xref: /linux/kernel/sched/fair.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 
30 #include <trace/events/sched.h>
31 
32 #include "sched.h"
33 
34 /*
35  * Targeted preemption latency for CPU-bound tasks:
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  *
38  * NOTE: this latency value is not the same as the concept of
39  * 'timeslice length' - timeslices in CFS are of variable length
40  * and have no persistent notion like in traditional, time-slice
41  * based scheduling concepts.
42  *
43  * (to see the precise effective timeslice length of your workload,
44  *  run vmstat and monitor the context-switches (cs) field)
45  */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48 
49 /*
50  * The initial- and re-scaling of tunables is configurable
51  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52  *
53  * Options are:
54  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57  */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 	= SCHED_TUNABLESCALING_LOG;
60 
61 /*
62  * Minimal preemption granularity for CPU-bound tasks:
63  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64  */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67 
68 /*
69  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70  */
71 static unsigned int sched_nr_latency = 8;
72 
73 /*
74  * After fork, child runs first. If set to 0 (default) then
75  * parent will (try to) run first.
76  */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78 
79 /*
80  * SCHED_OTHER wake-up granularity.
81  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82  *
83  * This option delays the preemption effects of decoupled workloads
84  * and reduces their over-scheduling. Synchronous workloads will still
85  * have immediate wakeup/sleep latencies.
86  */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89 
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91 
92 /*
93  * The exponential sliding  window over which load is averaged for shares
94  * distribution.
95  * (default: 10msec)
96  */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * default: 5 msec, units: microseconds
109   */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112 
113 /*
114  * Increase the granularity value when there are more CPUs,
115  * because with more CPUs the 'effective latency' as visible
116  * to users decreases. But the relationship is not linear,
117  * so pick a second-best guess by going with the log2 of the
118  * number of CPUs.
119  *
120  * This idea comes from the SD scheduler of Con Kolivas:
121  */
122 static int get_update_sysctl_factor(void)
123 {
124 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 	unsigned int factor;
126 
127 	switch (sysctl_sched_tunable_scaling) {
128 	case SCHED_TUNABLESCALING_NONE:
129 		factor = 1;
130 		break;
131 	case SCHED_TUNABLESCALING_LINEAR:
132 		factor = cpus;
133 		break;
134 	case SCHED_TUNABLESCALING_LOG:
135 	default:
136 		factor = 1 + ilog2(cpus);
137 		break;
138 	}
139 
140 	return factor;
141 }
142 
143 static void update_sysctl(void)
144 {
145 	unsigned int factor = get_update_sysctl_factor();
146 
147 #define SET_SYSCTL(name) \
148 	(sysctl_##name = (factor) * normalized_sysctl_##name)
149 	SET_SYSCTL(sched_min_granularity);
150 	SET_SYSCTL(sched_latency);
151 	SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154 
155 void sched_init_granularity(void)
156 {
157 	update_sysctl();
158 }
159 
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST	(~0UL)
162 #else
163 # define WMULT_CONST	(1UL << 32)
164 #endif
165 
166 #define WMULT_SHIFT	32
167 
168 /*
169  * Shift right and round:
170  */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172 
173 /*
174  * delta *= weight / lw
175  */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 		struct load_weight *lw)
179 {
180 	u64 tmp;
181 
182 	/*
183 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 	 * 2^SCHED_LOAD_RESOLUTION.
186 	 */
187 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 		tmp = (u64)delta_exec * scale_load_down(weight);
189 	else
190 		tmp = (u64)delta_exec;
191 
192 	if (!lw->inv_weight) {
193 		unsigned long w = scale_load_down(lw->weight);
194 
195 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 			lw->inv_weight = 1;
197 		else if (unlikely(!w))
198 			lw->inv_weight = WMULT_CONST;
199 		else
200 			lw->inv_weight = WMULT_CONST / w;
201 	}
202 
203 	/*
204 	 * Check whether we'd overflow the 64-bit multiplication:
205 	 */
206 	if (unlikely(tmp > WMULT_CONST))
207 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 			WMULT_SHIFT/2);
209 	else
210 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211 
212 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214 
215 
216 const struct sched_class fair_sched_class;
217 
218 /**************************************************************
219  * CFS operations on generic schedulable entities:
220  */
221 
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223 
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 	return cfs_rq->rq;
228 }
229 
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se)	(!se->my_q)
232 
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 	WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 	return container_of(se, struct task_struct, se);
239 }
240 
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 		for (; se; se = se->parent)
244 
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 	return p->se.cfs_rq;
248 }
249 
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 	return se->cfs_rq;
254 }
255 
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 	return grp->my_q;
260 }
261 
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 	if (!cfs_rq->on_list) {
265 		/*
266 		 * Ensure we either appear before our parent (if already
267 		 * enqueued) or force our parent to appear after us when it is
268 		 * enqueued.  The fact that we always enqueue bottom-up
269 		 * reduces this to two cases.
270 		 */
271 		if (cfs_rq->tg->parent &&
272 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
275 		} else {
276 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
278 		}
279 
280 		cfs_rq->on_list = 1;
281 	}
282 }
283 
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 	if (cfs_rq->on_list) {
287 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 		cfs_rq->on_list = 0;
289 	}
290 }
291 
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295 
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 	if (se->cfs_rq == pse->cfs_rq)
301 		return 1;
302 
303 	return 0;
304 }
305 
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 	return se->parent;
309 }
310 
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 	int depth = 0;
315 
316 	for_each_sched_entity(se)
317 		depth++;
318 
319 	return depth;
320 }
321 
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 	int se_depth, pse_depth;
326 
327 	/*
328 	 * preemption test can be made between sibling entities who are in the
329 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 	 * both tasks until we find their ancestors who are siblings of common
331 	 * parent.
332 	 */
333 
334 	/* First walk up until both entities are at same depth */
335 	se_depth = depth_se(*se);
336 	pse_depth = depth_se(*pse);
337 
338 	while (se_depth > pse_depth) {
339 		se_depth--;
340 		*se = parent_entity(*se);
341 	}
342 
343 	while (pse_depth > se_depth) {
344 		pse_depth--;
345 		*pse = parent_entity(*pse);
346 	}
347 
348 	while (!is_same_group(*se, *pse)) {
349 		*se = parent_entity(*se);
350 		*pse = parent_entity(*pse);
351 	}
352 }
353 
354 #else	/* !CONFIG_FAIR_GROUP_SCHED */
355 
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 	return container_of(se, struct task_struct, se);
359 }
360 
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 	return container_of(cfs_rq, struct rq, cfs);
364 }
365 
366 #define entity_is_task(se)	1
367 
368 #define for_each_sched_entity(se) \
369 		for (; se; se = NULL)
370 
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 	return &task_rq(p)->cfs;
374 }
375 
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 	struct task_struct *p = task_of(se);
379 	struct rq *rq = task_rq(p);
380 
381 	return &rq->cfs;
382 }
383 
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 	return NULL;
388 }
389 
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393 
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397 
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400 
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 	return 1;
405 }
406 
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 	return NULL;
410 }
411 
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416 
417 #endif	/* CONFIG_FAIR_GROUP_SCHED */
418 
419 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 				   unsigned long delta_exec);
421 
422 /**************************************************************
423  * Scheduling class tree data structure manipulation methods:
424  */
425 
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 	s64 delta = (s64)(vruntime - min_vruntime);
429 	if (delta > 0)
430 		min_vruntime = vruntime;
431 
432 	return min_vruntime;
433 }
434 
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 	s64 delta = (s64)(vruntime - min_vruntime);
438 	if (delta < 0)
439 		min_vruntime = vruntime;
440 
441 	return min_vruntime;
442 }
443 
444 static inline int entity_before(struct sched_entity *a,
445 				struct sched_entity *b)
446 {
447 	return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449 
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 	u64 vruntime = cfs_rq->min_vruntime;
453 
454 	if (cfs_rq->curr)
455 		vruntime = cfs_rq->curr->vruntime;
456 
457 	if (cfs_rq->rb_leftmost) {
458 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 						   struct sched_entity,
460 						   run_node);
461 
462 		if (!cfs_rq->curr)
463 			vruntime = se->vruntime;
464 		else
465 			vruntime = min_vruntime(vruntime, se->vruntime);
466 	}
467 
468 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 	smp_wmb();
471 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474 
475 /*
476  * Enqueue an entity into the rb-tree:
477  */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 	struct rb_node *parent = NULL;
482 	struct sched_entity *entry;
483 	int leftmost = 1;
484 
485 	/*
486 	 * Find the right place in the rbtree:
487 	 */
488 	while (*link) {
489 		parent = *link;
490 		entry = rb_entry(parent, struct sched_entity, run_node);
491 		/*
492 		 * We dont care about collisions. Nodes with
493 		 * the same key stay together.
494 		 */
495 		if (entity_before(se, entry)) {
496 			link = &parent->rb_left;
497 		} else {
498 			link = &parent->rb_right;
499 			leftmost = 0;
500 		}
501 	}
502 
503 	/*
504 	 * Maintain a cache of leftmost tree entries (it is frequently
505 	 * used):
506 	 */
507 	if (leftmost)
508 		cfs_rq->rb_leftmost = &se->run_node;
509 
510 	rb_link_node(&se->run_node, parent, link);
511 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513 
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 	if (cfs_rq->rb_leftmost == &se->run_node) {
517 		struct rb_node *next_node;
518 
519 		next_node = rb_next(&se->run_node);
520 		cfs_rq->rb_leftmost = next_node;
521 	}
522 
523 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525 
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 	struct rb_node *left = cfs_rq->rb_leftmost;
529 
530 	if (!left)
531 		return NULL;
532 
533 	return rb_entry(left, struct sched_entity, run_node);
534 }
535 
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 	struct rb_node *next = rb_next(&se->run_node);
539 
540 	if (!next)
541 		return NULL;
542 
543 	return rb_entry(next, struct sched_entity, run_node);
544 }
545 
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550 
551 	if (!last)
552 		return NULL;
553 
554 	return rb_entry(last, struct sched_entity, run_node);
555 }
556 
557 /**************************************************************
558  * Scheduling class statistics methods:
559  */
560 
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 		void __user *buffer, size_t *lenp,
563 		loff_t *ppos)
564 {
565 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 	int factor = get_update_sysctl_factor();
567 
568 	if (ret || !write)
569 		return ret;
570 
571 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 					sysctl_sched_min_granularity);
573 
574 #define WRT_SYSCTL(name) \
575 	(normalized_sysctl_##name = sysctl_##name / (factor))
576 	WRT_SYSCTL(sched_min_granularity);
577 	WRT_SYSCTL(sched_latency);
578 	WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580 
581 	return 0;
582 }
583 #endif
584 
585 /*
586  * delta /= w
587  */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 	if (unlikely(se->load.weight != NICE_0_LOAD))
592 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593 
594 	return delta;
595 }
596 
597 /*
598  * The idea is to set a period in which each task runs once.
599  *
600  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601  * this period because otherwise the slices get too small.
602  *
603  * p = (nr <= nl) ? l : l*nr/nl
604  */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 	u64 period = sysctl_sched_latency;
608 	unsigned long nr_latency = sched_nr_latency;
609 
610 	if (unlikely(nr_running > nr_latency)) {
611 		period = sysctl_sched_min_granularity;
612 		period *= nr_running;
613 	}
614 
615 	return period;
616 }
617 
618 /*
619  * We calculate the wall-time slice from the period by taking a part
620  * proportional to the weight.
621  *
622  * s = p*P[w/rw]
623  */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627 
628 	for_each_sched_entity(se) {
629 		struct load_weight *load;
630 		struct load_weight lw;
631 
632 		cfs_rq = cfs_rq_of(se);
633 		load = &cfs_rq->load;
634 
635 		if (unlikely(!se->on_rq)) {
636 			lw = cfs_rq->load;
637 
638 			update_load_add(&lw, se->load.weight);
639 			load = &lw;
640 		}
641 		slice = calc_delta_mine(slice, se->load.weight, load);
642 	}
643 	return slice;
644 }
645 
646 /*
647  * We calculate the vruntime slice of a to be inserted task
648  *
649  * vs = s/w
650  */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655 
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658 
659 /*
660  * Update the current task's runtime statistics. Skip current tasks that
661  * are not in our scheduling class.
662  */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 	      unsigned long delta_exec)
666 {
667 	unsigned long delta_exec_weighted;
668 
669 	schedstat_set(curr->statistics.exec_max,
670 		      max((u64)delta_exec, curr->statistics.exec_max));
671 
672 	curr->sum_exec_runtime += delta_exec;
673 	schedstat_add(cfs_rq, exec_clock, delta_exec);
674 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675 
676 	curr->vruntime += delta_exec_weighted;
677 	update_min_vruntime(cfs_rq);
678 
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 	cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683 
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 	struct sched_entity *curr = cfs_rq->curr;
687 	u64 now = rq_of(cfs_rq)->clock_task;
688 	unsigned long delta_exec;
689 
690 	if (unlikely(!curr))
691 		return;
692 
693 	/*
694 	 * Get the amount of time the current task was running
695 	 * since the last time we changed load (this cannot
696 	 * overflow on 32 bits):
697 	 */
698 	delta_exec = (unsigned long)(now - curr->exec_start);
699 	if (!delta_exec)
700 		return;
701 
702 	__update_curr(cfs_rq, curr, delta_exec);
703 	curr->exec_start = now;
704 
705 	if (entity_is_task(curr)) {
706 		struct task_struct *curtask = task_of(curr);
707 
708 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 		cpuacct_charge(curtask, delta_exec);
710 		account_group_exec_runtime(curtask, delta_exec);
711 	}
712 
713 	account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715 
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721 
722 /*
723  * Task is being enqueued - update stats:
724  */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	/*
728 	 * Are we enqueueing a waiting task? (for current tasks
729 	 * a dequeue/enqueue event is a NOP)
730 	 */
731 	if (se != cfs_rq->curr)
732 		update_stats_wait_start(cfs_rq, se);
733 }
734 
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 	if (entity_is_task(se)) {
745 		trace_sched_stat_wait(task_of(se),
746 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 	}
748 #endif
749 	schedstat_set(se->statistics.wait_start, 0);
750 }
751 
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 	/*
756 	 * Mark the end of the wait period if dequeueing a
757 	 * waiting task:
758 	 */
759 	if (se != cfs_rq->curr)
760 		update_stats_wait_end(cfs_rq, se);
761 }
762 
763 /*
764  * We are picking a new current task - update its stats:
765  */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 	/*
770 	 * We are starting a new run period:
771 	 */
772 	se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774 
775 /**************************************************
776  * Scheduling class queueing methods:
777  */
778 
779 static void
780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 {
782 	update_load_add(&cfs_rq->load, se->load.weight);
783 	if (!parent_entity(se))
784 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785 #ifdef CONFIG_SMP
786 	if (entity_is_task(se))
787 		list_add_tail(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788 #endif
789 	cfs_rq->nr_running++;
790 }
791 
792 static void
793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 	update_load_sub(&cfs_rq->load, se->load.weight);
796 	if (!parent_entity(se))
797 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 	if (entity_is_task(se))
799 		list_del_init(&se->group_node);
800 	cfs_rq->nr_running--;
801 }
802 
803 #ifdef CONFIG_FAIR_GROUP_SCHED
804 /* we need this in update_cfs_load and load-balance functions below */
805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806 # ifdef CONFIG_SMP
807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 					    int global_update)
809 {
810 	struct task_group *tg = cfs_rq->tg;
811 	long load_avg;
812 
813 	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 	load_avg -= cfs_rq->load_contribution;
815 
816 	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 		atomic_add(load_avg, &tg->load_weight);
818 		cfs_rq->load_contribution += load_avg;
819 	}
820 }
821 
822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
823 {
824 	u64 period = sysctl_sched_shares_window;
825 	u64 now, delta;
826 	unsigned long load = cfs_rq->load.weight;
827 
828 	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
829 		return;
830 
831 	now = rq_of(cfs_rq)->clock_task;
832 	delta = now - cfs_rq->load_stamp;
833 
834 	/* truncate load history at 4 idle periods */
835 	if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 	    now - cfs_rq->load_last > 4 * period) {
837 		cfs_rq->load_period = 0;
838 		cfs_rq->load_avg = 0;
839 		delta = period - 1;
840 	}
841 
842 	cfs_rq->load_stamp = now;
843 	cfs_rq->load_unacc_exec_time = 0;
844 	cfs_rq->load_period += delta;
845 	if (load) {
846 		cfs_rq->load_last = now;
847 		cfs_rq->load_avg += delta * load;
848 	}
849 
850 	/* consider updating load contribution on each fold or truncate */
851 	if (global_update || cfs_rq->load_period > period
852 	    || !cfs_rq->load_period)
853 		update_cfs_rq_load_contribution(cfs_rq, global_update);
854 
855 	while (cfs_rq->load_period > period) {
856 		/*
857 		 * Inline assembly required to prevent the compiler
858 		 * optimising this loop into a divmod call.
859 		 * See __iter_div_u64_rem() for another example of this.
860 		 */
861 		asm("" : "+rm" (cfs_rq->load_period));
862 		cfs_rq->load_period /= 2;
863 		cfs_rq->load_avg /= 2;
864 	}
865 
866 	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 		list_del_leaf_cfs_rq(cfs_rq);
868 }
869 
870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871 {
872 	long tg_weight;
873 
874 	/*
875 	 * Use this CPU's actual weight instead of the last load_contribution
876 	 * to gain a more accurate current total weight. See
877 	 * update_cfs_rq_load_contribution().
878 	 */
879 	tg_weight = atomic_read(&tg->load_weight);
880 	tg_weight -= cfs_rq->load_contribution;
881 	tg_weight += cfs_rq->load.weight;
882 
883 	return tg_weight;
884 }
885 
886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
887 {
888 	long tg_weight, load, shares;
889 
890 	tg_weight = calc_tg_weight(tg, cfs_rq);
891 	load = cfs_rq->load.weight;
892 
893 	shares = (tg->shares * load);
894 	if (tg_weight)
895 		shares /= tg_weight;
896 
897 	if (shares < MIN_SHARES)
898 		shares = MIN_SHARES;
899 	if (shares > tg->shares)
900 		shares = tg->shares;
901 
902 	return shares;
903 }
904 
905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906 {
907 	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 		update_cfs_load(cfs_rq, 0);
909 		update_cfs_shares(cfs_rq);
910 	}
911 }
912 # else /* CONFIG_SMP */
913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914 {
915 }
916 
917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
918 {
919 	return tg->shares;
920 }
921 
922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923 {
924 }
925 # endif /* CONFIG_SMP */
926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 			    unsigned long weight)
928 {
929 	if (se->on_rq) {
930 		/* commit outstanding execution time */
931 		if (cfs_rq->curr == se)
932 			update_curr(cfs_rq);
933 		account_entity_dequeue(cfs_rq, se);
934 	}
935 
936 	update_load_set(&se->load, weight);
937 
938 	if (se->on_rq)
939 		account_entity_enqueue(cfs_rq, se);
940 }
941 
942 static void update_cfs_shares(struct cfs_rq *cfs_rq)
943 {
944 	struct task_group *tg;
945 	struct sched_entity *se;
946 	long shares;
947 
948 	tg = cfs_rq->tg;
949 	se = tg->se[cpu_of(rq_of(cfs_rq))];
950 	if (!se || throttled_hierarchy(cfs_rq))
951 		return;
952 #ifndef CONFIG_SMP
953 	if (likely(se->load.weight == tg->shares))
954 		return;
955 #endif
956 	shares = calc_cfs_shares(cfs_rq, tg);
957 
958 	reweight_entity(cfs_rq_of(se), se, shares);
959 }
960 #else /* CONFIG_FAIR_GROUP_SCHED */
961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
962 {
963 }
964 
965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
966 {
967 }
968 
969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970 {
971 }
972 #endif /* CONFIG_FAIR_GROUP_SCHED */
973 
974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
975 {
976 #ifdef CONFIG_SCHEDSTATS
977 	struct task_struct *tsk = NULL;
978 
979 	if (entity_is_task(se))
980 		tsk = task_of(se);
981 
982 	if (se->statistics.sleep_start) {
983 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
984 
985 		if ((s64)delta < 0)
986 			delta = 0;
987 
988 		if (unlikely(delta > se->statistics.sleep_max))
989 			se->statistics.sleep_max = delta;
990 
991 		se->statistics.sleep_start = 0;
992 		se->statistics.sum_sleep_runtime += delta;
993 
994 		if (tsk) {
995 			account_scheduler_latency(tsk, delta >> 10, 1);
996 			trace_sched_stat_sleep(tsk, delta);
997 		}
998 	}
999 	if (se->statistics.block_start) {
1000 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1001 
1002 		if ((s64)delta < 0)
1003 			delta = 0;
1004 
1005 		if (unlikely(delta > se->statistics.block_max))
1006 			se->statistics.block_max = delta;
1007 
1008 		se->statistics.block_start = 0;
1009 		se->statistics.sum_sleep_runtime += delta;
1010 
1011 		if (tsk) {
1012 			if (tsk->in_iowait) {
1013 				se->statistics.iowait_sum += delta;
1014 				se->statistics.iowait_count++;
1015 				trace_sched_stat_iowait(tsk, delta);
1016 			}
1017 
1018 			trace_sched_stat_blocked(tsk, delta);
1019 
1020 			/*
1021 			 * Blocking time is in units of nanosecs, so shift by
1022 			 * 20 to get a milliseconds-range estimation of the
1023 			 * amount of time that the task spent sleeping:
1024 			 */
1025 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 				profile_hits(SLEEP_PROFILING,
1027 						(void *)get_wchan(tsk),
1028 						delta >> 20);
1029 			}
1030 			account_scheduler_latency(tsk, delta >> 10, 0);
1031 		}
1032 	}
1033 #endif
1034 }
1035 
1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037 {
1038 #ifdef CONFIG_SCHED_DEBUG
1039 	s64 d = se->vruntime - cfs_rq->min_vruntime;
1040 
1041 	if (d < 0)
1042 		d = -d;
1043 
1044 	if (d > 3*sysctl_sched_latency)
1045 		schedstat_inc(cfs_rq, nr_spread_over);
1046 #endif
1047 }
1048 
1049 static void
1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051 {
1052 	u64 vruntime = cfs_rq->min_vruntime;
1053 
1054 	/*
1055 	 * The 'current' period is already promised to the current tasks,
1056 	 * however the extra weight of the new task will slow them down a
1057 	 * little, place the new task so that it fits in the slot that
1058 	 * stays open at the end.
