xref: /linux/kernel/sched/fair.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 
30 #include <trace/events/sched.h>
31 
32 #include "sched.h"
33 
34 /*
35  * Targeted preemption latency for CPU-bound tasks:
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  *
38  * NOTE: this latency value is not the same as the concept of
39  * 'timeslice length' - timeslices in CFS are of variable length
40  * and have no persistent notion like in traditional, time-slice
41  * based scheduling concepts.
42  *
43  * (to see the precise effective timeslice length of your workload,
44  *  run vmstat and monitor the context-switches (cs) field)
45  */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48 
49 /*
50  * The initial- and re-scaling of tunables is configurable
51  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52  *
53  * Options are:
54  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57  */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 	= SCHED_TUNABLESCALING_LOG;
60 
61 /*
62  * Minimal preemption granularity for CPU-bound tasks:
63  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64  */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67 
68 /*
69  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70  */
71 static unsigned int sched_nr_latency = 8;
72 
73 /*
74  * After fork, child runs first. If set to 0 (default) then
75  * parent will (try to) run first.
76  */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78 
79 /*
80  * SCHED_OTHER wake-up granularity.
81  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82  *
83  * This option delays the preemption effects of decoupled workloads
84  * and reduces their over-scheduling. Synchronous workloads will still
85  * have immediate wakeup/sleep latencies.
86  */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89 
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91 
92 /*
93  * The exponential sliding  window over which load is averaged for shares
94  * distribution.
95  * (default: 10msec)
96  */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * default: 5 msec, units: microseconds
109   */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112 
113 /*
114  * Increase the granularity value when there are more CPUs,
115  * because with more CPUs the 'effective latency' as visible
116  * to users decreases. But the relationship is not linear,
117  * so pick a second-best guess by going with the log2 of the
118  * number of CPUs.
119  *
120  * This idea comes from the SD scheduler of Con Kolivas:
121  */
122 static int get_update_sysctl_factor(void)
123 {
124 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 	unsigned int factor;
126 
127 	switch (sysctl_sched_tunable_scaling) {
128 	case SCHED_TUNABLESCALING_NONE:
129 		factor = 1;
130 		break;
131 	case SCHED_TUNABLESCALING_LINEAR:
132 		factor = cpus;
133 		break;
134 	case SCHED_TUNABLESCALING_LOG:
135 	default:
136 		factor = 1 + ilog2(cpus);
137 		break;
138 	}
139 
140 	return factor;
141 }
142 
143 static void update_sysctl(void)
144 {
145 	unsigned int factor = get_update_sysctl_factor();
146 
147 #define SET_SYSCTL(name) \
148 	(sysctl_##name = (factor) * normalized_sysctl_##name)
149 	SET_SYSCTL(sched_min_granularity);
150 	SET_SYSCTL(sched_latency);
151 	SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154 
155 void sched_init_granularity(void)
156 {
157 	update_sysctl();
158 }
159 
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST	(~0UL)
162 #else
163 # define WMULT_CONST	(1UL << 32)
164 #endif
165 
166 #define WMULT_SHIFT	32
167 
168 /*
169  * Shift right and round:
170  */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172 
173 /*
174  * delta *= weight / lw
175  */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 		struct load_weight *lw)
179 {
180 	u64 tmp;
181 
182 	/*
183 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 	 * 2^SCHED_LOAD_RESOLUTION.
186 	 */
187 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 		tmp = (u64)delta_exec * scale_load_down(weight);
189 	else
190 		tmp = (u64)delta_exec;
191 
192 	if (!lw->inv_weight) {
193 		unsigned long w = scale_load_down(lw->weight);
194 
195 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 			lw->inv_weight = 1;
197 		else if (unlikely(!w))
198 			lw->inv_weight = WMULT_CONST;
199 		else
200 			lw->inv_weight = WMULT_CONST / w;
201 	}
202 
203 	/*
204 	 * Check whether we'd overflow the 64-bit multiplication:
205 	 */
206 	if (unlikely(tmp > WMULT_CONST))
207 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 			WMULT_SHIFT/2);
209 	else
210 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211 
212 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214 
215 
216 const struct sched_class fair_sched_class;
217 
218 /**************************************************************
219  * CFS operations on generic schedulable entities:
220  */
221 
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223 
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 	return cfs_rq->rq;
228 }
229 
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se)	(!se->my_q)
232 
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 	WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 	return container_of(se, struct task_struct, se);
239 }
240 
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 		for (; se; se = se->parent)
244 
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 	return p->se.cfs_rq;
248 }
249 
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 	return se->cfs_rq;
254 }
255 
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 	return grp->my_q;
260 }
261 
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 	if (!cfs_rq->on_list) {
265 		/*
266 		 * Ensure we either appear before our parent (if already
267 		 * enqueued) or force our parent to appear after us when it is
268 		 * enqueued.  The fact that we always enqueue bottom-up
269 		 * reduces this to two cases.
270 		 */
271 		if (cfs_rq->tg->parent &&
272 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
275 		} else {
276 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
278 		}
279 
280 		cfs_rq->on_list = 1;
281 	}
282 }
283 
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 	if (cfs_rq->on_list) {
287 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 		cfs_rq->on_list = 0;
289 	}
290 }
291 
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295 
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 	if (se->cfs_rq == pse->cfs_rq)
301 		return 1;
302 
303 	return 0;
304 }
305 
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 	return se->parent;
309 }
310 
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 	int depth = 0;
315 
316 	for_each_sched_entity(se)
317 		depth++;
318 
319 	return depth;
320 }
321 
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 	int se_depth, pse_depth;
326 
327 	/*
328 	 * preemption test can be made between sibling entities who are in the
329 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 	 * both tasks until we find their ancestors who are siblings of common
331 	 * parent.
332 	 */
333 
334 	/* First walk up until both entities are at same depth */
335 	se_depth = depth_se(*se);
336 	pse_depth = depth_se(*pse);
337 
338 	while (se_depth > pse_depth) {
339 		se_depth--;
340 		*se = parent_entity(*se);
341 	}
342 
343 	while (pse_depth > se_depth) {
344 		pse_depth--;
345 		*pse = parent_entity(*pse);
346 	}
347 
348 	while (!is_same_group(*se, *pse)) {
349 		*se = parent_entity(*se);
350 		*pse = parent_entity(*pse);
351 	}
352 }
353 
354 #else	/* !CONFIG_FAIR_GROUP_SCHED */
355 
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 	return container_of(se, struct task_struct, se);
359 }
360 
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 	return container_of(cfs_rq, struct rq, cfs);
364 }
365 
366 #define entity_is_task(se)	1
367 
368 #define for_each_sched_entity(se) \
369 		for (; se; se = NULL)
370 
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 	return &task_rq(p)->cfs;
374 }
375 
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 	struct task_struct *p = task_of(se);
379 	struct rq *rq = task_rq(p);
380 
381 	return &rq->cfs;
382 }
383 
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 	return NULL;
388 }
389 
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393 
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397 
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400 
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 	return 1;
405 }
406 
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 	return NULL;
410 }
411 
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416 
417 #endif	/* CONFIG_FAIR_GROUP_SCHED */
418 
419 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 				   unsigned long delta_exec);
421 
422 /**************************************************************
423  * Scheduling class tree data structure manipulation methods:
424  */
425 
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 	s64 delta = (s64)(vruntime - min_vruntime);
429 	if (delta > 0)
430 		min_vruntime = vruntime;
431 
432 	return min_vruntime;
433 }
434 
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 	s64 delta = (s64)(vruntime - min_vruntime);
438 	if (delta < 0)
439 		min_vruntime = vruntime;
440 
441 	return min_vruntime;
442 }
443 
444 static inline int entity_before(struct sched_entity *a,
445 				struct sched_entity *b)
446 {
447 	return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449 
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 	u64 vruntime = cfs_rq->min_vruntime;
453 
454 	if (cfs_rq->curr)
455 		vruntime = cfs_rq->curr->vruntime;
456 
457 	if (cfs_rq->rb_leftmost) {
458 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 						   struct sched_entity,
460 						   run_node);
461 
462 		if (!cfs_rq->curr)
463 			vruntime = se->vruntime;
464 		else
465 			vruntime = min_vruntime(vruntime, se->vruntime);
466 	}
467 
468 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 	smp_wmb();
471 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474 
475 /*
476  * Enqueue an entity into the rb-tree:
477  */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 	struct rb_node *parent = NULL;
482 	struct sched_entity *entry;
483 	int leftmost = 1;
484 
485 	/*
486 	 * Find the right place in the rbtree:
487 	 */
488 	while (*link) {
489 		parent = *link;
490 		entry = rb_entry(parent, struct sched_entity, run_node);
491 		/*
492 		 * We dont care about collisions. Nodes with
493 		 * the same key stay together.
494 		 */
495 		if (entity_before(se, entry)) {
496 			link = &parent->rb_left;
497 		} else {
498 			link = &parent->rb_right;
499 			leftmost = 0;
500 		}
501 	}
502 
503 	/*
504 	 * Maintain a cache of leftmost tree entries (it is frequently
505 	 * used):
506 	 */
507 	if (leftmost)
508 		cfs_rq->rb_leftmost = &se->run_node;
509 
510 	rb_link_node(&se->run_node, parent, link);
511 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513 
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 	if (cfs_rq->rb_leftmost == &se->run_node) {
517 		struct rb_node *next_node;
518 
519 		next_node = rb_next(&se->run_node);
520 		cfs_rq->rb_leftmost = next_node;
521 	}
522 
523 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525 
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 	struct rb_node *left = cfs_rq->rb_leftmost;
529 
530 	if (!left)
531 		return NULL;
532 
533 	return rb_entry(left, struct sched_entity, run_node);
534 }
535 
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 	struct rb_node *next = rb_next(&se->run_node);
539 
540 	if (!next)
541 		return NULL;
542 
543 	return rb_entry(next, struct sched_entity, run_node);
544 }
545 
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550 
551 	if (!last)
552 		return NULL;
553 
554 	return rb_entry(last, struct sched_entity, run_node);
555 }
556 
557 /**************************************************************
558  * Scheduling class statistics methods:
559  */
560 
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 		void __user *buffer, size_t *lenp,
563 		loff_t *ppos)
564 {
565 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 	int factor = get_update_sysctl_factor();
567 
568 	if (ret || !write)
569 		return ret;
570 
571 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 					sysctl_sched_min_granularity);
573 
574 #define WRT_SYSCTL(name) \
575 	(normalized_sysctl_##name = sysctl_##name / (factor))
576 	WRT_SYSCTL(sched_min_granularity);
577 	WRT_SYSCTL(sched_latency);
578 	WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580 
581 	return 0;
582 }
583 #endif
584 
585 /*
586  * delta /= w
587  */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 	if (unlikely(se->load.weight != NICE_0_LOAD))
592 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593 
594 	return delta;
595 }
596 
597 /*
598  * The idea is to set a period in which each task runs once.
599  *
600  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601  * this period because otherwise the slices get too small.
602  *
603  * p = (nr <= nl) ? l : l*nr/nl
604  */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 	u64 period = sysctl_sched_latency;
608 	unsigned long nr_latency = sched_nr_latency;
609 
610 	if (unlikely(nr_running > nr_latency)) {
611 		period = sysctl_sched_min_granularity;
612 		period *= nr_running;
613 	}
614 
615 	return period;
616 }
617 
618 /*
619  * We calculate the wall-time slice from the period by taking a part
620  * proportional to the weight.
621  *
622  * s = p*P[w/rw]
623  */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627 
628 	for_each_sched_entity(se) {
629 		struct load_weight *load;
630 		struct load_weight lw;
631 
632 		cfs_rq = cfs_rq_of(se);
633 		load = &cfs_rq->load;
634 
635 		if (unlikely(!se->on_rq)) {
636 			lw = cfs_rq->load;
637 
638 			update_load_add(&lw, se->load.weight);
639 			load = &lw;
640 		}
641 		slice = calc_delta_mine(slice, se->load.weight, load);
642 	}
643 	return slice;
644 }
645 
646 /*
647  * We calculate the vruntime slice of a to be inserted task
648  *
649  * vs = s/w
650  */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655 
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658 
659 /*
660  * Update the current task's runtime statistics. Skip current tasks that
661  * are not in our scheduling class.
662  */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 	      unsigned long delta_exec)
666 {
667 	unsigned long delta_exec_weighted;
668 
669 	schedstat_set(curr->statistics.exec_max,
670 		      max((u64)delta_exec, curr->statistics.exec_max));
671 
672 	curr->sum_exec_runtime += delta_exec;
673 	schedstat_add(cfs_rq, exec_clock, delta_exec);
674 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675 
676 	curr->vruntime += delta_exec_weighted;
677 	update_min_vruntime(cfs_rq);
678 
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 	cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683 
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 	struct sched_entity *curr = cfs_rq->curr;
687 	u64 now = rq_of(cfs_rq)->clock_task;
688 	unsigned long delta_exec;
689 
690 	if (unlikely(!curr))
691 		return;
692 
693 	/*
694 	 * Get the amount of time the current task was running
695 	 * since the last time we changed load (this cannot
696 	 * overflow on 32 bits):
697 	 */
698 	delta_exec = (unsigned long)(now - curr->exec_start);
699 	if (!delta_exec)
700 		return;
701 
702 	__update_curr(cfs_rq, curr, delta_exec);
703 	curr->exec_start = now;
704 
705 	if (entity_is_task(curr)) {
706 		struct task_struct *curtask = task_of(curr);
707 
708 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 		cpuacct_charge(curtask, delta_exec);
710 		account_group_exec_runtime(curtask, delta_exec);
711 	}
712 
713 	account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715 
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721 
722 /*
723  * Task is being enqueued - update stats:
724  */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	/*
728 	 * Are we enqueueing a waiting task? (for current tasks
729 	 * a dequeue/enqueue event is a NOP)
730 	 */
731 	if (se != cfs_rq->curr)
732 		update_stats_wait_start(cfs_rq, se);
733 }
734 
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 	if (entity_is_task(se)) {
745 		trace_sched_stat_wait(task_of(se),
746 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 	}
748 #endif
749 	schedstat_set(se->statistics.wait_start, 0);
750 }
751 
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 	/*
756 	 * Mark the end of the wait period if dequeueing a
757 	 * waiting task:
758 	 */
759 	if (se != cfs_rq->curr)
760 		update_stats_wait_end(cfs_rq, se);
761 }
762 
763 /*
764  * We are picking a new current task - update its stats:
765  */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 	/*
770 	 * We are starting a new run period:
771 	 */
772 	se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774 
775 /**************************************************
776  * Scheduling class queueing methods:
777  */
778 
779 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780 static void
781 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
782 {
783 	cfs_rq->task_weight += weight;
784 }
785 #else
786 static inline void
787 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
788 {
789 }
790 #endif
791 
792 static void
793 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 	update_load_add(&cfs_rq->load, se->load.weight);
796 	if (!parent_entity(se))
797 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
798 	if (entity_is_task(se)) {
799 		add_cfs_task_weight(cfs_rq, se->load.weight);
800 		list_add(&se->group_node, &cfs_rq->tasks);
801 	}
802 	cfs_rq->nr_running++;
803 }
804 
805 static void
806 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
807 {
808 	update_load_sub(&cfs_rq->load, se->load.weight);
809 	if (!parent_entity(se))
810 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
811 	if (entity_is_task(se)) {
812 		add_cfs_task_weight(cfs_rq, -se->load.weight);
813 		list_del_init(&se->group_node);
814 	}
815 	cfs_rq->nr_running--;
816 }
817 
818 #ifdef CONFIG_FAIR_GROUP_SCHED
819 /* we need this in update_cfs_load and load-balance functions below */
820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
821 # ifdef CONFIG_SMP
822 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 					    int global_update)
824 {
825 	struct task_group *tg = cfs_rq->tg;
826 	long load_avg;
827 
828 	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 	load_avg -= cfs_rq->load_contribution;
830 
831 	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 		atomic_add(load_avg, &tg->load_weight);
833 		cfs_rq->load_contribution += load_avg;
834 	}
835 }
836 
837 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
838 {
839 	u64 period = sysctl_sched_shares_window;
840 	u64 now, delta;
841 	unsigned long load = cfs_rq->load.weight;
842 
843 	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
844 		return;
845 
846 	now = rq_of(cfs_rq)->clock_task;
847 	delta = now - cfs_rq->load_stamp;
848 
849 	/* truncate load history at 4 idle periods */
850 	if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 	    now - cfs_rq->load_last > 4 * period) {
852 		cfs_rq->load_period = 0;
853 		cfs_rq->load_avg = 0;
854 		delta = period - 1;
855 	}
856 
857 	cfs_rq->load_stamp = now;
858 	cfs_rq->load_unacc_exec_time = 0;
859 	cfs_rq->load_period += delta;
860 	if (load) {
861 		cfs_rq->load_last = now;
862 		cfs_rq->load_avg += delta * load;
863 	}
864 
865 	/* consider updating load contribution on each fold or truncate */
866 	if (global_update || cfs_rq->load_period > period
867 	    || !cfs_rq->load_period)
868 		update_cfs_rq_load_contribution(cfs_rq, global_update);
869 
870 	while (cfs_rq->load_period > period) {
871 		/*
872 		 * Inline assembly required to prevent the compiler
873 		 * optimising this loop into a divmod call.
874 		 * See __iter_div_u64_rem() for another example of this.
875 		 */
876 		asm("" : "+rm" (cfs_rq->load_period));
877 		cfs_rq->load_period /= 2;
878 		cfs_rq->load_avg /= 2;
879 	}
880 
881 	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 		list_del_leaf_cfs_rq(cfs_rq);
883 }
884 
885 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
886 {
887 	long tg_weight;
888 
889 	/*
890 	 * Use this CPU's actual weight instead of the last load_contribution
891 	 * to gain a more accurate current total weight. See
892 	 * update_cfs_rq_load_contribution().
893 	 */
894 	tg_weight = atomic_read(&tg->load_weight);
895 	tg_weight -= cfs_rq->load_contribution;
896 	tg_weight += cfs_rq->load.weight;
897 
898 	return tg_weight;
899 }
900 
901 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
902 {
903 	long tg_weight, load, shares;
904 
905 	tg_weight = calc_tg_weight(tg, cfs_rq);
906 	load = cfs_rq->load.weight;
907 
908 	shares = (tg->shares * load);
909 	if (tg_weight)
910 		shares /= tg_weight;
911 
912 	if (shares < MIN_SHARES)
913 		shares = MIN_SHARES;
914 	if (shares > tg->shares)
915 		shares = tg->shares;
916 
917 	return shares;
918 }
919 
920 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
921 {
922 	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 		update_cfs_load(cfs_rq, 0);
924 		update_cfs_shares(cfs_rq);
925 	}
926 }
927 # else /* CONFIG_SMP */
928 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
929 {
930 }
931 
932 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
933 {
934 	return tg->shares;
935 }
936 
937 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
938 {
939 }
940 # endif /* CONFIG_SMP */
941 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 			    unsigned long weight)
943 {
944 	if (se->on_rq) {
945 		/* commit outstanding execution time */
946 		if (cfs_rq->curr == se)
947 			update_curr(cfs_rq);
948 		account_entity_dequeue(cfs_rq, se);
949 	}
950 
951 	update_load_set(&se->load, weight);
952 
953 	if (se->on_rq)
954 		account_entity_enqueue(cfs_rq, se);
955 }
956 
957 static void update_cfs_shares(struct cfs_rq *cfs_rq)
958 {
959 	struct task_group *tg;
960 	struct sched_entity *se;
961 	long shares;
962 
963 	tg = cfs_rq->tg;
964 	se = tg->se[cpu_of(rq_of(cfs_rq))];
965 	if (!se || throttled_hierarchy(cfs_rq))
966 		return;
967 #ifndef CONFIG_SMP
968 	if (likely(se->load.weight == tg->shares))
969 		return;
970 #endif
971 	shares = calc_cfs_shares(cfs_rq, tg);
972 
973 	reweight_entity(cfs_rq_of(se), se, shares);
974 }
975 #else /* CONFIG_FAIR_GROUP_SCHED */
976 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
977 {
978 }
979 
980 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
981 {
982 }
983 
984 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
985 {
986 }
987 #endif /* CONFIG_FAIR_GROUP_SCHED */
988 
989 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
990 {
991 #ifdef CONFIG_SCHEDSTATS
992 	struct task_struct *tsk = NULL;
993 
994 	if (entity_is_task(se))
995 		tsk = task_of(se);
996 
997 	if (se->statistics.sleep_start) {
998 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
999 
1000 		if ((s64)delta < 0)
1001 			delta = 0;
1002 
1003 		if (unlikely(delta > se->statistics.sleep_max))
1004 			se->statistics.sleep_max = delta;
1005 
1006 		se->statistics.sum_sleep_runtime += delta;
1007 
1008 		if (tsk) {
1009 			account_scheduler_latency(tsk, delta >> 10, 1);
1010 			trace_sched_stat_sleep(tsk, delta);
1011 		}
1012 	}
1013 	if (se->statistics.block_start) {
1014 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1015 
1016 		if ((s64)delta < 0)
1017 			delta = 0;
1018 
1019 		if (unlikely(delta > se->statistics.block_max))
1020 			se->statistics.block_max = delta;
1021 
1022 		se->statistics.sum_sleep_runtime += delta;
1023 
1024 		if (tsk) {
1025 			if (tsk->in_iowait) {
1026 				se->statistics.iowait_sum += delta;
1027 				se->statistics.iowait_count++;
1028 				trace_sched_stat_iowait(tsk, delta);
1029 			}
1030 
1031 			trace_sched_stat_blocked(tsk, delta);
1032 
1033 			/*
1034 			 * Blocking time is in units of nanosecs, so shift by
1035 			 * 20 to get a milliseconds-range estimation of the
1036 			 * amount of time that the task spent sleeping:
1037 			 */
1038 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1039 				profile_hits(SLEEP_PROFILING,
1040 						(void *)get_wchan(tsk),
1041 						delta >> 20);
1042 			}
1043 			account_scheduler_latency(tsk, delta >> 10, 0);
1044 		}
1045 	}
1046 #endif
1047 }
1048 
1049 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 	s64 d = se->vruntime - cfs_rq->min_vruntime;
1053 
1054 	if (d < 0)
1055 		d = -d;
1056 
1057 	if (d > 3*sysctl_sched_latency)
1058 		schedstat_inc(cfs_rq, nr_spread_over);
1059 #endif
1060 }
1061 
1062 static void
1063 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1064 {
1065 	u64 vruntime = cfs_rq->min_vruntime;
1066 
1067 	/*
1068 	 * The 'current' period is already promised to the current tasks,
1069 	 * however the extra weight of the new task will slow them down a
1070 	 * little, place the new task so that it fits in the slot that
1071 	 * stays open at the end.
