1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 30 #include <trace/events/sched.h> 31 32 #include "sched.h" 33 34 /* 35 * Targeted preemption latency for CPU-bound tasks: 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 * 38 * NOTE: this latency value is not the same as the concept of 39 * 'timeslice length' - timeslices in CFS are of variable length 40 * and have no persistent notion like in traditional, time-slice 41 * based scheduling concepts. 42 * 43 * (to see the precise effective timeslice length of your workload, 44 * run vmstat and monitor the context-switches (cs) field) 45 */ 46 unsigned int sysctl_sched_latency = 6000000ULL; 47 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 48 49 /* 50 * The initial- and re-scaling of tunables is configurable 51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 52 * 53 * Options are: 54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 57 */ 58 enum sched_tunable_scaling sysctl_sched_tunable_scaling 59 = SCHED_TUNABLESCALING_LOG; 60 61 /* 62 * Minimal preemption granularity for CPU-bound tasks: 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 64 */ 65 unsigned int sysctl_sched_min_granularity = 750000ULL; 66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 67 68 /* 69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 70 */ 71 static unsigned int sched_nr_latency = 8; 72 73 /* 74 * After fork, child runs first. If set to 0 (default) then 75 * parent will (try to) run first. 76 */ 77 unsigned int sysctl_sched_child_runs_first __read_mostly; 78 79 /* 80 * SCHED_OTHER wake-up granularity. 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 82 * 83 * This option delays the preemption effects of decoupled workloads 84 * and reduces their over-scheduling. Synchronous workloads will still 85 * have immediate wakeup/sleep latencies. 86 */ 87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 89 90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 91 92 /* 93 * The exponential sliding window over which load is averaged for shares 94 * distribution. 95 * (default: 10msec) 96 */ 97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * default: 5 msec, units: microseconds 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * Increase the granularity value when there are more CPUs, 115 * because with more CPUs the 'effective latency' as visible 116 * to users decreases. But the relationship is not linear, 117 * so pick a second-best guess by going with the log2 of the 118 * number of CPUs. 119 * 120 * This idea comes from the SD scheduler of Con Kolivas: 121 */ 122 static int get_update_sysctl_factor(void) 123 { 124 unsigned int cpus = min_t(int, num_online_cpus(), 8); 125 unsigned int factor; 126 127 switch (sysctl_sched_tunable_scaling) { 128 case SCHED_TUNABLESCALING_NONE: 129 factor = 1; 130 break; 131 case SCHED_TUNABLESCALING_LINEAR: 132 factor = cpus; 133 break; 134 case SCHED_TUNABLESCALING_LOG: 135 default: 136 factor = 1 + ilog2(cpus); 137 break; 138 } 139 140 return factor; 141 } 142 143 static void update_sysctl(void) 144 { 145 unsigned int factor = get_update_sysctl_factor(); 146 147 #define SET_SYSCTL(name) \ 148 (sysctl_##name = (factor) * normalized_sysctl_##name) 149 SET_SYSCTL(sched_min_granularity); 150 SET_SYSCTL(sched_latency); 151 SET_SYSCTL(sched_wakeup_granularity); 152 #undef SET_SYSCTL 153 } 154 155 void sched_init_granularity(void) 156 { 157 update_sysctl(); 158 } 159 160 #if BITS_PER_LONG == 32 161 # define WMULT_CONST (~0UL) 162 #else 163 # define WMULT_CONST (1UL << 32) 164 #endif 165 166 #define WMULT_SHIFT 32 167 168 /* 169 * Shift right and round: 170 */ 171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 172 173 /* 174 * delta *= weight / lw 175 */ 176 static unsigned long 177 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 178 struct load_weight *lw) 179 { 180 u64 tmp; 181 182 /* 183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 185 * 2^SCHED_LOAD_RESOLUTION. 186 */ 187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 188 tmp = (u64)delta_exec * scale_load_down(weight); 189 else 190 tmp = (u64)delta_exec; 191 192 if (!lw->inv_weight) { 193 unsigned long w = scale_load_down(lw->weight); 194 195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 196 lw->inv_weight = 1; 197 else if (unlikely(!w)) 198 lw->inv_weight = WMULT_CONST; 199 else 200 lw->inv_weight = WMULT_CONST / w; 201 } 202 203 /* 204 * Check whether we'd overflow the 64-bit multiplication: 205 */ 206 if (unlikely(tmp > WMULT_CONST)) 207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 208 WMULT_SHIFT/2); 209 else 210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 211 212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 213 } 214 215 216 const struct sched_class fair_sched_class; 217 218 /************************************************************** 219 * CFS operations on generic schedulable entities: 220 */ 221 222 #ifdef CONFIG_FAIR_GROUP_SCHED 223 224 /* cpu runqueue to which this cfs_rq is attached */ 225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 226 { 227 return cfs_rq->rq; 228 } 229 230 /* An entity is a task if it doesn't "own" a runqueue */ 231 #define entity_is_task(se) (!se->my_q) 232 233 static inline struct task_struct *task_of(struct sched_entity *se) 234 { 235 #ifdef CONFIG_SCHED_DEBUG 236 WARN_ON_ONCE(!entity_is_task(se)); 237 #endif 238 return container_of(se, struct task_struct, se); 239 } 240 241 /* Walk up scheduling entities hierarchy */ 242 #define for_each_sched_entity(se) \ 243 for (; se; se = se->parent) 244 245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 246 { 247 return p->se.cfs_rq; 248 } 249 250 /* runqueue on which this entity is (to be) queued */ 251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 252 { 253 return se->cfs_rq; 254 } 255 256 /* runqueue "owned" by this group */ 257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 258 { 259 return grp->my_q; 260 } 261 262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 263 { 264 if (!cfs_rq->on_list) { 265 /* 266 * Ensure we either appear before our parent (if already 267 * enqueued) or force our parent to appear after us when it is 268 * enqueued. The fact that we always enqueue bottom-up 269 * reduces this to two cases. 270 */ 271 if (cfs_rq->tg->parent && 272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 274 &rq_of(cfs_rq)->leaf_cfs_rq_list); 275 } else { 276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 277 &rq_of(cfs_rq)->leaf_cfs_rq_list); 278 } 279 280 cfs_rq->on_list = 1; 281 } 282 } 283 284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 285 { 286 if (cfs_rq->on_list) { 287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 288 cfs_rq->on_list = 0; 289 } 290 } 291 292 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 295 296 /* Do the two (enqueued) entities belong to the same group ? */ 297 static inline int 298 is_same_group(struct sched_entity *se, struct sched_entity *pse) 299 { 300 if (se->cfs_rq == pse->cfs_rq) 301 return 1; 302 303 return 0; 304 } 305 306 static inline struct sched_entity *parent_entity(struct sched_entity *se) 307 { 308 return se->parent; 309 } 310 311 /* return depth at which a sched entity is present in the hierarchy */ 312 static inline int depth_se(struct sched_entity *se) 313 { 314 int depth = 0; 315 316 for_each_sched_entity(se) 317 depth++; 318 319 return depth; 320 } 321 322 static void 323 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 324 { 325 int se_depth, pse_depth; 326 327 /* 328 * preemption test can be made between sibling entities who are in the 329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 330 * both tasks until we find their ancestors who are siblings of common 331 * parent. 332 */ 333 334 /* First walk up until both entities are at same depth */ 335 se_depth = depth_se(*se); 336 pse_depth = depth_se(*pse); 337 338 while (se_depth > pse_depth) { 339 se_depth--; 340 *se = parent_entity(*se); 341 } 342 343 while (pse_depth > se_depth) { 344 pse_depth--; 345 *pse = parent_entity(*pse); 346 } 347 348 while (!is_same_group(*se, *pse)) { 349 *se = parent_entity(*se); 350 *pse = parent_entity(*pse); 351 } 352 } 353 354 #else /* !CONFIG_FAIR_GROUP_SCHED */ 355 356 static inline struct task_struct *task_of(struct sched_entity *se) 357 { 358 return container_of(se, struct task_struct, se); 359 } 360 361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 362 { 363 return container_of(cfs_rq, struct rq, cfs); 364 } 365 366 #define entity_is_task(se) 1 367 368 #define for_each_sched_entity(se) \ 369 for (; se; se = NULL) 370 371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 372 { 373 return &task_rq(p)->cfs; 374 } 375 376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 377 { 378 struct task_struct *p = task_of(se); 379 struct rq *rq = task_rq(p); 380 381 return &rq->cfs; 382 } 383 384 /* runqueue "owned" by this group */ 385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 386 { 387 return NULL; 388 } 389 390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 391 { 392 } 393 394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 395 { 396 } 397 398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 400 401 static inline int 402 is_same_group(struct sched_entity *se, struct sched_entity *pse) 403 { 404 return 1; 405 } 406 407 static inline struct sched_entity *parent_entity(struct sched_entity *se) 408 { 409 return NULL; 410 } 411 412 static inline void 413 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 414 { 415 } 416 417 #endif /* CONFIG_FAIR_GROUP_SCHED */ 418 419 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 420 unsigned long delta_exec); 421 422 /************************************************************** 423 * Scheduling class tree data structure manipulation methods: 424 */ 425 426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) 427 { 428 s64 delta = (s64)(vruntime - min_vruntime); 429 if (delta > 0) 430 min_vruntime = vruntime; 431 432 return min_vruntime; 433 } 434 435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 436 { 437 s64 delta = (s64)(vruntime - min_vruntime); 438 if (delta < 0) 439 min_vruntime = vruntime; 440 441 return min_vruntime; 442 } 443 444 static inline int entity_before(struct sched_entity *a, 445 struct sched_entity *b) 446 { 447 return (s64)(a->vruntime - b->vruntime) < 0; 448 } 449 450 static void update_min_vruntime(struct cfs_rq *cfs_rq) 451 { 452 u64 vruntime = cfs_rq->min_vruntime; 453 454 if (cfs_rq->curr) 455 vruntime = cfs_rq->curr->vruntime; 456 457 if (cfs_rq->rb_leftmost) { 458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 459 struct sched_entity, 460 run_node); 461 462 if (!cfs_rq->curr) 463 vruntime = se->vruntime; 464 else 465 vruntime = min_vruntime(vruntime, se->vruntime); 466 } 467 468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 469 #ifndef CONFIG_64BIT 470 smp_wmb(); 471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 472 #endif 473 } 474 475 /* 476 * Enqueue an entity into the rb-tree: 477 */ 478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 479 { 480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 481 struct rb_node *parent = NULL; 482 struct sched_entity *entry; 483 int leftmost = 1; 484 485 /* 486 * Find the right place in the rbtree: 487 */ 488 while (*link) { 489 parent = *link; 490 entry = rb_entry(parent, struct sched_entity, run_node); 491 /* 492 * We dont care about collisions. Nodes with 493 * the same key stay together. 494 */ 495 if (entity_before(se, entry)) { 496 link = &parent->rb_left; 497 } else { 498 link = &parent->rb_right; 499 leftmost = 0; 500 } 501 } 502 503 /* 504 * Maintain a cache of leftmost tree entries (it is frequently 505 * used): 506 */ 507 if (leftmost) 508 cfs_rq->rb_leftmost = &se->run_node; 509 510 rb_link_node(&se->run_node, parent, link); 511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 512 } 513 514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 515 { 516 if (cfs_rq->rb_leftmost == &se->run_node) { 517 struct rb_node *next_node; 518 519 next_node = rb_next(&se->run_node); 520 cfs_rq->rb_leftmost = next_node; 521 } 522 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 524 } 525 526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 527 { 528 struct rb_node *left = cfs_rq->rb_leftmost; 529 530 if (!left) 531 return NULL; 532 533 return rb_entry(left, struct sched_entity, run_node); 534 } 535 536 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 537 { 538 struct rb_node *next = rb_next(&se->run_node); 539 540 if (!next) 541 return NULL; 542 543 return rb_entry(next, struct sched_entity, run_node); 544 } 545 546 #ifdef CONFIG_SCHED_DEBUG 547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 548 { 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 550 551 if (!last) 552 return NULL; 553 554 return rb_entry(last, struct sched_entity, run_node); 555 } 556 557 /************************************************************** 558 * Scheduling class statistics methods: 559 */ 560 561 int sched_proc_update_handler(struct ctl_table *table, int write, 562 void __user *buffer, size_t *lenp, 563 loff_t *ppos) 564 { 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 566 int factor = get_update_sysctl_factor(); 567 568 if (ret || !write) 569 return ret; 570 571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 572 sysctl_sched_min_granularity); 573 574 #define WRT_SYSCTL(name) \ 575 (normalized_sysctl_##name = sysctl_##name / (factor)) 576 WRT_SYSCTL(sched_min_granularity); 577 WRT_SYSCTL(sched_latency); 578 WRT_SYSCTL(sched_wakeup_granularity); 579 #undef WRT_SYSCTL 580 581 return 0; 582 } 583 #endif 584 585 /* 586 * delta /= w 587 */ 588 static inline unsigned long 589 calc_delta_fair(unsigned long delta, struct sched_entity *se) 590 { 591 if (unlikely(se->load.weight != NICE_0_LOAD)) 592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 593 594 return delta; 595 } 596 597 /* 598 * The idea is to set a period in which each task runs once. 599 * 600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch 601 * this period because otherwise the slices get too small. 602 * 603 * p = (nr <= nl) ? l : l*nr/nl 604 */ 605 static u64 __sched_period(unsigned long nr_running) 606 { 607 u64 period = sysctl_sched_latency; 608 unsigned long nr_latency = sched_nr_latency; 609 610 if (unlikely(nr_running > nr_latency)) { 611 period = sysctl_sched_min_granularity; 612 period *= nr_running; 613 } 614 615 return period; 616 } 617 618 /* 619 * We calculate the wall-time slice from the period by taking a part 620 * proportional to the weight. 621 * 622 * s = p*P[w/rw] 623 */ 624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 627 628 for_each_sched_entity(se) { 629 struct load_weight *load; 630 struct load_weight lw; 631 632 cfs_rq = cfs_rq_of(se); 633 load = &cfs_rq->load; 634 635 if (unlikely(!se->on_rq)) { 636 lw = cfs_rq->load; 637 638 update_load_add(&lw, se->load.weight); 639 load = &lw; 640 } 641 slice = calc_delta_mine(slice, se->load.weight, load); 642 } 643 return slice; 644 } 645 646 /* 647 * We calculate the vruntime slice of a to be inserted task 648 * 649 * vs = s/w 650 */ 651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 return calc_delta_fair(sched_slice(cfs_rq, se), se); 654 } 655 656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); 657 static void update_cfs_shares(struct cfs_rq *cfs_rq); 658 659 /* 660 * Update the current task's runtime statistics. Skip current tasks that 661 * are not in our scheduling class. 662 */ 663 static inline void 664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 665 unsigned long delta_exec) 666 { 667 unsigned long delta_exec_weighted; 668 669 schedstat_set(curr->statistics.exec_max, 670 max((u64)delta_exec, curr->statistics.exec_max)); 671 672 curr->sum_exec_runtime += delta_exec; 673 schedstat_add(cfs_rq, exec_clock, delta_exec); 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 675 676 curr->vruntime += delta_exec_weighted; 677 update_min_vruntime(cfs_rq); 678 679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED 680 cfs_rq->load_unacc_exec_time += delta_exec; 681 #endif 682 } 683 684 static void update_curr(struct cfs_rq *cfs_rq) 685 { 686 struct sched_entity *curr = cfs_rq->curr; 687 u64 now = rq_of(cfs_rq)->clock_task; 688 unsigned long delta_exec; 689 690 if (unlikely(!curr)) 691 return; 692 693 /* 694 * Get the amount of time the current task was running 695 * since the last time we changed load (this cannot 696 * overflow on 32 bits): 697 */ 698 delta_exec = (unsigned long)(now - curr->exec_start); 699 if (!delta_exec) 700 return; 701 702 __update_curr(cfs_rq, curr, delta_exec); 703 curr->exec_start = now; 704 705 if (entity_is_task(curr)) { 706 struct task_struct *curtask = task_of(curr); 707 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 709 cpuacct_charge(curtask, delta_exec); 710 account_group_exec_runtime(curtask, delta_exec); 711 } 712 713 account_cfs_rq_runtime(cfs_rq, delta_exec); 714 } 715 716 static inline void 717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 718 { 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); 720 } 721 722 /* 723 * Task is being enqueued - update stats: 724 */ 725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 /* 728 * Are we enqueueing a waiting task? (for current tasks 729 * a dequeue/enqueue event is a NOP) 730 */ 731 if (se != cfs_rq->curr) 732 update_stats_wait_start(cfs_rq, se); 733 } 734 735 static void 736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 737 { 738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 739 rq_of(cfs_rq)->clock - se->statistics.wait_start)); 740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 742 rq_of(cfs_rq)->clock - se->statistics.wait_start); 743 #ifdef CONFIG_SCHEDSTATS 744 if (entity_is_task(se)) { 745 trace_sched_stat_wait(task_of(se), 746 rq_of(cfs_rq)->clock - se->statistics.wait_start); 747 } 748 #endif 749 schedstat_set(se->statistics.wait_start, 0); 750 } 751 752 static inline void 753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 /* 756 * Mark the end of the wait period if dequeueing a 757 * waiting task: 758 */ 759 if (se != cfs_rq->curr) 760 update_stats_wait_end(cfs_rq, se); 761 } 762 763 /* 764 * We are picking a new current task - update its stats: 765 */ 766 static inline void 767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 768 { 769 /* 770 * We are starting a new run period: 771 */ 772 se->exec_start = rq_of(cfs_rq)->clock_task; 773 } 774 775 /************************************************** 776 * Scheduling class queueing methods: 777 */ 778 779 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED 780 static void 781 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) 782 { 783 cfs_rq->task_weight += weight; 784 } 785 #else 786 static inline void 787 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) 788 { 789 } 790 #endif 791 792 static void 793 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 794 { 795 update_load_add(&cfs_rq->load, se->load.weight); 796 if (!parent_entity(se)) 797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 798 if (entity_is_task(se)) { 799 add_cfs_task_weight(cfs_rq, se->load.weight); 800 list_add(&se->group_node, &cfs_rq->tasks); 801 } 802 cfs_rq->nr_running++; 803 } 804 805 static void 806 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 807 { 808 update_load_sub(&cfs_rq->load, se->load.weight); 809 if (!parent_entity(se)) 810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 811 if (entity_is_task(se)) { 812 add_cfs_task_weight(cfs_rq, -se->load.weight); 813 list_del_init(&se->group_node); 814 } 815 cfs_rq->nr_running--; 816 } 817 818 #ifdef CONFIG_FAIR_GROUP_SCHED 819 /* we need this in update_cfs_load and load-balance functions below */ 820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 821 # ifdef CONFIG_SMP 822 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, 823 int global_update) 824 { 825 struct task_group *tg = cfs_rq->tg; 826 long load_avg; 827 828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); 829 load_avg -= cfs_rq->load_contribution; 830 831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { 832 atomic_add(load_avg, &tg->load_weight); 833 cfs_rq->load_contribution += load_avg; 834 } 835 } 836 837 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 838 { 839 u64 period = sysctl_sched_shares_window; 840 u64 now, delta; 841 unsigned long load = cfs_rq->load.weight; 842 843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) 844 return; 845 846 now = rq_of(cfs_rq)->clock_task; 847 delta = now - cfs_rq->load_stamp; 848 849 /* truncate load history at 4 idle periods */ 850 if (cfs_rq->load_stamp > cfs_rq->load_last && 851 now - cfs_rq->load_last > 4 * period) { 852 cfs_rq->load_period = 0; 853 cfs_rq->load_avg = 0; 854 delta = period - 1; 855 } 856 857 cfs_rq->load_stamp = now; 858 cfs_rq->load_unacc_exec_time = 0; 859 cfs_rq->load_period += delta; 860 if (load) { 861 cfs_rq->load_last = now; 862 cfs_rq->load_avg += delta * load; 863 } 864 865 /* consider updating load contribution on each fold or truncate */ 866 if (global_update || cfs_rq->load_period > period 867 || !cfs_rq->load_period) 868 update_cfs_rq_load_contribution(cfs_rq, global_update); 869 870 while (cfs_rq->load_period > period) { 871 /* 872 * Inline assembly required to prevent the compiler 873 * optimising this loop into a divmod call. 874 * See __iter_div_u64_rem() for another example of this. 875 */ 876 asm("" : "+rm" (cfs_rq->load_period)); 877 cfs_rq->load_period /= 2; 878 cfs_rq->load_avg /= 2; 879 } 880 881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) 882 list_del_leaf_cfs_rq(cfs_rq); 883 } 884 885 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 886 { 887 long tg_weight; 888 889 /* 890 * Use this CPU's actual weight instead of the last load_contribution 891 * to gain a more accurate current total weight. See 892 * update_cfs_rq_load_contribution(). 