1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return task_has_idle_policy(task_of(se)); 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 783 } 784 785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 786 { 787 struct sched_entity *root = __pick_root_entity(cfs_rq); 788 struct sched_entity *curr = cfs_rq->curr; 789 u64 min_slice = ~0ULL; 790 791 if (curr && curr->on_rq) 792 min_slice = curr->slice; 793 794 if (root) 795 min_slice = min(min_slice, root->min_slice); 796 797 return min_slice; 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (vruntime_gt(min_vruntime, se, rse)) 812 se->min_vruntime = rse->min_vruntime; 813 } 814 } 815 816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 817 { 818 if (node) { 819 struct sched_entity *rse = __node_2_se(node); 820 if (rse->min_slice < se->min_slice) 821 se->min_slice = rse->min_slice; 822 } 823 } 824 825 /* 826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 827 */ 828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 829 { 830 u64 old_min_vruntime = se->min_vruntime; 831 u64 old_min_slice = se->min_slice; 832 struct rb_node *node = &se->run_node; 833 834 se->min_vruntime = se->vruntime; 835 __min_vruntime_update(se, node->rb_right); 836 __min_vruntime_update(se, node->rb_left); 837 838 se->min_slice = se->slice; 839 __min_slice_update(se, node->rb_right); 840 __min_slice_update(se, node->rb_left); 841 842 return se->min_vruntime == old_min_vruntime && 843 se->min_slice == old_min_slice; 844 } 845 846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 847 run_node, min_vruntime, min_vruntime_update); 848 849 /* 850 * Enqueue an entity into the rb-tree: 851 */ 852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 853 { 854 avg_vruntime_add(cfs_rq, se); 855 se->min_vruntime = se->vruntime; 856 se->min_slice = se->slice; 857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 858 __entity_less, &min_vruntime_cb); 859 } 860 861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 864 &min_vruntime_cb); 865 avg_vruntime_sub(cfs_rq, se); 866 } 867 868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 869 { 870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 871 872 if (!root) 873 return NULL; 874 875 return __node_2_se(root); 876 } 877 878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 881 882 if (!left) 883 return NULL; 884 885 return __node_2_se(left); 886 } 887 888 /* 889 * Earliest Eligible Virtual Deadline First 890 * 891 * In order to provide latency guarantees for different request sizes 892 * EEVDF selects the best runnable task from two criteria: 893 * 894 * 1) the task must be eligible (must be owed service) 895 * 896 * 2) from those tasks that meet 1), we select the one 897 * with the earliest virtual deadline. 898 * 899 * We can do this in O(log n) time due to an augmented RB-tree. The 900 * tree keeps the entries sorted on deadline, but also functions as a 901 * heap based on the vruntime by keeping: 902 * 903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 904 * 905 * Which allows tree pruning through eligibility. 906 */ 907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 908 { 909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 910 struct sched_entity *se = __pick_first_entity(cfs_rq); 911 struct sched_entity *curr = cfs_rq->curr; 912 struct sched_entity *best = NULL; 913 914 /* 915 * We can safely skip eligibility check if there is only one entity 916 * in this cfs_rq, saving some cycles. 917 */ 918 if (cfs_rq->nr_running == 1) 919 return curr && curr->on_rq ? curr : se; 920 921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 922 curr = NULL; 923 924 /* 925 * Once selected, run a task until it either becomes non-eligible or 926 * until it gets a new slice. See the HACK in set_next_entity(). 927 */ 928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 929 return curr; 930 931 /* Pick the leftmost entity if it's eligible */ 932 if (se && entity_eligible(cfs_rq, se)) { 933 best = se; 934 goto found; 935 } 936 937 /* Heap search for the EEVD entity */ 938 while (node) { 939 struct rb_node *left = node->rb_left; 940 941 /* 942 * Eligible entities in left subtree are always better 943 * choices, since they have earlier deadlines. 944 */ 945 if (left && vruntime_eligible(cfs_rq, 946 __node_2_se(left)->min_vruntime)) { 947 node = left; 948 continue; 949 } 950 951 se = __node_2_se(node); 952 953 /* 954 * The left subtree either is empty or has no eligible 955 * entity, so check the current node since it is the one 956 * with earliest deadline that might be eligible. 957 */ 958 if (entity_eligible(cfs_rq, se)) { 959 best = se; 960 break; 961 } 962 963 node = node->rb_right; 964 } 965 found: 966 if (!best || (curr && entity_before(curr, best))) 967 best = curr; 968 969 return best; 970 } 971 972 #ifdef CONFIG_SCHED_DEBUG 973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 974 { 975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 976 977 if (!last) 978 return NULL; 979 980 return __node_2_se(last); 981 } 982 983 /************************************************************** 984 * Scheduling class statistics methods: 985 */ 986 #ifdef CONFIG_SMP 987 int sched_update_scaling(void) 988 { 989 unsigned int factor = get_update_sysctl_factor(); 990 991 #define WRT_SYSCTL(name) \ 992 (normalized_sysctl_##name = sysctl_##name / (factor)) 993 WRT_SYSCTL(sched_base_slice); 994 #undef WRT_SYSCTL 995 996 return 0; 997 } 998 #endif 999 #endif 1000 1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1002 1003 /* 1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1005 * this is probably good enough. 1006 */ 1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1008 { 1009 if ((s64)(se->vruntime - se->deadline) < 0) 1010 return false; 1011 1012 /* 1013 * For EEVDF the virtual time slope is determined by w_i (iow. 1014 * nice) while the request time r_i is determined by 1015 * sysctl_sched_base_slice. 1016 */ 1017 if (!se->custom_slice) 1018 se->slice = sysctl_sched_base_slice; 1019 1020 /* 1021 * EEVDF: vd_i = ve_i + r_i / w_i 1022 */ 1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1024 1025 /* 1026 * The task has consumed its request, reschedule. 1027 */ 1028 return true; 1029 } 1030 1031 #include "pelt.h" 1032 #ifdef CONFIG_SMP 1033 1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1035 static unsigned long task_h_load(struct task_struct *p); 1036 static unsigned long capacity_of(int cpu); 1037 1038 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1039 void init_entity_runnable_average(struct sched_entity *se) 1040 { 1041 struct sched_avg *sa = &se->avg; 1042 1043 memset(sa, 0, sizeof(*sa)); 1044 1045 /* 1046 * Tasks are initialized with full load to be seen as heavy tasks until 1047 * they get a chance to stabilize to their real load level. 1048 * Group entities are initialized with zero load to reflect the fact that 1049 * nothing has been attached to the task group yet. 1050 */ 1051 if (entity_is_task(se)) 1052 sa->load_avg = scale_load_down(se->load.weight); 1053 1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1055 } 1056 1057 /* 1058 * With new tasks being created, their initial util_avgs are extrapolated 1059 * based on the cfs_rq's current util_avg: 1060 * 1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1062 * * se_weight(se) 1063 * 1064 * However, in many cases, the above util_avg does not give a desired 1065 * value. Moreover, the sum of the util_avgs may be divergent, such 1066 * as when the series is a harmonic series. 1067 * 1068 * To solve this problem, we also cap the util_avg of successive tasks to 1069 * only 1/2 of the left utilization budget: 1070 * 1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1072 * 1073 * where n denotes the nth task and cpu_scale the CPU capacity. 1074 * 1075 * For example, for a CPU with 1024 of capacity, a simplest series from 1076 * the beginning would be like: 1077 * 1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1080 * 1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1082 * if util_avg > util_avg_cap. 1083 */ 1084 void post_init_entity_util_avg(struct task_struct *p) 1085 { 1086 struct sched_entity *se = &p->se; 1087 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1088 struct sched_avg *sa = &se->avg; 1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1091 1092 if (p->sched_class != &fair_sched_class) { 1093 /* 1094 * For !fair tasks do: 1095 * 1096 update_cfs_rq_load_avg(now, cfs_rq); 1097 attach_entity_load_avg(cfs_rq, se); 1098 switched_from_fair(rq, p); 1099 * 1100 * such that the next switched_to_fair() has the 1101 * expected state. 