1059 	 */
1060 	if (initial && sched_feat(START_DEBIT))
1061 		vruntime += sched_vslice(cfs_rq, se);
1062 
1063 	/* sleeps up to a single latency don't count. */
1064 	if (!initial) {
1065 		unsigned long thresh = sysctl_sched_latency;
1066 
1067 		/*
1068 		 * Halve their sleep time's effect, to allow
1069 		 * for a gentler effect of sleepers:
1070 		 */
1071 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 			thresh >>= 1;
1073 
1074 		vruntime -= thresh;
1075 	}
1076 
1077 	/* ensure we never gain time by being placed backwards. */
1078 	vruntime = max_vruntime(se->vruntime, vruntime);
1079 
1080 	se->vruntime = vruntime;
1081 }
1082 
1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084 
1085 static void
1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1087 {
1088 	/*
1089 	 * Update the normalized vruntime before updating min_vruntime
1090 	 * through callig update_curr().
1091 	 */
1092 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 		se->vruntime += cfs_rq->min_vruntime;
1094 
1095 	/*
1096 	 * Update run-time statistics of the 'current'.
1097 	 */
1098 	update_curr(cfs_rq);
1099 	update_cfs_load(cfs_rq, 0);
1100 	account_entity_enqueue(cfs_rq, se);
1101 	update_cfs_shares(cfs_rq);
1102 
1103 	if (flags & ENQUEUE_WAKEUP) {
1104 		place_entity(cfs_rq, se, 0);
1105 		enqueue_sleeper(cfs_rq, se);
1106 	}
1107 
1108 	update_stats_enqueue(cfs_rq, se);
1109 	check_spread(cfs_rq, se);
1110 	if (se != cfs_rq->curr)
1111 		__enqueue_entity(cfs_rq, se);
1112 	se->on_rq = 1;
1113 
1114 	if (cfs_rq->nr_running == 1) {
1115 		list_add_leaf_cfs_rq(cfs_rq);
1116 		check_enqueue_throttle(cfs_rq);
1117 	}
1118 }
1119 
1120 static void __clear_buddies_last(struct sched_entity *se)
1121 {
1122 	for_each_sched_entity(se) {
1123 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 		if (cfs_rq->last == se)
1125 			cfs_rq->last = NULL;
1126 		else
1127 			break;
1128 	}
1129 }
1130 
1131 static void __clear_buddies_next(struct sched_entity *se)
1132 {
1133 	for_each_sched_entity(se) {
1134 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 		if (cfs_rq->next == se)
1136 			cfs_rq->next = NULL;
1137 		else
1138 			break;
1139 	}
1140 }
1141 
1142 static void __clear_buddies_skip(struct sched_entity *se)
1143 {
1144 	for_each_sched_entity(se) {
1145 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 		if (cfs_rq->skip == se)
1147 			cfs_rq->skip = NULL;
1148 		else
1149 			break;
1150 	}
1151 }
1152 
1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154 {
1155 	if (cfs_rq->last == se)
1156 		__clear_buddies_last(se);
1157 
1158 	if (cfs_rq->next == se)
1159 		__clear_buddies_next(se);
1160 
1161 	if (cfs_rq->skip == se)
1162 		__clear_buddies_skip(se);
1163 }
1164 
1165 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166 
1167 static void
1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1169 {
1170 	/*
1171 	 * Update run-time statistics of the 'current'.
1172 	 */
1173 	update_curr(cfs_rq);
1174 
1175 	update_stats_dequeue(cfs_rq, se);
1176 	if (flags & DEQUEUE_SLEEP) {
1177 #ifdef CONFIG_SCHEDSTATS
1178 		if (entity_is_task(se)) {
1179 			struct task_struct *tsk = task_of(se);
1180 
1181 			if (tsk->state & TASK_INTERRUPTIBLE)
1182 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 			if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 				se->statistics.block_start = rq_of(cfs_rq)->clock;
1185 		}
1186 #endif
1187 	}
1188 
1189 	clear_buddies(cfs_rq, se);
1190 
1191 	if (se != cfs_rq->curr)
1192 		__dequeue_entity(cfs_rq, se);
1193 	se->on_rq = 0;
1194 	update_cfs_load(cfs_rq, 0);
1195 	account_entity_dequeue(cfs_rq, se);
1196 
1197 	/*
1198 	 * Normalize the entity after updating the min_vruntime because the
1199 	 * update can refer to the ->curr item and we need to reflect this
1200 	 * movement in our normalized position.
1201 	 */
1202 	if (!(flags & DEQUEUE_SLEEP))
1203 		se->vruntime -= cfs_rq->min_vruntime;
1204 
1205 	/* return excess runtime on last dequeue */
1206 	return_cfs_rq_runtime(cfs_rq);
1207 
1208 	update_min_vruntime(cfs_rq);
1209 	update_cfs_shares(cfs_rq);
1210 }
1211 
1212 /*
1213  * Preempt the current task with a newly woken task if needed:
1214  */
1215 static void
1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1217 {
1218 	unsigned long ideal_runtime, delta_exec;
1219 	struct sched_entity *se;
1220 	s64 delta;
1221 
1222 	ideal_runtime = sched_slice(cfs_rq, curr);
1223 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 	if (delta_exec > ideal_runtime) {
1225 		resched_task(rq_of(cfs_rq)->curr);
1226 		/*
1227 		 * The current task ran long enough, ensure it doesn't get
1228 		 * re-elected due to buddy favours.
1229 		 */
1230 		clear_buddies(cfs_rq, curr);
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * Ensure that a task that missed wakeup preemption by a
1236 	 * narrow margin doesn't have to wait for a full slice.
1237 	 * This also mitigates buddy induced latencies under load.
1238 	 */
1239 	if (delta_exec < sysctl_sched_min_granularity)
1240 		return;
1241 
1242 	se = __pick_first_entity(cfs_rq);
1243 	delta = curr->vruntime - se->vruntime;
1244 
1245 	if (delta < 0)
1246 		return;
1247 
1248 	if (delta > ideal_runtime)
1249 		resched_task(rq_of(cfs_rq)->curr);
1250 }
1251 
1252 static void
1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1254 {
1255 	/* 'current' is not kept within the tree. */
1256 	if (se->on_rq) {
1257 		/*
1258 		 * Any task has to be enqueued before it get to execute on
1259 		 * a CPU. So account for the time it spent waiting on the
1260 		 * runqueue.
1261 		 */
1262 		update_stats_wait_end(cfs_rq, se);
1263 		__dequeue_entity(cfs_rq, se);
1264 	}
1265 
1266 	update_stats_curr_start(cfs_rq, se);
1267 	cfs_rq->curr = se;
1268 #ifdef CONFIG_SCHEDSTATS
1269 	/*
1270 	 * Track our maximum slice length, if the CPU's load is at
1271 	 * least twice that of our own weight (i.e. dont track it
1272 	 * when there are only lesser-weight tasks around):
1273 	 */
1274 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 		se->statistics.slice_max = max(se->statistics.slice_max,
1276 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 	}
1278 #endif
1279 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1280 }
1281 
1282 static int
1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284 
1285 /*
1286  * Pick the next process, keeping these things in mind, in this order:
1287  * 1) keep things fair between processes/task groups
1288  * 2) pick the "next" process, since someone really wants that to run
1289  * 3) pick the "last" process, for cache locality
1290  * 4) do not run the "skip" process, if something else is available
1291  */
1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1293 {
1294 	struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 	struct sched_entity *left = se;
1296 
1297 	/*
1298 	 * Avoid running the skip buddy, if running something else can
1299 	 * be done without getting too unfair.
1300 	 */
1301 	if (cfs_rq->skip == se) {
1302 		struct sched_entity *second = __pick_next_entity(se);
1303 		if (second && wakeup_preempt_entity(second, left) < 1)
1304 			se = second;
1305 	}
1306 
1307 	/*
1308 	 * Prefer last buddy, try to return the CPU to a preempted task.
1309 	 */
1310 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 		se = cfs_rq->last;
1312 
1313 	/*
1314 	 * Someone really wants this to run. If it's not unfair, run it.
1315 	 */
1316 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 		se = cfs_rq->next;
1318 
1319 	clear_buddies(cfs_rq, se);
1320 
1321 	return se;
1322 }
1323 
1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325 
1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1327 {
1328 	/*
1329 	 * If still on the runqueue then deactivate_task()
1330 	 * was not called and update_curr() has to be done:
1331 	 */
1332 	if (prev->on_rq)
1333 		update_curr(cfs_rq);
1334 
1335 	/* throttle cfs_rqs exceeding runtime */
1336 	check_cfs_rq_runtime(cfs_rq);
1337 
1338 	check_spread(cfs_rq, prev);
1339 	if (prev->on_rq) {
1340 		update_stats_wait_start(cfs_rq, prev);
1341 		/* Put 'current' back into the tree. */
1342 		__enqueue_entity(cfs_rq, prev);
1343 	}
1344 	cfs_rq->curr = NULL;
1345 }
1346 
1347 static void
1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1349 {
1350 	/*
1351 	 * Update run-time statistics of the 'current'.
1352 	 */
1353 	update_curr(cfs_rq);
1354 
1355 	/*
1356 	 * Update share accounting for long-running entities.
1357 	 */
1358 	update_entity_shares_tick(cfs_rq);
1359 
1360 #ifdef CONFIG_SCHED_HRTICK
1361 	/*
1362 	 * queued ticks are scheduled to match the slice, so don't bother
1363 	 * validating it and just reschedule.
1364 	 */
1365 	if (queued) {
1366 		resched_task(rq_of(cfs_rq)->curr);
1367 		return;
1368 	}
1369 	/*
1370 	 * don't let the period tick interfere with the hrtick preemption
1371 	 */
1372 	if (!sched_feat(DOUBLE_TICK) &&
1373 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 		return;
1375 #endif
1376 
1377 	if (cfs_rq->nr_running > 1)
1378 		check_preempt_tick(cfs_rq, curr);
1379 }
1380 
1381 
1382 /**************************************************
1383  * CFS bandwidth control machinery
1384  */
1385 
1386 #ifdef CONFIG_CFS_BANDWIDTH
1387 
1388 #ifdef HAVE_JUMP_LABEL
1389 static struct static_key __cfs_bandwidth_used;
1390 
1391 static inline bool cfs_bandwidth_used(void)
1392 {
1393 	return static_key_false(&__cfs_bandwidth_used);
1394 }
1395 
1396 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397 {
1398 	/* only need to count groups transitioning between enabled/!enabled */
1399 	if (enabled && !was_enabled)
1400 		static_key_slow_inc(&__cfs_bandwidth_used);
1401 	else if (!enabled && was_enabled)
1402 		static_key_slow_dec(&__cfs_bandwidth_used);
1403 }
1404 #else /* HAVE_JUMP_LABEL */
1405 static bool cfs_bandwidth_used(void)
1406 {
1407 	return true;
1408 }
1409 
1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411 #endif /* HAVE_JUMP_LABEL */
1412 
1413 /*
1414  * default period for cfs group bandwidth.
1415  * default: 0.1s, units: nanoseconds
1416  */
1417 static inline u64 default_cfs_period(void)
1418 {
1419 	return 100000000ULL;
1420 }
1421 
1422 static inline u64 sched_cfs_bandwidth_slice(void)
1423 {
1424 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425 }
1426 
1427 /*
1428  * Replenish runtime according to assigned quota and update expiration time.
1429  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430  * additional synchronization around rq->lock.
1431  *
1432  * requires cfs_b->lock
1433  */
1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1435 {
1436 	u64 now;
1437 
1438 	if (cfs_b->quota == RUNTIME_INF)
1439 		return;
1440 
1441 	now = sched_clock_cpu(smp_processor_id());
1442 	cfs_b->runtime = cfs_b->quota;
1443 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444 }
1445 
1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447 {
1448 	return &tg->cfs_bandwidth;
1449 }
1450 
1451 /* returns 0 on failure to allocate runtime */
1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1453 {
1454 	struct task_group *tg = cfs_rq->tg;
1455 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 	u64 amount = 0, min_amount, expires;
1457 
1458 	/* note: this is a positive sum as runtime_remaining <= 0 */
1459 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460 
1461 	raw_spin_lock(&cfs_b->lock);
1462 	if (cfs_b->quota == RUNTIME_INF)
1463 		amount = min_amount;
1464 	else {
1465 		/*
1466 		 * If the bandwidth pool has become inactive, then at least one
1467 		 * period must have elapsed since the last consumption.
1468 		 * Refresh the global state and ensure bandwidth timer becomes
1469 		 * active.
1470 		 */
1471 		if (!cfs_b->timer_active) {
1472 			__refill_cfs_bandwidth_runtime(cfs_b);
1473 			__start_cfs_bandwidth(cfs_b);
1474 		}
1475 
1476 		if (cfs_b->runtime > 0) {
1477 			amount = min(cfs_b->runtime, min_amount);
1478 			cfs_b->runtime -= amount;
1479 			cfs_b->idle = 0;
1480 		}
1481 	}
1482 	expires = cfs_b->runtime_expires;
1483 	raw_spin_unlock(&cfs_b->lock);
1484 
1485 	cfs_rq->runtime_remaining += amount;
1486 	/*
1487 	 * we may have advanced our local expiration to account for allowed
1488 	 * spread between our sched_clock and the one on which runtime was
1489 	 * issued.
1490 	 */
1491 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 		cfs_rq->runtime_expires = expires;
1493 
1494 	return cfs_rq->runtime_remaining > 0;
1495 }
1496 
1497 /*
1498  * Note: This depends on the synchronization provided by sched_clock and the
1499  * fact that rq->clock snapshots this value.
1500  */
1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1502 {
1503 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 	struct rq *rq = rq_of(cfs_rq);
1505 
1506 	/* if the deadline is ahead of our clock, nothing to do */
1507 	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508 		return;
1509 
1510 	if (cfs_rq->runtime_remaining < 0)
1511 		return;
1512 
1513 	/*
1514 	 * If the local deadline has passed we have to consider the
1515 	 * possibility that our sched_clock is 'fast' and the global deadline
1516 	 * has not truly expired.
1517 	 *
1518 	 * Fortunately we can check determine whether this the case by checking
1519 	 * whether the global deadline has advanced.
1520 	 */
1521 
1522 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 		/* extend local deadline, drift is bounded above by 2 ticks */
1524 		cfs_rq->runtime_expires += TICK_NSEC;
1525 	} else {
1526 		/* global deadline is ahead, expiration has passed */
1527 		cfs_rq->runtime_remaining = 0;
1528 	}
1529 }
1530 
1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 				     unsigned long delta_exec)
1533 {
1534 	/* dock delta_exec before expiring quota (as it could span periods) */
1535 	cfs_rq->runtime_remaining -= delta_exec;
1536 	expire_cfs_rq_runtime(cfs_rq);
1537 
1538 	if (likely(cfs_rq->runtime_remaining > 0))
1539 		return;
1540 
1541 	/*
1542 	 * if we're unable to extend our runtime we resched so that the active
1543 	 * hierarchy can be throttled
1544 	 */
1545 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 		resched_task(rq_of(cfs_rq)->curr);
1547 }
1548 
1549 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1550 						   unsigned long delta_exec)
1551 {
1552 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553 		return;
1554 
1555 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
1556 }
1557 
1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559 {
1560 	return cfs_bandwidth_used() && cfs_rq->throttled;
1561 }
1562 
1563 /* check whether cfs_rq, or any parent, is throttled */
1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565 {
1566 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1567 }
1568 
1569 /*
1570  * Ensure that neither of the group entities corresponding to src_cpu or
1571  * dest_cpu are members of a throttled hierarchy when performing group
1572  * load-balance operations.
1573  */
1574 static inline int throttled_lb_pair(struct task_group *tg,
1575 				    int src_cpu, int dest_cpu)
1576 {
1577 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578 
1579 	src_cfs_rq = tg->cfs_rq[src_cpu];
1580 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581 
1582 	return throttled_hierarchy(src_cfs_rq) ||
1583 	       throttled_hierarchy(dest_cfs_rq);
1584 }
1585 
1586 /* updated child weight may affect parent so we have to do this bottom up */
1587 static int tg_unthrottle_up(struct task_group *tg, void *data)
1588 {
1589 	struct rq *rq = data;
1590 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591 
1592 	cfs_rq->throttle_count--;
1593 #ifdef CONFIG_SMP
1594 	if (!cfs_rq->throttle_count) {
1595 		u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596 
1597 		/* leaving throttled state, advance shares averaging windows */
1598 		cfs_rq->load_stamp += delta;
1599 		cfs_rq->load_last += delta;
1600 
1601 		/* update entity weight now that we are on_rq again */
1602 		update_cfs_shares(cfs_rq);
1603 	}
1604 #endif
1605 
1606 	return 0;
1607 }
1608 
1609 static int tg_throttle_down(struct task_group *tg, void *data)
1610 {
1611 	struct rq *rq = data;
1612 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613 
1614 	/* group is entering throttled state, record last load */
1615 	if (!cfs_rq->throttle_count)
1616 		update_cfs_load(cfs_rq, 0);
1617 	cfs_rq->throttle_count++;
1618 
1619 	return 0;
1620 }
1621 
1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1623 {
1624 	struct rq *rq = rq_of(cfs_rq);
1625 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 	struct sched_entity *se;
1627 	long task_delta, dequeue = 1;
1628 
1629 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630 
1631 	/* account load preceding throttle */
1632 	rcu_read_lock();
1633 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 	rcu_read_unlock();
1635 
1636 	task_delta = cfs_rq->h_nr_running;
1637 	for_each_sched_entity(se) {
1638 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 		/* throttled entity or throttle-on-deactivate */
1640 		if (!se->on_rq)
1641 			break;
1642 
1643 		if (dequeue)
1644 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 		qcfs_rq->h_nr_running -= task_delta;
1646 
1647 		if (qcfs_rq->load.weight)
1648 			dequeue = 0;
1649 	}
1650 
1651 	if (!se)
1652 		rq->nr_running -= task_delta;
1653 
1654 	cfs_rq->throttled = 1;
1655 	cfs_rq->throttled_timestamp = rq->clock;
1656 	raw_spin_lock(&cfs_b->lock);
1657 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 	raw_spin_unlock(&cfs_b->lock);
1659 }
1660 
1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1662 {
1663 	struct rq *rq = rq_of(cfs_rq);
1664 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 	struct sched_entity *se;
1666 	int enqueue = 1;
1667 	long task_delta;
1668 
1669 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670 
1671 	cfs_rq->throttled = 0;
1672 	raw_spin_lock(&cfs_b->lock);
1673 	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 	list_del_rcu(&cfs_rq->throttled_list);
1675 	raw_spin_unlock(&cfs_b->lock);
1676 	cfs_rq->throttled_timestamp = 0;
1677 
1678 	update_rq_clock(rq);
1679 	/* update hierarchical throttle state */
1680 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681 
1682 	if (!cfs_rq->load.weight)
1683 		return;
1684 
1685 	task_delta = cfs_rq->h_nr_running;
1686 	for_each_sched_entity(se) {
1687 		if (se->on_rq)
1688 			enqueue = 0;
1689 
1690 		cfs_rq = cfs_rq_of(se);
1691 		if (enqueue)
1692 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 		cfs_rq->h_nr_running += task_delta;
1694 
1695 		if (cfs_rq_throttled(cfs_rq))
1696 			break;
1697 	}
1698 
1699 	if (!se)
1700 		rq->nr_running += task_delta;
1701 
1702 	/* determine whether we need to wake up potentially idle cpu */
1703 	if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 		resched_task(rq->curr);
1705 }
1706 
1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 		u64 remaining, u64 expires)
1709 {
1710 	struct cfs_rq *cfs_rq;
1711 	u64 runtime = remaining;
1712 
1713 	rcu_read_lock();
1714 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 				throttled_list) {
1716 		struct rq *rq = rq_of(cfs_rq);
1717 
1718 		raw_spin_lock(&rq->lock);
1719 		if (!cfs_rq_throttled(cfs_rq))
1720 			goto next;
1721 
1722 		runtime = -cfs_rq->runtime_remaining + 1;
1723 		if (runtime > remaining)
1724 			runtime = remaining;
1725 		remaining -= runtime;
1726 
1727 		cfs_rq->runtime_remaining += runtime;
1728 		cfs_rq->runtime_expires = expires;
1729 
1730 		/* we check whether we're throttled above */
1731 		if (cfs_rq->runtime_remaining > 0)
1732 			unthrottle_cfs_rq(cfs_rq);
1733 
1734 next:
1735 		raw_spin_unlock(&rq->lock);
1736 
1737 		if (!remaining)
1738 			break;
1739 	}
1740 	rcu_read_unlock();
1741 
1742 	return remaining;
1743 }
1744 
1745 /*
1746  * Responsible for refilling a task_group's bandwidth and unthrottling its
1747  * cfs_rqs as appropriate. If there has been no activity within the last
1748  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749  * used to track this state.