893 */ 894 tg_weight = atomic_read(&tg->load_weight); 895 tg_weight -= cfs_rq->load_contribution; 896 tg_weight += cfs_rq->load.weight; 897 898 return tg_weight; 899 } 900 901 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 902 { 903 long tg_weight, load, shares; 904 905 tg_weight = calc_tg_weight(tg, cfs_rq); 906 load = cfs_rq->load.weight; 907 908 shares = (tg->shares * load); 909 if (tg_weight) 910 shares /= tg_weight; 911 912 if (shares < MIN_SHARES) 913 shares = MIN_SHARES; 914 if (shares > tg->shares) 915 shares = tg->shares; 916 917 return shares; 918 } 919 920 static void update_entity_shares_tick(struct cfs_rq *cfs_rq) 921 { 922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { 923 update_cfs_load(cfs_rq, 0); 924 update_cfs_shares(cfs_rq); 925 } 926 } 927 # else /* CONFIG_SMP */ 928 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 929 { 930 } 931 932 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 933 { 934 return tg->shares; 935 } 936 937 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 938 { 939 } 940 # endif /* CONFIG_SMP */ 941 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 942 unsigned long weight) 943 { 944 if (se->on_rq) { 945 /* commit outstanding execution time */ 946 if (cfs_rq->curr == se) 947 update_curr(cfs_rq); 948 account_entity_dequeue(cfs_rq, se); 949 } 950 951 update_load_set(&se->load, weight); 952 953 if (se->on_rq) 954 account_entity_enqueue(cfs_rq, se); 955 } 956 957 static void update_cfs_shares(struct cfs_rq *cfs_rq) 958 { 959 struct task_group *tg; 960 struct sched_entity *se; 961 long shares; 962 963 tg = cfs_rq->tg; 964 se = tg->se[cpu_of(rq_of(cfs_rq))]; 965 if (!se || throttled_hierarchy(cfs_rq)) 966 return; 967 #ifndef CONFIG_SMP 968 if (likely(se->load.weight == tg->shares)) 969 return; 970 #endif 971 shares = calc_cfs_shares(cfs_rq, tg); 972 973 reweight_entity(cfs_rq_of(se), se, shares); 974 } 975 #else /* CONFIG_FAIR_GROUP_SCHED */ 976 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 977 { 978 } 979 980 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 981 { 982 } 983 984 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 985 { 986 } 987 #endif /* CONFIG_FAIR_GROUP_SCHED */ 988 989 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 990 { 991 #ifdef CONFIG_SCHEDSTATS 992 struct task_struct *tsk = NULL; 993 994 if (entity_is_task(se)) 995 tsk = task_of(se); 996 997 if (se->statistics.sleep_start) { 998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; 999 1000 if ((s64)delta < 0) 1001 delta = 0; 1002 1003 if (unlikely(delta > se->statistics.sleep_max)) 1004 se->statistics.sleep_max = delta; 1005 1006 se->statistics.sum_sleep_runtime += delta; 1007 1008 if (tsk) { 1009 account_scheduler_latency(tsk, delta >> 10, 1); 1010 trace_sched_stat_sleep(tsk, delta); 1011 } 1012 } 1013 if (se->statistics.block_start) { 1014 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; 1015 1016 if ((s64)delta < 0) 1017 delta = 0; 1018 1019 if (unlikely(delta > se->statistics.block_max)) 1020 se->statistics.block_max = delta; 1021 1022 se->statistics.sum_sleep_runtime += delta; 1023 1024 if (tsk) { 1025 if (tsk->in_iowait) { 1026 se->statistics.iowait_sum += delta; 1027 se->statistics.iowait_count++; 1028 trace_sched_stat_iowait(tsk, delta); 1029 } 1030 1031 trace_sched_stat_blocked(tsk, delta); 1032 1033 /* 1034 * Blocking time is in units of nanosecs, so shift by 1035 * 20 to get a milliseconds-range estimation of the 1036 * amount of time that the task spent sleeping: 1037 */ 1038 if (unlikely(prof_on == SLEEP_PROFILING)) { 1039 profile_hits(SLEEP_PROFILING, 1040 (void *)get_wchan(tsk), 1041 delta >> 20); 1042 } 1043 account_scheduler_latency(tsk, delta >> 10, 0); 1044 } 1045 } 1046 #endif 1047 } 1048 1049 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1050 { 1051 #ifdef CONFIG_SCHED_DEBUG 1052 s64 d = se->vruntime - cfs_rq->min_vruntime; 1053 1054 if (d < 0) 1055 d = -d; 1056 1057 if (d > 3*sysctl_sched_latency) 1058 schedstat_inc(cfs_rq, nr_spread_over); 1059 #endif 1060 } 1061 1062 static void 1063 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1064 { 1065 u64 vruntime = cfs_rq->min_vruntime; 1066 1067 /* 1068 * The 'current' period is already promised to the current tasks, 1069 * however the extra weight of the new task will slow them down a 1070 * little, place the new task so that it fits in the slot that 1071 * stays open at the end. 1072 */ 1073 if (initial && sched_feat(START_DEBIT)) 1074 vruntime += sched_vslice(cfs_rq, se); 1075 1076 /* sleeps up to a single latency don't count. */ 1077 if (!initial) { 1078 unsigned long thresh = sysctl_sched_latency; 1079 1080 /* 1081 * Halve their sleep time's effect, to allow 1082 * for a gentler effect of sleepers: 1083 */ 1084 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1085 thresh >>= 1; 1086 1087 vruntime -= thresh; 1088 } 1089 1090 /* ensure we never gain time by being placed backwards. */ 1091 vruntime = max_vruntime(se->vruntime, vruntime); 1092 1093 se->vruntime = vruntime; 1094 } 1095 1096 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1097 1098 static void 1099 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1100 { 1101 /* 1102 * Update the normalized vruntime before updating min_vruntime 1103 * through callig update_curr(). 1104 */ 1105 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1106 se->vruntime += cfs_rq->min_vruntime; 1107 1108 /* 1109 * Update run-time statistics of the 'current'. 1110 */ 1111 update_curr(cfs_rq); 1112 update_cfs_load(cfs_rq, 0); 1113 account_entity_enqueue(cfs_rq, se); 1114 update_cfs_shares(cfs_rq); 1115 1116 if (flags & ENQUEUE_WAKEUP) { 1117 place_entity(cfs_rq, se, 0); 1118 enqueue_sleeper(cfs_rq, se); 1119 } 1120 1121 update_stats_enqueue(cfs_rq, se); 1122 check_spread(cfs_rq, se); 1123 if (se != cfs_rq->curr) 1124 __enqueue_entity(cfs_rq, se); 1125 se->on_rq = 1; 1126 1127 if (cfs_rq->nr_running == 1) { 1128 list_add_leaf_cfs_rq(cfs_rq); 1129 check_enqueue_throttle(cfs_rq); 1130 } 1131 } 1132 1133 static void __clear_buddies_last(struct sched_entity *se) 1134 { 1135 for_each_sched_entity(se) { 1136 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1137 if (cfs_rq->last == se) 1138 cfs_rq->last = NULL; 1139 else 1140 break; 1141 } 1142 } 1143 1144 static void __clear_buddies_next(struct sched_entity *se) 1145 { 1146 for_each_sched_entity(se) { 1147 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1148 if (cfs_rq->next == se) 1149 cfs_rq->next = NULL; 1150 else 1151 break; 1152 } 1153 } 1154 1155 static void __clear_buddies_skip(struct sched_entity *se) 1156 { 1157 for_each_sched_entity(se) { 1158 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1159 if (cfs_rq->skip == se) 1160 cfs_rq->skip = NULL; 1161 else 1162 break; 1163 } 1164 } 1165 1166 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1167 { 1168 if (cfs_rq->last == se) 1169 __clear_buddies_last(se); 1170 1171 if (cfs_rq->next == se) 1172 __clear_buddies_next(se); 1173 1174 if (cfs_rq->skip == se) 1175 __clear_buddies_skip(se); 1176 } 1177 1178 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1179 1180 static void 1181 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1182 { 1183 /* 1184 * Update run-time statistics of the 'current'. 1185 */ 1186 update_curr(cfs_rq); 1187 1188 update_stats_dequeue(cfs_rq, se); 1189 if (flags & DEQUEUE_SLEEP) { 1190 #ifdef CONFIG_SCHEDSTATS 1191 if (entity_is_task(se)) { 1192 struct task_struct *tsk = task_of(se); 1193 1194 if (tsk->state & TASK_INTERRUPTIBLE) 1195 se->statistics.sleep_start = rq_of(cfs_rq)->clock; 1196 if (tsk->state & TASK_UNINTERRUPTIBLE) 1197 se->statistics.block_start = rq_of(cfs_rq)->clock; 1198 } 1199 #endif 1200 } 1201 1202 clear_buddies(cfs_rq, se); 1203 1204 if (se != cfs_rq->curr) 1205 __dequeue_entity(cfs_rq, se); 1206 se->on_rq = 0; 1207 update_cfs_load(cfs_rq, 0); 1208 account_entity_dequeue(cfs_rq, se); 1209 1210 /* 1211 * Normalize the entity after updating the min_vruntime because the 1212 * update can refer to the ->curr item and we need to reflect this 1213 * movement in our normalized position. 1214 */ 1215 if (!(flags & DEQUEUE_SLEEP)) 1216 se->vruntime -= cfs_rq->min_vruntime; 1217 1218 /* return excess runtime on last dequeue */ 1219 return_cfs_rq_runtime(cfs_rq); 1220 1221 update_min_vruntime(cfs_rq); 1222 update_cfs_shares(cfs_rq); 1223 } 1224 1225 /* 1226 * Preempt the current task with a newly woken task if needed: 1227 */ 1228 static void 1229 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1230 { 1231 unsigned long ideal_runtime, delta_exec; 1232 struct sched_entity *se; 1233 s64 delta; 1234 1235 ideal_runtime = sched_slice(cfs_rq, curr); 1236 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1237 if (delta_exec > ideal_runtime) { 1238 resched_task(rq_of(cfs_rq)->curr); 1239 /* 1240 * The current task ran long enough, ensure it doesn't get 1241 * re-elected due to buddy favours. 1242 */ 1243 clear_buddies(cfs_rq, curr); 1244 return; 1245 } 1246 1247 /* 1248 * Ensure that a task that missed wakeup preemption by a 1249 * narrow margin doesn't have to wait for a full slice. 1250 * This also mitigates buddy induced latencies under load. 1251 */ 1252 if (delta_exec < sysctl_sched_min_granularity) 1253 return; 1254 1255 se = __pick_first_entity(cfs_rq); 1256 delta = curr->vruntime - se->vruntime; 1257 1258 if (delta < 0) 1259 return; 1260 1261 if (delta > ideal_runtime) 1262 resched_task(rq_of(cfs_rq)->curr); 1263 } 1264 1265 static void 1266 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1267 { 1268 /* 'current' is not kept within the tree. */ 1269 if (se->on_rq) { 1270 /* 1271 * Any task has to be enqueued before it get to execute on 1272 * a CPU. So account for the time it spent waiting on the 1273 * runqueue. 1274 */ 1275 update_stats_wait_end(cfs_rq, se); 1276 __dequeue_entity(cfs_rq, se); 1277 } 1278 1279 update_stats_curr_start(cfs_rq, se); 1280 cfs_rq->curr = se; 1281 #ifdef CONFIG_SCHEDSTATS 1282 /* 1283 * Track our maximum slice length, if the CPU's load is at 1284 * least twice that of our own weight (i.e. dont track it 1285 * when there are only lesser-weight tasks around): 1286 */ 1287 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1288 se->statistics.slice_max = max(se->statistics.slice_max, 1289 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1290 } 1291 #endif 1292 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1293 } 1294 1295 static int 1296 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1297 1298 /* 1299 * Pick the next process, keeping these things in mind, in this order: 1300 * 1) keep things fair between processes/task groups 1301 * 2) pick the "next" process, since someone really wants that to run 1302 * 3) pick the "last" process, for cache locality 1303 * 4) do not run the "skip" process, if something else is available 1304 */ 1305 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1306 { 1307 struct sched_entity *se = __pick_first_entity(cfs_rq); 1308 struct sched_entity *left = se; 1309 1310 /* 1311 * Avoid running the skip buddy, if running something else can 1312 * be done without getting too unfair. 1313 */ 1314 if (cfs_rq->skip == se) { 1315 struct sched_entity *second = __pick_next_entity(se); 1316 if (second && wakeup_preempt_entity(second, left) < 1) 1317 se = second; 1318 } 1319 1320 /* 1321 * Prefer last buddy, try to return the CPU to a preempted task. 1322 */ 1323 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1324 se = cfs_rq->last; 1325 1326 /* 1327 * Someone really wants this to run. If it's not unfair, run it. 1328 */ 1329 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1330 se = cfs_rq->next; 1331 1332 clear_buddies(cfs_rq, se); 1333 1334 return se; 1335 } 1336 1337 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1338 1339 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 1340 { 1341 /* 1342 * If still on the runqueue then deactivate_task() 1343 * was not called and update_curr() has to be done: 1344 */ 1345 if (prev->on_rq) 1346 update_curr(cfs_rq); 1347 1348 /* throttle cfs_rqs exceeding runtime */ 1349 check_cfs_rq_runtime(cfs_rq); 1350 1351 check_spread(cfs_rq, prev); 1352 if (prev->on_rq) { 1353 update_stats_wait_start(cfs_rq, prev); 1354 /* Put 'current' back into the tree. */ 1355 __enqueue_entity(cfs_rq, prev); 1356 } 1357 cfs_rq->curr = NULL; 1358 } 1359 1360 static void 1361 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 1362 { 1363 /* 1364 * Update run-time statistics of the 'current'. 1365 */ 1366 update_curr(cfs_rq); 1367 1368 /* 1369 * Update share accounting for long-running entities. 1370 */ 1371 update_entity_shares_tick(cfs_rq); 1372 1373 #ifdef CONFIG_SCHED_HRTICK 1374 /* 1375 * queued ticks are scheduled to match the slice, so don't bother 1376 * validating it and just reschedule. 1377 */ 1378 if (queued) { 1379 resched_task(rq_of(cfs_rq)->curr); 1380 return; 1381 } 1382 /* 1383 * don't let the period tick interfere with the hrtick preemption 1384 */ 1385 if (!sched_feat(DOUBLE_TICK) && 1386 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 1387 return; 1388 #endif 1389 1390 if (cfs_rq->nr_running > 1) 1391 check_preempt_tick(cfs_rq, curr); 1392 } 1393 1394 1395 /************************************************** 1396 * CFS bandwidth control machinery 1397 */ 1398 1399 #ifdef CONFIG_CFS_BANDWIDTH 1400 1401 #ifdef HAVE_JUMP_LABEL 1402 static struct jump_label_key __cfs_bandwidth_used; 1403 1404 static inline bool cfs_bandwidth_used(void) 1405 { 1406 return static_branch(&__cfs_bandwidth_used); 1407 } 1408 1409 void account_cfs_bandwidth_used(int enabled, int was_enabled) 1410 { 1411 /* only need to count groups transitioning between enabled/!enabled */ 1412 if (enabled && !was_enabled) 1413 jump_label_inc(&__cfs_bandwidth_used); 1414 else if (!enabled && was_enabled) 1415 jump_label_dec(&__cfs_bandwidth_used); 1416 } 1417 #else /* HAVE_JUMP_LABEL */ 1418 static bool cfs_bandwidth_used(void) 1419 { 1420 return true; 1421 } 1422 1423 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 1424 #endif /* HAVE_JUMP_LABEL */ 1425 1426 /* 1427 * default period for cfs group bandwidth. 1428 * default: 0.1s, units: nanoseconds 1429 */ 1430 static inline u64 default_cfs_period(void) 1431 { 1432 return 100000000ULL; 1433 } 1434 1435 static inline u64 sched_cfs_bandwidth_slice(void) 1436 { 1437 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 1438 } 1439 1440 /* 1441 * Replenish runtime according to assigned quota and update expiration time. 1442 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 1443 * additional synchronization around rq->lock. 1444 * 1445 * requires cfs_b->lock 1446 */ 1447 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 1448 { 1449 u64 now; 1450 1451 if (cfs_b->quota == RUNTIME_INF) 1452 return; 1453 1454 now = sched_clock_cpu(smp_processor_id()); 1455 cfs_b->runtime = cfs_b->quota; 1456 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 1457 } 1458 1459 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 1460 { 1461 return &tg->cfs_bandwidth; 1462 } 1463 1464 /* returns 0 on failure to allocate runtime */ 1465 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1466 { 1467 struct task_group *tg = cfs_rq->tg; 1468 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 1469 u64 amount = 0, min_amount, expires; 1470 1471 /* note: this is a positive sum as runtime_remaining <= 0 */ 1472 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 1473 1474 raw_spin_lock(&cfs_b->lock); 1475 if (cfs_b->quota == RUNTIME_INF) 1476 amount = min_amount; 1477 else { 1478 /* 1479 * If the bandwidth pool has become inactive, then at least one 1480 * period must have elapsed since the last consumption. 1481 * Refresh the global state and ensure bandwidth timer becomes 1482 * active. 1483 */ 1484 if (!cfs_b->timer_active) { 1485 __refill_cfs_bandwidth_runtime(cfs_b); 1486 __start_cfs_bandwidth(cfs_b); 1487 } 1488 1489 if (cfs_b->runtime > 0) { 1490 amount = min(cfs_b->runtime, min_amount); 1491 cfs_b->runtime -= amount; 1492 cfs_b->idle = 0; 1493 } 1494 } 1495 expires = cfs_b->runtime_expires; 1496 raw_spin_unlock(&cfs_b->lock); 1497 1498 cfs_rq->runtime_remaining += amount; 1499 /* 1500 * we may have advanced our local expiration to account for allowed 1501 * spread between our sched_clock and the one on which runtime was 1502 * issued. 1503 */ 1504 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 1505 cfs_rq->runtime_expires = expires; 1506 1507 return cfs_rq->runtime_remaining > 0; 1508 } 1509 1510 /* 1511 * Note: This depends on the synchronization provided by sched_clock and the 1512 * fact that rq->clock snapshots this value. 1513 */ 1514 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1515 { 1516 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1517 struct rq *rq = rq_of(cfs_rq); 1518 1519 /* if the deadline is ahead of our clock, nothing to do */ 1520 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) 1521 return; 1522 1523 if (cfs_rq->runtime_remaining < 0) 1524 return; 1525 1526 /* 1527 * If the local deadline has passed we have to consider the 1528 * possibility that our sched_clock is 'fast' and the global deadline 1529 * has not truly expired. 1530 * 1531 * Fortunately we can check determine whether this the case by checking 1532 * whether the global deadline has advanced. 