xref: /linux/kernel/sched/fair.c (revision 9b8d24a49fe83787208479d51f320cead25e856c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41 
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52 
53 #include <asm/switch_to.h>
54 
55 #include <uapi/linux/sched/types.h>
56 
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60 
61 /*
62  * The initial- and re-scaling of tunables is configurable
63  *
64  * Options are:
65  *
66  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
67  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69  *
70  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71  */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73 
74 /*
75  * Minimal preemption granularity for CPU-bound tasks:
76  *
77  * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78  */
79 unsigned int sysctl_sched_base_slice			= 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice	= 700000ULL;
81 
82 __read_mostly unsigned int sysctl_sched_migration_cost	= 500000UL;
83 
84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 	return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 
91 /*
92  * For asym packing, by default the lower numbered CPU has higher priority.
93  */
94 int __weak arch_asym_cpu_priority(int cpu)
95 {
96 	return -cpu;
97 }
98 
99 /*
100  * The margin used when comparing utilization with CPU capacity.
101  *
102  * (default: ~20%)
103  */
104 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
105 
106 /*
107  * The margin used when comparing CPU capacities.
108  * is 'cap1' noticeably greater than 'cap2'
109  *
110  * (default: ~5%)
111  */
112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113 
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117  * each time a cfs_rq requests quota.
118  *
119  * Note: in the case that the slice exceeds the runtime remaining (either due
120  * to consumption or the quota being specified to be smaller than the slice)
121  * we will always only issue the remaining available time.
122  *
123  * (default: 5 msec, units: microseconds)
124  */
125 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 #endif
127 
128 #ifdef CONFIG_NUMA_BALANCING
129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
131 #endif
132 
133 #ifdef CONFIG_SYSCTL
134 static const struct ctl_table sched_fair_sysctls[] = {
135 #ifdef CONFIG_CFS_BANDWIDTH
136 	{
137 		.procname       = "sched_cfs_bandwidth_slice_us",
138 		.data           = &sysctl_sched_cfs_bandwidth_slice,
139 		.maxlen         = sizeof(unsigned int),
140 		.mode           = 0644,
141 		.proc_handler   = proc_dointvec_minmax,
142 		.extra1         = SYSCTL_ONE,
143 	},
144 #endif
145 #ifdef CONFIG_NUMA_BALANCING
146 	{
147 		.procname	= "numa_balancing_promote_rate_limit_MBps",
148 		.data		= &sysctl_numa_balancing_promote_rate_limit,
149 		.maxlen		= sizeof(unsigned int),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 	},
154 #endif /* CONFIG_NUMA_BALANCING */
155 };
156 
157 static int __init sched_fair_sysctl_init(void)
158 {
159 	register_sysctl_init("kernel", sched_fair_sysctls);
160 	return 0;
161 }
162 late_initcall(sched_fair_sysctl_init);
163 #endif /* CONFIG_SYSCTL */
164 
165 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
166 {
167 	lw->weight += inc;
168 	lw->inv_weight = 0;
169 }
170 
171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
172 {
173 	lw->weight -= dec;
174 	lw->inv_weight = 0;
175 }
176 
177 static inline void update_load_set(struct load_weight *lw, unsigned long w)
178 {
179 	lw->weight = w;
180 	lw->inv_weight = 0;
181 }
182 
183 /*
184  * Increase the granularity value when there are more CPUs,
185  * because with more CPUs the 'effective latency' as visible
186  * to users decreases. But the relationship is not linear,
187  * so pick a second-best guess by going with the log2 of the
188  * number of CPUs.
189  *
190  * This idea comes from the SD scheduler of Con Kolivas:
191  */
192 static unsigned int get_update_sysctl_factor(void)
193 {
194 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
195 	unsigned int factor;
196 
197 	switch (sysctl_sched_tunable_scaling) {
198 	case SCHED_TUNABLESCALING_NONE:
199 		factor = 1;
200 		break;
201 	case SCHED_TUNABLESCALING_LINEAR:
202 		factor = cpus;
203 		break;
204 	case SCHED_TUNABLESCALING_LOG:
205 	default:
206 		factor = 1 + ilog2(cpus);
207 		break;
208 	}
209 
210 	return factor;
211 }
212 
213 static void update_sysctl(void)
214 {
215 	unsigned int factor = get_update_sysctl_factor();
216 
217 #define SET_SYSCTL(name) \
218 	(sysctl_##name = (factor) * normalized_sysctl_##name)
219 	SET_SYSCTL(sched_base_slice);
220 #undef SET_SYSCTL
221 }
222 
223 void __init sched_init_granularity(void)
224 {
225 	update_sysctl();
226 }
227 
228 #define WMULT_CONST	(~0U)
229 #define WMULT_SHIFT	32
230 
231 static void __update_inv_weight(struct load_weight *lw)
232 {
233 	unsigned long w;
234 
235 	if (likely(lw->inv_weight))
236 		return;
237 
238 	w = scale_load_down(lw->weight);
239 
240 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 		lw->inv_weight = 1;
242 	else if (unlikely(!w))
243 		lw->inv_weight = WMULT_CONST;
244 	else
245 		lw->inv_weight = WMULT_CONST / w;
246 }
247 
248 /*
249  * delta_exec * weight / lw.weight
250  *   OR
251  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252  *
253  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
254  * we're guaranteed shift stays positive because inv_weight is guaranteed to
255  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256  *
257  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
258  * weight/lw.weight <= 1, and therefore our shift will also be positive.
259  */
260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 {
262 	u64 fact = scale_load_down(weight);
263 	u32 fact_hi = (u32)(fact >> 32);
264 	int shift = WMULT_SHIFT;
265 	int fs;
266 
267 	__update_inv_weight(lw);
268 
269 	if (unlikely(fact_hi)) {
270 		fs = fls(fact_hi);
271 		shift -= fs;
272 		fact >>= fs;
273 	}
274 
275 	fact = mul_u32_u32(fact, lw->inv_weight);
276 
277 	fact_hi = (u32)(fact >> 32);
278 	if (fact_hi) {
279 		fs = fls(fact_hi);
280 		shift -= fs;
281 		fact >>= fs;
282 	}
283 
284 	return mul_u64_u32_shr(delta_exec, fact, shift);
285 }
286 
287 /*
288  * delta /= w
289  */
290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 {
292 	if (unlikely(se->load.weight != NICE_0_LOAD))
293 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
294 
295 	return delta;
296 }
297 
298 const struct sched_class fair_sched_class;
299 
300 /**************************************************************
301  * CFS operations on generic schedulable entities:
302  */
303 
304 #ifdef CONFIG_FAIR_GROUP_SCHED
305 
306 /* Walk up scheduling entities hierarchy */
307 #define for_each_sched_entity(se) \
308 		for (; se; se = se->parent)
309 
310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 	struct rq *rq = rq_of(cfs_rq);
313 	int cpu = cpu_of(rq);
314 
315 	if (cfs_rq->on_list)
316 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
317 
318 	cfs_rq->on_list = 1;
319 
320 	/*
321 	 * Ensure we either appear before our parent (if already
322 	 * enqueued) or force our parent to appear after us when it is
323 	 * enqueued. The fact that we always enqueue bottom-up
324 	 * reduces this to two cases and a special case for the root
325 	 * cfs_rq. Furthermore, it also means that we will always reset
326 	 * tmp_alone_branch either when the branch is connected
327 	 * to a tree or when we reach the top of the tree
328 	 */
329 	if (cfs_rq->tg->parent &&
330 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 		/*
332 		 * If parent is already on the list, we add the child
333 		 * just before. Thanks to circular linked property of
334 		 * the list, this means to put the child at the tail
335 		 * of the list that starts by parent.
336 		 */
337 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 		/*
340 		 * The branch is now connected to its tree so we can
341 		 * reset tmp_alone_branch to the beginning of the
342 		 * list.
343 		 */
344 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 		return true;
346 	}
347 
348 	if (!cfs_rq->tg->parent) {
349 		/*
350 		 * cfs rq without parent should be put
351 		 * at the tail of the list.
352 		 */
353 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
354 			&rq->leaf_cfs_rq_list);
355 		/*
356 		 * We have reach the top of a tree so we can reset
357 		 * tmp_alone_branch to the beginning of the list.
358 		 */
359 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
360 		return true;
361 	}
362 
363 	/*
364 	 * The parent has not already been added so we want to
365 	 * make sure that it will be put after us.
366 	 * tmp_alone_branch points to the begin of the branch
367 	 * where we will add parent.
368 	 */
369 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 	/*
371 	 * update tmp_alone_branch to points to the new begin
372 	 * of the branch
373 	 */
374 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
375 	return false;
376 }
377 
378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 {
380 	if (cfs_rq->on_list) {
381 		struct rq *rq = rq_of(cfs_rq);
382 
383 		/*
384 		 * With cfs_rq being unthrottled/throttled during an enqueue,
385 		 * it can happen the tmp_alone_branch points to the leaf that
386 		 * we finally want to delete. In this case, tmp_alone_branch moves
387 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
388 		 * at the end of the enqueue.
389 		 */
390 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
391 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392 
393 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
394 		cfs_rq->on_list = 0;
395 	}
396 }
397 
398 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 {
400 	WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
401 }
402 
403 /* Iterate through all leaf cfs_rq's on a runqueue */
404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
405 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
406 				 leaf_cfs_rq_list)
407 
408 /* Do the two (enqueued) entities belong to the same group ? */
409 static inline struct cfs_rq *
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 	if (se->cfs_rq == pse->cfs_rq)
413 		return se->cfs_rq;
414 
415 	return NULL;
416 }
417 
418 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
419 {
420 	return se->parent;
421 }
422 
423 static void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 	int se_depth, pse_depth;
427 
428 	/*
429 	 * preemption test can be made between sibling entities who are in the
430 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
431 	 * both tasks until we find their ancestors who are siblings of common
432 	 * parent.
433 	 */
434 
435 	/* First walk up until both entities are at same depth */
436 	se_depth = (*se)->depth;
437 	pse_depth = (*pse)->depth;
438 
439 	while (se_depth > pse_depth) {
440 		se_depth--;
441 		*se = parent_entity(*se);
442 	}
443 
444 	while (pse_depth > se_depth) {
445 		pse_depth--;
446 		*pse = parent_entity(*pse);
447 	}
448 
449 	while (!is_same_group(*se, *pse)) {
450 		*se = parent_entity(*se);
451 		*pse = parent_entity(*pse);
452 	}
453 }
454 
455 static int tg_is_idle(struct task_group *tg)
456 {
457 	return tg->idle > 0;
458 }
459 
460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 {
462 	return cfs_rq->idle > 0;
463 }
464 
465 static int se_is_idle(struct sched_entity *se)
466 {
467 	if (entity_is_task(se))
468 		return task_has_idle_policy(task_of(se));
469 	return cfs_rq_is_idle(group_cfs_rq(se));
470 }
471 
472 #else /* !CONFIG_FAIR_GROUP_SCHED: */
473 
474 #define for_each_sched_entity(se) \
475 		for (; se; se = NULL)
476 
477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 	return true;
480 }
481 
482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
483 {
484 }
485 
486 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
487 {
488 }
489 
490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
491 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 
493 static inline struct sched_entity *parent_entity(struct sched_entity *se)
494 {
495 	return NULL;
496 }
497 
498 static inline void
499 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
500 {
501 }
502 
503 static inline int tg_is_idle(struct task_group *tg)
504 {
505 	return 0;
506 }
507 
508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
509 {
510 	return 0;
511 }
512 
513 static int se_is_idle(struct sched_entity *se)
514 {
515 	return task_has_idle_policy(task_of(se));
516 }
517 
518 #endif /* !CONFIG_FAIR_GROUP_SCHED */
519 
520 static __always_inline
521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522 
523 /**************************************************************
524  * Scheduling class tree data structure manipulation methods:
525  */
526 
527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 {
529 	s64 delta = (s64)(vruntime - max_vruntime);
530 	if (delta > 0)
531 		max_vruntime = vruntime;
532 
533 	return max_vruntime;
534 }
535 
536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 {
538 	s64 delta = (s64)(vruntime - min_vruntime);
539 	if (delta < 0)
540 		min_vruntime = vruntime;
541 
542 	return min_vruntime;
543 }
544 
545 static inline bool entity_before(const struct sched_entity *a,
546 				 const struct sched_entity *b)
547 {
548 	/*
549 	 * Tiebreak on vruntime seems unnecessary since it can
550 	 * hardly happen.
551 	 */
552 	return (s64)(a->deadline - b->deadline) < 0;
553 }
554 
555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
558 }
559 
560 #define __node_2_se(node) \
561 	rb_entry((node), struct sched_entity, run_node)
562 
563 /*
564  * Compute virtual time from the per-task service numbers:
565  *
566  * Fair schedulers conserve lag:
567  *
568  *   \Sum lag_i = 0
569  *
570  * Where lag_i is given by:
571  *
572  *   lag_i = S - s_i = w_i * (V - v_i)
573  *
574  * Where S is the ideal service time and V is it's virtual time counterpart.
575  * Therefore:
576  *
577  *   \Sum lag_i = 0
578  *   \Sum w_i * (V - v_i) = 0
579  *   \Sum w_i * V - w_i * v_i = 0
580  *
581  * From which we can solve an expression for V in v_i (which we have in
582  * se->vruntime):
583  *
584  *       \Sum v_i * w_i   \Sum v_i * w_i
585  *   V = -------------- = --------------
586  *          \Sum w_i            W
587  *
588  * Specifically, this is the weighted average of all entity virtual runtimes.
589  *
590  * [[ NOTE: this is only equal to the ideal scheduler under the condition
591  *          that join/leave operations happen at lag_i = 0, otherwise the
592  *          virtual time has non-contiguous motion equivalent to:
593  *
594  *	      V +-= lag_i / W
595  *
596  *	    Also see the comment in place_entity() that deals with this. ]]
597  *
598  * However, since v_i is u64, and the multiplication could easily overflow
599  * transform it into a relative form that uses smaller quantities:
600  *
601  * Substitute: v_i == (v_i - v0) + v0
602  *
603  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
604  * V = ---------------------------- = --------------------- + v0
605  *                  W                            W
606  *
607  * Which we track using:
608  *
609  *                    v0 := cfs_rq->min_vruntime
610  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
611  *              \Sum w_i := cfs_rq->avg_load
612  *
613  * Since min_vruntime is a monotonic increasing variable that closely tracks
614  * the per-task service, these deltas: (v_i - v), will be in the order of the
615  * maximal (virtual) lag induced in the system due to quantisation.
616  *
617  * Also, we use scale_load_down() to reduce the size.
618  *
619  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
620  */
621 static void
622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 {
624 	unsigned long weight = scale_load_down(se->load.weight);
625 	s64 key = entity_key(cfs_rq, se);
626 
627 	cfs_rq->avg_vruntime += key * weight;
628 	cfs_rq->avg_load += weight;
629 }
630 
631 static void
632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	unsigned long weight = scale_load_down(se->load.weight);
635 	s64 key = entity_key(cfs_rq, se);
636 
637 	cfs_rq->avg_vruntime -= key * weight;
638 	cfs_rq->avg_load -= weight;
639 }
640 
641 static inline
642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
643 {
644 	/*
645 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 	 */
647 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
648 }
649 
650 /*
651  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
652  * For this to be so, the result of this function must have a left bias.
653  */
654 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 {
656 	struct sched_entity *curr = cfs_rq->curr;
657 	s64 avg = cfs_rq->avg_vruntime;
658 	long load = cfs_rq->avg_load;
659 
660 	if (curr && curr->on_rq) {
661 		unsigned long weight = scale_load_down(curr->load.weight);
662 
663 		avg += entity_key(cfs_rq, curr) * weight;
664 		load += weight;
665 	}
666 
667 	if (load) {
668 		/* sign flips effective floor / ceiling */
669 		if (avg < 0)
670 			avg -= (load - 1);
671 		avg = div_s64(avg, load);
672 	}
673 
674 	return cfs_rq->min_vruntime + avg;
675 }
676 
677 /*
678  * lag_i = S - s_i = w_i * (V - v_i)
679  *
680  * However, since V is approximated by the weighted average of all entities it
681  * is possible -- by addition/removal/reweight to the tree -- to move V around
682  * and end up with a larger lag than we started with.
683  *
684  * Limit this to either double the slice length with a minimum of TICK_NSEC
685  * since that is the timing granularity.
686  *
687  * EEVDF gives the following limit for a steady state system:
688  *
689  *   -r_max < lag < max(r_max, q)
690  *
691  * XXX could add max_slice to the augmented data to track this.
692  */
693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 	s64 vlag, limit;
696 
697 	WARN_ON_ONCE(!se->on_rq);
698 
699 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
700 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
701 
702 	se->vlag = clamp(vlag, -limit, limit);
703 }
704 
705 /*
706  * Entity is eligible once it received less service than it ought to have,
707  * eg. lag >= 0.
708  *
709  * lag_i = S - s_i = w_i*(V - v_i)
710  *
711  * lag_i >= 0 -> V >= v_i
712  *
713  *     \Sum (v_i - v)*w_i
714  * V = ------------------ + v
715  *          \Sum w_i
716  *
717  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
718  *
719  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
720  *       to the loss in precision caused by the division.
721  */
722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
723 {
724 	struct sched_entity *curr = cfs_rq->curr;
725 	s64 avg = cfs_rq->avg_vruntime;
726 	long load = cfs_rq->avg_load;
727 
728 	if (curr && curr->on_rq) {
729 		unsigned long weight = scale_load_down(curr->load.weight);
730 
731 		avg += entity_key(cfs_rq, curr) * weight;
732 		load += weight;
733 	}
734 
735 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
736 }
737 
738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	return vruntime_eligible(cfs_rq, se->vruntime);
741 }
742 
743 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
744 {
745 	u64 min_vruntime = cfs_rq->min_vruntime;
746 	/*
747 	 * open coded max_vruntime() to allow updating avg_vruntime
748 	 */
749 	s64 delta = (s64)(vruntime - min_vruntime);
750 	if (delta > 0) {
751 		avg_vruntime_update(cfs_rq, delta);
752 		min_vruntime = vruntime;
753 	}
754 	return min_vruntime;
755 }
756 
757 static void update_min_vruntime(struct cfs_rq *cfs_rq)
758 {
759 	struct sched_entity *se = __pick_root_entity(cfs_rq);
760 	struct sched_entity *curr = cfs_rq->curr;
761 	u64 vruntime = cfs_rq->min_vruntime;
762 
763 	if (curr) {
764 		if (curr->on_rq)
765 			vruntime = curr->vruntime;
766 		else
767 			curr = NULL;
768 	}
769 
770 	if (se) {
771 		if (!curr)
772 			vruntime = se->min_vruntime;
773 		else
774 			vruntime = min_vruntime(vruntime, se->min_vruntime);
775 	}
776 
777 	/* ensure we never gain time by being placed backwards. */
778 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
779 }
780 
781 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
782 {
783 	struct sched_entity *root = __pick_root_entity(cfs_rq);
784 	struct sched_entity *curr = cfs_rq->curr;
785 	u64 min_slice = ~0ULL;
786 
787 	if (curr && curr->on_rq)
788 		min_slice = curr->slice;
789 
790 	if (root)
791 		min_slice = min(min_slice, root->min_slice);
792 
793 	return min_slice;
794 }
795 
796 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
797 {
798 	return entity_before(__node_2_se(a), __node_2_se(b));
799 }
800 
801 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
802 
803 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
804 {
805 	if (node) {
806 		struct sched_entity *rse = __node_2_se(node);
807 		if (vruntime_gt(min_vruntime, se, rse))
808 			se->min_vruntime = rse->min_vruntime;
809 	}
810 }
811 
812 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
813 {
814 	if (node) {
815 		struct sched_entity *rse = __node_2_se(node);
816 		if (rse->min_slice < se->min_slice)
817 			se->min_slice = rse->min_slice;
818 	}
819 }
820 
821 /*
822  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
823  */
824 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
825 {
826 	u64 old_min_vruntime = se->min_vruntime;
827 	u64 old_min_slice = se->min_slice;
828 	struct rb_node *node = &se->run_node;
829 
830 	se->min_vruntime = se->vruntime;
831 	__min_vruntime_update(se, node->rb_right);
832 	__min_vruntime_update(se, node->rb_left);
833 
834 	se->min_slice = se->slice;
835 	__min_slice_update(se, node->rb_right);
836 	__min_slice_update(se, node->rb_left);
837 
838 	return se->min_vruntime == old_min_vruntime &&
839 	       se->min_slice == old_min_slice;
840 }
841 
842 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
843 		     run_node, min_vruntime, min_vruntime_update);
844 
845 /*
846  * Enqueue an entity into the rb-tree:
847  */
848 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
849 {
850 	avg_vruntime_add(cfs_rq, se);
851 	se->min_vruntime = se->vruntime;
852 	se->min_slice = se->slice;
853 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
854 				__entity_less, &min_vruntime_cb);
855 }
856 
857 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
858 {
859 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
860 				  &min_vruntime_cb);
861 	avg_vruntime_sub(cfs_rq, se);
862 }
863 
864 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
865 {
866 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
867 
868 	if (!root)
869 		return NULL;
870 
871 	return __node_2_se(root);
872 }
873 
874 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
875 {
876 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
877 
878 	if (!left)
879 		return NULL;
880 
881 	return __node_2_se(left);
882 }
883 
884 /*
885  * Set the vruntime up to which an entity can run before looking
886  * for another entity to pick.
887  * In case of run to parity, we use the shortest slice of the enqueued
888  * entities to set the protected period.
889  * When run to parity is disabled, we give a minimum quantum to the running
890  * entity to ensure progress.
891  */
892 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
893 {
894 	u64 slice = normalized_sysctl_sched_base_slice;
895 	u64 vprot = se->deadline;
896 
897 	if (sched_feat(RUN_TO_PARITY))
898 		slice = cfs_rq_min_slice(cfs_rq);
899 
900 	slice = min(slice, se->slice);
901 	if (slice != se->slice)
902 		vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se));
903 
904 	se->vprot = vprot;
905 }
906 
907 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 	u64 slice = cfs_rq_min_slice(cfs_rq);
910 
911 	se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se));
912 }
913 
914 static inline bool protect_slice(struct sched_entity *se)
915 {
916 	return ((s64)(se->vprot - se->vruntime) > 0);
917 }
918 
919 static inline void cancel_protect_slice(struct sched_entity *se)
920 {
921 	if (protect_slice(se))
922 		se->vprot = se->vruntime;
923 }
924 
925 /*
926  * Earliest Eligible Virtual Deadline First
927  *
928  * In order to provide latency guarantees for different request sizes
929  * EEVDF selects the best runnable task from two criteria:
930  *
931  *  1) the task must be eligible (must be owed service)
932  *
933  *  2) from those tasks that meet 1), we select the one
934  *     with the earliest virtual deadline.
935  *
936  * We can do this in O(log n) time due to an augmented RB-tree. The
937  * tree keeps the entries sorted on deadline, but also functions as a
938  * heap based on the vruntime by keeping:
939  *
940  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
941  *
942  * Which allows tree pruning through eligibility.
943  */
944 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect)
945 {
946 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
947 	struct sched_entity *se = __pick_first_entity(cfs_rq);
948 	struct sched_entity *curr = cfs_rq->curr;
949 	struct sched_entity *best = NULL;
950 
951 	/*
952 	 * We can safely skip eligibility check if there is only one entity
953 	 * in this cfs_rq, saving some cycles.
954 	 */
955 	if (cfs_rq->nr_queued == 1)
956 		return curr && curr->on_rq ? curr : se;
957 
958 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
959 		curr = NULL;
960 
961 	if (curr && protect && protect_slice(curr))
962 		return curr;
963 
964 	/* Pick the leftmost entity if it's eligible */
965 	if (se && entity_eligible(cfs_rq, se)) {
966 		best = se;
967 		goto found;
968 	}
969 
970 	/* Heap search for the EEVD entity */
971 	while (node) {
972 		struct rb_node *left = node->rb_left;
973 
974 		/*
975 		 * Eligible entities in left subtree are always better
976 		 * choices, since they have earlier deadlines.
977 		 */
978 		if (left && vruntime_eligible(cfs_rq,
979 					__node_2_se(left)->min_vruntime)) {
980 			node = left;
981 			continue;
982 		}
983 
984 		se = __node_2_se(node);
985 
986 		/*
987 		 * The left subtree either is empty or has no eligible
988 		 * entity, so check the current node since it is the one
989 		 * with earliest deadline that might be eligible.
990 		 */
991 		if (entity_eligible(cfs_rq, se)) {
992 			best = se;
993 			break;
994 		}
995 
996 		node = node->rb_right;
997 	}
998 found:
999 	if (!best || (curr && entity_before(curr, best)))
1000 		best = curr;
1001 
1002 	return best;
1003 }
1004 
1005 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
1006 {
1007 	return __pick_eevdf(cfs_rq, true);
1008 }
1009 
1010 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
1011 {
1012 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
1013 
1014 	if (!last)
1015 		return NULL;
1016 
1017 	return __node_2_se(last);
1018 }
1019 
1020 /**************************************************************
1021  * Scheduling class statistics methods:
1022  */
1023 int sched_update_scaling(void)
1024 {
1025 	unsigned int factor = get_update_sysctl_factor();
1026 
1027 #define WRT_SYSCTL(name) \
1028 	(normalized_sysctl_##name = sysctl_##name / (factor))
1029 	WRT_SYSCTL(sched_base_slice);
1030 #undef WRT_SYSCTL
1031 
1032 	return 0;
1033 }
1034 
1035 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1036 
1037 /*
1038  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1039  * this is probably good enough.
1040  */
1041 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1042 {
1043 	if ((s64)(se->vruntime - se->deadline) < 0)
1044 		return false;
1045 
1046 	/*
1047 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1048 	 * nice) while the request time r_i is determined by
1049 	 * sysctl_sched_base_slice.
1050 	 */
1051 	if (!se->custom_slice)
1052 		se->slice = sysctl_sched_base_slice;
1053 
1054 	/*
1055 	 * EEVDF: vd_i = ve_i + r_i / w_i
1056 	 */
1057 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1058 
1059 	/*
1060 	 * The task has consumed its request, reschedule.
1061 	 */
1062 	return true;
1063 }
1064 
1065 #include "pelt.h"
1066 
1067 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1068 static unsigned long task_h_load(struct task_struct *p);
1069 static unsigned long capacity_of(int cpu);
1070 
1071 /* Give new sched_entity start runnable values to heavy its load in infant time */
1072 void init_entity_runnable_average(struct sched_entity *se)
1073 {
1074 	struct sched_avg *sa = &se->avg;
1075 
1076 	memset(sa, 0, sizeof(*sa));
1077 
1078 	/*
1079 	 * Tasks are initialized with full load to be seen as heavy tasks until
1080 	 * they get a chance to stabilize to their real load level.
1081 	 * Group entities are initialized with zero load to reflect the fact that
1082 	 * nothing has been attached to the task group yet.
1083 	 */
1084 	if (entity_is_task(se))
1085 		sa->load_avg = scale_load_down(se->load.weight);
1086 
1087 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1088 }
1089 
1090 /*
1091  * With new tasks being created, their initial util_avgs are extrapolated
1092  * based on the cfs_rq's current util_avg:
1093  *
1094  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1095  *		* se_weight(se)
1096  *
1097  * However, in many cases, the above util_avg does not give a desired
1098  * value. Moreover, the sum of the util_avgs may be divergent, such
1099  * as when the series is a harmonic series.
1100  *
1101  * To solve this problem, we also cap the util_avg of successive tasks to
1102  * only 1/2 of the left utilization budget:
1103  *
1104  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1105  *
1106  * where n denotes the nth task and cpu_scale the CPU capacity.
1107  *
1108  * For example, for a CPU with 1024 of capacity, a simplest series from
1109  * the beginning would be like:
1110  *
1111  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1112  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1113  *
1114  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1115  * if util_avg > util_avg_cap.
1116  */
1117 void post_init_entity_util_avg(struct task_struct *p)
1118 {
1119 	struct sched_entity *se = &p->se;
1120 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1121 	struct sched_avg *sa = &se->avg;
1122 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1123 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1124 
1125 	if (p->sched_class != &fair_sched_class) {
1126 		/*
1127 		 * For !fair tasks do:
1128 		 *
1129 		update_cfs_rq_load_avg(now, cfs_rq);
1130 		attach_entity_load_avg(cfs_rq, se);
1131 		switched_from_fair(rq, p);
1132 		 *
1133 		 * such that the next switched_to_fair() has the
1134 		 * expected state.
1135 		 */
1136 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1137 		return;
1138 	}
1139 
1140 	if (cap > 0) {
1141 		if (cfs_rq->avg.util_avg != 0) {
1142 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1143 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1144 
1145 			if (sa->util_avg > cap)
1146 				sa->util_avg = cap;
1147 		} else {
1148 			sa->util_avg = cap;
1149 		}
1150 	}
1151 
1152 	sa->runnable_avg = sa->util_avg;
1153 }
1154 
1155 static s64 update_se(struct rq *rq, struct sched_entity *se)
1156 {
1157 	u64 now = rq_clock_task(rq);
1158 	s64 delta_exec;
1159 
1160 	delta_exec = now - se->exec_start;
1161 	if (unlikely(delta_exec <= 0))
1162 		return delta_exec;
1163 
1164 	se->exec_start = now;
1165 	if (entity_is_task(se)) {
1166 		struct task_struct *donor = task_of(se);
1167 		struct task_struct *running = rq->curr;
1168 		/*
1169 		 * If se is a task, we account the time against the running
1170 		 * task, as w/ proxy-exec they may not be the same.
1171 		 */
1172 		running->se.exec_start = now;
1173 		running->se.sum_exec_runtime += delta_exec;
1174 
1175 		trace_sched_stat_runtime(running, delta_exec);
1176 		account_group_exec_runtime(running, delta_exec);
1177 
1178 		/* cgroup time is always accounted against the donor */
1179 		cgroup_account_cputime(donor, delta_exec);
1180 	} else {
1181 		/* If not task, account the time against donor se  */
1182 		se->sum_exec_runtime += delta_exec;
1183 	}
1184 
1185 	if (schedstat_enabled()) {
1186 		struct sched_statistics *stats;
1187 
1188 		stats = __schedstats_from_se(se);
1189 		__schedstat_set(stats->exec_max,
1190 				max(delta_exec, stats->exec_max));
1191 	}
1192 
1193 	return delta_exec;
1194 }
1195 
1196 /*
1197  * Used by other classes to account runtime.
1198  */
1199 s64 update_curr_common(struct rq *rq)
1200 {
1201 	return update_se(rq, &rq->donor->se);
1202 }
1203 
1204 /*
1205  * Update the current task's runtime statistics.
1206  */
1207 static void update_curr(struct cfs_rq *cfs_rq)
1208 {
1209 	/*
1210 	 * Note: cfs_rq->curr corresponds to the task picked to
1211 	 * run (ie: rq->donor.se) which due to proxy-exec may
1212 	 * not necessarily be the actual task running
1213 	 * (rq->curr.se). This is easy to confuse!
1214 	 */
1215 	struct sched_entity *curr = cfs_rq->curr;
1216 	struct rq *rq = rq_of(cfs_rq);
1217 	s64 delta_exec;
1218 	bool resched;
1219 
1220 	if (unlikely(!curr))
1221 		return;
1222 
1223 	delta_exec = update_se(rq, curr);
1224 	if (unlikely(delta_exec <= 0))
1225 		return;
1226 
1227 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1228 	resched = update_deadline(cfs_rq, curr);
1229 	update_min_vruntime(cfs_rq);
1230 
1231 	if (entity_is_task(curr)) {
1232 		/*
1233 		 * If the fair_server is active, we need to account for the
1234 		 * fair_server time whether or not the task is running on
1235 		 * behalf of fair_server or not:
1236 		 *  - If the task is running on behalf of fair_server, we need
1237 		 *    to limit its time based on the assigned runtime.
1238 		 *  - Fair task that runs outside of fair_server should account
1239 		 *    against fair_server such that it can account for this time
1240 		 *    and possibly avoid running this period.
1241 		 */
1242 		if (dl_server_active(&rq->fair_server))
1243 			dl_server_update(&rq->fair_server, delta_exec);
1244 	}
1245 
1246 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1247 
1248 	if (cfs_rq->nr_queued == 1)
1249 		return;
1250 
1251 	if (resched || !protect_slice(curr)) {
1252 		resched_curr_lazy(rq);
1253 		clear_buddies(cfs_rq, curr);
1254 	}
1255 }
1256 
1257 static void update_curr_fair(struct rq *rq)
1258 {
1259 	update_curr(cfs_rq_of(&rq->donor->se));
1260 }
1261 
1262 static inline void
1263 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1264 {
1265 	struct sched_statistics *stats;
1266 	struct task_struct *p = NULL;
1267 
1268 	if (!schedstat_enabled())
1269 		return;
1270 
1271 	stats = __schedstats_from_se(se);
1272 
1273 	if (entity_is_task(se))
1274 		p = task_of(se);
1275 
1276 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1277 }
1278 
1279 static inline void
1280 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 	struct sched_statistics *stats;
1283 	struct task_struct *p = NULL;
1284 
1285 	if (!schedstat_enabled())
1286 		return;
1287 
1288 	stats = __schedstats_from_se(se);
1289 
1290 	/*
1291 	 * When the sched_schedstat changes from 0 to 1, some sched se
1292 	 * maybe already in the runqueue, the se->statistics.wait_start
1293 	 * will be 0.So it will let the delta wrong. We need to avoid this
1294 	 * scenario.
1295 	 */
1296 	if (unlikely(!schedstat_val(stats->wait_start)))
1297 		return;
1298 
1299 	if (entity_is_task(se))
1300 		p = task_of(se);
1301 
1302 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1303 }
1304 
1305 static inline void
1306 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1307 {
1308 	struct sched_statistics *stats;
1309 	struct task_struct *tsk = NULL;
1310 
1311 	if (!schedstat_enabled())
1312 		return;
1313 
1314 	stats = __schedstats_from_se(se);
1315 
1316 	if (entity_is_task(se))
1317 		tsk = task_of(se);
1318 
1319 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1320 }
1321 
1322 /*
1323  * Task is being enqueued - update stats:
1324  */
1325 static inline void
1326 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1327 {
1328 	if (!schedstat_enabled())
1329 		return;
1330 
1331 	/*
1332 	 * Are we enqueueing a waiting task? (for current tasks
1333 	 * a dequeue/enqueue event is a NOP)
1334 	 */
1335 	if (se != cfs_rq->curr)
1336 		update_stats_wait_start_fair(cfs_rq, se);
1337 
1338 	if (flags & ENQUEUE_WAKEUP)
1339 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1340 }
1341 
1342 static inline void
1343 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345 
1346 	if (!schedstat_enabled())
1347 		return;
1348 
1349 	/*
1350 	 * Mark the end of the wait period if dequeueing a
1351 	 * waiting task:
1352 	 */
1353 	if (se != cfs_rq->curr)
1354 		update_stats_wait_end_fair(cfs_rq, se);
1355 
1356 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1357 		struct task_struct *tsk = task_of(se);
1358 		unsigned int state;
1359 
1360 		/* XXX racy against TTWU */
1361 		state = READ_ONCE(tsk->__state);
1362 		if (state & TASK_INTERRUPTIBLE)
1363 			__schedstat_set(tsk->stats.sleep_start,
1364 				      rq_clock(rq_of(cfs_rq)));
1365 		if (state & TASK_UNINTERRUPTIBLE)
1366 			__schedstat_set(tsk->stats.block_start,
1367 				      rq_clock(rq_of(cfs_rq)));
1368 	}
1369 }
1370 
1371 /*
1372  * We are picking a new current task - update its stats:
1373  */
1374 static inline void
1375 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1376 {
1377 	/*
1378 	 * We are starting a new run period:
1379 	 */
1380 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1381 }
1382 
1383 /**************************************************
1384  * Scheduling class queueing methods:
1385  */
1386 
1387 static inline bool is_core_idle(int cpu)
1388 {
1389 #ifdef CONFIG_SCHED_SMT
1390 	int sibling;
1391 
1392 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1393 		if (cpu == sibling)
1394 			continue;
1395 
1396 		if (!idle_cpu(sibling))
1397 			return false;
1398 	}
1399 #endif
1400 
1401 	return true;
1402 }
1403 
1404 #ifdef CONFIG_NUMA
1405 #define NUMA_IMBALANCE_MIN 2
1406 
1407 static inline long
1408 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1409 {
1410 	/*
1411 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1412 	 * threshold. Above this threshold, individual tasks may be contending
1413 	 * for both memory bandwidth and any shared HT resources.  This is an
1414 	 * approximation as the number of running tasks may not be related to
1415 	 * the number of busy CPUs due to sched_setaffinity.
1416 	 */
1417 	if (dst_running > imb_numa_nr)
1418 		return imbalance;
1419 
1420 	/*
1421 	 * Allow a small imbalance based on a simple pair of communicating
1422 	 * tasks that remain local when the destination is lightly loaded.
1423 	 */
1424 	if (imbalance <= NUMA_IMBALANCE_MIN)
1425 		return 0;
1426 
1427 	return imbalance;
1428 }
1429 #endif /* CONFIG_NUMA */
1430 
1431 #ifdef CONFIG_NUMA_BALANCING
1432 /*
1433  * Approximate time to scan a full NUMA task in ms. The task scan period is
1434  * calculated based on the tasks virtual memory size and
1435  * numa_balancing_scan_size.
1436  */
1437 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1438 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1439 
1440 /* Portion of address space to scan in MB */
1441 unsigned int sysctl_numa_balancing_scan_size = 256;
1442 
1443 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1444 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1445 
1446 /* The page with hint page fault latency < threshold in ms is considered hot */
1447 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1448 
1449 struct numa_group {
1450 	refcount_t refcount;
1451 
1452 	spinlock_t lock; /* nr_tasks, tasks */
1453 	int nr_tasks;
1454 	pid_t gid;
1455 	int active_nodes;
1456 
1457 	struct rcu_head rcu;
1458 	unsigned long total_faults;
1459 	unsigned long max_faults_cpu;
1460 	/*
1461 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1462 	 *
1463 	 * Faults_cpu is used to decide whether memory should move
1464 	 * towards the CPU. As a consequence, these stats are weighted
1465 	 * more by CPU use than by memory faults.
1466 	 */
1467 	unsigned long faults[];
1468 };
1469 
1470 /*
1471  * For functions that can be called in multiple contexts that permit reading
1472  * ->numa_group (see struct task_struct for locking rules).
1473  */
1474 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1475 {
1476 	return rcu_dereference_check(p->numa_group, p == current ||
1477 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1478 }
1479 
1480 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1481 {
1482 	return rcu_dereference_protected(p->numa_group, p == current);
1483 }
1484 
1485 static inline unsigned long group_faults_priv(struct numa_group *ng);
1486 static inline unsigned long group_faults_shared(struct numa_group *ng);
1487 
1488 static unsigned int task_nr_scan_windows(struct task_struct *p)
1489 {
1490 	unsigned long rss = 0;
1491 	unsigned long nr_scan_pages;
1492 
1493 	/*
1494 	 * Calculations based on RSS as non-present and empty pages are skipped
1495 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1496 	 * on resident pages
1497 	 */
1498 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1499 	rss = get_mm_rss(p->mm);
1500 	if (!rss)
1501 		rss = nr_scan_pages;
1502 
1503 	rss = round_up(rss, nr_scan_pages);
1504 	return rss / nr_scan_pages;
1505 }
1506 
1507 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1508 #define MAX_SCAN_WINDOW 2560
1509 
1510 static unsigned int task_scan_min(struct task_struct *p)
1511 {
1512 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1513 	unsigned int scan, floor;
1514 	unsigned int windows = 1;
1515 
1516 	if (scan_size < MAX_SCAN_WINDOW)
1517 		windows = MAX_SCAN_WINDOW / scan_size;
1518 	floor = 1000 / windows;
1519 
1520 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1521 	return max_t(unsigned int, floor, scan);
1522 }
1523 
1524 static unsigned int task_scan_start(struct task_struct *p)
1525 {
1526 	unsigned long smin = task_scan_min(p);
1527 	unsigned long period = smin;
1528 	struct numa_group *ng;
1529 
1530 	/* Scale the maximum scan period with the amount of shared memory. */
1531 	rcu_read_lock();
1532 	ng = rcu_dereference(p->numa_group);
1533 	if (ng) {
1534 		unsigned long shared = group_faults_shared(ng);
1535 		unsigned long private = group_faults_priv(ng);
1536 
1537 		period *= refcount_read(&ng->refcount);
1538 		period *= shared + 1;
1539 		period /= private + shared + 1;
1540 	}
1541 	rcu_read_unlock();
1542 
1543 	return max(smin, period);
1544 }
1545 
1546 static unsigned int task_scan_max(struct task_struct *p)
1547 {
1548 	unsigned long smin = task_scan_min(p);
1549 	unsigned long smax;
1550 	struct numa_group *ng;
1551 
1552 	/* Watch for min being lower than max due to floor calculations */
1553 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1554 
1555 	/* Scale the maximum scan period with the amount of shared memory. */
1556 	ng = deref_curr_numa_group(p);
1557 	if (ng) {
1558 		unsigned long shared = group_faults_shared(ng);
1559 		unsigned long private = group_faults_priv(ng);
1560 		unsigned long period = smax;
1561 
1562 		period *= refcount_read(&ng->refcount);
1563 		period *= shared + 1;
1564 		period /= private + shared + 1;
1565 
1566 		smax = max(smax, period);
1567 	}
1568 
1569 	return max(smin, smax);
1570 }
1571 
1572 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1573 {
1574 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1575 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1576 }
1577 
1578 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1579 {
1580 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1581 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1582 }
1583 
1584 /* Shared or private faults. */
1585 #define NR_NUMA_HINT_FAULT_TYPES 2
1586 
1587 /* Memory and CPU locality */
1588 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1589 
1590 /* Averaged statistics, and temporary buffers. */
1591 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1592 
1593 pid_t task_numa_group_id(struct task_struct *p)
1594 {
1595 	struct numa_group *ng;
1596 	pid_t gid = 0;
1597 
1598 	rcu_read_lock();
1599 	ng = rcu_dereference(p->numa_group);
1600 	if (ng)
1601 		gid = ng->gid;
1602 	rcu_read_unlock();
1603 
1604 	return gid;
1605 }
1606 
1607 /*
1608  * The averaged statistics, shared & private, memory & CPU,
1609  * occupy the first half of the array. The second half of the
1610  * array is for current counters, which are averaged into the
1611  * first set by task_numa_placement.
1612  */
1613 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1614 {
1615 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1616 }
1617 
1618 static inline unsigned long task_faults(struct task_struct *p, int nid)
1619 {
1620 	if (!p->numa_faults)
1621 		return 0;
1622 
1623 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1624 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1625 }
1626 
1627 static inline unsigned long group_faults(struct task_struct *p, int nid)
1628 {
1629 	struct numa_group *ng = deref_task_numa_group(p);
1630 
1631 	if (!ng)
1632 		return 0;
1633 
1634 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1635 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1636 }
1637 
1638 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1639 {
1640 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1641 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1642 }
1643 
1644 static inline unsigned long group_faults_priv(struct numa_group *ng)
1645 {
1646 	unsigned long faults = 0;
1647 	int node;
1648 
1649 	for_each_online_node(node) {
1650 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1651 	}
1652 
1653 	return faults;
1654 }
1655 
1656 static inline unsigned long group_faults_shared(struct numa_group *ng)
1657 {
1658 	unsigned long faults = 0;
1659 	int node;
1660 
1661 	for_each_online_node(node) {
1662 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1663 	}
1664 
1665 	return faults;
1666 }
1667 
1668 /*
1669  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1670  * considered part of a numa group's pseudo-interleaving set. Migrations
1671  * between these nodes are slowed down, to allow things to settle down.
1672  */
1673 #define ACTIVE_NODE_FRACTION 3
1674 
1675 static bool numa_is_active_node(int nid, struct numa_group *ng)
1676 {
1677 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1678 }
1679 
1680 /* Handle placement on systems where not all nodes are directly connected. */
1681 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1682 					int lim_dist, bool task)
1683 {
1684 	unsigned long score = 0;
1685 	int node, max_dist;
1686 
1687 	/*
1688 	 * All nodes are directly connected, and the same distance
1689 	 * from each other. No need for fancy placement algorithms.
1690 	 */
1691 	if (sched_numa_topology_type == NUMA_DIRECT)
1692 		return 0;
1693 
1694 	/* sched_max_numa_distance may be changed in parallel. */
1695 	max_dist = READ_ONCE(sched_max_numa_distance);
1696 	/*
1697 	 * This code is called for each node, introducing N^2 complexity,
1698 	 * which should be OK given the number of nodes rarely exceeds 8.
1699 	 */
1700 	for_each_online_node(node) {
1701 		unsigned long faults;
1702 		int dist = node_distance(nid, node);
1703 
1704 		/*
1705 		 * The furthest away nodes in the system are not interesting
1706 		 * for placement; nid was already counted.
1707 		 */
1708 		if (dist >= max_dist || node == nid)
1709 			continue;
1710 
1711 		/*
1712 		 * On systems with a backplane NUMA topology, compare groups
1713 		 * of nodes, and move tasks towards the group with the most
1714 		 * memory accesses. When comparing two nodes at distance
1715 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1716 		 * of each group. Skip other nodes.
1717 		 */
1718 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1719 			continue;
1720 
1721 		/* Add up the faults from nearby nodes. */
1722 		if (task)
1723 			faults = task_faults(p, node);
1724 		else
1725 			faults = group_faults(p, node);
1726 
1727 		/*
1728 		 * On systems with a glueless mesh NUMA topology, there are
1729 		 * no fixed "groups of nodes". Instead, nodes that are not
1730 		 * directly connected bounce traffic through intermediate
1731 		 * nodes; a numa_group can occupy any set of nodes.
1732 		 * The further away a node is, the less the faults count.
1733 		 * This seems to result in good task placement.
1734 		 */
1735 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1736 			faults *= (max_dist - dist);
1737 			faults /= (max_dist - LOCAL_DISTANCE);
1738 		}
1739 
1740 		score += faults;
1741 	}
1742 
1743 	return score;
1744 }
1745 
1746 /*
1747  * These return the fraction of accesses done by a particular task, or
1748  * task group, on a particular numa node.  The group weight is given a
1749  * larger multiplier, in order to group tasks together that are almost
1750  * evenly spread out between numa nodes.
1751  */
1752 static inline unsigned long task_weight(struct task_struct *p, int nid,
1753 					int dist)
1754 {
1755 	unsigned long faults, total_faults;
1756 
1757 	if (!p->numa_faults)
1758 		return 0;
1759 
1760 	total_faults = p->total_numa_faults;
1761 
1762 	if (!total_faults)
1763 		return 0;
1764 
1765 	faults = task_faults(p, nid);
1766 	faults += score_nearby_nodes(p, nid, dist, true);
1767 
1768 	return 1000 * faults / total_faults;
1769 }
1770 
1771 static inline unsigned long group_weight(struct task_struct *p, int nid,
1772 					 int dist)
1773 {
1774 	struct numa_group *ng = deref_task_numa_group(p);
1775 	unsigned long faults, total_faults;
1776 
1777 	if (!ng)
1778 		return 0;
1779 
1780 	total_faults = ng->total_faults;
1781 
1782 	if (!total_faults)
1783 		return 0;
1784 
1785 	faults = group_faults(p, nid);
1786 	faults += score_nearby_nodes(p, nid, dist, false);
1787 
1788 	return 1000 * faults / total_faults;
1789 }
1790 
1791 /*
1792  * If memory tiering mode is enabled, cpupid of slow memory page is
1793  * used to record scan time instead of CPU and PID.  When tiering mode
1794  * is disabled at run time, the scan time (in cpupid) will be
1795  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1796  * access out of array bound.
1797  */
1798 static inline bool cpupid_valid(int cpupid)
1799 {
1800 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1801 }
1802 
1803 /*
1804  * For memory tiering mode, if there are enough free pages (more than
1805  * enough watermark defined here) in fast memory node, to take full
1806  * advantage of fast memory capacity, all recently accessed slow
1807  * memory pages will be migrated to fast memory node without
1808  * considering hot threshold.
1809  */
1810 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1811 {
1812 	int z;
1813 	unsigned long enough_wmark;
1814 
1815 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1816 			   pgdat->node_present_pages >> 4);
1817 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1818 		struct zone *zone = pgdat->node_zones + z;
1819 
1820 		if (!populated_zone(zone))
1821 			continue;
1822 
1823 		if (zone_watermark_ok(zone, 0,
1824 				      promo_wmark_pages(zone) + enough_wmark,
1825 				      ZONE_MOVABLE, 0))
1826 			return true;
1827 	}
1828 	return false;
1829 }
1830 
1831 /*
1832  * For memory tiering mode, when page tables are scanned, the scan
1833  * time will be recorded in struct page in addition to make page
1834  * PROT_NONE for slow memory page.  So when the page is accessed, in
1835  * hint page fault handler, the hint page fault latency is calculated
1836  * via,
1837  *
1838  *	hint page fault latency = hint page fault time - scan time
1839  *
1840  * The smaller the hint page fault latency, the higher the possibility
1841  * for the page to be hot.
1842  */
1843 static int numa_hint_fault_latency(struct folio *folio)
1844 {
1845 	int last_time, time;
1846 
1847 	time = jiffies_to_msecs(jiffies);
1848 	last_time = folio_xchg_access_time(folio, time);
1849 
1850 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1851 }
1852 
1853 /*
1854  * For memory tiering mode, too high promotion/demotion throughput may
1855  * hurt application latency.  So we provide a mechanism to rate limit
1856  * the number of pages that are tried to be promoted.
1857  */
1858 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1859 				      unsigned long rate_limit, int nr)
1860 {
1861 	unsigned long nr_cand;
1862 	unsigned int now, start;
1863 
1864 	now = jiffies_to_msecs(jiffies);
1865 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1866 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1867 	start = pgdat->nbp_rl_start;
1868 	if (now - start > MSEC_PER_SEC &&
1869 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1870 		pgdat->nbp_rl_nr_cand = nr_cand;
1871 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1872 		return true;
1873 	return false;
1874 }
1875 
1876 #define NUMA_MIGRATION_ADJUST_STEPS	16
1877 
1878 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1879 					    unsigned long rate_limit,
1880 					    unsigned int ref_th)
1881 {
1882 	unsigned int now, start, th_period, unit_th, th;
1883 	unsigned long nr_cand, ref_cand, diff_cand;
1884 
1885 	now = jiffies_to_msecs(jiffies);
1886 	th_period = sysctl_numa_balancing_scan_period_max;
1887 	start = pgdat->nbp_th_start;
1888 	if (now - start > th_period &&
1889 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1890 		ref_cand = rate_limit *
1891 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1892 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1893 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1894 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1895 		th = pgdat->nbp_threshold ? : ref_th;
1896 		if (diff_cand > ref_cand * 11 / 10)
1897 			th = max(th - unit_th, unit_th);
1898 		else if (diff_cand < ref_cand * 9 / 10)
1899 			th = min(th + unit_th, ref_th * 2);
1900 		pgdat->nbp_th_nr_cand = nr_cand;
1901 		pgdat->nbp_threshold = th;
1902 	}
1903 }
1904 
1905 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1906 				int src_nid, int dst_cpu)
1907 {
1908 	struct numa_group *ng = deref_curr_numa_group(p);
1909 	int dst_nid = cpu_to_node(dst_cpu);
1910 	int last_cpupid, this_cpupid;
1911 
1912 	/*
1913 	 * Cannot migrate to memoryless nodes.