1750  */
1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752 {
1753 	u64 runtime, runtime_expires;
1754 	int idle = 1, throttled;
1755 
1756 	raw_spin_lock(&cfs_b->lock);
1757 	/* no need to continue the timer with no bandwidth constraint */
1758 	if (cfs_b->quota == RUNTIME_INF)
1759 		goto out_unlock;
1760 
1761 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 	/* idle depends on !throttled (for the case of a large deficit) */
1763 	idle = cfs_b->idle && !throttled;
1764 	cfs_b->nr_periods += overrun;
1765 
1766 	/* if we're going inactive then everything else can be deferred */
1767 	if (idle)
1768 		goto out_unlock;
1769 
1770 	__refill_cfs_bandwidth_runtime(cfs_b);
1771 
1772 	if (!throttled) {
1773 		/* mark as potentially idle for the upcoming period */
1774 		cfs_b->idle = 1;
1775 		goto out_unlock;
1776 	}
1777 
1778 	/* account preceding periods in which throttling occurred */
1779 	cfs_b->nr_throttled += overrun;
1780 
1781 	/*
1782 	 * There are throttled entities so we must first use the new bandwidth
1783 	 * to unthrottle them before making it generally available.  This
1784 	 * ensures that all existing debts will be paid before a new cfs_rq is
1785 	 * allowed to run.
1786 	 */
1787 	runtime = cfs_b->runtime;
1788 	runtime_expires = cfs_b->runtime_expires;
1789 	cfs_b->runtime = 0;
1790 
1791 	/*
1792 	 * This check is repeated as we are holding onto the new bandwidth
1793 	 * while we unthrottle.  This can potentially race with an unthrottled
1794 	 * group trying to acquire new bandwidth from the global pool.
1795 	 */
1796 	while (throttled && runtime > 0) {
1797 		raw_spin_unlock(&cfs_b->lock);
1798 		/* we can't nest cfs_b->lock while distributing bandwidth */
1799 		runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 						 runtime_expires);
1801 		raw_spin_lock(&cfs_b->lock);
1802 
1803 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 	}
1805 
1806 	/* return (any) remaining runtime */
1807 	cfs_b->runtime = runtime;
1808 	/*
1809 	 * While we are ensured activity in the period following an
1810 	 * unthrottle, this also covers the case in which the new bandwidth is
1811 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
1812 	 * timer to remain active while there are any throttled entities.)
1813 	 */
1814 	cfs_b->idle = 0;
1815 out_unlock:
1816 	if (idle)
1817 		cfs_b->timer_active = 0;
1818 	raw_spin_unlock(&cfs_b->lock);
1819 
1820 	return idle;
1821 }
1822 
1823 /* a cfs_rq won't donate quota below this amount */
1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825 /* minimum remaining period time to redistribute slack quota */
1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827 /* how long we wait to gather additional slack before distributing */
1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829 
1830 /* are we near the end of the current quota period? */
1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832 {
1833 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 	u64 remaining;
1835 
1836 	/* if the call-back is running a quota refresh is already occurring */
1837 	if (hrtimer_callback_running(refresh_timer))
1838 		return 1;
1839 
1840 	/* is a quota refresh about to occur? */
1841 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 	if (remaining < min_expire)
1843 		return 1;
1844 
1845 	return 0;
1846 }
1847 
1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849 {
1850 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851 
1852 	/* if there's a quota refresh soon don't bother with slack */
1853 	if (runtime_refresh_within(cfs_b, min_left))
1854 		return;
1855 
1856 	start_bandwidth_timer(&cfs_b->slack_timer,
1857 				ns_to_ktime(cfs_bandwidth_slack_period));
1858 }
1859 
1860 /* we know any runtime found here is valid as update_curr() precedes return */
1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862 {
1863 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865 
1866 	if (slack_runtime <= 0)
1867 		return;
1868 
1869 	raw_spin_lock(&cfs_b->lock);
1870 	if (cfs_b->quota != RUNTIME_INF &&
1871 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 		cfs_b->runtime += slack_runtime;
1873 
1874 		/* we are under rq->lock, defer unthrottling using a timer */
1875 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 		    !list_empty(&cfs_b->throttled_cfs_rq))
1877 			start_cfs_slack_bandwidth(cfs_b);
1878 	}
1879 	raw_spin_unlock(&cfs_b->lock);
1880 
1881 	/* even if it's not valid for return we don't want to try again */
1882 	cfs_rq->runtime_remaining -= slack_runtime;
1883 }
1884 
1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886 {
1887 	if (!cfs_bandwidth_used())
1888 		return;
1889 
1890 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891 		return;
1892 
1893 	__return_cfs_rq_runtime(cfs_rq);
1894 }
1895 
1896 /*
1897  * This is done with a timer (instead of inline with bandwidth return) since
1898  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899  */
1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901 {
1902 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 	u64 expires;
1904 
1905 	/* confirm we're still not at a refresh boundary */
1906 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 		return;
1908 
1909 	raw_spin_lock(&cfs_b->lock);
1910 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 		runtime = cfs_b->runtime;
1912 		cfs_b->runtime = 0;
1913 	}
1914 	expires = cfs_b->runtime_expires;
1915 	raw_spin_unlock(&cfs_b->lock);
1916 
1917 	if (!runtime)
1918 		return;
1919 
1920 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921 
1922 	raw_spin_lock(&cfs_b->lock);
1923 	if (expires == cfs_b->runtime_expires)
1924 		cfs_b->runtime = runtime;
1925 	raw_spin_unlock(&cfs_b->lock);
1926 }
1927 
1928 /*
1929  * When a group wakes up we want to make sure that its quota is not already
1930  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931  * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932  */
1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934 {
1935 	if (!cfs_bandwidth_used())
1936 		return;
1937 
1938 	/* an active group must be handled by the update_curr()->put() path */
1939 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 		return;
1941 
1942 	/* ensure the group is not already throttled */
1943 	if (cfs_rq_throttled(cfs_rq))
1944 		return;
1945 
1946 	/* update runtime allocation */
1947 	account_cfs_rq_runtime(cfs_rq, 0);
1948 	if (cfs_rq->runtime_remaining <= 0)
1949 		throttle_cfs_rq(cfs_rq);
1950 }
1951 
1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954 {
1955 	if (!cfs_bandwidth_used())
1956 		return;
1957 
1958 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 		return;
1960 
1961 	/*
1962 	 * it's possible for a throttled entity to be forced into a running
1963 	 * state (e.g. set_curr_task), in this case we're finished.
1964 	 */
1965 	if (cfs_rq_throttled(cfs_rq))
1966 		return;
1967 
1968 	throttle_cfs_rq(cfs_rq);
1969 }
1970 
1971 static inline u64 default_cfs_period(void);
1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974 
1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976 {
1977 	struct cfs_bandwidth *cfs_b =
1978 		container_of(timer, struct cfs_bandwidth, slack_timer);
1979 	do_sched_cfs_slack_timer(cfs_b);
1980 
1981 	return HRTIMER_NORESTART;
1982 }
1983 
1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985 {
1986 	struct cfs_bandwidth *cfs_b =
1987 		container_of(timer, struct cfs_bandwidth, period_timer);
1988 	ktime_t now;
1989 	int overrun;
1990 	int idle = 0;
1991 
1992 	for (;;) {
1993 		now = hrtimer_cb_get_time(timer);
1994 		overrun = hrtimer_forward(timer, now, cfs_b->period);
1995 
1996 		if (!overrun)
1997 			break;
1998 
1999 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 	}
2001 
2002 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003 }
2004 
2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006 {
2007 	raw_spin_lock_init(&cfs_b->lock);
2008 	cfs_b->runtime = 0;
2009 	cfs_b->quota = RUNTIME_INF;
2010 	cfs_b->period = ns_to_ktime(default_cfs_period());
2011 
2012 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 	cfs_b->period_timer.function = sched_cfs_period_timer;
2015 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017 }
2018 
2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020 {
2021 	cfs_rq->runtime_enabled = 0;
2022 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023 }
2024 
2025 /* requires cfs_b->lock, may release to reprogram timer */
2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027 {
2028 	/*
2029 	 * The timer may be active because we're trying to set a new bandwidth
2030 	 * period or because we're racing with the tear-down path
2031 	 * (timer_active==0 becomes visible before the hrtimer call-back
2032 	 * terminates).  In either case we ensure that it's re-programmed
2033 	 */
2034 	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 		raw_spin_unlock(&cfs_b->lock);
2036 		/* ensure cfs_b->lock is available while we wait */
2037 		hrtimer_cancel(&cfs_b->period_timer);
2038 
2039 		raw_spin_lock(&cfs_b->lock);
2040 		/* if someone else restarted the timer then we're done */
2041 		if (cfs_b->timer_active)
2042 			return;
2043 	}
2044 
2045 	cfs_b->timer_active = 1;
2046 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047 }
2048 
2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050 {
2051 	hrtimer_cancel(&cfs_b->period_timer);
2052 	hrtimer_cancel(&cfs_b->slack_timer);
2053 }
2054 
2055 void unthrottle_offline_cfs_rqs(struct rq *rq)
2056 {
2057 	struct cfs_rq *cfs_rq;
2058 
2059 	for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061 
2062 		if (!cfs_rq->runtime_enabled)
2063 			continue;
2064 
2065 		/*
2066 		 * clock_task is not advancing so we just need to make sure
2067 		 * there's some valid quota amount
2068 		 */
2069 		cfs_rq->runtime_remaining = cfs_b->quota;
2070 		if (cfs_rq_throttled(cfs_rq))
2071 			unthrottle_cfs_rq(cfs_rq);
2072 	}
2073 }
2074 
2075 #else /* CONFIG_CFS_BANDWIDTH */
2076 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2077 				     unsigned long delta_exec) {}
2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2081 
2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083 {
2084 	return 0;
2085 }
2086 
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088 {
2089 	return 0;
2090 }
2091 
2092 static inline int throttled_lb_pair(struct task_group *tg,
2093 				    int src_cpu, int dest_cpu)
2094 {
2095 	return 0;
2096 }
2097 
2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099 
2100 #ifdef CONFIG_FAIR_GROUP_SCHED
2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102 #endif
2103 
2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105 {
2106 	return NULL;
2107 }
2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110 
2111 #endif /* CONFIG_CFS_BANDWIDTH */
2112 
2113 /**************************************************
2114  * CFS operations on tasks:
2115  */
2116 
2117 #ifdef CONFIG_SCHED_HRTICK
2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119 {
2120 	struct sched_entity *se = &p->se;
2121 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122 
2123 	WARN_ON(task_rq(p) != rq);
2124 
2125 	if (cfs_rq->nr_running > 1) {
2126 		u64 slice = sched_slice(cfs_rq, se);
2127 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 		s64 delta = slice - ran;
2129 
2130 		if (delta < 0) {
2131 			if (rq->curr == p)
2132 				resched_task(p);
2133 			return;
2134 		}
2135 
2136 		/*
2137 		 * Don't schedule slices shorter than 10000ns, that just
2138 		 * doesn't make sense. Rely on vruntime for fairness.
2139 		 */
2140 		if (rq->curr != p)
2141 			delta = max_t(s64, 10000LL, delta);
2142 
2143 		hrtick_start(rq, delta);
2144 	}
2145 }
2146 
2147 /*
2148  * called from enqueue/dequeue and updates the hrtick when the
2149  * current task is from our class and nr_running is low enough
2150  * to matter.
2151  */
2152 static void hrtick_update(struct rq *rq)
2153 {
2154 	struct task_struct *curr = rq->curr;
2155 
2156 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157 		return;
2158 
2159 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 		hrtick_start_fair(rq, curr);
2161 }
2162 #else /* !CONFIG_SCHED_HRTICK */
2163 static inline void
2164 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165 {
2166 }
2167 
2168 static inline void hrtick_update(struct rq *rq)
2169 {
2170 }
2171 #endif
2172 
2173 /*
2174  * The enqueue_task method is called before nr_running is
2175  * increased. Here we update the fair scheduling stats and
2176  * then put the task into the rbtree:
2177  */
2178 static void
2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2180 {
2181 	struct cfs_rq *cfs_rq;
2182 	struct sched_entity *se = &p->se;
2183 
2184 	for_each_sched_entity(se) {
2185 		if (se->on_rq)
2186 			break;
2187 		cfs_rq = cfs_rq_of(se);
2188 		enqueue_entity(cfs_rq, se, flags);
2189 
2190 		/*
2191 		 * end evaluation on encountering a throttled cfs_rq
2192 		 *
2193 		 * note: in the case of encountering a throttled cfs_rq we will
2194 		 * post the final h_nr_running increment below.
2195 		*/
2196 		if (cfs_rq_throttled(cfs_rq))
2197 			break;
2198 		cfs_rq->h_nr_running++;
2199 
2200 		flags = ENQUEUE_WAKEUP;
2201 	}
2202 
2203 	for_each_sched_entity(se) {
2204 		cfs_rq = cfs_rq_of(se);
2205 		cfs_rq->h_nr_running++;
2206 
2207 		if (cfs_rq_throttled(cfs_rq))
2208 			break;
2209 
2210 		update_cfs_load(cfs_rq, 0);
2211 		update_cfs_shares(cfs_rq);
2212 	}
2213 
2214 	if (!se)
2215 		inc_nr_running(rq);
2216 	hrtick_update(rq);
2217 }
2218 
2219 static void set_next_buddy(struct sched_entity *se);
2220 
2221 /*
2222  * The dequeue_task method is called before nr_running is
2223  * decreased. We remove the task from the rbtree and
2224  * update the fair scheduling stats:
2225  */
2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2227 {
2228 	struct cfs_rq *cfs_rq;
2229 	struct sched_entity *se = &p->se;
2230 	int task_sleep = flags & DEQUEUE_SLEEP;
2231 
2232 	for_each_sched_entity(se) {
2233 		cfs_rq = cfs_rq_of(se);
2234 		dequeue_entity(cfs_rq, se, flags);
2235 
2236 		/*
2237 		 * end evaluation on encountering a throttled cfs_rq
2238 		 *
2239 		 * note: in the case of encountering a throttled cfs_rq we will
2240 		 * post the final h_nr_running decrement below.
2241 		*/
2242 		if (cfs_rq_throttled(cfs_rq))
2243 			break;
2244 		cfs_rq->h_nr_running--;
2245 
2246 		/* Don't dequeue parent if it has other entities besides us */
2247 		if (cfs_rq->load.weight) {
2248 			/*
2249 			 * Bias pick_next to pick a task from this cfs_rq, as
2250 			 * p is sleeping when it is within its sched_slice.
2251 			 */
2252 			if (task_sleep && parent_entity(se))
2253 				set_next_buddy(parent_entity(se));
2254 
2255 			/* avoid re-evaluating load for this entity */
2256 			se = parent_entity(se);
2257 			break;
2258 		}
2259 		flags |= DEQUEUE_SLEEP;
2260 	}
2261 
2262 	for_each_sched_entity(se) {
2263 		cfs_rq = cfs_rq_of(se);
2264 		cfs_rq->h_nr_running--;
2265 
2266 		if (cfs_rq_throttled(cfs_rq))
2267 			break;
2268 
2269 		update_cfs_load(cfs_rq, 0);
2270 		update_cfs_shares(cfs_rq);
2271 	}
2272 
2273 	if (!se)
2274 		dec_nr_running(rq);
2275 	hrtick_update(rq);
2276 }
2277 
2278 #ifdef CONFIG_SMP
2279 /* Used instead of source_load when we know the type == 0 */
2280 static unsigned long weighted_cpuload(const int cpu)
2281 {
2282 	return cpu_rq(cpu)->load.weight;
2283 }
2284 
2285 /*
2286  * Return a low guess at the load of a migration-source cpu weighted
2287  * according to the scheduling class and "nice" value.
2288  *
2289  * We want to under-estimate the load of migration sources, to
2290  * balance conservatively.
2291  */
2292 static unsigned long source_load(int cpu, int type)
2293 {
2294 	struct rq *rq = cpu_rq(cpu);
2295 	unsigned long total = weighted_cpuload(cpu);
2296 
2297 	if (type == 0 || !sched_feat(LB_BIAS))
2298 		return total;
2299 
2300 	return min(rq->cpu_load[type-1], total);
2301 }
2302 
2303 /*
2304  * Return a high guess at the load of a migration-target cpu weighted
2305  * according to the scheduling class and "nice" value.
2306  */
2307 static unsigned long target_load(int cpu, int type)
2308 {
2309 	struct rq *rq = cpu_rq(cpu);
2310 	unsigned long total = weighted_cpuload(cpu);
2311 
2312 	if (type == 0 || !sched_feat(LB_BIAS))
2313 		return total;
2314 
2315 	return max(rq->cpu_load[type-1], total);
2316 }
2317 
2318 static unsigned long power_of(int cpu)
2319 {
2320 	return cpu_rq(cpu)->cpu_power;
2321 }
2322 
2323 static unsigned long cpu_avg_load_per_task(int cpu)
2324 {
2325 	struct rq *rq = cpu_rq(cpu);
2326 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327 
2328 	if (nr_running)
2329 		return rq->load.weight / nr_running;
2330 
2331 	return 0;
2332 }
2333 
2334 
2335 static void task_waking_fair(struct task_struct *p)
2336 {
2337 	struct sched_entity *se = &p->se;
2338 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339 	u64 min_vruntime;
2340 
2341 #ifndef CONFIG_64BIT
2342 	u64 min_vruntime_copy;
2343 
2344 	do {
2345 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 		smp_rmb();
2347 		min_vruntime = cfs_rq->min_vruntime;
2348 	} while (min_vruntime != min_vruntime_copy);
2349 #else
2350 	min_vruntime = cfs_rq->min_vruntime;
2351 #endif
2352 
2353 	se->vruntime -= min_vruntime;
2354 }
2355 
2356 #ifdef CONFIG_FAIR_GROUP_SCHED
2357 /*
2358  * effective_load() calculates the load change as seen from the root_task_group
2359  *
2360  * Adding load to a group doesn't make a group heavier, but can cause movement
2361  * of group shares between cpus. Assuming the shares were perfectly aligned one
2362  * can calculate the shift in shares.
2363  *
2364  * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365  * on this @cpu and results in a total addition (subtraction) of @wg to the
2366  * total group weight.
2367  *
2368  * Given a runqueue weight distribution (rw_i) we can compute a shares
2369  * distribution (s_i) using:
2370  *
2371  *   s_i = rw_i / \Sum rw_j						(1)
2372  *
2373  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375  * shares distribution (s_i):
2376  *
2377  *   rw_i = {   2,   4,   1,   0 }
2378  *   s_i  = { 2/7, 4/7, 1/7,   0 }
2379  *
2380  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381  * task used to run on and the CPU the waker is running on), we need to
2382  * compute the effect of waking a task on either CPU and, in case of a sync
2383  * wakeup, compute the effect of the current task going to sleep.