1533 */ 1534 1535 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 1536 /* extend local deadline, drift is bounded above by 2 ticks */ 1537 cfs_rq->runtime_expires += TICK_NSEC; 1538 } else { 1539 /* global deadline is ahead, expiration has passed */ 1540 cfs_rq->runtime_remaining = 0; 1541 } 1542 } 1543 1544 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 1545 unsigned long delta_exec) 1546 { 1547 /* dock delta_exec before expiring quota (as it could span periods) */ 1548 cfs_rq->runtime_remaining -= delta_exec; 1549 expire_cfs_rq_runtime(cfs_rq); 1550 1551 if (likely(cfs_rq->runtime_remaining > 0)) 1552 return; 1553 1554 /* 1555 * if we're unable to extend our runtime we resched so that the active 1556 * hierarchy can be throttled 1557 */ 1558 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 1559 resched_task(rq_of(cfs_rq)->curr); 1560 } 1561 1562 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 1563 unsigned long delta_exec) 1564 { 1565 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 1566 return; 1567 1568 __account_cfs_rq_runtime(cfs_rq, delta_exec); 1569 } 1570 1571 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 1572 { 1573 return cfs_bandwidth_used() && cfs_rq->throttled; 1574 } 1575 1576 /* check whether cfs_rq, or any parent, is throttled */ 1577 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 1578 { 1579 return cfs_bandwidth_used() && cfs_rq->throttle_count; 1580 } 1581 1582 /* 1583 * Ensure that neither of the group entities corresponding to src_cpu or 1584 * dest_cpu are members of a throttled hierarchy when performing group 1585 * load-balance operations. 1586 */ 1587 static inline int throttled_lb_pair(struct task_group *tg, 1588 int src_cpu, int dest_cpu) 1589 { 1590 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 1591 1592 src_cfs_rq = tg->cfs_rq[src_cpu]; 1593 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 1594 1595 return throttled_hierarchy(src_cfs_rq) || 1596 throttled_hierarchy(dest_cfs_rq); 1597 } 1598 1599 /* updated child weight may affect parent so we have to do this bottom up */ 1600 static int tg_unthrottle_up(struct task_group *tg, void *data) 1601 { 1602 struct rq *rq = data; 1603 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1604 1605 cfs_rq->throttle_count--; 1606 #ifdef CONFIG_SMP 1607 if (!cfs_rq->throttle_count) { 1608 u64 delta = rq->clock_task - cfs_rq->load_stamp; 1609 1610 /* leaving throttled state, advance shares averaging windows */ 1611 cfs_rq->load_stamp += delta; 1612 cfs_rq->load_last += delta; 1613 1614 /* update entity weight now that we are on_rq again */ 1615 update_cfs_shares(cfs_rq); 1616 } 1617 #endif 1618 1619 return 0; 1620 } 1621 1622 static int tg_throttle_down(struct task_group *tg, void *data) 1623 { 1624 struct rq *rq = data; 1625 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1626 1627 /* group is entering throttled state, record last load */ 1628 if (!cfs_rq->throttle_count) 1629 update_cfs_load(cfs_rq, 0); 1630 cfs_rq->throttle_count++; 1631 1632 return 0; 1633 } 1634 1635 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 1636 { 1637 struct rq *rq = rq_of(cfs_rq); 1638 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1639 struct sched_entity *se; 1640 long task_delta, dequeue = 1; 1641 1642 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1643 1644 /* account load preceding throttle */ 1645 rcu_read_lock(); 1646 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 1647 rcu_read_unlock(); 1648 1649 task_delta = cfs_rq->h_nr_running; 1650 for_each_sched_entity(se) { 1651 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 1652 /* throttled entity or throttle-on-deactivate */ 1653 if (!se->on_rq) 1654 break; 1655 1656 if (dequeue) 1657 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 1658 qcfs_rq->h_nr_running -= task_delta; 1659 1660 if (qcfs_rq->load.weight) 1661 dequeue = 0; 1662 } 1663 1664 if (!se) 1665 rq->nr_running -= task_delta; 1666 1667 cfs_rq->throttled = 1; 1668 cfs_rq->throttled_timestamp = rq->clock; 1669 raw_spin_lock(&cfs_b->lock); 1670 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 1671 raw_spin_unlock(&cfs_b->lock); 1672 } 1673 1674 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 1675 { 1676 struct rq *rq = rq_of(cfs_rq); 1677 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1678 struct sched_entity *se; 1679 int enqueue = 1; 1680 long task_delta; 1681 1682 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1683 1684 cfs_rq->throttled = 0; 1685 raw_spin_lock(&cfs_b->lock); 1686 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; 1687 list_del_rcu(&cfs_rq->throttled_list); 1688 raw_spin_unlock(&cfs_b->lock); 1689 cfs_rq->throttled_timestamp = 0; 1690 1691 update_rq_clock(rq); 1692 /* update hierarchical throttle state */ 1693 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 1694 1695 if (!cfs_rq->load.weight) 1696 return; 1697 1698 task_delta = cfs_rq->h_nr_running; 1699 for_each_sched_entity(se) { 1700 if (se->on_rq) 1701 enqueue = 0; 1702 1703 cfs_rq = cfs_rq_of(se); 1704 if (enqueue) 1705 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 1706 cfs_rq->h_nr_running += task_delta; 1707 1708 if (cfs_rq_throttled(cfs_rq)) 1709 break; 1710 } 1711 1712 if (!se) 1713 rq->nr_running += task_delta; 1714 1715 /* determine whether we need to wake up potentially idle cpu */ 1716 if (rq->curr == rq->idle && rq->cfs.nr_running) 1717 resched_task(rq->curr); 1718 } 1719 1720 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 1721 u64 remaining, u64 expires) 1722 { 1723 struct cfs_rq *cfs_rq; 1724 u64 runtime = remaining; 1725 1726 rcu_read_lock(); 1727 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 1728 throttled_list) { 1729 struct rq *rq = rq_of(cfs_rq); 1730 1731 raw_spin_lock(&rq->lock); 1732 if (!cfs_rq_throttled(cfs_rq)) 1733 goto next; 1734 1735 runtime = -cfs_rq->runtime_remaining + 1; 1736 if (runtime > remaining) 1737 runtime = remaining; 1738 remaining -= runtime; 1739 1740 cfs_rq->runtime_remaining += runtime; 1741 cfs_rq->runtime_expires = expires; 1742 1743 /* we check whether we're throttled above */ 1744 if (cfs_rq->runtime_remaining > 0) 1745 unthrottle_cfs_rq(cfs_rq); 1746 1747 next: 1748 raw_spin_unlock(&rq->lock); 1749 1750 if (!remaining) 1751 break; 1752 } 1753 rcu_read_unlock(); 1754 1755 return remaining; 1756 } 1757 1758 /* 1759 * Responsible for refilling a task_group's bandwidth and unthrottling its 1760 * cfs_rqs as appropriate. If there has been no activity within the last 1761 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 1762 * used to track this state. 1763 */ 1764 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 1765 { 1766 u64 runtime, runtime_expires; 1767 int idle = 1, throttled; 1768 1769 raw_spin_lock(&cfs_b->lock); 1770 /* no need to continue the timer with no bandwidth constraint */ 1771 if (cfs_b->quota == RUNTIME_INF) 1772 goto out_unlock; 1773 1774 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1775 /* idle depends on !throttled (for the case of a large deficit) */ 1776 idle = cfs_b->idle && !throttled; 1777 cfs_b->nr_periods += overrun; 1778 1779 /* if we're going inactive then everything else can be deferred */ 1780 if (idle) 1781 goto out_unlock; 1782 1783 __refill_cfs_bandwidth_runtime(cfs_b); 1784 1785 if (!throttled) { 1786 /* mark as potentially idle for the upcoming period */ 1787 cfs_b->idle = 1; 1788 goto out_unlock; 1789 } 1790 1791 /* account preceding periods in which throttling occurred */ 1792 cfs_b->nr_throttled += overrun; 1793 1794 /* 1795 * There are throttled entities so we must first use the new bandwidth 1796 * to unthrottle them before making it generally available. This 1797 * ensures that all existing debts will be paid before a new cfs_rq is 1798 * allowed to run. 1799 */ 1800 runtime = cfs_b->runtime; 1801 runtime_expires = cfs_b->runtime_expires; 1802 cfs_b->runtime = 0; 1803 1804 /* 1805 * This check is repeated as we are holding onto the new bandwidth 1806 * while we unthrottle. This can potentially race with an unthrottled 1807 * group trying to acquire new bandwidth from the global pool. 1808 */ 1809 while (throttled && runtime > 0) { 1810 raw_spin_unlock(&cfs_b->lock); 1811 /* we can't nest cfs_b->lock while distributing bandwidth */ 1812 runtime = distribute_cfs_runtime(cfs_b, runtime, 1813 runtime_expires); 1814 raw_spin_lock(&cfs_b->lock); 1815 1816 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1817 } 1818 1819 /* return (any) remaining runtime */ 1820 cfs_b->runtime = runtime; 1821 /* 1822 * While we are ensured activity in the period following an 1823 * unthrottle, this also covers the case in which the new bandwidth is 1824 * insufficient to cover the existing bandwidth deficit. (Forcing the 1825 * timer to remain active while there are any throttled entities.) 1826 */ 1827 cfs_b->idle = 0; 1828 out_unlock: 1829 if (idle) 1830 cfs_b->timer_active = 0; 1831 raw_spin_unlock(&cfs_b->lock); 1832 1833 return idle; 1834 } 1835 1836 /* a cfs_rq won't donate quota below this amount */ 1837 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 1838 /* minimum remaining period time to redistribute slack quota */ 1839 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 1840 /* how long we wait to gather additional slack before distributing */ 1841 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 1842 1843 /* are we near the end of the current quota period? */ 1844 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 1845 { 1846 struct hrtimer *refresh_timer = &cfs_b->period_timer; 1847 u64 remaining; 1848 1849 /* if the call-back is running a quota refresh is already occurring */ 1850 if (hrtimer_callback_running(refresh_timer)) 1851 return 1; 1852 1853 /* is a quota refresh about to occur? */ 1854 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 1855 if (remaining < min_expire) 1856 return 1; 1857 1858 return 0; 1859 } 1860 1861 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 1862 { 1863 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 1864 1865 /* if there's a quota refresh soon don't bother with slack */ 1866 if (runtime_refresh_within(cfs_b, min_left)) 1867 return; 1868 1869 start_bandwidth_timer(&cfs_b->slack_timer, 1870 ns_to_ktime(cfs_bandwidth_slack_period)); 1871 } 1872 1873 /* we know any runtime found here is valid as update_curr() precedes return */ 1874 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1875 { 1876 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1877 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 1878 1879 if (slack_runtime <= 0) 1880 return; 1881 1882 raw_spin_lock(&cfs_b->lock); 1883 if (cfs_b->quota != RUNTIME_INF && 1884 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 1885 cfs_b->runtime += slack_runtime; 1886 1887 /* we are under rq->lock, defer unthrottling using a timer */ 1888 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 1889 !list_empty(&cfs_b->throttled_cfs_rq)) 1890 start_cfs_slack_bandwidth(cfs_b); 1891 } 1892 raw_spin_unlock(&cfs_b->lock); 1893 1894 /* even if it's not valid for return we don't want to try again */ 1895 cfs_rq->runtime_remaining -= slack_runtime; 1896 } 1897 1898 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1899 { 1900 if (!cfs_bandwidth_used()) 1901 return; 1902 1903 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 1904 return; 1905 1906 __return_cfs_rq_runtime(cfs_rq); 1907 } 1908 1909 /* 1910 * This is done with a timer (instead of inline with bandwidth return) since 1911 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 1912 */ 1913 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 1914 { 1915 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 1916 u64 expires; 1917 1918 /* confirm we're still not at a refresh boundary */ 1919 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 1920 return; 1921 1922 raw_spin_lock(&cfs_b->lock); 1923 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 1924 runtime = cfs_b->runtime; 1925 cfs_b->runtime = 0; 1926 } 1927 expires = cfs_b->runtime_expires; 1928 raw_spin_unlock(&cfs_b->lock); 1929 1930 if (!runtime) 1931 return; 1932 1933 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 1934 1935 raw_spin_lock(&cfs_b->lock); 1936 if (expires == cfs_b->runtime_expires) 1937 cfs_b->runtime = runtime; 1938 raw_spin_unlock(&cfs_b->lock); 1939 } 1940 1941 /* 1942 * When a group wakes up we want to make sure that its quota is not already 1943 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 1944 * runtime as update_curr() throttling can not not trigger until it's on-rq. 1945 */ 1946 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 1947 { 1948 if (!cfs_bandwidth_used()) 1949 return; 1950 1951 /* an active group must be handled by the update_curr()->put() path */ 1952 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 1953 return; 1954 1955 /* ensure the group is not already throttled */ 1956 if (cfs_rq_throttled(cfs_rq)) 1957 return; 1958 1959 /* update runtime allocation */ 1960 account_cfs_rq_runtime(cfs_rq, 0); 1961 if (cfs_rq->runtime_remaining <= 0) 1962 throttle_cfs_rq(cfs_rq); 1963 } 1964 1965 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 1966 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1967 { 1968 if (!cfs_bandwidth_used()) 1969 return; 1970 1971 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 1972 return; 1973 1974 /* 1975 * it's possible for a throttled entity to be forced into a running 1976 * state (e.g. set_curr_task), in this case we're finished. 1977 */ 1978 if (cfs_rq_throttled(cfs_rq)) 1979 return; 1980 1981 throttle_cfs_rq(cfs_rq); 1982 } 1983 1984 static inline u64 default_cfs_period(void); 1985 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); 1986 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); 1987 1988 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 1989 { 1990 struct cfs_bandwidth *cfs_b = 1991 container_of(timer, struct cfs_bandwidth, slack_timer); 1992 do_sched_cfs_slack_timer(cfs_b); 1993 1994 return HRTIMER_NORESTART; 1995 } 1996 1997 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 1998 { 1999 struct cfs_bandwidth *cfs_b = 2000 container_of(timer, struct cfs_bandwidth, period_timer); 2001 ktime_t now; 2002 int overrun; 2003 int idle = 0; 2004 2005 for (;;) { 2006 now = hrtimer_cb_get_time(timer); 2007 overrun = hrtimer_forward(timer, now, cfs_b->period); 2008 2009 if (!overrun) 2010 break; 2011 2012 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2013 } 2014 2015 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2016 } 2017 2018 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2019 { 2020 raw_spin_lock_init(&cfs_b->lock); 2021 cfs_b->runtime = 0; 2022 cfs_b->quota = RUNTIME_INF; 2023 cfs_b->period = ns_to_ktime(default_cfs_period()); 2024 2025 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2026 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2027 cfs_b->period_timer.function = sched_cfs_period_timer; 2028 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2029 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2030 } 2031 2032 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2033 { 2034 cfs_rq->runtime_enabled = 0; 2035 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2036 } 2037 2038 /* requires cfs_b->lock, may release to reprogram timer */ 2039 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2040 { 2041 /* 2042 * The timer may be active because we're trying to set a new bandwidth 2043 * period or because we're racing with the tear-down path 2044 * (timer_active==0 becomes visible before the hrtimer call-back 2045 * terminates). In either case we ensure that it's re-programmed 2046 */ 2047 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2048 raw_spin_unlock(&cfs_b->lock); 2049 /* ensure cfs_b->lock is available while we wait */ 2050 hrtimer_cancel(&cfs_b->period_timer); 2051 2052 raw_spin_lock(&cfs_b->lock); 2053 /* if someone else restarted the timer then we're done */ 2054 if (cfs_b->timer_active) 2055 return; 2056 } 2057 2058 cfs_b->timer_active = 1; 2059 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2060 } 2061 2062 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2063 { 2064 hrtimer_cancel(&cfs_b->period_timer); 2065 hrtimer_cancel(&cfs_b->slack_timer); 2066 } 2067 2068 void unthrottle_offline_cfs_rqs(struct rq *rq) 2069 { 2070 struct cfs_rq *cfs_rq; 2071 2072 for_each_leaf_cfs_rq(rq, cfs_rq) { 2073 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2074 2075 if (!cfs_rq->runtime_enabled) 2076 continue; 2077 2078 /* 2079 * clock_task is not advancing so we just need to make sure 2080 * there's some valid quota amount 2081 */ 2082 cfs_rq->runtime_remaining = cfs_b->quota; 2083 if (cfs_rq_throttled(cfs_rq)) 2084 unthrottle_cfs_rq(cfs_rq); 2085 } 2086 } 2087 2088 #else /* CONFIG_CFS_BANDWIDTH */ 2089 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2090 unsigned long delta_exec) {} 2091 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2092 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2093 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2094 2095 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2096 { 2097 return 0; 2098 } 2099 2100 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2101 { 2102 return 0; 2103 } 2104 2105 static inline int throttled_lb_pair(struct task_group *tg, 2106 int src_cpu, int dest_cpu) 2107 { 2108 return 0; 2109 } 2110 2111 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2112 2113 #ifdef CONFIG_FAIR_GROUP_SCHED 2114 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2115 #endif 2116 2117 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2118 { 2119 return NULL; 2120 } 2121 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2122 void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2123 2124 #endif /* CONFIG_CFS_BANDWIDTH */ 2125 2126 /************************************************** 2127 * CFS operations on tasks: 2128 */ 2129 2130 #ifdef CONFIG_SCHED_HRTICK 2131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2132 { 2133 struct sched_entity *se = &p->se; 2134 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2135 2136 WARN_ON(task_rq(p) != rq); 2137 2138 if (cfs_rq->nr_running > 1) { 2139 u64 slice = sched_slice(cfs_rq, se); 2140 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2141 s64 delta = slice - ran; 2142 2143 if (delta < 0) { 2144 if (rq->curr == p) 2145 resched_task(p); 2146 return; 2147 } 2148 2149 /* 2150 * Don't schedule slices shorter than 10000ns, that just 2151 * doesn't make sense. Rely on vruntime for fairness. 2152 */ 2153 if (rq->curr != p) 2154 delta = max_t(s64, 10000LL, delta); 2155 2156 hrtick_start(rq, delta); 2157 } 2158 } 2159 2160 /* 2161 * called from enqueue/dequeue and updates the hrtick when the 2162 * current task is from our class and nr_running is low enough 2163 * to matter. 2164 */ 2165 static void hrtick_update(struct rq *rq) 2166 { 2167 struct task_struct *curr = rq->curr; 2168 2169 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2170 return; 2171 2172 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2173 hrtick_start_fair(rq, curr); 2174 } 2175 #else /* !CONFIG_SCHED_HRTICK */ 2176 static inline void 2177 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2178 { 2179 } 2180 2181 static inline void hrtick_update(struct rq *rq) 2182 { 2183 } 2184 #endif 2185 2186 /* 2187 * The enqueue_task method is called before nr_running is 2188 * increased. Here we update the fair scheduling stats and 2189 * then put the task into the rbtree: 2190 */ 2191 static void 2192 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2193 { 2194 struct cfs_rq *cfs_rq; 2195 struct sched_entity *se = &p->se; 2196 2197 for_each_sched_entity(se) { 2198 if (se->on_rq) 2199 break; 2200 cfs_rq = cfs_rq_of(se); 2201 enqueue_entity(cfs_rq, se, flags); 2202 2203 /* 2204 * end evaluation on encountering a throttled cfs_rq 2205 * 2206 * note: in the case of encountering a throttled cfs_rq we will 2207 * post the final h_nr_running increment below. 