1914 	 */
1915 	if (!node_state(dst_nid, N_MEMORY))
1916 		return false;
1917 
1918 	/*
1919 	 * The pages in slow memory node should be migrated according
1920 	 * to hot/cold instead of private/shared.
1921 	 */
1922 	if (folio_use_access_time(folio)) {
1923 		struct pglist_data *pgdat;
1924 		unsigned long rate_limit;
1925 		unsigned int latency, th, def_th;
1926 
1927 		pgdat = NODE_DATA(dst_nid);
1928 		if (pgdat_free_space_enough(pgdat)) {
1929 			/* workload changed, reset hot threshold */
1930 			pgdat->nbp_threshold = 0;
1931 			return true;
1932 		}
1933 
1934 		def_th = sysctl_numa_balancing_hot_threshold;
1935 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1936 			(20 - PAGE_SHIFT);
1937 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1938 
1939 		th = pgdat->nbp_threshold ? : def_th;
1940 		latency = numa_hint_fault_latency(folio);
1941 		if (latency >= th)
1942 			return false;
1943 
1944 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1945 						  folio_nr_pages(folio));
1946 	}
1947 
1948 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1949 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1950 
1951 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1952 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1953 		return false;
1954 
1955 	/*
1956 	 * Allow first faults or private faults to migrate immediately early in
1957 	 * the lifetime of a task. The magic number 4 is based on waiting for
1958 	 * two full passes of the "multi-stage node selection" test that is
1959 	 * executed below.
1960 	 */
1961 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1962 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1963 		return true;
1964 
1965 	/*
1966 	 * Multi-stage node selection is used in conjunction with a periodic
1967 	 * migration fault to build a temporal task<->page relation. By using
1968 	 * a two-stage filter we remove short/unlikely relations.
1969 	 *
1970 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1971 	 * a task's usage of a particular page (n_p) per total usage of this
1972 	 * page (n_t) (in a given time-span) to a probability.
1973 	 *
1974 	 * Our periodic faults will sample this probability and getting the
1975 	 * same result twice in a row, given these samples are fully
1976 	 * independent, is then given by P(n)^2, provided our sample period
1977 	 * is sufficiently short compared to the usage pattern.
1978 	 *
1979 	 * This quadric squishes small probabilities, making it less likely we
1980 	 * act on an unlikely task<->page relation.
1981 	 */
1982 	if (!cpupid_pid_unset(last_cpupid) &&
1983 				cpupid_to_nid(last_cpupid) != dst_nid)
1984 		return false;
1985 
1986 	/* Always allow migrate on private faults */
1987 	if (cpupid_match_pid(p, last_cpupid))
1988 		return true;
1989 
1990 	/* A shared fault, but p->numa_group has not been set up yet. */
1991 	if (!ng)
1992 		return true;
1993 
1994 	/*
1995 	 * Destination node is much more heavily used than the source
1996 	 * node? Allow migration.
1997 	 */
1998 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1999 					ACTIVE_NODE_FRACTION)
2000 		return true;
2001 
2002 	/*
2003 	 * Distribute memory according to CPU & memory use on each node,
2004 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2005 	 *
2006 	 * faults_cpu(dst)   3   faults_cpu(src)
2007 	 * --------------- * - > ---------------
2008 	 * faults_mem(dst)   4   faults_mem(src)
2009 	 */
2010 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2011 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2012 }
2013 
2014 /*
2015  * 'numa_type' describes the node at the moment of load balancing.
2016  */
2017 enum numa_type {
2018 	/* The node has spare capacity that can be used to run more tasks.  */
2019 	node_has_spare = 0,
2020 	/*
2021 	 * The node is fully used and the tasks don't compete for more CPU
2022 	 * cycles. Nevertheless, some tasks might wait before running.
2023 	 */
2024 	node_fully_busy,
2025 	/*
2026 	 * The node is overloaded and can't provide expected CPU cycles to all
2027 	 * tasks.
2028 	 */
2029 	node_overloaded
2030 };
2031 
2032 /* Cached statistics for all CPUs within a node */
2033 struct numa_stats {
2034 	unsigned long load;
2035 	unsigned long runnable;
2036 	unsigned long util;
2037 	/* Total compute capacity of CPUs on a node */
2038 	unsigned long compute_capacity;
2039 	unsigned int nr_running;
2040 	unsigned int weight;
2041 	enum numa_type node_type;
2042 	int idle_cpu;
2043 };
2044 
2045 struct task_numa_env {
2046 	struct task_struct *p;
2047 
2048 	int src_cpu, src_nid;
2049 	int dst_cpu, dst_nid;
2050 	int imb_numa_nr;
2051 
2052 	struct numa_stats src_stats, dst_stats;
2053 
2054 	int imbalance_pct;
2055 	int dist;
2056 
2057 	struct task_struct *best_task;
2058 	long best_imp;
2059 	int best_cpu;
2060 };
2061 
2062 static unsigned long cpu_load(struct rq *rq);
2063 static unsigned long cpu_runnable(struct rq *rq);
2064 
2065 static inline enum
2066 numa_type numa_classify(unsigned int imbalance_pct,
2067 			 struct numa_stats *ns)
2068 {
2069 	if ((ns->nr_running > ns->weight) &&
2070 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2071 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2072 		return node_overloaded;
2073 
2074 	if ((ns->nr_running < ns->weight) ||
2075 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2076 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2077 		return node_has_spare;
2078 
2079 	return node_fully_busy;
2080 }
2081 
2082 #ifdef CONFIG_SCHED_SMT
2083 /* Forward declarations of select_idle_sibling helpers */
2084 static inline bool test_idle_cores(int cpu);
2085 static inline int numa_idle_core(int idle_core, int cpu)
2086 {
2087 	if (!static_branch_likely(&sched_smt_present) ||
2088 	    idle_core >= 0 || !test_idle_cores(cpu))
2089 		return idle_core;
2090 
2091 	/*
2092 	 * Prefer cores instead of packing HT siblings
2093 	 * and triggering future load balancing.
2094 	 */
2095 	if (is_core_idle(cpu))
2096 		idle_core = cpu;
2097 
2098 	return idle_core;
2099 }
2100 #else /* !CONFIG_SCHED_SMT: */
2101 static inline int numa_idle_core(int idle_core, int cpu)
2102 {
2103 	return idle_core;
2104 }
2105 #endif /* !CONFIG_SCHED_SMT */
2106 
2107 /*
2108  * Gather all necessary information to make NUMA balancing placement
2109  * decisions that are compatible with standard load balancer. This
2110  * borrows code and logic from update_sg_lb_stats but sharing a
2111  * common implementation is impractical.
2112  */
2113 static void update_numa_stats(struct task_numa_env *env,
2114 			      struct numa_stats *ns, int nid,
2115 			      bool find_idle)
2116 {
2117 	int cpu, idle_core = -1;
2118 
2119 	memset(ns, 0, sizeof(*ns));
2120 	ns->idle_cpu = -1;
2121 
2122 	rcu_read_lock();
2123 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2124 		struct rq *rq = cpu_rq(cpu);
2125 
2126 		ns->load += cpu_load(rq);
2127 		ns->runnable += cpu_runnable(rq);
2128 		ns->util += cpu_util_cfs(cpu);
2129 		ns->nr_running += rq->cfs.h_nr_runnable;
2130 		ns->compute_capacity += capacity_of(cpu);
2131 
2132 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2133 			if (READ_ONCE(rq->numa_migrate_on) ||
2134 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2135 				continue;
2136 
2137 			if (ns->idle_cpu == -1)
2138 				ns->idle_cpu = cpu;
2139 
2140 			idle_core = numa_idle_core(idle_core, cpu);
2141 		}
2142 	}
2143 	rcu_read_unlock();
2144 
2145 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2146 
2147 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2148 
2149 	if (idle_core >= 0)
2150 		ns->idle_cpu = idle_core;
2151 }
2152 
2153 static void task_numa_assign(struct task_numa_env *env,
2154 			     struct task_struct *p, long imp)
2155 {
2156 	struct rq *rq = cpu_rq(env->dst_cpu);
2157 
2158 	/* Check if run-queue part of active NUMA balance. */
2159 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2160 		int cpu;
2161 		int start = env->dst_cpu;
2162 
2163 		/* Find alternative idle CPU. */
2164 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2165 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2166 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2167 				continue;
2168 			}
2169 
2170 			env->dst_cpu = cpu;
2171 			rq = cpu_rq(env->dst_cpu);
2172 			if (!xchg(&rq->numa_migrate_on, 1))
2173 				goto assign;
2174 		}
2175 
2176 		/* Failed to find an alternative idle CPU */
2177 		return;
2178 	}
2179 
2180 assign:
2181 	/*
2182 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2183 	 * found a better CPU to move/swap.
2184 	 */
2185 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2186 		rq = cpu_rq(env->best_cpu);
2187 		WRITE_ONCE(rq->numa_migrate_on, 0);
2188 	}
2189 
2190 	if (env->best_task)
2191 		put_task_struct(env->best_task);
2192 	if (p)
2193 		get_task_struct(p);
2194 
2195 	env->best_task = p;
2196 	env->best_imp = imp;
2197 	env->best_cpu = env->dst_cpu;
2198 }
2199 
2200 static bool load_too_imbalanced(long src_load, long dst_load,
2201 				struct task_numa_env *env)
2202 {
2203 	long imb, old_imb;
2204 	long orig_src_load, orig_dst_load;
2205 	long src_capacity, dst_capacity;
2206 
2207 	/*
2208 	 * The load is corrected for the CPU capacity available on each node.
2209 	 *
2210 	 * src_load        dst_load
2211 	 * ------------ vs ---------
2212 	 * src_capacity    dst_capacity
2213 	 */
2214 	src_capacity = env->src_stats.compute_capacity;
2215 	dst_capacity = env->dst_stats.compute_capacity;
2216 
2217 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2218 
2219 	orig_src_load = env->src_stats.load;
2220 	orig_dst_load = env->dst_stats.load;
2221 
2222 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2223 
2224 	/* Would this change make things worse? */
2225 	return (imb > old_imb);
2226 }
2227 
2228 /*
2229  * Maximum NUMA importance can be 1998 (2*999);
2230  * SMALLIMP @ 30 would be close to 1998/64.
2231  * Used to deter task migration.
2232  */
2233 #define SMALLIMP	30
2234 
2235 /*
2236  * This checks if the overall compute and NUMA accesses of the system would
2237  * be improved if the source tasks was migrated to the target dst_cpu taking
2238  * into account that it might be best if task running on the dst_cpu should
2239  * be exchanged with the source task
2240  */
2241 static bool task_numa_compare(struct task_numa_env *env,
2242 			      long taskimp, long groupimp, bool maymove)
2243 {
2244 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2245 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2246 	long imp = p_ng ? groupimp : taskimp;
2247 	struct task_struct *cur;
2248 	long src_load, dst_load;
2249 	int dist = env->dist;
2250 	long moveimp = imp;
2251 	long load;
2252 	bool stopsearch = false;
2253 
2254 	if (READ_ONCE(dst_rq->numa_migrate_on))
2255 		return false;
2256 
2257 	rcu_read_lock();
2258 	cur = rcu_dereference(dst_rq->curr);
2259 	if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2260 		    !cur->mm))
2261 		cur = NULL;
2262 
2263 	/*
2264 	 * Because we have preemption enabled we can get migrated around and
2265 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2266 	 */
2267 	if (cur == env->p) {
2268 		stopsearch = true;
2269 		goto unlock;
2270 	}
2271 
2272 	if (!cur) {
2273 		if (maymove && moveimp >= env->best_imp)
2274 			goto assign;
2275 		else
2276 			goto unlock;
2277 	}
2278 
2279 	/* Skip this swap candidate if cannot move to the source cpu. */
2280 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2281 		goto unlock;
2282 
2283 	/*
2284 	 * Skip this swap candidate if it is not moving to its preferred
2285 	 * node and the best task is.
2286 	 */
2287 	if (env->best_task &&
2288 	    env->best_task->numa_preferred_nid == env->src_nid &&
2289 	    cur->numa_preferred_nid != env->src_nid) {
2290 		goto unlock;
2291 	}
2292 
2293 	/*
2294 	 * "imp" is the fault differential for the source task between the
2295 	 * source and destination node. Calculate the total differential for
2296 	 * the source task and potential destination task. The more negative
2297 	 * the value is, the more remote accesses that would be expected to
2298 	 * be incurred if the tasks were swapped.
2299 	 *
2300 	 * If dst and source tasks are in the same NUMA group, or not
2301 	 * in any group then look only at task weights.
2302 	 */
2303 	cur_ng = rcu_dereference(cur->numa_group);
2304 	if (cur_ng == p_ng) {
2305 		/*
2306 		 * Do not swap within a group or between tasks that have
2307 		 * no group if there is spare capacity. Swapping does
2308 		 * not address the load imbalance and helps one task at
2309 		 * the cost of punishing another.
2310 		 */
2311 		if (env->dst_stats.node_type == node_has_spare)
2312 			goto unlock;
2313 
2314 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2315 		      task_weight(cur, env->dst_nid, dist);
2316 		/*
2317 		 * Add some hysteresis to prevent swapping the
2318 		 * tasks within a group over tiny differences.
2319 		 */
2320 		if (cur_ng)
2321 			imp -= imp / 16;
2322 	} else {
2323 		/*
2324 		 * Compare the group weights. If a task is all by itself
2325 		 * (not part of a group), use the task weight instead.
2326 		 */
2327 		if (cur_ng && p_ng)
2328 			imp += group_weight(cur, env->src_nid, dist) -
2329 			       group_weight(cur, env->dst_nid, dist);
2330 		else
2331 			imp += task_weight(cur, env->src_nid, dist) -
2332 			       task_weight(cur, env->dst_nid, dist);
2333 	}
2334 
2335 	/* Discourage picking a task already on its preferred node */
2336 	if (cur->numa_preferred_nid == env->dst_nid)
2337 		imp -= imp / 16;
2338 
2339 	/*
2340 	 * Encourage picking a task that moves to its preferred node.
2341 	 * This potentially makes imp larger than it's maximum of
2342 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2343 	 * case, it does not matter.
2344 	 */
2345 	if (cur->numa_preferred_nid == env->src_nid)
2346 		imp += imp / 8;
2347 
2348 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2349 		imp = moveimp;
2350 		cur = NULL;
2351 		goto assign;
2352 	}
2353 
2354 	/*
2355 	 * Prefer swapping with a task moving to its preferred node over a
2356 	 * task that is not.
2357 	 */
2358 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2359 	    env->best_task->numa_preferred_nid != env->src_nid) {
2360 		goto assign;
2361 	}
2362 
2363 	/*
2364 	 * If the NUMA importance is less than SMALLIMP,
2365 	 * task migration might only result in ping pong
2366 	 * of tasks and also hurt performance due to cache
2367 	 * misses.
2368 	 */
2369 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2370 		goto unlock;
2371 
2372 	/*
2373 	 * In the overloaded case, try and keep the load balanced.
2374 	 */
2375 	load = task_h_load(env->p) - task_h_load(cur);
2376 	if (!load)
2377 		goto assign;
2378 
2379 	dst_load = env->dst_stats.load + load;
2380 	src_load = env->src_stats.load - load;
2381 
2382 	if (load_too_imbalanced(src_load, dst_load, env))
2383 		goto unlock;
2384 
2385 assign:
2386 	/* Evaluate an idle CPU for a task numa move. */
2387 	if (!cur) {
2388 		int cpu = env->dst_stats.idle_cpu;
2389 
2390 		/* Nothing cached so current CPU went idle since the search. */
2391 		if (cpu < 0)
2392 			cpu = env->dst_cpu;
2393 
2394 		/*
2395 		 * If the CPU is no longer truly idle and the previous best CPU
2396 		 * is, keep using it.
2397 		 */
2398 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2399 		    idle_cpu(env->best_cpu)) {
2400 			cpu = env->best_cpu;
2401 		}
2402 
2403 		env->dst_cpu = cpu;
2404 	}
2405 
2406 	task_numa_assign(env, cur, imp);
2407 
2408 	/*
2409 	 * If a move to idle is allowed because there is capacity or load
2410 	 * balance improves then stop the search. While a better swap
2411 	 * candidate may exist, a search is not free.
2412 	 */
2413 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2414 		stopsearch = true;
2415 
2416 	/*
2417 	 * If a swap candidate must be identified and the current best task
2418 	 * moves its preferred node then stop the search.
2419 	 */
2420 	if (!maymove && env->best_task &&
2421 	    env->best_task->numa_preferred_nid == env->src_nid) {
2422 		stopsearch = true;
2423 	}
2424 unlock:
2425 	rcu_read_unlock();
2426 
2427 	return stopsearch;
2428 }
2429 
2430 static void task_numa_find_cpu(struct task_numa_env *env,
2431 				long taskimp, long groupimp)
2432 {
2433 	bool maymove = false;
2434 	int cpu;
2435 
2436 	/*
2437 	 * If dst node has spare capacity, then check if there is an
2438 	 * imbalance that would be overruled by the load balancer.
2439 	 */
2440 	if (env->dst_stats.node_type == node_has_spare) {
2441 		unsigned int imbalance;
2442 		int src_running, dst_running;
2443 
2444 		/*
2445 		 * Would movement cause an imbalance? Note that if src has
2446 		 * more running tasks that the imbalance is ignored as the
2447 		 * move improves the imbalance from the perspective of the
2448 		 * CPU load balancer.
2449 		 * */
2450 		src_running = env->src_stats.nr_running - 1;
2451 		dst_running = env->dst_stats.nr_running + 1;
2452 		imbalance = max(0, dst_running - src_running);
2453 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2454 						  env->imb_numa_nr);
2455 
2456 		/* Use idle CPU if there is no imbalance */
2457 		if (!imbalance) {
2458 			maymove = true;
2459 			if (env->dst_stats.idle_cpu >= 0) {
2460 				env->dst_cpu = env->dst_stats.idle_cpu;
2461 				task_numa_assign(env, NULL, 0);
2462 				return;
2463 			}
2464 		}
2465 	} else {
2466 		long src_load, dst_load, load;
2467 		/*
2468 		 * If the improvement from just moving env->p direction is better
2469 		 * than swapping tasks around, check if a move is possible.
2470 		 */
2471 		load = task_h_load(env->p);
2472 		dst_load = env->dst_stats.load + load;
2473 		src_load = env->src_stats.load - load;
2474 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2475 	}
2476 
2477 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2478 		/* Skip this CPU if the source task cannot migrate */
2479 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2480 			continue;
2481 
2482 		env->dst_cpu = cpu;
2483 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2484 			break;
2485 	}
2486 }
2487 
2488 static int task_numa_migrate(struct task_struct *p)
2489 {
2490 	struct task_numa_env env = {
2491 		.p = p,
2492 
2493 		.src_cpu = task_cpu(p),
2494 		.src_nid = task_node(p),
2495 
2496 		.imbalance_pct = 112,
2497 
2498 		.best_task = NULL,
2499 		.best_imp = 0,
2500 		.best_cpu = -1,
2501 	};
2502 	unsigned long taskweight, groupweight;
2503 	struct sched_domain *sd;
2504 	long taskimp, groupimp;
2505 	struct numa_group *ng;
2506 	struct rq *best_rq;
2507 	int nid, ret, dist;
2508 
2509 	/*
2510 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2511 	 * imbalance and would be the first to start moving tasks about.
2512 	 *
2513 	 * And we want to avoid any moving of tasks about, as that would create
2514 	 * random movement of tasks -- counter the numa conditions we're trying
2515 	 * to satisfy here.
2516 	 */
2517 	rcu_read_lock();
2518 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2519 	if (sd) {
2520 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2521 		env.imb_numa_nr = sd->imb_numa_nr;
2522 	}
2523 	rcu_read_unlock();
2524 
2525 	/*
2526 	 * Cpusets can break the scheduler domain tree into smaller
2527 	 * balance domains, some of which do not cross NUMA boundaries.
2528 	 * Tasks that are "trapped" in such domains cannot be migrated
2529 	 * elsewhere, so there is no point in (re)trying.
2530 	 */
2531 	if (unlikely(!sd)) {
2532 		sched_setnuma(p, task_node(p));
2533 		return -EINVAL;
2534 	}
2535 
2536 	env.dst_nid = p->numa_preferred_nid;
2537 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2538 	taskweight = task_weight(p, env.src_nid, dist);
2539 	groupweight = group_weight(p, env.src_nid, dist);
2540 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2541 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2542 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2543 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2544 
2545 	/* Try to find a spot on the preferred nid. */
2546 	task_numa_find_cpu(&env, taskimp, groupimp);
2547 
2548 	/*
2549 	 * Look at other nodes in these cases:
2550 	 * - there is no space available on the preferred_nid
2551 	 * - the task is part of a numa_group that is interleaved across
2552 	 *   multiple NUMA nodes; in order to better consolidate the group,
2553 	 *   we need to check other locations.
2554 	 */
2555 	ng = deref_curr_numa_group(p);
2556 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2557 		for_each_node_state(nid, N_CPU) {
2558 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2559 				continue;
2560 
2561 			dist = node_distance(env.src_nid, env.dst_nid);
2562 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2563 						dist != env.dist) {
2564 				taskweight = task_weight(p, env.src_nid, dist);
2565 				groupweight = group_weight(p, env.src_nid, dist);
2566 			}
2567 
2568 			/* Only consider nodes where both task and groups benefit */
2569 			taskimp = task_weight(p, nid, dist) - taskweight;
2570 			groupimp = group_weight(p, nid, dist) - groupweight;
2571 			if (taskimp < 0 && groupimp < 0)
2572 				continue;
2573 
2574 			env.dist = dist;
2575 			env.dst_nid = nid;
2576 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2577 			task_numa_find_cpu(&env, taskimp, groupimp);
2578 		}
2579 	}
2580 
2581 	/*
2582 	 * If the task is part of a workload that spans multiple NUMA nodes,
2583 	 * and is migrating into one of the workload's active nodes, remember
2584 	 * this node as the task's preferred numa node, so the workload can
2585 	 * settle down.
2586 	 * A task that migrated to a second choice node will be better off
2587 	 * trying for a better one later. Do not set the preferred node here.
2588 	 */
2589 	if (ng) {
2590 		if (env.best_cpu == -1)
2591 			nid = env.src_nid;
2592 		else
2593 			nid = cpu_to_node(env.best_cpu);
2594 
2595 		if (nid != p->numa_preferred_nid)
2596 			sched_setnuma(p, nid);
2597 	}
2598 
2599 	/* No better CPU than the current one was found. */
2600 	if (env.best_cpu == -1) {
2601 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2602 		return -EAGAIN;
2603 	}
2604 
2605 	best_rq = cpu_rq(env.best_cpu);
2606 	if (env.best_task == NULL) {
2607 		ret = migrate_task_to(p, env.best_cpu);
2608 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2609 		if (ret != 0)
2610 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2611 		return ret;
2612 	}
2613 
2614 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2615 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2616 
2617 	if (ret != 0)
2618 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2619 	put_task_struct(env.best_task);
2620 	return ret;
2621 }
2622 
2623 /* Attempt to migrate a task to a CPU on the preferred node. */
2624 static void numa_migrate_preferred(struct task_struct *p)
2625 {
2626 	unsigned long interval = HZ;
2627 
2628 	/* This task has no NUMA fault statistics yet */
2629 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2630 		return;
2631 
2632 	/* Periodically retry migrating the task to the preferred node */
2633 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2634 	p->numa_migrate_retry = jiffies + interval;
2635 
2636 	/* Success if task is already running on preferred CPU */
2637 	if (task_node(p) == p->numa_preferred_nid)
2638 		return;
2639 
2640 	/* Otherwise, try migrate to a CPU on the preferred node */
2641 	task_numa_migrate(p);
2642 }
2643 
2644 /*
2645  * Find out how many nodes the workload is actively running on. Do this by
2646  * tracking the nodes from which NUMA hinting faults are triggered. This can
2647  * be different from the set of nodes where the workload's memory is currently
2648  * located.
2649  */
2650 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2651 {
2652 	unsigned long faults, max_faults = 0;
2653 	int nid, active_nodes = 0;
2654 
2655 	for_each_node_state(nid, N_CPU) {
2656 		faults = group_faults_cpu(numa_group, nid);
2657 		if (faults > max_faults)
2658 			max_faults = faults;
2659 	}
2660 
2661 	for_each_node_state(nid, N_CPU) {
2662 		faults = group_faults_cpu(numa_group, nid);
2663 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2664 			active_nodes++;
2665 	}
2666 
2667 	numa_group->max_faults_cpu = max_faults;
2668 	numa_group->active_nodes = active_nodes;
2669 }
2670 
2671 /*
2672  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2673  * increments. The more local the fault statistics are, the higher the scan
2674  * period will be for the next scan window. If local/(local+remote) ratio is
2675  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2676  * the scan period will decrease. Aim for 70% local accesses.
2677  */
2678 #define NUMA_PERIOD_SLOTS 10
2679 #define NUMA_PERIOD_THRESHOLD 7
2680 
2681 /*
2682  * Increase the scan period (slow down scanning) if the majority of
2683  * our memory is already on our local node, or if the majority of
2684  * the page accesses are shared with other processes.
2685  * Otherwise, decrease the scan period.
2686  */
2687 static void update_task_scan_period(struct task_struct *p,
2688 			unsigned long shared, unsigned long private)
2689 {
2690 	unsigned int period_slot;
2691 	int lr_ratio, ps_ratio;
2692 	int diff;
2693 
2694 	unsigned long remote = p->numa_faults_locality[0];
2695 	unsigned long local = p->numa_faults_locality[1];
2696 
2697 	/*
2698 	 * If there were no record hinting faults then either the task is
2699 	 * completely idle or all activity is in areas that are not of interest
2700 	 * to automatic numa balancing. Related to that, if there were failed
2701 	 * migration then it implies we are migrating too quickly or the local
2702 	 * node is overloaded. In either case, scan slower
2703 	 */
2704 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2705 		p->numa_scan_period = min(p->numa_scan_period_max,
2706 			p->numa_scan_period << 1);
2707 
2708 		p->mm->numa_next_scan = jiffies +
2709 			msecs_to_jiffies(p->numa_scan_period);
2710 
2711 		return;
2712 	}
2713 
2714 	/*
2715 	 * Prepare to scale scan period relative to the current period.
2716 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2717 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2718 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2719 	 */
2720 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2721 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2722 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2723 
2724 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2725 		/*
2726 		 * Most memory accesses are local. There is no need to
2727 		 * do fast NUMA scanning, since memory is already local.
2728 		 */
2729 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2730 		if (!slot)
2731 			slot = 1;
2732 		diff = slot * period_slot;
2733 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2734 		/*
2735 		 * Most memory accesses are shared with other tasks.
2736 		 * There is no point in continuing fast NUMA scanning,
2737 		 * since other tasks may just move the memory elsewhere.
2738 		 */
2739 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2740 		if (!slot)
2741 			slot = 1;
2742 		diff = slot * period_slot;
2743 	} else {
2744 		/*
2745 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2746 		 * yet they are not on the local NUMA node. Speed up
2747 		 * NUMA scanning to get the memory moved over.
2748 		 */
2749 		int ratio = max(lr_ratio, ps_ratio);
2750 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2751 	}
2752 
2753 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2754 			task_scan_min(p), task_scan_max(p));
2755 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2756 }
2757 
2758 /*
2759  * Get the fraction of time the task has been running since the last
2760  * NUMA placement cycle. The scheduler keeps similar statistics, but
2761  * decays those on a 32ms period, which is orders of magnitude off
2762  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2763  * stats only if the task is so new there are no NUMA statistics yet.
2764  */
2765 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2766 {
2767 	u64 runtime, delta, now;
2768 	/* Use the start of this time slice to avoid calculations. */
2769 	now = p->se.exec_start;
2770 	runtime = p->se.sum_exec_runtime;
2771 
2772 	if (p->last_task_numa_placement) {
2773 		delta = runtime - p->last_sum_exec_runtime;
2774 		*period = now - p->last_task_numa_placement;
2775 
2776 		/* Avoid time going backwards, prevent potential divide error: */
2777 		if (unlikely((s64)*period < 0))
2778 			*period = 0;
2779 	} else {
2780 		delta = p->se.avg.load_sum;
2781 		*period = LOAD_AVG_MAX;
2782 	}
2783 
2784 	p->last_sum_exec_runtime = runtime;
2785 	p->last_task_numa_placement = now;
2786 
2787 	return delta;
2788 }
2789 
2790 /*
2791  * Determine the preferred nid for a task in a numa_group. This needs to
2792  * be done in a way that produces consistent results with group_weight,
2793  * otherwise workloads might not converge.
2794  */
2795 static int preferred_group_nid(struct task_struct *p, int nid)
2796 {
2797 	nodemask_t nodes;
2798 	int dist;
2799 
2800 	/* Direct connections between all NUMA nodes. */
2801 	if (sched_numa_topology_type == NUMA_DIRECT)
2802 		return nid;
2803 
2804 	/*
2805 	 * On a system with glueless mesh NUMA topology, group_weight
2806 	 * scores nodes according to the number of NUMA hinting faults on
2807 	 * both the node itself, and on nearby nodes.
2808 	 */
2809 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2810 		unsigned long score, max_score = 0;
2811 		int node, max_node = nid;
2812 
2813 		dist = sched_max_numa_distance;
2814 
2815 		for_each_node_state(node, N_CPU) {
2816 			score = group_weight(p, node, dist);
2817 			if (score > max_score) {
2818 				max_score = score;
2819 				max_node = node;
2820 			}
2821 		}
2822 		return max_node;
2823 	}
2824 
2825 	/*
2826 	 * Finding the preferred nid in a system with NUMA backplane
2827 	 * interconnect topology is more involved. The goal is to locate
2828 	 * tasks from numa_groups near each other in the system, and
2829 	 * untangle workloads from different sides of the system. This requires
2830 	 * searching down the hierarchy of node groups, recursively searching
2831 	 * inside the highest scoring group of nodes. The nodemask tricks
2832 	 * keep the complexity of the search down.
2833 	 */
2834 	nodes = node_states[N_CPU];
2835 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2836 		unsigned long max_faults = 0;
2837 		nodemask_t max_group = NODE_MASK_NONE;
2838 		int a, b;
2839 
2840 		/* Are there nodes at this distance from each other? */
2841 		if (!find_numa_distance(dist))
2842 			continue;
2843 
2844 		for_each_node_mask(a, nodes) {
2845 			unsigned long faults = 0;
2846 			nodemask_t this_group;
2847 			nodes_clear(this_group);
2848 
2849 			/* Sum group's NUMA faults; includes a==b case. */
2850 			for_each_node_mask(b, nodes) {
2851 				if (node_distance(a, b) < dist) {
2852 					faults += group_faults(p, b);
2853 					node_set(b, this_group);
2854 					node_clear(b, nodes);
2855 				}
2856 			}
2857 
2858 			/* Remember the top group. */
2859 			if (faults > max_faults) {
2860 				max_faults = faults;
2861 				max_group = this_group;
2862 				/*
2863 				 * subtle: at the smallest distance there is
2864 				 * just one node left in each "group", the
2865 				 * winner is the preferred nid.
2866 				 */
2867 				nid = a;
2868 			}
2869 		}
2870 		/* Next round, evaluate the nodes within max_group. */
2871 		if (!max_faults)
2872 			break;
2873 		nodes = max_group;
2874 	}
2875 	return nid;
2876 }
2877 
2878 static void task_numa_placement(struct task_struct *p)
2879 {
2880 	int seq, nid, max_nid = NUMA_NO_NODE;
2881 	unsigned long max_faults = 0;
2882 	unsigned long fault_types[2] = { 0, 0 };
2883 	unsigned long total_faults;
2884 	u64 runtime, period;
2885 	spinlock_t *group_lock = NULL;
2886 	struct numa_group *ng;
2887 
2888 	/*
2889 	 * The p->mm->numa_scan_seq field gets updated without
2890 	 * exclusive access. Use READ_ONCE() here to ensure
2891 	 * that the field is read in a single access:
2892 	 */
2893 	seq = READ_ONCE(p->mm->numa_scan_seq);
2894 	if (p->numa_scan_seq == seq)
2895 		return;
2896 	p->numa_scan_seq = seq;
2897 	p->numa_scan_period_max = task_scan_max(p);
2898 
2899 	total_faults = p->numa_faults_locality[0] +
2900 		       p->numa_faults_locality[1];
2901 	runtime = numa_get_avg_runtime(p, &period);
2902 
2903 	/* If the task is part of a group prevent parallel updates to group stats */
2904 	ng = deref_curr_numa_group(p);
2905 	if (ng) {
2906 		group_lock = &ng->lock;
2907 		spin_lock_irq(group_lock);
2908 	}
2909 
2910 	/* Find the node with the highest number of faults */
2911 	for_each_online_node(nid) {
2912 		/* Keep track of the offsets in numa_faults array */
2913 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2914 		unsigned long faults = 0, group_faults = 0;
2915 		int priv;
2916 
2917 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2918 			long diff, f_diff, f_weight;
2919 
2920 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2921 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2922 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2923 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2924 
2925 			/* Decay existing window, copy faults since last scan */
2926 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2927 			fault_types[priv] += p->numa_faults[membuf_idx];
2928 			p->numa_faults[membuf_idx] = 0;
2929 
2930 			/*
2931 			 * Normalize the faults_from, so all tasks in a group
2932 			 * count according to CPU use, instead of by the raw
2933 			 * number of faults. Tasks with little runtime have
2934 			 * little over-all impact on throughput, and thus their
2935 			 * faults are less important.
2936 			 */
2937 			f_weight = div64_u64(runtime << 16, period + 1);
2938 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2939 				   (total_faults + 1);
2940 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2941 			p->numa_faults[cpubuf_idx] = 0;
2942 
2943 			p->numa_faults[mem_idx] += diff;
2944 			p->numa_faults[cpu_idx] += f_diff;
2945 			faults += p->numa_faults[mem_idx];
2946 			p->total_numa_faults += diff;
2947 			if (ng) {
2948 				/*
2949 				 * safe because we can only change our own group
2950 				 *
2951 				 * mem_idx represents the offset for a given
2952 				 * nid and priv in a specific region because it
2953 				 * is at the beginning of the numa_faults array.
2954 				 */
2955 				ng->faults[mem_idx] += diff;
2956 				ng->faults[cpu_idx] += f_diff;
2957 				ng->total_faults += diff;
2958 				group_faults += ng->faults[mem_idx];
2959 			}
2960 		}
2961 
2962 		if (!ng) {
2963 			if (faults > max_faults) {
2964 				max_faults = faults;
2965 				max_nid = nid;
2966 			}
2967 		} else if (group_faults > max_faults) {
2968 			max_faults = group_faults;
2969 			max_nid = nid;
2970 		}
2971 	}
2972 
2973 	/* Cannot migrate task to CPU-less node */
2974 	max_nid = numa_nearest_node(max_nid, N_CPU);
2975 
2976 	if (ng) {
2977 		numa_group_count_active_nodes(ng);
2978 		spin_unlock_irq(group_lock);
2979 		max_nid = preferred_group_nid(p, max_nid);
2980 	}
2981 
2982 	if (max_faults) {
2983 		/* Set the new preferred node */
2984 		if (max_nid != p->numa_preferred_nid)
2985 			sched_setnuma(p, max_nid);
2986 	}
2987 
2988 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2989 }
2990 
2991 static inline int get_numa_group(struct numa_group *grp)
2992 {
2993 	return refcount_inc_not_zero(&grp->refcount);
2994 }
2995 
2996 static inline void put_numa_group(struct numa_group *grp)
2997 {
2998 	if (refcount_dec_and_test(&grp->refcount))
2999 		kfree_rcu(grp, rcu);
3000 }
3001 
3002 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3003 			int *priv)
3004 {
3005 	struct numa_group *grp, *my_grp;
3006 	struct task_struct *tsk;
3007 	bool join = false;
3008 	int cpu = cpupid_to_cpu(cpupid);
3009 	int i;
3010 
3011 	if (unlikely(!deref_curr_numa_group(p))) {
3012 		unsigned int size = sizeof(struct numa_group) +
3013 				    NR_NUMA_HINT_FAULT_STATS *
3014 				    nr_node_ids * sizeof(unsigned long);
3015 
3016 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3017 		if (!grp)
3018 			return;
3019 
3020 		refcount_set(&grp->refcount, 1);
3021 		grp->active_nodes = 1;
3022 		grp->max_faults_cpu = 0;
3023 		spin_lock_init(&grp->lock);
3024 		grp->gid = p->pid;
3025 
3026 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3027 			grp->faults[i] = p->numa_faults[i];
3028 
3029 		grp->total_faults = p->total_numa_faults;
3030 
3031 		grp->nr_tasks++;
3032 		rcu_assign_pointer(p->numa_group, grp);
3033 	}
3034 
3035 	rcu_read_lock();
3036 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3037 
3038 	if (!cpupid_match_pid(tsk, cpupid))
3039 		goto no_join;
3040 
3041 	grp = rcu_dereference(tsk->numa_group);
3042 	if (!grp)
3043 		goto no_join;
3044 
3045 	my_grp = deref_curr_numa_group(p);
3046 	if (grp == my_grp)
3047 		goto no_join;
3048 
3049 	/*
3050 	 * Only join the other group if its bigger; if we're the bigger group,
3051 	 * the other task will join us.
3052 	 */
3053 	if (my_grp->nr_tasks > grp->nr_tasks)
3054 		goto no_join;
3055 
3056 	/*
3057 	 * Tie-break on the grp address.
3058 	 */
3059 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3060 		goto no_join;
3061 
3062 	/* Always join threads in the same process. */
3063 	if (tsk->mm == current->mm)
3064 		join = true;
3065 
3066 	/* Simple filter to avoid false positives due to PID collisions */
3067 	if (flags & TNF_SHARED)
3068 		join = true;
3069 
3070 	/* Update priv based on whether false sharing was detected */
3071 	*priv = !join;
3072 
3073 	if (join && !get_numa_group(grp))
3074 		goto no_join;
3075 
3076 	rcu_read_unlock();
3077 
3078 	if (!join)
3079 		return;
3080 
3081 	WARN_ON_ONCE(irqs_disabled());
3082 	double_lock_irq(&my_grp->lock, &grp->lock);
3083 
3084 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3085 		my_grp->faults[i] -= p->numa_faults[i];
3086 		grp->faults[i] += p->numa_faults[i];
3087 	}
3088 	my_grp->total_faults -= p->total_numa_faults;
3089 	grp->total_faults += p->total_numa_faults;
3090 
3091 	my_grp->nr_tasks--;
3092 	grp->nr_tasks++;
3093 
3094 	spin_unlock(&my_grp->lock);
3095 	spin_unlock_irq(&grp->lock);
3096 
3097 	rcu_assign_pointer(p->numa_group, grp);
3098 
3099 	put_numa_group(my_grp);
3100 	return;
3101 
3102 no_join:
3103 	rcu_read_unlock();
3104 	return;
3105 }
3106 
3107 /*
3108  * Get rid of NUMA statistics associated with a task (either current or dead).
3109  * If @final is set, the task is dead and has reached refcount zero, so we can
3110  * safely free all relevant data structures. Otherwise, there might be
3111  * concurrent reads from places like load balancing and procfs, and we should
3112  * reset the data back to default state without freeing ->numa_faults.
3113  */
3114 void task_numa_free(struct task_struct *p, bool final)
3115 {
3116 	/* safe: p either is current or is being freed by current */
3117 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3118 	unsigned long *numa_faults = p->numa_faults;
3119 	unsigned long flags;
3120 	int i;
3121 
3122 	if (!numa_faults)
3123 		return;
3124 
3125 	if (grp) {
3126 		spin_lock_irqsave(&grp->lock, flags);
3127 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3128 			grp->faults[i] -= p->numa_faults[i];
3129 		grp->total_faults -= p->total_numa_faults;
3130 
3131 		grp->nr_tasks--;
3132 		spin_unlock_irqrestore(&grp->lock, flags);
3133 		RCU_INIT_POINTER(p->numa_group, NULL);
3134 		put_numa_group(grp);
3135 	}
3136 
3137 	if (final) {
3138 		p->numa_faults = NULL;
3139 		kfree(numa_faults);
3140 	} else {
3141 		p->total_numa_faults = 0;
3142 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3143 			numa_faults[i] = 0;
3144 	}
3145 }
3146 
3147 /*
3148  * Got a PROT_NONE fault for a page on @node.
3149  */
3150 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3151 {
3152 	struct task_struct *p = current;
3153 	bool migrated = flags & TNF_MIGRATED;
3154 	int cpu_node = task_node(current);
3155 	int local = !!(flags & TNF_FAULT_LOCAL);
3156 	struct numa_group *ng;
3157 	int priv;
3158 
3159 	if (!static_branch_likely(&sched_numa_balancing))
3160 		return;
3161 
3162 	/* for example, ksmd faulting in a user's mm */
3163 	if (!p->mm)
3164 		return;
3165 
3166 	/*
3167 	 * NUMA faults statistics are unnecessary for the slow memory
3168 	 * node for memory tiering mode.
3169 	 */
3170 	if (!node_is_toptier(mem_node) &&
3171 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3172 	     !cpupid_valid(last_cpupid)))
3173 		return;
3174 
3175 	/* Allocate buffer to track faults on a per-node basis */
3176 	if (unlikely(!p->numa_faults)) {
3177 		int size = sizeof(*p->numa_faults) *
3178 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3179 
3180 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3181 		if (!p->numa_faults)
3182 			return;
3183 
3184 		p->total_numa_faults = 0;
3185 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3186 	}
3187 
3188 	/*
3189 	 * First accesses are treated as private, otherwise consider accesses
3190 	 * to be private if the accessing pid has not changed
3191 	 */
3192 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3193 		priv = 1;
3194 	} else {
3195 		priv = cpupid_match_pid(p, last_cpupid);
3196 		if (!priv && !(flags & TNF_NO_GROUP))
3197 			task_numa_group(p, last_cpupid, flags, &priv);
3198 	}
3199 
3200 	/*
3201 	 * If a workload spans multiple NUMA nodes, a shared fault that
3202 	 * occurs wholly within the set of nodes that the workload is
3203 	 * actively using should be counted as local. This allows the
3204 	 * scan rate to slow down when a workload has settled down.
3205 	 */
3206 	ng = deref_curr_numa_group(p);
3207 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3208 				numa_is_active_node(cpu_node, ng) &&
3209 				numa_is_active_node(mem_node, ng))
3210 		local = 1;
3211 
3212 	/*
3213 	 * Retry to migrate task to preferred node periodically, in case it
3214 	 * previously failed, or the scheduler moved us.
3215 	 */
3216 	if (time_after(jiffies, p->numa_migrate_retry)) {
3217 		task_numa_placement(p);
3218 		numa_migrate_preferred(p);
3219 	}
3220 
3221 	if (migrated)
3222 		p->numa_pages_migrated += pages;
3223 	if (flags & TNF_MIGRATE_FAIL)
3224 		p->numa_faults_locality[2] += pages;
3225 
3226 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3227 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3228 	p->numa_faults_locality[local] += pages;
3229 }
3230 
3231 static void reset_ptenuma_scan(struct task_struct *p)
3232 {
3233 	/*
3234 	 * We only did a read acquisition of the mmap sem, so
3235 	 * p->mm->numa_scan_seq is written to without exclusive access
3236 	 * and the update is not guaranteed to be atomic. That's not
3237 	 * much of an issue though, since this is just used for
3238 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3239 	 * expensive, to avoid any form of compiler optimizations:
3240 	 */
3241 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3242 	p->mm->numa_scan_offset = 0;
3243 }
3244 
3245 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3246 {
3247 	unsigned long pids;
3248 	/*
3249 	 * Allow unconditional access first two times, so that all the (pages)
3250 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3251 	 * This is also done to avoid any side effect of task scanning
3252 	 * amplifying the unfairness of disjoint set of VMAs' access.
3253 	 */
3254 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3255 		return true;
3256 
3257 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3258 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3259 		return true;
3260 
3261 	/*
3262 	 * Complete a scan that has already started regardless of PID access, or
3263 	 * some VMAs may never be scanned in multi-threaded applications:
3264 	 */
3265 	if (mm->numa_scan_offset > vma->vm_start) {
3266 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3267 		return true;
3268 	}
3269 
3270 	/*
3271 	 * This vma has not been accessed for a while, and if the number
3272 	 * the threads in the same process is low, which means no other
3273 	 * threads can help scan this vma, force a vma scan.
3274 	 */
3275 	if (READ_ONCE(mm->numa_scan_seq) >
3276 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3277 		return true;
3278 
3279 	return false;
3280 }
3281 
3282 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3283 
3284 /*
3285  * The expensive part of numa migration is done from task_work context.
3286  * Triggered from task_tick_numa().
3287  */
3288 static void task_numa_work(struct callback_head *work)
3289 {
3290 	unsigned long migrate, next_scan, now = jiffies;
3291 	struct task_struct *p = current;
3292 	struct mm_struct *mm = p->mm;
3293 	u64 runtime = p->se.sum_exec_runtime;
3294 	struct vm_area_struct *vma;
3295 	unsigned long start, end;
3296 	unsigned long nr_pte_updates = 0;
3297 	long pages, virtpages;
3298 	struct vma_iterator vmi;
3299 	bool vma_pids_skipped;
3300 	bool vma_pids_forced = false;
3301 
3302 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3303 
3304 	work->next = work;
3305 	/*
3306 	 * Who cares about NUMA placement when they're dying.
3307 	 *
3308 	 * NOTE: make sure not to dereference p->mm before this check,
3309 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3310 	 * without p->mm even though we still had it when we enqueued this
3311 	 * work.
3312 	 */
3313 	if (p->flags & PF_EXITING)
3314 		return;
3315 
3316 	/*
3317 	 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3318 	 * no page can be migrated.
3319 	 */
3320 	if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3321 		trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3322 		return;
3323 	}
3324 
3325 	if (!mm->numa_next_scan) {
3326 		mm->numa_next_scan = now +
3327 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3328 	}
3329 
3330 	/*
3331 	 * Enforce maximal scan/migration frequency..
3332 	 */
3333 	migrate = mm->numa_next_scan;
3334 	if (time_before(now, migrate))
3335 		return;
3336 
3337 	if (p->numa_scan_period == 0) {
3338 		p->numa_scan_period_max = task_scan_max(p);
3339 		p->numa_scan_period = task_scan_start(p);
3340 	}
3341 
3342 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3343 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3344 		return;
3345 
3346 	/*
3347 	 * Delay this task enough that another task of this mm will likely win
3348 	 * the next time around.
3349 	 */
3350 	p->node_stamp += 2 * TICK_NSEC;
3351 
3352 	pages = sysctl_numa_balancing_scan_size;
3353 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3354 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3355 	if (!pages)
3356 		return;
3357 
3358 
3359 	if (!mmap_read_trylock(mm))
3360 		return;
3361 
3362 	/*
3363 	 * VMAs are skipped if the current PID has not trapped a fault within
3364 	 * the VMA recently. Allow scanning to be forced if there is no
3365 	 * suitable VMA remaining.
3366 	 */
3367 	vma_pids_skipped = false;
3368 
3369 retry_pids:
3370 	start = mm->numa_scan_offset;
3371 	vma_iter_init(&vmi, mm, start);
3372 	vma = vma_next(&vmi);
3373 	if (!vma) {
3374 		reset_ptenuma_scan(p);
3375 		start = 0;
3376 		vma_iter_set(&vmi, start);
3377 		vma = vma_next(&vmi);
3378 	}
3379 
3380 	for (; vma; vma = vma_next(&vmi)) {
3381 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3382 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3383 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3384 			continue;
3385 		}
3386 
3387 		/*
3388 		 * Shared library pages mapped by multiple processes are not
3389 		 * migrated as it is expected they are cache replicated. Avoid
3390 		 * hinting faults in read-only file-backed mappings or the vDSO
3391 		 * as migrating the pages will be of marginal benefit.
3392 		 */
3393 		if (!vma->vm_mm ||
3394 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3395 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3396 			continue;
3397 		}
3398 
3399 		/*
3400 		 * Skip inaccessible VMAs to avoid any confusion between
3401 		 * PROT_NONE and NUMA hinting PTEs
3402 		 */
3403 		if (!vma_is_accessible(vma)) {
3404 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3405 			continue;
3406 		}
3407 
3408 		/* Initialise new per-VMA NUMAB state. */
3409 		if (!vma->numab_state) {
3410 			struct vma_numab_state *ptr;
3411 
3412 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3413 			if (!ptr)
3414 				continue;
3415 
3416 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3417 				kfree(ptr);
3418 				continue;
3419 			}
3420 
3421 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3422 
3423 			vma->numab_state->next_scan = now +
3424 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3425 
3426 			/* Reset happens after 4 times scan delay of scan start */
3427 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3428 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3429 
3430 			/*
3431 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3432 			 * to prevent VMAs being skipped prematurely on the
3433 			 * first scan:
3434 			 */
3435 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3436 		}
3437 
3438 		/*
3439 		 * Scanning the VMAs of short lived tasks add more overhead. So
3440 		 * delay the scan for new VMAs.
3441 		 */
3442 		if (mm->numa_scan_seq && time_before(jiffies,
3443 						vma->numab_state->next_scan)) {
3444 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3445 			continue;
3446 		}
3447 
3448 		/* RESET access PIDs regularly for old VMAs. */
3449 		if (mm->numa_scan_seq &&
3450 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3451 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3452 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3453 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3454 			vma->numab_state->pids_active[1] = 0;
3455 		}
3456 
3457 		/* Do not rescan VMAs twice within the same sequence. */
3458 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3459 			mm->numa_scan_offset = vma->vm_end;
3460 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3461 			continue;
3462 		}
3463 
3464 		/*
3465 		 * Do not scan the VMA if task has not accessed it, unless no other
3466 		 * VMA candidate exists.
3467 		 */
3468 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3469 			vma_pids_skipped = true;
3470 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3471 			continue;
3472 		}
3473 
3474 		do {
3475 			start = max(start, vma->vm_start);
3476 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3477 			end = min(end, vma->vm_end);
3478 			nr_pte_updates = change_prot_numa(vma, start, end);
3479 
3480 			/*
3481 			 * Try to scan sysctl_numa_balancing_size worth of
3482 			 * hpages that have at least one present PTE that
3483 			 * is not already PTE-numa. If the VMA contains
3484 			 * areas that are unused or already full of prot_numa
3485 			 * PTEs, scan up to virtpages, to skip through those
3486 			 * areas faster.