1072 	 */
1073 	if (initial && sched_feat(START_DEBIT))
1074 		vruntime += sched_vslice(cfs_rq, se);
1075 
1076 	/* sleeps up to a single latency don't count. */
1077 	if (!initial) {
1078 		unsigned long thresh = sysctl_sched_latency;
1079 
1080 		/*
1081 		 * Halve their sleep time's effect, to allow
1082 		 * for a gentler effect of sleepers:
1083 		 */
1084 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
1085 			thresh >>= 1;
1086 
1087 		vruntime -= thresh;
1088 	}
1089 
1090 	/* ensure we never gain time by being placed backwards. */
1091 	vruntime = max_vruntime(se->vruntime, vruntime);
1092 
1093 	se->vruntime = vruntime;
1094 }
1095 
1096 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1097 
1098 static void
1099 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1100 {
1101 	/*
1102 	 * Update the normalized vruntime before updating min_vruntime
1103 	 * through callig update_curr().
1104 	 */
1105 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1106 		se->vruntime += cfs_rq->min_vruntime;
1107 
1108 	/*
1109 	 * Update run-time statistics of the 'current'.
1110 	 */
1111 	update_curr(cfs_rq);
1112 	update_cfs_load(cfs_rq, 0);
1113 	account_entity_enqueue(cfs_rq, se);
1114 	update_cfs_shares(cfs_rq);
1115 
1116 	if (flags & ENQUEUE_WAKEUP) {
1117 		place_entity(cfs_rq, se, 0);
1118 		enqueue_sleeper(cfs_rq, se);
1119 	}
1120 
1121 	update_stats_enqueue(cfs_rq, se);
1122 	check_spread(cfs_rq, se);
1123 	if (se != cfs_rq->curr)
1124 		__enqueue_entity(cfs_rq, se);
1125 	se->on_rq = 1;
1126 
1127 	if (cfs_rq->nr_running == 1) {
1128 		list_add_leaf_cfs_rq(cfs_rq);
1129 		check_enqueue_throttle(cfs_rq);
1130 	}
1131 }
1132 
1133 static void __clear_buddies_last(struct sched_entity *se)
1134 {
1135 	for_each_sched_entity(se) {
1136 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1137 		if (cfs_rq->last == se)
1138 			cfs_rq->last = NULL;
1139 		else
1140 			break;
1141 	}
1142 }
1143 
1144 static void __clear_buddies_next(struct sched_entity *se)
1145 {
1146 	for_each_sched_entity(se) {
1147 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1148 		if (cfs_rq->next == se)
1149 			cfs_rq->next = NULL;
1150 		else
1151 			break;
1152 	}
1153 }
1154 
1155 static void __clear_buddies_skip(struct sched_entity *se)
1156 {
1157 	for_each_sched_entity(se) {
1158 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1159 		if (cfs_rq->skip == se)
1160 			cfs_rq->skip = NULL;
1161 		else
1162 			break;
1163 	}
1164 }
1165 
1166 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1167 {
1168 	if (cfs_rq->last == se)
1169 		__clear_buddies_last(se);
1170 
1171 	if (cfs_rq->next == se)
1172 		__clear_buddies_next(se);
1173 
1174 	if (cfs_rq->skip == se)
1175 		__clear_buddies_skip(se);
1176 }
1177 
1178 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1179 
1180 static void
1181 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1182 {
1183 	/*
1184 	 * Update run-time statistics of the 'current'.
1185 	 */
1186 	update_curr(cfs_rq);
1187 
1188 	update_stats_dequeue(cfs_rq, se);
1189 	if (flags & DEQUEUE_SLEEP) {
1190 #ifdef CONFIG_SCHEDSTATS
1191 		if (entity_is_task(se)) {
1192 			struct task_struct *tsk = task_of(se);
1193 
1194 			if (tsk->state & TASK_INTERRUPTIBLE)
1195 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1196 			if (tsk->state & TASK_UNINTERRUPTIBLE)
1197 				se->statistics.block_start = rq_of(cfs_rq)->clock;
1198 		}
1199 #endif
1200 	}
1201 
1202 	clear_buddies(cfs_rq, se);
1203 
1204 	if (se != cfs_rq->curr)
1205 		__dequeue_entity(cfs_rq, se);
1206 	se->on_rq = 0;
1207 	update_cfs_load(cfs_rq, 0);
1208 	account_entity_dequeue(cfs_rq, se);
1209 
1210 	/*
1211 	 * Normalize the entity after updating the min_vruntime because the
1212 	 * update can refer to the ->curr item and we need to reflect this
1213 	 * movement in our normalized position.
1214 	 */
1215 	if (!(flags & DEQUEUE_SLEEP))
1216 		se->vruntime -= cfs_rq->min_vruntime;
1217 
1218 	/* return excess runtime on last dequeue */
1219 	return_cfs_rq_runtime(cfs_rq);
1220 
1221 	update_min_vruntime(cfs_rq);
1222 	update_cfs_shares(cfs_rq);
1223 }
1224 
1225 /*
1226  * Preempt the current task with a newly woken task if needed:
1227  */
1228 static void
1229 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1230 {
1231 	unsigned long ideal_runtime, delta_exec;
1232 	struct sched_entity *se;
1233 	s64 delta;
1234 
1235 	ideal_runtime = sched_slice(cfs_rq, curr);
1236 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1237 	if (delta_exec > ideal_runtime) {
1238 		resched_task(rq_of(cfs_rq)->curr);
1239 		/*
1240 		 * The current task ran long enough, ensure it doesn't get
1241 		 * re-elected due to buddy favours.
1242 		 */
1243 		clear_buddies(cfs_rq, curr);
1244 		return;
1245 	}
1246 
1247 	/*
1248 	 * Ensure that a task that missed wakeup preemption by a
1249 	 * narrow margin doesn't have to wait for a full slice.
1250 	 * This also mitigates buddy induced latencies under load.
1251 	 */
1252 	if (delta_exec < sysctl_sched_min_granularity)
1253 		return;
1254 
1255 	se = __pick_first_entity(cfs_rq);
1256 	delta = curr->vruntime - se->vruntime;
1257 
1258 	if (delta < 0)
1259 		return;
1260 
1261 	if (delta > ideal_runtime)
1262 		resched_task(rq_of(cfs_rq)->curr);
1263 }
1264 
1265 static void
1266 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1267 {
1268 	/* 'current' is not kept within the tree. */
1269 	if (se->on_rq) {
1270 		/*
1271 		 * Any task has to be enqueued before it get to execute on
1272 		 * a CPU. So account for the time it spent waiting on the
1273 		 * runqueue.
1274 		 */
1275 		update_stats_wait_end(cfs_rq, se);
1276 		__dequeue_entity(cfs_rq, se);
1277 	}
1278 
1279 	update_stats_curr_start(cfs_rq, se);
1280 	cfs_rq->curr = se;
1281 #ifdef CONFIG_SCHEDSTATS
1282 	/*
1283 	 * Track our maximum slice length, if the CPU's load is at
1284 	 * least twice that of our own weight (i.e. dont track it
1285 	 * when there are only lesser-weight tasks around):
1286 	 */
1287 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1288 		se->statistics.slice_max = max(se->statistics.slice_max,
1289 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1290 	}
1291 #endif
1292 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1293 }
1294 
1295 static int
1296 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1297 
1298 /*
1299  * Pick the next process, keeping these things in mind, in this order:
1300  * 1) keep things fair between processes/task groups
1301  * 2) pick the "next" process, since someone really wants that to run
1302  * 3) pick the "last" process, for cache locality
1303  * 4) do not run the "skip" process, if something else is available
1304  */
1305 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1306 {
1307 	struct sched_entity *se = __pick_first_entity(cfs_rq);
1308 	struct sched_entity *left = se;
1309 
1310 	/*
1311 	 * Avoid running the skip buddy, if running something else can
1312 	 * be done without getting too unfair.
1313 	 */
1314 	if (cfs_rq->skip == se) {
1315 		struct sched_entity *second = __pick_next_entity(se);
1316 		if (second && wakeup_preempt_entity(second, left) < 1)
1317 			se = second;
1318 	}
1319 
1320 	/*
1321 	 * Prefer last buddy, try to return the CPU to a preempted task.
1322 	 */
1323 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1324 		se = cfs_rq->last;
1325 
1326 	/*
1327 	 * Someone really wants this to run. If it's not unfair, run it.
1328 	 */
1329 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1330 		se = cfs_rq->next;
1331 
1332 	clear_buddies(cfs_rq, se);
1333 
1334 	return se;
1335 }
1336 
1337 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1338 
1339 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1340 {
1341 	/*
1342 	 * If still on the runqueue then deactivate_task()
1343 	 * was not called and update_curr() has to be done:
1344 	 */
1345 	if (prev->on_rq)
1346 		update_curr(cfs_rq);
1347 
1348 	/* throttle cfs_rqs exceeding runtime */
1349 	check_cfs_rq_runtime(cfs_rq);
1350 
1351 	check_spread(cfs_rq, prev);
1352 	if (prev->on_rq) {
1353 		update_stats_wait_start(cfs_rq, prev);
1354 		/* Put 'current' back into the tree. */
1355 		__enqueue_entity(cfs_rq, prev);
1356 	}
1357 	cfs_rq->curr = NULL;
1358 }
1359 
1360 static void
1361 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1362 {
1363 	/*
1364 	 * Update run-time statistics of the 'current'.
1365 	 */
1366 	update_curr(cfs_rq);
1367 
1368 	/*
1369 	 * Update share accounting for long-running entities.
1370 	 */
1371 	update_entity_shares_tick(cfs_rq);
1372 
1373 #ifdef CONFIG_SCHED_HRTICK
1374 	/*
1375 	 * queued ticks are scheduled to match the slice, so don't bother
1376 	 * validating it and just reschedule.
1377 	 */
1378 	if (queued) {
1379 		resched_task(rq_of(cfs_rq)->curr);
1380 		return;
1381 	}
1382 	/*
1383 	 * don't let the period tick interfere with the hrtick preemption
1384 	 */
1385 	if (!sched_feat(DOUBLE_TICK) &&
1386 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1387 		return;
1388 #endif
1389 
1390 	if (cfs_rq->nr_running > 1)
1391 		check_preempt_tick(cfs_rq, curr);
1392 }
1393 
1394 
1395 /**************************************************
1396  * CFS bandwidth control machinery
1397  */
1398 
1399 #ifdef CONFIG_CFS_BANDWIDTH
1400 
1401 #ifdef HAVE_JUMP_LABEL
1402 static struct jump_label_key __cfs_bandwidth_used;
1403 
1404 static inline bool cfs_bandwidth_used(void)
1405 {
1406 	return static_branch(&__cfs_bandwidth_used);
1407 }
1408 
1409 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1410 {
1411 	/* only need to count groups transitioning between enabled/!enabled */
1412 	if (enabled && !was_enabled)
1413 		jump_label_inc(&__cfs_bandwidth_used);
1414 	else if (!enabled && was_enabled)
1415 		jump_label_dec(&__cfs_bandwidth_used);
1416 }
1417 #else /* HAVE_JUMP_LABEL */
1418 static bool cfs_bandwidth_used(void)
1419 {
1420 	return true;
1421 }
1422 
1423 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1424 #endif /* HAVE_JUMP_LABEL */
1425 
1426 /*
1427  * default period for cfs group bandwidth.
1428  * default: 0.1s, units: nanoseconds
1429  */
1430 static inline u64 default_cfs_period(void)
1431 {
1432 	return 100000000ULL;
1433 }
1434 
1435 static inline u64 sched_cfs_bandwidth_slice(void)
1436 {
1437 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1438 }
1439 
1440 /*
1441  * Replenish runtime according to assigned quota and update expiration time.
1442  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1443  * additional synchronization around rq->lock.
1444  *
1445  * requires cfs_b->lock
1446  */
1447 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1448 {
1449 	u64 now;
1450 
1451 	if (cfs_b->quota == RUNTIME_INF)
1452 		return;
1453 
1454 	now = sched_clock_cpu(smp_processor_id());
1455 	cfs_b->runtime = cfs_b->quota;
1456 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1457 }
1458 
1459 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1460 {
1461 	return &tg->cfs_bandwidth;
1462 }
1463 
1464 /* returns 0 on failure to allocate runtime */
1465 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1466 {
1467 	struct task_group *tg = cfs_rq->tg;
1468 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1469 	u64 amount = 0, min_amount, expires;
1470 
1471 	/* note: this is a positive sum as runtime_remaining <= 0 */
1472 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1473 
1474 	raw_spin_lock(&cfs_b->lock);
1475 	if (cfs_b->quota == RUNTIME_INF)
1476 		amount = min_amount;
1477 	else {
1478 		/*
1479 		 * If the bandwidth pool has become inactive, then at least one
1480 		 * period must have elapsed since the last consumption.
1481 		 * Refresh the global state and ensure bandwidth timer becomes
1482 		 * active.
1483 		 */
1484 		if (!cfs_b->timer_active) {
1485 			__refill_cfs_bandwidth_runtime(cfs_b);
1486 			__start_cfs_bandwidth(cfs_b);
1487 		}
1488 
1489 		if (cfs_b->runtime > 0) {
1490 			amount = min(cfs_b->runtime, min_amount);
1491 			cfs_b->runtime -= amount;
1492 			cfs_b->idle = 0;
1493 		}
1494 	}
1495 	expires = cfs_b->runtime_expires;
1496 	raw_spin_unlock(&cfs_b->lock);
1497 
1498 	cfs_rq->runtime_remaining += amount;
1499 	/*
1500 	 * we may have advanced our local expiration to account for allowed
1501 	 * spread between our sched_clock and the one on which runtime was
1502 	 * issued.
1503 	 */
1504 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1505 		cfs_rq->runtime_expires = expires;
1506 
1507 	return cfs_rq->runtime_remaining > 0;
1508 }
1509 
1510 /*
1511  * Note: This depends on the synchronization provided by sched_clock and the
1512  * fact that rq->clock snapshots this value.
1513  */
1514 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1515 {
1516 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1517 	struct rq *rq = rq_of(cfs_rq);
1518 
1519 	/* if the deadline is ahead of our clock, nothing to do */
1520 	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1521 		return;
1522 
1523 	if (cfs_rq->runtime_remaining < 0)
1524 		return;
1525 
1526 	/*
1527 	 * If the local deadline has passed we have to consider the
1528 	 * possibility that our sched_clock is 'fast' and the global deadline
1529 	 * has not truly expired.
1530 	 *
1531 	 * Fortunately we can check determine whether this the case by checking
1532 	 * whether the global deadline has advanced.
1533 	 */
1534 
1535 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1536 		/* extend local deadline, drift is bounded above by 2 ticks */
1537 		cfs_rq->runtime_expires += TICK_NSEC;
1538 	} else {
1539 		/* global deadline is ahead, expiration has passed */
1540 		cfs_rq->runtime_remaining = 0;
1541 	}
1542 }
1543 
1544 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1545 				     unsigned long delta_exec)
1546 {
1547 	/* dock delta_exec before expiring quota (as it could span periods) */
1548 	cfs_rq->runtime_remaining -= delta_exec;
1549 	expire_cfs_rq_runtime(cfs_rq);
1550 
1551 	if (likely(cfs_rq->runtime_remaining > 0))
1552 		return;
1553 
1554 	/*
1555 	 * if we're unable to extend our runtime we resched so that the active
1556 	 * hierarchy can be throttled
1557 	 */
1558 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1559 		resched_task(rq_of(cfs_rq)->curr);
1560 }
1561 
1562 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1563 						   unsigned long delta_exec)
1564 {
1565 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1566 		return;
1567 
1568 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
1569 }
1570 
1571 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1572 {
1573 	return cfs_bandwidth_used() && cfs_rq->throttled;
1574 }
1575 
1576 /* check whether cfs_rq, or any parent, is throttled */
1577 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1578 {
1579 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1580 }
1581 
1582 /*
1583  * Ensure that neither of the group entities corresponding to src_cpu or
1584  * dest_cpu are members of a throttled hierarchy when performing group
1585  * load-balance operations.
1586  */
1587 static inline int throttled_lb_pair(struct task_group *tg,
1588 				    int src_cpu, int dest_cpu)
1589 {
1590 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1591 
1592 	src_cfs_rq = tg->cfs_rq[src_cpu];
1593 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
1594 
1595 	return throttled_hierarchy(src_cfs_rq) ||
1596 	       throttled_hierarchy(dest_cfs_rq);
1597 }
1598 
1599 /* updated child weight may affect parent so we have to do this bottom up */
1600 static int tg_unthrottle_up(struct task_group *tg, void *data)
1601 {
1602 	struct rq *rq = data;
1603 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1604 
1605 	cfs_rq->throttle_count--;
1606 #ifdef CONFIG_SMP
1607 	if (!cfs_rq->throttle_count) {
1608 		u64 delta = rq->clock_task - cfs_rq->load_stamp;
1609 
1610 		/* leaving throttled state, advance shares averaging windows */
1611 		cfs_rq->load_stamp += delta;
1612 		cfs_rq->load_last += delta;
1613 
1614 		/* update entity weight now that we are on_rq again */
1615 		update_cfs_shares(cfs_rq);
1616 	}
1617 #endif
1618 
1619 	return 0;
1620 }
1621 
1622 static int tg_throttle_down(struct task_group *tg, void *data)
1623 {
1624 	struct rq *rq = data;
1625 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1626 
1627 	/* group is entering throttled state, record last load */
1628 	if (!cfs_rq->throttle_count)
1629 		update_cfs_load(cfs_rq, 0);
1630 	cfs_rq->throttle_count++;
1631 
1632 	return 0;
1633 }
1634 
1635 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1636 {
1637 	struct rq *rq = rq_of(cfs_rq);
1638 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1639 	struct sched_entity *se;
1640 	long task_delta, dequeue = 1;
1641 
1642 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1643 
1644 	/* account load preceding throttle */
1645 	rcu_read_lock();
1646 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1647 	rcu_read_unlock();
1648 
1649 	task_delta = cfs_rq->h_nr_running;
1650 	for_each_sched_entity(se) {
1651 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1652 		/* throttled entity or throttle-on-deactivate */
1653 		if (!se->on_rq)
1654 			break;
1655 
1656 		if (dequeue)
1657 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1658 		qcfs_rq->h_nr_running -= task_delta;
1659 
1660 		if (qcfs_rq->load.weight)
1661 			dequeue = 0;
1662 	}
1663 
1664 	if (!se)
1665 		rq->nr_running -= task_delta;
1666 
1667 	cfs_rq->throttled = 1;
1668 	cfs_rq->throttled_timestamp = rq->clock;
1669 	raw_spin_lock(&cfs_b->lock);
1670 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1671 	raw_spin_unlock(&cfs_b->lock);
1672 }
1673 
1674 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1675 {
1676 	struct rq *rq = rq_of(cfs_rq);
1677 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1678 	struct sched_entity *se;
1679 	int enqueue = 1;
1680 	long task_delta;
1681 
1682 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1683 
1684 	cfs_rq->throttled = 0;
1685 	raw_spin_lock(&cfs_b->lock);
1686 	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1687 	list_del_rcu(&cfs_rq->throttled_list);
1688 	raw_spin_unlock(&cfs_b->lock);
1689 	cfs_rq->throttled_timestamp = 0;
1690 
1691 	update_rq_clock(rq);
1692 	/* update hierarchical throttle state */
1693 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1694 
1695 	if (!cfs_rq->load.weight)
1696 		return;
1697 
1698 	task_delta = cfs_rq->h_nr_running;
1699 	for_each_sched_entity(se) {
1700 		if (se->on_rq)
1701 			enqueue = 0;
1702 
1703 		cfs_rq = cfs_rq_of(se);
1704 		if (enqueue)
1705 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1706 		cfs_rq->h_nr_running += task_delta;
1707 
1708 		if (cfs_rq_throttled(cfs_rq))
1709 			break;
1710 	}
1711 
1712 	if (!se)
1713 		rq->nr_running += task_delta;
1714 
1715 	/* determine whether we need to wake up potentially idle cpu */
1716 	if (rq->curr == rq->idle && rq->cfs.nr_running)
1717 		resched_task(rq->curr);
1718 }
1719 
1720 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1721 		u64 remaining, u64 expires)
1722 {
1723 	struct cfs_rq *cfs_rq;
1724 	u64 runtime = remaining;
1725 
1726 	rcu_read_lock();
1727 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1728 				throttled_list) {
1729 		struct rq *rq = rq_of(cfs_rq);
1730 
1731 		raw_spin_lock(&rq->lock);
1732 		if (!cfs_rq_throttled(cfs_rq))
1733 			goto next;
1734 
1735 		runtime = -cfs_rq->runtime_remaining + 1;
1736 		if (runtime > remaining)
1737 			runtime = remaining;
1738 		remaining -= runtime;
1739 
1740 		cfs_rq->runtime_remaining += runtime;
1741 		cfs_rq->runtime_expires = expires;
1742 
1743 		/* we check whether we're throttled above */
1744 		if (cfs_rq->runtime_remaining > 0)
1745 			unthrottle_cfs_rq(cfs_rq);
1746 
1747 next:
1748 		raw_spin_unlock(&rq->lock);
1749 
1750 		if (!remaining)
1751 			break;
1752 	}
1753 	rcu_read_unlock();
1754 
1755 	return remaining;
1756 }
1757 
1758 /*
1759  * Responsible for refilling a task_group's bandwidth and unthrottling its
1760  * cfs_rqs as appropriate. If there has been no activity within the last
1761  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1762  * used to track this state.