1102 */ 1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1104 return; 1105 } 1106 1107 if (cap > 0) { 1108 if (cfs_rq->avg.util_avg != 0) { 1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1111 1112 if (sa->util_avg > cap) 1113 sa->util_avg = cap; 1114 } else { 1115 sa->util_avg = cap; 1116 } 1117 } 1118 1119 sa->runnable_avg = sa->util_avg; 1120 } 1121 1122 #else /* !CONFIG_SMP */ 1123 void init_entity_runnable_average(struct sched_entity *se) 1124 { 1125 } 1126 void post_init_entity_util_avg(struct task_struct *p) 1127 { 1128 } 1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1130 { 1131 } 1132 #endif /* CONFIG_SMP */ 1133 1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1135 { 1136 u64 now = rq_clock_task(rq); 1137 s64 delta_exec; 1138 1139 delta_exec = now - curr->exec_start; 1140 if (unlikely(delta_exec <= 0)) 1141 return delta_exec; 1142 1143 curr->exec_start = now; 1144 curr->sum_exec_runtime += delta_exec; 1145 1146 if (schedstat_enabled()) { 1147 struct sched_statistics *stats; 1148 1149 stats = __schedstats_from_se(curr); 1150 __schedstat_set(stats->exec_max, 1151 max(delta_exec, stats->exec_max)); 1152 } 1153 1154 return delta_exec; 1155 } 1156 1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1158 { 1159 trace_sched_stat_runtime(p, delta_exec); 1160 account_group_exec_runtime(p, delta_exec); 1161 cgroup_account_cputime(p, delta_exec); 1162 if (p->dl_server) 1163 dl_server_update(p->dl_server, delta_exec); 1164 } 1165 1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1167 { 1168 if (!sched_feat(PREEMPT_SHORT)) 1169 return false; 1170 1171 if (curr->vlag == curr->deadline) 1172 return false; 1173 1174 return !entity_eligible(cfs_rq, curr); 1175 } 1176 1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1178 struct sched_entity *pse, struct sched_entity *se) 1179 { 1180 if (!sched_feat(PREEMPT_SHORT)) 1181 return false; 1182 1183 if (pse->slice >= se->slice) 1184 return false; 1185 1186 if (!entity_eligible(cfs_rq, pse)) 1187 return false; 1188 1189 if (entity_before(pse, se)) 1190 return true; 1191 1192 if (!entity_eligible(cfs_rq, se)) 1193 return true; 1194 1195 return false; 1196 } 1197 1198 /* 1199 * Used by other classes to account runtime. 1200 */ 1201 s64 update_curr_common(struct rq *rq) 1202 { 1203 struct task_struct *curr = rq->curr; 1204 s64 delta_exec; 1205 1206 delta_exec = update_curr_se(rq, &curr->se); 1207 if (likely(delta_exec > 0)) 1208 update_curr_task(curr, delta_exec); 1209 1210 return delta_exec; 1211 } 1212 1213 /* 1214 * Update the current task's runtime statistics. 1215 */ 1216 static void update_curr(struct cfs_rq *cfs_rq) 1217 { 1218 struct sched_entity *curr = cfs_rq->curr; 1219 struct rq *rq = rq_of(cfs_rq); 1220 s64 delta_exec; 1221 bool resched; 1222 1223 if (unlikely(!curr)) 1224 return; 1225 1226 delta_exec = update_curr_se(rq, curr); 1227 if (unlikely(delta_exec <= 0)) 1228 return; 1229 1230 curr->vruntime += calc_delta_fair(delta_exec, curr); 1231 resched = update_deadline(cfs_rq, curr); 1232 update_min_vruntime(cfs_rq); 1233 1234 if (entity_is_task(curr)) { 1235 struct task_struct *p = task_of(curr); 1236 1237 update_curr_task(p, delta_exec); 1238 1239 /* 1240 * Any fair task that runs outside of fair_server should 1241 * account against fair_server such that it can account for 1242 * this time and possibly avoid running this period. 1243 */ 1244 if (p->dl_server != &rq->fair_server) 1245 dl_server_update(&rq->fair_server, delta_exec); 1246 } 1247 1248 account_cfs_rq_runtime(cfs_rq, delta_exec); 1249 1250 if (cfs_rq->nr_running == 1) 1251 return; 1252 1253 if (resched || did_preempt_short(cfs_rq, curr)) { 1254 resched_curr(rq); 1255 clear_buddies(cfs_rq, curr); 1256 } 1257 } 1258 1259 static void update_curr_fair(struct rq *rq) 1260 { 1261 update_curr(cfs_rq_of(&rq->curr->se)); 1262 } 1263 1264 static inline void 1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1266 { 1267 struct sched_statistics *stats; 1268 struct task_struct *p = NULL; 1269 1270 if (!schedstat_enabled()) 1271 return; 1272 1273 stats = __schedstats_from_se(se); 1274 1275 if (entity_is_task(se)) 1276 p = task_of(se); 1277 1278 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1279 } 1280 1281 static inline void 1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1283 { 1284 struct sched_statistics *stats; 1285 struct task_struct *p = NULL; 1286 1287 if (!schedstat_enabled()) 1288 return; 1289 1290 stats = __schedstats_from_se(se); 1291 1292 /* 1293 * When the sched_schedstat changes from 0 to 1, some sched se 1294 * maybe already in the runqueue, the se->statistics.wait_start 1295 * will be 0.So it will let the delta wrong. We need to avoid this 1296 * scenario. 1297 */ 1298 if (unlikely(!schedstat_val(stats->wait_start))) 1299 return; 1300 1301 if (entity_is_task(se)) 1302 p = task_of(se); 1303 1304 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1305 } 1306 1307 static inline void 1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1309 { 1310 struct sched_statistics *stats; 1311 struct task_struct *tsk = NULL; 1312 1313 if (!schedstat_enabled()) 1314 return; 1315 1316 stats = __schedstats_from_se(se); 1317 1318 if (entity_is_task(se)) 1319 tsk = task_of(se); 1320 1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1322 } 1323 1324 /* 1325 * Task is being enqueued - update stats: 1326 */ 1327 static inline void 1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1329 { 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 /* 1334 * Are we enqueueing a waiting task? (for current tasks 1335 * a dequeue/enqueue event is a NOP) 1336 */ 1337 if (se != cfs_rq->curr) 1338 update_stats_wait_start_fair(cfs_rq, se); 1339 1340 if (flags & ENQUEUE_WAKEUP) 1341 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1342 } 1343 1344 static inline void 1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1346 { 1347 1348 if (!schedstat_enabled()) 1349 return; 1350 1351 /* 1352 * Mark the end of the wait period if dequeueing a 1353 * waiting task: 1354 */ 1355 if (se != cfs_rq->curr) 1356 update_stats_wait_end_fair(cfs_rq, se); 1357 1358 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1359 struct task_struct *tsk = task_of(se); 1360 unsigned int state; 1361 1362 /* XXX racy against TTWU */ 1363 state = READ_ONCE(tsk->__state); 1364 if (state & TASK_INTERRUPTIBLE) 1365 __schedstat_set(tsk->stats.sleep_start, 1366 rq_clock(rq_of(cfs_rq))); 1367 if (state & TASK_UNINTERRUPTIBLE) 1368 __schedstat_set(tsk->stats.block_start, 1369 rq_clock(rq_of(cfs_rq))); 1370 } 1371 } 1372 1373 /* 1374 * We are picking a new current task - update its stats: 1375 */ 1376 static inline void 1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1378 { 1379 /* 1380 * We are starting a new run period: 1381 */ 1382 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1383 } 1384 1385 /************************************************** 1386 * Scheduling class queueing methods: 1387 */ 1388 1389 static inline bool is_core_idle(int cpu) 1390 { 1391 #ifdef CONFIG_SCHED_SMT 1392 int sibling; 1393 1394 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1395 if (cpu == sibling) 1396 continue; 1397 1398 if (!idle_cpu(sibling)) 1399 return false; 1400 } 1401 #endif 1402 1403 return true; 1404 } 1405 1406 #ifdef CONFIG_NUMA 1407 #define NUMA_IMBALANCE_MIN 2 1408 1409 static inline long 1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1411 { 1412 /* 1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1414 * threshold. Above this threshold, individual tasks may be contending 1415 * for both memory bandwidth and any shared HT resources. This is an 1416 * approximation as the number of running tasks may not be related to 1417 * the number of busy CPUs due to sched_setaffinity. 1418 */ 1419 if (dst_running > imb_numa_nr) 1420 return imbalance; 1421 1422 /* 1423 * Allow a small imbalance based on a simple pair of communicating 1424 * tasks that remain local when the destination is lightly loaded. 1425 */ 1426 if (imbalance <= NUMA_IMBALANCE_MIN) 1427 return 0; 1428 1429 return imbalance; 1430 } 1431 #endif /* CONFIG_NUMA */ 1432 1433 #ifdef CONFIG_NUMA_BALANCING 1434 /* 1435 * Approximate time to scan a full NUMA task in ms. The task scan period is 1436 * calculated based on the tasks virtual memory size and 1437 * numa_balancing_scan_size. 1438 */ 1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1441 1442 /* Portion of address space to scan in MB */ 1443 unsigned int sysctl_numa_balancing_scan_size = 256; 1444 1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1446 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1447 1448 /* The page with hint page fault latency < threshold in ms is considered hot */ 1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1450 1451 struct numa_group { 1452 refcount_t refcount; 1453 1454 spinlock_t lock; /* nr_tasks, tasks */ 1455 int nr_tasks; 1456 pid_t gid; 1457 int active_nodes; 1458 1459 struct rcu_head rcu; 1460 unsigned long total_faults; 1461 unsigned long max_faults_cpu; 1462 /* 1463 * faults[] array is split into two regions: faults_mem and faults_cpu. 1464 * 1465 * Faults_cpu is used to decide whether memory should move 1466 * towards the CPU. As a consequence, these stats are weighted 1467 * more by CPU use than by memory faults. 1468 */ 1469 unsigned long faults[]; 1470 }; 1471 1472 /* 1473 * For functions that can be called in multiple contexts that permit reading 1474 * ->numa_group (see struct task_struct for locking rules). 