2384  *
2385  * So for a change of @wl to the local @cpu with an overall group weight change
2386  * of @wl we can compute the new shares distribution (s'_i) using:
2387  *
2388  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
2389  *
2390  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391  * differences in waking a task to CPU 0. The additional task changes the
2392  * weight and shares distributions like:
2393  *
2394  *   rw'_i = {   3,   4,   1,   0 }
2395  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
2396  *
2397  * We can then compute the difference in effective weight by using:
2398  *
2399  *   dw_i = S * (s'_i - s_i)						(3)
2400  *
2401  * Where 'S' is the group weight as seen by its parent.
2402  *
2403  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405  * 4/7) times the weight of the group.
2406  */
2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2408 {
2409 	struct sched_entity *se = tg->se[cpu];
2410 
2411 	if (!tg->parent)	/* the trivial, non-cgroup case */
2412 		return wl;
2413 
2414 	for_each_sched_entity(se) {
2415 		long w, W;
2416 
2417 		tg = se->my_q->tg;
2418 
2419 		/*
2420 		 * W = @wg + \Sum rw_j
2421 		 */
2422 		W = wg + calc_tg_weight(tg, se->my_q);
2423 
2424 		/*
2425 		 * w = rw_i + @wl
2426 		 */
2427 		w = se->my_q->load.weight + wl;
2428 
2429 		/*
2430 		 * wl = S * s'_i; see (2)
2431 		 */
2432 		if (W > 0 && w < W)
2433 			wl = (w * tg->shares) / W;
2434 		else
2435 			wl = tg->shares;
2436 
2437 		/*
2438 		 * Per the above, wl is the new se->load.weight value; since
2439 		 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 		 * calc_cfs_shares().
2441 		 */
2442 		if (wl < MIN_SHARES)
2443 			wl = MIN_SHARES;
2444 
2445 		/*
2446 		 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 		 */
2448 		wl -= se->load.weight;
2449 
2450 		/*
2451 		 * Recursively apply this logic to all parent groups to compute
2452 		 * the final effective load change on the root group. Since
2453 		 * only the @tg group gets extra weight, all parent groups can
2454 		 * only redistribute existing shares. @wl is the shift in shares
2455 		 * resulting from this level per the above.
2456 		 */
2457 		wg = 0;
2458 	}
2459 
2460 	return wl;
2461 }
2462 #else
2463 
2464 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 		unsigned long wl, unsigned long wg)
2466 {
2467 	return wl;
2468 }
2469 
2470 #endif
2471 
2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2473 {
2474 	s64 this_load, load;
2475 	int idx, this_cpu, prev_cpu;
2476 	unsigned long tl_per_task;
2477 	struct task_group *tg;
2478 	unsigned long weight;
2479 	int balanced;
2480 
2481 	idx	  = sd->wake_idx;
2482 	this_cpu  = smp_processor_id();
2483 	prev_cpu  = task_cpu(p);
2484 	load	  = source_load(prev_cpu, idx);
2485 	this_load = target_load(this_cpu, idx);
2486 
2487 	/*
2488 	 * If sync wakeup then subtract the (maximum possible)
2489 	 * effect of the currently running task from the load
2490 	 * of the current CPU:
2491 	 */
2492 	if (sync) {
2493 		tg = task_group(current);
2494 		weight = current->se.load.weight;
2495 
2496 		this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 		load += effective_load(tg, prev_cpu, 0, -weight);
2498 	}
2499 
2500 	tg = task_group(p);
2501 	weight = p->se.load.weight;
2502 
2503 	/*
2504 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 	 * due to the sync cause above having dropped this_load to 0, we'll
2506 	 * always have an imbalance, but there's really nothing you can do
2507 	 * about that, so that's good too.
2508 	 *
2509 	 * Otherwise check if either cpus are near enough in load to allow this
2510 	 * task to be woken on this_cpu.
2511 	 */
2512 	if (this_load > 0) {
2513 		s64 this_eff_load, prev_eff_load;
2514 
2515 		this_eff_load = 100;
2516 		this_eff_load *= power_of(prev_cpu);
2517 		this_eff_load *= this_load +
2518 			effective_load(tg, this_cpu, weight, weight);
2519 
2520 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 		prev_eff_load *= power_of(this_cpu);
2522 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523 
2524 		balanced = this_eff_load <= prev_eff_load;
2525 	} else
2526 		balanced = true;
2527 
2528 	/*
2529 	 * If the currently running task will sleep within
2530 	 * a reasonable amount of time then attract this newly
2531 	 * woken task:
2532 	 */
2533 	if (sync && balanced)
2534 		return 1;
2535 
2536 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 	tl_per_task = cpu_avg_load_per_task(this_cpu);
2538 
2539 	if (balanced ||
2540 	    (this_load <= load &&
2541 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2542 		/*
2543 		 * This domain has SD_WAKE_AFFINE and
2544 		 * p is cache cold in this domain, and
2545 		 * there is no bad imbalance.
2546 		 */
2547 		schedstat_inc(sd, ttwu_move_affine);
2548 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2549 
2550 		return 1;
2551 	}
2552 	return 0;
2553 }
2554 
2555 /*
2556  * find_idlest_group finds and returns the least busy CPU group within the
2557  * domain.
2558  */
2559 static struct sched_group *
2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 		  int this_cpu, int load_idx)
2562 {
2563 	struct sched_group *idlest = NULL, *group = sd->groups;
2564 	unsigned long min_load = ULONG_MAX, this_load = 0;
2565 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2566 
2567 	do {
2568 		unsigned long load, avg_load;
2569 		int local_group;
2570 		int i;
2571 
2572 		/* Skip over this group if it has no CPUs allowed */
2573 		if (!cpumask_intersects(sched_group_cpus(group),
2574 					tsk_cpus_allowed(p)))
2575 			continue;
2576 
2577 		local_group = cpumask_test_cpu(this_cpu,
2578 					       sched_group_cpus(group));
2579 
2580 		/* Tally up the load of all CPUs in the group */
2581 		avg_load = 0;
2582 
2583 		for_each_cpu(i, sched_group_cpus(group)) {
2584 			/* Bias balancing toward cpus of our domain */
2585 			if (local_group)
2586 				load = source_load(i, load_idx);
2587 			else
2588 				load = target_load(i, load_idx);
2589 
2590 			avg_load += load;
2591 		}
2592 
2593 		/* Adjust by relative CPU power of the group */
2594 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2595 
2596 		if (local_group) {
2597 			this_load = avg_load;
2598 		} else if (avg_load < min_load) {
2599 			min_load = avg_load;
2600 			idlest = group;
2601 		}
2602 	} while (group = group->next, group != sd->groups);
2603 
2604 	if (!idlest || 100*this_load < imbalance*min_load)
2605 		return NULL;
2606 	return idlest;
2607 }
2608 
2609 /*
2610  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611  */
2612 static int
2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614 {
2615 	unsigned long load, min_load = ULONG_MAX;
2616 	int idlest = -1;
2617 	int i;
2618 
2619 	/* Traverse only the allowed CPUs */
2620 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 		load = weighted_cpuload(i);
2622 
2623 		if (load < min_load || (load == min_load && i == this_cpu)) {
2624 			min_load = load;
2625 			idlest = i;
2626 		}
2627 	}
2628 
2629 	return idlest;
2630 }
2631 
2632 /*
2633  * Try and locate an idle CPU in the sched_domain.
2634  */
2635 static int select_idle_sibling(struct task_struct *p, int target)
2636 {
2637 	int cpu = smp_processor_id();
2638 	int prev_cpu = task_cpu(p);
2639 	struct sched_domain *sd;
2640 	struct sched_group *sg;
2641 	int i;
2642 
2643 	/*
2644 	 * If the task is going to be woken-up on this cpu and if it is
2645 	 * already idle, then it is the right target.
2646 	 */
2647 	if (target == cpu && idle_cpu(cpu))
2648 		return cpu;
2649 
2650 	/*
2651 	 * If the task is going to be woken-up on the cpu where it previously
2652 	 * ran and if it is currently idle, then it the right target.
2653 	 */
2654 	if (target == prev_cpu && idle_cpu(prev_cpu))
2655 		return prev_cpu;
2656 
2657 	/*
2658 	 * Otherwise, iterate the domains and find an elegible idle cpu.
2659 	 */
2660 	sd = rcu_dereference(per_cpu(sd_llc, target));
2661 	for_each_lower_domain(sd) {
2662 		sg = sd->groups;
2663 		do {
2664 			if (!cpumask_intersects(sched_group_cpus(sg),
2665 						tsk_cpus_allowed(p)))
2666 				goto next;
2667 
2668 			for_each_cpu(i, sched_group_cpus(sg)) {
2669 				if (!idle_cpu(i))
2670 					goto next;
2671 			}
2672 
2673 			target = cpumask_first_and(sched_group_cpus(sg),
2674 					tsk_cpus_allowed(p));
2675 			goto done;
2676 next:
2677 			sg = sg->next;
2678 		} while (sg != sd->groups);
2679 	}
2680 done:
2681 	return target;
2682 }
2683 
2684 /*
2685  * sched_balance_self: balance the current task (running on cpu) in domains
2686  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687  * SD_BALANCE_EXEC.
2688  *
2689  * Balance, ie. select the least loaded group.
2690  *
2691  * Returns the target CPU number, or the same CPU if no balancing is needed.
2692  *
2693  * preempt must be disabled.
2694  */
2695 static int
2696 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2697 {
2698 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2699 	int cpu = smp_processor_id();
2700 	int prev_cpu = task_cpu(p);
2701 	int new_cpu = cpu;
2702 	int want_affine = 0;
2703 	int want_sd = 1;
2704 	int sync = wake_flags & WF_SYNC;
2705 
2706 	if (p->rt.nr_cpus_allowed == 1)
2707 		return prev_cpu;
2708 
2709 	if (sd_flag & SD_BALANCE_WAKE) {
2710 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2711 			want_affine = 1;
2712 		new_cpu = prev_cpu;
2713 	}
2714 
2715 	rcu_read_lock();
2716 	for_each_domain(cpu, tmp) {
2717 		if (!(tmp->flags & SD_LOAD_BALANCE))
2718 			continue;
2719 
2720 		/*
2721 		 * If power savings logic is enabled for a domain, see if we
2722 		 * are not overloaded, if so, don't balance wider.
2723 		 */
2724 		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2725 			unsigned long power = 0;
2726 			unsigned long nr_running = 0;
2727 			unsigned long capacity;
2728 			int i;
2729 
2730 			for_each_cpu(i, sched_domain_span(tmp)) {
2731 				power += power_of(i);
2732 				nr_running += cpu_rq(i)->cfs.nr_running;
2733 			}
2734 
2735 			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2736 
2737 			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2738 				nr_running /= 2;
2739 
2740 			if (nr_running < capacity)
2741 				want_sd = 0;
2742 		}
2743 
2744 		/*
2745 		 * If both cpu and prev_cpu are part of this domain,
2746 		 * cpu is a valid SD_WAKE_AFFINE target.
2747 		 */
2748 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2749 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2750 			affine_sd = tmp;
2751 			want_affine = 0;
2752 		}
2753 
2754 		if (!want_sd && !want_affine)
2755 			break;
2756 
2757 		if (!(tmp->flags & sd_flag))
2758 			continue;
2759 
2760 		if (want_sd)
2761 			sd = tmp;
2762 	}
2763 
2764 	if (affine_sd) {
2765 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2766 			prev_cpu = cpu;
2767 
2768 		new_cpu = select_idle_sibling(p, prev_cpu);
2769 		goto unlock;
2770 	}
2771 
2772 	while (sd) {
2773 		int load_idx = sd->forkexec_idx;
2774 		struct sched_group *group;
2775 		int weight;
2776 
2777 		if (!(sd->flags & sd_flag)) {
2778 			sd = sd->child;
2779 			continue;
2780 		}
2781 
2782 		if (sd_flag & SD_BALANCE_WAKE)
2783 			load_idx = sd->wake_idx;
2784 
2785 		group = find_idlest_group(sd, p, cpu, load_idx);
2786 		if (!group) {
2787 			sd = sd->child;
2788 			continue;
2789 		}
2790 
2791 		new_cpu = find_idlest_cpu(group, p, cpu);
2792 		if (new_cpu == -1 || new_cpu == cpu) {
2793 			/* Now try balancing at a lower domain level of cpu */
2794 			sd = sd->child;
2795 			continue;
2796 		}
2797 
2798 		/* Now try balancing at a lower domain level of new_cpu */
2799 		cpu = new_cpu;
2800 		weight = sd->span_weight;
2801 		sd = NULL;
2802 		for_each_domain(cpu, tmp) {
2803 			if (weight <= tmp->span_weight)
2804 				break;
2805 			if (tmp->flags & sd_flag)
2806 				sd = tmp;
2807 		}
2808 		/* while loop will break here if sd == NULL */
2809 	}
2810 unlock:
2811 	rcu_read_unlock();
2812 
2813 	return new_cpu;
2814 }
2815 #endif /* CONFIG_SMP */
2816 
2817 static unsigned long
2818 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2819 {
2820 	unsigned long gran = sysctl_sched_wakeup_granularity;
2821 
2822 	/*
2823 	 * Since its curr running now, convert the gran from real-time
2824 	 * to virtual-time in his units.
2825 	 *
2826 	 * By using 'se' instead of 'curr' we penalize light tasks, so
2827 	 * they get preempted easier. That is, if 'se' < 'curr' then
2828 	 * the resulting gran will be larger, therefore penalizing the
2829 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2830 	 * be smaller, again penalizing the lighter task.
2831 	 *
2832 	 * This is especially important for buddies when the leftmost
2833 	 * task is higher priority than the buddy.
2834 	 */
2835 	return calc_delta_fair(gran, se);
2836 }
2837 
2838 /*
2839  * Should 'se' preempt 'curr'.
2840  *
2841  *             |s1
2842  *        |s2
2843  *   |s3
2844  *         g
2845  *      |<--->|c
2846  *
2847  *  w(c, s1) = -1
2848  *  w(c, s2) =  0
2849  *  w(c, s3) =  1
2850  *
2851  */
2852 static int
2853 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2854 {
2855 	s64 gran, vdiff = curr->vruntime - se->vruntime;
2856 
2857 	if (vdiff <= 0)
2858 		return -1;
2859 
2860 	gran = wakeup_gran(curr, se);
2861 	if (vdiff > gran)
2862 		return 1;
2863 
2864 	return 0;
2865 }
2866 
2867 static void set_last_buddy(struct sched_entity *se)
2868 {
2869 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2870 		return;
2871 
2872 	for_each_sched_entity(se)
2873 		cfs_rq_of(se)->last = se;
2874 }
2875 
2876 static void set_next_buddy(struct sched_entity *se)
2877 {
2878 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2879 		return;
2880 
2881 	for_each_sched_entity(se)
2882 		cfs_rq_of(se)->next = se;
2883 }
2884 
2885 static void set_skip_buddy(struct sched_entity *se)
2886 {
2887 	for_each_sched_entity(se)
2888 		cfs_rq_of(se)->skip = se;
2889 }
2890 
2891 /*
2892  * Preempt the current task with a newly woken task if needed:
2893  */
2894 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2895 {
2896 	struct task_struct *curr = rq->curr;
2897 	struct sched_entity *se = &curr->se, *pse = &p->se;
2898 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2899 	int scale = cfs_rq->nr_running >= sched_nr_latency;
2900 	int next_buddy_marked = 0;
2901 
2902 	if (unlikely(se == pse))
2903 		return;
2904 
2905 	/*
2906 	 * This is possible from callers such as move_task(), in which we
2907 	 * unconditionally check_prempt_curr() after an enqueue (which may have
2908 	 * lead to a throttle).  This both saves work and prevents false
2909 	 * next-buddy nomination below.
2910 	 */
2911 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2912 		return;
2913 
2914 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2915 		set_next_buddy(pse);
2916 		next_buddy_marked = 1;
2917 	}
2918 
2919 	/*
2920 	 * We can come here with TIF_NEED_RESCHED already set from new task
2921 	 * wake up path.
2922 	 *
2923 	 * Note: this also catches the edge-case of curr being in a throttled
2924 	 * group (e.g. via set_curr_task), since update_curr() (in the
2925 	 * enqueue of curr) will have resulted in resched being set.  This
2926 	 * prevents us from potentially nominating it as a false LAST_BUDDY
2927 	 * below.
2928 	 */
2929 	if (test_tsk_need_resched(curr))
2930 		return;
2931 
2932 	/* Idle tasks are by definition preempted by non-idle tasks. */
2933 	if (unlikely(curr->policy == SCHED_IDLE) &&
2934 	    likely(p->policy != SCHED_IDLE))
2935 		goto preempt;
2936 
2937 	/*
2938 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2939 	 * is driven by the tick):
2940 	 */
2941 	if (unlikely(p->policy != SCHED_NORMAL))
2942 		return;
2943 
2944 	find_matching_se(&se, &pse);
2945 	update_curr(cfs_rq_of(se));
2946 	BUG_ON(!pse);
2947 	if (wakeup_preempt_entity(se, pse) == 1) {
2948 		/*
2949 		 * Bias pick_next to pick the sched entity that is
2950 		 * triggering this preemption.
2951 		 */
2952 		if (!next_buddy_marked)
2953 			set_next_buddy(pse);
2954 		goto preempt;
2955 	}
2956 
2957 	return;
2958 
2959 preempt:
2960 	resched_task(curr);
2961 	/*
2962 	 * Only set the backward buddy when the current task is still
2963 	 * on the rq. This can happen when a wakeup gets interleaved
2964 	 * with schedule on the ->pre_schedule() or idle_balance()
2965 	 * point, either of which can * drop the rq lock.
2966 	 *
2967 	 * Also, during early boot the idle thread is in the fair class,
2968 	 * for obvious reasons its a bad idea to schedule back to it.
2969 	 */
2970 	if (unlikely(!se->on_rq || curr == rq->idle))
2971 		return;
2972 
2973 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2974 		set_last_buddy(se);
2975 }
2976 
2977 static struct task_struct *pick_next_task_fair(struct rq *rq)
2978 {
2979 	struct task_struct *p;
2980 	struct cfs_rq *cfs_rq = &rq->cfs;
2981 	struct sched_entity *se;
2982 
2983 	if (!cfs_rq->nr_running)
2984 		return NULL;
2985 
2986 	do {
2987 		se = pick_next_entity(cfs_rq);
2988 		set_next_entity(cfs_rq, se);
2989 		cfs_rq = group_cfs_rq(se);
2990 	} while (cfs_rq);
2991 
2992 	p = task_of(se);
2993 	if (hrtick_enabled(rq))
2994 		hrtick_start_fair(rq, p);
2995 
2996 	return p;
2997 }
2998 
2999 /*
3000  * Account for a descheduled task:
3001  */
3002 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3003 {
3004 	struct sched_entity *se = &prev->se;
3005 	struct cfs_rq *cfs_rq;
3006 
3007 	for_each_sched_entity(se) {
3008 		cfs_rq = cfs_rq_of(se);
3009 		put_prev_entity(cfs_rq, se);
3010 	}
3011 }
3012 
3013 /*
3014  * sched_yield() is very simple
3015  *
3016  * The magic of dealing with the ->skip buddy is in pick_next_entity.
3017  */
3018 static void yield_task_fair(struct rq *rq)
3019 {
3020 	struct task_struct *curr = rq->curr;
3021 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3022 	struct sched_entity *se = &curr->se;
3023 
3024 	/*
3025 	 * Are we the only task in the tree?
3026 	 */
3027 	if (unlikely(rq->nr_running == 1))
3028 		return;
3029 
3030 	clear_buddies(cfs_rq, se);
3031 
3032 	if (curr->policy != SCHED_BATCH) {
3033 		update_rq_clock(rq);
3034 		/*
3035 		 * Update run-time statistics of the 'current'.
3036 		 */
3037 		update_curr(cfs_rq);
3038 		/*
3039 		 * Tell update_rq_clock() that we've just updated,
3040 		 * so we don't do microscopic update in schedule()
3041 		 * and double the fastpath cost.
