xref: /linux/kernel/sched/fair.c (revision a3f143c461444c0b56360bbf468615fa814a8372)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return task_has_idle_policy(task_of(se));
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783 }
784 
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
786 {
787 	struct sched_entity *root = __pick_root_entity(cfs_rq);
788 	struct sched_entity *curr = cfs_rq->curr;
789 	u64 min_slice = ~0ULL;
790 
791 	if (curr && curr->on_rq)
792 		min_slice = curr->slice;
793 
794 	if (root)
795 		min_slice = min(min_slice, root->min_slice);
796 
797 	return min_slice;
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (vruntime_gt(min_vruntime, se, rse))
812 			se->min_vruntime = rse->min_vruntime;
813 	}
814 }
815 
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817 {
818 	if (node) {
819 		struct sched_entity *rse = __node_2_se(node);
820 		if (rse->min_slice < se->min_slice)
821 			se->min_slice = rse->min_slice;
822 	}
823 }
824 
825 /*
826  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
827  */
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
829 {
830 	u64 old_min_vruntime = se->min_vruntime;
831 	u64 old_min_slice = se->min_slice;
832 	struct rb_node *node = &se->run_node;
833 
834 	se->min_vruntime = se->vruntime;
835 	__min_vruntime_update(se, node->rb_right);
836 	__min_vruntime_update(se, node->rb_left);
837 
838 	se->min_slice = se->slice;
839 	__min_slice_update(se, node->rb_right);
840 	__min_slice_update(se, node->rb_left);
841 
842 	return se->min_vruntime == old_min_vruntime &&
843 	       se->min_slice == old_min_slice;
844 }
845 
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 		     run_node, min_vruntime, min_vruntime_update);
848 
849 /*
850  * Enqueue an entity into the rb-tree:
851  */
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 	avg_vruntime_add(cfs_rq, se);
855 	se->min_vruntime = se->vruntime;
856 	se->min_slice = se->slice;
857 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 				__entity_less, &min_vruntime_cb);
859 }
860 
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864 				  &min_vruntime_cb);
865 	avg_vruntime_sub(cfs_rq, se);
866 }
867 
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
869 {
870 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
871 
872 	if (!root)
873 		return NULL;
874 
875 	return __node_2_se(root);
876 }
877 
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
881 
882 	if (!left)
883 		return NULL;
884 
885 	return __node_2_se(left);
886 }
887 
888 /*
889  * Earliest Eligible Virtual Deadline First
890  *
891  * In order to provide latency guarantees for different request sizes
892  * EEVDF selects the best runnable task from two criteria:
893  *
894  *  1) the task must be eligible (must be owed service)
895  *
896  *  2) from those tasks that meet 1), we select the one
897  *     with the earliest virtual deadline.
898  *
899  * We can do this in O(log n) time due to an augmented RB-tree. The
900  * tree keeps the entries sorted on deadline, but also functions as a
901  * heap based on the vruntime by keeping:
902  *
903  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
904  *
905  * Which allows tree pruning through eligibility.
906  */
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
908 {
909 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 	struct sched_entity *se = __pick_first_entity(cfs_rq);
911 	struct sched_entity *curr = cfs_rq->curr;
912 	struct sched_entity *best = NULL;
913 
914 	/*
915 	 * We can safely skip eligibility check if there is only one entity
916 	 * in this cfs_rq, saving some cycles.
917 	 */
918 	if (cfs_rq->nr_running == 1)
919 		return curr && curr->on_rq ? curr : se;
920 
921 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922 		curr = NULL;
923 
924 	/*
925 	 * Once selected, run a task until it either becomes non-eligible or
926 	 * until it gets a new slice. See the HACK in set_next_entity().
927 	 */
928 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929 		return curr;
930 
931 	/* Pick the leftmost entity if it's eligible */
932 	if (se && entity_eligible(cfs_rq, se)) {
933 		best = se;
934 		goto found;
935 	}
936 
937 	/* Heap search for the EEVD entity */
938 	while (node) {
939 		struct rb_node *left = node->rb_left;
940 
941 		/*
942 		 * Eligible entities in left subtree are always better
943 		 * choices, since they have earlier deadlines.
944 		 */
945 		if (left && vruntime_eligible(cfs_rq,
946 					__node_2_se(left)->min_vruntime)) {
947 			node = left;
948 			continue;
949 		}
950 
951 		se = __node_2_se(node);
952 
953 		/*
954 		 * The left subtree either is empty or has no eligible
955 		 * entity, so check the current node since it is the one
956 		 * with earliest deadline that might be eligible.
957 		 */
958 		if (entity_eligible(cfs_rq, se)) {
959 			best = se;
960 			break;
961 		}
962 
963 		node = node->rb_right;
964 	}
965 found:
966 	if (!best || (curr && entity_before(curr, best)))
967 		best = curr;
968 
969 	return best;
970 }
971 
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
974 {
975 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
976 
977 	if (!last)
978 		return NULL;
979 
980 	return __node_2_se(last);
981 }
982 
983 /**************************************************************
984  * Scheduling class statistics methods:
985  */
986 #ifdef CONFIG_SMP
987 int sched_update_scaling(void)
988 {
989 	unsigned int factor = get_update_sysctl_factor();
990 
991 #define WRT_SYSCTL(name) \
992 	(normalized_sysctl_##name = sysctl_##name / (factor))
993 	WRT_SYSCTL(sched_base_slice);
994 #undef WRT_SYSCTL
995 
996 	return 0;
997 }
998 #endif
999 #endif
1000 
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1002 
1003 /*
1004  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005  * this is probably good enough.
1006  */
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008 {
1009 	if ((s64)(se->vruntime - se->deadline) < 0)
1010 		return false;
1011 
1012 	/*
1013 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 	 * nice) while the request time r_i is determined by
1015 	 * sysctl_sched_base_slice.
1016 	 */
1017 	if (!se->custom_slice)
1018 		se->slice = sysctl_sched_base_slice;
1019 
1020 	/*
1021 	 * EEVDF: vd_i = ve_i + r_i / w_i
1022 	 */
1023 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1024 
1025 	/*
1026 	 * The task has consumed its request, reschedule.
1027 	 */
1028 	return true;
1029 }
1030 
1031 #include "pelt.h"
1032 #ifdef CONFIG_SMP
1033 
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1037 
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1040 {
1041 	struct sched_avg *sa = &se->avg;
1042 
1043 	memset(sa, 0, sizeof(*sa));
1044 
1045 	/*
1046 	 * Tasks are initialized with full load to be seen as heavy tasks until
1047 	 * they get a chance to stabilize to their real load level.
1048 	 * Group entities are initialized with zero load to reflect the fact that
1049 	 * nothing has been attached to the task group yet.
1050 	 */
1051 	if (entity_is_task(se))
1052 		sa->load_avg = scale_load_down(se->load.weight);
1053 
1054 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1055 }
1056 
1057 /*
1058  * With new tasks being created, their initial util_avgs are extrapolated
1059  * based on the cfs_rq's current util_avg:
1060  *
1061  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062  *		* se_weight(se)
1063  *
1064  * However, in many cases, the above util_avg does not give a desired
1065  * value. Moreover, the sum of the util_avgs may be divergent, such
1066  * as when the series is a harmonic series.
1067  *
1068  * To solve this problem, we also cap the util_avg of successive tasks to
1069  * only 1/2 of the left utilization budget:
1070  *
1071  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1072  *
1073  * where n denotes the nth task and cpu_scale the CPU capacity.
1074  *
1075  * For example, for a CPU with 1024 of capacity, a simplest series from
1076  * the beginning would be like:
1077  *
1078  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1079  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1080  *
1081  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082  * if util_avg > util_avg_cap.
1083  */
1084 void post_init_entity_util_avg(struct task_struct *p)
1085 {
1086 	struct sched_entity *se = &p->se;
1087 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 	struct sched_avg *sa = &se->avg;
1089 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1091 
1092 	if (p->sched_class != &fair_sched_class) {
1093 		/*
1094 		 * For !fair tasks do:
1095 		 *
1096 		update_cfs_rq_load_avg(now, cfs_rq);
1097 		attach_entity_load_avg(cfs_rq, se);
1098 		switched_from_fair(rq, p);
1099 		 *
1100 		 * such that the next switched_to_fair() has the
1101 		 * expected state.
1102 		 */
1103 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104 		return;
1105 	}
1106 
1107 	if (cap > 0) {
1108 		if (cfs_rq->avg.util_avg != 0) {
1109 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1110 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1111 
1112 			if (sa->util_avg > cap)
1113 				sa->util_avg = cap;
1114 		} else {
1115 			sa->util_avg = cap;
1116 		}
1117 	}
1118 
1119 	sa->runnable_avg = sa->util_avg;
1120 }
1121 
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1124 {
1125 }
1126 void post_init_entity_util_avg(struct task_struct *p)
1127 {
1128 }
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1130 {
1131 }
1132 #endif /* CONFIG_SMP */
1133 
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135 {
1136 	u64 now = rq_clock_task(rq);
1137 	s64 delta_exec;
1138 
1139 	delta_exec = now - curr->exec_start;
1140 	if (unlikely(delta_exec <= 0))
1141 		return delta_exec;
1142 
1143 	curr->exec_start = now;
1144 	curr->sum_exec_runtime += delta_exec;
1145 
1146 	if (schedstat_enabled()) {
1147 		struct sched_statistics *stats;
1148 
1149 		stats = __schedstats_from_se(curr);
1150 		__schedstat_set(stats->exec_max,
1151 				max(delta_exec, stats->exec_max));
1152 	}
1153 
1154 	return delta_exec;
1155 }
1156 
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1158 {
1159 	trace_sched_stat_runtime(p, delta_exec);
1160 	account_group_exec_runtime(p, delta_exec);
1161 	cgroup_account_cputime(p, delta_exec);
1162 	if (p->dl_server)
1163 		dl_server_update(p->dl_server, delta_exec);
1164 }
1165 
1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1167 {
1168 	if (!sched_feat(PREEMPT_SHORT))
1169 		return false;
1170 
1171 	if (curr->vlag == curr->deadline)
1172 		return false;
1173 
1174 	return !entity_eligible(cfs_rq, curr);
1175 }
1176 
1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1178 				    struct sched_entity *pse, struct sched_entity *se)
1179 {
1180 	if (!sched_feat(PREEMPT_SHORT))
1181 		return false;
1182 
1183 	if (pse->slice >= se->slice)
1184 		return false;
1185 
1186 	if (!entity_eligible(cfs_rq, pse))
1187 		return false;
1188 
1189 	if (entity_before(pse, se))
1190 		return true;
1191 
1192 	if (!entity_eligible(cfs_rq, se))
1193 		return true;
1194 
1195 	return false;
1196 }
1197 
1198 /*
1199  * Used by other classes to account runtime.
1200  */
1201 s64 update_curr_common(struct rq *rq)
1202 {
1203 	struct task_struct *curr = rq->curr;
1204 	s64 delta_exec;
1205 
1206 	delta_exec = update_curr_se(rq, &curr->se);
1207 	if (likely(delta_exec > 0))
1208 		update_curr_task(curr, delta_exec);
1209 
1210 	return delta_exec;
1211 }
1212 
1213 /*
1214  * Update the current task's runtime statistics.
1215  */
1216 static void update_curr(struct cfs_rq *cfs_rq)
1217 {
1218 	struct sched_entity *curr = cfs_rq->curr;
1219 	struct rq *rq = rq_of(cfs_rq);
1220 	s64 delta_exec;
1221 	bool resched;
1222 
1223 	if (unlikely(!curr))
1224 		return;
1225 
1226 	delta_exec = update_curr_se(rq, curr);
1227 	if (unlikely(delta_exec <= 0))
1228 		return;
1229 
1230 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1231 	resched = update_deadline(cfs_rq, curr);
1232 	update_min_vruntime(cfs_rq);
1233 
1234 	if (entity_is_task(curr)) {
1235 		struct task_struct *p = task_of(curr);
1236 
1237 		update_curr_task(p, delta_exec);
1238 
1239 		/*
1240 		 * Any fair task that runs outside of fair_server should
1241 		 * account against fair_server such that it can account for
1242 		 * this time and possibly avoid running this period.
1243 		 */
1244 		if (p->dl_server != &rq->fair_server)
1245 			dl_server_update(&rq->fair_server, delta_exec);
1246 	}
1247 
1248 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1249 
1250 	if (cfs_rq->nr_running == 1)
1251 		return;
1252 
1253 	if (resched || did_preempt_short(cfs_rq, curr)) {
1254 		resched_curr(rq);
1255 		clear_buddies(cfs_rq, curr);
1256 	}
1257 }
1258 
1259 static void update_curr_fair(struct rq *rq)
1260 {
1261 	update_curr(cfs_rq_of(&rq->curr->se));
1262 }
1263 
1264 static inline void
1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1266 {
1267 	struct sched_statistics *stats;
1268 	struct task_struct *p = NULL;
1269 
1270 	if (!schedstat_enabled())
1271 		return;
1272 
1273 	stats = __schedstats_from_se(se);
1274 
1275 	if (entity_is_task(se))
1276 		p = task_of(se);
1277 
1278 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1279 }
1280 
1281 static inline void
1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1283 {
1284 	struct sched_statistics *stats;
1285 	struct task_struct *p = NULL;
1286 
1287 	if (!schedstat_enabled())
1288 		return;
1289 
1290 	stats = __schedstats_from_se(se);
1291 
1292 	/*
1293 	 * When the sched_schedstat changes from 0 to 1, some sched se
1294 	 * maybe already in the runqueue, the se->statistics.wait_start
1295 	 * will be 0.So it will let the delta wrong. We need to avoid this
1296 	 * scenario.
1297 	 */
1298 	if (unlikely(!schedstat_val(stats->wait_start)))
1299 		return;
1300 
1301 	if (entity_is_task(se))
1302 		p = task_of(se);
1303 
1304 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1305 }
1306 
1307 static inline void
1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1309 {
1310 	struct sched_statistics *stats;
1311 	struct task_struct *tsk = NULL;
1312 
1313 	if (!schedstat_enabled())
1314 		return;
1315 
1316 	stats = __schedstats_from_se(se);
1317 
1318 	if (entity_is_task(se))
1319 		tsk = task_of(se);
1320 
1321 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1322 }
1323 
1324 /*
1325  * Task is being enqueued - update stats:
1326  */
1327 static inline void
1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1329 {
1330 	if (!schedstat_enabled())
1331 		return;
1332 
1333 	/*
1334 	 * Are we enqueueing a waiting task? (for current tasks
1335 	 * a dequeue/enqueue event is a NOP)
1336 	 */
1337 	if (se != cfs_rq->curr)
1338 		update_stats_wait_start_fair(cfs_rq, se);
1339 
1340 	if (flags & ENQUEUE_WAKEUP)
1341 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1342 }
1343 
1344 static inline void
1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1346 {
1347 
1348 	if (!schedstat_enabled())
1349 		return;
1350 
1351 	/*
1352 	 * Mark the end of the wait period if dequeueing a
1353 	 * waiting task:
1354 	 */
1355 	if (se != cfs_rq->curr)
1356 		update_stats_wait_end_fair(cfs_rq, se);
1357 
1358 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1359 		struct task_struct *tsk = task_of(se);
1360 		unsigned int state;
1361 
1362 		/* XXX racy against TTWU */
1363 		state = READ_ONCE(tsk->__state);
1364 		if (state & TASK_INTERRUPTIBLE)
1365 			__schedstat_set(tsk->stats.sleep_start,
1366 				      rq_clock(rq_of(cfs_rq)));
1367 		if (state & TASK_UNINTERRUPTIBLE)
1368 			__schedstat_set(tsk->stats.block_start,
1369 				      rq_clock(rq_of(cfs_rq)));
1370 	}
1371 }
1372 
1373 /*
1374  * We are picking a new current task - update its stats:
1375  */
1376 static inline void
1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1378 {
1379 	/*
1380 	 * We are starting a new run period:
1381 	 */
1382 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1383 }
1384 
1385 /**************************************************
1386  * Scheduling class queueing methods:
1387  */
1388 
1389 static inline bool is_core_idle(int cpu)
1390 {
1391 #ifdef CONFIG_SCHED_SMT
1392 	int sibling;
1393 
1394 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1395 		if (cpu == sibling)
1396 			continue;
1397 
1398 		if (!idle_cpu(sibling))
1399 			return false;
1400 	}
1401 #endif
1402 
1403 	return true;
1404 }
1405 
1406 #ifdef CONFIG_NUMA
1407 #define NUMA_IMBALANCE_MIN 2
1408 
1409 static inline long
1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1411 {
1412 	/*
1413 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414 	 * threshold. Above this threshold, individual tasks may be contending
1415 	 * for both memory bandwidth and any shared HT resources.  This is an
1416 	 * approximation as the number of running tasks may not be related to
1417 	 * the number of busy CPUs due to sched_setaffinity.
1418 	 */
1419 	if (dst_running > imb_numa_nr)
1420 		return imbalance;
1421 
1422 	/*
1423 	 * Allow a small imbalance based on a simple pair of communicating
1424 	 * tasks that remain local when the destination is lightly loaded.
1425 	 */
1426 	if (imbalance <= NUMA_IMBALANCE_MIN)
1427 		return 0;
1428 
1429 	return imbalance;
1430 }
1431 #endif /* CONFIG_NUMA */
1432 
1433 #ifdef CONFIG_NUMA_BALANCING
1434 /*
1435  * Approximate time to scan a full NUMA task in ms. The task scan period is
1436  * calculated based on the tasks virtual memory size and
1437  * numa_balancing_scan_size.
1438  */
1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1441 
1442 /* Portion of address space to scan in MB */
1443 unsigned int sysctl_numa_balancing_scan_size = 256;
1444 
1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1447 
1448 /* The page with hint page fault latency < threshold in ms is considered hot */
1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1450 
1451 struct numa_group {
1452 	refcount_t refcount;
1453 
1454 	spinlock_t lock; /* nr_tasks, tasks */
1455 	int nr_tasks;
1456 	pid_t gid;
1457 	int active_nodes;
1458 
1459 	struct rcu_head rcu;
1460 	unsigned long total_faults;
1461 	unsigned long max_faults_cpu;
1462 	/*
1463 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1464 	 *
1465 	 * Faults_cpu is used to decide whether memory should move
1466 	 * towards the CPU. As a consequence, these stats are weighted
1467 	 * more by CPU use than by memory faults.
1468 	 */
1469 	unsigned long faults[];
1470 };
1471 
1472 /*
1473  * For functions that can be called in multiple contexts that permit reading
1474  * ->numa_group (see struct task_struct for locking rules).
1475  */
1476 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1477 {
1478 	return rcu_dereference_check(p->numa_group, p == current ||
1479 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1480 }
1481 
1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1483 {
1484 	return rcu_dereference_protected(p->numa_group, p == current);
1485 }
1486 
1487 static inline unsigned long group_faults_priv(struct numa_group *ng);
1488 static inline unsigned long group_faults_shared(struct numa_group *ng);
1489 
1490 static unsigned int task_nr_scan_windows(struct task_struct *p)
1491 {
1492 	unsigned long rss = 0;
1493 	unsigned long nr_scan_pages;
1494 
1495 	/*
1496 	 * Calculations based on RSS as non-present and empty pages are skipped
1497 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1498 	 * on resident pages
1499 	 */
1500 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1501 	rss = get_mm_rss(p->mm);
1502 	if (!rss)
1503 		rss = nr_scan_pages;
1504 
1505 	rss = round_up(rss, nr_scan_pages);
1506 	return rss / nr_scan_pages;
1507 }
1508 
1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510 #define MAX_SCAN_WINDOW 2560
1511 
1512 static unsigned int task_scan_min(struct task_struct *p)
1513 {
1514 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1515 	unsigned int scan, floor;
1516 	unsigned int windows = 1;
1517 
1518 	if (scan_size < MAX_SCAN_WINDOW)
1519 		windows = MAX_SCAN_WINDOW / scan_size;
1520 	floor = 1000 / windows;
1521 
1522 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1523 	return max_t(unsigned int, floor, scan);
1524 }
1525 
1526 static unsigned int task_scan_start(struct task_struct *p)
1527 {
1528 	unsigned long smin = task_scan_min(p);
1529 	unsigned long period = smin;
1530 	struct numa_group *ng;
1531 
1532 	/* Scale the maximum scan period with the amount of shared memory. */
1533 	rcu_read_lock();
1534 	ng = rcu_dereference(p->numa_group);
1535 	if (ng) {
1536 		unsigned long shared = group_faults_shared(ng);
1537 		unsigned long private = group_faults_priv(ng);
1538 
1539 		period *= refcount_read(&ng->refcount);
1540 		period *= shared + 1;
1541 		period /= private + shared + 1;
1542 	}
1543 	rcu_read_unlock();
1544 
1545 	return max(smin, period);
1546 }
1547 
1548 static unsigned int task_scan_max(struct task_struct *p)
1549 {
1550 	unsigned long smin = task_scan_min(p);
1551 	unsigned long smax;
1552 	struct numa_group *ng;
1553 
1554 	/* Watch for min being lower than max due to floor calculations */
1555 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1556 
1557 	/* Scale the maximum scan period with the amount of shared memory. */
1558 	ng = deref_curr_numa_group(p);
1559 	if (ng) {
1560 		unsigned long shared = group_faults_shared(ng);
1561 		unsigned long private = group_faults_priv(ng);
1562 		unsigned long period = smax;
1563 
1564 		period *= refcount_read(&ng->refcount);
1565 		period *= shared + 1;
1566 		period /= private + shared + 1;
1567 
1568 		smax = max(smax, period);
1569 	}
1570 
1571 	return max(smin, smax);
1572 }
1573 
1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1575 {
1576 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1577 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1578 }
1579 
1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1581 {
1582 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1583 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1584 }
1585 
1586 /* Shared or private faults. */
1587 #define NR_NUMA_HINT_FAULT_TYPES 2
1588 
1589 /* Memory and CPU locality */
1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1591 
1592 /* Averaged statistics, and temporary buffers. */
1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1594 
1595 pid_t task_numa_group_id(struct task_struct *p)
1596 {
1597 	struct numa_group *ng;
1598 	pid_t gid = 0;
1599 
1600 	rcu_read_lock();
1601 	ng = rcu_dereference(p->numa_group);
1602 	if (ng)
1603 		gid = ng->gid;
1604 	rcu_read_unlock();
1605 
1606 	return gid;
1607 }
1608 
1609 /*
1610  * The averaged statistics, shared & private, memory & CPU,
1611  * occupy the first half of the array. The second half of the
1612  * array is for current counters, which are averaged into the
1613  * first set by task_numa_placement.
1614  */
1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1616 {
1617 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1618 }
1619 
1620 static inline unsigned long task_faults(struct task_struct *p, int nid)
1621 {
1622 	if (!p->numa_faults)
1623 		return 0;
1624 
1625 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1626 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1627 }
1628 
1629 static inline unsigned long group_faults(struct task_struct *p, int nid)
1630 {
1631 	struct numa_group *ng = deref_task_numa_group(p);
1632 
1633 	if (!ng)
1634 		return 0;
1635 
1636 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1637 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1638 }
1639 
1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1641 {
1642 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1643 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1644 }
1645 
1646 static inline unsigned long group_faults_priv(struct numa_group *ng)
1647 {
1648 	unsigned long faults = 0;
1649 	int node;
1650 
1651 	for_each_online_node(node) {
1652 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1653 	}
1654 
1655 	return faults;
1656 }
1657 
1658 static inline unsigned long group_faults_shared(struct numa_group *ng)
1659 {
1660 	unsigned long faults = 0;
1661 	int node;
1662 
1663 	for_each_online_node(node) {
1664 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1665 	}
1666 
1667 	return faults;
1668 }
1669 
1670 /*
1671  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672  * considered part of a numa group's pseudo-interleaving set. Migrations
1673  * between these nodes are slowed down, to allow things to settle down.
1674  */
1675 #define ACTIVE_NODE_FRACTION 3
1676 
1677 static bool numa_is_active_node(int nid, struct numa_group *ng)
1678 {
1679 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1680 }
1681 
1682 /* Handle placement on systems where not all nodes are directly connected. */
1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1684 					int lim_dist, bool task)
1685 {
1686 	unsigned long score = 0;
1687 	int node, max_dist;
1688 
1689 	/*
1690 	 * All nodes are directly connected, and the same distance
1691 	 * from each other. No need for fancy placement algorithms.
1692 	 */
1693 	if (sched_numa_topology_type == NUMA_DIRECT)
1694 		return 0;
1695 
1696 	/* sched_max_numa_distance may be changed in parallel. */
1697 	max_dist = READ_ONCE(sched_max_numa_distance);
1698 	/*
1699 	 * This code is called for each node, introducing N^2 complexity,
1700 	 * which should be OK given the number of nodes rarely exceeds 8.
1701 	 */
1702 	for_each_online_node(node) {
1703 		unsigned long faults;
1704 		int dist = node_distance(nid, node);
1705 
1706 		/*
1707 		 * The furthest away nodes in the system are not interesting
1708 		 * for placement; nid was already counted.
1709 		 */
1710 		if (dist >= max_dist || node == nid)
1711 			continue;
1712 
1713 		/*
1714 		 * On systems with a backplane NUMA topology, compare groups
1715 		 * of nodes, and move tasks towards the group with the most
1716 		 * memory accesses. When comparing two nodes at distance
1717 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1718 		 * of each group. Skip other nodes.
1719 		 */
1720 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1721 			continue;
1722 
1723 		/* Add up the faults from nearby nodes. */
1724 		if (task)
1725 			faults = task_faults(p, node);
1726 		else
1727 			faults = group_faults(p, node);
1728 
1729 		/*
1730 		 * On systems with a glueless mesh NUMA topology, there are
1731 		 * no fixed "groups of nodes". Instead, nodes that are not
1732 		 * directly connected bounce traffic through intermediate
1733 		 * nodes; a numa_group can occupy any set of nodes.
1734 		 * The further away a node is, the less the faults count.
1735 		 * This seems to result in good task placement.
1736 		 */
1737 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 			faults *= (max_dist - dist);
1739 			faults /= (max_dist - LOCAL_DISTANCE);
1740 		}
1741 
1742 		score += faults;
1743 	}
1744 
1745 	return score;
1746 }
1747 
1748 /*
1749  * These return the fraction of accesses done by a particular task, or
1750  * task group, on a particular numa node.  The group weight is given a
1751  * larger multiplier, in order to group tasks together that are almost
1752  * evenly spread out between numa nodes.
1753  */
1754 static inline unsigned long task_weight(struct task_struct *p, int nid,
1755 					int dist)
1756 {
1757 	unsigned long faults, total_faults;
1758 
1759 	if (!p->numa_faults)
1760 		return 0;
1761 
1762 	total_faults = p->total_numa_faults;
1763 
1764 	if (!total_faults)
1765 		return 0;
1766 
1767 	faults = task_faults(p, nid);
1768 	faults += score_nearby_nodes(p, nid, dist, true);
1769 
1770 	return 1000 * faults / total_faults;
1771 }
1772 
1773 static inline unsigned long group_weight(struct task_struct *p, int nid,
1774 					 int dist)
1775 {
1776 	struct numa_group *ng = deref_task_numa_group(p);
1777 	unsigned long faults, total_faults;
1778 
1779 	if (!ng)
1780 		return 0;
1781 
1782 	total_faults = ng->total_faults;
1783 
1784 	if (!total_faults)
1785 		return 0;
1786 
1787 	faults = group_faults(p, nid);
1788 	faults += score_nearby_nodes(p, nid, dist, false);
1789 
1790 	return 1000 * faults / total_faults;
1791 }
1792 
1793 /*
1794  * If memory tiering mode is enabled, cpupid of slow memory page is
1795  * used to record scan time instead of CPU and PID.  When tiering mode
1796  * is disabled at run time, the scan time (in cpupid) will be
1797  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1798  * access out of array bound.
1799  */
1800 static inline bool cpupid_valid(int cpupid)
1801 {
1802 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1803 }
1804 
1805 /*
1806  * For memory tiering mode, if there are enough free pages (more than
1807  * enough watermark defined here) in fast memory node, to take full
1808  * advantage of fast memory capacity, all recently accessed slow
1809  * memory pages will be migrated to fast memory node without
1810  * considering hot threshold.
1811  */
1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1813 {
1814 	int z;
1815 	unsigned long enough_wmark;
1816 
1817 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1818 			   pgdat->node_present_pages >> 4);
1819 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 		struct zone *zone = pgdat->node_zones + z;
1821 
1822 		if (!populated_zone(zone))
1823 			continue;
1824 
1825 		if (zone_watermark_ok(zone, 0,
1826 				      promo_wmark_pages(zone) + enough_wmark,
1827 				      ZONE_MOVABLE, 0))
1828 			return true;
1829 	}
1830 	return false;
1831 }
1832 
1833 /*
1834  * For memory tiering mode, when page tables are scanned, the scan
1835  * time will be recorded in struct page in addition to make page
1836  * PROT_NONE for slow memory page.  So when the page is accessed, in
1837  * hint page fault handler, the hint page fault latency is calculated
1838  * via,
1839  *
1840  *	hint page fault latency = hint page fault time - scan time
1841  *
1842  * The smaller the hint page fault latency, the higher the possibility
1843  * for the page to be hot.
1844  */
1845 static int numa_hint_fault_latency(struct folio *folio)
1846 {
1847 	int last_time, time;
1848 
1849 	time = jiffies_to_msecs(jiffies);
1850 	last_time = folio_xchg_access_time(folio, time);
1851 
1852 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1853 }
1854 
1855 /*
1856  * For memory tiering mode, too high promotion/demotion throughput may
1857  * hurt application latency.  So we provide a mechanism to rate limit
1858  * the number of pages that are tried to be promoted.
1859  */
1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1861 				      unsigned long rate_limit, int nr)
1862 {
1863 	unsigned long nr_cand;
1864 	unsigned int now, start;
1865 
1866 	now = jiffies_to_msecs(jiffies);
1867 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1868 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1869 	start = pgdat->nbp_rl_start;
1870 	if (now - start > MSEC_PER_SEC &&
1871 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1872 		pgdat->nbp_rl_nr_cand = nr_cand;
1873 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1874 		return true;
1875 	return false;
1876 }
1877 
1878 #define NUMA_MIGRATION_ADJUST_STEPS	16
1879 
1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1881 					    unsigned long rate_limit,
1882 					    unsigned int ref_th)
1883 {
1884 	unsigned int now, start, th_period, unit_th, th;
1885 	unsigned long nr_cand, ref_cand, diff_cand;
1886 
1887 	now = jiffies_to_msecs(jiffies);
1888 	th_period = sysctl_numa_balancing_scan_period_max;
1889 	start = pgdat->nbp_th_start;
1890 	if (now - start > th_period &&
1891 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1892 		ref_cand = rate_limit *
1893 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1894 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1895 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1896 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1897 		th = pgdat->nbp_threshold ? : ref_th;
1898 		if (diff_cand > ref_cand * 11 / 10)
1899 			th = max(th - unit_th, unit_th);
1900 		else if (diff_cand < ref_cand * 9 / 10)
1901 			th = min(th + unit_th, ref_th * 2);
1902 		pgdat->nbp_th_nr_cand = nr_cand;
1903 		pgdat->nbp_threshold = th;
1904 	}
1905 }
1906 
1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1908 				int src_nid, int dst_cpu)
1909 {
1910 	struct numa_group *ng = deref_curr_numa_group(p);
1911 	int dst_nid = cpu_to_node(dst_cpu);
1912 	int last_cpupid, this_cpupid;
1913 
1914 	/*
1915 	 * Cannot migrate to memoryless nodes.
1916 	 */
1917 	if (!node_state(dst_nid, N_MEMORY))
1918 		return false;
1919 
1920 	/*
1921 	 * The pages in slow memory node should be migrated according
1922 	 * to hot/cold instead of private/shared.
1923 	 */
1924 	if (folio_use_access_time(folio)) {
1925 		struct pglist_data *pgdat;
1926 		unsigned long rate_limit;
1927 		unsigned int latency, th, def_th;
1928 
1929 		pgdat = NODE_DATA(dst_nid);
1930 		if (pgdat_free_space_enough(pgdat)) {
1931 			/* workload changed, reset hot threshold */
1932 			pgdat->nbp_threshold = 0;
1933 			return true;
1934 		}
1935 
1936 		def_th = sysctl_numa_balancing_hot_threshold;
1937 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1938 			(20 - PAGE_SHIFT);
1939 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1940 
1941 		th = pgdat->nbp_threshold ? : def_th;
1942 		latency = numa_hint_fault_latency(folio);
1943 		if (latency >= th)
1944 			return false;
1945 
1946 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1947 						  folio_nr_pages(folio));
1948 	}
1949 
1950 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1951 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1952 
1953 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1954 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1955 		return false;
1956 
1957 	/*
1958 	 * Allow first faults or private faults to migrate immediately early in
1959 	 * the lifetime of a task. The magic number 4 is based on waiting for
1960 	 * two full passes of the "multi-stage node selection" test that is
1961 	 * executed below.
1962 	 */
1963 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1964 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1965 		return true;
1966 
1967 	/*
1968 	 * Multi-stage node selection is used in conjunction with a periodic
1969 	 * migration fault to build a temporal task<->page relation. By using
1970 	 * a two-stage filter we remove short/unlikely relations.
1971 	 *
1972 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1973 	 * a task's usage of a particular page (n_p) per total usage of this
1974 	 * page (n_t) (in a given time-span) to a probability.
1975 	 *
1976 	 * Our periodic faults will sample this probability and getting the
1977 	 * same result twice in a row, given these samples are fully
1978 	 * independent, is then given by P(n)^2, provided our sample period
1979 	 * is sufficiently short compared to the usage pattern.
1980 	 *
1981 	 * This quadric squishes small probabilities, making it less likely we
1982 	 * act on an unlikely task<->page relation.
1983 	 */
1984 	if (!cpupid_pid_unset(last_cpupid) &&
1985 				cpupid_to_nid(last_cpupid) != dst_nid)
1986 		return false;
1987 
1988 	/* Always allow migrate on private faults */
1989 	if (cpupid_match_pid(p, last_cpupid))
1990 		return true;
1991 
1992 	/* A shared fault, but p->numa_group has not been set up yet. */
1993 	if (!ng)
1994 		return true;
1995 
1996 	/*
1997 	 * Destination node is much more heavily used than the source
1998 	 * node? Allow migration.
1999 	 */
2000 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2001 					ACTIVE_NODE_FRACTION)
2002 		return true;
2003 
2004 	/*
2005 	 * Distribute memory according to CPU & memory use on each node,
2006 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2007 	 *
2008 	 * faults_cpu(dst)   3   faults_cpu(src)
2009 	 * --------------- * - > ---------------
2010 	 * faults_mem(dst)   4   faults_mem(src)
2011 	 */
2012 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2013 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2014 }
2015 
2016 /*
2017  * 'numa_type' describes the node at the moment of load balancing.
2018  */
2019 enum numa_type {
2020 	/* The node has spare capacity that can be used to run more tasks.  */
2021 	node_has_spare = 0,
2022 	/*
2023 	 * The node is fully used and the tasks don't compete for more CPU
2024 	 * cycles. Nevertheless, some tasks might wait before running.
2025 	 */
2026 	node_fully_busy,
2027 	/*
2028 	 * The node is overloaded and can't provide expected CPU cycles to all
2029 	 * tasks.
2030 	 */
2031 	node_overloaded
2032 };
2033 
2034 /* Cached statistics for all CPUs within a node */
2035 struct numa_stats {
2036 	unsigned long load;
2037 	unsigned long runnable;
2038 	unsigned long util;
2039 	/* Total compute capacity of CPUs on a node */
2040 	unsigned long compute_capacity;
2041 	unsigned int nr_running;
2042 	unsigned int weight;
2043 	enum numa_type node_type;
2044 	int idle_cpu;
2045 };
2046 
2047 struct task_numa_env {
2048 	struct task_struct *p;
2049 
2050 	int src_cpu, src_nid;
2051 	int dst_cpu, dst_nid;
2052 	int imb_numa_nr;
2053 
2054 	struct numa_stats src_stats, dst_stats;
2055 
2056 	int imbalance_pct;
2057 	int dist;
2058 
2059 	struct task_struct *best_task;
2060 	long best_imp;
2061 	int best_cpu;
2062 };
2063 
2064 static unsigned long cpu_load(struct rq *rq);
2065 static unsigned long cpu_runnable(struct rq *rq);
2066 
2067 static inline enum
2068 numa_type numa_classify(unsigned int imbalance_pct,
2069 			 struct numa_stats *ns)
2070 {
2071 	if ((ns->nr_running > ns->weight) &&
2072 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2073 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2074 		return node_overloaded;
2075 
2076 	if ((ns->nr_running < ns->weight) ||
2077 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2078 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2079 		return node_has_spare;
2080 
2081 	return node_fully_busy;
2082 }
2083 
2084 #ifdef CONFIG_SCHED_SMT
2085 /* Forward declarations of select_idle_sibling helpers */
2086 static inline bool test_idle_cores(int cpu);
2087 static inline int numa_idle_core(int idle_core, int cpu)
2088 {
2089 	if (!static_branch_likely(&sched_smt_present) ||
2090 	    idle_core >= 0 || !test_idle_cores(cpu))
2091 		return idle_core;
2092 
2093 	/*
2094 	 * Prefer cores instead of packing HT siblings
2095 	 * and triggering future load balancing.
2096 	 */
2097 	if (is_core_idle(cpu))
2098 		idle_core = cpu;
2099 
2100 	return idle_core;
2101 }
2102 #else
2103 static inline int numa_idle_core(int idle_core, int cpu)
2104 {
2105 	return idle_core;
2106 }
2107 #endif
2108 
2109 /*
2110  * Gather all necessary information to make NUMA balancing placement
2111  * decisions that are compatible with standard load balancer. This
2112  * borrows code and logic from update_sg_lb_stats but sharing a
2113  * common implementation is impractical.
2114  */
2115 static void update_numa_stats(struct task_numa_env *env,
2116 			      struct numa_stats *ns, int nid,
2117 			      bool find_idle)
2118 {
2119 	int cpu, idle_core = -1;
2120 
2121 	memset(ns, 0, sizeof(*ns));
2122 	ns->idle_cpu = -1;
2123 
2124 	rcu_read_lock();
2125 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2126 		struct rq *rq = cpu_rq(cpu);
2127 
2128 		ns->load += cpu_load(rq);
2129 		ns->runnable += cpu_runnable(rq);
2130 		ns->util += cpu_util_cfs(cpu);
2131 		ns->nr_running += rq->cfs.h_nr_running;
2132 		ns->compute_capacity += capacity_of(cpu);
2133 
2134 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2135 			if (READ_ONCE(rq->numa_migrate_on) ||
2136 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2137 				continue;
2138 
2139 			if (ns->idle_cpu == -1)
2140 				ns->idle_cpu = cpu;
2141 
2142 			idle_core = numa_idle_core(idle_core, cpu);
2143 		}
2144 	}
2145 	rcu_read_unlock();
2146 
2147 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2148 
2149 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2150 
2151 	if (idle_core >= 0)
2152 		ns->idle_cpu = idle_core;
2153 }
2154 
2155 static void task_numa_assign(struct task_numa_env *env,
2156 			     struct task_struct *p, long imp)
2157 {
2158 	struct rq *rq = cpu_rq(env->dst_cpu);
2159 
2160 	/* Check if run-queue part of active NUMA balance. */
2161 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2162 		int cpu;
2163 		int start = env->dst_cpu;
2164 
2165 		/* Find alternative idle CPU. */
2166 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2167 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2168 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2169 				continue;
2170 			}
2171 
2172 			env->dst_cpu = cpu;
2173 			rq = cpu_rq(env->dst_cpu);
2174 			if (!xchg(&rq->numa_migrate_on, 1))
2175 				goto assign;
2176 		}
2177 
2178 		/* Failed to find an alternative idle CPU */
2179 		return;
2180 	}
2181 
2182 assign:
2183 	/*
2184 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2185 	 * found a better CPU to move/swap.
2186 	 */
2187 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2188 		rq = cpu_rq(env->best_cpu);
2189 		WRITE_ONCE(rq->numa_migrate_on, 0);
2190 	}
2191 
2192 	if (env->best_task)
2193 		put_task_struct(env->best_task);
2194 	if (p)
2195 		get_task_struct(p);
2196 
2197 	env->best_task = p;
2198 	env->best_imp = imp;
2199 	env->best_cpu = env->dst_cpu;
2200 }
2201 
2202 static bool load_too_imbalanced(long src_load, long dst_load,
2203 				struct task_numa_env *env)
2204 {
2205 	long imb, old_imb;
2206 	long orig_src_load, orig_dst_load;
2207 	long src_capacity, dst_capacity;
2208 
2209 	/*
2210 	 * The load is corrected for the CPU capacity available on each node.
2211 	 *
2212 	 * src_load        dst_load
2213 	 * ------------ vs ---------
2214 	 * src_capacity    dst_capacity
2215 	 */
2216 	src_capacity = env->src_stats.compute_capacity;
2217 	dst_capacity = env->dst_stats.compute_capacity;
2218 
2219 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2220 
2221 	orig_src_load = env->src_stats.load;
2222 	orig_dst_load = env->dst_stats.load;
2223 
2224 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2225 
2226 	/* Would this change make things worse? */
2227 	return (imb > old_imb);
2228 }
2229 
2230 /*
2231  * Maximum NUMA importance can be 1998 (2*999);
2232  * SMALLIMP @ 30 would be close to 1998/64.
2233  * Used to deter task migration.
2234  */
2235 #define SMALLIMP	30
2236 
2237 /*
2238  * This checks if the overall compute and NUMA accesses of the system would
2239  * be improved if the source tasks was migrated to the target dst_cpu taking
2240  * into account that it might be best if task running on the dst_cpu should
2241  * be exchanged with the source task
2242  */
2243 static bool task_numa_compare(struct task_numa_env *env,
2244 			      long taskimp, long groupimp, bool maymove)
2245 {
2246 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2247 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2248 	long imp = p_ng ? groupimp : taskimp;
2249 	struct task_struct *cur;
2250 	long src_load, dst_load;
2251 	int dist = env->dist;
2252 	long moveimp = imp;
2253 	long load;
2254 	bool stopsearch = false;
2255 
2256 	if (READ_ONCE(dst_rq->numa_migrate_on))
2257 		return false;
2258 
2259 	rcu_read_lock();
2260 	cur = rcu_dereference(dst_rq->curr);
2261 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2262 		cur = NULL;
2263 
2264 	/*
2265 	 * Because we have preemption enabled we can get migrated around and
2266 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2267 	 */
2268 	if (cur == env->p) {
2269 		stopsearch = true;
2270 		goto unlock;
2271 	}
2272 
2273 	if (!cur) {
2274 		if (maymove && moveimp >= env->best_imp)
2275 			goto assign;
2276 		else
2277 			goto unlock;
2278 	}
2279 
2280 	/* Skip this swap candidate if cannot move to the source cpu. */
2281 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2282 		goto unlock;
2283 
2284 	/*
2285 	 * Skip this swap candidate if it is not moving to its preferred
2286 	 * node and the best task is.
2287 	 */
2288 	if (env->best_task &&
2289 	    env->best_task->numa_preferred_nid == env->src_nid &&
2290 	    cur->numa_preferred_nid != env->src_nid) {
2291 		goto unlock;
2292 	}
2293 
2294 	/*
2295 	 * "imp" is the fault differential for the source task between the
2296 	 * source and destination node. Calculate the total differential for
2297 	 * the source task and potential destination task. The more negative
2298 	 * the value is, the more remote accesses that would be expected to
2299 	 * be incurred if the tasks were swapped.
2300 	 *
2301 	 * If dst and source tasks are in the same NUMA group, or not
2302 	 * in any group then look only at task weights.
2303 	 */
2304 	cur_ng = rcu_dereference(cur->numa_group);
2305 	if (cur_ng == p_ng) {
2306 		/*
2307 		 * Do not swap within a group or between tasks that have
2308 		 * no group if there is spare capacity. Swapping does
2309 		 * not address the load imbalance and helps one task at
2310 		 * the cost of punishing another.
2311 		 */
2312 		if (env->dst_stats.node_type == node_has_spare)
2313 			goto unlock;
2314 
2315 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2316 		      task_weight(cur, env->dst_nid, dist);
2317 		/*
2318 		 * Add some hysteresis to prevent swapping the
2319 		 * tasks within a group over tiny differences.
2320 		 */
2321 		if (cur_ng)
2322 			imp -= imp / 16;
2323 	} else {
2324 		/*
2325 		 * Compare the group weights. If a task is all by itself
2326 		 * (not part of a group), use the task weight instead.
2327 		 */
2328 		if (cur_ng && p_ng)
2329 			imp += group_weight(cur, env->src_nid, dist) -
2330 			       group_weight(cur, env->dst_nid, dist);
2331 		else
2332 			imp += task_weight(cur, env->src_nid, dist) -
2333 			       task_weight(cur, env->dst_nid, dist);
2334 	}
2335 
2336 	/* Discourage picking a task already on its preferred node */
2337 	if (cur->numa_preferred_nid == env->dst_nid)
2338 		imp -= imp / 16;
2339 
2340 	/*
2341 	 * Encourage picking a task that moves to its preferred node.
2342 	 * This potentially makes imp larger than it's maximum of
2343 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2344 	 * case, it does not matter.
2345 	 */
2346 	if (cur->numa_preferred_nid == env->src_nid)
2347 		imp += imp / 8;
2348 
2349 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2350 		imp = moveimp;
2351 		cur = NULL;
2352 		goto assign;
2353 	}
2354 
2355 	/*
2356 	 * Prefer swapping with a task moving to its preferred node over a
2357 	 * task that is not.
2358 	 */
2359 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2360 	    env->best_task->numa_preferred_nid != env->src_nid) {
2361 		goto assign;
2362 	}
2363 
2364 	/*
2365 	 * If the NUMA importance is less than SMALLIMP,
2366 	 * task migration might only result in ping pong
2367 	 * of tasks and also hurt performance due to cache
2368 	 * misses.
2369 	 */
2370 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2371 		goto unlock;
2372 
2373 	/*
2374 	 * In the overloaded case, try and keep the load balanced.
2375 	 */
2376 	load = task_h_load(env->p) - task_h_load(cur);
2377 	if (!load)
2378 		goto assign;
2379 
2380 	dst_load = env->dst_stats.load + load;
2381 	src_load = env->src_stats.load - load;
2382 
2383 	if (load_too_imbalanced(src_load, dst_load, env))
2384 		goto unlock;
2385 
2386 assign:
2387 	/* Evaluate an idle CPU for a task numa move. */
2388 	if (!cur) {
2389 		int cpu = env->dst_stats.idle_cpu;
2390 
2391 		/* Nothing cached so current CPU went idle since the search. */
2392 		if (cpu < 0)
2393 			cpu = env->dst_cpu;
2394 
2395 		/*
2396 		 * If the CPU is no longer truly idle and the previous best CPU
2397 		 * is, keep using it.
2398 		 */
2399 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2400 		    idle_cpu(env->best_cpu)) {
2401 			cpu = env->best_cpu;
2402 		}
2403 
2404 		env->dst_cpu = cpu;
2405 	}
2406 
2407 	task_numa_assign(env, cur, imp);
2408 
2409 	/*
2410 	 * If a move to idle is allowed because there is capacity or load
2411 	 * balance improves then stop the search. While a better swap
2412 	 * candidate may exist, a search is not free.
2413 	 */
2414 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2415 		stopsearch = true;
2416 
2417 	/*
2418 	 * If a swap candidate must be identified and the current best task
2419 	 * moves its preferred node then stop the search.
2420 	 */
2421 	if (!maymove && env->best_task &&
2422 	    env->best_task->numa_preferred_nid == env->src_nid) {
2423 		stopsearch = true;
2424 	}
2425 unlock:
2426 	rcu_read_unlock();
2427 
2428 	return stopsearch;
2429 }
2430 
2431 static void task_numa_find_cpu(struct task_numa_env *env,
2432 				long taskimp, long groupimp)
2433 {
2434 	bool maymove = false;
2435 	int cpu;
2436 
2437 	/*
2438 	 * If dst node has spare capacity, then check if there is an
2439 	 * imbalance that would be overruled by the load balancer.
2440 	 */
2441 	if (env->dst_stats.node_type == node_has_spare) {
2442 		unsigned int imbalance;
2443 		int src_running, dst_running;
2444 
2445 		/*
2446 		 * Would movement cause an imbalance? Note that if src has
2447 		 * more running tasks that the imbalance is ignored as the
2448 		 * move improves the imbalance from the perspective of the
2449 		 * CPU load balancer.