1763  */
1764 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1765 {
1766 	u64 runtime, runtime_expires;
1767 	int idle = 1, throttled;
1768 
1769 	raw_spin_lock(&cfs_b->lock);
1770 	/* no need to continue the timer with no bandwidth constraint */
1771 	if (cfs_b->quota == RUNTIME_INF)
1772 		goto out_unlock;
1773 
1774 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1775 	/* idle depends on !throttled (for the case of a large deficit) */
1776 	idle = cfs_b->idle && !throttled;
1777 	cfs_b->nr_periods += overrun;
1778 
1779 	/* if we're going inactive then everything else can be deferred */
1780 	if (idle)
1781 		goto out_unlock;
1782 
1783 	__refill_cfs_bandwidth_runtime(cfs_b);
1784 
1785 	if (!throttled) {
1786 		/* mark as potentially idle for the upcoming period */
1787 		cfs_b->idle = 1;
1788 		goto out_unlock;
1789 	}
1790 
1791 	/* account preceding periods in which throttling occurred */
1792 	cfs_b->nr_throttled += overrun;
1793 
1794 	/*
1795 	 * There are throttled entities so we must first use the new bandwidth
1796 	 * to unthrottle them before making it generally available.  This
1797 	 * ensures that all existing debts will be paid before a new cfs_rq is
1798 	 * allowed to run.
1799 	 */
1800 	runtime = cfs_b->runtime;
1801 	runtime_expires = cfs_b->runtime_expires;
1802 	cfs_b->runtime = 0;
1803 
1804 	/*
1805 	 * This check is repeated as we are holding onto the new bandwidth
1806 	 * while we unthrottle.  This can potentially race with an unthrottled
1807 	 * group trying to acquire new bandwidth from the global pool.
1808 	 */
1809 	while (throttled && runtime > 0) {
1810 		raw_spin_unlock(&cfs_b->lock);
1811 		/* we can't nest cfs_b->lock while distributing bandwidth */
1812 		runtime = distribute_cfs_runtime(cfs_b, runtime,
1813 						 runtime_expires);
1814 		raw_spin_lock(&cfs_b->lock);
1815 
1816 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1817 	}
1818 
1819 	/* return (any) remaining runtime */
1820 	cfs_b->runtime = runtime;
1821 	/*
1822 	 * While we are ensured activity in the period following an
1823 	 * unthrottle, this also covers the case in which the new bandwidth is
1824 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
1825 	 * timer to remain active while there are any throttled entities.)
1826 	 */
1827 	cfs_b->idle = 0;
1828 out_unlock:
1829 	if (idle)
1830 		cfs_b->timer_active = 0;
1831 	raw_spin_unlock(&cfs_b->lock);
1832 
1833 	return idle;
1834 }
1835 
1836 /* a cfs_rq won't donate quota below this amount */
1837 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1838 /* minimum remaining period time to redistribute slack quota */
1839 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1840 /* how long we wait to gather additional slack before distributing */
1841 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1842 
1843 /* are we near the end of the current quota period? */
1844 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1845 {
1846 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
1847 	u64 remaining;
1848 
1849 	/* if the call-back is running a quota refresh is already occurring */
1850 	if (hrtimer_callback_running(refresh_timer))
1851 		return 1;
1852 
1853 	/* is a quota refresh about to occur? */
1854 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1855 	if (remaining < min_expire)
1856 		return 1;
1857 
1858 	return 0;
1859 }
1860 
1861 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1862 {
1863 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1864 
1865 	/* if there's a quota refresh soon don't bother with slack */
1866 	if (runtime_refresh_within(cfs_b, min_left))
1867 		return;
1868 
1869 	start_bandwidth_timer(&cfs_b->slack_timer,
1870 				ns_to_ktime(cfs_bandwidth_slack_period));
1871 }
1872 
1873 /* we know any runtime found here is valid as update_curr() precedes return */
1874 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1875 {
1876 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1877 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1878 
1879 	if (slack_runtime <= 0)
1880 		return;
1881 
1882 	raw_spin_lock(&cfs_b->lock);
1883 	if (cfs_b->quota != RUNTIME_INF &&
1884 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1885 		cfs_b->runtime += slack_runtime;
1886 
1887 		/* we are under rq->lock, defer unthrottling using a timer */
1888 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1889 		    !list_empty(&cfs_b->throttled_cfs_rq))
1890 			start_cfs_slack_bandwidth(cfs_b);
1891 	}
1892 	raw_spin_unlock(&cfs_b->lock);
1893 
1894 	/* even if it's not valid for return we don't want to try again */
1895 	cfs_rq->runtime_remaining -= slack_runtime;
1896 }
1897 
1898 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1899 {
1900 	if (!cfs_bandwidth_used())
1901 		return;
1902 
1903 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1904 		return;
1905 
1906 	__return_cfs_rq_runtime(cfs_rq);
1907 }
1908 
1909 /*
1910  * This is done with a timer (instead of inline with bandwidth return) since
1911  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1912  */
1913 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1914 {
1915 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1916 	u64 expires;
1917 
1918 	/* confirm we're still not at a refresh boundary */
1919 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1920 		return;
1921 
1922 	raw_spin_lock(&cfs_b->lock);
1923 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1924 		runtime = cfs_b->runtime;
1925 		cfs_b->runtime = 0;
1926 	}
1927 	expires = cfs_b->runtime_expires;
1928 	raw_spin_unlock(&cfs_b->lock);
1929 
1930 	if (!runtime)
1931 		return;
1932 
1933 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1934 
1935 	raw_spin_lock(&cfs_b->lock);
1936 	if (expires == cfs_b->runtime_expires)
1937 		cfs_b->runtime = runtime;
1938 	raw_spin_unlock(&cfs_b->lock);
1939 }
1940 
1941 /*
1942  * When a group wakes up we want to make sure that its quota is not already
1943  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1944  * runtime as update_curr() throttling can not not trigger until it's on-rq.
1945  */
1946 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1947 {
1948 	if (!cfs_bandwidth_used())
1949 		return;
1950 
1951 	/* an active group must be handled by the update_curr()->put() path */
1952 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1953 		return;
1954 
1955 	/* ensure the group is not already throttled */
1956 	if (cfs_rq_throttled(cfs_rq))
1957 		return;
1958 
1959 	/* update runtime allocation */
1960 	account_cfs_rq_runtime(cfs_rq, 0);
1961 	if (cfs_rq->runtime_remaining <= 0)
1962 		throttle_cfs_rq(cfs_rq);
1963 }
1964 
1965 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1966 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1967 {
1968 	if (!cfs_bandwidth_used())
1969 		return;
1970 
1971 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1972 		return;
1973 
1974 	/*
1975 	 * it's possible for a throttled entity to be forced into a running
1976 	 * state (e.g. set_curr_task), in this case we're finished.
1977 	 */
1978 	if (cfs_rq_throttled(cfs_rq))
1979 		return;
1980 
1981 	throttle_cfs_rq(cfs_rq);
1982 }
1983 
1984 static inline u64 default_cfs_period(void);
1985 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1986 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1987 
1988 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1989 {
1990 	struct cfs_bandwidth *cfs_b =
1991 		container_of(timer, struct cfs_bandwidth, slack_timer);
1992 	do_sched_cfs_slack_timer(cfs_b);
1993 
1994 	return HRTIMER_NORESTART;
1995 }
1996 
1997 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1998 {
1999 	struct cfs_bandwidth *cfs_b =
2000 		container_of(timer, struct cfs_bandwidth, period_timer);
2001 	ktime_t now;
2002 	int overrun;
2003 	int idle = 0;
2004 
2005 	for (;;) {
2006 		now = hrtimer_cb_get_time(timer);
2007 		overrun = hrtimer_forward(timer, now, cfs_b->period);
2008 
2009 		if (!overrun)
2010 			break;
2011 
2012 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
2013 	}
2014 
2015 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2016 }
2017 
2018 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2019 {
2020 	raw_spin_lock_init(&cfs_b->lock);
2021 	cfs_b->runtime = 0;
2022 	cfs_b->quota = RUNTIME_INF;
2023 	cfs_b->period = ns_to_ktime(default_cfs_period());
2024 
2025 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2026 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2027 	cfs_b->period_timer.function = sched_cfs_period_timer;
2028 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
2030 }
2031 
2032 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2033 {
2034 	cfs_rq->runtime_enabled = 0;
2035 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
2036 }
2037 
2038 /* requires cfs_b->lock, may release to reprogram timer */
2039 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2040 {
2041 	/*
2042 	 * The timer may be active because we're trying to set a new bandwidth
2043 	 * period or because we're racing with the tear-down path
2044 	 * (timer_active==0 becomes visible before the hrtimer call-back
2045 	 * terminates).  In either case we ensure that it's re-programmed
2046 	 */
2047 	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2048 		raw_spin_unlock(&cfs_b->lock);
2049 		/* ensure cfs_b->lock is available while we wait */
2050 		hrtimer_cancel(&cfs_b->period_timer);
2051 
2052 		raw_spin_lock(&cfs_b->lock);
2053 		/* if someone else restarted the timer then we're done */
2054 		if (cfs_b->timer_active)
2055 			return;
2056 	}
2057 
2058 	cfs_b->timer_active = 1;
2059 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2060 }
2061 
2062 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2063 {
2064 	hrtimer_cancel(&cfs_b->period_timer);
2065 	hrtimer_cancel(&cfs_b->slack_timer);
2066 }
2067 
2068 void unthrottle_offline_cfs_rqs(struct rq *rq)
2069 {
2070 	struct cfs_rq *cfs_rq;
2071 
2072 	for_each_leaf_cfs_rq(rq, cfs_rq) {
2073 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2074 
2075 		if (!cfs_rq->runtime_enabled)
2076 			continue;
2077 
2078 		/*
2079 		 * clock_task is not advancing so we just need to make sure
2080 		 * there's some valid quota amount
2081 		 */
2082 		cfs_rq->runtime_remaining = cfs_b->quota;
2083 		if (cfs_rq_throttled(cfs_rq))
2084 			unthrottle_cfs_rq(cfs_rq);
2085 	}
2086 }
2087 
2088 #else /* CONFIG_CFS_BANDWIDTH */
2089 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2090 				     unsigned long delta_exec) {}
2091 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2092 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2093 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094 
2095 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2096 {
2097 	return 0;
2098 }
2099 
2100 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2101 {
2102 	return 0;
2103 }
2104 
2105 static inline int throttled_lb_pair(struct task_group *tg,
2106 				    int src_cpu, int dest_cpu)
2107 {
2108 	return 0;
2109 }
2110 
2111 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2112 
2113 #ifdef CONFIG_FAIR_GROUP_SCHED
2114 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2115 #endif
2116 
2117 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2118 {
2119 	return NULL;
2120 }
2121 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2122 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2123 
2124 #endif /* CONFIG_CFS_BANDWIDTH */
2125 
2126 /**************************************************
2127  * CFS operations on tasks:
2128  */
2129 
2130 #ifdef CONFIG_SCHED_HRTICK
2131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2132 {
2133 	struct sched_entity *se = &p->se;
2134 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2135 
2136 	WARN_ON(task_rq(p) != rq);
2137 
2138 	if (cfs_rq->nr_running > 1) {
2139 		u64 slice = sched_slice(cfs_rq, se);
2140 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2141 		s64 delta = slice - ran;
2142 
2143 		if (delta < 0) {
2144 			if (rq->curr == p)
2145 				resched_task(p);
2146 			return;
2147 		}
2148 
2149 		/*
2150 		 * Don't schedule slices shorter than 10000ns, that just
2151 		 * doesn't make sense. Rely on vruntime for fairness.
2152 		 */
2153 		if (rq->curr != p)
2154 			delta = max_t(s64, 10000LL, delta);
2155 
2156 		hrtick_start(rq, delta);
2157 	}
2158 }
2159 
2160 /*
2161  * called from enqueue/dequeue and updates the hrtick when the
2162  * current task is from our class and nr_running is low enough
2163  * to matter.
2164  */
2165 static void hrtick_update(struct rq *rq)
2166 {
2167 	struct task_struct *curr = rq->curr;
2168 
2169 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2170 		return;
2171 
2172 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2173 		hrtick_start_fair(rq, curr);
2174 }
2175 #else /* !CONFIG_SCHED_HRTICK */
2176 static inline void
2177 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2178 {
2179 }
2180 
2181 static inline void hrtick_update(struct rq *rq)
2182 {
2183 }
2184 #endif
2185 
2186 /*
2187  * The enqueue_task method is called before nr_running is
2188  * increased. Here we update the fair scheduling stats and
2189  * then put the task into the rbtree:
2190  */
2191 static void
2192 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2193 {
2194 	struct cfs_rq *cfs_rq;
2195 	struct sched_entity *se = &p->se;
2196 
2197 	for_each_sched_entity(se) {
2198 		if (se->on_rq)
2199 			break;
2200 		cfs_rq = cfs_rq_of(se);
2201 		enqueue_entity(cfs_rq, se, flags);
2202 
2203 		/*
2204 		 * end evaluation on encountering a throttled cfs_rq
2205 		 *
2206 		 * note: in the case of encountering a throttled cfs_rq we will
2207 		 * post the final h_nr_running increment below.
2208 		*/
2209 		if (cfs_rq_throttled(cfs_rq))
2210 			break;
2211 		cfs_rq->h_nr_running++;
2212 
2213 		flags = ENQUEUE_WAKEUP;
2214 	}
2215 
2216 	for_each_sched_entity(se) {
2217 		cfs_rq = cfs_rq_of(se);
2218 		cfs_rq->h_nr_running++;
2219 
2220 		if (cfs_rq_throttled(cfs_rq))
2221 			break;
2222 
2223 		update_cfs_load(cfs_rq, 0);
2224 		update_cfs_shares(cfs_rq);
2225 	}
2226 
2227 	if (!se)
2228 		inc_nr_running(rq);
2229 	hrtick_update(rq);
2230 }
2231 
2232 static void set_next_buddy(struct sched_entity *se);
2233 
2234 /*
2235  * The dequeue_task method is called before nr_running is
2236  * decreased. We remove the task from the rbtree and
2237  * update the fair scheduling stats:
2238  */
2239 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2240 {
2241 	struct cfs_rq *cfs_rq;
2242 	struct sched_entity *se = &p->se;
2243 	int task_sleep = flags & DEQUEUE_SLEEP;
2244 
2245 	for_each_sched_entity(se) {
2246 		cfs_rq = cfs_rq_of(se);
2247 		dequeue_entity(cfs_rq, se, flags);
2248 
2249 		/*
2250 		 * end evaluation on encountering a throttled cfs_rq
2251 		 *
2252 		 * note: in the case of encountering a throttled cfs_rq we will
2253 		 * post the final h_nr_running decrement below.
2254 		*/
2255 		if (cfs_rq_throttled(cfs_rq))
2256 			break;
2257 		cfs_rq->h_nr_running--;
2258 
2259 		/* Don't dequeue parent if it has other entities besides us */
2260 		if (cfs_rq->load.weight) {
2261 			/*
2262 			 * Bias pick_next to pick a task from this cfs_rq, as
2263 			 * p is sleeping when it is within its sched_slice.
2264 			 */
2265 			if (task_sleep && parent_entity(se))
2266 				set_next_buddy(parent_entity(se));
2267 
2268 			/* avoid re-evaluating load for this entity */
2269 			se = parent_entity(se);
2270 			break;
2271 		}
2272 		flags |= DEQUEUE_SLEEP;
2273 	}
2274 
2275 	for_each_sched_entity(se) {
2276 		cfs_rq = cfs_rq_of(se);
2277 		cfs_rq->h_nr_running--;
2278 
2279 		if (cfs_rq_throttled(cfs_rq))
2280 			break;
2281 
2282 		update_cfs_load(cfs_rq, 0);
2283 		update_cfs_shares(cfs_rq);
2284 	}
2285 
2286 	if (!se)
2287 		dec_nr_running(rq);
2288 	hrtick_update(rq);
2289 }
2290 
2291 #ifdef CONFIG_SMP
2292 /* Used instead of source_load when we know the type == 0 */
2293 static unsigned long weighted_cpuload(const int cpu)
2294 {
2295 	return cpu_rq(cpu)->load.weight;
2296 }
2297 
2298 /*
2299  * Return a low guess at the load of a migration-source cpu weighted
2300  * according to the scheduling class and "nice" value.
2301  *
2302  * We want to under-estimate the load of migration sources, to
2303  * balance conservatively.
2304  */
2305 static unsigned long source_load(int cpu, int type)
2306 {
2307 	struct rq *rq = cpu_rq(cpu);
2308 	unsigned long total = weighted_cpuload(cpu);
2309 
2310 	if (type == 0 || !sched_feat(LB_BIAS))
2311 		return total;
2312 
2313 	return min(rq->cpu_load[type-1], total);
2314 }
2315 
2316 /*
2317  * Return a high guess at the load of a migration-target cpu weighted
2318  * according to the scheduling class and "nice" value.
2319  */
2320 static unsigned long target_load(int cpu, int type)
2321 {
2322 	struct rq *rq = cpu_rq(cpu);
2323 	unsigned long total = weighted_cpuload(cpu);
2324 
2325 	if (type == 0 || !sched_feat(LB_BIAS))
2326 		return total;
2327 
2328 	return max(rq->cpu_load[type-1], total);
2329 }
2330 
2331 static unsigned long power_of(int cpu)
2332 {
2333 	return cpu_rq(cpu)->cpu_power;
2334 }
2335 
2336 static unsigned long cpu_avg_load_per_task(int cpu)
2337 {
2338 	struct rq *rq = cpu_rq(cpu);
2339 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2340 
2341 	if (nr_running)
2342 		return rq->load.weight / nr_running;
2343 
2344 	return 0;
2345 }
2346 
2347 
2348 static void task_waking_fair(struct task_struct *p)
2349 {
2350 	struct sched_entity *se = &p->se;
2351 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2352 	u64 min_vruntime;
2353 
2354 #ifndef CONFIG_64BIT
2355 	u64 min_vruntime_copy;
2356 
2357 	do {
2358 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
2359 		smp_rmb();
2360 		min_vruntime = cfs_rq->min_vruntime;
2361 	} while (min_vruntime != min_vruntime_copy);
2362 #else
2363 	min_vruntime = cfs_rq->min_vruntime;
2364 #endif
2365 
2366 	se->vruntime -= min_vruntime;
2367 }
2368 
2369 #ifdef CONFIG_FAIR_GROUP_SCHED
2370 /*
2371  * effective_load() calculates the load change as seen from the root_task_group
2372  *
2373  * Adding load to a group doesn't make a group heavier, but can cause movement
2374  * of group shares between cpus. Assuming the shares were perfectly aligned one
2375  * can calculate the shift in shares.
