseconds 5729 */ 5730 static inline u64 default_cfs_period(void) 5731 { 5732 return 100000000ULL; 5733 } 5734 5735 static inline u64 sched_cfs_bandwidth_slice(void) 5736 { 5737 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5738 } 5739 5740 /* 5741 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5742 * directly instead of rq->clock to avoid adding additional synchronization 5743 * around rq->lock. 5744 * 5745 * requires cfs_b->lock 5746 */ 5747 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5748 { 5749 s64 runtime; 5750 5751 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5752 return; 5753 5754 cfs_b->runtime += cfs_b->quota; 5755 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5756 if (runtime > 0) { 5757 cfs_b->burst_time += runtime; 5758 cfs_b->nr_burst++; 5759 } 5760 5761 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5762 cfs_b->runtime_snap = cfs_b->runtime; 5763 } 5764 5765 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5766 { 5767 return &tg->cfs_bandwidth; 5768 } 5769 5770 /* returns 0 on failure to allocate runtime */ 5771 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5772 struct cfs_rq *cfs_rq, u64 target_runtime) 5773 { 5774 u64 min_amount, amount = 0; 5775 5776 lockdep_assert_held(&cfs_b->lock); 5777 5778 /* note: this is a positive sum as runtime_remaining <= 0 */ 5779 min_amount = target_runtime - cfs_rq->runtime_remaining; 5780 5781 if (cfs_b->quota == RUNTIME_INF) 5782 amount = min_amount; 5783 else { 5784 start_cfs_bandwidth(cfs_b); 5785 5786 if (cfs_b->runtime > 0) { 5787 amount = min(cfs_b->runtime, min_amount); 5788 cfs_b->runtime -= amount; 5789 cfs_b->idle = 0; 5790 } 5791 } 5792 5793 cfs_rq->runtime_remaining += amount; 5794 5795 return cfs_rq->runtime_remaining > 0; 5796 } 5797 5798 /* returns 0 on failure to allocate runtime */ 5799 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5800 { 5801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5802 int ret; 5803 5804 raw_spin_lock(&cfs_b->lock); 5805 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5806 raw_spin_unlock(&cfs_b->lock); 5807 5808 return ret; 5809 } 5810 5811 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5812 { 5813 /* dock delta_exec before expiring quota (as it could span periods) */ 5814 cfs_rq->runtime_remaining -= delta_exec; 5815 5816 if (likely(cfs_rq->runtime_remaining > 0)) 5817 return; 5818 5819 if (cfs_rq->throttled) 5820 return; 5821 /* 5822 * if we're unable to extend our runtime we resched so that the active 5823 * hierarchy can be throttled 5824 */ 5825 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5826 resched_curr(rq_of(cfs_rq)); 5827 } 5828 5829 static __always_inline 5830 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5831 { 5832 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5833 return; 5834 5835 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5836 } 5837 5838 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5839 { 5840 return cfs_bandwidth_used() && cfs_rq->throttled; 5841 } 5842 5843 /* check whether cfs_rq, or any parent, is throttled */ 5844 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5845 { 5846 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5847 } 5848 5849 /* 5850 * Ensure that neither of the group entities corresponding to src_cpu or 5851 * dest_cpu are members of a throttled hierarchy when performing group 5852 * load-balance operations. 5853 */ 5854 static inline int throttled_lb_pair(struct task_group *tg, 5855 int src_cpu, int dest_cpu) 5856 { 5857 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5858 5859 src_cfs_rq = tg->cfs_rq[src_cpu]; 5860 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5861 5862 return throttled_hierarchy(src_cfs_rq) || 5863 throttled_hierarchy(dest_cfs_rq); 5864 } 5865 5866 static int tg_unthrottle_up(struct task_group *tg, void *data) 5867 { 5868 struct rq *rq = data; 5869 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5870 5871 cfs_rq->throttle_count--; 5872 if (!cfs_rq->throttle_count) { 5873 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5874 cfs_rq->throttled_clock_pelt; 5875 5876 /* Add cfs_rq with load or one or more already running entities to the list */ 5877 if (!cfs_rq_is_decayed(cfs_rq)) 5878 list_add_leaf_cfs_rq(cfs_rq); 5879 5880 if (cfs_rq->throttled_clock_self) { 5881 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5882 5883 cfs_rq->throttled_clock_self = 0; 5884 5885 if (SCHED_WARN_ON((s64)delta < 0)) 5886 delta = 0; 5887 5888 cfs_rq->throttled_clock_self_time += delta; 5889 } 5890 } 5891 5892 return 0; 5893 } 5894 5895 static int tg_throttle_down(struct task_group *tg, void *data) 5896 { 5897 struct rq *rq = data; 5898 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5899 5900 /* group is entering throttled state, stop time */ 5901 if (!cfs_rq->throttle_count) { 5902 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5903 list_del_leaf_cfs_rq(cfs_rq); 5904 5905 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5906 if (cfs_rq->nr_running) 5907 cfs_rq->throttled_clock_self = rq_clock(rq); 5908 } 5909 cfs_rq->throttle_count++; 5910 5911 return 0; 5912 } 5913 5914 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5915 { 5916 struct rq *rq = rq_of(cfs_rq); 5917 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5918 struct sched_entity *se; 5919 long task_delta, idle_task_delta, dequeue = 1; 5920 long rq_h_nr_running = rq->cfs.h_nr_running; 5921 5922 raw_spin_lock(&cfs_b->lock); 5923 /* This will start the period timer if necessary */ 5924 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5925 /* 5926 * We have raced with bandwidth becoming available, and if we 5927 * actually throttled the timer might not unthrottle us for an 5928 * entire period. We additionally needed to make sure that any 5929 * subsequent check_cfs_rq_runtime calls agree not to throttle 5930 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5931 * for 1ns of runtime rather than just check cfs_b. 5932 */ 5933 dequeue = 0; 5934 } else { 5935 list_add_tail_rcu(&cfs_rq->throttled_list, 5936 &cfs_b->throttled_cfs_rq); 5937 } 5938 raw_spin_unlock(&cfs_b->lock); 5939 5940 if (!dequeue) 5941 return false; /* Throttle no longer required. */ 5942 5943 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5944 5945 /* freeze hierarchy runnable averages while throttled */ 5946 rcu_read_lock(); 5947 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5948 rcu_read_unlock(); 5949 5950 task_delta = cfs_rq->h_nr_running; 5951 idle_task_delta = cfs_rq->idle_h_nr_running; 5952 for_each_sched_entity(se) { 5953 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5954 int flags; 5955 5956 /* throttled entity or throttle-on-deactivate */ 5957 if (!se->on_rq) 5958 goto done; 5959 5960 /* 5961 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5962 * This avoids teaching dequeue_entities() about throttled 5963 * entities and keeps things relatively simple. 5964 */ 5965 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5966 if (se->sched_delayed) 5967 flags |= DEQUEUE_DELAYED; 5968 dequeue_entity(qcfs_rq, se, flags); 5969 5970 if (cfs_rq_is_idle(group_cfs_rq(se))) 5971 idle_task_delta = cfs_rq->h_nr_running; 5972 5973 qcfs_rq->h_nr_running -= task_delta; 5974 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5975 5976 if (qcfs_rq->load.weight) { 5977 /* Avoid re-evaluating load for this entity: */ 5978 se = parent_entity(se); 5979 break; 5980 } 5981 } 5982 5983 for_each_sched_entity(se) { 5984 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5985 /* throttled entity or throttle-on-deactivate */ 5986 if (!se->on_rq) 5987 goto done; 5988 5989 update_load_avg(qcfs_rq, se, 0); 5990 se_update_runnable(se); 5991 5992 if (cfs_rq_is_idle(group_cfs_rq(se))) 5993 idle_task_delta = cfs_rq->h_nr_running; 5994 5995 qcfs_rq->h_nr_running -= task_delta; 5996 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5997 } 5998 5999 /* At this point se is NULL and we are at root level*/ 6000 sub_nr_running(rq, task_delta); 6001 6002 /* Stop the fair server if throttling resulted in no runnable tasks */ 6003 if (rq_h_nr_running && !rq->cfs.h_nr_running) 6004 dl_server_stop(&rq->fair_server); 6005 done: 6006 /* 6007 * Note: distribution will already see us throttled via the 6008 * throttled-list. rq->lock protects completion. 6009 */ 6010 cfs_rq->throttled = 1; 6011 SCHED_WARN_ON(cfs_rq->throttled_clock); 6012 if (cfs_rq->nr_running) 6013 cfs_rq->throttled_clock = rq_clock(rq); 6014 return true; 6015 } 6016 6017 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 6018 { 6019 struct rq *rq = rq_of(cfs_rq); 6020 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6021 struct sched_entity *se; 6022 long task_delta, idle_task_delta; 6023 long rq_h_nr_running = rq->cfs.h_nr_running; 6024 6025 se = cfs_rq->tg->se[cpu_of(rq)]; 6026 6027 cfs_rq->throttled = 0; 6028 6029 update_rq_clock(rq); 6030 6031 raw_spin_lock(&cfs_b->lock); 6032 if (cfs_rq->throttled_clock) { 6033 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6034 cfs_rq->throttled_clock = 0; 6035 } 6036 list_del_rcu(&cfs_rq->throttled_list); 6037 raw_spin_unlock(&cfs_b->lock); 6038 6039 /* update hierarchical throttle state */ 6040 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6041 6042 if (!cfs_rq->load.weight) { 6043 if (!cfs_rq->on_list) 6044 return; 6045 /* 6046 * Nothing to run but something to decay (on_list)? 6047 * Complete the branch. 6048 */ 6049 for_each_sched_entity(se) { 6050 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6051 break; 6052 } 6053 goto unthrottle_throttle; 6054 } 6055 6056 task_delta = cfs_rq->h_nr_running; 6057 idle_task_delta = cfs_rq->idle_h_nr_running; 6058 for_each_sched_entity(se) { 6059 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6060 6061 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6062 if (se->sched_delayed) { 6063 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6064 6065 dequeue_entity(qcfs_rq, se, flags); 6066 } else if (se->on_rq) 6067 break; 6068 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6069 6070 if (cfs_rq_is_idle(group_cfs_rq(se))) 6071 idle_task_delta = cfs_rq->h_nr_running; 6072 6073 qcfs_rq->h_nr_running += task_delta; 6074 qcfs_rq->idle_h_nr_running += idle_task_delta; 6075 6076 /* end evaluation on encountering a throttled cfs_rq */ 6077 if (cfs_rq_throttled(qcfs_rq)) 6078 goto unthrottle_throttle; 6079 } 6080 6081 for_each_sched_entity(se) { 6082 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6083 6084 update_load_avg(qcfs_rq, se, UPDATE_TG); 6085 se_update_runnable(se); 6086 6087 if (cfs_rq_is_idle(group_cfs_rq(se))) 6088 idle_task_delta = cfs_rq->h_nr_running; 6089 6090 qcfs_rq->h_nr_running += task_delta; 6091 qcfs_rq->idle_h_nr_running += idle_task_delta; 6092 6093 /* end evaluation on encountering a throttled cfs_rq */ 6094 if (cfs_rq_throttled(qcfs_rq)) 6095 goto unthrottle_throttle; 6096 } 6097 6098 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6099 if (!rq_h_nr_running && rq->cfs.h_nr_running) 6100 dl_server_start(&rq->fair_server); 6101 6102 /* At this point se is NULL and we are at root level*/ 6103 add_nr_running(rq, task_delta); 6104 6105 unthrottle_throttle: 6106 assert_list_leaf_cfs_rq(rq); 6107 6108 /* Determine whether we need to wake up potentially idle CPU: */ 6109 if (rq->curr == rq->idle && rq->cfs.nr_running) 6110 resched_curr(rq); 6111 } 6112 6113 #ifdef CONFIG_SMP 6114 static void __cfsb_csd_unthrottle(void *arg) 6115 { 6116 struct cfs_rq *cursor, *tmp; 6117 struct rq *rq = arg; 6118 struct rq_flags rf; 6119 6120 rq_lock(rq, &rf); 6121 6122 /* 6123 * Iterating over the list can trigger several call to 6124 * update_rq_clock() in unthrottle_cfs_rq(). 6125 * Do it once and skip the potential next ones. 6126 */ 6127 update_rq_clock(rq); 6128 rq_clock_start_loop_update(rq); 6129 6130 /* 6131 * Since we hold rq lock we're safe from concurrent manipulation of 6132 * the CSD list. However, this RCU critical section annotates the 6133 * fact that we pair with sched_free_group_rcu(), so that we cannot 6134 * race with group being freed in the window between removing it 6135 * from the list and advancing to the next entry in the list. 6136 */ 6137 rcu_read_lock(); 6138 6139 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6140 throttled_csd_list) { 6141 list_del_init(&cursor->throttled_csd_list); 6142 6143 if (cfs_rq_throttled(cursor)) 6144 unthrottle_cfs_rq(cursor); 6145 } 6146 6147 rcu_read_unlock(); 6148 6149 rq_clock_stop_loop_update(rq); 6150 rq_unlock(rq, &rf); 6151 } 6152 6153 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6154 { 6155 struct rq *rq = rq_of(cfs_rq); 6156 bool first; 6157 6158 if (rq == this_rq()) { 6159 unthrottle_cfs_rq(cfs_rq); 6160 return; 6161 } 6162 6163 /* Already enqueued */ 6164 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6165 return; 6166 6167 first = list_empty(&rq->cfsb_csd_list); 6168 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6169 if (first) 6170 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6171 } 6172 #else 6173 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6174 { 6175 unthrottle_cfs_rq(cfs_rq); 6176 } 6177 #endif 6178 6179 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6180 { 6181 lockdep_assert_rq_held(rq_of(cfs_rq)); 6182 6183 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6184 cfs_rq->runtime_remaining <= 0)) 6185 return; 6186 6187 __unthrottle_cfs_rq_async(cfs_rq); 6188 } 6189 6190 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6191 { 6192 int this_cpu = smp_processor_id(); 6193 u64 runtime, remaining = 1; 6194 bool throttled = false; 6195 struct cfs_rq *cfs_rq, *tmp; 6196 struct rq_flags rf; 6197 struct rq *rq; 6198 LIST_HEAD(local_unthrottle); 6199 6200 rcu_read_lock(); 6201 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6202 throttled_list) { 6203 rq = rq_of(cfs_rq); 6204 6205 if (!remaining) { 6206 throttled = true; 6207 break; 6208 } 6209 6210 rq_lock_irqsave(rq, &rf); 6211 if (!cfs_rq_throttled(cfs_rq)) 6212 goto next; 6213 6214 /* Already queued for async unthrottle */ 6215 if (!list_empty(&cfs_rq->throttled_csd_list)) 6216 goto next; 6217 6218 /* By the above checks, this should never be true */ 6219 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6220 6221 raw_spin_lock(&cfs_b->lock); 6222 runtime = -cfs_rq->runtime_remaining + 1; 6223 if (runtime > cfs_b->runtime) 6224 runtime = cfs_b->runtime; 6225 cfs_b->runtime -= runtime; 6226 remaining = cfs_b->runtime; 6227 raw_spin_unlock(&cfs_b->lock); 6228 6229 cfs_rq->runtime_remaining += runtime; 6230 6231 /* we check whether we're throttled above */ 6232 if (cfs_rq->runtime_remaining > 0) { 6233 if (cpu_of(rq) != this_cpu) { 6234 unthrottle_cfs_rq_async(cfs_rq); 6235 } else { 6236 /* 6237 * We currently only expect to be unthrottling 6238 * a single cfs_rq locally. 6239 */ 6240 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6241 list_add_tail(&cfs_rq->throttled_csd_list, 6242 &local_unthrottle); 6243 } 6244 } else { 6245 throttled = true; 6246 } 6247 6248 next: 6249 rq_unlock_irqrestore(rq, &rf); 6250 } 6251 6252 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6253 throttled_csd_list) { 6254 struct rq *rq = rq_of(cfs_rq); 6255 6256 rq_lock_irqsave(rq, &rf); 6257 6258 list_del_init(&cfs_rq->throttled_csd_list); 6259 6260 if (cfs_rq_throttled(cfs_rq)) 6261 unthrottle_cfs_rq(cfs_rq); 6262 6263 rq_unlock_irqrestore(rq, &rf); 6264 } 6265 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6266 6267 rcu_read_unlock(); 6268 6269 return throttled; 6270 } 6271 6272 /* 6273 * Responsible for refilling a task_group's bandwidth and unthrottling its 6274 * cfs_rqs as appropriate. If there has been no activity within the last 6275 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6276 * used to track this state. 6277 */ 6278 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6279 { 6280 int throttled; 6281 6282 /* no need to continue the timer with no bandwidth constraint */ 6283 if (cfs_b->quota == RUNTIME_INF) 6284 goto out_deactivate; 6285 6286 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6287 cfs_b->nr_periods += overrun; 6288 6289 /* Refill extra burst quota even if cfs_b->idle */ 6290 __refill_cfs_bandwidth_runtime(cfs_b); 6291 6292 /* 6293 * idle depends on !throttled (for the case of a large deficit), and if 6294 * we're going inactive then everything else can be deferred 6295 */ 6296 if (cfs_b->idle && !throttled) 6297 goto out_deactivate; 6298 6299 if (!throttled) { 6300 /* mark as potentially idle for the upcoming period */ 6301 cfs_b->idle = 1; 6302 return 0; 6303 } 6304 6305 /* account preceding periods in which throttling occurred */ 6306 cfs_b->nr_throttled += overrun; 6307 6308 /* 6309 * This check is repeated as we release cfs_b->lock while we unthrottle. 6310 */ 6311 while (throttled && cfs_b->runtime > 0) { 6312 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6313 /* we can't nest cfs_b->lock while distributing bandwidth */ 6314 throttled = distribute_cfs_runtime(cfs_b); 6315 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6316 } 6317 6318 /* 6319 * While we are ensured activity in the period following an 6320 * unthrottle, this also covers the case in which the new bandwidth is 6321 * insufficient to cover the existing bandwidth deficit. (Forcing the 6322 * timer to remain active while there are any throttled entities.) 6323 */ 6324 cfs_b->idle = 0; 6325 6326 return 0; 6327 6328 out_deactivate: 6329 return 1; 6330 } 6331 6332 /* a cfs_rq won't donate quota below this amount */ 6333 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6334 /* minimum remaining period time to redistribute slack quota */ 6335 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6336 /* how long we wait to gather additional slack before distributing */ 6337 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6338 6339 /* 6340 * Are we near the end of the current quota period? 6341 * 6342 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6343 * hrtimer base being cleared by hrtimer_start. In the case of 6344 * migrate_hrtimers, base is never cleared, so we are fine. 6345 */ 6346 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6347 { 6348 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6349 s64 remaining; 6350 6351 /* if the call-back is running a quota refresh is already occurring */ 6352 if (hrtimer_callback_running(refresh_timer)) 6353 return 1; 6354 6355 /* is a quota refresh about to occur? */ 6356 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6357 if (remaining < (s64)min_expire) 6358 return 1; 6359 6360 return 0; 6361 } 6362 6363 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6364 { 6365 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6366 6367 /* if there's a quota refresh soon don't bother with slack */ 6368 if (runtime_refresh_within(cfs_b, min_left)) 6369 return; 6370 6371 /* don't push forwards an existing deferred unthrottle */ 6372 if (cfs_b->slack_started) 6373 return; 6374 cfs_b->slack_started = true; 6375 6376 hrtimer_start(&cfs_b->slack_timer, 6377 ns_to_ktime(cfs_bandwidth_slack_period), 6378 HRTIMER_MODE_REL); 6379 } 6380 6381 /* we know any runtime found here is valid as update_curr() precedes return */ 6382 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6383 { 6384 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6385 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6386 6387 if (slack_runtime <= 0) 6388 return; 6389 6390 raw_spin_lock(&cfs_b->lock); 6391 if (cfs_b->quota != RUNTIME_INF) { 6392 cfs_b->runtime += slack_runtime; 6393 6394 /* we are under rq->lock, defer unthrottling using a timer */ 6395 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6396 !list_empty(&cfs_b->throttled_cfs_rq)) 6397 start_cfs_slack_bandwidth(cfs_b); 6398 } 6399 raw_spin_unlock(&cfs_b->lock); 6400 6401 /* even if it's not valid for return we don't want to try again */ 6402 cfs_rq->runtime_remaining -= slack_runtime; 6403 } 6404 6405 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6406 { 6407 if (!cfs_bandwidth_used()) 6408 return; 6409 6410 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6411 return; 6412 6413 __return_cfs_rq_runtime(cfs_rq); 6414 } 6415 6416 /* 6417 * This is done with a timer (instead of inline with bandwidth return) since 6418 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6419 */ 6420 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6421 { 6422 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6423 unsigned long flags; 6424 6425 /* confirm we're still not at a refresh boundary */ 6426 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6427 cfs_b->slack_started = false; 6428 6429 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6430 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6431 return; 6432 } 6433 6434 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6435 runtime = cfs_b->runtime; 6436 6437 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6438 6439 if (!runtime) 6440 return; 6441 6442 distribute_cfs_runtime(cfs_b); 6443 } 6444 6445 /* 6446 * When a group wakes up we want to make sure that its quota is not already 6447 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6448 * runtime as update_curr() throttling can not trigger until it's on-rq. 6449 */ 6450 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6451 { 6452 if (!cfs_bandwidth_used()) 6453 return; 6454 6455 /* an active group must be handled by the update_curr()->put() path */ 6456 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6457 return; 6458 6459 /* ensure the group is not already throttled */ 6460 if (cfs_rq_throttled(cfs_rq)) 6461 return; 6462 6463 /* update runtime allocation */ 6464 account_cfs_rq_runtime(cfs_rq, 0); 6465 if (cfs_rq->runtime_remaining <= 0) 6466 throttle_cfs_rq(cfs_rq); 6467 } 6468 6469 static void sync_throttle(struct task_group *tg, int cpu) 6470 { 6471 struct cfs_rq *pcfs_rq, *cfs_rq; 6472 6473 if (!cfs_bandwidth_used()) 6474 return; 6475 6476 if (!tg->parent) 6477 return; 6478 6479 cfs_rq = tg->cfs_rq[cpu]; 6480 pcfs_rq = tg->parent->cfs_rq[cpu]; 6481 6482 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6483 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6484 } 6485 6486 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6487 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6488 { 6489 if (!cfs_bandwidth_used()) 6490 return false; 6491 6492 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6493 return false; 6494 6495 /* 6496 * it's possible for a throttled entity to be forced into a running 6497 * state (e.g. set_curr_task), in this case we're finished. 6498 */ 6499 if (cfs_rq_throttled(cfs_rq)) 6500 return true; 6501 6502 return throttle_cfs_rq(cfs_rq); 6503 } 6504 6505 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6506 { 6507 struct cfs_bandwidth *cfs_b = 6508 container_of(timer, struct cfs_bandwidth, slack_timer); 6509 6510 do_sched_cfs_slack_timer(cfs_b); 6511 6512 return HRTIMER_NORESTART; 6513 } 6514 6515 extern const u64 max_cfs_quota_period; 6516 6517 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6518 { 6519 struct cfs_bandwidth *cfs_b = 6520 container_of(timer, struct cfs_bandwidth, period_timer); 6521 unsigned long flags; 6522 int overrun; 6523 int idle = 0; 6524 int count = 0; 6525 6526 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6527 for (;;) { 6528 overrun = hrtimer_forward_now(timer, cfs_b->period); 6529 if (!overrun) 6530 break; 6531 6532 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6533 6534 if (++count > 3) { 6535 u64 new, old = ktime_to_ns(cfs_b->period); 6536 6537 /* 6538 * Grow period by a factor of 2 to avoid losing precision. 6539 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6540 * to fail. 6541 */ 6542 new = old * 2; 6543 if (new < max_cfs_quota_period) { 6544 cfs_b->period = ns_to_ktime(new); 6545 cfs_b->quota *= 2; 6546 cfs_b->burst *= 2; 6547 6548 pr_warn_ratelimited( 6549 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6550 smp_processor_id(), 6551 div_u64(new, NSEC_PER_USEC), 6552 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6553 } else { 6554 pr_warn_ratelimited( 6555 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6556 smp_processor_id(), 6557 div_u64(old, NSEC_PER_USEC), 6558 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6559 } 6560 6561 /* reset count so we don't come right back in here */ 6562 count = 0; 6563 } 6564 } 6565 if (idle) 6566 cfs_b->period_active = 0; 6567 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6568 6569 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6570 } 6571 6572 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6573 { 6574 raw_spin_lock_init(&cfs_b->lock); 6575 cfs_b->runtime = 0; 6576 cfs_b->quota = RUNTIME_INF; 6577 cfs_b->period = ns_to_ktime(default_cfs_period()); 6578 cfs_b->burst = 0; 6579 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6580 6581 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6582 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6583 cfs_b->period_timer.function = sched_cfs_period_timer; 6584 6585 /* Add a random offset so that timers interleave */ 6586 hrtimer_set_expires(&cfs_b->period_timer, 6587 get_random_u32_below(cfs_b->period)); 6588 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6589 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6590 cfs_b->slack_started = false; 6591 } 6592 6593 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6594 { 6595 cfs_rq->runtime_enabled = 0; 6596 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6597 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6598 } 6599 6600 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6601 { 6602 lockdep_assert_held(&cfs_b->lock); 6603 6604 if (cfs_b->period_active) 6605 return; 6606 6607 cfs_b->period_active = 1; 6608 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6609 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6610 } 6611 6612 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6613 { 6614 int __maybe_unused i; 6615 6616 /* init_cfs_bandwidth() was not called */ 6617 if (!cfs_b->throttled_cfs_rq.next) 6618 return; 6619 6620 hrtimer_cancel(&cfs_b->period_timer); 6621 hrtimer_cancel(&cfs_b->slack_timer); 6622 6623 /* 6624 * It is possible that we still have some cfs_rq's pending on a CSD 6625 * list, though this race is very rare. In order for this to occur, we 6626 * must have raced with the last task leaving the group while there 6627 * exist throttled cfs_rq(s), and the period_timer must have queued the 6628 * CSD item but the remote cpu has not yet processed it. To handle this, 6629 * we can simply flush all pending CSD work inline here. We're 6630 * guaranteed at this point that no additional cfs_rq of this group can 6631 * join a CSD list. 6632 */ 6633 #ifdef CONFIG_SMP 6634 for_each_possible_cpu(i) { 6635 struct rq *rq = cpu_rq(i); 6636 unsigned long flags; 6637 6638 if (list_empty(&rq->cfsb_csd_list)) 6639 continue; 6640 6641 local_irq_save(flags); 6642 __cfsb_csd_unthrottle(rq); 6643 local_irq_restore(flags); 6644 } 6645 #endif 6646 } 6647 6648 /* 6649 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6650 * 6651 * The race is harmless, since modifying bandwidth settings of unhooked group 6652 * bits doesn't do much. 6653 */ 6654 6655 /* cpu online callback */ 6656 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6657 { 6658 struct task_group *tg; 6659 6660 lockdep_assert_rq_held(rq); 6661 6662 rcu_read_lock(); 6663 list_for_each_entry_rcu(tg, &task_groups, list) { 6664 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6665 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6666 6667 raw_spin_lock(&cfs_b->lock); 6668 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6669 raw_spin_unlock(&cfs_b->lock); 6670 } 6671 rcu_read_unlock(); 6672 } 6673 6674 /* cpu offline callback */ 6675 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6676 { 6677 struct task_group *tg; 6678 6679 lockdep_assert_rq_held(rq); 6680 6681 /* 6682 * The rq clock has already been updated in the 6683 * set_rq_offline(), so we should skip updating 6684 * the rq clock again in unthrottle_cfs_rq(). 6685 */ 6686 rq_clock_start_loop_update(rq); 6687 6688 rcu_read_lock(); 6689 list_for_each_entry_rcu(tg, &task_groups, list) { 6690 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6691 6692 if (!cfs_rq->runtime_enabled) 6693 continue; 6694 6695 /* 6696 * clock_task is not advancing so we just need to make sure 6697 * there's some valid quota amount 6698 */ 6699 cfs_rq->runtime_remaining = 1; 6700 /* 6701 * Offline rq is schedulable till CPU is completely disabled 6702 * in take_cpu_down(), so we prevent new cfs throttling here. 6703 */ 6704 cfs_rq->runtime_enabled = 0; 6705 6706 if (cfs_rq_throttled(cfs_rq)) 6707 unthrottle_cfs_rq(cfs_rq); 6708 } 6709 rcu_read_unlock(); 6710 6711 rq_clock_stop_loop_update(rq); 6712 } 6713 6714 bool cfs_task_bw_constrained(struct task_struct *p) 6715 { 6716 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6717 6718 if (!cfs_bandwidth_used()) 6719 return false; 6720 6721 if (cfs_rq->runtime_enabled || 6722 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6723 return true; 6724 6725 return false; 6726 } 6727 6728 #ifdef CONFIG_NO_HZ_FULL 6729 /* called from pick_next_task_fair() */ 6730 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6731 { 6732 int cpu = cpu_of(rq); 6733 6734 if (!cfs_bandwidth_used()) 6735 return; 6736 6737 if (!tick_nohz_full_cpu(cpu)) 6738 return; 6739 6740 if (rq->nr_running != 1) 6741 return; 6742 6743 /* 6744 * We know there is only one task runnable and we've just picked it. The 6745 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6746 * be otherwise able to stop the tick. Just need to check if we are using 6747 * bandwidth control. 