2450 		 * */
2451 		src_running = env->src_stats.nr_running - 1;
2452 		dst_running = env->dst_stats.nr_running + 1;
2453 		imbalance = max(0, dst_running - src_running);
2454 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2455 						  env->imb_numa_nr);
2456 
2457 		/* Use idle CPU if there is no imbalance */
2458 		if (!imbalance) {
2459 			maymove = true;
2460 			if (env->dst_stats.idle_cpu >= 0) {
2461 				env->dst_cpu = env->dst_stats.idle_cpu;
2462 				task_numa_assign(env, NULL, 0);
2463 				return;
2464 			}
2465 		}
2466 	} else {
2467 		long src_load, dst_load, load;
2468 		/*
2469 		 * If the improvement from just moving env->p direction is better
2470 		 * than swapping tasks around, check if a move is possible.
2471 		 */
2472 		load = task_h_load(env->p);
2473 		dst_load = env->dst_stats.load + load;
2474 		src_load = env->src_stats.load - load;
2475 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2476 	}
2477 
2478 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2479 		/* Skip this CPU if the source task cannot migrate */
2480 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2481 			continue;
2482 
2483 		env->dst_cpu = cpu;
2484 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2485 			break;
2486 	}
2487 }
2488 
2489 static int task_numa_migrate(struct task_struct *p)
2490 {
2491 	struct task_numa_env env = {
2492 		.p = p,
2493 
2494 		.src_cpu = task_cpu(p),
2495 		.src_nid = task_node(p),
2496 
2497 		.imbalance_pct = 112,
2498 
2499 		.best_task = NULL,
2500 		.best_imp = 0,
2501 		.best_cpu = -1,
2502 	};
2503 	unsigned long taskweight, groupweight;
2504 	struct sched_domain *sd;
2505 	long taskimp, groupimp;
2506 	struct numa_group *ng;
2507 	struct rq *best_rq;
2508 	int nid, ret, dist;
2509 
2510 	/*
2511 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2512 	 * imbalance and would be the first to start moving tasks about.
2513 	 *
2514 	 * And we want to avoid any moving of tasks about, as that would create
2515 	 * random movement of tasks -- counter the numa conditions we're trying
2516 	 * to satisfy here.
2517 	 */
2518 	rcu_read_lock();
2519 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2520 	if (sd) {
2521 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2522 		env.imb_numa_nr = sd->imb_numa_nr;
2523 	}
2524 	rcu_read_unlock();
2525 
2526 	/*
2527 	 * Cpusets can break the scheduler domain tree into smaller
2528 	 * balance domains, some of which do not cross NUMA boundaries.
2529 	 * Tasks that are "trapped" in such domains cannot be migrated
2530 	 * elsewhere, so there is no point in (re)trying.
2531 	 */
2532 	if (unlikely(!sd)) {
2533 		sched_setnuma(p, task_node(p));
2534 		return -EINVAL;
2535 	}
2536 
2537 	env.dst_nid = p->numa_preferred_nid;
2538 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2539 	taskweight = task_weight(p, env.src_nid, dist);
2540 	groupweight = group_weight(p, env.src_nid, dist);
2541 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2542 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2543 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2544 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2545 
2546 	/* Try to find a spot on the preferred nid. */
2547 	task_numa_find_cpu(&env, taskimp, groupimp);
2548 
2549 	/*
2550 	 * Look at other nodes in these cases:
2551 	 * - there is no space available on the preferred_nid
2552 	 * - the task is part of a numa_group that is interleaved across
2553 	 *   multiple NUMA nodes; in order to better consolidate the group,
2554 	 *   we need to check other locations.
2555 	 */
2556 	ng = deref_curr_numa_group(p);
2557 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2558 		for_each_node_state(nid, N_CPU) {
2559 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2560 				continue;
2561 
2562 			dist = node_distance(env.src_nid, env.dst_nid);
2563 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2564 						dist != env.dist) {
2565 				taskweight = task_weight(p, env.src_nid, dist);
2566 				groupweight = group_weight(p, env.src_nid, dist);
2567 			}
2568 
2569 			/* Only consider nodes where both task and groups benefit */
2570 			taskimp = task_weight(p, nid, dist) - taskweight;
2571 			groupimp = group_weight(p, nid, dist) - groupweight;
2572 			if (taskimp < 0 && groupimp < 0)
2573 				continue;
2574 
2575 			env.dist = dist;
2576 			env.dst_nid = nid;
2577 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2578 			task_numa_find_cpu(&env, taskimp, groupimp);
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * If the task is part of a workload that spans multiple NUMA nodes,
2584 	 * and is migrating into one of the workload's active nodes, remember
2585 	 * this node as the task's preferred numa node, so the workload can
2586 	 * settle down.
2587 	 * A task that migrated to a second choice node will be better off
2588 	 * trying for a better one later. Do not set the preferred node here.
2589 	 */
2590 	if (ng) {
2591 		if (env.best_cpu == -1)
2592 			nid = env.src_nid;
2593 		else
2594 			nid = cpu_to_node(env.best_cpu);
2595 
2596 		if (nid != p->numa_preferred_nid)
2597 			sched_setnuma(p, nid);
2598 	}
2599 
2600 	/* No better CPU than the current one was found. */
2601 	if (env.best_cpu == -1) {
2602 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2603 		return -EAGAIN;
2604 	}
2605 
2606 	best_rq = cpu_rq(env.best_cpu);
2607 	if (env.best_task == NULL) {
2608 		ret = migrate_task_to(p, env.best_cpu);
2609 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2610 		if (ret != 0)
2611 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2612 		return ret;
2613 	}
2614 
2615 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2616 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2617 
2618 	if (ret != 0)
2619 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2620 	put_task_struct(env.best_task);
2621 	return ret;
2622 }
2623 
2624 /* Attempt to migrate a task to a CPU on the preferred node. */
2625 static void numa_migrate_preferred(struct task_struct *p)
2626 {
2627 	unsigned long interval = HZ;
2628 
2629 	/* This task has no NUMA fault statistics yet */
2630 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2631 		return;
2632 
2633 	/* Periodically retry migrating the task to the preferred node */
2634 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2635 	p->numa_migrate_retry = jiffies + interval;
2636 
2637 	/* Success if task is already running on preferred CPU */
2638 	if (task_node(p) == p->numa_preferred_nid)
2639 		return;
2640 
2641 	/* Otherwise, try migrate to a CPU on the preferred node */
2642 	task_numa_migrate(p);
2643 }
2644 
2645 /*
2646  * Find out how many nodes the workload is actively running on. Do this by
2647  * tracking the nodes from which NUMA hinting faults are triggered. This can
2648  * be different from the set of nodes where the workload's memory is currently
2649  * located.
2650  */
2651 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2652 {
2653 	unsigned long faults, max_faults = 0;
2654 	int nid, active_nodes = 0;
2655 
2656 	for_each_node_state(nid, N_CPU) {
2657 		faults = group_faults_cpu(numa_group, nid);
2658 		if (faults > max_faults)
2659 			max_faults = faults;
2660 	}
2661 
2662 	for_each_node_state(nid, N_CPU) {
2663 		faults = group_faults_cpu(numa_group, nid);
2664 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2665 			active_nodes++;
2666 	}
2667 
2668 	numa_group->max_faults_cpu = max_faults;
2669 	numa_group->active_nodes = active_nodes;
2670 }
2671 
2672 /*
2673  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2674  * increments. The more local the fault statistics are, the higher the scan
2675  * period will be for the next scan window. If local/(local+remote) ratio is
2676  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2677  * the scan period will decrease. Aim for 70% local accesses.
2678  */
2679 #define NUMA_PERIOD_SLOTS 10
2680 #define NUMA_PERIOD_THRESHOLD 7
2681 
2682 /*
2683  * Increase the scan period (slow down scanning) if the majority of
2684  * our memory is already on our local node, or if the majority of
2685  * the page accesses are shared with other processes.
2686  * Otherwise, decrease the scan period.
2687  */
2688 static void update_task_scan_period(struct task_struct *p,
2689 			unsigned long shared, unsigned long private)
2690 {
2691 	unsigned int period_slot;
2692 	int lr_ratio, ps_ratio;
2693 	int diff;
2694 
2695 	unsigned long remote = p->numa_faults_locality[0];
2696 	unsigned long local = p->numa_faults_locality[1];
2697 
2698 	/*
2699 	 * If there were no record hinting faults then either the task is
2700 	 * completely idle or all activity is in areas that are not of interest
2701 	 * to automatic numa balancing. Related to that, if there were failed
2702 	 * migration then it implies we are migrating too quickly or the local
2703 	 * node is overloaded. In either case, scan slower
2704 	 */
2705 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2706 		p->numa_scan_period = min(p->numa_scan_period_max,
2707 			p->numa_scan_period << 1);
2708 
2709 		p->mm->numa_next_scan = jiffies +
2710 			msecs_to_jiffies(p->numa_scan_period);
2711 
2712 		return;
2713 	}
2714 
2715 	/*
2716 	 * Prepare to scale scan period relative to the current period.
2717 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2718 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2719 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2720 	 */
2721 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2722 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2723 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2724 
2725 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2726 		/*
2727 		 * Most memory accesses are local. There is no need to
2728 		 * do fast NUMA scanning, since memory is already local.
2729 		 */
2730 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2731 		if (!slot)
2732 			slot = 1;
2733 		diff = slot * period_slot;
2734 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2735 		/*
2736 		 * Most memory accesses are shared with other tasks.
2737 		 * There is no point in continuing fast NUMA scanning,
2738 		 * since other tasks may just move the memory elsewhere.
2739 		 */
2740 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2741 		if (!slot)
2742 			slot = 1;
2743 		diff = slot * period_slot;
2744 	} else {
2745 		/*
2746 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2747 		 * yet they are not on the local NUMA node. Speed up
2748 		 * NUMA scanning to get the memory moved over.
2749 		 */
2750 		int ratio = max(lr_ratio, ps_ratio);
2751 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2752 	}
2753 
2754 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2755 			task_scan_min(p), task_scan_max(p));
2756 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2757 }
2758 
2759 /*
2760  * Get the fraction of time the task has been running since the last
2761  * NUMA placement cycle. The scheduler keeps similar statistics, but
2762  * decays those on a 32ms period, which is orders of magnitude off
2763  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2764  * stats only if the task is so new there are no NUMA statistics yet.
2765  */
2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2767 {
2768 	u64 runtime, delta, now;
2769 	/* Use the start of this time slice to avoid calculations. */
2770 	now = p->se.exec_start;
2771 	runtime = p->se.sum_exec_runtime;
2772 
2773 	if (p->last_task_numa_placement) {
2774 		delta = runtime - p->last_sum_exec_runtime;
2775 		*period = now - p->last_task_numa_placement;
2776 
2777 		/* Avoid time going backwards, prevent potential divide error: */
2778 		if (unlikely((s64)*period < 0))
2779 			*period = 0;
2780 	} else {
2781 		delta = p->se.avg.load_sum;
2782 		*period = LOAD_AVG_MAX;
2783 	}
2784 
2785 	p->last_sum_exec_runtime = runtime;
2786 	p->last_task_numa_placement = now;
2787 
2788 	return delta;
2789 }
2790 
2791 /*
2792  * Determine the preferred nid for a task in a numa_group. This needs to
2793  * be done in a way that produces consistent results with group_weight,
2794  * otherwise workloads might not converge.
2795  */
2796 static int preferred_group_nid(struct task_struct *p, int nid)
2797 {
2798 	nodemask_t nodes;
2799 	int dist;
2800 
2801 	/* Direct connections between all NUMA nodes. */
2802 	if (sched_numa_topology_type == NUMA_DIRECT)
2803 		return nid;
2804 
2805 	/*
2806 	 * On a system with glueless mesh NUMA topology, group_weight
2807 	 * scores nodes according to the number of NUMA hinting faults on
2808 	 * both the node itself, and on nearby nodes.
2809 	 */
2810 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2811 		unsigned long score, max_score = 0;
2812 		int node, max_node = nid;
2813 
2814 		dist = sched_max_numa_distance;
2815 
2816 		for_each_node_state(node, N_CPU) {
2817 			score = group_weight(p, node, dist);
2818 			if (score > max_score) {
2819 				max_score = score;
2820 				max_node = node;
2821 			}
2822 		}
2823 		return max_node;
2824 	}
2825 
2826 	/*
2827 	 * Finding the preferred nid in a system with NUMA backplane
2828 	 * interconnect topology is more involved. The goal is to locate
2829 	 * tasks from numa_groups near each other in the system, and
2830 	 * untangle workloads from different sides of the system. This requires
2831 	 * searching down the hierarchy of node groups, recursively searching
2832 	 * inside the highest scoring group of nodes. The nodemask tricks
2833 	 * keep the complexity of the search down.
2834 	 */
2835 	nodes = node_states[N_CPU];
2836 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2837 		unsigned long max_faults = 0;
2838 		nodemask_t max_group = NODE_MASK_NONE;
2839 		int a, b;
2840 
2841 		/* Are there nodes at this distance from each other? */
2842 		if (!find_numa_distance(dist))
2843 			continue;
2844 
2845 		for_each_node_mask(a, nodes) {
2846 			unsigned long faults = 0;
2847 			nodemask_t this_group;
2848 			nodes_clear(this_group);
2849 
2850 			/* Sum group's NUMA faults; includes a==b case. */
2851 			for_each_node_mask(b, nodes) {
2852 				if (node_distance(a, b) < dist) {
2853 					faults += group_faults(p, b);
2854 					node_set(b, this_group);
2855 					node_clear(b, nodes);
2856 				}
2857 			}
2858 
2859 			/* Remember the top group. */
2860 			if (faults > max_faults) {
2861 				max_faults = faults;
2862 				max_group = this_group;
2863 				/*
2864 				 * subtle: at the smallest distance there is
2865 				 * just one node left in each "group", the
2866 				 * winner is the preferred nid.
2867 				 */
2868 				nid = a;
2869 			}
2870 		}
2871 		/* Next round, evaluate the nodes within max_group. */
2872 		if (!max_faults)
2873 			break;
2874 		nodes = max_group;
2875 	}
2876 	return nid;
2877 }
2878 
2879 static void task_numa_placement(struct task_struct *p)
2880 {
2881 	int seq, nid, max_nid = NUMA_NO_NODE;
2882 	unsigned long max_faults = 0;
2883 	unsigned long fault_types[2] = { 0, 0 };
2884 	unsigned long total_faults;
2885 	u64 runtime, period;
2886 	spinlock_t *group_lock = NULL;
2887 	struct numa_group *ng;
2888 
2889 	/*
2890 	 * The p->mm->numa_scan_seq field gets updated without
2891 	 * exclusive access. Use READ_ONCE() here to ensure
2892 	 * that the field is read in a single access:
2893 	 */
2894 	seq = READ_ONCE(p->mm->numa_scan_seq);
2895 	if (p->numa_scan_seq == seq)
2896 		return;
2897 	p->numa_scan_seq = seq;
2898 	p->numa_scan_period_max = task_scan_max(p);
2899 
2900 	total_faults = p->numa_faults_locality[0] +
2901 		       p->numa_faults_locality[1];
2902 	runtime = numa_get_avg_runtime(p, &period);
2903 
2904 	/* If the task is part of a group prevent parallel updates to group stats */
2905 	ng = deref_curr_numa_group(p);
2906 	if (ng) {
2907 		group_lock = &ng->lock;
2908 		spin_lock_irq(group_lock);
2909 	}
2910 
2911 	/* Find the node with the highest number of faults */
2912 	for_each_online_node(nid) {
2913 		/* Keep track of the offsets in numa_faults array */
2914 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2915 		unsigned long faults = 0, group_faults = 0;
2916 		int priv;
2917 
2918 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2919 			long diff, f_diff, f_weight;
2920 
2921 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2922 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2923 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2924 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2925 
2926 			/* Decay existing window, copy faults since last scan */
2927 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2928 			fault_types[priv] += p->numa_faults[membuf_idx];
2929 			p->numa_faults[membuf_idx] = 0;
2930 
2931 			/*
2932 			 * Normalize the faults_from, so all tasks in a group
2933 			 * count according to CPU use, instead of by the raw
2934 			 * number of faults. Tasks with little runtime have
2935 			 * little over-all impact on throughput, and thus their
2936 			 * faults are less important.
2937 			 */
2938 			f_weight = div64_u64(runtime << 16, period + 1);
2939 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2940 				   (total_faults + 1);
2941 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2942 			p->numa_faults[cpubuf_idx] = 0;
2943 
2944 			p->numa_faults[mem_idx] += diff;
2945 			p->numa_faults[cpu_idx] += f_diff;
2946 			faults += p->numa_faults[mem_idx];
2947 			p->total_numa_faults += diff;
2948 			if (ng) {
2949 				/*
2950 				 * safe because we can only change our own group
2951 				 *
2952 				 * mem_idx represents the offset for a given
2953 				 * nid and priv in a specific region because it
2954 				 * is at the beginning of the numa_faults array.
2955 				 */
2956 				ng->faults[mem_idx] += diff;
2957 				ng->faults[cpu_idx] += f_diff;
2958 				ng->total_faults += diff;
2959 				group_faults += ng->faults[mem_idx];
2960 			}
2961 		}
2962 
2963 		if (!ng) {
2964 			if (faults > max_faults) {
2965 				max_faults = faults;
2966 				max_nid = nid;
2967 			}
2968 		} else if (group_faults > max_faults) {
2969 			max_faults = group_faults;
2970 			max_nid = nid;
2971 		}
2972 	}
2973 
2974 	/* Cannot migrate task to CPU-less node */
2975 	max_nid = numa_nearest_node(max_nid, N_CPU);
2976 
2977 	if (ng) {
2978 		numa_group_count_active_nodes(ng);
2979 		spin_unlock_irq(group_lock);
2980 		max_nid = preferred_group_nid(p, max_nid);
2981 	}
2982 
2983 	if (max_faults) {
2984 		/* Set the new preferred node */
2985 		if (max_nid != p->numa_preferred_nid)
2986 			sched_setnuma(p, max_nid);
2987 	}
2988 
2989 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2990 }
2991 
2992 static inline int get_numa_group(struct numa_group *grp)
2993 {
2994 	return refcount_inc_not_zero(&grp->refcount);
2995 }
2996 
2997 static inline void put_numa_group(struct numa_group *grp)
2998 {
2999 	if (refcount_dec_and_test(&grp->refcount))
3000 		kfree_rcu(grp, rcu);
3001 }
3002 
3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3004 			int *priv)
3005 {
3006 	struct numa_group *grp, *my_grp;
3007 	struct task_struct *tsk;
3008 	bool join = false;
3009 	int cpu = cpupid_to_cpu(cpupid);
3010 	int i;
3011 
3012 	if (unlikely(!deref_curr_numa_group(p))) {
3013 		unsigned int size = sizeof(struct numa_group) +
3014 				    NR_NUMA_HINT_FAULT_STATS *
3015 				    nr_node_ids * sizeof(unsigned long);
3016 
3017 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3018 		if (!grp)
3019 			return;
3020 
3021 		refcount_set(&grp->refcount, 1);
3022 		grp->active_nodes = 1;
3023 		grp->max_faults_cpu = 0;
3024 		spin_lock_init(&grp->lock);
3025 		grp->gid = p->pid;
3026 
3027 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3028 			grp->faults[i] = p->numa_faults[i];
3029 
3030 		grp->total_faults = p->total_numa_faults;
3031 
3032 		grp->nr_tasks++;
3033 		rcu_assign_pointer(p->numa_group, grp);
3034 	}
3035 
3036 	rcu_read_lock();
3037 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3038 
3039 	if (!cpupid_match_pid(tsk, cpupid))
3040 		goto no_join;
3041 
3042 	grp = rcu_dereference(tsk->numa_group);
3043 	if (!grp)
3044 		goto no_join;
3045 
3046 	my_grp = deref_curr_numa_group(p);
3047 	if (grp == my_grp)
3048 		goto no_join;
3049 
3050 	/*
3051 	 * Only join the other group if its bigger; if we're the bigger group,
3052 	 * the other task will join us.
3053 	 */
3054 	if (my_grp->nr_tasks > grp->nr_tasks)
3055 		goto no_join;
3056 
3057 	/*
3058 	 * Tie-break on the grp address.
3059 	 */
3060 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3061 		goto no_join;
3062 
3063 	/* Always join threads in the same process. */
3064 	if (tsk->mm == current->mm)
3065 		join = true;
3066 
3067 	/* Simple filter to avoid false positives due to PID collisions */
3068 	if (flags & TNF_SHARED)
3069 		join = true;
3070 
3071 	/* Update priv based on whether false sharing was detected */
3072 	*priv = !join;
3073 
3074 	if (join && !get_numa_group(grp))
3075 		goto no_join;
3076 
3077 	rcu_read_unlock();
3078 
3079 	if (!join)
3080 		return;
3081 
3082 	WARN_ON_ONCE(irqs_disabled());
3083 	double_lock_irq(&my_grp->lock, &grp->lock);
3084 
3085 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3086 		my_grp->faults[i] -= p->numa_faults[i];
3087 		grp->faults[i] += p->numa_faults[i];
3088 	}
3089 	my_grp->total_faults -= p->total_numa_faults;
3090 	grp->total_faults += p->total_numa_faults;
3091 
3092 	my_grp->nr_tasks--;
3093 	grp->nr_tasks++;
3094 
3095 	spin_unlock(&my_grp->lock);
3096 	spin_unlock_irq(&grp->lock);
3097 
3098 	rcu_assign_pointer(p->numa_group, grp);
3099 
3100 	put_numa_group(my_grp);
3101 	return;
3102 
3103 no_join:
3104 	rcu_read_unlock();
3105 	return;
3106 }
3107 
3108 /*
3109  * Get rid of NUMA statistics associated with a task (either current or dead).
3110  * If @final is set, the task is dead and has reached refcount zero, so we can
3111  * safely free all relevant data structures. Otherwise, there might be
3112  * concurrent reads from places like load balancing and procfs, and we should
3113  * reset the data back to default state without freeing ->numa_faults.
3114  */
3115 void task_numa_free(struct task_struct *p, bool final)
3116 {
3117 	/* safe: p either is current or is being freed by current */
3118 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3119 	unsigned long *numa_faults = p->numa_faults;
3120 	unsigned long flags;
3121 	int i;
3122 
3123 	if (!numa_faults)
3124 		return;
3125 
3126 	if (grp) {
3127 		spin_lock_irqsave(&grp->lock, flags);
3128 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3129 			grp->faults[i] -= p->numa_faults[i];
3130 		grp->total_faults -= p->total_numa_faults;
3131 
3132 		grp->nr_tasks--;
3133 		spin_unlock_irqrestore(&grp->lock, flags);
3134 		RCU_INIT_POINTER(p->numa_group, NULL);
3135 		put_numa_group(grp);
3136 	}
3137 
3138 	if (final) {
3139 		p->numa_faults = NULL;
3140 		kfree(numa_faults);
3141 	} else {
3142 		p->total_numa_faults = 0;
3143 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3144 			numa_faults[i] = 0;
3145 	}
3146 }
3147 
3148 /*
3149  * Got a PROT_NONE fault for a page on @node.
3150  */
3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3152 {
3153 	struct task_struct *p = current;
3154 	bool migrated = flags & TNF_MIGRATED;
3155 	int cpu_node = task_node(current);
3156 	int local = !!(flags & TNF_FAULT_LOCAL);
3157 	struct numa_group *ng;
3158 	int priv;
3159 
3160 	if (!static_branch_likely(&sched_numa_balancing))
3161 		return;
3162 
3163 	/* for example, ksmd faulting in a user's mm */
3164 	if (!p->mm)
3165 		return;
3166 
3167 	/*
3168 	 * NUMA faults statistics are unnecessary for the slow memory
3169 	 * node for memory tiering mode.
3170 	 */
3171 	if (!node_is_toptier(mem_node) &&
3172 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3173 	     !cpupid_valid(last_cpupid)))
3174 		return;
3175 
3176 	/* Allocate buffer to track faults on a per-node basis */
3177 	if (unlikely(!p->numa_faults)) {
3178 		int size = sizeof(*p->numa_faults) *
3179 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3180 
3181 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3182 		if (!p->numa_faults)
3183 			return;
3184 
3185 		p->total_numa_faults = 0;
3186 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3187 	}
3188 
3189 	/*
3190 	 * First accesses are treated as private, otherwise consider accesses
3191 	 * to be private if the accessing pid has not changed
3192 	 */
3193 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3194 		priv = 1;
3195 	} else {
3196 		priv = cpupid_match_pid(p, last_cpupid);
3197 		if (!priv && !(flags & TNF_NO_GROUP))
3198 			task_numa_group(p, last_cpupid, flags, &priv);
3199 	}
3200 
3201 	/*
3202 	 * If a workload spans multiple NUMA nodes, a shared fault that
3203 	 * occurs wholly within the set of nodes that the workload is
3204 	 * actively using should be counted as local. This allows the
3205 	 * scan rate to slow down when a workload has settled down.
3206 	 */
3207 	ng = deref_curr_numa_group(p);
3208 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3209 				numa_is_active_node(cpu_node, ng) &&
3210 				numa_is_active_node(mem_node, ng))
3211 		local = 1;
3212 
3213 	/*
3214 	 * Retry to migrate task to preferred node periodically, in case it
3215 	 * previously failed, or the scheduler moved us.
3216 	 */
3217 	if (time_after(jiffies, p->numa_migrate_retry)) {
3218 		task_numa_placement(p);
3219 		numa_migrate_preferred(p);
3220 	}
3221 
3222 	if (migrated)
3223 		p->numa_pages_migrated += pages;
3224 	if (flags & TNF_MIGRATE_FAIL)
3225 		p->numa_faults_locality[2] += pages;
3226 
3227 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3228 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3229 	p->numa_faults_locality[local] += pages;
3230 }
3231 
3232 static void reset_ptenuma_scan(struct task_struct *p)
3233 {
3234 	/*
3235 	 * We only did a read acquisition of the mmap sem, so
3236 	 * p->mm->numa_scan_seq is written to without exclusive access
3237 	 * and the update is not guaranteed to be atomic. That's not
3238 	 * much of an issue though, since this is just used for
3239 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3240 	 * expensive, to avoid any form of compiler optimizations:
3241 	 */
3242 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3243 	p->mm->numa_scan_offset = 0;
3244 }
3245 
3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3247 {
3248 	unsigned long pids;
3249 	/*
3250 	 * Allow unconditional access first two times, so that all the (pages)
3251 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3252 	 * This is also done to avoid any side effect of task scanning
3253 	 * amplifying the unfairness of disjoint set of VMAs' access.
3254 	 */
3255 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3256 		return true;
3257 
3258 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3259 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3260 		return true;
3261 
3262 	/*
3263 	 * Complete a scan that has already started regardless of PID access, or
3264 	 * some VMAs may never be scanned in multi-threaded applications:
3265 	 */
3266 	if (mm->numa_scan_offset > vma->vm_start) {
3267 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3268 		return true;
3269 	}
3270 
3271 	/*
3272 	 * This vma has not been accessed for a while, and if the number
3273 	 * the threads in the same process is low, which means no other
3274 	 * threads can help scan this vma, force a vma scan.
3275 	 */
3276 	if (READ_ONCE(mm->numa_scan_seq) >
3277 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3278 		return true;
3279 
3280 	return false;
3281 }
3282 
3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3284 
3285 /*
3286  * The expensive part of numa migration is done from task_work context.
3287  * Triggered from task_tick_numa().
3288  */
3289 static void task_numa_work(struct callback_head *work)
3290 {
3291 	unsigned long migrate, next_scan, now = jiffies;
3292 	struct task_struct *p = current;
3293 	struct mm_struct *mm = p->mm;
3294 	u64 runtime = p->se.sum_exec_runtime;
3295 	struct vm_area_struct *vma;
3296 	unsigned long start, end;
3297 	unsigned long nr_pte_updates = 0;
3298 	long pages, virtpages;
3299 	struct vma_iterator vmi;
3300 	bool vma_pids_skipped;
3301 	bool vma_pids_forced = false;
3302 
3303 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3304 
3305 	work->next = work;
3306 	/*
3307 	 * Who cares about NUMA placement when they're dying.
3308 	 *
3309 	 * NOTE: make sure not to dereference p->mm before this check,
3310 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3311 	 * without p->mm even though we still had it when we enqueued this
3312 	 * work.
3313 	 */
3314 	if (p->flags & PF_EXITING)
3315 		return;
3316 
3317 	if (!mm->numa_next_scan) {
3318 		mm->numa_next_scan = now +
3319 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3320 	}
3321 
3322 	/*
3323 	 * Enforce maximal scan/migration frequency..
3324 	 */
3325 	migrate = mm->numa_next_scan;
3326 	if (time_before(now, migrate))
3327 		return;
3328 
3329 	if (p->numa_scan_period == 0) {
3330 		p->numa_scan_period_max = task_scan_max(p);
3331 		p->numa_scan_period = task_scan_start(p);
3332 	}
3333 
3334 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3335 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3336 		return;
3337 
3338 	/*
3339 	 * Delay this task enough that another task of this mm will likely win
3340 	 * the next time around.
3341 	 */
3342 	p->node_stamp += 2 * TICK_NSEC;
3343 
3344 	pages = sysctl_numa_balancing_scan_size;
3345 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3346 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3347 	if (!pages)
3348 		return;
3349 
3350 
3351 	if (!mmap_read_trylock(mm))
3352 		return;
3353 
3354 	/*
3355 	 * VMAs are skipped if the current PID has not trapped a fault within
3356 	 * the VMA recently. Allow scanning to be forced if there is no
3357 	 * suitable VMA remaining.
3358 	 */
3359 	vma_pids_skipped = false;
3360 
3361 retry_pids:
3362 	start = mm->numa_scan_offset;
3363 	vma_iter_init(&vmi, mm, start);
3364 	vma = vma_next(&vmi);
3365 	if (!vma) {
3366 		reset_ptenuma_scan(p);
3367 		start = 0;
3368 		vma_iter_set(&vmi, start);
3369 		vma = vma_next(&vmi);
3370 	}
3371 
3372 	do {
3373 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3374 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3375 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3376 			continue;
3377 		}
3378 
3379 		/*
3380 		 * Shared library pages mapped by multiple processes are not
3381 		 * migrated as it is expected they are cache replicated. Avoid
3382 		 * hinting faults in read-only file-backed mappings or the vDSO
3383 		 * as migrating the pages will be of marginal benefit.
3384 		 */
3385 		if (!vma->vm_mm ||
3386 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3387 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3388 			continue;
3389 		}
3390 
3391 		/*
3392 		 * Skip inaccessible VMAs to avoid any confusion between
3393 		 * PROT_NONE and NUMA hinting PTEs
3394 		 */
3395 		if (!vma_is_accessible(vma)) {
3396 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3397 			continue;
3398 		}
3399 
3400 		/* Initialise new per-VMA NUMAB state. */
3401 		if (!vma->numab_state) {
3402 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3403 				GFP_KERNEL);
3404 			if (!vma->numab_state)
3405 				continue;
3406 
3407 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3408 
3409 			vma->numab_state->next_scan = now +
3410 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3411 
3412 			/* Reset happens after 4 times scan delay of scan start */
3413 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3414 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3415 
3416 			/*
3417 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3418 			 * to prevent VMAs being skipped prematurely on the
3419 			 * first scan:
3420 			 */
3421 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3422 		}
3423 
3424 		/*
3425 		 * Scanning the VMAs of short lived tasks add more overhead. So
3426 		 * delay the scan for new VMAs.
3427 		 */
3428 		if (mm->numa_scan_seq && time_before(jiffies,
3429 						vma->numab_state->next_scan)) {
3430 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3431 			continue;
3432 		}
3433 
3434 		/* RESET access PIDs regularly for old VMAs. */
3435 		if (mm->numa_scan_seq &&
3436 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3437 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3438 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3439 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3440 			vma->numab_state->pids_active[1] = 0;
3441 		}
3442 
3443 		/* Do not rescan VMAs twice within the same sequence. */
3444 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3445 			mm->numa_scan_offset = vma->vm_end;
3446 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3447 			continue;
3448 		}
3449 
3450 		/*
3451 		 * Do not scan the VMA if task has not accessed it, unless no other
3452 		 * VMA candidate exists.
3453 		 */
3454 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3455 			vma_pids_skipped = true;
3456 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3457 			continue;
3458 		}
3459 
3460 		do {
3461 			start = max(start, vma->vm_start);
3462 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3463 			end = min(end, vma->vm_end);
3464 			nr_pte_updates = change_prot_numa(vma, start, end);
3465 
3466 			/*
3467 			 * Try to scan sysctl_numa_balancing_size worth of
3468 			 * hpages that have at least one present PTE that
3469 			 * is not already PTE-numa. If the VMA contains
3470 			 * areas that are unused or already full of prot_numa
3471 			 * PTEs, scan up to virtpages, to skip through those
3472 			 * areas faster.
3473 			 */
3474 			if (nr_pte_updates)
3475 				pages -= (end - start) >> PAGE_SHIFT;
3476 			virtpages -= (end - start) >> PAGE_SHIFT;
3477 
3478 			start = end;
3479 			if (pages <= 0 || virtpages <= 0)
3480 				goto out;
3481 
3482 			cond_resched();
3483 		} while (end != vma->vm_end);
3484 
3485 		/* VMA scan is complete, do not scan until next sequence. */
3486 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3487 
3488 		/*
3489 		 * Only force scan within one VMA at a time, to limit the
3490 		 * cost of scanning a potentially uninteresting VMA.
3491 		 */
3492 		if (vma_pids_forced)
3493 			break;
3494 	} for_each_vma(vmi, vma);
3495 
3496 	/*
3497 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3498 	 * not accessing the VMA previously, then force a scan to ensure
3499 	 * forward progress:
3500 	 */
3501 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3502 		vma_pids_forced = true;
3503 		goto retry_pids;
3504 	}
3505 
3506 out:
3507 	/*
3508 	 * It is possible to reach the end of the VMA list but the last few
3509 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3510 	 * would find the !migratable VMA on the next scan but not reset the
3511 	 * scanner to the start so check it now.
3512 	 */
3513 	if (vma)
3514 		mm->numa_scan_offset = start;
3515 	else
3516 		reset_ptenuma_scan(p);
3517 	mmap_read_unlock(mm);
3518 
3519 	/*
3520 	 * Make sure tasks use at least 32x as much time to run other code
3521 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3522 	 * Usually update_task_scan_period slows down scanning enough; on an
3523 	 * overloaded system we need to limit overhead on a per task basis.
3524 	 */
3525 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3526 		u64 diff = p->se.sum_exec_runtime - runtime;
3527 		p->node_stamp += 32 * diff;
3528 	}
3529 }
3530 
3531 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3532 {
3533 	int mm_users = 0;
3534 	struct mm_struct *mm = p->mm;
3535 
3536 	if (mm) {
3537 		mm_users = atomic_read(&mm->mm_users);
3538 		if (mm_users == 1) {
3539 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3540 			mm->numa_scan_seq = 0;
3541 		}
3542 	}
3543 	p->node_stamp			= 0;
3544 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3545 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3546 	p->numa_migrate_retry		= 0;
3547 	/* Protect against double add, see task_tick_numa and task_numa_work */
3548 	p->numa_work.next		= &p->numa_work;
3549 	p->numa_faults			= NULL;
3550 	p->numa_pages_migrated		= 0;
3551 	p->total_numa_faults		= 0;
3552 	RCU_INIT_POINTER(p->numa_group, NULL);
3553 	p->last_task_numa_placement	= 0;
3554 	p->last_sum_exec_runtime	= 0;
3555 
3556 	init_task_work(&p->numa_work, task_numa_work);
3557 
3558 	/* New address space, reset the preferred nid */
3559 	if (!(clone_flags & CLONE_VM)) {
3560 		p->numa_preferred_nid = NUMA_NO_NODE;
3561 		return;
3562 	}
3563 
3564 	/*
3565 	 * New thread, keep existing numa_preferred_nid which should be copied
3566 	 * already by arch_dup_task_struct but stagger when scans start.
3567 	 */
3568 	if (mm) {
3569 		unsigned int delay;
3570 
3571 		delay = min_t(unsigned int, task_scan_max(current),
3572 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3573 		delay += 2 * TICK_NSEC;
3574 		p->node_stamp = delay;
3575 	}
3576 }
3577 
3578 /*
3579  * Drive the periodic memory faults..
3580  */
3581 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3582 {
3583 	struct callback_head *work = &curr->numa_work;
3584 	u64 period, now;
3585 
3586 	/*
3587 	 * We don't care about NUMA placement if we don't have memory.
3588 	 */
3589 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3590 		return;
3591 
3592 	/*
3593 	 * Using runtime rather than walltime has the dual advantage that
3594 	 * we (mostly) drive the selection from busy threads and that the
3595 	 * task needs to have done some actual work before we bother with
3596 	 * NUMA placement.
3597 	 */
3598 	now = curr->se.sum_exec_runtime;
3599 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3600 
3601 	if (now > curr->node_stamp + period) {
3602 		if (!curr->node_stamp)
3603 			curr->numa_scan_period = task_scan_start(curr);
3604 		curr->node_stamp += period;
3605 
3606 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3607 			task_work_add(curr, work, TWA_RESUME);
3608 	}
3609 }
3610 
3611 static void update_scan_period(struct task_struct *p, int new_cpu)
3612 {
3613 	int src_nid = cpu_to_node(task_cpu(p));
3614 	int dst_nid = cpu_to_node(new_cpu);
3615 
3616 	if (!static_branch_likely(&sched_numa_balancing))
3617 		return;
3618 
3619 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3620 		return;
3621 
3622 	if (src_nid == dst_nid)
3623 		return;
3624 
3625 	/*
3626 	 * Allow resets if faults have been trapped before one scan
3627 	 * has completed. This is most likely due to a new task that
3628 	 * is pulled cross-node due to wakeups or load balancing.
3629 	 */
3630 	if (p->numa_scan_seq) {
3631 		/*
3632 		 * Avoid scan adjustments if moving to the preferred
3633 		 * node or if the task was not previously running on
3634 		 * the preferred node.
3635 		 */
3636 		if (dst_nid == p->numa_preferred_nid ||
3637 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3638 			src_nid != p->numa_preferred_nid))
3639 			return;
3640 	}
3641 
3642 	p->numa_scan_period = task_scan_start(p);
3643 }
3644 
3645 #else
3646 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3647 {
3648 }
3649 
3650 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3651 {
3652 }
3653 
3654 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3655 {
3656 }
3657 
3658 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3659 {
3660 }
3661 
3662 #endif /* CONFIG_NUMA_BALANCING */
3663 
3664 static void
3665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3666 {
3667 	update_load_add(&cfs_rq->load, se->load.weight);
3668 #ifdef CONFIG_SMP
3669 	if (entity_is_task(se)) {
3670 		struct rq *rq = rq_of(cfs_rq);
3671 
3672 		account_numa_enqueue(rq, task_of(se));
3673 		list_add(&se->group_node, &rq->cfs_tasks);
3674 	}
3675 #endif
3676 	cfs_rq->nr_running++;
3677 	if (se_is_idle(se))
3678 		cfs_rq->idle_nr_running++;
3679 }
3680 
3681 static void
3682 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3683 {
3684 	update_load_sub(&cfs_rq->load, se->load.weight);
3685 #ifdef CONFIG_SMP
3686 	if (entity_is_task(se)) {
3687 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3688 		list_del_init(&se->group_node);
3689 	}
3690 #endif
3691 	cfs_rq->nr_running--;
3692 	if (se_is_idle(se))
3693 		cfs_rq->idle_nr_running--;
3694 }
3695 
3696 /*
3697  * Signed add and clamp on underflow.
3698  *
3699  * Explicitly do a load-store to ensure the intermediate value never hits
3700  * memory. This allows lockless observations without ever seeing the negative
3701  * values.
3702  */
3703 #define add_positive(_ptr, _val) do {                           \
3704 	typeof(_ptr) ptr = (_ptr);                              \
3705 	typeof(_val) val = (_val);                              \
3706 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3707 								\
3708 	res = var + val;                                        \
3709 								\
3710 	if (val < 0 && res > var)                               \
3711 		res = 0;                                        \
3712 								\
3713 	WRITE_ONCE(*ptr, res);                                  \
3714 } while (0)
3715 
3716 /*
3717  * Unsigned subtract and clamp on underflow.
3718  *
3719  * Explicitly do a load-store to ensure the intermediate value never hits
3720  * memory. This allows lockless observations without ever seeing the negative
3721  * values.
3722  */
3723 #define sub_positive(_ptr, _val) do {				\
3724 	typeof(_ptr) ptr = (_ptr);				\
3725 	typeof(*ptr) val = (_val);				\
3726 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3727 	res = var - val;					\
3728 	if (res > var)						\
3729 		res = 0;					\
3730 	WRITE_ONCE(*ptr, res);					\
3731 } while (0)
3732 
3733 /*
3734  * Remove and clamp on negative, from a local variable.
3735  *
3736  * A variant of sub_positive(), which does not use explicit load-store
3737  * and is thus optimized for local variable updates.
3738  */
3739 #define lsub_positive(_ptr, _val) do {				\
3740 	typeof(_ptr) ptr = (_ptr);				\
3741 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3742 } while (0)
3743 
3744 #ifdef CONFIG_SMP
3745 static inline void
3746 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3747 {
3748 	cfs_rq->avg.load_avg += se->avg.load_avg;
3749 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3750 }
3751 
3752 static inline void
3753 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3754 {
3755 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3756 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3757 	/* See update_cfs_rq_load_avg() */
3758 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3759 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3760 }
3761 #else
3762 static inline void
3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3764 static inline void
3765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3766 #endif
3767 
3768 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3769 			   unsigned long weight)
3770 {
3771 	unsigned long old_weight = se->load.weight;
3772 	s64 vlag, vslice;
3773 
3774 	/*
3775 	 * VRUNTIME
3776 	 * --------
3777 	 *
3778 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3779 	 * adjusted if re-weight at !0-lag point.
3780 	 *
3781 	 * Proof: For contradiction assume this is not true, so we can
3782 	 * re-weight without changing vruntime at !0-lag point.
3783 	 *
3784 	 *             Weight	VRuntime   Avg-VRuntime
3785 	 *     before    w          v            V
3786 	 *      after    w'         v'           V'
3787 	 *
3788 	 * Since lag needs to be preserved through re-weight:
3789 	 *
3790 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3791 	 *	==>	V' = (V - v)*w/w' + v		(1)
3792 	 *
3793 	 * Let W be the total weight of the entities before reweight,
3794 	 * since V' is the new weighted average of entities:
3795 	 *
3796 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3797 	 *
3798 	 * by using (1) & (2) we obtain:
3799 	 *
3800 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3801 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3802 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3803 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3804 	 *
3805 	 * Since we are doing at !0-lag point which means V != v, we
3806 	 * can simplify (3):
3807 	 *
3808 	 *	==>	W / (W + w' - w) = w / w'
3809 	 *	==>	Ww' = Ww + ww' - ww
3810 	 *	==>	W * (w' - w) = w * (w' - w)
3811 	 *	==>	W = w	(re-weight indicates w' != w)
3812 	 *
3813 	 * So the cfs_rq contains only one entity, hence vruntime of
3814 	 * the entity @v should always equal to the cfs_rq's weighted
3815 	 * average vruntime @V, which means we will always re-weight
3816 	 * at 0-lag point, thus breach assumption. Proof completed.
3817 	 *
3818 	 *
3819 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3820 	 * vruntime of all the entities.
3821 	 *
3822 	 * Proof: According to corollary #1, Eq. (1) should be:
3823 	 *
3824 	 *	(V - v)*w = (V' - v')*w'
3825 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3826 	 *
3827 	 * According to the weighted average formula, we have:
3828 	 *
3829 	 *	V' = (WV - wv + w'v') / (W - w + w')
3830 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3831 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3832 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3833 	 *
3834 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3835 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3836 	 *
3837 	 * If the entity is the only one in the cfs_rq, then reweight
3838 	 * always occurs at 0-lag point, so V won't change. Or else
3839 	 * there are other entities, hence W != w, then Eq. (5) turns
3840 	 * into V' = V. So V won't change in either case, proof done.
3841 	 *
3842 	 *
3843 	 * So according to corollary #1 & #2, the effect of re-weight
3844 	 * on vruntime should be:
3845 	 *
3846 	 *	v' = V' - (V - v) * w / w'		(4)
3847 	 *	   = V  - (V - v) * w / w'
3848 	 *	   = V  - vl * w / w'
3849 	 *	   = V  - vl'
3850 	 */
3851 	if (avruntime != se->vruntime) {
3852 		vlag = entity_lag(avruntime, se);
3853 		vlag = div_s64(vlag * old_weight, weight);
3854 		se->vruntime = avruntime - vlag;
3855 	}
3856 
3857 	/*
3858 	 * DEADLINE
3859 	 * --------
3860 	 *
3861 	 * When the weight changes, the virtual time slope changes and
3862 	 * we should adjust the relative virtual deadline accordingly.
3863 	 *
3864 	 *	d' = v' + (d - v)*w/w'
3865 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3866 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3867 	 *	   = V  + (d - V)*w/w'
3868 	 */
3869 	vslice = (s64)(se->deadline - avruntime);
3870 	vslice = div_s64(vslice * old_weight, weight);
3871 	se->deadline = avruntime + vslice;
3872 }
3873 
3874 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3875 			    unsigned long weight)
3876 {
3877 	bool curr = cfs_rq->curr == se;
3878 	u64 avruntime;
3879 
3880 	if (se->on_rq) {
3881 		/* commit outstanding execution time */
3882 		update_curr(cfs_rq);
3883 		avruntime = avg_vruntime(cfs_rq);
3884 		if (!curr)
3885 			__dequeue_entity(cfs_rq, se);
3886 		update_load_sub(&cfs_rq->load, se->load.weight);
3887 	}
3888 	dequeue_load_avg(cfs_rq, se);
3889 
3890 	if (se->on_rq) {
3891 		reweight_eevdf(se, avruntime, weight);
3892 	} else {
3893 		/*
3894 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3895 		 * we need to scale se->vlag when w_i changes.
3896 		 */
3897 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3898 	}
3899 
3900 	update_load_set(&se->load, weight);
3901 
3902 #ifdef CONFIG_SMP
3903 	do {
3904 		u32 divider = get_pelt_divider(&se->avg);
3905 
3906 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3907 	} while (0);
3908 #endif
3909 
3910 	enqueue_load_avg(cfs_rq, se);
3911 	if (se->on_rq) {
3912 		update_load_add(&cfs_rq->load, se->load.weight);
3913 		if (!curr)
3914 			__enqueue_entity(cfs_rq, se);
3915 
3916 		/*
3917 		 * The entity's vruntime has been adjusted, so let's check
3918 		 * whether the rq-wide min_vruntime needs updated too. Since
3919 		 * the calculations above require stable min_vruntime rather
3920 		 * than up-to-date one, we do the update at the end of the
3921 		 * reweight process.
3922 		 */
3923 		update_min_vruntime(cfs_rq);
3924 	}
3925 }
3926 
3927 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3928 			       const struct load_weight *lw)
3929 {
3930 	struct sched_entity *se = &p->se;
3931 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3932 	struct load_weight *load = &se->load;
3933 
3934 	reweight_entity(cfs_rq, se, lw->weight);
3935 	load->inv_weight = lw->inv_weight;
3936 }
3937 
3938 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3939 
3940 #ifdef CONFIG_FAIR_GROUP_SCHED
3941 #ifdef CONFIG_SMP
3942 /*
3943  * All this does is approximate the hierarchical proportion which includes that
3944  * global sum we all love to hate.
3945  *
3946  * That is, the weight of a group entity, is the proportional share of the
3947  * group weight based on the group runqueue weights. That is:
3948  *
3949  *                     tg->weight * grq->load.weight
3950  *   ge->load.weight = -----------------------------               (1)
3951  *                       \Sum grq->load.weight
3952  *
3953  * Now, because computing that sum is prohibitively expensive to compute (been
3954  * there, done that) we approximate it with this average stuff. The average
3955  * moves slower and therefore the approximation is cheaper and more stable.
3956  *
3957  * So instead of the above, we substitute:
3958  *
3959  *   grq->load.weight -> grq->avg.load_avg                         (2)
3960  *
3961  * which yields the following:
3962  *
3963  *                     tg->weight * grq->avg.load_avg
3964  *   ge->load.weight = ------------------------------              (3)
3965  *                             tg->load_avg
3966  *
3967  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3968  *
3969  * That is shares_avg, and it is right (given the approximation (2)).