3487 			 */
3488 			if (nr_pte_updates)
3489 				pages -= (end - start) >> PAGE_SHIFT;
3490 			virtpages -= (end - start) >> PAGE_SHIFT;
3491 
3492 			start = end;
3493 			if (pages <= 0 || virtpages <= 0)
3494 				goto out;
3495 
3496 			cond_resched();
3497 		} while (end != vma->vm_end);
3498 
3499 		/* VMA scan is complete, do not scan until next sequence. */
3500 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3501 
3502 		/*
3503 		 * Only force scan within one VMA at a time, to limit the
3504 		 * cost of scanning a potentially uninteresting VMA.
3505 		 */
3506 		if (vma_pids_forced)
3507 			break;
3508 	}
3509 
3510 	/*
3511 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3512 	 * not accessing the VMA previously, then force a scan to ensure
3513 	 * forward progress:
3514 	 */
3515 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3516 		vma_pids_forced = true;
3517 		goto retry_pids;
3518 	}
3519 
3520 out:
3521 	/*
3522 	 * It is possible to reach the end of the VMA list but the last few
3523 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3524 	 * would find the !migratable VMA on the next scan but not reset the
3525 	 * scanner to the start so check it now.
3526 	 */
3527 	if (vma)
3528 		mm->numa_scan_offset = start;
3529 	else
3530 		reset_ptenuma_scan(p);
3531 	mmap_read_unlock(mm);
3532 
3533 	/*
3534 	 * Make sure tasks use at least 32x as much time to run other code
3535 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3536 	 * Usually update_task_scan_period slows down scanning enough; on an
3537 	 * overloaded system we need to limit overhead on a per task basis.
3538 	 */
3539 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3540 		u64 diff = p->se.sum_exec_runtime - runtime;
3541 		p->node_stamp += 32 * diff;
3542 	}
3543 }
3544 
3545 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3546 {
3547 	int mm_users = 0;
3548 	struct mm_struct *mm = p->mm;
3549 
3550 	if (mm) {
3551 		mm_users = atomic_read(&mm->mm_users);
3552 		if (mm_users == 1) {
3553 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3554 			mm->numa_scan_seq = 0;
3555 		}
3556 	}
3557 	p->node_stamp			= 0;
3558 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3559 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3560 	p->numa_migrate_retry		= 0;
3561 	/* Protect against double add, see task_tick_numa and task_numa_work */
3562 	p->numa_work.next		= &p->numa_work;
3563 	p->numa_faults			= NULL;
3564 	p->numa_pages_migrated		= 0;
3565 	p->total_numa_faults		= 0;
3566 	RCU_INIT_POINTER(p->numa_group, NULL);
3567 	p->last_task_numa_placement	= 0;
3568 	p->last_sum_exec_runtime	= 0;
3569 
3570 	init_task_work(&p->numa_work, task_numa_work);
3571 
3572 	/* New address space, reset the preferred nid */
3573 	if (!(clone_flags & CLONE_VM)) {
3574 		p->numa_preferred_nid = NUMA_NO_NODE;
3575 		return;
3576 	}
3577 
3578 	/*
3579 	 * New thread, keep existing numa_preferred_nid which should be copied
3580 	 * already by arch_dup_task_struct but stagger when scans start.
3581 	 */
3582 	if (mm) {
3583 		unsigned int delay;
3584 
3585 		delay = min_t(unsigned int, task_scan_max(current),
3586 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3587 		delay += 2 * TICK_NSEC;
3588 		p->node_stamp = delay;
3589 	}
3590 }
3591 
3592 /*
3593  * Drive the periodic memory faults..
3594  */
3595 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3596 {
3597 	struct callback_head *work = &curr->numa_work;
3598 	u64 period, now;
3599 
3600 	/*
3601 	 * We don't care about NUMA placement if we don't have memory.
3602 	 */
3603 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3604 		return;
3605 
3606 	/*
3607 	 * Using runtime rather than walltime has the dual advantage that
3608 	 * we (mostly) drive the selection from busy threads and that the
3609 	 * task needs to have done some actual work before we bother with
3610 	 * NUMA placement.
3611 	 */
3612 	now = curr->se.sum_exec_runtime;
3613 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3614 
3615 	if (now > curr->node_stamp + period) {
3616 		if (!curr->node_stamp)
3617 			curr->numa_scan_period = task_scan_start(curr);
3618 		curr->node_stamp += period;
3619 
3620 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3621 			task_work_add(curr, work, TWA_RESUME);
3622 	}
3623 }
3624 
3625 static void update_scan_period(struct task_struct *p, int new_cpu)
3626 {
3627 	int src_nid = cpu_to_node(task_cpu(p));
3628 	int dst_nid = cpu_to_node(new_cpu);
3629 
3630 	if (!static_branch_likely(&sched_numa_balancing))
3631 		return;
3632 
3633 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3634 		return;
3635 
3636 	if (src_nid == dst_nid)
3637 		return;
3638 
3639 	/*
3640 	 * Allow resets if faults have been trapped before one scan
3641 	 * has completed. This is most likely due to a new task that
3642 	 * is pulled cross-node due to wakeups or load balancing.
3643 	 */
3644 	if (p->numa_scan_seq) {
3645 		/*
3646 		 * Avoid scan adjustments if moving to the preferred
3647 		 * node or if the task was not previously running on
3648 		 * the preferred node.
3649 		 */
3650 		if (dst_nid == p->numa_preferred_nid ||
3651 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3652 			src_nid != p->numa_preferred_nid))
3653 			return;
3654 	}
3655 
3656 	p->numa_scan_period = task_scan_start(p);
3657 }
3658 
3659 #else /* !CONFIG_NUMA_BALANCING: */
3660 
3661 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3662 {
3663 }
3664 
3665 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3666 {
3667 }
3668 
3669 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3670 {
3671 }
3672 
3673 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3674 {
3675 }
3676 
3677 #endif /* !CONFIG_NUMA_BALANCING */
3678 
3679 static void
3680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3681 {
3682 	update_load_add(&cfs_rq->load, se->load.weight);
3683 	if (entity_is_task(se)) {
3684 		struct rq *rq = rq_of(cfs_rq);
3685 
3686 		account_numa_enqueue(rq, task_of(se));
3687 		list_add(&se->group_node, &rq->cfs_tasks);
3688 	}
3689 	cfs_rq->nr_queued++;
3690 }
3691 
3692 static void
3693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3694 {
3695 	update_load_sub(&cfs_rq->load, se->load.weight);
3696 	if (entity_is_task(se)) {
3697 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3698 		list_del_init(&se->group_node);
3699 	}
3700 	cfs_rq->nr_queued--;
3701 }
3702 
3703 /*
3704  * Signed add and clamp on underflow.
3705  *
3706  * Explicitly do a load-store to ensure the intermediate value never hits
3707  * memory. This allows lockless observations without ever seeing the negative
3708  * values.
3709  */
3710 #define add_positive(_ptr, _val) do {                           \
3711 	typeof(_ptr) ptr = (_ptr);                              \
3712 	typeof(_val) val = (_val);                              \
3713 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3714 								\
3715 	res = var + val;                                        \
3716 								\
3717 	if (val < 0 && res > var)                               \
3718 		res = 0;                                        \
3719 								\
3720 	WRITE_ONCE(*ptr, res);                                  \
3721 } while (0)
3722 
3723 /*
3724  * Unsigned subtract and clamp on underflow.
3725  *
3726  * Explicitly do a load-store to ensure the intermediate value never hits
3727  * memory. This allows lockless observations without ever seeing the negative
3728  * values.
3729  */
3730 #define sub_positive(_ptr, _val) do {				\
3731 	typeof(_ptr) ptr = (_ptr);				\
3732 	typeof(*ptr) val = (_val);				\
3733 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3734 	res = var - val;					\
3735 	if (res > var)						\
3736 		res = 0;					\
3737 	WRITE_ONCE(*ptr, res);					\
3738 } while (0)
3739 
3740 /*
3741  * Remove and clamp on negative, from a local variable.
3742  *
3743  * A variant of sub_positive(), which does not use explicit load-store
3744  * and is thus optimized for local variable updates.
3745  */
3746 #define lsub_positive(_ptr, _val) do {				\
3747 	typeof(_ptr) ptr = (_ptr);				\
3748 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3749 } while (0)
3750 
3751 static inline void
3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 	cfs_rq->avg.load_avg += se->avg.load_avg;
3755 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3756 }
3757 
3758 static inline void
3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3762 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3763 	/* See update_cfs_rq_load_avg() */
3764 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3765 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3766 }
3767 
3768 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3769 
3770 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3771 			    unsigned long weight)
3772 {
3773 	bool curr = cfs_rq->curr == se;
3774 
3775 	if (se->on_rq) {
3776 		/* commit outstanding execution time */
3777 		update_curr(cfs_rq);
3778 		update_entity_lag(cfs_rq, se);
3779 		se->deadline -= se->vruntime;
3780 		se->rel_deadline = 1;
3781 		cfs_rq->nr_queued--;
3782 		if (!curr)
3783 			__dequeue_entity(cfs_rq, se);
3784 		update_load_sub(&cfs_rq->load, se->load.weight);
3785 	}
3786 	dequeue_load_avg(cfs_rq, se);
3787 
3788 	/*
3789 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3790 	 * we need to scale se->vlag when w_i changes.
3791 	 */
3792 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3793 	if (se->rel_deadline)
3794 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3795 
3796 	update_load_set(&se->load, weight);
3797 
3798 	do {
3799 		u32 divider = get_pelt_divider(&se->avg);
3800 
3801 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3802 	} while (0);
3803 
3804 	enqueue_load_avg(cfs_rq, se);
3805 	if (se->on_rq) {
3806 		place_entity(cfs_rq, se, 0);
3807 		update_load_add(&cfs_rq->load, se->load.weight);
3808 		if (!curr)
3809 			__enqueue_entity(cfs_rq, se);
3810 		cfs_rq->nr_queued++;
3811 
3812 		/*
3813 		 * The entity's vruntime has been adjusted, so let's check
3814 		 * whether the rq-wide min_vruntime needs updated too. Since
3815 		 * the calculations above require stable min_vruntime rather
3816 		 * than up-to-date one, we do the update at the end of the
3817 		 * reweight process.
3818 		 */
3819 		update_min_vruntime(cfs_rq);
3820 	}
3821 }
3822 
3823 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3824 			       const struct load_weight *lw)
3825 {
3826 	struct sched_entity *se = &p->se;
3827 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3828 	struct load_weight *load = &se->load;
3829 
3830 	reweight_entity(cfs_rq, se, lw->weight);
3831 	load->inv_weight = lw->inv_weight;
3832 }
3833 
3834 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3835 
3836 #ifdef CONFIG_FAIR_GROUP_SCHED
3837 /*
3838  * All this does is approximate the hierarchical proportion which includes that
3839  * global sum we all love to hate.
3840  *
3841  * That is, the weight of a group entity, is the proportional share of the
3842  * group weight based on the group runqueue weights. That is:
3843  *
3844  *                     tg->weight * grq->load.weight
3845  *   ge->load.weight = -----------------------------               (1)
3846  *                       \Sum grq->load.weight
3847  *
3848  * Now, because computing that sum is prohibitively expensive to compute (been
3849  * there, done that) we approximate it with this average stuff. The average
3850  * moves slower and therefore the approximation is cheaper and more stable.
3851  *
3852  * So instead of the above, we substitute:
3853  *
3854  *   grq->load.weight -> grq->avg.load_avg                         (2)
3855  *
3856  * which yields the following:
3857  *
3858  *                     tg->weight * grq->avg.load_avg
3859  *   ge->load.weight = ------------------------------              (3)
3860  *                             tg->load_avg
3861  *
3862  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3863  *
3864  * That is shares_avg, and it is right (given the approximation (2)).
3865  *
3866  * The problem with it is that because the average is slow -- it was designed
3867  * to be exactly that of course -- this leads to transients in boundary
3868  * conditions. In specific, the case where the group was idle and we start the
3869  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3870  * yielding bad latency etc..
3871  *
3872  * Now, in that special case (1) reduces to:
3873  *
3874  *                     tg->weight * grq->load.weight
3875  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3876  *                         grp->load.weight
3877  *
3878  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3879  *
3880  * So what we do is modify our approximation (3) to approach (4) in the (near)
3881  * UP case, like:
3882  *
3883  *   ge->load.weight =
3884  *
3885  *              tg->weight * grq->load.weight
3886  *     ---------------------------------------------------         (5)
3887  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3888  *
3889  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3890  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3891  *
3892  *
3893  *                     tg->weight * grq->load.weight
3894  *   ge->load.weight = -----------------------------		   (6)
3895  *                             tg_load_avg'
3896  *
3897  * Where:
3898  *
3899  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3900  *                  max(grq->load.weight, grq->avg.load_avg)
3901  *
3902  * And that is shares_weight and is icky. In the (near) UP case it approaches
3903  * (4) while in the normal case it approaches (3). It consistently
3904  * overestimates the ge->load.weight and therefore:
3905  *
3906  *   \Sum ge->load.weight >= tg->weight
3907  *
3908  * hence icky!
3909  */
3910 static long calc_group_shares(struct cfs_rq *cfs_rq)
3911 {
3912 	long tg_weight, tg_shares, load, shares;
3913 	struct task_group *tg = cfs_rq->tg;
3914 
3915 	tg_shares = READ_ONCE(tg->shares);
3916 
3917 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3918 
3919 	tg_weight = atomic_long_read(&tg->load_avg);
3920 
3921 	/* Ensure tg_weight >= load */
3922 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3923 	tg_weight += load;
3924 
3925 	shares = (tg_shares * load);
3926 	if (tg_weight)
3927 		shares /= tg_weight;
3928 
3929 	/*
3930 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3931 	 * of a group with small tg->shares value. It is a floor value which is
3932 	 * assigned as a minimum load.weight to the sched_entity representing
3933 	 * the group on a CPU.
3934 	 *
3935 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3936 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3937 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3938 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3939 	 * instead of 0.
3940 	 */
3941 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3942 }
3943 
3944 /*
3945  * Recomputes the group entity based on the current state of its group
3946  * runqueue.
3947  */
3948 static void update_cfs_group(struct sched_entity *se)
3949 {
3950 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3951 	long shares;
3952 
3953 	/*
3954 	 * When a group becomes empty, preserve its weight. This matters for
3955 	 * DELAY_DEQUEUE.
3956 	 */
3957 	if (!gcfs_rq || !gcfs_rq->load.weight)
3958 		return;
3959 
3960 	if (throttled_hierarchy(gcfs_rq))
3961 		return;
3962 
3963 	shares = calc_group_shares(gcfs_rq);
3964 	if (unlikely(se->load.weight != shares))
3965 		reweight_entity(cfs_rq_of(se), se, shares);
3966 }
3967 
3968 #else /* !CONFIG_FAIR_GROUP_SCHED: */
3969 static inline void update_cfs_group(struct sched_entity *se)
3970 {
3971 }
3972 #endif /* !CONFIG_FAIR_GROUP_SCHED */
3973 
3974 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3975 {
3976 	struct rq *rq = rq_of(cfs_rq);
3977 
3978 	if (&rq->cfs == cfs_rq) {
3979 		/*
3980 		 * There are a few boundary cases this might miss but it should
3981 		 * get called often enough that that should (hopefully) not be
3982 		 * a real problem.
3983 		 *
3984 		 * It will not get called when we go idle, because the idle
3985 		 * thread is a different class (!fair), nor will the utilization
3986 		 * number include things like RT tasks.
3987 		 *
3988 		 * As is, the util number is not freq-invariant (we'd have to
3989 		 * implement arch_scale_freq_capacity() for that).
3990 		 *
3991 		 * See cpu_util_cfs().
3992 		 */
3993 		cpufreq_update_util(rq, flags);
3994 	}
3995 }
3996 
3997 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3998 {
3999 	if (sa->load_sum)
4000 		return false;
4001 
4002 	if (sa->util_sum)
4003 		return false;
4004 
4005 	if (sa->runnable_sum)
4006 		return false;
4007 
4008 	/*
4009 	 * _avg must be null when _sum are null because _avg = _sum / divider
4010 	 * Make sure that rounding and/or propagation of PELT values never
4011 	 * break this.
4012 	 */
4013 	WARN_ON_ONCE(sa->load_avg ||
4014 		      sa->util_avg ||
4015 		      sa->runnable_avg);
4016 
4017 	return true;
4018 }
4019 
4020 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4021 {
4022 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4023 				 cfs_rq->last_update_time_copy);
4024 }
4025 #ifdef CONFIG_FAIR_GROUP_SCHED
4026 /*
4027  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4028  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4029  * bottom-up, we only have to test whether the cfs_rq before us on the list
4030  * is our child.
4031  * If cfs_rq is not on the list, test whether a child needs its to be added to
4032  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4033  */
4034 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4035 {
4036 	struct cfs_rq *prev_cfs_rq;
4037 	struct list_head *prev;
4038 	struct rq *rq = rq_of(cfs_rq);
4039 
4040 	if (cfs_rq->on_list) {
4041 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4042 	} else {
4043 		prev = rq->tmp_alone_branch;
4044 	}
4045 
4046 	if (prev == &rq->leaf_cfs_rq_list)
4047 		return false;
4048 
4049 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4050 
4051 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4052 }
4053 
4054 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4055 {
4056 	if (cfs_rq->load.weight)
4057 		return false;
4058 
4059 	if (!load_avg_is_decayed(&cfs_rq->avg))
4060 		return false;
4061 
4062 	if (child_cfs_rq_on_list(cfs_rq))
4063 		return false;
4064 
4065 	return true;
4066 }
4067 
4068 /**
4069  * update_tg_load_avg - update the tg's load avg
4070  * @cfs_rq: the cfs_rq whose avg changed
4071  *
4072  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4073  * However, because tg->load_avg is a global value there are performance
4074  * considerations.
4075  *
4076  * In order to avoid having to look at the other cfs_rq's, we use a
4077  * differential update where we store the last value we propagated. This in
4078  * turn allows skipping updates if the differential is 'small'.
4079  *
4080  * Updating tg's load_avg is necessary before update_cfs_share().
4081  */
4082 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4083 {
4084 	long delta;
4085 	u64 now;
4086 
4087 	/*
4088 	 * No need to update load_avg for root_task_group as it is not used.
4089 	 */
4090 	if (cfs_rq->tg == &root_task_group)
4091 		return;
4092 
4093 	/* rq has been offline and doesn't contribute to the share anymore: */
4094 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4095 		return;
4096 
4097 	/*
4098 	 * For migration heavy workloads, access to tg->load_avg can be
4099 	 * unbound. Limit the update rate to at most once per ms.
4100 	 */
4101 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4102 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4103 		return;
4104 
4105 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4106 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4107 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4108 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4109 		cfs_rq->last_update_tg_load_avg = now;
4110 	}
4111 }
4112 
4113 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4114 {
4115 	long delta;
4116 	u64 now;
4117 
4118 	/*
4119 	 * No need to update load_avg for root_task_group, as it is not used.
4120 	 */
4121 	if (cfs_rq->tg == &root_task_group)
4122 		return;
4123 
4124 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4125 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4126 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4127 	cfs_rq->tg_load_avg_contrib = 0;
4128 	cfs_rq->last_update_tg_load_avg = now;
4129 }
4130 
4131 /* CPU offline callback: */
4132 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4133 {
4134 	struct task_group *tg;
4135 
4136 	lockdep_assert_rq_held(rq);
4137 
4138 	/*
4139 	 * The rq clock has already been updated in
4140 	 * set_rq_offline(), so we should skip updating
4141 	 * the rq clock again in unthrottle_cfs_rq().
4142 	 */
4143 	rq_clock_start_loop_update(rq);
4144 
4145 	rcu_read_lock();
4146 	list_for_each_entry_rcu(tg, &task_groups, list) {
4147 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4148 
4149 		clear_tg_load_avg(cfs_rq);
4150 	}
4151 	rcu_read_unlock();
4152 
4153 	rq_clock_stop_loop_update(rq);
4154 }
4155 
4156 /*
4157  * Called within set_task_rq() right before setting a task's CPU. The
4158  * caller only guarantees p->pi_lock is held; no other assumptions,
4159  * including the state of rq->lock, should be made.
4160  */
4161 void set_task_rq_fair(struct sched_entity *se,
4162 		      struct cfs_rq *prev, struct cfs_rq *next)
4163 {
4164 	u64 p_last_update_time;
4165 	u64 n_last_update_time;
4166 
4167 	if (!sched_feat(ATTACH_AGE_LOAD))
4168 		return;
4169 
4170 	/*
4171 	 * We are supposed to update the task to "current" time, then its up to
4172 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4173 	 * getting what current time is, so simply throw away the out-of-date
4174 	 * time. This will result in the wakee task is less decayed, but giving
4175 	 * the wakee more load sounds not bad.
4176 	 */
4177 	if (!(se->avg.last_update_time && prev))
4178 		return;
4179 
4180 	p_last_update_time = cfs_rq_last_update_time(prev);
4181 	n_last_update_time = cfs_rq_last_update_time(next);
4182 
4183 	__update_load_avg_blocked_se(p_last_update_time, se);
4184 	se->avg.last_update_time = n_last_update_time;
4185 }
4186 
4187 /*
4188  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4189  * propagate its contribution. The key to this propagation is the invariant
4190  * that for each group:
4191  *
4192  *   ge->avg == grq->avg						(1)
4193  *
4194  * _IFF_ we look at the pure running and runnable sums. Because they
4195  * represent the very same entity, just at different points in the hierarchy.
4196  *
4197  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4198  * and simply copies the running/runnable sum over (but still wrong, because
4199  * the group entity and group rq do not have their PELT windows aligned).
4200  *
4201  * However, update_tg_cfs_load() is more complex. So we have:
4202  *
4203  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4204  *
4205  * And since, like util, the runnable part should be directly transferable,
4206  * the following would _appear_ to be the straight forward approach:
4207  *
4208  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4209  *
4210  * And per (1) we have:
4211  *
4212  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4213  *
4214  * Which gives:
4215  *
4216  *                      ge->load.weight * grq->avg.load_avg
4217  *   ge->avg.load_avg = -----------------------------------		(4)
4218  *                               grq->load.weight
4219  *
4220  * Except that is wrong!
4221  *
4222  * Because while for entities historical weight is not important and we
4223  * really only care about our future and therefore can consider a pure
4224  * runnable sum, runqueues can NOT do this.
4225  *
4226  * We specifically want runqueues to have a load_avg that includes
4227  * historical weights. Those represent the blocked load, the load we expect
4228  * to (shortly) return to us. This only works by keeping the weights as
4229  * integral part of the sum. We therefore cannot decompose as per (3).
4230  *
4231  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4232  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4233  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4234  * runnable section of these tasks overlap (or not). If they were to perfectly
4235  * align the rq as a whole would be runnable 2/3 of the time. If however we
4236  * always have at least 1 runnable task, the rq as a whole is always runnable.
4237  *
4238  * So we'll have to approximate.. :/
4239  *
4240  * Given the constraint:
4241  *
4242  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4243  *
4244  * We can construct a rule that adds runnable to a rq by assuming minimal
4245  * overlap.
4246  *
4247  * On removal, we'll assume each task is equally runnable; which yields:
4248  *
4249  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4250  *
4251  * XXX: only do this for the part of runnable > running ?
4252  *
4253  */
4254 static inline void
4255 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4256 {
4257 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4258 	u32 new_sum, divider;
4259 
4260 	/* Nothing to update */
4261 	if (!delta_avg)
4262 		return;
4263 
4264 	/*
4265 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4266 	 * See ___update_load_avg() for details.
4267 	 */
4268 	divider = get_pelt_divider(&cfs_rq->avg);
4269 
4270 
4271 	/* Set new sched_entity's utilization */
4272 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4273 	new_sum = se->avg.util_avg * divider;
4274 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4275 	se->avg.util_sum = new_sum;
4276 
4277 	/* Update parent cfs_rq utilization */
4278 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4279 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4280 
4281 	/* See update_cfs_rq_load_avg() */
4282 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4283 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4284 }
4285 
4286 static inline void
4287 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4288 {
4289 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4290 	u32 new_sum, divider;
4291 
4292 	/* Nothing to update */
4293 	if (!delta_avg)
4294 		return;
4295 
4296 	/*
4297 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4298 	 * See ___update_load_avg() for details.
4299 	 */
4300 	divider = get_pelt_divider(&cfs_rq->avg);
4301 
4302 	/* Set new sched_entity's runnable */
4303 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4304 	new_sum = se->avg.runnable_avg * divider;
4305 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4306 	se->avg.runnable_sum = new_sum;
4307 
4308 	/* Update parent cfs_rq runnable */
4309 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4310 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4311 	/* See update_cfs_rq_load_avg() */
4312 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4313 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4314 }
4315 
4316 static inline void
4317 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4318 {
4319 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4320 	unsigned long load_avg;
4321 	u64 load_sum = 0;
4322 	s64 delta_sum;
4323 	u32 divider;
4324 
4325 	if (!runnable_sum)
4326 		return;
4327 
4328 	gcfs_rq->prop_runnable_sum = 0;
4329 
4330 	/*
4331 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4332 	 * See ___update_load_avg() for details.
4333 	 */
4334 	divider = get_pelt_divider(&cfs_rq->avg);
4335 
4336 	if (runnable_sum >= 0) {
4337 		/*
4338 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4339 		 * the CPU is saturated running == runnable.
4340 		 */
4341 		runnable_sum += se->avg.load_sum;
4342 		runnable_sum = min_t(long, runnable_sum, divider);
4343 	} else {
4344 		/*
4345 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4346 		 * assuming all tasks are equally runnable.
4347 		 */
4348 		if (scale_load_down(gcfs_rq->load.weight)) {
4349 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4350 				scale_load_down(gcfs_rq->load.weight));
4351 		}
4352 
4353 		/* But make sure to not inflate se's runnable */
4354 		runnable_sum = min(se->avg.load_sum, load_sum);
4355 	}
4356 
4357 	/*
4358 	 * runnable_sum can't be lower than running_sum
4359 	 * Rescale running sum to be in the same range as runnable sum
4360 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4361 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4362 	 */
4363 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4364 	runnable_sum = max(runnable_sum, running_sum);
4365 
4366 	load_sum = se_weight(se) * runnable_sum;
4367 	load_avg = div_u64(load_sum, divider);
4368 
4369 	delta_avg = load_avg - se->avg.load_avg;
4370 	if (!delta_avg)
4371 		return;
4372 
4373 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4374 
4375 	se->avg.load_sum = runnable_sum;
4376 	se->avg.load_avg = load_avg;
4377 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4378 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4379 	/* See update_cfs_rq_load_avg() */
4380 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4381 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4382 }
4383 
4384 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4385 {
4386 	cfs_rq->propagate = 1;
4387 	cfs_rq->prop_runnable_sum += runnable_sum;
4388 }
4389 
4390 /* Update task and its cfs_rq load average */
4391 static inline int propagate_entity_load_avg(struct sched_entity *se)
4392 {
4393 	struct cfs_rq *cfs_rq, *gcfs_rq;
4394 
4395 	if (entity_is_task(se))
4396 		return 0;
4397 
4398 	gcfs_rq = group_cfs_rq(se);
4399 	if (!gcfs_rq->propagate)
4400 		return 0;
4401 
4402 	gcfs_rq->propagate = 0;
4403 
4404 	cfs_rq = cfs_rq_of(se);
4405 
4406 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4407 
4408 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4409 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4410 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4411 
4412 	trace_pelt_cfs_tp(cfs_rq);
4413 	trace_pelt_se_tp(se);
4414 
4415 	return 1;
4416 }
4417 
4418 /*
4419  * Check if we need to update the load and the utilization of a blocked
4420  * group_entity:
4421  */
4422 static inline bool skip_blocked_update(struct sched_entity *se)
4423 {
4424 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4425 
4426 	/*
4427 	 * If sched_entity still have not zero load or utilization, we have to
4428 	 * decay it:
4429 	 */
4430 	if (se->avg.load_avg || se->avg.util_avg)
4431 		return false;
4432 
4433 	/*
4434 	 * If there is a pending propagation, we have to update the load and
4435 	 * the utilization of the sched_entity:
4436 	 */
4437 	if (gcfs_rq->propagate)
4438 		return false;
4439 
4440 	/*
4441 	 * Otherwise, the load and the utilization of the sched_entity is
4442 	 * already zero and there is no pending propagation, so it will be a
4443 	 * waste of time to try to decay it:
4444 	 */
4445 	return true;
4446 }
4447 
4448 #else /* !CONFIG_FAIR_GROUP_SCHED: */
4449 
4450 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4451 
4452 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4453 
4454 static inline int propagate_entity_load_avg(struct sched_entity *se)
4455 {
4456 	return 0;
4457 }
4458 
4459 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4460 
4461 #endif /* !CONFIG_FAIR_GROUP_SCHED */
4462 
4463 #ifdef CONFIG_NO_HZ_COMMON
4464 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4465 {
4466 	u64 throttled = 0, now, lut;
4467 	struct cfs_rq *cfs_rq;
4468 	struct rq *rq;
4469 	bool is_idle;
4470 
4471 	if (load_avg_is_decayed(&se->avg))
4472 		return;
4473 
4474 	cfs_rq = cfs_rq_of(se);
4475 	rq = rq_of(cfs_rq);
4476 
4477 	rcu_read_lock();
4478 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4479 	rcu_read_unlock();
4480 
4481 	/*
4482 	 * The lag estimation comes with a cost we don't want to pay all the
4483 	 * time. Hence, limiting to the case where the source CPU is idle and
4484 	 * we know we are at the greatest risk to have an outdated clock.
4485 	 */
4486 	if (!is_idle)
4487 		return;
4488 
4489 	/*
4490 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4491 	 *
4492 	 *   last_update_time (the cfs_rq's last_update_time)
4493 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4494 	 *      = rq_clock_pelt()@cfs_rq_idle
4495 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4496 	 *
4497 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4498 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4499 	 *
4500 	 *   rq_idle_lag (delta between now and rq's update)
4501 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4502 	 *
4503 	 * We can then write:
4504 	 *
4505 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4506 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4507 	 * Where:
4508 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4509 	 *      rq_clock()@rq_idle      is rq->clock_idle
4510 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4511 	 *                              is cfs_rq->throttled_pelt_idle
4512 	 */
4513 
4514 #ifdef CONFIG_CFS_BANDWIDTH
4515 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4516 	/* The clock has been stopped for throttling */
4517 	if (throttled == U64_MAX)
4518 		return;
4519 #endif
4520 	now = u64_u32_load(rq->clock_pelt_idle);
4521 	/*
4522 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4523 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4524 	 * which lead to an underestimation. The opposite would lead to an
4525 	 * overestimation.
4526 	 */
4527 	smp_rmb();
4528 	lut = cfs_rq_last_update_time(cfs_rq);
4529 
4530 	now -= throttled;
4531 	if (now < lut)
4532 		/*
4533 		 * cfs_rq->avg.last_update_time is more recent than our
4534 		 * estimation, let's use it.
4535 		 */
4536 		now = lut;
4537 	else
4538 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4539 
4540 	__update_load_avg_blocked_se(now, se);
4541 }
4542 #else /* !CONFIG_NO_HZ_COMMON: */
4543 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4544 #endif /* !CONFIG_NO_HZ_COMMON */
4545 
4546 /**
4547  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4548  * @now: current time, as per cfs_rq_clock_pelt()
4549  * @cfs_rq: cfs_rq to update
4550  *
4551  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4552  * avg. The immediate corollary is that all (fair) tasks must be attached.
4553  *
4554  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4555  *
4556  * Return: true if the load decayed or we removed load.
4557  *
4558  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4559  * call update_tg_load_avg() when this function returns true.
4560  */
4561 static inline int
4562 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4563 {
4564 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4565 	struct sched_avg *sa = &cfs_rq->avg;
4566 	int decayed = 0;
4567 
4568 	if (cfs_rq->removed.nr) {
4569 		unsigned long r;
4570 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4571 
4572 		raw_spin_lock(&cfs_rq->removed.lock);
4573 		swap(cfs_rq->removed.util_avg, removed_util);
4574 		swap(cfs_rq->removed.load_avg, removed_load);
4575 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4576 		cfs_rq->removed.nr = 0;
4577 		raw_spin_unlock(&cfs_rq->removed.lock);
4578 
4579 		r = removed_load;
4580 		sub_positive(&sa->load_avg, r);
4581 		sub_positive(&sa->load_sum, r * divider);
4582 		/* See sa->util_sum below */
4583 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4584 
4585 		r = removed_util;
4586 		sub_positive(&sa->util_avg, r);
4587 		sub_positive(&sa->util_sum, r * divider);
4588 		/*
4589 		 * Because of rounding, se->util_sum might ends up being +1 more than
4590 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4591 		 * a lot of tasks with the rounding problem between 2 updates of
4592 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4593 		 * cfs_util_avg is not.
4594 		 * Check that util_sum is still above its lower bound for the new
4595 		 * util_avg. Given that period_contrib might have moved since the last
4596 		 * sync, we are only sure that util_sum must be above or equal to
4597 		 *    util_avg * minimum possible divider
4598 		 */
4599 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4600 
4601 		r = removed_runnable;
4602 		sub_positive(&sa->runnable_avg, r);
4603 		sub_positive(&sa->runnable_sum, r * divider);
4604 		/* See sa->util_sum above */
4605 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4606 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4607 
4608 		/*
4609 		 * removed_runnable is the unweighted version of removed_load so we
4610 		 * can use it to estimate removed_load_sum.
4611 		 */
4612 		add_tg_cfs_propagate(cfs_rq,
4613 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4614 
4615 		decayed = 1;
4616 	}
4617 
4618 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4619 	u64_u32_store_copy(sa->last_update_time,
4620 			   cfs_rq->last_update_time_copy,
4621 			   sa->last_update_time);
4622 	return decayed;
4623 }
4624 
4625 /**
4626  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4627  * @cfs_rq: cfs_rq to attach to
4628  * @se: sched_entity to attach
4629  *
4630  * Must call update_cfs_rq_load_avg() before this, since we rely on
4631  * cfs_rq->avg.last_update_time being current.
4632  */
4633 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4634 {
4635 	/*
4636 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4637 	 * See ___update_load_avg() for details.
4638 	 */
4639 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4640 
4641 	/*
4642 	 * When we attach the @se to the @cfs_rq, we must align the decay
4643 	 * window because without that, really weird and wonderful things can
4644 	 * happen.
4645 	 *
4646 	 * XXX illustrate
4647 	 */
4648 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4649 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4650 
4651 	/*
4652 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4653 	 * period_contrib. This isn't strictly correct, but since we're
4654 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4655 	 * _sum a little.
4656 	 */
4657 	se->avg.util_sum = se->avg.util_avg * divider;
4658 
4659 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4660 
4661 	se->avg.load_sum = se->avg.load_avg * divider;
4662 	if (se_weight(se) < se->avg.load_sum)
4663 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4664 	else
4665 		se->avg.load_sum = 1;
4666 
4667 	enqueue_load_avg(cfs_rq, se);
4668 	cfs_rq->avg.util_avg += se->avg.util_avg;
4669 	cfs_rq->avg.util_sum += se->avg.util_sum;
4670 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4671 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4672 
4673 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4674 
4675 	cfs_rq_util_change(cfs_rq, 0);
4676 
4677 	trace_pelt_cfs_tp(cfs_rq);
4678 }
4679 
4680 /**
4681  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4682  * @cfs_rq: cfs_rq to detach from
4683  * @se: sched_entity to detach
4684  *
4685  * Must call update_cfs_rq_load_avg() before this, since we rely on
4686  * cfs_rq->avg.last_update_time being current.
4687  */
4688 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4689 {
4690 	dequeue_load_avg(cfs_rq, se);
4691 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4692 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4693 	/* See update_cfs_rq_load_avg() */
4694 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4695 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4696 
4697 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4698 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4699 	/* See update_cfs_rq_load_avg() */
4700 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4701 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4702 
4703 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4704 
4705 	cfs_rq_util_change(cfs_rq, 0);
4706 
4707 	trace_pelt_cfs_tp(cfs_rq);
4708 }
4709 
4710 /*
4711  * Optional action to be done while updating the load average
4712  */
4713 #define UPDATE_TG	0x1
4714 #define SKIP_AGE_LOAD	0x2
4715 #define DO_ATTACH	0x4
4716 #define DO_DETACH	0x8
4717 
4718 /* Update task and its cfs_rq load average */
4719 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4720 {
4721 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4722 	int decayed;
4723 
4724 	/*
4725 	 * Track task load average for carrying it to new CPU after migrated, and
4726 	 * track group sched_entity load average for task_h_load calculation in migration
4727 	 */
4728 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4729 		__update_load_avg_se(now, cfs_rq, se);
4730 
4731 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4732 	decayed |= propagate_entity_load_avg(se);
4733 
4734 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4735 
4736 		/*
4737 		 * DO_ATTACH means we're here from enqueue_entity().
4738 		 * !last_update_time means we've passed through
4739 		 * migrate_task_rq_fair() indicating we migrated.
4740 		 *
4741 		 * IOW we're enqueueing a task on a new CPU.
4742 		 */
4743 		attach_entity_load_avg(cfs_rq, se);
4744 		update_tg_load_avg(cfs_rq);
4745 
4746 	} else if (flags & DO_DETACH) {
4747 		/*
4748 		 * DO_DETACH means we're here from dequeue_entity()
4749 		 * and we are migrating task out of the CPU.
4750 		 */
4751 		detach_entity_load_avg(cfs_rq, se);
4752 		update_tg_load_avg(cfs_rq);
4753 	} else if (decayed) {
4754 		cfs_rq_util_change(cfs_rq, 0);
4755 
4756 		if (flags & UPDATE_TG)
4757 			update_tg_load_avg(cfs_rq);
4758 	}
4759 }
4760 
4761 /*
4762  * Synchronize entity load avg of dequeued entity without locking
4763  * the previous rq.
4764  */
4765 static void sync_entity_load_avg(struct sched_entity *se)
4766 {
4767 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4768 	u64 last_update_time;
4769 
4770 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4771 	__update_load_avg_blocked_se(last_update_time, se);
4772 }
4773 
4774 /*
4775  * Task first catches up with cfs_rq, and then subtract
4776  * itself from the cfs_rq (task must be off the queue now).
4777  */
4778 static void remove_entity_load_avg(struct sched_entity *se)
4779 {
4780 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4781 	unsigned long flags;
4782 
4783 	/*
4784 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4785 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4786 	 * so we can remove unconditionally.
4787 	 */
4788 
4789 	sync_entity_load_avg(se);
4790 
4791 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4792 	++cfs_rq->removed.nr;
4793 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4794 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4795 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4796 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4797 }
4798 
4799 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4800 {
4801 	return cfs_rq->avg.runnable_avg;
4802 }
4803 
4804 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4805 {
4806 	return cfs_rq->avg.load_avg;
4807 }
4808 
4809 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4810 
4811 static inline unsigned long task_util(struct task_struct *p)
4812 {
4813 	return READ_ONCE(p->se.avg.util_avg);
4814 }
4815 
4816 static inline unsigned long task_runnable(struct task_struct *p)
4817 {
4818 	return READ_ONCE(p->se.avg.runnable_avg);
4819 }
4820 
4821 static inline unsigned long _task_util_est(struct task_struct *p)
4822 {
4823 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4824 }
4825 
4826 static inline unsigned long task_util_est(struct task_struct *p)
4827 {
4828 	return max(task_util(p), _task_util_est(p));
4829 }
4830 
4831 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4832 				    struct task_struct *p)
4833 {
4834 	unsigned int enqueued;
4835 
4836 	if (!sched_feat(UTIL_EST))
4837 		return;
4838 
4839 	/* Update root cfs_rq's estimated utilization */
4840 	enqueued  = cfs_rq->avg.util_est;
4841 	enqueued += _task_util_est(p);
4842 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4843 
4844 	trace_sched_util_est_cfs_tp(cfs_rq);
4845 }
4846 
4847 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4848 				    struct task_struct *p)
4849 {
4850 	unsigned int enqueued;
4851 
4852 	if (!sched_feat(UTIL_EST))
4853 		return;
4854 
4855 	/* Update root cfs_rq's estimated utilization */
4856 	enqueued  = cfs_rq->avg.util_est;
4857 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4858 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4859 
4860 	trace_sched_util_est_cfs_tp(cfs_rq);
4861 }
4862 
4863 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4864 
4865 static inline void util_est_update(struct cfs_rq *cfs_rq,
4866 				   struct task_struct *p,
4867 				   bool task_sleep)
4868 {
4869 	unsigned int ewma, dequeued, last_ewma_diff;
4870 
4871 	if (!sched_feat(UTIL_EST))
4872 		return;
4873 
4874 	/*
4875 	 * Skip update of task's estimated utilization when the task has not
4876 	 * yet completed an activation, e.g. being migrated.
4877 	 */
4878 	if (!task_sleep)
4879 		return;
4880 
4881 	/* Get current estimate of utilization */
4882 	ewma = READ_ONCE(p->se.avg.util_est);
4883 
4884 	/*
4885 	 * If the PELT values haven't changed since enqueue time,
4886 	 * skip the util_est update.
4887 	 */
4888 	if (ewma & UTIL_AVG_UNCHANGED)
4889 		return;
4890 
4891 	/* Get utilization at dequeue */
4892 	dequeued = task_util(p);
4893 
4894 	/*
4895 	 * Reset EWMA on utilization increases, the moving average is used only
4896 	 * to smooth utilization decreases.
4897 	 */
4898 	if (ewma <= dequeued) {
4899 		ewma = dequeued;
4900 		goto done;
4901 	}
4902 
4903 	/*
4904 	 * Skip update of task's estimated utilization when its members are
4905 	 * already ~1% close to its last activation value.
4906 	 */
4907 	last_ewma_diff = ewma - dequeued;
4908 	if (last_ewma_diff < UTIL_EST_MARGIN)
4909 		goto done;
4910 
4911 	/*
4912 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4913 	 * we cannot grant that thread got all CPU time it wanted.
4914 	 */
4915 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4916 		goto done;
4917 
4918 
4919 	/*
4920 	 * Update Task's estimated utilization
4921 	 *
4922 	 * When *p completes an activation we can consolidate another sample
4923 	 * of the task size. This is done by using this value to update the
4924 	 * Exponential Weighted Moving Average (EWMA):
4925 	 *
4926 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4927 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4928 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4929 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4930 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4931 	 *
4932 	 * Where 'w' is the weight of new samples, which is configured to be
4933 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4934 	 */
4935 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4936 	ewma  -= last_ewma_diff;
4937 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4938 done:
4939 	ewma |= UTIL_AVG_UNCHANGED;
4940 	WRITE_ONCE(p->se.avg.util_est, ewma);
4941 
4942 	trace_sched_util_est_se_tp(&p->se);
4943 }
4944 
4945 static inline unsigned long get_actual_cpu_capacity(int cpu)
4946 {
4947 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4948 
4949 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4950 
4951 	return capacity;
4952 }
4953 
4954 static inline int util_fits_cpu(unsigned long util,
4955 				unsigned long uclamp_min,
4956 				unsigned long uclamp_max,
4957 				int cpu)
4958 {
4959 	unsigned long capacity = capacity_of(cpu);
4960 	unsigned long capacity_orig;
4961 	bool fits, uclamp_max_fits;
4962 
4963 	/*
4964 	 * Check if the real util fits without any uclamp boost/cap applied.
4965 	 */
4966 	fits = fits_capacity(util, capacity);
4967 
4968 	if (!uclamp_is_used())
4969 		return fits;
4970 
4971 	/*
4972 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4973 	 * uclamp_max. We only care about capacity pressure (by using
4974 	 * capacity_of()) for comparing against the real util.
4975 	 *
4976 	 * If a task is boosted to 1024 for example, we don't want a tiny
4977 	 * pressure to skew the check whether it fits a CPU or not.
4978 	 *
4979 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4980 	 * should fit a little cpu even if there's some pressure.
4981 	 *
4982 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
4983 	 * on available OPP of the system.
4984 	 *
4985 	 * We honour it for uclamp_min only as a drop in performance level
4986 	 * could result in not getting the requested minimum performance level.
4987 	 *
4988 	 * For uclamp_max, we can tolerate a drop in performance level as the
4989 	 * goal is to cap the task. So it's okay if it's getting less.
4990 	 */
4991 	capacity_orig = arch_scale_cpu_capacity(cpu);
4992 
4993 	/*
4994 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4995 	 * But we do have some corner cases to cater for..
4996 	 *
4997 	 *
4998 	 *                                 C=z
4999 	 *   |                             ___
5000 	 *   |                  C=y       |   |
5001 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5002 	 *   |      C=x        |   |      |   |
5003 	 *   |      ___        |   |      |   |
5004 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5005 	 *   |     |   |       |   |      |   |
5006 	 *   |     |   |       |   |      |   |
5007 	 *   +----------------------------------------
5008 	 *         CPU0        CPU1       CPU2
5009 	 *
5010 	 *   In the above example if a task is capped to a specific performance
5011 	 *   point, y, then when:
5012 	 *
5013 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5014 	 *     to CPU1
5015 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5016 	 *     uclamp_max request.
5017 	 *
5018 	 *   which is what we're enforcing here. A task always fits if
5019 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5020 	 *   the normal upmigration rules should withhold still.
5021 	 *
5022 	 *   Only exception is when we are on max capacity, then we need to be
5023 	 *   careful not to block overutilized state. This is so because:
5024 	 *
5025 	 *     1. There's no concept of capping at max_capacity! We can't go
5026 	 *        beyond this performance level anyway.
5027 	 *     2. The system is being saturated when we're operating near
5028 	 *        max capacity, it doesn't make sense to block overutilized.
5029 	 */
5030 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5031 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5032 	fits = fits || uclamp_max_fits;
5033 
5034 	/*
5035 	 *
5036 	 *                                 C=z
5037 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5038 	 *   |                  C=y       |   |
5039 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5040 	 *   |      C=x        |   |      |   |
5041 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5042 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5043 	 *   |     |   |       |   |      |   |
5044 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5045 	 *   +----------------------------------------
5046 	 *         CPU0        CPU1       CPU2
5047 	 *
5048 	 * a) If util > uclamp_max, then we're capped, we don't care about
5049 	 *    actual fitness value here. We only care if uclamp_max fits
5050 	 *    capacity without taking margin/pressure into account.
5051 	 *    See comment above.
5052 	 *
5053 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5054 	 *    fits_capacity() rules apply. Except we need to ensure that we
5055 	 *    enforce we remain within uclamp_max, see comment above.
5056 	 *
5057 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5058 	 *    need to take into account the boosted value fits the CPU without
5059 	 *    taking margin/pressure into account.
5060 	 *
5061 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5062 	 * just need to consider an extra check for case (c) after ensuring we
5063 	 * handle the case uclamp_min > uclamp_max.
5064 	 */
5065 	uclamp_min = min(uclamp_min, uclamp_max);
5066 	if (fits && (util < uclamp_min) &&
5067 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5068 		return -1;
5069 
5070 	return fits;
5071 }
5072 
5073 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5074 {
5075 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5076 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5077 	unsigned long util = task_util_est(p);
5078 	/*
5079 	 * Return true only if the cpu fully fits the task requirements, which
5080 	 * include the utilization but also the performance hints.
5081 	 */
5082 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5083 }
5084 
5085 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5086 {
5087 	int cpu = cpu_of(rq);
5088 
5089 	if (!sched_asym_cpucap_active())
5090 		return;
5091 
5092 	/*
5093 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5094 	 * available CPU already? Or do we fit into this CPU ?
5095 	 */
5096 	if (!p || (p->nr_cpus_allowed == 1) ||
5097 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5098 	    task_fits_cpu(p, cpu)) {
5099 
5100 		rq->misfit_task_load = 0;
5101 		return;
5102 	}
5103 
5104 	/*
5105 	 * Make sure that misfit_task_load will not be null even if
5106 	 * task_h_load() returns 0.
5107 	 */
5108 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5109 }
5110 
5111 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5112 {
5113 	struct sched_entity *se = &p->se;
5114 
5115 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5116 	if (attr->sched_runtime) {
5117 		se->custom_slice = 1;
5118 		se->slice = clamp_t(u64, attr->sched_runtime,
5119 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
5120 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
5121 	} else {
5122 		se->custom_slice = 0;
5123 		se->slice = sysctl_sched_base_slice;
5124 	}
5125 }
5126 
5127 static void
5128 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5129 {
5130 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5131 	s64 lag = 0;
5132 
5133 	if (!se->custom_slice)
5134 		se->slice = sysctl_sched_base_slice;
5135 	vslice = calc_delta_fair(se->slice, se);
5136 
5137 	/*
5138 	 * Due to how V is constructed as the weighted average of entities,
5139 	 * adding tasks with positive lag, or removing tasks with negative lag
5140 	 * will move 'time' backwards, this can screw around with the lag of
5141 	 * other tasks.
5142 	 *
5143 	 * EEVDF: placement strategy #1 / #2
5144 	 */
5145 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5146 		struct sched_entity *curr = cfs_rq->curr;
5147 		unsigned long load;
5148 
5149 		lag = se->vlag;
5150 
5151 		/*
5152 		 * If we want to place a task and preserve lag, we have to
5153 		 * consider the effect of the new entity on the weighted
5154 		 * average and compensate for this, otherwise lag can quickly
5155 		 * evaporate.
5156 		 *
5157 		 * Lag is defined as:
5158 		 *
5159 		 *   lag_i = S - s_i = w_i * (V - v_i)
5160 		 *
5161 		 * To avoid the 'w_i' term all over the place, we only track
5162 		 * the virtual lag:
5163 		 *
5164 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5165 		 *
5166 		 * And we take V to be the weighted average of all v:
5167 		 *
5168 		 *   V = (\Sum w_j*v_j) / W
5169 		 *
5170 		 * Where W is: \Sum w_j
5171 		 *
5172 		 * Then, the weighted average after adding an entity with lag
5173 		 * vl_i is given by:
5174 		 *
5175 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5176 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5177 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5178 		 *      = (V*(W + w_i) - w_i*vl_i) / (W + w_i)
5179 		 *      = V - w_i*vl_i / (W + w_i)
5180 		 *
5181 		 * And the actual lag after adding an entity with vl_i is:
5182 		 *
5183 		 *   vl'_i = V' - v_i
5184 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5185 		 *         = vl_i - w_i*vl_i / (W + w_i)
5186 		 *
5187 		 * Which is strictly less than vl_i. So in order to preserve lag
5188 		 * we should inflate the lag before placement such that the
5189 		 * effective lag after placement comes out right.
5190 		 *
5191 		 * As such, invert the above relation for vl'_i to get the vl_i
5192 		 * we need to use such that the lag after placement is the lag
5193 		 * we computed before dequeue.
5194 		 *
5195 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5196 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5197 		 *
5198 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5199 		 *                   = W*vl_i
5200 		 *
5201 		 *   vl_i = (W + w_i)*vl'_i / W
5202 		 */
5203 		load = cfs_rq->avg_load;
5204 		if (curr && curr->on_rq)
5205 			load += scale_load_down(curr->load.weight);
5206 
5207 		lag *= load + scale_load_down(se->load.weight);
5208 		if (WARN_ON_ONCE(!load))
5209 			load = 1;
5210 		lag = div_s64(lag, load);
5211 	}
5212 
5213 	se->vruntime = vruntime - lag;
5214 
5215 	if (se->rel_deadline) {
5216 		se->deadline += se->vruntime;
5217 		se->rel_deadline = 0;
5218 		return;
5219 	}
5220 
5221 	/*
5222 	 * When joining the competition; the existing tasks will be,
5223 	 * on average, halfway through their slice, as such start tasks
5224 	 * off with half a slice to ease into the competition.