6748 */ 6749 if (cfs_task_bw_constrained(p)) 6750 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6751 } 6752 #endif 6753 6754 #else /* CONFIG_CFS_BANDWIDTH */ 6755 6756 static inline bool cfs_bandwidth_used(void) 6757 { 6758 return false; 6759 } 6760 6761 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6762 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6763 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6764 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6765 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6766 6767 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6768 { 6769 return 0; 6770 } 6771 6772 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6773 { 6774 return 0; 6775 } 6776 6777 static inline int throttled_lb_pair(struct task_group *tg, 6778 int src_cpu, int dest_cpu) 6779 { 6780 return 0; 6781 } 6782 6783 #ifdef CONFIG_FAIR_GROUP_SCHED 6784 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6785 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6786 #endif 6787 6788 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6789 { 6790 return NULL; 6791 } 6792 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6793 static inline void update_runtime_enabled(struct rq *rq) {} 6794 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6795 #ifdef CONFIG_CGROUP_SCHED 6796 bool cfs_task_bw_constrained(struct task_struct *p) 6797 { 6798 return false; 6799 } 6800 #endif 6801 #endif /* CONFIG_CFS_BANDWIDTH */ 6802 6803 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6804 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6805 #endif 6806 6807 /************************************************** 6808 * CFS operations on tasks: 6809 */ 6810 6811 #ifdef CONFIG_SCHED_HRTICK 6812 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6813 { 6814 struct sched_entity *se = &p->se; 6815 6816 SCHED_WARN_ON(task_rq(p) != rq); 6817 6818 if (rq->cfs.h_nr_running > 1) { 6819 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6820 u64 slice = se->slice; 6821 s64 delta = slice - ran; 6822 6823 if (delta < 0) { 6824 if (task_current(rq, p)) 6825 resched_curr(rq); 6826 return; 6827 } 6828 hrtick_start(rq, delta); 6829 } 6830 } 6831 6832 /* 6833 * called from enqueue/dequeue and updates the hrtick when the 6834 * current task is from our class and nr_running is low enough 6835 * to matter. 6836 */ 6837 static void hrtick_update(struct rq *rq) 6838 { 6839 struct task_struct *curr = rq->curr; 6840 6841 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6842 return; 6843 6844 hrtick_start_fair(rq, curr); 6845 } 6846 #else /* !CONFIG_SCHED_HRTICK */ 6847 static inline void 6848 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6849 { 6850 } 6851 6852 static inline void hrtick_update(struct rq *rq) 6853 { 6854 } 6855 #endif 6856 6857 #ifdef CONFIG_SMP 6858 static inline bool cpu_overutilized(int cpu) 6859 { 6860 unsigned long rq_util_min, rq_util_max; 6861 6862 if (!sched_energy_enabled()) 6863 return false; 6864 6865 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6866 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6867 6868 /* Return true only if the utilization doesn't fit CPU's capacity */ 6869 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6870 } 6871 6872 /* 6873 * overutilized value make sense only if EAS is enabled 6874 */ 6875 static inline bool is_rd_overutilized(struct root_domain *rd) 6876 { 6877 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6878 } 6879 6880 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6881 { 6882 if (!sched_energy_enabled()) 6883 return; 6884 6885 WRITE_ONCE(rd->overutilized, flag); 6886 trace_sched_overutilized_tp(rd, flag); 6887 } 6888 6889 static inline void check_update_overutilized_status(struct rq *rq) 6890 { 6891 /* 6892 * overutilized field is used for load balancing decisions only 6893 * if energy aware scheduler is being used 6894 */ 6895 6896 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6897 set_rd_overutilized(rq->rd, 1); 6898 } 6899 #else 6900 static inline void check_update_overutilized_status(struct rq *rq) { } 6901 #endif 6902 6903 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6904 static int sched_idle_rq(struct rq *rq) 6905 { 6906 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6907 rq->nr_running); 6908 } 6909 6910 #ifdef CONFIG_SMP 6911 static int sched_idle_cpu(int cpu) 6912 { 6913 return sched_idle_rq(cpu_rq(cpu)); 6914 } 6915 #endif 6916 6917 static void 6918 requeue_delayed_entity(struct sched_entity *se) 6919 { 6920 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6921 6922 /* 6923 * se->sched_delayed should imply: se->on_rq == 1. 6924 * Because a delayed entity is one that is still on 6925 * the runqueue competing until elegibility. 6926 */ 6927 SCHED_WARN_ON(!se->sched_delayed); 6928 SCHED_WARN_ON(!se->on_rq); 6929 6930 if (sched_feat(DELAY_ZERO)) { 6931 update_entity_lag(cfs_rq, se); 6932 if (se->vlag > 0) { 6933 cfs_rq->nr_running--; 6934 if (se != cfs_rq->curr) 6935 __dequeue_entity(cfs_rq, se); 6936 se->vlag = 0; 6937 place_entity(cfs_rq, se, 0); 6938 if (se != cfs_rq->curr) 6939 __enqueue_entity(cfs_rq, se); 6940 cfs_rq->nr_running++; 6941 } 6942 } 6943 6944 update_load_avg(cfs_rq, se, 0); 6945 se->sched_delayed = 0; 6946 } 6947 6948 /* 6949 * The enqueue_task method is called before nr_running is 6950 * increased. Here we update the fair scheduling stats and 6951 * then put the task into the rbtree: 6952 */ 6953 static void 6954 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6955 { 6956 struct cfs_rq *cfs_rq; 6957 struct sched_entity *se = &p->se; 6958 int idle_h_nr_running = task_has_idle_policy(p); 6959 int task_new = !(flags & ENQUEUE_WAKEUP); 6960 int rq_h_nr_running = rq->cfs.h_nr_running; 6961 u64 slice = 0; 6962 6963 /* 6964 * The code below (indirectly) updates schedutil which looks at 6965 * the cfs_rq utilization to select a frequency. 6966 * Let's add the task's estimated utilization to the cfs_rq's 6967 * estimated utilization, before we update schedutil. 6968 */ 6969 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6970 util_est_enqueue(&rq->cfs, p); 6971 6972 if (flags & ENQUEUE_DELAYED) { 6973 requeue_delayed_entity(se); 6974 return; 6975 } 6976 6977 /* 6978 * If in_iowait is set, the code below may not trigger any cpufreq 6979 * utilization updates, so do it here explicitly with the IOWAIT flag 6980 * passed. 6981 */ 6982 if (p->in_iowait) 6983 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6984 6985 for_each_sched_entity(se) { 6986 if (se->on_rq) { 6987 if (se->sched_delayed) 6988 requeue_delayed_entity(se); 6989 break; 6990 } 6991 cfs_rq = cfs_rq_of(se); 6992 6993 /* 6994 * Basically set the slice of group entries to the min_slice of 6995 * their respective cfs_rq. This ensures the group can service 6996 * its entities in the desired time-frame. 6997 */ 6998 if (slice) { 6999 se->slice = slice; 7000 se->custom_slice = 1; 7001 } 7002 enqueue_entity(cfs_rq, se, flags); 7003 slice = cfs_rq_min_slice(cfs_rq); 7004 7005 cfs_rq->h_nr_running++; 7006 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7007 7008 if (cfs_rq_is_idle(cfs_rq)) 7009 idle_h_nr_running = 1; 7010 7011 /* end evaluation on encountering a throttled cfs_rq */ 7012 if (cfs_rq_throttled(cfs_rq)) 7013 goto enqueue_throttle; 7014 7015 flags = ENQUEUE_WAKEUP; 7016 } 7017 7018 for_each_sched_entity(se) { 7019 cfs_rq = cfs_rq_of(se); 7020 7021 update_load_avg(cfs_rq, se, UPDATE_TG); 7022 se_update_runnable(se); 7023 update_cfs_group(se); 7024 7025 se->slice = slice; 7026 slice = cfs_rq_min_slice(cfs_rq); 7027 7028 cfs_rq->h_nr_running++; 7029 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7030 7031 if (cfs_rq_is_idle(cfs_rq)) 7032 idle_h_nr_running = 1; 7033 7034 /* end evaluation on encountering a throttled cfs_rq */ 7035 if (cfs_rq_throttled(cfs_rq)) 7036 goto enqueue_throttle; 7037 } 7038 7039 if (!rq_h_nr_running && rq->cfs.h_nr_running) { 7040 /* Account for idle runtime */ 7041 if (!rq->nr_running) 7042 dl_server_update_idle_time(rq, rq->curr); 7043 dl_server_start(&rq->fair_server); 7044 } 7045 7046 /* At this point se is NULL and we are at root level*/ 7047 add_nr_running(rq, 1); 7048 7049 /* 7050 * Since new tasks are assigned an initial util_avg equal to 7051 * half of the spare capacity of their CPU, tiny tasks have the 7052 * ability to cross the overutilized threshold, which will 7053 * result in the load balancer ruining all the task placement 7054 * done by EAS. As a way to mitigate that effect, do not account 7055 * for the first enqueue operation of new tasks during the 7056 * overutilized flag detection. 7057 * 7058 * A better way of solving this problem would be to wait for 7059 * the PELT signals of tasks to converge before taking them 7060 * into account, but that is not straightforward to implement, 7061 * and the following generally works well enough in practice. 7062 */ 7063 if (!task_new) 7064 check_update_overutilized_status(rq); 7065 7066 enqueue_throttle: 7067 assert_list_leaf_cfs_rq(rq); 7068 7069 hrtick_update(rq); 7070 } 7071 7072 static void set_next_buddy(struct sched_entity *se); 7073 7074 /* 7075 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7076 * failing half-way through and resume the dequeue later. 7077 * 7078 * Returns: 7079 * -1 - dequeue delayed 7080 * 0 - dequeue throttled 7081 * 1 - dequeue complete 7082 */ 7083 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7084 { 7085 bool was_sched_idle = sched_idle_rq(rq); 7086 int rq_h_nr_running = rq->cfs.h_nr_running; 7087 bool task_sleep = flags & DEQUEUE_SLEEP; 7088 bool task_delayed = flags & DEQUEUE_DELAYED; 7089 struct task_struct *p = NULL; 7090 int idle_h_nr_running = 0; 7091 int h_nr_running = 0; 7092 struct cfs_rq *cfs_rq; 7093 u64 slice = 0; 7094 7095 if (entity_is_task(se)) { 7096 p = task_of(se); 7097 h_nr_running = 1; 7098 idle_h_nr_running = task_has_idle_policy(p); 7099 } else { 7100 cfs_rq = group_cfs_rq(se); 7101 slice = cfs_rq_min_slice(cfs_rq); 7102 } 7103 7104 for_each_sched_entity(se) { 7105 cfs_rq = cfs_rq_of(se); 7106 7107 if (!dequeue_entity(cfs_rq, se, flags)) { 7108 if (p && &p->se == se) 7109 return -1; 7110 7111 break; 7112 } 7113 7114 cfs_rq->h_nr_running -= h_nr_running; 7115 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7116 7117 if (cfs_rq_is_idle(cfs_rq)) 7118 idle_h_nr_running = h_nr_running; 7119 7120 /* end evaluation on encountering a throttled cfs_rq */ 7121 if (cfs_rq_throttled(cfs_rq)) 7122 return 0; 7123 7124 /* Don't dequeue parent if it has other entities besides us */ 7125 if (cfs_rq->load.weight) { 7126 slice = cfs_rq_min_slice(cfs_rq); 7127 7128 /* Avoid re-evaluating load for this entity: */ 7129 se = parent_entity(se); 7130 /* 7131 * Bias pick_next to pick a task from this cfs_rq, as 7132 * p is sleeping when it is within its sched_slice. 7133 */ 7134 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7135 set_next_buddy(se); 7136 break; 7137 } 7138 flags |= DEQUEUE_SLEEP; 7139 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7140 } 7141 7142 for_each_sched_entity(se) { 7143 cfs_rq = cfs_rq_of(se); 7144 7145 update_load_avg(cfs_rq, se, UPDATE_TG); 7146 se_update_runnable(se); 7147 update_cfs_group(se); 7148 7149 se->slice = slice; 7150 slice = cfs_rq_min_slice(cfs_rq); 7151 7152 cfs_rq->h_nr_running -= h_nr_running; 7153 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7154 7155 if (cfs_rq_is_idle(cfs_rq)) 7156 idle_h_nr_running = h_nr_running; 7157 7158 /* end evaluation on encountering a throttled cfs_rq */ 7159 if (cfs_rq_throttled(cfs_rq)) 7160 return 0; 7161 } 7162 7163 sub_nr_running(rq, h_nr_running); 7164 7165 if (rq_h_nr_running && !rq->cfs.h_nr_running) 7166 dl_server_stop(&rq->fair_server); 7167 7168 /* balance early to pull high priority tasks */ 7169 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7170 rq->next_balance = jiffies; 7171 7172 if (p && task_delayed) { 7173 SCHED_WARN_ON(!task_sleep); 7174 SCHED_WARN_ON(p->on_rq != 1); 7175 7176 /* Fix-up what dequeue_task_fair() skipped */ 7177 hrtick_update(rq); 7178 7179 /* Fix-up what block_task() skipped. */ 7180 __block_task(rq, p); 7181 } 7182 7183 return 1; 7184 } 7185 7186 /* 7187 * The dequeue_task method is called before nr_running is 7188 * decreased. We remove the task from the rbtree and 7189 * update the fair scheduling stats: 7190 */ 7191 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7192 { 7193 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7194 util_est_dequeue(&rq->cfs, p); 7195 7196 if (dequeue_entities(rq, &p->se, flags) < 0) { 7197 util_est_update(&rq->cfs, p, DEQUEUE_SLEEP); 7198 return false; 7199 } 7200 7201 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7202 hrtick_update(rq); 7203 return true; 7204 } 7205 7206 #ifdef CONFIG_SMP 7207 7208 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7209 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7210 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7211 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7212 7213 #ifdef CONFIG_NO_HZ_COMMON 7214 7215 static struct { 7216 cpumask_var_t idle_cpus_mask; 7217 atomic_t nr_cpus; 7218 int has_blocked; /* Idle CPUS has blocked load */ 7219 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7220 unsigned long next_balance; /* in jiffy units */ 7221 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7222 } nohz ____cacheline_aligned; 7223 7224 #endif /* CONFIG_NO_HZ_COMMON */ 7225 7226 static unsigned long cpu_load(struct rq *rq) 7227 { 7228 return cfs_rq_load_avg(&rq->cfs); 7229 } 7230 7231 /* 7232 * cpu_load_without - compute CPU load without any contributions from *p 7233 * @cpu: the CPU which load is requested 7234 * @p: the task which load should be discounted 7235 * 7236 * The load of a CPU is defined by the load of tasks currently enqueued on that 7237 * CPU as well as tasks which are currently sleeping after an execution on that 7238 * CPU. 7239 * 7240 * This method returns the load of the specified CPU by discounting the load of 7241 * the specified task, whenever the task is currently contributing to the CPU 7242 * load. 7243 */ 7244 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7245 { 7246 struct cfs_rq *cfs_rq; 7247 unsigned int load; 7248 7249 /* Task has no contribution or is new */ 7250 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7251 return cpu_load(rq); 7252 7253 cfs_rq = &rq->cfs; 7254 load = READ_ONCE(cfs_rq->avg.load_avg); 7255 7256 /* Discount task's util from CPU's util */ 7257 lsub_positive(&load, task_h_load(p)); 7258 7259 return load; 7260 } 7261 7262 static unsigned long cpu_runnable(struct rq *rq) 7263 { 7264 return cfs_rq_runnable_avg(&rq->cfs); 7265 } 7266 7267 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7268 { 7269 struct cfs_rq *cfs_rq; 7270 unsigned int runnable; 7271 7272 /* Task has no contribution or is new */ 7273 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7274 return cpu_runnable(rq); 7275 7276 cfs_rq = &rq->cfs; 7277 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7278 7279 /* Discount task's runnable from CPU's runnable */ 7280 lsub_positive(&runnable, p->se.avg.runnable_avg); 7281 7282 return runnable; 7283 } 7284 7285 static unsigned long capacity_of(int cpu) 7286 { 7287 return cpu_rq(cpu)->cpu_capacity; 7288 } 7289 7290 static void record_wakee(struct task_struct *p) 7291 { 7292 /* 7293 * Only decay a single time; tasks that have less then 1 wakeup per 7294 * jiffy will not have built up many flips. 7295 */ 7296 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7297 current->wakee_flips >>= 1; 7298 current->wakee_flip_decay_ts = jiffies; 7299 } 7300 7301 if (current->last_wakee != p) { 7302 current->last_wakee = p; 7303 current->wakee_flips++; 7304 } 7305 } 7306 7307 /* 7308 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7309 * 7310 * A waker of many should wake a different task than the one last awakened 7311 * at a frequency roughly N times higher than one of its wakees. 7312 * 7313 * In order to determine whether we should let the load spread vs consolidating 7314 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7315 * partner, and a factor of lls_size higher frequency in the other. 7316 * 7317 * With both conditions met, we can be relatively sure that the relationship is 7318 * non-monogamous, with partner count exceeding socket size. 7319 * 7320 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7321 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7322 * socket size. 7323 */ 7324 static int wake_wide(struct task_struct *p) 7325 { 7326 unsigned int master = current->wakee_flips; 7327 unsigned int slave = p->wakee_flips; 7328 int factor = __this_cpu_read(sd_llc_size); 7329 7330 if (master < slave) 7331 swap(master, slave); 7332 if (slave < factor || master < slave * factor) 7333 return 0; 7334 return 1; 7335 } 7336 7337 /* 7338 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7339 * soonest. For the purpose of speed we only consider the waking and previous 7340 * CPU. 7341 * 7342 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7343 * cache-affine and is (or will be) idle. 7344 * 7345 * wake_affine_weight() - considers the weight to reflect the average 7346 * scheduling latency of the CPUs. This seems to work 7347 * for the overloaded case. 7348 */ 7349 static int 7350 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7351 { 7352 /* 7353 * If this_cpu is idle, it implies the wakeup is from interrupt 7354 * context. Only allow the move if cache is shared. Otherwise an 7355 * interrupt intensive workload could force all tasks onto one 7356 * node depending on the IO topology or IRQ affinity settings. 7357 * 7358 * If the prev_cpu is idle and cache affine then avoid a migration. 7359 * There is no guarantee that the cache hot data from an interrupt 7360 * is more important than cache hot data on the prev_cpu and from 7361 * a cpufreq perspective, it's better to have higher utilisation 7362 * on one CPU. 7363 */ 7364 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7365 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7366 7367 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7368 return this_cpu; 7369 7370 if (available_idle_cpu(prev_cpu)) 7371 return prev_cpu; 7372 7373 return nr_cpumask_bits; 7374 } 7375 7376 static int 7377 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7378 int this_cpu, int prev_cpu, int sync) 7379 { 7380 s64 this_eff_load, prev_eff_load; 7381 unsigned long task_load; 7382 7383 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7384 7385 if (sync) { 7386 unsigned long current_load = task_h_load(current); 7387 7388 if (current_load > this_eff_load) 7389 return this_cpu; 7390 7391 this_eff_load -= current_load; 7392 } 7393 7394 task_load = task_h_load(p); 7395 7396 this_eff_load += task_load; 7397 if (sched_feat(WA_BIAS)) 7398 this_eff_load *= 100; 7399 this_eff_load *= capacity_of(prev_cpu); 7400 7401 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7402 prev_eff_load -= task_load; 7403 if (sched_feat(WA_BIAS)) 7404 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7405 prev_eff_load *= capacity_of(this_cpu); 7406 7407 /* 7408 * If sync, adjust the weight of prev_eff_load such that if 7409 * prev_eff == this_eff that select_idle_sibling() will consider 7410 * stacking the wakee on top of the waker if no other CPU is 7411 * idle. 7412 */ 7413 if (sync) 7414 prev_eff_load += 1; 7415 7416 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7417 } 7418 7419 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7420 int this_cpu, int prev_cpu, int sync) 7421 { 7422 int target = nr_cpumask_bits; 7423 7424 if (sched_feat(WA_IDLE)) 7425 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7426 7427 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7428 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7429 7430 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7431 if (target != this_cpu) 7432 return prev_cpu; 7433 7434 schedstat_inc(sd->ttwu_move_affine); 7435 schedstat_inc(p->stats.nr_wakeups_affine); 7436 return target; 7437 } 7438 7439 static struct sched_group * 7440 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7441 7442 /* 7443 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7444 */ 7445 static int 7446 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7447 { 7448 unsigned long load, min_load = ULONG_MAX; 7449 unsigned int min_exit_latency = UINT_MAX; 7450 u64 latest_idle_timestamp = 0; 7451 int least_loaded_cpu = this_cpu; 7452 int shallowest_idle_cpu = -1; 7453 int i; 7454 7455 /* Check if we have any choice: */ 7456 if (group->group_weight == 1) 7457 return cpumask_first(sched_group_span(group)); 7458 7459 /* Traverse only the allowed CPUs */ 7460 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7461 struct rq *rq = cpu_rq(i); 7462 7463 if (!sched_core_cookie_match(rq, p)) 7464 continue; 7465 7466 if (sched_idle_cpu(i)) 7467 return i; 7468 7469 if (available_idle_cpu(i)) { 7470 struct cpuidle_state *idle = idle_get_state(rq); 7471 if (idle && idle->exit_latency < min_exit_latency) { 7472 /* 7473 * We give priority to a CPU whose idle state 7474 * has the smallest exit latency irrespective 7475 * of any idle timestamp. 7476 */ 7477 min_exit_latency = idle->exit_latency; 7478 latest_idle_timestamp = rq->idle_stamp; 7479 shallowest_idle_cpu = i; 7480 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7481 rq->idle_stamp > latest_idle_timestamp) { 7482 /* 7483 * If equal or no active idle state, then 7484 * the most recently idled CPU might have 7485 * a warmer cache. 7486 */ 7487 latest_idle_timestamp = rq->idle_stamp; 7488 shallowest_idle_cpu = i; 7489 } 7490 } else if (shallowest_idle_cpu == -1) { 7491 load = cpu_load(cpu_rq(i)); 7492 if (load < min_load) { 7493 min_load = load; 7494 least_loaded_cpu = i; 7495 } 7496 } 7497 } 7498 7499 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7500 } 7501 7502 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7503 int cpu, int prev_cpu, int sd_flag) 7504 { 7505 int new_cpu = cpu; 7506 7507 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7508 return prev_cpu; 7509 7510 /* 7511 * We need task's util for cpu_util_without, sync it up to 7512 * prev_cpu's last_update_time. 7513 */ 7514 if (!(sd_flag & SD_BALANCE_FORK)) 7515 sync_entity_load_avg(&p->se); 7516 7517 while (sd) { 7518 struct sched_group *group; 7519 struct sched_domain *tmp; 7520 int weight; 7521 7522 if (!(sd->flags & sd_flag)) { 7523 sd = sd->child; 7524 continue; 7525 } 7526 7527 group = sched_balance_find_dst_group(sd, p, cpu); 7528 if (!group) { 7529 sd = sd->child; 7530 continue; 7531 } 7532 7533 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7534 if (new_cpu == cpu) { 7535 /* Now try balancing at a lower domain level of 'cpu': */ 7536 sd = sd->child; 7537 continue; 7538 } 7539 7540 /* Now try balancing at a lower domain level of 'new_cpu': */ 7541 cpu = new_cpu; 7542 weight = sd->span_weight; 7543 sd = NULL; 7544 for_each_domain(cpu, tmp) { 7545 if (weight <= tmp->span_weight) 7546 break; 7547 if (tmp->flags & sd_flag) 7548 sd = tmp; 7549 } 7550 } 7551 7552 return new_cpu; 7553 } 7554 7555 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7556 { 7557 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7558 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7559 return cpu; 7560 7561 return -1; 7562 } 7563 7564 #ifdef CONFIG_SCHED_SMT 7565 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7566 EXPORT_SYMBOL_GPL(sched_smt_present); 7567 7568 static inline void set_idle_cores(int cpu, int val) 7569 { 7570 struct sched_domain_shared *sds; 7571 7572 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7573 if (sds) 7574 WRITE_ONCE(sds->has_idle_cores, val); 7575 } 7576 7577 static inline bool test_idle_cores(int cpu) 7578 { 7579 struct sched_domain_shared *sds; 7580 7581 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7582 if (sds) 7583 return READ_ONCE(sds->has_idle_cores); 7584 7585 return false; 7586 } 7587 7588 /* 7589 * Scans the local SMT mask to see if the entire core is idle, and records this 7590 * information in sd_llc_shared->has_idle_cores. 7591 * 7592 * Since SMT siblings share all cache levels, inspecting this limited remote 7593 * state should be fairly cheap. 7594 */ 7595 void __update_idle_core(struct rq *rq) 7596 { 7597 int core = cpu_of(rq); 7598 int cpu; 7599 7600 rcu_read_lock(); 7601 if (test_idle_cores(core)) 7602 goto unlock; 7603 7604 for_each_cpu(cpu, cpu_smt_mask(core)) { 7605 if (cpu == core) 7606 continue; 7607 7608 if (!available_idle_cpu(cpu)) 7609 goto unlock; 7610 } 7611 7612 set_idle_cores(core, 1); 7613 unlock: 7614 rcu_read_unlock(); 7615 } 7616 7617 /* 7618 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7619 * there are no idle cores left in the system; tracked through 7620 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7621 */ 7622 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7623 { 7624 bool idle = true; 7625 int cpu; 7626 7627 for_each_cpu(cpu, cpu_smt_mask(core)) { 7628 if (!available_idle_cpu(cpu)) { 7629 idle = false; 7630 if (*idle_cpu == -1) { 7631 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7632 *idle_cpu = cpu; 7633 break; 7634 } 7635 continue; 7636 } 7637 break; 7638 } 7639 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7640 *idle_cpu = cpu; 7641 } 7642 7643 if (idle) 7644 return core; 7645 7646 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7647 return -1; 7648 } 7649 7650 /* 7651 * Scan the local SMT mask for idle CPUs. 7652 */ 7653 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7654 { 7655 int cpu; 7656 7657 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7658 if (cpu == target) 7659 continue; 7660 /* 7661 * Check if the CPU is in the LLC scheduling domain of @target. 7662 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7663 */ 7664 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7665 continue; 7666 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7667 return cpu; 7668 } 7669 7670 return -1; 7671 } 7672 7673 #else /* CONFIG_SCHED_SMT */ 7674 7675 static inline void set_idle_cores(int cpu, int val) 7676 { 7677 } 7678 7679 static inline bool test_idle_cores(int cpu) 7680 { 7681 return false; 7682 } 7683 7684 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7685 { 7686 return __select_idle_cpu(core, p); 7687 } 7688 7689 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7690 { 7691 return -1; 7692 } 7693 7694 #endif /* CONFIG_SCHED_SMT */ 7695 7696 /* 7697 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7698 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7699 * average idle time for this rq (as found in rq->avg_idle). 7700 */ 7701 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7702 { 7703 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7704 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7705 struct sched_domain_shared *sd_share; 7706 7707 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7708 7709 if (sched_feat(SIS_UTIL)) { 7710 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7711 if (sd_share) { 7712 /* because !--nr is the condition to stop scan */ 7713 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7714 /* overloaded LLC is unlikely to have idle cpu/core */ 7715 if (nr == 1) 7716 return -1; 7717 } 7718 } 7719 7720 if (static_branch_unlikely(&sched_cluster_active)) { 7721 struct sched_group *sg = sd->groups; 7722 7723 if (sg->flags & SD_CLUSTER) { 7724 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7725 if (!cpumask_test_cpu(cpu, cpus)) 7726 continue; 7727 7728 if (has_idle_core) { 7729 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7730 if ((unsigned int)i < nr_cpumask_bits) 7731 return i; 7732 } else { 7733 if (--nr <= 0) 7734 return -1; 7735 idle_cpu = __select_idle_cpu(cpu, p); 7736 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7737 return idle_cpu; 7738 } 7739 } 7740 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7741 } 7742 } 7743 7744 for_each_cpu_wrap(cpu, cpus, target + 1) { 7745 if (has_idle_core) { 7746 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7747 if ((unsigned int)i < nr_cpumask_bits) 7748 return i; 7749 7750 } else { 7751 if (--nr <= 0) 7752 return -1; 7753 idle_cpu = __select_idle_cpu(cpu, p); 7754 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7755 break; 7756 } 7757 } 7758 7759 if (has_idle_core) 7760 set_idle_cores(target, false); 7761 7762 return idle_cpu; 7763 } 7764 7765 /* 7766 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7767 * the task fits. If no CPU is big enough, but there are idle ones, try to 7768 * maximize capacity. 7769 */ 7770 static int 7771 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7772 { 7773 unsigned long task_util, util_min, util_max, best_cap = 0; 7774 int fits, best_fits = 0; 7775 int cpu, best_cpu = -1; 7776 struct cpumask *cpus; 7777 7778 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7779 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7780 7781 task_util = task_util_est(p); 7782 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7783 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7784 7785 for_each_cpu_wrap(cpu, cpus, target) { 7786 unsigned long cpu_cap = capacity_of(cpu); 7787 7788 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7789 continue; 7790 7791 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7792 7793 /* This CPU fits with all requirements */ 7794 if (fits > 0) 7795 return cpu; 7796 /* 7797 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7798 * Look for the CPU with best capacity. 