1475 */ 1476 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1477 { 1478 return rcu_dereference_check(p->numa_group, p == current || 1479 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1480 } 1481 1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1483 { 1484 return rcu_dereference_protected(p->numa_group, p == current); 1485 } 1486 1487 static inline unsigned long group_faults_priv(struct numa_group *ng); 1488 static inline unsigned long group_faults_shared(struct numa_group *ng); 1489 1490 static unsigned int task_nr_scan_windows(struct task_struct *p) 1491 { 1492 unsigned long rss = 0; 1493 unsigned long nr_scan_pages; 1494 1495 /* 1496 * Calculations based on RSS as non-present and empty pages are skipped 1497 * by the PTE scanner and NUMA hinting faults should be trapped based 1498 * on resident pages 1499 */ 1500 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1501 rss = get_mm_rss(p->mm); 1502 if (!rss) 1503 rss = nr_scan_pages; 1504 1505 rss = round_up(rss, nr_scan_pages); 1506 return rss / nr_scan_pages; 1507 } 1508 1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1510 #define MAX_SCAN_WINDOW 2560 1511 1512 static unsigned int task_scan_min(struct task_struct *p) 1513 { 1514 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1515 unsigned int scan, floor; 1516 unsigned int windows = 1; 1517 1518 if (scan_size < MAX_SCAN_WINDOW) 1519 windows = MAX_SCAN_WINDOW / scan_size; 1520 floor = 1000 / windows; 1521 1522 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1523 return max_t(unsigned int, floor, scan); 1524 } 1525 1526 static unsigned int task_scan_start(struct task_struct *p) 1527 { 1528 unsigned long smin = task_scan_min(p); 1529 unsigned long period = smin; 1530 struct numa_group *ng; 1531 1532 /* Scale the maximum scan period with the amount of shared memory. */ 1533 rcu_read_lock(); 1534 ng = rcu_dereference(p->numa_group); 1535 if (ng) { 1536 unsigned long shared = group_faults_shared(ng); 1537 unsigned long private = group_faults_priv(ng); 1538 1539 period *= refcount_read(&ng->refcount); 1540 period *= shared + 1; 1541 period /= private + shared + 1; 1542 } 1543 rcu_read_unlock(); 1544 1545 return max(smin, period); 1546 } 1547 1548 static unsigned int task_scan_max(struct task_struct *p) 1549 { 1550 unsigned long smin = task_scan_min(p); 1551 unsigned long smax; 1552 struct numa_group *ng; 1553 1554 /* Watch for min being lower than max due to floor calculations */ 1555 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1556 1557 /* Scale the maximum scan period with the amount of shared memory. */ 1558 ng = deref_curr_numa_group(p); 1559 if (ng) { 1560 unsigned long shared = group_faults_shared(ng); 1561 unsigned long private = group_faults_priv(ng); 1562 unsigned long period = smax; 1563 1564 period *= refcount_read(&ng->refcount); 1565 period *= shared + 1; 1566 period /= private + shared + 1; 1567 1568 smax = max(smax, period); 1569 } 1570 1571 return max(smin, smax); 1572 } 1573 1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1575 { 1576 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1577 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1578 } 1579 1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1581 { 1582 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1583 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1584 } 1585 1586 /* Shared or private faults. */ 1587 #define NR_NUMA_HINT_FAULT_TYPES 2 1588 1589 /* Memory and CPU locality */ 1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1591 1592 /* Averaged statistics, and temporary buffers. */ 1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1594 1595 pid_t task_numa_group_id(struct task_struct *p) 1596 { 1597 struct numa_group *ng; 1598 pid_t gid = 0; 1599 1600 rcu_read_lock(); 1601 ng = rcu_dereference(p->numa_group); 1602 if (ng) 1603 gid = ng->gid; 1604 rcu_read_unlock(); 1605 1606 return gid; 1607 } 1608 1609 /* 1610 * The averaged statistics, shared & private, memory & CPU, 1611 * occupy the first half of the array. The second half of the 1612 * array is for current counters, which are averaged into the 1613 * first set by task_numa_placement. 1614 */ 1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1616 { 1617 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1618 } 1619 1620 static inline unsigned long task_faults(struct task_struct *p, int nid) 1621 { 1622 if (!p->numa_faults) 1623 return 0; 1624 1625 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1626 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1627 } 1628 1629 static inline unsigned long group_faults(struct task_struct *p, int nid) 1630 { 1631 struct numa_group *ng = deref_task_numa_group(p); 1632 1633 if (!ng) 1634 return 0; 1635 1636 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1637 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1638 } 1639 1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1641 { 1642 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1643 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1644 } 1645 1646 static inline unsigned long group_faults_priv(struct numa_group *ng) 1647 { 1648 unsigned long faults = 0; 1649 int node; 1650 1651 for_each_online_node(node) { 1652 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1653 } 1654 1655 return faults; 1656 } 1657 1658 static inline unsigned long group_faults_shared(struct numa_group *ng) 1659 { 1660 unsigned long faults = 0; 1661 int node; 1662 1663 for_each_online_node(node) { 1664 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1665 } 1666 1667 return faults; 1668 } 1669 1670 /* 1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1672 * considered part of a numa group's pseudo-interleaving set. Migrations 1673 * between these nodes are slowed down, to allow things to settle down. 1674 */ 1675 #define ACTIVE_NODE_FRACTION 3 1676 1677 static bool numa_is_active_node(int nid, struct numa_group *ng) 1678 { 1679 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1680 } 1681 1682 /* Handle placement on systems where not all nodes are directly connected. */ 1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1684 int lim_dist, bool task) 1685 { 1686 unsigned long score = 0; 1687 int node, max_dist; 1688 1689 /* 1690 * All nodes are directly connected, and the same distance 1691 * from each other. No need for fancy placement algorithms. 1692 */ 1693 if (sched_numa_topology_type == NUMA_DIRECT) 1694 return 0; 1695 1696 /* sched_max_numa_distance may be changed in parallel. */ 1697 max_dist = READ_ONCE(sched_max_numa_distance); 1698 /* 1699 * This code is called for each node, introducing N^2 complexity, 1700 * which should be OK given the number of nodes rarely exceeds 8. 1701 */ 1702 for_each_online_node(node) { 1703 unsigned long faults; 1704 int dist = node_distance(nid, node); 1705 1706 /* 1707 * The furthest away nodes in the system are not interesting 1708 * for placement; nid was already counted. 1709 */ 1710 if (dist >= max_dist || node == nid) 1711 continue; 1712 1713 /* 1714 * On systems with a backplane NUMA topology, compare groups 1715 * of nodes, and move tasks towards the group with the most 1716 * memory accesses. When comparing two nodes at distance 1717 * "hoplimit", only nodes closer by than "hoplimit" are part 1718 * of each group. Skip other nodes. 1719 */ 1720 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1721 continue; 1722 1723 /* Add up the faults from nearby nodes. */ 1724 if (task) 1725 faults = task_faults(p, node); 1726 else 1727 faults = group_faults(p, node); 1728 1729 /* 1730 * On systems with a glueless mesh NUMA topology, there are 1731 * no fixed "groups of nodes". Instead, nodes that are not 1732 * directly connected bounce traffic through intermediate 1733 * nodes; a numa_group can occupy any set of nodes. 1734 * The further away a node is, the less the faults count. 1735 * This seems to result in good task placement. 1736 */ 1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1738 faults *= (max_dist - dist); 1739 faults /= (max_dist - LOCAL_DISTANCE); 1740 } 1741 1742 score += faults; 1743 } 1744 1745 return score; 1746 } 1747 1748 /* 1749 * These return the fraction of accesses done by a particular task, or 1750 * task group, on a particular numa node. The group weight is given a 1751 * larger multiplier, in order to group tasks together that are almost 1752 * evenly spread out between numa nodes. 1753 */ 1754 static inline unsigned long task_weight(struct task_struct *p, int nid, 1755 int dist) 1756 { 1757 unsigned long faults, total_faults; 1758 1759 if (!p->numa_faults) 1760 return 0; 1761 1762 total_faults = p->total_numa_faults; 1763 1764 if (!total_faults) 1765 return 0; 1766 1767 faults = task_faults(p, nid); 1768 faults += score_nearby_nodes(p, nid, dist, true); 1769 1770 return 1000 * faults / total_faults; 1771 } 1772 1773 static inline unsigned long group_weight(struct task_struct *p, int nid, 1774 int dist) 1775 { 1776 struct numa_group *ng = deref_task_numa_group(p); 1777 unsigned long faults, total_faults; 1778 1779 if (!ng) 1780 return 0; 1781 1782 total_faults = ng->total_faults; 1783 1784 if (!total_faults) 1785 return 0; 1786 1787 faults = group_faults(p, nid); 1788 faults += score_nearby_nodes(p, nid, dist, false); 1789 1790 return 1000 * faults / total_faults; 1791 } 1792 1793 /* 1794 * If memory tiering mode is enabled, cpupid of slow memory page is 1795 * used to record scan time instead of CPU and PID. When tiering mode 1796 * is disabled at run time, the scan time (in cpupid) will be 1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1798 * access out of array bound. 