3042 		 */
3043 		 rq->skip_clock_update = 1;
3044 	}
3045 
3046 	set_skip_buddy(se);
3047 }
3048 
3049 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3050 {
3051 	struct sched_entity *se = &p->se;
3052 
3053 	/* throttled hierarchies are not runnable */
3054 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3055 		return false;
3056 
3057 	/* Tell the scheduler that we'd really like pse to run next. */
3058 	set_next_buddy(se);
3059 
3060 	yield_task_fair(rq);
3061 
3062 	return true;
3063 }
3064 
3065 #ifdef CONFIG_SMP
3066 /**************************************************
3067  * Fair scheduling class load-balancing methods:
3068  */
3069 
3070 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3071 
3072 #define LBF_ALL_PINNED	0x01
3073 #define LBF_NEED_BREAK	0x02
3074 
3075 struct lb_env {
3076 	struct sched_domain	*sd;
3077 
3078 	int			src_cpu;
3079 	struct rq		*src_rq;
3080 
3081 	int			dst_cpu;
3082 	struct rq		*dst_rq;
3083 
3084 	enum cpu_idle_type	idle;
3085 	long			load_move;
3086 	unsigned int		flags;
3087 
3088 	unsigned int		loop;
3089 	unsigned int		loop_break;
3090 	unsigned int		loop_max;
3091 };
3092 
3093 /*
3094  * move_task - move a task from one runqueue to another runqueue.
3095  * Both runqueues must be locked.
3096  */
3097 static void move_task(struct task_struct *p, struct lb_env *env)
3098 {
3099 	deactivate_task(env->src_rq, p, 0);
3100 	set_task_cpu(p, env->dst_cpu);
3101 	activate_task(env->dst_rq, p, 0);
3102 	check_preempt_curr(env->dst_rq, p, 0);
3103 }
3104 
3105 /*
3106  * Is this task likely cache-hot:
3107  */
3108 static int
3109 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3110 {
3111 	s64 delta;
3112 
3113 	if (p->sched_class != &fair_sched_class)
3114 		return 0;
3115 
3116 	if (unlikely(p->policy == SCHED_IDLE))
3117 		return 0;
3118 
3119 	/*
3120 	 * Buddy candidates are cache hot:
3121 	 */
3122 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3123 			(&p->se == cfs_rq_of(&p->se)->next ||
3124 			 &p->se == cfs_rq_of(&p->se)->last))
3125 		return 1;
3126 
3127 	if (sysctl_sched_migration_cost == -1)
3128 		return 1;
3129 	if (sysctl_sched_migration_cost == 0)
3130 		return 0;
3131 
3132 	delta = now - p->se.exec_start;
3133 
3134 	return delta < (s64)sysctl_sched_migration_cost;
3135 }
3136 
3137 /*
3138  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3139  */
3140 static
3141 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3142 {
3143 	int tsk_cache_hot = 0;
3144 	/*
3145 	 * We do not migrate tasks that are:
3146 	 * 1) running (obviously), or
3147 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 	 * 3) are cache-hot on their current CPU.
3149 	 */
3150 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3151 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3152 		return 0;
3153 	}
3154 	env->flags &= ~LBF_ALL_PINNED;
3155 
3156 	if (task_running(env->src_rq, p)) {
3157 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3158 		return 0;
3159 	}
3160 
3161 	/*
3162 	 * Aggressive migration if:
3163 	 * 1) task is cache cold, or
3164 	 * 2) too many balance attempts have failed.
3165 	 */
3166 
3167 	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3168 	if (!tsk_cache_hot ||
3169 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 		if (tsk_cache_hot) {
3172 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3173 			schedstat_inc(p, se.statistics.nr_forced_migrations);
3174 		}
3175 #endif
3176 		return 1;
3177 	}
3178 
3179 	if (tsk_cache_hot) {
3180 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3181 		return 0;
3182 	}
3183 	return 1;
3184 }
3185 
3186 /*
3187  * move_one_task tries to move exactly one task from busiest to this_rq, as
3188  * part of active balancing operations within "domain".
3189  * Returns 1 if successful and 0 otherwise.
3190  *
3191  * Called with both runqueues locked.
3192  */
3193 static int move_one_task(struct lb_env *env)
3194 {
3195 	struct task_struct *p, *n;
3196 
3197 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3198 		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3199 			continue;
3200 
3201 		if (!can_migrate_task(p, env))
3202 			continue;
3203 
3204 		move_task(p, env);
3205 		/*
3206 		 * Right now, this is only the second place move_task()
3207 		 * is called, so we can safely collect move_task()
3208 		 * stats here rather than inside move_task().
3209 		 */
3210 		schedstat_inc(env->sd, lb_gained[env->idle]);
3211 		return 1;
3212 	}
3213 	return 0;
3214 }
3215 
3216 static unsigned long task_h_load(struct task_struct *p);
3217 
3218 /*
3219  * move_tasks tries to move up to load_move weighted load from busiest to
3220  * this_rq, as part of a balancing operation within domain "sd".
3221  * Returns 1 if successful and 0 otherwise.
3222  *
3223  * Called with both runqueues locked.
3224  */
3225 static int move_tasks(struct lb_env *env)
3226 {
3227 	struct list_head *tasks = &env->src_rq->cfs_tasks;
3228 	struct task_struct *p;
3229 	unsigned long load;
3230 	int pulled = 0;
3231 
3232 	if (env->load_move <= 0)
3233 		return 0;
3234 
3235 	while (!list_empty(tasks)) {
3236 		p = list_first_entry(tasks, struct task_struct, se.group_node);
3237 
3238 		env->loop++;
3239 		/* We've more or less seen every task there is, call it quits */
3240 		if (env->loop > env->loop_max)
3241 			break;
3242 
3243 		/* take a breather every nr_migrate tasks */
3244 		if (env->loop > env->loop_break) {
3245 			env->loop_break += sysctl_sched_nr_migrate;
3246 			env->flags |= LBF_NEED_BREAK;
3247 			break;
3248 		}
3249 
3250 		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3251 			goto next;
3252 
3253 		load = task_h_load(p);
3254 
3255 		if (load < 16 && !env->sd->nr_balance_failed)
3256 			goto next;
3257 
3258 		if ((load / 2) > env->load_move)
3259 			goto next;
3260 
3261 		if (!can_migrate_task(p, env))
3262 			goto next;
3263 
3264 		move_task(p, env);
3265 		pulled++;
3266 		env->load_move -= load;
3267 
3268 #ifdef CONFIG_PREEMPT
3269 		/*
3270 		 * NEWIDLE balancing is a source of latency, so preemptible
3271 		 * kernels will stop after the first task is pulled to minimize
3272 		 * the critical section.
3273 		 */
3274 		if (env->idle == CPU_NEWLY_IDLE)
3275 			break;
3276 #endif
3277 
3278 		/*
3279 		 * We only want to steal up to the prescribed amount of
3280 		 * weighted load.
3281 		 */
3282 		if (env->load_move <= 0)
3283 			break;
3284 
3285 		continue;
3286 next:
3287 		list_move_tail(&p->se.group_node, tasks);
3288 	}
3289 
3290 	/*
3291 	 * Right now, this is one of only two places move_task() is called,
3292 	 * so we can safely collect move_task() stats here rather than
3293 	 * inside move_task().
3294 	 */
3295 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3296 
3297 	return pulled;
3298 }
3299 
3300 #ifdef CONFIG_FAIR_GROUP_SCHED
3301 /*
3302  * update tg->load_weight by folding this cpu's load_avg
3303  */
3304 static int update_shares_cpu(struct task_group *tg, int cpu)
3305 {
3306 	struct cfs_rq *cfs_rq;
3307 	unsigned long flags;
3308 	struct rq *rq;
3309 
3310 	if (!tg->se[cpu])
3311 		return 0;
3312 
3313 	rq = cpu_rq(cpu);
3314 	cfs_rq = tg->cfs_rq[cpu];
3315 
3316 	raw_spin_lock_irqsave(&rq->lock, flags);
3317 
3318 	update_rq_clock(rq);
3319 	update_cfs_load(cfs_rq, 1);
3320 
3321 	/*
3322 	 * We need to update shares after updating tg->load_weight in
3323 	 * order to adjust the weight of groups with long running tasks.
3324 	 */
3325 	update_cfs_shares(cfs_rq);
3326 
3327 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3328 
3329 	return 0;
3330 }
3331 
3332 static void update_shares(int cpu)
3333 {
3334 	struct cfs_rq *cfs_rq;
3335 	struct rq *rq = cpu_rq(cpu);
3336 
3337 	rcu_read_lock();
3338 	/*
3339 	 * Iterates the task_group tree in a bottom up fashion, see
3340 	 * list_add_leaf_cfs_rq() for details.
3341 	 */
3342 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3343 		/* throttled entities do not contribute to load */
3344 		if (throttled_hierarchy(cfs_rq))
3345 			continue;
3346 
3347 		update_shares_cpu(cfs_rq->tg, cpu);
3348 	}
3349 	rcu_read_unlock();
3350 }
3351 
3352 /*
3353  * Compute the cpu's hierarchical load factor for each task group.
3354  * This needs to be done in a top-down fashion because the load of a child
3355  * group is a fraction of its parents load.
3356  */
3357 static int tg_load_down(struct task_group *tg, void *data)
3358 {
3359 	unsigned long load;
3360 	long cpu = (long)data;
3361 
3362 	if (!tg->parent) {
3363 		load = cpu_rq(cpu)->load.weight;
3364 	} else {
3365 		load = tg->parent->cfs_rq[cpu]->h_load;
3366 		load *= tg->se[cpu]->load.weight;
3367 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3368 	}
3369 
3370 	tg->cfs_rq[cpu]->h_load = load;
3371 
3372 	return 0;
3373 }
3374 
3375 static void update_h_load(long cpu)
3376 {
3377 	rcu_read_lock();
3378 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3379 	rcu_read_unlock();
3380 }
3381 
3382 static unsigned long task_h_load(struct task_struct *p)
3383 {
3384 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
3385 	unsigned long load;
3386 
3387 	load = p->se.load.weight;
3388 	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3389 
3390 	return load;
3391 }
3392 #else
3393 static inline void update_shares(int cpu)
3394 {
3395 }
3396 
3397 static inline void update_h_load(long cpu)
3398 {
3399 }
3400 
3401 static unsigned long task_h_load(struct task_struct *p)
3402 {
3403 	return p->se.load.weight;
3404 }
3405 #endif
3406 
3407 /********** Helpers for find_busiest_group ************************/
3408 /*
3409  * sd_lb_stats - Structure to store the statistics of a sched_domain
3410  * 		during load balancing.
3411  */
3412 struct sd_lb_stats {
3413 	struct sched_group *busiest; /* Busiest group in this sd */
3414 	struct sched_group *this;  /* Local group in this sd */
3415 	unsigned long total_load;  /* Total load of all groups in sd */
3416 	unsigned long total_pwr;   /*	Total power of all groups in sd */
3417 	unsigned long avg_load;	   /* Average load across all groups in sd */
3418 
3419 	/** Statistics of this group */
3420 	unsigned long this_load;
3421 	unsigned long this_load_per_task;
3422 	unsigned long this_nr_running;
3423 	unsigned long this_has_capacity;
3424 	unsigned int  this_idle_cpus;
3425 
3426 	/* Statistics of the busiest group */
3427 	unsigned int  busiest_idle_cpus;
3428 	unsigned long max_load;
3429 	unsigned long busiest_load_per_task;
3430 	unsigned long busiest_nr_running;
3431 	unsigned long busiest_group_capacity;
3432 	unsigned long busiest_has_capacity;
3433 	unsigned int  busiest_group_weight;
3434 
3435 	int group_imb; /* Is there imbalance in this sd */
3436 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3437 	int power_savings_balance; /* Is powersave balance needed for this sd */
3438 	struct sched_group *group_min; /* Least loaded group in sd */
3439 	struct sched_group *group_leader; /* Group which relieves group_min */
3440 	unsigned long min_load_per_task; /* load_per_task in group_min */
3441 	unsigned long leader_nr_running; /* Nr running of group_leader */
3442 	unsigned long min_nr_running; /* Nr running of group_min */
3443 #endif
3444 };
3445 
3446 /*
3447  * sg_lb_stats - stats of a sched_group required for load_balancing
3448  */
3449 struct sg_lb_stats {
3450 	unsigned long avg_load; /*Avg load across the CPUs of the group */
3451 	unsigned long group_load; /* Total load over the CPUs of the group */
3452 	unsigned long sum_nr_running; /* Nr tasks running in the group */
3453 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3454 	unsigned long group_capacity;
3455 	unsigned long idle_cpus;
3456 	unsigned long group_weight;
3457 	int group_imb; /* Is there an imbalance in the group ? */
3458 	int group_has_capacity; /* Is there extra capacity in the group? */
3459 };
3460 
3461 /**
3462  * get_sd_load_idx - Obtain the load index for a given sched domain.
3463  * @sd: The sched_domain whose load_idx is to be obtained.
3464  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3465  */
3466 static inline int get_sd_load_idx(struct sched_domain *sd,
3467 					enum cpu_idle_type idle)
3468 {
3469 	int load_idx;
3470 
3471 	switch (idle) {
3472 	case CPU_NOT_IDLE:
3473 		load_idx = sd->busy_idx;
3474 		break;
3475 
3476 	case CPU_NEWLY_IDLE:
3477 		load_idx = sd->newidle_idx;
3478 		break;
3479 	default:
3480 		load_idx = sd->idle_idx;
3481 		break;
3482 	}
3483 
3484 	return load_idx;
3485 }
3486 
3487 
3488 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3489 /**
3490  * init_sd_power_savings_stats - Initialize power savings statistics for
3491  * the given sched_domain, during load balancing.
3492  *
3493  * @sd: Sched domain whose power-savings statistics are to be initialized.
3494  * @sds: Variable containing the statistics for sd.
3495  * @idle: Idle status of the CPU at which we're performing load-balancing.
3496  */
3497 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3498 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
3499 {
3500 	/*
3501 	 * Busy processors will not participate in power savings
3502 	 * balance.
3503 	 */
3504 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3505 		sds->power_savings_balance = 0;
3506 	else {
3507 		sds->power_savings_balance = 1;
3508 		sds->min_nr_running = ULONG_MAX;
3509 		sds->leader_nr_running = 0;
3510 	}
3511 }
3512 
3513 /**
3514  * update_sd_power_savings_stats - Update the power saving stats for a
3515  * sched_domain while performing load balancing.
3516  *
3517  * @group: sched_group belonging to the sched_domain under consideration.
3518  * @sds: Variable containing the statistics of the sched_domain
3519  * @local_group: Does group contain the CPU for which we're performing
3520  * 		load balancing ?
3521  * @sgs: Variable containing the statistics of the group.
3522  */
3523 static inline void update_sd_power_savings_stats(struct sched_group *group,
3524 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3525 {
3526 
3527 	if (!sds->power_savings_balance)
3528 		return;
3529 
3530 	/*
3531 	 * If the local group is idle or completely loaded
3532 	 * no need to do power savings balance at this domain
3533 	 */
3534 	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3535 				!sds->this_nr_running))
3536 		sds->power_savings_balance = 0;
3537 
3538 	/*
3539 	 * If a group is already running at full capacity or idle,
3540 	 * don't include that group in power savings calculations
3541 	 */
3542 	if (!sds->power_savings_balance ||
3543 		sgs->sum_nr_running >= sgs->group_capacity ||
3544 		!sgs->sum_nr_running)
3545 		return;
3546 
3547 	/*
3548 	 * Calculate the group which has the least non-idle load.
3549 	 * This is the group from where we need to pick up the load
3550 	 * for saving power
3551 	 */
3552 	if ((sgs->sum_nr_running < sds->min_nr_running) ||
3553 	    (sgs->sum_nr_running == sds->min_nr_running &&
3554 	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3555 		sds->group_min = group;
3556 		sds->min_nr_running = sgs->sum_nr_running;
3557 		sds->min_load_per_task = sgs->sum_weighted_load /
3558 						sgs->sum_nr_running;
3559 	}
3560 
3561 	/*
3562 	 * Calculate the group which is almost near its
3563 	 * capacity but still has some space to pick up some load
3564 	 * from other group and save more power
3565 	 */
3566 	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3567 		return;
3568 
3569 	if (sgs->sum_nr_running > sds->leader_nr_running ||
3570 	    (sgs->sum_nr_running == sds->leader_nr_running &&
3571 	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3572 		sds->group_leader = group;
3573 		sds->leader_nr_running = sgs->sum_nr_running;
3574 	}
3575 }
3576 
3577 /**
3578  * check_power_save_busiest_group - see if there is potential for some power-savings balance
3579  * @sds: Variable containing the statistics of the sched_domain
3580  *	under consideration.
3581  * @this_cpu: Cpu at which we're currently performing load-balancing.
3582  * @imbalance: Variable to store the imbalance.
3583  *
3584  * Description:
3585  * Check if we have potential to perform some power-savings balance.
3586  * If yes, set the busiest group to be the least loaded group in the
3587  * sched_domain, so that it's CPUs can be put to idle.
3588  *
3589  * Returns 1 if there is potential to perform power-savings balance.
3590  * Else returns 0.
3591  */
3592 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3593 					int this_cpu, unsigned long *imbalance)
3594 {
3595 	if (!sds->power_savings_balance)
3596 		return 0;
3597 
3598 	if (sds->this != sds->group_leader ||
3599 			sds->group_leader == sds->group_min)
3600 		return 0;
3601 
3602 	*imbalance = sds->min_load_per_task;
3603 	sds->busiest = sds->group_min;
3604 
3605 	return 1;
3606 
3607 }
3608 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3609 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3610 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
3611 {
3612 	return;
3613 }
3614 
3615 static inline void update_sd_power_savings_stats(struct sched_group *group,
3616 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3617 {
3618 	return;
3619 }
3620 
3621 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3622 					int this_cpu, unsigned long *imbalance)
3623 {
3624 	return 0;
3625 }
3626 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3627 
3628 
3629 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3630 {
3631 	return SCHED_POWER_SCALE;
3632 }
3633 
3634 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3635 {
3636 	return default_scale_freq_power(sd, cpu);
3637 }
3638 
3639 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3640 {
3641 	unsigned long weight = sd->span_weight;
3642 	unsigned long smt_gain = sd->smt_gain;
3643 
3644 	smt_gain /= weight;
3645 
3646 	return smt_gain;
3647 }
3648 
3649 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3650 {
3651 	return default_scale_smt_power(sd, cpu);
3652 }
3653 
3654 unsigned long scale_rt_power(int cpu)
3655 {
3656 	struct rq *rq = cpu_rq(cpu);
3657 	u64 total, available;
3658 
3659 	total = sched_avg_period() + (rq->clock - rq->age_stamp);
3660 
3661 	if (unlikely(total < rq->rt_avg)) {
3662 		/* Ensures that power won't end up being negative */
3663 		available = 0;
3664 	} else {
3665 		available = total - rq->rt_avg;
3666 	}
3667 
3668 	if (unlikely((s64)total < SCHED_POWER_SCALE))
3669 		total = SCHED_POWER_SCALE;
3670 
3671 	total >>= SCHED_POWER_SHIFT;
3672 
3673 	return div_u64(available, total);
3674 }
3675 
3676 static void update_cpu_power(struct sched_domain *sd, int cpu)
3677 {
3678 	unsigned long weight = sd->span_weight;
3679 	unsigned long power = SCHED_POWER_SCALE;
3680 	struct sched_group *sdg = sd->groups;
3681 
3682 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3683 		if (sched_feat(ARCH_POWER))
3684 			power *= arch_scale_smt_power(sd, cpu);
3685 		else
3686 			power *= default_scale_smt_power(sd, cpu);
3687 
3688 		power >>= SCHED_POWER_SHIFT;
3689 	}
3690 
3691 	sdg->sgp->power_orig = power;
3692 
3693 	if (sched_feat(ARCH_POWER))
3694 		power *= arch_scale_freq_power(sd, cpu);
3695 	else
3696 		power *= default_scale_freq_power(sd, cpu);
3697 
3698 	power >>= SCHED_POWER_SHIFT;
3699 
3700 	power *= scale_rt_power(cpu);
3701 	power >>= SCHED_POWER_SHIFT;
3702 
3703 	if (!power)
3704 		power = 1;
3705 
3706 	cpu_rq(cpu)->cpu_power = power;
3707 	sdg->sgp->power = power;
3708 }
3709 
3710 void update_group_power(struct sched_domain *sd, int cpu)
3711 {
3712 	struct sched_domain *child = sd->child;
3713 	struct sched_group *group, *sdg = sd->groups;
3714 	unsigned long power;
3715 	unsigned long interval;
3716 
3717 	interval = msecs_to_jiffies(sd->balance_interval);
3718 	interval = clamp(interval, 1UL, max_load_balance_interval);
3719 	sdg->sgp->next_update = jiffies + interval;
3720 
3721 	if (!child) {
3722 		update_cpu_power(sd, cpu);
3723 		return;
3724 	}
3725 
3726 	power = 0;
3727 
3728 	group = child->groups;
3729 	do {
3730 		power += group->sgp->power;
3731 		group = group->next;
3732 	} while (group != child->groups);
3733 
3734 	sdg->sgp->power = power;
3735 }
3736 
3737 /*
3738  * Try and fix up capacity for tiny siblings, this is needed when
3739  * things like SD_ASYM_PACKING need f_b_g to select another sibling
3740  * which on its own isn't powerful enough.