7799 */ 7800 else if (fits < 0) 7801 cpu_cap = get_actual_cpu_capacity(cpu); 7802 7803 /* 7804 * First, select CPU which fits better (-1 being better than 0). 7805 * Then, select the one with best capacity at same level. 7806 */ 7807 if ((fits < best_fits) || 7808 ((fits == best_fits) && (cpu_cap > best_cap))) { 7809 best_cap = cpu_cap; 7810 best_cpu = cpu; 7811 best_fits = fits; 7812 } 7813 } 7814 7815 return best_cpu; 7816 } 7817 7818 static inline bool asym_fits_cpu(unsigned long util, 7819 unsigned long util_min, 7820 unsigned long util_max, 7821 int cpu) 7822 { 7823 if (sched_asym_cpucap_active()) 7824 /* 7825 * Return true only if the cpu fully fits the task requirements 7826 * which include the utilization and the performance hints. 7827 */ 7828 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7829 7830 return true; 7831 } 7832 7833 /* 7834 * Try and locate an idle core/thread in the LLC cache domain. 7835 */ 7836 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7837 { 7838 bool has_idle_core = false; 7839 struct sched_domain *sd; 7840 unsigned long task_util, util_min, util_max; 7841 int i, recent_used_cpu, prev_aff = -1; 7842 7843 /* 7844 * On asymmetric system, update task utilization because we will check 7845 * that the task fits with CPU's capacity. 7846 */ 7847 if (sched_asym_cpucap_active()) { 7848 sync_entity_load_avg(&p->se); 7849 task_util = task_util_est(p); 7850 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7851 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7852 } 7853 7854 /* 7855 * per-cpu select_rq_mask usage 7856 */ 7857 lockdep_assert_irqs_disabled(); 7858 7859 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7860 asym_fits_cpu(task_util, util_min, util_max, target)) 7861 return target; 7862 7863 /* 7864 * If the previous CPU is cache affine and idle, don't be stupid: 7865 */ 7866 if (prev != target && cpus_share_cache(prev, target) && 7867 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7868 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7869 7870 if (!static_branch_unlikely(&sched_cluster_active) || 7871 cpus_share_resources(prev, target)) 7872 return prev; 7873 7874 prev_aff = prev; 7875 } 7876 7877 /* 7878 * Allow a per-cpu kthread to stack with the wakee if the 7879 * kworker thread and the tasks previous CPUs are the same. 7880 * The assumption is that the wakee queued work for the 7881 * per-cpu kthread that is now complete and the wakeup is 7882 * essentially a sync wakeup. An obvious example of this 7883 * pattern is IO completions. 7884 */ 7885 if (is_per_cpu_kthread(current) && 7886 in_task() && 7887 prev == smp_processor_id() && 7888 this_rq()->nr_running <= 1 && 7889 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7890 return prev; 7891 } 7892 7893 /* Check a recently used CPU as a potential idle candidate: */ 7894 recent_used_cpu = p->recent_used_cpu; 7895 p->recent_used_cpu = prev; 7896 if (recent_used_cpu != prev && 7897 recent_used_cpu != target && 7898 cpus_share_cache(recent_used_cpu, target) && 7899 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7900 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7901 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7902 7903 if (!static_branch_unlikely(&sched_cluster_active) || 7904 cpus_share_resources(recent_used_cpu, target)) 7905 return recent_used_cpu; 7906 7907 } else { 7908 recent_used_cpu = -1; 7909 } 7910 7911 /* 7912 * For asymmetric CPU capacity systems, our domain of interest is 7913 * sd_asym_cpucapacity rather than sd_llc. 7914 */ 7915 if (sched_asym_cpucap_active()) { 7916 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7917 /* 7918 * On an asymmetric CPU capacity system where an exclusive 7919 * cpuset defines a symmetric island (i.e. one unique 7920 * capacity_orig value through the cpuset), the key will be set 7921 * but the CPUs within that cpuset will not have a domain with 7922 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7923 * capacity path. 7924 */ 7925 if (sd) { 7926 i = select_idle_capacity(p, sd, target); 7927 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7928 } 7929 } 7930 7931 sd = rcu_dereference(per_cpu(sd_llc, target)); 7932 if (!sd) 7933 return target; 7934 7935 if (sched_smt_active()) { 7936 has_idle_core = test_idle_cores(target); 7937 7938 if (!has_idle_core && cpus_share_cache(prev, target)) { 7939 i = select_idle_smt(p, sd, prev); 7940 if ((unsigned int)i < nr_cpumask_bits) 7941 return i; 7942 } 7943 } 7944 7945 i = select_idle_cpu(p, sd, has_idle_core, target); 7946 if ((unsigned)i < nr_cpumask_bits) 7947 return i; 7948 7949 /* 7950 * For cluster machines which have lower sharing cache like L2 or 7951 * LLC Tag, we tend to find an idle CPU in the target's cluster 7952 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7953 * use them if possible when no idle CPU found in select_idle_cpu(). 7954 */ 7955 if ((unsigned int)prev_aff < nr_cpumask_bits) 7956 return prev_aff; 7957 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7958 return recent_used_cpu; 7959 7960 return target; 7961 } 7962 7963 /** 7964 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7965 * @cpu: the CPU to get the utilization for 7966 * @p: task for which the CPU utilization should be predicted or NULL 7967 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7968 * @boost: 1 to enable boosting, otherwise 0 7969 * 7970 * The unit of the return value must be the same as the one of CPU capacity 7971 * so that CPU utilization can be compared with CPU capacity. 7972 * 7973 * CPU utilization is the sum of running time of runnable tasks plus the 7974 * recent utilization of currently non-runnable tasks on that CPU. 7975 * It represents the amount of CPU capacity currently used by CFS tasks in 7976 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7977 * capacity at f_max. 7978 * 7979 * The estimated CPU utilization is defined as the maximum between CPU 7980 * utilization and sum of the estimated utilization of the currently 7981 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7982 * previously-executed tasks, which helps better deduce how busy a CPU will 7983 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7984 * of such a task would be significantly decayed at this point of time. 7985 * 7986 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7987 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7988 * utilization. Boosting is implemented in cpu_util() so that internal 7989 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7990 * latter via cpu_util_cfs_boost(). 7991 * 7992 * CPU utilization can be higher than the current CPU capacity 7993 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7994 * of rounding errors as well as task migrations or wakeups of new tasks. 7995 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7996 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7997 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7998 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7999 * though since this is useful for predicting the CPU capacity required 8000 * after task migrations (scheduler-driven DVFS). 8001 * 8002 * Return: (Boosted) (estimated) utilization for the specified CPU. 8003 */ 8004 static unsigned long 8005 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8006 { 8007 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8008 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8009 unsigned long runnable; 8010 8011 if (boost) { 8012 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8013 util = max(util, runnable); 8014 } 8015 8016 /* 8017 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8018 * contribution. If @p migrates from another CPU to @cpu add its 8019 * contribution. In all the other cases @cpu is not impacted by the 8020 * migration so its util_avg is already correct. 8021 */ 8022 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8023 lsub_positive(&util, task_util(p)); 8024 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8025 util += task_util(p); 8026 8027 if (sched_feat(UTIL_EST)) { 8028 unsigned long util_est; 8029 8030 util_est = READ_ONCE(cfs_rq->avg.util_est); 8031 8032 /* 8033 * During wake-up @p isn't enqueued yet and doesn't contribute 8034 * to any cpu_rq(cpu)->cfs.avg.util_est. 8035 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8036 * has been enqueued. 8037 * 8038 * During exec (@dst_cpu = -1) @p is enqueued and does 8039 * contribute to cpu_rq(cpu)->cfs.util_est. 8040 * Remove it to "simulate" cpu_util without @p's contribution. 8041 * 8042 * Despite the task_on_rq_queued(@p) check there is still a 8043 * small window for a possible race when an exec 8044 * select_task_rq_fair() races with LB's detach_task(). 8045 * 8046 * detach_task() 8047 * deactivate_task() 8048 * p->on_rq = TASK_ON_RQ_MIGRATING; 8049 * -------------------------------- A 8050 * dequeue_task() \ 8051 * dequeue_task_fair() + Race Time 8052 * util_est_dequeue() / 8053 * -------------------------------- B 8054 * 8055 * The additional check "current == p" is required to further 8056 * reduce the race window. 8057 */ 8058 if (dst_cpu == cpu) 8059 util_est += _task_util_est(p); 8060 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8061 lsub_positive(&util_est, _task_util_est(p)); 8062 8063 util = max(util, util_est); 8064 } 8065 8066 return min(util, arch_scale_cpu_capacity(cpu)); 8067 } 8068 8069 unsigned long cpu_util_cfs(int cpu) 8070 { 8071 return cpu_util(cpu, NULL, -1, 0); 8072 } 8073 8074 unsigned long cpu_util_cfs_boost(int cpu) 8075 { 8076 return cpu_util(cpu, NULL, -1, 1); 8077 } 8078 8079 /* 8080 * cpu_util_without: compute cpu utilization without any contributions from *p 8081 * @cpu: the CPU which utilization is requested 8082 * @p: the task which utilization should be discounted 8083 * 8084 * The utilization of a CPU is defined by the utilization of tasks currently 8085 * enqueued on that CPU as well as tasks which are currently sleeping after an 8086 * execution on that CPU. 8087 * 8088 * This method returns the utilization of the specified CPU by discounting the 8089 * utilization of the specified task, whenever the task is currently 8090 * contributing to the CPU utilization. 8091 */ 8092 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8093 { 8094 /* Task has no contribution or is new */ 8095 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8096 p = NULL; 8097 8098 return cpu_util(cpu, p, -1, 0); 8099 } 8100 8101 /* 8102 * This function computes an effective utilization for the given CPU, to be 8103 * used for frequency selection given the linear relation: f = u * f_max. 8104 * 8105 * The scheduler tracks the following metrics: 8106 * 8107 * cpu_util_{cfs,rt,dl,irq}() 8108 * cpu_bw_dl() 8109 * 8110 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8111 * synchronized windows and are thus directly comparable. 8112 * 8113 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8114 * which excludes things like IRQ and steal-time. These latter are then accrued 8115 * in the IRQ utilization. 8116 * 8117 * The DL bandwidth number OTOH is not a measured metric but a value computed 8118 * based on the task model parameters and gives the minimal utilization 8119 * required to meet deadlines. 8120 */ 8121 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8122 unsigned long *min, 8123 unsigned long *max) 8124 { 8125 unsigned long util, irq, scale; 8126 struct rq *rq = cpu_rq(cpu); 8127 8128 scale = arch_scale_cpu_capacity(cpu); 8129 8130 /* 8131 * Early check to see if IRQ/steal time saturates the CPU, can be 8132 * because of inaccuracies in how we track these -- see 8133 * update_irq_load_avg(). 8134 */ 8135 irq = cpu_util_irq(rq); 8136 if (unlikely(irq >= scale)) { 8137 if (min) 8138 *min = scale; 8139 if (max) 8140 *max = scale; 8141 return scale; 8142 } 8143 8144 if (min) { 8145 /* 8146 * The minimum utilization returns the highest level between: 8147 * - the computed DL bandwidth needed with the IRQ pressure which 8148 * steals time to the deadline task. 8149 * - The minimum performance requirement for CFS and/or RT. 8150 */ 8151 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8152 8153 /* 8154 * When an RT task is runnable and uclamp is not used, we must 8155 * ensure that the task will run at maximum compute capacity. 8156 */ 8157 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8158 *min = max(*min, scale); 8159 } 8160 8161 /* 8162 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8163 * CFS tasks and we use the same metric to track the effective 8164 * utilization (PELT windows are synchronized) we can directly add them 8165 * to obtain the CPU's actual utilization. 8166 */ 8167 util = util_cfs + cpu_util_rt(rq); 8168 util += cpu_util_dl(rq); 8169 8170 /* 8171 * The maximum hint is a soft bandwidth requirement, which can be lower 8172 * than the actual utilization because of uclamp_max requirements. 8173 */ 8174 if (max) 8175 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8176 8177 if (util >= scale) 8178 return scale; 8179 8180 /* 8181 * There is still idle time; further improve the number by using the 8182 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8183 * need to scale the task numbers: 8184 * 8185 * max - irq 8186 * U' = irq + --------- * U 8187 * max 8188 */ 8189 util = scale_irq_capacity(util, irq, scale); 8190 util += irq; 8191 8192 return min(scale, util); 8193 } 8194 8195 unsigned long sched_cpu_util(int cpu) 8196 { 8197 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8198 } 8199 8200 /* 8201 * energy_env - Utilization landscape for energy estimation. 8202 * @task_busy_time: Utilization contribution by the task for which we test the 8203 * placement. Given by eenv_task_busy_time(). 8204 * @pd_busy_time: Utilization of the whole perf domain without the task 8205 * contribution. Given by eenv_pd_busy_time(). 8206 * @cpu_cap: Maximum CPU capacity for the perf domain. 8207 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8208 */ 8209 struct energy_env { 8210 unsigned long task_busy_time; 8211 unsigned long pd_busy_time; 8212 unsigned long cpu_cap; 8213 unsigned long pd_cap; 8214 }; 8215 8216 /* 8217 * Compute the task busy time for compute_energy(). This time cannot be 8218 * injected directly into effective_cpu_util() because of the IRQ scaling. 8219 * The latter only makes sense with the most recent CPUs where the task has 8220 * run. 8221 */ 8222 static inline void eenv_task_busy_time(struct energy_env *eenv, 8223 struct task_struct *p, int prev_cpu) 8224 { 8225 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8226 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8227 8228 if (unlikely(irq >= max_cap)) 8229 busy_time = max_cap; 8230 else 8231 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8232 8233 eenv->task_busy_time = busy_time; 8234 } 8235 8236 /* 8237 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8238 * utilization for each @pd_cpus, it however doesn't take into account 8239 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8240 * scale the EM reported power consumption at the (eventually clamped) 8241 * cpu_capacity. 8242 * 8243 * The contribution of the task @p for which we want to estimate the 8244 * energy cost is removed (by cpu_util()) and must be calculated 8245 * separately (see eenv_task_busy_time). This ensures: 8246 * 8247 * - A stable PD utilization, no matter which CPU of that PD we want to place 8248 * the task on. 8249 * 8250 * - A fair comparison between CPUs as the task contribution (task_util()) 8251 * will always be the same no matter which CPU utilization we rely on 8252 * (util_avg or util_est). 8253 * 8254 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8255 * exceed @eenv->pd_cap. 8256 */ 8257 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8258 struct cpumask *pd_cpus, 8259 struct task_struct *p) 8260 { 8261 unsigned long busy_time = 0; 8262 int cpu; 8263 8264 for_each_cpu(cpu, pd_cpus) { 8265 unsigned long util = cpu_util(cpu, p, -1, 0); 8266 8267 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8268 } 8269 8270 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8271 } 8272 8273 /* 8274 * Compute the maximum utilization for compute_energy() when the task @p 8275 * is placed on the cpu @dst_cpu. 8276 * 8277 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8278 * exceed @eenv->cpu_cap. 8279 */ 8280 static inline unsigned long 8281 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8282 struct task_struct *p, int dst_cpu) 8283 { 8284 unsigned long max_util = 0; 8285 int cpu; 8286 8287 for_each_cpu(cpu, pd_cpus) { 8288 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8289 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8290 unsigned long eff_util, min, max; 8291 8292 /* 8293 * Performance domain frequency: utilization clamping 8294 * must be considered since it affects the selection 8295 * of the performance domain frequency. 8296 * NOTE: in case RT tasks are running, by default the min 8297 * utilization can be max OPP. 8298 */ 8299 eff_util = effective_cpu_util(cpu, util, &min, &max); 8300 8301 /* Task's uclamp can modify min and max value */ 8302 if (tsk && uclamp_is_used()) { 8303 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8304 8305 /* 8306 * If there is no active max uclamp constraint, 8307 * directly use task's one, otherwise keep max. 8308 */ 8309 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8310 max = uclamp_eff_value(p, UCLAMP_MAX); 8311 else 8312 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8313 } 8314 8315 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8316 max_util = max(max_util, eff_util); 8317 } 8318 8319 return min(max_util, eenv->cpu_cap); 8320 } 8321 8322 /* 8323 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8324 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8325 * contribution is ignored. 8326 */ 8327 static inline unsigned long 8328 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8329 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8330 { 8331 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8332 unsigned long busy_time = eenv->pd_busy_time; 8333 unsigned long energy; 8334 8335 if (dst_cpu >= 0) 8336 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8337 8338 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8339 8340 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8341 8342 return energy; 8343 } 8344 8345 /* 8346 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8347 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8348 * spare capacity in each performance domain and uses it as a potential 8349 * candidate to execute the task. Then, it uses the Energy Model to figure 8350 * out which of the CPU candidates is the most energy-efficient. 8351 * 8352 * The rationale for this heuristic is as follows. In a performance domain, 8353 * all the most energy efficient CPU candidates (according to the Energy 8354 * Model) are those for which we'll request a low frequency. When there are 8355 * several CPUs for which the frequency request will be the same, we don't 8356 * have enough data to break the tie between them, because the Energy Model 8357 * only includes active power costs. With this model, if we assume that 8358 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8359 * the maximum spare capacity in a performance domain is guaranteed to be among 8360 * the best candidates of the performance domain. 8361 * 8362 * In practice, it could be preferable from an energy standpoint to pack 8363 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8364 * but that could also hurt our chances to go cluster idle, and we have no 8365 * ways to tell with the current Energy Model if this is actually a good 8366 * idea or not. So, find_energy_efficient_cpu() basically favors 8367 * cluster-packing, and spreading inside a cluster. That should at least be 8368 * a good thing for latency, and this is consistent with the idea that most 8369 * of the energy savings of EAS come from the asymmetry of the system, and 8370 * not so much from breaking the tie between identical CPUs. That's also the 8371 * reason why EAS is enabled in the topology code only for systems where 8372 * SD_ASYM_CPUCAPACITY is set. 8373 * 8374 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8375 * they don't have any useful utilization data yet and it's not possible to 8376 * forecast their impact on energy consumption. Consequently, they will be 8377 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8378 * to be energy-inefficient in some use-cases. The alternative would be to 8379 * bias new tasks towards specific types of CPUs first, or to try to infer 8380 * their util_avg from the parent task, but those heuristics could hurt 8381 * other use-cases too. So, until someone finds a better way to solve this, 8382 * let's keep things simple by re-using the existing slow path. 8383 */ 8384 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8385 { 8386 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8387 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8388 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8389 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8390 struct root_domain *rd = this_rq()->rd; 8391 int cpu, best_energy_cpu, target = -1; 8392 int prev_fits = -1, best_fits = -1; 8393 unsigned long best_actual_cap = 0; 8394 unsigned long prev_actual_cap = 0; 8395 struct sched_domain *sd; 8396 struct perf_domain *pd; 8397 struct energy_env eenv; 8398 8399 rcu_read_lock(); 8400 pd = rcu_dereference(rd->pd); 8401 if (!pd) 8402 goto unlock; 8403 8404 /* 8405 * Energy-aware wake-up happens on the lowest sched_domain starting 8406 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8407 */ 8408 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8409 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8410 sd = sd->parent; 8411 if (!sd) 8412 goto unlock; 8413 8414 target = prev_cpu; 8415 8416 sync_entity_load_avg(&p->se); 8417 if (!task_util_est(p) && p_util_min == 0) 8418 goto unlock; 8419 8420 eenv_task_busy_time(&eenv, p, prev_cpu); 8421 8422 for (; pd; pd = pd->next) { 8423 unsigned long util_min = p_util_min, util_max = p_util_max; 8424 unsigned long cpu_cap, cpu_actual_cap, util; 8425 long prev_spare_cap = -1, max_spare_cap = -1; 8426 unsigned long rq_util_min, rq_util_max; 8427 unsigned long cur_delta, base_energy; 8428 int max_spare_cap_cpu = -1; 8429 int fits, max_fits = -1; 8430 8431 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8432 8433 if (cpumask_empty(cpus)) 8434 continue; 8435 8436 /* Account external pressure for the energy estimation */ 8437 cpu = cpumask_first(cpus); 8438 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8439 8440 eenv.cpu_cap = cpu_actual_cap; 8441 eenv.pd_cap = 0; 8442 8443 for_each_cpu(cpu, cpus) { 8444 struct rq *rq = cpu_rq(cpu); 8445 8446 eenv.pd_cap += cpu_actual_cap; 8447 8448 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8449 continue; 8450 8451 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8452 continue; 8453 8454 util = cpu_util(cpu, p, cpu, 0); 8455 cpu_cap = capacity_of(cpu); 8456 8457 /* 8458 * Skip CPUs that cannot satisfy the capacity request. 8459 * IOW, placing the task there would make the CPU 8460 * overutilized. Take uclamp into account to see how 8461 * much capacity we can get out of the CPU; this is 8462 * aligned with sched_cpu_util(). 8463 */ 8464 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8465 /* 8466 * Open code uclamp_rq_util_with() except for 8467 * the clamp() part. I.e.: apply max aggregation 8468 * only. util_fits_cpu() logic requires to 8469 * operate on non clamped util but must use the 8470 * max-aggregated uclamp_{min, max}. 8471 */ 8472 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8473 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8474 8475 util_min = max(rq_util_min, p_util_min); 8476 util_max = max(rq_util_max, p_util_max); 8477 } 8478 8479 fits = util_fits_cpu(util, util_min, util_max, cpu); 8480 if (!fits) 8481 continue; 8482 8483 lsub_positive(&cpu_cap, util); 8484 8485 if (cpu == prev_cpu) { 8486 /* Always use prev_cpu as a candidate. */ 8487 prev_spare_cap = cpu_cap; 8488 prev_fits = fits; 8489 } else if ((fits > max_fits) || 8490 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8491 /* 8492 * Find the CPU with the maximum spare capacity 8493 * among the remaining CPUs in the performance 8494 * domain. 8495 */ 8496 max_spare_cap = cpu_cap; 8497 max_spare_cap_cpu = cpu; 8498 max_fits = fits; 8499 } 8500 } 8501 8502 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8503 continue; 8504 8505 eenv_pd_busy_time(&eenv, cpus, p); 8506 /* Compute the 'base' energy of the pd, without @p */ 8507 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8508 8509 /* Evaluate the energy impact of using prev_cpu. */ 8510 if (prev_spare_cap > -1) { 8511 prev_delta = compute_energy(&eenv, pd, cpus, p, 8512 prev_cpu); 8513 /* CPU utilization has changed */ 8514 if (prev_delta < base_energy) 8515 goto unlock; 8516 prev_delta -= base_energy; 8517 prev_actual_cap = cpu_actual_cap; 8518 best_delta = min(best_delta, prev_delta); 8519 } 8520 8521 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8522 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8523 /* Current best energy cpu fits better */ 8524 if (max_fits < best_fits) 8525 continue; 8526 8527 /* 8528 * Both don't fit performance hint (i.e. uclamp_min) 8529 * but best energy cpu has better capacity. 8530 */ 8531 if ((max_fits < 0) && 8532 (cpu_actual_cap <= best_actual_cap)) 8533 continue; 8534 8535 cur_delta = compute_energy(&eenv, pd, cpus, p, 8536 max_spare_cap_cpu); 8537 /* CPU utilization has changed */ 8538 if (cur_delta < base_energy) 8539 goto unlock; 8540 cur_delta -= base_energy; 8541 8542 /* 8543 * Both fit for the task but best energy cpu has lower 8544 * energy impact. 8545 */ 8546 if ((max_fits > 0) && (best_fits > 0) && 8547 (cur_delta >= best_delta)) 8548 continue; 8549 8550 best_delta = cur_delta; 8551 best_energy_cpu = max_spare_cap_cpu; 8552 best_fits = max_fits; 8553 best_actual_cap = cpu_actual_cap; 8554 } 8555 } 8556 rcu_read_unlock(); 8557 8558 if ((best_fits > prev_fits) || 8559 ((best_fits > 0) && (best_delta < prev_delta)) || 8560 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8561 target = best_energy_cpu; 8562 8563 return target; 8564 8565 unlock: 8566 rcu_read_unlock(); 8567 8568 return target; 8569 } 8570 8571 /* 8572 * select_task_rq_fair: Select target runqueue for the waking task in domains 8573 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8574 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8575 * 8576 * Balances load by selecting the idlest CPU in the idlest group, or under 8577 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8578 * 8579 * Returns the target CPU number. 8580 */ 8581 static int 8582 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8583 { 8584 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8585 struct sched_domain *tmp, *sd = NULL; 8586 int cpu = smp_processor_id(); 8587 int new_cpu = prev_cpu; 8588 int want_affine = 0; 8589 /* SD_flags and WF_flags share the first nibble */ 8590 int sd_flag = wake_flags & 0xF; 8591 8592 /* 8593 * required for stable ->cpus_allowed 8594 */ 8595 lockdep_assert_held(&p->pi_lock); 8596 if (wake_flags & WF_TTWU) { 8597 record_wakee(p); 8598 8599 if ((wake_flags & WF_CURRENT_CPU) && 8600 cpumask_test_cpu(cpu, p->cpus_ptr)) 8601 return cpu; 8602 8603 if (!is_rd_overutilized(this_rq()->rd)) { 8604 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8605 if (new_cpu >= 0) 8606 return new_cpu; 8607 new_cpu = prev_cpu; 8608 } 8609 8610 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8611 } 8612 8613 rcu_read_lock(); 8614 for_each_domain(cpu, tmp) { 8615 /* 8616 * If both 'cpu' and 'prev_cpu' are part of this domain, 8617 * cpu is a valid SD_WAKE_AFFINE target. 8618 */ 8619 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8620 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8621 if (cpu != prev_cpu) 8622 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8623 8624 sd = NULL; /* Prefer wake_affine over balance flags */ 8625 break; 8626 } 8627 8628 /* 8629 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8630 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8631 * will usually go to the fast path. 8632 */ 8633 if (tmp->flags & sd_flag) 8634 sd = tmp; 8635 else if (!want_affine) 8636 break; 8637 } 8638 8639 if (unlikely(sd)) { 8640 /* Slow path */ 8641 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8642 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8643 /* Fast path */ 8644 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8645 } 8646 rcu_read_unlock(); 8647 8648 return new_cpu; 8649 } 8650 8651 /* 8652 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8653 * cfs_rq_of(p) references at time of call are still valid and identify the 8654 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8655 */ 8656 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8657 { 8658 struct sched_entity *se = &p->se; 8659 8660 if (!task_on_rq_migrating(p)) { 8661 remove_entity_load_avg(se); 8662 8663 /* 8664 * Here, the task's PELT values have been updated according to 8665 * the current rq's clock. But if that clock hasn't been 8666 * updated in a while, a substantial idle time will be missed, 8667 * leading to an inflation after wake-up on the new rq. 8668 * 8669 * Estimate the missing time from the cfs_rq last_update_time 8670 * and update sched_avg to improve the PELT continuity after 8671 * migration. 