1799 */ 1800 static inline bool cpupid_valid(int cpupid) 1801 { 1802 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1803 } 1804 1805 /* 1806 * For memory tiering mode, if there are enough free pages (more than 1807 * enough watermark defined here) in fast memory node, to take full 1808 * advantage of fast memory capacity, all recently accessed slow 1809 * memory pages will be migrated to fast memory node without 1810 * considering hot threshold. 1811 */ 1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1813 { 1814 int z; 1815 unsigned long enough_wmark; 1816 1817 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1818 pgdat->node_present_pages >> 4); 1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1820 struct zone *zone = pgdat->node_zones + z; 1821 1822 if (!populated_zone(zone)) 1823 continue; 1824 1825 if (zone_watermark_ok(zone, 0, 1826 promo_wmark_pages(zone) + enough_wmark, 1827 ZONE_MOVABLE, 0)) 1828 return true; 1829 } 1830 return false; 1831 } 1832 1833 /* 1834 * For memory tiering mode, when page tables are scanned, the scan 1835 * time will be recorded in struct page in addition to make page 1836 * PROT_NONE for slow memory page. So when the page is accessed, in 1837 * hint page fault handler, the hint page fault latency is calculated 1838 * via, 1839 * 1840 * hint page fault latency = hint page fault time - scan time 1841 * 1842 * The smaller the hint page fault latency, the higher the possibility 1843 * for the page to be hot. 1844 */ 1845 static int numa_hint_fault_latency(struct folio *folio) 1846 { 1847 int last_time, time; 1848 1849 time = jiffies_to_msecs(jiffies); 1850 last_time = folio_xchg_access_time(folio, time); 1851 1852 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1853 } 1854 1855 /* 1856 * For memory tiering mode, too high promotion/demotion throughput may 1857 * hurt application latency. So we provide a mechanism to rate limit 1858 * the number of pages that are tried to be promoted. 1859 */ 1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1861 unsigned long rate_limit, int nr) 1862 { 1863 unsigned long nr_cand; 1864 unsigned int now, start; 1865 1866 now = jiffies_to_msecs(jiffies); 1867 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1868 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1869 start = pgdat->nbp_rl_start; 1870 if (now - start > MSEC_PER_SEC && 1871 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1872 pgdat->nbp_rl_nr_cand = nr_cand; 1873 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1874 return true; 1875 return false; 1876 } 1877 1878 #define NUMA_MIGRATION_ADJUST_STEPS 16 1879 1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1881 unsigned long rate_limit, 1882 unsigned int ref_th) 1883 { 1884 unsigned int now, start, th_period, unit_th, th; 1885 unsigned long nr_cand, ref_cand, diff_cand; 1886 1887 now = jiffies_to_msecs(jiffies); 1888 th_period = sysctl_numa_balancing_scan_period_max; 1889 start = pgdat->nbp_th_start; 1890 if (now - start > th_period && 1891 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1892 ref_cand = rate_limit * 1893 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1894 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1895 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1896 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1897 th = pgdat->nbp_threshold ? : ref_th; 1898 if (diff_cand > ref_cand * 11 / 10) 1899 th = max(th - unit_th, unit_th); 1900 else if (diff_cand < ref_cand * 9 / 10) 1901 th = min(th + unit_th, ref_th * 2); 1902 pgdat->nbp_th_nr_cand = nr_cand; 1903 pgdat->nbp_threshold = th; 1904 } 1905 } 1906 1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1908 int src_nid, int dst_cpu) 1909 { 1910 struct numa_group *ng = deref_curr_numa_group(p); 1911 int dst_nid = cpu_to_node(dst_cpu); 1912 int last_cpupid, this_cpupid; 1913 1914 /* 1915 * Cannot migrate to memoryless nodes. 1916 */ 1917 if (!node_state(dst_nid, N_MEMORY)) 1918 return false; 1919 1920 /* 1921 * The pages in slow memory node should be migrated according 1922 * to hot/cold instead of private/shared. 1923 */ 1924 if (folio_use_access_time(folio)) { 1925 struct pglist_data *pgdat; 1926 unsigned long rate_limit; 1927 unsigned int latency, th, def_th; 1928 1929 pgdat = NODE_DATA(dst_nid); 1930 if (pgdat_free_space_enough(pgdat)) { 1931 /* workload changed, reset hot threshold */ 1932 pgdat->nbp_threshold = 0; 1933 return true; 1934 } 1935 1936 def_th = sysctl_numa_balancing_hot_threshold; 1937 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1938 (20 - PAGE_SHIFT); 1939 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1940 1941 th = pgdat->nbp_threshold ? : def_th; 1942 latency = numa_hint_fault_latency(folio); 1943 if (latency >= th) 1944 return false; 1945 1946 return !numa_promotion_rate_limit(pgdat, rate_limit, 1947 folio_nr_pages(folio)); 1948 } 1949 1950 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1951 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1952 1953 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1954 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1955 return false; 1956 1957 /* 1958 * Allow first faults or private faults to migrate immediately early in 1959 * the lifetime of a task. The magic number 4 is based on waiting for 1960 * two full passes of the "multi-stage node selection" test that is 1961 * executed below. 1962 */ 1963 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1964 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1965 return true; 1966 1967 /* 1968 * Multi-stage node selection is used in conjunction with a periodic 1969 * migration fault to build a temporal task<->page relation. By using 1970 * a two-stage filter we remove short/unlikely relations. 1971 * 1972 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1973 * a task's usage of a particular page (n_p) per total usage of this 1974 * page (n_t) (in a given time-span) to a probability. 1975 * 1976 * Our periodic faults will sample this probability and getting the 1977 * same result twice in a row, given these samples are fully 1978 * independent, is then given by P(n)^2, provided our sample period 1979 * is sufficiently short compared to the usage pattern. 1980 * 1981 * This quadric squishes small probabilities, making it less likely we 1982 * act on an unlikely task<->page relation. 1983 */ 1984 if (!cpupid_pid_unset(last_cpupid) && 1985 cpupid_to_nid(last_cpupid) != dst_nid) 1986 return false; 1987 1988 /* Always allow migrate on private faults */ 1989 if (cpupid_match_pid(p, last_cpupid)) 1990 return true; 1991 1992 /* A shared fault, but p->numa_group has not been set up yet. */ 1993 if (!ng) 1994 return true; 1995 1996 /* 1997 * Destination node is much more heavily used than the source 1998 * node? Allow migration. 1999 */ 2000 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2001 ACTIVE_NODE_FRACTION) 2002 return true; 2003 2004 /* 2005 * Distribute memory according to CPU & memory use on each node, 2006 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2007 * 2008 * faults_cpu(dst) 3 faults_cpu(src) 2009 * --------------- * - > --------------- 2010 * faults_mem(dst) 4 faults_mem(src) 2011 */ 2012 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2013 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2014 } 2015 2016 /* 2017 * 'numa_type' describes the node at the moment of load balancing. 2018 */ 2019 enum numa_type { 2020 /* The node has spare capacity that can be used to run more tasks. */ 2021 node_has_spare = 0, 2022 /* 2023 * The node is fully used and the tasks don't compete for more CPU 2024 * cycles. Nevertheless, some tasks might wait before running. 2025 */ 2026 node_fully_busy, 2027 /* 2028 * The node is overloaded and can't provide expected CPU cycles to all 2029 * tasks. 2030 */ 2031 node_overloaded 2032 }; 2033 2034 /* Cached statistics for all CPUs within a node */ 2035 struct numa_stats { 2036 unsigned long load; 2037 unsigned long runnable; 2038 unsigned long util; 2039 /* Total compute capacity of CPUs on a node */ 2040 unsigned long compute_capacity; 2041 unsigned int nr_running; 2042 unsigned int weight; 2043 enum numa_type node_type; 2044 int idle_cpu; 2045 }; 2046 2047 struct task_numa_env { 2048 struct task_struct *p; 2049 2050 int src_cpu, src_nid; 2051 int dst_cpu, dst_nid; 2052 int imb_numa_nr; 2053 2054 struct numa_stats src_stats, dst_stats; 2055 2056 int imbalance_pct; 2057 int dist; 2058 2059 struct task_struct *best_task; 2060 long best_imp; 2061 int best_cpu; 2062 }; 2063 2064 static unsigned long cpu_load(struct rq *rq); 2065 static unsigned long cpu_runnable(struct rq *rq); 2066 2067 static inline enum 2068 numa_type numa_classify(unsigned int imbalance_pct, 2069 struct numa_stats *ns) 2070 { 2071 if ((ns->nr_running > ns->weight) && 2072 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2073 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2074 return node_overloaded; 2075 2076 if ((ns->nr_running < ns->weight) || 2077 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2078 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2079 return node_has_spare; 2080 2081 return node_fully_busy; 2082 } 2083 2084 #ifdef CONFIG_SCHED_SMT 2085 /* Forward declarations of select_idle_sibling helpers */ 2086 static inline bool test_idle_cores(int cpu); 2087 static inline int numa_idle_core(int idle_core, int cpu) 2088 { 2089 if (!static_branch_likely(&sched_smt_present) || 2090 idle_core >= 0 || !test_idle_cores(cpu)) 2091 return idle_core; 2092 2093 /* 2094 * Prefer cores instead of packing HT siblings 2095 * and triggering future load balancing. 