3741  *
3742  * See update_sd_pick_busiest() and check_asym_packing().
3743  */
3744 static inline int
3745 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3746 {
3747 	/*
3748 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3749 	 */
3750 	if (!(sd->flags & SD_SHARE_CPUPOWER))
3751 		return 0;
3752 
3753 	/*
3754 	 * If ~90% of the cpu_power is still there, we're good.
3755 	 */
3756 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3757 		return 1;
3758 
3759 	return 0;
3760 }
3761 
3762 /**
3763  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3764  * @sd: The sched_domain whose statistics are to be updated.
3765  * @group: sched_group whose statistics are to be updated.
3766  * @this_cpu: Cpu for which load balance is currently performed.
3767  * @idle: Idle status of this_cpu
3768  * @load_idx: Load index of sched_domain of this_cpu for load calc.
3769  * @local_group: Does group contain this_cpu.
3770  * @cpus: Set of cpus considered for load balancing.
3771  * @balance: Should we balance.
3772  * @sgs: variable to hold the statistics for this group.
3773  */
3774 static inline void update_sg_lb_stats(struct sched_domain *sd,
3775 			struct sched_group *group, int this_cpu,
3776 			enum cpu_idle_type idle, int load_idx,
3777 			int local_group, const struct cpumask *cpus,
3778 			int *balance, struct sg_lb_stats *sgs)
3779 {
3780 	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3781 	int i;
3782 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3783 	unsigned long avg_load_per_task = 0;
3784 
3785 	if (local_group)
3786 		balance_cpu = group_first_cpu(group);
3787 
3788 	/* Tally up the load of all CPUs in the group */
3789 	max_cpu_load = 0;
3790 	min_cpu_load = ~0UL;
3791 	max_nr_running = 0;
3792 
3793 	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3794 		struct rq *rq = cpu_rq(i);
3795 
3796 		/* Bias balancing toward cpus of our domain */
3797 		if (local_group) {
3798 			if (idle_cpu(i) && !first_idle_cpu) {
3799 				first_idle_cpu = 1;
3800 				balance_cpu = i;
3801 			}
3802 
3803 			load = target_load(i, load_idx);
3804 		} else {
3805 			load = source_load(i, load_idx);
3806 			if (load > max_cpu_load) {
3807 				max_cpu_load = load;
3808 				max_nr_running = rq->nr_running;
3809 			}
3810 			if (min_cpu_load > load)
3811 				min_cpu_load = load;
3812 		}
3813 
3814 		sgs->group_load += load;
3815 		sgs->sum_nr_running += rq->nr_running;
3816 		sgs->sum_weighted_load += weighted_cpuload(i);
3817 		if (idle_cpu(i))
3818 			sgs->idle_cpus++;
3819 	}
3820 
3821 	/*
3822 	 * First idle cpu or the first cpu(busiest) in this sched group
3823 	 * is eligible for doing load balancing at this and above
3824 	 * domains. In the newly idle case, we will allow all the cpu's
3825 	 * to do the newly idle load balance.
3826 	 */
3827 	if (local_group) {
3828 		if (idle != CPU_NEWLY_IDLE) {
3829 			if (balance_cpu != this_cpu) {
3830 				*balance = 0;
3831 				return;
3832 			}
3833 			update_group_power(sd, this_cpu);
3834 		} else if (time_after_eq(jiffies, group->sgp->next_update))
3835 			update_group_power(sd, this_cpu);
3836 	}
3837 
3838 	/* Adjust by relative CPU power of the group */
3839 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3840 
3841 	/*
3842 	 * Consider the group unbalanced when the imbalance is larger
3843 	 * than the average weight of a task.
3844 	 *
3845 	 * APZ: with cgroup the avg task weight can vary wildly and
3846 	 *      might not be a suitable number - should we keep a
3847 	 *      normalized nr_running number somewhere that negates
3848 	 *      the hierarchy?
3849 	 */
3850 	if (sgs->sum_nr_running)
3851 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3852 
3853 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3854 		sgs->group_imb = 1;
3855 
3856 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3857 						SCHED_POWER_SCALE);
3858 	if (!sgs->group_capacity)
3859 		sgs->group_capacity = fix_small_capacity(sd, group);
3860 	sgs->group_weight = group->group_weight;
3861 
3862 	if (sgs->group_capacity > sgs->sum_nr_running)
3863 		sgs->group_has_capacity = 1;
3864 }
3865 
3866 /**
3867  * update_sd_pick_busiest - return 1 on busiest group
3868  * @sd: sched_domain whose statistics are to be checked
3869  * @sds: sched_domain statistics
3870  * @sg: sched_group candidate to be checked for being the busiest
3871  * @sgs: sched_group statistics
3872  * @this_cpu: the current cpu
3873  *
3874  * Determine if @sg is a busier group than the previously selected
3875  * busiest group.
3876  */
3877 static bool update_sd_pick_busiest(struct sched_domain *sd,
3878 				   struct sd_lb_stats *sds,
3879 				   struct sched_group *sg,
3880 				   struct sg_lb_stats *sgs,
3881 				   int this_cpu)
3882 {
3883 	if (sgs->avg_load <= sds->max_load)
3884 		return false;
3885 
3886 	if (sgs->sum_nr_running > sgs->group_capacity)
3887 		return true;
3888 
3889 	if (sgs->group_imb)
3890 		return true;
3891 
3892 	/*
3893 	 * ASYM_PACKING needs to move all the work to the lowest
3894 	 * numbered CPUs in the group, therefore mark all groups
3895 	 * higher than ourself as busy.
3896 	 */
3897 	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3898 	    this_cpu < group_first_cpu(sg)) {
3899 		if (!sds->busiest)
3900 			return true;
3901 
3902 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3903 			return true;
3904 	}
3905 
3906 	return false;
3907 }
3908 
3909 /**
3910  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3911  * @sd: sched_domain whose statistics are to be updated.
3912  * @this_cpu: Cpu for which load balance is currently performed.
3913  * @idle: Idle status of this_cpu
3914  * @cpus: Set of cpus considered for load balancing.
3915  * @balance: Should we balance.
3916  * @sds: variable to hold the statistics for this sched_domain.
3917  */
3918 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3919 			enum cpu_idle_type idle, const struct cpumask *cpus,
3920 			int *balance, struct sd_lb_stats *sds)
3921 {
3922 	struct sched_domain *child = sd->child;
3923 	struct sched_group *sg = sd->groups;
3924 	struct sg_lb_stats sgs;
3925 	int load_idx, prefer_sibling = 0;
3926 
3927 	if (child && child->flags & SD_PREFER_SIBLING)
3928 		prefer_sibling = 1;
3929 
3930 	init_sd_power_savings_stats(sd, sds, idle);
3931 	load_idx = get_sd_load_idx(sd, idle);
3932 
3933 	do {
3934 		int local_group;
3935 
3936 		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3937 		memset(&sgs, 0, sizeof(sgs));
3938 		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3939 				local_group, cpus, balance, &sgs);
3940 
3941 		if (local_group && !(*balance))
3942 			return;
3943 
3944 		sds->total_load += sgs.group_load;
3945 		sds->total_pwr += sg->sgp->power;
3946 
3947 		/*
3948 		 * In case the child domain prefers tasks go to siblings
3949 		 * first, lower the sg capacity to one so that we'll try
3950 		 * and move all the excess tasks away. We lower the capacity
3951 		 * of a group only if the local group has the capacity to fit
3952 		 * these excess tasks, i.e. nr_running < group_capacity. The
3953 		 * extra check prevents the case where you always pull from the
3954 		 * heaviest group when it is already under-utilized (possible
3955 		 * with a large weight task outweighs the tasks on the system).
3956 		 */
3957 		if (prefer_sibling && !local_group && sds->this_has_capacity)
3958 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
3959 
3960 		if (local_group) {
3961 			sds->this_load = sgs.avg_load;
3962 			sds->this = sg;
3963 			sds->this_nr_running = sgs.sum_nr_running;
3964 			sds->this_load_per_task = sgs.sum_weighted_load;
3965 			sds->this_has_capacity = sgs.group_has_capacity;
3966 			sds->this_idle_cpus = sgs.idle_cpus;
3967 		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3968 			sds->max_load = sgs.avg_load;
3969 			sds->busiest = sg;
3970 			sds->busiest_nr_running = sgs.sum_nr_running;
3971 			sds->busiest_idle_cpus = sgs.idle_cpus;
3972 			sds->busiest_group_capacity = sgs.group_capacity;
3973 			sds->busiest_load_per_task = sgs.sum_weighted_load;
3974 			sds->busiest_has_capacity = sgs.group_has_capacity;
3975 			sds->busiest_group_weight = sgs.group_weight;
3976 			sds->group_imb = sgs.group_imb;
3977 		}
3978 
3979 		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3980 		sg = sg->next;
3981 	} while (sg != sd->groups);
3982 }
3983 
3984 /**
3985  * check_asym_packing - Check to see if the group is packed into the
3986  *			sched doman.
3987  *
3988  * This is primarily intended to used at the sibling level.  Some
3989  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
3990  * case of POWER7, it can move to lower SMT modes only when higher
3991  * threads are idle.  When in lower SMT modes, the threads will
3992  * perform better since they share less core resources.  Hence when we
3993  * have idle threads, we want them to be the higher ones.
3994  *
3995  * This packing function is run on idle threads.  It checks to see if
3996  * the busiest CPU in this domain (core in the P7 case) has a higher
3997  * CPU number than the packing function is being run on.  Here we are
3998  * assuming lower CPU number will be equivalent to lower a SMT thread
3999  * number.
4000  *
4001  * Returns 1 when packing is required and a task should be moved to
4002  * this CPU.  The amount of the imbalance is returned in *imbalance.
4003  *
4004  * @sd: The sched_domain whose packing is to be checked.
4005  * @sds: Statistics of the sched_domain which is to be packed
4006  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4007  * @imbalance: returns amount of imbalanced due to packing.
4008  */
4009 static int check_asym_packing(struct sched_domain *sd,
4010 			      struct sd_lb_stats *sds,
4011 			      int this_cpu, unsigned long *imbalance)
4012 {
4013 	int busiest_cpu;
4014 
4015 	if (!(sd->flags & SD_ASYM_PACKING))
4016 		return 0;
4017 
4018 	if (!sds->busiest)
4019 		return 0;
4020 
4021 	busiest_cpu = group_first_cpu(sds->busiest);
4022 	if (this_cpu > busiest_cpu)
4023 		return 0;
4024 
4025 	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
4026 				       SCHED_POWER_SCALE);
4027 	return 1;
4028 }
4029 
4030 /**
4031  * fix_small_imbalance - Calculate the minor imbalance that exists
4032  *			amongst the groups of a sched_domain, during
4033  *			load balancing.
4034  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4035  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4036  * @imbalance: Variable to store the imbalance.
4037  */
4038 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4039 				int this_cpu, unsigned long *imbalance)
4040 {
4041 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
4042 	unsigned int imbn = 2;
4043 	unsigned long scaled_busy_load_per_task;
4044 
4045 	if (sds->this_nr_running) {
4046 		sds->this_load_per_task /= sds->this_nr_running;
4047 		if (sds->busiest_load_per_task >
4048 				sds->this_load_per_task)
4049 			imbn = 1;
4050 	} else
4051 		sds->this_load_per_task =
4052 			cpu_avg_load_per_task(this_cpu);
4053 
4054 	scaled_busy_load_per_task = sds->busiest_load_per_task
4055 					 * SCHED_POWER_SCALE;
4056 	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4057 
4058 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4059 			(scaled_busy_load_per_task * imbn)) {
4060 		*imbalance = sds->busiest_load_per_task;
4061 		return;
4062 	}
4063 
4064 	/*
4065 	 * OK, we don't have enough imbalance to justify moving tasks,
4066 	 * however we may be able to increase total CPU power used by
4067 	 * moving them.
4068 	 */
4069 
4070 	pwr_now += sds->busiest->sgp->power *
4071 			min(sds->busiest_load_per_task, sds->max_load);
4072 	pwr_now += sds->this->sgp->power *
4073 			min(sds->this_load_per_task, sds->this_load);
4074 	pwr_now /= SCHED_POWER_SCALE;
4075 
4076 	/* Amount of load we'd subtract */
4077 	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4078 		sds->busiest->sgp->power;
4079 	if (sds->max_load > tmp)
4080 		pwr_move += sds->busiest->sgp->power *
4081 			min(sds->busiest_load_per_task, sds->max_load - tmp);
4082 
4083 	/* Amount of load we'd add */
4084 	if (sds->max_load * sds->busiest->sgp->power <
4085 		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4086 		tmp = (sds->max_load * sds->busiest->sgp->power) /
4087 			sds->this->sgp->power;
4088 	else
4089 		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4090 			sds->this->sgp->power;
4091 	pwr_move += sds->this->sgp->power *
4092 			min(sds->this_load_per_task, sds->this_load + tmp);
4093 	pwr_move /= SCHED_POWER_SCALE;
4094 
4095 	/* Move if we gain throughput */
4096 	if (pwr_move > pwr_now)
4097 		*imbalance = sds->busiest_load_per_task;
4098 }
4099 
4100 /**
4101  * calculate_imbalance - Calculate the amount of imbalance present within the
4102  *			 groups of a given sched_domain during load balance.
4103  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4104  * @this_cpu: Cpu for which currently load balance is being performed.
4105  * @imbalance: The variable to store the imbalance.
4106  */
4107 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4108 		unsigned long *imbalance)
4109 {
4110 	unsigned long max_pull, load_above_capacity = ~0UL;
4111 
4112 	sds->busiest_load_per_task /= sds->busiest_nr_running;
4113 	if (sds->group_imb) {
4114 		sds->busiest_load_per_task =
4115 			min(sds->busiest_load_per_task, sds->avg_load);
4116 	}
4117 
4118 	/*
4119 	 * In the presence of smp nice balancing, certain scenarios can have
4120 	 * max load less than avg load(as we skip the groups at or below
4121 	 * its cpu_power, while calculating max_load..)
4122 	 */
4123 	if (sds->max_load < sds->avg_load) {
4124 		*imbalance = 0;
4125 		return fix_small_imbalance(sds, this_cpu, imbalance);
4126 	}
4127 
4128 	if (!sds->group_imb) {
4129 		/*
4130 		 * Don't want to pull so many tasks that a group would go idle.
4131 		 */
4132 		load_above_capacity = (sds->busiest_nr_running -
4133 						sds->busiest_group_capacity);
4134 
4135 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4136 
4137 		load_above_capacity /= sds->busiest->sgp->power;
4138 	}
4139 
4140 	/*
4141 	 * We're trying to get all the cpus to the average_load, so we don't
4142 	 * want to push ourselves above the average load, nor do we wish to
4143 	 * reduce the max loaded cpu below the average load. At the same time,
4144 	 * we also don't want to reduce the group load below the group capacity
4145 	 * (so that we can implement power-savings policies etc). Thus we look
4146 	 * for the minimum possible imbalance.
4147 	 * Be careful of negative numbers as they'll appear as very large values
4148 	 * with unsigned longs.
4149 	 */
4150 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4151 
4152 	/* How much load to actually move to equalise the imbalance */
4153 	*imbalance = min(max_pull * sds->busiest->sgp->power,
4154 		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4155 			/ SCHED_POWER_SCALE;
4156 
4157 	/*
4158 	 * if *imbalance is less than the average load per runnable task
4159 	 * there is no guarantee that any tasks will be moved so we'll have
4160 	 * a think about bumping its value to force at least one task to be
4161 	 * moved
4162 	 */
4163 	if (*imbalance < sds->busiest_load_per_task)
4164 		return fix_small_imbalance(sds, this_cpu, imbalance);
4165 
4166 }
4167 
4168 /******* find_busiest_group() helpers end here *********************/
4169 
4170 /**
4171  * find_busiest_group - Returns the busiest group within the sched_domain
4172  * if there is an imbalance. If there isn't an imbalance, and
4173  * the user has opted for power-savings, it returns a group whose
4174  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4175  * such a group exists.
4176  *
4177  * Also calculates the amount of weighted load which should be moved
4178  * to restore balance.
4179  *
4180  * @sd: The sched_domain whose busiest group is to be returned.
4181  * @this_cpu: The cpu for which load balancing is currently being performed.
4182  * @imbalance: Variable which stores amount of weighted load which should
4183  *		be moved to restore balance/put a group to idle.
4184  * @idle: The idle status of this_cpu.
4185  * @cpus: The set of CPUs under consideration for load-balancing.
4186  * @balance: Pointer to a variable indicating if this_cpu
4187  *	is the appropriate cpu to perform load balancing at this_level.
4188  *
4189  * Returns:	- the busiest group if imbalance exists.
4190  *		- If no imbalance and user has opted for power-savings balance,
4191  *		   return the least loaded group whose CPUs can be
4192  *		   put to idle by rebalancing its tasks onto our group.
4193  */
4194 static struct sched_group *
4195 find_busiest_group(struct sched_domain *sd, int this_cpu,
4196 		   unsigned long *imbalance, enum cpu_idle_type idle,
4197 		   const struct cpumask *cpus, int *balance)
4198 {
4199 	struct sd_lb_stats sds;
4200 
4201 	memset(&sds, 0, sizeof(sds));
4202 
4203 	/*
4204 	 * Compute the various statistics relavent for load balancing at
4205 	 * this level.
4206 	 */
4207 	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
4208 
4209 	/*
4210 	 * this_cpu is not the appropriate cpu to perform load balancing at
4211 	 * this level.
4212 	 */
4213 	if (!(*balance))
4214 		goto ret;
4215 
4216 	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4217 	    check_asym_packing(sd, &sds, this_cpu, imbalance))
4218 		return sds.busiest;
4219 
4220 	/* There is no busy sibling group to pull tasks from */
4221 	if (!sds.busiest || sds.busiest_nr_running == 0)
4222 		goto out_balanced;
4223 
4224 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4225 
4226 	/*
4227 	 * If the busiest group is imbalanced the below checks don't
4228 	 * work because they assumes all things are equal, which typically
4229 	 * isn't true due to cpus_allowed constraints and the like.
4230 	 */
4231 	if (sds.group_imb)
4232 		goto force_balance;
4233 
4234 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4235 	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4236 			!sds.busiest_has_capacity)
4237 		goto force_balance;
4238 
4239 	/*
4240 	 * If the local group is more busy than the selected busiest group
4241 	 * don't try and pull any tasks.
4242 	 */
4243 	if (sds.this_load >= sds.max_load)
4244 		goto out_balanced;
4245 
4246 	/*
4247 	 * Don't pull any tasks if this group is already above the domain
4248 	 * average load.
4249 	 */
4250 	if (sds.this_load >= sds.avg_load)
4251 		goto out_balanced;
4252 
4253 	if (idle == CPU_IDLE) {
4254 		/*
4255 		 * This cpu is idle. If the busiest group load doesn't
4256 		 * have more tasks than the number of available cpu's and
4257 		 * there is no imbalance between this and busiest group
4258 		 * wrt to idle cpu's, it is balanced.
4259 		 */
4260 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4261 		    sds.busiest_nr_running <= sds.busiest_group_weight)
4262 			goto out_balanced;
4263 	} else {
4264 		/*
4265 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4266 		 * imbalance_pct to be conservative.
4267 		 */
4268 		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4269 			goto out_balanced;
4270 	}
4271 
4272 force_balance:
4273 	/* Looks like there is an imbalance. Compute it */
4274 	calculate_imbalance(&sds, this_cpu, imbalance);
4275 	return sds.busiest;
4276 
4277 out_balanced:
4278 	/*
4279 	 * There is no obvious imbalance. But check if we can do some balancing
4280 	 * to save power.
4281 	 */
4282 	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4283 		return sds.busiest;
4284 ret:
4285 	*imbalance = 0;
4286 	return NULL;
4287 }
4288 
4289 /*
4290  * find_busiest_queue - find the busiest runqueue among the cpus in group.