8672 */ 8673 migrate_se_pelt_lag(se); 8674 } 8675 8676 /* Tell new CPU we are migrated */ 8677 se->avg.last_update_time = 0; 8678 8679 update_scan_period(p, new_cpu); 8680 } 8681 8682 static void task_dead_fair(struct task_struct *p) 8683 { 8684 struct sched_entity *se = &p->se; 8685 8686 if (se->sched_delayed) { 8687 struct rq_flags rf; 8688 struct rq *rq; 8689 8690 rq = task_rq_lock(p, &rf); 8691 if (se->sched_delayed) { 8692 update_rq_clock(rq); 8693 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8694 } 8695 task_rq_unlock(rq, p, &rf); 8696 } 8697 8698 remove_entity_load_avg(se); 8699 } 8700 8701 /* 8702 * Set the max capacity the task is allowed to run at for misfit detection. 8703 */ 8704 static void set_task_max_allowed_capacity(struct task_struct *p) 8705 { 8706 struct asym_cap_data *entry; 8707 8708 if (!sched_asym_cpucap_active()) 8709 return; 8710 8711 rcu_read_lock(); 8712 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8713 cpumask_t *cpumask; 8714 8715 cpumask = cpu_capacity_span(entry); 8716 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8717 continue; 8718 8719 p->max_allowed_capacity = entry->capacity; 8720 break; 8721 } 8722 rcu_read_unlock(); 8723 } 8724 8725 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8726 { 8727 set_cpus_allowed_common(p, ctx); 8728 set_task_max_allowed_capacity(p); 8729 } 8730 8731 static int 8732 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8733 { 8734 if (sched_fair_runnable(rq)) 8735 return 1; 8736 8737 return sched_balance_newidle(rq, rf) != 0; 8738 } 8739 #else 8740 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8741 #endif /* CONFIG_SMP */ 8742 8743 static void set_next_buddy(struct sched_entity *se) 8744 { 8745 for_each_sched_entity(se) { 8746 if (SCHED_WARN_ON(!se->on_rq)) 8747 return; 8748 if (se_is_idle(se)) 8749 return; 8750 cfs_rq_of(se)->next = se; 8751 } 8752 } 8753 8754 /* 8755 * Preempt the current task with a newly woken task if needed: 8756 */ 8757 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8758 { 8759 struct task_struct *curr = rq->curr; 8760 struct sched_entity *se = &curr->se, *pse = &p->se; 8761 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8762 int cse_is_idle, pse_is_idle; 8763 8764 if (unlikely(se == pse)) 8765 return; 8766 8767 /* 8768 * This is possible from callers such as attach_tasks(), in which we 8769 * unconditionally wakeup_preempt() after an enqueue (which may have 8770 * lead to a throttle). This both saves work and prevents false 8771 * next-buddy nomination below. 8772 */ 8773 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8774 return; 8775 8776 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8777 set_next_buddy(pse); 8778 } 8779 8780 /* 8781 * We can come here with TIF_NEED_RESCHED already set from new task 8782 * wake up path. 8783 * 8784 * Note: this also catches the edge-case of curr being in a throttled 8785 * group (e.g. via set_curr_task), since update_curr() (in the 8786 * enqueue of curr) will have resulted in resched being set. This 8787 * prevents us from potentially nominating it as a false LAST_BUDDY 8788 * below. 8789 */ 8790 if (test_tsk_need_resched(curr)) 8791 return; 8792 8793 if (!sched_feat(WAKEUP_PREEMPTION)) 8794 return; 8795 8796 find_matching_se(&se, &pse); 8797 WARN_ON_ONCE(!pse); 8798 8799 cse_is_idle = se_is_idle(se); 8800 pse_is_idle = se_is_idle(pse); 8801 8802 /* 8803 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8804 * in the inverse case). 8805 */ 8806 if (cse_is_idle && !pse_is_idle) 8807 goto preempt; 8808 if (cse_is_idle != pse_is_idle) 8809 return; 8810 8811 /* 8812 * BATCH and IDLE tasks do not preempt others. 8813 */ 8814 if (unlikely(!normal_policy(p->policy))) 8815 return; 8816 8817 cfs_rq = cfs_rq_of(se); 8818 update_curr(cfs_rq); 8819 /* 8820 * If @p has a shorter slice than current and @p is eligible, override 8821 * current's slice protection in order to allow preemption. 8822 * 8823 * Note that even if @p does not turn out to be the most eligible 8824 * task at this moment, current's slice protection will be lost. 8825 */ 8826 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8827 se->vlag = se->deadline + 1; 8828 8829 /* 8830 * If @p has become the most eligible task, force preemption. 8831 */ 8832 if (pick_eevdf(cfs_rq) == pse) 8833 goto preempt; 8834 8835 return; 8836 8837 preempt: 8838 resched_curr(rq); 8839 } 8840 8841 static struct task_struct *pick_task_fair(struct rq *rq) 8842 { 8843 struct sched_entity *se; 8844 struct cfs_rq *cfs_rq; 8845 8846 again: 8847 cfs_rq = &rq->cfs; 8848 if (!cfs_rq->nr_running) 8849 return NULL; 8850 8851 do { 8852 /* Might not have done put_prev_entity() */ 8853 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8854 update_curr(cfs_rq); 8855 8856 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8857 goto again; 8858 8859 se = pick_next_entity(rq, cfs_rq); 8860 if (!se) 8861 goto again; 8862 cfs_rq = group_cfs_rq(se); 8863 } while (cfs_rq); 8864 8865 return task_of(se); 8866 } 8867 8868 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8869 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8870 8871 struct task_struct * 8872 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8873 { 8874 struct sched_entity *se; 8875 struct task_struct *p; 8876 int new_tasks; 8877 8878 again: 8879 p = pick_task_fair(rq); 8880 if (!p) 8881 goto idle; 8882 se = &p->se; 8883 8884 #ifdef CONFIG_FAIR_GROUP_SCHED 8885 if (prev->sched_class != &fair_sched_class) 8886 goto simple; 8887 8888 __put_prev_set_next_dl_server(rq, prev, p); 8889 8890 /* 8891 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8892 * likely that a next task is from the same cgroup as the current. 8893 * 8894 * Therefore attempt to avoid putting and setting the entire cgroup 8895 * hierarchy, only change the part that actually changes. 8896 * 8897 * Since we haven't yet done put_prev_entity and if the selected task 8898 * is a different task than we started out with, try and touch the 8899 * least amount of cfs_rqs. 8900 */ 8901 if (prev != p) { 8902 struct sched_entity *pse = &prev->se; 8903 struct cfs_rq *cfs_rq; 8904 8905 while (!(cfs_rq = is_same_group(se, pse))) { 8906 int se_depth = se->depth; 8907 int pse_depth = pse->depth; 8908 8909 if (se_depth <= pse_depth) { 8910 put_prev_entity(cfs_rq_of(pse), pse); 8911 pse = parent_entity(pse); 8912 } 8913 if (se_depth >= pse_depth) { 8914 set_next_entity(cfs_rq_of(se), se); 8915 se = parent_entity(se); 8916 } 8917 } 8918 8919 put_prev_entity(cfs_rq, pse); 8920 set_next_entity(cfs_rq, se); 8921 8922 __set_next_task_fair(rq, p, true); 8923 } 8924 8925 return p; 8926 8927 simple: 8928 #endif 8929 put_prev_set_next_task(rq, prev, p); 8930 return p; 8931 8932 idle: 8933 if (!rf) 8934 return NULL; 8935 8936 new_tasks = sched_balance_newidle(rq, rf); 8937 8938 /* 8939 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8940 * possible for any higher priority task to appear. In that case we 8941 * must re-start the pick_next_entity() loop. 8942 */ 8943 if (new_tasks < 0) 8944 return RETRY_TASK; 8945 8946 if (new_tasks > 0) 8947 goto again; 8948 8949 /* 8950 * rq is about to be idle, check if we need to update the 8951 * lost_idle_time of clock_pelt 8952 */ 8953 update_idle_rq_clock_pelt(rq); 8954 8955 return NULL; 8956 } 8957 8958 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8959 { 8960 return pick_next_task_fair(rq, prev, NULL); 8961 } 8962 8963 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8964 { 8965 return !!dl_se->rq->cfs.nr_running; 8966 } 8967 8968 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8969 { 8970 return pick_task_fair(dl_se->rq); 8971 } 8972 8973 void fair_server_init(struct rq *rq) 8974 { 8975 struct sched_dl_entity *dl_se = &rq->fair_server; 8976 8977 init_dl_entity(dl_se); 8978 8979 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8980 } 8981 8982 /* 8983 * Account for a descheduled task: 8984 */ 8985 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8986 { 8987 struct sched_entity *se = &prev->se; 8988 struct cfs_rq *cfs_rq; 8989 8990 for_each_sched_entity(se) { 8991 cfs_rq = cfs_rq_of(se); 8992 put_prev_entity(cfs_rq, se); 8993 } 8994 } 8995 8996 /* 8997 * sched_yield() is very simple 8998 */ 8999 static void yield_task_fair(struct rq *rq) 9000 { 9001 struct task_struct *curr = rq->curr; 9002 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9003 struct sched_entity *se = &curr->se; 9004 9005 /* 9006 * Are we the only task in the tree? 9007 */ 9008 if (unlikely(rq->nr_running == 1)) 9009 return; 9010 9011 clear_buddies(cfs_rq, se); 9012 9013 update_rq_clock(rq); 9014 /* 9015 * Update run-time statistics of the 'current'. 9016 */ 9017 update_curr(cfs_rq); 9018 /* 9019 * Tell update_rq_clock() that we've just updated, 9020 * so we don't do microscopic update in schedule() 9021 * and double the fastpath cost. 9022 */ 9023 rq_clock_skip_update(rq); 9024 9025 se->deadline += calc_delta_fair(se->slice, se); 9026 } 9027 9028 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9029 { 9030 struct sched_entity *se = &p->se; 9031 9032 /* throttled hierarchies are not runnable */ 9033 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9034 return false; 9035 9036 /* Tell the scheduler that we'd really like se to run next. */ 9037 set_next_buddy(se); 9038 9039 yield_task_fair(rq); 9040 9041 return true; 9042 } 9043 9044 #ifdef CONFIG_SMP 9045 /************************************************** 9046 * Fair scheduling class load-balancing methods. 9047 * 9048 * BASICS 9049 * 9050 * The purpose of load-balancing is to achieve the same basic fairness the 9051 * per-CPU scheduler provides, namely provide a proportional amount of compute 9052 * time to each task. This is expressed in the following equation: 9053 * 9054 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9055 * 9056 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9057 * W_i,0 is defined as: 9058 * 9059 * W_i,0 = \Sum_j w_i,j (2) 9060 * 9061 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9062 * is derived from the nice value as per sched_prio_to_weight[]. 9063 * 9064 * The weight average is an exponential decay average of the instantaneous 9065 * weight: 9066 * 9067 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9068 * 9069 * C_i is the compute capacity of CPU i, typically it is the 9070 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9071 * can also include other factors [XXX]. 9072 * 9073 * To achieve this balance we define a measure of imbalance which follows 9074 * directly from (1): 9075 * 9076 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9077 * 9078 * We them move tasks around to minimize the imbalance. In the continuous 9079 * function space it is obvious this converges, in the discrete case we get 9080 * a few fun cases generally called infeasible weight scenarios. 9081 * 9082 * [XXX expand on: 9083 * - infeasible weights; 9084 * - local vs global optima in the discrete case. ] 9085 * 9086 * 9087 * SCHED DOMAINS 9088 * 9089 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9090 * for all i,j solution, we create a tree of CPUs that follows the hardware 9091 * topology where each level pairs two lower groups (or better). This results 9092 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9093 * tree to only the first of the previous level and we decrease the frequency 9094 * of load-balance at each level inversely proportional to the number of CPUs in 9095 * the groups. 9096 * 9097 * This yields: 9098 * 9099 * log_2 n 1 n 9100 * \Sum { --- * --- * 2^i } = O(n) (5) 9101 * i = 0 2^i 2^i 9102 * `- size of each group 9103 * | | `- number of CPUs doing load-balance 9104 * | `- freq 9105 * `- sum over all levels 9106 * 9107 * Coupled with a limit on how many tasks we can migrate every balance pass, 9108 * this makes (5) the runtime complexity of the balancer. 9109 * 9110 * An important property here is that each CPU is still (indirectly) connected 9111 * to every other CPU in at most O(log n) steps: 9112 * 9113 * The adjacency matrix of the resulting graph is given by: 9114 * 9115 * log_2 n 9116 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9117 * k = 0 9118 * 9119 * And you'll find that: 9120 * 9121 * A^(log_2 n)_i,j != 0 for all i,j (7) 9122 * 9123 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9124 * The task movement gives a factor of O(m), giving a convergence complexity 9125 * of: 9126 * 9127 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9128 * 9129 * 9130 * WORK CONSERVING 9131 * 9132 * In order to avoid CPUs going idle while there's still work to do, new idle 9133 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9134 * tree itself instead of relying on other CPUs to bring it work. 9135 * 9136 * This adds some complexity to both (5) and (8) but it reduces the total idle 9137 * time. 9138 * 9139 * [XXX more?] 9140 * 9141 * 9142 * CGROUPS 9143 * 9144 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9145 * 9146 * s_k,i 9147 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9148 * S_k 9149 * 9150 * Where 9151 * 9152 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9153 * 9154 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9155 * 9156 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9157 * property. 9158 * 9159 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9160 * rewrite all of this once again.] 9161 */ 9162 9163 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9164 9165 enum fbq_type { regular, remote, all }; 9166 9167 /* 9168 * 'group_type' describes the group of CPUs at the moment of load balancing. 9169 * 9170 * The enum is ordered by pulling priority, with the group with lowest priority 9171 * first so the group_type can simply be compared when selecting the busiest 9172 * group. See update_sd_pick_busiest(). 9173 */ 9174 enum group_type { 9175 /* The group has spare capacity that can be used to run more tasks. */ 9176 group_has_spare = 0, 9177 /* 9178 * The group is fully used and the tasks don't compete for more CPU 9179 * cycles. Nevertheless, some tasks might wait before running. 9180 */ 9181 group_fully_busy, 9182 /* 9183 * One task doesn't fit with CPU's capacity and must be migrated to a 9184 * more powerful CPU. 9185 */ 9186 group_misfit_task, 9187 /* 9188 * Balance SMT group that's fully busy. Can benefit from migration 9189 * a task on SMT with busy sibling to another CPU on idle core. 9190 */ 9191 group_smt_balance, 9192 /* 9193 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9194 * and the task should be migrated to it instead of running on the 9195 * current CPU. 9196 */ 9197 group_asym_packing, 9198 /* 9199 * The tasks' affinity constraints previously prevented the scheduler 9200 * from balancing the load across the system. 9201 */ 9202 group_imbalanced, 9203 /* 9204 * The CPU is overloaded and can't provide expected CPU cycles to all 9205 * tasks. 9206 */ 9207 group_overloaded 9208 }; 9209 9210 enum migration_type { 9211 migrate_load = 0, 9212 migrate_util, 9213 migrate_task, 9214 migrate_misfit 9215 }; 9216 9217 #define LBF_ALL_PINNED 0x01 9218 #define LBF_NEED_BREAK 0x02 9219 #define LBF_DST_PINNED 0x04 9220 #define LBF_SOME_PINNED 0x08 9221 #define LBF_ACTIVE_LB 0x10 9222 9223 struct lb_env { 9224 struct sched_domain *sd; 9225 9226 struct rq *src_rq; 9227 int src_cpu; 9228 9229 int dst_cpu; 9230 struct rq *dst_rq; 9231 9232 struct cpumask *dst_grpmask; 9233 int new_dst_cpu; 9234 enum cpu_idle_type idle; 9235 long imbalance; 9236 /* The set of CPUs under consideration for load-balancing */ 9237 struct cpumask *cpus; 9238 9239 unsigned int flags; 9240 9241 unsigned int loop; 9242 unsigned int loop_break; 9243 unsigned int loop_max; 9244 9245 enum fbq_type fbq_type; 9246 enum migration_type migration_type; 9247 struct list_head tasks; 9248 }; 9249 9250 /* 9251 * Is this task likely cache-hot: 9252 */ 9253 static int task_hot(struct task_struct *p, struct lb_env *env) 9254 { 9255 s64 delta; 9256 9257 lockdep_assert_rq_held(env->src_rq); 9258 9259 if (p->sched_class != &fair_sched_class) 9260 return 0; 9261 9262 if (unlikely(task_has_idle_policy(p))) 9263 return 0; 9264 9265 /* SMT siblings share cache */ 9266 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9267 return 0; 9268 9269 /* 9270 * Buddy candidates are cache hot: 9271 */ 9272 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9273 (&p->se == cfs_rq_of(&p->se)->next)) 9274 return 1; 9275 9276 if (sysctl_sched_migration_cost == -1) 9277 return 1; 9278 9279 /* 9280 * Don't migrate task if the task's cookie does not match 9281 * with the destination CPU's core cookie. 9282 */ 9283 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9284 return 1; 9285 9286 if (sysctl_sched_migration_cost == 0) 9287 return 0; 9288 9289 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9290 9291 return delta < (s64)sysctl_sched_migration_cost; 9292 } 9293 9294 #ifdef CONFIG_NUMA_BALANCING 9295 /* 9296 * Returns 1, if task migration degrades locality 9297 * Returns 0, if task migration improves locality i.e migration preferred. 9298 * Returns -1, if task migration is not affected by locality. 9299 */ 9300 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9301 { 9302 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9303 unsigned long src_weight, dst_weight; 9304 int src_nid, dst_nid, dist; 9305 9306 if (!static_branch_likely(&sched_numa_balancing)) 9307 return -1; 9308 9309 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9310 return -1; 9311 9312 src_nid = cpu_to_node(env->src_cpu); 9313 dst_nid = cpu_to_node(env->dst_cpu); 9314 9315 if (src_nid == dst_nid) 9316 return -1; 9317 9318 /* Migrating away from the preferred node is always bad. */ 9319 if (src_nid == p->numa_preferred_nid) { 9320 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9321 return 1; 9322 else 9323 return -1; 9324 } 9325 9326 /* Encourage migration to the preferred node. */ 9327 if (dst_nid == p->numa_preferred_nid) 9328 return 0; 9329 9330 /* Leaving a core idle is often worse than degrading locality. */ 9331 if (env->idle == CPU_IDLE) 9332 return -1; 9333 9334 dist = node_distance(src_nid, dst_nid); 9335 if (numa_group) { 9336 src_weight = group_weight(p, src_nid, dist); 9337 dst_weight = group_weight(p, dst_nid, dist); 9338 } else { 9339 src_weight = task_weight(p, src_nid, dist); 9340 dst_weight = task_weight(p, dst_nid, dist); 9341 } 9342 9343 return dst_weight < src_weight; 9344 } 9345 9346 #else 9347 static inline int migrate_degrades_locality(struct task_struct *p, 9348 struct lb_env *env) 9349 { 9350 return -1; 9351 } 9352 #endif 9353 9354 /* 9355 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9356 */ 9357 static 9358 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9359 { 9360 int tsk_cache_hot; 9361 9362 lockdep_assert_rq_held(env->src_rq); 9363 9364 /* 9365 * We do not migrate tasks that are: 9366 * 1) throttled_lb_pair, or 9367 * 2) cannot be migrated to this CPU due to cpus_ptr, or 9368 * 3) running (obviously), or 9369 * 4) are cache-hot on their current CPU. 9370 */ 9371 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9372 return 0; 9373 9374 /* Disregard percpu kthreads; they are where they need to be. */ 9375 if (kthread_is_per_cpu(p)) 9376 return 0; 9377 9378 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9379 int cpu; 9380 9381 schedstat_inc(p->stats.nr_failed_migrations_affine); 9382 9383 env->flags |= LBF_SOME_PINNED; 9384 9385 /* 9386 * Remember if this task can be migrated to any other CPU in 9387 * our sched_group. We may want to revisit it if we couldn't 9388 * meet load balance goals by pulling other tasks on src_cpu. 9389 * 9390 * Avoid computing new_dst_cpu 9391 * - for NEWLY_IDLE 9392 * - if we have already computed one in current iteration 9393 * - if it's an active balance 9394 */ 9395 if (env->idle == CPU_NEWLY_IDLE || 9396 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9397 return 0; 9398 9399 /* Prevent to re-select dst_cpu via env's CPUs: */ 9400 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9401 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9402 env->flags |= LBF_DST_PINNED; 9403 env->new_dst_cpu = cpu; 9404 break; 9405 } 9406 } 9407 9408 return 0; 9409 } 9410 9411 /* Record that we found at least one task that could run on dst_cpu */ 9412 env->flags &= ~LBF_ALL_PINNED; 9413 9414 if (task_on_cpu(env->src_rq, p)) { 9415 schedstat_inc(p->stats.nr_failed_migrations_running); 9416 return 0; 9417 } 9418 9419 /* 9420 * Aggressive migration if: 9421 * 1) active balance 9422 * 2) destination numa is preferred 9423 * 3) task is cache cold, or 9424 * 4) too many balance attempts have failed. 9425 */ 9426 if (env->flags & LBF_ACTIVE_LB) 9427 return 1; 9428 9429 tsk_cache_hot = migrate_degrades_locality(p, env); 9430 if (tsk_cache_hot == -1) 9431 tsk_cache_hot = task_hot(p, env); 9432 9433 if (tsk_cache_hot <= 0 || 9434 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9435 if (tsk_cache_hot == 1) { 9436 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9437 schedstat_inc(p->stats.nr_forced_migrations); 9438 } 9439 return 1; 9440 } 9441 9442 schedstat_inc(p->stats.nr_failed_migrations_hot); 9443 return 0; 9444 } 9445 9446 /* 9447 * detach_task() -- detach the task for the migration specified in env 9448 */ 9449 static void detach_task(struct task_struct *p, struct lb_env *env) 9450 { 9451 lockdep_assert_rq_held(env->src_rq); 9452 9453 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9454 set_task_cpu(p, env->dst_cpu); 9455 } 9456 9457 /* 9458 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9459 * part of active balancing operations within "domain". 9460 * 9461 * Returns a task if successful and NULL otherwise. 9462 */ 9463 static struct task_struct *detach_one_task(struct lb_env *env) 9464 { 9465 struct task_struct *p; 9466 9467 lockdep_assert_rq_held(env->src_rq); 9468 9469 list_for_each_entry_reverse(p, 9470 &env->src_rq->cfs_tasks, se.group_node) { 9471 if (!can_migrate_task(p, env)) 9472 continue; 9473 9474 detach_task(p, env); 9475 9476 /* 9477 * Right now, this is only the second place where 9478 * lb_gained[env->idle] is updated (other is detach_tasks) 9479 * so we can safely collect stats here rather than 9480 * inside detach_tasks(). 9481 */ 9482 schedstat_inc(env->sd->lb_gained[env->idle]); 9483 return p; 9484 } 9485 return NULL; 9486 } 9487 9488 /* 9489 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9490 * busiest_rq, as part of a balancing operation within domain "sd". 9491 * 9492 * Returns number of detached tasks if successful and 0 otherwise. 9493 */ 9494 static int detach_tasks(struct lb_env *env) 9495 { 9496 struct list_head *tasks = &env->src_rq->cfs_tasks; 9497 unsigned long util, load; 9498 struct task_struct *p; 9499 int detached = 0; 9500 9501 lockdep_assert_rq_held(env->src_rq); 9502 9503 /* 9504 * Source run queue has been emptied by another CPU, clear 9505 * LBF_ALL_PINNED flag as we will not test any task. 9506 */ 9507 if (env->src_rq->nr_running <= 1) { 9508 env->flags &= ~LBF_ALL_PINNED; 9509 return 0; 9510 } 9511 9512 if (env->imbalance <= 0) 9513 return 0; 9514 9515 while (!list_empty(tasks)) { 9516 /* 9517 * We don't want to steal all, otherwise we may be treated likewise, 9518 * which could at worst lead to a livelock crash. 9519 */ 9520 if (env->idle && env->src_rq->nr_running <= 1) 9521 break; 9522 9523 env->loop++; 9524 /* We've more or less seen every task there is, call it quits */ 9525 if (env->loop > env->loop_max) 9526 break; 9527 9528 /* take a breather every nr_migrate tasks */ 9529 if (env->loop > env->loop_break) { 9530 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9531 env->flags |= LBF_NEED_BREAK; 9532 break; 9533 } 9534 9535 p = list_last_entry(tasks, struct task_struct, se.group_node); 9536 9537 if (!can_migrate_task(p, env)) 9538 goto next; 9539 9540 switch (env->migration_type) { 9541 case migrate_load: 9542 /* 9543 * Depending of the number of CPUs and tasks and the 9544 * cgroup hierarchy, task_h_load() can return a null 9545 * value. Make sure that env->imbalance decreases 9546 * otherwise detach_tasks() will stop only after 9547 * detaching up to loop_max tasks. 9548 */ 9549 load = max_t(unsigned long, task_h_load(p), 1); 9550 9551 if (sched_feat(LB_MIN) && 9552 load < 16 && !env->sd->nr_balance_failed) 9553 goto next; 9554 9555 /* 9556 * Make sure that we don't migrate too much load. 9557 * Nevertheless, let relax the constraint if 9558 * scheduler fails to find a good waiting task to 9559 * migrate. 9560 */ 9561 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9562 goto next; 9563 9564 env->imbalance -= load; 9565 break; 9566 9567 case migrate_util: 9568 util = task_util_est(p); 9569 9570 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9571 goto next; 9572 9573 env->imbalance -= util; 9574 break; 9575 9576 case migrate_task: 9577 env->imbalance--; 9578 break; 9579 9580 case migrate_misfit: 9581 /* This is not a misfit task */ 9582 if (task_fits_cpu(p, env->src_cpu)) 9583 goto next; 9584 9585 env->imbalance = 0; 9586 break; 9587 } 9588 9589 detach_task(p, env); 9590 list_add(&p->se.group_node, &env->tasks); 9591 9592 detached++; 9593 9594 #ifdef CONFIG_PREEMPTION 9595 /* 9596 * NEWIDLE balancing is a source of latency, so preemptible 9597 * kernels will stop after the first task is detached to minimize 9598 * the critical section. 9599 */ 9600 if (env->idle == CPU_NEWLY_IDLE) 9601 break; 9602 #endif 9603 9604 /* 9605 * We only want to steal up to the prescribed amount of 9606 * load/util/tasks. 9607 */ 9608 if (env->imbalance <= 0) 9609 break; 9610 9611 continue; 9612 next: 9613 list_move(&p->se.group_node, tasks); 9614 } 9615 9616 /* 9617 * Right now, this is one of only two places we collect this stat 9618 * so we can safely collect detach_one_task() stats here rather 9619 * than inside detach_one_task(). 9620 */ 9621 schedstat_add(env->sd->lb_gained[env->idle], detached); 9622 9623 return detached; 9624 } 9625 9626 /* 9627 * attach_task() -- attach the task detached by detach_task() to its new rq. 9628 */ 9629 static void attach_task(struct rq *rq, struct task_struct *p) 9630 { 9631 lockdep_assert_rq_held(rq); 9632 9633 WARN_ON_ONCE(task_rq(p) != rq); 9634 activate_task(rq, p, ENQUEUE_NOCLOCK); 9635 wakeup_preempt(rq, p, 0); 9636 } 9637 9638 /* 9639 * attach_one_task() -- attaches the task returned from detach_one_task() to 9640 * its new rq. 9641 */ 9642 static void attach_one_task(struct rq *rq, struct task_struct *p) 9643 { 9644 struct rq_flags rf; 9645 9646 rq_lock(rq, &rf); 9647 update_rq_clock(rq); 9648 attach_task(rq, p); 9649 rq_unlock(rq, &rf); 9650 } 9651 9652 /* 9653 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9654 * new rq. 9655 */ 9656 static void attach_tasks(struct lb_env *env) 9657 { 9658 struct list_head *tasks = &env->tasks; 9659 struct task_struct *p; 9660 struct rq_flags rf; 9661 9662 rq_lock(env->dst_rq, &rf); 9663 update_rq_clock(env->dst_rq); 9664 9665 while (!list_empty(tasks)) { 9666 p = list_first_entry(tasks, struct task_struct, se.group_node); 9667 list_del_init(&p->se.group_node); 9668 9669 attach_task(env->dst_rq, p); 9670 } 9671 9672 rq_unlock(env->dst_rq, &rf); 9673 } 9674 9675 #ifdef CONFIG_NO_HZ_COMMON 9676 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9677 { 9678 if (cfs_rq->avg.load_avg) 9679 return true; 9680 9681 if (cfs_rq->avg.util_avg) 9682 return true; 9683 9684 return false; 9685 } 9686 9687 static inline bool others_have_blocked(struct rq *rq) 9688 { 9689 if (cpu_util_rt(rq)) 9690 return true; 9691 9692 if (cpu_util_dl(rq)) 9693 return true; 9694 9695 if (hw_load_avg(rq)) 9696 return true; 9697 9698 if (cpu_util_irq(rq)) 9699 return true; 9700 9701 return false; 9702 } 9703 9704 static inline void update_blocked_load_tick(struct rq *rq) 9705 { 9706 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9707 } 9708 9709 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9710 { 9711 if (!has_blocked) 9712 rq->has_blocked_load = 0; 9713 } 9714 #else 9715 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9716 static inline bool others_have_blocked(struct rq *rq) { return false; } 9717 static inline void update_blocked_load_tick(struct rq *rq) {} 9718 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9719 #endif 9720 9721 static bool __update_blocked_others(struct rq *rq, bool *done) 9722 { 9723 bool updated; 9724 9725 /* 9726 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9727 * DL and IRQ signals have been updated before updating CFS. 9728 */ 9729 updated = update_other_load_avgs(rq); 9730 9731 if (others_have_blocked(rq)) 9732 *done = false; 9733 9734 return updated; 9735 } 9736 9737 #ifdef CONFIG_FAIR_GROUP_SCHED 9738 9739 static bool __update_blocked_fair(struct rq *rq, bool *done) 9740 { 9741 struct cfs_rq *cfs_rq, *pos; 9742 bool decayed = false; 9743 int cpu = cpu_of(rq); 9744 9745 /* 9746 * Iterates the task_group tree in a bottom up fashion, see 9747 * list_add_leaf_cfs_rq() for details. 