3970  *
3971  * The problem with it is that because the average is slow -- it was designed
3972  * to be exactly that of course -- this leads to transients in boundary
3973  * conditions. In specific, the case where the group was idle and we start the
3974  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3975  * yielding bad latency etc..
3976  *
3977  * Now, in that special case (1) reduces to:
3978  *
3979  *                     tg->weight * grq->load.weight
3980  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3981  *                         grp->load.weight
3982  *
3983  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3984  *
3985  * So what we do is modify our approximation (3) to approach (4) in the (near)
3986  * UP case, like:
3987  *
3988  *   ge->load.weight =
3989  *
3990  *              tg->weight * grq->load.weight
3991  *     ---------------------------------------------------         (5)
3992  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3993  *
3994  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3995  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3996  *
3997  *
3998  *                     tg->weight * grq->load.weight
3999  *   ge->load.weight = -----------------------------		   (6)
4000  *                             tg_load_avg'
4001  *
4002  * Where:
4003  *
4004  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4005  *                  max(grq->load.weight, grq->avg.load_avg)
4006  *
4007  * And that is shares_weight and is icky. In the (near) UP case it approaches
4008  * (4) while in the normal case it approaches (3). It consistently
4009  * overestimates the ge->load.weight and therefore:
4010  *
4011  *   \Sum ge->load.weight >= tg->weight
4012  *
4013  * hence icky!
4014  */
4015 static long calc_group_shares(struct cfs_rq *cfs_rq)
4016 {
4017 	long tg_weight, tg_shares, load, shares;
4018 	struct task_group *tg = cfs_rq->tg;
4019 
4020 	tg_shares = READ_ONCE(tg->shares);
4021 
4022 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4023 
4024 	tg_weight = atomic_long_read(&tg->load_avg);
4025 
4026 	/* Ensure tg_weight >= load */
4027 	tg_weight -= cfs_rq->tg_load_avg_contrib;
4028 	tg_weight += load;
4029 
4030 	shares = (tg_shares * load);
4031 	if (tg_weight)
4032 		shares /= tg_weight;
4033 
4034 	/*
4035 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4036 	 * of a group with small tg->shares value. It is a floor value which is
4037 	 * assigned as a minimum load.weight to the sched_entity representing
4038 	 * the group on a CPU.
4039 	 *
4040 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4041 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4042 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4043 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4044 	 * instead of 0.
4045 	 */
4046 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4047 }
4048 #endif /* CONFIG_SMP */
4049 
4050 /*
4051  * Recomputes the group entity based on the current state of its group
4052  * runqueue.
4053  */
4054 static void update_cfs_group(struct sched_entity *se)
4055 {
4056 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4057 	long shares;
4058 
4059 	if (!gcfs_rq)
4060 		return;
4061 
4062 	if (throttled_hierarchy(gcfs_rq))
4063 		return;
4064 
4065 #ifndef CONFIG_SMP
4066 	shares = READ_ONCE(gcfs_rq->tg->shares);
4067 #else
4068 	shares = calc_group_shares(gcfs_rq);
4069 #endif
4070 	if (unlikely(se->load.weight != shares))
4071 		reweight_entity(cfs_rq_of(se), se, shares);
4072 }
4073 
4074 #else /* CONFIG_FAIR_GROUP_SCHED */
4075 static inline void update_cfs_group(struct sched_entity *se)
4076 {
4077 }
4078 #endif /* CONFIG_FAIR_GROUP_SCHED */
4079 
4080 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4081 {
4082 	struct rq *rq = rq_of(cfs_rq);
4083 
4084 	if (&rq->cfs == cfs_rq) {
4085 		/*
4086 		 * There are a few boundary cases this might miss but it should
4087 		 * get called often enough that that should (hopefully) not be
4088 		 * a real problem.
4089 		 *
4090 		 * It will not get called when we go idle, because the idle
4091 		 * thread is a different class (!fair), nor will the utilization
4092 		 * number include things like RT tasks.
4093 		 *
4094 		 * As is, the util number is not freq-invariant (we'd have to
4095 		 * implement arch_scale_freq_capacity() for that).
4096 		 *
4097 		 * See cpu_util_cfs().
4098 		 */
4099 		cpufreq_update_util(rq, flags);
4100 	}
4101 }
4102 
4103 #ifdef CONFIG_SMP
4104 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4105 {
4106 	if (sa->load_sum)
4107 		return false;
4108 
4109 	if (sa->util_sum)
4110 		return false;
4111 
4112 	if (sa->runnable_sum)
4113 		return false;
4114 
4115 	/*
4116 	 * _avg must be null when _sum are null because _avg = _sum / divider
4117 	 * Make sure that rounding and/or propagation of PELT values never
4118 	 * break this.
4119 	 */
4120 	SCHED_WARN_ON(sa->load_avg ||
4121 		      sa->util_avg ||
4122 		      sa->runnable_avg);
4123 
4124 	return true;
4125 }
4126 
4127 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4128 {
4129 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4130 				 cfs_rq->last_update_time_copy);
4131 }
4132 #ifdef CONFIG_FAIR_GROUP_SCHED
4133 /*
4134  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4135  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4136  * bottom-up, we only have to test whether the cfs_rq before us on the list
4137  * is our child.
4138  * If cfs_rq is not on the list, test whether a child needs its to be added to
4139  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4140  */
4141 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4142 {
4143 	struct cfs_rq *prev_cfs_rq;
4144 	struct list_head *prev;
4145 
4146 	if (cfs_rq->on_list) {
4147 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4148 	} else {
4149 		struct rq *rq = rq_of(cfs_rq);
4150 
4151 		prev = rq->tmp_alone_branch;
4152 	}
4153 
4154 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4155 
4156 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4157 }
4158 
4159 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4160 {
4161 	if (cfs_rq->load.weight)
4162 		return false;
4163 
4164 	if (!load_avg_is_decayed(&cfs_rq->avg))
4165 		return false;
4166 
4167 	if (child_cfs_rq_on_list(cfs_rq))
4168 		return false;
4169 
4170 	return true;
4171 }
4172 
4173 /**
4174  * update_tg_load_avg - update the tg's load avg
4175  * @cfs_rq: the cfs_rq whose avg changed
4176  *
4177  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4178  * However, because tg->load_avg is a global value there are performance
4179  * considerations.
4180  *
4181  * In order to avoid having to look at the other cfs_rq's, we use a
4182  * differential update where we store the last value we propagated. This in
4183  * turn allows skipping updates if the differential is 'small'.
4184  *
4185  * Updating tg's load_avg is necessary before update_cfs_share().
4186  */
4187 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4188 {
4189 	long delta;
4190 	u64 now;
4191 
4192 	/*
4193 	 * No need to update load_avg for root_task_group as it is not used.
4194 	 */
4195 	if (cfs_rq->tg == &root_task_group)
4196 		return;
4197 
4198 	/* rq has been offline and doesn't contribute to the share anymore: */
4199 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4200 		return;
4201 
4202 	/*
4203 	 * For migration heavy workloads, access to tg->load_avg can be
4204 	 * unbound. Limit the update rate to at most once per ms.
4205 	 */
4206 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4207 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4208 		return;
4209 
4210 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4211 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4212 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4213 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4214 		cfs_rq->last_update_tg_load_avg = now;
4215 	}
4216 }
4217 
4218 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4219 {
4220 	long delta;
4221 	u64 now;
4222 
4223 	/*
4224 	 * No need to update load_avg for root_task_group, as it is not used.
4225 	 */
4226 	if (cfs_rq->tg == &root_task_group)
4227 		return;
4228 
4229 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4230 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4231 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4232 	cfs_rq->tg_load_avg_contrib = 0;
4233 	cfs_rq->last_update_tg_load_avg = now;
4234 }
4235 
4236 /* CPU offline callback: */
4237 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4238 {
4239 	struct task_group *tg;
4240 
4241 	lockdep_assert_rq_held(rq);
4242 
4243 	/*
4244 	 * The rq clock has already been updated in
4245 	 * set_rq_offline(), so we should skip updating
4246 	 * the rq clock again in unthrottle_cfs_rq().
4247 	 */
4248 	rq_clock_start_loop_update(rq);
4249 
4250 	rcu_read_lock();
4251 	list_for_each_entry_rcu(tg, &task_groups, list) {
4252 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4253 
4254 		clear_tg_load_avg(cfs_rq);
4255 	}
4256 	rcu_read_unlock();
4257 
4258 	rq_clock_stop_loop_update(rq);
4259 }
4260 
4261 /*
4262  * Called within set_task_rq() right before setting a task's CPU. The
4263  * caller only guarantees p->pi_lock is held; no other assumptions,
4264  * including the state of rq->lock, should be made.
4265  */
4266 void set_task_rq_fair(struct sched_entity *se,
4267 		      struct cfs_rq *prev, struct cfs_rq *next)
4268 {
4269 	u64 p_last_update_time;
4270 	u64 n_last_update_time;
4271 
4272 	if (!sched_feat(ATTACH_AGE_LOAD))
4273 		return;
4274 
4275 	/*
4276 	 * We are supposed to update the task to "current" time, then its up to
4277 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4278 	 * getting what current time is, so simply throw away the out-of-date
4279 	 * time. This will result in the wakee task is less decayed, but giving
4280 	 * the wakee more load sounds not bad.
4281 	 */
4282 	if (!(se->avg.last_update_time && prev))
4283 		return;
4284 
4285 	p_last_update_time = cfs_rq_last_update_time(prev);
4286 	n_last_update_time = cfs_rq_last_update_time(next);
4287 
4288 	__update_load_avg_blocked_se(p_last_update_time, se);
4289 	se->avg.last_update_time = n_last_update_time;
4290 }
4291 
4292 /*
4293  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4294  * propagate its contribution. The key to this propagation is the invariant
4295  * that for each group:
4296  *
4297  *   ge->avg == grq->avg						(1)
4298  *
4299  * _IFF_ we look at the pure running and runnable sums. Because they
4300  * represent the very same entity, just at different points in the hierarchy.
4301  *
4302  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4303  * and simply copies the running/runnable sum over (but still wrong, because
4304  * the group entity and group rq do not have their PELT windows aligned).
4305  *
4306  * However, update_tg_cfs_load() is more complex. So we have:
4307  *
4308  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4309  *
4310  * And since, like util, the runnable part should be directly transferable,
4311  * the following would _appear_ to be the straight forward approach:
4312  *
4313  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4314  *
4315  * And per (1) we have:
4316  *
4317  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4318  *
4319  * Which gives:
4320  *
4321  *                      ge->load.weight * grq->avg.load_avg
4322  *   ge->avg.load_avg = -----------------------------------		(4)
4323  *                               grq->load.weight
4324  *
4325  * Except that is wrong!
4326  *
4327  * Because while for entities historical weight is not important and we
4328  * really only care about our future and therefore can consider a pure
4329  * runnable sum, runqueues can NOT do this.
4330  *
4331  * We specifically want runqueues to have a load_avg that includes
4332  * historical weights. Those represent the blocked load, the load we expect
4333  * to (shortly) return to us. This only works by keeping the weights as
4334  * integral part of the sum. We therefore cannot decompose as per (3).
4335  *
4336  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4337  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4338  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4339  * runnable section of these tasks overlap (or not). If they were to perfectly
4340  * align the rq as a whole would be runnable 2/3 of the time. If however we
4341  * always have at least 1 runnable task, the rq as a whole is always runnable.
4342  *
4343  * So we'll have to approximate.. :/
4344  *
4345  * Given the constraint:
4346  *
4347  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4348  *
4349  * We can construct a rule that adds runnable to a rq by assuming minimal
4350  * overlap.
4351  *
4352  * On removal, we'll assume each task is equally runnable; which yields:
4353  *
4354  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4355  *
4356  * XXX: only do this for the part of runnable > running ?
4357  *
4358  */
4359 static inline void
4360 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4361 {
4362 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4363 	u32 new_sum, divider;
4364 
4365 	/* Nothing to update */
4366 	if (!delta_avg)
4367 		return;
4368 
4369 	/*
4370 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4371 	 * See ___update_load_avg() for details.
4372 	 */
4373 	divider = get_pelt_divider(&cfs_rq->avg);
4374 
4375 
4376 	/* Set new sched_entity's utilization */
4377 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4378 	new_sum = se->avg.util_avg * divider;
4379 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4380 	se->avg.util_sum = new_sum;
4381 
4382 	/* Update parent cfs_rq utilization */
4383 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4384 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4385 
4386 	/* See update_cfs_rq_load_avg() */
4387 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4388 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4389 }
4390 
4391 static inline void
4392 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4393 {
4394 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4395 	u32 new_sum, divider;
4396 
4397 	/* Nothing to update */
4398 	if (!delta_avg)
4399 		return;
4400 
4401 	/*
4402 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4403 	 * See ___update_load_avg() for details.
4404 	 */
4405 	divider = get_pelt_divider(&cfs_rq->avg);
4406 
4407 	/* Set new sched_entity's runnable */
4408 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4409 	new_sum = se->avg.runnable_avg * divider;
4410 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4411 	se->avg.runnable_sum = new_sum;
4412 
4413 	/* Update parent cfs_rq runnable */
4414 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4415 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4416 	/* See update_cfs_rq_load_avg() */
4417 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4418 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4419 }
4420 
4421 static inline void
4422 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4423 {
4424 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4425 	unsigned long load_avg;
4426 	u64 load_sum = 0;
4427 	s64 delta_sum;
4428 	u32 divider;
4429 
4430 	if (!runnable_sum)
4431 		return;
4432 
4433 	gcfs_rq->prop_runnable_sum = 0;
4434 
4435 	/*
4436 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4437 	 * See ___update_load_avg() for details.
4438 	 */
4439 	divider = get_pelt_divider(&cfs_rq->avg);
4440 
4441 	if (runnable_sum >= 0) {
4442 		/*
4443 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4444 		 * the CPU is saturated running == runnable.
4445 		 */
4446 		runnable_sum += se->avg.load_sum;
4447 		runnable_sum = min_t(long, runnable_sum, divider);
4448 	} else {
4449 		/*
4450 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4451 		 * assuming all tasks are equally runnable.
4452 		 */
4453 		if (scale_load_down(gcfs_rq->load.weight)) {
4454 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4455 				scale_load_down(gcfs_rq->load.weight));
4456 		}
4457 
4458 		/* But make sure to not inflate se's runnable */
4459 		runnable_sum = min(se->avg.load_sum, load_sum);
4460 	}
4461 
4462 	/*
4463 	 * runnable_sum can't be lower than running_sum
4464 	 * Rescale running sum to be in the same range as runnable sum
4465 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4466 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4467 	 */
4468 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4469 	runnable_sum = max(runnable_sum, running_sum);
4470 
4471 	load_sum = se_weight(se) * runnable_sum;
4472 	load_avg = div_u64(load_sum, divider);
4473 
4474 	delta_avg = load_avg - se->avg.load_avg;
4475 	if (!delta_avg)
4476 		return;
4477 
4478 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4479 
4480 	se->avg.load_sum = runnable_sum;
4481 	se->avg.load_avg = load_avg;
4482 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4483 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4484 	/* See update_cfs_rq_load_avg() */
4485 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4486 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4487 }
4488 
4489 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4490 {
4491 	cfs_rq->propagate = 1;
4492 	cfs_rq->prop_runnable_sum += runnable_sum;
4493 }
4494 
4495 /* Update task and its cfs_rq load average */
4496 static inline int propagate_entity_load_avg(struct sched_entity *se)
4497 {
4498 	struct cfs_rq *cfs_rq, *gcfs_rq;
4499 
4500 	if (entity_is_task(se))
4501 		return 0;
4502 
4503 	gcfs_rq = group_cfs_rq(se);
4504 	if (!gcfs_rq->propagate)
4505 		return 0;
4506 
4507 	gcfs_rq->propagate = 0;
4508 
4509 	cfs_rq = cfs_rq_of(se);
4510 
4511 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4512 
4513 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4514 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4515 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4516 
4517 	trace_pelt_cfs_tp(cfs_rq);
4518 	trace_pelt_se_tp(se);
4519 
4520 	return 1;
4521 }
4522 
4523 /*
4524  * Check if we need to update the load and the utilization of a blocked
4525  * group_entity:
4526  */
4527 static inline bool skip_blocked_update(struct sched_entity *se)
4528 {
4529 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4530 
4531 	/*
4532 	 * If sched_entity still have not zero load or utilization, we have to
4533 	 * decay it:
4534 	 */
4535 	if (se->avg.load_avg || se->avg.util_avg)
4536 		return false;
4537 
4538 	/*
4539 	 * If there is a pending propagation, we have to update the load and
4540 	 * the utilization of the sched_entity:
4541 	 */
4542 	if (gcfs_rq->propagate)
4543 		return false;
4544 
4545 	/*
4546 	 * Otherwise, the load and the utilization of the sched_entity is
4547 	 * already zero and there is no pending propagation, so it will be a
4548 	 * waste of time to try to decay it:
4549 	 */
4550 	return true;
4551 }
4552 
4553 #else /* CONFIG_FAIR_GROUP_SCHED */
4554 
4555 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4556 
4557 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4558 
4559 static inline int propagate_entity_load_avg(struct sched_entity *se)
4560 {
4561 	return 0;
4562 }
4563 
4564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4565 
4566 #endif /* CONFIG_FAIR_GROUP_SCHED */
4567 
4568 #ifdef CONFIG_NO_HZ_COMMON
4569 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4570 {
4571 	u64 throttled = 0, now, lut;
4572 	struct cfs_rq *cfs_rq;
4573 	struct rq *rq;
4574 	bool is_idle;
4575 
4576 	if (load_avg_is_decayed(&se->avg))
4577 		return;
4578 
4579 	cfs_rq = cfs_rq_of(se);
4580 	rq = rq_of(cfs_rq);
4581 
4582 	rcu_read_lock();
4583 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4584 	rcu_read_unlock();
4585 
4586 	/*
4587 	 * The lag estimation comes with a cost we don't want to pay all the
4588 	 * time. Hence, limiting to the case where the source CPU is idle and
4589 	 * we know we are at the greatest risk to have an outdated clock.
4590 	 */
4591 	if (!is_idle)
4592 		return;
4593 
4594 	/*
4595 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4596 	 *
4597 	 *   last_update_time (the cfs_rq's last_update_time)
4598 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4599 	 *      = rq_clock_pelt()@cfs_rq_idle
4600 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4601 	 *
4602 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4603 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4604 	 *
4605 	 *   rq_idle_lag (delta between now and rq's update)
4606 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4607 	 *
4608 	 * We can then write:
4609 	 *
4610 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4611 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4612 	 * Where:
4613 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4614 	 *      rq_clock()@rq_idle      is rq->clock_idle
4615 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4616 	 *                              is cfs_rq->throttled_pelt_idle
4617 	 */
4618 
4619 #ifdef CONFIG_CFS_BANDWIDTH
4620 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4621 	/* The clock has been stopped for throttling */
4622 	if (throttled == U64_MAX)
4623 		return;
4624 #endif
4625 	now = u64_u32_load(rq->clock_pelt_idle);
4626 	/*
4627 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4628 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4629 	 * which lead to an underestimation. The opposite would lead to an
4630 	 * overestimation.
4631 	 */
4632 	smp_rmb();
4633 	lut = cfs_rq_last_update_time(cfs_rq);
4634 
4635 	now -= throttled;
4636 	if (now < lut)
4637 		/*
4638 		 * cfs_rq->avg.last_update_time is more recent than our
4639 		 * estimation, let's use it.
4640 		 */
4641 		now = lut;
4642 	else
4643 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4644 
4645 	__update_load_avg_blocked_se(now, se);
4646 }
4647 #else
4648 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4649 #endif
4650 
4651 /**
4652  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4653  * @now: current time, as per cfs_rq_clock_pelt()
4654  * @cfs_rq: cfs_rq to update
4655  *
4656  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4657  * avg. The immediate corollary is that all (fair) tasks must be attached.
4658  *
4659  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4660  *
4661  * Return: true if the load decayed or we removed load.
4662  *
4663  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4664  * call update_tg_load_avg() when this function returns true.
4665  */
4666 static inline int
4667 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4668 {
4669 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4670 	struct sched_avg *sa = &cfs_rq->avg;
4671 	int decayed = 0;
4672 
4673 	if (cfs_rq->removed.nr) {
4674 		unsigned long r;
4675 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4676 
4677 		raw_spin_lock(&cfs_rq->removed.lock);
4678 		swap(cfs_rq->removed.util_avg, removed_util);
4679 		swap(cfs_rq->removed.load_avg, removed_load);
4680 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4681 		cfs_rq->removed.nr = 0;
4682 		raw_spin_unlock(&cfs_rq->removed.lock);
4683 
4684 		r = removed_load;
4685 		sub_positive(&sa->load_avg, r);
4686 		sub_positive(&sa->load_sum, r * divider);
4687 		/* See sa->util_sum below */
4688 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4689 
4690 		r = removed_util;
4691 		sub_positive(&sa->util_avg, r);
4692 		sub_positive(&sa->util_sum, r * divider);
4693 		/*
4694 		 * Because of rounding, se->util_sum might ends up being +1 more than
4695 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4696 		 * a lot of tasks with the rounding problem between 2 updates of
4697 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4698 		 * cfs_util_avg is not.
4699 		 * Check that util_sum is still above its lower bound for the new
4700 		 * util_avg. Given that period_contrib might have moved since the last
4701 		 * sync, we are only sure that util_sum must be above or equal to
4702 		 *    util_avg * minimum possible divider
4703 		 */
4704 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4705 
4706 		r = removed_runnable;
4707 		sub_positive(&sa->runnable_avg, r);
4708 		sub_positive(&sa->runnable_sum, r * divider);
4709 		/* See sa->util_sum above */
4710 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4711 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4712 
4713 		/*
4714 		 * removed_runnable is the unweighted version of removed_load so we
4715 		 * can use it to estimate removed_load_sum.
4716 		 */
4717 		add_tg_cfs_propagate(cfs_rq,
4718 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4719 
4720 		decayed = 1;
4721 	}
4722 
4723 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4724 	u64_u32_store_copy(sa->last_update_time,
4725 			   cfs_rq->last_update_time_copy,
4726 			   sa->last_update_time);
4727 	return decayed;
4728 }
4729 
4730 /**
4731  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4732  * @cfs_rq: cfs_rq to attach to
4733  * @se: sched_entity to attach
4734  *
4735  * Must call update_cfs_rq_load_avg() before this, since we rely on
4736  * cfs_rq->avg.last_update_time being current.
4737  */
4738 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4739 {
4740 	/*
4741 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4742 	 * See ___update_load_avg() for details.
4743 	 */
4744 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4745 
4746 	/*
4747 	 * When we attach the @se to the @cfs_rq, we must align the decay
4748 	 * window because without that, really weird and wonderful things can
4749 	 * happen.
4750 	 *
4751 	 * XXX illustrate
4752 	 */
4753 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4754 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4755 
4756 	/*
4757 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4758 	 * period_contrib. This isn't strictly correct, but since we're
4759 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4760 	 * _sum a little.
4761 	 */
4762 	se->avg.util_sum = se->avg.util_avg * divider;
4763 
4764 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4765 
4766 	se->avg.load_sum = se->avg.load_avg * divider;
4767 	if (se_weight(se) < se->avg.load_sum)
4768 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4769 	else
4770 		se->avg.load_sum = 1;
4771 
4772 	enqueue_load_avg(cfs_rq, se);
4773 	cfs_rq->avg.util_avg += se->avg.util_avg;
4774 	cfs_rq->avg.util_sum += se->avg.util_sum;
4775 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4776 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4777 
4778 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4779 
4780 	cfs_rq_util_change(cfs_rq, 0);
4781 
4782 	trace_pelt_cfs_tp(cfs_rq);
4783 }
4784 
4785 /**
4786  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4787  * @cfs_rq: cfs_rq to detach from
4788  * @se: sched_entity to detach
4789  *
4790  * Must call update_cfs_rq_load_avg() before this, since we rely on
4791  * cfs_rq->avg.last_update_time being current.
4792  */
4793 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4794 {
4795 	dequeue_load_avg(cfs_rq, se);
4796 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4797 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4798 	/* See update_cfs_rq_load_avg() */
4799 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4800 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4801 
4802 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4803 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4804 	/* See update_cfs_rq_load_avg() */
4805 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4806 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4807 
4808 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4809 
4810 	cfs_rq_util_change(cfs_rq, 0);
4811 
4812 	trace_pelt_cfs_tp(cfs_rq);
4813 }
4814 
4815 /*
4816  * Optional action to be done while updating the load average
4817  */
4818 #define UPDATE_TG	0x1
4819 #define SKIP_AGE_LOAD	0x2
4820 #define DO_ATTACH	0x4
4821 #define DO_DETACH	0x8
4822 
4823 /* Update task and its cfs_rq load average */
4824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4825 {
4826 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4827 	int decayed;
4828 
4829 	/*
4830 	 * Track task load average for carrying it to new CPU after migrated, and
4831 	 * track group sched_entity load average for task_h_load calculation in migration
4832 	 */
4833 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4834 		__update_load_avg_se(now, cfs_rq, se);
4835 
4836 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4837 	decayed |= propagate_entity_load_avg(se);
4838 
4839 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4840 
4841 		/*
4842 		 * DO_ATTACH means we're here from enqueue_entity().
4843 		 * !last_update_time means we've passed through
4844 		 * migrate_task_rq_fair() indicating we migrated.
4845 		 *
4846 		 * IOW we're enqueueing a task on a new CPU.
4847 		 */
4848 		attach_entity_load_avg(cfs_rq, se);
4849 		update_tg_load_avg(cfs_rq);
4850 
4851 	} else if (flags & DO_DETACH) {
4852 		/*
4853 		 * DO_DETACH means we're here from dequeue_entity()
4854 		 * and we are migrating task out of the CPU.
4855 		 */
4856 		detach_entity_load_avg(cfs_rq, se);
4857 		update_tg_load_avg(cfs_rq);
4858 	} else if (decayed) {
4859 		cfs_rq_util_change(cfs_rq, 0);
4860 
4861 		if (flags & UPDATE_TG)
4862 			update_tg_load_avg(cfs_rq);
4863 	}
4864 }
4865 
4866 /*
4867  * Synchronize entity load avg of dequeued entity without locking
4868  * the previous rq.
4869  */
4870 static void sync_entity_load_avg(struct sched_entity *se)
4871 {
4872 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4873 	u64 last_update_time;
4874 
4875 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4876 	__update_load_avg_blocked_se(last_update_time, se);
4877 }
4878 
4879 /*
4880  * Task first catches up with cfs_rq, and then subtract
4881  * itself from the cfs_rq (task must be off the queue now).
4882  */
4883 static void remove_entity_load_avg(struct sched_entity *se)
4884 {
4885 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4886 	unsigned long flags;
4887 
4888 	/*
4889 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4890 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4891 	 * so we can remove unconditionally.
4892 	 */
4893 
4894 	sync_entity_load_avg(se);
4895 
4896 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4897 	++cfs_rq->removed.nr;
4898 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4899 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4900 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4901 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4902 }
4903 
4904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4905 {
4906 	return cfs_rq->avg.runnable_avg;
4907 }
4908 
4909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4910 {
4911 	return cfs_rq->avg.load_avg;
4912 }
4913 
4914 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4915 
4916 static inline unsigned long task_util(struct task_struct *p)
4917 {
4918 	return READ_ONCE(p->se.avg.util_avg);
4919 }
4920 
4921 static inline unsigned long task_runnable(struct task_struct *p)
4922 {
4923 	return READ_ONCE(p->se.avg.runnable_avg);
4924 }
4925 
4926 static inline unsigned long _task_util_est(struct task_struct *p)
4927 {
4928 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4929 }
4930 
4931 static inline unsigned long task_util_est(struct task_struct *p)
4932 {
4933 	return max(task_util(p), _task_util_est(p));
4934 }
4935 
4936 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4937 				    struct task_struct *p)
4938 {
4939 	unsigned int enqueued;
4940 
4941 	if (!sched_feat(UTIL_EST))
4942 		return;
4943 
4944 	/* Update root cfs_rq's estimated utilization */
4945 	enqueued  = cfs_rq->avg.util_est;
4946 	enqueued += _task_util_est(p);
4947 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4948 
4949 	trace_sched_util_est_cfs_tp(cfs_rq);
4950 }
4951 
4952 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4953 				    struct task_struct *p)
4954 {
4955 	unsigned int enqueued;
4956 
4957 	if (!sched_feat(UTIL_EST))
4958 		return;
4959 
4960 	/* Update root cfs_rq's estimated utilization */
4961 	enqueued  = cfs_rq->avg.util_est;
4962 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4963 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4964 
4965 	trace_sched_util_est_cfs_tp(cfs_rq);
4966 }
4967 
4968 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4969 
4970 static inline void util_est_update(struct cfs_rq *cfs_rq,
4971 				   struct task_struct *p,
4972 				   bool task_sleep)
4973 {
4974 	unsigned int ewma, dequeued, last_ewma_diff;
4975 
4976 	if (!sched_feat(UTIL_EST))
4977 		return;
4978 
4979 	/*
4980 	 * Skip update of task's estimated utilization when the task has not
4981 	 * yet completed an activation, e.g. being migrated.
4982 	 */
4983 	if (!task_sleep)
4984 		return;
4985 
4986 	/* Get current estimate of utilization */
4987 	ewma = READ_ONCE(p->se.avg.util_est);
4988 
4989 	/*
4990 	 * If the PELT values haven't changed since enqueue time,
4991 	 * skip the util_est update.
4992 	 */
4993 	if (ewma & UTIL_AVG_UNCHANGED)
4994 		return;
4995 
4996 	/* Get utilization at dequeue */
4997 	dequeued = task_util(p);
4998 
4999 	/*
5000 	 * Reset EWMA on utilization increases, the moving average is used only
5001 	 * to smooth utilization decreases.
5002 	 */
5003 	if (ewma <= dequeued) {
5004 		ewma = dequeued;
5005 		goto done;
5006 	}
5007 
5008 	/*
5009 	 * Skip update of task's estimated utilization when its members are
5010 	 * already ~1% close to its last activation value.
5011 	 */
5012 	last_ewma_diff = ewma - dequeued;
5013 	if (last_ewma_diff < UTIL_EST_MARGIN)
5014 		goto done;
5015 
5016 	/*
5017 	 * To avoid overestimation of actual task utilization, skip updates if
5018 	 * we cannot grant there is idle time in this CPU.
5019 	 */
5020 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5021 		return;
5022 
5023 	/*
5024 	 * To avoid underestimate of task utilization, skip updates of EWMA if
5025 	 * we cannot grant that thread got all CPU time it wanted.
5026 	 */
5027 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5028 		goto done;
5029 
5030 
5031 	/*
5032 	 * Update Task's estimated utilization
5033 	 *
5034 	 * When *p completes an activation we can consolidate another sample
5035 	 * of the task size. This is done by using this value to update the
5036 	 * Exponential Weighted Moving Average (EWMA):
5037 	 *
5038 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
5039 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
5040 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
5041 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
5042 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
5043 	 *
5044 	 * Where 'w' is the weight of new samples, which is configured to be
5045 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5046 	 */
5047 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
5048 	ewma  -= last_ewma_diff;
5049 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
5050 done:
5051 	ewma |= UTIL_AVG_UNCHANGED;
5052 	WRITE_ONCE(p->se.avg.util_est, ewma);
5053 
5054 	trace_sched_util_est_se_tp(&p->se);
5055 }
5056 
5057 static inline unsigned long get_actual_cpu_capacity(int cpu)
5058 {
5059 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
5060 
5061 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5062 
5063 	return capacity;
5064 }
5065 
5066 static inline int util_fits_cpu(unsigned long util,
5067 				unsigned long uclamp_min,
5068 				unsigned long uclamp_max,
5069 				int cpu)
5070 {
5071 	unsigned long capacity = capacity_of(cpu);
5072 	unsigned long capacity_orig;
5073 	bool fits, uclamp_max_fits;
5074 
5075 	/*
5076 	 * Check if the real util fits without any uclamp boost/cap applied.
5077 	 */
5078 	fits = fits_capacity(util, capacity);
5079 
5080 	if (!uclamp_is_used())
5081 		return fits;
5082 
5083 	/*
5084 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5085 	 * uclamp_max. We only care about capacity pressure (by using
5086 	 * capacity_of()) for comparing against the real util.
5087 	 *
5088 	 * If a task is boosted to 1024 for example, we don't want a tiny
5089 	 * pressure to skew the check whether it fits a CPU or not.
5090 	 *
5091 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5092 	 * should fit a little cpu even if there's some pressure.
5093 	 *
5094 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5095 	 * on available OPP of the system.
5096 	 *
5097 	 * We honour it for uclamp_min only as a drop in performance level
5098 	 * could result in not getting the requested minimum performance level.
5099 	 *
5100 	 * For uclamp_max, we can tolerate a drop in performance level as the
5101 	 * goal is to cap the task. So it's okay if it's getting less.
5102 	 */
5103 	capacity_orig = arch_scale_cpu_capacity(cpu);
5104 
5105 	/*
5106 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5107 	 * But we do have some corner cases to cater for..
5108 	 *
5109 	 *
5110 	 *                                 C=z
5111 	 *   |                             ___
5112 	 *   |                  C=y       |   |
5113 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5114 	 *   |      C=x        |   |      |   |
5115 	 *   |      ___        |   |      |   |
5116 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5117 	 *   |     |   |       |   |      |   |
5118 	 *   |     |   |       |   |      |   |
5119 	 *   +----------------------------------------
5120 	 *         CPU0        CPU1       CPU2
5121 	 *
5122 	 *   In the above example if a task is capped to a specific performance
5123 	 *   point, y, then when:
5124 	 *
5125 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5126 	 *     to CPU1
5127 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5128 	 *     uclamp_max request.
5129 	 *
5130 	 *   which is what we're enforcing here. A task always fits if
5131 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5132 	 *   the normal upmigration rules should withhold still.
5133 	 *
5134 	 *   Only exception is when we are on max capacity, then we need to be
5135 	 *   careful not to block overutilized state. This is so because:
5136 	 *
5137 	 *     1. There's no concept of capping at max_capacity! We can't go
5138 	 *        beyond this performance level anyway.
5139 	 *     2. The system is being saturated when we're operating near
5140 	 *        max capacity, it doesn't make sense to block overutilized.
5141 	 */
5142 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5143 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5144 	fits = fits || uclamp_max_fits;
5145 
5146 	/*
5147 	 *
5148 	 *                                 C=z
5149 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5150 	 *   |                  C=y       |   |
5151 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5152 	 *   |      C=x        |   |      |   |
5153 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5154 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5155 	 *   |     |   |       |   |      |   |
5156 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5157 	 *   +----------------------------------------
5158 	 *         CPU0        CPU1       CPU2
5159 	 *
5160 	 * a) If util > uclamp_max, then we're capped, we don't care about
5161 	 *    actual fitness value here. We only care if uclamp_max fits
5162 	 *    capacity without taking margin/pressure into account.
5163 	 *    See comment above.
5164 	 *
5165 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5166 	 *    fits_capacity() rules apply. Except we need to ensure that we
5167 	 *    enforce we remain within uclamp_max, see comment above.
5168 	 *
5169 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5170 	 *    need to take into account the boosted value fits the CPU without
5171 	 *    taking margin/pressure into account.
5172 	 *
5173 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5174 	 * just need to consider an extra check for case (c) after ensuring we
5175 	 * handle the case uclamp_min > uclamp_max.
5176 	 */
5177 	uclamp_min = min(uclamp_min, uclamp_max);
5178 	if (fits && (util < uclamp_min) &&
5179 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5180 		return -1;
5181 
5182 	return fits;
5183 }
5184 
5185 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5186 {
5187 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5188 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5189 	unsigned long util = task_util_est(p);
5190 	/*
5191 	 * Return true only if the cpu fully fits the task requirements, which
5192 	 * include the utilization but also the performance hints.
5193 	 */
5194 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5195 }
5196 
5197 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5198 {
5199 	int cpu = cpu_of(rq);
5200 
5201 	if (!sched_asym_cpucap_active())
5202 		return;
5203 
5204 	/*
5205 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5206 	 * available CPU already? Or do we fit into this CPU ?
5207 	 */
5208 	if (!p || (p->nr_cpus_allowed == 1) ||
5209 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5210 	    task_fits_cpu(p, cpu)) {
5211 
5212 		rq->misfit_task_load = 0;
5213 		return;
5214 	}
5215 
5216 	/*
5217 	 * Make sure that misfit_task_load will not be null even if
5218 	 * task_h_load() returns 0.
5219 	 */
5220 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5221 }
5222 
5223 #else /* CONFIG_SMP */
5224 
5225 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5226 {
5227 	return !cfs_rq->nr_running;
5228 }
5229 
5230 #define UPDATE_TG	0x0
5231 #define SKIP_AGE_LOAD	0x0
5232 #define DO_ATTACH	0x0
5233 #define DO_DETACH	0x0
5234 
5235 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5236 {
5237 	cfs_rq_util_change(cfs_rq, 0);
5238 }
5239 
5240 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5241 
5242 static inline void
5243 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5244 static inline void
5245 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5246 
5247 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5248 {
5249 	return 0;
5250 }
5251 
5252 static inline void
5253 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5254 
5255 static inline void
5256 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5257 
5258 static inline void
5259 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5260 		bool task_sleep) {}
5261 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5262 
5263 #endif /* CONFIG_SMP */
5264 
5265 static void
5266 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5267 {
5268 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5269 	s64 lag = 0;
5270 
5271 	if (!se->custom_slice)
5272 		se->slice = sysctl_sched_base_slice;
5273 	vslice = calc_delta_fair(se->slice, se);
5274 
5275 	/*
5276 	 * Due to how V is constructed as the weighted average of entities,
5277 	 * adding tasks with positive lag, or removing tasks with negative lag
5278 	 * will move 'time' backwards, this can screw around with the lag of
5279 	 * other tasks.
5280 	 *
5281 	 * EEVDF: placement strategy #1 / #2
5282 	 */
5283 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5284 		struct sched_entity *curr = cfs_rq->curr;
5285 		unsigned long load;
5286 
5287 		lag = se->vlag;
5288 
5289 		/*
5290 		 * If we want to place a task and preserve lag, we have to
5291 		 * consider the effect of the new entity on the weighted
5292 		 * average and compensate for this, otherwise lag can quickly
5293 		 * evaporate.
5294 		 *
5295 		 * Lag is defined as:
5296 		 *
5297 		 *   lag_i = S - s_i = w_i * (V - v_i)
5298 		 *
5299 		 * To avoid the 'w_i' term all over the place, we only track
5300 		 * the virtual lag:
5301 		 *
5302 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5303 		 *
5304 		 * And we take V to be the weighted average of all v:
5305 		 *
5306 		 *   V = (\Sum w_j*v_j) / W
5307 		 *
5308 		 * Where W is: \Sum w_j
5309 		 *
5310 		 * Then, the weighted average after adding an entity with lag
5311 		 * vl_i is given by:
5312 		 *
5313 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5314 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5315 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5316 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5317 		 *      = V - w_i*vl_i / (W + w_i)
5318 		 *
5319 		 * And the actual lag after adding an entity with vl_i is:
5320 		 *
5321 		 *   vl'_i = V' - v_i
5322 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5323 		 *         = vl_i - w_i*vl_i / (W + w_i)
5324 		 *
5325 		 * Which is strictly less than vl_i. So in order to preserve lag
5326 		 * we should inflate the lag before placement such that the
5327 		 * effective lag after placement comes out right.
5328 		 *
5329 		 * As such, invert the above relation for vl'_i to get the vl_i
5330 		 * we need to use such that the lag after placement is the lag
5331 		 * we computed before dequeue.
5332 		 *
5333 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5334 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5335 		 *
5336 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5337 		 *                   = W*vl_i
5338 		 *
5339 		 *   vl_i = (W + w_i)*vl'_i / W
5340 		 */
5341 		load = cfs_rq->avg_load;
5342 		if (curr && curr->on_rq)
5343 			load += scale_load_down(curr->load.weight);
5344 
5345 		lag *= load + scale_load_down(se->load.weight);
5346 		if (WARN_ON_ONCE(!load))
5347 			load = 1;
5348 		lag = div_s64(lag, load);
5349 	}
5350 
5351 	se->vruntime = vruntime - lag;
5352 
5353 	if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5354 		se->deadline += se->vruntime;
5355 		se->rel_deadline = 0;
5356 		return;
5357 	}
5358 
5359 	/*
5360 	 * When joining the competition; the existing tasks will be,
5361 	 * on average, halfway through their slice, as such start tasks
5362 	 * off with half a slice to ease into the competition.
5363 	 */
5364 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5365 		vslice /= 2;
5366 
5367 	/*
5368 	 * EEVDF: vd_i = ve_i + r_i/w_i
5369 	 */
5370 	se->deadline = se->vruntime + vslice;
5371 }
5372 
5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5374 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5375 
5376 static inline bool cfs_bandwidth_used(void);
5377 
5378 static void
5379 requeue_delayed_entity(struct sched_entity *se);
5380 
5381 static void
5382 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5383 {
5384 	bool curr = cfs_rq->curr == se;
5385 
5386 	/*
5387 	 * If we're the current task, we must renormalise before calling
5388 	 * update_curr().
5389 	 */
5390 	if (curr)
5391 		place_entity(cfs_rq, se, flags);
5392 
5393 	update_curr(cfs_rq);
5394 
5395 	/*
5396 	 * When enqueuing a sched_entity, we must:
5397 	 *   - Update loads to have both entity and cfs_rq synced with now.
5398 	 *   - For group_entity, update its runnable_weight to reflect the new
5399 	 *     h_nr_running of its group cfs_rq.
5400 	 *   - For group_entity, update its weight to reflect the new share of
5401 	 *     its group cfs_rq
5402 	 *   - Add its new weight to cfs_rq->load.weight
5403 	 */
5404 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5405 	se_update_runnable(se);
5406 	/*
5407 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5408 	 * but update_cfs_group() here will re-adjust the weight and have to
5409 	 * undo/redo all that. Seems wasteful.
5410 	 */
5411 	update_cfs_group(se);
5412 
5413 	/*
5414 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5415 	 * we can place the entity.
5416 	 */
5417 	if (!curr)
5418 		place_entity(cfs_rq, se, flags);
5419 
5420 	account_entity_enqueue(cfs_rq, se);
5421 
5422 	/* Entity has migrated, no longer consider this task hot */
5423 	if (flags & ENQUEUE_MIGRATED)
5424 		se->exec_start = 0;
5425 
5426 	check_schedstat_required();
5427 	update_stats_enqueue_fair(cfs_rq, se, flags);
5428 	if (!curr)
5429 		__enqueue_entity(cfs_rq, se);
5430 	se->on_rq = 1;
5431 
5432 	if (cfs_rq->nr_running == 1) {
5433 		check_enqueue_throttle(cfs_rq);
5434 		if (!throttled_hierarchy(cfs_rq)) {
5435 			list_add_leaf_cfs_rq(cfs_rq);
5436 		} else {
5437 #ifdef CONFIG_CFS_BANDWIDTH
5438 			struct rq *rq = rq_of(cfs_rq);
5439 
5440 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5441 				cfs_rq->throttled_clock = rq_clock(rq);
5442 			if (!cfs_rq->throttled_clock_self)
5443 				cfs_rq->throttled_clock_self = rq_clock(rq);
5444 #endif
5445 		}
5446 	}
5447 }
5448 
5449 static void __clear_buddies_next(struct sched_entity *se)
5450 {
5451 	for_each_sched_entity(se) {
5452 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5453 		if (cfs_rq->next != se)
5454 			break;
5455 
5456 		cfs_rq->next = NULL;
5457 	}
5458 }
5459 
5460 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5461 {
5462 	if (cfs_rq->next == se)
5463 		__clear_buddies_next(se);
5464 }
5465 
5466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5467 
5468 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5469 {
5470 	se->sched_delayed = 0;
5471 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5472 		se->vlag = 0;
5473 }
5474 
5475 static bool
5476 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5477 {
5478 	bool sleep = flags & DEQUEUE_SLEEP;
5479 
5480 	update_curr(cfs_rq);
5481 
5482 	if (flags & DEQUEUE_DELAYED) {
5483 		SCHED_WARN_ON(!se->sched_delayed);
5484 	} else {
5485 		bool delay = sleep;
5486 		/*
5487 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5488 		 * states must not suffer spurious wakeups, excempt them.
5489 		 */
5490 		if (flags & DEQUEUE_SPECIAL)
5491 			delay = false;
5492 
5493 		SCHED_WARN_ON(delay && se->sched_delayed);
5494 
5495 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5496 		    !entity_eligible(cfs_rq, se)) {
5497 			if (cfs_rq->next == se)
5498 				cfs_rq->next = NULL;
5499 			update_load_avg(cfs_rq, se, 0);
5500 			se->sched_delayed = 1;
5501 			return false;
5502 		}
5503 	}
5504 
5505 	int action = UPDATE_TG;
5506 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5507 		action |= DO_DETACH;
5508 
5509 	/*
5510 	 * When dequeuing a sched_entity, we must:
5511 	 *   - Update loads to have both entity and cfs_rq synced with now.
5512 	 *   - For group_entity, update its runnable_weight to reflect the new
5513 	 *     h_nr_running of its group cfs_rq.
5514 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5515 	 *   - For group entity, update its weight to reflect the new share
5516 	 *     of its group cfs_rq.
5517 	 */
5518 	update_load_avg(cfs_rq, se, action);
5519 	se_update_runnable(se);
5520 
5521 	update_stats_dequeue_fair(cfs_rq, se, flags);
5522 
5523 	clear_buddies(cfs_rq, se);
5524 
5525 	update_entity_lag(cfs_rq, se);
5526 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5527 		se->deadline -= se->vruntime;
5528 		se->rel_deadline = 1;
5529 	}
5530 
5531 	if (se != cfs_rq->curr)
5532 		__dequeue_entity(cfs_rq, se);
5533 	se->on_rq = 0;
5534 	account_entity_dequeue(cfs_rq, se);
5535 
5536 	/* return excess runtime on last dequeue */
5537 	return_cfs_rq_runtime(cfs_rq);
5538 
5539 	update_cfs_group(se);
5540 
5541 	/*
5542 	 * Now advance min_vruntime if @se was the entity holding it back,
5543 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5544 	 * put back on, and if we advance min_vruntime, we'll be placed back
5545 	 * further than we started -- i.e. we'll be penalized.
5546 	 */
5547 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5548 		update_min_vruntime(cfs_rq);
5549 
5550 	if (flags & DEQUEUE_DELAYED)
5551 		finish_delayed_dequeue_entity(se);
5552 
5553 	if (cfs_rq->nr_running == 0)
5554 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5555 
5556 	return true;
5557 }
5558 
5559 static void
5560 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5561 {
5562 	clear_buddies(cfs_rq, se);
5563 
5564 	/* 'current' is not kept within the tree. */
5565 	if (se->on_rq) {
5566 		/*
5567 		 * Any task has to be enqueued before it get to execute on
5568 		 * a CPU. So account for the time it spent waiting on the
5569 		 * runqueue.
5570 		 */
5571 		update_stats_wait_end_fair(cfs_rq, se);
5572 		__dequeue_entity(cfs_rq, se);
5573 		update_load_avg(cfs_rq, se, UPDATE_TG);
5574 		/*
5575 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5576 		 * which isn't used until dequeue.