2096 */ 2097 if (is_core_idle(cpu)) 2098 idle_core = cpu; 2099 2100 return idle_core; 2101 } 2102 #else 2103 static inline int numa_idle_core(int idle_core, int cpu) 2104 { 2105 return idle_core; 2106 } 2107 #endif 2108 2109 /* 2110 * Gather all necessary information to make NUMA balancing placement 2111 * decisions that are compatible with standard load balancer. This 2112 * borrows code and logic from update_sg_lb_stats but sharing a 2113 * common implementation is impractical. 2114 */ 2115 static void update_numa_stats(struct task_numa_env *env, 2116 struct numa_stats *ns, int nid, 2117 bool find_idle) 2118 { 2119 int cpu, idle_core = -1; 2120 2121 memset(ns, 0, sizeof(*ns)); 2122 ns->idle_cpu = -1; 2123 2124 rcu_read_lock(); 2125 for_each_cpu(cpu, cpumask_of_node(nid)) { 2126 struct rq *rq = cpu_rq(cpu); 2127 2128 ns->load += cpu_load(rq); 2129 ns->runnable += cpu_runnable(rq); 2130 ns->util += cpu_util_cfs(cpu); 2131 ns->nr_running += rq->cfs.h_nr_running; 2132 ns->compute_capacity += capacity_of(cpu); 2133 2134 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2135 if (READ_ONCE(rq->numa_migrate_on) || 2136 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2137 continue; 2138 2139 if (ns->idle_cpu == -1) 2140 ns->idle_cpu = cpu; 2141 2142 idle_core = numa_idle_core(idle_core, cpu); 2143 } 2144 } 2145 rcu_read_unlock(); 2146 2147 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2148 2149 ns->node_type = numa_classify(env->imbalance_pct, ns); 2150 2151 if (idle_core >= 0) 2152 ns->idle_cpu = idle_core; 2153 } 2154 2155 static void task_numa_assign(struct task_numa_env *env, 2156 struct task_struct *p, long imp) 2157 { 2158 struct rq *rq = cpu_rq(env->dst_cpu); 2159 2160 /* Check if run-queue part of active NUMA balance. */ 2161 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2162 int cpu; 2163 int start = env->dst_cpu; 2164 2165 /* Find alternative idle CPU. */ 2166 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2167 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2168 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2169 continue; 2170 } 2171 2172 env->dst_cpu = cpu; 2173 rq = cpu_rq(env->dst_cpu); 2174 if (!xchg(&rq->numa_migrate_on, 1)) 2175 goto assign; 2176 } 2177 2178 /* Failed to find an alternative idle CPU */ 2179 return; 2180 } 2181 2182 assign: 2183 /* 2184 * Clear previous best_cpu/rq numa-migrate flag, since task now 2185 * found a better CPU to move/swap. 2186 */ 2187 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2188 rq = cpu_rq(env->best_cpu); 2189 WRITE_ONCE(rq->numa_migrate_on, 0); 2190 } 2191 2192 if (env->best_task) 2193 put_task_struct(env->best_task); 2194 if (p) 2195 get_task_struct(p); 2196 2197 env->best_task = p; 2198 env->best_imp = imp; 2199 env->best_cpu = env->dst_cpu; 2200 } 2201 2202 static bool load_too_imbalanced(long src_load, long dst_load, 2203 struct task_numa_env *env) 2204 { 2205 long imb, old_imb; 2206 long orig_src_load, orig_dst_load; 2207 long src_capacity, dst_capacity; 2208 2209 /* 2210 * The load is corrected for the CPU capacity available on each node. 2211 * 2212 * src_load dst_load 2213 * ------------ vs --------- 2214 * src_capacity dst_capacity 2215 */ 2216 src_capacity = env->src_stats.compute_capacity; 2217 dst_capacity = env->dst_stats.compute_capacity; 2218 2219 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2220 2221 orig_src_load = env->src_stats.load; 2222 orig_dst_load = env->dst_stats.load; 2223 2224 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2225 2226 /* Would this change make things worse? */ 2227 return (imb > old_imb); 2228 } 2229 2230 /* 2231 * Maximum NUMA importance can be 1998 (2*999); 2232 * SMALLIMP @ 30 would be close to 1998/64. 2233 * Used to deter task migration. 2234 */ 2235 #define SMALLIMP 30 2236 2237 /* 2238 * This checks if the overall compute and NUMA accesses of the system would 2239 * be improved if the source tasks was migrated to the target dst_cpu taking 2240 * into account that it might be best if task running on the dst_cpu should 2241 * be exchanged with the source task 2242 */ 2243 static bool task_numa_compare(struct task_numa_env *env, 2244 long taskimp, long groupimp, bool maymove) 2245 { 2246 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2247 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2248 long imp = p_ng ? groupimp : taskimp; 2249 struct task_struct *cur; 2250 long src_load, dst_load; 2251 int dist = env->dist; 2252 long moveimp = imp; 2253 long load; 2254 bool stopsearch = false; 2255 2256 if (READ_ONCE(dst_rq->numa_migrate_on)) 2257 return false; 2258 2259 rcu_read_lock(); 2260 cur = rcu_dereference(dst_rq->curr); 2261 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2262 cur = NULL; 2263 2264 /* 2265 * Because we have preemption enabled we can get migrated around and 2266 * end try selecting ourselves (current == env->p) as a swap candidate. 2267 */ 2268 if (cur == env->p) { 2269 stopsearch = true; 2270 goto unlock; 2271 } 2272 2273 if (!cur) { 2274 if (maymove && moveimp >= env->best_imp) 2275 goto assign; 2276 else 2277 goto unlock; 2278 } 2279 2280 /* Skip this swap candidate if cannot move to the source cpu. */ 2281 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2282 goto unlock; 2283 2284 /* 2285 * Skip this swap candidate if it is not moving to its preferred 2286 * node and the best task is. 2287 */ 2288 if (env->best_task && 2289 env->best_task->numa_preferred_nid == env->src_nid && 2290 cur->numa_preferred_nid != env->src_nid) { 2291 goto unlock; 2292 } 2293 2294 /* 2295 * "imp" is the fault differential for the source task between the 2296 * source and destination node. Calculate the total differential for 2297 * the source task and potential destination task. The more negative 2298 * the value is, the more remote accesses that would be expected to 2299 * be incurred if the tasks were swapped. 2300 * 2301 * If dst and source tasks are in the same NUMA group, or not 2302 * in any group then look only at task weights. 2303 */ 2304 cur_ng = rcu_dereference(cur->numa_group); 2305 if (cur_ng == p_ng) { 2306 /* 2307 * Do not swap within a group or between tasks that have 2308 * no group if there is spare capacity. Swapping does 2309 * not address the load imbalance and helps one task at 2310 * the cost of punishing another. 2311 */ 2312 if (env->dst_stats.node_type == node_has_spare) 2313 goto unlock; 2314 2315 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2316 task_weight(cur, env->dst_nid, dist); 2317 /* 2318 * Add some hysteresis to prevent swapping the 2319 * tasks within a group over tiny differences. 2320 */ 2321 if (cur_ng) 2322 imp -= imp / 16; 2323 } else { 2324 /* 2325 * Compare the group weights. If a task is all by itself 2326 * (not part of a group), use the task weight instead. 2327 */ 2328 if (cur_ng && p_ng) 2329 imp += group_weight(cur, env->src_nid, dist) - 2330 group_weight(cur, env->dst_nid, dist); 2331 else 2332 imp += task_weight(cur, env->src_nid, dist) - 2333 task_weight(cur, env->dst_nid, dist); 2334 } 2335 2336 /* Discourage picking a task already on its preferred node */ 2337 if (cur->numa_preferred_nid == env->dst_nid) 2338 imp -= imp / 16; 2339 2340 /* 2341 * Encourage picking a task that moves to its preferred node. 2342 * This potentially makes imp larger than it's maximum of 2343 * 1998 (see SMALLIMP and task_weight for why) but in this 2344 * case, it does not matter. 2345 */ 2346 if (cur->numa_preferred_nid == env->src_nid) 2347 imp += imp / 8; 2348 2349 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2350 imp = moveimp; 2351 cur = NULL; 2352 goto assign; 2353 } 2354 2355 /* 2356 * Prefer swapping with a task moving to its preferred node over a 2357 * task that is not. 2358 */ 2359 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2360 env->best_task->numa_preferred_nid != env->src_nid) { 2361 goto assign; 2362 } 2363 2364 /* 2365 * If the NUMA importance is less than SMALLIMP, 2366 * task migration might only result in ping pong 2367 * of tasks and also hurt performance due to cache 2368 * misses. 2369 */ 2370 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2371 goto unlock; 2372 2373 /* 2374 * In the overloaded case, try and keep the load balanced. 2375 */ 2376 load = task_h_load(env->p) - task_h_load(cur); 2377 if (!load) 2378 goto assign; 2379 2380 dst_load = env->dst_stats.load + load; 2381 src_load = env->src_stats.load - load; 2382 2383 if (load_too_imbalanced(src_load, dst_load, env)) 2384 goto unlock; 2385 2386 assign: 2387 /* Evaluate an idle CPU for a task numa move. */ 2388 if (!cur) { 2389 int cpu = env->dst_stats.idle_cpu; 2390 2391 /* Nothing cached so current CPU went idle since the search. */ 2392 if (cpu < 0) 2393 cpu = env->dst_cpu; 2394 2395 /* 2396 * If the CPU is no longer truly idle and the previous best CPU 2397 * is, keep using it. 2398 */ 2399 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2400 idle_cpu(env->best_cpu)) { 2401 cpu = env->best_cpu; 2402 } 2403 2404 env->dst_cpu = cpu; 2405 } 2406 2407 task_numa_assign(env, cur, imp); 2408 2409 /* 2410 * If a move to idle is allowed because there is capacity or load 2411 * balance improves then stop the search. While a better swap 2412 * candidate may exist, a search is not free. 2413 */ 2414 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2415 stopsearch = true; 2416 2417 /* 2418 * If a swap candidate must be identified and the current best task 2419 * moves its preferred node then stop the search. 