2208 */ 2209 if (cfs_rq_throttled(cfs_rq)) 2210 break; 2211 cfs_rq->h_nr_running++; 2212 2213 flags = ENQUEUE_WAKEUP; 2214 } 2215 2216 for_each_sched_entity(se) { 2217 cfs_rq = cfs_rq_of(se); 2218 cfs_rq->h_nr_running++; 2219 2220 if (cfs_rq_throttled(cfs_rq)) 2221 break; 2222 2223 update_cfs_load(cfs_rq, 0); 2224 update_cfs_shares(cfs_rq); 2225 } 2226 2227 if (!se) 2228 inc_nr_running(rq); 2229 hrtick_update(rq); 2230 } 2231 2232 static void set_next_buddy(struct sched_entity *se); 2233 2234 /* 2235 * The dequeue_task method is called before nr_running is 2236 * decreased. We remove the task from the rbtree and 2237 * update the fair scheduling stats: 2238 */ 2239 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2240 { 2241 struct cfs_rq *cfs_rq; 2242 struct sched_entity *se = &p->se; 2243 int task_sleep = flags & DEQUEUE_SLEEP; 2244 2245 for_each_sched_entity(se) { 2246 cfs_rq = cfs_rq_of(se); 2247 dequeue_entity(cfs_rq, se, flags); 2248 2249 /* 2250 * end evaluation on encountering a throttled cfs_rq 2251 * 2252 * note: in the case of encountering a throttled cfs_rq we will 2253 * post the final h_nr_running decrement below. 2254 */ 2255 if (cfs_rq_throttled(cfs_rq)) 2256 break; 2257 cfs_rq->h_nr_running--; 2258 2259 /* Don't dequeue parent if it has other entities besides us */ 2260 if (cfs_rq->load.weight) { 2261 /* 2262 * Bias pick_next to pick a task from this cfs_rq, as 2263 * p is sleeping when it is within its sched_slice. 2264 */ 2265 if (task_sleep && parent_entity(se)) 2266 set_next_buddy(parent_entity(se)); 2267 2268 /* avoid re-evaluating load for this entity */ 2269 se = parent_entity(se); 2270 break; 2271 } 2272 flags |= DEQUEUE_SLEEP; 2273 } 2274 2275 for_each_sched_entity(se) { 2276 cfs_rq = cfs_rq_of(se); 2277 cfs_rq->h_nr_running--; 2278 2279 if (cfs_rq_throttled(cfs_rq)) 2280 break; 2281 2282 update_cfs_load(cfs_rq, 0); 2283 update_cfs_shares(cfs_rq); 2284 } 2285 2286 if (!se) 2287 dec_nr_running(rq); 2288 hrtick_update(rq); 2289 } 2290 2291 #ifdef CONFIG_SMP 2292 /* Used instead of source_load when we know the type == 0 */ 2293 static unsigned long weighted_cpuload(const int cpu) 2294 { 2295 return cpu_rq(cpu)->load.weight; 2296 } 2297 2298 /* 2299 * Return a low guess at the load of a migration-source cpu weighted 2300 * according to the scheduling class and "nice" value. 2301 * 2302 * We want to under-estimate the load of migration sources, to 2303 * balance conservatively. 2304 */ 2305 static unsigned long source_load(int cpu, int type) 2306 { 2307 struct rq *rq = cpu_rq(cpu); 2308 unsigned long total = weighted_cpuload(cpu); 2309 2310 if (type == 0 || !sched_feat(LB_BIAS)) 2311 return total; 2312 2313 return min(rq->cpu_load[type-1], total); 2314 } 2315 2316 /* 2317 * Return a high guess at the load of a migration-target cpu weighted 2318 * according to the scheduling class and "nice" value. 2319 */ 2320 static unsigned long target_load(int cpu, int type) 2321 { 2322 struct rq *rq = cpu_rq(cpu); 2323 unsigned long total = weighted_cpuload(cpu); 2324 2325 if (type == 0 || !sched_feat(LB_BIAS)) 2326 return total; 2327 2328 return max(rq->cpu_load[type-1], total); 2329 } 2330 2331 static unsigned long power_of(int cpu) 2332 { 2333 return cpu_rq(cpu)->cpu_power; 2334 } 2335 2336 static unsigned long cpu_avg_load_per_task(int cpu) 2337 { 2338 struct rq *rq = cpu_rq(cpu); 2339 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 2340 2341 if (nr_running) 2342 return rq->load.weight / nr_running; 2343 2344 return 0; 2345 } 2346 2347 2348 static void task_waking_fair(struct task_struct *p) 2349 { 2350 struct sched_entity *se = &p->se; 2351 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2352 u64 min_vruntime; 2353 2354 #ifndef CONFIG_64BIT 2355 u64 min_vruntime_copy; 2356 2357 do { 2358 min_vruntime_copy = cfs_rq->min_vruntime_copy; 2359 smp_rmb(); 2360 min_vruntime = cfs_rq->min_vruntime; 2361 } while (min_vruntime != min_vruntime_copy); 2362 #else 2363 min_vruntime = cfs_rq->min_vruntime; 2364 #endif 2365 2366 se->vruntime -= min_vruntime; 2367 } 2368 2369 #ifdef CONFIG_FAIR_GROUP_SCHED 2370 /* 2371 * effective_load() calculates the load change as seen from the root_task_group 2372 * 2373 * Adding load to a group doesn't make a group heavier, but can cause movement 2374 * of group shares between cpus. Assuming the shares were perfectly aligned one 2375 * can calculate the shift in shares. 2376 * 2377 * Calculate the effective load difference if @wl is added (subtracted) to @tg 2378 * on this @cpu and results in a total addition (subtraction) of @wg to the 2379 * total group weight. 2380 * 2381 * Given a runqueue weight distribution (rw_i) we can compute a shares 2382 * distribution (s_i) using: 2383 * 2384 * s_i = rw_i / \Sum rw_j (1) 2385 * 2386 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 2387 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 2388 * shares distribution (s_i): 2389 * 2390 * rw_i = { 2, 4, 1, 0 } 2391 * s_i = { 2/7, 4/7, 1/7, 0 } 2392 * 2393 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 2394 * task used to run on and the CPU the waker is running on), we need to 2395 * compute the effect of waking a task on either CPU and, in case of a sync 2396 * wakeup, compute the effect of the current task going to sleep. 2397 * 2398 * So for a change of @wl to the local @cpu with an overall group weight change 2399 * of @wl we can compute the new shares distribution (s'_i) using: 2400 * 2401 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 2402 * 2403 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 2404 * differences in waking a task to CPU 0. The additional task changes the 2405 * weight and shares distributions like: 2406 * 2407 * rw'_i = { 3, 4, 1, 0 } 2408 * s'_i = { 3/8, 4/8, 1/8, 0 } 2409 * 2410 * We can then compute the difference in effective weight by using: 2411 * 2412 * dw_i = S * (s'_i - s_i) (3) 2413 * 2414 * Where 'S' is the group weight as seen by its parent. 2415 * 2416 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 2417 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 2418 * 4/7) times the weight of the group. 2419 */ 2420 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 2421 { 2422 struct sched_entity *se = tg->se[cpu]; 2423 2424 if (!tg->parent) /* the trivial, non-cgroup case */ 2425 return wl; 2426 2427 for_each_sched_entity(se) { 2428 long w, W; 2429 2430 tg = se->my_q->tg; 2431 2432 /* 2433 * W = @wg + \Sum rw_j 2434 */ 2435 W = wg + calc_tg_weight(tg, se->my_q); 2436 2437 /* 2438 * w = rw_i + @wl 2439 */ 2440 w = se->my_q->load.weight + wl; 2441 2442 /* 2443 * wl = S * s'_i; see (2) 2444 */ 2445 if (W > 0 && w < W) 2446 wl = (w * tg->shares) / W; 2447 else 2448 wl = tg->shares; 2449 2450 /* 2451 * Per the above, wl is the new se->load.weight value; since 2452 * those are clipped to [MIN_SHARES, ...) do so now. See 2453 * calc_cfs_shares(). 2454 */ 2455 if (wl < MIN_SHARES) 2456 wl = MIN_SHARES; 2457 2458 /* 2459 * wl = dw_i = S * (s'_i - s_i); see (3) 2460 */ 2461 wl -= se->load.weight; 2462 2463 /* 2464 * Recursively apply this logic to all parent groups to compute 2465 * the final effective load change on the root group. Since 2466 * only the @tg group gets extra weight, all parent groups can 2467 * only redistribute existing shares. @wl is the shift in shares 2468 * resulting from this level per the above. 2469 */ 2470 wg = 0; 2471 } 2472 2473 return wl; 2474 } 2475 #else 2476 2477 static inline unsigned long effective_load(struct task_group *tg, int cpu, 2478 unsigned long wl, unsigned long wg) 2479 { 2480 return wl; 2481 } 2482 2483 #endif 2484 2485 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 2486 { 2487 s64 this_load, load; 2488 int idx, this_cpu, prev_cpu; 2489 unsigned long tl_per_task; 2490 struct task_group *tg; 2491 unsigned long weight; 2492 int balanced; 2493 2494 idx = sd->wake_idx; 2495 this_cpu = smp_processor_id(); 2496 prev_cpu = task_cpu(p); 2497 load = source_load(prev_cpu, idx); 2498 this_load = target_load(this_cpu, idx); 2499 2500 /* 2501 * If sync wakeup then subtract the (maximum possible) 2502 * effect of the currently running task from the load 2503 * of the current CPU: 2504 */ 2505 if (sync) { 2506 tg = task_group(current); 2507 weight = current->se.load.weight; 2508 2509 this_load += effective_load(tg, this_cpu, -weight, -weight); 2510 load += effective_load(tg, prev_cpu, 0, -weight); 2511 } 2512 2513 tg = task_group(p); 2514 weight = p->se.load.weight; 2515 2516 /* 2517 * In low-load situations, where prev_cpu is idle and this_cpu is idle 2518 * due to the sync cause above having dropped this_load to 0, we'll 2519 * always have an imbalance, but there's really nothing you can do 2520 * about that, so that's good too. 2521 * 2522 * Otherwise check if either cpus are near enough in load to allow this 2523 * task to be woken on this_cpu. 2524 */ 2525 if (this_load > 0) { 2526 s64 this_eff_load, prev_eff_load; 2527 2528 this_eff_load = 100; 2529 this_eff_load *= power_of(prev_cpu); 2530 this_eff_load *= this_load + 2531 effective_load(tg, this_cpu, weight, weight); 2532 2533 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 2534 prev_eff_load *= power_of(this_cpu); 2535 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 2536 2537 balanced = this_eff_load <= prev_eff_load; 2538 } else 2539 balanced = true; 2540 2541 /* 2542 * If the currently running task will sleep within 2543 * a reasonable amount of time then attract this newly 2544 * woken task: 2545 */ 2546 if (sync && balanced) 2547 return 1; 2548 2549 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 2550 tl_per_task = cpu_avg_load_per_task(this_cpu); 2551 2552 if (balanced || 2553 (this_load <= load && 2554 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 2555 /* 2556 * This domain has SD_WAKE_AFFINE and 2557 * p is cache cold in this domain, and 2558 * there is no bad imbalance. 2559 */ 2560 schedstat_inc(sd, ttwu_move_affine); 2561 schedstat_inc(p, se.statistics.nr_wakeups_affine); 2562 2563 return 1; 2564 } 2565 return 0; 2566 } 2567 2568 /* 2569 * find_idlest_group finds and returns the least busy CPU group within the 2570 * domain. 2571 */ 2572 static struct sched_group * 2573 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 2574 int this_cpu, int load_idx) 2575 { 2576 struct sched_group *idlest = NULL, *group = sd->groups; 2577 unsigned long min_load = ULONG_MAX, this_load = 0; 2578 int imbalance = 100 + (sd->imbalance_pct-100)/2; 2579 2580 do { 2581 unsigned long load, avg_load; 2582 int local_group; 2583 int i; 2584 2585 /* Skip over this group if it has no CPUs allowed */ 2586 if (!cpumask_intersects(sched_group_cpus(group), 2587 tsk_cpus_allowed(p))) 2588 continue; 2589 2590 local_group = cpumask_test_cpu(this_cpu, 2591 sched_group_cpus(group)); 2592 2593 /* Tally up the load of all CPUs in the group */ 2594 avg_load = 0; 2595 2596 for_each_cpu(i, sched_group_cpus(group)) { 2597 /* Bias balancing toward cpus of our domain */ 2598 if (local_group) 2599 load = source_load(i, load_idx); 2600 else 2601 load = target_load(i, load_idx); 2602 2603 avg_load += load; 2604 } 2605 2606 /* Adjust by relative CPU power of the group */ 2607 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 2608 2609 if (local_group) { 2610 this_load = avg_load; 2611 } else if (avg_load < min_load) { 2612 min_load = avg_load; 2613 idlest = group; 2614 } 2615 } while (group = group->next, group != sd->groups); 2616 2617 if (!idlest || 100*this_load < imbalance*min_load) 2618 return NULL; 2619 return idlest; 2620 } 2621 2622 /* 2623 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2624 */ 2625 static int 2626 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 2627 { 2628 unsigned long load, min_load = ULONG_MAX; 2629 int idlest = -1; 2630 int i; 2631 2632 /* Traverse only the allowed CPUs */ 2633 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 2634 load = weighted_cpuload(i); 2635 2636 if (load < min_load || (load == min_load && i == this_cpu)) { 2637 min_load = load; 2638 idlest = i; 2639 } 2640 } 2641 2642 return idlest; 2643 } 2644 2645 /* 2646 * Try and locate an idle CPU in the sched_domain. 2647 */ 2648 static int select_idle_sibling(struct task_struct *p, int target) 2649 { 2650 int cpu = smp_processor_id(); 2651 int prev_cpu = task_cpu(p); 2652 struct sched_domain *sd; 2653 struct sched_group *sg; 2654 int i; 2655 2656 /* 2657 * If the task is going to be woken-up on this cpu and if it is 2658 * already idle, then it is the right target. 2659 */ 2660 if (target == cpu && idle_cpu(cpu)) 2661 return cpu; 2662 2663 /* 2664 * If the task is going to be woken-up on the cpu where it previously 2665 * ran and if it is currently idle, then it the right target. 2666 */ 2667 if (target == prev_cpu && idle_cpu(prev_cpu)) 2668 return prev_cpu; 2669 2670 /* 2671 * Otherwise, iterate the domains and find an elegible idle cpu. 2672 */ 2673 rcu_read_lock(); 2674 2675 sd = rcu_dereference(per_cpu(sd_llc, target)); 2676 for_each_lower_domain(sd) { 2677 sg = sd->groups; 2678 do { 2679 if (!cpumask_intersects(sched_group_cpus(sg), 2680 tsk_cpus_allowed(p))) 2681 goto next; 2682 2683 for_each_cpu(i, sched_group_cpus(sg)) { 2684 if (!idle_cpu(i)) 2685 goto next; 2686 } 2687 2688 target = cpumask_first_and(sched_group_cpus(sg), 2689 tsk_cpus_allowed(p)); 2690 goto done; 2691 next: 2692 sg = sg->next; 2693 } while (sg != sd->groups); 2694 } 2695 done: 2696 rcu_read_unlock(); 2697 2698 return target; 2699 } 2700 2701 /* 2702 * sched_balance_self: balance the current task (running on cpu) in domains 2703 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 2704 * SD_BALANCE_EXEC. 2705 * 2706 * Balance, ie. select the least loaded group. 2707 * 2708 * Returns the target CPU number, or the same CPU if no balancing is needed. 2709 * 2710 * preempt must be disabled. 2711 */ 2712 static int 2713 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 2714 { 2715 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 2716 int cpu = smp_processor_id(); 2717 int prev_cpu = task_cpu(p); 2718 int new_cpu = cpu; 2719 int want_affine = 0; 2720 int want_sd = 1; 2721 int sync = wake_flags & WF_SYNC; 2722 2723 if (p->rt.nr_cpus_allowed == 1) 2724 return prev_cpu; 2725 2726 if (sd_flag & SD_BALANCE_WAKE) { 2727 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 2728 want_affine = 1; 2729 new_cpu = prev_cpu; 2730 } 2731 2732 rcu_read_lock(); 2733 for_each_domain(cpu, tmp) { 2734 if (!(tmp->flags & SD_LOAD_BALANCE)) 2735 continue; 2736 2737 /* 2738 * If power savings logic is enabled for a domain, see if we 2739 * are not overloaded, if so, don't balance wider. 2740 */ 2741 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { 2742 unsigned long power = 0; 2743 unsigned long nr_running = 0; 2744 unsigned long capacity; 2745 int i; 2746 2747 for_each_cpu(i, sched_domain_span(tmp)) { 2748 power += power_of(i); 2749 nr_running += cpu_rq(i)->cfs.nr_running; 2750 } 2751 2752 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 2753 2754 if (tmp->flags & SD_POWERSAVINGS_BALANCE) 2755 nr_running /= 2; 2756 2757 if (nr_running < capacity) 2758 want_sd = 0; 2759 } 2760 2761 /* 2762 * If both cpu and prev_cpu are part of this domain, 2763 * cpu is a valid SD_WAKE_AFFINE target. 2764 */ 2765 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 2766 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 2767 affine_sd = tmp; 2768 want_affine = 0; 2769 } 2770 2771 if (!want_sd && !want_affine) 2772 break; 2773 2774 if (!(tmp->flags & sd_flag)) 2775 continue; 2776 2777 if (want_sd) 2778 sd = tmp; 2779 } 2780 2781 if (affine_sd) { 2782 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) 2783 prev_cpu = cpu; 2784 2785 new_cpu = select_idle_sibling(p, prev_cpu); 2786 goto unlock; 2787 } 2788 2789 while (sd) { 2790 int load_idx = sd->forkexec_idx; 2791 struct sched_group *group; 2792 int weight; 2793 2794 if (!(sd->flags & sd_flag)) { 2795 sd = sd->child; 2796 continue; 2797 } 2798 2799 if (sd_flag & SD_BALANCE_WAKE) 2800 load_idx = sd->wake_idx; 2801 2802 group = find_idlest_group(sd, p, cpu, load_idx); 2803 if (!group) { 2804 sd = sd->child; 2805 continue; 2806 } 2807 2808 new_cpu = find_idlest_cpu(group, p, cpu); 2809 if (new_cpu == -1 || new_cpu == cpu) { 2810 /* Now try balancing at a lower domain level of cpu */ 2811 sd = sd->child; 2812 continue; 2813 } 2814 2815 /* Now try balancing at a lower domain level of new_cpu */ 2816 cpu = new_cpu; 2817 weight = sd->span_weight; 2818 sd = NULL; 2819 for_each_domain(cpu, tmp) { 2820 if (weight <= tmp->span_weight) 2821 break; 2822 if (tmp->flags & sd_flag) 2823 sd = tmp; 2824 } 2825 /* while loop will break here if sd == NULL */ 2826 } 2827 unlock: 2828 rcu_read_unlock(); 2829 2830 return new_cpu; 2831 } 2832 #endif /* CONFIG_SMP */ 2833 2834 static unsigned long 2835 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 2836 { 2837 unsigned long gran = sysctl_sched_wakeup_granularity; 2838 2839 /* 2840 * Since its curr running now, convert the gran from real-time 2841 * to virtual-time in his units. 2842 * 2843 * By using 'se' instead of 'curr' we penalize light tasks, so 2844 * they get preempted easier. That is, if 'se' < 'curr' then 2845 * the resulting gran will be larger, therefore penalizing the 2846 * lighter, if otoh 'se' > 'curr' then the resulting gran will 2847 * be smaller, again penalizing the lighter task. 2848 * 2849 * This is especially important for buddies when the leftmost 2850 * task is higher priority than the buddy. 2851 */ 2852 return calc_delta_fair(gran, se); 2853 } 2854 2855 /* 2856 * Should 'se' preempt 'curr'. 2857 * 2858 * |s1 2859 * |s2 2860 * |s3 2861 * g 2862 * |<--->|c 2863 * 2864 * w(c, s1) = -1 2865 * w(c, s2) = 0 2866 * w(c, s3) = 1 2867 * 2868 */ 2869 static int 2870 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 2871 { 2872 s64 gran, vdiff = curr->vruntime - se->vruntime; 2873 2874 if (vdiff <= 0) 2875 return -1; 2876 2877 gran = wakeup_gran(curr, se); 2878 if (vdiff > gran) 2879 return 1; 2880 2881 return 0; 2882 } 2883 2884 static void set_last_buddy(struct sched_entity *se) 2885 { 2886 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2887 return; 2888 2889 for_each_sched_entity(se) 2890 cfs_rq_of(se)->last = se; 2891 } 2892 2893 static void set_next_buddy(struct sched_entity *se) 2894 { 2895 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2896 return; 2897 2898 for_each_sched_entity(se) 2899 cfs_rq_of(se)->next = se; 2900 } 2901 2902 static void set_skip_buddy(struct sched_entity *se) 2903 { 2904 for_each_sched_entity(se) 2905 cfs_rq_of(se)->skip = se; 2906 } 2907 2908 /* 2909 * Preempt the current task with a newly woken task if needed: 2910 */ 2911 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 2912 { 2913 struct task_struct *curr = rq->curr; 2914 struct sched_entity *se = &curr->se, *pse = &p->se; 2915 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 2916 int scale = cfs_rq->nr_running >= sched_nr_latency; 2917 int next_buddy_marked = 0; 2918 2919 if (unlikely(se == pse)) 2920 return; 2921 2922 /* 2923 * This is possible from callers such as pull_task(), in which we 2924 * unconditionally check_prempt_curr() after an enqueue (which may have 2925 * lead to a throttle). This both saves work and prevents false 2926 * next-buddy nomination below. 2927 */ 2928 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 2929 return; 2930 2931 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 2932 set_next_buddy(pse); 2933 next_buddy_marked = 1; 2934 } 2935 2936 /* 2937 * We can come here with TIF_NEED_RESCHED already set from new task 2938 * wake up path. 2939 * 2940 * Note: this also catches the edge-case of curr being in a throttled 2941 * group (e.g. via set_curr_task), since update_curr() (in the 2942 * enqueue of curr) will have resulted in resched being set. This 2943 * prevents us from potentially nominating it as a false LAST_BUDDY 2944 * below. 