5577 		 */
5578 		se->vlag = se->deadline;
5579 	}
5580 
5581 	update_stats_curr_start(cfs_rq, se);
5582 	SCHED_WARN_ON(cfs_rq->curr);
5583 	cfs_rq->curr = se;
5584 
5585 	/*
5586 	 * Track our maximum slice length, if the CPU's load is at
5587 	 * least twice that of our own weight (i.e. don't track it
5588 	 * when there are only lesser-weight tasks around):
5589 	 */
5590 	if (schedstat_enabled() &&
5591 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5592 		struct sched_statistics *stats;
5593 
5594 		stats = __schedstats_from_se(se);
5595 		__schedstat_set(stats->slice_max,
5596 				max((u64)stats->slice_max,
5597 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5598 	}
5599 
5600 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5601 }
5602 
5603 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5604 
5605 /*
5606  * Pick the next process, keeping these things in mind, in this order:
5607  * 1) keep things fair between processes/task groups
5608  * 2) pick the "next" process, since someone really wants that to run
5609  * 3) pick the "last" process, for cache locality
5610  * 4) do not run the "skip" process, if something else is available
5611  */
5612 static struct sched_entity *
5613 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5614 {
5615 	/*
5616 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5617 	 */
5618 	if (sched_feat(NEXT_BUDDY) &&
5619 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5620 		/* ->next will never be delayed */
5621 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5622 		return cfs_rq->next;
5623 	}
5624 
5625 	struct sched_entity *se = pick_eevdf(cfs_rq);
5626 	if (se->sched_delayed) {
5627 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5628 		SCHED_WARN_ON(se->sched_delayed);
5629 		SCHED_WARN_ON(se->on_rq);
5630 		return NULL;
5631 	}
5632 	return se;
5633 }
5634 
5635 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5636 
5637 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5638 {
5639 	/*
5640 	 * If still on the runqueue then deactivate_task()
5641 	 * was not called and update_curr() has to be done:
5642 	 */
5643 	if (prev->on_rq)
5644 		update_curr(cfs_rq);
5645 
5646 	/* throttle cfs_rqs exceeding runtime */
5647 	check_cfs_rq_runtime(cfs_rq);
5648 
5649 	if (prev->on_rq) {
5650 		update_stats_wait_start_fair(cfs_rq, prev);
5651 		/* Put 'current' back into the tree. */
5652 		__enqueue_entity(cfs_rq, prev);
5653 		/* in !on_rq case, update occurred at dequeue */
5654 		update_load_avg(cfs_rq, prev, 0);
5655 	}
5656 	SCHED_WARN_ON(cfs_rq->curr != prev);
5657 	cfs_rq->curr = NULL;
5658 }
5659 
5660 static void
5661 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5662 {
5663 	/*
5664 	 * Update run-time statistics of the 'current'.
5665 	 */
5666 	update_curr(cfs_rq);
5667 
5668 	/*
5669 	 * Ensure that runnable average is periodically updated.
5670 	 */
5671 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5672 	update_cfs_group(curr);
5673 
5674 #ifdef CONFIG_SCHED_HRTICK
5675 	/*
5676 	 * queued ticks are scheduled to match the slice, so don't bother
5677 	 * validating it and just reschedule.
5678 	 */
5679 	if (queued) {
5680 		resched_curr(rq_of(cfs_rq));
5681 		return;
5682 	}
5683 	/*
5684 	 * don't let the period tick interfere with the hrtick preemption
5685 	 */
5686 	if (!sched_feat(DOUBLE_TICK) &&
5687 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5688 		return;
5689 #endif
5690 }
5691 
5692 
5693 /**************************************************
5694  * CFS bandwidth control machinery
5695  */
5696 
5697 #ifdef CONFIG_CFS_BANDWIDTH
5698 
5699 #ifdef CONFIG_JUMP_LABEL
5700 static struct static_key __cfs_bandwidth_used;
5701 
5702 static inline bool cfs_bandwidth_used(void)
5703 {
5704 	return static_key_false(&__cfs_bandwidth_used);
5705 }
5706 
5707 void cfs_bandwidth_usage_inc(void)
5708 {
5709 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5710 }
5711 
5712 void cfs_bandwidth_usage_dec(void)
5713 {
5714 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5715 }
5716 #else /* CONFIG_JUMP_LABEL */
5717 static bool cfs_bandwidth_used(void)
5718 {
5719 	return true;
5720 }
5721 
5722 void cfs_bandwidth_usage_inc(void) {}
5723 void cfs_bandwidth_usage_dec(void) {}
5724 #endif /* CONFIG_JUMP_LABEL */
5725 
5726 /*
5727  * default period for cfs group bandwidth.
5728  * default: 0.1s, units: nanoseconds
5729  */
5730 static inline u64 default_cfs_period(void)
5731 {
5732 	return 100000000ULL;
5733 }
5734 
5735 static inline u64 sched_cfs_bandwidth_slice(void)
5736 {
5737 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5738 }
5739 
5740 /*
5741  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5742  * directly instead of rq->clock to avoid adding additional synchronization
5743  * around rq->lock.
5744  *
5745  * requires cfs_b->lock
5746  */
5747 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5748 {
5749 	s64 runtime;
5750 
5751 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5752 		return;
5753 
5754 	cfs_b->runtime += cfs_b->quota;
5755 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5756 	if (runtime > 0) {
5757 		cfs_b->burst_time += runtime;
5758 		cfs_b->nr_burst++;
5759 	}
5760 
5761 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5762 	cfs_b->runtime_snap = cfs_b->runtime;
5763 }
5764 
5765 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5766 {
5767 	return &tg->cfs_bandwidth;
5768 }
5769 
5770 /* returns 0 on failure to allocate runtime */
5771 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5772 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5773 {
5774 	u64 min_amount, amount = 0;
5775 
5776 	lockdep_assert_held(&cfs_b->lock);
5777 
5778 	/* note: this is a positive sum as runtime_remaining <= 0 */
5779 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5780 
5781 	if (cfs_b->quota == RUNTIME_INF)
5782 		amount = min_amount;
5783 	else {
5784 		start_cfs_bandwidth(cfs_b);
5785 
5786 		if (cfs_b->runtime > 0) {
5787 			amount = min(cfs_b->runtime, min_amount);
5788 			cfs_b->runtime -= amount;
5789 			cfs_b->idle = 0;
5790 		}
5791 	}
5792 
5793 	cfs_rq->runtime_remaining += amount;
5794 
5795 	return cfs_rq->runtime_remaining > 0;
5796 }
5797 
5798 /* returns 0 on failure to allocate runtime */
5799 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5800 {
5801 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5802 	int ret;
5803 
5804 	raw_spin_lock(&cfs_b->lock);
5805 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5806 	raw_spin_unlock(&cfs_b->lock);
5807 
5808 	return ret;
5809 }
5810 
5811 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5812 {
5813 	/* dock delta_exec before expiring quota (as it could span periods) */
5814 	cfs_rq->runtime_remaining -= delta_exec;
5815 
5816 	if (likely(cfs_rq->runtime_remaining > 0))
5817 		return;
5818 
5819 	if (cfs_rq->throttled)
5820 		return;
5821 	/*
5822 	 * if we're unable to extend our runtime we resched so that the active
5823 	 * hierarchy can be throttled
5824 	 */
5825 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5826 		resched_curr(rq_of(cfs_rq));
5827 }
5828 
5829 static __always_inline
5830 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5831 {
5832 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5833 		return;
5834 
5835 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5836 }
5837 
5838 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5839 {
5840 	return cfs_bandwidth_used() && cfs_rq->throttled;
5841 }
5842 
5843 /* check whether cfs_rq, or any parent, is throttled */
5844 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5845 {
5846 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5847 }
5848 
5849 /*
5850  * Ensure that neither of the group entities corresponding to src_cpu or
5851  * dest_cpu are members of a throttled hierarchy when performing group
5852  * load-balance operations.
5853  */
5854 static inline int throttled_lb_pair(struct task_group *tg,
5855 				    int src_cpu, int dest_cpu)
5856 {
5857 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5858 
5859 	src_cfs_rq = tg->cfs_rq[src_cpu];
5860 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5861 
5862 	return throttled_hierarchy(src_cfs_rq) ||
5863 	       throttled_hierarchy(dest_cfs_rq);
5864 }
5865 
5866 static int tg_unthrottle_up(struct task_group *tg, void *data)
5867 {
5868 	struct rq *rq = data;
5869 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5870 
5871 	cfs_rq->throttle_count--;
5872 	if (!cfs_rq->throttle_count) {
5873 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5874 					     cfs_rq->throttled_clock_pelt;
5875 
5876 		/* Add cfs_rq with load or one or more already running entities to the list */
5877 		if (!cfs_rq_is_decayed(cfs_rq))
5878 			list_add_leaf_cfs_rq(cfs_rq);
5879 
5880 		if (cfs_rq->throttled_clock_self) {
5881 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5882 
5883 			cfs_rq->throttled_clock_self = 0;
5884 
5885 			if (SCHED_WARN_ON((s64)delta < 0))
5886 				delta = 0;
5887 
5888 			cfs_rq->throttled_clock_self_time += delta;
5889 		}
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 static int tg_throttle_down(struct task_group *tg, void *data)
5896 {
5897 	struct rq *rq = data;
5898 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5899 
5900 	/* group is entering throttled state, stop time */
5901 	if (!cfs_rq->throttle_count) {
5902 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5903 		list_del_leaf_cfs_rq(cfs_rq);
5904 
5905 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5906 		if (cfs_rq->nr_running)
5907 			cfs_rq->throttled_clock_self = rq_clock(rq);
5908 	}
5909 	cfs_rq->throttle_count++;
5910 
5911 	return 0;
5912 }
5913 
5914 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5915 {
5916 	struct rq *rq = rq_of(cfs_rq);
5917 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5918 	struct sched_entity *se;
5919 	long task_delta, idle_task_delta, dequeue = 1;
5920 	long rq_h_nr_running = rq->cfs.h_nr_running;
5921 
5922 	raw_spin_lock(&cfs_b->lock);
5923 	/* This will start the period timer if necessary */
5924 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5925 		/*
5926 		 * We have raced with bandwidth becoming available, and if we
5927 		 * actually throttled the timer might not unthrottle us for an
5928 		 * entire period. We additionally needed to make sure that any
5929 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5930 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5931 		 * for 1ns of runtime rather than just check cfs_b.
5932 		 */
5933 		dequeue = 0;
5934 	} else {
5935 		list_add_tail_rcu(&cfs_rq->throttled_list,
5936 				  &cfs_b->throttled_cfs_rq);
5937 	}
5938 	raw_spin_unlock(&cfs_b->lock);
5939 
5940 	if (!dequeue)
5941 		return false;  /* Throttle no longer required. */
5942 
5943 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5944 
5945 	/* freeze hierarchy runnable averages while throttled */
5946 	rcu_read_lock();
5947 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5948 	rcu_read_unlock();
5949 
5950 	task_delta = cfs_rq->h_nr_running;
5951 	idle_task_delta = cfs_rq->idle_h_nr_running;
5952 	for_each_sched_entity(se) {
5953 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5954 		int flags;
5955 
5956 		/* throttled entity or throttle-on-deactivate */
5957 		if (!se->on_rq)
5958 			goto done;
5959 
5960 		/*
5961 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5962 		 * This avoids teaching dequeue_entities() about throttled
5963 		 * entities and keeps things relatively simple.
5964 		 */
5965 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5966 		if (se->sched_delayed)
5967 			flags |= DEQUEUE_DELAYED;
5968 		dequeue_entity(qcfs_rq, se, flags);
5969 
5970 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5971 			idle_task_delta = cfs_rq->h_nr_running;
5972 
5973 		qcfs_rq->h_nr_running -= task_delta;
5974 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5975 
5976 		if (qcfs_rq->load.weight) {
5977 			/* Avoid re-evaluating load for this entity: */
5978 			se = parent_entity(se);
5979 			break;
5980 		}
5981 	}
5982 
5983 	for_each_sched_entity(se) {
5984 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5985 		/* throttled entity or throttle-on-deactivate */
5986 		if (!se->on_rq)
5987 			goto done;
5988 
5989 		update_load_avg(qcfs_rq, se, 0);
5990 		se_update_runnable(se);
5991 
5992 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5993 			idle_task_delta = cfs_rq->h_nr_running;
5994 
5995 		qcfs_rq->h_nr_running -= task_delta;
5996 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5997 	}
5998 
5999 	/* At this point se is NULL and we are at root level*/
6000 	sub_nr_running(rq, task_delta);
6001 
6002 	/* Stop the fair server if throttling resulted in no runnable tasks */
6003 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
6004 		dl_server_stop(&rq->fair_server);
6005 done:
6006 	/*
6007 	 * Note: distribution will already see us throttled via the
6008 	 * throttled-list.  rq->lock protects completion.
6009 	 */
6010 	cfs_rq->throttled = 1;
6011 	SCHED_WARN_ON(cfs_rq->throttled_clock);
6012 	if (cfs_rq->nr_running)
6013 		cfs_rq->throttled_clock = rq_clock(rq);
6014 	return true;
6015 }
6016 
6017 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6018 {
6019 	struct rq *rq = rq_of(cfs_rq);
6020 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6021 	struct sched_entity *se;
6022 	long task_delta, idle_task_delta;
6023 	long rq_h_nr_running = rq->cfs.h_nr_running;
6024 
6025 	se = cfs_rq->tg->se[cpu_of(rq)];
6026 
6027 	cfs_rq->throttled = 0;
6028 
6029 	update_rq_clock(rq);
6030 
6031 	raw_spin_lock(&cfs_b->lock);
6032 	if (cfs_rq->throttled_clock) {
6033 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6034 		cfs_rq->throttled_clock = 0;
6035 	}
6036 	list_del_rcu(&cfs_rq->throttled_list);
6037 	raw_spin_unlock(&cfs_b->lock);
6038 
6039 	/* update hierarchical throttle state */
6040 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6041 
6042 	if (!cfs_rq->load.weight) {
6043 		if (!cfs_rq->on_list)
6044 			return;
6045 		/*
6046 		 * Nothing to run but something to decay (on_list)?
6047 		 * Complete the branch.
6048 		 */
6049 		for_each_sched_entity(se) {
6050 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6051 				break;
6052 		}
6053 		goto unthrottle_throttle;
6054 	}
6055 
6056 	task_delta = cfs_rq->h_nr_running;
6057 	idle_task_delta = cfs_rq->idle_h_nr_running;
6058 	for_each_sched_entity(se) {
6059 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6060 
6061 		/* Handle any unfinished DELAY_DEQUEUE business first. */
6062 		if (se->sched_delayed) {
6063 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6064 
6065 			dequeue_entity(qcfs_rq, se, flags);
6066 		} else if (se->on_rq)
6067 			break;
6068 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6069 
6070 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6071 			idle_task_delta = cfs_rq->h_nr_running;
6072 
6073 		qcfs_rq->h_nr_running += task_delta;
6074 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6075 
6076 		/* end evaluation on encountering a throttled cfs_rq */
6077 		if (cfs_rq_throttled(qcfs_rq))
6078 			goto unthrottle_throttle;
6079 	}
6080 
6081 	for_each_sched_entity(se) {
6082 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6083 
6084 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6085 		se_update_runnable(se);
6086 
6087 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6088 			idle_task_delta = cfs_rq->h_nr_running;
6089 
6090 		qcfs_rq->h_nr_running += task_delta;
6091 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6092 
6093 		/* end evaluation on encountering a throttled cfs_rq */
6094 		if (cfs_rq_throttled(qcfs_rq))
6095 			goto unthrottle_throttle;
6096 	}
6097 
6098 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6099 	if (!rq_h_nr_running && rq->cfs.h_nr_running)
6100 		dl_server_start(&rq->fair_server);
6101 
6102 	/* At this point se is NULL and we are at root level*/
6103 	add_nr_running(rq, task_delta);
6104 
6105 unthrottle_throttle:
6106 	assert_list_leaf_cfs_rq(rq);
6107 
6108 	/* Determine whether we need to wake up potentially idle CPU: */
6109 	if (rq->curr == rq->idle && rq->cfs.nr_running)
6110 		resched_curr(rq);
6111 }
6112 
6113 #ifdef CONFIG_SMP
6114 static void __cfsb_csd_unthrottle(void *arg)
6115 {
6116 	struct cfs_rq *cursor, *tmp;
6117 	struct rq *rq = arg;
6118 	struct rq_flags rf;
6119 
6120 	rq_lock(rq, &rf);
6121 
6122 	/*
6123 	 * Iterating over the list can trigger several call to
6124 	 * update_rq_clock() in unthrottle_cfs_rq().
6125 	 * Do it once and skip the potential next ones.
6126 	 */
6127 	update_rq_clock(rq);
6128 	rq_clock_start_loop_update(rq);
6129 
6130 	/*
6131 	 * Since we hold rq lock we're safe from concurrent manipulation of
6132 	 * the CSD list. However, this RCU critical section annotates the
6133 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6134 	 * race with group being freed in the window between removing it
6135 	 * from the list and advancing to the next entry in the list.
6136 	 */
6137 	rcu_read_lock();
6138 
6139 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6140 				 throttled_csd_list) {
6141 		list_del_init(&cursor->throttled_csd_list);
6142 
6143 		if (cfs_rq_throttled(cursor))
6144 			unthrottle_cfs_rq(cursor);
6145 	}
6146 
6147 	rcu_read_unlock();
6148 
6149 	rq_clock_stop_loop_update(rq);
6150 	rq_unlock(rq, &rf);
6151 }
6152 
6153 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6154 {
6155 	struct rq *rq = rq_of(cfs_rq);
6156 	bool first;
6157 
6158 	if (rq == this_rq()) {
6159 		unthrottle_cfs_rq(cfs_rq);
6160 		return;
6161 	}
6162 
6163 	/* Already enqueued */
6164 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6165 		return;
6166 
6167 	first = list_empty(&rq->cfsb_csd_list);
6168 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6169 	if (first)
6170 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6171 }
6172 #else
6173 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6174 {
6175 	unthrottle_cfs_rq(cfs_rq);
6176 }
6177 #endif
6178 
6179 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6180 {
6181 	lockdep_assert_rq_held(rq_of(cfs_rq));
6182 
6183 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6184 	    cfs_rq->runtime_remaining <= 0))
6185 		return;
6186 
6187 	__unthrottle_cfs_rq_async(cfs_rq);
6188 }
6189 
6190 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6191 {
6192 	int this_cpu = smp_processor_id();
6193 	u64 runtime, remaining = 1;
6194 	bool throttled = false;
6195 	struct cfs_rq *cfs_rq, *tmp;
6196 	struct rq_flags rf;
6197 	struct rq *rq;
6198 	LIST_HEAD(local_unthrottle);
6199 
6200 	rcu_read_lock();
6201 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6202 				throttled_list) {
6203 		rq = rq_of(cfs_rq);
6204 
6205 		if (!remaining) {
6206 			throttled = true;
6207 			break;
6208 		}
6209 
6210 		rq_lock_irqsave(rq, &rf);
6211 		if (!cfs_rq_throttled(cfs_rq))
6212 			goto next;
6213 
6214 		/* Already queued for async unthrottle */
6215 		if (!list_empty(&cfs_rq->throttled_csd_list))
6216 			goto next;
6217 
6218 		/* By the above checks, this should never be true */
6219 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6220 
6221 		raw_spin_lock(&cfs_b->lock);
6222 		runtime = -cfs_rq->runtime_remaining + 1;
6223 		if (runtime > cfs_b->runtime)
6224 			runtime = cfs_b->runtime;
6225 		cfs_b->runtime -= runtime;
6226 		remaining = cfs_b->runtime;
6227 		raw_spin_unlock(&cfs_b->lock);
6228 
6229 		cfs_rq->runtime_remaining += runtime;
6230 
6231 		/* we check whether we're throttled above */
6232 		if (cfs_rq->runtime_remaining > 0) {
6233 			if (cpu_of(rq) != this_cpu) {
6234 				unthrottle_cfs_rq_async(cfs_rq);
6235 			} else {
6236 				/*
6237 				 * We currently only expect to be unthrottling
6238 				 * a single cfs_rq locally.
6239 				 */
6240 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6241 				list_add_tail(&cfs_rq->throttled_csd_list,
6242 					      &local_unthrottle);
6243 			}
6244 		} else {
6245 			throttled = true;
6246 		}
6247 
6248 next:
6249 		rq_unlock_irqrestore(rq, &rf);
6250 	}
6251 
6252 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6253 				 throttled_csd_list) {
6254 		struct rq *rq = rq_of(cfs_rq);
6255 
6256 		rq_lock_irqsave(rq, &rf);
6257 
6258 		list_del_init(&cfs_rq->throttled_csd_list);
6259 
6260 		if (cfs_rq_throttled(cfs_rq))
6261 			unthrottle_cfs_rq(cfs_rq);
6262 
6263 		rq_unlock_irqrestore(rq, &rf);
6264 	}
6265 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6266 
6267 	rcu_read_unlock();
6268 
6269 	return throttled;
6270 }
6271 
6272 /*
6273  * Responsible for refilling a task_group's bandwidth and unthrottling its
6274  * cfs_rqs as appropriate. If there has been no activity within the last
6275  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6276  * used to track this state.
6277  */
6278 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6279 {
6280 	int throttled;
6281 
6282 	/* no need to continue the timer with no bandwidth constraint */
6283 	if (cfs_b->quota == RUNTIME_INF)
6284 		goto out_deactivate;
6285 
6286 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6287 	cfs_b->nr_periods += overrun;
6288 
6289 	/* Refill extra burst quota even if cfs_b->idle */
6290 	__refill_cfs_bandwidth_runtime(cfs_b);
6291 
6292 	/*
6293 	 * idle depends on !throttled (for the case of a large deficit), and if
6294 	 * we're going inactive then everything else can be deferred
6295 	 */
6296 	if (cfs_b->idle && !throttled)
6297 		goto out_deactivate;
6298 
6299 	if (!throttled) {
6300 		/* mark as potentially idle for the upcoming period */
6301 		cfs_b->idle = 1;
6302 		return 0;
6303 	}
6304 
6305 	/* account preceding periods in which throttling occurred */
6306 	cfs_b->nr_throttled += overrun;
6307 
6308 	/*
6309 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6310 	 */
6311 	while (throttled && cfs_b->runtime > 0) {
6312 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6313 		/* we can't nest cfs_b->lock while distributing bandwidth */
6314 		throttled = distribute_cfs_runtime(cfs_b);
6315 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6316 	}
6317 
6318 	/*
6319 	 * While we are ensured activity in the period following an
6320 	 * unthrottle, this also covers the case in which the new bandwidth is
6321 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6322 	 * timer to remain active while there are any throttled entities.)
6323 	 */
6324 	cfs_b->idle = 0;
6325 
6326 	return 0;
6327 
6328 out_deactivate:
6329 	return 1;
6330 }
6331 
6332 /* a cfs_rq won't donate quota below this amount */
6333 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6334 /* minimum remaining period time to redistribute slack quota */
6335 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6336 /* how long we wait to gather additional slack before distributing */
6337 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6338 
6339 /*
6340  * Are we near the end of the current quota period?
6341  *
6342  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6343  * hrtimer base being cleared by hrtimer_start. In the case of
6344  * migrate_hrtimers, base is never cleared, so we are fine.
6345  */
6346 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6347 {
6348 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6349 	s64 remaining;
6350 
6351 	/* if the call-back is running a quota refresh is already occurring */
6352 	if (hrtimer_callback_running(refresh_timer))
6353 		return 1;
6354 
6355 	/* is a quota refresh about to occur? */
6356 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6357 	if (remaining < (s64)min_expire)
6358 		return 1;
6359 
6360 	return 0;
6361 }
6362 
6363 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6364 {
6365 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6366 
6367 	/* if there's a quota refresh soon don't bother with slack */
6368 	if (runtime_refresh_within(cfs_b, min_left))
6369 		return;
6370 
6371 	/* don't push forwards an existing deferred unthrottle */
6372 	if (cfs_b->slack_started)
6373 		return;
6374 	cfs_b->slack_started = true;
6375 
6376 	hrtimer_start(&cfs_b->slack_timer,
6377 			ns_to_ktime(cfs_bandwidth_slack_period),
6378 			HRTIMER_MODE_REL);
6379 }
6380 
6381 /* we know any runtime found here is valid as update_curr() precedes return */
6382 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6383 {
6384 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6385 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6386 
6387 	if (slack_runtime <= 0)
6388 		return;
6389 
6390 	raw_spin_lock(&cfs_b->lock);
6391 	if (cfs_b->quota != RUNTIME_INF) {
6392 		cfs_b->runtime += slack_runtime;
6393 
6394 		/* we are under rq->lock, defer unthrottling using a timer */
6395 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6396 		    !list_empty(&cfs_b->throttled_cfs_rq))
6397 			start_cfs_slack_bandwidth(cfs_b);
6398 	}
6399 	raw_spin_unlock(&cfs_b->lock);
6400 
6401 	/* even if it's not valid for return we don't want to try again */
6402 	cfs_rq->runtime_remaining -= slack_runtime;
6403 }
6404 
6405 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6406 {
6407 	if (!cfs_bandwidth_used())
6408 		return;
6409 
6410 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6411 		return;
6412 
6413 	__return_cfs_rq_runtime(cfs_rq);
6414 }
6415 
6416 /*
6417  * This is done with a timer (instead of inline with bandwidth return) since
6418  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6419  */
6420 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6421 {
6422 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6423 	unsigned long flags;
6424 
6425 	/* confirm we're still not at a refresh boundary */
6426 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6427 	cfs_b->slack_started = false;
6428 
6429 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6430 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6431 		return;
6432 	}
6433 
6434 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6435 		runtime = cfs_b->runtime;
6436 
6437 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6438 
6439 	if (!runtime)
6440 		return;
6441 
6442 	distribute_cfs_runtime(cfs_b);
6443 }
6444 
6445 /*
6446  * When a group wakes up we want to make sure that its quota is not already
6447  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6448  * runtime as update_curr() throttling can not trigger until it's on-rq.
6449  */
6450 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6451 {
6452 	if (!cfs_bandwidth_used())
6453 		return;
6454 
6455 	/* an active group must be handled by the update_curr()->put() path */
6456 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6457 		return;
6458 
6459 	/* ensure the group is not already throttled */
6460 	if (cfs_rq_throttled(cfs_rq))
6461 		return;
6462 
6463 	/* update runtime allocation */
6464 	account_cfs_rq_runtime(cfs_rq, 0);
6465 	if (cfs_rq->runtime_remaining <= 0)
6466 		throttle_cfs_rq(cfs_rq);
6467 }
6468 
6469 static void sync_throttle(struct task_group *tg, int cpu)
6470 {
6471 	struct cfs_rq *pcfs_rq, *cfs_rq;
6472 
6473 	if (!cfs_bandwidth_used())
6474 		return;
6475 
6476 	if (!tg->parent)
6477 		return;
6478 
6479 	cfs_rq = tg->cfs_rq[cpu];
6480 	pcfs_rq = tg->parent->cfs_rq[cpu];
6481 
6482 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6483 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6484 }
6485 
6486 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6487 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6488 {
6489 	if (!cfs_bandwidth_used())
6490 		return false;
6491 
6492 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6493 		return false;
6494 
6495 	/*
6496 	 * it's possible for a throttled entity to be forced into a running
6497 	 * state (e.g. set_curr_task), in this case we're finished.
6498 	 */
6499 	if (cfs_rq_throttled(cfs_rq))
6500 		return true;
6501 
6502 	return throttle_cfs_rq(cfs_rq);
6503 }
6504 
6505 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6506 {
6507 	struct cfs_bandwidth *cfs_b =
6508 		container_of(timer, struct cfs_bandwidth, slack_timer);
6509 
6510 	do_sched_cfs_slack_timer(cfs_b);
6511 
6512 	return HRTIMER_NORESTART;
6513 }
6514 
6515 extern const u64 max_cfs_quota_period;
6516 
6517 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6518 {
6519 	struct cfs_bandwidth *cfs_b =
6520 		container_of(timer, struct cfs_bandwidth, period_timer);
6521 	unsigned long flags;
6522 	int overrun;
6523 	int idle = 0;
6524 	int count = 0;
6525 
6526 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6527 	for (;;) {
6528 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6529 		if (!overrun)
6530 			break;
6531 
6532 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6533 
6534 		if (++count > 3) {
6535 			u64 new, old = ktime_to_ns(cfs_b->period);
6536 
6537 			/*
6538 			 * Grow period by a factor of 2 to avoid losing precision.
6539 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6540 			 * to fail.
6541 			 */
6542 			new = old * 2;
6543 			if (new < max_cfs_quota_period) {
6544 				cfs_b->period = ns_to_ktime(new);
6545 				cfs_b->quota *= 2;
6546 				cfs_b->burst *= 2;
6547 
6548 				pr_warn_ratelimited(
6549 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6550 					smp_processor_id(),
6551 					div_u64(new, NSEC_PER_USEC),
6552 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6553 			} else {
6554 				pr_warn_ratelimited(
6555 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6556 					smp_processor_id(),
6557 					div_u64(old, NSEC_PER_USEC),
6558 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6559 			}
6560 
6561 			/* reset count so we don't come right back in here */
6562 			count = 0;
6563 		}
6564 	}
6565 	if (idle)
6566 		cfs_b->period_active = 0;
6567 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6568 
6569 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6570 }
6571 
6572 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6573 {
6574 	raw_spin_lock_init(&cfs_b->lock);
6575 	cfs_b->runtime = 0;
6576 	cfs_b->quota = RUNTIME_INF;
6577 	cfs_b->period = ns_to_ktime(default_cfs_period());
6578 	cfs_b->burst = 0;
6579 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6580 
6581 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6582 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6583 	cfs_b->period_timer.function = sched_cfs_period_timer;
6584 
6585 	/* Add a random offset so that timers interleave */
6586 	hrtimer_set_expires(&cfs_b->period_timer,
6587 			    get_random_u32_below(cfs_b->period));
6588 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6589 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6590 	cfs_b->slack_started = false;
6591 }
6592 
6593 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6594 {
6595 	cfs_rq->runtime_enabled = 0;
6596 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6597 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6598 }
6599 
6600 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6601 {
6602 	lockdep_assert_held(&cfs_b->lock);
6603 
6604 	if (cfs_b->period_active)
6605 		return;
6606 
6607 	cfs_b->period_active = 1;
6608 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6609 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6610 }
6611 
6612 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6613 {
6614 	int __maybe_unused i;
6615 
6616 	/* init_cfs_bandwidth() was not called */
6617 	if (!cfs_b->throttled_cfs_rq.next)
6618 		return;
6619 
6620 	hrtimer_cancel(&cfs_b->period_timer);
6621 	hrtimer_cancel(&cfs_b->slack_timer);
6622 
6623 	/*
6624 	 * It is possible that we still have some cfs_rq's pending on a CSD
6625 	 * list, though this race is very rare. In order for this to occur, we
6626 	 * must have raced with the last task leaving the group while there
6627 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6628 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6629 	 * we can simply flush all pending CSD work inline here. We're
6630 	 * guaranteed at this point that no additional cfs_rq of this group can
6631 	 * join a CSD list.
6632 	 */
6633 #ifdef CONFIG_SMP
6634 	for_each_possible_cpu(i) {
6635 		struct rq *rq = cpu_rq(i);
6636 		unsigned long flags;
6637 
6638 		if (list_empty(&rq->cfsb_csd_list))
6639 			continue;
6640 
6641 		local_irq_save(flags);
6642 		__cfsb_csd_unthrottle(rq);
6643 		local_irq_restore(flags);
6644 	}
6645 #endif
6646 }
6647 
6648 /*
6649  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6650  *
6651  * The race is harmless, since modifying bandwidth settings of unhooked group
6652  * bits doesn't do much.
6653  */
6654 
6655 /* cpu online callback */
6656 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6657 {
6658 	struct task_group *tg;
6659 
6660 	lockdep_assert_rq_held(rq);
6661 
6662 	rcu_read_lock();
6663 	list_for_each_entry_rcu(tg, &task_groups, list) {
6664 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6665 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6666 
6667 		raw_spin_lock(&cfs_b->lock);
6668 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6669 		raw_spin_unlock(&cfs_b->lock);
6670 	}
6671 	rcu_read_unlock();
6672 }
6673 
6674 /* cpu offline callback */
6675 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6676 {
6677 	struct task_group *tg;
6678 
6679 	lockdep_assert_rq_held(rq);
6680 
6681 	/*
6682 	 * The rq clock has already been updated in the
6683 	 * set_rq_offline(), so we should skip updating
6684 	 * the rq clock again in unthrottle_cfs_rq().
6685 	 */
6686 	rq_clock_start_loop_update(rq);
6687 
6688 	rcu_read_lock();
6689 	list_for_each_entry_rcu(tg, &task_groups, list) {
6690 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6691 
6692 		if (!cfs_rq->runtime_enabled)
6693 			continue;
6694 
6695 		/*
6696 		 * clock_task is not advancing so we just need to make sure
6697 		 * there's some valid quota amount
6698 		 */
6699 		cfs_rq->runtime_remaining = 1;
6700 		/*
6701 		 * Offline rq is schedulable till CPU is completely disabled
6702 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6703 		 */
6704 		cfs_rq->runtime_enabled = 0;
6705 
6706 		if (cfs_rq_throttled(cfs_rq))
6707 			unthrottle_cfs_rq(cfs_rq);
6708 	}
6709 	rcu_read_unlock();
6710 
6711 	rq_clock_stop_loop_update(rq);
6712 }
6713 
6714 bool cfs_task_bw_constrained(struct task_struct *p)
6715 {
6716 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6717 
6718 	if (!cfs_bandwidth_used())
6719 		return false;
6720 
6721 	if (cfs_rq->runtime_enabled ||
6722 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6723 		return true;
6724 
6725 	return false;
6726 }
6727 
6728 #ifdef CONFIG_NO_HZ_FULL
6729 /* called from pick_next_task_fair() */
6730 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6731 {
6732 	int cpu = cpu_of(rq);
6733 
6734 	if (!cfs_bandwidth_used())
6735 		return;
6736 
6737 	if (!tick_nohz_full_cpu(cpu))
6738 		return;
6739 
6740 	if (rq->nr_running != 1)
6741 		return;
6742 
6743 	/*
6744 	 *  We know there is only one task runnable and we've just picked it. The
6745 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6746 	 *  be otherwise able to stop the tick. Just need to check if we are using
6747 	 *  bandwidth control.
6748 	 */
6749 	if (cfs_task_bw_constrained(p))
6750 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6751 }
6752 #endif
6753 
6754 #else /* CONFIG_CFS_BANDWIDTH */
6755 
6756 static inline bool cfs_bandwidth_used(void)
6757 {
6758 	return false;
6759 }
6760 
6761 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6762 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6763 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6764 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6765 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6766 
6767 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6768 {
6769 	return 0;
6770 }
6771 
6772 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6773 {
6774 	return 0;
6775 }
6776 
6777 static inline int throttled_lb_pair(struct task_group *tg,
6778 				    int src_cpu, int dest_cpu)
6779 {
6780 	return 0;
6781 }
6782 
6783 #ifdef CONFIG_FAIR_GROUP_SCHED
6784 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6785 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6786 #endif
6787 
6788 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6789 {
6790 	return NULL;
6791 }
6792 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6793 static inline void update_runtime_enabled(struct rq *rq) {}
6794 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6795 #ifdef CONFIG_CGROUP_SCHED
6796 bool cfs_task_bw_constrained(struct task_struct *p)
6797 {
6798 	return false;
6799 }
6800 #endif
6801 #endif /* CONFIG_CFS_BANDWIDTH */
6802 
6803 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6804 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6805 #endif
6806 
6807 /**************************************************
6808  * CFS operations on tasks:
6809  */
6810 
6811 #ifdef CONFIG_SCHED_HRTICK
6812 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6813 {
6814 	struct sched_entity *se = &p->se;
6815 
6816 	SCHED_WARN_ON(task_rq(p) != rq);
6817 
6818 	if (rq->cfs.h_nr_running > 1) {
6819 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6820 		u64 slice = se->slice;
6821 		s64 delta = slice - ran;
6822 
6823 		if (delta < 0) {
6824 			if (task_current(rq, p))
6825 				resched_curr(rq);
6826 			return;
6827 		}
6828 		hrtick_start(rq, delta);
6829 	}
6830 }
6831 
6832 /*
6833  * called from enqueue/dequeue and updates the hrtick when the
6834  * current task is from our class and nr_running is low enough
6835  * to matter.
6836  */
6837 static void hrtick_update(struct rq *rq)
6838 {
6839 	struct task_struct *curr = rq->curr;
6840 
6841 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6842 		return;
6843 
6844 	hrtick_start_fair(rq, curr);
6845 }
6846 #else /* !CONFIG_SCHED_HRTICK */
6847 static inline void
6848 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6849 {
6850 }
6851 
6852 static inline void hrtick_update(struct rq *rq)
6853 {
6854 }
6855 #endif
6856 
6857 #ifdef CONFIG_SMP
6858 static inline bool cpu_overutilized(int cpu)
6859 {
6860 	unsigned long  rq_util_min, rq_util_max;
6861 
6862 	if (!sched_energy_enabled())
6863 		return false;
6864 
6865 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6866 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6867 
6868 	/* Return true only if the utilization doesn't fit CPU's capacity */
6869 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6870 }
6871 
6872 /*
6873  * overutilized value make sense only if EAS is enabled
6874  */
6875 static inline bool is_rd_overutilized(struct root_domain *rd)
6876 {
6877 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6878 }
6879 
6880 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6881 {
6882 	if (!sched_energy_enabled())
6883 		return;
6884 
6885 	WRITE_ONCE(rd->overutilized, flag);
6886 	trace_sched_overutilized_tp(rd, flag);
6887 }
6888 
6889 static inline void check_update_overutilized_status(struct rq *rq)
6890 {
6891 	/*
6892 	 * overutilized field is used for load balancing decisions only
6893 	 * if energy aware scheduler is being used
6894 	 */
6895 
6896 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6897 		set_rd_overutilized(rq->rd, 1);
6898 }
6899 #else
6900 static inline void check_update_overutilized_status(struct rq *rq) { }
6901 #endif
6902 
6903 /* Runqueue only has SCHED_IDLE tasks enqueued */
6904 static int sched_idle_rq(struct rq *rq)
6905 {
6906 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6907 			rq->nr_running);
6908 }
6909 
6910 #ifdef CONFIG_SMP
6911 static int sched_idle_cpu(int cpu)
6912 {
6913 	return sched_idle_rq(cpu_rq(cpu));
6914 }
6915 #endif
6916 
6917 static void
6918 requeue_delayed_entity(struct sched_entity *se)
6919 {
6920 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6921 
6922 	/*
6923 	 * se->sched_delayed should imply: se->on_rq == 1.
6924 	 * Because a delayed entity is one that is still on
6925 	 * the runqueue competing until elegibility.
6926 	 */
6927 	SCHED_WARN_ON(!se->sched_delayed);
6928 	SCHED_WARN_ON(!se->on_rq);
6929 
6930 	if (sched_feat(DELAY_ZERO)) {
6931 		update_entity_lag(cfs_rq, se);
6932 		if (se->vlag > 0) {
6933 			cfs_rq->nr_running--;
6934 			if (se != cfs_rq->curr)
6935 				__dequeue_entity(cfs_rq, se);
6936 			se->vlag = 0;
6937 			place_entity(cfs_rq, se, 0);
6938 			if (se != cfs_rq->curr)
6939 				__enqueue_entity(cfs_rq, se);
6940 			cfs_rq->nr_running++;
6941 		}
6942 	}
6943 
6944 	update_load_avg(cfs_rq, se, 0);
6945 	se->sched_delayed = 0;
6946 }
6947 
6948 /*
6949  * The enqueue_task method is called before nr_running is
6950  * increased. Here we update the fair scheduling stats and
6951  * then put the task into the rbtree:
6952  */
6953 static void
6954 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6955 {
6956 	struct cfs_rq *cfs_rq;
6957 	struct sched_entity *se = &p->se;
6958 	int idle_h_nr_running = task_has_idle_policy(p);
6959 	int task_new = !(flags & ENQUEUE_WAKEUP);
6960 	int rq_h_nr_running = rq->cfs.h_nr_running;
6961 	u64 slice = 0;
6962 
6963 	/*
6964 	 * The code below (indirectly) updates schedutil which looks at
6965 	 * the cfs_rq utilization to select a frequency.
6966 	 * Let's add the task's estimated utilization to the cfs_rq's
6967 	 * estimated utilization, before we update schedutil.
6968 	 */
6969 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6970 		util_est_enqueue(&rq->cfs, p);
6971 
6972 	if (flags & ENQUEUE_DELAYED) {
6973 		requeue_delayed_entity(se);
6974 		return;
6975 	}
6976 
6977 	/*
6978 	 * If in_iowait is set, the code below may not trigger any cpufreq
6979 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6980 	 * passed.
6981 	 */
6982 	if (p->in_iowait)
6983 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6984 
6985 	for_each_sched_entity(se) {
6986 		if (se->on_rq) {
6987 			if (se->sched_delayed)
6988 				requeue_delayed_entity(se);
6989 			break;
6990 		}
6991 		cfs_rq = cfs_rq_of(se);
6992 
6993 		/*
6994 		 * Basically set the slice of group entries to the min_slice of
6995 		 * their respective cfs_rq. This ensures the group can service
6996 		 * its entities in the desired time-frame.
6997 		 */
6998 		if (slice) {
6999 			se->slice = slice;
7000 			se->custom_slice = 1;
7001 		}
7002 		enqueue_entity(cfs_rq, se, flags);
7003 		slice = cfs_rq_min_slice(cfs_rq);
7004 
7005 		cfs_rq->h_nr_running++;
7006 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7007 
7008 		if (cfs_rq_is_idle(cfs_rq))
7009 			idle_h_nr_running = 1;
7010 
7011 		/* end evaluation on encountering a throttled cfs_rq */
7012 		if (cfs_rq_throttled(cfs_rq))
7013 			goto enqueue_throttle;
7014 
7015 		flags = ENQUEUE_WAKEUP;
7016 	}
7017 
7018 	for_each_sched_entity(se) {
7019 		cfs_rq = cfs_rq_of(se);
7020 
7021 		update_load_avg(cfs_rq, se, UPDATE_TG);
7022 		se_update_runnable(se);
7023 		update_cfs_group(se);
7024 
7025 		se->slice = slice;
7026 		slice = cfs_rq_min_slice(cfs_rq);
7027 
7028 		cfs_rq->h_nr_running++;
7029 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7030 
7031 		if (cfs_rq_is_idle(cfs_rq))
7032 			idle_h_nr_running = 1;
7033 
7034 		/* end evaluation on encountering a throttled cfs_rq */
7035 		if (cfs_rq_throttled(cfs_rq))
7036 			goto enqueue_throttle;
7037 	}
7038 
7039 	if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7040 		/* Account for idle runtime */
7041 		if (!rq->nr_running)
7042 			dl_server_update_idle_time(rq, rq->curr);
7043 		dl_server_start(&rq->fair_server);
7044 	}
7045 
7046 	/* At this point se is NULL and we are at root level*/
7047 	add_nr_running(rq, 1);
7048 
7049 	/*
7050 	 * Since new tasks are assigned an initial util_avg equal to
7051 	 * half of the spare capacity of their CPU, tiny tasks have the
7052 	 * ability to cross the overutilized threshold, which will
7053 	 * result in the load balancer ruining all the task placement
7054 	 * done by EAS. As a way to mitigate that effect, do not account
7055 	 * for the first enqueue operation of new tasks during the
7056 	 * overutilized flag detection.
7057 	 *
7058 	 * A better way of solving this problem would be to wait for
7059 	 * the PELT signals of tasks to converge before taking them
7060 	 * into account, but that is not straightforward to implement,
7061 	 * and the following generally works well enough in practice.
7062 	 */
7063 	if (!task_new)
7064 		check_update_overutilized_status(rq);
7065 
7066 enqueue_throttle:
7067 	assert_list_leaf_cfs_rq(rq);
7068 
7069 	hrtick_update(rq);
7070 }
7071 
7072 static void set_next_buddy(struct sched_entity *se);
7073 
7074 /*
7075  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7076  * failing half-way through and resume the dequeue later.
7077  *
7078  * Returns:
7079  * -1 - dequeue delayed
7080  *  0 - dequeue throttled
7081  *  1 - dequeue complete
7082  */
7083 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7084 {
7085 	bool was_sched_idle = sched_idle_rq(rq);
7086 	int rq_h_nr_running = rq->cfs.h_nr_running;
7087 	bool task_sleep = flags & DEQUEUE_SLEEP;
7088 	bool task_delayed = flags & DEQUEUE_DELAYED;
7089 	struct task_struct *p = NULL;
7090 	int idle_h_nr_running = 0;
7091 	int h_nr_running = 0;
7092 	struct cfs_rq *cfs_rq;
7093 	u64 slice = 0;
7094 
7095 	if (entity_is_task(se)) {
7096 		p = task_of(se);
7097 		h_nr_running = 1;
7098 		idle_h_nr_running = task_has_idle_policy(p);
7099 	} else {
7100 		cfs_rq = group_cfs_rq(se);
7101 		slice = cfs_rq_min_slice(cfs_rq);
7102 	}
7103 
7104 	for_each_sched_entity(se) {
7105 		cfs_rq = cfs_rq_of(se);
7106 
7107 		if (!dequeue_entity(cfs_rq, se, flags)) {
7108 			if (p && &p->se == se)
7109 				return -1;
7110 
7111 			break;
7112 		}
7113 
7114 		cfs_rq->h_nr_running -= h_nr_running;
7115 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7116 
7117 		if (cfs_rq_is_idle(cfs_rq))
7118 			idle_h_nr_running = h_nr_running;
7119 
7120 		/* end evaluation on encountering a throttled cfs_rq */
7121 		if (cfs_rq_throttled(cfs_rq))
7122 			return 0;
7123 
7124 		/* Don't dequeue parent if it has other entities besides us */
7125 		if (cfs_rq->load.weight) {
7126 			slice = cfs_rq_min_slice(cfs_rq);
7127 
7128 			/* Avoid re-evaluating load for this entity: */
7129 			se = parent_entity(se);
7130 			/*
7131 			 * Bias pick_next to pick a task from this cfs_rq, as
7132 			 * p is sleeping when it is within its sched_slice.
7133 			 */
7134 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7135 				set_next_buddy(se);
7136 			break;
7137 		}
7138 		flags |= DEQUEUE_SLEEP;
7139 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7140 	}
7141 
7142 	for_each_sched_entity(se) {
7143 		cfs_rq = cfs_rq_of(se);
7144 
7145 		update_load_avg(cfs_rq, se, UPDATE_TG);
7146 		se_update_runnable(se);
7147 		update_cfs_group(se);
7148 
7149 		se->slice = slice;
7150 		slice = cfs_rq_min_slice(cfs_rq);
7151 
7152 		cfs_rq->h_nr_running -= h_nr_running;
7153 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7154 
7155 		if (cfs_rq_is_idle(cfs_rq))
7156 			idle_h_nr_running = h_nr_running;
7157 
7158 		/* end evaluation on encountering a throttled cfs_rq */
7159 		if (cfs_rq_throttled(cfs_rq))
7160 			return 0;
7161 	}
7162 
7163 	sub_nr_running(rq, h_nr_running);
7164 
7165 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
7166 		dl_server_stop(&rq->fair_server);
7167 
7168 	/* balance early to pull high priority tasks */
7169 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7170 		rq->next_balance = jiffies;
7171 
7172 	if (p && task_delayed) {
7173 		SCHED_WARN_ON(!task_sleep);
7174 		SCHED_WARN_ON(p->on_rq != 1);
7175 
7176 		/* Fix-up what dequeue_task_fair() skipped */
7177 		hrtick_update(rq);
7178 
7179 		/* Fix-up what block_task() skipped. */
7180 		__block_task(rq, p);
7181 	}
7182 
7183 	return 1;
7184 }
7185 
7186 /*
7187  * The dequeue_task method is called before nr_running is
7188  * decreased. We remove the task from the rbtree and
7189  * update the fair scheduling stats:
7190  */
7191 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7192 {
7193 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7194 		util_est_dequeue(&rq->cfs, p);
7195 
7196 	if (dequeue_entities(rq, &p->se, flags) < 0) {
7197 		util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
7198 		return false;
7199 	}
7200 
7201 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7202 	hrtick_update(rq);
7203 	return true;
7204 }
7205 
7206 #ifdef CONFIG_SMP
7207 
7208 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7209 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7210 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7211 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7212 
7213 #ifdef CONFIG_NO_HZ_COMMON
7214 
7215 static struct {
7216 	cpumask_var_t idle_cpus_mask;
7217 	atomic_t nr_cpus;
7218 	int has_blocked;		/* Idle CPUS has blocked load */
7219 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7220 	unsigned long next_balance;     /* in jiffy units */
7221 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7222 } nohz ____cacheline_aligned;
7223 
7224 #endif /* CONFIG_NO_HZ_COMMON */
7225 
7226 static unsigned long cpu_load(struct rq *rq)
7227 {
7228 	return cfs_rq_load_avg(&rq->cfs);
7229 }
7230 
7231 /*
7232  * cpu_load_without - compute CPU load without any contributions from *p
7233  * @cpu: the CPU which load is requested
7234  * @p: the task which load should be discounted
7235  *
7236  * The load of a CPU is defined by the load of tasks currently enqueued on that
7237  * CPU as well as tasks which are currently sleeping after an execution on that
7238  * CPU.
7239  *
7240  * This method returns the load of the specified CPU by discounting the load of
7241  * the specified task, whenever the task is currently contributing to the CPU
7242  * load.