2420 */ 2421 if (!maymove && env->best_task && 2422 env->best_task->numa_preferred_nid == env->src_nid) { 2423 stopsearch = true; 2424 } 2425 unlock: 2426 rcu_read_unlock(); 2427 2428 return stopsearch; 2429 } 2430 2431 static void task_numa_find_cpu(struct task_numa_env *env, 2432 long taskimp, long groupimp) 2433 { 2434 bool maymove = false; 2435 int cpu; 2436 2437 /* 2438 * If dst node has spare capacity, then check if there is an 2439 * imbalance that would be overruled by the load balancer. 2440 */ 2441 if (env->dst_stats.node_type == node_has_spare) { 2442 unsigned int imbalance; 2443 int src_running, dst_running; 2444 2445 /* 2446 * Would movement cause an imbalance? Note that if src has 2447 * more running tasks that the imbalance is ignored as the 2448 * move improves the imbalance from the perspective of the 2449 * CPU load balancer. 2450 * */ 2451 src_running = env->src_stats.nr_running - 1; 2452 dst_running = env->dst_stats.nr_running + 1; 2453 imbalance = max(0, dst_running - src_running); 2454 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2455 env->imb_numa_nr); 2456 2457 /* Use idle CPU if there is no imbalance */ 2458 if (!imbalance) { 2459 maymove = true; 2460 if (env->dst_stats.idle_cpu >= 0) { 2461 env->dst_cpu = env->dst_stats.idle_cpu; 2462 task_numa_assign(env, NULL, 0); 2463 return; 2464 } 2465 } 2466 } else { 2467 long src_load, dst_load, load; 2468 /* 2469 * If the improvement from just moving env->p direction is better 2470 * than swapping tasks around, check if a move is possible. 2471 */ 2472 load = task_h_load(env->p); 2473 dst_load = env->dst_stats.load + load; 2474 src_load = env->src_stats.load - load; 2475 maymove = !load_too_imbalanced(src_load, dst_load, env); 2476 } 2477 2478 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2479 /* Skip this CPU if the source task cannot migrate */ 2480 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2481 continue; 2482 2483 env->dst_cpu = cpu; 2484 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2485 break; 2486 } 2487 } 2488 2489 static int task_numa_migrate(struct task_struct *p) 2490 { 2491 struct task_numa_env env = { 2492 .p = p, 2493 2494 .src_cpu = task_cpu(p), 2495 .src_nid = task_node(p), 2496 2497 .imbalance_pct = 112, 2498 2499 .best_task = NULL, 2500 .best_imp = 0, 2501 .best_cpu = -1, 2502 }; 2503 unsigned long taskweight, groupweight; 2504 struct sched_domain *sd; 2505 long taskimp, groupimp; 2506 struct numa_group *ng; 2507 struct rq *best_rq; 2508 int nid, ret, dist; 2509 2510 /* 2511 * Pick the lowest SD_NUMA domain, as that would have the smallest 2512 * imbalance and would be the first to start moving tasks about. 2513 * 2514 * And we want to avoid any moving of tasks about, as that would create 2515 * random movement of tasks -- counter the numa conditions we're trying 2516 * to satisfy here. 2517 */ 2518 rcu_read_lock(); 2519 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2520 if (sd) { 2521 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2522 env.imb_numa_nr = sd->imb_numa_nr; 2523 } 2524 rcu_read_unlock(); 2525 2526 /* 2527 * Cpusets can break the scheduler domain tree into smaller 2528 * balance domains, some of which do not cross NUMA boundaries. 2529 * Tasks that are "trapped" in such domains cannot be migrated 2530 * elsewhere, so there is no point in (re)trying. 2531 */ 2532 if (unlikely(!sd)) { 2533 sched_setnuma(p, task_node(p)); 2534 return -EINVAL; 2535 } 2536 2537 env.dst_nid = p->numa_preferred_nid; 2538 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2539 taskweight = task_weight(p, env.src_nid, dist); 2540 groupweight = group_weight(p, env.src_nid, dist); 2541 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2542 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2543 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2544 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2545 2546 /* Try to find a spot on the preferred nid. */ 2547 task_numa_find_cpu(&env, taskimp, groupimp); 2548 2549 /* 2550 * Look at other nodes in these cases: 2551 * - there is no space available on the preferred_nid 2552 * - the task is part of a numa_group that is interleaved across 2553 * multiple NUMA nodes; in order to better consolidate the group, 2554 * we need to check other locations. 2555 */ 2556 ng = deref_curr_numa_group(p); 2557 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2558 for_each_node_state(nid, N_CPU) { 2559 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2560 continue; 2561 2562 dist = node_distance(env.src_nid, env.dst_nid); 2563 if (sched_numa_topology_type == NUMA_BACKPLANE && 2564 dist != env.dist) { 2565 taskweight = task_weight(p, env.src_nid, dist); 2566 groupweight = group_weight(p, env.src_nid, dist); 2567 } 2568 2569 /* Only consider nodes where both task and groups benefit */ 2570 taskimp = task_weight(p, nid, dist) - taskweight; 2571 groupimp = group_weight(p, nid, dist) - groupweight; 2572 if (taskimp < 0 && groupimp < 0) 2573 continue; 2574 2575 env.dist = dist; 2576 env.dst_nid = nid; 2577 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2578 task_numa_find_cpu(&env, taskimp, groupimp); 2579 } 2580 } 2581 2582 /* 2583 * If the task is part of a workload that spans multiple NUMA nodes, 2584 * and is migrating into one of the workload's active nodes, remember 2585 * this node as the task's preferred numa node, so the workload can 2586 * settle down. 2587 * A task that migrated to a second choice node will be better off 2588 * trying for a better one later. Do not set the preferred node here. 2589 */ 2590 if (ng) { 2591 if (env.best_cpu == -1) 2592 nid = env.src_nid; 2593 else 2594 nid = cpu_to_node(env.best_cpu); 2595 2596 if (nid != p->numa_preferred_nid) 2597 sched_setnuma(p, nid); 2598 } 2599 2600 /* No better CPU than the current one was found. */ 2601 if (env.best_cpu == -1) { 2602 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2603 return -EAGAIN; 2604 } 2605 2606 best_rq = cpu_rq(env.best_cpu); 2607 if (env.best_task == NULL) { 2608 ret = migrate_task_to(p, env.best_cpu); 2609 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2610 if (ret != 0) 2611 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2612 return ret; 2613 } 2614 2615 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2616 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2617 2618 if (ret != 0) 2619 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2620 put_task_struct(env.best_task); 2621 return ret; 2622 } 2623 2624 /* Attempt to migrate a task to a CPU on the preferred node. */ 2625 static void numa_migrate_preferred(struct task_struct *p) 2626 { 2627 unsigned long interval = HZ; 2628 2629 /* This task has no NUMA fault statistics yet */ 2630 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2631 return; 2632 2633 /* Periodically retry migrating the task to the preferred node */ 2634 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2635 p->numa_migrate_retry = jiffies + interval; 2636 2637 /* Success if task is already running on preferred CPU */ 2638 if (task_node(p) == p->numa_preferred_nid) 2639 return; 2640 2641 /* Otherwise, try migrate to a CPU on the preferred node */ 2642 task_numa_migrate(p); 2643 } 2644 2645 /* 2646 * Find out how many nodes the workload is actively running on. Do this by 2647 * tracking the nodes from which NUMA hinting faults are triggered. This can 2648 * be different from the set of nodes where the workload's memory is currently 2649 * located. 2650 */ 2651 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2652 { 2653 unsigned long faults, max_faults = 0; 2654 int nid, active_nodes = 0; 2655 2656 for_each_node_state(nid, N_CPU) { 2657 faults = group_faults_cpu(numa_group, nid); 2658 if (faults > max_faults) 2659 max_faults = faults; 2660 } 2661 2662 for_each_node_state(nid, N_CPU) { 2663 faults = group_faults_cpu(numa_group, nid); 2664 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2665 active_nodes++; 2666 } 2667 2668 numa_group->max_faults_cpu = max_faults; 2669 numa_group->active_nodes = active_nodes; 2670 } 2671 2672 /* 2673 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2674 * increments. The more local the fault statistics are, the higher the scan 2675 * period will be for the next scan window. If local/(local+remote) ratio is 2676 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2677 * the scan period will decrease. Aim for 70% local accesses. 2678 */ 2679 #define NUMA_PERIOD_SLOTS 10 2680 #define NUMA_PERIOD_THRESHOLD 7 2681 2682 /* 2683 * Increase the scan period (slow down scanning) if the majority of 2684 * our memory is already on our local node, or if the majority of 2685 * the page accesses are shared with other processes. 2686 * Otherwise, decrease the scan period. 