5225 	 */
5226 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5227 		vslice /= 2;
5228 
5229 	/*
5230 	 * EEVDF: vd_i = ve_i + r_i/w_i
5231 	 */
5232 	se->deadline = se->vruntime + vslice;
5233 }
5234 
5235 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5236 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5237 
5238 static void
5239 requeue_delayed_entity(struct sched_entity *se);
5240 
5241 static void
5242 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5243 {
5244 	bool curr = cfs_rq->curr == se;
5245 
5246 	/*
5247 	 * If we're the current task, we must renormalise before calling
5248 	 * update_curr().
5249 	 */
5250 	if (curr)
5251 		place_entity(cfs_rq, se, flags);
5252 
5253 	update_curr(cfs_rq);
5254 
5255 	/*
5256 	 * When enqueuing a sched_entity, we must:
5257 	 *   - Update loads to have both entity and cfs_rq synced with now.
5258 	 *   - For group_entity, update its runnable_weight to reflect the new
5259 	 *     h_nr_runnable of its group cfs_rq.
5260 	 *   - For group_entity, update its weight to reflect the new share of
5261 	 *     its group cfs_rq
5262 	 *   - Add its new weight to cfs_rq->load.weight
5263 	 */
5264 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5265 	se_update_runnable(se);
5266 	/*
5267 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5268 	 * but update_cfs_group() here will re-adjust the weight and have to
5269 	 * undo/redo all that. Seems wasteful.
5270 	 */
5271 	update_cfs_group(se);
5272 
5273 	/*
5274 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5275 	 * we can place the entity.
5276 	 */
5277 	if (!curr)
5278 		place_entity(cfs_rq, se, flags);
5279 
5280 	account_entity_enqueue(cfs_rq, se);
5281 
5282 	/* Entity has migrated, no longer consider this task hot */
5283 	if (flags & ENQUEUE_MIGRATED)
5284 		se->exec_start = 0;
5285 
5286 	check_schedstat_required();
5287 	update_stats_enqueue_fair(cfs_rq, se, flags);
5288 	if (!curr)
5289 		__enqueue_entity(cfs_rq, se);
5290 	se->on_rq = 1;
5291 
5292 	if (cfs_rq->nr_queued == 1) {
5293 		check_enqueue_throttle(cfs_rq);
5294 		if (!throttled_hierarchy(cfs_rq)) {
5295 			list_add_leaf_cfs_rq(cfs_rq);
5296 		} else {
5297 #ifdef CONFIG_CFS_BANDWIDTH
5298 			struct rq *rq = rq_of(cfs_rq);
5299 
5300 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5301 				cfs_rq->throttled_clock = rq_clock(rq);
5302 			if (!cfs_rq->throttled_clock_self)
5303 				cfs_rq->throttled_clock_self = rq_clock(rq);
5304 #endif
5305 		}
5306 	}
5307 }
5308 
5309 static void __clear_buddies_next(struct sched_entity *se)
5310 {
5311 	for_each_sched_entity(se) {
5312 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5313 		if (cfs_rq->next != se)
5314 			break;
5315 
5316 		cfs_rq->next = NULL;
5317 	}
5318 }
5319 
5320 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5321 {
5322 	if (cfs_rq->next == se)
5323 		__clear_buddies_next(se);
5324 }
5325 
5326 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5327 
5328 static void set_delayed(struct sched_entity *se)
5329 {
5330 	se->sched_delayed = 1;
5331 
5332 	/*
5333 	 * Delayed se of cfs_rq have no tasks queued on them.
5334 	 * Do not adjust h_nr_runnable since dequeue_entities()
5335 	 * will account it for blocked tasks.
5336 	 */
5337 	if (!entity_is_task(se))
5338 		return;
5339 
5340 	for_each_sched_entity(se) {
5341 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5342 
5343 		cfs_rq->h_nr_runnable--;
5344 		if (cfs_rq_throttled(cfs_rq))
5345 			break;
5346 	}
5347 }
5348 
5349 static void clear_delayed(struct sched_entity *se)
5350 {
5351 	se->sched_delayed = 0;
5352 
5353 	/*
5354 	 * Delayed se of cfs_rq have no tasks queued on them.
5355 	 * Do not adjust h_nr_runnable since a dequeue has
5356 	 * already accounted for it or an enqueue of a task
5357 	 * below it will account for it in enqueue_task_fair().
5358 	 */
5359 	if (!entity_is_task(se))
5360 		return;
5361 
5362 	for_each_sched_entity(se) {
5363 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5364 
5365 		cfs_rq->h_nr_runnable++;
5366 		if (cfs_rq_throttled(cfs_rq))
5367 			break;
5368 	}
5369 }
5370 
5371 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5372 {
5373 	clear_delayed(se);
5374 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5375 		se->vlag = 0;
5376 }
5377 
5378 static bool
5379 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5380 {
5381 	bool sleep = flags & DEQUEUE_SLEEP;
5382 	int action = UPDATE_TG;
5383 
5384 	update_curr(cfs_rq);
5385 	clear_buddies(cfs_rq, se);
5386 
5387 	if (flags & DEQUEUE_DELAYED) {
5388 		WARN_ON_ONCE(!se->sched_delayed);
5389 	} else {
5390 		bool delay = sleep;
5391 		/*
5392 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5393 		 * states must not suffer spurious wakeups, excempt them.
5394 		 */
5395 		if (flags & DEQUEUE_SPECIAL)
5396 			delay = false;
5397 
5398 		WARN_ON_ONCE(delay && se->sched_delayed);
5399 
5400 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5401 		    !entity_eligible(cfs_rq, se)) {
5402 			update_load_avg(cfs_rq, se, 0);
5403 			set_delayed(se);
5404 			return false;
5405 		}
5406 	}
5407 
5408 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5409 		action |= DO_DETACH;
5410 
5411 	/*
5412 	 * When dequeuing a sched_entity, we must:
5413 	 *   - Update loads to have both entity and cfs_rq synced with now.
5414 	 *   - For group_entity, update its runnable_weight to reflect the new
5415 	 *     h_nr_runnable of its group cfs_rq.
5416 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5417 	 *   - For group entity, update its weight to reflect the new share
5418 	 *     of its group cfs_rq.
5419 	 */
5420 	update_load_avg(cfs_rq, se, action);
5421 	se_update_runnable(se);
5422 
5423 	update_stats_dequeue_fair(cfs_rq, se, flags);
5424 
5425 	update_entity_lag(cfs_rq, se);
5426 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5427 		se->deadline -= se->vruntime;
5428 		se->rel_deadline = 1;
5429 	}
5430 
5431 	if (se != cfs_rq->curr)
5432 		__dequeue_entity(cfs_rq, se);
5433 	se->on_rq = 0;
5434 	account_entity_dequeue(cfs_rq, se);
5435 
5436 	/* return excess runtime on last dequeue */
5437 	return_cfs_rq_runtime(cfs_rq);
5438 
5439 	update_cfs_group(se);
5440 
5441 	/*
5442 	 * Now advance min_vruntime if @se was the entity holding it back,
5443 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5444 	 * put back on, and if we advance min_vruntime, we'll be placed back
5445 	 * further than we started -- i.e. we'll be penalized.
5446 	 */
5447 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5448 		update_min_vruntime(cfs_rq);
5449 
5450 	if (flags & DEQUEUE_DELAYED)
5451 		finish_delayed_dequeue_entity(se);
5452 
5453 	if (cfs_rq->nr_queued == 0)
5454 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5455 
5456 	return true;
5457 }
5458 
5459 static void
5460 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5461 {
5462 	clear_buddies(cfs_rq, se);
5463 
5464 	/* 'current' is not kept within the tree. */
5465 	if (se->on_rq) {
5466 		/*
5467 		 * Any task has to be enqueued before it get to execute on
5468 		 * a CPU. So account for the time it spent waiting on the
5469 		 * runqueue.
5470 		 */
5471 		update_stats_wait_end_fair(cfs_rq, se);
5472 		__dequeue_entity(cfs_rq, se);
5473 		update_load_avg(cfs_rq, se, UPDATE_TG);
5474 
5475 		set_protect_slice(cfs_rq, se);
5476 	}
5477 
5478 	update_stats_curr_start(cfs_rq, se);
5479 	WARN_ON_ONCE(cfs_rq->curr);
5480 	cfs_rq->curr = se;
5481 
5482 	/*
5483 	 * Track our maximum slice length, if the CPU's load is at
5484 	 * least twice that of our own weight (i.e. don't track it
5485 	 * when there are only lesser-weight tasks around):
5486 	 */
5487 	if (schedstat_enabled() &&
5488 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5489 		struct sched_statistics *stats;
5490 
5491 		stats = __schedstats_from_se(se);
5492 		__schedstat_set(stats->slice_max,
5493 				max((u64)stats->slice_max,
5494 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5495 	}
5496 
5497 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5498 }
5499 
5500 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5501 
5502 /*
5503  * Pick the next process, keeping these things in mind, in this order:
5504  * 1) keep things fair between processes/task groups
5505  * 2) pick the "next" process, since someone really wants that to run
5506  * 3) pick the "last" process, for cache locality
5507  * 4) do not run the "skip" process, if something else is available
5508  */
5509 static struct sched_entity *
5510 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5511 {
5512 	struct sched_entity *se;
5513 
5514 	/*
5515 	 * Picking the ->next buddy will affect latency but not fairness.
5516 	 */
5517 	if (sched_feat(PICK_BUDDY) &&
5518 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5519 		/* ->next will never be delayed */
5520 		WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5521 		return cfs_rq->next;
5522 	}
5523 
5524 	se = pick_eevdf(cfs_rq);
5525 	if (se->sched_delayed) {
5526 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5527 		/*
5528 		 * Must not reference @se again, see __block_task().
5529 		 */
5530 		return NULL;
5531 	}
5532 	return se;
5533 }
5534 
5535 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5536 
5537 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5538 {
5539 	/*
5540 	 * If still on the runqueue then deactivate_task()
5541 	 * was not called and update_curr() has to be done:
5542 	 */
5543 	if (prev->on_rq)
5544 		update_curr(cfs_rq);
5545 
5546 	/* throttle cfs_rqs exceeding runtime */
5547 	check_cfs_rq_runtime(cfs_rq);
5548 
5549 	if (prev->on_rq) {
5550 		update_stats_wait_start_fair(cfs_rq, prev);
5551 		/* Put 'current' back into the tree. */
5552 		__enqueue_entity(cfs_rq, prev);
5553 		/* in !on_rq case, update occurred at dequeue */
5554 		update_load_avg(cfs_rq, prev, 0);
5555 	}
5556 	WARN_ON_ONCE(cfs_rq->curr != prev);
5557 	cfs_rq->curr = NULL;
5558 }
5559 
5560 static void
5561 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5562 {
5563 	/*
5564 	 * Update run-time statistics of the 'current'.
5565 	 */
5566 	update_curr(cfs_rq);
5567 
5568 	/*
5569 	 * Ensure that runnable average is periodically updated.
5570 	 */
5571 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5572 	update_cfs_group(curr);
5573 
5574 #ifdef CONFIG_SCHED_HRTICK
5575 	/*
5576 	 * queued ticks are scheduled to match the slice, so don't bother
5577 	 * validating it and just reschedule.
5578 	 */
5579 	if (queued) {
5580 		resched_curr_lazy(rq_of(cfs_rq));
5581 		return;
5582 	}
5583 #endif
5584 }
5585 
5586 
5587 /**************************************************
5588  * CFS bandwidth control machinery
5589  */
5590 
5591 #ifdef CONFIG_CFS_BANDWIDTH
5592 
5593 #ifdef CONFIG_JUMP_LABEL
5594 static struct static_key __cfs_bandwidth_used;
5595 
5596 static inline bool cfs_bandwidth_used(void)
5597 {
5598 	return static_key_false(&__cfs_bandwidth_used);
5599 }
5600 
5601 void cfs_bandwidth_usage_inc(void)
5602 {
5603 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5604 }
5605 
5606 void cfs_bandwidth_usage_dec(void)
5607 {
5608 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5609 }
5610 #else /* !CONFIG_JUMP_LABEL: */
5611 static bool cfs_bandwidth_used(void)
5612 {
5613 	return true;
5614 }
5615 
5616 void cfs_bandwidth_usage_inc(void) {}
5617 void cfs_bandwidth_usage_dec(void) {}
5618 #endif /* !CONFIG_JUMP_LABEL */
5619 
5620 static inline u64 sched_cfs_bandwidth_slice(void)
5621 {
5622 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5623 }
5624 
5625 /*
5626  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5627  * directly instead of rq->clock to avoid adding additional synchronization
5628  * around rq->lock.
5629  *
5630  * requires cfs_b->lock
5631  */
5632 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5633 {
5634 	s64 runtime;
5635 
5636 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5637 		return;
5638 
5639 	cfs_b->runtime += cfs_b->quota;
5640 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5641 	if (runtime > 0) {
5642 		cfs_b->burst_time += runtime;
5643 		cfs_b->nr_burst++;
5644 	}
5645 
5646 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5647 	cfs_b->runtime_snap = cfs_b->runtime;
5648 }
5649 
5650 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5651 {
5652 	return &tg->cfs_bandwidth;
5653 }
5654 
5655 /* returns 0 on failure to allocate runtime */
5656 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5657 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5658 {
5659 	u64 min_amount, amount = 0;
5660 
5661 	lockdep_assert_held(&cfs_b->lock);
5662 
5663 	/* note: this is a positive sum as runtime_remaining <= 0 */
5664 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5665 
5666 	if (cfs_b->quota == RUNTIME_INF)
5667 		amount = min_amount;
5668 	else {
5669 		start_cfs_bandwidth(cfs_b);
5670 
5671 		if (cfs_b->runtime > 0) {
5672 			amount = min(cfs_b->runtime, min_amount);
5673 			cfs_b->runtime -= amount;
5674 			cfs_b->idle = 0;
5675 		}
5676 	}
5677 
5678 	cfs_rq->runtime_remaining += amount;
5679 
5680 	return cfs_rq->runtime_remaining > 0;
5681 }
5682 
5683 /* returns 0 on failure to allocate runtime */
5684 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5685 {
5686 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5687 	int ret;
5688 
5689 	raw_spin_lock(&cfs_b->lock);
5690 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5691 	raw_spin_unlock(&cfs_b->lock);
5692 
5693 	return ret;
5694 }
5695 
5696 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5697 {
5698 	/* dock delta_exec before expiring quota (as it could span periods) */
5699 	cfs_rq->runtime_remaining -= delta_exec;
5700 
5701 	if (likely(cfs_rq->runtime_remaining > 0))
5702 		return;
5703 
5704 	if (cfs_rq->throttled)
5705 		return;
5706 	/*
5707 	 * if we're unable to extend our runtime we resched so that the active
5708 	 * hierarchy can be throttled
5709 	 */
5710 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5711 		resched_curr(rq_of(cfs_rq));
5712 }
5713 
5714 static __always_inline
5715 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5716 {
5717 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5718 		return;
5719 
5720 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5721 }
5722 
5723 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5724 {
5725 	return cfs_bandwidth_used() && cfs_rq->throttled;
5726 }
5727 
5728 /* check whether cfs_rq, or any parent, is throttled */
5729 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5730 {
5731 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5732 }
5733 
5734 /*
5735  * Ensure that neither of the group entities corresponding to src_cpu or
5736  * dest_cpu are members of a throttled hierarchy when performing group
5737  * load-balance operations.
5738  */
5739 static inline int throttled_lb_pair(struct task_group *tg,
5740 				    int src_cpu, int dest_cpu)
5741 {
5742 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5743 
5744 	src_cfs_rq = tg->cfs_rq[src_cpu];
5745 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5746 
5747 	return throttled_hierarchy(src_cfs_rq) ||
5748 	       throttled_hierarchy(dest_cfs_rq);
5749 }
5750 
5751 static int tg_unthrottle_up(struct task_group *tg, void *data)
5752 {
5753 	struct rq *rq = data;
5754 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5755 
5756 	cfs_rq->throttle_count--;
5757 	if (!cfs_rq->throttle_count) {
5758 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5759 					     cfs_rq->throttled_clock_pelt;
5760 
5761 		/* Add cfs_rq with load or one or more already running entities to the list */
5762 		if (!cfs_rq_is_decayed(cfs_rq))
5763 			list_add_leaf_cfs_rq(cfs_rq);
5764 
5765 		if (cfs_rq->throttled_clock_self) {
5766 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5767 
5768 			cfs_rq->throttled_clock_self = 0;
5769 
5770 			if (WARN_ON_ONCE((s64)delta < 0))
5771 				delta = 0;
5772 
5773 			cfs_rq->throttled_clock_self_time += delta;
5774 		}
5775 	}
5776 
5777 	return 0;
5778 }
5779 
5780 static int tg_throttle_down(struct task_group *tg, void *data)
5781 {
5782 	struct rq *rq = data;
5783 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5784 
5785 	/* group is entering throttled state, stop time */
5786 	if (!cfs_rq->throttle_count) {
5787 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5788 		list_del_leaf_cfs_rq(cfs_rq);
5789 
5790 		WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5791 		if (cfs_rq->nr_queued)
5792 			cfs_rq->throttled_clock_self = rq_clock(rq);
5793 	}
5794 	cfs_rq->throttle_count++;
5795 
5796 	return 0;
5797 }
5798 
5799 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5800 {
5801 	struct rq *rq = rq_of(cfs_rq);
5802 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5803 	struct sched_entity *se;
5804 	long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5805 
5806 	raw_spin_lock(&cfs_b->lock);
5807 	/* This will start the period timer if necessary */
5808 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5809 		/*
5810 		 * We have raced with bandwidth becoming available, and if we
5811 		 * actually throttled the timer might not unthrottle us for an
5812 		 * entire period. We additionally needed to make sure that any
5813 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5814 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5815 		 * for 1ns of runtime rather than just check cfs_b.
5816 		 */
5817 		dequeue = 0;
5818 	} else {
5819 		list_add_tail_rcu(&cfs_rq->throttled_list,
5820 				  &cfs_b->throttled_cfs_rq);
5821 	}
5822 	raw_spin_unlock(&cfs_b->lock);
5823 
5824 	if (!dequeue)
5825 		return false;  /* Throttle no longer required. */
5826 
5827 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5828 
5829 	/* freeze hierarchy runnable averages while throttled */
5830 	rcu_read_lock();
5831 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5832 	rcu_read_unlock();
5833 
5834 	queued_delta = cfs_rq->h_nr_queued;
5835 	runnable_delta = cfs_rq->h_nr_runnable;
5836 	idle_delta = cfs_rq->h_nr_idle;
5837 	for_each_sched_entity(se) {
5838 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5839 		int flags;
5840 
5841 		/* throttled entity or throttle-on-deactivate */
5842 		if (!se->on_rq)
5843 			goto done;
5844 
5845 		/*
5846 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5847 		 * This avoids teaching dequeue_entities() about throttled
5848 		 * entities and keeps things relatively simple.
5849 		 */
5850 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5851 		if (se->sched_delayed)
5852 			flags |= DEQUEUE_DELAYED;
5853 		dequeue_entity(qcfs_rq, se, flags);
5854 
5855 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5856 			idle_delta = cfs_rq->h_nr_queued;
5857 
5858 		qcfs_rq->h_nr_queued -= queued_delta;
5859 		qcfs_rq->h_nr_runnable -= runnable_delta;
5860 		qcfs_rq->h_nr_idle -= idle_delta;
5861 
5862 		if (qcfs_rq->load.weight) {
5863 			/* Avoid re-evaluating load for this entity: */
5864 			se = parent_entity(se);
5865 			break;
5866 		}
5867 	}
5868 
5869 	for_each_sched_entity(se) {
5870 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5871 		/* throttled entity or throttle-on-deactivate */
5872 		if (!se->on_rq)
5873 			goto done;
5874 
5875 		update_load_avg(qcfs_rq, se, 0);
5876 		se_update_runnable(se);
5877 
5878 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5879 			idle_delta = cfs_rq->h_nr_queued;
5880 
5881 		qcfs_rq->h_nr_queued -= queued_delta;
5882 		qcfs_rq->h_nr_runnable -= runnable_delta;
5883 		qcfs_rq->h_nr_idle -= idle_delta;
5884 	}
5885 
5886 	/* At this point se is NULL and we are at root level*/
5887 	sub_nr_running(rq, queued_delta);
5888 done:
5889 	/*
5890 	 * Note: distribution will already see us throttled via the
5891 	 * throttled-list.  rq->lock protects completion.
5892 	 */
5893 	cfs_rq->throttled = 1;
5894 	WARN_ON_ONCE(cfs_rq->throttled_clock);
5895 	if (cfs_rq->nr_queued)
5896 		cfs_rq->throttled_clock = rq_clock(rq);
5897 	return true;
5898 }
5899 
5900 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5901 {
5902 	struct rq *rq = rq_of(cfs_rq);
5903 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5904 	struct sched_entity *se;
5905 	long queued_delta, runnable_delta, idle_delta;
5906 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5907 
5908 	se = cfs_rq->tg->se[cpu_of(rq)];
5909 
5910 	cfs_rq->throttled = 0;
5911 
5912 	update_rq_clock(rq);
5913 
5914 	raw_spin_lock(&cfs_b->lock);
5915 	if (cfs_rq->throttled_clock) {
5916 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5917 		cfs_rq->throttled_clock = 0;
5918 	}
5919 	list_del_rcu(&cfs_rq->throttled_list);
5920 	raw_spin_unlock(&cfs_b->lock);
5921 
5922 	/* update hierarchical throttle state */
5923 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5924 
5925 	if (!cfs_rq->load.weight) {
5926 		if (!cfs_rq->on_list)
5927 			return;
5928 		/*
5929 		 * Nothing to run but something to decay (on_list)?
5930 		 * Complete the branch.
5931 		 */
5932 		for_each_sched_entity(se) {
5933 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5934 				break;
5935 		}
5936 		goto unthrottle_throttle;
5937 	}
5938 
5939 	queued_delta = cfs_rq->h_nr_queued;
5940 	runnable_delta = cfs_rq->h_nr_runnable;
5941 	idle_delta = cfs_rq->h_nr_idle;
5942 	for_each_sched_entity(se) {
5943 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5944 
5945 		/* Handle any unfinished DELAY_DEQUEUE business first. */
5946 		if (se->sched_delayed) {
5947 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
5948 
5949 			dequeue_entity(qcfs_rq, se, flags);
5950 		} else if (se->on_rq)
5951 			break;
5952 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5953 
5954 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5955 			idle_delta = cfs_rq->h_nr_queued;
5956 
5957 		qcfs_rq->h_nr_queued += queued_delta;
5958 		qcfs_rq->h_nr_runnable += runnable_delta;
5959 		qcfs_rq->h_nr_idle += idle_delta;
5960 
5961 		/* end evaluation on encountering a throttled cfs_rq */
5962 		if (cfs_rq_throttled(qcfs_rq))
5963 			goto unthrottle_throttle;
5964 	}
5965 
5966 	for_each_sched_entity(se) {
5967 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5968 
5969 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5970 		se_update_runnable(se);
5971 
5972 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5973 			idle_delta = cfs_rq->h_nr_queued;
5974 
5975 		qcfs_rq->h_nr_queued += queued_delta;
5976 		qcfs_rq->h_nr_runnable += runnable_delta;
5977 		qcfs_rq->h_nr_idle += idle_delta;
5978 
5979 		/* end evaluation on encountering a throttled cfs_rq */
5980 		if (cfs_rq_throttled(qcfs_rq))
5981 			goto unthrottle_throttle;
5982 	}
5983 
5984 	/* Start the fair server if un-throttling resulted in new runnable tasks */
5985 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
5986 		dl_server_start(&rq->fair_server);
5987 
5988 	/* At this point se is NULL and we are at root level*/
5989 	add_nr_running(rq, queued_delta);
5990 
5991 unthrottle_throttle:
5992 	assert_list_leaf_cfs_rq(rq);
5993 
5994 	/* Determine whether we need to wake up potentially idle CPU: */
5995 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
5996 		resched_curr(rq);
5997 }
5998 
5999 static void __cfsb_csd_unthrottle(void *arg)
6000 {
6001 	struct cfs_rq *cursor, *tmp;
6002 	struct rq *rq = arg;
6003 	struct rq_flags rf;
6004 
6005 	rq_lock(rq, &rf);
6006 
6007 	/*
6008 	 * Iterating over the list can trigger several call to
6009 	 * update_rq_clock() in unthrottle_cfs_rq().
6010 	 * Do it once and skip the potential next ones.
6011 	 */
6012 	update_rq_clock(rq);
6013 	rq_clock_start_loop_update(rq);
6014 
6015 	/*
6016 	 * Since we hold rq lock we're safe from concurrent manipulation of
6017 	 * the CSD list. However, this RCU critical section annotates the
6018 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6019 	 * race with group being freed in the window between removing it
6020 	 * from the list and advancing to the next entry in the list.
6021 	 */
6022 	rcu_read_lock();
6023 
6024 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6025 				 throttled_csd_list) {
6026 		list_del_init(&cursor->throttled_csd_list);
6027 
6028 		if (cfs_rq_throttled(cursor))
6029 			unthrottle_cfs_rq(cursor);
6030 	}
6031 
6032 	rcu_read_unlock();
6033 
6034 	rq_clock_stop_loop_update(rq);
6035 	rq_unlock(rq, &rf);
6036 }
6037 
6038 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6039 {
6040 	struct rq *rq = rq_of(cfs_rq);
6041 	bool first;
6042 
6043 	if (rq == this_rq()) {
6044 		unthrottle_cfs_rq(cfs_rq);
6045 		return;
6046 	}
6047 
6048 	/* Already enqueued */
6049 	if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6050 		return;
6051 
6052 	first = list_empty(&rq->cfsb_csd_list);
6053 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6054 	if (first)
6055 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6056 }
6057 
6058 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6059 {
6060 	lockdep_assert_rq_held(rq_of(cfs_rq));
6061 
6062 	if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6063 	    cfs_rq->runtime_remaining <= 0))
6064 		return;
6065 
6066 	__unthrottle_cfs_rq_async(cfs_rq);
6067 }
6068 
6069 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6070 {
6071 	int this_cpu = smp_processor_id();
6072 	u64 runtime, remaining = 1;
6073 	bool throttled = false;
6074 	struct cfs_rq *cfs_rq, *tmp;
6075 	struct rq_flags rf;
6076 	struct rq *rq;
6077 	LIST_HEAD(local_unthrottle);
6078 
6079 	rcu_read_lock();
6080 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6081 				throttled_list) {
6082 		rq = rq_of(cfs_rq);
6083 
6084 		if (!remaining) {
6085 			throttled = true;
6086 			break;
6087 		}
6088 
6089 		rq_lock_irqsave(rq, &rf);
6090 		if (!cfs_rq_throttled(cfs_rq))
6091 			goto next;
6092 
6093 		/* Already queued for async unthrottle */
6094 		if (!list_empty(&cfs_rq->throttled_csd_list))
6095 			goto next;
6096 
6097 		/* By the above checks, this should never be true */
6098 		WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6099 
6100 		raw_spin_lock(&cfs_b->lock);
6101 		runtime = -cfs_rq->runtime_remaining + 1;
6102 		if (runtime > cfs_b->runtime)
6103 			runtime = cfs_b->runtime;
6104 		cfs_b->runtime -= runtime;
6105 		remaining = cfs_b->runtime;
6106 		raw_spin_unlock(&cfs_b->lock);
6107 
6108 		cfs_rq->runtime_remaining += runtime;
6109 
6110 		/* we check whether we're throttled above */
6111 		if (cfs_rq->runtime_remaining > 0) {
6112 			if (cpu_of(rq) != this_cpu) {
6113 				unthrottle_cfs_rq_async(cfs_rq);
6114 			} else {
6115 				/*
6116 				 * We currently only expect to be unthrottling
6117 				 * a single cfs_rq locally.
6118 				 */
6119 				WARN_ON_ONCE(!list_empty(&local_unthrottle));
6120 				list_add_tail(&cfs_rq->throttled_csd_list,
6121 					      &local_unthrottle);
6122 			}
6123 		} else {
6124 			throttled = true;
6125 		}
6126 
6127 next:
6128 		rq_unlock_irqrestore(rq, &rf);
6129 	}
6130 
6131 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6132 				 throttled_csd_list) {
6133 		struct rq *rq = rq_of(cfs_rq);
6134 
6135 		rq_lock_irqsave(rq, &rf);
6136 
6137 		list_del_init(&cfs_rq->throttled_csd_list);
6138 
6139 		if (cfs_rq_throttled(cfs_rq))
6140 			unthrottle_cfs_rq(cfs_rq);
6141 
6142 		rq_unlock_irqrestore(rq, &rf);
6143 	}
6144 	WARN_ON_ONCE(!list_empty(&local_unthrottle));
6145 
6146 	rcu_read_unlock();
6147 
6148 	return throttled;
6149 }
6150 
6151 /*
6152  * Responsible for refilling a task_group's bandwidth and unthrottling its
6153  * cfs_rqs as appropriate. If there has been no activity within the last
6154  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6155  * used to track this state.
6156  */
6157 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6158 {
6159 	int throttled;
6160 
6161 	/* no need to continue the timer with no bandwidth constraint */
6162 	if (cfs_b->quota == RUNTIME_INF)
6163 		goto out_deactivate;
6164 
6165 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6166 	cfs_b->nr_periods += overrun;
6167 
6168 	/* Refill extra burst quota even if cfs_b->idle */
6169 	__refill_cfs_bandwidth_runtime(cfs_b);
6170 
6171 	/*
6172 	 * idle depends on !throttled (for the case of a large deficit), and if
6173 	 * we're going inactive then everything else can be deferred
6174 	 */
6175 	if (cfs_b->idle && !throttled)
6176 		goto out_deactivate;
6177 
6178 	if (!throttled) {
6179 		/* mark as potentially idle for the upcoming period */
6180 		cfs_b->idle = 1;
6181 		return 0;
6182 	}
6183 
6184 	/* account preceding periods in which throttling occurred */
6185 	cfs_b->nr_throttled += overrun;
6186 
6187 	/*
6188 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6189 	 */
6190 	while (throttled && cfs_b->runtime > 0) {
6191 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6192 		/* we can't nest cfs_b->lock while distributing bandwidth */
6193 		throttled = distribute_cfs_runtime(cfs_b);
6194 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6195 	}
6196 
6197 	/*
6198 	 * While we are ensured activity in the period following an
6199 	 * unthrottle, this also covers the case in which the new bandwidth is
6200 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6201 	 * timer to remain active while there are any throttled entities.)
6202 	 */
6203 	cfs_b->idle = 0;
6204 
6205 	return 0;
6206 
6207 out_deactivate:
6208 	return 1;
6209 }
6210 
6211 /* a cfs_rq won't donate quota below this amount */
6212 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6213 /* minimum remaining period time to redistribute slack quota */
6214 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6215 /* how long we wait to gather additional slack before distributing */
6216 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6217 
6218 /*
6219  * Are we near the end of the current quota period?
6220  *
6221  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6222  * hrtimer base being cleared by hrtimer_start. In the case of
6223  * migrate_hrtimers, base is never cleared, so we are fine.
6224  */
6225 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6226 {
6227 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6228 	s64 remaining;
6229 
6230 	/* if the call-back is running a quota refresh is already occurring */
6231 	if (hrtimer_callback_running(refresh_timer))
6232 		return 1;
6233 
6234 	/* is a quota refresh about to occur? */
6235 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6236 	if (remaining < (s64)min_expire)
6237 		return 1;
6238 
6239 	return 0;
6240 }
6241 
6242 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6243 {
6244 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6245 
6246 	/* if there's a quota refresh soon don't bother with slack */
6247 	if (runtime_refresh_within(cfs_b, min_left))
6248 		return;
6249 
6250 	/* don't push forwards an existing deferred unthrottle */
6251 	if (cfs_b->slack_started)
6252 		return;
6253 	cfs_b->slack_started = true;
6254 
6255 	hrtimer_start(&cfs_b->slack_timer,
6256 			ns_to_ktime(cfs_bandwidth_slack_period),
6257 			HRTIMER_MODE_REL);
6258 }
6259 
6260 /* we know any runtime found here is valid as update_curr() precedes return */
6261 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6262 {
6263 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6264 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6265 
6266 	if (slack_runtime <= 0)
6267 		return;
6268 
6269 	raw_spin_lock(&cfs_b->lock);
6270 	if (cfs_b->quota != RUNTIME_INF) {
6271 		cfs_b->runtime += slack_runtime;
6272 
6273 		/* we are under rq->lock, defer unthrottling using a timer */
6274 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6275 		    !list_empty(&cfs_b->throttled_cfs_rq))
6276 			start_cfs_slack_bandwidth(cfs_b);
6277 	}
6278 	raw_spin_unlock(&cfs_b->lock);
6279 
6280 	/* even if it's not valid for return we don't want to try again */
6281 	cfs_rq->runtime_remaining -= slack_runtime;
6282 }
6283 
6284 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6285 {
6286 	if (!cfs_bandwidth_used())
6287 		return;
6288 
6289 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6290 		return;
6291 
6292 	__return_cfs_rq_runtime(cfs_rq);
6293 }
6294 
6295 /*
6296  * This is done with a timer (instead of inline with bandwidth return) since
6297  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6298  */
6299 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6300 {
6301 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6302 	unsigned long flags;
6303 
6304 	/* confirm we're still not at a refresh boundary */
6305 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6306 	cfs_b->slack_started = false;
6307 
6308 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6309 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6310 		return;
6311 	}
6312 
6313 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6314 		runtime = cfs_b->runtime;
6315 
6316 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6317 
6318 	if (!runtime)
6319 		return;
6320 
6321 	distribute_cfs_runtime(cfs_b);
6322 }
6323 
6324 /*
6325  * When a group wakes up we want to make sure that its quota is not already
6326  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6327  * runtime as update_curr() throttling can not trigger until it's on-rq.
6328  */
6329 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6330 {
6331 	if (!cfs_bandwidth_used())
6332 		return;
6333 
6334 	/* an active group must be handled by the update_curr()->put() path */
6335 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6336 		return;
6337 
6338 	/* ensure the group is not already throttled */
6339 	if (cfs_rq_throttled(cfs_rq))
6340 		return;
6341 
6342 	/* update runtime allocation */
6343 	account_cfs_rq_runtime(cfs_rq, 0);
6344 	if (cfs_rq->runtime_remaining <= 0)
6345 		throttle_cfs_rq(cfs_rq);
6346 }
6347 
6348 static void sync_throttle(struct task_group *tg, int cpu)
6349 {
6350 	struct cfs_rq *pcfs_rq, *cfs_rq;
6351 
6352 	if (!cfs_bandwidth_used())
6353 		return;
6354 
6355 	if (!tg->parent)
6356 		return;
6357 
6358 	cfs_rq = tg->cfs_rq[cpu];
6359 	pcfs_rq = tg->parent->cfs_rq[cpu];
6360 
6361 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6362 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6363 }
6364 
6365 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6366 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6367 {
6368 	if (!cfs_bandwidth_used())
6369 		return false;
6370 
6371 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6372 		return false;
6373 
6374 	/*
6375 	 * it's possible for a throttled entity to be forced into a running
6376 	 * state (e.g. set_curr_task), in this case we're finished.
6377 	 */
6378 	if (cfs_rq_throttled(cfs_rq))
6379 		return true;
6380 
6381 	return throttle_cfs_rq(cfs_rq);
6382 }
6383 
6384 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6385 {
6386 	struct cfs_bandwidth *cfs_b =
6387 		container_of(timer, struct cfs_bandwidth, slack_timer);
6388 
6389 	do_sched_cfs_slack_timer(cfs_b);
6390 
6391 	return HRTIMER_NORESTART;
6392 }
6393 
6394 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6395 {
6396 	struct cfs_bandwidth *cfs_b =
6397 		container_of(timer, struct cfs_bandwidth, period_timer);
6398 	unsigned long flags;
6399 	int overrun;
6400 	int idle = 0;
6401 	int count = 0;
6402 
6403 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6404 	for (;;) {
6405 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6406 		if (!overrun)
6407 			break;
6408 
6409 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6410 
6411 		if (++count > 3) {
6412 			u64 new, old = ktime_to_ns(cfs_b->period);
6413 
6414 			/*
6415 			 * Grow period by a factor of 2 to avoid losing precision.
6416 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6417 			 * to fail.
6418 			 */
6419 			new = old * 2;
6420 			if (new < max_bw_quota_period_us * NSEC_PER_USEC) {
6421 				cfs_b->period = ns_to_ktime(new);
6422 				cfs_b->quota *= 2;
6423 				cfs_b->burst *= 2;
6424 
6425 				pr_warn_ratelimited(
6426 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6427 					smp_processor_id(),
6428 					div_u64(new, NSEC_PER_USEC),
6429 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6430 			} else {
6431 				pr_warn_ratelimited(
6432 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6433 					smp_processor_id(),
6434 					div_u64(old, NSEC_PER_USEC),
6435 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6436 			}
6437 
6438 			/* reset count so we don't come right back in here */
6439 			count = 0;
6440 		}
6441 	}
6442 	if (idle)
6443 		cfs_b->period_active = 0;
6444 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6445 
6446 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6447 }
6448 
6449 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6450 {
6451 	raw_spin_lock_init(&cfs_b->lock);
6452 	cfs_b->runtime = 0;
6453 	cfs_b->quota = RUNTIME_INF;
6454 	cfs_b->period = us_to_ktime(default_bw_period_us());
6455 	cfs_b->burst = 0;
6456 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6457 
6458 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6459 	hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6460 		      HRTIMER_MODE_ABS_PINNED);
6461 
6462 	/* Add a random offset so that timers interleave */
6463 	hrtimer_set_expires(&cfs_b->period_timer,
6464 			    get_random_u32_below(cfs_b->period));
6465 	hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6466 		      HRTIMER_MODE_REL);
6467 	cfs_b->slack_started = false;
6468 }
6469 
6470 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6471 {
6472 	cfs_rq->runtime_enabled = 0;
6473 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6474 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6475 }
6476 
6477 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6478 {
6479 	lockdep_assert_held(&cfs_b->lock);
6480 
6481 	if (cfs_b->period_active)
6482 		return;
6483 
6484 	cfs_b->period_active = 1;
6485 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6486 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6487 }
6488 
6489 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6490 {
6491 	int __maybe_unused i;
6492 
6493 	/* init_cfs_bandwidth() was not called */
6494 	if (!cfs_b->throttled_cfs_rq.next)
6495 		return;
6496 
6497 	hrtimer_cancel(&cfs_b->period_timer);
6498 	hrtimer_cancel(&cfs_b->slack_timer);
6499 
6500 	/*
6501 	 * It is possible that we still have some cfs_rq's pending on a CSD
6502 	 * list, though this race is very rare. In order for this to occur, we
6503 	 * must have raced with the last task leaving the group while there
6504 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6505 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6506 	 * we can simply flush all pending CSD work inline here. We're
6507 	 * guaranteed at this point that no additional cfs_rq of this group can
6508 	 * join a CSD list.
6509 	 */
6510 	for_each_possible_cpu(i) {
6511 		struct rq *rq = cpu_rq(i);
6512 		unsigned long flags;
6513 
6514 		if (list_empty(&rq->cfsb_csd_list))
6515 			continue;
6516 
6517 		local_irq_save(flags);
6518 		__cfsb_csd_unthrottle(rq);
6519 		local_irq_restore(flags);
6520 	}
6521 }
6522 
6523 /*
6524  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6525  *
6526  * The race is harmless, since modifying bandwidth settings of unhooked group
6527  * bits doesn't do much.
6528  */
6529 
6530 /* cpu online callback */
6531 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6532 {
6533 	struct task_group *tg;
6534 
6535 	lockdep_assert_rq_held(rq);
6536 
6537 	rcu_read_lock();
6538 	list_for_each_entry_rcu(tg, &task_groups, list) {
6539 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6540 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6541 
6542 		raw_spin_lock(&cfs_b->lock);
6543 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6544 		raw_spin_unlock(&cfs_b->lock);
6545 	}
6546 	rcu_read_unlock();
6547 }
6548 
6549 /* cpu offline callback */
6550 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6551 {
6552 	struct task_group *tg;
6553 
6554 	lockdep_assert_rq_held(rq);
6555 
6556 	// Do not unthrottle for an active CPU
6557 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6558 		return;
6559 
6560 	/*
6561 	 * The rq clock has already been updated in the
6562 	 * set_rq_offline(), so we should skip updating
6563 	 * the rq clock again in unthrottle_cfs_rq().
6564 	 */
6565 	rq_clock_start_loop_update(rq);
6566 
6567 	rcu_read_lock();
6568 	list_for_each_entry_rcu(tg, &task_groups, list) {
6569 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6570 
6571 		if (!cfs_rq->runtime_enabled)
6572 			continue;
6573 
6574 		/*
6575 		 * Offline rq is schedulable till CPU is completely disabled
6576 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6577 		 */
6578 		cfs_rq->runtime_enabled = 0;
6579 
6580 		if (!cfs_rq_throttled(cfs_rq))
6581 			continue;
6582 
6583 		/*
6584 		 * clock_task is not advancing so we just need to make sure
6585 		 * there's some valid quota amount
6586 		 */
6587 		cfs_rq->runtime_remaining = 1;
6588 		unthrottle_cfs_rq(cfs_rq);
6589 	}
6590 	rcu_read_unlock();
6591 
6592 	rq_clock_stop_loop_update(rq);
6593 }
6594 
6595 bool cfs_task_bw_constrained(struct task_struct *p)
6596 {
6597 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6598 
6599 	if (!cfs_bandwidth_used())
6600 		return false;
6601 
6602 	if (cfs_rq->runtime_enabled ||
6603 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6604 		return true;
6605 
6606 	return false;
6607 }
6608 
6609 #ifdef CONFIG_NO_HZ_FULL
6610 /* called from pick_next_task_fair() */
6611 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6612 {
6613 	int cpu = cpu_of(rq);
6614 
6615 	if (!cfs_bandwidth_used())
6616 		return;
6617 
6618 	if (!tick_nohz_full_cpu(cpu))
6619 		return;
6620 
6621 	if (rq->nr_running != 1)
6622 		return;
6623 
6624 	/*
6625 	 *  We know there is only one task runnable and we've just picked it. The
6626 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6627 	 *  be otherwise able to stop the tick. Just need to check if we are using
6628 	 *  bandwidth control.
6629 	 */
6630 	if (cfs_task_bw_constrained(p))
6631 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6632 }
6633 #endif /* CONFIG_NO_HZ_FULL */
6634 
6635 #else /* !CONFIG_CFS_BANDWIDTH: */
6636 
6637 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6638 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6639 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6640 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6641 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6642 
6643 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6644 {
6645 	return 0;
6646 }
6647 
6648 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6649 {
6650 	return 0;
6651 }
6652 
6653 static inline int throttled_lb_pair(struct task_group *tg,
6654 				    int src_cpu, int dest_cpu)
6655 {
6656 	return 0;
6657 }
6658 
6659 #ifdef CONFIG_FAIR_GROUP_SCHED
6660 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6661 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6662 #endif
6663 
6664 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6665 {
6666 	return NULL;
6667 }
6668 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6669 static inline void update_runtime_enabled(struct rq *rq) {}
6670 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6671 #ifdef CONFIG_CGROUP_SCHED
6672 bool cfs_task_bw_constrained(struct task_struct *p)
6673 {
6674 	return false;
6675 }
6676 #endif
6677 #endif /* !CONFIG_CFS_BANDWIDTH */
6678 
6679 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6680 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6681 #endif
6682 
6683 /**************************************************
6684  * CFS operations on tasks:
6685  */
6686 
6687 #ifdef CONFIG_SCHED_HRTICK
6688 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6689 {
6690 	struct sched_entity *se = &p->se;
6691 
6692 	WARN_ON_ONCE(task_rq(p) != rq);
6693 
6694 	if (rq->cfs.h_nr_queued > 1) {
6695 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6696 		u64 slice = se->slice;
6697 		s64 delta = slice - ran;
6698 
6699 		if (delta < 0) {
6700 			if (task_current_donor(rq, p))
6701 				resched_curr(rq);
6702 			return;
6703 		}
6704 		hrtick_start(rq, delta);
6705 	}
6706 }
6707 
6708 /*
6709  * called from enqueue/dequeue and updates the hrtick when the
6710  * current task is from our class and nr_running is low enough
6711  * to matter.
6712  */
6713 static void hrtick_update(struct rq *rq)
6714 {
6715 	struct task_struct *donor = rq->donor;
6716 
6717 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6718 		return;
6719 
6720 	hrtick_start_fair(rq, donor);
6721 }
6722 #else /* !CONFIG_SCHED_HRTICK: */
6723 static inline void
6724 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6725 {
6726 }
6727 
6728 static inline void hrtick_update(struct rq *rq)
6729 {
6730 }
6731 #endif /* !CONFIG_SCHED_HRTICK */
6732 
6733 static inline bool cpu_overutilized(int cpu)
6734 {
6735 	unsigned long  rq_util_min, rq_util_max;
6736 
6737 	if (!sched_energy_enabled())
6738 		return false;
6739 
6740 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6741 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6742 
6743 	/* Return true only if the utilization doesn't fit CPU's capacity */
6744 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6745 }
6746 
6747 /*
6748  * overutilized value make sense only if EAS is enabled
6749  */
6750 static inline bool is_rd_overutilized(struct root_domain *rd)
6751 {
6752 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6753 }
6754 
6755 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6756 {
6757 	if (!sched_energy_enabled())
6758 		return;
6759 
6760 	WRITE_ONCE(rd->overutilized, flag);
6761 	trace_sched_overutilized_tp(rd, flag);
6762 }
6763 
6764 static inline void check_update_overutilized_status(struct rq *rq)
6765 {
6766 	/*
6767 	 * overutilized field is used for load balancing decisions only
6768 	 * if energy aware scheduler is being used
6769 	 */
6770 
6771 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6772 		set_rd_overutilized(rq->rd, 1);
6773 }
6774 
6775 /* Runqueue only has SCHED_IDLE tasks enqueued */
6776 static int sched_idle_rq(struct rq *rq)
6777 {
6778 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6779 			rq->nr_running);
6780 }
6781 
6782 static int sched_idle_cpu(int cpu)
6783 {
6784 	return sched_idle_rq(cpu_rq(cpu));
6785 }
6786 
6787 static void
6788 requeue_delayed_entity(struct sched_entity *se)
6789 {
6790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6791 
6792 	/*
6793 	 * se->sched_delayed should imply: se->on_rq == 1.
6794 	 * Because a delayed entity is one that is still on
6795 	 * the runqueue competing until elegibility.
6796 	 */
6797 	WARN_ON_ONCE(!se->sched_delayed);
6798 	WARN_ON_ONCE(!se->on_rq);
6799 
6800 	if (sched_feat(DELAY_ZERO)) {
6801 		update_entity_lag(cfs_rq, se);
6802 		if (se->vlag > 0) {
6803 			cfs_rq->nr_queued--;
6804 			if (se != cfs_rq->curr)
6805 				__dequeue_entity(cfs_rq, se);
6806 			se->vlag = 0;
6807 			place_entity(cfs_rq, se, 0);
6808 			if (se != cfs_rq->curr)
6809 				__enqueue_entity(cfs_rq, se);
6810 			cfs_rq->nr_queued++;
6811 		}
6812 	}
6813 
6814 	update_load_avg(cfs_rq, se, 0);
6815 	clear_delayed(se);
6816 }
6817 
6818 /*
6819  * The enqueue_task method is called before nr_running is
6820  * increased. Here we update the fair scheduling stats and
6821  * then put the task into the rbtree:
6822  */
6823 static void
6824 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6825 {
6826 	struct cfs_rq *cfs_rq;
6827 	struct sched_entity *se = &p->se;
6828 	int h_nr_idle = task_has_idle_policy(p);
6829 	int h_nr_runnable = 1;
6830 	int task_new = !(flags & ENQUEUE_WAKEUP);
6831 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6832 	u64 slice = 0;
6833 
6834 	/*
6835 	 * The code below (indirectly) updates schedutil which looks at
6836 	 * the cfs_rq utilization to select a frequency.
6837 	 * Let's add the task's estimated utilization to the cfs_rq's
6838 	 * estimated utilization, before we update schedutil.
6839 	 */
6840 	if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6841 		util_est_enqueue(&rq->cfs, p);
6842 
6843 	if (flags & ENQUEUE_DELAYED) {
6844 		requeue_delayed_entity(se);
6845 		return;
6846 	}
6847 
6848 	/*
6849 	 * If in_iowait is set, the code below may not trigger any cpufreq
6850 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6851 	 * passed.
6852 	 */
6853 	if (p->in_iowait)
6854 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6855 
6856 	if (task_new && se->sched_delayed)
6857 		h_nr_runnable = 0;
6858 
6859 	for_each_sched_entity(se) {
6860 		if (se->on_rq) {
6861 			if (se->sched_delayed)
6862 				requeue_delayed_entity(se);
6863 			break;
6864 		}
6865 		cfs_rq = cfs_rq_of(se);
6866 
6867 		/*
6868 		 * Basically set the slice of group entries to the min_slice of
6869 		 * their respective cfs_rq. This ensures the group can service
6870 		 * its entities in the desired time-frame.
6871 		 */
6872 		if (slice) {
6873 			se->slice = slice;
6874 			se->custom_slice = 1;
6875 		}
6876 		enqueue_entity(cfs_rq, se, flags);
6877 		slice = cfs_rq_min_slice(cfs_rq);
6878 
6879 		cfs_rq->h_nr_runnable += h_nr_runnable;
6880 		cfs_rq->h_nr_queued++;
6881 		cfs_rq->h_nr_idle += h_nr_idle;
6882 
6883 		if (cfs_rq_is_idle(cfs_rq))
6884 			h_nr_idle = 1;
6885 
6886 		/* end evaluation on encountering a throttled cfs_rq */
6887 		if (cfs_rq_throttled(cfs_rq))
6888 			goto enqueue_throttle;
6889 
6890 		flags = ENQUEUE_WAKEUP;
6891 	}
6892 
6893 	for_each_sched_entity(se) {
6894 		cfs_rq = cfs_rq_of(se);
6895 
6896 		update_load_avg(cfs_rq, se, UPDATE_TG);
6897 		se_update_runnable(se);
6898 		update_cfs_group(se);
6899 
6900 		se->slice = slice;
6901 		if (se != cfs_rq->curr)
6902 			min_vruntime_cb_propagate(&se->run_node, NULL);
6903 		slice = cfs_rq_min_slice(cfs_rq);
6904 
6905 		cfs_rq->h_nr_runnable += h_nr_runnable;
6906 		cfs_rq->h_nr_queued++;
6907 		cfs_rq->h_nr_idle += h_nr_idle;
6908 
6909 		if (cfs_rq_is_idle(cfs_rq))
6910 			h_nr_idle = 1;
6911 
6912 		/* end evaluation on encountering a throttled cfs_rq */
6913 		if (cfs_rq_throttled(cfs_rq))
6914 			goto enqueue_throttle;
6915 	}
6916 
6917 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
6918 		/* Account for idle runtime */
6919 		if (!rq->nr_running)
6920 			dl_server_update_idle_time(rq, rq->curr);
6921 		dl_server_start(&rq->fair_server);
6922 	}
6923 
6924 	/* At this point se is NULL and we are at root level*/
6925 	add_nr_running(rq, 1);
6926 
6927 	/*
6928 	 * Since new tasks are assigned an initial util_avg equal to
6929 	 * half of the spare capacity of their CPU, tiny tasks have the
6930 	 * ability to cross the overutilized threshold, which will
6931 	 * result in the load balancer ruining all the task placement
6932 	 * done by EAS. As a way to mitigate that effect, do not account
6933 	 * for the first enqueue operation of new tasks during the
6934 	 * overutilized flag detection.