2945 */ 2946 if (test_tsk_need_resched(curr)) 2947 return; 2948 2949 /* Idle tasks are by definition preempted by non-idle tasks. */ 2950 if (unlikely(curr->policy == SCHED_IDLE) && 2951 likely(p->policy != SCHED_IDLE)) 2952 goto preempt; 2953 2954 /* 2955 * Batch and idle tasks do not preempt non-idle tasks (their preemption 2956 * is driven by the tick): 2957 */ 2958 if (unlikely(p->policy != SCHED_NORMAL)) 2959 return; 2960 2961 find_matching_se(&se, &pse); 2962 update_curr(cfs_rq_of(se)); 2963 BUG_ON(!pse); 2964 if (wakeup_preempt_entity(se, pse) == 1) { 2965 /* 2966 * Bias pick_next to pick the sched entity that is 2967 * triggering this preemption. 2968 */ 2969 if (!next_buddy_marked) 2970 set_next_buddy(pse); 2971 goto preempt; 2972 } 2973 2974 return; 2975 2976 preempt: 2977 resched_task(curr); 2978 /* 2979 * Only set the backward buddy when the current task is still 2980 * on the rq. This can happen when a wakeup gets interleaved 2981 * with schedule on the ->pre_schedule() or idle_balance() 2982 * point, either of which can * drop the rq lock. 2983 * 2984 * Also, during early boot the idle thread is in the fair class, 2985 * for obvious reasons its a bad idea to schedule back to it. 2986 */ 2987 if (unlikely(!se->on_rq || curr == rq->idle)) 2988 return; 2989 2990 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 2991 set_last_buddy(se); 2992 } 2993 2994 static struct task_struct *pick_next_task_fair(struct rq *rq) 2995 { 2996 struct task_struct *p; 2997 struct cfs_rq *cfs_rq = &rq->cfs; 2998 struct sched_entity *se; 2999 3000 if (!cfs_rq->nr_running) 3001 return NULL; 3002 3003 do { 3004 se = pick_next_entity(cfs_rq); 3005 set_next_entity(cfs_rq, se); 3006 cfs_rq = group_cfs_rq(se); 3007 } while (cfs_rq); 3008 3009 p = task_of(se); 3010 if (hrtick_enabled(rq)) 3011 hrtick_start_fair(rq, p); 3012 3013 return p; 3014 } 3015 3016 /* 3017 * Account for a descheduled task: 3018 */ 3019 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 3020 { 3021 struct sched_entity *se = &prev->se; 3022 struct cfs_rq *cfs_rq; 3023 3024 for_each_sched_entity(se) { 3025 cfs_rq = cfs_rq_of(se); 3026 put_prev_entity(cfs_rq, se); 3027 } 3028 } 3029 3030 /* 3031 * sched_yield() is very simple 3032 * 3033 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3034 */ 3035 static void yield_task_fair(struct rq *rq) 3036 { 3037 struct task_struct *curr = rq->curr; 3038 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3039 struct sched_entity *se = &curr->se; 3040 3041 /* 3042 * Are we the only task in the tree? 3043 */ 3044 if (unlikely(rq->nr_running == 1)) 3045 return; 3046 3047 clear_buddies(cfs_rq, se); 3048 3049 if (curr->policy != SCHED_BATCH) { 3050 update_rq_clock(rq); 3051 /* 3052 * Update run-time statistics of the 'current'. 3053 */ 3054 update_curr(cfs_rq); 3055 /* 3056 * Tell update_rq_clock() that we've just updated, 3057 * so we don't do microscopic update in schedule() 3058 * and double the fastpath cost. 3059 */ 3060 rq->skip_clock_update = 1; 3061 } 3062 3063 set_skip_buddy(se); 3064 } 3065 3066 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3067 { 3068 struct sched_entity *se = &p->se; 3069 3070 /* throttled hierarchies are not runnable */ 3071 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3072 return false; 3073 3074 /* Tell the scheduler that we'd really like pse to run next. */ 3075 set_next_buddy(se); 3076 3077 yield_task_fair(rq); 3078 3079 return true; 3080 } 3081 3082 #ifdef CONFIG_SMP 3083 /************************************************** 3084 * Fair scheduling class load-balancing methods: 3085 */ 3086 3087 /* 3088 * pull_task - move a task from a remote runqueue to the local runqueue. 3089 * Both runqueues must be locked. 3090 */ 3091 static void pull_task(struct rq *src_rq, struct task_struct *p, 3092 struct rq *this_rq, int this_cpu) 3093 { 3094 deactivate_task(src_rq, p, 0); 3095 set_task_cpu(p, this_cpu); 3096 activate_task(this_rq, p, 0); 3097 check_preempt_curr(this_rq, p, 0); 3098 } 3099 3100 /* 3101 * Is this task likely cache-hot: 3102 */ 3103 static int 3104 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3105 { 3106 s64 delta; 3107 3108 if (p->sched_class != &fair_sched_class) 3109 return 0; 3110 3111 if (unlikely(p->policy == SCHED_IDLE)) 3112 return 0; 3113 3114 /* 3115 * Buddy candidates are cache hot: 3116 */ 3117 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3118 (&p->se == cfs_rq_of(&p->se)->next || 3119 &p->se == cfs_rq_of(&p->se)->last)) 3120 return 1; 3121 3122 if (sysctl_sched_migration_cost == -1) 3123 return 1; 3124 if (sysctl_sched_migration_cost == 0) 3125 return 0; 3126 3127 delta = now - p->se.exec_start; 3128 3129 return delta < (s64)sysctl_sched_migration_cost; 3130 } 3131 3132 #define LBF_ALL_PINNED 0x01 3133 #define LBF_NEED_BREAK 0x02 3134 #define LBF_ABORT 0x04 3135 3136 /* 3137 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3138 */ 3139 static 3140 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, 3141 struct sched_domain *sd, enum cpu_idle_type idle, 3142 int *lb_flags) 3143 { 3144 int tsk_cache_hot = 0; 3145 /* 3146 * We do not migrate tasks that are: 3147 * 1) running (obviously), or 3148 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3149 * 3) are cache-hot on their current CPU. 3150 */ 3151 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) { 3152 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3153 return 0; 3154 } 3155 *lb_flags &= ~LBF_ALL_PINNED; 3156 3157 if (task_running(rq, p)) { 3158 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 3159 return 0; 3160 } 3161 3162 /* 3163 * Aggressive migration if: 3164 * 1) task is cache cold, or 3165 * 2) too many balance attempts have failed. 3166 */ 3167 3168 tsk_cache_hot = task_hot(p, rq->clock_task, sd); 3169 if (!tsk_cache_hot || 3170 sd->nr_balance_failed > sd->cache_nice_tries) { 3171 #ifdef CONFIG_SCHEDSTATS 3172 if (tsk_cache_hot) { 3173 schedstat_inc(sd, lb_hot_gained[idle]); 3174 schedstat_inc(p, se.statistics.nr_forced_migrations); 3175 } 3176 #endif 3177 return 1; 3178 } 3179 3180 if (tsk_cache_hot) { 3181 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 3182 return 0; 3183 } 3184 return 1; 3185 } 3186 3187 /* 3188 * move_one_task tries to move exactly one task from busiest to this_rq, as 3189 * part of active balancing operations within "domain". 3190 * Returns 1 if successful and 0 otherwise. 3191 * 3192 * Called with both runqueues locked. 3193 */ 3194 static int 3195 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, 3196 struct sched_domain *sd, enum cpu_idle_type idle) 3197 { 3198 struct task_struct *p, *n; 3199 struct cfs_rq *cfs_rq; 3200 int pinned = 0; 3201 3202 for_each_leaf_cfs_rq(busiest, cfs_rq) { 3203 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { 3204 if (throttled_lb_pair(task_group(p), 3205 busiest->cpu, this_cpu)) 3206 break; 3207 3208 if (!can_migrate_task(p, busiest, this_cpu, 3209 sd, idle, &pinned)) 3210 continue; 3211 3212 pull_task(busiest, p, this_rq, this_cpu); 3213 /* 3214 * Right now, this is only the second place pull_task() 3215 * is called, so we can safely collect pull_task() 3216 * stats here rather than inside pull_task(). 3217 */ 3218 schedstat_inc(sd, lb_gained[idle]); 3219 return 1; 3220 } 3221 } 3222 3223 return 0; 3224 } 3225 3226 static unsigned long 3227 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, 3228 unsigned long max_load_move, struct sched_domain *sd, 3229 enum cpu_idle_type idle, int *lb_flags, 3230 struct cfs_rq *busiest_cfs_rq) 3231 { 3232 int loops = 0, pulled = 0; 3233 long rem_load_move = max_load_move; 3234 struct task_struct *p, *n; 3235 3236 if (max_load_move == 0) 3237 goto out; 3238 3239 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { 3240 if (loops++ > sysctl_sched_nr_migrate) { 3241 *lb_flags |= LBF_NEED_BREAK; 3242 break; 3243 } 3244 3245 if ((p->se.load.weight >> 1) > rem_load_move || 3246 !can_migrate_task(p, busiest, this_cpu, sd, idle, 3247 lb_flags)) 3248 continue; 3249 3250 pull_task(busiest, p, this_rq, this_cpu); 3251 pulled++; 3252 rem_load_move -= p->se.load.weight; 3253 3254 #ifdef CONFIG_PREEMPT 3255 /* 3256 * NEWIDLE balancing is a source of latency, so preemptible 3257 * kernels will stop after the first task is pulled to minimize 3258 * the critical section. 3259 */ 3260 if (idle == CPU_NEWLY_IDLE) { 3261 *lb_flags |= LBF_ABORT; 3262 break; 3263 } 3264 #endif 3265 3266 /* 3267 * We only want to steal up to the prescribed amount of 3268 * weighted load. 3269 */ 3270 if (rem_load_move <= 0) 3271 break; 3272 } 3273 out: 3274 /* 3275 * Right now, this is one of only two places pull_task() is called, 3276 * so we can safely collect pull_task() stats here rather than 3277 * inside pull_task(). 3278 */ 3279 schedstat_add(sd, lb_gained[idle], pulled); 3280 3281 return max_load_move - rem_load_move; 3282 } 3283 3284 #ifdef CONFIG_FAIR_GROUP_SCHED 3285 /* 3286 * update tg->load_weight by folding this cpu's load_avg 3287 */ 3288 static int update_shares_cpu(struct task_group *tg, int cpu) 3289 { 3290 struct cfs_rq *cfs_rq; 3291 unsigned long flags; 3292 struct rq *rq; 3293 3294 if (!tg->se[cpu]) 3295 return 0; 3296 3297 rq = cpu_rq(cpu); 3298 cfs_rq = tg->cfs_rq[cpu]; 3299 3300 raw_spin_lock_irqsave(&rq->lock, flags); 3301 3302 update_rq_clock(rq); 3303 update_cfs_load(cfs_rq, 1); 3304 3305 /* 3306 * We need to update shares after updating tg->load_weight in 3307 * order to adjust the weight of groups with long running tasks. 3308 */ 3309 update_cfs_shares(cfs_rq); 3310 3311 raw_spin_unlock_irqrestore(&rq->lock, flags); 3312 3313 return 0; 3314 } 3315 3316 static void update_shares(int cpu) 3317 { 3318 struct cfs_rq *cfs_rq; 3319 struct rq *rq = cpu_rq(cpu); 3320 3321 rcu_read_lock(); 3322 /* 3323 * Iterates the task_group tree in a bottom up fashion, see 3324 * list_add_leaf_cfs_rq() for details. 3325 */ 3326 for_each_leaf_cfs_rq(rq, cfs_rq) { 3327 /* throttled entities do not contribute to load */ 3328 if (throttled_hierarchy(cfs_rq)) 3329 continue; 3330 3331 update_shares_cpu(cfs_rq->tg, cpu); 3332 } 3333 rcu_read_unlock(); 3334 } 3335 3336 /* 3337 * Compute the cpu's hierarchical load factor for each task group. 3338 * This needs to be done in a top-down fashion because the load of a child 3339 * group is a fraction of its parents load. 3340 */ 3341 static int tg_load_down(struct task_group *tg, void *data) 3342 { 3343 unsigned long load; 3344 long cpu = (long)data; 3345 3346 if (!tg->parent) { 3347 load = cpu_rq(cpu)->load.weight; 3348 } else { 3349 load = tg->parent->cfs_rq[cpu]->h_load; 3350 load *= tg->se[cpu]->load.weight; 3351 load /= tg->parent->cfs_rq[cpu]->load.weight + 1; 3352 } 3353 3354 tg->cfs_rq[cpu]->h_load = load; 3355 3356 return 0; 3357 } 3358 3359 static void update_h_load(long cpu) 3360 { 3361 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 3362 } 3363 3364 static unsigned long 3365 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 3366 unsigned long max_load_move, 3367 struct sched_domain *sd, enum cpu_idle_type idle, 3368 int *lb_flags) 3369 { 3370 long rem_load_move = max_load_move; 3371 struct cfs_rq *busiest_cfs_rq; 3372 3373 rcu_read_lock(); 3374 update_h_load(cpu_of(busiest)); 3375 3376 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { 3377 unsigned long busiest_h_load = busiest_cfs_rq->h_load; 3378 unsigned long busiest_weight = busiest_cfs_rq->load.weight; 3379 u64 rem_load, moved_load; 3380 3381 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) 3382 break; 3383 3384 /* 3385 * empty group or part of a throttled hierarchy 3386 */ 3387 if (!busiest_cfs_rq->task_weight || 3388 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu)) 3389 continue; 3390 3391 rem_load = (u64)rem_load_move * busiest_weight; 3392 rem_load = div_u64(rem_load, busiest_h_load + 1); 3393 3394 moved_load = balance_tasks(this_rq, this_cpu, busiest, 3395 rem_load, sd, idle, lb_flags, 3396 busiest_cfs_rq); 3397 3398 if (!moved_load) 3399 continue; 3400 3401 moved_load *= busiest_h_load; 3402 moved_load = div_u64(moved_load, busiest_weight + 1); 3403 3404 rem_load_move -= moved_load; 3405 if (rem_load_move < 0) 3406 break; 3407 } 3408 rcu_read_unlock(); 3409 3410 return max_load_move - rem_load_move; 3411 } 3412 #else 3413 static inline void update_shares(int cpu) 3414 { 3415 } 3416 3417 static unsigned long 3418 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 3419 unsigned long max_load_move, 3420 struct sched_domain *sd, enum cpu_idle_type idle, 3421 int *lb_flags) 3422 { 3423 return balance_tasks(this_rq, this_cpu, busiest, 3424 max_load_move, sd, idle, lb_flags, 3425 &busiest->cfs); 3426 } 3427 #endif 3428 3429 /* 3430 * move_tasks tries to move up to max_load_move weighted load from busiest to 3431 * this_rq, as part of a balancing operation within domain "sd". 3432 * Returns 1 if successful and 0 otherwise. 3433 * 3434 * Called with both runqueues locked. 3435 */ 3436 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, 3437 unsigned long max_load_move, 3438 struct sched_domain *sd, enum cpu_idle_type idle, 3439 int *lb_flags) 3440 { 3441 unsigned long total_load_moved = 0, load_moved; 3442 3443 do { 3444 load_moved = load_balance_fair(this_rq, this_cpu, busiest, 3445 max_load_move - total_load_moved, 3446 sd, idle, lb_flags); 3447 3448 total_load_moved += load_moved; 3449 3450 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) 3451 break; 3452 3453 #ifdef CONFIG_PREEMPT 3454 /* 3455 * NEWIDLE balancing is a source of latency, so preemptible 3456 * kernels will stop after the first task is pulled to minimize 3457 * the critical section. 3458 */ 3459 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) { 3460 *lb_flags |= LBF_ABORT; 3461 break; 3462 } 3463 #endif 3464 } while (load_moved && max_load_move > total_load_moved); 3465 3466 return total_load_moved > 0; 3467 } 3468 3469 /********** Helpers for find_busiest_group ************************/ 3470 /* 3471 * sd_lb_stats - Structure to store the statistics of a sched_domain 3472 * during load balancing. 3473 */ 3474 struct sd_lb_stats { 3475 struct sched_group *busiest; /* Busiest group in this sd */ 3476 struct sched_group *this; /* Local group in this sd */ 3477 unsigned long total_load; /* Total load of all groups in sd */ 3478 unsigned long total_pwr; /* Total power of all groups in sd */ 3479 unsigned long avg_load; /* Average load across all groups in sd */ 3480 3481 /** Statistics of this group */ 3482 unsigned long this_load; 3483 unsigned long this_load_per_task; 3484 unsigned long this_nr_running; 3485 unsigned long this_has_capacity; 3486 unsigned int this_idle_cpus; 3487 3488 /* Statistics of the busiest group */ 3489 unsigned int busiest_idle_cpus; 3490 unsigned long max_load; 3491 unsigned long busiest_load_per_task; 3492 unsigned long busiest_nr_running; 3493 unsigned long busiest_group_capacity; 3494 unsigned long busiest_has_capacity; 3495 unsigned int busiest_group_weight; 3496 3497 int group_imb; /* Is there imbalance in this sd */ 3498 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 3499 int power_savings_balance; /* Is powersave balance needed for this sd */ 3500 struct sched_group *group_min; /* Least loaded group in sd */ 3501 struct sched_group *group_leader; /* Group which relieves group_min */ 3502 unsigned long min_load_per_task; /* load_per_task in group_min */ 3503 unsigned long leader_nr_running; /* Nr running of group_leader */ 3504 unsigned long min_nr_running; /* Nr running of group_min */ 3505 #endif 3506 }; 3507 3508 /* 3509 * sg_lb_stats - stats of a sched_group required for load_balancing 3510 */ 3511 struct sg_lb_stats { 3512 unsigned long avg_load; /*Avg load across the CPUs of the group */ 3513 unsigned long group_load; /* Total load over the CPUs of the group */ 3514 unsigned long sum_nr_running; /* Nr tasks running in the group */ 3515 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 3516 unsigned long group_capacity; 3517 unsigned long idle_cpus; 3518 unsigned long group_weight; 3519 int group_imb; /* Is there an imbalance in the group ? */ 3520 int group_has_capacity; /* Is there extra capacity in the group? */ 3521 }; 3522 3523 /** 3524 * get_sd_load_idx - Obtain the load index for a given sched domain. 3525 * @sd: The sched_domain whose load_idx is to be obtained. 3526 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 3527 */ 3528 static inline int get_sd_load_idx(struct sched_domain *sd, 3529 enum cpu_idle_type idle) 3530 { 3531 int load_idx; 3532 3533 switch (idle) { 3534 case CPU_NOT_IDLE: 3535 load_idx = sd->busy_idx; 3536 break; 3537 3538 case CPU_NEWLY_IDLE: 3539 load_idx = sd->newidle_idx; 3540 break; 3541 default: 3542 load_idx = sd->idle_idx; 3543 break; 3544 } 3545 3546 return load_idx; 3547 } 3548 3549 3550 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 3551 /** 3552 * init_sd_power_savings_stats - Initialize power savings statistics for 3553 * the given sched_domain, during load balancing. 3554 * 3555 * @sd: Sched domain whose power-savings statistics are to be initialized. 3556 * @sds: Variable containing the statistics for sd. 3557 * @idle: Idle status of the CPU at which we're performing load-balancing. 3558 */ 3559 static inline void init_sd_power_savings_stats(struct sched_domain *sd, 3560 struct sd_lb_stats *sds, enum cpu_idle_type idle) 3561 { 3562 /* 3563 * Busy processors will not participate in power savings 3564 * balance. 3565 */ 3566 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) 3567 sds->power_savings_balance = 0; 3568 else { 3569 sds->power_savings_balance = 1; 3570 sds->min_nr_running = ULONG_MAX; 3571 sds->leader_nr_running = 0; 3572 } 3573 } 3574 3575 /** 3576 * update_sd_power_savings_stats - Update the power saving stats for a 3577 * sched_domain while performing load balancing. 3578 * 3579 * @group: sched_group belonging to the sched_domain under consideration. 3580 * @sds: Variable containing the statistics of the sched_domain 3581 * @local_group: Does group contain the CPU for which we're performing 3582 * load balancing ? 3583 * @sgs: Variable containing the statistics of the group. 3584 */ 3585 static inline void update_sd_power_savings_stats(struct sched_group *group, 3586 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) 3587 { 3588 3589 if (!sds->power_savings_balance) 3590 return; 3591 3592 /* 3593 * If the local group is idle or completely loaded 3594 * no need to do power savings balance at this domain 3595 */ 3596 if (local_group && (sds->this_nr_running >= sgs->group_capacity || 3597 !sds->this_nr_running)) 3598 sds->power_savings_balance = 0; 3599 3600 /* 3601 * If a group is already running at full capacity or idle, 3602 * don't include that group in power savings calculations 3603 */ 3604 if (!sds->power_savings_balance || 3605 sgs->sum_nr_running >= sgs->group_capacity || 3606 !sgs->sum_nr_running) 3607 return; 3608 3609 /* 3610 * Calculate the group which has the least non-idle load. 3611 * This is the group from where we need to pick up the load 3612 * for saving power 3613 */ 3614 if ((sgs->sum_nr_running < sds->min_nr_running) || 3615 (sgs->sum_nr_running == sds->min_nr_running && 3616 group_first_cpu(group) > group_first_cpu(sds->group_min))) { 3617 sds->group_min = group; 3618 sds->min_nr_running = sgs->sum_nr_running; 3619 sds->min_load_per_task = sgs->sum_weighted_load / 3620 sgs->sum_nr_running; 3621 } 3622 3623 /* 3624 * Calculate the group which is almost near its 3625 * capacity but still has some space to pick up some load 3626 * from other group and save more power 3627 */ 3628 if (sgs->sum_nr_running + 1 > sgs->group_capacity) 3629 return; 3630 3631 if (sgs->sum_nr_running > sds->leader_nr_running || 3632 (sgs->sum_nr_running == sds->leader_nr_running && 3633 group_first_cpu(group) < group_first_cpu(sds->group_leader))) { 3634 sds->group_leader = group; 3635 sds->leader_nr_running = sgs->sum_nr_running; 3636 } 3637 } 3638 3639 /** 3640 * check_power_save_busiest_group - see if there is potential for some power-savings balance 3641 * @sds: Variable containing the statistics of the sched_domain 3642 * under consideration. 