9748 */ 9749 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9750 struct sched_entity *se; 9751 9752 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9753 update_tg_load_avg(cfs_rq); 9754 9755 if (cfs_rq->nr_running == 0) 9756 update_idle_cfs_rq_clock_pelt(cfs_rq); 9757 9758 if (cfs_rq == &rq->cfs) 9759 decayed = true; 9760 } 9761 9762 /* Propagate pending load changes to the parent, if any: */ 9763 se = cfs_rq->tg->se[cpu]; 9764 if (se && !skip_blocked_update(se)) 9765 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9766 9767 /* 9768 * There can be a lot of idle CPU cgroups. Don't let fully 9769 * decayed cfs_rqs linger on the list. 9770 */ 9771 if (cfs_rq_is_decayed(cfs_rq)) 9772 list_del_leaf_cfs_rq(cfs_rq); 9773 9774 /* Don't need periodic decay once load/util_avg are null */ 9775 if (cfs_rq_has_blocked(cfs_rq)) 9776 *done = false; 9777 } 9778 9779 return decayed; 9780 } 9781 9782 /* 9783 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9784 * This needs to be done in a top-down fashion because the load of a child 9785 * group is a fraction of its parents load. 9786 */ 9787 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9788 { 9789 struct rq *rq = rq_of(cfs_rq); 9790 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9791 unsigned long now = jiffies; 9792 unsigned long load; 9793 9794 if (cfs_rq->last_h_load_update == now) 9795 return; 9796 9797 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9798 for_each_sched_entity(se) { 9799 cfs_rq = cfs_rq_of(se); 9800 WRITE_ONCE(cfs_rq->h_load_next, se); 9801 if (cfs_rq->last_h_load_update == now) 9802 break; 9803 } 9804 9805 if (!se) { 9806 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9807 cfs_rq->last_h_load_update = now; 9808 } 9809 9810 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9811 load = cfs_rq->h_load; 9812 load = div64_ul(load * se->avg.load_avg, 9813 cfs_rq_load_avg(cfs_rq) + 1); 9814 cfs_rq = group_cfs_rq(se); 9815 cfs_rq->h_load = load; 9816 cfs_rq->last_h_load_update = now; 9817 } 9818 } 9819 9820 static unsigned long task_h_load(struct task_struct *p) 9821 { 9822 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9823 9824 update_cfs_rq_h_load(cfs_rq); 9825 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9826 cfs_rq_load_avg(cfs_rq) + 1); 9827 } 9828 #else 9829 static bool __update_blocked_fair(struct rq *rq, bool *done) 9830 { 9831 struct cfs_rq *cfs_rq = &rq->cfs; 9832 bool decayed; 9833 9834 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9835 if (cfs_rq_has_blocked(cfs_rq)) 9836 *done = false; 9837 9838 return decayed; 9839 } 9840 9841 static unsigned long task_h_load(struct task_struct *p) 9842 { 9843 return p->se.avg.load_avg; 9844 } 9845 #endif 9846 9847 static void sched_balance_update_blocked_averages(int cpu) 9848 { 9849 bool decayed = false, done = true; 9850 struct rq *rq = cpu_rq(cpu); 9851 struct rq_flags rf; 9852 9853 rq_lock_irqsave(rq, &rf); 9854 update_blocked_load_tick(rq); 9855 update_rq_clock(rq); 9856 9857 decayed |= __update_blocked_others(rq, &done); 9858 decayed |= __update_blocked_fair(rq, &done); 9859 9860 update_blocked_load_status(rq, !done); 9861 if (decayed) 9862 cpufreq_update_util(rq, 0); 9863 rq_unlock_irqrestore(rq, &rf); 9864 } 9865 9866 /********** Helpers for sched_balance_find_src_group ************************/ 9867 9868 /* 9869 * sg_lb_stats - stats of a sched_group required for load-balancing: 9870 */ 9871 struct sg_lb_stats { 9872 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9873 unsigned long group_load; /* Total load over the CPUs of the group */ 9874 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9875 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9876 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9877 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9878 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9879 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9880 unsigned int group_weight; 9881 enum group_type group_type; 9882 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9883 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9884 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9885 #ifdef CONFIG_NUMA_BALANCING 9886 unsigned int nr_numa_running; 9887 unsigned int nr_preferred_running; 9888 #endif 9889 }; 9890 9891 /* 9892 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9893 */ 9894 struct sd_lb_stats { 9895 struct sched_group *busiest; /* Busiest group in this sd */ 9896 struct sched_group *local; /* Local group in this sd */ 9897 unsigned long total_load; /* Total load of all groups in sd */ 9898 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9899 unsigned long avg_load; /* Average load across all groups in sd */ 9900 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9901 9902 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9903 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9904 }; 9905 9906 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9907 { 9908 /* 9909 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9910 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9911 * We must however set busiest_stat::group_type and 9912 * busiest_stat::idle_cpus to the worst busiest group because 9913 * update_sd_pick_busiest() reads these before assignment. 9914 */ 9915 *sds = (struct sd_lb_stats){ 9916 .busiest = NULL, 9917 .local = NULL, 9918 .total_load = 0UL, 9919 .total_capacity = 0UL, 9920 .busiest_stat = { 9921 .idle_cpus = UINT_MAX, 9922 .group_type = group_has_spare, 9923 }, 9924 }; 9925 } 9926 9927 static unsigned long scale_rt_capacity(int cpu) 9928 { 9929 unsigned long max = get_actual_cpu_capacity(cpu); 9930 struct rq *rq = cpu_rq(cpu); 9931 unsigned long used, free; 9932 unsigned long irq; 9933 9934 irq = cpu_util_irq(rq); 9935 9936 if (unlikely(irq >= max)) 9937 return 1; 9938 9939 /* 9940 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9941 * (running and not running) with weights 0 and 1024 respectively. 9942 */ 9943 used = cpu_util_rt(rq); 9944 used += cpu_util_dl(rq); 9945 9946 if (unlikely(used >= max)) 9947 return 1; 9948 9949 free = max - used; 9950 9951 return scale_irq_capacity(free, irq, max); 9952 } 9953 9954 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9955 { 9956 unsigned long capacity = scale_rt_capacity(cpu); 9957 struct sched_group *sdg = sd->groups; 9958 9959 if (!capacity) 9960 capacity = 1; 9961 9962 cpu_rq(cpu)->cpu_capacity = capacity; 9963 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9964 9965 sdg->sgc->capacity = capacity; 9966 sdg->sgc->min_capacity = capacity; 9967 sdg->sgc->max_capacity = capacity; 9968 } 9969 9970 void update_group_capacity(struct sched_domain *sd, int cpu) 9971 { 9972 struct sched_domain *child = sd->child; 9973 struct sched_group *group, *sdg = sd->groups; 9974 unsigned long capacity, min_capacity, max_capacity; 9975 unsigned long interval; 9976 9977 interval = msecs_to_jiffies(sd->balance_interval); 9978 interval = clamp(interval, 1UL, max_load_balance_interval); 9979 sdg->sgc->next_update = jiffies + interval; 9980 9981 if (!child) { 9982 update_cpu_capacity(sd, cpu); 9983 return; 9984 } 9985 9986 capacity = 0; 9987 min_capacity = ULONG_MAX; 9988 max_capacity = 0; 9989 9990 if (child->flags & SD_OVERLAP) { 9991 /* 9992 * SD_OVERLAP domains cannot assume that child groups 9993 * span the current group. 9994 */ 9995 9996 for_each_cpu(cpu, sched_group_span(sdg)) { 9997 unsigned long cpu_cap = capacity_of(cpu); 9998 9999 capacity += cpu_cap; 10000 min_capacity = min(cpu_cap, min_capacity); 10001 max_capacity = max(cpu_cap, max_capacity); 10002 } 10003 } else { 10004 /* 10005 * !SD_OVERLAP domains can assume that child groups 10006 * span the current group. 10007 */ 10008 10009 group = child->groups; 10010 do { 10011 struct sched_group_capacity *sgc = group->sgc; 10012 10013 capacity += sgc->capacity; 10014 min_capacity = min(sgc->min_capacity, min_capacity); 10015 max_capacity = max(sgc->max_capacity, max_capacity); 10016 group = group->next; 10017 } while (group != child->groups); 10018 } 10019 10020 sdg->sgc->capacity = capacity; 10021 sdg->sgc->min_capacity = min_capacity; 10022 sdg->sgc->max_capacity = max_capacity; 10023 } 10024 10025 /* 10026 * Check whether the capacity of the rq has been noticeably reduced by side 10027 * activity. The imbalance_pct is used for the threshold. 10028 * Return true is the capacity is reduced 10029 */ 10030 static inline int 10031 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10032 { 10033 return ((rq->cpu_capacity * sd->imbalance_pct) < 10034 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10035 } 10036 10037 /* Check if the rq has a misfit task */ 10038 static inline bool check_misfit_status(struct rq *rq) 10039 { 10040 return rq->misfit_task_load; 10041 } 10042 10043 /* 10044 * Group imbalance indicates (and tries to solve) the problem where balancing 10045 * groups is inadequate due to ->cpus_ptr constraints. 10046 * 10047 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10048 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10049 * Something like: 10050 * 10051 * { 0 1 2 3 } { 4 5 6 7 } 10052 * * * * * 10053 * 10054 * If we were to balance group-wise we'd place two tasks in the first group and 10055 * two tasks in the second group. Clearly this is undesired as it will overload 10056 * cpu 3 and leave one of the CPUs in the second group unused. 10057 * 10058 * The current solution to this issue is detecting the skew in the first group 10059 * by noticing the lower domain failed to reach balance and had difficulty 10060 * moving tasks due to affinity constraints. 10061 * 10062 * When this is so detected; this group becomes a candidate for busiest; see 10063 * update_sd_pick_busiest(). And calculate_imbalance() and 10064 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10065 * to create an effective group imbalance. 10066 * 10067 * This is a somewhat tricky proposition since the next run might not find the 10068 * group imbalance and decide the groups need to be balanced again. A most 10069 * subtle and fragile situation. 10070 */ 10071 10072 static inline int sg_imbalanced(struct sched_group *group) 10073 { 10074 return group->sgc->imbalance; 10075 } 10076 10077 /* 10078 * group_has_capacity returns true if the group has spare capacity that could 10079 * be used by some tasks. 10080 * We consider that a group has spare capacity if the number of task is 10081 * smaller than the number of CPUs or if the utilization is lower than the 10082 * available capacity for CFS tasks. 10083 * For the latter, we use a threshold to stabilize the state, to take into 10084 * account the variance of the tasks' load and to return true if the available 10085 * capacity in meaningful for the load balancer. 10086 * As an example, an available capacity of 1% can appear but it doesn't make 10087 * any benefit for the load balance. 10088 */ 10089 static inline bool 10090 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10091 { 10092 if (sgs->sum_nr_running < sgs->group_weight) 10093 return true; 10094 10095 if ((sgs->group_capacity * imbalance_pct) < 10096 (sgs->group_runnable * 100)) 10097 return false; 10098 10099 if ((sgs->group_capacity * 100) > 10100 (sgs->group_util * imbalance_pct)) 10101 return true; 10102 10103 return false; 10104 } 10105 10106 /* 10107 * group_is_overloaded returns true if the group has more tasks than it can 10108 * handle. 10109 * group_is_overloaded is not equals to !group_has_capacity because a group 10110 * with the exact right number of tasks, has no more spare capacity but is not 10111 * overloaded so both group_has_capacity and group_is_overloaded return 10112 * false. 10113 */ 10114 static inline bool 10115 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10116 { 10117 if (sgs->sum_nr_running <= sgs->group_weight) 10118 return false; 10119 10120 if ((sgs->group_capacity * 100) < 10121 (sgs->group_util * imbalance_pct)) 10122 return true; 10123 10124 if ((sgs->group_capacity * imbalance_pct) < 10125 (sgs->group_runnable * 100)) 10126 return true; 10127 10128 return false; 10129 } 10130 10131 static inline enum 10132 group_type group_classify(unsigned int imbalance_pct, 10133 struct sched_group *group, 10134 struct sg_lb_stats *sgs) 10135 { 10136 if (group_is_overloaded(imbalance_pct, sgs)) 10137 return group_overloaded; 10138 10139 if (sg_imbalanced(group)) 10140 return group_imbalanced; 10141 10142 if (sgs->group_asym_packing) 10143 return group_asym_packing; 10144 10145 if (sgs->group_smt_balance) 10146 return group_smt_balance; 10147 10148 if (sgs->group_misfit_task_load) 10149 return group_misfit_task; 10150 10151 if (!group_has_capacity(imbalance_pct, sgs)) 10152 return group_fully_busy; 10153 10154 return group_has_spare; 10155 } 10156 10157 /** 10158 * sched_use_asym_prio - Check whether asym_packing priority must be used 10159 * @sd: The scheduling domain of the load balancing 10160 * @cpu: A CPU 10161 * 10162 * Always use CPU priority when balancing load between SMT siblings. When 10163 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10164 * use CPU priority if the whole core is idle. 10165 * 10166 * Returns: True if the priority of @cpu must be followed. False otherwise. 10167 */ 10168 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10169 { 10170 if (!(sd->flags & SD_ASYM_PACKING)) 10171 return false; 10172 10173 if (!sched_smt_active()) 10174 return true; 10175 10176 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10177 } 10178 10179 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10180 { 10181 /* 10182 * First check if @dst_cpu can do asym_packing load balance. Only do it 10183 * if it has higher priority than @src_cpu. 10184 */ 10185 return sched_use_asym_prio(sd, dst_cpu) && 10186 sched_asym_prefer(dst_cpu, src_cpu); 10187 } 10188 10189 /** 10190 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10191 * @env: The load balancing environment 10192 * @sgs: Load-balancing statistics of the candidate busiest group 10193 * @group: The candidate busiest group 10194 * 10195 * @env::dst_cpu can do asym_packing if it has higher priority than the 10196 * preferred CPU of @group. 10197 * 10198 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10199 * otherwise. 10200 */ 10201 static inline bool 10202 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10203 { 10204 /* 10205 * CPU priorities do not make sense for SMT cores with more than one 10206 * busy sibling. 10207 */ 10208 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10209 (sgs->group_weight - sgs->idle_cpus != 1)) 10210 return false; 10211 10212 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10213 } 10214 10215 /* One group has more than one SMT CPU while the other group does not */ 10216 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10217 struct sched_group *sg2) 10218 { 10219 if (!sg1 || !sg2) 10220 return false; 10221 10222 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10223 (sg2->flags & SD_SHARE_CPUCAPACITY); 10224 } 10225 10226 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10227 struct sched_group *group) 10228 { 10229 if (!env->idle) 10230 return false; 10231 10232 /* 10233 * For SMT source group, it is better to move a task 10234 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10235 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10236 * will not be on. 10237 */ 10238 if (group->flags & SD_SHARE_CPUCAPACITY && 10239 sgs->sum_h_nr_running > 1) 10240 return true; 10241 10242 return false; 10243 } 10244 10245 static inline long sibling_imbalance(struct lb_env *env, 10246 struct sd_lb_stats *sds, 10247 struct sg_lb_stats *busiest, 10248 struct sg_lb_stats *local) 10249 { 10250 int ncores_busiest, ncores_local; 10251 long imbalance; 10252 10253 if (!env->idle || !busiest->sum_nr_running) 10254 return 0; 10255 10256 ncores_busiest = sds->busiest->cores; 10257 ncores_local = sds->local->cores; 10258 10259 if (ncores_busiest == ncores_local) { 10260 imbalance = busiest->sum_nr_running; 10261 lsub_positive(&imbalance, local->sum_nr_running); 10262 return imbalance; 10263 } 10264 10265 /* Balance such that nr_running/ncores ratio are same on both groups */ 10266 imbalance = ncores_local * busiest->sum_nr_running; 10267 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10268 /* Normalize imbalance and do rounding on normalization */ 10269 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10270 imbalance /= ncores_local + ncores_busiest; 10271 10272 /* Take advantage of resource in an empty sched group */ 10273 if (imbalance <= 1 && local->sum_nr_running == 0 && 10274 busiest->sum_nr_running > 1) 10275 imbalance = 2; 10276 10277 return imbalance; 10278 } 10279 10280 static inline bool 10281 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10282 { 10283 /* 10284 * When there is more than 1 task, the group_overloaded case already 10285 * takes care of cpu with reduced capacity 10286 */ 10287 if (rq->cfs.h_nr_running != 1) 10288 return false; 10289 10290 return check_cpu_capacity(rq, sd); 10291 } 10292 10293 /** 10294 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10295 * @env: The load balancing environment. 10296 * @sds: Load-balancing data with statistics of the local group. 10297 * @group: sched_group whose statistics are to be updated. 10298 * @sgs: variable to hold the statistics for this group. 10299 * @sg_overloaded: sched_group is overloaded 10300 * @sg_overutilized: sched_group is overutilized 10301 */ 10302 static inline void update_sg_lb_stats(struct lb_env *env, 10303 struct sd_lb_stats *sds, 10304 struct sched_group *group, 10305 struct sg_lb_stats *sgs, 10306 bool *sg_overloaded, 10307 bool *sg_overutilized) 10308 { 10309 int i, nr_running, local_group; 10310 10311 memset(sgs, 0, sizeof(*sgs)); 10312 10313 local_group = group == sds->local; 10314 10315 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10316 struct rq *rq = cpu_rq(i); 10317 unsigned long load = cpu_load(rq); 10318 10319 sgs->group_load += load; 10320 sgs->group_util += cpu_util_cfs(i); 10321 sgs->group_runnable += cpu_runnable(rq); 10322 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 10323 10324 nr_running = rq->nr_running; 10325 sgs->sum_nr_running += nr_running; 10326 10327 if (nr_running > 1) 10328 *sg_overloaded = 1; 10329 10330 if (cpu_overutilized(i)) 10331 *sg_overutilized = 1; 10332 10333 #ifdef CONFIG_NUMA_BALANCING 10334 sgs->nr_numa_running += rq->nr_numa_running; 10335 sgs->nr_preferred_running += rq->nr_preferred_running; 10336 #endif 10337 /* 10338 * No need to call idle_cpu() if nr_running is not 0 10339 */ 10340 if (!nr_running && idle_cpu(i)) { 10341 sgs->idle_cpus++; 10342 /* Idle cpu can't have misfit task */ 10343 continue; 10344 } 10345 10346 if (local_group) 10347 continue; 10348 10349 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10350 /* Check for a misfit task on the cpu */ 10351 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10352 sgs->group_misfit_task_load = rq->misfit_task_load; 10353 *sg_overloaded = 1; 10354 } 10355 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10356 /* Check for a task running on a CPU with reduced capacity */ 10357 if (sgs->group_misfit_task_load < load) 10358 sgs->group_misfit_task_load = load; 10359 } 10360 } 10361 10362 sgs->group_capacity = group->sgc->capacity; 10363 10364 sgs->group_weight = group->group_weight; 10365 10366 /* Check if dst CPU is idle and preferred to this group */ 10367 if (!local_group && env->idle && sgs->sum_h_nr_running && 10368 sched_group_asym(env, sgs, group)) 10369 sgs->group_asym_packing = 1; 10370 10371 /* Check for loaded SMT group to be balanced to dst CPU */ 10372 if (!local_group && smt_balance(env, sgs, group)) 10373 sgs->group_smt_balance = 1; 10374 10375 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10376 10377 /* Computing avg_load makes sense only when group is overloaded */ 10378 if (sgs->group_type == group_overloaded) 10379 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10380 sgs->group_capacity; 10381 } 10382 10383 /** 10384 * update_sd_pick_busiest - return 1 on busiest group 10385 * @env: The load balancing environment. 10386 * @sds: sched_domain statistics 10387 * @sg: sched_group candidate to be checked for being the busiest 10388 * @sgs: sched_group statistics 10389 * 10390 * Determine if @sg is a busier group than the previously selected 10391 * busiest group. 10392 * 10393 * Return: %true if @sg is a busier group than the previously selected 10394 * busiest group. %false otherwise. 10395 */ 10396 static bool update_sd_pick_busiest(struct lb_env *env, 10397 struct sd_lb_stats *sds, 10398 struct sched_group *sg, 10399 struct sg_lb_stats *sgs) 10400 { 10401 struct sg_lb_stats *busiest = &sds->busiest_stat; 10402 10403 /* Make sure that there is at least one task to pull */ 10404 if (!sgs->sum_h_nr_running) 10405 return false; 10406 10407 /* 10408 * Don't try to pull misfit tasks we can't help. 10409 * We can use max_capacity here as reduction in capacity on some 10410 * CPUs in the group should either be possible to resolve 10411 * internally or be covered by avg_load imbalance (eventually). 10412 */ 10413 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10414 (sgs->group_type == group_misfit_task) && 10415 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10416 sds->local_stat.group_type != group_has_spare)) 10417 return false; 10418 10419 if (sgs->group_type > busiest->group_type) 10420 return true; 10421 10422 if (sgs->group_type < busiest->group_type) 10423 return false; 10424 10425 /* 10426 * The candidate and the current busiest group are the same type of 10427 * group. Let check which one is the busiest according to the type. 10428 */ 10429 10430 switch (sgs->group_type) { 10431 case group_overloaded: 10432 /* Select the overloaded group with highest avg_load. */ 10433 return sgs->avg_load > busiest->avg_load; 10434 10435 case group_imbalanced: 10436 /* 10437 * Select the 1st imbalanced group as we don't have any way to 10438 * choose one more than another. 10439 */ 10440 return false; 10441 10442 case group_asym_packing: 10443 /* Prefer to move from lowest priority CPU's work */ 10444 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10445 10446 case group_misfit_task: 10447 /* 10448 * If we have more than one misfit sg go with the biggest 10449 * misfit. 10450 */ 10451 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10452 10453 case group_smt_balance: 10454 /* 10455 * Check if we have spare CPUs on either SMT group to 10456 * choose has spare or fully busy handling. 10457 */ 10458 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10459 goto has_spare; 10460 10461 fallthrough; 10462 10463 case group_fully_busy: 10464 /* 10465 * Select the fully busy group with highest avg_load. In 10466 * theory, there is no need to pull task from such kind of 10467 * group because tasks have all compute capacity that they need 10468 * but we can still improve the overall throughput by reducing 10469 * contention when accessing shared HW resources. 10470 * 10471 * XXX for now avg_load is not computed and always 0 so we 10472 * select the 1st one, except if @sg is composed of SMT 10473 * siblings. 10474 */ 10475 10476 if (sgs->avg_load < busiest->avg_load) 10477 return false; 10478 10479 if (sgs->avg_load == busiest->avg_load) { 10480 /* 10481 * SMT sched groups need more help than non-SMT groups. 10482 * If @sg happens to also be SMT, either choice is good. 10483 */ 10484 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10485 return false; 10486 } 10487 10488 break; 10489 10490 case group_has_spare: 10491 /* 10492 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10493 * as we do not want to pull task off SMT core with one task 10494 * and make the core idle. 10495 */ 10496 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10497 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10498 return false; 10499 else 10500 return true; 10501 } 10502 has_spare: 10503 10504 /* 10505 * Select not overloaded group with lowest number of idle CPUs 10506 * and highest number of running tasks. We could also compare 10507 * the spare capacity which is more stable but it can end up 10508 * that the group has less spare capacity but finally more idle 10509 * CPUs which means less opportunity to pull tasks. 10510 */ 10511 if (sgs->idle_cpus > busiest->idle_cpus) 10512 return false; 10513 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10514 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10515 return false; 10516 10517 break; 10518 } 10519 10520 /* 10521 * Candidate sg has no more than one task per CPU and has higher 10522 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10523 * throughput. Maximize throughput, power/energy consequences are not 10524 * considered. 10525 */ 10526 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10527 (sgs->group_type <= group_fully_busy) && 10528 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10529 return false; 10530 10531 return true; 10532 } 10533 10534 #ifdef CONFIG_NUMA_BALANCING 10535 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10536 { 10537 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10538 return regular; 10539 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10540 return remote; 10541 return all; 10542 } 10543 10544 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10545 { 10546 if (rq->nr_running > rq->nr_numa_running) 10547 return regular; 10548 if (rq->nr_running > rq->nr_preferred_running) 10549 return remote; 10550 return all; 10551 } 10552 #else 10553 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10554 { 10555 return all; 10556 } 10557 10558 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10559 { 10560 return regular; 10561 } 10562 #endif /* CONFIG_NUMA_BALANCING */ 10563 10564 10565 struct sg_lb_stats; 10566 10567 /* 10568 * task_running_on_cpu - return 1 if @p is running on @cpu. 10569 */ 10570 10571 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10572 { 10573 /* Task has no contribution or is new */ 10574 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10575 return 0; 10576 10577 if (task_on_rq_queued(p)) 10578 return 1; 10579 10580 return 0; 10581 } 10582 10583 /** 10584 * idle_cpu_without - would a given CPU be idle without p ? 10585 * @cpu: the processor on which idleness is tested. 10586 * @p: task which should be ignored. 10587 * 10588 * Return: 1 if the CPU would be idle. 0 otherwise. 10589 */ 10590 static int idle_cpu_without(int cpu, struct task_struct *p) 10591 { 10592 struct rq *rq = cpu_rq(cpu); 10593 10594 if (rq->curr != rq->idle && rq->curr != p) 10595 return 0; 10596 10597 /* 10598 * rq->nr_running can't be used but an updated version without the 10599 * impact of p on cpu must be used instead. The updated nr_running 10600 * be computed and tested before calling idle_cpu_without(). 10601 */ 10602 10603 if (rq->ttwu_pending) 10604 return 0; 10605 10606 return 1; 10607 } 10608 10609 /* 10610 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10611 * @sd: The sched_domain level to look for idlest group. 10612 * @group: sched_group whose statistics are to be updated. 10613 * @sgs: variable to hold the statistics for this group. 10614 * @p: The task for which we look for the idlest group/CPU. 10615 */ 10616 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10617 struct sched_group *group, 10618 struct sg_lb_stats *sgs, 10619 struct task_struct *p) 10620 { 10621 int i, nr_running; 10622 10623 memset(sgs, 0, sizeof(*sgs)); 10624 10625 /* Assume that task can't fit any CPU of the group */ 10626 if (sd->flags & SD_ASYM_CPUCAPACITY) 10627 sgs->group_misfit_task_load = 1; 10628 10629 for_each_cpu(i, sched_group_span(group)) { 10630 struct rq *rq = cpu_rq(i); 10631 unsigned int local; 10632 10633 sgs->group_load += cpu_load_without(rq, p); 10634 sgs->group_util += cpu_util_without(i, p); 10635 sgs->group_runnable += cpu_runnable_without(rq, p); 10636 local = task_running_on_cpu(i, p); 10637 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10638 10639 nr_running = rq->nr_running - local; 10640 sgs->sum_nr_running += nr_running; 10641 10642 /* 10643 * No need to call idle_cpu_without() if nr_running is not 0 10644 */ 10645 if (!nr_running && idle_cpu_without(i, p)) 10646 sgs->idle_cpus++; 10647 10648 /* Check if task fits in the CPU */ 10649 if (sd->flags & SD_ASYM_CPUCAPACITY && 10650 sgs->group_misfit_task_load && 10651 task_fits_cpu(p, i)) 10652 sgs->group_misfit_task_load = 0; 10653 10654 } 10655 10656 sgs->group_capacity = group->sgc->capacity; 10657 10658 sgs->group_weight = group->group_weight; 10659 10660 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10661 10662 /* 10663 * Computing avg_load makes sense only when group is fully busy or 10664 * overloaded 10665 */ 10666 if (sgs->group_type == group_fully_busy || 10667 sgs->group_type == group_overloaded) 10668 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10669 sgs->group_capacity; 10670 } 10671 10672 static bool update_pick_idlest(struct sched_group *idlest, 10673 struct sg_lb_stats *idlest_sgs, 10674 struct sched_group *group, 10675 struct sg_lb_stats *sgs) 10676 { 10677 if (sgs->group_type < idlest_sgs->group_type) 10678 return true; 10679 10680 if (sgs->group_type > idlest_sgs->group_type) 10681 return false; 10682 10683 /* 10684 * The candidate and the current idlest group are the same type of 10685 * group. Let check which one is the idlest according to the type. 10686 */ 10687 10688 switch (sgs->group_type) { 10689 case group_overloaded: 10690 case group_fully_busy: 10691 /* Select the group with lowest avg_load. */ 10692 if (idlest_sgs->avg_load <= sgs->avg_load) 10693 return false; 10694 break; 10695 10696 case group_imbalanced: 10697 case group_asym_packing: 10698 case group_smt_balance: 10699 /* Those types are not used in the slow wakeup path */ 10700 return false; 10701 10702 case group_misfit_task: 10703 /* Select group with the highest max capacity */ 10704 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10705 return false; 10706 break; 10707 10708 case group_has_spare: 10709 /* Select group with most idle CPUs */ 10710 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10711 return false; 10712 10713 /* Select group with lowest group_util */ 10714 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10715 idlest_sgs->group_util <= sgs->group_util) 10716 return false; 10717 10718 break; 10719 } 10720 10721 return true; 10722 } 10723 10724 /* 10725 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10726 * domain. 