6935 	 *
6936 	 * A better way of solving this problem would be to wait for
6937 	 * the PELT signals of tasks to converge before taking them
6938 	 * into account, but that is not straightforward to implement,
6939 	 * and the following generally works well enough in practice.
6940 	 */
6941 	if (!task_new)
6942 		check_update_overutilized_status(rq);
6943 
6944 enqueue_throttle:
6945 	assert_list_leaf_cfs_rq(rq);
6946 
6947 	hrtick_update(rq);
6948 }
6949 
6950 static void set_next_buddy(struct sched_entity *se);
6951 
6952 /*
6953  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
6954  * failing half-way through and resume the dequeue later.
6955  *
6956  * Returns:
6957  * -1 - dequeue delayed
6958  *  0 - dequeue throttled
6959  *  1 - dequeue complete
6960  */
6961 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
6962 {
6963 	bool was_sched_idle = sched_idle_rq(rq);
6964 	bool task_sleep = flags & DEQUEUE_SLEEP;
6965 	bool task_delayed = flags & DEQUEUE_DELAYED;
6966 	struct task_struct *p = NULL;
6967 	int h_nr_idle = 0;
6968 	int h_nr_queued = 0;
6969 	int h_nr_runnable = 0;
6970 	struct cfs_rq *cfs_rq;
6971 	u64 slice = 0;
6972 
6973 	if (entity_is_task(se)) {
6974 		p = task_of(se);
6975 		h_nr_queued = 1;
6976 		h_nr_idle = task_has_idle_policy(p);
6977 		if (task_sleep || task_delayed || !se->sched_delayed)
6978 			h_nr_runnable = 1;
6979 	}
6980 
6981 	for_each_sched_entity(se) {
6982 		cfs_rq = cfs_rq_of(se);
6983 
6984 		if (!dequeue_entity(cfs_rq, se, flags)) {
6985 			if (p && &p->se == se)
6986 				return -1;
6987 
6988 			slice = cfs_rq_min_slice(cfs_rq);
6989 			break;
6990 		}
6991 
6992 		cfs_rq->h_nr_runnable -= h_nr_runnable;
6993 		cfs_rq->h_nr_queued -= h_nr_queued;
6994 		cfs_rq->h_nr_idle -= h_nr_idle;
6995 
6996 		if (cfs_rq_is_idle(cfs_rq))
6997 			h_nr_idle = h_nr_queued;
6998 
6999 		/* end evaluation on encountering a throttled cfs_rq */
7000 		if (cfs_rq_throttled(cfs_rq))
7001 			return 0;
7002 
7003 		/* Don't dequeue parent if it has other entities besides us */
7004 		if (cfs_rq->load.weight) {
7005 			slice = cfs_rq_min_slice(cfs_rq);
7006 
7007 			/* Avoid re-evaluating load for this entity: */
7008 			se = parent_entity(se);
7009 			/*
7010 			 * Bias pick_next to pick a task from this cfs_rq, as
7011 			 * p is sleeping when it is within its sched_slice.
7012 			 */
7013 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7014 				set_next_buddy(se);
7015 			break;
7016 		}
7017 		flags |= DEQUEUE_SLEEP;
7018 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7019 	}
7020 
7021 	for_each_sched_entity(se) {
7022 		cfs_rq = cfs_rq_of(se);
7023 
7024 		update_load_avg(cfs_rq, se, UPDATE_TG);
7025 		se_update_runnable(se);
7026 		update_cfs_group(se);
7027 
7028 		se->slice = slice;
7029 		if (se != cfs_rq->curr)
7030 			min_vruntime_cb_propagate(&se->run_node, NULL);
7031 		slice = cfs_rq_min_slice(cfs_rq);
7032 
7033 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7034 		cfs_rq->h_nr_queued -= h_nr_queued;
7035 		cfs_rq->h_nr_idle -= h_nr_idle;
7036 
7037 		if (cfs_rq_is_idle(cfs_rq))
7038 			h_nr_idle = h_nr_queued;
7039 
7040 		/* end evaluation on encountering a throttled cfs_rq */
7041 		if (cfs_rq_throttled(cfs_rq))
7042 			return 0;
7043 	}
7044 
7045 	sub_nr_running(rq, h_nr_queued);
7046 
7047 	/* balance early to pull high priority tasks */
7048 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7049 		rq->next_balance = jiffies;
7050 
7051 	if (p && task_delayed) {
7052 		WARN_ON_ONCE(!task_sleep);
7053 		WARN_ON_ONCE(p->on_rq != 1);
7054 
7055 		/* Fix-up what dequeue_task_fair() skipped */
7056 		hrtick_update(rq);
7057 
7058 		/*
7059 		 * Fix-up what block_task() skipped.
7060 		 *
7061 		 * Must be last, @p might not be valid after this.
7062 		 */
7063 		__block_task(rq, p);
7064 	}
7065 
7066 	return 1;
7067 }
7068 
7069 /*
7070  * The dequeue_task method is called before nr_running is
7071  * decreased. We remove the task from the rbtree and
7072  * update the fair scheduling stats:
7073  */
7074 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7075 {
7076 	if (!p->se.sched_delayed)
7077 		util_est_dequeue(&rq->cfs, p);
7078 
7079 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7080 	if (dequeue_entities(rq, &p->se, flags) < 0)
7081 		return false;
7082 
7083 	/*
7084 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7085 	 */
7086 
7087 	hrtick_update(rq);
7088 	return true;
7089 }
7090 
7091 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7092 {
7093 	return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7094 }
7095 
7096 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7097 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7098 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7099 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7100 
7101 #ifdef CONFIG_NO_HZ_COMMON
7102 
7103 static struct {
7104 	cpumask_var_t idle_cpus_mask;
7105 	atomic_t nr_cpus;
7106 	int has_blocked;		/* Idle CPUS has blocked load */
7107 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7108 	unsigned long next_balance;     /* in jiffy units */
7109 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7110 } nohz ____cacheline_aligned;
7111 
7112 #endif /* CONFIG_NO_HZ_COMMON */
7113 
7114 static unsigned long cpu_load(struct rq *rq)
7115 {
7116 	return cfs_rq_load_avg(&rq->cfs);
7117 }
7118 
7119 /*
7120  * cpu_load_without - compute CPU load without any contributions from *p
7121  * @cpu: the CPU which load is requested
7122  * @p: the task which load should be discounted
7123  *
7124  * The load of a CPU is defined by the load of tasks currently enqueued on that
7125  * CPU as well as tasks which are currently sleeping after an execution on that
7126  * CPU.
7127  *
7128  * This method returns the load of the specified CPU by discounting the load of
7129  * the specified task, whenever the task is currently contributing to the CPU
7130  * load.
7131  */
7132 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7133 {
7134 	struct cfs_rq *cfs_rq;
7135 	unsigned int load;
7136 
7137 	/* Task has no contribution or is new */
7138 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7139 		return cpu_load(rq);
7140 
7141 	cfs_rq = &rq->cfs;
7142 	load = READ_ONCE(cfs_rq->avg.load_avg);
7143 
7144 	/* Discount task's util from CPU's util */
7145 	lsub_positive(&load, task_h_load(p));
7146 
7147 	return load;
7148 }
7149 
7150 static unsigned long cpu_runnable(struct rq *rq)
7151 {
7152 	return cfs_rq_runnable_avg(&rq->cfs);
7153 }
7154 
7155 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7156 {
7157 	struct cfs_rq *cfs_rq;
7158 	unsigned int runnable;
7159 
7160 	/* Task has no contribution or is new */
7161 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7162 		return cpu_runnable(rq);
7163 
7164 	cfs_rq = &rq->cfs;
7165 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7166 
7167 	/* Discount task's runnable from CPU's runnable */
7168 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7169 
7170 	return runnable;
7171 }
7172 
7173 static unsigned long capacity_of(int cpu)
7174 {
7175 	return cpu_rq(cpu)->cpu_capacity;
7176 }
7177 
7178 static void record_wakee(struct task_struct *p)
7179 {
7180 	/*
7181 	 * Only decay a single time; tasks that have less then 1 wakeup per
7182 	 * jiffy will not have built up many flips.
7183 	 */
7184 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7185 		current->wakee_flips >>= 1;
7186 		current->wakee_flip_decay_ts = jiffies;
7187 	}
7188 
7189 	if (current->last_wakee != p) {
7190 		current->last_wakee = p;
7191 		current->wakee_flips++;
7192 	}
7193 }
7194 
7195 /*
7196  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7197  *
7198  * A waker of many should wake a different task than the one last awakened
7199  * at a frequency roughly N times higher than one of its wakees.
7200  *
7201  * In order to determine whether we should let the load spread vs consolidating
7202  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7203  * partner, and a factor of lls_size higher frequency in the other.
7204  *
7205  * With both conditions met, we can be relatively sure that the relationship is
7206  * non-monogamous, with partner count exceeding socket size.
7207  *
7208  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7209  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7210  * socket size.
7211  */
7212 static int wake_wide(struct task_struct *p)
7213 {
7214 	unsigned int master = current->wakee_flips;
7215 	unsigned int slave = p->wakee_flips;
7216 	int factor = __this_cpu_read(sd_llc_size);
7217 
7218 	if (master < slave)
7219 		swap(master, slave);
7220 	if (slave < factor || master < slave * factor)
7221 		return 0;
7222 	return 1;
7223 }
7224 
7225 /*
7226  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7227  * soonest. For the purpose of speed we only consider the waking and previous
7228  * CPU.
7229  *
7230  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7231  *			cache-affine and is (or	will be) idle.
7232  *
7233  * wake_affine_weight() - considers the weight to reflect the average
7234  *			  scheduling latency of the CPUs. This seems to work
7235  *			  for the overloaded case.
7236  */
7237 static int
7238 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7239 {
7240 	/*
7241 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7242 	 * context. Only allow the move if cache is shared. Otherwise an
7243 	 * interrupt intensive workload could force all tasks onto one
7244 	 * node depending on the IO topology or IRQ affinity settings.
7245 	 *
7246 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7247 	 * There is no guarantee that the cache hot data from an interrupt
7248 	 * is more important than cache hot data on the prev_cpu and from
7249 	 * a cpufreq perspective, it's better to have higher utilisation
7250 	 * on one CPU.
7251 	 */
7252 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7253 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7254 
7255 	if (sync) {
7256 		struct rq *rq = cpu_rq(this_cpu);
7257 
7258 		if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7259 			return this_cpu;
7260 	}
7261 
7262 	if (available_idle_cpu(prev_cpu))
7263 		return prev_cpu;
7264 
7265 	return nr_cpumask_bits;
7266 }
7267 
7268 static int
7269 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7270 		   int this_cpu, int prev_cpu, int sync)
7271 {
7272 	s64 this_eff_load, prev_eff_load;
7273 	unsigned long task_load;
7274 
7275 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7276 
7277 	if (sync) {
7278 		unsigned long current_load = task_h_load(current);
7279 
7280 		if (current_load > this_eff_load)
7281 			return this_cpu;
7282 
7283 		this_eff_load -= current_load;
7284 	}
7285 
7286 	task_load = task_h_load(p);
7287 
7288 	this_eff_load += task_load;
7289 	if (sched_feat(WA_BIAS))
7290 		this_eff_load *= 100;
7291 	this_eff_load *= capacity_of(prev_cpu);
7292 
7293 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7294 	prev_eff_load -= task_load;
7295 	if (sched_feat(WA_BIAS))
7296 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7297 	prev_eff_load *= capacity_of(this_cpu);
7298 
7299 	/*
7300 	 * If sync, adjust the weight of prev_eff_load such that if
7301 	 * prev_eff == this_eff that select_idle_sibling() will consider
7302 	 * stacking the wakee on top of the waker if no other CPU is
7303 	 * idle.
7304 	 */
7305 	if (sync)
7306 		prev_eff_load += 1;
7307 
7308 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7309 }
7310 
7311 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7312 		       int this_cpu, int prev_cpu, int sync)
7313 {
7314 	int target = nr_cpumask_bits;
7315 
7316 	if (sched_feat(WA_IDLE))
7317 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7318 
7319 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7320 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7321 
7322 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7323 	if (target != this_cpu)
7324 		return prev_cpu;
7325 
7326 	schedstat_inc(sd->ttwu_move_affine);
7327 	schedstat_inc(p->stats.nr_wakeups_affine);
7328 	return target;
7329 }
7330 
7331 static struct sched_group *
7332 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7333 
7334 /*
7335  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7336  */
7337 static int
7338 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7339 {
7340 	unsigned long load, min_load = ULONG_MAX;
7341 	unsigned int min_exit_latency = UINT_MAX;
7342 	u64 latest_idle_timestamp = 0;
7343 	int least_loaded_cpu = this_cpu;
7344 	int shallowest_idle_cpu = -1;
7345 	int i;
7346 
7347 	/* Check if we have any choice: */
7348 	if (group->group_weight == 1)
7349 		return cpumask_first(sched_group_span(group));
7350 
7351 	/* Traverse only the allowed CPUs */
7352 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7353 		struct rq *rq = cpu_rq(i);
7354 
7355 		if (!sched_core_cookie_match(rq, p))
7356 			continue;
7357 
7358 		if (sched_idle_cpu(i))
7359 			return i;
7360 
7361 		if (available_idle_cpu(i)) {
7362 			struct cpuidle_state *idle = idle_get_state(rq);
7363 			if (idle && idle->exit_latency < min_exit_latency) {
7364 				/*
7365 				 * We give priority to a CPU whose idle state
7366 				 * has the smallest exit latency irrespective
7367 				 * of any idle timestamp.
7368 				 */
7369 				min_exit_latency = idle->exit_latency;
7370 				latest_idle_timestamp = rq->idle_stamp;
7371 				shallowest_idle_cpu = i;
7372 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7373 				   rq->idle_stamp > latest_idle_timestamp) {
7374 				/*
7375 				 * If equal or no active idle state, then
7376 				 * the most recently idled CPU might have
7377 				 * a warmer cache.
7378 				 */
7379 				latest_idle_timestamp = rq->idle_stamp;
7380 				shallowest_idle_cpu = i;
7381 			}
7382 		} else if (shallowest_idle_cpu == -1) {
7383 			load = cpu_load(cpu_rq(i));
7384 			if (load < min_load) {
7385 				min_load = load;
7386 				least_loaded_cpu = i;
7387 			}
7388 		}
7389 	}
7390 
7391 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7392 }
7393 
7394 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7395 				  int cpu, int prev_cpu, int sd_flag)
7396 {
7397 	int new_cpu = cpu;
7398 
7399 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7400 		return prev_cpu;
7401 
7402 	/*
7403 	 * We need task's util for cpu_util_without, sync it up to
7404 	 * prev_cpu's last_update_time.
7405 	 */
7406 	if (!(sd_flag & SD_BALANCE_FORK))
7407 		sync_entity_load_avg(&p->se);
7408 
7409 	while (sd) {
7410 		struct sched_group *group;
7411 		struct sched_domain *tmp;
7412 		int weight;
7413 
7414 		if (!(sd->flags & sd_flag)) {
7415 			sd = sd->child;
7416 			continue;
7417 		}
7418 
7419 		group = sched_balance_find_dst_group(sd, p, cpu);
7420 		if (!group) {
7421 			sd = sd->child;
7422 			continue;
7423 		}
7424 
7425 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7426 		if (new_cpu == cpu) {
7427 			/* Now try balancing at a lower domain level of 'cpu': */
7428 			sd = sd->child;
7429 			continue;
7430 		}
7431 
7432 		/* Now try balancing at a lower domain level of 'new_cpu': */
7433 		cpu = new_cpu;
7434 		weight = sd->span_weight;
7435 		sd = NULL;
7436 		for_each_domain(cpu, tmp) {
7437 			if (weight <= tmp->span_weight)
7438 				break;
7439 			if (tmp->flags & sd_flag)
7440 				sd = tmp;
7441 		}
7442 	}
7443 
7444 	return new_cpu;
7445 }
7446 
7447 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7448 {
7449 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7450 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7451 		return cpu;
7452 
7453 	return -1;
7454 }
7455 
7456 #ifdef CONFIG_SCHED_SMT
7457 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7458 EXPORT_SYMBOL_GPL(sched_smt_present);
7459 
7460 static inline void set_idle_cores(int cpu, int val)
7461 {
7462 	struct sched_domain_shared *sds;
7463 
7464 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7465 	if (sds)
7466 		WRITE_ONCE(sds->has_idle_cores, val);
7467 }
7468 
7469 static inline bool test_idle_cores(int cpu)
7470 {
7471 	struct sched_domain_shared *sds;
7472 
7473 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7474 	if (sds)
7475 		return READ_ONCE(sds->has_idle_cores);
7476 
7477 	return false;
7478 }
7479 
7480 /*
7481  * Scans the local SMT mask to see if the entire core is idle, and records this
7482  * information in sd_llc_shared->has_idle_cores.
7483  *
7484  * Since SMT siblings share all cache levels, inspecting this limited remote
7485  * state should be fairly cheap.
7486  */
7487 void __update_idle_core(struct rq *rq)
7488 {
7489 	int core = cpu_of(rq);
7490 	int cpu;
7491 
7492 	rcu_read_lock();
7493 	if (test_idle_cores(core))
7494 		goto unlock;
7495 
7496 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7497 		if (cpu == core)
7498 			continue;
7499 
7500 		if (!available_idle_cpu(cpu))
7501 			goto unlock;
7502 	}
7503 
7504 	set_idle_cores(core, 1);
7505 unlock:
7506 	rcu_read_unlock();
7507 }
7508 
7509 /*
7510  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7511  * there are no idle cores left in the system; tracked through
7512  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7513  */
7514 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7515 {
7516 	bool idle = true;
7517 	int cpu;
7518 
7519 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7520 		if (!available_idle_cpu(cpu)) {
7521 			idle = false;
7522 			if (*idle_cpu == -1) {
7523 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7524 					*idle_cpu = cpu;
7525 					break;
7526 				}
7527 				continue;
7528 			}
7529 			break;
7530 		}
7531 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7532 			*idle_cpu = cpu;
7533 	}
7534 
7535 	if (idle)
7536 		return core;
7537 
7538 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7539 	return -1;
7540 }
7541 
7542 /*
7543  * Scan the local SMT mask for idle CPUs.
7544  */
7545 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7546 {
7547 	int cpu;
7548 
7549 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7550 		if (cpu == target)
7551 			continue;
7552 		/*
7553 		 * Check if the CPU is in the LLC scheduling domain of @target.
7554 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7555 		 */
7556 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7557 			continue;
7558 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7559 			return cpu;
7560 	}
7561 
7562 	return -1;
7563 }
7564 
7565 #else /* !CONFIG_SCHED_SMT: */
7566 
7567 static inline void set_idle_cores(int cpu, int val)
7568 {
7569 }
7570 
7571 static inline bool test_idle_cores(int cpu)
7572 {
7573 	return false;
7574 }
7575 
7576 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7577 {
7578 	return __select_idle_cpu(core, p);
7579 }
7580 
7581 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7582 {
7583 	return -1;
7584 }
7585 
7586 #endif /* !CONFIG_SCHED_SMT */
7587 
7588 /*
7589  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7590  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7591  * average idle time for this rq (as found in rq->avg_idle).
7592  */
7593 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7594 {
7595 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7596 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7597 	struct sched_domain_shared *sd_share;
7598 
7599 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7600 
7601 	if (sched_feat(SIS_UTIL)) {
7602 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7603 		if (sd_share) {
7604 			/* because !--nr is the condition to stop scan */
7605 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7606 			/* overloaded LLC is unlikely to have idle cpu/core */
7607 			if (nr == 1)
7608 				return -1;
7609 		}
7610 	}
7611 
7612 	if (static_branch_unlikely(&sched_cluster_active)) {
7613 		struct sched_group *sg = sd->groups;
7614 
7615 		if (sg->flags & SD_CLUSTER) {
7616 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7617 				if (!cpumask_test_cpu(cpu, cpus))
7618 					continue;
7619 
7620 				if (has_idle_core) {
7621 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7622 					if ((unsigned int)i < nr_cpumask_bits)
7623 						return i;
7624 				} else {
7625 					if (--nr <= 0)
7626 						return -1;
7627 					idle_cpu = __select_idle_cpu(cpu, p);
7628 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7629 						return idle_cpu;
7630 				}
7631 			}
7632 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7633 		}
7634 	}
7635 
7636 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7637 		if (has_idle_core) {
7638 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7639 			if ((unsigned int)i < nr_cpumask_bits)
7640 				return i;
7641 
7642 		} else {
7643 			if (--nr <= 0)
7644 				return -1;
7645 			idle_cpu = __select_idle_cpu(cpu, p);
7646 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7647 				break;
7648 		}
7649 	}
7650 
7651 	if (has_idle_core)
7652 		set_idle_cores(target, false);
7653 
7654 	return idle_cpu;
7655 }
7656 
7657 /*
7658  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7659  * the task fits. If no CPU is big enough, but there are idle ones, try to
7660  * maximize capacity.
7661  */
7662 static int
7663 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7664 {
7665 	unsigned long task_util, util_min, util_max, best_cap = 0;
7666 	int fits, best_fits = 0;
7667 	int cpu, best_cpu = -1;
7668 	struct cpumask *cpus;
7669 
7670 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7671 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7672 
7673 	task_util = task_util_est(p);
7674 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7675 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7676 
7677 	for_each_cpu_wrap(cpu, cpus, target) {
7678 		unsigned long cpu_cap = capacity_of(cpu);
7679 
7680 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7681 			continue;
7682 
7683 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7684 
7685 		/* This CPU fits with all requirements */
7686 		if (fits > 0)
7687 			return cpu;
7688 		/*
7689 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7690 		 * Look for the CPU with best capacity.
7691 		 */
7692 		else if (fits < 0)
7693 			cpu_cap = get_actual_cpu_capacity(cpu);
7694 
7695 		/*
7696 		 * First, select CPU which fits better (-1 being better than 0).
7697 		 * Then, select the one with best capacity at same level.
7698 		 */
7699 		if ((fits < best_fits) ||
7700 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7701 			best_cap = cpu_cap;
7702 			best_cpu = cpu;
7703 			best_fits = fits;
7704 		}
7705 	}
7706 
7707 	return best_cpu;
7708 }
7709 
7710 static inline bool asym_fits_cpu(unsigned long util,
7711 				 unsigned long util_min,
7712 				 unsigned long util_max,
7713 				 int cpu)
7714 {
7715 	if (sched_asym_cpucap_active())
7716 		/*
7717 		 * Return true only if the cpu fully fits the task requirements
7718 		 * which include the utilization and the performance hints.
7719 		 */
7720 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7721 
7722 	return true;
7723 }
7724 
7725 /*
7726  * Try and locate an idle core/thread in the LLC cache domain.
7727  */
7728 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7729 {
7730 	bool has_idle_core = false;
7731 	struct sched_domain *sd;
7732 	unsigned long task_util, util_min, util_max;
7733 	int i, recent_used_cpu, prev_aff = -1;
7734 
7735 	/*
7736 	 * On asymmetric system, update task utilization because we will check
7737 	 * that the task fits with CPU's capacity.
7738 	 */
7739 	if (sched_asym_cpucap_active()) {
7740 		sync_entity_load_avg(&p->se);
7741 		task_util = task_util_est(p);
7742 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7743 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7744 	}
7745 
7746 	/*
7747 	 * per-cpu select_rq_mask usage
7748 	 */
7749 	lockdep_assert_irqs_disabled();
7750 
7751 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7752 	    asym_fits_cpu(task_util, util_min, util_max, target))
7753 		return target;
7754 
7755 	/*
7756 	 * If the previous CPU is cache affine and idle, don't be stupid:
7757 	 */
7758 	if (prev != target && cpus_share_cache(prev, target) &&
7759 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7760 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7761 
7762 		if (!static_branch_unlikely(&sched_cluster_active) ||
7763 		    cpus_share_resources(prev, target))
7764 			return prev;
7765 
7766 		prev_aff = prev;
7767 	}
7768 
7769 	/*
7770 	 * Allow a per-cpu kthread to stack with the wakee if the
7771 	 * kworker thread and the tasks previous CPUs are the same.
7772 	 * The assumption is that the wakee queued work for the
7773 	 * per-cpu kthread that is now complete and the wakeup is
7774 	 * essentially a sync wakeup. An obvious example of this
7775 	 * pattern is IO completions.
7776 	 */
7777 	if (is_per_cpu_kthread(current) &&
7778 	    in_task() &&
7779 	    prev == smp_processor_id() &&
7780 	    this_rq()->nr_running <= 1 &&
7781 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7782 		return prev;
7783 	}
7784 
7785 	/* Check a recently used CPU as a potential idle candidate: */
7786 	recent_used_cpu = p->recent_used_cpu;
7787 	p->recent_used_cpu = prev;
7788 	if (recent_used_cpu != prev &&
7789 	    recent_used_cpu != target &&
7790 	    cpus_share_cache(recent_used_cpu, target) &&
7791 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7792 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7793 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7794 
7795 		if (!static_branch_unlikely(&sched_cluster_active) ||
7796 		    cpus_share_resources(recent_used_cpu, target))
7797 			return recent_used_cpu;
7798 
7799 	} else {
7800 		recent_used_cpu = -1;
7801 	}
7802 
7803 	/*
7804 	 * For asymmetric CPU capacity systems, our domain of interest is
7805 	 * sd_asym_cpucapacity rather than sd_llc.
7806 	 */
7807 	if (sched_asym_cpucap_active()) {
7808 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7809 		/*
7810 		 * On an asymmetric CPU capacity system where an exclusive
7811 		 * cpuset defines a symmetric island (i.e. one unique
7812 		 * capacity_orig value through the cpuset), the key will be set
7813 		 * but the CPUs within that cpuset will not have a domain with
7814 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7815 		 * capacity path.
7816 		 */
7817 		if (sd) {
7818 			i = select_idle_capacity(p, sd, target);
7819 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7820 		}
7821 	}
7822 
7823 	sd = rcu_dereference(per_cpu(sd_llc, target));
7824 	if (!sd)
7825 		return target;
7826 
7827 	if (sched_smt_active()) {
7828 		has_idle_core = test_idle_cores(target);
7829 
7830 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7831 			i = select_idle_smt(p, sd, prev);
7832 			if ((unsigned int)i < nr_cpumask_bits)
7833 				return i;
7834 		}
7835 	}
7836 
7837 	i = select_idle_cpu(p, sd, has_idle_core, target);
7838 	if ((unsigned)i < nr_cpumask_bits)
7839 		return i;
7840 
7841 	/*
7842 	 * For cluster machines which have lower sharing cache like L2 or
7843 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7844 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7845 	 * use them if possible when no idle CPU found in select_idle_cpu().
7846 	 */
7847 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7848 		return prev_aff;
7849 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7850 		return recent_used_cpu;
7851 
7852 	return target;
7853 }
7854 
7855 /**
7856  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7857  * @cpu: the CPU to get the utilization for
7858  * @p: task for which the CPU utilization should be predicted or NULL
7859  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7860  * @boost: 1 to enable boosting, otherwise 0
7861  *
7862  * The unit of the return value must be the same as the one of CPU capacity
7863  * so that CPU utilization can be compared with CPU capacity.
7864  *
7865  * CPU utilization is the sum of running time of runnable tasks plus the
7866  * recent utilization of currently non-runnable tasks on that CPU.
7867  * It represents the amount of CPU capacity currently used by CFS tasks in
7868  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7869  * capacity at f_max.
7870  *
7871  * The estimated CPU utilization is defined as the maximum between CPU
7872  * utilization and sum of the estimated utilization of the currently
7873  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7874  * previously-executed tasks, which helps better deduce how busy a CPU will
7875  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7876  * of such a task would be significantly decayed at this point of time.
7877  *
7878  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7879  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7880  * utilization. Boosting is implemented in cpu_util() so that internal
7881  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7882  * latter via cpu_util_cfs_boost().
7883  *
7884  * CPU utilization can be higher than the current CPU capacity
7885  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7886  * of rounding errors as well as task migrations or wakeups of new tasks.
7887  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7888  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7889  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7890  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7891  * though since this is useful for predicting the CPU capacity required
7892  * after task migrations (scheduler-driven DVFS).
7893  *
7894  * Return: (Boosted) (estimated) utilization for the specified CPU.
7895  */
7896 static unsigned long
7897 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7898 {
7899 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7900 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7901 	unsigned long runnable;
7902 
7903 	if (boost) {
7904 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7905 		util = max(util, runnable);
7906 	}
7907 
7908 	/*
7909 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7910 	 * contribution. If @p migrates from another CPU to @cpu add its
7911 	 * contribution. In all the other cases @cpu is not impacted by the
7912 	 * migration so its util_avg is already correct.
7913 	 */
7914 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7915 		lsub_positive(&util, task_util(p));
7916 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7917 		util += task_util(p);
7918 
7919 	if (sched_feat(UTIL_EST)) {
7920 		unsigned long util_est;
7921 
7922 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7923 
7924 		/*
7925 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7926 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7927 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7928 		 * has been enqueued.
7929 		 *
7930 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7931 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7932 		 * Remove it to "simulate" cpu_util without @p's contribution.
7933 		 *
7934 		 * Despite the task_on_rq_queued(@p) check there is still a
7935 		 * small window for a possible race when an exec
7936 		 * select_task_rq_fair() races with LB's detach_task().
7937 		 *
7938 		 *   detach_task()
7939 		 *     deactivate_task()
7940 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7941 		 *       -------------------------------- A
7942 		 *       dequeue_task()                    \
7943 		 *         dequeue_task_fair()              + Race Time
7944 		 *           util_est_dequeue()            /
7945 		 *       -------------------------------- B
7946 		 *
7947 		 * The additional check "current == p" is required to further
7948 		 * reduce the race window.
7949 		 */
7950 		if (dst_cpu == cpu)
7951 			util_est += _task_util_est(p);
7952 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7953 			lsub_positive(&util_est, _task_util_est(p));
7954 
7955 		util = max(util, util_est);
7956 	}
7957 
7958 	return min(util, arch_scale_cpu_capacity(cpu));
7959 }
7960 
7961 unsigned long cpu_util_cfs(int cpu)
7962 {
7963 	return cpu_util(cpu, NULL, -1, 0);
7964 }
7965 
7966 unsigned long cpu_util_cfs_boost(int cpu)
7967 {
7968 	return cpu_util(cpu, NULL, -1, 1);
7969 }
7970 
7971 /*
7972  * cpu_util_without: compute cpu utilization without any contributions from *p
7973  * @cpu: the CPU which utilization is requested
7974  * @p: the task which utilization should be discounted
7975  *
7976  * The utilization of a CPU is defined by the utilization of tasks currently
7977  * enqueued on that CPU as well as tasks which are currently sleeping after an
7978  * execution on that CPU.
7979  *
7980  * This method returns the utilization of the specified CPU by discounting the
7981  * utilization of the specified task, whenever the task is currently
7982  * contributing to the CPU utilization.
7983  */
7984 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7985 {
7986 	/* Task has no contribution or is new */
7987 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7988 		p = NULL;
7989 
7990 	return cpu_util(cpu, p, -1, 0);
7991 }
7992 
7993 /*
7994  * This function computes an effective utilization for the given CPU, to be
7995  * used for frequency selection given the linear relation: f = u * f_max.
7996  *
7997  * The scheduler tracks the following metrics:
7998  *
7999  *   cpu_util_{cfs,rt,dl,irq}()
8000  *   cpu_bw_dl()
8001  *
8002  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8003  * synchronized windows and are thus directly comparable.
8004  *
8005  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8006  * which excludes things like IRQ and steal-time. These latter are then accrued
8007  * in the IRQ utilization.
8008  *
8009  * The DL bandwidth number OTOH is not a measured metric but a value computed
8010  * based on the task model parameters and gives the minimal utilization
8011  * required to meet deadlines.
8012  */
8013 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8014 				 unsigned long *min,
8015 				 unsigned long *max)
8016 {
8017 	unsigned long util, irq, scale;
8018 	struct rq *rq = cpu_rq(cpu);
8019 
8020 	scale = arch_scale_cpu_capacity(cpu);
8021 
8022 	/*
8023 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8024 	 * because of inaccuracies in how we track these -- see
8025 	 * update_irq_load_avg().
8026 	 */
8027 	irq = cpu_util_irq(rq);
8028 	if (unlikely(irq >= scale)) {
8029 		if (min)
8030 			*min = scale;
8031 		if (max)
8032 			*max = scale;
8033 		return scale;
8034 	}
8035 
8036 	if (min) {
8037 		/*
8038 		 * The minimum utilization returns the highest level between:
8039 		 * - the computed DL bandwidth needed with the IRQ pressure which
8040 		 *   steals time to the deadline task.
8041 		 * - The minimum performance requirement for CFS and/or RT.
8042 		 */
8043 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8044 
8045 		/*
8046 		 * When an RT task is runnable and uclamp is not used, we must
8047 		 * ensure that the task will run at maximum compute capacity.
8048 		 */
8049 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8050 			*min = max(*min, scale);
8051 	}
8052 
8053 	/*
8054 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8055 	 * CFS tasks and we use the same metric to track the effective
8056 	 * utilization (PELT windows are synchronized) we can directly add them
8057 	 * to obtain the CPU's actual utilization.
8058 	 */
8059 	util = util_cfs + cpu_util_rt(rq);
8060 	util += cpu_util_dl(rq);
8061 
8062 	/*
8063 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8064 	 * than the actual utilization because of uclamp_max requirements.
8065 	 */
8066 	if (max)
8067 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8068 
8069 	if (util >= scale)
8070 		return scale;
8071 
8072 	/*
8073 	 * There is still idle time; further improve the number by using the
8074 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8075 	 * need to scale the task numbers:
8076 	 *
8077 	 *              max - irq
8078 	 *   U' = irq + --------- * U
8079 	 *                 max
8080 	 */
8081 	util = scale_irq_capacity(util, irq, scale);
8082 	util += irq;
8083 
8084 	return min(scale, util);
8085 }
8086 
8087 unsigned long sched_cpu_util(int cpu)
8088 {
8089 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8090 }
8091 
8092 /*
8093  * energy_env - Utilization landscape for energy estimation.
8094  * @task_busy_time: Utilization contribution by the task for which we test the
8095  *                  placement. Given by eenv_task_busy_time().
8096  * @pd_busy_time:   Utilization of the whole perf domain without the task
8097  *                  contribution. Given by eenv_pd_busy_time().
8098  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8099  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8100  */
8101 struct energy_env {
8102 	unsigned long task_busy_time;
8103 	unsigned long pd_busy_time;
8104 	unsigned long cpu_cap;
8105 	unsigned long pd_cap;
8106 };
8107 
8108 /*
8109  * Compute the task busy time for compute_energy(). This time cannot be
8110  * injected directly into effective_cpu_util() because of the IRQ scaling.
8111  * The latter only makes sense with the most recent CPUs where the task has
8112  * run.
8113  */
8114 static inline void eenv_task_busy_time(struct energy_env *eenv,
8115 				       struct task_struct *p, int prev_cpu)
8116 {
8117 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8118 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8119 
8120 	if (unlikely(irq >= max_cap))
8121 		busy_time = max_cap;
8122 	else
8123 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8124 
8125 	eenv->task_busy_time = busy_time;
8126 }
8127 
8128 /*
8129  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8130  * utilization for each @pd_cpus, it however doesn't take into account
8131  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8132  * scale the EM reported power consumption at the (eventually clamped)
8133  * cpu_capacity.
8134  *
8135  * The contribution of the task @p for which we want to estimate the
8136  * energy cost is removed (by cpu_util()) and must be calculated
8137  * separately (see eenv_task_busy_time). This ensures:
8138  *
8139  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8140  *     the task on.
8141  *
8142  *   - A fair comparison between CPUs as the task contribution (task_util())
8143  *     will always be the same no matter which CPU utilization we rely on
8144  *     (util_avg or util_est).
8145  *
8146  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8147  * exceed @eenv->pd_cap.
8148  */
8149 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8150 				     struct cpumask *pd_cpus,
8151 				     struct task_struct *p)
8152 {
8153 	unsigned long busy_time = 0;
8154 	int cpu;
8155 
8156 	for_each_cpu(cpu, pd_cpus) {
8157 		unsigned long util = cpu_util(cpu, p, -1, 0);
8158 
8159 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8160 	}
8161 
8162 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8163 }
8164 
8165 /*
8166  * Compute the maximum utilization for compute_energy() when the task @p
8167  * is placed on the cpu @dst_cpu.
8168  *
8169  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8170  * exceed @eenv->cpu_cap.
8171  */
8172 static inline unsigned long
8173 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8174 		 struct task_struct *p, int dst_cpu)
8175 {
8176 	unsigned long max_util = 0;
8177 	int cpu;
8178 
8179 	for_each_cpu(cpu, pd_cpus) {
8180 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8181 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8182 		unsigned long eff_util, min, max;
8183 
8184 		/*
8185 		 * Performance domain frequency: utilization clamping
8186 		 * must be considered since it affects the selection
8187 		 * of the performance domain frequency.
8188 		 * NOTE: in case RT tasks are running, by default the min
8189 		 * utilization can be max OPP.
8190 		 */
8191 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8192 
8193 		/* Task's uclamp can modify min and max value */
8194 		if (tsk && uclamp_is_used()) {
8195 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8196 
8197 			/*
8198 			 * If there is no active max uclamp constraint,
8199 			 * directly use task's one, otherwise keep max.
8200 			 */
8201 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8202 				max = uclamp_eff_value(p, UCLAMP_MAX);
8203 			else
8204 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8205 		}
8206 
8207 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8208 		max_util = max(max_util, eff_util);
8209 	}
8210 
8211 	return min(max_util, eenv->cpu_cap);
8212 }
8213 
8214 /*
8215  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8216  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8217  * contribution is ignored.
8218  */
8219 static inline unsigned long
8220 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8221 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8222 {
8223 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8224 	unsigned long busy_time = eenv->pd_busy_time;
8225 	unsigned long energy;
8226 
8227 	if (dst_cpu >= 0)
8228 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8229 
8230 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8231 
8232 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8233 
8234 	return energy;
8235 }
8236 
8237 /*
8238  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8239  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8240  * spare capacity in each performance domain and uses it as a potential
8241  * candidate to execute the task. Then, it uses the Energy Model to figure
8242  * out which of the CPU candidates is the most energy-efficient.
8243  *
8244  * The rationale for this heuristic is as follows. In a performance domain,
8245  * all the most energy efficient CPU candidates (according to the Energy
8246  * Model) are those for which we'll request a low frequency. When there are
8247  * several CPUs for which the frequency request will be the same, we don't
8248  * have enough data to break the tie between them, because the Energy Model
8249  * only includes active power costs. With this model, if we assume that
8250  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8251  * the maximum spare capacity in a performance domain is guaranteed to be among
8252  * the best candidates of the performance domain.
8253  *
8254  * In practice, it could be preferable from an energy standpoint to pack
8255  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8256  * but that could also hurt our chances to go cluster idle, and we have no
8257  * ways to tell with the current Energy Model if this is actually a good
8258  * idea or not. So, find_energy_efficient_cpu() basically favors
8259  * cluster-packing, and spreading inside a cluster. That should at least be
8260  * a good thing for latency, and this is consistent with the idea that most
8261  * of the energy savings of EAS come from the asymmetry of the system, and
8262  * not so much from breaking the tie between identical CPUs. That's also the
8263  * reason why EAS is enabled in the topology code only for systems where
8264  * SD_ASYM_CPUCAPACITY is set.
8265  *
8266  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8267  * they don't have any useful utilization data yet and it's not possible to
8268  * forecast their impact on energy consumption. Consequently, they will be
8269  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8270  * to be energy-inefficient in some use-cases. The alternative would be to
8271  * bias new tasks towards specific types of CPUs first, or to try to infer
8272  * their util_avg from the parent task, but those heuristics could hurt
8273  * other use-cases too. So, until someone finds a better way to solve this,
8274  * let's keep things simple by re-using the existing slow path.
8275  */
8276 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8277 {
8278 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8279 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8280 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8281 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8282 	struct root_domain *rd = this_rq()->rd;
8283 	int cpu, best_energy_cpu, target = -1;
8284 	int prev_fits = -1, best_fits = -1;
8285 	unsigned long best_actual_cap = 0;
8286 	unsigned long prev_actual_cap = 0;
8287 	struct sched_domain *sd;
8288 	struct perf_domain *pd;
8289 	struct energy_env eenv;
8290 
8291 	rcu_read_lock();
8292 	pd = rcu_dereference(rd->pd);
8293 	if (!pd)
8294 		goto unlock;
8295 
8296 	/*
8297 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8298 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8299 	 */
8300 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8301 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8302 		sd = sd->parent;
8303 	if (!sd)
8304 		goto unlock;
8305 
8306 	target = prev_cpu;
8307 
8308 	sync_entity_load_avg(&p->se);
8309 	if (!task_util_est(p) && p_util_min == 0)
8310 		goto unlock;
8311 
8312 	eenv_task_busy_time(&eenv, p, prev_cpu);
8313 
8314 	for (; pd; pd = pd->next) {
8315 		unsigned long util_min = p_util_min, util_max = p_util_max;
8316 		unsigned long cpu_cap, cpu_actual_cap, util;
8317 		long prev_spare_cap = -1, max_spare_cap = -1;
8318 		unsigned long rq_util_min, rq_util_max;
8319 		unsigned long cur_delta, base_energy;
8320 		int max_spare_cap_cpu = -1;
8321 		int fits, max_fits = -1;
8322 
8323 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8324 
8325 		if (cpumask_empty(cpus))
8326 			continue;
8327 
8328 		/* Account external pressure for the energy estimation */
8329 		cpu = cpumask_first(cpus);
8330 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8331 
8332 		eenv.cpu_cap = cpu_actual_cap;
8333 		eenv.pd_cap = 0;
8334 
8335 		for_each_cpu(cpu, cpus) {
8336 			struct rq *rq = cpu_rq(cpu);
8337 
8338 			eenv.pd_cap += cpu_actual_cap;
8339 
8340 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8341 				continue;
8342 
8343 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8344 				continue;
8345 
8346 			util = cpu_util(cpu, p, cpu, 0);
8347 			cpu_cap = capacity_of(cpu);
8348 
8349 			/*
8350 			 * Skip CPUs that cannot satisfy the capacity request.
8351 			 * IOW, placing the task there would make the CPU
8352 			 * overutilized. Take uclamp into account to see how
8353 			 * much capacity we can get out of the CPU; this is
8354 			 * aligned with sched_cpu_util().
8355 			 */
8356 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8357 				/*
8358 				 * Open code uclamp_rq_util_with() except for
8359 				 * the clamp() part. I.e.: apply max aggregation
8360 				 * only. util_fits_cpu() logic requires to
8361 				 * operate on non clamped util but must use the
8362 				 * max-aggregated uclamp_{min, max}.
8363 				 */
8364 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8365 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8366 
8367 				util_min = max(rq_util_min, p_util_min);
8368 				util_max = max(rq_util_max, p_util_max);
8369 			}
8370 
8371 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8372 			if (!fits)
8373 				continue;
8374 
8375 			lsub_positive(&cpu_cap, util);
8376 
8377 			if (cpu == prev_cpu) {
8378 				/* Always use prev_cpu as a candidate. */
8379 				prev_spare_cap = cpu_cap;
8380 				prev_fits = fits;
8381 			} else if ((fits > max_fits) ||
8382 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8383 				/*
8384 				 * Find the CPU with the maximum spare capacity
8385 				 * among the remaining CPUs in the performance
8386 				 * domain.
8387 				 */
8388 				max_spare_cap = cpu_cap;
8389 				max_spare_cap_cpu = cpu;
8390 				max_fits = fits;
8391 			}
8392 		}
8393 
8394 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8395 			continue;
8396 
8397 		eenv_pd_busy_time(&eenv, cpus, p);
8398 		/* Compute the 'base' energy of the pd, without @p */
8399 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8400 
8401 		/* Evaluate the energy impact of using prev_cpu. */
8402 		if (prev_spare_cap > -1) {
8403 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8404 						    prev_cpu);
8405 			/* CPU utilization has changed */
8406 			if (prev_delta < base_energy)
8407 				goto unlock;
8408 			prev_delta -= base_energy;
8409 			prev_actual_cap = cpu_actual_cap;
8410 			best_delta = min(best_delta, prev_delta);
8411 		}
8412 
8413 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8414 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8415 			/* Current best energy cpu fits better */
8416 			if (max_fits < best_fits)
8417 				continue;
8418 
8419 			/*
8420 			 * Both don't fit performance hint (i.e. uclamp_min)
8421 			 * but best energy cpu has better capacity.
8422 			 */
8423 			if ((max_fits < 0) &&
8424 			    (cpu_actual_cap <= best_actual_cap))
8425 				continue;
8426 
8427 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8428 						   max_spare_cap_cpu);
8429 			/* CPU utilization has changed */
8430 			if (cur_delta < base_energy)
8431 				goto unlock;
8432 			cur_delta -= base_energy;
8433 
8434 			/*
8435 			 * Both fit for the task but best energy cpu has lower
8436 			 * energy impact.
8437 			 */
8438 			if ((max_fits > 0) && (best_fits > 0) &&
8439 			    (cur_delta >= best_delta))
8440 				continue;
8441 
8442 			best_delta = cur_delta;
8443 			best_energy_cpu = max_spare_cap_cpu;
8444 			best_fits = max_fits;
8445 			best_actual_cap = cpu_actual_cap;
8446 		}
8447 	}
8448 	rcu_read_unlock();
8449 
8450 	if ((best_fits > prev_fits) ||
8451 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8452 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8453 		target = best_energy_cpu;
8454 
8455 	return target;
8456 
8457 unlock:
8458 	rcu_read_unlock();
8459 
8460 	return target;
8461 }
8462 
8463 /*
8464  * select_task_rq_fair: Select target runqueue for the waking task in domains
8465  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8466  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8467  *
8468  * Balances load by selecting the idlest CPU in the idlest group, or under
8469  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8470  *
8471  * Returns the target CPU number.
8472  */
8473 static int
8474 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8475 {
8476 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8477 	struct sched_domain *tmp, *sd = NULL;
8478 	int cpu = smp_processor_id();
8479 	int new_cpu = prev_cpu;
8480 	int want_affine = 0;
8481 	/* SD_flags and WF_flags share the first nibble */
8482 	int sd_flag = wake_flags & 0xF;
8483 
8484 	/*
8485 	 * required for stable ->cpus_allowed
8486 	 */
8487 	lockdep_assert_held(&p->pi_lock);
8488 	if (wake_flags & WF_TTWU) {
8489 		record_wakee(p);
8490 
8491 		if ((wake_flags & WF_CURRENT_CPU) &&
8492 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8493 			return cpu;
8494 
8495 		if (!is_rd_overutilized(this_rq()->rd)) {
8496 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8497 			if (new_cpu >= 0)
8498 				return new_cpu;
8499 			new_cpu = prev_cpu;
8500 		}
8501 
8502 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8503 	}
8504 
8505 	rcu_read_lock();
8506 	for_each_domain(cpu, tmp) {
8507 		/*
8508 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8509 		 * cpu is a valid SD_WAKE_AFFINE target.
8510 		 */
8511 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8512 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8513 			if (cpu != prev_cpu)
8514 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8515 
8516 			sd = NULL; /* Prefer wake_affine over balance flags */
8517 			break;
8518 		}
8519 
8520 		/*
8521 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8522 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8523 		 * will usually go to the fast path.
8524 		 */
8525 		if (tmp->flags & sd_flag)
8526 			sd = tmp;
8527 		else if (!want_affine)
8528 			break;
8529 	}
8530 
8531 	if (unlikely(sd)) {
8532 		/* Slow path */
8533 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8534 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8535 		/* Fast path */
8536 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8537 	}
8538 	rcu_read_unlock();
8539 
8540 	return new_cpu;
8541 }
8542 
8543 /*
8544  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8545  * cfs_rq_of(p) references at time of call are still valid and identify the
8546  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8547  */
8548 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8549 {
8550 	struct sched_entity *se = &p->se;
8551 
8552 	if (!task_on_rq_migrating(p)) {
8553 		remove_entity_load_avg(se);
8554 
8555 		/*
8556 		 * Here, the task's PELT values have been updated according to
8557 		 * the current rq's clock. But if that clock hasn't been
8558 		 * updated in a while, a substantial idle time will be missed,
8559 		 * leading to an inflation after wake-up on the new rq.
8560 		 *
8561 		 * Estimate the missing time from the cfs_rq last_update_time
8562 		 * and update sched_avg to improve the PELT continuity after
8563 		 * migration.
8564 		 */
8565 		migrate_se_pelt_lag(se);
8566 	}
8567 
8568 	/* Tell new CPU we are migrated */
8569 	se->avg.last_update_time = 0;
8570 
8571 	update_scan_period(p, new_cpu);
8572 }
8573 
8574 static void task_dead_fair(struct task_struct *p)
8575 {
8576 	struct sched_entity *se = &p->se;
8577 
8578 	if (se->sched_delayed) {
8579 		struct rq_flags rf;
8580 		struct rq *rq;
8581 
8582 		rq = task_rq_lock(p, &rf);
8583 		if (se->sched_delayed) {
8584 			update_rq_clock(rq);
8585 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8586 		}
8587 		task_rq_unlock(rq, p, &rf);
8588 	}
8589 
8590 	remove_entity_load_avg(se);
8591 }
8592 
8593 /*
8594  * Set the max capacity the task is allowed to run at for misfit detection.
8595  */
8596 static void set_task_max_allowed_capacity(struct task_struct *p)
8597 {
8598 	struct asym_cap_data *entry;
8599 
8600 	if (!sched_asym_cpucap_active())
8601 		return;
8602 
8603 	rcu_read_lock();
8604 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8605 		cpumask_t *cpumask;
8606 
8607 		cpumask = cpu_capacity_span(entry);
8608 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8609 			continue;
8610 
8611 		p->max_allowed_capacity = entry->capacity;
8612 		break;
8613 	}
8614 	rcu_read_unlock();
8615 }
8616 
8617 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8618 {
8619 	set_cpus_allowed_common(p, ctx);
8620 	set_task_max_allowed_capacity(p);
8621 }
8622 
8623 static int
8624 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8625 {
8626 	if (sched_fair_runnable(rq))
8627 		return 1;
8628 
8629 	return sched_balance_newidle(rq, rf) != 0;
8630 }
8631 
8632 static void set_next_buddy(struct sched_entity *se)
8633 {
8634 	for_each_sched_entity(se) {
8635 		if (WARN_ON_ONCE(!se->on_rq))
8636 			return;
8637 		if (se_is_idle(se))
8638 			return;
8639 		cfs_rq_of(se)->next = se;
8640 	}
8641 }
8642 
8643 /*
8644  * Preempt the current task with a newly woken task if needed:
8645  */
8646 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8647 {
8648 	struct task_struct *donor = rq->donor;
8649 	struct sched_entity *se = &donor->se, *pse = &p->se;
8650 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8651 	int cse_is_idle, pse_is_idle;
8652 	bool do_preempt_short = false;
8653 
8654 	if (unlikely(se == pse))
8655 		return;
8656 
8657 	/*
8658 	 * This is possible from callers such as attach_tasks(), in which we
8659 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8660 	 * lead to a throttle).  This both saves work and prevents false
8661 	 * next-buddy nomination below.