7243  */
7244 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7245 {
7246 	struct cfs_rq *cfs_rq;
7247 	unsigned int load;
7248 
7249 	/* Task has no contribution or is new */
7250 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7251 		return cpu_load(rq);
7252 
7253 	cfs_rq = &rq->cfs;
7254 	load = READ_ONCE(cfs_rq->avg.load_avg);
7255 
7256 	/* Discount task's util from CPU's util */
7257 	lsub_positive(&load, task_h_load(p));
7258 
7259 	return load;
7260 }
7261 
7262 static unsigned long cpu_runnable(struct rq *rq)
7263 {
7264 	return cfs_rq_runnable_avg(&rq->cfs);
7265 }
7266 
7267 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7268 {
7269 	struct cfs_rq *cfs_rq;
7270 	unsigned int runnable;
7271 
7272 	/* Task has no contribution or is new */
7273 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7274 		return cpu_runnable(rq);
7275 
7276 	cfs_rq = &rq->cfs;
7277 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7278 
7279 	/* Discount task's runnable from CPU's runnable */
7280 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7281 
7282 	return runnable;
7283 }
7284 
7285 static unsigned long capacity_of(int cpu)
7286 {
7287 	return cpu_rq(cpu)->cpu_capacity;
7288 }
7289 
7290 static void record_wakee(struct task_struct *p)
7291 {
7292 	/*
7293 	 * Only decay a single time; tasks that have less then 1 wakeup per
7294 	 * jiffy will not have built up many flips.
7295 	 */
7296 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7297 		current->wakee_flips >>= 1;
7298 		current->wakee_flip_decay_ts = jiffies;
7299 	}
7300 
7301 	if (current->last_wakee != p) {
7302 		current->last_wakee = p;
7303 		current->wakee_flips++;
7304 	}
7305 }
7306 
7307 /*
7308  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7309  *
7310  * A waker of many should wake a different task than the one last awakened
7311  * at a frequency roughly N times higher than one of its wakees.
7312  *
7313  * In order to determine whether we should let the load spread vs consolidating
7314  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7315  * partner, and a factor of lls_size higher frequency in the other.
7316  *
7317  * With both conditions met, we can be relatively sure that the relationship is
7318  * non-monogamous, with partner count exceeding socket size.
7319  *
7320  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7321  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7322  * socket size.
7323  */
7324 static int wake_wide(struct task_struct *p)
7325 {
7326 	unsigned int master = current->wakee_flips;
7327 	unsigned int slave = p->wakee_flips;
7328 	int factor = __this_cpu_read(sd_llc_size);
7329 
7330 	if (master < slave)
7331 		swap(master, slave);
7332 	if (slave < factor || master < slave * factor)
7333 		return 0;
7334 	return 1;
7335 }
7336 
7337 /*
7338  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7339  * soonest. For the purpose of speed we only consider the waking and previous
7340  * CPU.
7341  *
7342  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7343  *			cache-affine and is (or	will be) idle.
7344  *
7345  * wake_affine_weight() - considers the weight to reflect the average
7346  *			  scheduling latency of the CPUs. This seems to work
7347  *			  for the overloaded case.
7348  */
7349 static int
7350 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7351 {
7352 	/*
7353 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7354 	 * context. Only allow the move if cache is shared. Otherwise an
7355 	 * interrupt intensive workload could force all tasks onto one
7356 	 * node depending on the IO topology or IRQ affinity settings.
7357 	 *
7358 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7359 	 * There is no guarantee that the cache hot data from an interrupt
7360 	 * is more important than cache hot data on the prev_cpu and from
7361 	 * a cpufreq perspective, it's better to have higher utilisation
7362 	 * on one CPU.
7363 	 */
7364 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7365 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7366 
7367 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7368 		return this_cpu;
7369 
7370 	if (available_idle_cpu(prev_cpu))
7371 		return prev_cpu;
7372 
7373 	return nr_cpumask_bits;
7374 }
7375 
7376 static int
7377 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7378 		   int this_cpu, int prev_cpu, int sync)
7379 {
7380 	s64 this_eff_load, prev_eff_load;
7381 	unsigned long task_load;
7382 
7383 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7384 
7385 	if (sync) {
7386 		unsigned long current_load = task_h_load(current);
7387 
7388 		if (current_load > this_eff_load)
7389 			return this_cpu;
7390 
7391 		this_eff_load -= current_load;
7392 	}
7393 
7394 	task_load = task_h_load(p);
7395 
7396 	this_eff_load += task_load;
7397 	if (sched_feat(WA_BIAS))
7398 		this_eff_load *= 100;
7399 	this_eff_load *= capacity_of(prev_cpu);
7400 
7401 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7402 	prev_eff_load -= task_load;
7403 	if (sched_feat(WA_BIAS))
7404 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7405 	prev_eff_load *= capacity_of(this_cpu);
7406 
7407 	/*
7408 	 * If sync, adjust the weight of prev_eff_load such that if
7409 	 * prev_eff == this_eff that select_idle_sibling() will consider
7410 	 * stacking the wakee on top of the waker if no other CPU is
7411 	 * idle.
7412 	 */
7413 	if (sync)
7414 		prev_eff_load += 1;
7415 
7416 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7417 }
7418 
7419 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7420 		       int this_cpu, int prev_cpu, int sync)
7421 {
7422 	int target = nr_cpumask_bits;
7423 
7424 	if (sched_feat(WA_IDLE))
7425 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7426 
7427 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7428 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7429 
7430 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7431 	if (target != this_cpu)
7432 		return prev_cpu;
7433 
7434 	schedstat_inc(sd->ttwu_move_affine);
7435 	schedstat_inc(p->stats.nr_wakeups_affine);
7436 	return target;
7437 }
7438 
7439 static struct sched_group *
7440 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7441 
7442 /*
7443  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7444  */
7445 static int
7446 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7447 {
7448 	unsigned long load, min_load = ULONG_MAX;
7449 	unsigned int min_exit_latency = UINT_MAX;
7450 	u64 latest_idle_timestamp = 0;
7451 	int least_loaded_cpu = this_cpu;
7452 	int shallowest_idle_cpu = -1;
7453 	int i;
7454 
7455 	/* Check if we have any choice: */
7456 	if (group->group_weight == 1)
7457 		return cpumask_first(sched_group_span(group));
7458 
7459 	/* Traverse only the allowed CPUs */
7460 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7461 		struct rq *rq = cpu_rq(i);
7462 
7463 		if (!sched_core_cookie_match(rq, p))
7464 			continue;
7465 
7466 		if (sched_idle_cpu(i))
7467 			return i;
7468 
7469 		if (available_idle_cpu(i)) {
7470 			struct cpuidle_state *idle = idle_get_state(rq);
7471 			if (idle && idle->exit_latency < min_exit_latency) {
7472 				/*
7473 				 * We give priority to a CPU whose idle state
7474 				 * has the smallest exit latency irrespective
7475 				 * of any idle timestamp.
7476 				 */
7477 				min_exit_latency = idle->exit_latency;
7478 				latest_idle_timestamp = rq->idle_stamp;
7479 				shallowest_idle_cpu = i;
7480 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7481 				   rq->idle_stamp > latest_idle_timestamp) {
7482 				/*
7483 				 * If equal or no active idle state, then
7484 				 * the most recently idled CPU might have
7485 				 * a warmer cache.
7486 				 */
7487 				latest_idle_timestamp = rq->idle_stamp;
7488 				shallowest_idle_cpu = i;
7489 			}
7490 		} else if (shallowest_idle_cpu == -1) {
7491 			load = cpu_load(cpu_rq(i));
7492 			if (load < min_load) {
7493 				min_load = load;
7494 				least_loaded_cpu = i;
7495 			}
7496 		}
7497 	}
7498 
7499 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7500 }
7501 
7502 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7503 				  int cpu, int prev_cpu, int sd_flag)
7504 {
7505 	int new_cpu = cpu;
7506 
7507 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7508 		return prev_cpu;
7509 
7510 	/*
7511 	 * We need task's util for cpu_util_without, sync it up to
7512 	 * prev_cpu's last_update_time.
7513 	 */
7514 	if (!(sd_flag & SD_BALANCE_FORK))
7515 		sync_entity_load_avg(&p->se);
7516 
7517 	while (sd) {
7518 		struct sched_group *group;
7519 		struct sched_domain *tmp;
7520 		int weight;
7521 
7522 		if (!(sd->flags & sd_flag)) {
7523 			sd = sd->child;
7524 			continue;
7525 		}
7526 
7527 		group = sched_balance_find_dst_group(sd, p, cpu);
7528 		if (!group) {
7529 			sd = sd->child;
7530 			continue;
7531 		}
7532 
7533 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7534 		if (new_cpu == cpu) {
7535 			/* Now try balancing at a lower domain level of 'cpu': */
7536 			sd = sd->child;
7537 			continue;
7538 		}
7539 
7540 		/* Now try balancing at a lower domain level of 'new_cpu': */
7541 		cpu = new_cpu;
7542 		weight = sd->span_weight;
7543 		sd = NULL;
7544 		for_each_domain(cpu, tmp) {
7545 			if (weight <= tmp->span_weight)
7546 				break;
7547 			if (tmp->flags & sd_flag)
7548 				sd = tmp;
7549 		}
7550 	}
7551 
7552 	return new_cpu;
7553 }
7554 
7555 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7556 {
7557 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7558 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7559 		return cpu;
7560 
7561 	return -1;
7562 }
7563 
7564 #ifdef CONFIG_SCHED_SMT
7565 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7566 EXPORT_SYMBOL_GPL(sched_smt_present);
7567 
7568 static inline void set_idle_cores(int cpu, int val)
7569 {
7570 	struct sched_domain_shared *sds;
7571 
7572 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7573 	if (sds)
7574 		WRITE_ONCE(sds->has_idle_cores, val);
7575 }
7576 
7577 static inline bool test_idle_cores(int cpu)
7578 {
7579 	struct sched_domain_shared *sds;
7580 
7581 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7582 	if (sds)
7583 		return READ_ONCE(sds->has_idle_cores);
7584 
7585 	return false;
7586 }
7587 
7588 /*
7589  * Scans the local SMT mask to see if the entire core is idle, and records this
7590  * information in sd_llc_shared->has_idle_cores.
7591  *
7592  * Since SMT siblings share all cache levels, inspecting this limited remote
7593  * state should be fairly cheap.
7594  */
7595 void __update_idle_core(struct rq *rq)
7596 {
7597 	int core = cpu_of(rq);
7598 	int cpu;
7599 
7600 	rcu_read_lock();
7601 	if (test_idle_cores(core))
7602 		goto unlock;
7603 
7604 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7605 		if (cpu == core)
7606 			continue;
7607 
7608 		if (!available_idle_cpu(cpu))
7609 			goto unlock;
7610 	}
7611 
7612 	set_idle_cores(core, 1);
7613 unlock:
7614 	rcu_read_unlock();
7615 }
7616 
7617 /*
7618  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7619  * there are no idle cores left in the system; tracked through
7620  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7621  */
7622 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7623 {
7624 	bool idle = true;
7625 	int cpu;
7626 
7627 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7628 		if (!available_idle_cpu(cpu)) {
7629 			idle = false;
7630 			if (*idle_cpu == -1) {
7631 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7632 					*idle_cpu = cpu;
7633 					break;
7634 				}
7635 				continue;
7636 			}
7637 			break;
7638 		}
7639 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7640 			*idle_cpu = cpu;
7641 	}
7642 
7643 	if (idle)
7644 		return core;
7645 
7646 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7647 	return -1;
7648 }
7649 
7650 /*
7651  * Scan the local SMT mask for idle CPUs.
7652  */
7653 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7654 {
7655 	int cpu;
7656 
7657 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7658 		if (cpu == target)
7659 			continue;
7660 		/*
7661 		 * Check if the CPU is in the LLC scheduling domain of @target.
7662 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7663 		 */
7664 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7665 			continue;
7666 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7667 			return cpu;
7668 	}
7669 
7670 	return -1;
7671 }
7672 
7673 #else /* CONFIG_SCHED_SMT */
7674 
7675 static inline void set_idle_cores(int cpu, int val)
7676 {
7677 }
7678 
7679 static inline bool test_idle_cores(int cpu)
7680 {
7681 	return false;
7682 }
7683 
7684 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7685 {
7686 	return __select_idle_cpu(core, p);
7687 }
7688 
7689 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7690 {
7691 	return -1;
7692 }
7693 
7694 #endif /* CONFIG_SCHED_SMT */
7695 
7696 /*
7697  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7698  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7699  * average idle time for this rq (as found in rq->avg_idle).
7700  */
7701 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7702 {
7703 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7704 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7705 	struct sched_domain_shared *sd_share;
7706 
7707 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7708 
7709 	if (sched_feat(SIS_UTIL)) {
7710 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7711 		if (sd_share) {
7712 			/* because !--nr is the condition to stop scan */
7713 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7714 			/* overloaded LLC is unlikely to have idle cpu/core */
7715 			if (nr == 1)
7716 				return -1;
7717 		}
7718 	}
7719 
7720 	if (static_branch_unlikely(&sched_cluster_active)) {
7721 		struct sched_group *sg = sd->groups;
7722 
7723 		if (sg->flags & SD_CLUSTER) {
7724 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7725 				if (!cpumask_test_cpu(cpu, cpus))
7726 					continue;
7727 
7728 				if (has_idle_core) {
7729 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7730 					if ((unsigned int)i < nr_cpumask_bits)
7731 						return i;
7732 				} else {
7733 					if (--nr <= 0)
7734 						return -1;
7735 					idle_cpu = __select_idle_cpu(cpu, p);
7736 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7737 						return idle_cpu;
7738 				}
7739 			}
7740 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7741 		}
7742 	}
7743 
7744 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7745 		if (has_idle_core) {
7746 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7747 			if ((unsigned int)i < nr_cpumask_bits)
7748 				return i;
7749 
7750 		} else {
7751 			if (--nr <= 0)
7752 				return -1;
7753 			idle_cpu = __select_idle_cpu(cpu, p);
7754 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7755 				break;
7756 		}
7757 	}
7758 
7759 	if (has_idle_core)
7760 		set_idle_cores(target, false);
7761 
7762 	return idle_cpu;
7763 }
7764 
7765 /*
7766  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7767  * the task fits. If no CPU is big enough, but there are idle ones, try to
7768  * maximize capacity.
7769  */
7770 static int
7771 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7772 {
7773 	unsigned long task_util, util_min, util_max, best_cap = 0;
7774 	int fits, best_fits = 0;
7775 	int cpu, best_cpu = -1;
7776 	struct cpumask *cpus;
7777 
7778 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7779 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7780 
7781 	task_util = task_util_est(p);
7782 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7783 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7784 
7785 	for_each_cpu_wrap(cpu, cpus, target) {
7786 		unsigned long cpu_cap = capacity_of(cpu);
7787 
7788 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7789 			continue;
7790 
7791 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7792 
7793 		/* This CPU fits with all requirements */
7794 		if (fits > 0)
7795 			return cpu;
7796 		/*
7797 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7798 		 * Look for the CPU with best capacity.
7799 		 */
7800 		else if (fits < 0)
7801 			cpu_cap = get_actual_cpu_capacity(cpu);
7802 
7803 		/*
7804 		 * First, select CPU which fits better (-1 being better than 0).
7805 		 * Then, select the one with best capacity at same level.
7806 		 */
7807 		if ((fits < best_fits) ||
7808 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7809 			best_cap = cpu_cap;
7810 			best_cpu = cpu;
7811 			best_fits = fits;
7812 		}
7813 	}
7814 
7815 	return best_cpu;
7816 }
7817 
7818 static inline bool asym_fits_cpu(unsigned long util,
7819 				 unsigned long util_min,
7820 				 unsigned long util_max,
7821 				 int cpu)
7822 {
7823 	if (sched_asym_cpucap_active())
7824 		/*
7825 		 * Return true only if the cpu fully fits the task requirements
7826 		 * which include the utilization and the performance hints.
7827 		 */
7828 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7829 
7830 	return true;
7831 }
7832 
7833 /*
7834  * Try and locate an idle core/thread in the LLC cache domain.
7835  */
7836 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7837 {
7838 	bool has_idle_core = false;
7839 	struct sched_domain *sd;
7840 	unsigned long task_util, util_min, util_max;
7841 	int i, recent_used_cpu, prev_aff = -1;
7842 
7843 	/*
7844 	 * On asymmetric system, update task utilization because we will check
7845 	 * that the task fits with CPU's capacity.
7846 	 */
7847 	if (sched_asym_cpucap_active()) {
7848 		sync_entity_load_avg(&p->se);
7849 		task_util = task_util_est(p);
7850 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7851 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7852 	}
7853 
7854 	/*
7855 	 * per-cpu select_rq_mask usage
7856 	 */
7857 	lockdep_assert_irqs_disabled();
7858 
7859 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7860 	    asym_fits_cpu(task_util, util_min, util_max, target))
7861 		return target;
7862 
7863 	/*
7864 	 * If the previous CPU is cache affine and idle, don't be stupid:
7865 	 */
7866 	if (prev != target && cpus_share_cache(prev, target) &&
7867 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7868 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7869 
7870 		if (!static_branch_unlikely(&sched_cluster_active) ||
7871 		    cpus_share_resources(prev, target))
7872 			return prev;
7873 
7874 		prev_aff = prev;
7875 	}
7876 
7877 	/*
7878 	 * Allow a per-cpu kthread to stack with the wakee if the
7879 	 * kworker thread and the tasks previous CPUs are the same.
7880 	 * The assumption is that the wakee queued work for the
7881 	 * per-cpu kthread that is now complete and the wakeup is
7882 	 * essentially a sync wakeup. An obvious example of this
7883 	 * pattern is IO completions.
7884 	 */
7885 	if (is_per_cpu_kthread(current) &&
7886 	    in_task() &&
7887 	    prev == smp_processor_id() &&
7888 	    this_rq()->nr_running <= 1 &&
7889 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7890 		return prev;
7891 	}
7892 
7893 	/* Check a recently used CPU as a potential idle candidate: */
7894 	recent_used_cpu = p->recent_used_cpu;
7895 	p->recent_used_cpu = prev;
7896 	if (recent_used_cpu != prev &&
7897 	    recent_used_cpu != target &&
7898 	    cpus_share_cache(recent_used_cpu, target) &&
7899 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7900 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7901 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7902 
7903 		if (!static_branch_unlikely(&sched_cluster_active) ||
7904 		    cpus_share_resources(recent_used_cpu, target))
7905 			return recent_used_cpu;
7906 
7907 	} else {
7908 		recent_used_cpu = -1;
7909 	}
7910 
7911 	/*
7912 	 * For asymmetric CPU capacity systems, our domain of interest is
7913 	 * sd_asym_cpucapacity rather than sd_llc.
7914 	 */
7915 	if (sched_asym_cpucap_active()) {
7916 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7917 		/*
7918 		 * On an asymmetric CPU capacity system where an exclusive
7919 		 * cpuset defines a symmetric island (i.e. one unique
7920 		 * capacity_orig value through the cpuset), the key will be set
7921 		 * but the CPUs within that cpuset will not have a domain with
7922 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7923 		 * capacity path.
7924 		 */
7925 		if (sd) {
7926 			i = select_idle_capacity(p, sd, target);
7927 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7928 		}
7929 	}
7930 
7931 	sd = rcu_dereference(per_cpu(sd_llc, target));
7932 	if (!sd)
7933 		return target;
7934 
7935 	if (sched_smt_active()) {
7936 		has_idle_core = test_idle_cores(target);
7937 
7938 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7939 			i = select_idle_smt(p, sd, prev);
7940 			if ((unsigned int)i < nr_cpumask_bits)
7941 				return i;
7942 		}
7943 	}
7944 
7945 	i = select_idle_cpu(p, sd, has_idle_core, target);
7946 	if ((unsigned)i < nr_cpumask_bits)
7947 		return i;
7948 
7949 	/*
7950 	 * For cluster machines which have lower sharing cache like L2 or
7951 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7952 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7953 	 * use them if possible when no idle CPU found in select_idle_cpu().
7954 	 */
7955 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7956 		return prev_aff;
7957 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7958 		return recent_used_cpu;
7959 
7960 	return target;
7961 }
7962 
7963 /**
7964  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7965  * @cpu: the CPU to get the utilization for
7966  * @p: task for which the CPU utilization should be predicted or NULL
7967  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7968  * @boost: 1 to enable boosting, otherwise 0
7969  *
7970  * The unit of the return value must be the same as the one of CPU capacity
7971  * so that CPU utilization can be compared with CPU capacity.
7972  *
7973  * CPU utilization is the sum of running time of runnable tasks plus the
7974  * recent utilization of currently non-runnable tasks on that CPU.
7975  * It represents the amount of CPU capacity currently used by CFS tasks in
7976  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7977  * capacity at f_max.
7978  *
7979  * The estimated CPU utilization is defined as the maximum between CPU
7980  * utilization and sum of the estimated utilization of the currently
7981  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7982  * previously-executed tasks, which helps better deduce how busy a CPU will
7983  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7984  * of such a task would be significantly decayed at this point of time.
7985  *
7986  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7987  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7988  * utilization. Boosting is implemented in cpu_util() so that internal
7989  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7990  * latter via cpu_util_cfs_boost().
7991  *
7992  * CPU utilization can be higher than the current CPU capacity
7993  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7994  * of rounding errors as well as task migrations or wakeups of new tasks.
7995  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7996  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7997  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7998  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7999  * though since this is useful for predicting the CPU capacity required
8000  * after task migrations (scheduler-driven DVFS).
8001  *
8002  * Return: (Boosted) (estimated) utilization for the specified CPU.
8003  */
8004 static unsigned long
8005 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8006 {
8007 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8008 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8009 	unsigned long runnable;
8010 
8011 	if (boost) {
8012 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8013 		util = max(util, runnable);
8014 	}
8015 
8016 	/*
8017 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8018 	 * contribution. If @p migrates from another CPU to @cpu add its
8019 	 * contribution. In all the other cases @cpu is not impacted by the
8020 	 * migration so its util_avg is already correct.
8021 	 */
8022 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8023 		lsub_positive(&util, task_util(p));
8024 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8025 		util += task_util(p);
8026 
8027 	if (sched_feat(UTIL_EST)) {
8028 		unsigned long util_est;
8029 
8030 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8031 
8032 		/*
8033 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8034 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8035 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8036 		 * has been enqueued.
8037 		 *
8038 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8039 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8040 		 * Remove it to "simulate" cpu_util without @p's contribution.
8041 		 *
8042 		 * Despite the task_on_rq_queued(@p) check there is still a
8043 		 * small window for a possible race when an exec
8044 		 * select_task_rq_fair() races with LB's detach_task().
8045 		 *
8046 		 *   detach_task()
8047 		 *     deactivate_task()
8048 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8049 		 *       -------------------------------- A
8050 		 *       dequeue_task()                    \
8051 		 *         dequeue_task_fair()              + Race Time
8052 		 *           util_est_dequeue()            /
8053 		 *       -------------------------------- B
8054 		 *
8055 		 * The additional check "current == p" is required to further
8056 		 * reduce the race window.
8057 		 */
8058 		if (dst_cpu == cpu)
8059 			util_est += _task_util_est(p);
8060 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8061 			lsub_positive(&util_est, _task_util_est(p));
8062 
8063 		util = max(util, util_est);
8064 	}
8065 
8066 	return min(util, arch_scale_cpu_capacity(cpu));
8067 }
8068 
8069 unsigned long cpu_util_cfs(int cpu)
8070 {
8071 	return cpu_util(cpu, NULL, -1, 0);
8072 }
8073 
8074 unsigned long cpu_util_cfs_boost(int cpu)
8075 {
8076 	return cpu_util(cpu, NULL, -1, 1);
8077 }
8078 
8079 /*
8080  * cpu_util_without: compute cpu utilization without any contributions from *p
8081  * @cpu: the CPU which utilization is requested
8082  * @p: the task which utilization should be discounted
8083  *
8084  * The utilization of a CPU is defined by the utilization of tasks currently
8085  * enqueued on that CPU as well as tasks which are currently sleeping after an
8086  * execution on that CPU.
8087  *
8088  * This method returns the utilization of the specified CPU by discounting the
8089  * utilization of the specified task, whenever the task is currently
8090  * contributing to the CPU utilization.
8091  */
8092 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8093 {
8094 	/* Task has no contribution or is new */
8095 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8096 		p = NULL;
8097 
8098 	return cpu_util(cpu, p, -1, 0);
8099 }
8100 
8101 /*
8102  * This function computes an effective utilization for the given CPU, to be
8103  * used for frequency selection given the linear relation: f = u * f_max.
8104  *
8105  * The scheduler tracks the following metrics:
8106  *
8107  *   cpu_util_{cfs,rt,dl,irq}()
8108  *   cpu_bw_dl()
8109  *
8110  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8111  * synchronized windows and are thus directly comparable.
8112  *
8113  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8114  * which excludes things like IRQ and steal-time. These latter are then accrued
8115  * in the IRQ utilization.
8116  *
8117  * The DL bandwidth number OTOH is not a measured metric but a value computed
8118  * based on the task model parameters and gives the minimal utilization
8119  * required to meet deadlines.
8120  */
8121 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8122 				 unsigned long *min,
8123 				 unsigned long *max)
8124 {
8125 	unsigned long util, irq, scale;
8126 	struct rq *rq = cpu_rq(cpu);
8127 
8128 	scale = arch_scale_cpu_capacity(cpu);
8129 
8130 	/*
8131 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8132 	 * because of inaccuracies in how we track these -- see
8133 	 * update_irq_load_avg().
8134 	 */
8135 	irq = cpu_util_irq(rq);
8136 	if (unlikely(irq >= scale)) {
8137 		if (min)
8138 			*min = scale;
8139 		if (max)
8140 			*max = scale;
8141 		return scale;
8142 	}
8143 
8144 	if (min) {
8145 		/*
8146 		 * The minimum utilization returns the highest level between:
8147 		 * - the computed DL bandwidth needed with the IRQ pressure which
8148 		 *   steals time to the deadline task.
8149 		 * - The minimum performance requirement for CFS and/or RT.
8150 		 */
8151 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8152 
8153 		/*
8154 		 * When an RT task is runnable and uclamp is not used, we must
8155 		 * ensure that the task will run at maximum compute capacity.
8156 		 */
8157 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8158 			*min = max(*min, scale);
8159 	}
8160 
8161 	/*
8162 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8163 	 * CFS tasks and we use the same metric to track the effective
8164 	 * utilization (PELT windows are synchronized) we can directly add them
8165 	 * to obtain the CPU's actual utilization.
8166 	 */
8167 	util = util_cfs + cpu_util_rt(rq);
8168 	util += cpu_util_dl(rq);
8169 
8170 	/*
8171 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8172 	 * than the actual utilization because of uclamp_max requirements.
8173 	 */
8174 	if (max)
8175 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8176 
8177 	if (util >= scale)
8178 		return scale;
8179 
8180 	/*
8181 	 * There is still idle time; further improve the number by using the
8182 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8183 	 * need to scale the task numbers:
8184 	 *
8185 	 *              max - irq
8186 	 *   U' = irq + --------- * U
8187 	 *                 max
8188 	 */
8189 	util = scale_irq_capacity(util, irq, scale);
8190 	util += irq;
8191 
8192 	return min(scale, util);
8193 }
8194 
8195 unsigned long sched_cpu_util(int cpu)
8196 {
8197 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8198 }
8199 
8200 /*
8201  * energy_env - Utilization landscape for energy estimation.
8202  * @task_busy_time: Utilization contribution by the task for which we test the
8203  *                  placement. Given by eenv_task_busy_time().
8204  * @pd_busy_time:   Utilization of the whole perf domain without the task
8205  *                  contribution. Given by eenv_pd_busy_time().
8206  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8207  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8208  */
8209 struct energy_env {
8210 	unsigned long task_busy_time;
8211 	unsigned long pd_busy_time;
8212 	unsigned long cpu_cap;
8213 	unsigned long pd_cap;
8214 };
8215 
8216 /*
8217  * Compute the task busy time for compute_energy(). This time cannot be
8218  * injected directly into effective_cpu_util() because of the IRQ scaling.
8219  * The latter only makes sense with the most recent CPUs where the task has
8220  * run.
8221  */
8222 static inline void eenv_task_busy_time(struct energy_env *eenv,
8223 				       struct task_struct *p, int prev_cpu)
8224 {
8225 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8226 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8227 
8228 	if (unlikely(irq >= max_cap))
8229 		busy_time = max_cap;
8230 	else
8231 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8232 
8233 	eenv->task_busy_time = busy_time;
8234 }
8235 
8236 /*
8237  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8238  * utilization for each @pd_cpus, it however doesn't take into account
8239  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8240  * scale the EM reported power consumption at the (eventually clamped)
8241  * cpu_capacity.
8242  *
8243  * The contribution of the task @p for which we want to estimate the
8244  * energy cost is removed (by cpu_util()) and must be calculated
8245  * separately (see eenv_task_busy_time). This ensures:
8246  *
8247  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8248  *     the task on.
8249  *
8250  *   - A fair comparison between CPUs as the task contribution (task_util())
8251  *     will always be the same no matter which CPU utilization we rely on
8252  *     (util_avg or util_est).
8253  *
8254  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8255  * exceed @eenv->pd_cap.
8256  */
8257 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8258 				     struct cpumask *pd_cpus,
8259 				     struct task_struct *p)
8260 {
8261 	unsigned long busy_time = 0;
8262 	int cpu;
8263 
8264 	for_each_cpu(cpu, pd_cpus) {
8265 		unsigned long util = cpu_util(cpu, p, -1, 0);
8266 
8267 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8268 	}
8269 
8270 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8271 }
8272 
8273 /*
8274  * Compute the maximum utilization for compute_energy() when the task @p
8275  * is placed on the cpu @dst_cpu.
8276  *
8277  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8278  * exceed @eenv->cpu_cap.
8279  */
8280 static inline unsigned long
8281 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8282 		 struct task_struct *p, int dst_cpu)
8283 {
8284 	unsigned long max_util = 0;
8285 	int cpu;
8286 
8287 	for_each_cpu(cpu, pd_cpus) {
8288 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8289 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8290 		unsigned long eff_util, min, max;
8291 
8292 		/*
8293 		 * Performance domain frequency: utilization clamping
8294 		 * must be considered since it affects the selection
8295 		 * of the performance domain frequency.
8296 		 * NOTE: in case RT tasks are running, by default the min
8297 		 * utilization can be max OPP.
8298 		 */
8299 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8300 
8301 		/* Task's uclamp can modify min and max value */
8302 		if (tsk && uclamp_is_used()) {
8303 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8304 
8305 			/*
8306 			 * If there is no active max uclamp constraint,
8307 			 * directly use task's one, otherwise keep max.
8308 			 */
8309 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8310 				max = uclamp_eff_value(p, UCLAMP_MAX);
8311 			else
8312 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8313 		}
8314 
8315 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8316 		max_util = max(max_util, eff_util);
8317 	}
8318 
8319 	return min(max_util, eenv->cpu_cap);
8320 }
8321 
8322 /*
8323  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8324  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8325  * contribution is ignored.
8326  */
8327 static inline unsigned long
8328 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8329 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8330 {
8331 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8332 	unsigned long busy_time = eenv->pd_busy_time;
8333 	unsigned long energy;
8334 
8335 	if (dst_cpu >= 0)
8336 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8337 
8338 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8339 
8340 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8341 
8342 	return energy;
8343 }
8344 
8345 /*
8346  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8347  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8348  * spare capacity in each performance domain and uses it as a potential
8349  * candidate to execute the task. Then, it uses the Energy Model to figure
8350  * out which of the CPU candidates is the most energy-efficient.
8351  *
8352  * The rationale for this heuristic is as follows. In a performance domain,
8353  * all the most energy efficient CPU candidates (according to the Energy
8354  * Model) are those for which we'll request a low frequency. When there are
8355  * several CPUs for which the frequency request will be the same, we don't
8356  * have enough data to break the tie between them, because the Energy Model
8357  * only includes active power costs. With this model, if we assume that
8358  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8359  * the maximum spare capacity in a performance domain is guaranteed to be among
8360  * the best candidates of the performance domain.
8361  *
8362  * In practice, it could be preferable from an energy standpoint to pack
8363  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8364  * but that could also hurt our chances to go cluster idle, and we have no
8365  * ways to tell with the current Energy Model if this is actually a good
8366  * idea or not. So, find_energy_efficient_cpu() basically favors
8367  * cluster-packing, and spreading inside a cluster. That should at least be
8368  * a good thing for latency, and this is consistent with the idea that most
8369  * of the energy savings of EAS come from the asymmetry of the system, and
8370  * not so much from breaking the tie between identical CPUs. That's also the
8371  * reason why EAS is enabled in the topology code only for systems where
8372  * SD_ASYM_CPUCAPACITY is set.
8373  *
8374  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8375  * they don't have any useful utilization data yet and it's not possible to
8376  * forecast their impact on energy consumption. Consequently, they will be
8377  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8378  * to be energy-inefficient in some use-cases. The alternative would be to
8379  * bias new tasks towards specific types of CPUs first, or to try to infer
8380  * their util_avg from the parent task, but those heuristics could hurt
8381  * other use-cases too. So, until someone finds a better way to solve this,
8382  * let's keep things simple by re-using the existing slow path.
8383  */
8384 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8385 {
8386 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8387 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8388 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8389 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8390 	struct root_domain *rd = this_rq()->rd;
8391 	int cpu, best_energy_cpu, target = -1;
8392 	int prev_fits = -1, best_fits = -1;
8393 	unsigned long best_actual_cap = 0;
8394 	unsigned long prev_actual_cap = 0;
8395 	struct sched_domain *sd;
8396 	struct perf_domain *pd;
8397 	struct energy_env eenv;
8398 
8399 	rcu_read_lock();
8400 	pd = rcu_dereference(rd->pd);
8401 	if (!pd)
8402 		goto unlock;
8403 
8404 	/*
8405 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8406 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8407 	 */
8408 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8409 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8410 		sd = sd->parent;
8411 	if (!sd)
8412 		goto unlock;
8413 
8414 	target = prev_cpu;
8415 
8416 	sync_entity_load_avg(&p->se);
8417 	if (!task_util_est(p) && p_util_min == 0)
8418 		goto unlock;
8419 
8420 	eenv_task_busy_time(&eenv, p, prev_cpu);
8421 
8422 	for (; pd; pd = pd->next) {
8423 		unsigned long util_min = p_util_min, util_max = p_util_max;
8424 		unsigned long cpu_cap, cpu_actual_cap, util;
8425 		long prev_spare_cap = -1, max_spare_cap = -1;
8426 		unsigned long rq_util_min, rq_util_max;
8427 		unsigned long cur_delta, base_energy;
8428 		int max_spare_cap_cpu = -1;
8429 		int fits, max_fits = -1;
8430 
8431 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8432 
8433 		if (cpumask_empty(cpus))
8434 			continue;
8435 
8436 		/* Account external pressure for the energy estimation */
8437 		cpu = cpumask_first(cpus);
8438 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8439 
8440 		eenv.cpu_cap = cpu_actual_cap;
8441 		eenv.pd_cap = 0;
8442 
8443 		for_each_cpu(cpu, cpus) {
8444 			struct rq *rq = cpu_rq(cpu);
8445 
8446 			eenv.pd_cap += cpu_actual_cap;
8447 
8448 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8449 				continue;
8450 
8451 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8452 				continue;
8453 
8454 			util = cpu_util(cpu, p, cpu, 0);
8455 			cpu_cap = capacity_of(cpu);
8456 
8457 			/*
8458 			 * Skip CPUs that cannot satisfy the capacity request.
8459 			 * IOW, placing the task there would make the CPU
8460 			 * overutilized. Take uclamp into account to see how
8461 			 * much capacity we can get out of the CPU; this is
8462 			 * aligned with sched_cpu_util().
8463 			 */
8464 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8465 				/*
8466 				 * Open code uclamp_rq_util_with() except for
8467 				 * the clamp() part. I.e.: apply max aggregation
8468 				 * only. util_fits_cpu() logic requires to
8469 				 * operate on non clamped util but must use the
8470 				 * max-aggregated uclamp_{min, max}.
8471 				 */
8472 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8473 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8474 
8475 				util_min = max(rq_util_min, p_util_min);
8476 				util_max = max(rq_util_max, p_util_max);
8477 			}
8478 
8479 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8480 			if (!fits)
8481 				continue;
8482 
8483 			lsub_positive(&cpu_cap, util);
8484 
8485 			if (cpu == prev_cpu) {
8486 				/* Always use prev_cpu as a candidate. */
8487 				prev_spare_cap = cpu_cap;
8488 				prev_fits = fits;
8489 			} else if ((fits > max_fits) ||
8490 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8491 				/*
8492 				 * Find the CPU with the maximum spare capacity
8493 				 * among the remaining CPUs in the performance
8494 				 * domain.
8495 				 */
8496 				max_spare_cap = cpu_cap;
8497 				max_spare_cap_cpu = cpu;
8498 				max_fits = fits;
8499 			}
8500 		}
8501 
8502 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8503 			continue;
8504 
8505 		eenv_pd_busy_time(&eenv, cpus, p);
8506 		/* Compute the 'base' energy of the pd, without @p */
8507 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8508 
8509 		/* Evaluate the energy impact of using prev_cpu. */
8510 		if (prev_spare_cap > -1) {
8511 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8512 						    prev_cpu);
8513 			/* CPU utilization has changed */
8514 			if (prev_delta < base_energy)
8515 				goto unlock;
8516 			prev_delta -= base_energy;
8517 			prev_actual_cap = cpu_actual_cap;
8518 			best_delta = min(best_delta, prev_delta);
8519 		}
8520 
8521 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8522 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8523 			/* Current best energy cpu fits better */
8524 			if (max_fits < best_fits)
8525 				continue;
8526 
8527 			/*
8528 			 * Both don't fit performance hint (i.e. uclamp_min)
8529 			 * but best energy cpu has better capacity.
8530 			 */
8531 			if ((max_fits < 0) &&
8532 			    (cpu_actual_cap <= best_actual_cap))
8533 				continue;
8534 
8535 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8536 						   max_spare_cap_cpu);
8537 			/* CPU utilization has changed */
8538 			if (cur_delta < base_energy)
8539 				goto unlock;
8540 			cur_delta -= base_energy;
8541 
8542 			/*
8543 			 * Both fit for the task but best energy cpu has lower
8544 			 * energy impact.
8545 			 */
8546 			if ((max_fits > 0) && (best_fits > 0) &&
8547 			    (cur_delta >= best_delta))
8548 				continue;
8549 
8550 			best_delta = cur_delta;
8551 			best_energy_cpu = max_spare_cap_cpu;
8552 			best_fits = max_fits;
8553 			best_actual_cap = cpu_actual_cap;
8554 		}
8555 	}
8556 	rcu_read_unlock();
8557 
8558 	if ((best_fits > prev_fits) ||
8559 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8560 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8561 		target = best_energy_cpu;
8562 
8563 	return target;
8564 
8565 unlock:
8566 	rcu_read_unlock();
8567 
8568 	return target;
8569 }
8570 
8571 /*
8572  * select_task_rq_fair: Select target runqueue for the waking task in domains
8573  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8574  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8575  *
8576  * Balances load by selecting the idlest CPU in the idlest group, or under
8577  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8578  *
8579  * Returns the target CPU number.
8580  */
8581 static int
8582 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8583 {
8584 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8585 	struct sched_domain *tmp, *sd = NULL;
8586 	int cpu = smp_processor_id();
8587 	int new_cpu = prev_cpu;
8588 	int want_affine = 0;
8589 	/* SD_flags and WF_flags share the first nibble */
8590 	int sd_flag = wake_flags & 0xF;
8591 
8592 	/*
8593 	 * required for stable ->cpus_allowed
8594 	 */
8595 	lockdep_assert_held(&p->pi_lock);
8596 	if (wake_flags & WF_TTWU) {
8597 		record_wakee(p);
8598 
8599 		if ((wake_flags & WF_CURRENT_CPU) &&
8600 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8601 			return cpu;
8602 
8603 		if (!is_rd_overutilized(this_rq()->rd)) {
8604 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8605 			if (new_cpu >= 0)
8606 				return new_cpu;
8607 			new_cpu = prev_cpu;
8608 		}
8609 
8610 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8611 	}
8612 
8613 	rcu_read_lock();
8614 	for_each_domain(cpu, tmp) {
8615 		/*
8616 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8617 		 * cpu is a valid SD_WAKE_AFFINE target.
8618 		 */
8619 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8620 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8621 			if (cpu != prev_cpu)
8622 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8623 
8624 			sd = NULL; /* Prefer wake_affine over balance flags */
8625 			break;
8626 		}
8627 
8628 		/*
8629 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8630 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8631 		 * will usually go to the fast path.
8632 		 */
8633 		if (tmp->flags & sd_flag)
8634 			sd = tmp;
8635 		else if (!want_affine)
8636 			break;
8637 	}
8638 
8639 	if (unlikely(sd)) {
8640 		/* Slow path */
8641 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8642 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8643 		/* Fast path */
8644 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8645 	}
8646 	rcu_read_unlock();
8647 
8648 	return new_cpu;
8649 }
8650 
8651 /*
8652  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8653  * cfs_rq_of(p) references at time of call are still valid and identify the
8654  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8655  */
8656 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8657 {
8658 	struct sched_entity *se = &p->se;
8659 
8660 	if (!task_on_rq_migrating(p)) {
8661 		remove_entity_load_avg(se);
8662 
8663 		/*
8664 		 * Here, the task's PELT values have been updated according to
8665 		 * the current rq's clock. But if that clock hasn't been
8666 		 * updated in a while, a substantial idle time will be missed,
8667 		 * leading to an inflation after wake-up on the new rq.
8668 		 *
8669 		 * Estimate the missing time from the cfs_rq last_update_time
8670 		 * and update sched_avg to improve the PELT continuity after
8671 		 * migration.
8672 		 */
8673 		migrate_se_pelt_lag(se);
8674 	}
8675 
8676 	/* Tell new CPU we are migrated */
8677 	se->avg.last_update_time = 0;
8678 
8679 	update_scan_period(p, new_cpu);
8680 }
8681 
8682 static void task_dead_fair(struct task_struct *p)
8683 {
8684 	struct sched_entity *se = &p->se;
8685 
8686 	if (se->sched_delayed) {
8687 		struct rq_flags rf;
8688 		struct rq *rq;
8689 
8690 		rq = task_rq_lock(p, &rf);
8691 		if (se->sched_delayed) {
8692 			update_rq_clock(rq);
8693 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8694 		}
8695 		task_rq_unlock(rq, p, &rf);
8696 	}
8697 
8698 	remove_entity_load_avg(se);
8699 }
8700 
8701 /*
8702  * Set the max capacity the task is allowed to run at for misfit detection.
8703  */
8704 static void set_task_max_allowed_capacity(struct task_struct *p)
8705 {
8706 	struct asym_cap_data *entry;
8707 
8708 	if (!sched_asym_cpucap_active())
8709 		return;
8710 
8711 	rcu_read_lock();
8712 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8713 		cpumask_t *cpumask;
8714 
8715 		cpumask = cpu_capacity_span(entry);
8716 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8717 			continue;
8718 
8719 		p->max_allowed_capacity = entry->capacity;
8720 		break;
8721 	}
8722 	rcu_read_unlock();
8723 }
8724 
8725 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8726 {
8727 	set_cpus_allowed_common(p, ctx);
8728 	set_task_max_allowed_capacity(p);
8729 }
8730 
8731 static int
8732 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8733 {
8734 	if (sched_fair_runnable(rq))
8735 		return 1;
8736 
8737 	return sched_balance_newidle(rq, rf) != 0;
8738 }
8739 #else
8740 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8741 #endif /* CONFIG_SMP */
8742 
8743 static void set_next_buddy(struct sched_entity *se)
8744 {
8745 	for_each_sched_entity(se) {
8746 		if (SCHED_WARN_ON(!se->on_rq))
8747 			return;
8748 		if (se_is_idle(se))
8749 			return;
8750 		cfs_rq_of(se)->next = se;
8751 	}
8752 }
8753 
8754 /*
8755  * Preempt the current task with a newly woken task if needed:
8756  */
8757 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8758 {
8759 	struct task_struct *curr = rq->curr;
8760 	struct sched_entity *se = &curr->se, *pse = &p->se;
8761 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8762 	int cse_is_idle, pse_is_idle;
8763 
8764 	if (unlikely(se == pse))
8765 		return;
8766 
8767 	/*
8768 	 * This is possible from callers such as attach_tasks(), in which we
8769 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8770 	 * lead to a throttle).  This both saves work and prevents false
8771 	 * next-buddy nomination below.
8772 	 */
8773 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8774 		return;
8775 
8776 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8777 		set_next_buddy(pse);
8778 	}
8779 
8780 	/*
8781 	 * We can come here with TIF_NEED_RESCHED already set from new task
8782 	 * wake up path.
8783 	 *
8784 	 * Note: this also catches the edge-case of curr being in a throttled
8785 	 * group (e.g. via set_curr_task), since update_curr() (in the
8786 	 * enqueue of curr) will have resulted in resched being set.  This
8787 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8788 	 * below.
8789 	 */
8790 	if (test_tsk_need_resched(curr))
8791 		return;
8792 
8793 	if (!sched_feat(WAKEUP_PREEMPTION))
8794 		return;
8795 
8796 	find_matching_se(&se, &pse);
8797 	WARN_ON_ONCE(!pse);
8798 
8799 	cse_is_idle = se_is_idle(se);
8800 	pse_is_idle = se_is_idle(pse);
8801 
8802 	/*
8803 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8804 	 * in the inverse case).
8805 	 */
8806 	if (cse_is_idle && !pse_is_idle)
8807 		goto preempt;
8808 	if (cse_is_idle != pse_is_idle)
8809 		return;
8810 
8811 	/*
8812 	 * BATCH and IDLE tasks do not preempt others.
8813 	 */
8814 	if (unlikely(!normal_policy(p->policy)))
8815 		return;
8816 
8817 	cfs_rq = cfs_rq_of(se);
8818 	update_curr(cfs_rq);
8819 	/*
8820 	 * If @p has a shorter slice than current and @p is eligible, override
8821 	 * current's slice protection in order to allow preemption.
8822 	 *
8823 	 * Note that even if @p does not turn out to be the most eligible
8824 	 * task at this moment, current's slice protection will be lost.
8825 	 */
8826 	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8827 		se->vlag = se->deadline + 1;
8828 
8829 	/*
8830 	 * If @p has become the most eligible task, force preemption.
8831 	 */
8832 	if (pick_eevdf(cfs_rq) == pse)
8833 		goto preempt;
8834 
8835 	return;
8836 
8837 preempt:
8838 	resched_curr(rq);
8839 }
8840 
8841 static struct task_struct *pick_task_fair(struct rq *rq)
8842 {
8843 	struct sched_entity *se;
8844 	struct cfs_rq *cfs_rq;
8845 
8846 again:
8847 	cfs_rq = &rq->cfs;
8848 	if (!cfs_rq->nr_running)
8849 		return NULL;
8850 
8851 	do {
8852 		/* Might not have done put_prev_entity() */
8853 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8854 			update_curr(cfs_rq);
8855 
8856 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8857 			goto again;
8858 
8859 		se = pick_next_entity(rq, cfs_rq);
8860 		if (!se)
8861 			goto again;
8862 		cfs_rq = group_cfs_rq(se);
8863 	} while (cfs_rq);
8864 
8865 	return task_of(se);
8866 }
8867 
8868 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8869 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8870 
8871 struct task_struct *
8872 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8873 {
8874 	struct sched_entity *se;
8875 	struct task_struct *p;
8876 	int new_tasks;
8877 
8878 again:
8879 	p = pick_task_fair(rq);
8880 	if (!p)
8881 		goto idle;
8882 	se = &p->se;
8883 
8884 #ifdef CONFIG_FAIR_GROUP_SCHED
8885 	if (prev->sched_class != &fair_sched_class)
8886 		goto simple;
8887 
8888 	__put_prev_set_next_dl_server(rq, prev, p);
8889 
8890 	/*
8891 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8892 	 * likely that a next task is from the same cgroup as the current.
8893 	 *
8894 	 * Therefore attempt to avoid putting and setting the entire cgroup
8895 	 * hierarchy, only change the part that actually changes.
8896 	 *
8897 	 * Since we haven't yet done put_prev_entity and if the selected task
8898 	 * is a different task than we started out with, try and touch the
8899 	 * least amount of cfs_rqs.