4291  */
4292 static struct rq *
4293 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4294 		   enum cpu_idle_type idle, unsigned long imbalance,
4295 		   const struct cpumask *cpus)
4296 {
4297 	struct rq *busiest = NULL, *rq;
4298 	unsigned long max_load = 0;
4299 	int i;
4300 
4301 	for_each_cpu(i, sched_group_cpus(group)) {
4302 		unsigned long power = power_of(i);
4303 		unsigned long capacity = DIV_ROUND_CLOSEST(power,
4304 							   SCHED_POWER_SCALE);
4305 		unsigned long wl;
4306 
4307 		if (!capacity)
4308 			capacity = fix_small_capacity(sd, group);
4309 
4310 		if (!cpumask_test_cpu(i, cpus))
4311 			continue;
4312 
4313 		rq = cpu_rq(i);
4314 		wl = weighted_cpuload(i);
4315 
4316 		/*
4317 		 * When comparing with imbalance, use weighted_cpuload()
4318 		 * which is not scaled with the cpu power.
4319 		 */
4320 		if (capacity && rq->nr_running == 1 && wl > imbalance)
4321 			continue;
4322 
4323 		/*
4324 		 * For the load comparisons with the other cpu's, consider
4325 		 * the weighted_cpuload() scaled with the cpu power, so that
4326 		 * the load can be moved away from the cpu that is potentially
4327 		 * running at a lower capacity.
4328 		 */
4329 		wl = (wl * SCHED_POWER_SCALE) / power;
4330 
4331 		if (wl > max_load) {
4332 			max_load = wl;
4333 			busiest = rq;
4334 		}
4335 	}
4336 
4337 	return busiest;
4338 }
4339 
4340 /*
4341  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4342  * so long as it is large enough.
4343  */
4344 #define MAX_PINNED_INTERVAL	512
4345 
4346 /* Working cpumask for load_balance and load_balance_newidle. */
4347 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4348 
4349 static int need_active_balance(struct sched_domain *sd, int idle,
4350 			       int busiest_cpu, int this_cpu)
4351 {
4352 	if (idle == CPU_NEWLY_IDLE) {
4353 
4354 		/*
4355 		 * ASYM_PACKING needs to force migrate tasks from busy but
4356 		 * higher numbered CPUs in order to pack all tasks in the
4357 		 * lowest numbered CPUs.
4358 		 */
4359 		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4360 			return 1;
4361 
4362 		/*
4363 		 * The only task running in a non-idle cpu can be moved to this
4364 		 * cpu in an attempt to completely freeup the other CPU
4365 		 * package.
4366 		 *
4367 		 * The package power saving logic comes from
4368 		 * find_busiest_group(). If there are no imbalance, then
4369 		 * f_b_g() will return NULL. However when sched_mc={1,2} then
4370 		 * f_b_g() will select a group from which a running task may be
4371 		 * pulled to this cpu in order to make the other package idle.
4372 		 * If there is no opportunity to make a package idle and if
4373 		 * there are no imbalance, then f_b_g() will return NULL and no
4374 		 * action will be taken in load_balance_newidle().
4375 		 *
4376 		 * Under normal task pull operation due to imbalance, there
4377 		 * will be more than one task in the source run queue and
4378 		 * move_tasks() will succeed.  ld_moved will be true and this
4379 		 * active balance code will not be triggered.
4380 		 */
4381 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4382 			return 0;
4383 	}
4384 
4385 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4386 }
4387 
4388 static int active_load_balance_cpu_stop(void *data);
4389 
4390 /*
4391  * Check this_cpu to ensure it is balanced within domain. Attempt to move
4392  * tasks if there is an imbalance.
4393  */
4394 static int load_balance(int this_cpu, struct rq *this_rq,
4395 			struct sched_domain *sd, enum cpu_idle_type idle,
4396 			int *balance)
4397 {
4398 	int ld_moved, active_balance = 0;
4399 	struct sched_group *group;
4400 	unsigned long imbalance;
4401 	struct rq *busiest;
4402 	unsigned long flags;
4403 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4404 
4405 	struct lb_env env = {
4406 		.sd		= sd,
4407 		.dst_cpu	= this_cpu,
4408 		.dst_rq		= this_rq,
4409 		.idle		= idle,
4410 		.loop_break	= sysctl_sched_nr_migrate,
4411 	};
4412 
4413 	cpumask_copy(cpus, cpu_active_mask);
4414 
4415 	schedstat_inc(sd, lb_count[idle]);
4416 
4417 redo:
4418 	group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4419 				   cpus, balance);
4420 
4421 	if (*balance == 0)
4422 		goto out_balanced;
4423 
4424 	if (!group) {
4425 		schedstat_inc(sd, lb_nobusyg[idle]);
4426 		goto out_balanced;
4427 	}
4428 
4429 	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4430 	if (!busiest) {
4431 		schedstat_inc(sd, lb_nobusyq[idle]);
4432 		goto out_balanced;
4433 	}
4434 
4435 	BUG_ON(busiest == this_rq);
4436 
4437 	schedstat_add(sd, lb_imbalance[idle], imbalance);
4438 
4439 	ld_moved = 0;
4440 	if (busiest->nr_running > 1) {
4441 		/*
4442 		 * Attempt to move tasks. If find_busiest_group has found
4443 		 * an imbalance but busiest->nr_running <= 1, the group is
4444 		 * still unbalanced. ld_moved simply stays zero, so it is
4445 		 * correctly treated as an imbalance.
4446 		 */
4447 		env.flags |= LBF_ALL_PINNED;
4448 		env.load_move = imbalance;
4449 		env.src_cpu = busiest->cpu;
4450 		env.src_rq = busiest;
4451 		env.loop_max = busiest->nr_running;
4452 
4453 more_balance:
4454 		local_irq_save(flags);
4455 		double_rq_lock(this_rq, busiest);
4456 		if (!env.loop)
4457 			update_h_load(env.src_cpu);
4458 		ld_moved += move_tasks(&env);
4459 		double_rq_unlock(this_rq, busiest);
4460 		local_irq_restore(flags);
4461 
4462 		if (env.flags & LBF_NEED_BREAK) {
4463 			env.flags &= ~LBF_NEED_BREAK;
4464 			goto more_balance;
4465 		}
4466 
4467 		/*
4468 		 * some other cpu did the load balance for us.
4469 		 */
4470 		if (ld_moved && this_cpu != smp_processor_id())
4471 			resched_cpu(this_cpu);
4472 
4473 		/* All tasks on this runqueue were pinned by CPU affinity */
4474 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4475 			cpumask_clear_cpu(cpu_of(busiest), cpus);
4476 			if (!cpumask_empty(cpus))
4477 				goto redo;
4478 			goto out_balanced;
4479 		}
4480 	}
4481 
4482 	if (!ld_moved) {
4483 		schedstat_inc(sd, lb_failed[idle]);
4484 		/*
4485 		 * Increment the failure counter only on periodic balance.
4486 		 * We do not want newidle balance, which can be very
4487 		 * frequent, pollute the failure counter causing
4488 		 * excessive cache_hot migrations and active balances.
4489 		 */
4490 		if (idle != CPU_NEWLY_IDLE)
4491 			sd->nr_balance_failed++;
4492 
4493 		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4494 			raw_spin_lock_irqsave(&busiest->lock, flags);
4495 
4496 			/* don't kick the active_load_balance_cpu_stop,
4497 			 * if the curr task on busiest cpu can't be
4498 			 * moved to this_cpu
4499 			 */
4500 			if (!cpumask_test_cpu(this_cpu,
4501 					tsk_cpus_allowed(busiest->curr))) {
4502 				raw_spin_unlock_irqrestore(&busiest->lock,
4503 							    flags);
4504 				env.flags |= LBF_ALL_PINNED;
4505 				goto out_one_pinned;
4506 			}
4507 
4508 			/*
4509 			 * ->active_balance synchronizes accesses to
4510 			 * ->active_balance_work.  Once set, it's cleared
4511 			 * only after active load balance is finished.
4512 			 */
4513 			if (!busiest->active_balance) {
4514 				busiest->active_balance = 1;
4515 				busiest->push_cpu = this_cpu;
4516 				active_balance = 1;
4517 			}
4518 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4519 
4520 			if (active_balance)
4521 				stop_one_cpu_nowait(cpu_of(busiest),
4522 					active_load_balance_cpu_stop, busiest,
4523 					&busiest->active_balance_work);
4524 
4525 			/*
4526 			 * We've kicked active balancing, reset the failure
4527 			 * counter.
4528 			 */
4529 			sd->nr_balance_failed = sd->cache_nice_tries+1;
4530 		}
4531 	} else
4532 		sd->nr_balance_failed = 0;
4533 
4534 	if (likely(!active_balance)) {
4535 		/* We were unbalanced, so reset the balancing interval */
4536 		sd->balance_interval = sd->min_interval;
4537 	} else {
4538 		/*
4539 		 * If we've begun active balancing, start to back off. This
4540 		 * case may not be covered by the all_pinned logic if there
4541 		 * is only 1 task on the busy runqueue (because we don't call
4542 		 * move_tasks).
4543 		 */
4544 		if (sd->balance_interval < sd->max_interval)
4545 			sd->balance_interval *= 2;
4546 	}
4547 
4548 	goto out;
4549 
4550 out_balanced:
4551 	schedstat_inc(sd, lb_balanced[idle]);
4552 
4553 	sd->nr_balance_failed = 0;
4554 
4555 out_one_pinned:
4556 	/* tune up the balancing interval */
4557 	if (((env.flags & LBF_ALL_PINNED) &&
4558 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4559 			(sd->balance_interval < sd->max_interval))
4560 		sd->balance_interval *= 2;
4561 
4562 	ld_moved = 0;
4563 out:
4564 	return ld_moved;
4565 }
4566 
4567 /*
4568  * idle_balance is called by schedule() if this_cpu is about to become
4569  * idle. Attempts to pull tasks from other CPUs.
4570  */
4571 void idle_balance(int this_cpu, struct rq *this_rq)
4572 {
4573 	struct sched_domain *sd;
4574 	int pulled_task = 0;
4575 	unsigned long next_balance = jiffies + HZ;
4576 
4577 	this_rq->idle_stamp = this_rq->clock;
4578 
4579 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
4580 		return;
4581 
4582 	/*
4583 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
4584 	 */
4585 	raw_spin_unlock(&this_rq->lock);
4586 
4587 	update_shares(this_cpu);
4588 	rcu_read_lock();
4589 	for_each_domain(this_cpu, sd) {
4590 		unsigned long interval;
4591 		int balance = 1;
4592 
4593 		if (!(sd->flags & SD_LOAD_BALANCE))
4594 			continue;
4595 
4596 		if (sd->flags & SD_BALANCE_NEWIDLE) {
4597 			/* If we've pulled tasks over stop searching: */
4598 			pulled_task = load_balance(this_cpu, this_rq,
4599 						   sd, CPU_NEWLY_IDLE, &balance);
4600 		}
4601 
4602 		interval = msecs_to_jiffies(sd->balance_interval);
4603 		if (time_after(next_balance, sd->last_balance + interval))
4604 			next_balance = sd->last_balance + interval;
4605 		if (pulled_task) {
4606 			this_rq->idle_stamp = 0;
4607 			break;
4608 		}
4609 	}
4610 	rcu_read_unlock();
4611 
4612 	raw_spin_lock(&this_rq->lock);
4613 
4614 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4615 		/*
4616 		 * We are going idle. next_balance may be set based on
4617 		 * a busy processor. So reset next_balance.
4618 		 */
4619 		this_rq->next_balance = next_balance;
4620 	}
4621 }
4622 
4623 /*
4624  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4625  * running tasks off the busiest CPU onto idle CPUs. It requires at
4626  * least 1 task to be running on each physical CPU where possible, and
4627  * avoids physical / logical imbalances.
4628  */
4629 static int active_load_balance_cpu_stop(void *data)
4630 {
4631 	struct rq *busiest_rq = data;
4632 	int busiest_cpu = cpu_of(busiest_rq);
4633 	int target_cpu = busiest_rq->push_cpu;
4634 	struct rq *target_rq = cpu_rq(target_cpu);
4635 	struct sched_domain *sd;
4636 
4637 	raw_spin_lock_irq(&busiest_rq->lock);
4638 
4639 	/* make sure the requested cpu hasn't gone down in the meantime */
4640 	if (unlikely(busiest_cpu != smp_processor_id() ||
4641 		     !busiest_rq->active_balance))
4642 		goto out_unlock;
4643 
4644 	/* Is there any task to move? */
4645 	if (busiest_rq->nr_running <= 1)
4646 		goto out_unlock;
4647 
4648 	/*
4649 	 * This condition is "impossible", if it occurs
4650 	 * we need to fix it. Originally reported by
4651 	 * Bjorn Helgaas on a 128-cpu setup.
4652 	 */
4653 	BUG_ON(busiest_rq == target_rq);
4654 
4655 	/* move a task from busiest_rq to target_rq */
4656 	double_lock_balance(busiest_rq, target_rq);
4657 
4658 	/* Search for an sd spanning us and the target CPU. */
4659 	rcu_read_lock();
4660 	for_each_domain(target_cpu, sd) {
4661 		if ((sd->flags & SD_LOAD_BALANCE) &&
4662 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4663 				break;
4664 	}
4665 
4666 	if (likely(sd)) {
4667 		struct lb_env env = {
4668 			.sd		= sd,
4669 			.dst_cpu	= target_cpu,
4670 			.dst_rq		= target_rq,
4671 			.src_cpu	= busiest_rq->cpu,
4672 			.src_rq		= busiest_rq,
4673 			.idle		= CPU_IDLE,
4674 		};
4675 
4676 		schedstat_inc(sd, alb_count);
4677 
4678 		if (move_one_task(&env))
4679 			schedstat_inc(sd, alb_pushed);
4680 		else
4681 			schedstat_inc(sd, alb_failed);
4682 	}
4683 	rcu_read_unlock();
4684 	double_unlock_balance(busiest_rq, target_rq);
4685 out_unlock:
4686 	busiest_rq->active_balance = 0;
4687 	raw_spin_unlock_irq(&busiest_rq->lock);
4688 	return 0;
4689 }
4690 
4691 #ifdef CONFIG_NO_HZ
4692 /*
4693  * idle load balancing details
4694  * - When one of the busy CPUs notice that there may be an idle rebalancing
4695  *   needed, they will kick the idle load balancer, which then does idle
4696  *   load balancing for all the idle CPUs.
4697  */
4698 static struct {
4699 	cpumask_var_t idle_cpus_mask;
4700 	atomic_t nr_cpus;
4701 	unsigned long next_balance;     /* in jiffy units */
4702 } nohz ____cacheline_aligned;
4703 
4704 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4705 /**
4706  * lowest_flag_domain - Return lowest sched_domain containing flag.
4707  * @cpu:	The cpu whose lowest level of sched domain is to
4708  *		be returned.
4709  * @flag:	The flag to check for the lowest sched_domain
4710  *		for the given cpu.
4711  *
4712  * Returns the lowest sched_domain of a cpu which contains the given flag.
4713  */
4714 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4715 {
4716 	struct sched_domain *sd;
4717 
4718 	for_each_domain(cpu, sd)
4719 		if (sd->flags & flag)
4720 			break;
4721 
4722 	return sd;
4723 }
4724 
4725 /**
4726  * for_each_flag_domain - Iterates over sched_domains containing the flag.
4727  * @cpu:	The cpu whose domains we're iterating over.
4728  * @sd:		variable holding the value of the power_savings_sd
4729  *		for cpu.
4730  * @flag:	The flag to filter the sched_domains to be iterated.
4731  *
4732  * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4733  * set, starting from the lowest sched_domain to the highest.
4734  */
4735 #define for_each_flag_domain(cpu, sd, flag) \
4736 	for (sd = lowest_flag_domain(cpu, flag); \
4737 		(sd && (sd->flags & flag)); sd = sd->parent)
4738 
4739 /**
4740  * find_new_ilb - Finds the optimum idle load balancer for nomination.
4741  * @cpu:	The cpu which is nominating a new idle_load_balancer.
4742  *
4743  * Returns:	Returns the id of the idle load balancer if it exists,
4744  *		Else, returns >= nr_cpu_ids.
4745  *
4746  * This algorithm picks the idle load balancer such that it belongs to a
4747  * semi-idle powersavings sched_domain. The idea is to try and avoid
4748  * completely idle packages/cores just for the purpose of idle load balancing
4749  * when there are other idle cpu's which are better suited for that job.
4750  */
4751 static int find_new_ilb(int cpu)
4752 {
4753 	int ilb = cpumask_first(nohz.idle_cpus_mask);
4754 	struct sched_group *ilbg;
4755 	struct sched_domain *sd;
4756 
4757 	/*
4758 	 * Have idle load balancer selection from semi-idle packages only
4759 	 * when power-aware load balancing is enabled
4760 	 */
4761 	if (!(sched_smt_power_savings || sched_mc_power_savings))
4762 		goto out_done;
4763 
4764 	/*
4765 	 * Optimize for the case when we have no idle CPUs or only one
4766 	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4767 	 */
4768 	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4769 		goto out_done;
4770 
4771 	rcu_read_lock();
4772 	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4773 		ilbg = sd->groups;
4774 
4775 		do {
4776 			if (ilbg->group_weight !=
4777 				atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4778 				ilb = cpumask_first_and(nohz.idle_cpus_mask,
4779 							sched_group_cpus(ilbg));
4780 				goto unlock;
4781 			}
4782 
4783 			ilbg = ilbg->next;
4784 
4785 		} while (ilbg != sd->groups);
4786 	}
4787 unlock:
4788 	rcu_read_unlock();
4789 
4790 out_done:
4791 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
4792 		return ilb;
4793 
4794 	return nr_cpu_ids;
4795 }
4796 #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4797 static inline int find_new_ilb(int call_cpu)
4798 {
4799 	return nr_cpu_ids;
4800 }
4801 #endif
4802 
4803 /*
4804  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4805  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4806  * CPU (if there is one).
4807  */
4808 static void nohz_balancer_kick(int cpu)
4809 {
4810 	int ilb_cpu;
4811 
4812 	nohz.next_balance++;
4813 
4814 	ilb_cpu = find_new_ilb(cpu);
4815 
4816 	if (ilb_cpu >= nr_cpu_ids)
4817 		return;
4818 
4819 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4820 		return;
4821 	/*
4822 	 * Use smp_send_reschedule() instead of resched_cpu().
4823 	 * This way we generate a sched IPI on the target cpu which
4824 	 * is idle. And the softirq performing nohz idle load balance
4825 	 * will be run before returning from the IPI.
4826 	 */
4827 	smp_send_reschedule(ilb_cpu);
4828 	return;
4829 }
4830 
4831 static inline void clear_nohz_tick_stopped(int cpu)
4832 {
4833 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4834 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4835 		atomic_dec(&nohz.nr_cpus);
4836 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4837 	}
4838 }
4839 
4840 static inline void set_cpu_sd_state_busy(void)
4841 {
4842 	struct sched_domain *sd;
4843 	int cpu = smp_processor_id();
4844 
4845 	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4846 		return;
4847 	clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4848 
4849 	rcu_read_lock();
4850 	for_each_domain(cpu, sd)
4851 		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4852 	rcu_read_unlock();
4853 }
4854 
4855 void set_cpu_sd_state_idle(void)
4856 {
4857 	struct sched_domain *sd;
4858 	int cpu = smp_processor_id();
4859 
4860 	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4861 		return;
4862 	set_bit(NOHZ_IDLE, nohz_flags(cpu));
4863 
4864 	rcu_read_lock();
4865 	for_each_domain(cpu, sd)
4866 		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4867 	rcu_read_unlock();
4868 }
4869 
4870 /*
4871  * This routine will record that this cpu is going idle with tick stopped.
4872  * This info will be used in performing idle load balancing in the future.
4873  */
4874 void select_nohz_load_balancer(int stop_tick)
4875 {
4876 	int cpu = smp_processor_id();
4877 
4878 	/*
4879 	 * If this cpu is going down, then nothing needs to be done.
4880 	 */
4881 	if (!cpu_active(cpu))
4882 		return;
4883 
4884 	if (stop_tick) {
4885 		if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4886 			return;
4887 
4888 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4889 		atomic_inc(&nohz.nr_cpus);
4890 		set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4891 	}
4892 	return;
4893 }
4894 
4895 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4896 					unsigned long action, void *hcpu)
4897 {
4898 	switch (action & ~CPU_TASKS_FROZEN) {
4899 	case CPU_DYING:
4900 		clear_nohz_tick_stopped(smp_processor_id());
4901 		return NOTIFY_OK;
4902 	default:
4903 		return NOTIFY_DONE;
4904 	}
4905 }
4906 #endif
4907 
4908 static DEFINE_SPINLOCK(balancing);
4909 
4910 /*
4911  * Scale the max load_balance interval with the number of CPUs in the system.
4912  * This trades load-balance latency on larger machines for less cross talk.
4913  */
4914 void update_max_interval(void)
4915 {
4916 	max_load_balance_interval = HZ*num_online_cpus()/10;
4917 }
4918 
4919 /*
4920  * It checks each scheduling domain to see if it is due to be balanced,
4921  * and initiates a balancing operation if so.