10727 * 10728 * Assumes p is allowed on at least one CPU in sd. 10729 */ 10730 static struct sched_group * 10731 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10732 { 10733 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10734 struct sg_lb_stats local_sgs, tmp_sgs; 10735 struct sg_lb_stats *sgs; 10736 unsigned long imbalance; 10737 struct sg_lb_stats idlest_sgs = { 10738 .avg_load = UINT_MAX, 10739 .group_type = group_overloaded, 10740 }; 10741 10742 do { 10743 int local_group; 10744 10745 /* Skip over this group if it has no CPUs allowed */ 10746 if (!cpumask_intersects(sched_group_span(group), 10747 p->cpus_ptr)) 10748 continue; 10749 10750 /* Skip over this group if no cookie matched */ 10751 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10752 continue; 10753 10754 local_group = cpumask_test_cpu(this_cpu, 10755 sched_group_span(group)); 10756 10757 if (local_group) { 10758 sgs = &local_sgs; 10759 local = group; 10760 } else { 10761 sgs = &tmp_sgs; 10762 } 10763 10764 update_sg_wakeup_stats(sd, group, sgs, p); 10765 10766 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10767 idlest = group; 10768 idlest_sgs = *sgs; 10769 } 10770 10771 } while (group = group->next, group != sd->groups); 10772 10773 10774 /* There is no idlest group to push tasks to */ 10775 if (!idlest) 10776 return NULL; 10777 10778 /* The local group has been skipped because of CPU affinity */ 10779 if (!local) 10780 return idlest; 10781 10782 /* 10783 * If the local group is idler than the selected idlest group 10784 * don't try and push the task. 10785 */ 10786 if (local_sgs.group_type < idlest_sgs.group_type) 10787 return NULL; 10788 10789 /* 10790 * If the local group is busier than the selected idlest group 10791 * try and push the task. 10792 */ 10793 if (local_sgs.group_type > idlest_sgs.group_type) 10794 return idlest; 10795 10796 switch (local_sgs.group_type) { 10797 case group_overloaded: 10798 case group_fully_busy: 10799 10800 /* Calculate allowed imbalance based on load */ 10801 imbalance = scale_load_down(NICE_0_LOAD) * 10802 (sd->imbalance_pct-100) / 100; 10803 10804 /* 10805 * When comparing groups across NUMA domains, it's possible for 10806 * the local domain to be very lightly loaded relative to the 10807 * remote domains but "imbalance" skews the comparison making 10808 * remote CPUs look much more favourable. When considering 10809 * cross-domain, add imbalance to the load on the remote node 10810 * and consider staying local. 10811 */ 10812 10813 if ((sd->flags & SD_NUMA) && 10814 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10815 return NULL; 10816 10817 /* 10818 * If the local group is less loaded than the selected 10819 * idlest group don't try and push any tasks. 10820 */ 10821 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10822 return NULL; 10823 10824 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10825 return NULL; 10826 break; 10827 10828 case group_imbalanced: 10829 case group_asym_packing: 10830 case group_smt_balance: 10831 /* Those type are not used in the slow wakeup path */ 10832 return NULL; 10833 10834 case group_misfit_task: 10835 /* Select group with the highest max capacity */ 10836 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10837 return NULL; 10838 break; 10839 10840 case group_has_spare: 10841 #ifdef CONFIG_NUMA 10842 if (sd->flags & SD_NUMA) { 10843 int imb_numa_nr = sd->imb_numa_nr; 10844 #ifdef CONFIG_NUMA_BALANCING 10845 int idlest_cpu; 10846 /* 10847 * If there is spare capacity at NUMA, try to select 10848 * the preferred node 10849 */ 10850 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10851 return NULL; 10852 10853 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10854 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10855 return idlest; 10856 #endif /* CONFIG_NUMA_BALANCING */ 10857 /* 10858 * Otherwise, keep the task close to the wakeup source 10859 * and improve locality if the number of running tasks 10860 * would remain below threshold where an imbalance is 10861 * allowed while accounting for the possibility the 10862 * task is pinned to a subset of CPUs. If there is a 10863 * real need of migration, periodic load balance will 10864 * take care of it. 10865 */ 10866 if (p->nr_cpus_allowed != NR_CPUS) { 10867 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10868 10869 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10870 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10871 } 10872 10873 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10874 if (!adjust_numa_imbalance(imbalance, 10875 local_sgs.sum_nr_running + 1, 10876 imb_numa_nr)) { 10877 return NULL; 10878 } 10879 } 10880 #endif /* CONFIG_NUMA */ 10881 10882 /* 10883 * Select group with highest number of idle CPUs. We could also 10884 * compare the utilization which is more stable but it can end 10885 * up that the group has less spare capacity but finally more 10886 * idle CPUs which means more opportunity to run task. 10887 */ 10888 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10889 return NULL; 10890 break; 10891 } 10892 10893 return idlest; 10894 } 10895 10896 static void update_idle_cpu_scan(struct lb_env *env, 10897 unsigned long sum_util) 10898 { 10899 struct sched_domain_shared *sd_share; 10900 int llc_weight, pct; 10901 u64 x, y, tmp; 10902 /* 10903 * Update the number of CPUs to scan in LLC domain, which could 10904 * be used as a hint in select_idle_cpu(). The update of sd_share 10905 * could be expensive because it is within a shared cache line. 10906 * So the write of this hint only occurs during periodic load 10907 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10908 * can fire way more frequently than the former. 10909 */ 10910 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10911 return; 10912 10913 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10914 if (env->sd->span_weight != llc_weight) 10915 return; 10916 10917 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10918 if (!sd_share) 10919 return; 10920 10921 /* 10922 * The number of CPUs to search drops as sum_util increases, when 10923 * sum_util hits 85% or above, the scan stops. 10924 * The reason to choose 85% as the threshold is because this is the 10925 * imbalance_pct(117) when a LLC sched group is overloaded. 10926 * 10927 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10928 * and y'= y / SCHED_CAPACITY_SCALE 10929 * 10930 * x is the ratio of sum_util compared to the CPU capacity: 10931 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10932 * y' is the ratio of CPUs to be scanned in the LLC domain, 10933 * and the number of CPUs to scan is calculated by: 10934 * 10935 * nr_scan = llc_weight * y' [2] 10936 * 10937 * When x hits the threshold of overloaded, AKA, when 10938 * x = 100 / pct, y drops to 0. According to [1], 10939 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10940 * 10941 * Scale x by SCHED_CAPACITY_SCALE: 10942 * x' = sum_util / llc_weight; [3] 10943 * 10944 * and finally [1] becomes: 10945 * y = SCHED_CAPACITY_SCALE - 10946 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10947 * 10948 */ 10949 /* equation [3] */ 10950 x = sum_util; 10951 do_div(x, llc_weight); 10952 10953 /* equation [4] */ 10954 pct = env->sd->imbalance_pct; 10955 tmp = x * x * pct * pct; 10956 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10957 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10958 y = SCHED_CAPACITY_SCALE - tmp; 10959 10960 /* equation [2] */ 10961 y *= llc_weight; 10962 do_div(y, SCHED_CAPACITY_SCALE); 10963 if ((int)y != sd_share->nr_idle_scan) 10964 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10965 } 10966 10967 /** 10968 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10969 * @env: The load balancing environment. 10970 * @sds: variable to hold the statistics for this sched_domain. 10971 */ 10972 10973 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10974 { 10975 struct sched_group *sg = env->sd->groups; 10976 struct sg_lb_stats *local = &sds->local_stat; 10977 struct sg_lb_stats tmp_sgs; 10978 unsigned long sum_util = 0; 10979 bool sg_overloaded = 0, sg_overutilized = 0; 10980 10981 do { 10982 struct sg_lb_stats *sgs = &tmp_sgs; 10983 int local_group; 10984 10985 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10986 if (local_group) { 10987 sds->local = sg; 10988 sgs = local; 10989 10990 if (env->idle != CPU_NEWLY_IDLE || 10991 time_after_eq(jiffies, sg->sgc->next_update)) 10992 update_group_capacity(env->sd, env->dst_cpu); 10993 } 10994 10995 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10996 10997 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10998 sds->busiest = sg; 10999 sds->busiest_stat = *sgs; 11000 } 11001 11002 /* Now, start updating sd_lb_stats */ 11003 sds->total_load += sgs->group_load; 11004 sds->total_capacity += sgs->group_capacity; 11005 11006 sum_util += sgs->group_util; 11007 sg = sg->next; 11008 } while (sg != env->sd->groups); 11009 11010 /* 11011 * Indicate that the child domain of the busiest group prefers tasks 11012 * go to a child's sibling domains first. NB the flags of a sched group 11013 * are those of the child domain. 11014 */ 11015 if (sds->busiest) 11016 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11017 11018 11019 if (env->sd->flags & SD_NUMA) 11020 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11021 11022 if (!env->sd->parent) { 11023 /* update overload indicator if we are at root domain */ 11024 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11025 11026 /* Update over-utilization (tipping point, U >= 0) indicator */ 11027 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11028 } else if (sg_overutilized) { 11029 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11030 } 11031 11032 update_idle_cpu_scan(env, sum_util); 11033 } 11034 11035 /** 11036 * calculate_imbalance - Calculate the amount of imbalance present within the 11037 * groups of a given sched_domain during load balance. 11038 * @env: load balance environment 11039 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11040 */ 11041 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11042 { 11043 struct sg_lb_stats *local, *busiest; 11044 11045 local = &sds->local_stat; 11046 busiest = &sds->busiest_stat; 11047 11048 if (busiest->group_type == group_misfit_task) { 11049 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11050 /* Set imbalance to allow misfit tasks to be balanced. */ 11051 env->migration_type = migrate_misfit; 11052 env->imbalance = 1; 11053 } else { 11054 /* 11055 * Set load imbalance to allow moving task from cpu 11056 * with reduced capacity. 11057 */ 11058 env->migration_type = migrate_load; 11059 env->imbalance = busiest->group_misfit_task_load; 11060 } 11061 return; 11062 } 11063 11064 if (busiest->group_type == group_asym_packing) { 11065 /* 11066 * In case of asym capacity, we will try to migrate all load to 11067 * the preferred CPU. 11068 */ 11069 env->migration_type = migrate_task; 11070 env->imbalance = busiest->sum_h_nr_running; 11071 return; 11072 } 11073 11074 if (busiest->group_type == group_smt_balance) { 11075 /* Reduce number of tasks sharing CPU capacity */ 11076 env->migration_type = migrate_task; 11077 env->imbalance = 1; 11078 return; 11079 } 11080 11081 if (busiest->group_type == group_imbalanced) { 11082 /* 11083 * In the group_imb case we cannot rely on group-wide averages 11084 * to ensure CPU-load equilibrium, try to move any task to fix 11085 * the imbalance. The next load balance will take care of 11086 * balancing back the system. 11087 */ 11088 env->migration_type = migrate_task; 11089 env->imbalance = 1; 11090 return; 11091 } 11092 11093 /* 11094 * Try to use spare capacity of local group without overloading it or 11095 * emptying busiest. 11096 */ 11097 if (local->group_type == group_has_spare) { 11098 if ((busiest->group_type > group_fully_busy) && 11099 !(env->sd->flags & SD_SHARE_LLC)) { 11100 /* 11101 * If busiest is overloaded, try to fill spare 11102 * capacity. This might end up creating spare capacity 11103 * in busiest or busiest still being overloaded but 11104 * there is no simple way to directly compute the 11105 * amount of load to migrate in order to balance the 11106 * system. 11107 */ 11108 env->migration_type = migrate_util; 11109 env->imbalance = max(local->group_capacity, local->group_util) - 11110 local->group_util; 11111 11112 /* 11113 * In some cases, the group's utilization is max or even 11114 * higher than capacity because of migrations but the 11115 * local CPU is (newly) idle. There is at least one 11116 * waiting task in this overloaded busiest group. Let's 11117 * try to pull it. 11118 */ 11119 if (env->idle && env->imbalance == 0) { 11120 env->migration_type = migrate_task; 11121 env->imbalance = 1; 11122 } 11123 11124 return; 11125 } 11126 11127 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11128 /* 11129 * When prefer sibling, evenly spread running tasks on 11130 * groups. 11131 */ 11132 env->migration_type = migrate_task; 11133 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11134 } else { 11135 11136 /* 11137 * If there is no overload, we just want to even the number of 11138 * idle CPUs. 11139 */ 11140 env->migration_type = migrate_task; 11141 env->imbalance = max_t(long, 0, 11142 (local->idle_cpus - busiest->idle_cpus)); 11143 } 11144 11145 #ifdef CONFIG_NUMA 11146 /* Consider allowing a small imbalance between NUMA groups */ 11147 if (env->sd->flags & SD_NUMA) { 11148 env->imbalance = adjust_numa_imbalance(env->imbalance, 11149 local->sum_nr_running + 1, 11150 env->sd->imb_numa_nr); 11151 } 11152 #endif 11153 11154 /* Number of tasks to move to restore balance */ 11155 env->imbalance >>= 1; 11156 11157 return; 11158 } 11159 11160 /* 11161 * Local is fully busy but has to take more load to relieve the 11162 * busiest group 11163 */ 11164 if (local->group_type < group_overloaded) { 11165 /* 11166 * Local will become overloaded so the avg_load metrics are 11167 * finally needed. 11168 */ 11169 11170 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11171 local->group_capacity; 11172 11173 /* 11174 * If the local group is more loaded than the selected 11175 * busiest group don't try to pull any tasks. 11176 */ 11177 if (local->avg_load >= busiest->avg_load) { 11178 env->imbalance = 0; 11179 return; 11180 } 11181 11182 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11183 sds->total_capacity; 11184 11185 /* 11186 * If the local group is more loaded than the average system 11187 * load, don't try to pull any tasks. 11188 */ 11189 if (local->avg_load >= sds->avg_load) { 11190 env->imbalance = 0; 11191 return; 11192 } 11193 11194 } 11195 11196 /* 11197 * Both group are or will become overloaded and we're trying to get all 11198 * the CPUs to the average_load, so we don't want to push ourselves 11199 * above the average load, nor do we wish to reduce the max loaded CPU 11200 * below the average load. At the same time, we also don't want to 11201 * reduce the group load below the group capacity. Thus we look for 11202 * the minimum possible imbalance. 11203 */ 11204 env->migration_type = migrate_load; 11205 env->imbalance = min( 11206 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11207 (sds->avg_load - local->avg_load) * local->group_capacity 11208 ) / SCHED_CAPACITY_SCALE; 11209 } 11210 11211 /******* sched_balance_find_src_group() helpers end here *********************/ 11212 11213 /* 11214 * Decision matrix according to the local and busiest group type: 11215 * 11216 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11217 * has_spare nr_idle balanced N/A N/A balanced balanced 11218 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11219 * misfit_task force N/A N/A N/A N/A N/A 11220 * asym_packing force force N/A N/A force force 11221 * imbalanced force force N/A N/A force force 11222 * overloaded force force N/A N/A force avg_load 11223 * 11224 * N/A : Not Applicable because already filtered while updating 11225 * statistics. 11226 * balanced : The system is balanced for these 2 groups. 11227 * force : Calculate the imbalance as load migration is probably needed. 11228 * avg_load : Only if imbalance is significant enough. 11229 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11230 * different in groups. 11231 */ 11232 11233 /** 11234 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11235 * if there is an imbalance. 11236 * @env: The load balancing environment. 11237 * 11238 * Also calculates the amount of runnable load which should be moved 11239 * to restore balance. 11240 * 11241 * Return: - The busiest group if imbalance exists. 11242 */ 11243 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11244 { 11245 struct sg_lb_stats *local, *busiest; 11246 struct sd_lb_stats sds; 11247 11248 init_sd_lb_stats(&sds); 11249 11250 /* 11251 * Compute the various statistics relevant for load balancing at 11252 * this level. 11253 */ 11254 update_sd_lb_stats(env, &sds); 11255 11256 /* There is no busy sibling group to pull tasks from */ 11257 if (!sds.busiest) 11258 goto out_balanced; 11259 11260 busiest = &sds.busiest_stat; 11261 11262 /* Misfit tasks should be dealt with regardless of the avg load */ 11263 if (busiest->group_type == group_misfit_task) 11264 goto force_balance; 11265 11266 if (!is_rd_overutilized(env->dst_rq->rd) && 11267 rcu_dereference(env->dst_rq->rd->pd)) 11268 goto out_balanced; 11269 11270 /* ASYM feature bypasses nice load balance check */ 11271 if (busiest->group_type == group_asym_packing) 11272 goto force_balance; 11273 11274 /* 11275 * If the busiest group is imbalanced the below checks don't 11276 * work because they assume all things are equal, which typically 11277 * isn't true due to cpus_ptr constraints and the like. 11278 */ 11279 if (busiest->group_type == group_imbalanced) 11280 goto force_balance; 11281 11282 local = &sds.local_stat; 11283 /* 11284 * If the local group is busier than the selected busiest group 11285 * don't try and pull any tasks. 11286 */ 11287 if (local->group_type > busiest->group_type) 11288 goto out_balanced; 11289 11290 /* 11291 * When groups are overloaded, use the avg_load to ensure fairness 11292 * between tasks. 11293 */ 11294 if (local->group_type == group_overloaded) { 11295 /* 11296 * If the local group is more loaded than the selected 11297 * busiest group don't try to pull any tasks. 11298 */ 11299 if (local->avg_load >= busiest->avg_load) 11300 goto out_balanced; 11301 11302 /* XXX broken for overlapping NUMA groups */ 11303 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11304 sds.total_capacity; 11305 11306 /* 11307 * Don't pull any tasks if this group is already above the 11308 * domain average load. 11309 */ 11310 if (local->avg_load >= sds.avg_load) 11311 goto out_balanced; 11312 11313 /* 11314 * If the busiest group is more loaded, use imbalance_pct to be 11315 * conservative. 11316 */ 11317 if (100 * busiest->avg_load <= 11318 env->sd->imbalance_pct * local->avg_load) 11319 goto out_balanced; 11320 } 11321 11322 /* 11323 * Try to move all excess tasks to a sibling domain of the busiest 11324 * group's child domain. 11325 */ 11326 if (sds.prefer_sibling && local->group_type == group_has_spare && 11327 sibling_imbalance(env, &sds, busiest, local) > 1) 11328 goto force_balance; 11329 11330 if (busiest->group_type != group_overloaded) { 11331 if (!env->idle) { 11332 /* 11333 * If the busiest group is not overloaded (and as a 11334 * result the local one too) but this CPU is already 11335 * busy, let another idle CPU try to pull task. 11336 */ 11337 goto out_balanced; 11338 } 11339 11340 if (busiest->group_type == group_smt_balance && 11341 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11342 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11343 goto force_balance; 11344 } 11345 11346 if (busiest->group_weight > 1 && 11347 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11348 /* 11349 * If the busiest group is not overloaded 11350 * and there is no imbalance between this and busiest 11351 * group wrt idle CPUs, it is balanced. The imbalance 11352 * becomes significant if the diff is greater than 1 11353 * otherwise we might end up to just move the imbalance 11354 * on another group. Of course this applies only if 11355 * there is more than 1 CPU per group. 11356 */ 11357 goto out_balanced; 11358 } 11359 11360 if (busiest->sum_h_nr_running == 1) { 11361 /* 11362 * busiest doesn't have any tasks waiting to run 11363 */ 11364 goto out_balanced; 11365 } 11366 } 11367 11368 force_balance: 11369 /* Looks like there is an imbalance. Compute it */ 11370 calculate_imbalance(env, &sds); 11371 return env->imbalance ? sds.busiest : NULL; 11372 11373 out_balanced: 11374 env->imbalance = 0; 11375 return NULL; 11376 } 11377 11378 /* 11379 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11380 */ 11381 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11382 struct sched_group *group) 11383 { 11384 struct rq *busiest = NULL, *rq; 11385 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11386 unsigned int busiest_nr = 0; 11387 int i; 11388 11389 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11390 unsigned long capacity, load, util; 11391 unsigned int nr_running; 11392 enum fbq_type rt; 11393 11394 rq = cpu_rq(i); 11395 rt = fbq_classify_rq(rq); 11396 11397 /* 11398 * We classify groups/runqueues into three groups: 11399 * - regular: there are !numa tasks 11400 * - remote: there are numa tasks that run on the 'wrong' node 11401 * - all: there is no distinction 11402 * 11403 * In order to avoid migrating ideally placed numa tasks, 11404 * ignore those when there's better options. 11405 * 11406 * If we ignore the actual busiest queue to migrate another 11407 * task, the next balance pass can still reduce the busiest 11408 * queue by moving tasks around inside the node. 11409 * 11410 * If we cannot move enough load due to this classification 11411 * the next pass will adjust the group classification and 11412 * allow migration of more tasks. 11413 * 11414 * Both cases only affect the total convergence complexity. 11415 */ 11416 if (rt > env->fbq_type) 11417 continue; 11418 11419 nr_running = rq->cfs.h_nr_running; 11420 if (!nr_running) 11421 continue; 11422 11423 capacity = capacity_of(i); 11424 11425 /* 11426 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11427 * eventually lead to active_balancing high->low capacity. 11428 * Higher per-CPU capacity is considered better than balancing 11429 * average load. 11430 */ 11431 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11432 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11433 nr_running == 1) 11434 continue; 11435 11436 /* 11437 * Make sure we only pull tasks from a CPU of lower priority 11438 * when balancing between SMT siblings. 11439 * 11440 * If balancing between cores, let lower priority CPUs help 11441 * SMT cores with more than one busy sibling. 11442 */ 11443 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11444 continue; 11445 11446 switch (env->migration_type) { 11447 case migrate_load: 11448 /* 11449 * When comparing with load imbalance, use cpu_load() 11450 * which is not scaled with the CPU capacity. 11451 */ 11452 load = cpu_load(rq); 11453 11454 if (nr_running == 1 && load > env->imbalance && 11455 !check_cpu_capacity(rq, env->sd)) 11456 break; 11457 11458 /* 11459 * For the load comparisons with the other CPUs, 11460 * consider the cpu_load() scaled with the CPU 11461 * capacity, so that the load can be moved away 11462 * from the CPU that is potentially running at a 11463 * lower capacity. 11464 * 11465 * Thus we're looking for max(load_i / capacity_i), 11466 * crosswise multiplication to rid ourselves of the 11467 * division works out to: 11468 * load_i * capacity_j > load_j * capacity_i; 11469 * where j is our previous maximum. 11470 */ 11471 if (load * busiest_capacity > busiest_load * capacity) { 11472 busiest_load = load; 11473 busiest_capacity = capacity; 11474 busiest = rq; 11475 } 11476 break; 11477 11478 case migrate_util: 11479 util = cpu_util_cfs_boost(i); 11480 11481 /* 11482 * Don't try to pull utilization from a CPU with one 11483 * running task. Whatever its utilization, we will fail 11484 * detach the task. 11485 */ 11486 if (nr_running <= 1) 11487 continue; 11488 11489 if (busiest_util < util) { 11490 busiest_util = util; 11491 busiest = rq; 11492 } 11493 break; 11494 11495 case migrate_task: 11496 if (busiest_nr < nr_running) { 11497 busiest_nr = nr_running; 11498 busiest = rq; 11499 } 11500 break; 11501 11502 case migrate_misfit: 11503 /* 11504 * For ASYM_CPUCAPACITY domains with misfit tasks we 11505 * simply seek the "biggest" misfit task. 11506 */ 11507 if (rq->misfit_task_load > busiest_load) { 11508 busiest_load = rq->misfit_task_load; 11509 busiest = rq; 11510 } 11511 11512 break; 11513 11514 } 11515 } 11516 11517 return busiest; 11518 } 11519 11520 /* 11521 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11522 * so long as it is large enough. 11523 */ 11524 #define MAX_PINNED_INTERVAL 512 11525 11526 static inline bool 11527 asym_active_balance(struct lb_env *env) 11528 { 11529 /* 11530 * ASYM_PACKING needs to force migrate tasks from busy but lower 11531 * priority CPUs in order to pack all tasks in the highest priority 11532 * CPUs. When done between cores, do it only if the whole core if the 11533 * whole core is idle. 11534 * 11535 * If @env::src_cpu is an SMT core with busy siblings, let 11536 * the lower priority @env::dst_cpu help it. Do not follow 11537 * CPU priority. 11538 */ 11539 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11540 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11541 !sched_use_asym_prio(env->sd, env->src_cpu)); 11542 } 11543 11544 static inline bool 11545 imbalanced_active_balance(struct lb_env *env) 11546 { 11547 struct sched_domain *sd = env->sd; 11548 11549 /* 11550 * The imbalanced case includes the case of pinned tasks preventing a fair 11551 * distribution of the load on the system but also the even distribution of the 11552 * threads on a system with spare capacity 11553 */ 11554 if ((env->migration_type == migrate_task) && 11555 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11556 return 1; 11557 11558 return 0; 11559 } 11560 11561 static int need_active_balance(struct lb_env *env) 11562 { 11563 struct sched_domain *sd = env->sd; 11564 11565 if (asym_active_balance(env)) 11566 return 1; 11567 11568 if (imbalanced_active_balance(env)) 11569 return 1; 11570 11571 /* 11572 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11573 * It's worth migrating the task if the src_cpu's capacity is reduced 11574 * because of other sched_class or IRQs if more capacity stays 11575 * available on dst_cpu. 11576 */ 11577 if (env->idle && 11578 (env->src_rq->cfs.h_nr_running == 1)) { 11579 if ((check_cpu_capacity(env->src_rq, sd)) && 11580 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11581 return 1; 11582 } 11583 11584 if (env->migration_type == migrate_misfit) 11585 return 1; 11586 11587 return 0; 11588 } 11589 11590 static int active_load_balance_cpu_stop(void *data); 11591 11592 static int should_we_balance(struct lb_env *env) 11593 { 11594 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11595 struct sched_group *sg = env->sd->groups; 11596 int cpu, idle_smt = -1; 11597 11598 /* 11599 * Ensure the balancing environment is consistent; can happen 11600 * when the softirq triggers 'during' hotplug. 11601 */ 11602 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11603 return 0; 11604 11605 /* 11606 * In the newly idle case, we will allow all the CPUs 11607 * to do the newly idle load balance. 11608 * 11609 * However, we bail out if we already have tasks or a wakeup pending, 11610 * to optimize wakeup latency. 11611 */ 11612 if (env->idle == CPU_NEWLY_IDLE) { 11613 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11614 return 0; 11615 return 1; 11616 } 11617 11618 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11619 /* Try to find first idle CPU */ 11620 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11621 if (!idle_cpu(cpu)) 11622 continue; 11623 11624 /* 11625 * Don't balance to idle SMT in busy core right away when 11626 * balancing cores, but remember the first idle SMT CPU for 11627 * later consideration. Find CPU on an idle core first. 11628 */ 11629 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11630 if (idle_smt == -1) 11631 idle_smt = cpu; 11632 /* 11633 * If the core is not idle, and first SMT sibling which is 11634 * idle has been found, then its not needed to check other 11635 * SMT siblings for idleness: 11636 */ 11637 #ifdef CONFIG_SCHED_SMT 11638 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11639 #endif 11640 continue; 11641 } 11642 11643 /* 11644 * Are we the first idle core in a non-SMT domain or higher, 11645 * or the first idle CPU in a SMT domain? 