3643 * @this_cpu: Cpu at which we're currently performing load-balancing. 3644 * @imbalance: Variable to store the imbalance. 3645 * 3646 * Description: 3647 * Check if we have potential to perform some power-savings balance. 3648 * If yes, set the busiest group to be the least loaded group in the 3649 * sched_domain, so that it's CPUs can be put to idle. 3650 * 3651 * Returns 1 if there is potential to perform power-savings balance. 3652 * Else returns 0. 3653 */ 3654 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, 3655 int this_cpu, unsigned long *imbalance) 3656 { 3657 if (!sds->power_savings_balance) 3658 return 0; 3659 3660 if (sds->this != sds->group_leader || 3661 sds->group_leader == sds->group_min) 3662 return 0; 3663 3664 *imbalance = sds->min_load_per_task; 3665 sds->busiest = sds->group_min; 3666 3667 return 1; 3668 3669 } 3670 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3671 static inline void init_sd_power_savings_stats(struct sched_domain *sd, 3672 struct sd_lb_stats *sds, enum cpu_idle_type idle) 3673 { 3674 return; 3675 } 3676 3677 static inline void update_sd_power_savings_stats(struct sched_group *group, 3678 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) 3679 { 3680 return; 3681 } 3682 3683 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, 3684 int this_cpu, unsigned long *imbalance) 3685 { 3686 return 0; 3687 } 3688 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3689 3690 3691 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 3692 { 3693 return SCHED_POWER_SCALE; 3694 } 3695 3696 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 3697 { 3698 return default_scale_freq_power(sd, cpu); 3699 } 3700 3701 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 3702 { 3703 unsigned long weight = sd->span_weight; 3704 unsigned long smt_gain = sd->smt_gain; 3705 3706 smt_gain /= weight; 3707 3708 return smt_gain; 3709 } 3710 3711 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 3712 { 3713 return default_scale_smt_power(sd, cpu); 3714 } 3715 3716 unsigned long scale_rt_power(int cpu) 3717 { 3718 struct rq *rq = cpu_rq(cpu); 3719 u64 total, available; 3720 3721 total = sched_avg_period() + (rq->clock - rq->age_stamp); 3722 3723 if (unlikely(total < rq->rt_avg)) { 3724 /* Ensures that power won't end up being negative */ 3725 available = 0; 3726 } else { 3727 available = total - rq->rt_avg; 3728 } 3729 3730 if (unlikely((s64)total < SCHED_POWER_SCALE)) 3731 total = SCHED_POWER_SCALE; 3732 3733 total >>= SCHED_POWER_SHIFT; 3734 3735 return div_u64(available, total); 3736 } 3737 3738 static void update_cpu_power(struct sched_domain *sd, int cpu) 3739 { 3740 unsigned long weight = sd->span_weight; 3741 unsigned long power = SCHED_POWER_SCALE; 3742 struct sched_group *sdg = sd->groups; 3743 3744 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 3745 if (sched_feat(ARCH_POWER)) 3746 power *= arch_scale_smt_power(sd, cpu); 3747 else 3748 power *= default_scale_smt_power(sd, cpu); 3749 3750 power >>= SCHED_POWER_SHIFT; 3751 } 3752 3753 sdg->sgp->power_orig = power; 3754 3755 if (sched_feat(ARCH_POWER)) 3756 power *= arch_scale_freq_power(sd, cpu); 3757 else 3758 power *= default_scale_freq_power(sd, cpu); 3759 3760 power >>= SCHED_POWER_SHIFT; 3761 3762 power *= scale_rt_power(cpu); 3763 power >>= SCHED_POWER_SHIFT; 3764 3765 if (!power) 3766 power = 1; 3767 3768 cpu_rq(cpu)->cpu_power = power; 3769 sdg->sgp->power = power; 3770 } 3771 3772 void update_group_power(struct sched_domain *sd, int cpu) 3773 { 3774 struct sched_domain *child = sd->child; 3775 struct sched_group *group, *sdg = sd->groups; 3776 unsigned long power; 3777 3778 if (!child) { 3779 update_cpu_power(sd, cpu); 3780 return; 3781 } 3782 3783 power = 0; 3784 3785 group = child->groups; 3786 do { 3787 power += group->sgp->power; 3788 group = group->next; 3789 } while (group != child->groups); 3790 3791 sdg->sgp->power = power; 3792 } 3793 3794 /* 3795 * Try and fix up capacity for tiny siblings, this is needed when 3796 * things like SD_ASYM_PACKING need f_b_g to select another sibling 3797 * which on its own isn't powerful enough. 3798 * 3799 * See update_sd_pick_busiest() and check_asym_packing(). 3800 */ 3801 static inline int 3802 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 3803 { 3804 /* 3805 * Only siblings can have significantly less than SCHED_POWER_SCALE 3806 */ 3807 if (!(sd->flags & SD_SHARE_CPUPOWER)) 3808 return 0; 3809 3810 /* 3811 * If ~90% of the cpu_power is still there, we're good. 3812 */ 3813 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 3814 return 1; 3815 3816 return 0; 3817 } 3818 3819 /** 3820 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3821 * @sd: The sched_domain whose statistics are to be updated. 3822 * @group: sched_group whose statistics are to be updated. 3823 * @this_cpu: Cpu for which load balance is currently performed. 3824 * @idle: Idle status of this_cpu 3825 * @load_idx: Load index of sched_domain of this_cpu for load calc. 3826 * @local_group: Does group contain this_cpu. 3827 * @cpus: Set of cpus considered for load balancing. 3828 * @balance: Should we balance. 3829 * @sgs: variable to hold the statistics for this group. 3830 */ 3831 static inline void update_sg_lb_stats(struct sched_domain *sd, 3832 struct sched_group *group, int this_cpu, 3833 enum cpu_idle_type idle, int load_idx, 3834 int local_group, const struct cpumask *cpus, 3835 int *balance, struct sg_lb_stats *sgs) 3836 { 3837 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; 3838 int i; 3839 unsigned int balance_cpu = -1, first_idle_cpu = 0; 3840 unsigned long avg_load_per_task = 0; 3841 3842 if (local_group) 3843 balance_cpu = group_first_cpu(group); 3844 3845 /* Tally up the load of all CPUs in the group */ 3846 max_cpu_load = 0; 3847 min_cpu_load = ~0UL; 3848 max_nr_running = 0; 3849 3850 for_each_cpu_and(i, sched_group_cpus(group), cpus) { 3851 struct rq *rq = cpu_rq(i); 3852 3853 /* Bias balancing toward cpus of our domain */ 3854 if (local_group) { 3855 if (idle_cpu(i) && !first_idle_cpu) { 3856 first_idle_cpu = 1; 3857 balance_cpu = i; 3858 } 3859 3860 load = target_load(i, load_idx); 3861 } else { 3862 load = source_load(i, load_idx); 3863 if (load > max_cpu_load) { 3864 max_cpu_load = load; 3865 max_nr_running = rq->nr_running; 3866 } 3867 if (min_cpu_load > load) 3868 min_cpu_load = load; 3869 } 3870 3871 sgs->group_load += load; 3872 sgs->sum_nr_running += rq->nr_running; 3873 sgs->sum_weighted_load += weighted_cpuload(i); 3874 if (idle_cpu(i)) 3875 sgs->idle_cpus++; 3876 } 3877 3878 /* 3879 * First idle cpu or the first cpu(busiest) in this sched group 3880 * is eligible for doing load balancing at this and above 3881 * domains. In the newly idle case, we will allow all the cpu's 3882 * to do the newly idle load balance. 3883 */ 3884 if (idle != CPU_NEWLY_IDLE && local_group) { 3885 if (balance_cpu != this_cpu) { 3886 *balance = 0; 3887 return; 3888 } 3889 update_group_power(sd, this_cpu); 3890 } 3891 3892 /* Adjust by relative CPU power of the group */ 3893 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; 3894 3895 /* 3896 * Consider the group unbalanced when the imbalance is larger 3897 * than the average weight of a task. 3898 * 3899 * APZ: with cgroup the avg task weight can vary wildly and 3900 * might not be a suitable number - should we keep a 3901 * normalized nr_running number somewhere that negates 3902 * the hierarchy? 3903 */ 3904 if (sgs->sum_nr_running) 3905 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 3906 3907 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) 3908 sgs->group_imb = 1; 3909 3910 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, 3911 SCHED_POWER_SCALE); 3912 if (!sgs->group_capacity) 3913 sgs->group_capacity = fix_small_capacity(sd, group); 3914 sgs->group_weight = group->group_weight; 3915 3916 if (sgs->group_capacity > sgs->sum_nr_running) 3917 sgs->group_has_capacity = 1; 3918 } 3919 3920 /** 3921 * update_sd_pick_busiest - return 1 on busiest group 3922 * @sd: sched_domain whose statistics are to be checked 3923 * @sds: sched_domain statistics 3924 * @sg: sched_group candidate to be checked for being the busiest 3925 * @sgs: sched_group statistics 3926 * @this_cpu: the current cpu 3927 * 3928 * Determine if @sg is a busier group than the previously selected 3929 * busiest group. 3930 */ 3931 static bool update_sd_pick_busiest(struct sched_domain *sd, 3932 struct sd_lb_stats *sds, 3933 struct sched_group *sg, 3934 struct sg_lb_stats *sgs, 3935 int this_cpu) 3936 { 3937 if (sgs->avg_load <= sds->max_load) 3938 return false; 3939 3940 if (sgs->sum_nr_running > sgs->group_capacity) 3941 return true; 3942 3943 if (sgs->group_imb) 3944 return true; 3945 3946 /* 3947 * ASYM_PACKING needs to move all the work to the lowest 3948 * numbered CPUs in the group, therefore mark all groups 3949 * higher than ourself as busy. 3950 */ 3951 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 3952 this_cpu < group_first_cpu(sg)) { 3953 if (!sds->busiest) 3954 return true; 3955 3956 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 3957 return true; 3958 } 3959 3960 return false; 3961 } 3962 3963 /** 3964 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 3965 * @sd: sched_domain whose statistics are to be updated. 3966 * @this_cpu: Cpu for which load balance is currently performed. 3967 * @idle: Idle status of this_cpu 3968 * @cpus: Set of cpus considered for load balancing. 3969 * @balance: Should we balance. 3970 * @sds: variable to hold the statistics for this sched_domain. 3971 */ 3972 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, 3973 enum cpu_idle_type idle, const struct cpumask *cpus, 3974 int *balance, struct sd_lb_stats *sds) 3975 { 3976 struct sched_domain *child = sd->child; 3977 struct sched_group *sg = sd->groups; 3978 struct sg_lb_stats sgs; 3979 int load_idx, prefer_sibling = 0; 3980 3981 if (child && child->flags & SD_PREFER_SIBLING) 3982 prefer_sibling = 1; 3983 3984 init_sd_power_savings_stats(sd, sds, idle); 3985 load_idx = get_sd_load_idx(sd, idle); 3986 3987 do { 3988 int local_group; 3989 3990 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); 3991 memset(&sgs, 0, sizeof(sgs)); 3992 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, 3993 local_group, cpus, balance, &sgs); 3994 3995 if (local_group && !(*balance)) 3996 return; 3997 3998 sds->total_load += sgs.group_load; 3999 sds->total_pwr += sg->sgp->power; 4000 4001 /* 4002 * In case the child domain prefers tasks go to siblings 4003 * first, lower the sg capacity to one so that we'll try 4004 * and move all the excess tasks away. We lower the capacity 4005 * of a group only if the local group has the capacity to fit 4006 * these excess tasks, i.e. nr_running < group_capacity. The 4007 * extra check prevents the case where you always pull from the 4008 * heaviest group when it is already under-utilized (possible 4009 * with a large weight task outweighs the tasks on the system). 4010 */ 4011 if (prefer_sibling && !local_group && sds->this_has_capacity) 4012 sgs.group_capacity = min(sgs.group_capacity, 1UL); 4013 4014 if (local_group) { 4015 sds->this_load = sgs.avg_load; 4016 sds->this = sg; 4017 sds->this_nr_running = sgs.sum_nr_running; 4018 sds->this_load_per_task = sgs.sum_weighted_load; 4019 sds->this_has_capacity = sgs.group_has_capacity; 4020 sds->this_idle_cpus = sgs.idle_cpus; 4021 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { 4022 sds->max_load = sgs.avg_load; 4023 sds->busiest = sg; 4024 sds->busiest_nr_running = sgs.sum_nr_running; 4025 sds->busiest_idle_cpus = sgs.idle_cpus; 4026 sds->busiest_group_capacity = sgs.group_capacity; 4027 sds->busiest_load_per_task = sgs.sum_weighted_load; 4028 sds->busiest_has_capacity = sgs.group_has_capacity; 4029 sds->busiest_group_weight = sgs.group_weight; 4030 sds->group_imb = sgs.group_imb; 4031 } 4032 4033 update_sd_power_savings_stats(sg, sds, local_group, &sgs); 4034 sg = sg->next; 4035 } while (sg != sd->groups); 4036 } 4037 4038 /** 4039 * check_asym_packing - Check to see if the group is packed into the 4040 * sched doman. 4041 * 4042 * This is primarily intended to used at the sibling level. Some 4043 * cores like POWER7 prefer to use lower numbered SMT threads. In the 4044 * case of POWER7, it can move to lower SMT modes only when higher 4045 * threads are idle. When in lower SMT modes, the threads will 4046 * perform better since they share less core resources. Hence when we 4047 * have idle threads, we want them to be the higher ones. 4048 * 4049 * This packing function is run on idle threads. It checks to see if 4050 * the busiest CPU in this domain (core in the P7 case) has a higher 4051 * CPU number than the packing function is being run on. Here we are 4052 * assuming lower CPU number will be equivalent to lower a SMT thread 4053 * number. 4054 * 4055 * Returns 1 when packing is required and a task should be moved to 4056 * this CPU. The amount of the imbalance is returned in *imbalance. 4057 * 4058 * @sd: The sched_domain whose packing is to be checked. 4059 * @sds: Statistics of the sched_domain which is to be packed 4060 * @this_cpu: The cpu at whose sched_domain we're performing load-balance. 4061 * @imbalance: returns amount of imbalanced due to packing. 4062 */ 4063 static int check_asym_packing(struct sched_domain *sd, 4064 struct sd_lb_stats *sds, 4065 int this_cpu, unsigned long *imbalance) 4066 { 4067 int busiest_cpu; 4068 4069 if (!(sd->flags & SD_ASYM_PACKING)) 4070 return 0; 4071 4072 if (!sds->busiest) 4073 return 0; 4074 4075 busiest_cpu = group_first_cpu(sds->busiest); 4076 if (this_cpu > busiest_cpu) 4077 return 0; 4078 4079 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, 4080 SCHED_POWER_SCALE); 4081 return 1; 4082 } 4083 4084 /** 4085 * fix_small_imbalance - Calculate the minor imbalance that exists 4086 * amongst the groups of a sched_domain, during 4087 * load balancing. 4088 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 4089 * @this_cpu: The cpu at whose sched_domain we're performing load-balance. 4090 * @imbalance: Variable to store the imbalance. 4091 */ 4092 static inline void fix_small_imbalance(struct sd_lb_stats *sds, 4093 int this_cpu, unsigned long *imbalance) 4094 { 4095 unsigned long tmp, pwr_now = 0, pwr_move = 0; 4096 unsigned int imbn = 2; 4097 unsigned long scaled_busy_load_per_task; 4098 4099 if (sds->this_nr_running) { 4100 sds->this_load_per_task /= sds->this_nr_running; 4101 if (sds->busiest_load_per_task > 4102 sds->this_load_per_task) 4103 imbn = 1; 4104 } else 4105 sds->this_load_per_task = 4106 cpu_avg_load_per_task(this_cpu); 4107 4108 scaled_busy_load_per_task = sds->busiest_load_per_task 4109 * SCHED_POWER_SCALE; 4110 scaled_busy_load_per_task /= sds->busiest->sgp->power; 4111 4112 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 4113 (scaled_busy_load_per_task * imbn)) { 4114 *imbalance = sds->busiest_load_per_task; 4115 return; 4116 } 4117 4118 /* 4119 * OK, we don't have enough imbalance to justify moving tasks, 4120 * however we may be able to increase total CPU power used by 4121 * moving them. 4122 */ 4123 4124 pwr_now += sds->busiest->sgp->power * 4125 min(sds->busiest_load_per_task, sds->max_load); 4126 pwr_now += sds->this->sgp->power * 4127 min(sds->this_load_per_task, sds->this_load); 4128 pwr_now /= SCHED_POWER_SCALE; 4129 4130 /* Amount of load we'd subtract */ 4131 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4132 sds->busiest->sgp->power; 4133 if (sds->max_load > tmp) 4134 pwr_move += sds->busiest->sgp->power * 4135 min(sds->busiest_load_per_task, sds->max_load - tmp); 4136 4137 /* Amount of load we'd add */ 4138 if (sds->max_load * sds->busiest->sgp->power < 4139 sds->busiest_load_per_task * SCHED_POWER_SCALE) 4140 tmp = (sds->max_load * sds->busiest->sgp->power) / 4141 sds->this->sgp->power; 4142 else 4143 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4144 sds->this->sgp->power; 4145 pwr_move += sds->this->sgp->power * 4146 min(sds->this_load_per_task, sds->this_load + tmp); 4147 pwr_move /= SCHED_POWER_SCALE; 4148 4149 /* Move if we gain throughput */ 4150 if (pwr_move > pwr_now) 4151 *imbalance = sds->busiest_load_per_task; 4152 } 4153 4154 /** 4155 * calculate_imbalance - Calculate the amount of imbalance present within the 4156 * groups of a given sched_domain during load balance. 4157 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 4158 * @this_cpu: Cpu for which currently load balance is being performed. 4159 * @imbalance: The variable to store the imbalance. 4160 */ 4161 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, 4162 unsigned long *imbalance) 4163 { 4164 unsigned long max_pull, load_above_capacity = ~0UL; 4165 4166 sds->busiest_load_per_task /= sds->busiest_nr_running; 4167 if (sds->group_imb) { 4168 sds->busiest_load_per_task = 4169 min(sds->busiest_load_per_task, sds->avg_load); 4170 } 4171 4172 /* 4173 * In the presence of smp nice balancing, certain scenarios can have 4174 * max load less than avg load(as we skip the groups at or below 4175 * its cpu_power, while calculating max_load..) 4176 */ 4177 if (sds->max_load < sds->avg_load) { 4178 *imbalance = 0; 4179 return fix_small_imbalance(sds, this_cpu, imbalance); 4180 } 4181 4182 if (!sds->group_imb) { 4183 /* 4184 * Don't want to pull so many tasks that a group would go idle. 4185 */ 4186 load_above_capacity = (sds->busiest_nr_running - 4187 sds->busiest_group_capacity); 4188 4189 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4190 4191 load_above_capacity /= sds->busiest->sgp->power; 4192 } 4193 4194 /* 4195 * We're trying to get all the cpus to the average_load, so we don't 4196 * want to push ourselves above the average load, nor do we wish to 4197 * reduce the max loaded cpu below the average load. At the same time, 4198 * we also don't want to reduce the group load below the group capacity 4199 * (so that we can implement power-savings policies etc). Thus we look 4200 * for the minimum possible imbalance. 4201 * Be careful of negative numbers as they'll appear as very large values 4202 * with unsigned longs. 4203 */ 4204 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 4205 4206 /* How much load to actually move to equalise the imbalance */ 4207 *imbalance = min(max_pull * sds->busiest->sgp->power, 4208 (sds->avg_load - sds->this_load) * sds->this->sgp->power) 4209 / SCHED_POWER_SCALE; 4210 4211 /* 4212 * if *imbalance is less than the average load per runnable task 4213 * there is no guarantee that any tasks will be moved so we'll have 4214 * a think about bumping its value to force at least one task to be 4215 * moved 4216 */ 4217 if (*imbalance < sds->busiest_load_per_task) 4218 return fix_small_imbalance(sds, this_cpu, imbalance); 4219 4220 } 4221 4222 /******* find_busiest_group() helpers end here *********************/ 4223 4224 /** 4225 * find_busiest_group - Returns the busiest group within the sched_domain 4226 * if there is an imbalance. If there isn't an imbalance, and 4227 * the user has opted for power-savings, it returns a group whose 4228 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4229 * such a group exists. 