2376  *
2377  * Calculate the effective load difference if @wl is added (subtracted) to @tg
2378  * on this @cpu and results in a total addition (subtraction) of @wg to the
2379  * total group weight.
2380  *
2381  * Given a runqueue weight distribution (rw_i) we can compute a shares
2382  * distribution (s_i) using:
2383  *
2384  *   s_i = rw_i / \Sum rw_j						(1)
2385  *
2386  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2387  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2388  * shares distribution (s_i):
2389  *
2390  *   rw_i = {   2,   4,   1,   0 }
2391  *   s_i  = { 2/7, 4/7, 1/7,   0 }
2392  *
2393  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2394  * task used to run on and the CPU the waker is running on), we need to
2395  * compute the effect of waking a task on either CPU and, in case of a sync
2396  * wakeup, compute the effect of the current task going to sleep.
2397  *
2398  * So for a change of @wl to the local @cpu with an overall group weight change
2399  * of @wl we can compute the new shares distribution (s'_i) using:
2400  *
2401  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
2402  *
2403  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2404  * differences in waking a task to CPU 0. The additional task changes the
2405  * weight and shares distributions like:
2406  *
2407  *   rw'_i = {   3,   4,   1,   0 }
2408  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
2409  *
2410  * We can then compute the difference in effective weight by using:
2411  *
2412  *   dw_i = S * (s'_i - s_i)						(3)
2413  *
2414  * Where 'S' is the group weight as seen by its parent.
2415  *
2416  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2417  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2418  * 4/7) times the weight of the group.
2419  */
2420 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2421 {
2422 	struct sched_entity *se = tg->se[cpu];
2423 
2424 	if (!tg->parent)	/* the trivial, non-cgroup case */
2425 		return wl;
2426 
2427 	for_each_sched_entity(se) {
2428 		long w, W;
2429 
2430 		tg = se->my_q->tg;
2431 
2432 		/*
2433 		 * W = @wg + \Sum rw_j
2434 		 */
2435 		W = wg + calc_tg_weight(tg, se->my_q);
2436 
2437 		/*
2438 		 * w = rw_i + @wl
2439 		 */
2440 		w = se->my_q->load.weight + wl;
2441 
2442 		/*
2443 		 * wl = S * s'_i; see (2)
2444 		 */
2445 		if (W > 0 && w < W)
2446 			wl = (w * tg->shares) / W;
2447 		else
2448 			wl = tg->shares;
2449 
2450 		/*
2451 		 * Per the above, wl is the new se->load.weight value; since
2452 		 * those are clipped to [MIN_SHARES, ...) do so now. See
2453 		 * calc_cfs_shares().
2454 		 */
2455 		if (wl < MIN_SHARES)
2456 			wl = MIN_SHARES;
2457 
2458 		/*
2459 		 * wl = dw_i = S * (s'_i - s_i); see (3)
2460 		 */
2461 		wl -= se->load.weight;
2462 
2463 		/*
2464 		 * Recursively apply this logic to all parent groups to compute
2465 		 * the final effective load change on the root group. Since
2466 		 * only the @tg group gets extra weight, all parent groups can
2467 		 * only redistribute existing shares. @wl is the shift in shares
2468 		 * resulting from this level per the above.
2469 		 */
2470 		wg = 0;
2471 	}
2472 
2473 	return wl;
2474 }
2475 #else
2476 
2477 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2478 		unsigned long wl, unsigned long wg)
2479 {
2480 	return wl;
2481 }
2482 
2483 #endif
2484 
2485 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2486 {
2487 	s64 this_load, load;
2488 	int idx, this_cpu, prev_cpu;
2489 	unsigned long tl_per_task;
2490 	struct task_group *tg;
2491 	unsigned long weight;
2492 	int balanced;
2493 
2494 	idx	  = sd->wake_idx;
2495 	this_cpu  = smp_processor_id();
2496 	prev_cpu  = task_cpu(p);
2497 	load	  = source_load(prev_cpu, idx);
2498 	this_load = target_load(this_cpu, idx);
2499 
2500 	/*
2501 	 * If sync wakeup then subtract the (maximum possible)
2502 	 * effect of the currently running task from the load
2503 	 * of the current CPU:
2504 	 */
2505 	if (sync) {
2506 		tg = task_group(current);
2507 		weight = current->se.load.weight;
2508 
2509 		this_load += effective_load(tg, this_cpu, -weight, -weight);
2510 		load += effective_load(tg, prev_cpu, 0, -weight);
2511 	}
2512 
2513 	tg = task_group(p);
2514 	weight = p->se.load.weight;
2515 
2516 	/*
2517 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2518 	 * due to the sync cause above having dropped this_load to 0, we'll
2519 	 * always have an imbalance, but there's really nothing you can do
2520 	 * about that, so that's good too.
2521 	 *
2522 	 * Otherwise check if either cpus are near enough in load to allow this
2523 	 * task to be woken on this_cpu.
2524 	 */
2525 	if (this_load > 0) {
2526 		s64 this_eff_load, prev_eff_load;
2527 
2528 		this_eff_load = 100;
2529 		this_eff_load *= power_of(prev_cpu);
2530 		this_eff_load *= this_load +
2531 			effective_load(tg, this_cpu, weight, weight);
2532 
2533 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2534 		prev_eff_load *= power_of(this_cpu);
2535 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2536 
2537 		balanced = this_eff_load <= prev_eff_load;
2538 	} else
2539 		balanced = true;
2540 
2541 	/*
2542 	 * If the currently running task will sleep within
2543 	 * a reasonable amount of time then attract this newly
2544 	 * woken task:
2545 	 */
2546 	if (sync && balanced)
2547 		return 1;
2548 
2549 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2550 	tl_per_task = cpu_avg_load_per_task(this_cpu);
2551 
2552 	if (balanced ||
2553 	    (this_load <= load &&
2554 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2555 		/*
2556 		 * This domain has SD_WAKE_AFFINE and
2557 		 * p is cache cold in this domain, and
2558 		 * there is no bad imbalance.
2559 		 */
2560 		schedstat_inc(sd, ttwu_move_affine);
2561 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2562 
2563 		return 1;
2564 	}
2565 	return 0;
2566 }
2567 
2568 /*
2569  * find_idlest_group finds and returns the least busy CPU group within the
2570  * domain.
2571  */
2572 static struct sched_group *
2573 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2574 		  int this_cpu, int load_idx)
2575 {
2576 	struct sched_group *idlest = NULL, *group = sd->groups;
2577 	unsigned long min_load = ULONG_MAX, this_load = 0;
2578 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2579 
2580 	do {
2581 		unsigned long load, avg_load;
2582 		int local_group;
2583 		int i;
2584 
2585 		/* Skip over this group if it has no CPUs allowed */
2586 		if (!cpumask_intersects(sched_group_cpus(group),
2587 					tsk_cpus_allowed(p)))
2588 			continue;
2589 
2590 		local_group = cpumask_test_cpu(this_cpu,
2591 					       sched_group_cpus(group));
2592 
2593 		/* Tally up the load of all CPUs in the group */
2594 		avg_load = 0;
2595 
2596 		for_each_cpu(i, sched_group_cpus(group)) {
2597 			/* Bias balancing toward cpus of our domain */
2598 			if (local_group)
2599 				load = source_load(i, load_idx);
2600 			else
2601 				load = target_load(i, load_idx);
2602 
2603 			avg_load += load;
2604 		}
2605 
2606 		/* Adjust by relative CPU power of the group */
2607 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2608 
2609 		if (local_group) {
2610 			this_load = avg_load;
2611 		} else if (avg_load < min_load) {
2612 			min_load = avg_load;
2613 			idlest = group;
2614 		}
2615 	} while (group = group->next, group != sd->groups);
2616 
2617 	if (!idlest || 100*this_load < imbalance*min_load)
2618 		return NULL;
2619 	return idlest;
2620 }
2621 
2622 /*
2623  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2624  */
2625 static int
2626 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2627 {
2628 	unsigned long load, min_load = ULONG_MAX;
2629 	int idlest = -1;
2630 	int i;
2631 
2632 	/* Traverse only the allowed CPUs */
2633 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2634 		load = weighted_cpuload(i);
2635 
2636 		if (load < min_load || (load == min_load && i == this_cpu)) {
2637 			min_load = load;
2638 			idlest = i;
2639 		}
2640 	}
2641 
2642 	return idlest;
2643 }
2644 
2645 /*
2646  * Try and locate an idle CPU in the sched_domain.
2647  */
2648 static int select_idle_sibling(struct task_struct *p, int target)
2649 {
2650 	int cpu = smp_processor_id();
2651 	int prev_cpu = task_cpu(p);
2652 	struct sched_domain *sd;
2653 	struct sched_group *sg;
2654 	int i;
2655 
2656 	/*
2657 	 * If the task is going to be woken-up on this cpu and if it is
2658 	 * already idle, then it is the right target.
2659 	 */
2660 	if (target == cpu && idle_cpu(cpu))
2661 		return cpu;
2662 
2663 	/*
2664 	 * If the task is going to be woken-up on the cpu where it previously
2665 	 * ran and if it is currently idle, then it the right target.
2666 	 */
2667 	if (target == prev_cpu && idle_cpu(prev_cpu))
2668 		return prev_cpu;
2669 
2670 	/*
2671 	 * Otherwise, iterate the domains and find an elegible idle cpu.
2672 	 */
2673 	rcu_read_lock();
2674 
2675 	sd = rcu_dereference(per_cpu(sd_llc, target));
2676 	for_each_lower_domain(sd) {
2677 		sg = sd->groups;
2678 		do {
2679 			if (!cpumask_intersects(sched_group_cpus(sg),
2680 						tsk_cpus_allowed(p)))
2681 				goto next;
2682 
2683 			for_each_cpu(i, sched_group_cpus(sg)) {
2684 				if (!idle_cpu(i))
2685 					goto next;
2686 			}
2687 
2688 			target = cpumask_first_and(sched_group_cpus(sg),
2689 					tsk_cpus_allowed(p));
2690 			goto done;
2691 next:
2692 			sg = sg->next;
2693 		} while (sg != sd->groups);
2694 	}
2695 done:
2696 	rcu_read_unlock();
2697 
2698 	return target;
2699 }
2700 
2701 /*
2702  * sched_balance_self: balance the current task (running on cpu) in domains
2703  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2704  * SD_BALANCE_EXEC.
2705  *
2706  * Balance, ie. select the least loaded group.
2707  *
2708  * Returns the target CPU number, or the same CPU if no balancing is needed.
2709  *
2710  * preempt must be disabled.
2711  */
2712 static int
2713 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2714 {
2715 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2716 	int cpu = smp_processor_id();
2717 	int prev_cpu = task_cpu(p);
2718 	int new_cpu = cpu;
2719 	int want_affine = 0;
2720 	int want_sd = 1;
2721 	int sync = wake_flags & WF_SYNC;
2722 
2723 	if (p->rt.nr_cpus_allowed == 1)
2724 		return prev_cpu;
2725 
2726 	if (sd_flag & SD_BALANCE_WAKE) {
2727 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2728 			want_affine = 1;
2729 		new_cpu = prev_cpu;
2730 	}
2731 
2732 	rcu_read_lock();
2733 	for_each_domain(cpu, tmp) {
2734 		if (!(tmp->flags & SD_LOAD_BALANCE))
2735 			continue;
2736 
2737 		/*
2738 		 * If power savings logic is enabled for a domain, see if we
2739 		 * are not overloaded, if so, don't balance wider.
2740 		 */
2741 		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2742 			unsigned long power = 0;
2743 			unsigned long nr_running = 0;
2744 			unsigned long capacity;
2745 			int i;
2746 
2747 			for_each_cpu(i, sched_domain_span(tmp)) {
2748 				power += power_of(i);
2749 				nr_running += cpu_rq(i)->cfs.nr_running;
2750 			}
2751 
2752 			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2753 
2754 			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2755 				nr_running /= 2;
2756 
2757 			if (nr_running < capacity)
2758 				want_sd = 0;
2759 		}
2760 
2761 		/*
2762 		 * If both cpu and prev_cpu are part of this domain,
2763 		 * cpu is a valid SD_WAKE_AFFINE target.
2764 		 */
2765 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2766 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2767 			affine_sd = tmp;
2768 			want_affine = 0;
2769 		}
2770 
2771 		if (!want_sd && !want_affine)
2772 			break;
2773 
2774 		if (!(tmp->flags & sd_flag))
2775 			continue;
2776 
2777 		if (want_sd)
2778 			sd = tmp;
2779 	}
2780 
2781 	if (affine_sd) {
2782 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2783 			prev_cpu = cpu;
2784 
2785 		new_cpu = select_idle_sibling(p, prev_cpu);
2786 		goto unlock;
2787 	}
2788 
2789 	while (sd) {
2790 		int load_idx = sd->forkexec_idx;
2791 		struct sched_group *group;
2792 		int weight;
2793 
2794 		if (!(sd->flags & sd_flag)) {
2795 			sd = sd->child;
2796 			continue;
2797 		}
2798 
2799 		if (sd_flag & SD_BALANCE_WAKE)
2800 			load_idx = sd->wake_idx;
2801 
2802 		group = find_idlest_group(sd, p, cpu, load_idx);
2803 		if (!group) {
2804 			sd = sd->child;
2805 			continue;
2806 		}
2807 
2808 		new_cpu = find_idlest_cpu(group, p, cpu);
2809 		if (new_cpu == -1 || new_cpu == cpu) {
2810 			/* Now try balancing at a lower domain level of cpu */
2811 			sd = sd->child;
2812 			continue;
2813 		}
2814 
2815 		/* Now try balancing at a lower domain level of new_cpu */
2816 		cpu = new_cpu;
2817 		weight = sd->span_weight;
2818 		sd = NULL;
2819 		for_each_domain(cpu, tmp) {
2820 			if (weight <= tmp->span_weight)
2821 				break;
2822 			if (tmp->flags & sd_flag)
2823 				sd = tmp;
2824 		}
2825 		/* while loop will break here if sd == NULL */
2826 	}
2827 unlock:
2828 	rcu_read_unlock();
2829 
2830 	return new_cpu;
2831 }
2832 #endif /* CONFIG_SMP */
2833 
2834 static unsigned long
2835 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2836 {
2837 	unsigned long gran = sysctl_sched_wakeup_granularity;
2838 
2839 	/*
2840 	 * Since its curr running now, convert the gran from real-time
2841 	 * to virtual-time in his units.
2842 	 *
2843 	 * By using 'se' instead of 'curr' we penalize light tasks, so
2844 	 * they get preempted easier. That is, if 'se' < 'curr' then
2845 	 * the resulting gran will be larger, therefore penalizing the
2846 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2847 	 * be smaller, again penalizing the lighter task.
2848 	 *
2849 	 * This is especially important for buddies when the leftmost
2850 	 * task is higher priority than the buddy.
2851 	 */
2852 	return calc_delta_fair(gran, se);
2853 }
2854 
2855 /*
2856  * Should 'se' preempt 'curr'.
2857  *
2858  *             |s1
2859  *        |s2
2860  *   |s3
2861  *         g
2862  *      |<--->|c
2863  *
2864  *  w(c, s1) = -1
2865  *  w(c, s2) =  0
2866  *  w(c, s3) =  1
2867  *
2868  */
2869 static int
2870 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2871 {
2872 	s64 gran, vdiff = curr->vruntime - se->vruntime;
2873 
2874 	if (vdiff <= 0)
2875 		return -1;
2876 
2877 	gran = wakeup_gran(curr, se);
2878 	if (vdiff > gran)
2879 		return 1;
2880 
2881 	return 0;
2882 }
2883 
2884 static void set_last_buddy(struct sched_entity *se)
2885 {
2886 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2887 		return;
2888 
2889 	for_each_sched_entity(se)
2890 		cfs_rq_of(se)->last = se;
2891 }
2892 
2893 static void set_next_buddy(struct sched_entity *se)
2894 {
2895 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2896 		return;
2897 
2898 	for_each_sched_entity(se)
2899 		cfs_rq_of(se)->next = se;
2900 }
2901 
2902 static void set_skip_buddy(struct sched_entity *se)
2903 {
2904 	for_each_sched_entity(se)
2905 		cfs_rq_of(se)->skip = se;
2906 }
2907 
2908 /*
2909  * Preempt the current task with a newly woken task if needed:
2910  */
2911 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2912 {
2913 	struct task_struct *curr = rq->curr;
2914 	struct sched_entity *se = &curr->se, *pse = &p->se;
2915 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2916 	int scale = cfs_rq->nr_running >= sched_nr_latency;
2917 	int next_buddy_marked = 0;
2918 
2919 	if (unlikely(se == pse))
2920 		return;
2921 
2922 	/*
2923 	 * This is possible from callers such as pull_task(), in which we
2924 	 * unconditionally check_prempt_curr() after an enqueue (which may have
2925 	 * lead to a throttle).  This both saves work and prevents false
2926 	 * next-buddy nomination below.
2927 	 */
2928 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2929 		return;
2930 
2931 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2932 		set_next_buddy(pse);
2933 		next_buddy_marked = 1;
2934 	}
2935 
2936 	/*
2937 	 * We can come here with TIF_NEED_RESCHED already set from new task
2938 	 * wake up path.
2939 	 *
2940 	 * Note: this also catches the edge-case of curr being in a throttled
2941 	 * group (e.g. via set_curr_task), since update_curr() (in the
2942 	 * enqueue of curr) will have resulted in resched being set.  This
2943 	 * prevents us from potentially nominating it as a false LAST_BUDDY
2944 	 * below.
2945 	 */
2946 	if (test_tsk_need_resched(curr))
2947 		return;
2948 
2949 	/* Idle tasks are by definition preempted by non-idle tasks. */
2950 	if (unlikely(curr->policy == SCHED_IDLE) &&
2951 	    likely(p->policy != SCHED_IDLE))
2952 		goto preempt;
2953 
2954 	/*
2955 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2956 	 * is driven by the tick):
2957 	 */
2958 	if (unlikely(p->policy != SCHED_NORMAL))
2959 		return;
2960 
2961 	find_matching_se(&se, &pse);
2962 	update_curr(cfs_rq_of(se));
2963 	BUG_ON(!pse);
2964 	if (wakeup_preempt_entity(se, pse) == 1) {
2965 		/*
2966 		 * Bias pick_next to pick the sched entity that is
2967 		 * triggering this preemption.
2968 		 */
2969 		if (!next_buddy_marked)
2970 			set_next_buddy(pse);
2971 		goto preempt;
2972 	}
2973 
2974 	return;
2975 
2976 preempt:
2977 	resched_task(curr);
2978 	/*
2979 	 * Only set the backward buddy when the current task is still
2980 	 * on the rq. This can happen when a wakeup gets interleaved
2981 	 * with schedule on the ->pre_schedule() or idle_balance()
2982 	 * point, either of which can * drop the rq lock.
2983 	 *
2984 	 * Also, during early boot the idle thread is in the fair class,
2985 	 * for obvious reasons its a bad idea to schedule back to it.
2986 	 */
2987 	if (unlikely(!se->on_rq || curr == rq->idle))
2988 		return;
2989 
2990 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2991 		set_last_buddy(se);
2992 }
2993 
2994 static struct task_struct *pick_next_task_fair(struct rq *rq)
2995 {
2996 	struct task_struct *p;
2997 	struct cfs_rq *cfs_rq = &rq->cfs;
2998 	struct sched_entity *se;
2999 
3000 	if (!cfs_rq->nr_running)
3001 		return NULL;
3002 
3003 	do {
3004 		se = pick_next_entity(cfs_rq);
3005 		set_next_entity(cfs_rq, se);
3006 		cfs_rq = group_cfs_rq(se);
3007 	} while (cfs_rq);
3008 
3009 	p = task_of(se);
3010 	if (hrtick_enabled(rq))
3011 		hrtick_start_fair(rq, p);
3012 
3013 	return p;
3014 }
3015 
3016 /*
3017  * Account for a descheduled task:
3018  */
3019 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3020 {
3021 	struct sched_entity *se = &prev->se;
3022 	struct cfs_rq *cfs_rq;
3023 
3024 	for_each_sched_entity(se) {
3025 		cfs_rq = cfs_rq_of(se);
3026 		put_prev_entity(cfs_rq, se);
3027 	}
3028 }
3029 
3030 /*
3031  * sched_yield() is very simple
3032  *
3033  * The magic of dealing with the ->skip buddy is in pick_next_entity.
3034  */
3035 static void yield_task_fair(struct rq *rq)
3036 {
3037 	struct task_struct *curr = rq->curr;
3038 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3039 	struct sched_entity *se = &curr->se;
3040 
3041 	/*
3042 	 * Are we the only task in the tree?
3043 	 */
3044 	if (unlikely(rq->nr_running == 1))
3045 		return;
3046 
3047 	clear_buddies(cfs_rq, se);
3048 
3049 	if (curr->policy != SCHED_BATCH) {
3050 		update_rq_clock(rq);
3051 		/*
3052 		 * Update run-time statistics of the 'current'.