11646 */ 11647 return cpu == env->dst_cpu; 11648 } 11649 11650 /* Are we the first idle CPU with busy siblings? */ 11651 if (idle_smt != -1) 11652 return idle_smt == env->dst_cpu; 11653 11654 /* Are we the first CPU of this group ? */ 11655 return group_balance_cpu(sg) == env->dst_cpu; 11656 } 11657 11658 /* 11659 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11660 * tasks if there is an imbalance. 11661 */ 11662 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11663 struct sched_domain *sd, enum cpu_idle_type idle, 11664 int *continue_balancing) 11665 { 11666 int ld_moved, cur_ld_moved, active_balance = 0; 11667 struct sched_domain *sd_parent = sd->parent; 11668 struct sched_group *group; 11669 struct rq *busiest; 11670 struct rq_flags rf; 11671 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11672 struct lb_env env = { 11673 .sd = sd, 11674 .dst_cpu = this_cpu, 11675 .dst_rq = this_rq, 11676 .dst_grpmask = group_balance_mask(sd->groups), 11677 .idle = idle, 11678 .loop_break = SCHED_NR_MIGRATE_BREAK, 11679 .cpus = cpus, 11680 .fbq_type = all, 11681 .tasks = LIST_HEAD_INIT(env.tasks), 11682 }; 11683 11684 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11685 11686 schedstat_inc(sd->lb_count[idle]); 11687 11688 redo: 11689 if (!should_we_balance(&env)) { 11690 *continue_balancing = 0; 11691 goto out_balanced; 11692 } 11693 11694 group = sched_balance_find_src_group(&env); 11695 if (!group) { 11696 schedstat_inc(sd->lb_nobusyg[idle]); 11697 goto out_balanced; 11698 } 11699 11700 busiest = sched_balance_find_src_rq(&env, group); 11701 if (!busiest) { 11702 schedstat_inc(sd->lb_nobusyq[idle]); 11703 goto out_balanced; 11704 } 11705 11706 WARN_ON_ONCE(busiest == env.dst_rq); 11707 11708 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11709 11710 env.src_cpu = busiest->cpu; 11711 env.src_rq = busiest; 11712 11713 ld_moved = 0; 11714 /* Clear this flag as soon as we find a pullable task */ 11715 env.flags |= LBF_ALL_PINNED; 11716 if (busiest->nr_running > 1) { 11717 /* 11718 * Attempt to move tasks. If sched_balance_find_src_group has found 11719 * an imbalance but busiest->nr_running <= 1, the group is 11720 * still unbalanced. ld_moved simply stays zero, so it is 11721 * correctly treated as an imbalance. 11722 */ 11723 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11724 11725 more_balance: 11726 rq_lock_irqsave(busiest, &rf); 11727 update_rq_clock(busiest); 11728 11729 /* 11730 * cur_ld_moved - load moved in current iteration 11731 * ld_moved - cumulative load moved across iterations 11732 */ 11733 cur_ld_moved = detach_tasks(&env); 11734 11735 /* 11736 * We've detached some tasks from busiest_rq. Every 11737 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11738 * unlock busiest->lock, and we are able to be sure 11739 * that nobody can manipulate the tasks in parallel. 11740 * See task_rq_lock() family for the details. 11741 */ 11742 11743 rq_unlock(busiest, &rf); 11744 11745 if (cur_ld_moved) { 11746 attach_tasks(&env); 11747 ld_moved += cur_ld_moved; 11748 } 11749 11750 local_irq_restore(rf.flags); 11751 11752 if (env.flags & LBF_NEED_BREAK) { 11753 env.flags &= ~LBF_NEED_BREAK; 11754 goto more_balance; 11755 } 11756 11757 /* 11758 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11759 * us and move them to an alternate dst_cpu in our sched_group 11760 * where they can run. The upper limit on how many times we 11761 * iterate on same src_cpu is dependent on number of CPUs in our 11762 * sched_group. 11763 * 11764 * This changes load balance semantics a bit on who can move 11765 * load to a given_cpu. In addition to the given_cpu itself 11766 * (or a ilb_cpu acting on its behalf where given_cpu is 11767 * nohz-idle), we now have balance_cpu in a position to move 11768 * load to given_cpu. In rare situations, this may cause 11769 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11770 * _independently_ and at _same_ time to move some load to 11771 * given_cpu) causing excess load to be moved to given_cpu. 11772 * This however should not happen so much in practice and 11773 * moreover subsequent load balance cycles should correct the 11774 * excess load moved. 11775 */ 11776 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11777 11778 /* Prevent to re-select dst_cpu via env's CPUs */ 11779 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11780 11781 env.dst_rq = cpu_rq(env.new_dst_cpu); 11782 env.dst_cpu = env.new_dst_cpu; 11783 env.flags &= ~LBF_DST_PINNED; 11784 env.loop = 0; 11785 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11786 11787 /* 11788 * Go back to "more_balance" rather than "redo" since we 11789 * need to continue with same src_cpu. 11790 */ 11791 goto more_balance; 11792 } 11793 11794 /* 11795 * We failed to reach balance because of affinity. 11796 */ 11797 if (sd_parent) { 11798 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11799 11800 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11801 *group_imbalance = 1; 11802 } 11803 11804 /* All tasks on this runqueue were pinned by CPU affinity */ 11805 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11806 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11807 /* 11808 * Attempting to continue load balancing at the current 11809 * sched_domain level only makes sense if there are 11810 * active CPUs remaining as possible busiest CPUs to 11811 * pull load from which are not contained within the 11812 * destination group that is receiving any migrated 11813 * load. 11814 */ 11815 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11816 env.loop = 0; 11817 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11818 goto redo; 11819 } 11820 goto out_all_pinned; 11821 } 11822 } 11823 11824 if (!ld_moved) { 11825 schedstat_inc(sd->lb_failed[idle]); 11826 /* 11827 * Increment the failure counter only on periodic balance. 11828 * We do not want newidle balance, which can be very 11829 * frequent, pollute the failure counter causing 11830 * excessive cache_hot migrations and active balances. 11831 * 11832 * Similarly for migration_misfit which is not related to 11833 * load/util migration, don't pollute nr_balance_failed. 11834 */ 11835 if (idle != CPU_NEWLY_IDLE && 11836 env.migration_type != migrate_misfit) 11837 sd->nr_balance_failed++; 11838 11839 if (need_active_balance(&env)) { 11840 unsigned long flags; 11841 11842 raw_spin_rq_lock_irqsave(busiest, flags); 11843 11844 /* 11845 * Don't kick the active_load_balance_cpu_stop, 11846 * if the curr task on busiest CPU can't be 11847 * moved to this_cpu: 11848 */ 11849 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11850 raw_spin_rq_unlock_irqrestore(busiest, flags); 11851 goto out_one_pinned; 11852 } 11853 11854 /* Record that we found at least one task that could run on this_cpu */ 11855 env.flags &= ~LBF_ALL_PINNED; 11856 11857 /* 11858 * ->active_balance synchronizes accesses to 11859 * ->active_balance_work. Once set, it's cleared 11860 * only after active load balance is finished. 11861 */ 11862 if (!busiest->active_balance) { 11863 busiest->active_balance = 1; 11864 busiest->push_cpu = this_cpu; 11865 active_balance = 1; 11866 } 11867 11868 preempt_disable(); 11869 raw_spin_rq_unlock_irqrestore(busiest, flags); 11870 if (active_balance) { 11871 stop_one_cpu_nowait(cpu_of(busiest), 11872 active_load_balance_cpu_stop, busiest, 11873 &busiest->active_balance_work); 11874 } 11875 preempt_enable(); 11876 } 11877 } else { 11878 sd->nr_balance_failed = 0; 11879 } 11880 11881 if (likely(!active_balance) || need_active_balance(&env)) { 11882 /* We were unbalanced, so reset the balancing interval */ 11883 sd->balance_interval = sd->min_interval; 11884 } 11885 11886 goto out; 11887 11888 out_balanced: 11889 /* 11890 * We reach balance although we may have faced some affinity 11891 * constraints. Clear the imbalance flag only if other tasks got 11892 * a chance to move and fix the imbalance. 11893 */ 11894 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11895 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11896 11897 if (*group_imbalance) 11898 *group_imbalance = 0; 11899 } 11900 11901 out_all_pinned: 11902 /* 11903 * We reach balance because all tasks are pinned at this level so 11904 * we can't migrate them. Let the imbalance flag set so parent level 11905 * can try to migrate them. 11906 */ 11907 schedstat_inc(sd->lb_balanced[idle]); 11908 11909 sd->nr_balance_failed = 0; 11910 11911 out_one_pinned: 11912 ld_moved = 0; 11913 11914 /* 11915 * sched_balance_newidle() disregards balance intervals, so we could 11916 * repeatedly reach this code, which would lead to balance_interval 11917 * skyrocketing in a short amount of time. Skip the balance_interval 11918 * increase logic to avoid that. 11919 * 11920 * Similarly misfit migration which is not necessarily an indication of 11921 * the system being busy and requires lb to backoff to let it settle 11922 * down. 11923 */ 11924 if (env.idle == CPU_NEWLY_IDLE || 11925 env.migration_type == migrate_misfit) 11926 goto out; 11927 11928 /* tune up the balancing interval */ 11929 if ((env.flags & LBF_ALL_PINNED && 11930 sd->balance_interval < MAX_PINNED_INTERVAL) || 11931 sd->balance_interval < sd->max_interval) 11932 sd->balance_interval *= 2; 11933 out: 11934 return ld_moved; 11935 } 11936 11937 static inline unsigned long 11938 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11939 { 11940 unsigned long interval = sd->balance_interval; 11941 11942 if (cpu_busy) 11943 interval *= sd->busy_factor; 11944 11945 /* scale ms to jiffies */ 11946 interval = msecs_to_jiffies(interval); 11947 11948 /* 11949 * Reduce likelihood of busy balancing at higher domains racing with 11950 * balancing at lower domains by preventing their balancing periods 11951 * from being multiples of each other. 11952 */ 11953 if (cpu_busy) 11954 interval -= 1; 11955 11956 interval = clamp(interval, 1UL, max_load_balance_interval); 11957 11958 return interval; 11959 } 11960 11961 static inline void 11962 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11963 { 11964 unsigned long interval, next; 11965 11966 /* used by idle balance, so cpu_busy = 0 */ 11967 interval = get_sd_balance_interval(sd, 0); 11968 next = sd->last_balance + interval; 11969 11970 if (time_after(*next_balance, next)) 11971 *next_balance = next; 11972 } 11973 11974 /* 11975 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11976 * running tasks off the busiest CPU onto idle CPUs. It requires at 11977 * least 1 task to be running on each physical CPU where possible, and 11978 * avoids physical / logical imbalances. 11979 */ 11980 static int active_load_balance_cpu_stop(void *data) 11981 { 11982 struct rq *busiest_rq = data; 11983 int busiest_cpu = cpu_of(busiest_rq); 11984 int target_cpu = busiest_rq->push_cpu; 11985 struct rq *target_rq = cpu_rq(target_cpu); 11986 struct sched_domain *sd; 11987 struct task_struct *p = NULL; 11988 struct rq_flags rf; 11989 11990 rq_lock_irq(busiest_rq, &rf); 11991 /* 11992 * Between queueing the stop-work and running it is a hole in which 11993 * CPUs can become inactive. We should not move tasks from or to 11994 * inactive CPUs. 11995 */ 11996 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11997 goto out_unlock; 11998 11999 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12000 if (unlikely(busiest_cpu != smp_processor_id() || 12001 !busiest_rq->active_balance)) 12002 goto out_unlock; 12003 12004 /* Is there any task to move? */ 12005 if (busiest_rq->nr_running <= 1) 12006 goto out_unlock; 12007 12008 /* 12009 * This condition is "impossible", if it occurs 12010 * we need to fix it. Originally reported by 12011 * Bjorn Helgaas on a 128-CPU setup. 12012 */ 12013 WARN_ON_ONCE(busiest_rq == target_rq); 12014 12015 /* Search for an sd spanning us and the target CPU. */ 12016 rcu_read_lock(); 12017 for_each_domain(target_cpu, sd) { 12018 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12019 break; 12020 } 12021 12022 if (likely(sd)) { 12023 struct lb_env env = { 12024 .sd = sd, 12025 .dst_cpu = target_cpu, 12026 .dst_rq = target_rq, 12027 .src_cpu = busiest_rq->cpu, 12028 .src_rq = busiest_rq, 12029 .idle = CPU_IDLE, 12030 .flags = LBF_ACTIVE_LB, 12031 }; 12032 12033 schedstat_inc(sd->alb_count); 12034 update_rq_clock(busiest_rq); 12035 12036 p = detach_one_task(&env); 12037 if (p) { 12038 schedstat_inc(sd->alb_pushed); 12039 /* Active balancing done, reset the failure counter. */ 12040 sd->nr_balance_failed = 0; 12041 } else { 12042 schedstat_inc(sd->alb_failed); 12043 } 12044 } 12045 rcu_read_unlock(); 12046 out_unlock: 12047 busiest_rq->active_balance = 0; 12048 rq_unlock(busiest_rq, &rf); 12049 12050 if (p) 12051 attach_one_task(target_rq, p); 12052 12053 local_irq_enable(); 12054 12055 return 0; 12056 } 12057 12058 /* 12059 * This flag serializes load-balancing passes over large domains 12060 * (above the NODE topology level) - only one load-balancing instance 12061 * may run at a time, to reduce overhead on very large systems with 12062 * lots of CPUs and large NUMA distances. 12063 * 12064 * - Note that load-balancing passes triggered while another one 12065 * is executing are skipped and not re-tried. 12066 * 12067 * - Also note that this does not serialize rebalance_domains() 12068 * execution, as non-SD_SERIALIZE domains will still be 12069 * load-balanced in parallel. 12070 */ 12071 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12072 12073 /* 12074 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12075 * This trades load-balance latency on larger machines for less cross talk. 12076 */ 12077 void update_max_interval(void) 12078 { 12079 max_load_balance_interval = HZ*num_online_cpus()/10; 12080 } 12081 12082 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12083 { 12084 if (cost > sd->max_newidle_lb_cost) { 12085 /* 12086 * Track max cost of a domain to make sure to not delay the 12087 * next wakeup on the CPU. 12088 */ 12089 sd->max_newidle_lb_cost = cost; 12090 sd->last_decay_max_lb_cost = jiffies; 12091 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12092 /* 12093 * Decay the newidle max times by ~1% per second to ensure that 12094 * it is not outdated and the current max cost is actually 12095 * shorter. 12096 */ 12097 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12098 sd->last_decay_max_lb_cost = jiffies; 12099 12100 return true; 12101 } 12102 12103 return false; 12104 } 12105 12106 /* 12107 * It checks each scheduling domain to see if it is due to be balanced, 12108 * and initiates a balancing operation if so. 12109 * 12110 * Balancing parameters are set up in init_sched_domains. 12111 */ 12112 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12113 { 12114 int continue_balancing = 1; 12115 int cpu = rq->cpu; 12116 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12117 unsigned long interval; 12118 struct sched_domain *sd; 12119 /* Earliest time when we have to do rebalance again */ 12120 unsigned long next_balance = jiffies + 60*HZ; 12121 int update_next_balance = 0; 12122 int need_serialize, need_decay = 0; 12123 u64 max_cost = 0; 12124 12125 rcu_read_lock(); 12126 for_each_domain(cpu, sd) { 12127 /* 12128 * Decay the newidle max times here because this is a regular 12129 * visit to all the domains. 12130 */ 12131 need_decay = update_newidle_cost(sd, 0); 12132 max_cost += sd->max_newidle_lb_cost; 12133 12134 /* 12135 * Stop the load balance at this level. There is another 12136 * CPU in our sched group which is doing load balancing more 12137 * actively. 12138 */ 12139 if (!continue_balancing) { 12140 if (need_decay) 12141 continue; 12142 break; 12143 } 12144 12145 interval = get_sd_balance_interval(sd, busy); 12146 12147 need_serialize = sd->flags & SD_SERIALIZE; 12148 if (need_serialize) { 12149 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12150 goto out; 12151 } 12152 12153 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12154 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12155 /* 12156 * The LBF_DST_PINNED logic could have changed 12157 * env->dst_cpu, so we can't know our idle 12158 * state even if we migrated tasks. Update it. 12159 */ 12160 idle = idle_cpu(cpu); 12161 busy = !idle && !sched_idle_cpu(cpu); 12162 } 12163 sd->last_balance = jiffies; 12164 interval = get_sd_balance_interval(sd, busy); 12165 } 12166 if (need_serialize) 12167 atomic_set_release(&sched_balance_running, 0); 12168 out: 12169 if (time_after(next_balance, sd->last_balance + interval)) { 12170 next_balance = sd->last_balance + interval; 12171 update_next_balance = 1; 12172 } 12173 } 12174 if (need_decay) { 12175 /* 12176 * Ensure the rq-wide value also decays but keep it at a 12177 * reasonable floor to avoid funnies with rq->avg_idle. 12178 */ 12179 rq->max_idle_balance_cost = 12180 max((u64)sysctl_sched_migration_cost, max_cost); 12181 } 12182 rcu_read_unlock(); 12183 12184 /* 12185 * next_balance will be updated only when there is a need. 12186 * When the cpu is attached to null domain for ex, it will not be 12187 * updated. 12188 */ 12189 if (likely(update_next_balance)) 12190 rq->next_balance = next_balance; 12191 12192 } 12193 12194 static inline int on_null_domain(struct rq *rq) 12195 { 12196 return unlikely(!rcu_dereference_sched(rq->sd)); 12197 } 12198 12199 #ifdef CONFIG_NO_HZ_COMMON 12200 /* 12201 * NOHZ idle load balancing (ILB) details: 12202 * 12203 * - When one of the busy CPUs notices that there may be an idle rebalancing 12204 * needed, they will kick the idle load balancer, which then does idle 12205 * load balancing for all the idle CPUs. 12206 * 12207 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 12208 * anywhere yet. 12209 */ 12210 static inline int find_new_ilb(void) 12211 { 12212 const struct cpumask *hk_mask; 12213 int ilb_cpu; 12214 12215 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 12216 12217 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12218 12219 if (ilb_cpu == smp_processor_id()) 12220 continue; 12221 12222 if (idle_cpu(ilb_cpu)) 12223 return ilb_cpu; 12224 } 12225 12226 return -1; 12227 } 12228 12229 /* 12230 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12231 * SMP function call (IPI). 12232 * 12233 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 12234 */ 12235 static void kick_ilb(unsigned int flags) 12236 { 12237 int ilb_cpu; 12238 12239 /* 12240 * Increase nohz.next_balance only when if full ilb is triggered but 12241 * not if we only update stats. 12242 */ 12243 if (flags & NOHZ_BALANCE_KICK) 12244 nohz.next_balance = jiffies+1; 12245 12246 ilb_cpu = find_new_ilb(); 12247 if (ilb_cpu < 0) 12248 return; 12249 12250 /* 12251 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12252 * i.e. all bits in flags are already set in ilb_cpu. 12253 */ 12254 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12255 return; 12256 12257 /* 12258 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12259 * the first flag owns it; cleared by nohz_csd_func(). 12260 */ 12261 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12262 if (flags & NOHZ_KICK_MASK) 12263 return; 12264 12265 /* 12266 * This way we generate an IPI on the target CPU which 12267 * is idle, and the softirq performing NOHZ idle load balancing 12268 * will be run before returning from the IPI. 12269 */ 12270 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12271 } 12272 12273 /* 12274 * Current decision point for kicking the idle load balancer in the presence 12275 * of idle CPUs in the system. 12276 */ 12277 static void nohz_balancer_kick(struct rq *rq) 12278 { 12279 unsigned long now = jiffies; 12280 struct sched_domain_shared *sds; 12281 struct sched_domain *sd; 12282 int nr_busy, i, cpu = rq->cpu; 12283 unsigned int flags = 0; 12284 12285 if (unlikely(rq->idle_balance)) 12286 return; 12287 12288 /* 12289 * We may be recently in ticked or tickless idle mode. At the first 12290 * busy tick after returning from idle, we will update the busy stats. 12291 */ 12292 nohz_balance_exit_idle(rq); 12293 12294 /* 12295 * None are in tickless mode and hence no need for NOHZ idle load 12296 * balancing: 12297 */ 12298 if (likely(!atomic_read(&nohz.nr_cpus))) 12299 return; 12300 12301 if (READ_ONCE(nohz.has_blocked) && 12302 time_after(now, READ_ONCE(nohz.next_blocked))) 12303 flags = NOHZ_STATS_KICK; 12304 12305 if (time_before(now, nohz.next_balance)) 12306 goto out; 12307 12308 if (rq->nr_running >= 2) { 12309 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12310 goto out; 12311 } 12312 12313 rcu_read_lock(); 12314 12315 sd = rcu_dereference(rq->sd); 12316 if (sd) { 12317 /* 12318 * If there's a runnable CFS task and the current CPU has reduced 12319 * capacity, kick the ILB to see if there's a better CPU to run on: 12320 */ 12321 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 12322 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12323 goto unlock; 12324 } 12325 } 12326 12327 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12328 if (sd) { 12329 /* 12330 * When ASYM_PACKING; see if there's a more preferred CPU 12331 * currently idle; in which case, kick the ILB to move tasks 12332 * around. 12333 * 12334 * When balancing between cores, all the SMT siblings of the 12335 * preferred CPU must be idle. 12336 */ 12337 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12338 if (sched_asym(sd, i, cpu)) { 12339 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12340 goto unlock; 12341 } 12342 } 12343 } 12344 12345 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12346 if (sd) { 12347 /* 12348 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12349 * to run the misfit task on. 12350 */ 12351 if (check_misfit_status(rq)) { 12352 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12353 goto unlock; 12354 } 12355 12356 /* 12357 * For asymmetric systems, we do not want to nicely balance 12358 * cache use, instead we want to embrace asymmetry and only 12359 * ensure tasks have enough CPU capacity. 12360 * 12361 * Skip the LLC logic because it's not relevant in that case. 12362 */ 12363 goto unlock; 12364 } 12365 12366 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12367 if (sds) { 12368 /* 12369 * If there is an imbalance between LLC domains (IOW we could 12370 * increase the overall cache utilization), we need a less-loaded LLC 12371 * domain to pull some load from. Likewise, we may need to spread 12372 * load within the current LLC domain (e.g. packed SMT cores but 12373 * other CPUs are idle). We can't really know from here how busy 12374 * the others are - so just get a NOHZ balance going if it looks 12375 * like this LLC domain has tasks we could move. 12376 */ 12377 nr_busy = atomic_read(&sds->nr_busy_cpus); 12378 if (nr_busy > 1) { 12379 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12380 goto unlock; 12381 } 12382 } 12383 unlock: 12384 rcu_read_unlock(); 12385 out: 12386 if (READ_ONCE(nohz.needs_update)) 12387 flags |= NOHZ_NEXT_KICK; 12388 12389 if (flags) 12390 kick_ilb(flags); 12391 } 12392 12393 static void set_cpu_sd_state_busy(int cpu) 12394 { 12395 struct sched_domain *sd; 12396 12397 rcu_read_lock(); 12398 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12399 12400 if (!sd || !sd->nohz_idle) 12401 goto unlock; 12402 sd->nohz_idle = 0; 12403 12404 atomic_inc(&sd->shared->nr_busy_cpus); 12405 unlock: 12406 rcu_read_unlock(); 12407 } 12408 12409 void nohz_balance_exit_idle(struct rq *rq) 12410 { 12411 SCHED_WARN_ON(rq != this_rq()); 12412 12413 if (likely(!rq->nohz_tick_stopped)) 12414 return; 12415 12416 rq->nohz_tick_stopped = 0; 12417 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12418 atomic_dec(&nohz.nr_cpus); 12419 12420 set_cpu_sd_state_busy(rq->cpu); 12421 } 12422 12423 static void set_cpu_sd_state_idle(int cpu) 12424 { 12425 struct sched_domain *sd; 12426 12427 rcu_read_lock(); 12428 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12429 12430 if (!sd || sd->nohz_idle) 12431 goto unlock; 12432 sd->nohz_idle = 1; 12433 12434 atomic_dec(&sd->shared->nr_busy_cpus); 12435 unlock: 12436 rcu_read_unlock(); 12437 } 12438 12439 /* 12440 * This routine will record that the CPU is going idle with tick stopped. 12441 * This info will be used in performing idle load balancing in the future. 12442 */ 12443 void nohz_balance_enter_idle(int cpu) 12444 { 12445 struct rq *rq = cpu_rq(cpu); 12446 12447 SCHED_WARN_ON(cpu != smp_processor_id()); 12448 12449 /* If this CPU is going down, then nothing needs to be done: */ 12450 if (!cpu_active(cpu)) 12451 return; 12452 12453 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12454 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12455 return; 12456 12457 /* 12458 * Can be set safely without rq->lock held 12459 * If a clear happens, it will have evaluated last additions because 12460 * rq->lock is held during the check and the clear 12461 */ 12462 rq->has_blocked_load = 1; 12463 12464 /* 12465 * The tick is still stopped but load could have been added in the 12466 * meantime. We set the nohz.has_blocked flag to trig a check of the 12467 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12468 * of nohz.has_blocked can only happen after checking the new load 12469 */ 12470 if (rq->nohz_tick_stopped) 12471 goto out; 12472 12473 /* If we're a completely isolated CPU, we don't play: */ 12474 if (on_null_domain(rq)) 12475 return; 12476 12477 rq->nohz_tick_stopped = 1; 12478 12479 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12480 atomic_inc(&nohz.nr_cpus); 12481 12482 /* 12483 * Ensures that if nohz_idle_balance() fails to observe our 12484 * @idle_cpus_mask store, it must observe the @has_blocked 12485 * and @needs_update stores. 12486 */ 12487 smp_mb__after_atomic(); 12488 12489 set_cpu_sd_state_idle(cpu); 12490 12491 WRITE_ONCE(nohz.needs_update, 1); 12492 out: 12493 /* 12494 * Each time a cpu enter idle, we assume that it has blocked load and 12495 * enable the periodic update of the load of idle CPUs 12496 */ 12497 WRITE_ONCE(nohz.has_blocked, 1); 12498 } 12499 12500 static bool update_nohz_stats(struct rq *rq) 12501 { 12502 unsigned int cpu = rq->cpu; 12503 12504 if (!rq->has_blocked_load) 12505 return false; 12506 12507 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12508 return false; 12509 12510 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12511 return true; 12512 12513 sched_balance_update_blocked_averages(cpu); 12514 12515 return rq->has_blocked_load; 12516 } 12517 12518 /* 12519 * Internal function that runs load balance for all idle CPUs. The load balance 12520 * can be a simple update of blocked load or a complete load balance with 12521 * tasks movement depending of flags. 12522 */ 12523 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12524 { 12525 /* Earliest time when we have to do rebalance again */ 12526 unsigned long now = jiffies; 12527 unsigned long next_balance = now + 60*HZ; 12528 bool has_blocked_load = false; 12529 int update_next_balance = 0; 12530 int this_cpu = this_rq->cpu; 12531 int balance_cpu; 12532 struct rq *rq; 12533 12534 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12535 12536 /* 12537 * We assume there will be no idle load after this update and clear 12538 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12539 * set the has_blocked flag and trigger another update of idle load. 12540 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12541 * setting the flag, we are sure to not clear the state and not 12542 * check the load of an idle cpu. 12543 * 12544 * Same applies to idle_cpus_mask vs needs_update. 12545 */ 12546 if (flags & NOHZ_STATS_KICK) 12547 WRITE_ONCE(nohz.has_blocked, 0); 12548 if (flags & NOHZ_NEXT_KICK) 12549 WRITE_ONCE(nohz.needs_update, 0); 12550 12551 /* 12552 * Ensures that if we miss the CPU, we must see the has_blocked 12553 * store from nohz_balance_enter_idle(). 12554 */ 12555 smp_mb(); 12556 12557 /* 12558 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12559 * chance for other idle cpu to pull load. 12560 */ 12561 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12562 if (!idle_cpu(balance_cpu)) 12563 continue; 12564 12565 /* 12566 * If this CPU gets work to do, stop the load balancing 12567 * work being done for other CPUs. Next load 12568 * balancing owner will pick it up. 12569 */ 12570 if (need_resched()) { 12571 if (flags & NOHZ_STATS_KICK) 12572 has_blocked_load = true; 12573 if (flags & NOHZ_NEXT_KICK) 12574 WRITE_ONCE(nohz.needs_update, 1); 12575 goto abort; 12576 } 12577 12578 rq = cpu_rq(balance_cpu); 12579 12580 if (flags & NOHZ_STATS_KICK) 12581 has_blocked_load |= update_nohz_stats(rq); 12582 12583 /* 12584 * If time for next balance is due, 12585 * do the balance. 12586 */ 12587 if (time_after_eq(jiffies, rq->next_balance)) { 12588 struct rq_flags rf; 12589 12590 rq_lock_irqsave(rq, &rf); 12591 update_rq_clock(rq); 12592 rq_unlock_irqrestore(rq, &rf); 12593 12594 if (flags & NOHZ_BALANCE_KICK) 12595 sched_balance_domains(rq, CPU_IDLE); 12596 } 12597 12598 if (time_after(next_balance, rq->next_balance)) { 12599 next_balance = rq->next_balance; 12600 update_next_balance = 1; 12601 } 12602 } 12603 12604 /* 12605 * next_balance will be updated only when there is a need. 12606 * When the CPU is attached to null domain for ex, it will not be 12607 * updated. 