8662 	 */
8663 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8664 		return;
8665 
8666 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8667 		set_next_buddy(pse);
8668 	}
8669 
8670 	/*
8671 	 * We can come here with TIF_NEED_RESCHED already set from new task
8672 	 * wake up path.
8673 	 *
8674 	 * Note: this also catches the edge-case of curr being in a throttled
8675 	 * group (e.g. via set_curr_task), since update_curr() (in the
8676 	 * enqueue of curr) will have resulted in resched being set.  This
8677 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8678 	 * below.
8679 	 */
8680 	if (test_tsk_need_resched(rq->curr))
8681 		return;
8682 
8683 	if (!sched_feat(WAKEUP_PREEMPTION))
8684 		return;
8685 
8686 	find_matching_se(&se, &pse);
8687 	WARN_ON_ONCE(!pse);
8688 
8689 	cse_is_idle = se_is_idle(se);
8690 	pse_is_idle = se_is_idle(pse);
8691 
8692 	/*
8693 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8694 	 * in the inverse case).
8695 	 */
8696 	if (cse_is_idle && !pse_is_idle) {
8697 		/*
8698 		 * When non-idle entity preempt an idle entity,
8699 		 * don't give idle entity slice protection.
8700 		 */
8701 		do_preempt_short = true;
8702 		goto preempt;
8703 	}
8704 
8705 	if (cse_is_idle != pse_is_idle)
8706 		return;
8707 
8708 	/*
8709 	 * BATCH and IDLE tasks do not preempt others.
8710 	 */
8711 	if (unlikely(!normal_policy(p->policy)))
8712 		return;
8713 
8714 	cfs_rq = cfs_rq_of(se);
8715 	update_curr(cfs_rq);
8716 	/*
8717 	 * If @p has a shorter slice than current and @p is eligible, override
8718 	 * current's slice protection in order to allow preemption.
8719 	 */
8720 	do_preempt_short = sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice);
8721 
8722 	/*
8723 	 * If @p has become the most eligible task, force preemption.
8724 	 */
8725 	if (__pick_eevdf(cfs_rq, !do_preempt_short) == pse)
8726 		goto preempt;
8727 
8728 	if (sched_feat(RUN_TO_PARITY) && do_preempt_short)
8729 		update_protect_slice(cfs_rq, se);
8730 
8731 	return;
8732 
8733 preempt:
8734 	if (do_preempt_short)
8735 		cancel_protect_slice(se);
8736 
8737 	resched_curr_lazy(rq);
8738 }
8739 
8740 static struct task_struct *pick_task_fair(struct rq *rq)
8741 {
8742 	struct sched_entity *se;
8743 	struct cfs_rq *cfs_rq;
8744 
8745 again:
8746 	cfs_rq = &rq->cfs;
8747 	if (!cfs_rq->nr_queued)
8748 		return NULL;
8749 
8750 	do {
8751 		/* Might not have done put_prev_entity() */
8752 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8753 			update_curr(cfs_rq);
8754 
8755 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8756 			goto again;
8757 
8758 		se = pick_next_entity(rq, cfs_rq);
8759 		if (!se)
8760 			goto again;
8761 		cfs_rq = group_cfs_rq(se);
8762 	} while (cfs_rq);
8763 
8764 	return task_of(se);
8765 }
8766 
8767 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8768 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8769 
8770 struct task_struct *
8771 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8772 {
8773 	struct sched_entity *se;
8774 	struct task_struct *p;
8775 	int new_tasks;
8776 
8777 again:
8778 	p = pick_task_fair(rq);
8779 	if (!p)
8780 		goto idle;
8781 	se = &p->se;
8782 
8783 #ifdef CONFIG_FAIR_GROUP_SCHED
8784 	if (prev->sched_class != &fair_sched_class)
8785 		goto simple;
8786 
8787 	__put_prev_set_next_dl_server(rq, prev, p);
8788 
8789 	/*
8790 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8791 	 * likely that a next task is from the same cgroup as the current.
8792 	 *
8793 	 * Therefore attempt to avoid putting and setting the entire cgroup
8794 	 * hierarchy, only change the part that actually changes.
8795 	 *
8796 	 * Since we haven't yet done put_prev_entity and if the selected task
8797 	 * is a different task than we started out with, try and touch the
8798 	 * least amount of cfs_rqs.
8799 	 */
8800 	if (prev != p) {
8801 		struct sched_entity *pse = &prev->se;
8802 		struct cfs_rq *cfs_rq;
8803 
8804 		while (!(cfs_rq = is_same_group(se, pse))) {
8805 			int se_depth = se->depth;
8806 			int pse_depth = pse->depth;
8807 
8808 			if (se_depth <= pse_depth) {
8809 				put_prev_entity(cfs_rq_of(pse), pse);
8810 				pse = parent_entity(pse);
8811 			}
8812 			if (se_depth >= pse_depth) {
8813 				set_next_entity(cfs_rq_of(se), se);
8814 				se = parent_entity(se);
8815 			}
8816 		}
8817 
8818 		put_prev_entity(cfs_rq, pse);
8819 		set_next_entity(cfs_rq, se);
8820 
8821 		__set_next_task_fair(rq, p, true);
8822 	}
8823 
8824 	return p;
8825 
8826 simple:
8827 #endif /* CONFIG_FAIR_GROUP_SCHED */
8828 	put_prev_set_next_task(rq, prev, p);
8829 	return p;
8830 
8831 idle:
8832 	if (!rf)
8833 		return NULL;
8834 
8835 	new_tasks = sched_balance_newidle(rq, rf);
8836 
8837 	/*
8838 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8839 	 * possible for any higher priority task to appear. In that case we
8840 	 * must re-start the pick_next_entity() loop.
8841 	 */
8842 	if (new_tasks < 0)
8843 		return RETRY_TASK;
8844 
8845 	if (new_tasks > 0)
8846 		goto again;
8847 
8848 	/*
8849 	 * rq is about to be idle, check if we need to update the
8850 	 * lost_idle_time of clock_pelt
8851 	 */
8852 	update_idle_rq_clock_pelt(rq);
8853 
8854 	return NULL;
8855 }
8856 
8857 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8858 {
8859 	return pick_next_task_fair(rq, prev, NULL);
8860 }
8861 
8862 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8863 {
8864 	return pick_task_fair(dl_se->rq);
8865 }
8866 
8867 void fair_server_init(struct rq *rq)
8868 {
8869 	struct sched_dl_entity *dl_se = &rq->fair_server;
8870 
8871 	init_dl_entity(dl_se);
8872 
8873 	dl_server_init(dl_se, rq, fair_server_pick_task);
8874 }
8875 
8876 /*
8877  * Account for a descheduled task:
8878  */
8879 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8880 {
8881 	struct sched_entity *se = &prev->se;
8882 	struct cfs_rq *cfs_rq;
8883 
8884 	for_each_sched_entity(se) {
8885 		cfs_rq = cfs_rq_of(se);
8886 		put_prev_entity(cfs_rq, se);
8887 	}
8888 }
8889 
8890 /*
8891  * sched_yield() is very simple
8892  */
8893 static void yield_task_fair(struct rq *rq)
8894 {
8895 	struct task_struct *curr = rq->curr;
8896 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8897 	struct sched_entity *se = &curr->se;
8898 
8899 	/*
8900 	 * Are we the only task in the tree?
8901 	 */
8902 	if (unlikely(rq->nr_running == 1))
8903 		return;
8904 
8905 	clear_buddies(cfs_rq, se);
8906 
8907 	update_rq_clock(rq);
8908 	/*
8909 	 * Update run-time statistics of the 'current'.
8910 	 */
8911 	update_curr(cfs_rq);
8912 	/*
8913 	 * Tell update_rq_clock() that we've just updated,
8914 	 * so we don't do microscopic update in schedule()
8915 	 * and double the fastpath cost.
8916 	 */
8917 	rq_clock_skip_update(rq);
8918 
8919 	se->deadline += calc_delta_fair(se->slice, se);
8920 }
8921 
8922 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8923 {
8924 	struct sched_entity *se = &p->se;
8925 
8926 	/* throttled hierarchies are not runnable */
8927 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8928 		return false;
8929 
8930 	/* Tell the scheduler that we'd really like se to run next. */
8931 	set_next_buddy(se);
8932 
8933 	yield_task_fair(rq);
8934 
8935 	return true;
8936 }
8937 
8938 /**************************************************
8939  * Fair scheduling class load-balancing methods.
8940  *
8941  * BASICS
8942  *
8943  * The purpose of load-balancing is to achieve the same basic fairness the
8944  * per-CPU scheduler provides, namely provide a proportional amount of compute
8945  * time to each task. This is expressed in the following equation:
8946  *
8947  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8948  *
8949  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8950  * W_i,0 is defined as:
8951  *
8952  *   W_i,0 = \Sum_j w_i,j                                             (2)
8953  *
8954  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8955  * is derived from the nice value as per sched_prio_to_weight[].
8956  *
8957  * The weight average is an exponential decay average of the instantaneous
8958  * weight:
8959  *
8960  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8961  *
8962  * C_i is the compute capacity of CPU i, typically it is the
8963  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8964  * can also include other factors [XXX].
8965  *
8966  * To achieve this balance we define a measure of imbalance which follows
8967  * directly from (1):
8968  *
8969  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8970  *
8971  * We them move tasks around to minimize the imbalance. In the continuous
8972  * function space it is obvious this converges, in the discrete case we get
8973  * a few fun cases generally called infeasible weight scenarios.
8974  *
8975  * [XXX expand on:
8976  *     - infeasible weights;
8977  *     - local vs global optima in the discrete case. ]
8978  *
8979  *
8980  * SCHED DOMAINS
8981  *
8982  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8983  * for all i,j solution, we create a tree of CPUs that follows the hardware
8984  * topology where each level pairs two lower groups (or better). This results
8985  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8986  * tree to only the first of the previous level and we decrease the frequency
8987  * of load-balance at each level inversely proportional to the number of CPUs in
8988  * the groups.
8989  *
8990  * This yields:
8991  *
8992  *     log_2 n     1     n
8993  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8994  *     i = 0      2^i   2^i
8995  *                               `- size of each group
8996  *         |         |     `- number of CPUs doing load-balance
8997  *         |         `- freq
8998  *         `- sum over all levels
8999  *
9000  * Coupled with a limit on how many tasks we can migrate every balance pass,
9001  * this makes (5) the runtime complexity of the balancer.
9002  *
9003  * An important property here is that each CPU is still (indirectly) connected
9004  * to every other CPU in at most O(log n) steps:
9005  *
9006  * The adjacency matrix of the resulting graph is given by:
9007  *
9008  *             log_2 n
9009  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9010  *             k = 0
9011  *
9012  * And you'll find that:
9013  *
9014  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9015  *
9016  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9017  * The task movement gives a factor of O(m), giving a convergence complexity
9018  * of:
9019  *
9020  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9021  *
9022  *
9023  * WORK CONSERVING
9024  *
9025  * In order to avoid CPUs going idle while there's still work to do, new idle
9026  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9027  * tree itself instead of relying on other CPUs to bring it work.
9028  *
9029  * This adds some complexity to both (5) and (8) but it reduces the total idle
9030  * time.
9031  *
9032  * [XXX more?]
9033  *
9034  *
9035  * CGROUPS
9036  *
9037  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9038  *
9039  *                                s_k,i
9040  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9041  *                                 S_k
9042  *
9043  * Where
9044  *
9045  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9046  *
9047  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9048  *
9049  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9050  * property.
9051  *
9052  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9053  *      rewrite all of this once again.]
9054  */
9055 
9056 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9057 
9058 enum fbq_type { regular, remote, all };
9059 
9060 /*
9061  * 'group_type' describes the group of CPUs at the moment of load balancing.
9062  *
9063  * The enum is ordered by pulling priority, with the group with lowest priority
9064  * first so the group_type can simply be compared when selecting the busiest
9065  * group. See update_sd_pick_busiest().
9066  */
9067 enum group_type {
9068 	/* The group has spare capacity that can be used to run more tasks.  */
9069 	group_has_spare = 0,
9070 	/*
9071 	 * The group is fully used and the tasks don't compete for more CPU
9072 	 * cycles. Nevertheless, some tasks might wait before running.
9073 	 */
9074 	group_fully_busy,
9075 	/*
9076 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9077 	 * more powerful CPU.
9078 	 */
9079 	group_misfit_task,
9080 	/*
9081 	 * Balance SMT group that's fully busy. Can benefit from migration
9082 	 * a task on SMT with busy sibling to another CPU on idle core.
9083 	 */
9084 	group_smt_balance,
9085 	/*
9086 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9087 	 * and the task should be migrated to it instead of running on the
9088 	 * current CPU.
9089 	 */
9090 	group_asym_packing,
9091 	/*
9092 	 * The tasks' affinity constraints previously prevented the scheduler
9093 	 * from balancing the load across the system.
9094 	 */
9095 	group_imbalanced,
9096 	/*
9097 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9098 	 * tasks.
9099 	 */
9100 	group_overloaded
9101 };
9102 
9103 enum migration_type {
9104 	migrate_load = 0,
9105 	migrate_util,
9106 	migrate_task,
9107 	migrate_misfit
9108 };
9109 
9110 #define LBF_ALL_PINNED	0x01
9111 #define LBF_NEED_BREAK	0x02
9112 #define LBF_DST_PINNED  0x04
9113 #define LBF_SOME_PINNED	0x08
9114 #define LBF_ACTIVE_LB	0x10
9115 
9116 struct lb_env {
9117 	struct sched_domain	*sd;
9118 
9119 	struct rq		*src_rq;
9120 	int			src_cpu;
9121 
9122 	int			dst_cpu;
9123 	struct rq		*dst_rq;
9124 
9125 	struct cpumask		*dst_grpmask;
9126 	int			new_dst_cpu;
9127 	enum cpu_idle_type	idle;
9128 	long			imbalance;
9129 	/* The set of CPUs under consideration for load-balancing */
9130 	struct cpumask		*cpus;
9131 
9132 	unsigned int		flags;
9133 
9134 	unsigned int		loop;
9135 	unsigned int		loop_break;
9136 	unsigned int		loop_max;
9137 
9138 	enum fbq_type		fbq_type;
9139 	enum migration_type	migration_type;
9140 	struct list_head	tasks;
9141 };
9142 
9143 /*
9144  * Is this task likely cache-hot:
9145  */
9146 static int task_hot(struct task_struct *p, struct lb_env *env)
9147 {
9148 	s64 delta;
9149 
9150 	lockdep_assert_rq_held(env->src_rq);
9151 
9152 	if (p->sched_class != &fair_sched_class)
9153 		return 0;
9154 
9155 	if (unlikely(task_has_idle_policy(p)))
9156 		return 0;
9157 
9158 	/* SMT siblings share cache */
9159 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9160 		return 0;
9161 
9162 	/*
9163 	 * Buddy candidates are cache hot:
9164 	 */
9165 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9166 	    (&p->se == cfs_rq_of(&p->se)->next))
9167 		return 1;
9168 
9169 	if (sysctl_sched_migration_cost == -1)
9170 		return 1;
9171 
9172 	/*
9173 	 * Don't migrate task if the task's cookie does not match
9174 	 * with the destination CPU's core cookie.
9175 	 */
9176 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9177 		return 1;
9178 
9179 	if (sysctl_sched_migration_cost == 0)
9180 		return 0;
9181 
9182 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9183 
9184 	return delta < (s64)sysctl_sched_migration_cost;
9185 }
9186 
9187 #ifdef CONFIG_NUMA_BALANCING
9188 /*
9189  * Returns a positive value, if task migration degrades locality.
9190  * Returns 0, if task migration is not affected by locality.
9191  * Returns a negative value, if task migration improves locality i.e migration preferred.
9192  */
9193 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9194 {
9195 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9196 	unsigned long src_weight, dst_weight;
9197 	int src_nid, dst_nid, dist;
9198 
9199 	if (!static_branch_likely(&sched_numa_balancing))
9200 		return 0;
9201 
9202 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9203 		return 0;
9204 
9205 	src_nid = cpu_to_node(env->src_cpu);
9206 	dst_nid = cpu_to_node(env->dst_cpu);
9207 
9208 	if (src_nid == dst_nid)
9209 		return 0;
9210 
9211 	/* Migrating away from the preferred node is always bad. */
9212 	if (src_nid == p->numa_preferred_nid) {
9213 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9214 			return 1;
9215 		else
9216 			return 0;
9217 	}
9218 
9219 	/* Encourage migration to the preferred node. */
9220 	if (dst_nid == p->numa_preferred_nid)
9221 		return -1;
9222 
9223 	/* Leaving a core idle is often worse than degrading locality. */
9224 	if (env->idle == CPU_IDLE)
9225 		return 0;
9226 
9227 	dist = node_distance(src_nid, dst_nid);
9228 	if (numa_group) {
9229 		src_weight = group_weight(p, src_nid, dist);
9230 		dst_weight = group_weight(p, dst_nid, dist);
9231 	} else {
9232 		src_weight = task_weight(p, src_nid, dist);
9233 		dst_weight = task_weight(p, dst_nid, dist);
9234 	}
9235 
9236 	return src_weight - dst_weight;
9237 }
9238 
9239 #else /* !CONFIG_NUMA_BALANCING: */
9240 static inline long migrate_degrades_locality(struct task_struct *p,
9241 					     struct lb_env *env)
9242 {
9243 	return 0;
9244 }
9245 #endif /* !CONFIG_NUMA_BALANCING */
9246 
9247 /*
9248  * Check whether the task is ineligible on the destination cpu
9249  *
9250  * When the PLACE_LAG scheduling feature is enabled and
9251  * dst_cfs_rq->nr_queued is greater than 1, if the task
9252  * is ineligible, it will also be ineligible when
9253  * it is migrated to the destination cpu.
9254  */
9255 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9256 {
9257 	struct cfs_rq *dst_cfs_rq;
9258 
9259 #ifdef CONFIG_FAIR_GROUP_SCHED
9260 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9261 #else
9262 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9263 #endif
9264 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9265 	    !entity_eligible(task_cfs_rq(p), &p->se))
9266 		return 1;
9267 
9268 	return 0;
9269 }
9270 
9271 /*
9272  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9273  */
9274 static
9275 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9276 {
9277 	long degrades, hot;
9278 
9279 	lockdep_assert_rq_held(env->src_rq);
9280 	if (p->sched_task_hot)
9281 		p->sched_task_hot = 0;
9282 
9283 	/*
9284 	 * We do not migrate tasks that are:
9285 	 * 1) delayed dequeued unless we migrate load, or
9286 	 * 2) throttled_lb_pair, or
9287 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9288 	 * 4) running (obviously), or
9289 	 * 5) are cache-hot on their current CPU, or
9290 	 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled)
9291 	 */
9292 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9293 		return 0;
9294 
9295 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9296 		return 0;
9297 
9298 	/*
9299 	 * We want to prioritize the migration of eligible tasks.
9300 	 * For ineligible tasks we soft-limit them and only allow
9301 	 * them to migrate when nr_balance_failed is non-zero to
9302 	 * avoid load-balancing trying very hard to balance the load.
9303 	 */
9304 	if (!env->sd->nr_balance_failed &&
9305 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9306 		return 0;
9307 
9308 	/* Disregard percpu kthreads; they are where they need to be. */
9309 	if (kthread_is_per_cpu(p))
9310 		return 0;
9311 
9312 	if (task_is_blocked(p))
9313 		return 0;
9314 
9315 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9316 		int cpu;
9317 
9318 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9319 
9320 		env->flags |= LBF_SOME_PINNED;
9321 
9322 		/*
9323 		 * Remember if this task can be migrated to any other CPU in
9324 		 * our sched_group. We may want to revisit it if we couldn't
9325 		 * meet load balance goals by pulling other tasks on src_cpu.
9326 		 *
9327 		 * Avoid computing new_dst_cpu
9328 		 * - for NEWLY_IDLE
9329 		 * - if we have already computed one in current iteration
9330 		 * - if it's an active balance
9331 		 */
9332 		if (env->idle == CPU_NEWLY_IDLE ||
9333 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9334 			return 0;
9335 
9336 		/* Prevent to re-select dst_cpu via env's CPUs: */
9337 		cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9338 
9339 		if (cpu < nr_cpu_ids) {
9340 			env->flags |= LBF_DST_PINNED;
9341 			env->new_dst_cpu = cpu;
9342 		}
9343 
9344 		return 0;
9345 	}
9346 
9347 	/* Record that we found at least one task that could run on dst_cpu */
9348 	env->flags &= ~LBF_ALL_PINNED;
9349 
9350 	if (task_on_cpu(env->src_rq, p) ||
9351 	    task_current_donor(env->src_rq, p)) {
9352 		schedstat_inc(p->stats.nr_failed_migrations_running);
9353 		return 0;
9354 	}
9355 
9356 	/*
9357 	 * Aggressive migration if:
9358 	 * 1) active balance
9359 	 * 2) destination numa is preferred
9360 	 * 3) task is cache cold, or
9361 	 * 4) too many balance attempts have failed.
9362 	 */
9363 	if (env->flags & LBF_ACTIVE_LB)
9364 		return 1;
9365 
9366 	degrades = migrate_degrades_locality(p, env);
9367 	if (!degrades)
9368 		hot = task_hot(p, env);
9369 	else
9370 		hot = degrades > 0;
9371 
9372 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9373 		if (hot)
9374 			p->sched_task_hot = 1;
9375 		return 1;
9376 	}
9377 
9378 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9379 	return 0;
9380 }
9381 
9382 /*
9383  * detach_task() -- detach the task for the migration specified in env
9384  */
9385 static void detach_task(struct task_struct *p, struct lb_env *env)
9386 {
9387 	lockdep_assert_rq_held(env->src_rq);
9388 
9389 	if (p->sched_task_hot) {
9390 		p->sched_task_hot = 0;
9391 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9392 		schedstat_inc(p->stats.nr_forced_migrations);
9393 	}
9394 
9395 	WARN_ON(task_current(env->src_rq, p));
9396 	WARN_ON(task_current_donor(env->src_rq, p));
9397 
9398 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9399 	set_task_cpu(p, env->dst_cpu);
9400 }
9401 
9402 /*
9403  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9404  * part of active balancing operations within "domain".
9405  *
9406  * Returns a task if successful and NULL otherwise.
9407  */
9408 static struct task_struct *detach_one_task(struct lb_env *env)
9409 {
9410 	struct task_struct *p;
9411 
9412 	lockdep_assert_rq_held(env->src_rq);
9413 
9414 	list_for_each_entry_reverse(p,
9415 			&env->src_rq->cfs_tasks, se.group_node) {
9416 		if (!can_migrate_task(p, env))
9417 			continue;
9418 
9419 		detach_task(p, env);
9420 
9421 		/*
9422 		 * Right now, this is only the second place where
9423 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9424 		 * so we can safely collect stats here rather than
9425 		 * inside detach_tasks().
9426 		 */
9427 		schedstat_inc(env->sd->lb_gained[env->idle]);
9428 		return p;
9429 	}
9430 	return NULL;
9431 }
9432 
9433 /*
9434  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9435  * busiest_rq, as part of a balancing operation within domain "sd".
9436  *
9437  * Returns number of detached tasks if successful and 0 otherwise.
9438  */
9439 static int detach_tasks(struct lb_env *env)
9440 {
9441 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9442 	unsigned long util, load;
9443 	struct task_struct *p;
9444 	int detached = 0;
9445 
9446 	lockdep_assert_rq_held(env->src_rq);
9447 
9448 	/*
9449 	 * Source run queue has been emptied by another CPU, clear
9450 	 * LBF_ALL_PINNED flag as we will not test any task.
9451 	 */
9452 	if (env->src_rq->nr_running <= 1) {
9453 		env->flags &= ~LBF_ALL_PINNED;
9454 		return 0;
9455 	}
9456 
9457 	if (env->imbalance <= 0)
9458 		return 0;
9459 
9460 	while (!list_empty(tasks)) {
9461 		/*
9462 		 * We don't want to steal all, otherwise we may be treated likewise,
9463 		 * which could at worst lead to a livelock crash.
9464 		 */
9465 		if (env->idle && env->src_rq->nr_running <= 1)
9466 			break;
9467 
9468 		env->loop++;
9469 		/* We've more or less seen every task there is, call it quits */
9470 		if (env->loop > env->loop_max)
9471 			break;
9472 
9473 		/* take a breather every nr_migrate tasks */
9474 		if (env->loop > env->loop_break) {
9475 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9476 			env->flags |= LBF_NEED_BREAK;
9477 			break;
9478 		}
9479 
9480 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9481 
9482 		if (!can_migrate_task(p, env))
9483 			goto next;
9484 
9485 		switch (env->migration_type) {
9486 		case migrate_load:
9487 			/*
9488 			 * Depending of the number of CPUs and tasks and the
9489 			 * cgroup hierarchy, task_h_load() can return a null
9490 			 * value. Make sure that env->imbalance decreases
9491 			 * otherwise detach_tasks() will stop only after
9492 			 * detaching up to loop_max tasks.
9493 			 */
9494 			load = max_t(unsigned long, task_h_load(p), 1);
9495 
9496 			if (sched_feat(LB_MIN) &&
9497 			    load < 16 && !env->sd->nr_balance_failed)
9498 				goto next;
9499 
9500 			/*
9501 			 * Make sure that we don't migrate too much load.
9502 			 * Nevertheless, let relax the constraint if
9503 			 * scheduler fails to find a good waiting task to
9504 			 * migrate.
9505 			 */
9506 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9507 				goto next;
9508 
9509 			env->imbalance -= load;
9510 			break;
9511 
9512 		case migrate_util:
9513 			util = task_util_est(p);
9514 
9515 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9516 				goto next;
9517 
9518 			env->imbalance -= util;
9519 			break;
9520 
9521 		case migrate_task:
9522 			env->imbalance--;
9523 			break;
9524 
9525 		case migrate_misfit:
9526 			/* This is not a misfit task */
9527 			if (task_fits_cpu(p, env->src_cpu))
9528 				goto next;
9529 
9530 			env->imbalance = 0;
9531 			break;
9532 		}
9533 
9534 		detach_task(p, env);
9535 		list_add(&p->se.group_node, &env->tasks);
9536 
9537 		detached++;
9538 
9539 #ifdef CONFIG_PREEMPTION
9540 		/*
9541 		 * NEWIDLE balancing is a source of latency, so preemptible
9542 		 * kernels will stop after the first task is detached to minimize
9543 		 * the critical section.
9544 		 */
9545 		if (env->idle == CPU_NEWLY_IDLE)
9546 			break;
9547 #endif
9548 
9549 		/*
9550 		 * We only want to steal up to the prescribed amount of
9551 		 * load/util/tasks.
9552 		 */
9553 		if (env->imbalance <= 0)
9554 			break;
9555 
9556 		continue;
9557 next:
9558 		if (p->sched_task_hot)
9559 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9560 
9561 		list_move(&p->se.group_node, tasks);
9562 	}
9563 
9564 	/*
9565 	 * Right now, this is one of only two places we collect this stat
9566 	 * so we can safely collect detach_one_task() stats here rather
9567 	 * than inside detach_one_task().
9568 	 */
9569 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9570 
9571 	return detached;
9572 }
9573 
9574 /*
9575  * attach_task() -- attach the task detached by detach_task() to its new rq.
9576  */
9577 static void attach_task(struct rq *rq, struct task_struct *p)
9578 {
9579 	lockdep_assert_rq_held(rq);
9580 
9581 	WARN_ON_ONCE(task_rq(p) != rq);
9582 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9583 	wakeup_preempt(rq, p, 0);
9584 }
9585 
9586 /*
9587  * attach_one_task() -- attaches the task returned from detach_one_task() to
9588  * its new rq.
9589  */
9590 static void attach_one_task(struct rq *rq, struct task_struct *p)
9591 {
9592 	struct rq_flags rf;
9593 
9594 	rq_lock(rq, &rf);
9595 	update_rq_clock(rq);
9596 	attach_task(rq, p);
9597 	rq_unlock(rq, &rf);
9598 }
9599 
9600 /*
9601  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9602  * new rq.
9603  */
9604 static void attach_tasks(struct lb_env *env)
9605 {
9606 	struct list_head *tasks = &env->tasks;
9607 	struct task_struct *p;
9608 	struct rq_flags rf;
9609 
9610 	rq_lock(env->dst_rq, &rf);
9611 	update_rq_clock(env->dst_rq);
9612 
9613 	while (!list_empty(tasks)) {
9614 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9615 		list_del_init(&p->se.group_node);
9616 
9617 		attach_task(env->dst_rq, p);
9618 	}
9619 
9620 	rq_unlock(env->dst_rq, &rf);
9621 }
9622 
9623 #ifdef CONFIG_NO_HZ_COMMON
9624 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9625 {
9626 	if (cfs_rq->avg.load_avg)
9627 		return true;
9628 
9629 	if (cfs_rq->avg.util_avg)
9630 		return true;
9631 
9632 	return false;
9633 }
9634 
9635 static inline bool others_have_blocked(struct rq *rq)
9636 {
9637 	if (cpu_util_rt(rq))
9638 		return true;
9639 
9640 	if (cpu_util_dl(rq))
9641 		return true;
9642 
9643 	if (hw_load_avg(rq))
9644 		return true;
9645 
9646 	if (cpu_util_irq(rq))
9647 		return true;
9648 
9649 	return false;
9650 }
9651 
9652 static inline void update_blocked_load_tick(struct rq *rq)
9653 {
9654 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9655 }
9656 
9657 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9658 {
9659 	if (!has_blocked)
9660 		rq->has_blocked_load = 0;
9661 }
9662 #else /* !CONFIG_NO_HZ_COMMON: */
9663 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9664 static inline bool others_have_blocked(struct rq *rq) { return false; }
9665 static inline void update_blocked_load_tick(struct rq *rq) {}
9666 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9667 #endif /* !CONFIG_NO_HZ_COMMON */
9668 
9669 static bool __update_blocked_others(struct rq *rq, bool *done)
9670 {
9671 	bool updated;
9672 
9673 	/*
9674 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9675 	 * DL and IRQ signals have been updated before updating CFS.
9676 	 */
9677 	updated = update_other_load_avgs(rq);
9678 
9679 	if (others_have_blocked(rq))
9680 		*done = false;
9681 
9682 	return updated;
9683 }
9684 
9685 #ifdef CONFIG_FAIR_GROUP_SCHED
9686 
9687 static bool __update_blocked_fair(struct rq *rq, bool *done)
9688 {
9689 	struct cfs_rq *cfs_rq, *pos;
9690 	bool decayed = false;
9691 	int cpu = cpu_of(rq);
9692 
9693 	/*
9694 	 * Iterates the task_group tree in a bottom up fashion, see
9695 	 * list_add_leaf_cfs_rq() for details.
9696 	 */
9697 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9698 		struct sched_entity *se;
9699 
9700 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9701 			update_tg_load_avg(cfs_rq);
9702 
9703 			if (cfs_rq->nr_queued == 0)
9704 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9705 
9706 			if (cfs_rq == &rq->cfs)
9707 				decayed = true;
9708 		}
9709 
9710 		/* Propagate pending load changes to the parent, if any: */
9711 		se = cfs_rq->tg->se[cpu];
9712 		if (se && !skip_blocked_update(se))
9713 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9714 
9715 		/*
9716 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9717 		 * decayed cfs_rqs linger on the list.
9718 		 */
9719 		if (cfs_rq_is_decayed(cfs_rq))
9720 			list_del_leaf_cfs_rq(cfs_rq);
9721 
9722 		/* Don't need periodic decay once load/util_avg are null */
9723 		if (cfs_rq_has_blocked(cfs_rq))
9724 			*done = false;
9725 	}
9726 
9727 	return decayed;
9728 }
9729 
9730 /*
9731  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9732  * This needs to be done in a top-down fashion because the load of a child
9733  * group is a fraction of its parents load.
9734  */
9735 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9736 {
9737 	struct rq *rq = rq_of(cfs_rq);
9738 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9739 	unsigned long now = jiffies;
9740 	unsigned long load;
9741 
9742 	if (cfs_rq->last_h_load_update == now)
9743 		return;
9744 
9745 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9746 	for_each_sched_entity(se) {
9747 		cfs_rq = cfs_rq_of(se);
9748 		WRITE_ONCE(cfs_rq->h_load_next, se);
9749 		if (cfs_rq->last_h_load_update == now)
9750 			break;
9751 	}
9752 
9753 	if (!se) {
9754 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9755 		cfs_rq->last_h_load_update = now;
9756 	}
9757 
9758 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9759 		load = cfs_rq->h_load;
9760 		load = div64_ul(load * se->avg.load_avg,
9761 			cfs_rq_load_avg(cfs_rq) + 1);
9762 		cfs_rq = group_cfs_rq(se);
9763 		cfs_rq->h_load = load;
9764 		cfs_rq->last_h_load_update = now;
9765 	}
9766 }
9767 
9768 static unsigned long task_h_load(struct task_struct *p)
9769 {
9770 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9771 
9772 	update_cfs_rq_h_load(cfs_rq);
9773 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9774 			cfs_rq_load_avg(cfs_rq) + 1);
9775 }
9776 #else /* !CONFIG_FAIR_GROUP_SCHED: */
9777 static bool __update_blocked_fair(struct rq *rq, bool *done)
9778 {
9779 	struct cfs_rq *cfs_rq = &rq->cfs;
9780 	bool decayed;
9781 
9782 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9783 	if (cfs_rq_has_blocked(cfs_rq))
9784 		*done = false;
9785 
9786 	return decayed;
9787 }
9788 
9789 static unsigned long task_h_load(struct task_struct *p)
9790 {
9791 	return p->se.avg.load_avg;
9792 }
9793 #endif /* !CONFIG_FAIR_GROUP_SCHED */
9794 
9795 static void sched_balance_update_blocked_averages(int cpu)
9796 {
9797 	bool decayed = false, done = true;
9798 	struct rq *rq = cpu_rq(cpu);
9799 	struct rq_flags rf;
9800 
9801 	rq_lock_irqsave(rq, &rf);
9802 	update_blocked_load_tick(rq);
9803 	update_rq_clock(rq);
9804 
9805 	decayed |= __update_blocked_others(rq, &done);
9806 	decayed |= __update_blocked_fair(rq, &done);
9807 
9808 	update_blocked_load_status(rq, !done);
9809 	if (decayed)
9810 		cpufreq_update_util(rq, 0);
9811 	rq_unlock_irqrestore(rq, &rf);
9812 }
9813 
9814 /********** Helpers for sched_balance_find_src_group ************************/
9815 
9816 /*
9817  * sg_lb_stats - stats of a sched_group required for load-balancing:
9818  */
9819 struct sg_lb_stats {
9820 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9821 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9822 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9823 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9824 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9825 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9826 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9827 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9828 	unsigned int group_weight;
9829 	enum group_type group_type;
9830 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9831 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9832 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9833 #ifdef CONFIG_NUMA_BALANCING
9834 	unsigned int nr_numa_running;
9835 	unsigned int nr_preferred_running;
9836 #endif
9837 };
9838 
9839 /*
9840  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9841  */
9842 struct sd_lb_stats {
9843 	struct sched_group *busiest;		/* Busiest group in this sd */
9844 	struct sched_group *local;		/* Local group in this sd */
9845 	unsigned long total_load;		/* Total load of all groups in sd */
9846 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9847 	unsigned long avg_load;			/* Average load across all groups in sd */
9848 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9849 
9850 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9851 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9852 };
9853 
9854 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9855 {
9856 	/*
9857 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9858 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9859 	 * We must however set busiest_stat::group_type and
9860 	 * busiest_stat::idle_cpus to the worst busiest group because
9861 	 * update_sd_pick_busiest() reads these before assignment.
9862 	 */
9863 	*sds = (struct sd_lb_stats){
9864 		.busiest = NULL,
9865 		.local = NULL,
9866 		.total_load = 0UL,
9867 		.total_capacity = 0UL,
9868 		.busiest_stat = {
9869 			.idle_cpus = UINT_MAX,
9870 			.group_type = group_has_spare,
9871 		},
9872 	};
9873 }
9874 
9875 static unsigned long scale_rt_capacity(int cpu)
9876 {
9877 	unsigned long max = get_actual_cpu_capacity(cpu);
9878 	struct rq *rq = cpu_rq(cpu);
9879 	unsigned long used, free;
9880 	unsigned long irq;
9881 
9882 	irq = cpu_util_irq(rq);
9883 
9884 	if (unlikely(irq >= max))
9885 		return 1;
9886 
9887 	/*
9888 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9889 	 * (running and not running) with weights 0 and 1024 respectively.
9890 	 */
9891 	used = cpu_util_rt(rq);
9892 	used += cpu_util_dl(rq);
9893 
9894 	if (unlikely(used >= max))
9895 		return 1;
9896 
9897 	free = max - used;
9898 
9899 	return scale_irq_capacity(free, irq, max);
9900 }
9901 
9902 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9903 {
9904 	unsigned long capacity = scale_rt_capacity(cpu);
9905 	struct sched_group *sdg = sd->groups;
9906 
9907 	if (!capacity)
9908 		capacity = 1;
9909 
9910 	cpu_rq(cpu)->cpu_capacity = capacity;
9911 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9912 
9913 	sdg->sgc->capacity = capacity;
9914 	sdg->sgc->min_capacity = capacity;
9915 	sdg->sgc->max_capacity = capacity;
9916 }
9917 
9918 void update_group_capacity(struct sched_domain *sd, int cpu)
9919 {
9920 	struct sched_domain *child = sd->child;
9921 	struct sched_group *group, *sdg = sd->groups;
9922 	unsigned long capacity, min_capacity, max_capacity;
9923 	unsigned long interval;
9924 
9925 	interval = msecs_to_jiffies(sd->balance_interval);
9926 	interval = clamp(interval, 1UL, max_load_balance_interval);
9927 	sdg->sgc->next_update = jiffies + interval;
9928 
9929 	if (!child) {
9930 		update_cpu_capacity(sd, cpu);
9931 		return;
9932 	}
9933 
9934 	capacity = 0;
9935 	min_capacity = ULONG_MAX;
9936 	max_capacity = 0;
9937 
9938 	if (child->flags & SD_NUMA) {
9939 		/*
9940 		 * SD_NUMA domains cannot assume that child groups
9941 		 * span the current group.
9942 		 */
9943 
9944 		for_each_cpu(cpu, sched_group_span(sdg)) {
9945 			unsigned long cpu_cap = capacity_of(cpu);
9946 
9947 			capacity += cpu_cap;
9948 			min_capacity = min(cpu_cap, min_capacity);
9949 			max_capacity = max(cpu_cap, max_capacity);
9950 		}
9951 	} else  {
9952 		/*
9953 		 * !SD_NUMA domains can assume that child groups
9954 		 * span the current group.
9955 		 */
9956 
9957 		group = child->groups;
9958 		do {
9959 			struct sched_group_capacity *sgc = group->sgc;
9960 
9961 			capacity += sgc->capacity;
9962 			min_capacity = min(sgc->min_capacity, min_capacity);
9963 			max_capacity = max(sgc->max_capacity, max_capacity);
9964 			group = group->next;
9965 		} while (group != child->groups);
9966 	}
9967 
9968 	sdg->sgc->capacity = capacity;
9969 	sdg->sgc->min_capacity = min_capacity;
9970 	sdg->sgc->max_capacity = max_capacity;
9971 }
9972 
9973 /*
9974  * Check whether the capacity of the rq has been noticeably reduced by side
9975  * activity. The imbalance_pct is used for the threshold.
9976  * Return true is the capacity is reduced
9977  */
9978 static inline int
9979 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9980 {
9981 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9982 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9983 }
9984 
9985 /* Check if the rq has a misfit task */
9986 static inline bool check_misfit_status(struct rq *rq)
9987 {
9988 	return rq->misfit_task_load;
9989 }
9990 
9991 /*
9992  * Group imbalance indicates (and tries to solve) the problem where balancing
9993  * groups is inadequate due to ->cpus_ptr constraints.
9994  *
9995  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9996  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9997  * Something like:
9998  *
9999  *	{ 0 1 2 3 } { 4 5 6 7 }
10000  *	        *     * * *
10001  *
10002  * If we were to balance group-wise we'd place two tasks in the first group and
10003  * two tasks in the second group. Clearly this is undesired as it will overload
10004  * cpu 3 and leave one of the CPUs in the second group unused.
10005  *
10006  * The current solution to this issue is detecting the skew in the first group
10007  * by noticing the lower domain failed to reach balance and had difficulty
10008  * moving tasks due to affinity constraints.
10009  *
10010  * When this is so detected; this group becomes a candidate for busiest; see
10011  * update_sd_pick_busiest(). And calculate_imbalance() and
10012  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10013  * to create an effective group imbalance.
10014  *
10015  * This is a somewhat tricky proposition since the next run might not find the
10016  * group imbalance and decide the groups need to be balanced again. A most
10017  * subtle and fragile situation.
10018  */
10019 
10020 static inline int sg_imbalanced(struct sched_group *group)
10021 {
10022 	return group->sgc->imbalance;
10023 }
10024 
10025 /*
10026  * group_has_capacity returns true if the group has spare capacity that could
10027  * be used by some tasks.
10028  * We consider that a group has spare capacity if the number of task is
10029  * smaller than the number of CPUs or if the utilization is lower than the
10030  * available capacity for CFS tasks.
10031  * For the latter, we use a threshold to stabilize the state, to take into
10032  * account the variance of the tasks' load and to return true if the available
10033  * capacity in meaningful for the load balancer.
10034  * As an example, an available capacity of 1% can appear but it doesn't make
10035  * any benefit for the load balance.
10036  */
10037 static inline bool
10038 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10039 {
10040 	if (sgs->sum_nr_running < sgs->group_weight)
10041 		return true;
10042 
10043 	if ((sgs->group_capacity * imbalance_pct) <
10044 			(sgs->group_runnable * 100))
10045 		return false;
10046 
10047 	if ((sgs->group_capacity * 100) >
10048 			(sgs->group_util * imbalance_pct))
10049 		return true;
10050 
10051 	return false;
10052 }
10053 
10054 /*
10055  *  group_is_overloaded returns true if the group has more tasks than it can
10056  *  handle.
10057  *  group_is_overloaded is not equals to !group_has_capacity because a group
10058  *  with the exact right number of tasks, has no more spare capacity but is not
10059  *  overloaded so both group_has_capacity and group_is_overloaded return
10060  *  false.
10061  */
10062 static inline bool
10063 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10064 {
10065 	if (sgs->sum_nr_running <= sgs->group_weight)
10066 		return false;
10067 
10068 	if ((sgs->group_capacity * 100) <
10069 			(sgs->group_util * imbalance_pct))
10070 		return true;
10071 
10072 	if ((sgs->group_capacity * imbalance_pct) <
10073 			(sgs->group_runnable * 100))
10074 		return true;
10075 
10076 	return false;
10077 }
10078 
10079 static inline enum
10080 group_type group_classify(unsigned int imbalance_pct,
10081 			  struct sched_group *group,
10082 			  struct sg_lb_stats *sgs)
10083 {
10084 	if (group_is_overloaded(imbalance_pct, sgs))
10085 		return group_overloaded;
10086 
10087 	if (sg_imbalanced(group))
10088 		return group_imbalanced;
10089 
10090 	if (sgs->group_asym_packing)
10091 		return group_asym_packing;
10092 
10093 	if (sgs->group_smt_balance)
10094 		return group_smt_balance;
10095 
10096 	if (sgs->group_misfit_task_load)
10097 		return group_misfit_task;
10098 
10099 	if (!group_has_capacity(imbalance_pct, sgs))
10100 		return group_fully_busy;
10101 
10102 	return group_has_spare;
10103 }
10104 
10105 /**
10106  * sched_use_asym_prio - Check whether asym_packing priority must be used
10107  * @sd:		The scheduling domain of the load balancing
10108  * @cpu:	A CPU
10109  *
10110  * Always use CPU priority when balancing load between SMT siblings. When
10111  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10112  * use CPU priority if the whole core is idle.
10113  *
10114  * Returns: True if the priority of @cpu must be followed. False otherwise.
10115  */
10116 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10117 {
10118 	if (!(sd->flags & SD_ASYM_PACKING))
10119 		return false;
10120 
10121 	if (!sched_smt_active())
10122 		return true;
10123 
10124 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10125 }
10126 
10127 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10128 {
10129 	/*
10130 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10131 	 * if it has higher priority than @src_cpu.
10132 	 */
10133 	return sched_use_asym_prio(sd, dst_cpu) &&
10134 		sched_asym_prefer(dst_cpu, src_cpu);
10135 }
10136 
10137 /**
10138  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10139  * @env:	The load balancing environment
10140  * @sgs:	Load-balancing statistics of the candidate busiest group
10141  * @group:	The candidate busiest group
10142  *
10143  * @env::dst_cpu can do asym_packing if it has higher priority than the
10144  * preferred CPU of @group.
10145  *
10146  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10147  * otherwise.
10148  */
10149 static inline bool
10150 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10151 {
10152 	/*
10153 	 * CPU priorities do not make sense for SMT cores with more than one
10154 	 * busy sibling.
10155 	 */
10156 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10157 	    (sgs->group_weight - sgs->idle_cpus != 1))
10158 		return false;
10159 
10160 	return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10161 }
10162 
10163 /* One group has more than one SMT CPU while the other group does not */
10164 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10165 				    struct sched_group *sg2)
10166 {
10167 	if (!sg1 || !sg2)
10168 		return false;
10169 
10170 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10171 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10172 }
10173 
10174 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10175 			       struct sched_group *group)
10176 {
10177 	if (!env->idle)
10178 		return false;
10179 
10180 	/*
10181 	 * For SMT source group, it is better to move a task
10182 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10183 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10184 	 * will not be on.
10185 	 */
10186 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10187 	    sgs->sum_h_nr_running > 1)
10188 		return true;
10189 
10190 	return false;
10191 }
10192 
10193 static inline long sibling_imbalance(struct lb_env *env,
10194 				    struct sd_lb_stats *sds,
10195 				    struct sg_lb_stats *busiest,
10196 				    struct sg_lb_stats *local)
10197 {
10198 	int ncores_busiest, ncores_local;
10199 	long imbalance;
10200 
10201 	if (!env->idle || !busiest->sum_nr_running)
10202 		return 0;
10203 
10204 	ncores_busiest = sds->busiest->cores;
10205 	ncores_local = sds->local->cores;
10206 
10207 	if (ncores_busiest == ncores_local) {
10208 		imbalance = busiest->sum_nr_running;
10209 		lsub_positive(&imbalance, local->sum_nr_running);
10210 		return imbalance;
10211 	}
10212 
10213 	/* Balance such that nr_running/ncores ratio are same on both groups */
10214 	imbalance = ncores_local * busiest->sum_nr_running;
10215 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10216 	/* Normalize imbalance and do rounding on normalization */
10217 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10218 	imbalance /= ncores_local + ncores_busiest;
10219 
10220 	/* Take advantage of resource in an empty sched group */
10221 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10222 	    busiest->sum_nr_running > 1)
10223 		imbalance = 2;
10224 
10225 	return imbalance;
10226 }
10227 
10228 static inline bool
10229 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10230 {
10231 	/*
10232 	 * When there is more than 1 task, the group_overloaded case already
10233 	 * takes care of cpu with reduced capacity
10234 	 */
10235 	if (rq->cfs.h_nr_runnable != 1)
10236 		return false;
10237 
10238 	return check_cpu_capacity(rq, sd);
10239 }
10240 
10241 /**
10242  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10243  * @env: The load balancing environment.
10244  * @sds: Load-balancing data with statistics of the local group.
10245  * @group: sched_group whose statistics are to be updated.
10246  * @sgs: variable to hold the statistics for this group.
10247  * @sg_overloaded: sched_group is overloaded
10248  * @sg_overutilized: sched_group is overutilized
10249  */
10250 static inline void update_sg_lb_stats(struct lb_env *env,
10251 				      struct sd_lb_stats *sds,
10252 				      struct sched_group *group,
10253 				      struct sg_lb_stats *sgs,
10254 				      bool *sg_overloaded,
10255 				      bool *sg_overutilized)
10256 {
10257 	int i, nr_running, local_group, sd_flags = env->sd->flags;
10258 	bool balancing_at_rd = !env->sd->parent;
10259 
10260 	memset(sgs, 0, sizeof(*sgs));
10261 
10262 	local_group = group == sds->local;
10263 
10264 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10265 		struct rq *rq = cpu_rq(i);
10266 		unsigned long load = cpu_load(rq);
10267 
10268 		sgs->group_load += load;
10269 		sgs->group_util += cpu_util_cfs(i);
10270 		sgs->group_runnable += cpu_runnable(rq);
10271 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10272 
10273 		nr_running = rq->nr_running;
10274 		sgs->sum_nr_running += nr_running;
10275 
10276 		if (cpu_overutilized(i))
10277 			*sg_overutilized = 1;
10278 
10279 		/*
10280 		 * No need to call idle_cpu() if nr_running is not 0
10281 		 */
10282 		if (!nr_running && idle_cpu(i)) {
10283 			sgs->idle_cpus++;
10284 			/* Idle cpu can't have misfit task */
10285 			continue;
10286 		}
10287 
10288 		/* Overload indicator is only updated at root domain */
10289 		if (balancing_at_rd && nr_running > 1)
10290 			*sg_overloaded = 1;
10291 
10292 #ifdef CONFIG_NUMA_BALANCING
10293 		/* Only fbq_classify_group() uses this to classify NUMA groups */
10294 		if (sd_flags & SD_NUMA) {
10295 			sgs->nr_numa_running += rq->nr_numa_running;
10296 			sgs->nr_preferred_running += rq->nr_preferred_running;
10297 		}
10298 #endif
10299 		if (local_group)
10300 			continue;
10301 
10302 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
10303 			/* Check for a misfit task on the cpu */
10304 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10305 				sgs->group_misfit_task_load = rq->misfit_task_load;
10306 				*sg_overloaded = 1;
10307 			}
10308 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10309 			/* Check for a task running on a CPU with reduced capacity */
10310 			if (sgs->group_misfit_task_load < load)
10311 				sgs->group_misfit_task_load = load;
10312 		}
10313 	}
10314 
10315 	sgs->group_capacity = group->sgc->capacity;
10316 
10317 	sgs->group_weight = group->group_weight;
10318 
10319 	/* Check if dst CPU is idle and preferred to this group */
10320 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10321 	    sched_group_asym(env, sgs, group))
10322 		sgs->group_asym_packing = 1;
10323 
10324 	/* Check for loaded SMT group to be balanced to dst CPU */
10325 	if (!local_group && smt_balance(env, sgs, group))
10326 		sgs->group_smt_balance = 1;
10327 
10328 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10329 
10330 	/* Computing avg_load makes sense only when group is overloaded */
10331 	if (sgs->group_type == group_overloaded)
10332 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10333 				sgs->group_capacity;
10334 }
10335 
10336 /**
10337  * update_sd_pick_busiest - return 1 on busiest group
10338  * @env: The load balancing environment.