3053 		 */
3054 		update_curr(cfs_rq);
3055 		/*
3056 		 * Tell update_rq_clock() that we've just updated,
3057 		 * so we don't do microscopic update in schedule()
3058 		 * and double the fastpath cost.
3059 		 */
3060 		 rq->skip_clock_update = 1;
3061 	}
3062 
3063 	set_skip_buddy(se);
3064 }
3065 
3066 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3067 {
3068 	struct sched_entity *se = &p->se;
3069 
3070 	/* throttled hierarchies are not runnable */
3071 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3072 		return false;
3073 
3074 	/* Tell the scheduler that we'd really like pse to run next. */
3075 	set_next_buddy(se);
3076 
3077 	yield_task_fair(rq);
3078 
3079 	return true;
3080 }
3081 
3082 #ifdef CONFIG_SMP
3083 /**************************************************
3084  * Fair scheduling class load-balancing methods:
3085  */
3086 
3087 /*
3088  * pull_task - move a task from a remote runqueue to the local runqueue.
3089  * Both runqueues must be locked.
3090  */
3091 static void pull_task(struct rq *src_rq, struct task_struct *p,
3092 		      struct rq *this_rq, int this_cpu)
3093 {
3094 	deactivate_task(src_rq, p, 0);
3095 	set_task_cpu(p, this_cpu);
3096 	activate_task(this_rq, p, 0);
3097 	check_preempt_curr(this_rq, p, 0);
3098 }
3099 
3100 /*
3101  * Is this task likely cache-hot:
3102  */
3103 static int
3104 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3105 {
3106 	s64 delta;
3107 
3108 	if (p->sched_class != &fair_sched_class)
3109 		return 0;
3110 
3111 	if (unlikely(p->policy == SCHED_IDLE))
3112 		return 0;
3113 
3114 	/*
3115 	 * Buddy candidates are cache hot:
3116 	 */
3117 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3118 			(&p->se == cfs_rq_of(&p->se)->next ||
3119 			 &p->se == cfs_rq_of(&p->se)->last))
3120 		return 1;
3121 
3122 	if (sysctl_sched_migration_cost == -1)
3123 		return 1;
3124 	if (sysctl_sched_migration_cost == 0)
3125 		return 0;
3126 
3127 	delta = now - p->se.exec_start;
3128 
3129 	return delta < (s64)sysctl_sched_migration_cost;
3130 }
3131 
3132 #define LBF_ALL_PINNED	0x01
3133 #define LBF_NEED_BREAK	0x02
3134 #define LBF_ABORT	0x04
3135 
3136 /*
3137  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3138  */
3139 static
3140 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3141 		     struct sched_domain *sd, enum cpu_idle_type idle,
3142 		     int *lb_flags)
3143 {
3144 	int tsk_cache_hot = 0;
3145 	/*
3146 	 * We do not migrate tasks that are:
3147 	 * 1) running (obviously), or
3148 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3149 	 * 3) are cache-hot on their current CPU.
3150 	 */
3151 	if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
3152 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3153 		return 0;
3154 	}
3155 	*lb_flags &= ~LBF_ALL_PINNED;
3156 
3157 	if (task_running(rq, p)) {
3158 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3159 		return 0;
3160 	}
3161 
3162 	/*
3163 	 * Aggressive migration if:
3164 	 * 1) task is cache cold, or
3165 	 * 2) too many balance attempts have failed.
3166 	 */
3167 
3168 	tsk_cache_hot = task_hot(p, rq->clock_task, sd);
3169 	if (!tsk_cache_hot ||
3170 		sd->nr_balance_failed > sd->cache_nice_tries) {
3171 #ifdef CONFIG_SCHEDSTATS
3172 		if (tsk_cache_hot) {
3173 			schedstat_inc(sd, lb_hot_gained[idle]);
3174 			schedstat_inc(p, se.statistics.nr_forced_migrations);
3175 		}
3176 #endif
3177 		return 1;
3178 	}
3179 
3180 	if (tsk_cache_hot) {
3181 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3182 		return 0;
3183 	}
3184 	return 1;
3185 }
3186 
3187 /*
3188  * move_one_task tries to move exactly one task from busiest to this_rq, as
3189  * part of active balancing operations within "domain".
3190  * Returns 1 if successful and 0 otherwise.
3191  *
3192  * Called with both runqueues locked.
3193  */
3194 static int
3195 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3196 	      struct sched_domain *sd, enum cpu_idle_type idle)
3197 {
3198 	struct task_struct *p, *n;
3199 	struct cfs_rq *cfs_rq;
3200 	int pinned = 0;
3201 
3202 	for_each_leaf_cfs_rq(busiest, cfs_rq) {
3203 		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
3204 			if (throttled_lb_pair(task_group(p),
3205 					      busiest->cpu, this_cpu))
3206 				break;
3207 
3208 			if (!can_migrate_task(p, busiest, this_cpu,
3209 						sd, idle, &pinned))
3210 				continue;
3211 
3212 			pull_task(busiest, p, this_rq, this_cpu);
3213 			/*
3214 			 * Right now, this is only the second place pull_task()
3215 			 * is called, so we can safely collect pull_task()
3216 			 * stats here rather than inside pull_task().
3217 			 */
3218 			schedstat_inc(sd, lb_gained[idle]);
3219 			return 1;
3220 		}
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 static unsigned long
3227 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3228 	      unsigned long max_load_move, struct sched_domain *sd,
3229 	      enum cpu_idle_type idle, int *lb_flags,
3230 	      struct cfs_rq *busiest_cfs_rq)
3231 {
3232 	int loops = 0, pulled = 0;
3233 	long rem_load_move = max_load_move;
3234 	struct task_struct *p, *n;
3235 
3236 	if (max_load_move == 0)
3237 		goto out;
3238 
3239 	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
3240 		if (loops++ > sysctl_sched_nr_migrate) {
3241 			*lb_flags |= LBF_NEED_BREAK;
3242 			break;
3243 		}
3244 
3245 		if ((p->se.load.weight >> 1) > rem_load_move ||
3246 		    !can_migrate_task(p, busiest, this_cpu, sd, idle,
3247 				      lb_flags))
3248 			continue;
3249 
3250 		pull_task(busiest, p, this_rq, this_cpu);
3251 		pulled++;
3252 		rem_load_move -= p->se.load.weight;
3253 
3254 #ifdef CONFIG_PREEMPT
3255 		/*
3256 		 * NEWIDLE balancing is a source of latency, so preemptible
3257 		 * kernels will stop after the first task is pulled to minimize
3258 		 * the critical section.
3259 		 */
3260 		if (idle == CPU_NEWLY_IDLE) {
3261 			*lb_flags |= LBF_ABORT;
3262 			break;
3263 		}
3264 #endif
3265 
3266 		/*
3267 		 * We only want to steal up to the prescribed amount of
3268 		 * weighted load.
3269 		 */
3270 		if (rem_load_move <= 0)
3271 			break;
3272 	}
3273 out:
3274 	/*
3275 	 * Right now, this is one of only two places pull_task() is called,
3276 	 * so we can safely collect pull_task() stats here rather than
3277 	 * inside pull_task().
3278 	 */
3279 	schedstat_add(sd, lb_gained[idle], pulled);
3280 
3281 	return max_load_move - rem_load_move;
3282 }
3283 
3284 #ifdef CONFIG_FAIR_GROUP_SCHED
3285 /*
3286  * update tg->load_weight by folding this cpu's load_avg
3287  */
3288 static int update_shares_cpu(struct task_group *tg, int cpu)
3289 {
3290 	struct cfs_rq *cfs_rq;
3291 	unsigned long flags;
3292 	struct rq *rq;
3293 
3294 	if (!tg->se[cpu])
3295 		return 0;
3296 
3297 	rq = cpu_rq(cpu);
3298 	cfs_rq = tg->cfs_rq[cpu];
3299 
3300 	raw_spin_lock_irqsave(&rq->lock, flags);
3301 
3302 	update_rq_clock(rq);
3303 	update_cfs_load(cfs_rq, 1);
3304 
3305 	/*
3306 	 * We need to update shares after updating tg->load_weight in
3307 	 * order to adjust the weight of groups with long running tasks.
3308 	 */
3309 	update_cfs_shares(cfs_rq);
3310 
3311 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3312 
3313 	return 0;
3314 }
3315 
3316 static void update_shares(int cpu)
3317 {
3318 	struct cfs_rq *cfs_rq;
3319 	struct rq *rq = cpu_rq(cpu);
3320 
3321 	rcu_read_lock();
3322 	/*
3323 	 * Iterates the task_group tree in a bottom up fashion, see
3324 	 * list_add_leaf_cfs_rq() for details.
3325 	 */
3326 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3327 		/* throttled entities do not contribute to load */
3328 		if (throttled_hierarchy(cfs_rq))
3329 			continue;
3330 
3331 		update_shares_cpu(cfs_rq->tg, cpu);
3332 	}
3333 	rcu_read_unlock();
3334 }
3335 
3336 /*
3337  * Compute the cpu's hierarchical load factor for each task group.
3338  * This needs to be done in a top-down fashion because the load of a child
3339  * group is a fraction of its parents load.
3340  */
3341 static int tg_load_down(struct task_group *tg, void *data)
3342 {
3343 	unsigned long load;
3344 	long cpu = (long)data;
3345 
3346 	if (!tg->parent) {
3347 		load = cpu_rq(cpu)->load.weight;
3348 	} else {
3349 		load = tg->parent->cfs_rq[cpu]->h_load;
3350 		load *= tg->se[cpu]->load.weight;
3351 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3352 	}
3353 
3354 	tg->cfs_rq[cpu]->h_load = load;
3355 
3356 	return 0;
3357 }
3358 
3359 static void update_h_load(long cpu)
3360 {
3361 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3362 }
3363 
3364 static unsigned long
3365 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3366 		  unsigned long max_load_move,
3367 		  struct sched_domain *sd, enum cpu_idle_type idle,
3368 		  int *lb_flags)
3369 {
3370 	long rem_load_move = max_load_move;
3371 	struct cfs_rq *busiest_cfs_rq;
3372 
3373 	rcu_read_lock();
3374 	update_h_load(cpu_of(busiest));
3375 
3376 	for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
3377 		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3378 		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3379 		u64 rem_load, moved_load;
3380 
3381 		if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3382 			break;
3383 
3384 		/*
3385 		 * empty group or part of a throttled hierarchy
3386 		 */
3387 		if (!busiest_cfs_rq->task_weight ||
3388 		    throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
3389 			continue;
3390 
3391 		rem_load = (u64)rem_load_move * busiest_weight;
3392 		rem_load = div_u64(rem_load, busiest_h_load + 1);
3393 
3394 		moved_load = balance_tasks(this_rq, this_cpu, busiest,
3395 				rem_load, sd, idle, lb_flags,
3396 				busiest_cfs_rq);
3397 
3398 		if (!moved_load)
3399 			continue;
3400 
3401 		moved_load *= busiest_h_load;
3402 		moved_load = div_u64(moved_load, busiest_weight + 1);
3403 
3404 		rem_load_move -= moved_load;
3405 		if (rem_load_move < 0)
3406 			break;
3407 	}
3408 	rcu_read_unlock();
3409 
3410 	return max_load_move - rem_load_move;
3411 }
3412 #else
3413 static inline void update_shares(int cpu)
3414 {
3415 }
3416 
3417 static unsigned long
3418 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3419 		  unsigned long max_load_move,
3420 		  struct sched_domain *sd, enum cpu_idle_type idle,
3421 		  int *lb_flags)
3422 {
3423 	return balance_tasks(this_rq, this_cpu, busiest,
3424 			max_load_move, sd, idle, lb_flags,
3425 			&busiest->cfs);
3426 }
3427 #endif
3428 
3429 /*
3430  * move_tasks tries to move up to max_load_move weighted load from busiest to
3431  * this_rq, as part of a balancing operation within domain "sd".
3432  * Returns 1 if successful and 0 otherwise.
3433  *
3434  * Called with both runqueues locked.
3435  */
3436 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3437 		      unsigned long max_load_move,
3438 		      struct sched_domain *sd, enum cpu_idle_type idle,
3439 		      int *lb_flags)
3440 {
3441 	unsigned long total_load_moved = 0, load_moved;
3442 
3443 	do {
3444 		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
3445 				max_load_move - total_load_moved,
3446 				sd, idle, lb_flags);
3447 
3448 		total_load_moved += load_moved;
3449 
3450 		if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3451 			break;
3452 
3453 #ifdef CONFIG_PREEMPT
3454 		/*
3455 		 * NEWIDLE balancing is a source of latency, so preemptible
3456 		 * kernels will stop after the first task is pulled to minimize
3457 		 * the critical section.
3458 		 */
3459 		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
3460 			*lb_flags |= LBF_ABORT;
3461 			break;
3462 		}
3463 #endif
3464 	} while (load_moved && max_load_move > total_load_moved);
3465 
3466 	return total_load_moved > 0;
3467 }
3468 
3469 /********** Helpers for find_busiest_group ************************/
3470 /*
3471  * sd_lb_stats - Structure to store the statistics of a sched_domain
3472  * 		during load balancing.
3473  */
3474 struct sd_lb_stats {
3475 	struct sched_group *busiest; /* Busiest group in this sd */
3476 	struct sched_group *this;  /* Local group in this sd */
3477 	unsigned long total_load;  /* Total load of all groups in sd */
3478 	unsigned long total_pwr;   /*	Total power of all groups in sd */
3479 	unsigned long avg_load;	   /* Average load across all groups in sd */
3480 
3481 	/** Statistics of this group */
3482 	unsigned long this_load;
3483 	unsigned long this_load_per_task;
3484 	unsigned long this_nr_running;
3485 	unsigned long this_has_capacity;
3486 	unsigned int  this_idle_cpus;
3487 
3488 	/* Statistics of the busiest group */
3489 	unsigned int  busiest_idle_cpus;
3490 	unsigned long max_load;
3491 	unsigned long busiest_load_per_task;
3492 	unsigned long busiest_nr_running;
3493 	unsigned long busiest_group_capacity;
3494 	unsigned long busiest_has_capacity;
3495 	unsigned int  busiest_group_weight;
3496 
3497 	int group_imb; /* Is there imbalance in this sd */
3498 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3499 	int power_savings_balance; /* Is powersave balance needed for this sd */
3500 	struct sched_group *group_min; /* Least loaded group in sd */
3501 	struct sched_group *group_leader; /* Group which relieves group_min */
3502 	unsigned long min_load_per_task; /* load_per_task in group_min */
3503 	unsigned long leader_nr_running; /* Nr running of group_leader */
3504 	unsigned long min_nr_running; /* Nr running of group_min */
3505 #endif
3506 };
3507 
3508 /*
3509  * sg_lb_stats - stats of a sched_group required for load_balancing
3510  */
3511 struct sg_lb_stats {
3512 	unsigned long avg_load; /*Avg load across the CPUs of the group */
3513 	unsigned long group_load; /* Total load over the CPUs of the group */
3514 	unsigned long sum_nr_running; /* Nr tasks running in the group */
3515 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3516 	unsigned long group_capacity;
3517 	unsigned long idle_cpus;
3518 	unsigned long group_weight;
3519 	int group_imb; /* Is there an imbalance in the group ? */
3520 	int group_has_capacity; /* Is there extra capacity in the group? */
3521 };
3522 
3523 /**
3524  * get_sd_load_idx - Obtain the load index for a given sched domain.
3525  * @sd: The sched_domain whose load_idx is to be obtained.
3526  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3527  */
3528 static inline int get_sd_load_idx(struct sched_domain *sd,
3529 					enum cpu_idle_type idle)
3530 {
3531 	int load_idx;
3532 
3533 	switch (idle) {
3534 	case CPU_NOT_IDLE:
3535 		load_idx = sd->busy_idx;
3536 		break;
3537 
3538 	case CPU_NEWLY_IDLE:
3539 		load_idx = sd->newidle_idx;
3540 		break;
3541 	default:
3542 		load_idx = sd->idle_idx;
3543 		break;
3544 	}
3545 
3546 	return load_idx;
3547 }
3548 
3549 
3550 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3551 /**
3552  * init_sd_power_savings_stats - Initialize power savings statistics for
3553  * the given sched_domain, during load balancing.
3554  *
3555  * @sd: Sched domain whose power-savings statistics are to be initialized.
3556  * @sds: Variable containing the statistics for sd.
3557  * @idle: Idle status of the CPU at which we're performing load-balancing.
3558  */
3559 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3560 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
3561 {
3562 	/*
3563 	 * Busy processors will not participate in power savings
3564 	 * balance.
3565 	 */
3566 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3567 		sds->power_savings_balance = 0;
3568 	else {
3569 		sds->power_savings_balance = 1;
3570 		sds->min_nr_running = ULONG_MAX;
3571 		sds->leader_nr_running = 0;
3572 	}
3573 }
3574 
3575 /**
3576  * update_sd_power_savings_stats - Update the power saving stats for a
3577  * sched_domain while performing load balancing.
3578  *
3579  * @group: sched_group belonging to the sched_domain under consideration.
3580  * @sds: Variable containing the statistics of the sched_domain
3581  * @local_group: Does group contain the CPU for which we're performing
3582  * 		load balancing ?
3583  * @sgs: Variable containing the statistics of the group.
3584  */
3585 static inline void update_sd_power_savings_stats(struct sched_group *group,
3586 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3587 {
3588 
3589 	if (!sds->power_savings_balance)
3590 		return;
3591 
3592 	/*
3593 	 * If the local group is idle or completely loaded
3594 	 * no need to do power savings balance at this domain
3595 	 */
3596 	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3597 				!sds->this_nr_running))
3598 		sds->power_savings_balance = 0;
3599 
3600 	/*
3601 	 * If a group is already running at full capacity or idle,
3602 	 * don't include that group in power savings calculations
3603 	 */
3604 	if (!sds->power_savings_balance ||
3605 		sgs->sum_nr_running >= sgs->group_capacity ||
3606 		!sgs->sum_nr_running)
3607 		return;
3608 
3609 	/*
3610 	 * Calculate the group which has the least non-idle load.
3611 	 * This is the group from where we need to pick up the load
3612 	 * for saving power
3613 	 */
3614 	if ((sgs->sum_nr_running < sds->min_nr_running) ||
3615 	    (sgs->sum_nr_running == sds->min_nr_running &&
3616 	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3617 		sds->group_min = group;
3618 		sds->min_nr_running = sgs->sum_nr_running;
3619 		sds->min_load_per_task = sgs->sum_weighted_load /
3620 						sgs->sum_nr_running;
3621 	}
3622 
3623 	/*
3624 	 * Calculate the group which is almost near its
3625 	 * capacity but still has some space to pick up some load
3626 	 * from other group and save more power
3627 	 */
3628 	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3629 		return;
3630 
3631 	if (sgs->sum_nr_running > sds->leader_nr_running ||
3632 	    (sgs->sum_nr_running == sds->leader_nr_running &&
3633 	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3634 		sds->group_leader = group;
3635 		sds->leader_nr_running = sgs->sum_nr_running;
3636 	}
3637 }
3638 
3639 /**
3640  * check_power_save_busiest_group - see if there is potential for some power-savings balance
3641  * @sds: Variable containing the statistics of the sched_domain
3642  *	under consideration.
3643  * @this_cpu: Cpu at which we're currently performing load-balancing.
3644  * @imbalance: Variable to store the imbalance.
3645  *
3646  * Description:
3647  * Check if we have potential to perform some power-savings balance.
3648  * If yes, set the busiest group to be the least loaded group in the
3649  * sched_domain, so that it's CPUs can be put to idle.
3650  *
3651  * Returns 1 if there is potential to perform power-savings balance.
3652  * Else returns 0.