4230 * 4231 * Also calculates the amount of weighted load which should be moved 4232 * to restore balance. 4233 * 4234 * @sd: The sched_domain whose busiest group is to be returned. 4235 * @this_cpu: The cpu for which load balancing is currently being performed. 4236 * @imbalance: Variable which stores amount of weighted load which should 4237 * be moved to restore balance/put a group to idle. 4238 * @idle: The idle status of this_cpu. 4239 * @cpus: The set of CPUs under consideration for load-balancing. 4240 * @balance: Pointer to a variable indicating if this_cpu 4241 * is the appropriate cpu to perform load balancing at this_level. 4242 * 4243 * Returns: - the busiest group if imbalance exists. 4244 * - If no imbalance and user has opted for power-savings balance, 4245 * return the least loaded group whose CPUs can be 4246 * put to idle by rebalancing its tasks onto our group. 4247 */ 4248 static struct sched_group * 4249 find_busiest_group(struct sched_domain *sd, int this_cpu, 4250 unsigned long *imbalance, enum cpu_idle_type idle, 4251 const struct cpumask *cpus, int *balance) 4252 { 4253 struct sd_lb_stats sds; 4254 4255 memset(&sds, 0, sizeof(sds)); 4256 4257 /* 4258 * Compute the various statistics relavent for load balancing at 4259 * this level. 4260 */ 4261 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); 4262 4263 /* 4264 * this_cpu is not the appropriate cpu to perform load balancing at 4265 * this level. 4266 */ 4267 if (!(*balance)) 4268 goto ret; 4269 4270 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && 4271 check_asym_packing(sd, &sds, this_cpu, imbalance)) 4272 return sds.busiest; 4273 4274 /* There is no busy sibling group to pull tasks from */ 4275 if (!sds.busiest || sds.busiest_nr_running == 0) 4276 goto out_balanced; 4277 4278 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4279 4280 /* 4281 * If the busiest group is imbalanced the below checks don't 4282 * work because they assumes all things are equal, which typically 4283 * isn't true due to cpus_allowed constraints and the like. 4284 */ 4285 if (sds.group_imb) 4286 goto force_balance; 4287 4288 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4289 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && 4290 !sds.busiest_has_capacity) 4291 goto force_balance; 4292 4293 /* 4294 * If the local group is more busy than the selected busiest group 4295 * don't try and pull any tasks. 4296 */ 4297 if (sds.this_load >= sds.max_load) 4298 goto out_balanced; 4299 4300 /* 4301 * Don't pull any tasks if this group is already above the domain 4302 * average load. 4303 */ 4304 if (sds.this_load >= sds.avg_load) 4305 goto out_balanced; 4306 4307 if (idle == CPU_IDLE) { 4308 /* 4309 * This cpu is idle. If the busiest group load doesn't 4310 * have more tasks than the number of available cpu's and 4311 * there is no imbalance between this and busiest group 4312 * wrt to idle cpu's, it is balanced. 4313 */ 4314 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && 4315 sds.busiest_nr_running <= sds.busiest_group_weight) 4316 goto out_balanced; 4317 } else { 4318 /* 4319 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 4320 * imbalance_pct to be conservative. 4321 */ 4322 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) 4323 goto out_balanced; 4324 } 4325 4326 force_balance: 4327 /* Looks like there is an imbalance. Compute it */ 4328 calculate_imbalance(&sds, this_cpu, imbalance); 4329 return sds.busiest; 4330 4331 out_balanced: 4332 /* 4333 * There is no obvious imbalance. But check if we can do some balancing 4334 * to save power. 4335 */ 4336 if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) 4337 return sds.busiest; 4338 ret: 4339 *imbalance = 0; 4340 return NULL; 4341 } 4342 4343 /* 4344 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4345 */ 4346 static struct rq * 4347 find_busiest_queue(struct sched_domain *sd, struct sched_group *group, 4348 enum cpu_idle_type idle, unsigned long imbalance, 4349 const struct cpumask *cpus) 4350 { 4351 struct rq *busiest = NULL, *rq; 4352 unsigned long max_load = 0; 4353 int i; 4354 4355 for_each_cpu(i, sched_group_cpus(group)) { 4356 unsigned long power = power_of(i); 4357 unsigned long capacity = DIV_ROUND_CLOSEST(power, 4358 SCHED_POWER_SCALE); 4359 unsigned long wl; 4360 4361 if (!capacity) 4362 capacity = fix_small_capacity(sd, group); 4363 4364 if (!cpumask_test_cpu(i, cpus)) 4365 continue; 4366 4367 rq = cpu_rq(i); 4368 wl = weighted_cpuload(i); 4369 4370 /* 4371 * When comparing with imbalance, use weighted_cpuload() 4372 * which is not scaled with the cpu power. 4373 */ 4374 if (capacity && rq->nr_running == 1 && wl > imbalance) 4375 continue; 4376 4377 /* 4378 * For the load comparisons with the other cpu's, consider 4379 * the weighted_cpuload() scaled with the cpu power, so that 4380 * the load can be moved away from the cpu that is potentially 4381 * running at a lower capacity. 4382 */ 4383 wl = (wl * SCHED_POWER_SCALE) / power; 4384 4385 if (wl > max_load) { 4386 max_load = wl; 4387 busiest = rq; 4388 } 4389 } 4390 4391 return busiest; 4392 } 4393 4394 /* 4395 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 4396 * so long as it is large enough. 4397 */ 4398 #define MAX_PINNED_INTERVAL 512 4399 4400 /* Working cpumask for load_balance and load_balance_newidle. */ 4401 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 4402 4403 static int need_active_balance(struct sched_domain *sd, int idle, 4404 int busiest_cpu, int this_cpu) 4405 { 4406 if (idle == CPU_NEWLY_IDLE) { 4407 4408 /* 4409 * ASYM_PACKING needs to force migrate tasks from busy but 4410 * higher numbered CPUs in order to pack all tasks in the 4411 * lowest numbered CPUs. 4412 */ 4413 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) 4414 return 1; 4415 4416 /* 4417 * The only task running in a non-idle cpu can be moved to this 4418 * cpu in an attempt to completely freeup the other CPU 4419 * package. 4420 * 4421 * The package power saving logic comes from 4422 * find_busiest_group(). If there are no imbalance, then 4423 * f_b_g() will return NULL. However when sched_mc={1,2} then 4424 * f_b_g() will select a group from which a running task may be 4425 * pulled to this cpu in order to make the other package idle. 4426 * If there is no opportunity to make a package idle and if 4427 * there are no imbalance, then f_b_g() will return NULL and no 4428 * action will be taken in load_balance_newidle(). 4429 * 4430 * Under normal task pull operation due to imbalance, there 4431 * will be more than one task in the source run queue and 4432 * move_tasks() will succeed. ld_moved will be true and this 4433 * active balance code will not be triggered. 4434 */ 4435 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) 4436 return 0; 4437 } 4438 4439 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 4440 } 4441 4442 static int active_load_balance_cpu_stop(void *data); 4443 4444 /* 4445 * Check this_cpu to ensure it is balanced within domain. Attempt to move 4446 * tasks if there is an imbalance. 4447 */ 4448 static int load_balance(int this_cpu, struct rq *this_rq, 4449 struct sched_domain *sd, enum cpu_idle_type idle, 4450 int *balance) 4451 { 4452 int ld_moved, lb_flags = 0, active_balance = 0; 4453 struct sched_group *group; 4454 unsigned long imbalance; 4455 struct rq *busiest; 4456 unsigned long flags; 4457 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4458 4459 cpumask_copy(cpus, cpu_active_mask); 4460 4461 schedstat_inc(sd, lb_count[idle]); 4462 4463 redo: 4464 group = find_busiest_group(sd, this_cpu, &imbalance, idle, 4465 cpus, balance); 4466 4467 if (*balance == 0) 4468 goto out_balanced; 4469 4470 if (!group) { 4471 schedstat_inc(sd, lb_nobusyg[idle]); 4472 goto out_balanced; 4473 } 4474 4475 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); 4476 if (!busiest) { 4477 schedstat_inc(sd, lb_nobusyq[idle]); 4478 goto out_balanced; 4479 } 4480 4481 BUG_ON(busiest == this_rq); 4482 4483 schedstat_add(sd, lb_imbalance[idle], imbalance); 4484 4485 ld_moved = 0; 4486 if (busiest->nr_running > 1) { 4487 /* 4488 * Attempt to move tasks. If find_busiest_group has found 4489 * an imbalance but busiest->nr_running <= 1, the group is 4490 * still unbalanced. ld_moved simply stays zero, so it is 4491 * correctly treated as an imbalance. 4492 */ 4493 lb_flags |= LBF_ALL_PINNED; 4494 local_irq_save(flags); 4495 double_rq_lock(this_rq, busiest); 4496 ld_moved = move_tasks(this_rq, this_cpu, busiest, 4497 imbalance, sd, idle, &lb_flags); 4498 double_rq_unlock(this_rq, busiest); 4499 local_irq_restore(flags); 4500 4501 /* 4502 * some other cpu did the load balance for us. 4503 */ 4504 if (ld_moved && this_cpu != smp_processor_id()) 4505 resched_cpu(this_cpu); 4506 4507 if (lb_flags & LBF_ABORT) 4508 goto out_balanced; 4509 4510 if (lb_flags & LBF_NEED_BREAK) { 4511 lb_flags &= ~LBF_NEED_BREAK; 4512 goto redo; 4513 } 4514 4515 /* All tasks on this runqueue were pinned by CPU affinity */ 4516 if (unlikely(lb_flags & LBF_ALL_PINNED)) { 4517 cpumask_clear_cpu(cpu_of(busiest), cpus); 4518 if (!cpumask_empty(cpus)) 4519 goto redo; 4520 goto out_balanced; 4521 } 4522 } 4523 4524 if (!ld_moved) { 4525 schedstat_inc(sd, lb_failed[idle]); 4526 /* 4527 * Increment the failure counter only on periodic balance. 4528 * We do not want newidle balance, which can be very 4529 * frequent, pollute the failure counter causing 4530 * excessive cache_hot migrations and active balances. 4531 */ 4532 if (idle != CPU_NEWLY_IDLE) 4533 sd->nr_balance_failed++; 4534 4535 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { 4536 raw_spin_lock_irqsave(&busiest->lock, flags); 4537 4538 /* don't kick the active_load_balance_cpu_stop, 4539 * if the curr task on busiest cpu can't be 4540 * moved to this_cpu 4541 */ 4542 if (!cpumask_test_cpu(this_cpu, 4543 tsk_cpus_allowed(busiest->curr))) { 4544 raw_spin_unlock_irqrestore(&busiest->lock, 4545 flags); 4546 lb_flags |= LBF_ALL_PINNED; 4547 goto out_one_pinned; 4548 } 4549 4550 /* 4551 * ->active_balance synchronizes accesses to 4552 * ->active_balance_work. Once set, it's cleared 4553 * only after active load balance is finished. 4554 */ 4555 if (!busiest->active_balance) { 4556 busiest->active_balance = 1; 4557 busiest->push_cpu = this_cpu; 4558 active_balance = 1; 4559 } 4560 raw_spin_unlock_irqrestore(&busiest->lock, flags); 4561 4562 if (active_balance) 4563 stop_one_cpu_nowait(cpu_of(busiest), 4564 active_load_balance_cpu_stop, busiest, 4565 &busiest->active_balance_work); 4566 4567 /* 4568 * We've kicked active balancing, reset the failure 4569 * counter. 4570 */ 4571 sd->nr_balance_failed = sd->cache_nice_tries+1; 4572 } 4573 } else 4574 sd->nr_balance_failed = 0; 4575 4576 if (likely(!active_balance)) { 4577 /* We were unbalanced, so reset the balancing interval */ 4578 sd->balance_interval = sd->min_interval; 4579 } else { 4580 /* 4581 * If we've begun active balancing, start to back off. This 4582 * case may not be covered by the all_pinned logic if there 4583 * is only 1 task on the busy runqueue (because we don't call 4584 * move_tasks). 4585 */ 4586 if (sd->balance_interval < sd->max_interval) 4587 sd->balance_interval *= 2; 4588 } 4589 4590 goto out; 4591 4592 out_balanced: 4593 schedstat_inc(sd, lb_balanced[idle]); 4594 4595 sd->nr_balance_failed = 0; 4596 4597 out_one_pinned: 4598 /* tune up the balancing interval */ 4599 if (((lb_flags & LBF_ALL_PINNED) && 4600 sd->balance_interval < MAX_PINNED_INTERVAL) || 4601 (sd->balance_interval < sd->max_interval)) 4602 sd->balance_interval *= 2; 4603 4604 ld_moved = 0; 4605 out: 4606 return ld_moved; 4607 } 4608 4609 /* 4610 * idle_balance is called by schedule() if this_cpu is about to become 4611 * idle. Attempts to pull tasks from other CPUs. 4612 */ 4613 void idle_balance(int this_cpu, struct rq *this_rq) 4614 { 4615 struct sched_domain *sd; 4616 int pulled_task = 0; 4617 unsigned long next_balance = jiffies + HZ; 4618 4619 this_rq->idle_stamp = this_rq->clock; 4620 4621 if (this_rq->avg_idle < sysctl_sched_migration_cost) 4622 return; 4623 4624 /* 4625 * Drop the rq->lock, but keep IRQ/preempt disabled. 4626 */ 4627 raw_spin_unlock(&this_rq->lock); 4628 4629 update_shares(this_cpu); 4630 rcu_read_lock(); 4631 for_each_domain(this_cpu, sd) { 4632 unsigned long interval; 4633 int balance = 1; 4634 4635 if (!(sd->flags & SD_LOAD_BALANCE)) 4636 continue; 4637 4638 if (sd->flags & SD_BALANCE_NEWIDLE) { 4639 /* If we've pulled tasks over stop searching: */ 4640 pulled_task = load_balance(this_cpu, this_rq, 4641 sd, CPU_NEWLY_IDLE, &balance); 4642 } 4643 4644 interval = msecs_to_jiffies(sd->balance_interval); 4645 if (time_after(next_balance, sd->last_balance + interval)) 4646 next_balance = sd->last_balance + interval; 4647 if (pulled_task) { 4648 this_rq->idle_stamp = 0; 4649 break; 4650 } 4651 } 4652 rcu_read_unlock(); 4653 4654 raw_spin_lock(&this_rq->lock); 4655 4656 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4657 /* 4658 * We are going idle. next_balance may be set based on 4659 * a busy processor. So reset next_balance. 4660 */ 4661 this_rq->next_balance = next_balance; 4662 } 4663 } 4664 4665 /* 4666 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 4667 * running tasks off the busiest CPU onto idle CPUs. It requires at 4668 * least 1 task to be running on each physical CPU where possible, and 4669 * avoids physical / logical imbalances. 4670 */ 4671 static int active_load_balance_cpu_stop(void *data) 4672 { 4673 struct rq *busiest_rq = data; 4674 int busiest_cpu = cpu_of(busiest_rq); 4675 int target_cpu = busiest_rq->push_cpu; 4676 struct rq *target_rq = cpu_rq(target_cpu); 4677 struct sched_domain *sd; 4678 4679 raw_spin_lock_irq(&busiest_rq->lock); 4680 4681 /* make sure the requested cpu hasn't gone down in the meantime */ 4682 if (unlikely(busiest_cpu != smp_processor_id() || 4683 !busiest_rq->active_balance)) 4684 goto out_unlock; 4685 4686 /* Is there any task to move? */ 4687 if (busiest_rq->nr_running <= 1) 4688 goto out_unlock; 4689 4690 /* 4691 * This condition is "impossible", if it occurs 4692 * we need to fix it. Originally reported by 4693 * Bjorn Helgaas on a 128-cpu setup. 4694 */ 4695 BUG_ON(busiest_rq == target_rq); 4696 4697 /* move a task from busiest_rq to target_rq */ 4698 double_lock_balance(busiest_rq, target_rq); 4699 4700 /* Search for an sd spanning us and the target CPU. */ 4701 rcu_read_lock(); 4702 for_each_domain(target_cpu, sd) { 4703 if ((sd->flags & SD_LOAD_BALANCE) && 4704 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 4705 break; 4706 } 4707 4708 if (likely(sd)) { 4709 schedstat_inc(sd, alb_count); 4710 4711 if (move_one_task(target_rq, target_cpu, busiest_rq, 4712 sd, CPU_IDLE)) 4713 schedstat_inc(sd, alb_pushed); 4714 else 4715 schedstat_inc(sd, alb_failed); 4716 } 4717 rcu_read_unlock(); 4718 double_unlock_balance(busiest_rq, target_rq); 4719 out_unlock: 4720 busiest_rq->active_balance = 0; 4721 raw_spin_unlock_irq(&busiest_rq->lock); 4722 return 0; 4723 } 4724 4725 #ifdef CONFIG_NO_HZ 4726 /* 4727 * idle load balancing details 4728 * - When one of the busy CPUs notice that there may be an idle rebalancing 4729 * needed, they will kick the idle load balancer, which then does idle 4730 * load balancing for all the idle CPUs. 4731 */ 4732 static struct { 4733 cpumask_var_t idle_cpus_mask; 4734 atomic_t nr_cpus; 4735 unsigned long next_balance; /* in jiffy units */ 4736 } nohz ____cacheline_aligned; 4737 4738 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 4739 /** 4740 * lowest_flag_domain - Return lowest sched_domain containing flag. 4741 * @cpu: The cpu whose lowest level of sched domain is to 4742 * be returned. 4743 * @flag: The flag to check for the lowest sched_domain 4744 * for the given cpu. 4745 * 4746 * Returns the lowest sched_domain of a cpu which contains the given flag. 4747 */ 4748 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 4749 { 4750 struct sched_domain *sd; 4751 4752 for_each_domain(cpu, sd) 4753 if (sd->flags & flag) 4754 break; 4755 4756 return sd; 4757 } 4758 4759 /** 4760 * for_each_flag_domain - Iterates over sched_domains containing the flag. 4761 * @cpu: The cpu whose domains we're iterating over. 4762 * @sd: variable holding the value of the power_savings_sd 4763 * for cpu. 4764 * @flag: The flag to filter the sched_domains to be iterated. 4765 * 4766 * Iterates over all the scheduler domains for a given cpu that has the 'flag' 4767 * set, starting from the lowest sched_domain to the highest. 4768 */ 4769 #define for_each_flag_domain(cpu, sd, flag) \ 4770 for (sd = lowest_flag_domain(cpu, flag); \ 4771 (sd && (sd->flags & flag)); sd = sd->parent) 4772 4773 /** 4774 * find_new_ilb - Finds the optimum idle load balancer for nomination. 4775 * @cpu: The cpu which is nominating a new idle_load_balancer. 4776 * 4777 * Returns: Returns the id of the idle load balancer if it exists, 4778 * Else, returns >= nr_cpu_ids. 4779 * 4780 * This algorithm picks the idle load balancer such that it belongs to a 4781 * semi-idle powersavings sched_domain. The idea is to try and avoid 4782 * completely idle packages/cores just for the purpose of idle load balancing 4783 * when there are other idle cpu's which are better suited for that job. 4784 */ 4785 static int find_new_ilb(int cpu) 4786 { 4787 int ilb = cpumask_first(nohz.idle_cpus_mask); 4788 struct sched_group *ilbg; 4789 struct sched_domain *sd; 4790 4791 /* 4792 * Have idle load balancer selection from semi-idle packages only 4793 * when power-aware load balancing is enabled 4794 */ 4795 if (!(sched_smt_power_savings || sched_mc_power_savings)) 4796 goto out_done; 4797 4798 /* 4799 * Optimize for the case when we have no idle CPUs or only one 4800 * idle CPU. Don't walk the sched_domain hierarchy in such cases 4801 */ 4802 if (cpumask_weight(nohz.idle_cpus_mask) < 2) 4803 goto out_done; 4804 4805 rcu_read_lock(); 4806 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { 4807 ilbg = sd->groups; 4808 4809 do { 4810 if (ilbg->group_weight != 4811 atomic_read(&ilbg->sgp->nr_busy_cpus)) { 4812 ilb = cpumask_first_and(nohz.idle_cpus_mask, 4813 sched_group_cpus(ilbg)); 4814 goto unlock; 4815 } 4816 4817 ilbg = ilbg->next; 4818 4819 } while (ilbg != sd->groups); 4820 } 4821 unlock: 4822 rcu_read_unlock(); 4823 4824 out_done: 4825 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 4826 return ilb; 4827 4828 return nr_cpu_ids; 4829 } 4830 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ 4831 static inline int find_new_ilb(int call_cpu) 4832 { 4833 return nr_cpu_ids; 4834 } 4835 #endif 4836 4837 /* 4838 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 4839 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 4840 * CPU (if there is one). 4841 */ 4842 static void nohz_balancer_kick(int cpu) 4843 { 4844 int ilb_cpu; 4845 4846 nohz.next_balance++; 4847 4848 ilb_cpu = find_new_ilb(cpu); 4849 4850 if (ilb_cpu >= nr_cpu_ids) 4851 return; 4852 4853 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 4854 return; 4855 /* 4856 * Use smp_send_reschedule() instead of resched_cpu(). 4857 * This way we generate a sched IPI on the target cpu which 4858 * is idle. And the softirq performing nohz idle load balance 4859 * will be run before returning from the IPI. 4860 */ 4861 smp_send_reschedule(ilb_cpu); 4862 return; 4863 } 4864 4865 static inline void set_cpu_sd_state_busy(void) 4866 { 4867 struct sched_domain *sd; 4868 int cpu = smp_processor_id(); 4869 4870 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4871 return; 4872 clear_bit(NOHZ_IDLE, nohz_flags(cpu)); 4873 4874 rcu_read_lock(); 4875 for_each_domain(cpu, sd) 4876 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 4877 rcu_read_unlock(); 4878 } 4879 4880 void set_cpu_sd_state_idle(void) 4881 { 4882 struct sched_domain *sd; 4883 int cpu = smp_processor_id(); 4884 4885 if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4886 return; 4887 set_bit(NOHZ_IDLE, nohz_flags(cpu)); 4888 4889 rcu_read_lock(); 4890 for_each_domain(cpu, sd) 4891 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 4892 rcu_read_unlock(); 4893 } 4894 4895 /* 4896 * This routine will record that this cpu is going idle with tick stopped. 