12608 */ 12609 if (likely(update_next_balance)) 12610 nohz.next_balance = next_balance; 12611 12612 if (flags & NOHZ_STATS_KICK) 12613 WRITE_ONCE(nohz.next_blocked, 12614 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12615 12616 abort: 12617 /* There is still blocked load, enable periodic update */ 12618 if (has_blocked_load) 12619 WRITE_ONCE(nohz.has_blocked, 1); 12620 } 12621 12622 /* 12623 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12624 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12625 */ 12626 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12627 { 12628 unsigned int flags = this_rq->nohz_idle_balance; 12629 12630 if (!flags) 12631 return false; 12632 12633 this_rq->nohz_idle_balance = 0; 12634 12635 if (idle != CPU_IDLE) 12636 return false; 12637 12638 _nohz_idle_balance(this_rq, flags); 12639 12640 return true; 12641 } 12642 12643 /* 12644 * Check if we need to directly run the ILB for updating blocked load before 12645 * entering idle state. Here we run ILB directly without issuing IPIs. 12646 * 12647 * Note that when this function is called, the tick may not yet be stopped on 12648 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12649 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12650 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12651 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12652 * called from this function on (this) CPU that's not yet in the mask. That's 12653 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12654 * updating the blocked load of already idle CPUs without waking up one of 12655 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12656 * cpu about to enter idle, because it can take a long time. 12657 */ 12658 void nohz_run_idle_balance(int cpu) 12659 { 12660 unsigned int flags; 12661 12662 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12663 12664 /* 12665 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12666 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12667 */ 12668 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12669 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12670 } 12671 12672 static void nohz_newidle_balance(struct rq *this_rq) 12673 { 12674 int this_cpu = this_rq->cpu; 12675 12676 /* 12677 * This CPU doesn't want to be disturbed by scheduler 12678 * housekeeping 12679 */ 12680 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12681 return; 12682 12683 /* Will wake up very soon. No time for doing anything else*/ 12684 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12685 return; 12686 12687 /* Don't need to update blocked load of idle CPUs*/ 12688 if (!READ_ONCE(nohz.has_blocked) || 12689 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12690 return; 12691 12692 /* 12693 * Set the need to trigger ILB in order to update blocked load 12694 * before entering idle state. 12695 */ 12696 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12697 } 12698 12699 #else /* !CONFIG_NO_HZ_COMMON */ 12700 static inline void nohz_balancer_kick(struct rq *rq) { } 12701 12702 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12703 { 12704 return false; 12705 } 12706 12707 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12708 #endif /* CONFIG_NO_HZ_COMMON */ 12709 12710 /* 12711 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12712 * idle. Attempts to pull tasks from other CPUs. 12713 * 12714 * Returns: 12715 * < 0 - we released the lock and there are !fair tasks present 12716 * 0 - failed, no new tasks 12717 * > 0 - success, new (fair) tasks present 12718 */ 12719 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12720 { 12721 unsigned long next_balance = jiffies + HZ; 12722 int this_cpu = this_rq->cpu; 12723 int continue_balancing = 1; 12724 u64 t0, t1, curr_cost = 0; 12725 struct sched_domain *sd; 12726 int pulled_task = 0; 12727 12728 update_misfit_status(NULL, this_rq); 12729 12730 /* 12731 * There is a task waiting to run. No need to search for one. 12732 * Return 0; the task will be enqueued when switching to idle. 12733 */ 12734 if (this_rq->ttwu_pending) 12735 return 0; 12736 12737 /* 12738 * We must set idle_stamp _before_ calling sched_balance_rq() 12739 * for CPU_NEWLY_IDLE, such that we measure the this duration 12740 * as idle time. 12741 */ 12742 this_rq->idle_stamp = rq_clock(this_rq); 12743 12744 /* 12745 * Do not pull tasks towards !active CPUs... 12746 */ 12747 if (!cpu_active(this_cpu)) 12748 return 0; 12749 12750 /* 12751 * This is OK, because current is on_cpu, which avoids it being picked 12752 * for load-balance and preemption/IRQs are still disabled avoiding 12753 * further scheduler activity on it and we're being very careful to 12754 * re-start the picking loop. 12755 */ 12756 rq_unpin_lock(this_rq, rf); 12757 12758 rcu_read_lock(); 12759 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12760 12761 if (!get_rd_overloaded(this_rq->rd) || 12762 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12763 12764 if (sd) 12765 update_next_balance(sd, &next_balance); 12766 rcu_read_unlock(); 12767 12768 goto out; 12769 } 12770 rcu_read_unlock(); 12771 12772 raw_spin_rq_unlock(this_rq); 12773 12774 t0 = sched_clock_cpu(this_cpu); 12775 sched_balance_update_blocked_averages(this_cpu); 12776 12777 rcu_read_lock(); 12778 for_each_domain(this_cpu, sd) { 12779 u64 domain_cost; 12780 12781 update_next_balance(sd, &next_balance); 12782 12783 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12784 break; 12785 12786 if (sd->flags & SD_BALANCE_NEWIDLE) { 12787 12788 pulled_task = sched_balance_rq(this_cpu, this_rq, 12789 sd, CPU_NEWLY_IDLE, 12790 &continue_balancing); 12791 12792 t1 = sched_clock_cpu(this_cpu); 12793 domain_cost = t1 - t0; 12794 update_newidle_cost(sd, domain_cost); 12795 12796 curr_cost += domain_cost; 12797 t0 = t1; 12798 } 12799 12800 /* 12801 * Stop searching for tasks to pull if there are 12802 * now runnable tasks on this rq. 12803 */ 12804 if (pulled_task || !continue_balancing) 12805 break; 12806 } 12807 rcu_read_unlock(); 12808 12809 raw_spin_rq_lock(this_rq); 12810 12811 if (curr_cost > this_rq->max_idle_balance_cost) 12812 this_rq->max_idle_balance_cost = curr_cost; 12813 12814 /* 12815 * While browsing the domains, we released the rq lock, a task could 12816 * have been enqueued in the meantime. Since we're not going idle, 12817 * pretend we pulled a task. 12818 */ 12819 if (this_rq->cfs.h_nr_running && !pulled_task) 12820 pulled_task = 1; 12821 12822 /* Is there a task of a high priority class? */ 12823 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12824 pulled_task = -1; 12825 12826 out: 12827 /* Move the next balance forward */ 12828 if (time_after(this_rq->next_balance, next_balance)) 12829 this_rq->next_balance = next_balance; 12830 12831 if (pulled_task) 12832 this_rq->idle_stamp = 0; 12833 else 12834 nohz_newidle_balance(this_rq); 12835 12836 rq_repin_lock(this_rq, rf); 12837 12838 return pulled_task; 12839 } 12840 12841 /* 12842 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12843 * 12844 * - directly from the local scheduler_tick() for periodic load balancing 12845 * 12846 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12847 * through the SMP cross-call nohz_csd_func() 12848 */ 12849 static __latent_entropy void sched_balance_softirq(void) 12850 { 12851 struct rq *this_rq = this_rq(); 12852 enum cpu_idle_type idle = this_rq->idle_balance; 12853 /* 12854 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12855 * balancing on behalf of the other idle CPUs whose ticks are 12856 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12857 * give the idle CPUs a chance to load balance. Else we may 12858 * load balance only within the local sched_domain hierarchy 12859 * and abort nohz_idle_balance altogether if we pull some load. 12860 */ 12861 if (nohz_idle_balance(this_rq, idle)) 12862 return; 12863 12864 /* normal load balance */ 12865 sched_balance_update_blocked_averages(this_rq->cpu); 12866 sched_balance_domains(this_rq, idle); 12867 } 12868 12869 /* 12870 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12871 */ 12872 void sched_balance_trigger(struct rq *rq) 12873 { 12874 /* 12875 * Don't need to rebalance while attached to NULL domain or 12876 * runqueue CPU is not active 12877 */ 12878 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12879 return; 12880 12881 if (time_after_eq(jiffies, rq->next_balance)) 12882 raise_softirq(SCHED_SOFTIRQ); 12883 12884 nohz_balancer_kick(rq); 12885 } 12886 12887 static void rq_online_fair(struct rq *rq) 12888 { 12889 update_sysctl(); 12890 12891 update_runtime_enabled(rq); 12892 } 12893 12894 static void rq_offline_fair(struct rq *rq) 12895 { 12896 update_sysctl(); 12897 12898 /* Ensure any throttled groups are reachable by pick_next_task */ 12899 unthrottle_offline_cfs_rqs(rq); 12900 12901 /* Ensure that we remove rq contribution to group share: */ 12902 clear_tg_offline_cfs_rqs(rq); 12903 } 12904 12905 #endif /* CONFIG_SMP */ 12906 12907 #ifdef CONFIG_SCHED_CORE 12908 static inline bool 12909 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12910 { 12911 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12912 u64 slice = se->slice; 12913 12914 return (rtime * min_nr_tasks > slice); 12915 } 12916 12917 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12918 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12919 { 12920 if (!sched_core_enabled(rq)) 12921 return; 12922 12923 /* 12924 * If runqueue has only one task which used up its slice and 12925 * if the sibling is forced idle, then trigger schedule to 12926 * give forced idle task a chance. 12927 * 12928 * sched_slice() considers only this active rq and it gets the 12929 * whole slice. But during force idle, we have siblings acting 12930 * like a single runqueue and hence we need to consider runnable 12931 * tasks on this CPU and the forced idle CPU. Ideally, we should 12932 * go through the forced idle rq, but that would be a perf hit. 12933 * We can assume that the forced idle CPU has at least 12934 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12935 * if we need to give up the CPU. 12936 */ 12937 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12938 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12939 resched_curr(rq); 12940 } 12941 12942 /* 12943 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12944 */ 12945 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12946 bool forceidle) 12947 { 12948 for_each_sched_entity(se) { 12949 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12950 12951 if (forceidle) { 12952 if (cfs_rq->forceidle_seq == fi_seq) 12953 break; 12954 cfs_rq->forceidle_seq = fi_seq; 12955 } 12956 12957 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12958 } 12959 } 12960 12961 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12962 { 12963 struct sched_entity *se = &p->se; 12964 12965 if (p->sched_class != &fair_sched_class) 12966 return; 12967 12968 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12969 } 12970 12971 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12972 bool in_fi) 12973 { 12974 struct rq *rq = task_rq(a); 12975 const struct sched_entity *sea = &a->se; 12976 const struct sched_entity *seb = &b->se; 12977 struct cfs_rq *cfs_rqa; 12978 struct cfs_rq *cfs_rqb; 12979 s64 delta; 12980 12981 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12982 12983 #ifdef CONFIG_FAIR_GROUP_SCHED 12984 /* 12985 * Find an se in the hierarchy for tasks a and b, such that the se's 12986 * are immediate siblings. 12987 */ 12988 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12989 int sea_depth = sea->depth; 12990 int seb_depth = seb->depth; 12991 12992 if (sea_depth >= seb_depth) 12993 sea = parent_entity(sea); 12994 if (sea_depth <= seb_depth) 12995 seb = parent_entity(seb); 12996 } 12997 12998 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12999 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13000 13001 cfs_rqa = sea->cfs_rq; 13002 cfs_rqb = seb->cfs_rq; 13003 #else 13004 cfs_rqa = &task_rq(a)->cfs; 13005 cfs_rqb = &task_rq(b)->cfs; 13006 #endif 13007 13008 /* 13009 * Find delta after normalizing se's vruntime with its cfs_rq's 13010 * min_vruntime_fi, which would have been updated in prior calls 13011 * to se_fi_update(). 13012 */ 13013 delta = (s64)(sea->vruntime - seb->vruntime) + 13014 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13015 13016 return delta > 0; 13017 } 13018 13019 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13020 { 13021 struct cfs_rq *cfs_rq; 13022 13023 #ifdef CONFIG_FAIR_GROUP_SCHED 13024 cfs_rq = task_group(p)->cfs_rq[cpu]; 13025 #else 13026 cfs_rq = &cpu_rq(cpu)->cfs; 13027 #endif 13028 return throttled_hierarchy(cfs_rq); 13029 } 13030 #else 13031 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13032 #endif 13033 13034 /* 13035 * scheduler tick hitting a task of our scheduling class. 13036 * 13037 * NOTE: This function can be called remotely by the tick offload that 13038 * goes along full dynticks. Therefore no local assumption can be made 13039 * and everything must be accessed through the @rq and @curr passed in 13040 * parameters. 13041 */ 13042 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13043 { 13044 struct cfs_rq *cfs_rq; 13045 struct sched_entity *se = &curr->se; 13046 13047 for_each_sched_entity(se) { 13048 cfs_rq = cfs_rq_of(se); 13049 entity_tick(cfs_rq, se, queued); 13050 } 13051 13052 if (static_branch_unlikely(&sched_numa_balancing)) 13053 task_tick_numa(rq, curr); 13054 13055 update_misfit_status(curr, rq); 13056 check_update_overutilized_status(task_rq(curr)); 13057 13058 task_tick_core(rq, curr); 13059 } 13060 13061 /* 13062 * called on fork with the child task as argument from the parent's context 13063 * - child not yet on the tasklist 13064 * - preemption disabled 13065 */ 13066 static void task_fork_fair(struct task_struct *p) 13067 { 13068 set_task_max_allowed_capacity(p); 13069 } 13070 13071 /* 13072 * Priority of the task has changed. Check to see if we preempt 13073 * the current task. 13074 */ 13075 static void 13076 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13077 { 13078 if (!task_on_rq_queued(p)) 13079 return; 13080 13081 if (rq->cfs.nr_running == 1) 13082 return; 13083 13084 /* 13085 * Reschedule if we are currently running on this runqueue and 13086 * our priority decreased, or if we are not currently running on 13087 * this runqueue and our priority is higher than the current's 13088 */ 13089 if (task_current(rq, p)) { 13090 if (p->prio > oldprio) 13091 resched_curr(rq); 13092 } else 13093 wakeup_preempt(rq, p, 0); 13094 } 13095 13096 #ifdef CONFIG_FAIR_GROUP_SCHED 13097 /* 13098 * Propagate the changes of the sched_entity across the tg tree to make it 13099 * visible to the root 13100 */ 13101 static void propagate_entity_cfs_rq(struct sched_entity *se) 13102 { 13103 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13104 13105 if (cfs_rq_throttled(cfs_rq)) 13106 return; 13107 13108 if (!throttled_hierarchy(cfs_rq)) 13109 list_add_leaf_cfs_rq(cfs_rq); 13110 13111 /* Start to propagate at parent */ 13112 se = se->parent; 13113 13114 for_each_sched_entity(se) { 13115 cfs_rq = cfs_rq_of(se); 13116 13117 update_load_avg(cfs_rq, se, UPDATE_TG); 13118 13119 if (cfs_rq_throttled(cfs_rq)) 13120 break; 13121 13122 if (!throttled_hierarchy(cfs_rq)) 13123 list_add_leaf_cfs_rq(cfs_rq); 13124 } 13125 } 13126 #else 13127 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13128 #endif 13129 13130 static void detach_entity_cfs_rq(struct sched_entity *se) 13131 { 13132 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13133 13134 #ifdef CONFIG_SMP 13135 /* 13136 * In case the task sched_avg hasn't been attached: 13137 * - A forked task which hasn't been woken up by wake_up_new_task(). 13138 * - A task which has been woken up by try_to_wake_up() but is 13139 * waiting for actually being woken up by sched_ttwu_pending(). 13140 */ 13141 if (!se->avg.last_update_time) 13142 return; 13143 #endif 13144 13145 /* Catch up with the cfs_rq and remove our load when we leave */ 13146 update_load_avg(cfs_rq, se, 0); 13147 detach_entity_load_avg(cfs_rq, se); 13148 update_tg_load_avg(cfs_rq); 13149 propagate_entity_cfs_rq(se); 13150 } 13151 13152 static void attach_entity_cfs_rq(struct sched_entity *se) 13153 { 13154 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13155 13156 /* Synchronize entity with its cfs_rq */ 13157 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13158 attach_entity_load_avg(cfs_rq, se); 13159 update_tg_load_avg(cfs_rq); 13160 propagate_entity_cfs_rq(se); 13161 } 13162 13163 static void detach_task_cfs_rq(struct task_struct *p) 13164 { 13165 struct sched_entity *se = &p->se; 13166 13167 detach_entity_cfs_rq(se); 13168 } 13169 13170 static void attach_task_cfs_rq(struct task_struct *p) 13171 { 13172 struct sched_entity *se = &p->se; 13173 13174 attach_entity_cfs_rq(se); 13175 } 13176 13177 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13178 { 13179 detach_task_cfs_rq(p); 13180 } 13181 13182 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13183 { 13184 SCHED_WARN_ON(p->se.sched_delayed); 13185 13186 attach_task_cfs_rq(p); 13187 13188 set_task_max_allowed_capacity(p); 13189 13190 if (task_on_rq_queued(p)) { 13191 /* 13192 * We were most likely switched from sched_rt, so 13193 * kick off the schedule if running, otherwise just see 13194 * if we can still preempt the current task. 13195 */ 13196 if (task_current(rq, p)) 13197 resched_curr(rq); 13198 else 13199 wakeup_preempt(rq, p, 0); 13200 } 13201 } 13202 13203 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13204 { 13205 struct sched_entity *se = &p->se; 13206 13207 #ifdef CONFIG_SMP 13208 if (task_on_rq_queued(p)) { 13209 /* 13210 * Move the next running task to the front of the list, so our 13211 * cfs_tasks list becomes MRU one. 13212 */ 13213 list_move(&se->group_node, &rq->cfs_tasks); 13214 } 13215 #endif 13216 if (!first) 13217 return; 13218 13219 SCHED_WARN_ON(se->sched_delayed); 13220 13221 if (hrtick_enabled_fair(rq)) 13222 hrtick_start_fair(rq, p); 13223 13224 update_misfit_status(p, rq); 13225 sched_fair_update_stop_tick(rq, p); 13226 } 13227 13228 /* 13229 * Account for a task changing its policy or group. 13230 * 13231 * This routine is mostly called to set cfs_rq->curr field when a task 13232 * migrates between groups/classes. 13233 */ 13234 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13235 { 13236 struct sched_entity *se = &p->se; 13237 13238 for_each_sched_entity(se) { 13239 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13240 13241 set_next_entity(cfs_rq, se); 13242 /* ensure bandwidth has been allocated on our new cfs_rq */ 13243 account_cfs_rq_runtime(cfs_rq, 0); 13244 } 13245 13246 __set_next_task_fair(rq, p, first); 13247 } 13248 13249 void init_cfs_rq(struct cfs_rq *cfs_rq) 13250 { 13251 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13252 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13253 #ifdef CONFIG_SMP 13254 raw_spin_lock_init(&cfs_rq->removed.lock); 13255 #endif 13256 } 13257 13258 #ifdef CONFIG_FAIR_GROUP_SCHED 13259 static void task_change_group_fair(struct task_struct *p) 13260 { 13261 /* 13262 * We couldn't detach or attach a forked task which 13263 * hasn't been woken up by wake_up_new_task(). 13264 */ 13265 if (READ_ONCE(p->__state) == TASK_NEW) 13266 return; 13267 13268 detach_task_cfs_rq(p); 13269 13270 #ifdef CONFIG_SMP 13271 /* Tell se's cfs_rq has been changed -- migrated */ 13272 p->se.avg.last_update_time = 0; 13273 #endif 13274 set_task_rq(p, task_cpu(p)); 13275 attach_task_cfs_rq(p); 13276 } 13277 13278 void free_fair_sched_group(struct task_group *tg) 13279 { 13280 int i; 13281 13282 for_each_possible_cpu(i) { 13283 if (tg->cfs_rq) 13284 kfree(tg->cfs_rq[i]); 13285 if (tg->se) 13286 kfree(tg->se[i]); 13287 } 13288 13289 kfree(tg->cfs_rq); 13290 kfree(tg->se); 13291 } 13292 13293 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13294 { 13295 struct sched_entity *se; 13296 struct cfs_rq *cfs_rq; 13297 int i; 13298 13299 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13300 if (!tg->cfs_rq) 13301 goto err; 13302 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13303 if (!tg->se) 13304 goto err; 13305 13306 tg->shares = NICE_0_LOAD; 13307 13308 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13309 13310 for_each_possible_cpu(i) { 13311 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13312 GFP_KERNEL, cpu_to_node(i)); 13313 if (!cfs_rq) 13314 goto err; 13315 13316 se = kzalloc_node(sizeof(struct sched_entity_stats), 13317 GFP_KERNEL, cpu_to_node(i)); 13318 if (!se) 13319 goto err_free_rq; 13320 13321 init_cfs_rq(cfs_rq); 13322 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13323 init_entity_runnable_average(se); 13324 } 13325 13326 return 1; 13327 13328 err_free_rq: 13329 kfree(cfs_rq); 13330 err: 13331 return 0; 13332 } 13333 13334 void online_fair_sched_group(struct task_group *tg) 13335 { 13336 struct sched_entity *se; 13337 struct rq_flags rf; 13338 struct rq *rq; 13339 int i; 13340 13341 for_each_possible_cpu(i) { 13342 rq = cpu_rq(i); 13343 se = tg->se[i]; 13344 rq_lock_irq(rq, &rf); 13345 update_rq_clock(rq); 13346 attach_entity_cfs_rq(se); 13347 sync_throttle(tg, i); 13348 rq_unlock_irq(rq, &rf); 13349 } 13350 } 13351 13352 void unregister_fair_sched_group(struct task_group *tg) 13353 { 13354 int cpu; 13355 13356 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13357 13358 for_each_possible_cpu(cpu) { 13359 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13360 struct sched_entity *se = tg->se[cpu]; 13361 struct rq *rq = cpu_rq(cpu); 13362 13363 if (se) { 13364 if (se->sched_delayed) { 13365 guard(rq_lock_irqsave)(rq); 13366 if (se->sched_delayed) { 13367 update_rq_clock(rq); 13368 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13369 } 13370 list_del_leaf_cfs_rq(cfs_rq); 13371 } 13372 remove_entity_load_avg(se); 13373 } 13374 13375 /* 13376 * Only empty task groups can be destroyed; so we can speculatively 13377 * check on_list without danger of it being re-added. 13378 */ 13379 if (cfs_rq->on_list) { 13380 guard(rq_lock_irqsave)(rq); 13381 list_del_leaf_cfs_rq(cfs_rq); 13382 } 13383 } 13384 } 13385 13386 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13387 struct sched_entity *se, int cpu, 13388 struct sched_entity *parent) 13389 { 13390 struct rq *rq = cpu_rq(cpu); 13391 13392 cfs_rq->tg = tg; 13393 cfs_rq->rq = rq; 13394 init_cfs_rq_runtime(cfs_rq); 13395 13396 tg->cfs_rq[cpu] = cfs_rq; 13397 tg->se[cpu] = se; 13398 13399 /* se could be NULL for root_task_group */ 13400 if (!se) 13401 return; 13402 13403 if (!parent) { 13404 se->cfs_rq = &rq->cfs; 13405 se->depth = 0; 13406 } else { 13407 se->cfs_rq = parent->my_q; 13408 se->depth = parent->depth + 1; 13409 } 13410 13411 se->my_q = cfs_rq; 13412 /* guarantee group entities always have weight */ 13413 update_load_set(&se->load, NICE_0_LOAD); 13414 se->parent = parent; 13415 } 13416 13417 static DEFINE_MUTEX(shares_mutex); 13418 13419 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13420 { 13421 int i; 13422 13423 lockdep_assert_held(&shares_mutex); 13424 13425 /* 13426 * We can't change the weight of the root cgroup. 13427 */ 13428 if (!tg->se[0]) 13429 return -EINVAL; 13430 13431 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13432 13433 if (tg->shares == shares) 13434 return 0; 13435 13436 tg->shares = shares; 13437 for_each_possible_cpu(i) { 13438 struct rq *rq = cpu_rq(i); 13439 struct sched_entity *se = tg->se[i]; 13440 struct rq_flags rf; 13441 13442 /* Propagate contribution to hierarchy */ 13443 rq_lock_irqsave(rq, &rf); 13444 update_rq_clock(rq); 13445 for_each_sched_entity(se) { 13446 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13447 update_cfs_group(se); 13448 } 13449 rq_unlock_irqrestore(rq, &rf); 13450 } 13451 13452 return 0; 13453 } 13454 13455 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13456 { 13457 int ret; 13458 13459 mutex_lock(&shares_mutex); 13460 if (tg_is_idle(tg)) 13461 ret = -EINVAL; 13462 else 13463 ret = __sched_group_set_shares(tg, shares); 13464 mutex_unlock(&shares_mutex); 13465 13466 return ret; 13467 } 13468 13469 int sched_group_set_idle(struct task_group *tg, long idle) 13470 { 13471 int i; 13472 13473 if (tg == &root_task_group) 13474 return -EINVAL; 13475 13476 if (idle < 0 || idle > 1) 13477 return -EINVAL; 13478 13479 mutex_lock(&shares_mutex); 13480 13481 if (tg->idle == idle) { 13482 mutex_unlock(&shares_mutex); 13483 return 0; 13484 } 13485 13486 tg->idle = idle; 13487 13488 for_each_possible_cpu(i) { 13489 struct rq *rq = cpu_rq(i); 13490 struct sched_entity *se = tg->se[i]; 13491 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13492 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13493 long idle_task_delta; 13494 struct rq_flags rf; 13495 13496 rq_lock_irqsave(rq, &rf); 13497 13498 grp_cfs_rq->idle = idle; 13499 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13500 goto next_cpu; 13501 13502 if (se->on_rq) { 13503 parent_cfs_rq = cfs_rq_of(se); 13504 if (cfs_rq_is_idle(grp_cfs_rq)) 13505 parent_cfs_rq->idle_nr_running++; 13506 else 13507 parent_cfs_rq->idle_nr_running--; 13508 } 13509 13510 idle_task_delta = grp_cfs_rq->h_nr_running - 13511 grp_cfs_rq->idle_h_nr_running; 13512 if (!cfs_rq_is_idle(grp_cfs_rq)) 13513 idle_task_delta *= -1; 13514 13515 for_each_sched_entity(se) { 13516 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13517 13518 if (!se->on_rq) 13519 break; 13520 13521 cfs_rq->idle_h_nr_running += idle_task_delta; 13522 13523 /* Already accounted at parent level and above. */ 13524 if (cfs_rq_is_idle(cfs_rq)) 13525 break; 13526 } 13527 13528 next_cpu: 13529 rq_unlock_irqrestore(rq, &rf); 13530 } 13531 13532 /* Idle groups have minimum weight. */ 13533 if (tg_is_idle(tg)) 13534 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13535 else 13536 __sched_group_set_shares(tg, NICE_0_LOAD); 13537 13538 mutex_unlock(&shares_mutex); 13539 return 0; 13540 } 13541 13542 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13543 13544 13545 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13546 { 13547 struct sched_entity *se = &task->se; 13548 unsigned int rr_interval = 0; 13549 13550 /* 13551 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13552 * idle runqueue: 13553 */ 13554 if (rq->cfs.load.weight) 13555 rr_interval = NS_TO_JIFFIES(se->slice); 13556 13557 return rr_interval; 13558 } 13559 13560 /* 13561 * All the scheduling class methods: 13562 */ 13563 DEFINE_SCHED_CLASS(fair) = { 13564 13565 .enqueue_task = enqueue_task_fair, 13566 .dequeue_task = dequeue_task_fair, 13567 .yield_task = yield_task_fair, 13568 .yield_to_task = yield_to_task_fair, 13569 13570 .wakeup_preempt = check_preempt_wakeup_fair, 13571 13572 .pick_task = pick_task_fair, 13573 .pick_next_task = __pick_next_task_fair, 13574 .put_prev_task = put_prev_task_fair, 13575 .set_next_task = set_next_task_fair, 13576 13577 #ifdef CONFIG_SMP 13578 .balance = balance_fair, 13579 .select_task_rq = select_task_rq_fair, 13580 .migrate_task_rq = migrate_task_rq_fair, 13581 13582 .rq_online = rq_online_fair, 13583 .rq_offline = rq_offline_fair, 13584 13585 .task_dead = task_dead_fair, 13586 .set_cpus_allowed = set_cpus_allowed_fair, 13587 #endif 13588 13589 .task_tick = task_tick_fair, 13590 .task_fork = task_fork_fair, 13591 13592 .reweight_task = reweight_task_fair, 13593 .prio_changed = prio_changed_fair, 13594 .switched_from = switched_from_fair, 13595 .switched_to = switched_to_fair, 13596 13597 .get_rr_interval = get_rr_interval_fair, 13598 13599 .update_curr = update_curr_fair, 13600 13601 #ifdef CONFIG_FAIR_GROUP_SCHED 13602 .task_change_group = task_change_group_fair, 13603 #endif 13604 13605 #ifdef CONFIG_SCHED_CORE 13606 .task_is_throttled = task_is_throttled_fair, 13607 #endif 13608 13609 #ifdef CONFIG_UCLAMP_TASK 13610 .uclamp_enabled = 1, 13611 #endif 13612 }; 13613 13614 #ifdef CONFIG_SCHED_DEBUG 13615 void print_cfs_stats(struct seq_file *m, int cpu) 13616 { 13617 struct cfs_rq *cfs_rq, *pos; 13618 13619 rcu_read_lock(); 13620 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13621 print_cfs_rq(m, cpu, cfs_rq); 13622 rcu_read_unlock(); 13623 } 13624 13625 #ifdef CONFIG_NUMA_BALANCING 13626 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13627 { 13628 int node; 13629 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13630 struct numa_group *ng; 13631 13632 rcu_read_lock(); 13633 ng = rcu_dereference(p->numa_group); 13634 for_each_online_node(node) { 13635 if (p->numa_faults) { 13636 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13637 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13638 } 13639 if (ng) { 13640 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13641 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13642 } 13643 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13644 } 13645 rcu_read_unlock(); 13646 } 13647 #endif /* CONFIG_NUMA_BALANCING */ 13648 #endif /* CONFIG_SCHED_DEBUG */ 13649 13650 __init void init_sched_fair_class(void) 13651 { 13652 #ifdef CONFIG_SMP 13653 int i; 13654 13655 for_each_possible_cpu(i) { 13656 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13657 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13658 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13659 GFP_KERNEL, cpu_to_node(i)); 13660 13661 #ifdef CONFIG_CFS_BANDWIDTH 13662 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13663 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13664 #endif 13665 } 13666 13667 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13668 13669 #ifdef CONFIG_NO_HZ_COMMON 13670 nohz.next_balance = jiffies; 13671 nohz.next_blocked = jiffies; 13672 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13673 #endif 13674 #endif /* SMP */ 13675 13676 } 13677