3653  */
3654 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3655 					int this_cpu, unsigned long *imbalance)
3656 {
3657 	if (!sds->power_savings_balance)
3658 		return 0;
3659 
3660 	if (sds->this != sds->group_leader ||
3661 			sds->group_leader == sds->group_min)
3662 		return 0;
3663 
3664 	*imbalance = sds->min_load_per_task;
3665 	sds->busiest = sds->group_min;
3666 
3667 	return 1;
3668 
3669 }
3670 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3671 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3672 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
3673 {
3674 	return;
3675 }
3676 
3677 static inline void update_sd_power_savings_stats(struct sched_group *group,
3678 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3679 {
3680 	return;
3681 }
3682 
3683 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3684 					int this_cpu, unsigned long *imbalance)
3685 {
3686 	return 0;
3687 }
3688 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3689 
3690 
3691 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3692 {
3693 	return SCHED_POWER_SCALE;
3694 }
3695 
3696 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3697 {
3698 	return default_scale_freq_power(sd, cpu);
3699 }
3700 
3701 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3702 {
3703 	unsigned long weight = sd->span_weight;
3704 	unsigned long smt_gain = sd->smt_gain;
3705 
3706 	smt_gain /= weight;
3707 
3708 	return smt_gain;
3709 }
3710 
3711 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3712 {
3713 	return default_scale_smt_power(sd, cpu);
3714 }
3715 
3716 unsigned long scale_rt_power(int cpu)
3717 {
3718 	struct rq *rq = cpu_rq(cpu);
3719 	u64 total, available;
3720 
3721 	total = sched_avg_period() + (rq->clock - rq->age_stamp);
3722 
3723 	if (unlikely(total < rq->rt_avg)) {
3724 		/* Ensures that power won't end up being negative */
3725 		available = 0;
3726 	} else {
3727 		available = total - rq->rt_avg;
3728 	}
3729 
3730 	if (unlikely((s64)total < SCHED_POWER_SCALE))
3731 		total = SCHED_POWER_SCALE;
3732 
3733 	total >>= SCHED_POWER_SHIFT;
3734 
3735 	return div_u64(available, total);
3736 }
3737 
3738 static void update_cpu_power(struct sched_domain *sd, int cpu)
3739 {
3740 	unsigned long weight = sd->span_weight;
3741 	unsigned long power = SCHED_POWER_SCALE;
3742 	struct sched_group *sdg = sd->groups;
3743 
3744 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3745 		if (sched_feat(ARCH_POWER))
3746 			power *= arch_scale_smt_power(sd, cpu);
3747 		else
3748 			power *= default_scale_smt_power(sd, cpu);
3749 
3750 		power >>= SCHED_POWER_SHIFT;
3751 	}
3752 
3753 	sdg->sgp->power_orig = power;
3754 
3755 	if (sched_feat(ARCH_POWER))
3756 		power *= arch_scale_freq_power(sd, cpu);
3757 	else
3758 		power *= default_scale_freq_power(sd, cpu);
3759 
3760 	power >>= SCHED_POWER_SHIFT;
3761 
3762 	power *= scale_rt_power(cpu);
3763 	power >>= SCHED_POWER_SHIFT;
3764 
3765 	if (!power)
3766 		power = 1;
3767 
3768 	cpu_rq(cpu)->cpu_power = power;
3769 	sdg->sgp->power = power;
3770 }
3771 
3772 void update_group_power(struct sched_domain *sd, int cpu)
3773 {
3774 	struct sched_domain *child = sd->child;
3775 	struct sched_group *group, *sdg = sd->groups;
3776 	unsigned long power;
3777 
3778 	if (!child) {
3779 		update_cpu_power(sd, cpu);
3780 		return;
3781 	}
3782 
3783 	power = 0;
3784 
3785 	group = child->groups;
3786 	do {
3787 		power += group->sgp->power;
3788 		group = group->next;
3789 	} while (group != child->groups);
3790 
3791 	sdg->sgp->power = power;
3792 }
3793 
3794 /*
3795  * Try and fix up capacity for tiny siblings, this is needed when
3796  * things like SD_ASYM_PACKING need f_b_g to select another sibling
3797  * which on its own isn't powerful enough.
3798  *
3799  * See update_sd_pick_busiest() and check_asym_packing().
3800  */
3801 static inline int
3802 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3803 {
3804 	/*
3805 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3806 	 */
3807 	if (!(sd->flags & SD_SHARE_CPUPOWER))
3808 		return 0;
3809 
3810 	/*
3811 	 * If ~90% of the cpu_power is still there, we're good.
3812 	 */
3813 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3814 		return 1;
3815 
3816 	return 0;
3817 }
3818 
3819 /**
3820  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3821  * @sd: The sched_domain whose statistics are to be updated.
3822  * @group: sched_group whose statistics are to be updated.
3823  * @this_cpu: Cpu for which load balance is currently performed.
3824  * @idle: Idle status of this_cpu
3825  * @load_idx: Load index of sched_domain of this_cpu for load calc.
3826  * @local_group: Does group contain this_cpu.
3827  * @cpus: Set of cpus considered for load balancing.
3828  * @balance: Should we balance.
3829  * @sgs: variable to hold the statistics for this group.
3830  */
3831 static inline void update_sg_lb_stats(struct sched_domain *sd,
3832 			struct sched_group *group, int this_cpu,
3833 			enum cpu_idle_type idle, int load_idx,
3834 			int local_group, const struct cpumask *cpus,
3835 			int *balance, struct sg_lb_stats *sgs)
3836 {
3837 	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3838 	int i;
3839 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3840 	unsigned long avg_load_per_task = 0;
3841 
3842 	if (local_group)
3843 		balance_cpu = group_first_cpu(group);
3844 
3845 	/* Tally up the load of all CPUs in the group */
3846 	max_cpu_load = 0;
3847 	min_cpu_load = ~0UL;
3848 	max_nr_running = 0;
3849 
3850 	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3851 		struct rq *rq = cpu_rq(i);
3852 
3853 		/* Bias balancing toward cpus of our domain */
3854 		if (local_group) {
3855 			if (idle_cpu(i) && !first_idle_cpu) {
3856 				first_idle_cpu = 1;
3857 				balance_cpu = i;
3858 			}
3859 
3860 			load = target_load(i, load_idx);
3861 		} else {
3862 			load = source_load(i, load_idx);
3863 			if (load > max_cpu_load) {
3864 				max_cpu_load = load;
3865 				max_nr_running = rq->nr_running;
3866 			}
3867 			if (min_cpu_load > load)
3868 				min_cpu_load = load;
3869 		}
3870 
3871 		sgs->group_load += load;
3872 		sgs->sum_nr_running += rq->nr_running;
3873 		sgs->sum_weighted_load += weighted_cpuload(i);
3874 		if (idle_cpu(i))
3875 			sgs->idle_cpus++;
3876 	}
3877 
3878 	/*
3879 	 * First idle cpu or the first cpu(busiest) in this sched group
3880 	 * is eligible for doing load balancing at this and above
3881 	 * domains. In the newly idle case, we will allow all the cpu's
3882 	 * to do the newly idle load balance.
3883 	 */
3884 	if (idle != CPU_NEWLY_IDLE && local_group) {
3885 		if (balance_cpu != this_cpu) {
3886 			*balance = 0;
3887 			return;
3888 		}
3889 		update_group_power(sd, this_cpu);
3890 	}
3891 
3892 	/* Adjust by relative CPU power of the group */
3893 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3894 
3895 	/*
3896 	 * Consider the group unbalanced when the imbalance is larger
3897 	 * than the average weight of a task.
3898 	 *
3899 	 * APZ: with cgroup the avg task weight can vary wildly and
3900 	 *      might not be a suitable number - should we keep a
3901 	 *      normalized nr_running number somewhere that negates
3902 	 *      the hierarchy?
3903 	 */
3904 	if (sgs->sum_nr_running)
3905 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3906 
3907 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3908 		sgs->group_imb = 1;
3909 
3910 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3911 						SCHED_POWER_SCALE);
3912 	if (!sgs->group_capacity)
3913 		sgs->group_capacity = fix_small_capacity(sd, group);
3914 	sgs->group_weight = group->group_weight;
3915 
3916 	if (sgs->group_capacity > sgs->sum_nr_running)
3917 		sgs->group_has_capacity = 1;
3918 }
3919 
3920 /**
3921  * update_sd_pick_busiest - return 1 on busiest group
3922  * @sd: sched_domain whose statistics are to be checked
3923  * @sds: sched_domain statistics
3924  * @sg: sched_group candidate to be checked for being the busiest
3925  * @sgs: sched_group statistics
3926  * @this_cpu: the current cpu
3927  *
3928  * Determine if @sg is a busier group than the previously selected
3929  * busiest group.
3930  */
3931 static bool update_sd_pick_busiest(struct sched_domain *sd,
3932 				   struct sd_lb_stats *sds,
3933 				   struct sched_group *sg,
3934 				   struct sg_lb_stats *sgs,
3935 				   int this_cpu)
3936 {
3937 	if (sgs->avg_load <= sds->max_load)
3938 		return false;
3939 
3940 	if (sgs->sum_nr_running > sgs->group_capacity)
3941 		return true;
3942 
3943 	if (sgs->group_imb)
3944 		return true;
3945 
3946 	/*
3947 	 * ASYM_PACKING needs to move all the work to the lowest
3948 	 * numbered CPUs in the group, therefore mark all groups
3949 	 * higher than ourself as busy.
3950 	 */
3951 	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3952 	    this_cpu < group_first_cpu(sg)) {
3953 		if (!sds->busiest)
3954 			return true;
3955 
3956 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3957 			return true;
3958 	}
3959 
3960 	return false;
3961 }
3962 
3963 /**
3964  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3965  * @sd: sched_domain whose statistics are to be updated.
3966  * @this_cpu: Cpu for which load balance is currently performed.
3967  * @idle: Idle status of this_cpu
3968  * @cpus: Set of cpus considered for load balancing.
3969  * @balance: Should we balance.
3970  * @sds: variable to hold the statistics for this sched_domain.
3971  */
3972 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3973 			enum cpu_idle_type idle, const struct cpumask *cpus,
3974 			int *balance, struct sd_lb_stats *sds)
3975 {
3976 	struct sched_domain *child = sd->child;
3977 	struct sched_group *sg = sd->groups;
3978 	struct sg_lb_stats sgs;
3979 	int load_idx, prefer_sibling = 0;
3980 
3981 	if (child && child->flags & SD_PREFER_SIBLING)
3982 		prefer_sibling = 1;
3983 
3984 	init_sd_power_savings_stats(sd, sds, idle);
3985 	load_idx = get_sd_load_idx(sd, idle);
3986 
3987 	do {
3988 		int local_group;
3989 
3990 		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3991 		memset(&sgs, 0, sizeof(sgs));
3992 		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3993 				local_group, cpus, balance, &sgs);
3994 
3995 		if (local_group && !(*balance))
3996 			return;
3997 
3998 		sds->total_load += sgs.group_load;
3999 		sds->total_pwr += sg->sgp->power;
4000 
4001 		/*
4002 		 * In case the child domain prefers tasks go to siblings
4003 		 * first, lower the sg capacity to one so that we'll try
4004 		 * and move all the excess tasks away. We lower the capacity
4005 		 * of a group only if the local group has the capacity to fit
4006 		 * these excess tasks, i.e. nr_running < group_capacity. The
4007 		 * extra check prevents the case where you always pull from the
4008 		 * heaviest group when it is already under-utilized (possible
4009 		 * with a large weight task outweighs the tasks on the system).
4010 		 */
4011 		if (prefer_sibling && !local_group && sds->this_has_capacity)
4012 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
4013 
4014 		if (local_group) {
4015 			sds->this_load = sgs.avg_load;
4016 			sds->this = sg;
4017 			sds->this_nr_running = sgs.sum_nr_running;
4018 			sds->this_load_per_task = sgs.sum_weighted_load;
4019 			sds->this_has_capacity = sgs.group_has_capacity;
4020 			sds->this_idle_cpus = sgs.idle_cpus;
4021 		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
4022 			sds->max_load = sgs.avg_load;
4023 			sds->busiest = sg;
4024 			sds->busiest_nr_running = sgs.sum_nr_running;
4025 			sds->busiest_idle_cpus = sgs.idle_cpus;
4026 			sds->busiest_group_capacity = sgs.group_capacity;
4027 			sds->busiest_load_per_task = sgs.sum_weighted_load;
4028 			sds->busiest_has_capacity = sgs.group_has_capacity;
4029 			sds->busiest_group_weight = sgs.group_weight;
4030 			sds->group_imb = sgs.group_imb;
4031 		}
4032 
4033 		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4034 		sg = sg->next;
4035 	} while (sg != sd->groups);
4036 }
4037 
4038 /**
4039  * check_asym_packing - Check to see if the group is packed into the
4040  *			sched doman.
4041  *
4042  * This is primarily intended to used at the sibling level.  Some
4043  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
4044  * case of POWER7, it can move to lower SMT modes only when higher
4045  * threads are idle.  When in lower SMT modes, the threads will
4046  * perform better since they share less core resources.  Hence when we
4047  * have idle threads, we want them to be the higher ones.
4048  *
4049  * This packing function is run on idle threads.  It checks to see if
4050  * the busiest CPU in this domain (core in the P7 case) has a higher
4051  * CPU number than the packing function is being run on.  Here we are
4052  * assuming lower CPU number will be equivalent to lower a SMT thread
4053  * number.
4054  *
4055  * Returns 1 when packing is required and a task should be moved to
4056  * this CPU.  The amount of the imbalance is returned in *imbalance.
4057  *
4058  * @sd: The sched_domain whose packing is to be checked.
4059  * @sds: Statistics of the sched_domain which is to be packed
4060  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4061  * @imbalance: returns amount of imbalanced due to packing.
4062  */
4063 static int check_asym_packing(struct sched_domain *sd,
4064 			      struct sd_lb_stats *sds,
4065 			      int this_cpu, unsigned long *imbalance)
4066 {
4067 	int busiest_cpu;
4068 
4069 	if (!(sd->flags & SD_ASYM_PACKING))
4070 		return 0;
4071 
4072 	if (!sds->busiest)
4073 		return 0;
4074 
4075 	busiest_cpu = group_first_cpu(sds->busiest);
4076 	if (this_cpu > busiest_cpu)
4077 		return 0;
4078 
4079 	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
4080 				       SCHED_POWER_SCALE);
4081 	return 1;
4082 }
4083 
4084 /**
4085  * fix_small_imbalance - Calculate the minor imbalance that exists
4086  *			amongst the groups of a sched_domain, during
4087  *			load balancing.
4088  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4089  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4090  * @imbalance: Variable to store the imbalance.
4091  */
4092 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4093 				int this_cpu, unsigned long *imbalance)
4094 {
4095 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
4096 	unsigned int imbn = 2;
4097 	unsigned long scaled_busy_load_per_task;
4098 
4099 	if (sds->this_nr_running) {
4100 		sds->this_load_per_task /= sds->this_nr_running;
4101 		if (sds->busiest_load_per_task >
4102 				sds->this_load_per_task)
4103 			imbn = 1;
4104 	} else
4105 		sds->this_load_per_task =
4106 			cpu_avg_load_per_task(this_cpu);
4107 
4108 	scaled_busy_load_per_task = sds->busiest_load_per_task
4109 					 * SCHED_POWER_SCALE;
4110 	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4111 
4112 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4113 			(scaled_busy_load_per_task * imbn)) {
4114 		*imbalance = sds->busiest_load_per_task;
4115 		return;
4116 	}
4117 
4118 	/*
4119 	 * OK, we don't have enough imbalance to justify moving tasks,
4120 	 * however we may be able to increase total CPU power used by
4121 	 * moving them.
4122 	 */
4123 
4124 	pwr_now += sds->busiest->sgp->power *
4125 			min(sds->busiest_load_per_task, sds->max_load);
4126 	pwr_now += sds->this->sgp->power *
4127 			min(sds->this_load_per_task, sds->this_load);
4128 	pwr_now /= SCHED_POWER_SCALE;
4129 
4130 	/* Amount of load we'd subtract */
4131 	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4132 		sds->busiest->sgp->power;
4133 	if (sds->max_load > tmp)
4134 		pwr_move += sds->busiest->sgp->power *
4135 			min(sds->busiest_load_per_task, sds->max_load - tmp);
4136 
4137 	/* Amount of load we'd add */
4138 	if (sds->max_load * sds->busiest->sgp->power <
4139 		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4140 		tmp = (sds->max_load * sds->busiest->sgp->power) /
4141 			sds->this->sgp->power;
4142 	else
4143 		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4144 			sds->this->sgp->power;
4145 	pwr_move += sds->this->sgp->power *
4146 			min(sds->this_load_per_task, sds->this_load + tmp);
4147 	pwr_move /= SCHED_POWER_SCALE;
4148 
4149 	/* Move if we gain throughput */
4150 	if (pwr_move > pwr_now)
4151 		*imbalance = sds->busiest_load_per_task;
4152 }
4153 
4154 /**
4155  * calculate_imbalance - Calculate the amount of imbalance present within the
4156  *			 groups of a given sched_domain during load balance.
4157  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4158  * @this_cpu: Cpu for which currently load balance is being performed.
4159  * @imbalance: The variable to store the imbalance.
4160  */
4161 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4162 		unsigned long *imbalance)
4163 {
4164 	unsigned long max_pull, load_above_capacity = ~0UL;
4165 
4166 	sds->busiest_load_per_task /= sds->busiest_nr_running;
4167 	if (sds->group_imb) {
4168 		sds->busiest_load_per_task =
4169 			min(sds->busiest_load_per_task, sds->avg_load);
4170 	}
4171 
4172 	/*
4173 	 * In the presence of smp nice balancing, certain scenarios can have
4174 	 * max load less than avg load(as we skip the groups at or below
4175 	 * its cpu_power, while calculating max_load..)
4176 	 */
4177 	if (sds->max_load < sds->avg_load) {
4178 		*imbalance = 0;
4179 		return fix_small_imbalance(sds, this_cpu, imbalance);
4180 	}
4181 
4182 	if (!sds->group_imb) {
4183 		/*
4184 		 * Don't want to pull so many tasks that a group would go idle.
4185 		 */
4186 		load_above_capacity = (sds->busiest_nr_running -
4187 						sds->busiest_group_capacity);
4188 
4189 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4190 
4191 		load_above_capacity /= sds->busiest->sgp->power;
4192 	}
4193 
4194 	/*
4195 	 * We're trying to get all the cpus to the average_load, so we don't
4196 	 * want to push ourselves above the average load, nor do we wish to
4197 	 * reduce the max loaded cpu below the average load. At the same time,
4198 	 * we also don't want to reduce the group load below the group capacity
4199 	 * (so that we can implement power-savings policies etc). Thus we look
4200 	 * for the minimum possible imbalance.
4201 	 * Be careful of negative numbers as they'll appear as very large values
4202 	 * with unsigned longs.
4203 	 */
4204 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4205 
4206 	/* How much load to actually move to equalise the imbalance */
4207 	*imbalance = min(max_pull * sds->busiest->sgp->power,
4208 		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4209 			/ SCHED_POWER_SCALE;
4210 
4211 	/*
4212 	 * if *imbalance is less than the average load per runnable task
4213 	 * there is no guarantee that any tasks will be moved so we'll have
4214 	 * a think about bumping its value to force at least one task to be
4215 	 * moved
4216 	 */
4217 	if (*imbalance < sds->busiest_load_per_task)
4218 		return fix_small_imbalance(sds, this_cpu, imbalance);
4219 
4220 }
4221 
4222 /******* find_busiest_group() helpers end here *********************/
4223 
4224 /**
4225  * find_busiest_group - Returns the busiest group within the sched_domain
4226  * if there is an imbalance. If there isn't an imbalance, and
4227  * the user has opted for power-savings, it returns a group whose
4228  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4229  * such a group exists.
4230  *
4231  * Also calculates the amount of weighted load which should be moved
4232  * to restore balance.
4233  *
4234  * @sd: The sched_domain whose busiest group is to be returned.
4235  * @this_cpu: The cpu for which load balancing is currently being performed.
4236  * @imbalance: Variable which stores amount of weighted load which should
4237  *		be moved to restore balance/put a group to idle.
4238  * @idle: The idle status of this_cpu.
4239  * @cpus: The set of CPUs under consideration for load-balancing.
4240  * @balance: Pointer to a variable indicating if this_cpu
4241  *	is the appropriate cpu to perform load balancing at this_level.
4242  *
4243  * Returns:	- the busiest group if imbalance exists.
4244  *		- If no imbalance and user has opted for power-savings balance,
4245  *		   return the least loaded group whose CPUs can be
4246  *		   put to idle by rebalancing its tasks onto our group.
4247  */
4248 static struct sched_group *
4249 find_busiest_group(struct sched_domain *sd, int this_cpu,
4250 		   unsigned long *imbalance, enum cpu_idle_type idle,
4251 		   const struct cpumask *cpus, int *balance)
4252 {
4253 	struct sd_lb_stats sds;
4254 
4255 	memset(&sds, 0, sizeof(sds));
4256 
4257 	/*
4258 	 * Compute the various statistics relavent for load balancing at
4259 	 * this level.
4260 	 */
4261 	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
4262 
4263 	/*
4264 	 * this_cpu is not the appropriate cpu to perform load balancing at
4265 	 * this level.
4266 	 */
4267 	if (!(*balance))
4268 		goto ret;
4269 
4270 	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4271 	    check_asym_packing(sd, &sds, this_cpu, imbalance))
4272 		return sds.busiest;
4273 
4274 	/* There is no busy sibling group to pull tasks from */
4275 	if (!sds.busiest || sds.busiest_nr_running == 0)
4276 		goto out_balanced;
4277 
4278 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4279 
4280 	/*
4281 	 * If the busiest group is imbalanced the below checks don't
4282 	 * work because they assumes all things are equal, which typically
4283 	 * isn't true due to cpus_allowed constraints and the like.
4284 	 */
4285 	if (sds.group_imb)
4286 		goto force_balance;
4287 
4288 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4289 	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4290 			!sds.busiest_has_capacity)
4291 		goto force_balance;
4292 
4293 	/*
4294 	 * If the local group is more busy than the selected busiest group
4295 	 * don't try and pull any tasks.