8900 	 */
8901 	if (prev != p) {
8902 		struct sched_entity *pse = &prev->se;
8903 		struct cfs_rq *cfs_rq;
8904 
8905 		while (!(cfs_rq = is_same_group(se, pse))) {
8906 			int se_depth = se->depth;
8907 			int pse_depth = pse->depth;
8908 
8909 			if (se_depth <= pse_depth) {
8910 				put_prev_entity(cfs_rq_of(pse), pse);
8911 				pse = parent_entity(pse);
8912 			}
8913 			if (se_depth >= pse_depth) {
8914 				set_next_entity(cfs_rq_of(se), se);
8915 				se = parent_entity(se);
8916 			}
8917 		}
8918 
8919 		put_prev_entity(cfs_rq, pse);
8920 		set_next_entity(cfs_rq, se);
8921 
8922 		__set_next_task_fair(rq, p, true);
8923 	}
8924 
8925 	return p;
8926 
8927 simple:
8928 #endif
8929 	put_prev_set_next_task(rq, prev, p);
8930 	return p;
8931 
8932 idle:
8933 	if (!rf)
8934 		return NULL;
8935 
8936 	new_tasks = sched_balance_newidle(rq, rf);
8937 
8938 	/*
8939 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8940 	 * possible for any higher priority task to appear. In that case we
8941 	 * must re-start the pick_next_entity() loop.
8942 	 */
8943 	if (new_tasks < 0)
8944 		return RETRY_TASK;
8945 
8946 	if (new_tasks > 0)
8947 		goto again;
8948 
8949 	/*
8950 	 * rq is about to be idle, check if we need to update the
8951 	 * lost_idle_time of clock_pelt
8952 	 */
8953 	update_idle_rq_clock_pelt(rq);
8954 
8955 	return NULL;
8956 }
8957 
8958 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8959 {
8960 	return pick_next_task_fair(rq, prev, NULL);
8961 }
8962 
8963 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8964 {
8965 	return !!dl_se->rq->cfs.nr_running;
8966 }
8967 
8968 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8969 {
8970 	return pick_task_fair(dl_se->rq);
8971 }
8972 
8973 void fair_server_init(struct rq *rq)
8974 {
8975 	struct sched_dl_entity *dl_se = &rq->fair_server;
8976 
8977 	init_dl_entity(dl_se);
8978 
8979 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8980 }
8981 
8982 /*
8983  * Account for a descheduled task:
8984  */
8985 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8986 {
8987 	struct sched_entity *se = &prev->se;
8988 	struct cfs_rq *cfs_rq;
8989 
8990 	for_each_sched_entity(se) {
8991 		cfs_rq = cfs_rq_of(se);
8992 		put_prev_entity(cfs_rq, se);
8993 	}
8994 }
8995 
8996 /*
8997  * sched_yield() is very simple
8998  */
8999 static void yield_task_fair(struct rq *rq)
9000 {
9001 	struct task_struct *curr = rq->curr;
9002 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9003 	struct sched_entity *se = &curr->se;
9004 
9005 	/*
9006 	 * Are we the only task in the tree?
9007 	 */
9008 	if (unlikely(rq->nr_running == 1))
9009 		return;
9010 
9011 	clear_buddies(cfs_rq, se);
9012 
9013 	update_rq_clock(rq);
9014 	/*
9015 	 * Update run-time statistics of the 'current'.
9016 	 */
9017 	update_curr(cfs_rq);
9018 	/*
9019 	 * Tell update_rq_clock() that we've just updated,
9020 	 * so we don't do microscopic update in schedule()
9021 	 * and double the fastpath cost.
9022 	 */
9023 	rq_clock_skip_update(rq);
9024 
9025 	se->deadline += calc_delta_fair(se->slice, se);
9026 }
9027 
9028 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9029 {
9030 	struct sched_entity *se = &p->se;
9031 
9032 	/* throttled hierarchies are not runnable */
9033 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9034 		return false;
9035 
9036 	/* Tell the scheduler that we'd really like se to run next. */
9037 	set_next_buddy(se);
9038 
9039 	yield_task_fair(rq);
9040 
9041 	return true;
9042 }
9043 
9044 #ifdef CONFIG_SMP
9045 /**************************************************
9046  * Fair scheduling class load-balancing methods.
9047  *
9048  * BASICS
9049  *
9050  * The purpose of load-balancing is to achieve the same basic fairness the
9051  * per-CPU scheduler provides, namely provide a proportional amount of compute
9052  * time to each task. This is expressed in the following equation:
9053  *
9054  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9055  *
9056  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9057  * W_i,0 is defined as:
9058  *
9059  *   W_i,0 = \Sum_j w_i,j                                             (2)
9060  *
9061  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9062  * is derived from the nice value as per sched_prio_to_weight[].
9063  *
9064  * The weight average is an exponential decay average of the instantaneous
9065  * weight:
9066  *
9067  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9068  *
9069  * C_i is the compute capacity of CPU i, typically it is the
9070  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9071  * can also include other factors [XXX].
9072  *
9073  * To achieve this balance we define a measure of imbalance which follows
9074  * directly from (1):
9075  *
9076  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9077  *
9078  * We them move tasks around to minimize the imbalance. In the continuous
9079  * function space it is obvious this converges, in the discrete case we get
9080  * a few fun cases generally called infeasible weight scenarios.
9081  *
9082  * [XXX expand on:
9083  *     - infeasible weights;
9084  *     - local vs global optima in the discrete case. ]
9085  *
9086  *
9087  * SCHED DOMAINS
9088  *
9089  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9090  * for all i,j solution, we create a tree of CPUs that follows the hardware
9091  * topology where each level pairs two lower groups (or better). This results
9092  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9093  * tree to only the first of the previous level and we decrease the frequency
9094  * of load-balance at each level inversely proportional to the number of CPUs in
9095  * the groups.
9096  *
9097  * This yields:
9098  *
9099  *     log_2 n     1     n
9100  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9101  *     i = 0      2^i   2^i
9102  *                               `- size of each group
9103  *         |         |     `- number of CPUs doing load-balance
9104  *         |         `- freq
9105  *         `- sum over all levels
9106  *
9107  * Coupled with a limit on how many tasks we can migrate every balance pass,
9108  * this makes (5) the runtime complexity of the balancer.
9109  *
9110  * An important property here is that each CPU is still (indirectly) connected
9111  * to every other CPU in at most O(log n) steps:
9112  *
9113  * The adjacency matrix of the resulting graph is given by:
9114  *
9115  *             log_2 n
9116  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9117  *             k = 0
9118  *
9119  * And you'll find that:
9120  *
9121  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9122  *
9123  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9124  * The task movement gives a factor of O(m), giving a convergence complexity
9125  * of:
9126  *
9127  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9128  *
9129  *
9130  * WORK CONSERVING
9131  *
9132  * In order to avoid CPUs going idle while there's still work to do, new idle
9133  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9134  * tree itself instead of relying on other CPUs to bring it work.
9135  *
9136  * This adds some complexity to both (5) and (8) but it reduces the total idle
9137  * time.
9138  *
9139  * [XXX more?]
9140  *
9141  *
9142  * CGROUPS
9143  *
9144  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9145  *
9146  *                                s_k,i
9147  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9148  *                                 S_k
9149  *
9150  * Where
9151  *
9152  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9153  *
9154  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9155  *
9156  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9157  * property.
9158  *
9159  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9160  *      rewrite all of this once again.]
9161  */
9162 
9163 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9164 
9165 enum fbq_type { regular, remote, all };
9166 
9167 /*
9168  * 'group_type' describes the group of CPUs at the moment of load balancing.
9169  *
9170  * The enum is ordered by pulling priority, with the group with lowest priority
9171  * first so the group_type can simply be compared when selecting the busiest
9172  * group. See update_sd_pick_busiest().
9173  */
9174 enum group_type {
9175 	/* The group has spare capacity that can be used to run more tasks.  */
9176 	group_has_spare = 0,
9177 	/*
9178 	 * The group is fully used and the tasks don't compete for more CPU
9179 	 * cycles. Nevertheless, some tasks might wait before running.
9180 	 */
9181 	group_fully_busy,
9182 	/*
9183 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9184 	 * more powerful CPU.
9185 	 */
9186 	group_misfit_task,
9187 	/*
9188 	 * Balance SMT group that's fully busy. Can benefit from migration
9189 	 * a task on SMT with busy sibling to another CPU on idle core.
9190 	 */
9191 	group_smt_balance,
9192 	/*
9193 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9194 	 * and the task should be migrated to it instead of running on the
9195 	 * current CPU.
9196 	 */
9197 	group_asym_packing,
9198 	/*
9199 	 * The tasks' affinity constraints previously prevented the scheduler
9200 	 * from balancing the load across the system.
9201 	 */
9202 	group_imbalanced,
9203 	/*
9204 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9205 	 * tasks.
9206 	 */
9207 	group_overloaded
9208 };
9209 
9210 enum migration_type {
9211 	migrate_load = 0,
9212 	migrate_util,
9213 	migrate_task,
9214 	migrate_misfit
9215 };
9216 
9217 #define LBF_ALL_PINNED	0x01
9218 #define LBF_NEED_BREAK	0x02
9219 #define LBF_DST_PINNED  0x04
9220 #define LBF_SOME_PINNED	0x08
9221 #define LBF_ACTIVE_LB	0x10
9222 
9223 struct lb_env {
9224 	struct sched_domain	*sd;
9225 
9226 	struct rq		*src_rq;
9227 	int			src_cpu;
9228 
9229 	int			dst_cpu;
9230 	struct rq		*dst_rq;
9231 
9232 	struct cpumask		*dst_grpmask;
9233 	int			new_dst_cpu;
9234 	enum cpu_idle_type	idle;
9235 	long			imbalance;
9236 	/* The set of CPUs under consideration for load-balancing */
9237 	struct cpumask		*cpus;
9238 
9239 	unsigned int		flags;
9240 
9241 	unsigned int		loop;
9242 	unsigned int		loop_break;
9243 	unsigned int		loop_max;
9244 
9245 	enum fbq_type		fbq_type;
9246 	enum migration_type	migration_type;
9247 	struct list_head	tasks;
9248 };
9249 
9250 /*
9251  * Is this task likely cache-hot:
9252  */
9253 static int task_hot(struct task_struct *p, struct lb_env *env)
9254 {
9255 	s64 delta;
9256 
9257 	lockdep_assert_rq_held(env->src_rq);
9258 
9259 	if (p->sched_class != &fair_sched_class)
9260 		return 0;
9261 
9262 	if (unlikely(task_has_idle_policy(p)))
9263 		return 0;
9264 
9265 	/* SMT siblings share cache */
9266 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9267 		return 0;
9268 
9269 	/*
9270 	 * Buddy candidates are cache hot:
9271 	 */
9272 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9273 	    (&p->se == cfs_rq_of(&p->se)->next))
9274 		return 1;
9275 
9276 	if (sysctl_sched_migration_cost == -1)
9277 		return 1;
9278 
9279 	/*
9280 	 * Don't migrate task if the task's cookie does not match
9281 	 * with the destination CPU's core cookie.
9282 	 */
9283 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9284 		return 1;
9285 
9286 	if (sysctl_sched_migration_cost == 0)
9287 		return 0;
9288 
9289 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9290 
9291 	return delta < (s64)sysctl_sched_migration_cost;
9292 }
9293 
9294 #ifdef CONFIG_NUMA_BALANCING
9295 /*
9296  * Returns 1, if task migration degrades locality
9297  * Returns 0, if task migration improves locality i.e migration preferred.
9298  * Returns -1, if task migration is not affected by locality.
9299  */
9300 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9301 {
9302 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9303 	unsigned long src_weight, dst_weight;
9304 	int src_nid, dst_nid, dist;
9305 
9306 	if (!static_branch_likely(&sched_numa_balancing))
9307 		return -1;
9308 
9309 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9310 		return -1;
9311 
9312 	src_nid = cpu_to_node(env->src_cpu);
9313 	dst_nid = cpu_to_node(env->dst_cpu);
9314 
9315 	if (src_nid == dst_nid)
9316 		return -1;
9317 
9318 	/* Migrating away from the preferred node is always bad. */
9319 	if (src_nid == p->numa_preferred_nid) {
9320 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9321 			return 1;
9322 		else
9323 			return -1;
9324 	}
9325 
9326 	/* Encourage migration to the preferred node. */
9327 	if (dst_nid == p->numa_preferred_nid)
9328 		return 0;
9329 
9330 	/* Leaving a core idle is often worse than degrading locality. */
9331 	if (env->idle == CPU_IDLE)
9332 		return -1;
9333 
9334 	dist = node_distance(src_nid, dst_nid);
9335 	if (numa_group) {
9336 		src_weight = group_weight(p, src_nid, dist);
9337 		dst_weight = group_weight(p, dst_nid, dist);
9338 	} else {
9339 		src_weight = task_weight(p, src_nid, dist);
9340 		dst_weight = task_weight(p, dst_nid, dist);
9341 	}
9342 
9343 	return dst_weight < src_weight;
9344 }
9345 
9346 #else
9347 static inline int migrate_degrades_locality(struct task_struct *p,
9348 					     struct lb_env *env)
9349 {
9350 	return -1;
9351 }
9352 #endif
9353 
9354 /*
9355  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9356  */
9357 static
9358 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9359 {
9360 	int tsk_cache_hot;
9361 
9362 	lockdep_assert_rq_held(env->src_rq);
9363 
9364 	/*
9365 	 * We do not migrate tasks that are:
9366 	 * 1) throttled_lb_pair, or
9367 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9368 	 * 3) running (obviously), or
9369 	 * 4) are cache-hot on their current CPU.
9370 	 */
9371 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9372 		return 0;
9373 
9374 	/* Disregard percpu kthreads; they are where they need to be. */
9375 	if (kthread_is_per_cpu(p))
9376 		return 0;
9377 
9378 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9379 		int cpu;
9380 
9381 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9382 
9383 		env->flags |= LBF_SOME_PINNED;
9384 
9385 		/*
9386 		 * Remember if this task can be migrated to any other CPU in
9387 		 * our sched_group. We may want to revisit it if we couldn't
9388 		 * meet load balance goals by pulling other tasks on src_cpu.
9389 		 *
9390 		 * Avoid computing new_dst_cpu
9391 		 * - for NEWLY_IDLE
9392 		 * - if we have already computed one in current iteration
9393 		 * - if it's an active balance
9394 		 */
9395 		if (env->idle == CPU_NEWLY_IDLE ||
9396 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9397 			return 0;
9398 
9399 		/* Prevent to re-select dst_cpu via env's CPUs: */
9400 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9401 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9402 				env->flags |= LBF_DST_PINNED;
9403 				env->new_dst_cpu = cpu;
9404 				break;
9405 			}
9406 		}
9407 
9408 		return 0;
9409 	}
9410 
9411 	/* Record that we found at least one task that could run on dst_cpu */
9412 	env->flags &= ~LBF_ALL_PINNED;
9413 
9414 	if (task_on_cpu(env->src_rq, p)) {
9415 		schedstat_inc(p->stats.nr_failed_migrations_running);
9416 		return 0;
9417 	}
9418 
9419 	/*
9420 	 * Aggressive migration if:
9421 	 * 1) active balance
9422 	 * 2) destination numa is preferred
9423 	 * 3) task is cache cold, or
9424 	 * 4) too many balance attempts have failed.
9425 	 */
9426 	if (env->flags & LBF_ACTIVE_LB)
9427 		return 1;
9428 
9429 	tsk_cache_hot = migrate_degrades_locality(p, env);
9430 	if (tsk_cache_hot == -1)
9431 		tsk_cache_hot = task_hot(p, env);
9432 
9433 	if (tsk_cache_hot <= 0 ||
9434 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9435 		if (tsk_cache_hot == 1) {
9436 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9437 			schedstat_inc(p->stats.nr_forced_migrations);
9438 		}
9439 		return 1;
9440 	}
9441 
9442 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9443 	return 0;
9444 }
9445 
9446 /*
9447  * detach_task() -- detach the task for the migration specified in env
9448  */
9449 static void detach_task(struct task_struct *p, struct lb_env *env)
9450 {
9451 	lockdep_assert_rq_held(env->src_rq);
9452 
9453 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9454 	set_task_cpu(p, env->dst_cpu);
9455 }
9456 
9457 /*
9458  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9459  * part of active balancing operations within "domain".
9460  *
9461  * Returns a task if successful and NULL otherwise.
9462  */
9463 static struct task_struct *detach_one_task(struct lb_env *env)
9464 {
9465 	struct task_struct *p;
9466 
9467 	lockdep_assert_rq_held(env->src_rq);
9468 
9469 	list_for_each_entry_reverse(p,
9470 			&env->src_rq->cfs_tasks, se.group_node) {
9471 		if (!can_migrate_task(p, env))
9472 			continue;
9473 
9474 		detach_task(p, env);
9475 
9476 		/*
9477 		 * Right now, this is only the second place where
9478 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9479 		 * so we can safely collect stats here rather than
9480 		 * inside detach_tasks().
9481 		 */
9482 		schedstat_inc(env->sd->lb_gained[env->idle]);
9483 		return p;
9484 	}
9485 	return NULL;
9486 }
9487 
9488 /*
9489  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9490  * busiest_rq, as part of a balancing operation within domain "sd".
9491  *
9492  * Returns number of detached tasks if successful and 0 otherwise.
9493  */
9494 static int detach_tasks(struct lb_env *env)
9495 {
9496 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9497 	unsigned long util, load;
9498 	struct task_struct *p;
9499 	int detached = 0;
9500 
9501 	lockdep_assert_rq_held(env->src_rq);
9502 
9503 	/*
9504 	 * Source run queue has been emptied by another CPU, clear
9505 	 * LBF_ALL_PINNED flag as we will not test any task.
9506 	 */
9507 	if (env->src_rq->nr_running <= 1) {
9508 		env->flags &= ~LBF_ALL_PINNED;
9509 		return 0;
9510 	}
9511 
9512 	if (env->imbalance <= 0)
9513 		return 0;
9514 
9515 	while (!list_empty(tasks)) {
9516 		/*
9517 		 * We don't want to steal all, otherwise we may be treated likewise,
9518 		 * which could at worst lead to a livelock crash.
9519 		 */
9520 		if (env->idle && env->src_rq->nr_running <= 1)
9521 			break;
9522 
9523 		env->loop++;
9524 		/* We've more or less seen every task there is, call it quits */
9525 		if (env->loop > env->loop_max)
9526 			break;
9527 
9528 		/* take a breather every nr_migrate tasks */
9529 		if (env->loop > env->loop_break) {
9530 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9531 			env->flags |= LBF_NEED_BREAK;
9532 			break;
9533 		}
9534 
9535 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9536 
9537 		if (!can_migrate_task(p, env))
9538 			goto next;
9539 
9540 		switch (env->migration_type) {
9541 		case migrate_load:
9542 			/*
9543 			 * Depending of the number of CPUs and tasks and the
9544 			 * cgroup hierarchy, task_h_load() can return a null
9545 			 * value. Make sure that env->imbalance decreases
9546 			 * otherwise detach_tasks() will stop only after
9547 			 * detaching up to loop_max tasks.
9548 			 */
9549 			load = max_t(unsigned long, task_h_load(p), 1);
9550 
9551 			if (sched_feat(LB_MIN) &&
9552 			    load < 16 && !env->sd->nr_balance_failed)
9553 				goto next;
9554 
9555 			/*
9556 			 * Make sure that we don't migrate too much load.
9557 			 * Nevertheless, let relax the constraint if
9558 			 * scheduler fails to find a good waiting task to
9559 			 * migrate.
9560 			 */
9561 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9562 				goto next;
9563 
9564 			env->imbalance -= load;
9565 			break;
9566 
9567 		case migrate_util:
9568 			util = task_util_est(p);
9569 
9570 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9571 				goto next;
9572 
9573 			env->imbalance -= util;
9574 			break;
9575 
9576 		case migrate_task:
9577 			env->imbalance--;
9578 			break;
9579 
9580 		case migrate_misfit:
9581 			/* This is not a misfit task */
9582 			if (task_fits_cpu(p, env->src_cpu))
9583 				goto next;
9584 
9585 			env->imbalance = 0;
9586 			break;
9587 		}
9588 
9589 		detach_task(p, env);
9590 		list_add(&p->se.group_node, &env->tasks);
9591 
9592 		detached++;
9593 
9594 #ifdef CONFIG_PREEMPTION
9595 		/*
9596 		 * NEWIDLE balancing is a source of latency, so preemptible
9597 		 * kernels will stop after the first task is detached to minimize
9598 		 * the critical section.
9599 		 */
9600 		if (env->idle == CPU_NEWLY_IDLE)
9601 			break;
9602 #endif
9603 
9604 		/*
9605 		 * We only want to steal up to the prescribed amount of
9606 		 * load/util/tasks.
9607 		 */
9608 		if (env->imbalance <= 0)
9609 			break;
9610 
9611 		continue;
9612 next:
9613 		list_move(&p->se.group_node, tasks);
9614 	}
9615 
9616 	/*
9617 	 * Right now, this is one of only two places we collect this stat
9618 	 * so we can safely collect detach_one_task() stats here rather
9619 	 * than inside detach_one_task().
9620 	 */
9621 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9622 
9623 	return detached;
9624 }
9625 
9626 /*
9627  * attach_task() -- attach the task detached by detach_task() to its new rq.
9628  */
9629 static void attach_task(struct rq *rq, struct task_struct *p)
9630 {
9631 	lockdep_assert_rq_held(rq);
9632 
9633 	WARN_ON_ONCE(task_rq(p) != rq);
9634 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9635 	wakeup_preempt(rq, p, 0);
9636 }
9637 
9638 /*
9639  * attach_one_task() -- attaches the task returned from detach_one_task() to
9640  * its new rq.
9641  */
9642 static void attach_one_task(struct rq *rq, struct task_struct *p)
9643 {
9644 	struct rq_flags rf;
9645 
9646 	rq_lock(rq, &rf);
9647 	update_rq_clock(rq);
9648 	attach_task(rq, p);
9649 	rq_unlock(rq, &rf);
9650 }
9651 
9652 /*
9653  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9654  * new rq.
9655  */
9656 static void attach_tasks(struct lb_env *env)
9657 {
9658 	struct list_head *tasks = &env->tasks;
9659 	struct task_struct *p;
9660 	struct rq_flags rf;
9661 
9662 	rq_lock(env->dst_rq, &rf);
9663 	update_rq_clock(env->dst_rq);
9664 
9665 	while (!list_empty(tasks)) {
9666 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9667 		list_del_init(&p->se.group_node);
9668 
9669 		attach_task(env->dst_rq, p);
9670 	}
9671 
9672 	rq_unlock(env->dst_rq, &rf);
9673 }
9674 
9675 #ifdef CONFIG_NO_HZ_COMMON
9676 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9677 {
9678 	if (cfs_rq->avg.load_avg)
9679 		return true;
9680 
9681 	if (cfs_rq->avg.util_avg)
9682 		return true;
9683 
9684 	return false;
9685 }
9686 
9687 static inline bool others_have_blocked(struct rq *rq)
9688 {
9689 	if (cpu_util_rt(rq))
9690 		return true;
9691 
9692 	if (cpu_util_dl(rq))
9693 		return true;
9694 
9695 	if (hw_load_avg(rq))
9696 		return true;
9697 
9698 	if (cpu_util_irq(rq))
9699 		return true;
9700 
9701 	return false;
9702 }
9703 
9704 static inline void update_blocked_load_tick(struct rq *rq)
9705 {
9706 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9707 }
9708 
9709 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9710 {
9711 	if (!has_blocked)
9712 		rq->has_blocked_load = 0;
9713 }
9714 #else
9715 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9716 static inline bool others_have_blocked(struct rq *rq) { return false; }
9717 static inline void update_blocked_load_tick(struct rq *rq) {}
9718 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9719 #endif
9720 
9721 static bool __update_blocked_others(struct rq *rq, bool *done)
9722 {
9723 	bool updated;
9724 
9725 	/*
9726 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9727 	 * DL and IRQ signals have been updated before updating CFS.
9728 	 */
9729 	updated = update_other_load_avgs(rq);
9730 
9731 	if (others_have_blocked(rq))
9732 		*done = false;
9733 
9734 	return updated;
9735 }
9736 
9737 #ifdef CONFIG_FAIR_GROUP_SCHED
9738 
9739 static bool __update_blocked_fair(struct rq *rq, bool *done)
9740 {
9741 	struct cfs_rq *cfs_rq, *pos;
9742 	bool decayed = false;
9743 	int cpu = cpu_of(rq);
9744 
9745 	/*
9746 	 * Iterates the task_group tree in a bottom up fashion, see
9747 	 * list_add_leaf_cfs_rq() for details.
9748 	 */
9749 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9750 		struct sched_entity *se;
9751 
9752 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9753 			update_tg_load_avg(cfs_rq);
9754 
9755 			if (cfs_rq->nr_running == 0)
9756 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9757 
9758 			if (cfs_rq == &rq->cfs)
9759 				decayed = true;
9760 		}
9761 
9762 		/* Propagate pending load changes to the parent, if any: */
9763 		se = cfs_rq->tg->se[cpu];
9764 		if (se && !skip_blocked_update(se))
9765 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9766 
9767 		/*
9768 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9769 		 * decayed cfs_rqs linger on the list.
9770 		 */
9771 		if (cfs_rq_is_decayed(cfs_rq))
9772 			list_del_leaf_cfs_rq(cfs_rq);
9773 
9774 		/* Don't need periodic decay once load/util_avg are null */
9775 		if (cfs_rq_has_blocked(cfs_rq))
9776 			*done = false;
9777 	}
9778 
9779 	return decayed;
9780 }
9781 
9782 /*
9783  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9784  * This needs to be done in a top-down fashion because the load of a child
9785  * group is a fraction of its parents load.
9786  */
9787 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9788 {
9789 	struct rq *rq = rq_of(cfs_rq);
9790 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9791 	unsigned long now = jiffies;
9792 	unsigned long load;
9793 
9794 	if (cfs_rq->last_h_load_update == now)
9795 		return;
9796 
9797 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9798 	for_each_sched_entity(se) {
9799 		cfs_rq = cfs_rq_of(se);
9800 		WRITE_ONCE(cfs_rq->h_load_next, se);
9801 		if (cfs_rq->last_h_load_update == now)
9802 			break;
9803 	}
9804 
9805 	if (!se) {
9806 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9807 		cfs_rq->last_h_load_update = now;
9808 	}
9809 
9810 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9811 		load = cfs_rq->h_load;
9812 		load = div64_ul(load * se->avg.load_avg,
9813 			cfs_rq_load_avg(cfs_rq) + 1);
9814 		cfs_rq = group_cfs_rq(se);
9815 		cfs_rq->h_load = load;
9816 		cfs_rq->last_h_load_update = now;
9817 	}
9818 }
9819 
9820 static unsigned long task_h_load(struct task_struct *p)
9821 {
9822 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9823 
9824 	update_cfs_rq_h_load(cfs_rq);
9825 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9826 			cfs_rq_load_avg(cfs_rq) + 1);
9827 }
9828 #else
9829 static bool __update_blocked_fair(struct rq *rq, bool *done)
9830 {
9831 	struct cfs_rq *cfs_rq = &rq->cfs;
9832 	bool decayed;
9833 
9834 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9835 	if (cfs_rq_has_blocked(cfs_rq))
9836 		*done = false;
9837 
9838 	return decayed;
9839 }
9840 
9841 static unsigned long task_h_load(struct task_struct *p)
9842 {
9843 	return p->se.avg.load_avg;
9844 }
9845 #endif
9846 
9847 static void sched_balance_update_blocked_averages(int cpu)
9848 {
9849 	bool decayed = false, done = true;
9850 	struct rq *rq = cpu_rq(cpu);
9851 	struct rq_flags rf;
9852 
9853 	rq_lock_irqsave(rq, &rf);
9854 	update_blocked_load_tick(rq);
9855 	update_rq_clock(rq);
9856 
9857 	decayed |= __update_blocked_others(rq, &done);
9858 	decayed |= __update_blocked_fair(rq, &done);
9859 
9860 	update_blocked_load_status(rq, !done);
9861 	if (decayed)
9862 		cpufreq_update_util(rq, 0);
9863 	rq_unlock_irqrestore(rq, &rf);
9864 }
9865 
9866 /********** Helpers for sched_balance_find_src_group ************************/
9867 
9868 /*
9869  * sg_lb_stats - stats of a sched_group required for load-balancing:
9870  */
9871 struct sg_lb_stats {
9872 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9873 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9874 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9875 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9876 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9877 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9878 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9879 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9880 	unsigned int group_weight;
9881 	enum group_type group_type;
9882 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9883 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9884 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9885 #ifdef CONFIG_NUMA_BALANCING
9886 	unsigned int nr_numa_running;
9887 	unsigned int nr_preferred_running;
9888 #endif
9889 };
9890 
9891 /*
9892  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9893  */
9894 struct sd_lb_stats {
9895 	struct sched_group *busiest;		/* Busiest group in this sd */
9896 	struct sched_group *local;		/* Local group in this sd */
9897 	unsigned long total_load;		/* Total load of all groups in sd */
9898 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9899 	unsigned long avg_load;			/* Average load across all groups in sd */
9900 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9901 
9902 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9903 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9904 };
9905 
9906 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9907 {
9908 	/*
9909 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9910 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9911 	 * We must however set busiest_stat::group_type and
9912 	 * busiest_stat::idle_cpus to the worst busiest group because
9913 	 * update_sd_pick_busiest() reads these before assignment.
9914 	 */
9915 	*sds = (struct sd_lb_stats){
9916 		.busiest = NULL,
9917 		.local = NULL,
9918 		.total_load = 0UL,
9919 		.total_capacity = 0UL,
9920 		.busiest_stat = {
9921 			.idle_cpus = UINT_MAX,
9922 			.group_type = group_has_spare,
9923 		},
9924 	};
9925 }
9926 
9927 static unsigned long scale_rt_capacity(int cpu)
9928 {
9929 	unsigned long max = get_actual_cpu_capacity(cpu);
9930 	struct rq *rq = cpu_rq(cpu);
9931 	unsigned long used, free;
9932 	unsigned long irq;
9933 
9934 	irq = cpu_util_irq(rq);
9935 
9936 	if (unlikely(irq >= max))
9937 		return 1;
9938 
9939 	/*
9940 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9941 	 * (running and not running) with weights 0 and 1024 respectively.
9942 	 */
9943 	used = cpu_util_rt(rq);
9944 	used += cpu_util_dl(rq);
9945 
9946 	if (unlikely(used >= max))
9947 		return 1;
9948 
9949 	free = max - used;
9950 
9951 	return scale_irq_capacity(free, irq, max);
9952 }
9953 
9954 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9955 {
9956 	unsigned long capacity = scale_rt_capacity(cpu);
9957 	struct sched_group *sdg = sd->groups;
9958 
9959 	if (!capacity)
9960 		capacity = 1;
9961 
9962 	cpu_rq(cpu)->cpu_capacity = capacity;
9963 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9964 
9965 	sdg->sgc->capacity = capacity;
9966 	sdg->sgc->min_capacity = capacity;
9967 	sdg->sgc->max_capacity = capacity;
9968 }
9969 
9970 void update_group_capacity(struct sched_domain *sd, int cpu)
9971 {
9972 	struct sched_domain *child = sd->child;
9973 	struct sched_group *group, *sdg = sd->groups;
9974 	unsigned long capacity, min_capacity, max_capacity;
9975 	unsigned long interval;
9976 
9977 	interval = msecs_to_jiffies(sd->balance_interval);
9978 	interval = clamp(interval, 1UL, max_load_balance_interval);
9979 	sdg->sgc->next_update = jiffies + interval;
9980 
9981 	if (!child) {
9982 		update_cpu_capacity(sd, cpu);
9983 		return;
9984 	}
9985 
9986 	capacity = 0;
9987 	min_capacity = ULONG_MAX;
9988 	max_capacity = 0;
9989 
9990 	if (child->flags & SD_OVERLAP) {
9991 		/*
9992 		 * SD_OVERLAP domains cannot assume that child groups
9993 		 * span the current group.
9994 		 */
9995 
9996 		for_each_cpu(cpu, sched_group_span(sdg)) {
9997 			unsigned long cpu_cap = capacity_of(cpu);
9998 
9999 			capacity += cpu_cap;
10000 			min_capacity = min(cpu_cap, min_capacity);
10001 			max_capacity = max(cpu_cap, max_capacity);
10002 		}
10003 	} else  {
10004 		/*
10005 		 * !SD_OVERLAP domains can assume that child groups
10006 		 * span the current group.
10007 		 */
10008 
10009 		group = child->groups;
10010 		do {
10011 			struct sched_group_capacity *sgc = group->sgc;
10012 
10013 			capacity += sgc->capacity;
10014 			min_capacity = min(sgc->min_capacity, min_capacity);
10015 			max_capacity = max(sgc->max_capacity, max_capacity);
10016 			group = group->next;
10017 		} while (group != child->groups);
10018 	}
10019 
10020 	sdg->sgc->capacity = capacity;
10021 	sdg->sgc->min_capacity = min_capacity;
10022 	sdg->sgc->max_capacity = max_capacity;
10023 }
10024 
10025 /*
10026  * Check whether the capacity of the rq has been noticeably reduced by side
10027  * activity. The imbalance_pct is used for the threshold.
10028  * Return true is the capacity is reduced
10029  */
10030 static inline int
10031 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10032 {
10033 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10034 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10035 }
10036 
10037 /* Check if the rq has a misfit task */
10038 static inline bool check_misfit_status(struct rq *rq)
10039 {
10040 	return rq->misfit_task_load;
10041 }
10042 
10043 /*
10044  * Group imbalance indicates (and tries to solve) the problem where balancing
10045  * groups is inadequate due to ->cpus_ptr constraints.
10046  *
10047  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10048  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10049  * Something like:
10050  *
10051  *	{ 0 1 2 3 } { 4 5 6 7 }
10052  *	        *     * * *
10053  *
10054  * If we were to balance group-wise we'd place two tasks in the first group and
10055  * two tasks in the second group. Clearly this is undesired as it will overload
10056  * cpu 3 and leave one of the CPUs in the second group unused.
10057  *
10058  * The current solution to this issue is detecting the skew in the first group
10059  * by noticing the lower domain failed to reach balance and had difficulty
10060  * moving tasks due to affinity constraints.
10061  *
10062  * When this is so detected; this group becomes a candidate for busiest; see
10063  * update_sd_pick_busiest(). And calculate_imbalance() and
10064  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10065  * to create an effective group imbalance.
10066  *
10067  * This is a somewhat tricky proposition since the next run might not find the
10068  * group imbalance and decide the groups need to be balanced again. A most
10069  * subtle and fragile situation.
10070  */
10071 
10072 static inline int sg_imbalanced(struct sched_group *group)
10073 {
10074 	return group->sgc->imbalance;
10075 }
10076 
10077 /*
10078  * group_has_capacity returns true if the group has spare capacity that could
10079  * be used by some tasks.
10080  * We consider that a group has spare capacity if the number of task is
10081  * smaller than the number of CPUs or if the utilization is lower than the
10082  * available capacity for CFS tasks.
10083  * For the latter, we use a threshold to stabilize the state, to take into
10084  * account the variance of the tasks' load and to return true if the available
10085  * capacity in meaningful for the load balancer.
10086  * As an example, an available capacity of 1% can appear but it doesn't make
10087  * any benefit for the load balance.
10088  */
10089 static inline bool
10090 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10091 {
10092 	if (sgs->sum_nr_running < sgs->group_weight)
10093 		return true;
10094 
10095 	if ((sgs->group_capacity * imbalance_pct) <
10096 			(sgs->group_runnable * 100))
10097 		return false;
10098 
10099 	if ((sgs->group_capacity * 100) >
10100 			(sgs->group_util * imbalance_pct))
10101 		return true;
10102 
10103 	return false;
10104 }
10105 
10106 /*
10107  *  group_is_overloaded returns true if the group has more tasks than it can
10108  *  handle.
10109  *  group_is_overloaded is not equals to !group_has_capacity because a group
10110  *  with the exact right number of tasks, has no more spare capacity but is not
10111  *  overloaded so both group_has_capacity and group_is_overloaded return
10112  *  false.
10113  */
10114 static inline bool
10115 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10116 {
10117 	if (sgs->sum_nr_running <= sgs->group_weight)
10118 		return false;
10119 
10120 	if ((sgs->group_capacity * 100) <
10121 			(sgs->group_util * imbalance_pct))
10122 		return true;
10123 
10124 	if ((sgs->group_capacity * imbalance_pct) <
10125 			(sgs->group_runnable * 100))
10126 		return true;
10127 
10128 	return false;
10129 }
10130 
10131 static inline enum
10132 group_type group_classify(unsigned int imbalance_pct,
10133 			  struct sched_group *group,
10134 			  struct sg_lb_stats *sgs)
10135 {
10136 	if (group_is_overloaded(imbalance_pct, sgs))
10137 		return group_overloaded;
10138 
10139 	if (sg_imbalanced(group))
10140 		return group_imbalanced;
10141 
10142 	if (sgs->group_asym_packing)
10143 		return group_asym_packing;
10144 
10145 	if (sgs->group_smt_balance)
10146 		return group_smt_balance;
10147 
10148 	if (sgs->group_misfit_task_load)
10149 		return group_misfit_task;
10150 
10151 	if (!group_has_capacity(imbalance_pct, sgs))
10152 		return group_fully_busy;
10153 
10154 	return group_has_spare;
10155 }
10156 
10157 /**
10158  * sched_use_asym_prio - Check whether asym_packing priority must be used
10159  * @sd:		The scheduling domain of the load balancing
10160  * @cpu:	A CPU
10161  *
10162  * Always use CPU priority when balancing load between SMT siblings. When
10163  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10164  * use CPU priority if the whole core is idle.
10165  *
10166  * Returns: True if the priority of @cpu must be followed. False otherwise.
10167  */
10168 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10169 {
10170 	if (!(sd->flags & SD_ASYM_PACKING))
10171 		return false;
10172 
10173 	if (!sched_smt_active())
10174 		return true;
10175 
10176 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10177 }
10178 
10179 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10180 {
10181 	/*
10182 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10183 	 * if it has higher priority than @src_cpu.
10184 	 */
10185 	return sched_use_asym_prio(sd, dst_cpu) &&
10186 		sched_asym_prefer(dst_cpu, src_cpu);
10187 }
10188 
10189 /**
10190  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10191  * @env:	The load balancing environment
10192  * @sgs:	Load-balancing statistics of the candidate busiest group
10193  * @group:	The candidate busiest group
10194  *
10195  * @env::dst_cpu can do asym_packing if it has higher priority than the
10196  * preferred CPU of @group.
10197  *
10198  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10199  * otherwise.
10200  */
10201 static inline bool
10202 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10203 {
10204 	/*
10205 	 * CPU priorities do not make sense for SMT cores with more than one
10206 	 * busy sibling.
10207 	 */
10208 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10209 	    (sgs->group_weight - sgs->idle_cpus != 1))
10210 		return false;
10211 
10212 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10213 }
10214 
10215 /* One group has more than one SMT CPU while the other group does not */
10216 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10217 				    struct sched_group *sg2)
10218 {
10219 	if (!sg1 || !sg2)
10220 		return false;
10221 
10222 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10223 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10224 }
10225 
10226 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10227 			       struct sched_group *group)
10228 {
10229 	if (!env->idle)
10230 		return false;
10231 
10232 	/*
10233 	 * For SMT source group, it is better to move a task
10234 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10235 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10236 	 * will not be on.
10237 	 */
10238 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10239 	    sgs->sum_h_nr_running > 1)
10240 		return true;
10241 
10242 	return false;
10243 }
10244 
10245 static inline long sibling_imbalance(struct lb_env *env,
10246 				    struct sd_lb_stats *sds,
10247 				    struct sg_lb_stats *busiest,
10248 				    struct sg_lb_stats *local)
10249 {
10250 	int ncores_busiest, ncores_local;
10251 	long imbalance;
10252 
10253 	if (!env->idle || !busiest->sum_nr_running)
10254 		return 0;
10255 
10256 	ncores_busiest = sds->busiest->cores;
10257 	ncores_local = sds->local->cores;
10258 
10259 	if (ncores_busiest == ncores_local) {
10260 		imbalance = busiest->sum_nr_running;
10261 		lsub_positive(&imbalance, local->sum_nr_running);
10262 		return imbalance;
10263 	}
10264 
10265 	/* Balance such that nr_running/ncores ratio are same on both groups */
10266 	imbalance = ncores_local * busiest->sum_nr_running;
10267 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10268 	/* Normalize imbalance and do rounding on normalization */
10269 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10270 	imbalance /= ncores_local + ncores_busiest;
10271 
10272 	/* Take advantage of resource in an empty sched group */
10273 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10274 	    busiest->sum_nr_running > 1)
10275 		imbalance = 2;
10276 
10277 	return imbalance;
10278 }
10279 
10280 static inline bool
10281 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10282 {
10283 	/*
10284 	 * When there is more than 1 task, the group_overloaded case already
10285 	 * takes care of cpu with reduced capacity
10286 	 */
10287 	if (rq->cfs.h_nr_running != 1)
10288 		return false;
10289 
10290 	return check_cpu_capacity(rq, sd);
10291 }
10292 
10293 /**
10294  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10295  * @env: The load balancing environment.
10296  * @sds: Load-balancing data with statistics of the local group.
10297  * @group: sched_group whose statistics are to be updated.
10298  * @sgs: variable to hold the statistics for this group.
10299  * @sg_overloaded: sched_group is overloaded
10300  * @sg_overutilized: sched_group is overutilized
10301  */
10302 static inline void update_sg_lb_stats(struct lb_env *env,
10303 				      struct sd_lb_stats *sds,
10304 				      struct sched_group *group,
10305 				      struct sg_lb_stats *sgs,
10306 				      bool *sg_overloaded,
10307 				      bool *sg_overutilized)
10308 {
10309 	int i, nr_running, local_group;
10310 
10311 	memset(sgs, 0, sizeof(*sgs));
10312 
10313 	local_group = group == sds->local;
10314 
10315 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10316 		struct rq *rq = cpu_rq(i);
10317 		unsigned long load = cpu_load(rq);
10318 
10319 		sgs->group_load += load;
10320 		sgs->group_util += cpu_util_cfs(i);
10321 		sgs->group_runnable += cpu_runnable(rq);
10322 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10323 
10324 		nr_running = rq->nr_running;
10325 		sgs->sum_nr_running += nr_running;
10326 
10327 		if (nr_running > 1)
10328 			*sg_overloaded = 1;
10329 
10330 		if (cpu_overutilized(i))
10331 			*sg_overutilized = 1;
10332 
10333 #ifdef CONFIG_NUMA_BALANCING
10334 		sgs->nr_numa_running += rq->nr_numa_running;
10335 		sgs->nr_preferred_running += rq->nr_preferred_running;
10336 #endif
10337 		/*
10338 		 * No need to call idle_cpu() if nr_running is not 0
10339 		 */
10340 		if (!nr_running && idle_cpu(i)) {
10341 			sgs->idle_cpus++;
10342 			/* Idle cpu can't have misfit task */
10343 			continue;
10344 		}
10345 
10346 		if (local_group)
10347 			continue;
10348 
10349 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10350 			/* Check for a misfit task on the cpu */
10351 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10352 				sgs->group_misfit_task_load = rq->misfit_task_load;
10353 				*sg_overloaded = 1;
10354 			}
10355 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10356 			/* Check for a task running on a CPU with reduced capacity */
10357 			if (sgs->group_misfit_task_load < load)
10358 				sgs->group_misfit_task_load = load;
10359 		}
10360 	}
10361 
10362 	sgs->group_capacity = group->sgc->capacity;
10363 
10364 	sgs->group_weight = group->group_weight;
10365 
10366 	/* Check if dst CPU is idle and preferred to this group */
10367 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10368 	    sched_group_asym(env, sgs, group))
10369 		sgs->group_asym_packing = 1;
10370 
10371 	/* Check for loaded SMT group to be balanced to dst CPU */
10372 	if (!local_group && smt_balance(env, sgs, group))
10373 		sgs->group_smt_balance = 1;
10374 
10375 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10376 
10377 	/* Computing avg_load makes sense only when group is overloaded */
10378 	if (sgs->group_type == group_overloaded)
10379 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10380 				sgs->group_capacity;
10381 }
10382 
10383 /**
10384  * update_sd_pick_busiest - return 1 on busiest group
10385  * @env: The load balancing environment.
10386  * @sds: sched_domain statistics
10387  * @sg: sched_group candidate to be checked for being the busiest
10388  * @sgs: sched_group statistics
10389  *
10390  * Determine if @sg is a busier group than the previously selected
10391  * busiest group.
10392  *
10393  * Return: %true if @sg is a busier group than the previously selected
10394  * busiest group. %false otherwise.
10395  */
10396 static bool update_sd_pick_busiest(struct lb_env *env,
10397 				   struct sd_lb_stats *sds,
10398 				   struct sched_group *sg,
10399 				   struct sg_lb_stats *sgs)
10400 {
10401 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10402 
10403 	/* Make sure that there is at least one task to pull */
10404 	if (!sgs->sum_h_nr_running)
10405 		return false;
10406 
10407 	/*
10408 	 * Don't try to pull misfit tasks we can't help.
10409 	 * We can use max_capacity here as reduction in capacity on some
10410 	 * CPUs in the group should either be possible to resolve
10411 	 * internally or be covered by avg_load imbalance (eventually).
10412 	 */
10413 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10414 	    (sgs->group_type == group_misfit_task) &&
10415 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10416 	     sds->local_stat.group_type != group_has_spare))
10417 		return false;
10418 
10419 	if (sgs->group_type > busiest->group_type)
10420 		return true;
10421 
10422 	if (sgs->group_type < busiest->group_type)
10423 		return false;
10424 
10425 	/*
10426 	 * The candidate and the current busiest group are the same type of
10427 	 * group. Let check which one is the busiest according to the type.
10428 	 */
10429 
10430 	switch (sgs->group_type) {
10431 	case group_overloaded:
10432 		/* Select the overloaded group with highest avg_load. */
10433 		return sgs->avg_load > busiest->avg_load;
10434 
10435 	case group_imbalanced:
10436 		/*
10437 		 * Select the 1st imbalanced group as we don't have any way to
10438 		 * choose one more than another.
10439 		 */
10440 		return false;
10441 
10442 	case group_asym_packing:
10443 		/* Prefer to move from lowest priority CPU's work */
10444 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10445 
10446 	case group_misfit_task:
10447 		/*
10448 		 * If we have more than one misfit sg go with the biggest
10449 		 * misfit.
10450 		 */
10451 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10452 
10453 	case group_smt_balance:
10454 		/*
10455 		 * Check if we have spare CPUs on either SMT group to
10456 		 * choose has spare or fully busy handling.
10457 		 */
10458 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10459 			goto has_spare;
10460 
10461 		fallthrough;
10462 
10463 	case group_fully_busy:
10464 		/*
10465 		 * Select the fully busy group with highest avg_load. In
10466 		 * theory, there is no need to pull task from such kind of
10467 		 * group because tasks have all compute capacity that they need
10468 		 * but we can still improve the overall throughput by reducing
10469 		 * contention when accessing shared HW resources.
10470 		 *
10471 		 * XXX for now avg_load is not computed and always 0 so we
10472 		 * select the 1st one, except if @sg is composed of SMT
10473 		 * siblings.
10474 		 */
10475 
10476 		if (sgs->avg_load < busiest->avg_load)
10477 			return false;
10478 
10479 		if (sgs->avg_load == busiest->avg_load) {
10480 			/*
10481 			 * SMT sched groups need more help than non-SMT groups.
10482 			 * If @sg happens to also be SMT, either choice is good.
10483 			 */
10484 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10485 				return false;
10486 		}
10487 
10488 		break;
10489 
10490 	case group_has_spare:
10491 		/*
10492 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10493 		 * as we do not want to pull task off SMT core with one task
10494 		 * and make the core idle.
10495 		 */
10496 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10497 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10498 				return false;
10499 			else
10500 				return true;
10501 		}
10502 has_spare:
10503 
10504 		/*
10505 		 * Select not overloaded group with lowest number of idle CPUs
10506 		 * and highest number of running tasks. We could also compare
10507 		 * the spare capacity which is more stable but it can end up
10508 		 * that the group has less spare capacity but finally more idle
10509 		 * CPUs which means less opportunity to pull tasks.