2687 */ 2688 static void update_task_scan_period(struct task_struct *p, 2689 unsigned long shared, unsigned long private) 2690 { 2691 unsigned int period_slot; 2692 int lr_ratio, ps_ratio; 2693 int diff; 2694 2695 unsigned long remote = p->numa_faults_locality[0]; 2696 unsigned long local = p->numa_faults_locality[1]; 2697 2698 /* 2699 * If there were no record hinting faults then either the task is 2700 * completely idle or all activity is in areas that are not of interest 2701 * to automatic numa balancing. Related to that, if there were failed 2702 * migration then it implies we are migrating too quickly or the local 2703 * node is overloaded. In either case, scan slower 2704 */ 2705 if (local + shared == 0 || p->numa_faults_locality[2]) { 2706 p->numa_scan_period = min(p->numa_scan_period_max, 2707 p->numa_scan_period << 1); 2708 2709 p->mm->numa_next_scan = jiffies + 2710 msecs_to_jiffies(p->numa_scan_period); 2711 2712 return; 2713 } 2714 2715 /* 2716 * Prepare to scale scan period relative to the current period. 2717 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2718 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2719 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2720 */ 2721 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2722 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2723 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2724 2725 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2726 /* 2727 * Most memory accesses are local. There is no need to 2728 * do fast NUMA scanning, since memory is already local. 2729 */ 2730 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2731 if (!slot) 2732 slot = 1; 2733 diff = slot * period_slot; 2734 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2735 /* 2736 * Most memory accesses are shared with other tasks. 2737 * There is no point in continuing fast NUMA scanning, 2738 * since other tasks may just move the memory elsewhere. 2739 */ 2740 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2741 if (!slot) 2742 slot = 1; 2743 diff = slot * period_slot; 2744 } else { 2745 /* 2746 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2747 * yet they are not on the local NUMA node. Speed up 2748 * NUMA scanning to get the memory moved over. 2749 */ 2750 int ratio = max(lr_ratio, ps_ratio); 2751 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2752 } 2753 2754 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2755 task_scan_min(p), task_scan_max(p)); 2756 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2757 } 2758 2759 /* 2760 * Get the fraction of time the task has been running since the last 2761 * NUMA placement cycle. The scheduler keeps similar statistics, but 2762 * decays those on a 32ms period, which is orders of magnitude off 2763 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2764 * stats only if the task is so new there are no NUMA statistics yet. 2765 */ 2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2767 { 2768 u64 runtime, delta, now; 2769 /* Use the start of this time slice to avoid calculations. */ 2770 now = p->se.exec_start; 2771 runtime = p->se.sum_exec_runtime; 2772 2773 if (p->last_task_numa_placement) { 2774 delta = runtime - p->last_sum_exec_runtime; 2775 *period = now - p->last_task_numa_placement; 2776 2777 /* Avoid time going backwards, prevent potential divide error: */ 2778 if (unlikely((s64)*period < 0)) 2779 *period = 0; 2780 } else { 2781 delta = p->se.avg.load_sum; 2782 *period = LOAD_AVG_MAX; 2783 } 2784 2785 p->last_sum_exec_runtime = runtime; 2786 p->last_task_numa_placement = now; 2787 2788 return delta; 2789 } 2790 2791 /* 2792 * Determine the preferred nid for a task in a numa_group. This needs to 2793 * be done in a way that produces consistent results with group_weight, 2794 * otherwise workloads might not converge. 2795 */ 2796 static int preferred_group_nid(struct task_struct *p, int nid) 2797 { 2798 nodemask_t nodes; 2799 int dist; 2800 2801 /* Direct connections between all NUMA nodes. */ 2802 if (sched_numa_topology_type == NUMA_DIRECT) 2803 return nid; 2804 2805 /* 2806 * On a system with glueless mesh NUMA topology, group_weight 2807 * scores nodes according to the number of NUMA hinting faults on 2808 * both the node itself, and on nearby nodes. 2809 */ 2810 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2811 unsigned long score, max_score = 0; 2812 int node, max_node = nid; 2813 2814 dist = sched_max_numa_distance; 2815 2816 for_each_node_state(node, N_CPU) { 2817 score = group_weight(p, node, dist); 2818 if (score > max_score) { 2819 max_score = score; 2820 max_node = node; 2821 } 2822 } 2823 return max_node; 2824 } 2825 2826 /* 2827 * Finding the preferred nid in a system with NUMA backplane 2828 * interconnect topology is more involved. The goal is to locate 2829 * tasks from numa_groups near each other in the system, and 2830 * untangle workloads from different sides of the system. This requires 2831 * searching down the hierarchy of node groups, recursively searching 2832 * inside the highest scoring group of nodes. The nodemask tricks 2833 * keep the complexity of the search down. 2834 */ 2835 nodes = node_states[N_CPU]; 2836 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2837 unsigned long max_faults = 0; 2838 nodemask_t max_group = NODE_MASK_NONE; 2839 int a, b; 2840 2841 /* Are there nodes at this distance from each other? */ 2842 if (!find_numa_distance(dist)) 2843 continue; 2844 2845 for_each_node_mask(a, nodes) { 2846 unsigned long faults = 0; 2847 nodemask_t this_group; 2848 nodes_clear(this_group); 2849 2850 /* Sum group's NUMA faults; includes a==b case. */ 2851 for_each_node_mask(b, nodes) { 2852 if (node_distance(a, b) < dist) { 2853 faults += group_faults(p, b); 2854 node_set(b, this_group); 2855 node_clear(b, nodes); 2856 } 2857 } 2858 2859 /* Remember the top group. */ 2860 if (faults > max_faults) { 2861 max_faults = faults; 2862 max_group = this_group; 2863 /* 2864 * subtle: at the smallest distance there is 2865 * just one node left in each "group", the 2866 * winner is the preferred nid. 2867 */ 2868 nid = a; 2869 } 2870 } 2871 /* Next round, evaluate the nodes within max_group. */ 2872 if (!max_faults) 2873 break; 2874 nodes = max_group; 2875 } 2876 return nid; 2877 } 2878 2879 static void task_numa_placement(struct task_struct *p) 2880 { 2881 int seq, nid, max_nid = NUMA_NO_NODE; 2882 unsigned long max_faults = 0; 2883 unsigned long fault_types[2] = { 0, 0 }; 2884 unsigned long total_faults; 2885 u64 runtime, period; 2886 spinlock_t *group_lock = NULL; 2887 struct numa_group *ng; 2888 2889 /* 2890 * The p->mm->numa_scan_seq field gets updated without 2891 * exclusive access. Use READ_ONCE() here to ensure 2892 * that the field is read in a single access: 2893 */ 2894 seq = READ_ONCE(p->mm->numa_scan_seq); 2895 if (p->numa_scan_seq == seq) 2896 return; 2897 p->numa_scan_seq = seq; 2898 p->numa_scan_period_max = task_scan_max(p); 2899 2900 total_faults = p->numa_faults_locality[0] + 2901 p->numa_faults_locality[1]; 2902 runtime = numa_get_avg_runtime(p, &period); 2903 2904 /* If the task is part of a group prevent parallel updates to group stats */ 2905 ng = deref_curr_numa_group(p); 2906 if (ng) { 2907 group_lock = &ng->lock; 2908 spin_lock_irq(group_lock); 2909 } 2910 2911 /* Find the node with the highest number of faults */ 2912 for_each_online_node(nid) { 2913 /* Keep track of the offsets in numa_faults array */ 2914 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2915 unsigned long faults = 0, group_faults = 0; 2916 int priv; 2917 2918 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2919 long diff, f_diff, f_weight; 2920 2921 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2922 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2923 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2924 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2925 2926 /* Decay existing window, copy faults since last scan */ 2927 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2928 fault_types[priv] += p->numa_faults[membuf_idx]; 2929 p->numa_faults[membuf_idx] = 0; 2930 2931 /* 2932 * Normalize the faults_from, so all tasks in a group 2933 * count according to CPU use, instead of by the raw 2934 * number of faults. Tasks with little runtime have 2935 * little over-all impact on throughput, and thus their 2936 * faults are less important. 2937 */ 2938 f_weight = div64_u64(runtime << 16, period + 1); 2939 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2940 (total_faults + 1); 2941 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2942 p->numa_faults[cpubuf_idx] = 0; 2943 2944 p->numa_faults[mem_idx] += diff; 2945 p->numa_faults[cpu_idx] += f_diff; 2946 faults += p->numa_faults[mem_idx]; 2947 p->total_numa_faults += diff; 2948 if (ng) { 2949 /* 2950 * safe because we can only change our own group 2951 * 2952 * mem_idx represents the offset for a given 2953 * nid and priv in a specific region because it 2954 * is at the beginning of the numa_faults array. 