4922  *
4923  * Balancing parameters are set up in arch_init_sched_domains.
4924  */
4925 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4926 {
4927 	int balance = 1;
4928 	struct rq *rq = cpu_rq(cpu);
4929 	unsigned long interval;
4930 	struct sched_domain *sd;
4931 	/* Earliest time when we have to do rebalance again */
4932 	unsigned long next_balance = jiffies + 60*HZ;
4933 	int update_next_balance = 0;
4934 	int need_serialize;
4935 
4936 	update_shares(cpu);
4937 
4938 	rcu_read_lock();
4939 	for_each_domain(cpu, sd) {
4940 		if (!(sd->flags & SD_LOAD_BALANCE))
4941 			continue;
4942 
4943 		interval = sd->balance_interval;
4944 		if (idle != CPU_IDLE)
4945 			interval *= sd->busy_factor;
4946 
4947 		/* scale ms to jiffies */
4948 		interval = msecs_to_jiffies(interval);
4949 		interval = clamp(interval, 1UL, max_load_balance_interval);
4950 
4951 		need_serialize = sd->flags & SD_SERIALIZE;
4952 
4953 		if (need_serialize) {
4954 			if (!spin_trylock(&balancing))
4955 				goto out;
4956 		}
4957 
4958 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4959 			if (load_balance(cpu, rq, sd, idle, &balance)) {
4960 				/*
4961 				 * We've pulled tasks over so either we're no
4962 				 * longer idle.
4963 				 */
4964 				idle = CPU_NOT_IDLE;
4965 			}
4966 			sd->last_balance = jiffies;
4967 		}
4968 		if (need_serialize)
4969 			spin_unlock(&balancing);
4970 out:
4971 		if (time_after(next_balance, sd->last_balance + interval)) {
4972 			next_balance = sd->last_balance + interval;
4973 			update_next_balance = 1;
4974 		}
4975 
4976 		/*
4977 		 * Stop the load balance at this level. There is another
4978 		 * CPU in our sched group which is doing load balancing more
4979 		 * actively.
4980 		 */
4981 		if (!balance)
4982 			break;
4983 	}
4984 	rcu_read_unlock();
4985 
4986 	/*
4987 	 * next_balance will be updated only when there is a need.
4988 	 * When the cpu is attached to null domain for ex, it will not be
4989 	 * updated.
4990 	 */
4991 	if (likely(update_next_balance))
4992 		rq->next_balance = next_balance;
4993 }
4994 
4995 #ifdef CONFIG_NO_HZ
4996 /*
4997  * In CONFIG_NO_HZ case, the idle balance kickee will do the
4998  * rebalancing for all the cpus for whom scheduler ticks are stopped.
4999  */
5000 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5001 {
5002 	struct rq *this_rq = cpu_rq(this_cpu);
5003 	struct rq *rq;
5004 	int balance_cpu;
5005 
5006 	if (idle != CPU_IDLE ||
5007 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5008 		goto end;
5009 
5010 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5011 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5012 			continue;
5013 
5014 		/*
5015 		 * If this cpu gets work to do, stop the load balancing
5016 		 * work being done for other cpus. Next load
5017 		 * balancing owner will pick it up.
5018 		 */
5019 		if (need_resched())
5020 			break;
5021 
5022 		raw_spin_lock_irq(&this_rq->lock);
5023 		update_rq_clock(this_rq);
5024 		update_cpu_load(this_rq);
5025 		raw_spin_unlock_irq(&this_rq->lock);
5026 
5027 		rebalance_domains(balance_cpu, CPU_IDLE);
5028 
5029 		rq = cpu_rq(balance_cpu);
5030 		if (time_after(this_rq->next_balance, rq->next_balance))
5031 			this_rq->next_balance = rq->next_balance;
5032 	}
5033 	nohz.next_balance = this_rq->next_balance;
5034 end:
5035 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5036 }
5037 
5038 /*
5039  * Current heuristic for kicking the idle load balancer in the presence
5040  * of an idle cpu is the system.
5041  *   - This rq has more than one task.
5042  *   - At any scheduler domain level, this cpu's scheduler group has multiple
5043  *     busy cpu's exceeding the group's power.
5044  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5045  *     domain span are idle.
5046  */
5047 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5048 {
5049 	unsigned long now = jiffies;
5050 	struct sched_domain *sd;
5051 
5052 	if (unlikely(idle_cpu(cpu)))
5053 		return 0;
5054 
5055        /*
5056 	* We may be recently in ticked or tickless idle mode. At the first
5057 	* busy tick after returning from idle, we will update the busy stats.
5058 	*/
5059 	set_cpu_sd_state_busy();
5060 	clear_nohz_tick_stopped(cpu);
5061 
5062 	/*
5063 	 * None are in tickless mode and hence no need for NOHZ idle load
5064 	 * balancing.
5065 	 */
5066 	if (likely(!atomic_read(&nohz.nr_cpus)))
5067 		return 0;
5068 
5069 	if (time_before(now, nohz.next_balance))
5070 		return 0;
5071 
5072 	if (rq->nr_running >= 2)
5073 		goto need_kick;
5074 
5075 	rcu_read_lock();
5076 	for_each_domain(cpu, sd) {
5077 		struct sched_group *sg = sd->groups;
5078 		struct sched_group_power *sgp = sg->sgp;
5079 		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5080 
5081 		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5082 			goto need_kick_unlock;
5083 
5084 		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5085 		    && (cpumask_first_and(nohz.idle_cpus_mask,
5086 					  sched_domain_span(sd)) < cpu))
5087 			goto need_kick_unlock;
5088 
5089 		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5090 			break;
5091 	}
5092 	rcu_read_unlock();
5093 	return 0;
5094 
5095 need_kick_unlock:
5096 	rcu_read_unlock();
5097 need_kick:
5098 	return 1;
5099 }
5100 #else
5101 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5102 #endif
5103 
5104 /*
5105  * run_rebalance_domains is triggered when needed from the scheduler tick.
5106  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5107  */
5108 static void run_rebalance_domains(struct softirq_action *h)
5109 {
5110 	int this_cpu = smp_processor_id();
5111 	struct rq *this_rq = cpu_rq(this_cpu);
5112 	enum cpu_idle_type idle = this_rq->idle_balance ?
5113 						CPU_IDLE : CPU_NOT_IDLE;
5114 
5115 	rebalance_domains(this_cpu, idle);
5116 
5117 	/*
5118 	 * If this cpu has a pending nohz_balance_kick, then do the
5119 	 * balancing on behalf of the other idle cpus whose ticks are
5120 	 * stopped.
5121 	 */
5122 	nohz_idle_balance(this_cpu, idle);
5123 }
5124 
5125 static inline int on_null_domain(int cpu)
5126 {
5127 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5128 }
5129 
5130 /*
5131  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5132  */
5133 void trigger_load_balance(struct rq *rq, int cpu)
5134 {
5135 	/* Don't need to rebalance while attached to NULL domain */
5136 	if (time_after_eq(jiffies, rq->next_balance) &&
5137 	    likely(!on_null_domain(cpu)))
5138 		raise_softirq(SCHED_SOFTIRQ);
5139 #ifdef CONFIG_NO_HZ
5140 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5141 		nohz_balancer_kick(cpu);
5142 #endif
5143 }
5144 
5145 static void rq_online_fair(struct rq *rq)
5146 {
5147 	update_sysctl();
5148 }
5149 
5150 static void rq_offline_fair(struct rq *rq)
5151 {
5152 	update_sysctl();
5153 }
5154 
5155 #endif /* CONFIG_SMP */
5156 
5157 /*
5158  * scheduler tick hitting a task of our scheduling class:
5159  */
5160 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5161 {
5162 	struct cfs_rq *cfs_rq;
5163 	struct sched_entity *se = &curr->se;
5164 
5165 	for_each_sched_entity(se) {
5166 		cfs_rq = cfs_rq_of(se);
5167 		entity_tick(cfs_rq, se, queued);
5168 	}
5169 }
5170 
5171 /*
5172  * called on fork with the child task as argument from the parent's context
5173  *  - child not yet on the tasklist
5174  *  - preemption disabled
5175  */
5176 static void task_fork_fair(struct task_struct *p)
5177 {
5178 	struct cfs_rq *cfs_rq;
5179 	struct sched_entity *se = &p->se, *curr;
5180 	int this_cpu = smp_processor_id();
5181 	struct rq *rq = this_rq();
5182 	unsigned long flags;
5183 
5184 	raw_spin_lock_irqsave(&rq->lock, flags);
5185 
5186 	update_rq_clock(rq);
5187 
5188 	cfs_rq = task_cfs_rq(current);
5189 	curr = cfs_rq->curr;
5190 
5191 	if (unlikely(task_cpu(p) != this_cpu)) {
5192 		rcu_read_lock();
5193 		__set_task_cpu(p, this_cpu);
5194 		rcu_read_unlock();
5195 	}
5196 
5197 	update_curr(cfs_rq);
5198 
5199 	if (curr)
5200 		se->vruntime = curr->vruntime;
5201 	place_entity(cfs_rq, se, 1);
5202 
5203 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5204 		/*
5205 		 * Upon rescheduling, sched_class::put_prev_task() will place
5206 		 * 'current' within the tree based on its new key value.
5207 		 */
5208 		swap(curr->vruntime, se->vruntime);
5209 		resched_task(rq->curr);
5210 	}
5211 
5212 	se->vruntime -= cfs_rq->min_vruntime;
5213 
5214 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5215 }
5216 
5217 /*
5218  * Priority of the task has changed. Check to see if we preempt
5219  * the current task.
5220  */
5221 static void
5222 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5223 {
5224 	if (!p->se.on_rq)
5225 		return;
5226 
5227 	/*
5228 	 * Reschedule if we are currently running on this runqueue and
5229 	 * our priority decreased, or if we are not currently running on
5230 	 * this runqueue and our priority is higher than the current's
5231 	 */
5232 	if (rq->curr == p) {
5233 		if (p->prio > oldprio)
5234 			resched_task(rq->curr);
5235 	} else
5236 		check_preempt_curr(rq, p, 0);
5237 }
5238 
5239 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5240 {
5241 	struct sched_entity *se = &p->se;
5242 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5243 
5244 	/*
5245 	 * Ensure the task's vruntime is normalized, so that when its
5246 	 * switched back to the fair class the enqueue_entity(.flags=0) will
5247 	 * do the right thing.
5248 	 *
5249 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5250 	 * have normalized the vruntime, if it was !on_rq, then only when
5251 	 * the task is sleeping will it still have non-normalized vruntime.
5252 	 */
5253 	if (!se->on_rq && p->state != TASK_RUNNING) {
5254 		/*
5255 		 * Fix up our vruntime so that the current sleep doesn't
5256 		 * cause 'unlimited' sleep bonus.
5257 		 */
5258 		place_entity(cfs_rq, se, 0);
5259 		se->vruntime -= cfs_rq->min_vruntime;
5260 	}
5261 }
5262 
5263 /*
5264  * We switched to the sched_fair class.
5265  */
5266 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5267 {
5268 	if (!p->se.on_rq)
5269 		return;
5270 
5271 	/*
5272 	 * We were most likely switched from sched_rt, so
5273 	 * kick off the schedule if running, otherwise just see
5274 	 * if we can still preempt the current task.
5275 	 */
5276 	if (rq->curr == p)
5277 		resched_task(rq->curr);
5278 	else
5279 		check_preempt_curr(rq, p, 0);
5280 }
5281 
5282 /* Account for a task changing its policy or group.
5283  *
5284  * This routine is mostly called to set cfs_rq->curr field when a task
5285  * migrates between groups/classes.
5286  */
5287 static void set_curr_task_fair(struct rq *rq)
5288 {
5289 	struct sched_entity *se = &rq->curr->se;
5290 
5291 	for_each_sched_entity(se) {
5292 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5293 
5294 		set_next_entity(cfs_rq, se);
5295 		/* ensure bandwidth has been allocated on our new cfs_rq */
5296 		account_cfs_rq_runtime(cfs_rq, 0);
5297 	}
5298 }
5299 
5300 void init_cfs_rq(struct cfs_rq *cfs_rq)
5301 {
5302 	cfs_rq->tasks_timeline = RB_ROOT;
5303 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5304 #ifndef CONFIG_64BIT
5305 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5306 #endif
5307 }
5308 
5309 #ifdef CONFIG_FAIR_GROUP_SCHED
5310 static void task_move_group_fair(struct task_struct *p, int on_rq)
5311 {
5312 	/*
5313 	 * If the task was not on the rq at the time of this cgroup movement
5314 	 * it must have been asleep, sleeping tasks keep their ->vruntime
5315 	 * absolute on their old rq until wakeup (needed for the fair sleeper
5316 	 * bonus in place_entity()).
5317 	 *
5318 	 * If it was on the rq, we've just 'preempted' it, which does convert
5319 	 * ->vruntime to a relative base.
5320 	 *
5321 	 * Make sure both cases convert their relative position when migrating
5322 	 * to another cgroup's rq. This does somewhat interfere with the
5323 	 * fair sleeper stuff for the first placement, but who cares.
5324 	 */
5325 	/*
5326 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
5327 	 * But there are some cases where it has already been normalized:
5328 	 *
5329 	 * - Moving a forked child which is waiting for being woken up by
5330 	 *   wake_up_new_task().
5331 	 * - Moving a task which has been woken up by try_to_wake_up() and
5332 	 *   waiting for actually being woken up by sched_ttwu_pending().
5333 	 *
5334 	 * To prevent boost or penalty in the new cfs_rq caused by delta
5335 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5336 	 */
5337 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5338 		on_rq = 1;
5339 
5340 	if (!on_rq)
5341 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5342 	set_task_rq(p, task_cpu(p));
5343 	if (!on_rq)
5344 		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5345 }
5346 
5347 void free_fair_sched_group(struct task_group *tg)
5348 {
5349 	int i;
5350 
5351 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5352 
5353 	for_each_possible_cpu(i) {
5354 		if (tg->cfs_rq)
5355 			kfree(tg->cfs_rq[i]);
5356 		if (tg->se)
5357 			kfree(tg->se[i]);
5358 	}
5359 
5360 	kfree(tg->cfs_rq);
5361 	kfree(tg->se);
5362 }
5363 
5364 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5365 {
5366 	struct cfs_rq *cfs_rq;
5367 	struct sched_entity *se;
5368 	int i;
5369 
5370 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5371 	if (!tg->cfs_rq)
5372 		goto err;
5373 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5374 	if (!tg->se)
5375 		goto err;
5376 
5377 	tg->shares = NICE_0_LOAD;
5378 
5379 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5380 
5381 	for_each_possible_cpu(i) {
5382 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5383 				      GFP_KERNEL, cpu_to_node(i));
5384 		if (!cfs_rq)
5385 			goto err;
5386 
5387 		se = kzalloc_node(sizeof(struct sched_entity),
5388 				  GFP_KERNEL, cpu_to_node(i));
5389 		if (!se)
5390 			goto err_free_rq;
5391 
5392 		init_cfs_rq(cfs_rq);
5393 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5394 	}
5395 
5396 	return 1;
5397 
5398 err_free_rq:
5399 	kfree(cfs_rq);
5400 err:
5401 	return 0;
5402 }
5403 
5404 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5405 {
5406 	struct rq *rq = cpu_rq(cpu);
5407 	unsigned long flags;
5408 
5409 	/*
5410 	* Only empty task groups can be destroyed; so we can speculatively
5411 	* check on_list without danger of it being re-added.
5412 	*/
5413 	if (!tg->cfs_rq[cpu]->on_list)
5414 		return;
5415 
5416 	raw_spin_lock_irqsave(&rq->lock, flags);
5417 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5418 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5419 }
5420 
5421 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5422 			struct sched_entity *se, int cpu,
5423 			struct sched_entity *parent)
5424 {
5425 	struct rq *rq = cpu_rq(cpu);
5426 
5427 	cfs_rq->tg = tg;
5428 	cfs_rq->rq = rq;
5429 #ifdef CONFIG_SMP
5430 	/* allow initial update_cfs_load() to truncate */
5431 	cfs_rq->load_stamp = 1;
5432 #endif
5433 	init_cfs_rq_runtime(cfs_rq);
5434 
5435 	tg->cfs_rq[cpu] = cfs_rq;
5436 	tg->se[cpu] = se;
5437 
5438 	/* se could be NULL for root_task_group */
5439 	if (!se)
5440 		return;
5441 
5442 	if (!parent)
5443 		se->cfs_rq = &rq->cfs;
5444 	else
5445 		se->cfs_rq = parent->my_q;
5446 
5447 	se->my_q = cfs_rq;
5448 	update_load_set(&se->load, 0);
5449 	se->parent = parent;
5450 }
5451 
5452 static DEFINE_MUTEX(shares_mutex);
5453 
5454 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5455 {
5456 	int i;
5457 	unsigned long flags;
5458 
5459 	/*
5460 	 * We can't change the weight of the root cgroup.
5461 	 */
5462 	if (!tg->se[0])
5463 		return -EINVAL;
5464 
5465 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5466 
5467 	mutex_lock(&shares_mutex);
5468 	if (tg->shares == shares)
5469 		goto done;
5470 
5471 	tg->shares = shares;
5472 	for_each_possible_cpu(i) {
5473 		struct rq *rq = cpu_rq(i);
5474 		struct sched_entity *se;
5475 
5476 		se = tg->se[i];
5477 		/* Propagate contribution to hierarchy */
5478 		raw_spin_lock_irqsave(&rq->lock, flags);
5479 		for_each_sched_entity(se)
5480 			update_cfs_shares(group_cfs_rq(se));
5481 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5482 	}
5483 
5484 done:
5485 	mutex_unlock(&shares_mutex);
5486 	return 0;
5487 }
5488 #else /* CONFIG_FAIR_GROUP_SCHED */
5489 
5490 void free_fair_sched_group(struct task_group *tg) { }
5491 
5492 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5493 {
5494 	return 1;
5495 }
5496 
5497 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5498 
5499 #endif /* CONFIG_FAIR_GROUP_SCHED */
5500 
5501 
5502 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5503 {
5504 	struct sched_entity *se = &task->se;
5505 	unsigned int rr_interval = 0;
5506 
5507 	/*
5508 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5509 	 * idle runqueue:
5510 	 */
5511 	if (rq->cfs.load.weight)
5512 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5513 
5514 	return rr_interval;
5515 }
5516 
5517 /*
5518  * All the scheduling class methods:
5519  */
5520 const struct sched_class fair_sched_class = {
5521 	.next			= &idle_sched_class,
5522 	.enqueue_task		= enqueue_task_fair,
5523 	.dequeue_task		= dequeue_task_fair,
5524 	.yield_task		= yield_task_fair,
5525 	.yield_to_task		= yield_to_task_fair,
5526 
5527 	.check_preempt_curr	= check_preempt_wakeup,
5528 
5529 	.pick_next_task		= pick_next_task_fair,
5530 	.put_prev_task		= put_prev_task_fair,
5531 
5532 #ifdef CONFIG_SMP
5533 	.select_task_rq		= select_task_rq_fair,
5534 
5535 	.rq_online		= rq_online_fair,
5536 	.rq_offline		= rq_offline_fair,
5537 
5538 	.task_waking		= task_waking_fair,
5539 #endif
5540 
5541 	.set_curr_task          = set_curr_task_fair,
5542 	.task_tick		= task_tick_fair,
5543 	.task_fork		= task_fork_fair,
5544 
5545 	.prio_changed		= prio_changed_fair,
5546 	.switched_from		= switched_from_fair,
5547 	.switched_to		= switched_to_fair,
5548 
5549 	.get_rr_interval	= get_rr_interval_fair,
5550 
5551 #ifdef CONFIG_FAIR_GROUP_SCHED
5552 	.task_move_group	= task_move_group_fair,
5553 #endif
5554 };
5555 
5556 #ifdef CONFIG_SCHED_DEBUG
5557 void print_cfs_stats(struct seq_file *m, int cpu)
5558 {
5559 	struct cfs_rq *cfs_rq;
5560 
5561 	rcu_read_lock();
5562 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5563 		print_cfs_rq(m, cpu, cfs_rq);
5564 	rcu_read_unlock();
5565 }
5566 #endif
5567 
5568 __init void init_sched_fair_class(void)
5569 {
5570 #ifdef CONFIG_SMP
5571 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5572 
5573 #ifdef CONFIG_NO_HZ
5574 	nohz.next_balance = jiffies;
5575 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5576 	cpu_notifier(sched_ilb_notifier, 0);
5577 #endif
5578 #endif /* SMP */
5579 
5580 }
5581