10510 		 */
10511 		if (sgs->idle_cpus > busiest->idle_cpus)
10512 			return false;
10513 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10514 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10515 			return false;
10516 
10517 		break;
10518 	}
10519 
10520 	/*
10521 	 * Candidate sg has no more than one task per CPU and has higher
10522 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10523 	 * throughput. Maximize throughput, power/energy consequences are not
10524 	 * considered.
10525 	 */
10526 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10527 	    (sgs->group_type <= group_fully_busy) &&
10528 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10529 		return false;
10530 
10531 	return true;
10532 }
10533 
10534 #ifdef CONFIG_NUMA_BALANCING
10535 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10536 {
10537 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10538 		return regular;
10539 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10540 		return remote;
10541 	return all;
10542 }
10543 
10544 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10545 {
10546 	if (rq->nr_running > rq->nr_numa_running)
10547 		return regular;
10548 	if (rq->nr_running > rq->nr_preferred_running)
10549 		return remote;
10550 	return all;
10551 }
10552 #else
10553 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10554 {
10555 	return all;
10556 }
10557 
10558 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10559 {
10560 	return regular;
10561 }
10562 #endif /* CONFIG_NUMA_BALANCING */
10563 
10564 
10565 struct sg_lb_stats;
10566 
10567 /*
10568  * task_running_on_cpu - return 1 if @p is running on @cpu.
10569  */
10570 
10571 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10572 {
10573 	/* Task has no contribution or is new */
10574 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10575 		return 0;
10576 
10577 	if (task_on_rq_queued(p))
10578 		return 1;
10579 
10580 	return 0;
10581 }
10582 
10583 /**
10584  * idle_cpu_without - would a given CPU be idle without p ?
10585  * @cpu: the processor on which idleness is tested.
10586  * @p: task which should be ignored.
10587  *
10588  * Return: 1 if the CPU would be idle. 0 otherwise.
10589  */
10590 static int idle_cpu_without(int cpu, struct task_struct *p)
10591 {
10592 	struct rq *rq = cpu_rq(cpu);
10593 
10594 	if (rq->curr != rq->idle && rq->curr != p)
10595 		return 0;
10596 
10597 	/*
10598 	 * rq->nr_running can't be used but an updated version without the
10599 	 * impact of p on cpu must be used instead. The updated nr_running
10600 	 * be computed and tested before calling idle_cpu_without().
10601 	 */
10602 
10603 	if (rq->ttwu_pending)
10604 		return 0;
10605 
10606 	return 1;
10607 }
10608 
10609 /*
10610  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10611  * @sd: The sched_domain level to look for idlest group.
10612  * @group: sched_group whose statistics are to be updated.
10613  * @sgs: variable to hold the statistics for this group.
10614  * @p: The task for which we look for the idlest group/CPU.
10615  */
10616 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10617 					  struct sched_group *group,
10618 					  struct sg_lb_stats *sgs,
10619 					  struct task_struct *p)
10620 {
10621 	int i, nr_running;
10622 
10623 	memset(sgs, 0, sizeof(*sgs));
10624 
10625 	/* Assume that task can't fit any CPU of the group */
10626 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10627 		sgs->group_misfit_task_load = 1;
10628 
10629 	for_each_cpu(i, sched_group_span(group)) {
10630 		struct rq *rq = cpu_rq(i);
10631 		unsigned int local;
10632 
10633 		sgs->group_load += cpu_load_without(rq, p);
10634 		sgs->group_util += cpu_util_without(i, p);
10635 		sgs->group_runnable += cpu_runnable_without(rq, p);
10636 		local = task_running_on_cpu(i, p);
10637 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10638 
10639 		nr_running = rq->nr_running - local;
10640 		sgs->sum_nr_running += nr_running;
10641 
10642 		/*
10643 		 * No need to call idle_cpu_without() if nr_running is not 0
10644 		 */
10645 		if (!nr_running && idle_cpu_without(i, p))
10646 			sgs->idle_cpus++;
10647 
10648 		/* Check if task fits in the CPU */
10649 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10650 		    sgs->group_misfit_task_load &&
10651 		    task_fits_cpu(p, i))
10652 			sgs->group_misfit_task_load = 0;
10653 
10654 	}
10655 
10656 	sgs->group_capacity = group->sgc->capacity;
10657 
10658 	sgs->group_weight = group->group_weight;
10659 
10660 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10661 
10662 	/*
10663 	 * Computing avg_load makes sense only when group is fully busy or
10664 	 * overloaded
10665 	 */
10666 	if (sgs->group_type == group_fully_busy ||
10667 		sgs->group_type == group_overloaded)
10668 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10669 				sgs->group_capacity;
10670 }
10671 
10672 static bool update_pick_idlest(struct sched_group *idlest,
10673 			       struct sg_lb_stats *idlest_sgs,
10674 			       struct sched_group *group,
10675 			       struct sg_lb_stats *sgs)
10676 {
10677 	if (sgs->group_type < idlest_sgs->group_type)
10678 		return true;
10679 
10680 	if (sgs->group_type > idlest_sgs->group_type)
10681 		return false;
10682 
10683 	/*
10684 	 * The candidate and the current idlest group are the same type of
10685 	 * group. Let check which one is the idlest according to the type.
10686 	 */
10687 
10688 	switch (sgs->group_type) {
10689 	case group_overloaded:
10690 	case group_fully_busy:
10691 		/* Select the group with lowest avg_load. */
10692 		if (idlest_sgs->avg_load <= sgs->avg_load)
10693 			return false;
10694 		break;
10695 
10696 	case group_imbalanced:
10697 	case group_asym_packing:
10698 	case group_smt_balance:
10699 		/* Those types are not used in the slow wakeup path */
10700 		return false;
10701 
10702 	case group_misfit_task:
10703 		/* Select group with the highest max capacity */
10704 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10705 			return false;
10706 		break;
10707 
10708 	case group_has_spare:
10709 		/* Select group with most idle CPUs */
10710 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10711 			return false;
10712 
10713 		/* Select group with lowest group_util */
10714 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10715 			idlest_sgs->group_util <= sgs->group_util)
10716 			return false;
10717 
10718 		break;
10719 	}
10720 
10721 	return true;
10722 }
10723 
10724 /*
10725  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10726  * domain.
10727  *
10728  * Assumes p is allowed on at least one CPU in sd.
10729  */
10730 static struct sched_group *
10731 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10732 {
10733 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10734 	struct sg_lb_stats local_sgs, tmp_sgs;
10735 	struct sg_lb_stats *sgs;
10736 	unsigned long imbalance;
10737 	struct sg_lb_stats idlest_sgs = {
10738 			.avg_load = UINT_MAX,
10739 			.group_type = group_overloaded,
10740 	};
10741 
10742 	do {
10743 		int local_group;
10744 
10745 		/* Skip over this group if it has no CPUs allowed */
10746 		if (!cpumask_intersects(sched_group_span(group),
10747 					p->cpus_ptr))
10748 			continue;
10749 
10750 		/* Skip over this group if no cookie matched */
10751 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10752 			continue;
10753 
10754 		local_group = cpumask_test_cpu(this_cpu,
10755 					       sched_group_span(group));
10756 
10757 		if (local_group) {
10758 			sgs = &local_sgs;
10759 			local = group;
10760 		} else {
10761 			sgs = &tmp_sgs;
10762 		}
10763 
10764 		update_sg_wakeup_stats(sd, group, sgs, p);
10765 
10766 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10767 			idlest = group;
10768 			idlest_sgs = *sgs;
10769 		}
10770 
10771 	} while (group = group->next, group != sd->groups);
10772 
10773 
10774 	/* There is no idlest group to push tasks to */
10775 	if (!idlest)
10776 		return NULL;
10777 
10778 	/* The local group has been skipped because of CPU affinity */
10779 	if (!local)
10780 		return idlest;
10781 
10782 	/*
10783 	 * If the local group is idler than the selected idlest group
10784 	 * don't try and push the task.
10785 	 */
10786 	if (local_sgs.group_type < idlest_sgs.group_type)
10787 		return NULL;
10788 
10789 	/*
10790 	 * If the local group is busier than the selected idlest group
10791 	 * try and push the task.
10792 	 */
10793 	if (local_sgs.group_type > idlest_sgs.group_type)
10794 		return idlest;
10795 
10796 	switch (local_sgs.group_type) {
10797 	case group_overloaded:
10798 	case group_fully_busy:
10799 
10800 		/* Calculate allowed imbalance based on load */
10801 		imbalance = scale_load_down(NICE_0_LOAD) *
10802 				(sd->imbalance_pct-100) / 100;
10803 
10804 		/*
10805 		 * When comparing groups across NUMA domains, it's possible for
10806 		 * the local domain to be very lightly loaded relative to the
10807 		 * remote domains but "imbalance" skews the comparison making
10808 		 * remote CPUs look much more favourable. When considering
10809 		 * cross-domain, add imbalance to the load on the remote node
10810 		 * and consider staying local.
10811 		 */
10812 
10813 		if ((sd->flags & SD_NUMA) &&
10814 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10815 			return NULL;
10816 
10817 		/*
10818 		 * If the local group is less loaded than the selected
10819 		 * idlest group don't try and push any tasks.
10820 		 */
10821 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10822 			return NULL;
10823 
10824 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10825 			return NULL;
10826 		break;
10827 
10828 	case group_imbalanced:
10829 	case group_asym_packing:
10830 	case group_smt_balance:
10831 		/* Those type are not used in the slow wakeup path */
10832 		return NULL;
10833 
10834 	case group_misfit_task:
10835 		/* Select group with the highest max capacity */
10836 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10837 			return NULL;
10838 		break;
10839 
10840 	case group_has_spare:
10841 #ifdef CONFIG_NUMA
10842 		if (sd->flags & SD_NUMA) {
10843 			int imb_numa_nr = sd->imb_numa_nr;
10844 #ifdef CONFIG_NUMA_BALANCING
10845 			int idlest_cpu;
10846 			/*
10847 			 * If there is spare capacity at NUMA, try to select
10848 			 * the preferred node
10849 			 */
10850 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10851 				return NULL;
10852 
10853 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10854 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10855 				return idlest;
10856 #endif /* CONFIG_NUMA_BALANCING */
10857 			/*
10858 			 * Otherwise, keep the task close to the wakeup source
10859 			 * and improve locality if the number of running tasks
10860 			 * would remain below threshold where an imbalance is
10861 			 * allowed while accounting for the possibility the
10862 			 * task is pinned to a subset of CPUs. If there is a
10863 			 * real need of migration, periodic load balance will
10864 			 * take care of it.
10865 			 */
10866 			if (p->nr_cpus_allowed != NR_CPUS) {
10867 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10868 
10869 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10870 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10871 			}
10872 
10873 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10874 			if (!adjust_numa_imbalance(imbalance,
10875 						   local_sgs.sum_nr_running + 1,
10876 						   imb_numa_nr)) {
10877 				return NULL;
10878 			}
10879 		}
10880 #endif /* CONFIG_NUMA */
10881 
10882 		/*
10883 		 * Select group with highest number of idle CPUs. We could also
10884 		 * compare the utilization which is more stable but it can end
10885 		 * up that the group has less spare capacity but finally more
10886 		 * idle CPUs which means more opportunity to run task.
10887 		 */
10888 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10889 			return NULL;
10890 		break;
10891 	}
10892 
10893 	return idlest;
10894 }
10895 
10896 static void update_idle_cpu_scan(struct lb_env *env,
10897 				 unsigned long sum_util)
10898 {
10899 	struct sched_domain_shared *sd_share;
10900 	int llc_weight, pct;
10901 	u64 x, y, tmp;
10902 	/*
10903 	 * Update the number of CPUs to scan in LLC domain, which could
10904 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10905 	 * could be expensive because it is within a shared cache line.
10906 	 * So the write of this hint only occurs during periodic load
10907 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10908 	 * can fire way more frequently than the former.
10909 	 */
10910 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10911 		return;
10912 
10913 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10914 	if (env->sd->span_weight != llc_weight)
10915 		return;
10916 
10917 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10918 	if (!sd_share)
10919 		return;
10920 
10921 	/*
10922 	 * The number of CPUs to search drops as sum_util increases, when
10923 	 * sum_util hits 85% or above, the scan stops.
10924 	 * The reason to choose 85% as the threshold is because this is the
10925 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10926 	 *
10927 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10928 	 * and y'= y / SCHED_CAPACITY_SCALE
10929 	 *
10930 	 * x is the ratio of sum_util compared to the CPU capacity:
10931 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10932 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10933 	 * and the number of CPUs to scan is calculated by:
10934 	 *
10935 	 * nr_scan = llc_weight * y'                                    [2]
10936 	 *
10937 	 * When x hits the threshold of overloaded, AKA, when
10938 	 * x = 100 / pct, y drops to 0. According to [1],
10939 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10940 	 *
10941 	 * Scale x by SCHED_CAPACITY_SCALE:
10942 	 * x' = sum_util / llc_weight;                                  [3]
10943 	 *
10944 	 * and finally [1] becomes:
10945 	 * y = SCHED_CAPACITY_SCALE -
10946 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10947 	 *
10948 	 */
10949 	/* equation [3] */
10950 	x = sum_util;
10951 	do_div(x, llc_weight);
10952 
10953 	/* equation [4] */
10954 	pct = env->sd->imbalance_pct;
10955 	tmp = x * x * pct * pct;
10956 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10957 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10958 	y = SCHED_CAPACITY_SCALE - tmp;
10959 
10960 	/* equation [2] */
10961 	y *= llc_weight;
10962 	do_div(y, SCHED_CAPACITY_SCALE);
10963 	if ((int)y != sd_share->nr_idle_scan)
10964 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10965 }
10966 
10967 /**
10968  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10969  * @env: The load balancing environment.
10970  * @sds: variable to hold the statistics for this sched_domain.
10971  */
10972 
10973 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10974 {
10975 	struct sched_group *sg = env->sd->groups;
10976 	struct sg_lb_stats *local = &sds->local_stat;
10977 	struct sg_lb_stats tmp_sgs;
10978 	unsigned long sum_util = 0;
10979 	bool sg_overloaded = 0, sg_overutilized = 0;
10980 
10981 	do {
10982 		struct sg_lb_stats *sgs = &tmp_sgs;
10983 		int local_group;
10984 
10985 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10986 		if (local_group) {
10987 			sds->local = sg;
10988 			sgs = local;
10989 
10990 			if (env->idle != CPU_NEWLY_IDLE ||
10991 			    time_after_eq(jiffies, sg->sgc->next_update))
10992 				update_group_capacity(env->sd, env->dst_cpu);
10993 		}
10994 
10995 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10996 
10997 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10998 			sds->busiest = sg;
10999 			sds->busiest_stat = *sgs;
11000 		}
11001 
11002 		/* Now, start updating sd_lb_stats */
11003 		sds->total_load += sgs->group_load;
11004 		sds->total_capacity += sgs->group_capacity;
11005 
11006 		sum_util += sgs->group_util;
11007 		sg = sg->next;
11008 	} while (sg != env->sd->groups);
11009 
11010 	/*
11011 	 * Indicate that the child domain of the busiest group prefers tasks
11012 	 * go to a child's sibling domains first. NB the flags of a sched group
11013 	 * are those of the child domain.
11014 	 */
11015 	if (sds->busiest)
11016 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11017 
11018 
11019 	if (env->sd->flags & SD_NUMA)
11020 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11021 
11022 	if (!env->sd->parent) {
11023 		/* update overload indicator if we are at root domain */
11024 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11025 
11026 		/* Update over-utilization (tipping point, U >= 0) indicator */
11027 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11028 	} else if (sg_overutilized) {
11029 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11030 	}
11031 
11032 	update_idle_cpu_scan(env, sum_util);
11033 }
11034 
11035 /**
11036  * calculate_imbalance - Calculate the amount of imbalance present within the
11037  *			 groups of a given sched_domain during load balance.
11038  * @env: load balance environment
11039  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11040  */
11041 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11042 {
11043 	struct sg_lb_stats *local, *busiest;
11044 
11045 	local = &sds->local_stat;
11046 	busiest = &sds->busiest_stat;
11047 
11048 	if (busiest->group_type == group_misfit_task) {
11049 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11050 			/* Set imbalance to allow misfit tasks to be balanced. */
11051 			env->migration_type = migrate_misfit;
11052 			env->imbalance = 1;
11053 		} else {
11054 			/*
11055 			 * Set load imbalance to allow moving task from cpu
11056 			 * with reduced capacity.
11057 			 */
11058 			env->migration_type = migrate_load;
11059 			env->imbalance = busiest->group_misfit_task_load;
11060 		}
11061 		return;
11062 	}
11063 
11064 	if (busiest->group_type == group_asym_packing) {
11065 		/*
11066 		 * In case of asym capacity, we will try to migrate all load to
11067 		 * the preferred CPU.
11068 		 */
11069 		env->migration_type = migrate_task;
11070 		env->imbalance = busiest->sum_h_nr_running;
11071 		return;
11072 	}
11073 
11074 	if (busiest->group_type == group_smt_balance) {
11075 		/* Reduce number of tasks sharing CPU capacity */
11076 		env->migration_type = migrate_task;
11077 		env->imbalance = 1;
11078 		return;
11079 	}
11080 
11081 	if (busiest->group_type == group_imbalanced) {
11082 		/*
11083 		 * In the group_imb case we cannot rely on group-wide averages
11084 		 * to ensure CPU-load equilibrium, try to move any task to fix
11085 		 * the imbalance. The next load balance will take care of
11086 		 * balancing back the system.
11087 		 */
11088 		env->migration_type = migrate_task;
11089 		env->imbalance = 1;
11090 		return;
11091 	}
11092 
11093 	/*
11094 	 * Try to use spare capacity of local group without overloading it or
11095 	 * emptying busiest.
11096 	 */
11097 	if (local->group_type == group_has_spare) {
11098 		if ((busiest->group_type > group_fully_busy) &&
11099 		    !(env->sd->flags & SD_SHARE_LLC)) {
11100 			/*
11101 			 * If busiest is overloaded, try to fill spare
11102 			 * capacity. This might end up creating spare capacity
11103 			 * in busiest or busiest still being overloaded but
11104 			 * there is no simple way to directly compute the
11105 			 * amount of load to migrate in order to balance the
11106 			 * system.
11107 			 */
11108 			env->migration_type = migrate_util;
11109 			env->imbalance = max(local->group_capacity, local->group_util) -
11110 					 local->group_util;
11111 
11112 			/*
11113 			 * In some cases, the group's utilization is max or even
11114 			 * higher than capacity because of migrations but the
11115 			 * local CPU is (newly) idle. There is at least one
11116 			 * waiting task in this overloaded busiest group. Let's
11117 			 * try to pull it.
11118 			 */
11119 			if (env->idle && env->imbalance == 0) {
11120 				env->migration_type = migrate_task;
11121 				env->imbalance = 1;
11122 			}
11123 
11124 			return;
11125 		}
11126 
11127 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11128 			/*
11129 			 * When prefer sibling, evenly spread running tasks on
11130 			 * groups.
11131 			 */
11132 			env->migration_type = migrate_task;
11133 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11134 		} else {
11135 
11136 			/*
11137 			 * If there is no overload, we just want to even the number of
11138 			 * idle CPUs.
11139 			 */
11140 			env->migration_type = migrate_task;
11141 			env->imbalance = max_t(long, 0,
11142 					       (local->idle_cpus - busiest->idle_cpus));
11143 		}
11144 
11145 #ifdef CONFIG_NUMA
11146 		/* Consider allowing a small imbalance between NUMA groups */
11147 		if (env->sd->flags & SD_NUMA) {
11148 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11149 							       local->sum_nr_running + 1,
11150 							       env->sd->imb_numa_nr);
11151 		}
11152 #endif
11153 
11154 		/* Number of tasks to move to restore balance */
11155 		env->imbalance >>= 1;
11156 
11157 		return;
11158 	}
11159 
11160 	/*
11161 	 * Local is fully busy but has to take more load to relieve the
11162 	 * busiest group
11163 	 */
11164 	if (local->group_type < group_overloaded) {
11165 		/*
11166 		 * Local will become overloaded so the avg_load metrics are
11167 		 * finally needed.
11168 		 */
11169 
11170 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11171 				  local->group_capacity;
11172 
11173 		/*
11174 		 * If the local group is more loaded than the selected
11175 		 * busiest group don't try to pull any tasks.
11176 		 */
11177 		if (local->avg_load >= busiest->avg_load) {
11178 			env->imbalance = 0;
11179 			return;
11180 		}
11181 
11182 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11183 				sds->total_capacity;
11184 
11185 		/*
11186 		 * If the local group is more loaded than the average system
11187 		 * load, don't try to pull any tasks.
11188 		 */
11189 		if (local->avg_load >= sds->avg_load) {
11190 			env->imbalance = 0;
11191 			return;
11192 		}
11193 
11194 	}
11195 
11196 	/*
11197 	 * Both group are or will become overloaded and we're trying to get all
11198 	 * the CPUs to the average_load, so we don't want to push ourselves
11199 	 * above the average load, nor do we wish to reduce the max loaded CPU
11200 	 * below the average load. At the same time, we also don't want to
11201 	 * reduce the group load below the group capacity. Thus we look for
11202 	 * the minimum possible imbalance.
11203 	 */
11204 	env->migration_type = migrate_load;
11205 	env->imbalance = min(
11206 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11207 		(sds->avg_load - local->avg_load) * local->group_capacity
11208 	) / SCHED_CAPACITY_SCALE;
11209 }
11210 
11211 /******* sched_balance_find_src_group() helpers end here *********************/
11212 
11213 /*
11214  * Decision matrix according to the local and busiest group type:
11215  *
11216  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11217  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11218  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11219  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11220  * asym_packing     force     force      N/A    N/A  force      force
11221  * imbalanced       force     force      N/A    N/A  force      force
11222  * overloaded       force     force      N/A    N/A  force      avg_load
11223  *
11224  * N/A :      Not Applicable because already filtered while updating
11225  *            statistics.
11226  * balanced : The system is balanced for these 2 groups.
11227  * force :    Calculate the imbalance as load migration is probably needed.
11228  * avg_load : Only if imbalance is significant enough.
11229  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11230  *            different in groups.
11231  */
11232 
11233 /**
11234  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11235  * if there is an imbalance.
11236  * @env: The load balancing environment.
11237  *
11238  * Also calculates the amount of runnable load which should be moved
11239  * to restore balance.
11240  *
11241  * Return:	- The busiest group if imbalance exists.
11242  */
11243 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11244 {
11245 	struct sg_lb_stats *local, *busiest;
11246 	struct sd_lb_stats sds;
11247 
11248 	init_sd_lb_stats(&sds);
11249 
11250 	/*
11251 	 * Compute the various statistics relevant for load balancing at
11252 	 * this level.
11253 	 */
11254 	update_sd_lb_stats(env, &sds);
11255 
11256 	/* There is no busy sibling group to pull tasks from */
11257 	if (!sds.busiest)
11258 		goto out_balanced;
11259 
11260 	busiest = &sds.busiest_stat;
11261 
11262 	/* Misfit tasks should be dealt with regardless of the avg load */
11263 	if (busiest->group_type == group_misfit_task)
11264 		goto force_balance;
11265 
11266 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11267 	    rcu_dereference(env->dst_rq->rd->pd))
11268 		goto out_balanced;
11269 
11270 	/* ASYM feature bypasses nice load balance check */
11271 	if (busiest->group_type == group_asym_packing)
11272 		goto force_balance;
11273 
11274 	/*
11275 	 * If the busiest group is imbalanced the below checks don't
11276 	 * work because they assume all things are equal, which typically
11277 	 * isn't true due to cpus_ptr constraints and the like.
11278 	 */
11279 	if (busiest->group_type == group_imbalanced)
11280 		goto force_balance;
11281 
11282 	local = &sds.local_stat;
11283 	/*
11284 	 * If the local group is busier than the selected busiest group
11285 	 * don't try and pull any tasks.
11286 	 */
11287 	if (local->group_type > busiest->group_type)
11288 		goto out_balanced;
11289 
11290 	/*
11291 	 * When groups are overloaded, use the avg_load to ensure fairness
11292 	 * between tasks.
11293 	 */
11294 	if (local->group_type == group_overloaded) {
11295 		/*
11296 		 * If the local group is more loaded than the selected
11297 		 * busiest group don't try to pull any tasks.
11298 		 */
11299 		if (local->avg_load >= busiest->avg_load)
11300 			goto out_balanced;
11301 
11302 		/* XXX broken for overlapping NUMA groups */
11303 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11304 				sds.total_capacity;
11305 
11306 		/*
11307 		 * Don't pull any tasks if this group is already above the
11308 		 * domain average load.
11309 		 */
11310 		if (local->avg_load >= sds.avg_load)
11311 			goto out_balanced;
11312 
11313 		/*
11314 		 * If the busiest group is more loaded, use imbalance_pct to be
11315 		 * conservative.
11316 		 */
11317 		if (100 * busiest->avg_load <=
11318 				env->sd->imbalance_pct * local->avg_load)
11319 			goto out_balanced;
11320 	}
11321 
11322 	/*
11323 	 * Try to move all excess tasks to a sibling domain of the busiest
11324 	 * group's child domain.
11325 	 */
11326 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11327 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11328 		goto force_balance;
11329 
11330 	if (busiest->group_type != group_overloaded) {
11331 		if (!env->idle) {
11332 			/*
11333 			 * If the busiest group is not overloaded (and as a
11334 			 * result the local one too) but this CPU is already
11335 			 * busy, let another idle CPU try to pull task.
11336 			 */
11337 			goto out_balanced;
11338 		}
11339 
11340 		if (busiest->group_type == group_smt_balance &&
11341 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11342 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11343 			goto force_balance;
11344 		}
11345 
11346 		if (busiest->group_weight > 1 &&
11347 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11348 			/*
11349 			 * If the busiest group is not overloaded
11350 			 * and there is no imbalance between this and busiest
11351 			 * group wrt idle CPUs, it is balanced. The imbalance
11352 			 * becomes significant if the diff is greater than 1
11353 			 * otherwise we might end up to just move the imbalance
11354 			 * on another group. Of course this applies only if
11355 			 * there is more than 1 CPU per group.
11356 			 */
11357 			goto out_balanced;
11358 		}
11359 
11360 		if (busiest->sum_h_nr_running == 1) {
11361 			/*
11362 			 * busiest doesn't have any tasks waiting to run
11363 			 */
11364 			goto out_balanced;
11365 		}
11366 	}
11367 
11368 force_balance:
11369 	/* Looks like there is an imbalance. Compute it */
11370 	calculate_imbalance(env, &sds);
11371 	return env->imbalance ? sds.busiest : NULL;
11372 
11373 out_balanced:
11374 	env->imbalance = 0;
11375 	return NULL;
11376 }
11377 
11378 /*
11379  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11380  */
11381 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11382 				     struct sched_group *group)
11383 {
11384 	struct rq *busiest = NULL, *rq;
11385 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11386 	unsigned int busiest_nr = 0;
11387 	int i;
11388 
11389 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11390 		unsigned long capacity, load, util;
11391 		unsigned int nr_running;
11392 		enum fbq_type rt;
11393 
11394 		rq = cpu_rq(i);
11395 		rt = fbq_classify_rq(rq);
11396 
11397 		/*
11398 		 * We classify groups/runqueues into three groups:
11399 		 *  - regular: there are !numa tasks
11400 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11401 		 *  - all:     there is no distinction
11402 		 *
11403 		 * In order to avoid migrating ideally placed numa tasks,
11404 		 * ignore those when there's better options.
11405 		 *
11406 		 * If we ignore the actual busiest queue to migrate another
11407 		 * task, the next balance pass can still reduce the busiest
11408 		 * queue by moving tasks around inside the node.
11409 		 *
11410 		 * If we cannot move enough load due to this classification
11411 		 * the next pass will adjust the group classification and
11412 		 * allow migration of more tasks.
11413 		 *
11414 		 * Both cases only affect the total convergence complexity.
11415 		 */
11416 		if (rt > env->fbq_type)
11417 			continue;
11418 
11419 		nr_running = rq->cfs.h_nr_running;
11420 		if (!nr_running)
11421 			continue;
11422 
11423 		capacity = capacity_of(i);
11424 
11425 		/*
11426 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11427 		 * eventually lead to active_balancing high->low capacity.
11428 		 * Higher per-CPU capacity is considered better than balancing
11429 		 * average load.
11430 		 */
11431 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11432 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11433 		    nr_running == 1)
11434 			continue;
11435 
11436 		/*
11437 		 * Make sure we only pull tasks from a CPU of lower priority
11438 		 * when balancing between SMT siblings.
11439 		 *
11440 		 * If balancing between cores, let lower priority CPUs help
11441 		 * SMT cores with more than one busy sibling.
11442 		 */
11443 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11444 			continue;
11445 
11446 		switch (env->migration_type) {
11447 		case migrate_load:
11448 			/*
11449 			 * When comparing with load imbalance, use cpu_load()
11450 			 * which is not scaled with the CPU capacity.
11451 			 */
11452 			load = cpu_load(rq);
11453 
11454 			if (nr_running == 1 && load > env->imbalance &&
11455 			    !check_cpu_capacity(rq, env->sd))
11456 				break;
11457 
11458 			/*
11459 			 * For the load comparisons with the other CPUs,
11460 			 * consider the cpu_load() scaled with the CPU
11461 			 * capacity, so that the load can be moved away
11462 			 * from the CPU that is potentially running at a
11463 			 * lower capacity.
11464 			 *
11465 			 * Thus we're looking for max(load_i / capacity_i),
11466 			 * crosswise multiplication to rid ourselves of the
11467 			 * division works out to:
11468 			 * load_i * capacity_j > load_j * capacity_i;
11469 			 * where j is our previous maximum.
11470 			 */
11471 			if (load * busiest_capacity > busiest_load * capacity) {
11472 				busiest_load = load;
11473 				busiest_capacity = capacity;
11474 				busiest = rq;
11475 			}
11476 			break;
11477 
11478 		case migrate_util:
11479 			util = cpu_util_cfs_boost(i);
11480 
11481 			/*
11482 			 * Don't try to pull utilization from a CPU with one
11483 			 * running task. Whatever its utilization, we will fail
11484 			 * detach the task.
11485 			 */
11486 			if (nr_running <= 1)
11487 				continue;
11488 
11489 			if (busiest_util < util) {
11490 				busiest_util = util;
11491 				busiest = rq;
11492 			}
11493 			break;
11494 
11495 		case migrate_task:
11496 			if (busiest_nr < nr_running) {
11497 				busiest_nr = nr_running;
11498 				busiest = rq;
11499 			}
11500 			break;
11501 
11502 		case migrate_misfit:
11503 			/*
11504 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11505 			 * simply seek the "biggest" misfit task.
11506 			 */
11507 			if (rq->misfit_task_load > busiest_load) {
11508 				busiest_load = rq->misfit_task_load;
11509 				busiest = rq;
11510 			}
11511 
11512 			break;
11513 
11514 		}
11515 	}
11516 
11517 	return busiest;
11518 }
11519 
11520 /*
11521  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11522  * so long as it is large enough.
11523  */
11524 #define MAX_PINNED_INTERVAL	512
11525 
11526 static inline bool
11527 asym_active_balance(struct lb_env *env)
11528 {
11529 	/*
11530 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11531 	 * priority CPUs in order to pack all tasks in the highest priority
11532 	 * CPUs. When done between cores, do it only if the whole core if the
11533 	 * whole core is idle.
11534 	 *
11535 	 * If @env::src_cpu is an SMT core with busy siblings, let
11536 	 * the lower priority @env::dst_cpu help it. Do not follow
11537 	 * CPU priority.
11538 	 */
11539 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11540 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11541 		!sched_use_asym_prio(env->sd, env->src_cpu));
11542 }
11543 
11544 static inline bool
11545 imbalanced_active_balance(struct lb_env *env)
11546 {
11547 	struct sched_domain *sd = env->sd;
11548 
11549 	/*
11550 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11551 	 * distribution of the load on the system but also the even distribution of the
11552 	 * threads on a system with spare capacity
11553 	 */
11554 	if ((env->migration_type == migrate_task) &&
11555 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11556 		return 1;
11557 
11558 	return 0;
11559 }
11560 
11561 static int need_active_balance(struct lb_env *env)
11562 {
11563 	struct sched_domain *sd = env->sd;
11564 
11565 	if (asym_active_balance(env))
11566 		return 1;
11567 
11568 	if (imbalanced_active_balance(env))
11569 		return 1;
11570 
11571 	/*
11572 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11573 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11574 	 * because of other sched_class or IRQs if more capacity stays
11575 	 * available on dst_cpu.
11576 	 */
11577 	if (env->idle &&
11578 	    (env->src_rq->cfs.h_nr_running == 1)) {
11579 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11580 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11581 			return 1;
11582 	}
11583 
11584 	if (env->migration_type == migrate_misfit)
11585 		return 1;
11586 
11587 	return 0;
11588 }
11589 
11590 static int active_load_balance_cpu_stop(void *data);
11591 
11592 static int should_we_balance(struct lb_env *env)
11593 {
11594 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11595 	struct sched_group *sg = env->sd->groups;
11596 	int cpu, idle_smt = -1;
11597 
11598 	/*
11599 	 * Ensure the balancing environment is consistent; can happen
11600 	 * when the softirq triggers 'during' hotplug.
11601 	 */
11602 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11603 		return 0;
11604 
11605 	/*
11606 	 * In the newly idle case, we will allow all the CPUs
11607 	 * to do the newly idle load balance.
11608 	 *
11609 	 * However, we bail out if we already have tasks or a wakeup pending,
11610 	 * to optimize wakeup latency.
11611 	 */
11612 	if (env->idle == CPU_NEWLY_IDLE) {
11613 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11614 			return 0;
11615 		return 1;
11616 	}
11617 
11618 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11619 	/* Try to find first idle CPU */
11620 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11621 		if (!idle_cpu(cpu))
11622 			continue;
11623 
11624 		/*
11625 		 * Don't balance to idle SMT in busy core right away when
11626 		 * balancing cores, but remember the first idle SMT CPU for
11627 		 * later consideration.  Find CPU on an idle core first.
11628 		 */
11629 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11630 			if (idle_smt == -1)
11631 				idle_smt = cpu;
11632 			/*
11633 			 * If the core is not idle, and first SMT sibling which is
11634 			 * idle has been found, then its not needed to check other
11635 			 * SMT siblings for idleness:
11636 			 */
11637 #ifdef CONFIG_SCHED_SMT
11638 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11639 #endif
11640 			continue;
11641 		}
11642 
11643 		/*
11644 		 * Are we the first idle core in a non-SMT domain or higher,
11645 		 * or the first idle CPU in a SMT domain?
11646 		 */
11647 		return cpu == env->dst_cpu;
11648 	}
11649 
11650 	/* Are we the first idle CPU with busy siblings? */
11651 	if (idle_smt != -1)
11652 		return idle_smt == env->dst_cpu;
11653 
11654 	/* Are we the first CPU of this group ? */
11655 	return group_balance_cpu(sg) == env->dst_cpu;
11656 }
11657 
11658 /*
11659  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11660  * tasks if there is an imbalance.
11661  */
11662 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11663 			struct sched_domain *sd, enum cpu_idle_type idle,
11664 			int *continue_balancing)
11665 {
11666 	int ld_moved, cur_ld_moved, active_balance = 0;
11667 	struct sched_domain *sd_parent = sd->parent;
11668 	struct sched_group *group;
11669 	struct rq *busiest;
11670 	struct rq_flags rf;
11671 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11672 	struct lb_env env = {
11673 		.sd		= sd,
11674 		.dst_cpu	= this_cpu,
11675 		.dst_rq		= this_rq,
11676 		.dst_grpmask    = group_balance_mask(sd->groups),
11677 		.idle		= idle,
11678 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11679 		.cpus		= cpus,
11680 		.fbq_type	= all,
11681 		.tasks		= LIST_HEAD_INIT(env.tasks),
11682 	};
11683 
11684 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11685 
11686 	schedstat_inc(sd->lb_count[idle]);
11687 
11688 redo:
11689 	if (!should_we_balance(&env)) {
11690 		*continue_balancing = 0;
11691 		goto out_balanced;
11692 	}
11693 
11694 	group = sched_balance_find_src_group(&env);
11695 	if (!group) {
11696 		schedstat_inc(sd->lb_nobusyg[idle]);
11697 		goto out_balanced;
11698 	}
11699 
11700 	busiest = sched_balance_find_src_rq(&env, group);
11701 	if (!busiest) {
11702 		schedstat_inc(sd->lb_nobusyq[idle]);
11703 		goto out_balanced;
11704 	}
11705 
11706 	WARN_ON_ONCE(busiest == env.dst_rq);
11707 
11708 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11709 
11710 	env.src_cpu = busiest->cpu;
11711 	env.src_rq = busiest;
11712 
11713 	ld_moved = 0;
11714 	/* Clear this flag as soon as we find a pullable task */
11715 	env.flags |= LBF_ALL_PINNED;
11716 	if (busiest->nr_running > 1) {
11717 		/*
11718 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11719 		 * an imbalance but busiest->nr_running <= 1, the group is
11720 		 * still unbalanced. ld_moved simply stays zero, so it is
11721 		 * correctly treated as an imbalance.
11722 		 */
11723 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11724 
11725 more_balance:
11726 		rq_lock_irqsave(busiest, &rf);
11727 		update_rq_clock(busiest);
11728 
11729 		/*
11730 		 * cur_ld_moved - load moved in current iteration
11731 		 * ld_moved     - cumulative load moved across iterations
11732 		 */
11733 		cur_ld_moved = detach_tasks(&env);
11734 
11735 		/*
11736 		 * We've detached some tasks from busiest_rq. Every
11737 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11738 		 * unlock busiest->lock, and we are able to be sure
11739 		 * that nobody can manipulate the tasks in parallel.
11740 		 * See task_rq_lock() family for the details.
11741 		 */
11742 
11743 		rq_unlock(busiest, &rf);
11744 
11745 		if (cur_ld_moved) {
11746 			attach_tasks(&env);
11747 			ld_moved += cur_ld_moved;
11748 		}
11749 
11750 		local_irq_restore(rf.flags);
11751 
11752 		if (env.flags & LBF_NEED_BREAK) {
11753 			env.flags &= ~LBF_NEED_BREAK;
11754 			goto more_balance;
11755 		}
11756 
11757 		/*
11758 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11759 		 * us and move them to an alternate dst_cpu in our sched_group
11760 		 * where they can run. The upper limit on how many times we
11761 		 * iterate on same src_cpu is dependent on number of CPUs in our
11762 		 * sched_group.
11763 		 *
11764 		 * This changes load balance semantics a bit on who can move
11765 		 * load to a given_cpu. In addition to the given_cpu itself
11766 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11767 		 * nohz-idle), we now have balance_cpu in a position to move
11768 		 * load to given_cpu. In rare situations, this may cause
11769 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11770 		 * _independently_ and at _same_ time to move some load to
11771 		 * given_cpu) causing excess load to be moved to given_cpu.
11772 		 * This however should not happen so much in practice and
11773 		 * moreover subsequent load balance cycles should correct the
11774 		 * excess load moved.
11775 		 */
11776 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11777 
11778 			/* Prevent to re-select dst_cpu via env's CPUs */
11779 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11780 
11781 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11782 			env.dst_cpu	 = env.new_dst_cpu;
11783 			env.flags	&= ~LBF_DST_PINNED;
11784 			env.loop	 = 0;
11785 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11786 
11787 			/*
11788 			 * Go back to "more_balance" rather than "redo" since we
11789 			 * need to continue with same src_cpu.
11790 			 */
11791 			goto more_balance;
11792 		}
11793 
11794 		/*
11795 		 * We failed to reach balance because of affinity.
11796 		 */
11797 		if (sd_parent) {
11798 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11799 
11800 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11801 				*group_imbalance = 1;
11802 		}
11803 
11804 		/* All tasks on this runqueue were pinned by CPU affinity */
11805 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11806 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11807 			/*
11808 			 * Attempting to continue load balancing at the current
11809 			 * sched_domain level only makes sense if there are
11810 			 * active CPUs remaining as possible busiest CPUs to
11811 			 * pull load from which are not contained within the
11812 			 * destination group that is receiving any migrated
11813 			 * load.
11814 			 */
11815 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11816 				env.loop = 0;
11817 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11818 				goto redo;
11819 			}
11820 			goto out_all_pinned;
11821 		}
11822 	}
11823 
11824 	if (!ld_moved) {
11825 		schedstat_inc(sd->lb_failed[idle]);
11826 		/*
11827 		 * Increment the failure counter only on periodic balance.
11828 		 * We do not want newidle balance, which can be very
11829 		 * frequent, pollute the failure counter causing
11830 		 * excessive cache_hot migrations and active balances.
11831 		 *
11832 		 * Similarly for migration_misfit which is not related to
11833 		 * load/util migration, don't pollute nr_balance_failed.
11834 		 */
11835 		if (idle != CPU_NEWLY_IDLE &&
11836 		    env.migration_type != migrate_misfit)
11837 			sd->nr_balance_failed++;
11838 
11839 		if (need_active_balance(&env)) {
11840 			unsigned long flags;
11841 
11842 			raw_spin_rq_lock_irqsave(busiest, flags);
11843 
11844 			/*
11845 			 * Don't kick the active_load_balance_cpu_stop,
11846 			 * if the curr task on busiest CPU can't be
11847 			 * moved to this_cpu:
11848 			 */
11849 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11850 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11851 				goto out_one_pinned;
11852 			}
11853 
11854 			/* Record that we found at least one task that could run on this_cpu */
11855 			env.flags &= ~LBF_ALL_PINNED;
11856 
11857 			/*
11858 			 * ->active_balance synchronizes accesses to
11859 			 * ->active_balance_work.  Once set, it's cleared
11860 			 * only after active load balance is finished.
11861 			 */
11862 			if (!busiest->active_balance) {
11863 				busiest->active_balance = 1;
11864 				busiest->push_cpu = this_cpu;
11865 				active_balance = 1;
11866 			}
11867 
11868 			preempt_disable();
11869 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11870 			if (active_balance) {
11871 				stop_one_cpu_nowait(cpu_of(busiest),
11872 					active_load_balance_cpu_stop, busiest,
11873 					&busiest->active_balance_work);
11874 			}
11875 			preempt_enable();
11876 		}
11877 	} else {
11878 		sd->nr_balance_failed = 0;
11879 	}
11880 
11881 	if (likely(!active_balance) || need_active_balance(&env)) {
11882 		/* We were unbalanced, so reset the balancing interval */
11883 		sd->balance_interval = sd->min_interval;
11884 	}
11885 
11886 	goto out;
11887 
11888 out_balanced:
11889 	/*
11890 	 * We reach balance although we may have faced some affinity
11891 	 * constraints. Clear the imbalance flag only if other tasks got
11892 	 * a chance to move and fix the imbalance.
11893 	 */
11894 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11895 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11896 
11897 		if (*group_imbalance)
11898 			*group_imbalance = 0;
11899 	}
11900 
11901 out_all_pinned:
11902 	/*
11903 	 * We reach balance because all tasks are pinned at this level so
11904 	 * we can't migrate them. Let the imbalance flag set so parent level
11905 	 * can try to migrate them.
11906 	 */
11907 	schedstat_inc(sd->lb_balanced[idle]);
11908 
11909 	sd->nr_balance_failed = 0;
11910 
11911 out_one_pinned:
11912 	ld_moved = 0;
11913 
11914 	/*
11915 	 * sched_balance_newidle() disregards balance intervals, so we could
11916 	 * repeatedly reach this code, which would lead to balance_interval
11917 	 * skyrocketing in a short amount of time. Skip the balance_interval
11918 	 * increase logic to avoid that.
11919 	 *
11920 	 * Similarly misfit migration which is not necessarily an indication of
11921 	 * the system being busy and requires lb to backoff to let it settle
11922 	 * down.
11923 	 */
11924 	if (env.idle == CPU_NEWLY_IDLE ||
11925 	    env.migration_type == migrate_misfit)
11926 		goto out;
11927 
11928 	/* tune up the balancing interval */
11929 	if ((env.flags & LBF_ALL_PINNED &&
11930 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11931 	    sd->balance_interval < sd->max_interval)
11932 		sd->balance_interval *= 2;
11933 out:
11934 	return ld_moved;
11935 }
11936 
11937 static inline unsigned long
11938 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11939 {
11940 	unsigned long interval = sd->balance_interval;
11941 
11942 	if (cpu_busy)
11943 		interval *= sd->busy_factor;
11944 
11945 	/* scale ms to jiffies */
11946 	interval = msecs_to_jiffies(interval);
11947 
11948 	/*
11949 	 * Reduce likelihood of busy balancing at higher domains racing with
11950 	 * balancing at lower domains by preventing their balancing periods
11951 	 * from being multiples of each other.
11952 	 */
11953 	if (cpu_busy)
11954 		interval -= 1;
11955 
11956 	interval = clamp(interval, 1UL, max_load_balance_interval);
11957 
11958 	return interval;
11959 }
11960 
11961 static inline void
11962 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11963 {
11964 	unsigned long interval, next;
11965 
11966 	/* used by idle balance, so cpu_busy = 0 */
11967 	interval = get_sd_balance_interval(sd, 0);
11968 	next = sd->last_balance + interval;
11969 
11970 	if (time_after(*next_balance, next))
11971 		*next_balance = next;
11972 }
11973 
11974 /*
11975  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11976  * running tasks off the busiest CPU onto idle CPUs. It requires at
11977  * least 1 task to be running on each physical CPU where possible, and
11978  * avoids physical / logical imbalances.
11979  */
11980 static int active_load_balance_cpu_stop(void *data)
11981 {
11982 	struct rq *busiest_rq = data;
11983 	int busiest_cpu = cpu_of(busiest_rq);
11984 	int target_cpu = busiest_rq->push_cpu;
11985 	struct rq *target_rq = cpu_rq(target_cpu);
11986 	struct sched_domain *sd;
11987 	struct task_struct *p = NULL;
11988 	struct rq_flags rf;
11989 
11990 	rq_lock_irq(busiest_rq, &rf);
11991 	/*
11992 	 * Between queueing the stop-work and running it is a hole in which
11993 	 * CPUs can become inactive. We should not move tasks from or to
11994 	 * inactive CPUs.
11995 	 */
11996 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11997 		goto out_unlock;
11998 
11999 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12000 	if (unlikely(busiest_cpu != smp_processor_id() ||
12001 		     !busiest_rq->active_balance))
12002 		goto out_unlock;
12003 
12004 	/* Is there any task to move? */
12005 	if (busiest_rq->nr_running <= 1)
12006 		goto out_unlock;
12007 
12008 	/*
12009 	 * This condition is "impossible", if it occurs
12010 	 * we need to fix it. Originally reported by
12011 	 * Bjorn Helgaas on a 128-CPU setup.
12012 	 */
12013 	WARN_ON_ONCE(busiest_rq == target_rq);
12014 
12015 	/* Search for an sd spanning us and the target CPU. */
12016 	rcu_read_lock();
12017 	for_each_domain(target_cpu, sd) {
12018 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12019 			break;
12020 	}
12021 
12022 	if (likely(sd)) {
12023 		struct lb_env env = {
12024 			.sd		= sd,
12025 			.dst_cpu	= target_cpu,
12026 			.dst_rq		= target_rq,
12027 			.src_cpu	= busiest_rq->cpu,
12028 			.src_rq		= busiest_rq,
12029 			.idle		= CPU_IDLE,
12030 			.flags		= LBF_ACTIVE_LB,
12031 		};
12032 
12033 		schedstat_inc(sd->alb_count);
12034 		update_rq_clock(busiest_rq);
12035 
12036 		p = detach_one_task(&env);
12037 		if (p) {
12038 			schedstat_inc(sd->alb_pushed);
12039 			/* Active balancing done, reset the failure counter. */
12040 			sd->nr_balance_failed = 0;
12041 		} else {
12042 			schedstat_inc(sd->alb_failed);
12043 		}
12044 	}
12045 	rcu_read_unlock();
12046 out_unlock:
12047 	busiest_rq->active_balance = 0;
12048 	rq_unlock(busiest_rq, &rf);
12049 
12050 	if (p)
12051 		attach_one_task(target_rq, p);
12052 
12053 	local_irq_enable();
12054 
12055 	return 0;
12056 }
12057 
12058 /*
12059  * This flag serializes load-balancing passes over large domains
12060  * (above the NODE topology level) - only one load-balancing instance
12061  * may run at a time, to reduce overhead on very large systems with
12062  * lots of CPUs and large NUMA distances.
12063  *
12064  * - Note that load-balancing passes triggered while another one
12065  *   is executing are skipped and not re-tried.