4296 	 */
4297 	if (sds.this_load >= sds.max_load)
4298 		goto out_balanced;
4299 
4300 	/*
4301 	 * Don't pull any tasks if this group is already above the domain
4302 	 * average load.
4303 	 */
4304 	if (sds.this_load >= sds.avg_load)
4305 		goto out_balanced;
4306 
4307 	if (idle == CPU_IDLE) {
4308 		/*
4309 		 * This cpu is idle. If the busiest group load doesn't
4310 		 * have more tasks than the number of available cpu's and
4311 		 * there is no imbalance between this and busiest group
4312 		 * wrt to idle cpu's, it is balanced.
4313 		 */
4314 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4315 		    sds.busiest_nr_running <= sds.busiest_group_weight)
4316 			goto out_balanced;
4317 	} else {
4318 		/*
4319 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4320 		 * imbalance_pct to be conservative.
4321 		 */
4322 		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4323 			goto out_balanced;
4324 	}
4325 
4326 force_balance:
4327 	/* Looks like there is an imbalance. Compute it */
4328 	calculate_imbalance(&sds, this_cpu, imbalance);
4329 	return sds.busiest;
4330 
4331 out_balanced:
4332 	/*
4333 	 * There is no obvious imbalance. But check if we can do some balancing
4334 	 * to save power.
4335 	 */
4336 	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4337 		return sds.busiest;
4338 ret:
4339 	*imbalance = 0;
4340 	return NULL;
4341 }
4342 
4343 /*
4344  * find_busiest_queue - find the busiest runqueue among the cpus in group.
4345  */
4346 static struct rq *
4347 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4348 		   enum cpu_idle_type idle, unsigned long imbalance,
4349 		   const struct cpumask *cpus)
4350 {
4351 	struct rq *busiest = NULL, *rq;
4352 	unsigned long max_load = 0;
4353 	int i;
4354 
4355 	for_each_cpu(i, sched_group_cpus(group)) {
4356 		unsigned long power = power_of(i);
4357 		unsigned long capacity = DIV_ROUND_CLOSEST(power,
4358 							   SCHED_POWER_SCALE);
4359 		unsigned long wl;
4360 
4361 		if (!capacity)
4362 			capacity = fix_small_capacity(sd, group);
4363 
4364 		if (!cpumask_test_cpu(i, cpus))
4365 			continue;
4366 
4367 		rq = cpu_rq(i);
4368 		wl = weighted_cpuload(i);
4369 
4370 		/*
4371 		 * When comparing with imbalance, use weighted_cpuload()
4372 		 * which is not scaled with the cpu power.
4373 		 */
4374 		if (capacity && rq->nr_running == 1 && wl > imbalance)
4375 			continue;
4376 
4377 		/*
4378 		 * For the load comparisons with the other cpu's, consider
4379 		 * the weighted_cpuload() scaled with the cpu power, so that
4380 		 * the load can be moved away from the cpu that is potentially
4381 		 * running at a lower capacity.
4382 		 */
4383 		wl = (wl * SCHED_POWER_SCALE) / power;
4384 
4385 		if (wl > max_load) {
4386 			max_load = wl;
4387 			busiest = rq;
4388 		}
4389 	}
4390 
4391 	return busiest;
4392 }
4393 
4394 /*
4395  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4396  * so long as it is large enough.
4397  */
4398 #define MAX_PINNED_INTERVAL	512
4399 
4400 /* Working cpumask for load_balance and load_balance_newidle. */
4401 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4402 
4403 static int need_active_balance(struct sched_domain *sd, int idle,
4404 			       int busiest_cpu, int this_cpu)
4405 {
4406 	if (idle == CPU_NEWLY_IDLE) {
4407 
4408 		/*
4409 		 * ASYM_PACKING needs to force migrate tasks from busy but
4410 		 * higher numbered CPUs in order to pack all tasks in the
4411 		 * lowest numbered CPUs.
4412 		 */
4413 		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4414 			return 1;
4415 
4416 		/*
4417 		 * The only task running in a non-idle cpu can be moved to this
4418 		 * cpu in an attempt to completely freeup the other CPU
4419 		 * package.
4420 		 *
4421 		 * The package power saving logic comes from
4422 		 * find_busiest_group(). If there are no imbalance, then
4423 		 * f_b_g() will return NULL. However when sched_mc={1,2} then
4424 		 * f_b_g() will select a group from which a running task may be
4425 		 * pulled to this cpu in order to make the other package idle.
4426 		 * If there is no opportunity to make a package idle and if
4427 		 * there are no imbalance, then f_b_g() will return NULL and no
4428 		 * action will be taken in load_balance_newidle().
4429 		 *
4430 		 * Under normal task pull operation due to imbalance, there
4431 		 * will be more than one task in the source run queue and
4432 		 * move_tasks() will succeed.  ld_moved will be true and this
4433 		 * active balance code will not be triggered.
4434 		 */
4435 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4436 			return 0;
4437 	}
4438 
4439 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4440 }
4441 
4442 static int active_load_balance_cpu_stop(void *data);
4443 
4444 /*
4445  * Check this_cpu to ensure it is balanced within domain. Attempt to move
4446  * tasks if there is an imbalance.
4447  */
4448 static int load_balance(int this_cpu, struct rq *this_rq,
4449 			struct sched_domain *sd, enum cpu_idle_type idle,
4450 			int *balance)
4451 {
4452 	int ld_moved, lb_flags = 0, active_balance = 0;
4453 	struct sched_group *group;
4454 	unsigned long imbalance;
4455 	struct rq *busiest;
4456 	unsigned long flags;
4457 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4458 
4459 	cpumask_copy(cpus, cpu_active_mask);
4460 
4461 	schedstat_inc(sd, lb_count[idle]);
4462 
4463 redo:
4464 	group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4465 				   cpus, balance);
4466 
4467 	if (*balance == 0)
4468 		goto out_balanced;
4469 
4470 	if (!group) {
4471 		schedstat_inc(sd, lb_nobusyg[idle]);
4472 		goto out_balanced;
4473 	}
4474 
4475 	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4476 	if (!busiest) {
4477 		schedstat_inc(sd, lb_nobusyq[idle]);
4478 		goto out_balanced;
4479 	}
4480 
4481 	BUG_ON(busiest == this_rq);
4482 
4483 	schedstat_add(sd, lb_imbalance[idle], imbalance);
4484 
4485 	ld_moved = 0;
4486 	if (busiest->nr_running > 1) {
4487 		/*
4488 		 * Attempt to move tasks. If find_busiest_group has found
4489 		 * an imbalance but busiest->nr_running <= 1, the group is
4490 		 * still unbalanced. ld_moved simply stays zero, so it is
4491 		 * correctly treated as an imbalance.
4492 		 */
4493 		lb_flags |= LBF_ALL_PINNED;
4494 		local_irq_save(flags);
4495 		double_rq_lock(this_rq, busiest);
4496 		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4497 				      imbalance, sd, idle, &lb_flags);
4498 		double_rq_unlock(this_rq, busiest);
4499 		local_irq_restore(flags);
4500 
4501 		/*
4502 		 * some other cpu did the load balance for us.
4503 		 */
4504 		if (ld_moved && this_cpu != smp_processor_id())
4505 			resched_cpu(this_cpu);
4506 
4507 		if (lb_flags & LBF_ABORT)
4508 			goto out_balanced;
4509 
4510 		if (lb_flags & LBF_NEED_BREAK) {
4511 			lb_flags &= ~LBF_NEED_BREAK;
4512 			goto redo;
4513 		}
4514 
4515 		/* All tasks on this runqueue were pinned by CPU affinity */
4516 		if (unlikely(lb_flags & LBF_ALL_PINNED)) {
4517 			cpumask_clear_cpu(cpu_of(busiest), cpus);
4518 			if (!cpumask_empty(cpus))
4519 				goto redo;
4520 			goto out_balanced;
4521 		}
4522 	}
4523 
4524 	if (!ld_moved) {
4525 		schedstat_inc(sd, lb_failed[idle]);
4526 		/*
4527 		 * Increment the failure counter only on periodic balance.
4528 		 * We do not want newidle balance, which can be very
4529 		 * frequent, pollute the failure counter causing
4530 		 * excessive cache_hot migrations and active balances.
4531 		 */
4532 		if (idle != CPU_NEWLY_IDLE)
4533 			sd->nr_balance_failed++;
4534 
4535 		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4536 			raw_spin_lock_irqsave(&busiest->lock, flags);
4537 
4538 			/* don't kick the active_load_balance_cpu_stop,
4539 			 * if the curr task on busiest cpu can't be
4540 			 * moved to this_cpu
4541 			 */
4542 			if (!cpumask_test_cpu(this_cpu,
4543 					tsk_cpus_allowed(busiest->curr))) {
4544 				raw_spin_unlock_irqrestore(&busiest->lock,
4545 							    flags);
4546 				lb_flags |= LBF_ALL_PINNED;
4547 				goto out_one_pinned;
4548 			}
4549 
4550 			/*
4551 			 * ->active_balance synchronizes accesses to
4552 			 * ->active_balance_work.  Once set, it's cleared
4553 			 * only after active load balance is finished.
4554 			 */
4555 			if (!busiest->active_balance) {
4556 				busiest->active_balance = 1;
4557 				busiest->push_cpu = this_cpu;
4558 				active_balance = 1;
4559 			}
4560 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4561 
4562 			if (active_balance)
4563 				stop_one_cpu_nowait(cpu_of(busiest),
4564 					active_load_balance_cpu_stop, busiest,
4565 					&busiest->active_balance_work);
4566 
4567 			/*
4568 			 * We've kicked active balancing, reset the failure
4569 			 * counter.
4570 			 */
4571 			sd->nr_balance_failed = sd->cache_nice_tries+1;
4572 		}
4573 	} else
4574 		sd->nr_balance_failed = 0;
4575 
4576 	if (likely(!active_balance)) {
4577 		/* We were unbalanced, so reset the balancing interval */
4578 		sd->balance_interval = sd->min_interval;
4579 	} else {
4580 		/*
4581 		 * If we've begun active balancing, start to back off. This
4582 		 * case may not be covered by the all_pinned logic if there
4583 		 * is only 1 task on the busy runqueue (because we don't call
4584 		 * move_tasks).
4585 		 */
4586 		if (sd->balance_interval < sd->max_interval)
4587 			sd->balance_interval *= 2;
4588 	}
4589 
4590 	goto out;
4591 
4592 out_balanced:
4593 	schedstat_inc(sd, lb_balanced[idle]);
4594 
4595 	sd->nr_balance_failed = 0;
4596 
4597 out_one_pinned:
4598 	/* tune up the balancing interval */
4599 	if (((lb_flags & LBF_ALL_PINNED) &&
4600 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4601 			(sd->balance_interval < sd->max_interval))
4602 		sd->balance_interval *= 2;
4603 
4604 	ld_moved = 0;
4605 out:
4606 	return ld_moved;
4607 }
4608 
4609 /*
4610  * idle_balance is called by schedule() if this_cpu is about to become
4611  * idle. Attempts to pull tasks from other CPUs.
4612  */
4613 void idle_balance(int this_cpu, struct rq *this_rq)
4614 {
4615 	struct sched_domain *sd;
4616 	int pulled_task = 0;
4617 	unsigned long next_balance = jiffies + HZ;
4618 
4619 	this_rq->idle_stamp = this_rq->clock;
4620 
4621 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
4622 		return;
4623 
4624 	/*
4625 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
4626 	 */
4627 	raw_spin_unlock(&this_rq->lock);
4628 
4629 	update_shares(this_cpu);
4630 	rcu_read_lock();
4631 	for_each_domain(this_cpu, sd) {
4632 		unsigned long interval;
4633 		int balance = 1;
4634 
4635 		if (!(sd->flags & SD_LOAD_BALANCE))
4636 			continue;
4637 
4638 		if (sd->flags & SD_BALANCE_NEWIDLE) {
4639 			/* If we've pulled tasks over stop searching: */
4640 			pulled_task = load_balance(this_cpu, this_rq,
4641 						   sd, CPU_NEWLY_IDLE, &balance);
4642 		}
4643 
4644 		interval = msecs_to_jiffies(sd->balance_interval);
4645 		if (time_after(next_balance, sd->last_balance + interval))
4646 			next_balance = sd->last_balance + interval;
4647 		if (pulled_task) {
4648 			this_rq->idle_stamp = 0;
4649 			break;
4650 		}
4651 	}
4652 	rcu_read_unlock();
4653 
4654 	raw_spin_lock(&this_rq->lock);
4655 
4656 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4657 		/*
4658 		 * We are going idle. next_balance may be set based on
4659 		 * a busy processor. So reset next_balance.
4660 		 */
4661 		this_rq->next_balance = next_balance;
4662 	}
4663 }
4664 
4665 /*
4666  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4667  * running tasks off the busiest CPU onto idle CPUs. It requires at
4668  * least 1 task to be running on each physical CPU where possible, and
4669  * avoids physical / logical imbalances.
4670  */
4671 static int active_load_balance_cpu_stop(void *data)
4672 {
4673 	struct rq *busiest_rq = data;
4674 	int busiest_cpu = cpu_of(busiest_rq);
4675 	int target_cpu = busiest_rq->push_cpu;
4676 	struct rq *target_rq = cpu_rq(target_cpu);
4677 	struct sched_domain *sd;
4678 
4679 	raw_spin_lock_irq(&busiest_rq->lock);
4680 
4681 	/* make sure the requested cpu hasn't gone down in the meantime */
4682 	if (unlikely(busiest_cpu != smp_processor_id() ||
4683 		     !busiest_rq->active_balance))
4684 		goto out_unlock;
4685 
4686 	/* Is there any task to move? */
4687 	if (busiest_rq->nr_running <= 1)
4688 		goto out_unlock;
4689 
4690 	/*
4691 	 * This condition is "impossible", if it occurs
4692 	 * we need to fix it. Originally reported by
4693 	 * Bjorn Helgaas on a 128-cpu setup.
4694 	 */
4695 	BUG_ON(busiest_rq == target_rq);
4696 
4697 	/* move a task from busiest_rq to target_rq */
4698 	double_lock_balance(busiest_rq, target_rq);
4699 
4700 	/* Search for an sd spanning us and the target CPU. */
4701 	rcu_read_lock();
4702 	for_each_domain(target_cpu, sd) {
4703 		if ((sd->flags & SD_LOAD_BALANCE) &&
4704 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4705 				break;
4706 	}
4707 
4708 	if (likely(sd)) {
4709 		schedstat_inc(sd, alb_count);
4710 
4711 		if (move_one_task(target_rq, target_cpu, busiest_rq,
4712 				  sd, CPU_IDLE))
4713 			schedstat_inc(sd, alb_pushed);
4714 		else
4715 			schedstat_inc(sd, alb_failed);
4716 	}
4717 	rcu_read_unlock();
4718 	double_unlock_balance(busiest_rq, target_rq);
4719 out_unlock:
4720 	busiest_rq->active_balance = 0;
4721 	raw_spin_unlock_irq(&busiest_rq->lock);
4722 	return 0;
4723 }
4724 
4725 #ifdef CONFIG_NO_HZ
4726 /*
4727  * idle load balancing details
4728  * - When one of the busy CPUs notice that there may be an idle rebalancing
4729  *   needed, they will kick the idle load balancer, which then does idle
4730  *   load balancing for all the idle CPUs.
4731  */
4732 static struct {
4733 	cpumask_var_t idle_cpus_mask;
4734 	atomic_t nr_cpus;
4735 	unsigned long next_balance;     /* in jiffy units */
4736 } nohz ____cacheline_aligned;
4737 
4738 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4739 /**
4740  * lowest_flag_domain - Return lowest sched_domain containing flag.
4741  * @cpu:	The cpu whose lowest level of sched domain is to
4742  *		be returned.
4743  * @flag:	The flag to check for the lowest sched_domain
4744  *		for the given cpu.
4745  *
4746  * Returns the lowest sched_domain of a cpu which contains the given flag.
4747  */
4748 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4749 {
4750 	struct sched_domain *sd;
4751 
4752 	for_each_domain(cpu, sd)
4753 		if (sd->flags & flag)
4754 			break;
4755 
4756 	return sd;
4757 }
4758 
4759 /**
4760  * for_each_flag_domain - Iterates over sched_domains containing the flag.
4761  * @cpu:	The cpu whose domains we're iterating over.
4762  * @sd:		variable holding the value of the power_savings_sd
4763  *		for cpu.
4764  * @flag:	The flag to filter the sched_domains to be iterated.
4765  *
4766  * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4767  * set, starting from the lowest sched_domain to the highest.
4768  */
4769 #define for_each_flag_domain(cpu, sd, flag) \
4770 	for (sd = lowest_flag_domain(cpu, flag); \
4771 		(sd && (sd->flags & flag)); sd = sd->parent)
4772 
4773 /**
4774  * find_new_ilb - Finds the optimum idle load balancer for nomination.
4775  * @cpu:	The cpu which is nominating a new idle_load_balancer.
4776  *
4777  * Returns:	Returns the id of the idle load balancer if it exists,
4778  *		Else, returns >= nr_cpu_ids.
4779  *
4780  * This algorithm picks the idle load balancer such that it belongs to a
4781  * semi-idle powersavings sched_domain. The idea is to try and avoid
4782  * completely idle packages/cores just for the purpose of idle load balancing
4783  * when there are other idle cpu's which are better suited for that job.
4784  */
4785 static int find_new_ilb(int cpu)
4786 {
4787 	int ilb = cpumask_first(nohz.idle_cpus_mask);
4788 	struct sched_group *ilbg;
4789 	struct sched_domain *sd;
4790 
4791 	/*
4792 	 * Have idle load balancer selection from semi-idle packages only
4793 	 * when power-aware load balancing is enabled
4794 	 */
4795 	if (!(sched_smt_power_savings || sched_mc_power_savings))
4796 		goto out_done;
4797 
4798 	/*
4799 	 * Optimize for the case when we have no idle CPUs or only one
4800 	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4801 	 */
4802 	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4803 		goto out_done;
4804 
4805 	rcu_read_lock();
4806 	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4807 		ilbg = sd->groups;
4808 
4809 		do {
4810 			if (ilbg->group_weight !=
4811 				atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4812 				ilb = cpumask_first_and(nohz.idle_cpus_mask,
4813 							sched_group_cpus(ilbg));
4814 				goto unlock;
4815 			}
4816 
4817 			ilbg = ilbg->next;
4818 
4819 		} while (ilbg != sd->groups);
4820 	}
4821 unlock:
4822 	rcu_read_unlock();
4823 
4824 out_done:
4825 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
4826 		return ilb;
4827 
4828 	return nr_cpu_ids;
4829 }
4830 #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4831 static inline int find_new_ilb(int call_cpu)
4832 {
4833 	return nr_cpu_ids;
4834 }
4835 #endif
4836 
4837 /*
4838  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4839  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4840  * CPU (if there is one).
4841  */
4842 static void nohz_balancer_kick(int cpu)
4843 {
4844 	int ilb_cpu;
4845 
4846 	nohz.next_balance++;
4847 
4848 	ilb_cpu = find_new_ilb(cpu);
4849 
4850 	if (ilb_cpu >= nr_cpu_ids)
4851 		return;
4852 
4853 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4854 		return;
4855 	/*
4856 	 * Use smp_send_reschedule() instead of resched_cpu().
4857 	 * This way we generate a sched IPI on the target cpu which
4858 	 * is idle. And the softirq performing nohz idle load balance
4859 	 * will be run before returning from the IPI.
4860 	 */
4861 	smp_send_reschedule(ilb_cpu);
4862 	return;
4863 }
4864 
4865 static inline void set_cpu_sd_state_busy(void)
4866 {
4867 	struct sched_domain *sd;
4868 	int cpu = smp_processor_id();
4869 
4870 	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4871 		return;
4872 	clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4873 
4874 	rcu_read_lock();
4875 	for_each_domain(cpu, sd)
4876 		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4877 	rcu_read_unlock();
4878 }
4879 
4880 void set_cpu_sd_state_idle(void)
4881 {
4882 	struct sched_domain *sd;
4883 	int cpu = smp_processor_id();
4884 
4885 	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4886 		return;
4887 	set_bit(NOHZ_IDLE, nohz_flags(cpu));
4888 
4889 	rcu_read_lock();
4890 	for_each_domain(cpu, sd)
4891 		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4892 	rcu_read_unlock();
4893 }
4894 
4895 /*
4896  * This routine will record that this cpu is going idle with tick stopped.
4897  * This info will be used in performing idle load balancing in the future.
4898  */
4899 void select_nohz_load_balancer(int stop_tick)
4900 {
4901 	int cpu = smp_processor_id();
4902 
4903 	if (stop_tick) {
4904 		if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4905 			return;
4906 
4907 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4908 		atomic_inc(&nohz.nr_cpus);
4909 		set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4910 	}
4911 	return;
4912 }
4913 #endif
4914 
4915 static DEFINE_SPINLOCK(balancing);
4916 
4917 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4918 
4919 /*
4920  * Scale the max load_balance interval with the number of CPUs in the system.