10339  * @sds: sched_domain statistics
10340  * @sg: sched_group candidate to be checked for being the busiest
10341  * @sgs: sched_group statistics
10342  *
10343  * Determine if @sg is a busier group than the previously selected
10344  * busiest group.
10345  *
10346  * Return: %true if @sg is a busier group than the previously selected
10347  * busiest group. %false otherwise.
10348  */
10349 static bool update_sd_pick_busiest(struct lb_env *env,
10350 				   struct sd_lb_stats *sds,
10351 				   struct sched_group *sg,
10352 				   struct sg_lb_stats *sgs)
10353 {
10354 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10355 
10356 	/* Make sure that there is at least one task to pull */
10357 	if (!sgs->sum_h_nr_running)
10358 		return false;
10359 
10360 	/*
10361 	 * Don't try to pull misfit tasks we can't help.
10362 	 * We can use max_capacity here as reduction in capacity on some
10363 	 * CPUs in the group should either be possible to resolve
10364 	 * internally or be covered by avg_load imbalance (eventually).
10365 	 */
10366 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10367 	    (sgs->group_type == group_misfit_task) &&
10368 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10369 	     sds->local_stat.group_type != group_has_spare))
10370 		return false;
10371 
10372 	if (sgs->group_type > busiest->group_type)
10373 		return true;
10374 
10375 	if (sgs->group_type < busiest->group_type)
10376 		return false;
10377 
10378 	/*
10379 	 * The candidate and the current busiest group are the same type of
10380 	 * group. Let check which one is the busiest according to the type.
10381 	 */
10382 
10383 	switch (sgs->group_type) {
10384 	case group_overloaded:
10385 		/* Select the overloaded group with highest avg_load. */
10386 		return sgs->avg_load > busiest->avg_load;
10387 
10388 	case group_imbalanced:
10389 		/*
10390 		 * Select the 1st imbalanced group as we don't have any way to
10391 		 * choose one more than another.
10392 		 */
10393 		return false;
10394 
10395 	case group_asym_packing:
10396 		/* Prefer to move from lowest priority CPU's work */
10397 		return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10398 					 READ_ONCE(sg->asym_prefer_cpu));
10399 
10400 	case group_misfit_task:
10401 		/*
10402 		 * If we have more than one misfit sg go with the biggest
10403 		 * misfit.
10404 		 */
10405 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10406 
10407 	case group_smt_balance:
10408 		/*
10409 		 * Check if we have spare CPUs on either SMT group to
10410 		 * choose has spare or fully busy handling.
10411 		 */
10412 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10413 			goto has_spare;
10414 
10415 		fallthrough;
10416 
10417 	case group_fully_busy:
10418 		/*
10419 		 * Select the fully busy group with highest avg_load. In
10420 		 * theory, there is no need to pull task from such kind of
10421 		 * group because tasks have all compute capacity that they need
10422 		 * but we can still improve the overall throughput by reducing
10423 		 * contention when accessing shared HW resources.
10424 		 *
10425 		 * XXX for now avg_load is not computed and always 0 so we
10426 		 * select the 1st one, except if @sg is composed of SMT
10427 		 * siblings.
10428 		 */
10429 
10430 		if (sgs->avg_load < busiest->avg_load)
10431 			return false;
10432 
10433 		if (sgs->avg_load == busiest->avg_load) {
10434 			/*
10435 			 * SMT sched groups need more help than non-SMT groups.
10436 			 * If @sg happens to also be SMT, either choice is good.
10437 			 */
10438 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10439 				return false;
10440 		}
10441 
10442 		break;
10443 
10444 	case group_has_spare:
10445 		/*
10446 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10447 		 * as we do not want to pull task off SMT core with one task
10448 		 * and make the core idle.
10449 		 */
10450 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10451 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10452 				return false;
10453 			else
10454 				return true;
10455 		}
10456 has_spare:
10457 
10458 		/*
10459 		 * Select not overloaded group with lowest number of idle CPUs
10460 		 * and highest number of running tasks. We could also compare
10461 		 * the spare capacity which is more stable but it can end up
10462 		 * that the group has less spare capacity but finally more idle
10463 		 * CPUs which means less opportunity to pull tasks.
10464 		 */
10465 		if (sgs->idle_cpus > busiest->idle_cpus)
10466 			return false;
10467 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10468 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10469 			return false;
10470 
10471 		break;
10472 	}
10473 
10474 	/*
10475 	 * Candidate sg has no more than one task per CPU and has higher
10476 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10477 	 * throughput. Maximize throughput, power/energy consequences are not
10478 	 * considered.
10479 	 */
10480 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10481 	    (sgs->group_type <= group_fully_busy) &&
10482 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10483 		return false;
10484 
10485 	return true;
10486 }
10487 
10488 #ifdef CONFIG_NUMA_BALANCING
10489 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10490 {
10491 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10492 		return regular;
10493 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10494 		return remote;
10495 	return all;
10496 }
10497 
10498 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10499 {
10500 	if (rq->nr_running > rq->nr_numa_running)
10501 		return regular;
10502 	if (rq->nr_running > rq->nr_preferred_running)
10503 		return remote;
10504 	return all;
10505 }
10506 #else /* !CONFIG_NUMA_BALANCING: */
10507 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10508 {
10509 	return all;
10510 }
10511 
10512 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10513 {
10514 	return regular;
10515 }
10516 #endif /* !CONFIG_NUMA_BALANCING */
10517 
10518 
10519 struct sg_lb_stats;
10520 
10521 /*
10522  * task_running_on_cpu - return 1 if @p is running on @cpu.
10523  */
10524 
10525 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10526 {
10527 	/* Task has no contribution or is new */
10528 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10529 		return 0;
10530 
10531 	if (task_on_rq_queued(p))
10532 		return 1;
10533 
10534 	return 0;
10535 }
10536 
10537 /**
10538  * idle_cpu_without - would a given CPU be idle without p ?
10539  * @cpu: the processor on which idleness is tested.
10540  * @p: task which should be ignored.
10541  *
10542  * Return: 1 if the CPU would be idle. 0 otherwise.
10543  */
10544 static int idle_cpu_without(int cpu, struct task_struct *p)
10545 {
10546 	struct rq *rq = cpu_rq(cpu);
10547 
10548 	if (rq->curr != rq->idle && rq->curr != p)
10549 		return 0;
10550 
10551 	/*
10552 	 * rq->nr_running can't be used but an updated version without the
10553 	 * impact of p on cpu must be used instead. The updated nr_running
10554 	 * be computed and tested before calling idle_cpu_without().
10555 	 */
10556 
10557 	if (rq->ttwu_pending)
10558 		return 0;
10559 
10560 	return 1;
10561 }
10562 
10563 /*
10564  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10565  * @sd: The sched_domain level to look for idlest group.
10566  * @group: sched_group whose statistics are to be updated.
10567  * @sgs: variable to hold the statistics for this group.
10568  * @p: The task for which we look for the idlest group/CPU.
10569  */
10570 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10571 					  struct sched_group *group,
10572 					  struct sg_lb_stats *sgs,
10573 					  struct task_struct *p)
10574 {
10575 	int i, nr_running;
10576 
10577 	memset(sgs, 0, sizeof(*sgs));
10578 
10579 	/* Assume that task can't fit any CPU of the group */
10580 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10581 		sgs->group_misfit_task_load = 1;
10582 
10583 	for_each_cpu(i, sched_group_span(group)) {
10584 		struct rq *rq = cpu_rq(i);
10585 		unsigned int local;
10586 
10587 		sgs->group_load += cpu_load_without(rq, p);
10588 		sgs->group_util += cpu_util_without(i, p);
10589 		sgs->group_runnable += cpu_runnable_without(rq, p);
10590 		local = task_running_on_cpu(i, p);
10591 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10592 
10593 		nr_running = rq->nr_running - local;
10594 		sgs->sum_nr_running += nr_running;
10595 
10596 		/*
10597 		 * No need to call idle_cpu_without() if nr_running is not 0
10598 		 */
10599 		if (!nr_running && idle_cpu_without(i, p))
10600 			sgs->idle_cpus++;
10601 
10602 		/* Check if task fits in the CPU */
10603 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10604 		    sgs->group_misfit_task_load &&
10605 		    task_fits_cpu(p, i))
10606 			sgs->group_misfit_task_load = 0;
10607 
10608 	}
10609 
10610 	sgs->group_capacity = group->sgc->capacity;
10611 
10612 	sgs->group_weight = group->group_weight;
10613 
10614 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10615 
10616 	/*
10617 	 * Computing avg_load makes sense only when group is fully busy or
10618 	 * overloaded
10619 	 */
10620 	if (sgs->group_type == group_fully_busy ||
10621 		sgs->group_type == group_overloaded)
10622 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10623 				sgs->group_capacity;
10624 }
10625 
10626 static bool update_pick_idlest(struct sched_group *idlest,
10627 			       struct sg_lb_stats *idlest_sgs,
10628 			       struct sched_group *group,
10629 			       struct sg_lb_stats *sgs)
10630 {
10631 	if (sgs->group_type < idlest_sgs->group_type)
10632 		return true;
10633 
10634 	if (sgs->group_type > idlest_sgs->group_type)
10635 		return false;
10636 
10637 	/*
10638 	 * The candidate and the current idlest group are the same type of
10639 	 * group. Let check which one is the idlest according to the type.
10640 	 */
10641 
10642 	switch (sgs->group_type) {
10643 	case group_overloaded:
10644 	case group_fully_busy:
10645 		/* Select the group with lowest avg_load. */
10646 		if (idlest_sgs->avg_load <= sgs->avg_load)
10647 			return false;
10648 		break;
10649 
10650 	case group_imbalanced:
10651 	case group_asym_packing:
10652 	case group_smt_balance:
10653 		/* Those types are not used in the slow wakeup path */
10654 		return false;
10655 
10656 	case group_misfit_task:
10657 		/* Select group with the highest max capacity */
10658 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10659 			return false;
10660 		break;
10661 
10662 	case group_has_spare:
10663 		/* Select group with most idle CPUs */
10664 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10665 			return false;
10666 
10667 		/* Select group with lowest group_util */
10668 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10669 			idlest_sgs->group_util <= sgs->group_util)
10670 			return false;
10671 
10672 		break;
10673 	}
10674 
10675 	return true;
10676 }
10677 
10678 /*
10679  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10680  * domain.
10681  *
10682  * Assumes p is allowed on at least one CPU in sd.
10683  */
10684 static struct sched_group *
10685 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10686 {
10687 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10688 	struct sg_lb_stats local_sgs, tmp_sgs;
10689 	struct sg_lb_stats *sgs;
10690 	unsigned long imbalance;
10691 	struct sg_lb_stats idlest_sgs = {
10692 			.avg_load = UINT_MAX,
10693 			.group_type = group_overloaded,
10694 	};
10695 
10696 	do {
10697 		int local_group;
10698 
10699 		/* Skip over this group if it has no CPUs allowed */
10700 		if (!cpumask_intersects(sched_group_span(group),
10701 					p->cpus_ptr))
10702 			continue;
10703 
10704 		/* Skip over this group if no cookie matched */
10705 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10706 			continue;
10707 
10708 		local_group = cpumask_test_cpu(this_cpu,
10709 					       sched_group_span(group));
10710 
10711 		if (local_group) {
10712 			sgs = &local_sgs;
10713 			local = group;
10714 		} else {
10715 			sgs = &tmp_sgs;
10716 		}
10717 
10718 		update_sg_wakeup_stats(sd, group, sgs, p);
10719 
10720 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10721 			idlest = group;
10722 			idlest_sgs = *sgs;
10723 		}
10724 
10725 	} while (group = group->next, group != sd->groups);
10726 
10727 
10728 	/* There is no idlest group to push tasks to */
10729 	if (!idlest)
10730 		return NULL;
10731 
10732 	/* The local group has been skipped because of CPU affinity */
10733 	if (!local)
10734 		return idlest;
10735 
10736 	/*
10737 	 * If the local group is idler than the selected idlest group
10738 	 * don't try and push the task.
10739 	 */
10740 	if (local_sgs.group_type < idlest_sgs.group_type)
10741 		return NULL;
10742 
10743 	/*
10744 	 * If the local group is busier than the selected idlest group
10745 	 * try and push the task.
10746 	 */
10747 	if (local_sgs.group_type > idlest_sgs.group_type)
10748 		return idlest;
10749 
10750 	switch (local_sgs.group_type) {
10751 	case group_overloaded:
10752 	case group_fully_busy:
10753 
10754 		/* Calculate allowed imbalance based on load */
10755 		imbalance = scale_load_down(NICE_0_LOAD) *
10756 				(sd->imbalance_pct-100) / 100;
10757 
10758 		/*
10759 		 * When comparing groups across NUMA domains, it's possible for
10760 		 * the local domain to be very lightly loaded relative to the
10761 		 * remote domains but "imbalance" skews the comparison making
10762 		 * remote CPUs look much more favourable. When considering
10763 		 * cross-domain, add imbalance to the load on the remote node
10764 		 * and consider staying local.
10765 		 */
10766 
10767 		if ((sd->flags & SD_NUMA) &&
10768 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10769 			return NULL;
10770 
10771 		/*
10772 		 * If the local group is less loaded than the selected
10773 		 * idlest group don't try and push any tasks.
10774 		 */
10775 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10776 			return NULL;
10777 
10778 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10779 			return NULL;
10780 		break;
10781 
10782 	case group_imbalanced:
10783 	case group_asym_packing:
10784 	case group_smt_balance:
10785 		/* Those type are not used in the slow wakeup path */
10786 		return NULL;
10787 
10788 	case group_misfit_task:
10789 		/* Select group with the highest max capacity */
10790 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10791 			return NULL;
10792 		break;
10793 
10794 	case group_has_spare:
10795 #ifdef CONFIG_NUMA
10796 		if (sd->flags & SD_NUMA) {
10797 			int imb_numa_nr = sd->imb_numa_nr;
10798 #ifdef CONFIG_NUMA_BALANCING
10799 			int idlest_cpu;
10800 			/*
10801 			 * If there is spare capacity at NUMA, try to select
10802 			 * the preferred node
10803 			 */
10804 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10805 				return NULL;
10806 
10807 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10808 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10809 				return idlest;
10810 #endif /* CONFIG_NUMA_BALANCING */
10811 			/*
10812 			 * Otherwise, keep the task close to the wakeup source
10813 			 * and improve locality if the number of running tasks
10814 			 * would remain below threshold where an imbalance is
10815 			 * allowed while accounting for the possibility the
10816 			 * task is pinned to a subset of CPUs. If there is a
10817 			 * real need of migration, periodic load balance will
10818 			 * take care of it.
10819 			 */
10820 			if (p->nr_cpus_allowed != NR_CPUS) {
10821 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10822 
10823 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10824 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10825 			}
10826 
10827 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10828 			if (!adjust_numa_imbalance(imbalance,
10829 						   local_sgs.sum_nr_running + 1,
10830 						   imb_numa_nr)) {
10831 				return NULL;
10832 			}
10833 		}
10834 #endif /* CONFIG_NUMA */
10835 
10836 		/*
10837 		 * Select group with highest number of idle CPUs. We could also
10838 		 * compare the utilization which is more stable but it can end
10839 		 * up that the group has less spare capacity but finally more
10840 		 * idle CPUs which means more opportunity to run task.
10841 		 */
10842 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10843 			return NULL;
10844 		break;
10845 	}
10846 
10847 	return idlest;
10848 }
10849 
10850 static void update_idle_cpu_scan(struct lb_env *env,
10851 				 unsigned long sum_util)
10852 {
10853 	struct sched_domain_shared *sd_share;
10854 	int llc_weight, pct;
10855 	u64 x, y, tmp;
10856 	/*
10857 	 * Update the number of CPUs to scan in LLC domain, which could
10858 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10859 	 * could be expensive because it is within a shared cache line.
10860 	 * So the write of this hint only occurs during periodic load
10861 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10862 	 * can fire way more frequently than the former.
10863 	 */
10864 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10865 		return;
10866 
10867 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10868 	if (env->sd->span_weight != llc_weight)
10869 		return;
10870 
10871 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10872 	if (!sd_share)
10873 		return;
10874 
10875 	/*
10876 	 * The number of CPUs to search drops as sum_util increases, when
10877 	 * sum_util hits 85% or above, the scan stops.
10878 	 * The reason to choose 85% as the threshold is because this is the
10879 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10880 	 *
10881 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10882 	 * and y'= y / SCHED_CAPACITY_SCALE
10883 	 *
10884 	 * x is the ratio of sum_util compared to the CPU capacity:
10885 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10886 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10887 	 * and the number of CPUs to scan is calculated by:
10888 	 *
10889 	 * nr_scan = llc_weight * y'                                    [2]
10890 	 *
10891 	 * When x hits the threshold of overloaded, AKA, when
10892 	 * x = 100 / pct, y drops to 0. According to [1],
10893 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10894 	 *
10895 	 * Scale x by SCHED_CAPACITY_SCALE:
10896 	 * x' = sum_util / llc_weight;                                  [3]
10897 	 *
10898 	 * and finally [1] becomes:
10899 	 * y = SCHED_CAPACITY_SCALE -
10900 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10901 	 *
10902 	 */
10903 	/* equation [3] */
10904 	x = sum_util;
10905 	do_div(x, llc_weight);
10906 
10907 	/* equation [4] */
10908 	pct = env->sd->imbalance_pct;
10909 	tmp = x * x * pct * pct;
10910 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10911 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10912 	y = SCHED_CAPACITY_SCALE - tmp;
10913 
10914 	/* equation [2] */
10915 	y *= llc_weight;
10916 	do_div(y, SCHED_CAPACITY_SCALE);
10917 	if ((int)y != sd_share->nr_idle_scan)
10918 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10919 }
10920 
10921 /**
10922  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10923  * @env: The load balancing environment.
10924  * @sds: variable to hold the statistics for this sched_domain.
10925  */
10926 
10927 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10928 {
10929 	struct sched_group *sg = env->sd->groups;
10930 	struct sg_lb_stats *local = &sds->local_stat;
10931 	struct sg_lb_stats tmp_sgs;
10932 	unsigned long sum_util = 0;
10933 	bool sg_overloaded = 0, sg_overutilized = 0;
10934 
10935 	do {
10936 		struct sg_lb_stats *sgs = &tmp_sgs;
10937 		int local_group;
10938 
10939 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10940 		if (local_group) {
10941 			sds->local = sg;
10942 			sgs = local;
10943 
10944 			if (env->idle != CPU_NEWLY_IDLE ||
10945 			    time_after_eq(jiffies, sg->sgc->next_update))
10946 				update_group_capacity(env->sd, env->dst_cpu);
10947 		}
10948 
10949 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10950 
10951 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10952 			sds->busiest = sg;
10953 			sds->busiest_stat = *sgs;
10954 		}
10955 
10956 		/* Now, start updating sd_lb_stats */
10957 		sds->total_load += sgs->group_load;
10958 		sds->total_capacity += sgs->group_capacity;
10959 
10960 		sum_util += sgs->group_util;
10961 		sg = sg->next;
10962 	} while (sg != env->sd->groups);
10963 
10964 	/*
10965 	 * Indicate that the child domain of the busiest group prefers tasks
10966 	 * go to a child's sibling domains first. NB the flags of a sched group
10967 	 * are those of the child domain.
10968 	 */
10969 	if (sds->busiest)
10970 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10971 
10972 
10973 	if (env->sd->flags & SD_NUMA)
10974 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10975 
10976 	if (!env->sd->parent) {
10977 		/* update overload indicator if we are at root domain */
10978 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
10979 
10980 		/* Update over-utilization (tipping point, U >= 0) indicator */
10981 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10982 	} else if (sg_overutilized) {
10983 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10984 	}
10985 
10986 	update_idle_cpu_scan(env, sum_util);
10987 }
10988 
10989 /**
10990  * calculate_imbalance - Calculate the amount of imbalance present within the
10991  *			 groups of a given sched_domain during load balance.
10992  * @env: load balance environment
10993  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10994  */
10995 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10996 {
10997 	struct sg_lb_stats *local, *busiest;
10998 
10999 	local = &sds->local_stat;
11000 	busiest = &sds->busiest_stat;
11001 
11002 	if (busiest->group_type == group_misfit_task) {
11003 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11004 			/* Set imbalance to allow misfit tasks to be balanced. */
11005 			env->migration_type = migrate_misfit;
11006 			env->imbalance = 1;
11007 		} else {
11008 			/*
11009 			 * Set load imbalance to allow moving task from cpu
11010 			 * with reduced capacity.
11011 			 */
11012 			env->migration_type = migrate_load;
11013 			env->imbalance = busiest->group_misfit_task_load;
11014 		}
11015 		return;
11016 	}
11017 
11018 	if (busiest->group_type == group_asym_packing) {
11019 		/*
11020 		 * In case of asym capacity, we will try to migrate all load to
11021 		 * the preferred CPU.
11022 		 */
11023 		env->migration_type = migrate_task;
11024 		env->imbalance = busiest->sum_h_nr_running;
11025 		return;
11026 	}
11027 
11028 	if (busiest->group_type == group_smt_balance) {
11029 		/* Reduce number of tasks sharing CPU capacity */
11030 		env->migration_type = migrate_task;
11031 		env->imbalance = 1;
11032 		return;
11033 	}
11034 
11035 	if (busiest->group_type == group_imbalanced) {
11036 		/*
11037 		 * In the group_imb case we cannot rely on group-wide averages
11038 		 * to ensure CPU-load equilibrium, try to move any task to fix
11039 		 * the imbalance. The next load balance will take care of
11040 		 * balancing back the system.
11041 		 */
11042 		env->migration_type = migrate_task;
11043 		env->imbalance = 1;
11044 		return;
11045 	}
11046 
11047 	/*
11048 	 * Try to use spare capacity of local group without overloading it or
11049 	 * emptying busiest.
11050 	 */
11051 	if (local->group_type == group_has_spare) {
11052 		if ((busiest->group_type > group_fully_busy) &&
11053 		    !(env->sd->flags & SD_SHARE_LLC)) {
11054 			/*
11055 			 * If busiest is overloaded, try to fill spare
11056 			 * capacity. This might end up creating spare capacity
11057 			 * in busiest or busiest still being overloaded but
11058 			 * there is no simple way to directly compute the
11059 			 * amount of load to migrate in order to balance the
11060 			 * system.
11061 			 */
11062 			env->migration_type = migrate_util;
11063 			env->imbalance = max(local->group_capacity, local->group_util) -
11064 					 local->group_util;
11065 
11066 			/*
11067 			 * In some cases, the group's utilization is max or even
11068 			 * higher than capacity because of migrations but the
11069 			 * local CPU is (newly) idle. There is at least one
11070 			 * waiting task in this overloaded busiest group. Let's
11071 			 * try to pull it.
11072 			 */
11073 			if (env->idle && env->imbalance == 0) {
11074 				env->migration_type = migrate_task;
11075 				env->imbalance = 1;
11076 			}
11077 
11078 			return;
11079 		}
11080 
11081 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11082 			/*
11083 			 * When prefer sibling, evenly spread running tasks on
11084 			 * groups.
11085 			 */
11086 			env->migration_type = migrate_task;
11087 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11088 		} else {
11089 
11090 			/*
11091 			 * If there is no overload, we just want to even the number of
11092 			 * idle CPUs.
11093 			 */
11094 			env->migration_type = migrate_task;
11095 			env->imbalance = max_t(long, 0,
11096 					       (local->idle_cpus - busiest->idle_cpus));
11097 		}
11098 
11099 #ifdef CONFIG_NUMA
11100 		/* Consider allowing a small imbalance between NUMA groups */
11101 		if (env->sd->flags & SD_NUMA) {
11102 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11103 							       local->sum_nr_running + 1,
11104 							       env->sd->imb_numa_nr);
11105 		}
11106 #endif
11107 
11108 		/* Number of tasks to move to restore balance */
11109 		env->imbalance >>= 1;
11110 
11111 		return;
11112 	}
11113 
11114 	/*
11115 	 * Local is fully busy but has to take more load to relieve the
11116 	 * busiest group
11117 	 */
11118 	if (local->group_type < group_overloaded) {
11119 		/*
11120 		 * Local will become overloaded so the avg_load metrics are
11121 		 * finally needed.
11122 		 */
11123 
11124 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11125 				  local->group_capacity;
11126 
11127 		/*
11128 		 * If the local group is more loaded than the selected
11129 		 * busiest group don't try to pull any tasks.
11130 		 */
11131 		if (local->avg_load >= busiest->avg_load) {
11132 			env->imbalance = 0;
11133 			return;
11134 		}
11135 
11136 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11137 				sds->total_capacity;
11138 
11139 		/*
11140 		 * If the local group is more loaded than the average system
11141 		 * load, don't try to pull any tasks.
11142 		 */
11143 		if (local->avg_load >= sds->avg_load) {
11144 			env->imbalance = 0;
11145 			return;
11146 		}
11147 
11148 	}
11149 
11150 	/*
11151 	 * Both group are or will become overloaded and we're trying to get all
11152 	 * the CPUs to the average_load, so we don't want to push ourselves
11153 	 * above the average load, nor do we wish to reduce the max loaded CPU
11154 	 * below the average load. At the same time, we also don't want to
11155 	 * reduce the group load below the group capacity. Thus we look for
11156 	 * the minimum possible imbalance.
11157 	 */
11158 	env->migration_type = migrate_load;
11159 	env->imbalance = min(
11160 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11161 		(sds->avg_load - local->avg_load) * local->group_capacity
11162 	) / SCHED_CAPACITY_SCALE;
11163 }
11164 
11165 /******* sched_balance_find_src_group() helpers end here *********************/
11166 
11167 /*
11168  * Decision matrix according to the local and busiest group type:
11169  *
11170  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11171  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11172  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11173  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11174  * asym_packing     force     force      N/A    N/A  force      force
11175  * imbalanced       force     force      N/A    N/A  force      force
11176  * overloaded       force     force      N/A    N/A  force      avg_load
11177  *
11178  * N/A :      Not Applicable because already filtered while updating
11179  *            statistics.
11180  * balanced : The system is balanced for these 2 groups.
11181  * force :    Calculate the imbalance as load migration is probably needed.
11182  * avg_load : Only if imbalance is significant enough.
11183  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11184  *            different in groups.
11185  */
11186 
11187 /**
11188  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11189  * if there is an imbalance.
11190  * @env: The load balancing environment.
11191  *
11192  * Also calculates the amount of runnable load which should be moved
11193  * to restore balance.
11194  *
11195  * Return:	- The busiest group if imbalance exists.
11196  */
11197 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11198 {
11199 	struct sg_lb_stats *local, *busiest;
11200 	struct sd_lb_stats sds;
11201 
11202 	init_sd_lb_stats(&sds);
11203 
11204 	/*
11205 	 * Compute the various statistics relevant for load balancing at
11206 	 * this level.
11207 	 */
11208 	update_sd_lb_stats(env, &sds);
11209 
11210 	/* There is no busy sibling group to pull tasks from */
11211 	if (!sds.busiest)
11212 		goto out_balanced;
11213 
11214 	busiest = &sds.busiest_stat;
11215 
11216 	/* Misfit tasks should be dealt with regardless of the avg load */
11217 	if (busiest->group_type == group_misfit_task)
11218 		goto force_balance;
11219 
11220 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11221 	    rcu_dereference(env->dst_rq->rd->pd))
11222 		goto out_balanced;
11223 
11224 	/* ASYM feature bypasses nice load balance check */
11225 	if (busiest->group_type == group_asym_packing)
11226 		goto force_balance;
11227 
11228 	/*
11229 	 * If the busiest group is imbalanced the below checks don't
11230 	 * work because they assume all things are equal, which typically
11231 	 * isn't true due to cpus_ptr constraints and the like.
11232 	 */
11233 	if (busiest->group_type == group_imbalanced)
11234 		goto force_balance;
11235 
11236 	local = &sds.local_stat;
11237 	/*
11238 	 * If the local group is busier than the selected busiest group
11239 	 * don't try and pull any tasks.
11240 	 */
11241 	if (local->group_type > busiest->group_type)
11242 		goto out_balanced;
11243 
11244 	/*
11245 	 * When groups are overloaded, use the avg_load to ensure fairness
11246 	 * between tasks.
11247 	 */
11248 	if (local->group_type == group_overloaded) {
11249 		/*
11250 		 * If the local group is more loaded than the selected
11251 		 * busiest group don't try to pull any tasks.
11252 		 */
11253 		if (local->avg_load >= busiest->avg_load)
11254 			goto out_balanced;
11255 
11256 		/* XXX broken for overlapping NUMA groups */
11257 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11258 				sds.total_capacity;
11259 
11260 		/*
11261 		 * Don't pull any tasks if this group is already above the
11262 		 * domain average load.
11263 		 */
11264 		if (local->avg_load >= sds.avg_load)
11265 			goto out_balanced;
11266 
11267 		/*
11268 		 * If the busiest group is more loaded, use imbalance_pct to be
11269 		 * conservative.
11270 		 */
11271 		if (100 * busiest->avg_load <=
11272 				env->sd->imbalance_pct * local->avg_load)
11273 			goto out_balanced;
11274 	}
11275 
11276 	/*
11277 	 * Try to move all excess tasks to a sibling domain of the busiest
11278 	 * group's child domain.
11279 	 */
11280 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11281 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11282 		goto force_balance;
11283 
11284 	if (busiest->group_type != group_overloaded) {
11285 		if (!env->idle) {
11286 			/*
11287 			 * If the busiest group is not overloaded (and as a
11288 			 * result the local one too) but this CPU is already
11289 			 * busy, let another idle CPU try to pull task.
11290 			 */
11291 			goto out_balanced;
11292 		}
11293 
11294 		if (busiest->group_type == group_smt_balance &&
11295 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11296 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11297 			goto force_balance;
11298 		}
11299 
11300 		if (busiest->group_weight > 1 &&
11301 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11302 			/*
11303 			 * If the busiest group is not overloaded
11304 			 * and there is no imbalance between this and busiest
11305 			 * group wrt idle CPUs, it is balanced. The imbalance
11306 			 * becomes significant if the diff is greater than 1
11307 			 * otherwise we might end up to just move the imbalance
11308 			 * on another group. Of course this applies only if
11309 			 * there is more than 1 CPU per group.
11310 			 */
11311 			goto out_balanced;
11312 		}
11313 
11314 		if (busiest->sum_h_nr_running == 1) {
11315 			/*
11316 			 * busiest doesn't have any tasks waiting to run
11317 			 */
11318 			goto out_balanced;
11319 		}
11320 	}
11321 
11322 force_balance:
11323 	/* Looks like there is an imbalance. Compute it */
11324 	calculate_imbalance(env, &sds);
11325 	return env->imbalance ? sds.busiest : NULL;
11326 
11327 out_balanced:
11328 	env->imbalance = 0;
11329 	return NULL;
11330 }
11331 
11332 /*
11333  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11334  */
11335 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11336 				     struct sched_group *group)
11337 {
11338 	struct rq *busiest = NULL, *rq;
11339 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11340 	unsigned int busiest_nr = 0;
11341 	int i;
11342 
11343 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11344 		unsigned long capacity, load, util;
11345 		unsigned int nr_running;
11346 		enum fbq_type rt;
11347 
11348 		rq = cpu_rq(i);
11349 		rt = fbq_classify_rq(rq);
11350 
11351 		/*
11352 		 * We classify groups/runqueues into three groups:
11353 		 *  - regular: there are !numa tasks
11354 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11355 		 *  - all:     there is no distinction
11356 		 *
11357 		 * In order to avoid migrating ideally placed numa tasks,
11358 		 * ignore those when there's better options.
11359 		 *
11360 		 * If we ignore the actual busiest queue to migrate another
11361 		 * task, the next balance pass can still reduce the busiest
11362 		 * queue by moving tasks around inside the node.
11363 		 *
11364 		 * If we cannot move enough load due to this classification
11365 		 * the next pass will adjust the group classification and
11366 		 * allow migration of more tasks.
11367 		 *
11368 		 * Both cases only affect the total convergence complexity.
11369 		 */
11370 		if (rt > env->fbq_type)
11371 			continue;
11372 
11373 		nr_running = rq->cfs.h_nr_runnable;
11374 		if (!nr_running)
11375 			continue;
11376 
11377 		capacity = capacity_of(i);
11378 
11379 		/*
11380 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11381 		 * eventually lead to active_balancing high->low capacity.
11382 		 * Higher per-CPU capacity is considered better than balancing
11383 		 * average load.
11384 		 */
11385 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11386 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11387 		    nr_running == 1)
11388 			continue;
11389 
11390 		/*
11391 		 * Make sure we only pull tasks from a CPU of lower priority
11392 		 * when balancing between SMT siblings.
11393 		 *
11394 		 * If balancing between cores, let lower priority CPUs help
11395 		 * SMT cores with more than one busy sibling.
11396 		 */
11397 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11398 			continue;
11399 
11400 		switch (env->migration_type) {
11401 		case migrate_load:
11402 			/*
11403 			 * When comparing with load imbalance, use cpu_load()
11404 			 * which is not scaled with the CPU capacity.
11405 			 */
11406 			load = cpu_load(rq);
11407 
11408 			if (nr_running == 1 && load > env->imbalance &&
11409 			    !check_cpu_capacity(rq, env->sd))
11410 				break;
11411 
11412 			/*
11413 			 * For the load comparisons with the other CPUs,
11414 			 * consider the cpu_load() scaled with the CPU
11415 			 * capacity, so that the load can be moved away
11416 			 * from the CPU that is potentially running at a
11417 			 * lower capacity.
11418 			 *
11419 			 * Thus we're looking for max(load_i / capacity_i),
11420 			 * crosswise multiplication to rid ourselves of the
11421 			 * division works out to:
11422 			 * load_i * capacity_j > load_j * capacity_i;
11423 			 * where j is our previous maximum.
11424 			 */
11425 			if (load * busiest_capacity > busiest_load * capacity) {
11426 				busiest_load = load;
11427 				busiest_capacity = capacity;
11428 				busiest = rq;
11429 			}
11430 			break;
11431 
11432 		case migrate_util:
11433 			util = cpu_util_cfs_boost(i);
11434 
11435 			/*
11436 			 * Don't try to pull utilization from a CPU with one
11437 			 * running task. Whatever its utilization, we will fail
11438 			 * detach the task.
11439 			 */
11440 			if (nr_running <= 1)
11441 				continue;
11442 
11443 			if (busiest_util < util) {
11444 				busiest_util = util;
11445 				busiest = rq;
11446 			}
11447 			break;
11448 
11449 		case migrate_task:
11450 			if (busiest_nr < nr_running) {
11451 				busiest_nr = nr_running;
11452 				busiest = rq;
11453 			}
11454 			break;
11455 
11456 		case migrate_misfit:
11457 			/*
11458 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11459 			 * simply seek the "biggest" misfit task.
11460 			 */
11461 			if (rq->misfit_task_load > busiest_load) {
11462 				busiest_load = rq->misfit_task_load;
11463 				busiest = rq;
11464 			}
11465 
11466 			break;
11467 
11468 		}
11469 	}
11470 
11471 	return busiest;
11472 }
11473 
11474 /*
11475  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11476  * so long as it is large enough.
11477  */
11478 #define MAX_PINNED_INTERVAL	512
11479 
11480 static inline bool
11481 asym_active_balance(struct lb_env *env)
11482 {
11483 	/*
11484 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11485 	 * priority CPUs in order to pack all tasks in the highest priority
11486 	 * CPUs. When done between cores, do it only if the whole core if the
11487 	 * whole core is idle.
11488 	 *
11489 	 * If @env::src_cpu is an SMT core with busy siblings, let
11490 	 * the lower priority @env::dst_cpu help it. Do not follow
11491 	 * CPU priority.
11492 	 */
11493 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11494 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11495 		!sched_use_asym_prio(env->sd, env->src_cpu));
11496 }
11497 
11498 static inline bool
11499 imbalanced_active_balance(struct lb_env *env)
11500 {
11501 	struct sched_domain *sd = env->sd;
11502 
11503 	/*
11504 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11505 	 * distribution of the load on the system but also the even distribution of the
11506 	 * threads on a system with spare capacity
11507 	 */
11508 	if ((env->migration_type == migrate_task) &&
11509 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11510 		return 1;
11511 
11512 	return 0;
11513 }
11514 
11515 static int need_active_balance(struct lb_env *env)
11516 {
11517 	struct sched_domain *sd = env->sd;
11518 
11519 	if (asym_active_balance(env))
11520 		return 1;
11521 
11522 	if (imbalanced_active_balance(env))
11523 		return 1;
11524 
11525 	/*
11526 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11527 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11528 	 * because of other sched_class or IRQs if more capacity stays
11529 	 * available on dst_cpu.
11530 	 */
11531 	if (env->idle &&
11532 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
11533 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11534 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11535 			return 1;
11536 	}
11537 
11538 	if (env->migration_type == migrate_misfit)
11539 		return 1;
11540 
11541 	return 0;
11542 }
11543 
11544 static int active_load_balance_cpu_stop(void *data);
11545 
11546 static int should_we_balance(struct lb_env *env)
11547 {
11548 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11549 	struct sched_group *sg = env->sd->groups;
11550 	int cpu, idle_smt = -1;
11551 
11552 	/*
11553 	 * Ensure the balancing environment is consistent; can happen
11554 	 * when the softirq triggers 'during' hotplug.
11555 	 */
11556 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11557 		return 0;
11558 
11559 	/*
11560 	 * In the newly idle case, we will allow all the CPUs
11561 	 * to do the newly idle load balance.
11562 	 *
11563 	 * However, we bail out if we already have tasks or a wakeup pending,
11564 	 * to optimize wakeup latency.
11565 	 */
11566 	if (env->idle == CPU_NEWLY_IDLE) {
11567 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11568 			return 0;
11569 		return 1;
11570 	}
11571 
11572 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11573 	/* Try to find first idle CPU */
11574 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11575 		if (!idle_cpu(cpu))
11576 			continue;
11577 
11578 		/*
11579 		 * Don't balance to idle SMT in busy core right away when
11580 		 * balancing cores, but remember the first idle SMT CPU for
11581 		 * later consideration.  Find CPU on an idle core first.
11582 		 */
11583 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11584 			if (idle_smt == -1)
11585 				idle_smt = cpu;
11586 			/*
11587 			 * If the core is not idle, and first SMT sibling which is
11588 			 * idle has been found, then its not needed to check other
11589 			 * SMT siblings for idleness:
11590 			 */
11591 #ifdef CONFIG_SCHED_SMT
11592 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11593 #endif
11594 			continue;
11595 		}
11596 
11597 		/*
11598 		 * Are we the first idle core in a non-SMT domain or higher,
11599 		 * or the first idle CPU in a SMT domain?
11600 		 */
11601 		return cpu == env->dst_cpu;
11602 	}
11603 
11604 	/* Are we the first idle CPU with busy siblings? */
11605 	if (idle_smt != -1)
11606 		return idle_smt == env->dst_cpu;
11607 
11608 	/* Are we the first CPU of this group ? */
11609 	return group_balance_cpu(sg) == env->dst_cpu;
11610 }
11611 
11612 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11613 				     enum cpu_idle_type idle)
11614 {
11615 	if (!schedstat_enabled())
11616 		return;
11617 
11618 	switch (env->migration_type) {
11619 	case migrate_load:
11620 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11621 		break;
11622 	case migrate_util:
11623 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11624 		break;
11625 	case migrate_task:
11626 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11627 		break;
11628 	case migrate_misfit:
11629 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11630 		break;
11631 	}
11632 }
11633 
11634 /*
11635  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11636  * tasks if there is an imbalance.
11637  */
11638 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11639 			struct sched_domain *sd, enum cpu_idle_type idle,
11640 			int *continue_balancing)
11641 {
11642 	int ld_moved, cur_ld_moved, active_balance = 0;
11643 	struct sched_domain *sd_parent = sd->parent;
11644 	struct sched_group *group;
11645 	struct rq *busiest;
11646 	struct rq_flags rf;
11647 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11648 	struct lb_env env = {
11649 		.sd		= sd,
11650 		.dst_cpu	= this_cpu,
11651 		.dst_rq		= this_rq,
11652 		.dst_grpmask    = group_balance_mask(sd->groups),
11653 		.idle		= idle,
11654 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11655 		.cpus		= cpus,
11656 		.fbq_type	= all,
11657 		.tasks		= LIST_HEAD_INIT(env.tasks),
11658 	};
11659 
11660 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11661 
11662 	schedstat_inc(sd->lb_count[idle]);
11663 
11664 redo:
11665 	if (!should_we_balance(&env)) {
11666 		*continue_balancing = 0;
11667 		goto out_balanced;
11668 	}
11669 
11670 	group = sched_balance_find_src_group(&env);
11671 	if (!group) {
11672 		schedstat_inc(sd->lb_nobusyg[idle]);
11673 		goto out_balanced;
11674 	}
11675 
11676 	busiest = sched_balance_find_src_rq(&env, group);
11677 	if (!busiest) {
11678 		schedstat_inc(sd->lb_nobusyq[idle]);
11679 		goto out_balanced;
11680 	}
11681 
11682 	WARN_ON_ONCE(busiest == env.dst_rq);
11683 
11684 	update_lb_imbalance_stat(&env, sd, idle);
11685 
11686 	env.src_cpu = busiest->cpu;
11687 	env.src_rq = busiest;
11688 
11689 	ld_moved = 0;
11690 	/* Clear this flag as soon as we find a pullable task */
11691 	env.flags |= LBF_ALL_PINNED;
11692 	if (busiest->nr_running > 1) {
11693 		/*
11694 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11695 		 * an imbalance but busiest->nr_running <= 1, the group is
11696 		 * still unbalanced. ld_moved simply stays zero, so it is
11697 		 * correctly treated as an imbalance.
11698 		 */
11699 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11700 
11701 more_balance:
11702 		rq_lock_irqsave(busiest, &rf);
11703 		update_rq_clock(busiest);
11704 
11705 		/*
11706 		 * cur_ld_moved - load moved in current iteration
11707 		 * ld_moved     - cumulative load moved across iterations
11708 		 */
11709 		cur_ld_moved = detach_tasks(&env);
11710 
11711 		/*
11712 		 * We've detached some tasks from busiest_rq. Every
11713 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11714 		 * unlock busiest->lock, and we are able to be sure
11715 		 * that nobody can manipulate the tasks in parallel.
11716 		 * See task_rq_lock() family for the details.
11717 		 */
11718 
11719 		rq_unlock(busiest, &rf);
11720 
11721 		if (cur_ld_moved) {
11722 			attach_tasks(&env);
11723 			ld_moved += cur_ld_moved;
11724 		}
11725 
11726 		local_irq_restore(rf.flags);
11727 
11728 		if (env.flags & LBF_NEED_BREAK) {
11729 			env.flags &= ~LBF_NEED_BREAK;
11730 			goto more_balance;
11731 		}
11732 
11733 		/*
11734 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11735 		 * us and move them to an alternate dst_cpu in our sched_group
11736 		 * where they can run. The upper limit on how many times we
11737 		 * iterate on same src_cpu is dependent on number of CPUs in our
11738 		 * sched_group.
11739 		 *
11740 		 * This changes load balance semantics a bit on who can move
11741 		 * load to a given_cpu. In addition to the given_cpu itself
11742 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11743 		 * nohz-idle), we now have balance_cpu in a position to move
11744 		 * load to given_cpu. In rare situations, this may cause
11745 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11746 		 * _independently_ and at _same_ time to move some load to
11747 		 * given_cpu) causing excess load to be moved to given_cpu.
11748 		 * This however should not happen so much in practice and
11749 		 * moreover subsequent load balance cycles should correct the
11750 		 * excess load moved.
11751 		 */
11752 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11753 
11754 			/* Prevent to re-select dst_cpu via env's CPUs */
11755 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11756 
11757 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11758 			env.dst_cpu	 = env.new_dst_cpu;
11759 			env.flags	&= ~LBF_DST_PINNED;
11760 			env.loop	 = 0;
11761 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11762 
11763 			/*
11764 			 * Go back to "more_balance" rather than "redo" since we
11765 			 * need to continue with same src_cpu.
11766 			 */
11767 			goto more_balance;
11768 		}
11769 
11770 		/*
11771 		 * We failed to reach balance because of affinity.
11772 		 */
11773 		if (sd_parent) {
11774 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11775 
11776 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11777 				*group_imbalance = 1;
11778 		}
11779 
11780 		/* All tasks on this runqueue were pinned by CPU affinity */
11781 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11782 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11783 			/*
11784 			 * Attempting to continue load balancing at the current
11785 			 * sched_domain level only makes sense if there are
11786 			 * active CPUs remaining as possible busiest CPUs to
11787 			 * pull load from which are not contained within the
11788 			 * destination group that is receiving any migrated
11789 			 * load.
11790 			 */
11791 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11792 				env.loop = 0;
11793 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11794 				goto redo;
11795 			}
11796 			goto out_all_pinned;
11797 		}
11798 	}
11799 
11800 	if (!ld_moved) {
11801 		schedstat_inc(sd->lb_failed[idle]);
11802 		/*
11803 		 * Increment the failure counter only on periodic balance.
11804 		 * We do not want newidle balance, which can be very
11805 		 * frequent, pollute the failure counter causing
11806 		 * excessive cache_hot migrations and active balances.
11807 		 *
11808 		 * Similarly for migration_misfit which is not related to
11809 		 * load/util migration, don't pollute nr_balance_failed.
11810 		 */
11811 		if (idle != CPU_NEWLY_IDLE &&
11812 		    env.migration_type != migrate_misfit)
11813 			sd->nr_balance_failed++;
11814 
11815 		if (need_active_balance(&env)) {
11816 			unsigned long flags;
11817 
11818 			raw_spin_rq_lock_irqsave(busiest, flags);
11819 
11820 			/*
11821 			 * Don't kick the active_load_balance_cpu_stop,
11822 			 * if the curr task on busiest CPU can't be
11823 			 * moved to this_cpu:
11824 			 */
11825 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11826 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11827 				goto out_one_pinned;
11828 			}
11829 
11830 			/* Record that we found at least one task that could run on this_cpu */
11831 			env.flags &= ~LBF_ALL_PINNED;
11832 
11833 			/*
11834 			 * ->active_balance synchronizes accesses to
11835 			 * ->active_balance_work.  Once set, it's cleared
11836 			 * only after active load balance is finished.
11837 			 */
11838 			if (!busiest->active_balance) {
11839 				busiest->active_balance = 1;
11840 				busiest->push_cpu = this_cpu;
11841 				active_balance = 1;
11842 			}
11843 
11844 			preempt_disable();
11845 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11846 			if (active_balance) {
11847 				stop_one_cpu_nowait(cpu_of(busiest),
11848 					active_load_balance_cpu_stop, busiest,
11849 					&busiest->active_balance_work);
11850 			}
11851 			preempt_enable();
11852 		}
11853 	} else {
11854 		sd->nr_balance_failed = 0;
11855 	}
11856 
11857 	if (likely(!active_balance) || need_active_balance(&env)) {
11858 		/* We were unbalanced, so reset the balancing interval */
11859 		sd->balance_interval = sd->min_interval;
11860 	}
11861 
11862 	goto out;
11863 
11864 out_balanced:
11865 	/*
11866 	 * We reach balance although we may have faced some affinity
11867 	 * constraints. Clear the imbalance flag only if other tasks got
11868 	 * a chance to move and fix the imbalance.
11869 	 */
11870 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11871 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11872 
11873 		if (*group_imbalance)
11874 			*group_imbalance = 0;
11875 	}
11876 
11877 out_all_pinned:
11878 	/*
11879 	 * We reach balance because all tasks are pinned at this level so
11880 	 * we can't migrate them. Let the imbalance flag set so parent level
11881 	 * can try to migrate them.
11882 	 */
11883 	schedstat_inc(sd->lb_balanced[idle]);
11884 
11885 	sd->nr_balance_failed = 0;
11886 
11887 out_one_pinned:
11888 	ld_moved = 0;
11889 
11890 	/*
11891 	 * sched_balance_newidle() disregards balance intervals, so we could
11892 	 * repeatedly reach this code, which would lead to balance_interval
11893 	 * skyrocketing in a short amount of time. Skip the balance_interval
11894 	 * increase logic to avoid that.
11895 	 *
11896 	 * Similarly misfit migration which is not necessarily an indication of
11897 	 * the system being busy and requires lb to backoff to let it settle
11898 	 * down.
11899 	 */
11900 	if (env.idle == CPU_NEWLY_IDLE ||
11901 	    env.migration_type == migrate_misfit)
11902 		goto out;
11903 
11904 	/* tune up the balancing interval */
11905 	if ((env.flags & LBF_ALL_PINNED &&
11906 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11907 	    sd->balance_interval < sd->max_interval)
11908 		sd->balance_interval *= 2;
11909 out:
11910 	return ld_moved;
11911 }
11912 
11913 static inline unsigned long
11914 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11915 {
11916 	unsigned long interval = sd->balance_interval;
11917 
11918 	if (cpu_busy)
11919 		interval *= sd->busy_factor;
11920 
11921 	/* scale ms to jiffies */
11922 	interval = msecs_to_jiffies(interval);
11923 
11924 	/*
11925 	 * Reduce likelihood of busy balancing at higher domains racing with
11926 	 * balancing at lower domains by preventing their balancing periods
11927 	 * from being multiples of each other.
11928 	 */
11929 	if (cpu_busy)
11930 		interval -= 1;
11931 
11932 	interval = clamp(interval, 1UL, max_load_balance_interval);
11933 
11934 	return interval;
11935 }
11936 
11937 static inline void
11938 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11939 {
11940 	unsigned long interval, next;
11941 
11942 	/* used by idle balance, so cpu_busy = 0 */
11943 	interval = get_sd_balance_interval(sd, 0);
11944 	next = sd->last_balance + interval;
11945 
11946 	if (time_after(*next_balance, next))
11947 		*next_balance = next;
11948 }
11949 
11950 /*
11951  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11952  * running tasks off the busiest CPU onto idle CPUs. It requires at
11953  * least 1 task to be running on each physical CPU where possible, and
11954  * avoids physical / logical imbalances.
11955  */
11956 static int active_load_balance_cpu_stop(void *data)
11957 {
11958 	struct rq *busiest_rq = data;
11959 	int busiest_cpu = cpu_of(busiest_rq);
11960 	int target_cpu = busiest_rq->push_cpu;
11961 	struct rq *target_rq = cpu_rq(target_cpu);
11962 	struct sched_domain *sd;
11963 	struct task_struct *p = NULL;
11964 	struct rq_flags rf;
11965 
11966 	rq_lock_irq(busiest_rq, &rf);
11967 	/*
11968 	 * Between queueing the stop-work and running it is a hole in which
11969 	 * CPUs can become inactive. We should not move tasks from or to
11970 	 * inactive CPUs.