4897 * This info will be used in performing idle load balancing in the future. 4898 */ 4899 void select_nohz_load_balancer(int stop_tick) 4900 { 4901 int cpu = smp_processor_id(); 4902 4903 if (stop_tick) { 4904 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 4905 return; 4906 4907 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 4908 atomic_inc(&nohz.nr_cpus); 4909 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 4910 } 4911 return; 4912 } 4913 #endif 4914 4915 static DEFINE_SPINLOCK(balancing); 4916 4917 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 4918 4919 /* 4920 * Scale the max load_balance interval with the number of CPUs in the system. 4921 * This trades load-balance latency on larger machines for less cross talk. 4922 */ 4923 void update_max_interval(void) 4924 { 4925 max_load_balance_interval = HZ*num_online_cpus()/10; 4926 } 4927 4928 /* 4929 * It checks each scheduling domain to see if it is due to be balanced, 4930 * and initiates a balancing operation if so. 4931 * 4932 * Balancing parameters are set up in arch_init_sched_domains. 4933 */ 4934 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 4935 { 4936 int balance = 1; 4937 struct rq *rq = cpu_rq(cpu); 4938 unsigned long interval; 4939 struct sched_domain *sd; 4940 /* Earliest time when we have to do rebalance again */ 4941 unsigned long next_balance = jiffies + 60*HZ; 4942 int update_next_balance = 0; 4943 int need_serialize; 4944 4945 update_shares(cpu); 4946 4947 rcu_read_lock(); 4948 for_each_domain(cpu, sd) { 4949 if (!(sd->flags & SD_LOAD_BALANCE)) 4950 continue; 4951 4952 interval = sd->balance_interval; 4953 if (idle != CPU_IDLE) 4954 interval *= sd->busy_factor; 4955 4956 /* scale ms to jiffies */ 4957 interval = msecs_to_jiffies(interval); 4958 interval = clamp(interval, 1UL, max_load_balance_interval); 4959 4960 need_serialize = sd->flags & SD_SERIALIZE; 4961 4962 if (need_serialize) { 4963 if (!spin_trylock(&balancing)) 4964 goto out; 4965 } 4966 4967 if (time_after_eq(jiffies, sd->last_balance + interval)) { 4968 if (load_balance(cpu, rq, sd, idle, &balance)) { 4969 /* 4970 * We've pulled tasks over so either we're no 4971 * longer idle. 4972 */ 4973 idle = CPU_NOT_IDLE; 4974 } 4975 sd->last_balance = jiffies; 4976 } 4977 if (need_serialize) 4978 spin_unlock(&balancing); 4979 out: 4980 if (time_after(next_balance, sd->last_balance + interval)) { 4981 next_balance = sd->last_balance + interval; 4982 update_next_balance = 1; 4983 } 4984 4985 /* 4986 * Stop the load balance at this level. There is another 4987 * CPU in our sched group which is doing load balancing more 4988 * actively. 4989 */ 4990 if (!balance) 4991 break; 4992 } 4993 rcu_read_unlock(); 4994 4995 /* 4996 * next_balance will be updated only when there is a need. 4997 * When the cpu is attached to null domain for ex, it will not be 4998 * updated. 4999 */ 5000 if (likely(update_next_balance)) 5001 rq->next_balance = next_balance; 5002 } 5003 5004 #ifdef CONFIG_NO_HZ 5005 /* 5006 * In CONFIG_NO_HZ case, the idle balance kickee will do the 5007 * rebalancing for all the cpus for whom scheduler ticks are stopped. 5008 */ 5009 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 5010 { 5011 struct rq *this_rq = cpu_rq(this_cpu); 5012 struct rq *rq; 5013 int balance_cpu; 5014 5015 if (idle != CPU_IDLE || 5016 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 5017 goto end; 5018 5019 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 5020 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 5021 continue; 5022 5023 /* 5024 * If this cpu gets work to do, stop the load balancing 5025 * work being done for other cpus. Next load 5026 * balancing owner will pick it up. 5027 */ 5028 if (need_resched()) 5029 break; 5030 5031 raw_spin_lock_irq(&this_rq->lock); 5032 update_rq_clock(this_rq); 5033 update_cpu_load(this_rq); 5034 raw_spin_unlock_irq(&this_rq->lock); 5035 5036 rebalance_domains(balance_cpu, CPU_IDLE); 5037 5038 rq = cpu_rq(balance_cpu); 5039 if (time_after(this_rq->next_balance, rq->next_balance)) 5040 this_rq->next_balance = rq->next_balance; 5041 } 5042 nohz.next_balance = this_rq->next_balance; 5043 end: 5044 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 5045 } 5046 5047 /* 5048 * Current heuristic for kicking the idle load balancer in the presence 5049 * of an idle cpu is the system. 5050 * - This rq has more than one task. 5051 * - At any scheduler domain level, this cpu's scheduler group has multiple 5052 * busy cpu's exceeding the group's power. 5053 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 5054 * domain span are idle. 5055 */ 5056 static inline int nohz_kick_needed(struct rq *rq, int cpu) 5057 { 5058 unsigned long now = jiffies; 5059 struct sched_domain *sd; 5060 5061 if (unlikely(idle_cpu(cpu))) 5062 return 0; 5063 5064 /* 5065 * We may be recently in ticked or tickless idle mode. At the first 5066 * busy tick after returning from idle, we will update the busy stats. 5067 */ 5068 set_cpu_sd_state_busy(); 5069 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 5070 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5071 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 5072 atomic_dec(&nohz.nr_cpus); 5073 } 5074 5075 /* 5076 * None are in tickless mode and hence no need for NOHZ idle load 5077 * balancing. 5078 */ 5079 if (likely(!atomic_read(&nohz.nr_cpus))) 5080 return 0; 5081 5082 if (time_before(now, nohz.next_balance)) 5083 return 0; 5084 5085 if (rq->nr_running >= 2) 5086 goto need_kick; 5087 5088 rcu_read_lock(); 5089 for_each_domain(cpu, sd) { 5090 struct sched_group *sg = sd->groups; 5091 struct sched_group_power *sgp = sg->sgp; 5092 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 5093 5094 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 5095 goto need_kick_unlock; 5096 5097 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 5098 && (cpumask_first_and(nohz.idle_cpus_mask, 5099 sched_domain_span(sd)) < cpu)) 5100 goto need_kick_unlock; 5101 5102 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 5103 break; 5104 } 5105 rcu_read_unlock(); 5106 return 0; 5107 5108 need_kick_unlock: 5109 rcu_read_unlock(); 5110 need_kick: 5111 return 1; 5112 } 5113 #else 5114 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 5115 #endif 5116 5117 /* 5118 * run_rebalance_domains is triggered when needed from the scheduler tick. 5119 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 5120 */ 5121 static void run_rebalance_domains(struct softirq_action *h) 5122 { 5123 int this_cpu = smp_processor_id(); 5124 struct rq *this_rq = cpu_rq(this_cpu); 5125 enum cpu_idle_type idle = this_rq->idle_balance ? 5126 CPU_IDLE : CPU_NOT_IDLE; 5127 5128 rebalance_domains(this_cpu, idle); 5129 5130 /* 5131 * If this cpu has a pending nohz_balance_kick, then do the 5132 * balancing on behalf of the other idle cpus whose ticks are 5133 * stopped. 5134 */ 5135 nohz_idle_balance(this_cpu, idle); 5136 } 5137 5138 static inline int on_null_domain(int cpu) 5139 { 5140 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 5141 } 5142 5143 /* 5144 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 5145 */ 5146 void trigger_load_balance(struct rq *rq, int cpu) 5147 { 5148 /* Don't need to rebalance while attached to NULL domain */ 5149 if (time_after_eq(jiffies, rq->next_balance) && 5150 likely(!on_null_domain(cpu))) 5151 raise_softirq(SCHED_SOFTIRQ); 5152 #ifdef CONFIG_NO_HZ 5153 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 5154 nohz_balancer_kick(cpu); 5155 #endif 5156 } 5157 5158 static void rq_online_fair(struct rq *rq) 5159 { 5160 update_sysctl(); 5161 } 5162 5163 static void rq_offline_fair(struct rq *rq) 5164 { 5165 update_sysctl(); 5166 } 5167 5168 #endif /* CONFIG_SMP */ 5169 5170 /* 5171 * scheduler tick hitting a task of our scheduling class: 5172 */ 5173 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 5174 { 5175 struct cfs_rq *cfs_rq; 5176 struct sched_entity *se = &curr->se; 5177 5178 for_each_sched_entity(se) { 5179 cfs_rq = cfs_rq_of(se); 5180 entity_tick(cfs_rq, se, queued); 5181 } 5182 } 5183 5184 /* 5185 * called on fork with the child task as argument from the parent's context 5186 * - child not yet on the tasklist 5187 * - preemption disabled 5188 */ 5189 static void task_fork_fair(struct task_struct *p) 5190 { 5191 struct cfs_rq *cfs_rq; 5192 struct sched_entity *se = &p->se, *curr; 5193 int this_cpu = smp_processor_id(); 5194 struct rq *rq = this_rq(); 5195 unsigned long flags; 5196 5197 raw_spin_lock_irqsave(&rq->lock, flags); 5198 5199 update_rq_clock(rq); 5200 5201 cfs_rq = task_cfs_rq(current); 5202 curr = cfs_rq->curr; 5203 5204 if (unlikely(task_cpu(p) != this_cpu)) { 5205 rcu_read_lock(); 5206 __set_task_cpu(p, this_cpu); 5207 rcu_read_unlock(); 5208 } 5209 5210 update_curr(cfs_rq); 5211 5212 if (curr) 5213 se->vruntime = curr->vruntime; 5214 place_entity(cfs_rq, se, 1); 5215 5216 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 5217 /* 5218 * Upon rescheduling, sched_class::put_prev_task() will place 5219 * 'current' within the tree based on its new key value. 5220 */ 5221 swap(curr->vruntime, se->vruntime); 5222 resched_task(rq->curr); 5223 } 5224 5225 se->vruntime -= cfs_rq->min_vruntime; 5226 5227 raw_spin_unlock_irqrestore(&rq->lock, flags); 5228 } 5229 5230 /* 5231 * Priority of the task has changed. Check to see if we preempt 5232 * the current task. 5233 */ 5234 static void 5235 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 5236 { 5237 if (!p->se.on_rq) 5238 return; 5239 5240 /* 5241 * Reschedule if we are currently running on this runqueue and 5242 * our priority decreased, or if we are not currently running on 5243 * this runqueue and our priority is higher than the current's 5244 */ 5245 if (rq->curr == p) { 5246 if (p->prio > oldprio) 5247 resched_task(rq->curr); 5248 } else 5249 check_preempt_curr(rq, p, 0); 5250 } 5251 5252 static void switched_from_fair(struct rq *rq, struct task_struct *p) 5253 { 5254 struct sched_entity *se = &p->se; 5255 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5256 5257 /* 5258 * Ensure the task's vruntime is normalized, so that when its 5259 * switched back to the fair class the enqueue_entity(.flags=0) will 5260 * do the right thing. 5261 * 5262 * If it was on_rq, then the dequeue_entity(.flags=0) will already 5263 * have normalized the vruntime, if it was !on_rq, then only when 5264 * the task is sleeping will it still have non-normalized vruntime. 5265 */ 5266 if (!se->on_rq && p->state != TASK_RUNNING) { 5267 /* 5268 * Fix up our vruntime so that the current sleep doesn't 5269 * cause 'unlimited' sleep bonus. 5270 */ 5271 place_entity(cfs_rq, se, 0); 5272 se->vruntime -= cfs_rq->min_vruntime; 5273 } 5274 } 5275 5276 /* 5277 * We switched to the sched_fair class. 5278 */ 5279 static void switched_to_fair(struct rq *rq, struct task_struct *p) 5280 { 5281 if (!p->se.on_rq) 5282 return; 5283 5284 /* 5285 * We were most likely switched from sched_rt, so 5286 * kick off the schedule if running, otherwise just see 5287 * if we can still preempt the current task. 5288 */ 5289 if (rq->curr == p) 5290 resched_task(rq->curr); 5291 else 5292 check_preempt_curr(rq, p, 0); 5293 } 5294 5295 /* Account for a task changing its policy or group. 5296 * 5297 * This routine is mostly called to set cfs_rq->curr field when a task 5298 * migrates between groups/classes. 5299 */ 5300 static void set_curr_task_fair(struct rq *rq) 5301 { 5302 struct sched_entity *se = &rq->curr->se; 5303 5304 for_each_sched_entity(se) { 5305 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5306 5307 set_next_entity(cfs_rq, se); 5308 /* ensure bandwidth has been allocated on our new cfs_rq */ 5309 account_cfs_rq_runtime(cfs_rq, 0); 5310 } 5311 } 5312 5313 void init_cfs_rq(struct cfs_rq *cfs_rq) 5314 { 5315 cfs_rq->tasks_timeline = RB_ROOT; 5316 INIT_LIST_HEAD(&cfs_rq->tasks); 5317 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 5318 #ifndef CONFIG_64BIT 5319 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 5320 #endif 5321 } 5322 5323 #ifdef CONFIG_FAIR_GROUP_SCHED 5324 static void task_move_group_fair(struct task_struct *p, int on_rq) 5325 { 5326 /* 5327 * If the task was not on the rq at the time of this cgroup movement 5328 * it must have been asleep, sleeping tasks keep their ->vruntime 5329 * absolute on their old rq until wakeup (needed for the fair sleeper 5330 * bonus in place_entity()). 5331 * 5332 * If it was on the rq, we've just 'preempted' it, which does convert 5333 * ->vruntime to a relative base. 5334 * 5335 * Make sure both cases convert their relative position when migrating 5336 * to another cgroup's rq. This does somewhat interfere with the 5337 * fair sleeper stuff for the first placement, but who cares. 5338 */ 5339 /* 5340 * When !on_rq, vruntime of the task has usually NOT been normalized. 5341 * But there are some cases where it has already been normalized: 5342 * 5343 * - Moving a forked child which is waiting for being woken up by 5344 * wake_up_new_task(). 5345 * - Moving a task which has been woken up by try_to_wake_up() and 5346 * waiting for actually being woken up by sched_ttwu_pending(). 5347 * 5348 * To prevent boost or penalty in the new cfs_rq caused by delta 5349 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 5350 */ 5351 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 5352 on_rq = 1; 5353 5354 if (!on_rq) 5355 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 5356 set_task_rq(p, task_cpu(p)); 5357 if (!on_rq) 5358 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; 5359 } 5360 5361 void free_fair_sched_group(struct task_group *tg) 5362 { 5363 int i; 5364 5365 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5366 5367 for_each_possible_cpu(i) { 5368 if (tg->cfs_rq) 5369 kfree(tg->cfs_rq[i]); 5370 if (tg->se) 5371 kfree(tg->se[i]); 5372 } 5373 5374 kfree(tg->cfs_rq); 5375 kfree(tg->se); 5376 } 5377 5378 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5379 { 5380 struct cfs_rq *cfs_rq; 5381 struct sched_entity *se; 5382 int i; 5383 5384 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 5385 if (!tg->cfs_rq) 5386 goto err; 5387 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 5388 if (!tg->se) 5389 goto err; 5390 5391 tg->shares = NICE_0_LOAD; 5392 5393 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5394 5395 for_each_possible_cpu(i) { 5396 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 5397 GFP_KERNEL, cpu_to_node(i)); 5398 if (!cfs_rq) 5399 goto err; 5400 5401 se = kzalloc_node(sizeof(struct sched_entity), 5402 GFP_KERNEL, cpu_to_node(i)); 5403 if (!se) 5404 goto err_free_rq; 5405 5406 init_cfs_rq(cfs_rq); 5407 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 5408 } 5409 5410 return 1; 5411 5412 err_free_rq: 5413 kfree(cfs_rq); 5414 err: 5415 return 0; 5416 } 5417 5418 void unregister_fair_sched_group(struct task_group *tg, int cpu) 5419 { 5420 struct rq *rq = cpu_rq(cpu); 5421 unsigned long flags; 5422 5423 /* 5424 * Only empty task groups can be destroyed; so we can speculatively 5425 * check on_list without danger of it being re-added. 5426 */ 5427 if (!tg->cfs_rq[cpu]->on_list) 5428 return; 5429 5430 raw_spin_lock_irqsave(&rq->lock, flags); 5431 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 5432 raw_spin_unlock_irqrestore(&rq->lock, flags); 5433 } 5434 5435 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 5436 struct sched_entity *se, int cpu, 5437 struct sched_entity *parent) 5438 { 5439 struct rq *rq = cpu_rq(cpu); 5440 5441 cfs_rq->tg = tg; 5442 cfs_rq->rq = rq; 5443 #ifdef CONFIG_SMP 5444 /* allow initial update_cfs_load() to truncate */ 5445 cfs_rq->load_stamp = 1; 5446 #endif 5447 init_cfs_rq_runtime(cfs_rq); 5448 5449 tg->cfs_rq[cpu] = cfs_rq; 5450 tg->se[cpu] = se; 5451 5452 /* se could be NULL for root_task_group */ 5453 if (!se) 5454 return; 5455 5456 if (!parent) 5457 se->cfs_rq = &rq->cfs; 5458 else 5459 se->cfs_rq = parent->my_q; 5460 5461 se->my_q = cfs_rq; 5462 update_load_set(&se->load, 0); 5463 se->parent = parent; 5464 } 5465 5466 static DEFINE_MUTEX(shares_mutex); 5467 5468 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 5469 { 5470 int i; 5471 unsigned long flags; 5472 5473 /* 5474 * We can't change the weight of the root cgroup. 5475 */ 5476 if (!tg->se[0]) 5477 return -EINVAL; 5478 5479 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 5480 5481 mutex_lock(&shares_mutex); 5482 if (tg->shares == shares) 5483 goto done; 5484 5485 tg->shares = shares; 5486 for_each_possible_cpu(i) { 5487 struct rq *rq = cpu_rq(i); 5488 struct sched_entity *se; 5489 5490 se = tg->se[i]; 5491 /* Propagate contribution to hierarchy */ 5492 raw_spin_lock_irqsave(&rq->lock, flags); 5493 for_each_sched_entity(se) 5494 update_cfs_shares(group_cfs_rq(se)); 5495 raw_spin_unlock_irqrestore(&rq->lock, flags); 5496 } 5497 5498 done: 5499 mutex_unlock(&shares_mutex); 5500 return 0; 5501 } 5502 #else /* CONFIG_FAIR_GROUP_SCHED */ 5503 5504 void free_fair_sched_group(struct task_group *tg) { } 5505 5506 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5507 { 5508 return 1; 5509 } 5510 5511 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 5512 5513 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5514 5515 5516 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 5517 { 5518 struct sched_entity *se = &task->se; 5519 unsigned int rr_interval = 0; 5520 5521 /* 5522 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 5523 * idle runqueue: 5524 */ 5525 if (rq->cfs.load.weight) 5526 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 5527 5528 return rr_interval; 5529 } 5530 5531 /* 5532 * All the scheduling class methods: 5533 */ 5534 const struct sched_class fair_sched_class = { 5535 .next = &idle_sched_class, 5536 .enqueue_task = enqueue_task_fair, 5537 .dequeue_task = dequeue_task_fair, 5538 .yield_task = yield_task_fair, 5539 .yield_to_task = yield_to_task_fair, 5540 5541 .check_preempt_curr = check_preempt_wakeup, 5542 5543 .pick_next_task = pick_next_task_fair, 5544 .put_prev_task = put_prev_task_fair, 5545 5546 #ifdef CONFIG_SMP 5547 .select_task_rq = select_task_rq_fair, 5548 5549 .rq_online = rq_online_fair, 5550 .rq_offline = rq_offline_fair, 5551 5552 .task_waking = task_waking_fair, 5553 #endif 5554 5555 .set_curr_task = set_curr_task_fair, 5556 .task_tick = task_tick_fair, 5557 .task_fork = task_fork_fair, 5558 5559 .prio_changed = prio_changed_fair, 5560 .switched_from = switched_from_fair, 5561 .switched_to = switched_to_fair, 5562 5563 .get_rr_interval = get_rr_interval_fair, 5564 5565 #ifdef CONFIG_FAIR_GROUP_SCHED 5566 .task_move_group = task_move_group_fair, 5567 #endif 5568 }; 5569 5570 #ifdef CONFIG_SCHED_DEBUG 5571 void print_cfs_stats(struct seq_file *m, int cpu) 5572 { 5573 struct cfs_rq *cfs_rq; 5574 5575 rcu_read_lock(); 5576 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 5577 print_cfs_rq(m, cpu, cfs_rq); 5578 rcu_read_unlock(); 5579 } 5580 #endif 5581 5582 __init void init_sched_fair_class(void) 5583 { 5584 #ifdef CONFIG_SMP 5585 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 5586 5587 #ifdef CONFIG_NO_HZ 5588 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 5589 #endif 5590 #endif /* SMP */ 5591 5592 } 5593