12066  *
12067  * - Also note that this does not serialize rebalance_domains()
12068  *   execution, as non-SD_SERIALIZE domains will still be
12069  *   load-balanced in parallel.
12070  */
12071 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12072 
12073 /*
12074  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12075  * This trades load-balance latency on larger machines for less cross talk.
12076  */
12077 void update_max_interval(void)
12078 {
12079 	max_load_balance_interval = HZ*num_online_cpus()/10;
12080 }
12081 
12082 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12083 {
12084 	if (cost > sd->max_newidle_lb_cost) {
12085 		/*
12086 		 * Track max cost of a domain to make sure to not delay the
12087 		 * next wakeup on the CPU.
12088 		 */
12089 		sd->max_newidle_lb_cost = cost;
12090 		sd->last_decay_max_lb_cost = jiffies;
12091 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12092 		/*
12093 		 * Decay the newidle max times by ~1% per second to ensure that
12094 		 * it is not outdated and the current max cost is actually
12095 		 * shorter.
12096 		 */
12097 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12098 		sd->last_decay_max_lb_cost = jiffies;
12099 
12100 		return true;
12101 	}
12102 
12103 	return false;
12104 }
12105 
12106 /*
12107  * It checks each scheduling domain to see if it is due to be balanced,
12108  * and initiates a balancing operation if so.
12109  *
12110  * Balancing parameters are set up in init_sched_domains.
12111  */
12112 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12113 {
12114 	int continue_balancing = 1;
12115 	int cpu = rq->cpu;
12116 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12117 	unsigned long interval;
12118 	struct sched_domain *sd;
12119 	/* Earliest time when we have to do rebalance again */
12120 	unsigned long next_balance = jiffies + 60*HZ;
12121 	int update_next_balance = 0;
12122 	int need_serialize, need_decay = 0;
12123 	u64 max_cost = 0;
12124 
12125 	rcu_read_lock();
12126 	for_each_domain(cpu, sd) {
12127 		/*
12128 		 * Decay the newidle max times here because this is a regular
12129 		 * visit to all the domains.
12130 		 */
12131 		need_decay = update_newidle_cost(sd, 0);
12132 		max_cost += sd->max_newidle_lb_cost;
12133 
12134 		/*
12135 		 * Stop the load balance at this level. There is another
12136 		 * CPU in our sched group which is doing load balancing more
12137 		 * actively.
12138 		 */
12139 		if (!continue_balancing) {
12140 			if (need_decay)
12141 				continue;
12142 			break;
12143 		}
12144 
12145 		interval = get_sd_balance_interval(sd, busy);
12146 
12147 		need_serialize = sd->flags & SD_SERIALIZE;
12148 		if (need_serialize) {
12149 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12150 				goto out;
12151 		}
12152 
12153 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12154 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12155 				/*
12156 				 * The LBF_DST_PINNED logic could have changed
12157 				 * env->dst_cpu, so we can't know our idle
12158 				 * state even if we migrated tasks. Update it.
12159 				 */
12160 				idle = idle_cpu(cpu);
12161 				busy = !idle && !sched_idle_cpu(cpu);
12162 			}
12163 			sd->last_balance = jiffies;
12164 			interval = get_sd_balance_interval(sd, busy);
12165 		}
12166 		if (need_serialize)
12167 			atomic_set_release(&sched_balance_running, 0);
12168 out:
12169 		if (time_after(next_balance, sd->last_balance + interval)) {
12170 			next_balance = sd->last_balance + interval;
12171 			update_next_balance = 1;
12172 		}
12173 	}
12174 	if (need_decay) {
12175 		/*
12176 		 * Ensure the rq-wide value also decays but keep it at a
12177 		 * reasonable floor to avoid funnies with rq->avg_idle.
12178 		 */
12179 		rq->max_idle_balance_cost =
12180 			max((u64)sysctl_sched_migration_cost, max_cost);
12181 	}
12182 	rcu_read_unlock();
12183 
12184 	/*
12185 	 * next_balance will be updated only when there is a need.
12186 	 * When the cpu is attached to null domain for ex, it will not be
12187 	 * updated.
12188 	 */
12189 	if (likely(update_next_balance))
12190 		rq->next_balance = next_balance;
12191 
12192 }
12193 
12194 static inline int on_null_domain(struct rq *rq)
12195 {
12196 	return unlikely(!rcu_dereference_sched(rq->sd));
12197 }
12198 
12199 #ifdef CONFIG_NO_HZ_COMMON
12200 /*
12201  * NOHZ idle load balancing (ILB) details:
12202  *
12203  * - When one of the busy CPUs notices that there may be an idle rebalancing
12204  *   needed, they will kick the idle load balancer, which then does idle
12205  *   load balancing for all the idle CPUs.
12206  *
12207  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12208  *   anywhere yet.
12209  */
12210 static inline int find_new_ilb(void)
12211 {
12212 	const struct cpumask *hk_mask;
12213 	int ilb_cpu;
12214 
12215 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12216 
12217 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12218 
12219 		if (ilb_cpu == smp_processor_id())
12220 			continue;
12221 
12222 		if (idle_cpu(ilb_cpu))
12223 			return ilb_cpu;
12224 	}
12225 
12226 	return -1;
12227 }
12228 
12229 /*
12230  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12231  * SMP function call (IPI).
12232  *
12233  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12234  */
12235 static void kick_ilb(unsigned int flags)
12236 {
12237 	int ilb_cpu;
12238 
12239 	/*
12240 	 * Increase nohz.next_balance only when if full ilb is triggered but
12241 	 * not if we only update stats.
12242 	 */
12243 	if (flags & NOHZ_BALANCE_KICK)
12244 		nohz.next_balance = jiffies+1;
12245 
12246 	ilb_cpu = find_new_ilb();
12247 	if (ilb_cpu < 0)
12248 		return;
12249 
12250 	/*
12251 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12252 	 * i.e. all bits in flags are already set in ilb_cpu.
12253 	 */
12254 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12255 		return;
12256 
12257 	/*
12258 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12259 	 * the first flag owns it; cleared by nohz_csd_func().
12260 	 */
12261 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12262 	if (flags & NOHZ_KICK_MASK)
12263 		return;
12264 
12265 	/*
12266 	 * This way we generate an IPI on the target CPU which
12267 	 * is idle, and the softirq performing NOHZ idle load balancing
12268 	 * will be run before returning from the IPI.
12269 	 */
12270 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12271 }
12272 
12273 /*
12274  * Current decision point for kicking the idle load balancer in the presence
12275  * of idle CPUs in the system.
12276  */
12277 static void nohz_balancer_kick(struct rq *rq)
12278 {
12279 	unsigned long now = jiffies;
12280 	struct sched_domain_shared *sds;
12281 	struct sched_domain *sd;
12282 	int nr_busy, i, cpu = rq->cpu;
12283 	unsigned int flags = 0;
12284 
12285 	if (unlikely(rq->idle_balance))
12286 		return;
12287 
12288 	/*
12289 	 * We may be recently in ticked or tickless idle mode. At the first
12290 	 * busy tick after returning from idle, we will update the busy stats.
12291 	 */
12292 	nohz_balance_exit_idle(rq);
12293 
12294 	/*
12295 	 * None are in tickless mode and hence no need for NOHZ idle load
12296 	 * balancing:
12297 	 */
12298 	if (likely(!atomic_read(&nohz.nr_cpus)))
12299 		return;
12300 
12301 	if (READ_ONCE(nohz.has_blocked) &&
12302 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12303 		flags = NOHZ_STATS_KICK;
12304 
12305 	if (time_before(now, nohz.next_balance))
12306 		goto out;
12307 
12308 	if (rq->nr_running >= 2) {
12309 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12310 		goto out;
12311 	}
12312 
12313 	rcu_read_lock();
12314 
12315 	sd = rcu_dereference(rq->sd);
12316 	if (sd) {
12317 		/*
12318 		 * If there's a runnable CFS task and the current CPU has reduced
12319 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12320 		 */
12321 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12322 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12323 			goto unlock;
12324 		}
12325 	}
12326 
12327 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12328 	if (sd) {
12329 		/*
12330 		 * When ASYM_PACKING; see if there's a more preferred CPU
12331 		 * currently idle; in which case, kick the ILB to move tasks
12332 		 * around.
12333 		 *
12334 		 * When balancing between cores, all the SMT siblings of the
12335 		 * preferred CPU must be idle.
12336 		 */
12337 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12338 			if (sched_asym(sd, i, cpu)) {
12339 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12340 				goto unlock;
12341 			}
12342 		}
12343 	}
12344 
12345 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12346 	if (sd) {
12347 		/*
12348 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12349 		 * to run the misfit task on.
12350 		 */
12351 		if (check_misfit_status(rq)) {
12352 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12353 			goto unlock;
12354 		}
12355 
12356 		/*
12357 		 * For asymmetric systems, we do not want to nicely balance
12358 		 * cache use, instead we want to embrace asymmetry and only
12359 		 * ensure tasks have enough CPU capacity.
12360 		 *
12361 		 * Skip the LLC logic because it's not relevant in that case.
12362 		 */
12363 		goto unlock;
12364 	}
12365 
12366 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12367 	if (sds) {
12368 		/*
12369 		 * If there is an imbalance between LLC domains (IOW we could
12370 		 * increase the overall cache utilization), we need a less-loaded LLC
12371 		 * domain to pull some load from. Likewise, we may need to spread
12372 		 * load within the current LLC domain (e.g. packed SMT cores but
12373 		 * other CPUs are idle). We can't really know from here how busy
12374 		 * the others are - so just get a NOHZ balance going if it looks
12375 		 * like this LLC domain has tasks we could move.
12376 		 */
12377 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12378 		if (nr_busy > 1) {
12379 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12380 			goto unlock;
12381 		}
12382 	}
12383 unlock:
12384 	rcu_read_unlock();
12385 out:
12386 	if (READ_ONCE(nohz.needs_update))
12387 		flags |= NOHZ_NEXT_KICK;
12388 
12389 	if (flags)
12390 		kick_ilb(flags);
12391 }
12392 
12393 static void set_cpu_sd_state_busy(int cpu)
12394 {
12395 	struct sched_domain *sd;
12396 
12397 	rcu_read_lock();
12398 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12399 
12400 	if (!sd || !sd->nohz_idle)
12401 		goto unlock;
12402 	sd->nohz_idle = 0;
12403 
12404 	atomic_inc(&sd->shared->nr_busy_cpus);
12405 unlock:
12406 	rcu_read_unlock();
12407 }
12408 
12409 void nohz_balance_exit_idle(struct rq *rq)
12410 {
12411 	SCHED_WARN_ON(rq != this_rq());
12412 
12413 	if (likely(!rq->nohz_tick_stopped))
12414 		return;
12415 
12416 	rq->nohz_tick_stopped = 0;
12417 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12418 	atomic_dec(&nohz.nr_cpus);
12419 
12420 	set_cpu_sd_state_busy(rq->cpu);
12421 }
12422 
12423 static void set_cpu_sd_state_idle(int cpu)
12424 {
12425 	struct sched_domain *sd;
12426 
12427 	rcu_read_lock();
12428 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12429 
12430 	if (!sd || sd->nohz_idle)
12431 		goto unlock;
12432 	sd->nohz_idle = 1;
12433 
12434 	atomic_dec(&sd->shared->nr_busy_cpus);
12435 unlock:
12436 	rcu_read_unlock();
12437 }
12438 
12439 /*
12440  * This routine will record that the CPU is going idle with tick stopped.
12441  * This info will be used in performing idle load balancing in the future.
12442  */
12443 void nohz_balance_enter_idle(int cpu)
12444 {
12445 	struct rq *rq = cpu_rq(cpu);
12446 
12447 	SCHED_WARN_ON(cpu != smp_processor_id());
12448 
12449 	/* If this CPU is going down, then nothing needs to be done: */
12450 	if (!cpu_active(cpu))
12451 		return;
12452 
12453 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12454 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12455 		return;
12456 
12457 	/*
12458 	 * Can be set safely without rq->lock held
12459 	 * If a clear happens, it will have evaluated last additions because
12460 	 * rq->lock is held during the check and the clear
12461 	 */
12462 	rq->has_blocked_load = 1;
12463 
12464 	/*
12465 	 * The tick is still stopped but load could have been added in the
12466 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12467 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12468 	 * of nohz.has_blocked can only happen after checking the new load
12469 	 */
12470 	if (rq->nohz_tick_stopped)
12471 		goto out;
12472 
12473 	/* If we're a completely isolated CPU, we don't play: */
12474 	if (on_null_domain(rq))
12475 		return;
12476 
12477 	rq->nohz_tick_stopped = 1;
12478 
12479 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12480 	atomic_inc(&nohz.nr_cpus);
12481 
12482 	/*
12483 	 * Ensures that if nohz_idle_balance() fails to observe our
12484 	 * @idle_cpus_mask store, it must observe the @has_blocked
12485 	 * and @needs_update stores.
12486 	 */
12487 	smp_mb__after_atomic();
12488 
12489 	set_cpu_sd_state_idle(cpu);
12490 
12491 	WRITE_ONCE(nohz.needs_update, 1);
12492 out:
12493 	/*
12494 	 * Each time a cpu enter idle, we assume that it has blocked load and
12495 	 * enable the periodic update of the load of idle CPUs
12496 	 */
12497 	WRITE_ONCE(nohz.has_blocked, 1);
12498 }
12499 
12500 static bool update_nohz_stats(struct rq *rq)
12501 {
12502 	unsigned int cpu = rq->cpu;
12503 
12504 	if (!rq->has_blocked_load)
12505 		return false;
12506 
12507 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12508 		return false;
12509 
12510 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12511 		return true;
12512 
12513 	sched_balance_update_blocked_averages(cpu);
12514 
12515 	return rq->has_blocked_load;
12516 }
12517 
12518 /*
12519  * Internal function that runs load balance for all idle CPUs. The load balance
12520  * can be a simple update of blocked load or a complete load balance with
12521  * tasks movement depending of flags.
12522  */
12523 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12524 {
12525 	/* Earliest time when we have to do rebalance again */
12526 	unsigned long now = jiffies;
12527 	unsigned long next_balance = now + 60*HZ;
12528 	bool has_blocked_load = false;
12529 	int update_next_balance = 0;
12530 	int this_cpu = this_rq->cpu;
12531 	int balance_cpu;
12532 	struct rq *rq;
12533 
12534 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12535 
12536 	/*
12537 	 * We assume there will be no idle load after this update and clear
12538 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12539 	 * set the has_blocked flag and trigger another update of idle load.
12540 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12541 	 * setting the flag, we are sure to not clear the state and not
12542 	 * check the load of an idle cpu.
12543 	 *
12544 	 * Same applies to idle_cpus_mask vs needs_update.
12545 	 */
12546 	if (flags & NOHZ_STATS_KICK)
12547 		WRITE_ONCE(nohz.has_blocked, 0);
12548 	if (flags & NOHZ_NEXT_KICK)
12549 		WRITE_ONCE(nohz.needs_update, 0);
12550 
12551 	/*
12552 	 * Ensures that if we miss the CPU, we must see the has_blocked
12553 	 * store from nohz_balance_enter_idle().
12554 	 */
12555 	smp_mb();
12556 
12557 	/*
12558 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12559 	 * chance for other idle cpu to pull load.
12560 	 */
12561 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12562 		if (!idle_cpu(balance_cpu))
12563 			continue;
12564 
12565 		/*
12566 		 * If this CPU gets work to do, stop the load balancing
12567 		 * work being done for other CPUs. Next load
12568 		 * balancing owner will pick it up.
12569 		 */
12570 		if (need_resched()) {
12571 			if (flags & NOHZ_STATS_KICK)
12572 				has_blocked_load = true;
12573 			if (flags & NOHZ_NEXT_KICK)
12574 				WRITE_ONCE(nohz.needs_update, 1);
12575 			goto abort;
12576 		}
12577 
12578 		rq = cpu_rq(balance_cpu);
12579 
12580 		if (flags & NOHZ_STATS_KICK)
12581 			has_blocked_load |= update_nohz_stats(rq);
12582 
12583 		/*
12584 		 * If time for next balance is due,
12585 		 * do the balance.
12586 		 */
12587 		if (time_after_eq(jiffies, rq->next_balance)) {
12588 			struct rq_flags rf;
12589 
12590 			rq_lock_irqsave(rq, &rf);
12591 			update_rq_clock(rq);
12592 			rq_unlock_irqrestore(rq, &rf);
12593 
12594 			if (flags & NOHZ_BALANCE_KICK)
12595 				sched_balance_domains(rq, CPU_IDLE);
12596 		}
12597 
12598 		if (time_after(next_balance, rq->next_balance)) {
12599 			next_balance = rq->next_balance;
12600 			update_next_balance = 1;
12601 		}
12602 	}
12603 
12604 	/*
12605 	 * next_balance will be updated only when there is a need.
12606 	 * When the CPU is attached to null domain for ex, it will not be
12607 	 * updated.
12608 	 */
12609 	if (likely(update_next_balance))
12610 		nohz.next_balance = next_balance;
12611 
12612 	if (flags & NOHZ_STATS_KICK)
12613 		WRITE_ONCE(nohz.next_blocked,
12614 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12615 
12616 abort:
12617 	/* There is still blocked load, enable periodic update */
12618 	if (has_blocked_load)
12619 		WRITE_ONCE(nohz.has_blocked, 1);
12620 }
12621 
12622 /*
12623  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12624  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12625  */
12626 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12627 {
12628 	unsigned int flags = this_rq->nohz_idle_balance;
12629 
12630 	if (!flags)
12631 		return false;
12632 
12633 	this_rq->nohz_idle_balance = 0;
12634 
12635 	if (idle != CPU_IDLE)
12636 		return false;
12637 
12638 	_nohz_idle_balance(this_rq, flags);
12639 
12640 	return true;
12641 }
12642 
12643 /*
12644  * Check if we need to directly run the ILB for updating blocked load before
12645  * entering idle state. Here we run ILB directly without issuing IPIs.
12646  *
12647  * Note that when this function is called, the tick may not yet be stopped on
12648  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12649  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12650  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12651  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12652  * called from this function on (this) CPU that's not yet in the mask. That's
12653  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12654  * updating the blocked load of already idle CPUs without waking up one of
12655  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12656  * cpu about to enter idle, because it can take a long time.
12657  */
12658 void nohz_run_idle_balance(int cpu)
12659 {
12660 	unsigned int flags;
12661 
12662 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12663 
12664 	/*
12665 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12666 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12667 	 */
12668 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12669 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12670 }
12671 
12672 static void nohz_newidle_balance(struct rq *this_rq)
12673 {
12674 	int this_cpu = this_rq->cpu;
12675 
12676 	/*
12677 	 * This CPU doesn't want to be disturbed by scheduler
12678 	 * housekeeping
12679 	 */
12680 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12681 		return;
12682 
12683 	/* Will wake up very soon. No time for doing anything else*/
12684 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12685 		return;
12686 
12687 	/* Don't need to update blocked load of idle CPUs*/
12688 	if (!READ_ONCE(nohz.has_blocked) ||
12689 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12690 		return;
12691 
12692 	/*
12693 	 * Set the need to trigger ILB in order to update blocked load
12694 	 * before entering idle state.
12695 	 */
12696 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12697 }
12698 
12699 #else /* !CONFIG_NO_HZ_COMMON */
12700 static inline void nohz_balancer_kick(struct rq *rq) { }
12701 
12702 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12703 {
12704 	return false;
12705 }
12706 
12707 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12708 #endif /* CONFIG_NO_HZ_COMMON */
12709 
12710 /*
12711  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12712  * idle. Attempts to pull tasks from other CPUs.
12713  *
12714  * Returns:
12715  *   < 0 - we released the lock and there are !fair tasks present
12716  *     0 - failed, no new tasks
12717  *   > 0 - success, new (fair) tasks present
12718  */
12719 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12720 {
12721 	unsigned long next_balance = jiffies + HZ;
12722 	int this_cpu = this_rq->cpu;
12723 	int continue_balancing = 1;
12724 	u64 t0, t1, curr_cost = 0;
12725 	struct sched_domain *sd;
12726 	int pulled_task = 0;
12727 
12728 	update_misfit_status(NULL, this_rq);
12729 
12730 	/*
12731 	 * There is a task waiting to run. No need to search for one.
12732 	 * Return 0; the task will be enqueued when switching to idle.
12733 	 */
12734 	if (this_rq->ttwu_pending)
12735 		return 0;
12736 
12737 	/*
12738 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12739 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12740 	 * as idle time.
12741 	 */
12742 	this_rq->idle_stamp = rq_clock(this_rq);
12743 
12744 	/*
12745 	 * Do not pull tasks towards !active CPUs...
12746 	 */
12747 	if (!cpu_active(this_cpu))
12748 		return 0;
12749 
12750 	/*
12751 	 * This is OK, because current is on_cpu, which avoids it being picked
12752 	 * for load-balance and preemption/IRQs are still disabled avoiding
12753 	 * further scheduler activity on it and we're being very careful to
12754 	 * re-start the picking loop.
12755 	 */
12756 	rq_unpin_lock(this_rq, rf);
12757 
12758 	rcu_read_lock();
12759 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12760 
12761 	if (!get_rd_overloaded(this_rq->rd) ||
12762 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12763 
12764 		if (sd)
12765 			update_next_balance(sd, &next_balance);
12766 		rcu_read_unlock();
12767 
12768 		goto out;
12769 	}
12770 	rcu_read_unlock();
12771 
12772 	raw_spin_rq_unlock(this_rq);
12773 
12774 	t0 = sched_clock_cpu(this_cpu);
12775 	sched_balance_update_blocked_averages(this_cpu);
12776 
12777 	rcu_read_lock();
12778 	for_each_domain(this_cpu, sd) {
12779 		u64 domain_cost;
12780 
12781 		update_next_balance(sd, &next_balance);
12782 
12783 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12784 			break;
12785 
12786 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12787 
12788 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12789 						   sd, CPU_NEWLY_IDLE,
12790 						   &continue_balancing);
12791 
12792 			t1 = sched_clock_cpu(this_cpu);
12793 			domain_cost = t1 - t0;
12794 			update_newidle_cost(sd, domain_cost);
12795 
12796 			curr_cost += domain_cost;
12797 			t0 = t1;
12798 		}
12799 
12800 		/*
12801 		 * Stop searching for tasks to pull if there are
12802 		 * now runnable tasks on this rq.
12803 		 */
12804 		if (pulled_task || !continue_balancing)
12805 			break;
12806 	}
12807 	rcu_read_unlock();
12808 
12809 	raw_spin_rq_lock(this_rq);
12810 
12811 	if (curr_cost > this_rq->max_idle_balance_cost)
12812 		this_rq->max_idle_balance_cost = curr_cost;
12813 
12814 	/*
12815 	 * While browsing the domains, we released the rq lock, a task could
12816 	 * have been enqueued in the meantime. Since we're not going idle,
12817 	 * pretend we pulled a task.
12818 	 */
12819 	if (this_rq->cfs.h_nr_running && !pulled_task)
12820 		pulled_task = 1;
12821 
12822 	/* Is there a task of a high priority class? */
12823 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12824 		pulled_task = -1;
12825 
12826 out:
12827 	/* Move the next balance forward */
12828 	if (time_after(this_rq->next_balance, next_balance))
12829 		this_rq->next_balance = next_balance;
12830 
12831 	if (pulled_task)
12832 		this_rq->idle_stamp = 0;
12833 	else
12834 		nohz_newidle_balance(this_rq);
12835 
12836 	rq_repin_lock(this_rq, rf);
12837 
12838 	return pulled_task;
12839 }
12840 
12841 /*
12842  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12843  *
12844  * - directly from the local scheduler_tick() for periodic load balancing
12845  *
12846  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12847  *   through the SMP cross-call nohz_csd_func()
12848  */
12849 static __latent_entropy void sched_balance_softirq(void)
12850 {
12851 	struct rq *this_rq = this_rq();
12852 	enum cpu_idle_type idle = this_rq->idle_balance;
12853 	/*
12854 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12855 	 * balancing on behalf of the other idle CPUs whose ticks are
12856 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12857 	 * give the idle CPUs a chance to load balance. Else we may
12858 	 * load balance only within the local sched_domain hierarchy
12859 	 * and abort nohz_idle_balance altogether if we pull some load.
12860 	 */
12861 	if (nohz_idle_balance(this_rq, idle))
12862 		return;
12863 
12864 	/* normal load balance */
12865 	sched_balance_update_blocked_averages(this_rq->cpu);
12866 	sched_balance_domains(this_rq, idle);
12867 }
12868 
12869 /*
12870  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12871  */
12872 void sched_balance_trigger(struct rq *rq)
12873 {
12874 	/*
12875 	 * Don't need to rebalance while attached to NULL domain or
12876 	 * runqueue CPU is not active
12877 	 */
12878 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12879 		return;
12880 
12881 	if (time_after_eq(jiffies, rq->next_balance))
12882 		raise_softirq(SCHED_SOFTIRQ);
12883 
12884 	nohz_balancer_kick(rq);
12885 }
12886 
12887 static void rq_online_fair(struct rq *rq)
12888 {
12889 	update_sysctl();
12890 
12891 	update_runtime_enabled(rq);
12892 }
12893 
12894 static void rq_offline_fair(struct rq *rq)
12895 {
12896 	update_sysctl();
12897 
12898 	/* Ensure any throttled groups are reachable by pick_next_task */
12899 	unthrottle_offline_cfs_rqs(rq);
12900 
12901 	/* Ensure that we remove rq contribution to group share: */
12902 	clear_tg_offline_cfs_rqs(rq);
12903 }
12904 
12905 #endif /* CONFIG_SMP */
12906 
12907 #ifdef CONFIG_SCHED_CORE
12908 static inline bool
12909 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12910 {
12911 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12912 	u64 slice = se->slice;
12913 
12914 	return (rtime * min_nr_tasks > slice);
12915 }
12916 
12917 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12918 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12919 {
12920 	if (!sched_core_enabled(rq))
12921 		return;
12922 
12923 	/*
12924 	 * If runqueue has only one task which used up its slice and
12925 	 * if the sibling is forced idle, then trigger schedule to
12926 	 * give forced idle task a chance.
12927 	 *
12928 	 * sched_slice() considers only this active rq and it gets the
12929 	 * whole slice. But during force idle, we have siblings acting
12930 	 * like a single runqueue and hence we need to consider runnable
12931 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12932 	 * go through the forced idle rq, but that would be a perf hit.
12933 	 * We can assume that the forced idle CPU has at least
12934 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12935 	 * if we need to give up the CPU.
12936 	 */
12937 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12938 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12939 		resched_curr(rq);
12940 }
12941 
12942 /*
12943  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12944  */
12945 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12946 			 bool forceidle)
12947 {
12948 	for_each_sched_entity(se) {
12949 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12950 
12951 		if (forceidle) {
12952 			if (cfs_rq->forceidle_seq == fi_seq)
12953 				break;
12954 			cfs_rq->forceidle_seq = fi_seq;
12955 		}
12956 
12957 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12958 	}
12959 }
12960 
12961 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12962 {
12963 	struct sched_entity *se = &p->se;
12964 
12965 	if (p->sched_class != &fair_sched_class)
12966 		return;
12967 
12968 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12969 }
12970 
12971 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12972 			bool in_fi)
12973 {
12974 	struct rq *rq = task_rq(a);
12975 	const struct sched_entity *sea = &a->se;
12976 	const struct sched_entity *seb = &b->se;
12977 	struct cfs_rq *cfs_rqa;
12978 	struct cfs_rq *cfs_rqb;
12979 	s64 delta;
12980 
12981 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12982 
12983 #ifdef CONFIG_FAIR_GROUP_SCHED
12984 	/*
12985 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12986 	 * are immediate siblings.
12987 	 */
12988 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12989 		int sea_depth = sea->depth;
12990 		int seb_depth = seb->depth;
12991 
12992 		if (sea_depth >= seb_depth)
12993 			sea = parent_entity(sea);
12994 		if (sea_depth <= seb_depth)
12995 			seb = parent_entity(seb);
12996 	}
12997 
12998 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12999 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13000 
13001 	cfs_rqa = sea->cfs_rq;
13002 	cfs_rqb = seb->cfs_rq;
13003 #else
13004 	cfs_rqa = &task_rq(a)->cfs;
13005 	cfs_rqb = &task_rq(b)->cfs;
13006 #endif
13007 
13008 	/*
13009 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13010 	 * min_vruntime_fi, which would have been updated in prior calls
13011 	 * to se_fi_update().
13012 	 */
13013 	delta = (s64)(sea->vruntime - seb->vruntime) +
13014 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13015 
13016 	return delta > 0;
13017 }
13018 
13019 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13020 {
13021 	struct cfs_rq *cfs_rq;
13022 
13023 #ifdef CONFIG_FAIR_GROUP_SCHED
13024 	cfs_rq = task_group(p)->cfs_rq[cpu];
13025 #else
13026 	cfs_rq = &cpu_rq(cpu)->cfs;
13027 #endif
13028 	return throttled_hierarchy(cfs_rq);
13029 }
13030 #else
13031 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13032 #endif
13033 
13034 /*
13035  * scheduler tick hitting a task of our scheduling class.
13036  *
13037  * NOTE: This function can be called remotely by the tick offload that
13038  * goes along full dynticks. Therefore no local assumption can be made
13039  * and everything must be accessed through the @rq and @curr passed in
13040  * parameters.
13041  */
13042 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13043 {
13044 	struct cfs_rq *cfs_rq;
13045 	struct sched_entity *se = &curr->se;
13046 
13047 	for_each_sched_entity(se) {
13048 		cfs_rq = cfs_rq_of(se);
13049 		entity_tick(cfs_rq, se, queued);
13050 	}
13051 
13052 	if (static_branch_unlikely(&sched_numa_balancing))
13053 		task_tick_numa(rq, curr);
13054 
13055 	update_misfit_status(curr, rq);
13056 	check_update_overutilized_status(task_rq(curr));
13057 
13058 	task_tick_core(rq, curr);
13059 }
13060 
13061 /*
13062  * called on fork with the child task as argument from the parent's context
13063  *  - child not yet on the tasklist
13064  *  - preemption disabled
13065  */
13066 static void task_fork_fair(struct task_struct *p)
13067 {
13068 	set_task_max_allowed_capacity(p);
13069 }
13070 
13071 /*
13072  * Priority of the task has changed. Check to see if we preempt
13073  * the current task.
13074  */
13075 static void
13076 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13077 {
13078 	if (!task_on_rq_queued(p))
13079 		return;
13080 
13081 	if (rq->cfs.nr_running == 1)
13082 		return;
13083 
13084 	/*
13085 	 * Reschedule if we are currently running on this runqueue and
13086 	 * our priority decreased, or if we are not currently running on
13087 	 * this runqueue and our priority is higher than the current's
13088 	 */
13089 	if (task_current(rq, p)) {
13090 		if (p->prio > oldprio)
13091 			resched_curr(rq);
13092 	} else
13093 		wakeup_preempt(rq, p, 0);
13094 }
13095 
13096 #ifdef CONFIG_FAIR_GROUP_SCHED
13097 /*
13098  * Propagate the changes of the sched_entity across the tg tree to make it
13099  * visible to the root
13100  */
13101 static void propagate_entity_cfs_rq(struct sched_entity *se)
13102 {
13103 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13104 
13105 	if (cfs_rq_throttled(cfs_rq))
13106 		return;
13107 
13108 	if (!throttled_hierarchy(cfs_rq))
13109 		list_add_leaf_cfs_rq(cfs_rq);
13110 
13111 	/* Start to propagate at parent */
13112 	se = se->parent;
13113 
13114 	for_each_sched_entity(se) {
13115 		cfs_rq = cfs_rq_of(se);
13116 
13117 		update_load_avg(cfs_rq, se, UPDATE_TG);
13118 
13119 		if (cfs_rq_throttled(cfs_rq))
13120 			break;
13121 
13122 		if (!throttled_hierarchy(cfs_rq))
13123 			list_add_leaf_cfs_rq(cfs_rq);
13124 	}
13125 }
13126 #else
13127 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13128 #endif
13129 
13130 static void detach_entity_cfs_rq(struct sched_entity *se)
13131 {
13132 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13133 
13134 #ifdef CONFIG_SMP
13135 	/*
13136 	 * In case the task sched_avg hasn't been attached:
13137 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13138 	 * - A task which has been woken up by try_to_wake_up() but is
13139 	 *   waiting for actually being woken up by sched_ttwu_pending().
13140 	 */
13141 	if (!se->avg.last_update_time)
13142 		return;
13143 #endif
13144 
13145 	/* Catch up with the cfs_rq and remove our load when we leave */
13146 	update_load_avg(cfs_rq, se, 0);
13147 	detach_entity_load_avg(cfs_rq, se);
13148 	update_tg_load_avg(cfs_rq);
13149 	propagate_entity_cfs_rq(se);
13150 }
13151 
13152 static void attach_entity_cfs_rq(struct sched_entity *se)
13153 {
13154 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13155 
13156 	/* Synchronize entity with its cfs_rq */
13157 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13158 	attach_entity_load_avg(cfs_rq, se);
13159 	update_tg_load_avg(cfs_rq);
13160 	propagate_entity_cfs_rq(se);
13161 }
13162 
13163 static void detach_task_cfs_rq(struct task_struct *p)
13164 {
13165 	struct sched_entity *se = &p->se;
13166 
13167 	detach_entity_cfs_rq(se);
13168 }
13169 
13170 static void attach_task_cfs_rq(struct task_struct *p)
13171 {
13172 	struct sched_entity *se = &p->se;
13173 
13174 	attach_entity_cfs_rq(se);
13175 }
13176 
13177 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13178 {
13179 	detach_task_cfs_rq(p);
13180 }
13181 
13182 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13183 {
13184 	SCHED_WARN_ON(p->se.sched_delayed);
13185 
13186 	attach_task_cfs_rq(p);
13187 
13188 	set_task_max_allowed_capacity(p);
13189 
13190 	if (task_on_rq_queued(p)) {
13191 		/*
13192 		 * We were most likely switched from sched_rt, so
13193 		 * kick off the schedule if running, otherwise just see
13194 		 * if we can still preempt the current task.
13195 		 */
13196 		if (task_current(rq, p))
13197 			resched_curr(rq);
13198 		else
13199 			wakeup_preempt(rq, p, 0);
13200 	}
13201 }
13202 
13203 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13204 {
13205 	struct sched_entity *se = &p->se;
13206 
13207 #ifdef CONFIG_SMP
13208 	if (task_on_rq_queued(p)) {
13209 		/*
13210 		 * Move the next running task to the front of the list, so our
13211 		 * cfs_tasks list becomes MRU one.
13212 		 */
13213 		list_move(&se->group_node, &rq->cfs_tasks);
13214 	}
13215 #endif
13216 	if (!first)
13217 		return;
13218 
13219 	SCHED_WARN_ON(se->sched_delayed);
13220 
13221 	if (hrtick_enabled_fair(rq))
13222 		hrtick_start_fair(rq, p);
13223 
13224 	update_misfit_status(p, rq);
13225 	sched_fair_update_stop_tick(rq, p);
13226 }
13227 
13228 /*
13229  * Account for a task changing its policy or group.
13230  *
13231  * This routine is mostly called to set cfs_rq->curr field when a task
13232  * migrates between groups/classes.
13233  */
13234 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13235 {
13236 	struct sched_entity *se = &p->se;
13237 
13238 	for_each_sched_entity(se) {
13239 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13240 
13241 		set_next_entity(cfs_rq, se);
13242 		/* ensure bandwidth has been allocated on our new cfs_rq */
13243 		account_cfs_rq_runtime(cfs_rq, 0);
13244 	}
13245 
13246 	__set_next_task_fair(rq, p, first);
13247 }
13248 
13249 void init_cfs_rq(struct cfs_rq *cfs_rq)
13250 {
13251 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13252 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13253 #ifdef CONFIG_SMP
13254 	raw_spin_lock_init(&cfs_rq->removed.lock);
13255 #endif
13256 }
13257 
13258 #ifdef CONFIG_FAIR_GROUP_SCHED
13259 static void task_change_group_fair(struct task_struct *p)
13260 {
13261 	/*
13262 	 * We couldn't detach or attach a forked task which
13263 	 * hasn't been woken up by wake_up_new_task().
13264 	 */
13265 	if (READ_ONCE(p->__state) == TASK_NEW)
13266 		return;
13267 
13268 	detach_task_cfs_rq(p);
13269 
13270 #ifdef CONFIG_SMP
13271 	/* Tell se's cfs_rq has been changed -- migrated */
13272 	p->se.avg.last_update_time = 0;
13273 #endif
13274 	set_task_rq(p, task_cpu(p));
13275 	attach_task_cfs_rq(p);
13276 }
13277 
13278 void free_fair_sched_group(struct task_group *tg)
13279 {
13280 	int i;
13281 
13282 	for_each_possible_cpu(i) {
13283 		if (tg->cfs_rq)
13284 			kfree(tg->cfs_rq[i]);
13285 		if (tg->se)
13286 			kfree(tg->se[i]);
13287 	}
13288 
13289 	kfree(tg->cfs_rq);
13290 	kfree(tg->se);
13291 }
13292 
13293 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13294 {
13295 	struct sched_entity *se;
13296 	struct cfs_rq *cfs_rq;
13297 	int i;
13298 
13299 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13300 	if (!tg->cfs_rq)
13301 		goto err;
13302 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13303 	if (!tg->se)
13304 		goto err;
13305 
13306 	tg->shares = NICE_0_LOAD;
13307 
13308 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13309 
13310 	for_each_possible_cpu(i) {
13311 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13312 				      GFP_KERNEL, cpu_to_node(i));
13313 		if (!cfs_rq)
13314 			goto err;
13315 
13316 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13317 				  GFP_KERNEL, cpu_to_node(i));
13318 		if (!se)
13319 			goto err_free_rq;
13320 
13321 		init_cfs_rq(cfs_rq);
13322 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13323 		init_entity_runnable_average(se);
13324 	}
13325 
13326 	return 1;
13327 
13328 err_free_rq:
13329 	kfree(cfs_rq);
13330 err:
13331 	return 0;
13332 }
13333 
13334 void online_fair_sched_group(struct task_group *tg)
13335 {
13336 	struct sched_entity *se;
13337 	struct rq_flags rf;
13338 	struct rq *rq;
13339 	int i;
13340 
13341 	for_each_possible_cpu(i) {
13342 		rq = cpu_rq(i);
13343 		se = tg->se[i];
13344 		rq_lock_irq(rq, &rf);
13345 		update_rq_clock(rq);
13346 		attach_entity_cfs_rq(se);
13347 		sync_throttle(tg, i);
13348 		rq_unlock_irq(rq, &rf);
13349 	}
13350 }
13351 
13352 void unregister_fair_sched_group(struct task_group *tg)
13353 {
13354 	int cpu;
13355 
13356 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13357 
13358 	for_each_possible_cpu(cpu) {
13359 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13360 		struct sched_entity *se = tg->se[cpu];
13361 		struct rq *rq = cpu_rq(cpu);
13362 
13363 		if (se) {
13364 			if (se->sched_delayed) {
13365 				guard(rq_lock_irqsave)(rq);
13366 				if (se->sched_delayed) {
13367 					update_rq_clock(rq);
13368 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13369 				}
13370 				list_del_leaf_cfs_rq(cfs_rq);
13371 			}
13372 			remove_entity_load_avg(se);
13373 		}
13374 
13375 		/*
13376 		 * Only empty task groups can be destroyed; so we can speculatively
13377 		 * check on_list without danger of it being re-added.
13378 		 */
13379 		if (cfs_rq->on_list) {
13380 			guard(rq_lock_irqsave)(rq);
13381 			list_del_leaf_cfs_rq(cfs_rq);
13382 		}
13383 	}
13384 }
13385 
13386 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13387 			struct sched_entity *se, int cpu,
13388 			struct sched_entity *parent)
13389 {
13390 	struct rq *rq = cpu_rq(cpu);
13391 
13392 	cfs_rq->tg = tg;
13393 	cfs_rq->rq = rq;
13394 	init_cfs_rq_runtime(cfs_rq);
13395 
13396 	tg->cfs_rq[cpu] = cfs_rq;
13397 	tg->se[cpu] = se;
13398 
13399 	/* se could be NULL for root_task_group */
13400 	if (!se)
13401 		return;
13402 
13403 	if (!parent) {
13404 		se->cfs_rq = &rq->cfs;
13405 		se->depth = 0;
13406 	} else {
13407 		se->cfs_rq = parent->my_q;
13408 		se->depth = parent->depth + 1;
13409 	}
13410 
13411 	se->my_q = cfs_rq;
13412 	/* guarantee group entities always have weight */
13413 	update_load_set(&se->load, NICE_0_LOAD);
13414 	se->parent = parent;
13415 }
13416 
13417 static DEFINE_MUTEX(shares_mutex);
13418 
13419 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13420 {
13421 	int i;
13422 
13423 	lockdep_assert_held(&shares_mutex);
13424 
13425 	/*
13426 	 * We can't change the weight of the root cgroup.
13427 	 */
13428 	if (!tg->se[0])
13429 		return -EINVAL;
13430 
13431 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13432 
13433 	if (tg->shares == shares)
13434 		return 0;
13435 
13436 	tg->shares = shares;
13437 	for_each_possible_cpu(i) {
13438 		struct rq *rq = cpu_rq(i);
13439 		struct sched_entity *se = tg->se[i];
13440 		struct rq_flags rf;
13441 
13442 		/* Propagate contribution to hierarchy */
13443 		rq_lock_irqsave(rq, &rf);
13444 		update_rq_clock(rq);
13445 		for_each_sched_entity(se) {
13446 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13447 			update_cfs_group(se);
13448 		}
13449 		rq_unlock_irqrestore(rq, &rf);
13450 	}
13451 
13452 	return 0;
13453 }
13454 
13455 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13456 {
13457 	int ret;
13458 
13459 	mutex_lock(&shares_mutex);
13460 	if (tg_is_idle(tg))
13461 		ret = -EINVAL;
13462 	else
13463 		ret = __sched_group_set_shares(tg, shares);
13464 	mutex_unlock(&shares_mutex);
13465 
13466 	return ret;
13467 }
13468 
13469 int sched_group_set_idle(struct task_group *tg, long idle)
13470 {
13471 	int i;
13472 
13473 	if (tg == &root_task_group)
13474 		return -EINVAL;
13475 
13476 	if (idle < 0 || idle > 1)
13477 		return -EINVAL;
13478 
13479 	mutex_lock(&shares_mutex);
13480 
13481 	if (tg->idle == idle) {
13482 		mutex_unlock(&shares_mutex);
13483 		return 0;
13484 	}
13485 
13486 	tg->idle = idle;
13487 
13488 	for_each_possible_cpu(i) {
13489 		struct rq *rq = cpu_rq(i);
13490 		struct sched_entity *se = tg->se[i];
13491 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13492 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13493 		long idle_task_delta;
13494 		struct rq_flags rf;
13495 
13496 		rq_lock_irqsave(rq, &rf);
13497 
13498 		grp_cfs_rq->idle = idle;
13499 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13500 			goto next_cpu;
13501 
13502 		if (se->on_rq) {
13503 			parent_cfs_rq = cfs_rq_of(se);
13504 			if (cfs_rq_is_idle(grp_cfs_rq))
13505 				parent_cfs_rq->idle_nr_running++;
13506 			else
13507 				parent_cfs_rq->idle_nr_running--;
13508 		}
13509 
13510 		idle_task_delta = grp_cfs_rq->h_nr_running -
13511 				  grp_cfs_rq->idle_h_nr_running;
13512 		if (!cfs_rq_is_idle(grp_cfs_rq))
13513 			idle_task_delta *= -1;
13514 
13515 		for_each_sched_entity(se) {
13516 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13517 
13518 			if (!se->on_rq)
13519 				break;
13520 
13521 			cfs_rq->idle_h_nr_running += idle_task_delta;
13522 
13523 			/* Already accounted at parent level and above. */
13524 			if (cfs_rq_is_idle(cfs_rq))
13525 				break;
13526 		}
13527 
13528 next_cpu:
13529 		rq_unlock_irqrestore(rq, &rf);
13530 	}
13531 
13532 	/* Idle groups have minimum weight. */
13533 	if (tg_is_idle(tg))
13534 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13535 	else
13536 		__sched_group_set_shares(tg, NICE_0_LOAD);
13537 
13538 	mutex_unlock(&shares_mutex);
13539 	return 0;
13540 }
13541 
13542 #endif /* CONFIG_FAIR_GROUP_SCHED */
13543 
13544 
13545 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13546 {
13547 	struct sched_entity *se = &task->se;
13548 	unsigned int rr_interval = 0;
13549 
13550 	/*
13551 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13552 	 * idle runqueue:
13553 	 */
13554 	if (rq->cfs.load.weight)
13555 		rr_interval = NS_TO_JIFFIES(se->slice);
13556 
13557 	return rr_interval;
13558 }
13559 
13560 /*
13561  * All the scheduling class methods:
13562  */
13563 DEFINE_SCHED_CLASS(fair) = {
13564 
13565 	.enqueue_task		= enqueue_task_fair,
13566 	.dequeue_task		= dequeue_task_fair,
13567 	.yield_task		= yield_task_fair,
13568 	.yield_to_task		= yield_to_task_fair,
13569 
13570 	.wakeup_preempt		= check_preempt_wakeup_fair,
13571 
13572 	.pick_task		= pick_task_fair,
13573 	.pick_next_task		= __pick_next_task_fair,
13574 	.put_prev_task		= put_prev_task_fair,
13575 	.set_next_task          = set_next_task_fair,
13576 
13577 #ifdef CONFIG_SMP
13578 	.balance		= balance_fair,
13579 	.select_task_rq		= select_task_rq_fair,
13580 	.migrate_task_rq	= migrate_task_rq_fair,
13581 
13582 	.rq_online		= rq_online_fair,
13583 	.rq_offline		= rq_offline_fair,
13584 
13585 	.task_dead		= task_dead_fair,
13586 	.set_cpus_allowed	= set_cpus_allowed_fair,
13587 #endif
13588 
13589 	.task_tick		= task_tick_fair,
13590 	.task_fork		= task_fork_fair,
13591 
13592 	.reweight_task		= reweight_task_fair,
13593 	.prio_changed		= prio_changed_fair,
13594 	.switched_from		= switched_from_fair,
13595 	.switched_to		= switched_to_fair,
13596 
13597 	.get_rr_interval	= get_rr_interval_fair,
13598 
13599 	.update_curr		= update_curr_fair,
13600 
13601 #ifdef CONFIG_FAIR_GROUP_SCHED
13602 	.task_change_group	= task_change_group_fair,
13603 #endif
13604 
13605 #ifdef CONFIG_SCHED_CORE
13606 	.task_is_throttled	= task_is_throttled_fair,
13607 #endif
13608 
13609 #ifdef CONFIG_UCLAMP_TASK
13610 	.uclamp_enabled		= 1,
13611 #endif
13612 };
13613 
13614 #ifdef CONFIG_SCHED_DEBUG
13615 void print_cfs_stats(struct seq_file *m, int cpu)
13616 {
13617 	struct cfs_rq *cfs_rq, *pos;
13618 
13619 	rcu_read_lock();
13620 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13621 		print_cfs_rq(m, cpu, cfs_rq);
13622 	rcu_read_unlock();
13623 }
13624 
13625 #ifdef CONFIG_NUMA_BALANCING
13626 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13627 {
13628 	int node;
13629 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13630 	struct numa_group *ng;
13631 
13632 	rcu_read_lock();
13633 	ng = rcu_dereference(p->numa_group);
13634 	for_each_online_node(node) {
13635 		if (p->numa_faults) {
13636 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13637 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13638 		}
13639 		if (ng) {
13640 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13641 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13642 		}
13643 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13644 	}
13645 	rcu_read_unlock();
13646 }
13647 #endif /* CONFIG_NUMA_BALANCING */
13648 #endif /* CONFIG_SCHED_DEBUG */
13649 
13650 __init void init_sched_fair_class(void)
13651 {
13652 #ifdef CONFIG_SMP
13653 	int i;
13654 
13655 	for_each_possible_cpu(i) {
13656 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13657 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13658 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13659 					GFP_KERNEL, cpu_to_node(i));
13660 
13661 #ifdef CONFIG_CFS_BANDWIDTH
13662 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13663 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13664 #endif
13665 	}
13666 
13667 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13668 
13669 #ifdef CONFIG_NO_HZ_COMMON
13670 	nohz.next_balance = jiffies;
13671 	nohz.next_blocked = jiffies;
13672 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13673 #endif
13674 #endif /* SMP */
13675 
13676 }
13677