11971 	 */
11972 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11973 		goto out_unlock;
11974 
11975 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11976 	if (unlikely(busiest_cpu != smp_processor_id() ||
11977 		     !busiest_rq->active_balance))
11978 		goto out_unlock;
11979 
11980 	/* Is there any task to move? */
11981 	if (busiest_rq->nr_running <= 1)
11982 		goto out_unlock;
11983 
11984 	/*
11985 	 * This condition is "impossible", if it occurs
11986 	 * we need to fix it. Originally reported by
11987 	 * Bjorn Helgaas on a 128-CPU setup.
11988 	 */
11989 	WARN_ON_ONCE(busiest_rq == target_rq);
11990 
11991 	/* Search for an sd spanning us and the target CPU. */
11992 	rcu_read_lock();
11993 	for_each_domain(target_cpu, sd) {
11994 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11995 			break;
11996 	}
11997 
11998 	if (likely(sd)) {
11999 		struct lb_env env = {
12000 			.sd		= sd,
12001 			.dst_cpu	= target_cpu,
12002 			.dst_rq		= target_rq,
12003 			.src_cpu	= busiest_rq->cpu,
12004 			.src_rq		= busiest_rq,
12005 			.idle		= CPU_IDLE,
12006 			.flags		= LBF_ACTIVE_LB,
12007 		};
12008 
12009 		schedstat_inc(sd->alb_count);
12010 		update_rq_clock(busiest_rq);
12011 
12012 		p = detach_one_task(&env);
12013 		if (p) {
12014 			schedstat_inc(sd->alb_pushed);
12015 			/* Active balancing done, reset the failure counter. */
12016 			sd->nr_balance_failed = 0;
12017 		} else {
12018 			schedstat_inc(sd->alb_failed);
12019 		}
12020 	}
12021 	rcu_read_unlock();
12022 out_unlock:
12023 	busiest_rq->active_balance = 0;
12024 	rq_unlock(busiest_rq, &rf);
12025 
12026 	if (p)
12027 		attach_one_task(target_rq, p);
12028 
12029 	local_irq_enable();
12030 
12031 	return 0;
12032 }
12033 
12034 /*
12035  * This flag serializes load-balancing passes over large domains
12036  * (above the NODE topology level) - only one load-balancing instance
12037  * may run at a time, to reduce overhead on very large systems with
12038  * lots of CPUs and large NUMA distances.
12039  *
12040  * - Note that load-balancing passes triggered while another one
12041  *   is executing are skipped and not re-tried.
12042  *
12043  * - Also note that this does not serialize rebalance_domains()
12044  *   execution, as non-SD_SERIALIZE domains will still be
12045  *   load-balanced in parallel.
12046  */
12047 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12048 
12049 /*
12050  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12051  * This trades load-balance latency on larger machines for less cross talk.
12052  */
12053 void update_max_interval(void)
12054 {
12055 	max_load_balance_interval = HZ*num_online_cpus()/10;
12056 }
12057 
12058 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12059 {
12060 	if (cost > sd->max_newidle_lb_cost) {
12061 		/*
12062 		 * Track max cost of a domain to make sure to not delay the
12063 		 * next wakeup on the CPU.
12064 		 *
12065 		 * sched_balance_newidle() bumps the cost whenever newidle
12066 		 * balance fails, and we don't want things to grow out of
12067 		 * control.  Use the sysctl_sched_migration_cost as the upper
12068 		 * limit, plus a litle extra to avoid off by ones.
12069 		 */
12070 		sd->max_newidle_lb_cost =
12071 			min(cost, sysctl_sched_migration_cost + 200);
12072 		sd->last_decay_max_lb_cost = jiffies;
12073 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12074 		/*
12075 		 * Decay the newidle max times by ~1% per second to ensure that
12076 		 * it is not outdated and the current max cost is actually
12077 		 * shorter.
12078 		 */
12079 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12080 		sd->last_decay_max_lb_cost = jiffies;
12081 
12082 		return true;
12083 	}
12084 
12085 	return false;
12086 }
12087 
12088 /*
12089  * It checks each scheduling domain to see if it is due to be balanced,
12090  * and initiates a balancing operation if so.
12091  *
12092  * Balancing parameters are set up in init_sched_domains.
12093  */
12094 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12095 {
12096 	int continue_balancing = 1;
12097 	int cpu = rq->cpu;
12098 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12099 	unsigned long interval;
12100 	struct sched_domain *sd;
12101 	/* Earliest time when we have to do rebalance again */
12102 	unsigned long next_balance = jiffies + 60*HZ;
12103 	int update_next_balance = 0;
12104 	int need_serialize, need_decay = 0;
12105 	u64 max_cost = 0;
12106 
12107 	rcu_read_lock();
12108 	for_each_domain(cpu, sd) {
12109 		/*
12110 		 * Decay the newidle max times here because this is a regular
12111 		 * visit to all the domains.
12112 		 */
12113 		need_decay = update_newidle_cost(sd, 0);
12114 		max_cost += sd->max_newidle_lb_cost;
12115 
12116 		/*
12117 		 * Stop the load balance at this level. There is another
12118 		 * CPU in our sched group which is doing load balancing more
12119 		 * actively.
12120 		 */
12121 		if (!continue_balancing) {
12122 			if (need_decay)
12123 				continue;
12124 			break;
12125 		}
12126 
12127 		interval = get_sd_balance_interval(sd, busy);
12128 
12129 		need_serialize = sd->flags & SD_SERIALIZE;
12130 		if (need_serialize) {
12131 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12132 				goto out;
12133 		}
12134 
12135 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12136 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12137 				/*
12138 				 * The LBF_DST_PINNED logic could have changed
12139 				 * env->dst_cpu, so we can't know our idle
12140 				 * state even if we migrated tasks. Update it.
12141 				 */
12142 				idle = idle_cpu(cpu);
12143 				busy = !idle && !sched_idle_cpu(cpu);
12144 			}
12145 			sd->last_balance = jiffies;
12146 			interval = get_sd_balance_interval(sd, busy);
12147 		}
12148 		if (need_serialize)
12149 			atomic_set_release(&sched_balance_running, 0);
12150 out:
12151 		if (time_after(next_balance, sd->last_balance + interval)) {
12152 			next_balance = sd->last_balance + interval;
12153 			update_next_balance = 1;
12154 		}
12155 	}
12156 	if (need_decay) {
12157 		/*
12158 		 * Ensure the rq-wide value also decays but keep it at a
12159 		 * reasonable floor to avoid funnies with rq->avg_idle.
12160 		 */
12161 		rq->max_idle_balance_cost =
12162 			max((u64)sysctl_sched_migration_cost, max_cost);
12163 	}
12164 	rcu_read_unlock();
12165 
12166 	/*
12167 	 * next_balance will be updated only when there is a need.
12168 	 * When the cpu is attached to null domain for ex, it will not be
12169 	 * updated.
12170 	 */
12171 	if (likely(update_next_balance))
12172 		rq->next_balance = next_balance;
12173 
12174 }
12175 
12176 static inline int on_null_domain(struct rq *rq)
12177 {
12178 	return unlikely(!rcu_dereference_sched(rq->sd));
12179 }
12180 
12181 #ifdef CONFIG_NO_HZ_COMMON
12182 /*
12183  * NOHZ idle load balancing (ILB) details:
12184  *
12185  * - When one of the busy CPUs notices that there may be an idle rebalancing
12186  *   needed, they will kick the idle load balancer, which then does idle
12187  *   load balancing for all the idle CPUs.
12188  */
12189 static inline int find_new_ilb(void)
12190 {
12191 	const struct cpumask *hk_mask;
12192 	int ilb_cpu;
12193 
12194 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12195 
12196 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12197 
12198 		if (ilb_cpu == smp_processor_id())
12199 			continue;
12200 
12201 		if (idle_cpu(ilb_cpu))
12202 			return ilb_cpu;
12203 	}
12204 
12205 	return -1;
12206 }
12207 
12208 /*
12209  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12210  * SMP function call (IPI).
12211  *
12212  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12213  * (if there is one).
12214  */
12215 static void kick_ilb(unsigned int flags)
12216 {
12217 	int ilb_cpu;
12218 
12219 	/*
12220 	 * Increase nohz.next_balance only when if full ilb is triggered but
12221 	 * not if we only update stats.
12222 	 */
12223 	if (flags & NOHZ_BALANCE_KICK)
12224 		nohz.next_balance = jiffies+1;
12225 
12226 	ilb_cpu = find_new_ilb();
12227 	if (ilb_cpu < 0)
12228 		return;
12229 
12230 	/*
12231 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12232 	 * i.e. all bits in flags are already set in ilb_cpu.
12233 	 */
12234 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12235 		return;
12236 
12237 	/*
12238 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12239 	 * the first flag owns it; cleared by nohz_csd_func().
12240 	 */
12241 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12242 	if (flags & NOHZ_KICK_MASK)
12243 		return;
12244 
12245 	/*
12246 	 * This way we generate an IPI on the target CPU which
12247 	 * is idle, and the softirq performing NOHZ idle load balancing
12248 	 * will be run before returning from the IPI.
12249 	 */
12250 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12251 }
12252 
12253 /*
12254  * Current decision point for kicking the idle load balancer in the presence
12255  * of idle CPUs in the system.
12256  */
12257 static void nohz_balancer_kick(struct rq *rq)
12258 {
12259 	unsigned long now = jiffies;
12260 	struct sched_domain_shared *sds;
12261 	struct sched_domain *sd;
12262 	int nr_busy, i, cpu = rq->cpu;
12263 	unsigned int flags = 0;
12264 
12265 	if (unlikely(rq->idle_balance))
12266 		return;
12267 
12268 	/*
12269 	 * We may be recently in ticked or tickless idle mode. At the first
12270 	 * busy tick after returning from idle, we will update the busy stats.
12271 	 */
12272 	nohz_balance_exit_idle(rq);
12273 
12274 	/*
12275 	 * None are in tickless mode and hence no need for NOHZ idle load
12276 	 * balancing:
12277 	 */
12278 	if (likely(!atomic_read(&nohz.nr_cpus)))
12279 		return;
12280 
12281 	if (READ_ONCE(nohz.has_blocked) &&
12282 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12283 		flags = NOHZ_STATS_KICK;
12284 
12285 	if (time_before(now, nohz.next_balance))
12286 		goto out;
12287 
12288 	if (rq->nr_running >= 2) {
12289 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12290 		goto out;
12291 	}
12292 
12293 	rcu_read_lock();
12294 
12295 	sd = rcu_dereference(rq->sd);
12296 	if (sd) {
12297 		/*
12298 		 * If there's a runnable CFS task and the current CPU has reduced
12299 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12300 		 */
12301 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12302 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12303 			goto unlock;
12304 		}
12305 	}
12306 
12307 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12308 	if (sd) {
12309 		/*
12310 		 * When ASYM_PACKING; see if there's a more preferred CPU
12311 		 * currently idle; in which case, kick the ILB to move tasks
12312 		 * around.
12313 		 *
12314 		 * When balancing between cores, all the SMT siblings of the
12315 		 * preferred CPU must be idle.
12316 		 */
12317 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12318 			if (sched_asym(sd, i, cpu)) {
12319 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12320 				goto unlock;
12321 			}
12322 		}
12323 	}
12324 
12325 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12326 	if (sd) {
12327 		/*
12328 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12329 		 * to run the misfit task on.
12330 		 */
12331 		if (check_misfit_status(rq)) {
12332 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12333 			goto unlock;
12334 		}
12335 
12336 		/*
12337 		 * For asymmetric systems, we do not want to nicely balance
12338 		 * cache use, instead we want to embrace asymmetry and only
12339 		 * ensure tasks have enough CPU capacity.
12340 		 *
12341 		 * Skip the LLC logic because it's not relevant in that case.
12342 		 */
12343 		goto unlock;
12344 	}
12345 
12346 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12347 	if (sds) {
12348 		/*
12349 		 * If there is an imbalance between LLC domains (IOW we could
12350 		 * increase the overall cache utilization), we need a less-loaded LLC
12351 		 * domain to pull some load from. Likewise, we may need to spread
12352 		 * load within the current LLC domain (e.g. packed SMT cores but
12353 		 * other CPUs are idle). We can't really know from here how busy
12354 		 * the others are - so just get a NOHZ balance going if it looks
12355 		 * like this LLC domain has tasks we could move.
12356 		 */
12357 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12358 		if (nr_busy > 1) {
12359 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12360 			goto unlock;
12361 		}
12362 	}
12363 unlock:
12364 	rcu_read_unlock();
12365 out:
12366 	if (READ_ONCE(nohz.needs_update))
12367 		flags |= NOHZ_NEXT_KICK;
12368 
12369 	if (flags)
12370 		kick_ilb(flags);
12371 }
12372 
12373 static void set_cpu_sd_state_busy(int cpu)
12374 {
12375 	struct sched_domain *sd;
12376 
12377 	rcu_read_lock();
12378 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12379 
12380 	if (!sd || !sd->nohz_idle)
12381 		goto unlock;
12382 	sd->nohz_idle = 0;
12383 
12384 	atomic_inc(&sd->shared->nr_busy_cpus);
12385 unlock:
12386 	rcu_read_unlock();
12387 }
12388 
12389 void nohz_balance_exit_idle(struct rq *rq)
12390 {
12391 	WARN_ON_ONCE(rq != this_rq());
12392 
12393 	if (likely(!rq->nohz_tick_stopped))
12394 		return;
12395 
12396 	rq->nohz_tick_stopped = 0;
12397 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12398 	atomic_dec(&nohz.nr_cpus);
12399 
12400 	set_cpu_sd_state_busy(rq->cpu);
12401 }
12402 
12403 static void set_cpu_sd_state_idle(int cpu)
12404 {
12405 	struct sched_domain *sd;
12406 
12407 	rcu_read_lock();
12408 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12409 
12410 	if (!sd || sd->nohz_idle)
12411 		goto unlock;
12412 	sd->nohz_idle = 1;
12413 
12414 	atomic_dec(&sd->shared->nr_busy_cpus);
12415 unlock:
12416 	rcu_read_unlock();
12417 }
12418 
12419 /*
12420  * This routine will record that the CPU is going idle with tick stopped.
12421  * This info will be used in performing idle load balancing in the future.
12422  */
12423 void nohz_balance_enter_idle(int cpu)
12424 {
12425 	struct rq *rq = cpu_rq(cpu);
12426 
12427 	WARN_ON_ONCE(cpu != smp_processor_id());
12428 
12429 	/* If this CPU is going down, then nothing needs to be done: */
12430 	if (!cpu_active(cpu))
12431 		return;
12432 
12433 	/*
12434 	 * Can be set safely without rq->lock held
12435 	 * If a clear happens, it will have evaluated last additions because
12436 	 * rq->lock is held during the check and the clear
12437 	 */
12438 	rq->has_blocked_load = 1;
12439 
12440 	/*
12441 	 * The tick is still stopped but load could have been added in the
12442 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12443 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12444 	 * of nohz.has_blocked can only happen after checking the new load
12445 	 */
12446 	if (rq->nohz_tick_stopped)
12447 		goto out;
12448 
12449 	/* If we're a completely isolated CPU, we don't play: */
12450 	if (on_null_domain(rq))
12451 		return;
12452 
12453 	rq->nohz_tick_stopped = 1;
12454 
12455 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12456 	atomic_inc(&nohz.nr_cpus);
12457 
12458 	/*
12459 	 * Ensures that if nohz_idle_balance() fails to observe our
12460 	 * @idle_cpus_mask store, it must observe the @has_blocked
12461 	 * and @needs_update stores.
12462 	 */
12463 	smp_mb__after_atomic();
12464 
12465 	set_cpu_sd_state_idle(cpu);
12466 
12467 	WRITE_ONCE(nohz.needs_update, 1);
12468 out:
12469 	/*
12470 	 * Each time a cpu enter idle, we assume that it has blocked load and
12471 	 * enable the periodic update of the load of idle CPUs
12472 	 */
12473 	WRITE_ONCE(nohz.has_blocked, 1);
12474 }
12475 
12476 static bool update_nohz_stats(struct rq *rq)
12477 {
12478 	unsigned int cpu = rq->cpu;
12479 
12480 	if (!rq->has_blocked_load)
12481 		return false;
12482 
12483 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12484 		return false;
12485 
12486 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12487 		return true;
12488 
12489 	sched_balance_update_blocked_averages(cpu);
12490 
12491 	return rq->has_blocked_load;
12492 }
12493 
12494 /*
12495  * Internal function that runs load balance for all idle CPUs. The load balance
12496  * can be a simple update of blocked load or a complete load balance with
12497  * tasks movement depending of flags.
12498  */
12499 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12500 {
12501 	/* Earliest time when we have to do rebalance again */
12502 	unsigned long now = jiffies;
12503 	unsigned long next_balance = now + 60*HZ;
12504 	bool has_blocked_load = false;
12505 	int update_next_balance = 0;
12506 	int this_cpu = this_rq->cpu;
12507 	int balance_cpu;
12508 	struct rq *rq;
12509 
12510 	WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12511 
12512 	/*
12513 	 * We assume there will be no idle load after this update and clear
12514 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12515 	 * set the has_blocked flag and trigger another update of idle load.
12516 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12517 	 * setting the flag, we are sure to not clear the state and not
12518 	 * check the load of an idle cpu.
12519 	 *
12520 	 * Same applies to idle_cpus_mask vs needs_update.
12521 	 */
12522 	if (flags & NOHZ_STATS_KICK)
12523 		WRITE_ONCE(nohz.has_blocked, 0);
12524 	if (flags & NOHZ_NEXT_KICK)
12525 		WRITE_ONCE(nohz.needs_update, 0);
12526 
12527 	/*
12528 	 * Ensures that if we miss the CPU, we must see the has_blocked
12529 	 * store from nohz_balance_enter_idle().
12530 	 */
12531 	smp_mb();
12532 
12533 	/*
12534 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12535 	 * chance for other idle cpu to pull load.
12536 	 */
12537 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12538 		if (!idle_cpu(balance_cpu))
12539 			continue;
12540 
12541 		/*
12542 		 * If this CPU gets work to do, stop the load balancing
12543 		 * work being done for other CPUs. Next load
12544 		 * balancing owner will pick it up.
12545 		 */
12546 		if (!idle_cpu(this_cpu) && need_resched()) {
12547 			if (flags & NOHZ_STATS_KICK)
12548 				has_blocked_load = true;
12549 			if (flags & NOHZ_NEXT_KICK)
12550 				WRITE_ONCE(nohz.needs_update, 1);
12551 			goto abort;
12552 		}
12553 
12554 		rq = cpu_rq(balance_cpu);
12555 
12556 		if (flags & NOHZ_STATS_KICK)
12557 			has_blocked_load |= update_nohz_stats(rq);
12558 
12559 		/*
12560 		 * If time for next balance is due,
12561 		 * do the balance.
12562 		 */
12563 		if (time_after_eq(jiffies, rq->next_balance)) {
12564 			struct rq_flags rf;
12565 
12566 			rq_lock_irqsave(rq, &rf);
12567 			update_rq_clock(rq);
12568 			rq_unlock_irqrestore(rq, &rf);
12569 
12570 			if (flags & NOHZ_BALANCE_KICK)
12571 				sched_balance_domains(rq, CPU_IDLE);
12572 		}
12573 
12574 		if (time_after(next_balance, rq->next_balance)) {
12575 			next_balance = rq->next_balance;
12576 			update_next_balance = 1;
12577 		}
12578 	}
12579 
12580 	/*
12581 	 * next_balance will be updated only when there is a need.
12582 	 * When the CPU is attached to null domain for ex, it will not be
12583 	 * updated.
12584 	 */
12585 	if (likely(update_next_balance))
12586 		nohz.next_balance = next_balance;
12587 
12588 	if (flags & NOHZ_STATS_KICK)
12589 		WRITE_ONCE(nohz.next_blocked,
12590 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12591 
12592 abort:
12593 	/* There is still blocked load, enable periodic update */
12594 	if (has_blocked_load)
12595 		WRITE_ONCE(nohz.has_blocked, 1);
12596 }
12597 
12598 /*
12599  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12600  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12601  */
12602 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12603 {
12604 	unsigned int flags = this_rq->nohz_idle_balance;
12605 
12606 	if (!flags)
12607 		return false;
12608 
12609 	this_rq->nohz_idle_balance = 0;
12610 
12611 	if (idle != CPU_IDLE)
12612 		return false;
12613 
12614 	_nohz_idle_balance(this_rq, flags);
12615 
12616 	return true;
12617 }
12618 
12619 /*
12620  * Check if we need to directly run the ILB for updating blocked load before
12621  * entering idle state. Here we run ILB directly without issuing IPIs.
12622  *
12623  * Note that when this function is called, the tick may not yet be stopped on
12624  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12625  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12626  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12627  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12628  * called from this function on (this) CPU that's not yet in the mask. That's
12629  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12630  * updating the blocked load of already idle CPUs without waking up one of
12631  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12632  * cpu about to enter idle, because it can take a long time.
12633  */
12634 void nohz_run_idle_balance(int cpu)
12635 {
12636 	unsigned int flags;
12637 
12638 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12639 
12640 	/*
12641 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12642 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12643 	 */
12644 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12645 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12646 }
12647 
12648 static void nohz_newidle_balance(struct rq *this_rq)
12649 {
12650 	int this_cpu = this_rq->cpu;
12651 
12652 	/* Will wake up very soon. No time for doing anything else*/
12653 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12654 		return;
12655 
12656 	/* Don't need to update blocked load of idle CPUs*/
12657 	if (!READ_ONCE(nohz.has_blocked) ||
12658 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12659 		return;
12660 
12661 	/*
12662 	 * Set the need to trigger ILB in order to update blocked load
12663 	 * before entering idle state.
12664 	 */
12665 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12666 }
12667 
12668 #else /* !CONFIG_NO_HZ_COMMON: */
12669 static inline void nohz_balancer_kick(struct rq *rq) { }
12670 
12671 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12672 {
12673 	return false;
12674 }
12675 
12676 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12677 #endif /* !CONFIG_NO_HZ_COMMON */
12678 
12679 /*
12680  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12681  * idle. Attempts to pull tasks from other CPUs.
12682  *
12683  * Returns:
12684  *   < 0 - we released the lock and there are !fair tasks present
12685  *     0 - failed, no new tasks
12686  *   > 0 - success, new (fair) tasks present
12687  */
12688 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12689 {
12690 	unsigned long next_balance = jiffies + HZ;
12691 	int this_cpu = this_rq->cpu;
12692 	int continue_balancing = 1;
12693 	u64 t0, t1, curr_cost = 0;
12694 	struct sched_domain *sd;
12695 	int pulled_task = 0;
12696 
12697 	update_misfit_status(NULL, this_rq);
12698 
12699 	/*
12700 	 * There is a task waiting to run. No need to search for one.
12701 	 * Return 0; the task will be enqueued when switching to idle.
12702 	 */
12703 	if (this_rq->ttwu_pending)
12704 		return 0;
12705 
12706 	/*
12707 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12708 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12709 	 * as idle time.
12710 	 */
12711 	this_rq->idle_stamp = rq_clock(this_rq);
12712 
12713 	/*
12714 	 * Do not pull tasks towards !active CPUs...
12715 	 */
12716 	if (!cpu_active(this_cpu))
12717 		return 0;
12718 
12719 	/*
12720 	 * This is OK, because current is on_cpu, which avoids it being picked
12721 	 * for load-balance and preemption/IRQs are still disabled avoiding
12722 	 * further scheduler activity on it and we're being very careful to
12723 	 * re-start the picking loop.
12724 	 */
12725 	rq_unpin_lock(this_rq, rf);
12726 
12727 	rcu_read_lock();
12728 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12729 
12730 	if (!get_rd_overloaded(this_rq->rd) ||
12731 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12732 
12733 		if (sd)
12734 			update_next_balance(sd, &next_balance);
12735 		rcu_read_unlock();
12736 
12737 		goto out;
12738 	}
12739 	rcu_read_unlock();
12740 
12741 	raw_spin_rq_unlock(this_rq);
12742 
12743 	t0 = sched_clock_cpu(this_cpu);
12744 	sched_balance_update_blocked_averages(this_cpu);
12745 
12746 	rcu_read_lock();
12747 	for_each_domain(this_cpu, sd) {
12748 		u64 domain_cost;
12749 
12750 		update_next_balance(sd, &next_balance);
12751 
12752 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12753 			break;
12754 
12755 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12756 
12757 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12758 						   sd, CPU_NEWLY_IDLE,
12759 						   &continue_balancing);
12760 
12761 			t1 = sched_clock_cpu(this_cpu);
12762 			domain_cost = t1 - t0;
12763 			curr_cost += domain_cost;
12764 			t0 = t1;
12765 
12766 			/*
12767 			 * Failing newidle means it is not effective;
12768 			 * bump the cost so we end up doing less of it.
12769 			 */
12770 			if (!pulled_task)
12771 				domain_cost = (3 * sd->max_newidle_lb_cost) / 2;
12772 
12773 			update_newidle_cost(sd, domain_cost);
12774 		}
12775 
12776 		/*
12777 		 * Stop searching for tasks to pull if there are
12778 		 * now runnable tasks on this rq.
12779 		 */
12780 		if (pulled_task || !continue_balancing)
12781 			break;
12782 	}
12783 	rcu_read_unlock();
12784 
12785 	raw_spin_rq_lock(this_rq);
12786 
12787 	if (curr_cost > this_rq->max_idle_balance_cost)
12788 		this_rq->max_idle_balance_cost = curr_cost;
12789 
12790 	/*
12791 	 * While browsing the domains, we released the rq lock, a task could
12792 	 * have been enqueued in the meantime. Since we're not going idle,
12793 	 * pretend we pulled a task.
12794 	 */
12795 	if (this_rq->cfs.h_nr_queued && !pulled_task)
12796 		pulled_task = 1;
12797 
12798 	/* Is there a task of a high priority class? */
12799 	if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12800 		pulled_task = -1;
12801 
12802 out:
12803 	/* Move the next balance forward */
12804 	if (time_after(this_rq->next_balance, next_balance))
12805 		this_rq->next_balance = next_balance;
12806 
12807 	if (pulled_task)
12808 		this_rq->idle_stamp = 0;
12809 	else
12810 		nohz_newidle_balance(this_rq);
12811 
12812 	rq_repin_lock(this_rq, rf);
12813 
12814 	return pulled_task;
12815 }
12816 
12817 /*
12818  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12819  *
12820  * - directly from the local sched_tick() for periodic load balancing
12821  *
12822  * - indirectly from a remote sched_tick() for NOHZ idle balancing
12823  *   through the SMP cross-call nohz_csd_func()
12824  */
12825 static __latent_entropy void sched_balance_softirq(void)
12826 {
12827 	struct rq *this_rq = this_rq();
12828 	enum cpu_idle_type idle = this_rq->idle_balance;
12829 	/*
12830 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12831 	 * balancing on behalf of the other idle CPUs whose ticks are
12832 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12833 	 * give the idle CPUs a chance to load balance. Else we may
12834 	 * load balance only within the local sched_domain hierarchy
12835 	 * and abort nohz_idle_balance altogether if we pull some load.
12836 	 */
12837 	if (nohz_idle_balance(this_rq, idle))
12838 		return;
12839 
12840 	/* normal load balance */
12841 	sched_balance_update_blocked_averages(this_rq->cpu);
12842 	sched_balance_domains(this_rq, idle);
12843 }
12844 
12845 /*
12846  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12847  */
12848 void sched_balance_trigger(struct rq *rq)
12849 {
12850 	/*
12851 	 * Don't need to rebalance while attached to NULL domain or
12852 	 * runqueue CPU is not active
12853 	 */
12854 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12855 		return;
12856 
12857 	if (time_after_eq(jiffies, rq->next_balance))
12858 		raise_softirq(SCHED_SOFTIRQ);
12859 
12860 	nohz_balancer_kick(rq);
12861 }
12862 
12863 static void rq_online_fair(struct rq *rq)
12864 {
12865 	update_sysctl();
12866 
12867 	update_runtime_enabled(rq);
12868 }
12869 
12870 static void rq_offline_fair(struct rq *rq)
12871 {
12872 	update_sysctl();
12873 
12874 	/* Ensure any throttled groups are reachable by pick_next_task */
12875 	unthrottle_offline_cfs_rqs(rq);
12876 
12877 	/* Ensure that we remove rq contribution to group share: */
12878 	clear_tg_offline_cfs_rqs(rq);
12879 }
12880 
12881 #ifdef CONFIG_SCHED_CORE
12882 static inline bool
12883 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12884 {
12885 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12886 	u64 slice = se->slice;
12887 
12888 	return (rtime * min_nr_tasks > slice);
12889 }
12890 
12891 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12892 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12893 {
12894 	if (!sched_core_enabled(rq))
12895 		return;
12896 
12897 	/*
12898 	 * If runqueue has only one task which used up its slice and
12899 	 * if the sibling is forced idle, then trigger schedule to
12900 	 * give forced idle task a chance.
12901 	 *
12902 	 * sched_slice() considers only this active rq and it gets the
12903 	 * whole slice. But during force idle, we have siblings acting
12904 	 * like a single runqueue and hence we need to consider runnable
12905 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12906 	 * go through the forced idle rq, but that would be a perf hit.
12907 	 * We can assume that the forced idle CPU has at least
12908 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12909 	 * if we need to give up the CPU.
12910 	 */
12911 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
12912 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12913 		resched_curr(rq);
12914 }
12915 
12916 /*
12917  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12918  */
12919 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12920 			 bool forceidle)
12921 {
12922 	for_each_sched_entity(se) {
12923 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12924 
12925 		if (forceidle) {
12926 			if (cfs_rq->forceidle_seq == fi_seq)
12927 				break;
12928 			cfs_rq->forceidle_seq = fi_seq;
12929 		}
12930 
12931 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12932 	}
12933 }
12934 
12935 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12936 {
12937 	struct sched_entity *se = &p->se;
12938 
12939 	if (p->sched_class != &fair_sched_class)
12940 		return;
12941 
12942 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12943 }
12944 
12945 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12946 			bool in_fi)
12947 {
12948 	struct rq *rq = task_rq(a);
12949 	const struct sched_entity *sea = &a->se;
12950 	const struct sched_entity *seb = &b->se;
12951 	struct cfs_rq *cfs_rqa;
12952 	struct cfs_rq *cfs_rqb;
12953 	s64 delta;
12954 
12955 	WARN_ON_ONCE(task_rq(b)->core != rq->core);
12956 
12957 #ifdef CONFIG_FAIR_GROUP_SCHED
12958 	/*
12959 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12960 	 * are immediate siblings.
12961 	 */
12962 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12963 		int sea_depth = sea->depth;
12964 		int seb_depth = seb->depth;
12965 
12966 		if (sea_depth >= seb_depth)
12967 			sea = parent_entity(sea);
12968 		if (sea_depth <= seb_depth)
12969 			seb = parent_entity(seb);
12970 	}
12971 
12972 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12973 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12974 
12975 	cfs_rqa = sea->cfs_rq;
12976 	cfs_rqb = seb->cfs_rq;
12977 #else /* !CONFIG_FAIR_GROUP_SCHED: */
12978 	cfs_rqa = &task_rq(a)->cfs;
12979 	cfs_rqb = &task_rq(b)->cfs;
12980 #endif /* !CONFIG_FAIR_GROUP_SCHED */
12981 
12982 	/*
12983 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12984 	 * min_vruntime_fi, which would have been updated in prior calls
12985 	 * to se_fi_update().
12986 	 */
12987 	delta = (s64)(sea->vruntime - seb->vruntime) +
12988 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12989 
12990 	return delta > 0;
12991 }
12992 
12993 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12994 {
12995 	struct cfs_rq *cfs_rq;
12996 
12997 #ifdef CONFIG_FAIR_GROUP_SCHED
12998 	cfs_rq = task_group(p)->cfs_rq[cpu];
12999 #else
13000 	cfs_rq = &cpu_rq(cpu)->cfs;
13001 #endif
13002 	return throttled_hierarchy(cfs_rq);
13003 }
13004 #else /* !CONFIG_SCHED_CORE: */
13005 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13006 #endif /* !CONFIG_SCHED_CORE */
13007 
13008 /*
13009  * scheduler tick hitting a task of our scheduling class.
13010  *
13011  * NOTE: This function can be called remotely by the tick offload that
13012  * goes along full dynticks. Therefore no local assumption can be made
13013  * and everything must be accessed through the @rq and @curr passed in
13014  * parameters.
13015  */
13016 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13017 {
13018 	struct cfs_rq *cfs_rq;
13019 	struct sched_entity *se = &curr->se;
13020 
13021 	for_each_sched_entity(se) {
13022 		cfs_rq = cfs_rq_of(se);
13023 		entity_tick(cfs_rq, se, queued);
13024 	}
13025 
13026 	if (static_branch_unlikely(&sched_numa_balancing))
13027 		task_tick_numa(rq, curr);
13028 
13029 	update_misfit_status(curr, rq);
13030 	check_update_overutilized_status(task_rq(curr));
13031 
13032 	task_tick_core(rq, curr);
13033 }
13034 
13035 /*
13036  * called on fork with the child task as argument from the parent's context
13037  *  - child not yet on the tasklist
13038  *  - preemption disabled
13039  */
13040 static void task_fork_fair(struct task_struct *p)
13041 {
13042 	set_task_max_allowed_capacity(p);
13043 }
13044 
13045 /*
13046  * Priority of the task has changed. Check to see if we preempt
13047  * the current task.
13048  */
13049 static void
13050 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13051 {
13052 	if (!task_on_rq_queued(p))
13053 		return;
13054 
13055 	if (rq->cfs.nr_queued == 1)
13056 		return;
13057 
13058 	/*
13059 	 * Reschedule if we are currently running on this runqueue and
13060 	 * our priority decreased, or if we are not currently running on
13061 	 * this runqueue and our priority is higher than the current's
13062 	 */
13063 	if (task_current_donor(rq, p)) {
13064 		if (p->prio > oldprio)
13065 			resched_curr(rq);
13066 	} else
13067 		wakeup_preempt(rq, p, 0);
13068 }
13069 
13070 #ifdef CONFIG_FAIR_GROUP_SCHED
13071 /*
13072  * Propagate the changes of the sched_entity across the tg tree to make it
13073  * visible to the root
13074  */
13075 static void propagate_entity_cfs_rq(struct sched_entity *se)
13076 {
13077 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13078 
13079 	if (cfs_rq_throttled(cfs_rq))
13080 		return;
13081 
13082 	if (!throttled_hierarchy(cfs_rq))
13083 		list_add_leaf_cfs_rq(cfs_rq);
13084 
13085 	/* Start to propagate at parent */
13086 	se = se->parent;
13087 
13088 	for_each_sched_entity(se) {
13089 		cfs_rq = cfs_rq_of(se);
13090 
13091 		update_load_avg(cfs_rq, se, UPDATE_TG);
13092 
13093 		if (cfs_rq_throttled(cfs_rq))
13094 			break;
13095 
13096 		if (!throttled_hierarchy(cfs_rq))
13097 			list_add_leaf_cfs_rq(cfs_rq);
13098 	}
13099 }
13100 #else /* !CONFIG_FAIR_GROUP_SCHED: */
13101 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13102 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13103 
13104 static void detach_entity_cfs_rq(struct sched_entity *se)
13105 {
13106 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13107 
13108 	/*
13109 	 * In case the task sched_avg hasn't been attached:
13110 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13111 	 * - A task which has been woken up by try_to_wake_up() but is
13112 	 *   waiting for actually being woken up by sched_ttwu_pending().
13113 	 */
13114 	if (!se->avg.last_update_time)
13115 		return;
13116 
13117 	/* Catch up with the cfs_rq and remove our load when we leave */
13118 	update_load_avg(cfs_rq, se, 0);
13119 	detach_entity_load_avg(cfs_rq, se);
13120 	update_tg_load_avg(cfs_rq);
13121 	propagate_entity_cfs_rq(se);
13122 }
13123 
13124 static void attach_entity_cfs_rq(struct sched_entity *se)
13125 {
13126 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13127 
13128 	/* Synchronize entity with its cfs_rq */
13129 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13130 	attach_entity_load_avg(cfs_rq, se);
13131 	update_tg_load_avg(cfs_rq);
13132 	propagate_entity_cfs_rq(se);
13133 }
13134 
13135 static void detach_task_cfs_rq(struct task_struct *p)
13136 {
13137 	struct sched_entity *se = &p->se;
13138 
13139 	detach_entity_cfs_rq(se);
13140 }
13141 
13142 static void attach_task_cfs_rq(struct task_struct *p)
13143 {
13144 	struct sched_entity *se = &p->se;
13145 
13146 	attach_entity_cfs_rq(se);
13147 }
13148 
13149 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13150 {
13151 	detach_task_cfs_rq(p);
13152 }
13153 
13154 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13155 {
13156 	WARN_ON_ONCE(p->se.sched_delayed);
13157 
13158 	attach_task_cfs_rq(p);
13159 
13160 	set_task_max_allowed_capacity(p);
13161 
13162 	if (task_on_rq_queued(p)) {
13163 		/*
13164 		 * We were most likely switched from sched_rt, so
13165 		 * kick off the schedule if running, otherwise just see
13166 		 * if we can still preempt the current task.
13167 		 */
13168 		if (task_current_donor(rq, p))
13169 			resched_curr(rq);
13170 		else
13171 			wakeup_preempt(rq, p, 0);
13172 	}
13173 }
13174 
13175 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13176 {
13177 	struct sched_entity *se = &p->se;
13178 
13179 	if (task_on_rq_queued(p)) {
13180 		/*
13181 		 * Move the next running task to the front of the list, so our
13182 		 * cfs_tasks list becomes MRU one.
13183 		 */
13184 		list_move(&se->group_node, &rq->cfs_tasks);
13185 	}
13186 	if (!first)
13187 		return;
13188 
13189 	WARN_ON_ONCE(se->sched_delayed);
13190 
13191 	if (hrtick_enabled_fair(rq))
13192 		hrtick_start_fair(rq, p);
13193 
13194 	update_misfit_status(p, rq);
13195 	sched_fair_update_stop_tick(rq, p);
13196 }
13197 
13198 /*
13199  * Account for a task changing its policy or group.
13200  *
13201  * This routine is mostly called to set cfs_rq->curr field when a task
13202  * migrates between groups/classes.
13203  */
13204 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13205 {
13206 	struct sched_entity *se = &p->se;
13207 
13208 	for_each_sched_entity(se) {
13209 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13210 
13211 		set_next_entity(cfs_rq, se);
13212 		/* ensure bandwidth has been allocated on our new cfs_rq */
13213 		account_cfs_rq_runtime(cfs_rq, 0);
13214 	}
13215 
13216 	__set_next_task_fair(rq, p, first);
13217 }
13218 
13219 void init_cfs_rq(struct cfs_rq *cfs_rq)
13220 {
13221 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13222 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13223 	raw_spin_lock_init(&cfs_rq->removed.lock);
13224 }
13225 
13226 #ifdef CONFIG_FAIR_GROUP_SCHED
13227 static void task_change_group_fair(struct task_struct *p)
13228 {
13229 	/*
13230 	 * We couldn't detach or attach a forked task which
13231 	 * hasn't been woken up by wake_up_new_task().
13232 	 */
13233 	if (READ_ONCE(p->__state) == TASK_NEW)
13234 		return;
13235 
13236 	detach_task_cfs_rq(p);
13237 
13238 	/* Tell se's cfs_rq has been changed -- migrated */
13239 	p->se.avg.last_update_time = 0;
13240 	set_task_rq(p, task_cpu(p));
13241 	attach_task_cfs_rq(p);
13242 }
13243 
13244 void free_fair_sched_group(struct task_group *tg)
13245 {
13246 	int i;
13247 
13248 	for_each_possible_cpu(i) {
13249 		if (tg->cfs_rq)
13250 			kfree(tg->cfs_rq[i]);
13251 		if (tg->se)
13252 			kfree(tg->se[i]);
13253 	}
13254 
13255 	kfree(tg->cfs_rq);
13256 	kfree(tg->se);
13257 }
13258 
13259 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13260 {
13261 	struct sched_entity *se;
13262 	struct cfs_rq *cfs_rq;
13263 	int i;
13264 
13265 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13266 	if (!tg->cfs_rq)
13267 		goto err;
13268 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13269 	if (!tg->se)
13270 		goto err;
13271 
13272 	tg->shares = NICE_0_LOAD;
13273 
13274 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13275 
13276 	for_each_possible_cpu(i) {
13277 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13278 				      GFP_KERNEL, cpu_to_node(i));
13279 		if (!cfs_rq)
13280 			goto err;
13281 
13282 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13283 				  GFP_KERNEL, cpu_to_node(i));
13284 		if (!se)
13285 			goto err_free_rq;
13286 
13287 		init_cfs_rq(cfs_rq);
13288 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13289 		init_entity_runnable_average(se);
13290 	}
13291 
13292 	return 1;
13293 
13294 err_free_rq:
13295 	kfree(cfs_rq);
13296 err:
13297 	return 0;
13298 }
13299 
13300 void online_fair_sched_group(struct task_group *tg)
13301 {
13302 	struct sched_entity *se;
13303 	struct rq_flags rf;
13304 	struct rq *rq;
13305 	int i;
13306 
13307 	for_each_possible_cpu(i) {
13308 		rq = cpu_rq(i);
13309 		se = tg->se[i];
13310 		rq_lock_irq(rq, &rf);
13311 		update_rq_clock(rq);
13312 		attach_entity_cfs_rq(se);
13313 		sync_throttle(tg, i);
13314 		rq_unlock_irq(rq, &rf);
13315 	}
13316 }
13317 
13318 void unregister_fair_sched_group(struct task_group *tg)
13319 {
13320 	int cpu;
13321 
13322 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13323 
13324 	for_each_possible_cpu(cpu) {
13325 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13326 		struct sched_entity *se = tg->se[cpu];
13327 		struct rq *rq = cpu_rq(cpu);
13328 
13329 		if (se) {
13330 			if (se->sched_delayed) {
13331 				guard(rq_lock_irqsave)(rq);
13332 				if (se->sched_delayed) {
13333 					update_rq_clock(rq);
13334 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13335 				}
13336 				list_del_leaf_cfs_rq(cfs_rq);
13337 			}
13338 			remove_entity_load_avg(se);
13339 		}
13340 
13341 		/*
13342 		 * Only empty task groups can be destroyed; so we can speculatively
13343 		 * check on_list without danger of it being re-added.
13344 		 */
13345 		if (cfs_rq->on_list) {
13346 			guard(rq_lock_irqsave)(rq);
13347 			list_del_leaf_cfs_rq(cfs_rq);
13348 		}
13349 	}
13350 }
13351 
13352 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13353 			struct sched_entity *se, int cpu,
13354 			struct sched_entity *parent)
13355 {
13356 	struct rq *rq = cpu_rq(cpu);
13357 
13358 	cfs_rq->tg = tg;
13359 	cfs_rq->rq = rq;
13360 	init_cfs_rq_runtime(cfs_rq);
13361 
13362 	tg->cfs_rq[cpu] = cfs_rq;
13363 	tg->se[cpu] = se;
13364 
13365 	/* se could be NULL for root_task_group */
13366 	if (!se)
13367 		return;
13368 
13369 	if (!parent) {
13370 		se->cfs_rq = &rq->cfs;
13371 		se->depth = 0;
13372 	} else {
13373 		se->cfs_rq = parent->my_q;
13374 		se->depth = parent->depth + 1;
13375 	}
13376 
13377 	se->my_q = cfs_rq;
13378 	/* guarantee group entities always have weight */
13379 	update_load_set(&se->load, NICE_0_LOAD);
13380 	se->parent = parent;
13381 }
13382 
13383 static DEFINE_MUTEX(shares_mutex);
13384 
13385 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13386 {
13387 	int i;
13388 
13389 	lockdep_assert_held(&shares_mutex);
13390 
13391 	/*
13392 	 * We can't change the weight of the root cgroup.
13393 	 */
13394 	if (!tg->se[0])
13395 		return -EINVAL;
13396 
13397 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13398 
13399 	if (tg->shares == shares)
13400 		return 0;
13401 
13402 	tg->shares = shares;
13403 	for_each_possible_cpu(i) {
13404 		struct rq *rq = cpu_rq(i);
13405 		struct sched_entity *se = tg->se[i];
13406 		struct rq_flags rf;
13407 
13408 		/* Propagate contribution to hierarchy */
13409 		rq_lock_irqsave(rq, &rf);
13410 		update_rq_clock(rq);
13411 		for_each_sched_entity(se) {
13412 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13413 			update_cfs_group(se);
13414 		}
13415 		rq_unlock_irqrestore(rq, &rf);
13416 	}
13417 
13418 	return 0;
13419 }
13420 
13421 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13422 {
13423 	int ret;
13424 
13425 	mutex_lock(&shares_mutex);
13426 	if (tg_is_idle(tg))
13427 		ret = -EINVAL;
13428 	else
13429 		ret = __sched_group_set_shares(tg, shares);
13430 	mutex_unlock(&shares_mutex);
13431 
13432 	return ret;
13433 }
13434 
13435 int sched_group_set_idle(struct task_group *tg, long idle)
13436 {
13437 	int i;
13438 
13439 	if (tg == &root_task_group)
13440 		return -EINVAL;
13441 
13442 	if (idle < 0 || idle > 1)
13443 		return -EINVAL;
13444 
13445 	mutex_lock(&shares_mutex);
13446 
13447 	if (tg->idle == idle) {
13448 		mutex_unlock(&shares_mutex);
13449 		return 0;
13450 	}
13451 
13452 	tg->idle = idle;
13453 
13454 	for_each_possible_cpu(i) {
13455 		struct rq *rq = cpu_rq(i);
13456 		struct sched_entity *se = tg->se[i];
13457 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13458 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13459 		long idle_task_delta;
13460 		struct rq_flags rf;
13461 
13462 		rq_lock_irqsave(rq, &rf);
13463 
13464 		grp_cfs_rq->idle = idle;
13465 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13466 			goto next_cpu;
13467 
13468 		idle_task_delta = grp_cfs_rq->h_nr_queued -
13469 				  grp_cfs_rq->h_nr_idle;
13470 		if (!cfs_rq_is_idle(grp_cfs_rq))
13471 			idle_task_delta *= -1;
13472 
13473 		for_each_sched_entity(se) {
13474 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13475 
13476 			if (!se->on_rq)
13477 				break;
13478 
13479 			cfs_rq->h_nr_idle += idle_task_delta;
13480 
13481 			/* Already accounted at parent level and above. */
13482 			if (cfs_rq_is_idle(cfs_rq))
13483 				break;
13484 		}
13485 
13486 next_cpu:
13487 		rq_unlock_irqrestore(rq, &rf);
13488 	}
13489 
13490 	/* Idle groups have minimum weight. */
13491 	if (tg_is_idle(tg))
13492 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13493 	else
13494 		__sched_group_set_shares(tg, NICE_0_LOAD);
13495 
13496 	mutex_unlock(&shares_mutex);
13497 	return 0;
13498 }
13499 
13500 #endif /* CONFIG_FAIR_GROUP_SCHED */
13501 
13502 
13503 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13504 {
13505 	struct sched_entity *se = &task->se;
13506 	unsigned int rr_interval = 0;
13507 
13508 	/*
13509 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13510 	 * idle runqueue:
13511 	 */
13512 	if (rq->cfs.load.weight)
13513 		rr_interval = NS_TO_JIFFIES(se->slice);
13514 
13515 	return rr_interval;
13516 }
13517 
13518 /*
13519  * All the scheduling class methods:
13520  */
13521 DEFINE_SCHED_CLASS(fair) = {
13522 
13523 	.enqueue_task		= enqueue_task_fair,
13524 	.dequeue_task		= dequeue_task_fair,
13525 	.yield_task		= yield_task_fair,
13526 	.yield_to_task		= yield_to_task_fair,
13527 
13528 	.wakeup_preempt		= check_preempt_wakeup_fair,
13529 
13530 	.pick_task		= pick_task_fair,
13531 	.pick_next_task		= __pick_next_task_fair,
13532 	.put_prev_task		= put_prev_task_fair,
13533 	.set_next_task          = set_next_task_fair,
13534 
13535 	.balance		= balance_fair,
13536 	.select_task_rq		= select_task_rq_fair,
13537 	.migrate_task_rq	= migrate_task_rq_fair,
13538 
13539 	.rq_online		= rq_online_fair,
13540 	.rq_offline		= rq_offline_fair,
13541 
13542 	.task_dead		= task_dead_fair,
13543 	.set_cpus_allowed	= set_cpus_allowed_fair,
13544 
13545 	.task_tick		= task_tick_fair,
13546 	.task_fork		= task_fork_fair,
13547 
13548 	.reweight_task		= reweight_task_fair,
13549 	.prio_changed		= prio_changed_fair,
13550 	.switched_from		= switched_from_fair,
13551 	.switched_to		= switched_to_fair,
13552 
13553 	.get_rr_interval	= get_rr_interval_fair,
13554 
13555 	.update_curr		= update_curr_fair,
13556 
13557 #ifdef CONFIG_FAIR_GROUP_SCHED
13558 	.task_change_group	= task_change_group_fair,
13559 #endif
13560 
13561 #ifdef CONFIG_SCHED_CORE
13562 	.task_is_throttled	= task_is_throttled_fair,
13563 #endif
13564 
13565 #ifdef CONFIG_UCLAMP_TASK
13566 	.uclamp_enabled		= 1,
13567 #endif
13568 };
13569 
13570 void print_cfs_stats(struct seq_file *m, int cpu)
13571 {
13572 	struct cfs_rq *cfs_rq, *pos;
13573 
13574 	rcu_read_lock();
13575 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13576 		print_cfs_rq(m, cpu, cfs_rq);
13577 	rcu_read_unlock();
13578 }
13579 
13580 #ifdef CONFIG_NUMA_BALANCING
13581 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13582 {
13583 	int node;
13584 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13585 	struct numa_group *ng;
13586 
13587 	rcu_read_lock();
13588 	ng = rcu_dereference(p->numa_group);
13589 	for_each_online_node(node) {
13590 		if (p->numa_faults) {
13591 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13592 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13593 		}
13594 		if (ng) {
13595 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13596 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13597 		}
13598 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13599 	}
13600 	rcu_read_unlock();
13601 }
13602 #endif /* CONFIG_NUMA_BALANCING */
13603 
13604 __init void init_sched_fair_class(void)
13605 {
13606 	int i;
13607 
13608 	for_each_possible_cpu(i) {
13609 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13610 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13611 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13612 					GFP_KERNEL, cpu_to_node(i));
13613 
13614 #ifdef CONFIG_CFS_BANDWIDTH
13615 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13616 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13617 #endif
13618 	}
13619 
13620 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13621 
13622 #ifdef CONFIG_NO_HZ_COMMON
13623 	nohz.next_balance = jiffies;
13624 	nohz.next_blocked = jiffies;
13625 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13626 #endif
13627 }
13628