4921  * This trades load-balance latency on larger machines for less cross talk.
4922  */
4923 void update_max_interval(void)
4924 {
4925 	max_load_balance_interval = HZ*num_online_cpus()/10;
4926 }
4927 
4928 /*
4929  * It checks each scheduling domain to see if it is due to be balanced,
4930  * and initiates a balancing operation if so.
4931  *
4932  * Balancing parameters are set up in arch_init_sched_domains.
4933  */
4934 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4935 {
4936 	int balance = 1;
4937 	struct rq *rq = cpu_rq(cpu);
4938 	unsigned long interval;
4939 	struct sched_domain *sd;
4940 	/* Earliest time when we have to do rebalance again */
4941 	unsigned long next_balance = jiffies + 60*HZ;
4942 	int update_next_balance = 0;
4943 	int need_serialize;
4944 
4945 	update_shares(cpu);
4946 
4947 	rcu_read_lock();
4948 	for_each_domain(cpu, sd) {
4949 		if (!(sd->flags & SD_LOAD_BALANCE))
4950 			continue;
4951 
4952 		interval = sd->balance_interval;
4953 		if (idle != CPU_IDLE)
4954 			interval *= sd->busy_factor;
4955 
4956 		/* scale ms to jiffies */
4957 		interval = msecs_to_jiffies(interval);
4958 		interval = clamp(interval, 1UL, max_load_balance_interval);
4959 
4960 		need_serialize = sd->flags & SD_SERIALIZE;
4961 
4962 		if (need_serialize) {
4963 			if (!spin_trylock(&balancing))
4964 				goto out;
4965 		}
4966 
4967 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4968 			if (load_balance(cpu, rq, sd, idle, &balance)) {
4969 				/*
4970 				 * We've pulled tasks over so either we're no
4971 				 * longer idle.
4972 				 */
4973 				idle = CPU_NOT_IDLE;
4974 			}
4975 			sd->last_balance = jiffies;
4976 		}
4977 		if (need_serialize)
4978 			spin_unlock(&balancing);
4979 out:
4980 		if (time_after(next_balance, sd->last_balance + interval)) {
4981 			next_balance = sd->last_balance + interval;
4982 			update_next_balance = 1;
4983 		}
4984 
4985 		/*
4986 		 * Stop the load balance at this level. There is another
4987 		 * CPU in our sched group which is doing load balancing more
4988 		 * actively.
4989 		 */
4990 		if (!balance)
4991 			break;
4992 	}
4993 	rcu_read_unlock();
4994 
4995 	/*
4996 	 * next_balance will be updated only when there is a need.
4997 	 * When the cpu is attached to null domain for ex, it will not be
4998 	 * updated.
4999 	 */
5000 	if (likely(update_next_balance))
5001 		rq->next_balance = next_balance;
5002 }
5003 
5004 #ifdef CONFIG_NO_HZ
5005 /*
5006  * In CONFIG_NO_HZ case, the idle balance kickee will do the
5007  * rebalancing for all the cpus for whom scheduler ticks are stopped.
5008  */
5009 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5010 {
5011 	struct rq *this_rq = cpu_rq(this_cpu);
5012 	struct rq *rq;
5013 	int balance_cpu;
5014 
5015 	if (idle != CPU_IDLE ||
5016 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5017 		goto end;
5018 
5019 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5020 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5021 			continue;
5022 
5023 		/*
5024 		 * If this cpu gets work to do, stop the load balancing
5025 		 * work being done for other cpus. Next load
5026 		 * balancing owner will pick it up.
5027 		 */
5028 		if (need_resched())
5029 			break;
5030 
5031 		raw_spin_lock_irq(&this_rq->lock);
5032 		update_rq_clock(this_rq);
5033 		update_cpu_load(this_rq);
5034 		raw_spin_unlock_irq(&this_rq->lock);
5035 
5036 		rebalance_domains(balance_cpu, CPU_IDLE);
5037 
5038 		rq = cpu_rq(balance_cpu);
5039 		if (time_after(this_rq->next_balance, rq->next_balance))
5040 			this_rq->next_balance = rq->next_balance;
5041 	}
5042 	nohz.next_balance = this_rq->next_balance;
5043 end:
5044 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5045 }
5046 
5047 /*
5048  * Current heuristic for kicking the idle load balancer in the presence
5049  * of an idle cpu is the system.
5050  *   - This rq has more than one task.
5051  *   - At any scheduler domain level, this cpu's scheduler group has multiple
5052  *     busy cpu's exceeding the group's power.
5053  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5054  *     domain span are idle.
5055  */
5056 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5057 {
5058 	unsigned long now = jiffies;
5059 	struct sched_domain *sd;
5060 
5061 	if (unlikely(idle_cpu(cpu)))
5062 		return 0;
5063 
5064        /*
5065 	* We may be recently in ticked or tickless idle mode. At the first
5066 	* busy tick after returning from idle, we will update the busy stats.
5067 	*/
5068 	set_cpu_sd_state_busy();
5069 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5070 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5071 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5072 		atomic_dec(&nohz.nr_cpus);
5073 	}
5074 
5075 	/*
5076 	 * None are in tickless mode and hence no need for NOHZ idle load
5077 	 * balancing.
5078 	 */
5079 	if (likely(!atomic_read(&nohz.nr_cpus)))
5080 		return 0;
5081 
5082 	if (time_before(now, nohz.next_balance))
5083 		return 0;
5084 
5085 	if (rq->nr_running >= 2)
5086 		goto need_kick;
5087 
5088 	rcu_read_lock();
5089 	for_each_domain(cpu, sd) {
5090 		struct sched_group *sg = sd->groups;
5091 		struct sched_group_power *sgp = sg->sgp;
5092 		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5093 
5094 		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5095 			goto need_kick_unlock;
5096 
5097 		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5098 		    && (cpumask_first_and(nohz.idle_cpus_mask,
5099 					  sched_domain_span(sd)) < cpu))
5100 			goto need_kick_unlock;
5101 
5102 		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5103 			break;
5104 	}
5105 	rcu_read_unlock();
5106 	return 0;
5107 
5108 need_kick_unlock:
5109 	rcu_read_unlock();
5110 need_kick:
5111 	return 1;
5112 }
5113 #else
5114 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5115 #endif
5116 
5117 /*
5118  * run_rebalance_domains is triggered when needed from the scheduler tick.
5119  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5120  */
5121 static void run_rebalance_domains(struct softirq_action *h)
5122 {
5123 	int this_cpu = smp_processor_id();
5124 	struct rq *this_rq = cpu_rq(this_cpu);
5125 	enum cpu_idle_type idle = this_rq->idle_balance ?
5126 						CPU_IDLE : CPU_NOT_IDLE;
5127 
5128 	rebalance_domains(this_cpu, idle);
5129 
5130 	/*
5131 	 * If this cpu has a pending nohz_balance_kick, then do the
5132 	 * balancing on behalf of the other idle cpus whose ticks are
5133 	 * stopped.
5134 	 */
5135 	nohz_idle_balance(this_cpu, idle);
5136 }
5137 
5138 static inline int on_null_domain(int cpu)
5139 {
5140 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5141 }
5142 
5143 /*
5144  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5145  */
5146 void trigger_load_balance(struct rq *rq, int cpu)
5147 {
5148 	/* Don't need to rebalance while attached to NULL domain */
5149 	if (time_after_eq(jiffies, rq->next_balance) &&
5150 	    likely(!on_null_domain(cpu)))
5151 		raise_softirq(SCHED_SOFTIRQ);
5152 #ifdef CONFIG_NO_HZ
5153 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5154 		nohz_balancer_kick(cpu);
5155 #endif
5156 }
5157 
5158 static void rq_online_fair(struct rq *rq)
5159 {
5160 	update_sysctl();
5161 }
5162 
5163 static void rq_offline_fair(struct rq *rq)
5164 {
5165 	update_sysctl();
5166 }
5167 
5168 #endif /* CONFIG_SMP */
5169 
5170 /*
5171  * scheduler tick hitting a task of our scheduling class:
5172  */
5173 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5174 {
5175 	struct cfs_rq *cfs_rq;
5176 	struct sched_entity *se = &curr->se;
5177 
5178 	for_each_sched_entity(se) {
5179 		cfs_rq = cfs_rq_of(se);
5180 		entity_tick(cfs_rq, se, queued);
5181 	}
5182 }
5183 
5184 /*
5185  * called on fork with the child task as argument from the parent's context
5186  *  - child not yet on the tasklist
5187  *  - preemption disabled
5188  */
5189 static void task_fork_fair(struct task_struct *p)
5190 {
5191 	struct cfs_rq *cfs_rq;
5192 	struct sched_entity *se = &p->se, *curr;
5193 	int this_cpu = smp_processor_id();
5194 	struct rq *rq = this_rq();
5195 	unsigned long flags;
5196 
5197 	raw_spin_lock_irqsave(&rq->lock, flags);
5198 
5199 	update_rq_clock(rq);
5200 
5201 	cfs_rq = task_cfs_rq(current);
5202 	curr = cfs_rq->curr;
5203 
5204 	if (unlikely(task_cpu(p) != this_cpu)) {
5205 		rcu_read_lock();
5206 		__set_task_cpu(p, this_cpu);
5207 		rcu_read_unlock();
5208 	}
5209 
5210 	update_curr(cfs_rq);
5211 
5212 	if (curr)
5213 		se->vruntime = curr->vruntime;
5214 	place_entity(cfs_rq, se, 1);
5215 
5216 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5217 		/*
5218 		 * Upon rescheduling, sched_class::put_prev_task() will place
5219 		 * 'current' within the tree based on its new key value.
5220 		 */
5221 		swap(curr->vruntime, se->vruntime);
5222 		resched_task(rq->curr);
5223 	}
5224 
5225 	se->vruntime -= cfs_rq->min_vruntime;
5226 
5227 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5228 }
5229 
5230 /*
5231  * Priority of the task has changed. Check to see if we preempt
5232  * the current task.
5233  */
5234 static void
5235 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5236 {
5237 	if (!p->se.on_rq)
5238 		return;
5239 
5240 	/*
5241 	 * Reschedule if we are currently running on this runqueue and
5242 	 * our priority decreased, or if we are not currently running on
5243 	 * this runqueue and our priority is higher than the current's
5244 	 */
5245 	if (rq->curr == p) {
5246 		if (p->prio > oldprio)
5247 			resched_task(rq->curr);
5248 	} else
5249 		check_preempt_curr(rq, p, 0);
5250 }
5251 
5252 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5253 {
5254 	struct sched_entity *se = &p->se;
5255 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5256 
5257 	/*
5258 	 * Ensure the task's vruntime is normalized, so that when its
5259 	 * switched back to the fair class the enqueue_entity(.flags=0) will
5260 	 * do the right thing.
5261 	 *
5262 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5263 	 * have normalized the vruntime, if it was !on_rq, then only when
5264 	 * the task is sleeping will it still have non-normalized vruntime.
5265 	 */
5266 	if (!se->on_rq && p->state != TASK_RUNNING) {
5267 		/*
5268 		 * Fix up our vruntime so that the current sleep doesn't
5269 		 * cause 'unlimited' sleep bonus.
5270 		 */
5271 		place_entity(cfs_rq, se, 0);
5272 		se->vruntime -= cfs_rq->min_vruntime;
5273 	}
5274 }
5275 
5276 /*
5277  * We switched to the sched_fair class.
5278  */
5279 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5280 {
5281 	if (!p->se.on_rq)
5282 		return;
5283 
5284 	/*
5285 	 * We were most likely switched from sched_rt, so
5286 	 * kick off the schedule if running, otherwise just see
5287 	 * if we can still preempt the current task.
5288 	 */
5289 	if (rq->curr == p)
5290 		resched_task(rq->curr);
5291 	else
5292 		check_preempt_curr(rq, p, 0);
5293 }
5294 
5295 /* Account for a task changing its policy or group.
5296  *
5297  * This routine is mostly called to set cfs_rq->curr field when a task
5298  * migrates between groups/classes.
5299  */
5300 static void set_curr_task_fair(struct rq *rq)
5301 {
5302 	struct sched_entity *se = &rq->curr->se;
5303 
5304 	for_each_sched_entity(se) {
5305 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5306 
5307 		set_next_entity(cfs_rq, se);
5308 		/* ensure bandwidth has been allocated on our new cfs_rq */
5309 		account_cfs_rq_runtime(cfs_rq, 0);
5310 	}
5311 }
5312 
5313 void init_cfs_rq(struct cfs_rq *cfs_rq)
5314 {
5315 	cfs_rq->tasks_timeline = RB_ROOT;
5316 	INIT_LIST_HEAD(&cfs_rq->tasks);
5317 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5318 #ifndef CONFIG_64BIT
5319 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5320 #endif
5321 }
5322 
5323 #ifdef CONFIG_FAIR_GROUP_SCHED
5324 static void task_move_group_fair(struct task_struct *p, int on_rq)
5325 {
5326 	/*
5327 	 * If the task was not on the rq at the time of this cgroup movement
5328 	 * it must have been asleep, sleeping tasks keep their ->vruntime
5329 	 * absolute on their old rq until wakeup (needed for the fair sleeper
5330 	 * bonus in place_entity()).
5331 	 *
5332 	 * If it was on the rq, we've just 'preempted' it, which does convert
5333 	 * ->vruntime to a relative base.
5334 	 *
5335 	 * Make sure both cases convert their relative position when migrating
5336 	 * to another cgroup's rq. This does somewhat interfere with the
5337 	 * fair sleeper stuff for the first placement, but who cares.
5338 	 */
5339 	/*
5340 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
5341 	 * But there are some cases where it has already been normalized:
5342 	 *
5343 	 * - Moving a forked child which is waiting for being woken up by
5344 	 *   wake_up_new_task().
5345 	 * - Moving a task which has been woken up by try_to_wake_up() and
5346 	 *   waiting for actually being woken up by sched_ttwu_pending().
5347 	 *
5348 	 * To prevent boost or penalty in the new cfs_rq caused by delta
5349 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5350 	 */
5351 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5352 		on_rq = 1;
5353 
5354 	if (!on_rq)
5355 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5356 	set_task_rq(p, task_cpu(p));
5357 	if (!on_rq)
5358 		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5359 }
5360 
5361 void free_fair_sched_group(struct task_group *tg)
5362 {
5363 	int i;
5364 
5365 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5366 
5367 	for_each_possible_cpu(i) {
5368 		if (tg->cfs_rq)
5369 			kfree(tg->cfs_rq[i]);
5370 		if (tg->se)
5371 			kfree(tg->se[i]);
5372 	}
5373 
5374 	kfree(tg->cfs_rq);
5375 	kfree(tg->se);
5376 }
5377 
5378 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5379 {
5380 	struct cfs_rq *cfs_rq;
5381 	struct sched_entity *se;
5382 	int i;
5383 
5384 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5385 	if (!tg->cfs_rq)
5386 		goto err;
5387 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5388 	if (!tg->se)
5389 		goto err;
5390 
5391 	tg->shares = NICE_0_LOAD;
5392 
5393 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5394 
5395 	for_each_possible_cpu(i) {
5396 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5397 				      GFP_KERNEL, cpu_to_node(i));
5398 		if (!cfs_rq)
5399 			goto err;
5400 
5401 		se = kzalloc_node(sizeof(struct sched_entity),
5402 				  GFP_KERNEL, cpu_to_node(i));
5403 		if (!se)
5404 			goto err_free_rq;
5405 
5406 		init_cfs_rq(cfs_rq);
5407 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5408 	}
5409 
5410 	return 1;
5411 
5412 err_free_rq:
5413 	kfree(cfs_rq);
5414 err:
5415 	return 0;
5416 }
5417 
5418 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5419 {
5420 	struct rq *rq = cpu_rq(cpu);
5421 	unsigned long flags;
5422 
5423 	/*
5424 	* Only empty task groups can be destroyed; so we can speculatively
5425 	* check on_list without danger of it being re-added.
5426 	*/
5427 	if (!tg->cfs_rq[cpu]->on_list)
5428 		return;
5429 
5430 	raw_spin_lock_irqsave(&rq->lock, flags);
5431 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5432 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5433 }
5434 
5435 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5436 			struct sched_entity *se, int cpu,
5437 			struct sched_entity *parent)
5438 {
5439 	struct rq *rq = cpu_rq(cpu);
5440 
5441 	cfs_rq->tg = tg;
5442 	cfs_rq->rq = rq;
5443 #ifdef CONFIG_SMP
5444 	/* allow initial update_cfs_load() to truncate */
5445 	cfs_rq->load_stamp = 1;
5446 #endif
5447 	init_cfs_rq_runtime(cfs_rq);
5448 
5449 	tg->cfs_rq[cpu] = cfs_rq;
5450 	tg->se[cpu] = se;
5451 
5452 	/* se could be NULL for root_task_group */
5453 	if (!se)
5454 		return;
5455 
5456 	if (!parent)
5457 		se->cfs_rq = &rq->cfs;
5458 	else
5459 		se->cfs_rq = parent->my_q;
5460 
5461 	se->my_q = cfs_rq;
5462 	update_load_set(&se->load, 0);
5463 	se->parent = parent;
5464 }
5465 
5466 static DEFINE_MUTEX(shares_mutex);
5467 
5468 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5469 {
5470 	int i;
5471 	unsigned long flags;
5472 
5473 	/*
5474 	 * We can't change the weight of the root cgroup.
5475 	 */
5476 	if (!tg->se[0])
5477 		return -EINVAL;
5478 
5479 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5480 
5481 	mutex_lock(&shares_mutex);
5482 	if (tg->shares == shares)
5483 		goto done;
5484 
5485 	tg->shares = shares;
5486 	for_each_possible_cpu(i) {
5487 		struct rq *rq = cpu_rq(i);
5488 		struct sched_entity *se;
5489 
5490 		se = tg->se[i];
5491 		/* Propagate contribution to hierarchy */
5492 		raw_spin_lock_irqsave(&rq->lock, flags);
5493 		for_each_sched_entity(se)
5494 			update_cfs_shares(group_cfs_rq(se));
5495 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5496 	}
5497 
5498 done:
5499 	mutex_unlock(&shares_mutex);
5500 	return 0;
5501 }
5502 #else /* CONFIG_FAIR_GROUP_SCHED */
5503 
5504 void free_fair_sched_group(struct task_group *tg) { }
5505 
5506 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5507 {
5508 	return 1;
5509 }
5510 
5511 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5512 
5513 #endif /* CONFIG_FAIR_GROUP_SCHED */
5514 
5515 
5516 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5517 {
5518 	struct sched_entity *se = &task->se;
5519 	unsigned int rr_interval = 0;
5520 
5521 	/*
5522 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5523 	 * idle runqueue:
5524 	 */
5525 	if (rq->cfs.load.weight)
5526 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5527 
5528 	return rr_interval;
5529 }
5530 
5531 /*
5532  * All the scheduling class methods:
5533  */
5534 const struct sched_class fair_sched_class = {
5535 	.next			= &idle_sched_class,
5536 	.enqueue_task		= enqueue_task_fair,
5537 	.dequeue_task		= dequeue_task_fair,
5538 	.yield_task		= yield_task_fair,
5539 	.yield_to_task		= yield_to_task_fair,
5540 
5541 	.check_preempt_curr	= check_preempt_wakeup,
5542 
5543 	.pick_next_task		= pick_next_task_fair,
5544 	.put_prev_task		= put_prev_task_fair,
5545 
5546 #ifdef CONFIG_SMP
5547 	.select_task_rq		= select_task_rq_fair,
5548 
5549 	.rq_online		= rq_online_fair,
5550 	.rq_offline		= rq_offline_fair,
5551 
5552 	.task_waking		= task_waking_fair,
5553 #endif
5554 
5555 	.set_curr_task          = set_curr_task_fair,
5556 	.task_tick		= task_tick_fair,
5557 	.task_fork		= task_fork_fair,
5558 
5559 	.prio_changed		= prio_changed_fair,
5560 	.switched_from		= switched_from_fair,
5561 	.switched_to		= switched_to_fair,
5562 
5563 	.get_rr_interval	= get_rr_interval_fair,
5564 
5565 #ifdef CONFIG_FAIR_GROUP_SCHED
5566 	.task_move_group	= task_move_group_fair,
5567 #endif
5568 };
5569 
5570 #ifdef CONFIG_SCHED_DEBUG
5571 void print_cfs_stats(struct seq_file *m, int cpu)
5572 {
5573 	struct cfs_rq *cfs_rq;
5574 
5575 	rcu_read_lock();
5576 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5577 		print_cfs_rq(m, cpu, cfs_rq);
5578 	rcu_read_unlock();
5579 }
5580 #endif
5581 
5582 __init void init_sched_fair_class(void)
5583 {
5584 #ifdef CONFIG_SMP
5585 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5586 
5587 #ifdef CONFIG_NO_HZ
5588 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5589 #endif
5590 #endif /* SMP */
5591 
5592 }
5593