2955 */ 2956 ng->faults[mem_idx] += diff; 2957 ng->faults[cpu_idx] += f_diff; 2958 ng->total_faults += diff; 2959 group_faults += ng->faults[mem_idx]; 2960 } 2961 } 2962 2963 if (!ng) { 2964 if (faults > max_faults) { 2965 max_faults = faults; 2966 max_nid = nid; 2967 } 2968 } else if (group_faults > max_faults) { 2969 max_faults = group_faults; 2970 max_nid = nid; 2971 } 2972 } 2973 2974 /* Cannot migrate task to CPU-less node */ 2975 max_nid = numa_nearest_node(max_nid, N_CPU); 2976 2977 if (ng) { 2978 numa_group_count_active_nodes(ng); 2979 spin_unlock_irq(group_lock); 2980 max_nid = preferred_group_nid(p, max_nid); 2981 } 2982 2983 if (max_faults) { 2984 /* Set the new preferred node */ 2985 if (max_nid != p->numa_preferred_nid) 2986 sched_setnuma(p, max_nid); 2987 } 2988 2989 update_task_scan_period(p, fault_types[0], fault_types[1]); 2990 } 2991 2992 static inline int get_numa_group(struct numa_group *grp) 2993 { 2994 return refcount_inc_not_zero(&grp->refcount); 2995 } 2996 2997 static inline void put_numa_group(struct numa_group *grp) 2998 { 2999 if (refcount_dec_and_test(&grp->refcount)) 3000 kfree_rcu(grp, rcu); 3001 } 3002 3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3004 int *priv) 3005 { 3006 struct numa_group *grp, *my_grp; 3007 struct task_struct *tsk; 3008 bool join = false; 3009 int cpu = cpupid_to_cpu(cpupid); 3010 int i; 3011 3012 if (unlikely(!deref_curr_numa_group(p))) { 3013 unsigned int size = sizeof(struct numa_group) + 3014 NR_NUMA_HINT_FAULT_STATS * 3015 nr_node_ids * sizeof(unsigned long); 3016 3017 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3018 if (!grp) 3019 return; 3020 3021 refcount_set(&grp->refcount, 1); 3022 grp->active_nodes = 1; 3023 grp->max_faults_cpu = 0; 3024 spin_lock_init(&grp->lock); 3025 grp->gid = p->pid; 3026 3027 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3028 grp->faults[i] = p->numa_faults[i]; 3029 3030 grp->total_faults = p->total_numa_faults; 3031 3032 grp->nr_tasks++; 3033 rcu_assign_pointer(p->numa_group, grp); 3034 } 3035 3036 rcu_read_lock(); 3037 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3038 3039 if (!cpupid_match_pid(tsk, cpupid)) 3040 goto no_join; 3041 3042 grp = rcu_dereference(tsk->numa_group); 3043 if (!grp) 3044 goto no_join; 3045 3046 my_grp = deref_curr_numa_group(p); 3047 if (grp == my_grp) 3048 goto no_join; 3049 3050 /* 3051 * Only join the other group if its bigger; if we're the bigger group, 3052 * the other task will join us. 3053 */ 3054 if (my_grp->nr_tasks > grp->nr_tasks) 3055 goto no_join; 3056 3057 /* 3058 * Tie-break on the grp address. 3059 */ 3060 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3061 goto no_join; 3062 3063 /* Always join threads in the same process. */ 3064 if (tsk->mm == current->mm) 3065 join = true; 3066 3067 /* Simple filter to avoid false positives due to PID collisions */ 3068 if (flags & TNF_SHARED) 3069 join = true; 3070 3071 /* Update priv based on whether false sharing was detected */ 3072 *priv = !join; 3073 3074 if (join && !get_numa_group(grp)) 3075 goto no_join; 3076 3077 rcu_read_unlock(); 3078 3079 if (!join) 3080 return; 3081 3082 WARN_ON_ONCE(irqs_disabled()); 3083 double_lock_irq(&my_grp->lock, &grp->lock); 3084 3085 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3086 my_grp->faults[i] -= p->numa_faults[i]; 3087 grp->faults[i] += p->numa_faults[i]; 3088 } 3089 my_grp->total_faults -= p->total_numa_faults; 3090 grp->total_faults += p->total_numa_faults; 3091 3092 my_grp->nr_tasks--; 3093 grp->nr_tasks++; 3094 3095 spin_unlock(&my_grp->lock); 3096 spin_unlock_irq(&grp->lock); 3097 3098 rcu_assign_pointer(p->numa_group, grp); 3099 3100 put_numa_group(my_grp); 3101 return; 3102 3103 no_join: 3104 rcu_read_unlock(); 3105 return; 3106 } 3107 3108 /* 3109 * Get rid of NUMA statistics associated with a task (either current or dead). 3110 * If @final is set, the task is dead and has reached refcount zero, so we can 3111 * safely free all relevant data structures. Otherwise, there might be 3112 * concurrent reads from places like load balancing and procfs, and we should 3113 * reset the data back to default state without freeing ->numa_faults. 3114 */ 3115 void task_numa_free(struct task_struct *p, bool final) 3116 { 3117 /* safe: p either is current or is being freed by current */ 3118 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3119 unsigned long *numa_faults = p->numa_faults; 3120 unsigned long flags; 3121 int i; 3122 3123 if (!numa_faults) 3124 return; 3125 3126 if (grp) { 3127 spin_lock_irqsave(&grp->lock, flags); 3128 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3129 grp->faults[i] -= p->numa_faults[i]; 3130 grp->total_faults -= p->total_numa_faults; 3131 3132 grp->nr_tasks--; 3133 spin_unlock_irqrestore(&grp->lock, flags); 3134 RCU_INIT_POINTER(p->numa_group, NULL); 3135 put_numa_group(grp); 3136 } 3137 3138 if (final) { 3139 p->numa_faults = NULL; 3140 kfree(numa_faults); 3141 } else { 3142 p->total_numa_faults = 0; 3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3144 numa_faults[i] = 0; 3145 } 3146 } 3147 3148 /* 3149 * Got a PROT_NONE fault for a page on @node. 3150 */ 3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3152 { 3153 struct task_struct *p = current; 3154 bool migrated = flags & TNF_MIGRATED; 3155 int cpu_node = task_node(current); 3156 int local = !!(flags & TNF_FAULT_LOCAL); 3157 struct numa_group *ng; 3158 int priv; 3159 3160 if (!static_branch_likely(&sched_numa_balancing)) 3161 return; 3162 3163 /* for example, ksmd faulting in a user's mm */ 3164 if (!p->mm) 3165 return; 3166 3167 /* 3168 * NUMA faults statistics are unnecessary for the slow memory 3169 * node for memory tiering mode. 3170 */ 3171 if (!node_is_toptier(mem_node) && 3172 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3173 !cpupid_valid(last_cpupid))) 3174 return; 3175 3176 /* Allocate buffer to track faults on a per-node basis */ 3177 if (unlikely(!p->numa_faults)) { 3178 int size = sizeof(*p->numa_faults) * 3179 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3180 3181 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3182 if (!p->numa_faults) 3183 return; 3184 3185 p->total_numa_faults = 0; 3186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3187 } 3188 3189 /* 3190 * First accesses are treated as private, otherwise consider accesses 3191 * to be private if the accessing pid has not changed 3192 */ 3193 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3194 priv = 1; 3195 } else { 3196 priv = cpupid_match_pid(p, last_cpupid); 3197 if (!priv && !(flags & TNF_NO_GROUP)) 3198 task_numa_group(p, last_cpupid, flags, &priv); 3199 } 3200 3201 /* 3202 * If a workload spans multiple NUMA nodes, a shared fault that 3203 * occurs wholly within the set of nodes that the workload is 3204 * actively using should be counted as local. This allows the 3205 * scan rate to slow down when a workload has settled down. 3206 */ 3207 ng = deref_curr_numa_group(p); 3208 if (!priv && !local && ng && ng->active_nodes > 1 && 3209 numa_is_active_node(cpu_node, ng) && 3210 numa_is_active_node(mem_node, ng)) 3211 local = 1; 3212 3213 /* 3214 * Retry to migrate task to preferred node periodically, in case it 3215 * previously failed, or the scheduler moved us. 3216 */ 3217 if (time_after(jiffies, p->numa_migrate_retry)) { 3218 task_numa_placement(p); 3219 numa_migrate_preferred(p); 3220 } 3221 3222 if (migrated) 3223 p->numa_pages_migrated += pages; 3224 if (flags & TNF_MIGRATE_FAIL) 3225 p->numa_faults_locality[2] += pages; 3226 3227 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3228 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3229 p->numa_faults_locality[local] += pages; 3230 } 3231 3232 static void reset_ptenuma_scan(struct task_struct *p) 3233 { 3234 /* 3235 * We only did a read acquisition of the mmap sem, so 3236 * p->mm->numa_scan_seq is written to without exclusive access 3237 * and the update is not guaranteed to be atomic. That's not 3238 * much of an issue though, since this is just used for 3239 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3240 * expensive, to avoid any form of compiler optimizations: 3241 */ 3242 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3243 p->mm->numa_scan_offset = 0; 3244 } 3245 3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3247 { 3248 unsigned long pids; 3249 /* 3250 * Allow unconditional access first two times, so that all the (pages) 3251 * of VMAs get prot_none fault introduced irrespective of accesses. 3252 * This is also done to avoid any side effect of task scanning 3253 * amplifying the unfairness of disjoint set of VMAs' access. 3254 */ 3255 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3256 return true; 3257 3258 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3259 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3260 return true; 3261 3262 /* 3263 * Complete a scan that has already started regardless of PID access, or 3264 * some VMAs may never be scanned in multi-threaded applications: 3265 */ 3266 if (mm->numa_scan_offset > vma->vm_start) { 3267 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3268 return true; 3269 } 3270 3271 /* 3272 * This vma has not been accessed for a while, and if the number 3273 * the threads in the same process is low, which means no other 3274 * threads can help scan this vma, force a vma scan. 3275 */ 3276 if (READ_ONCE(mm->numa_scan_seq) > 3277 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3278 return true; 3279 3280 return false; 3281 } 3282 3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3284 3285 /* 3286 * The expensive part of numa migration is done from task_work context. 3287 * Triggered from task_tick_numa(). 3288 */ 3289 static void task_numa_work(struct callback_head *work) 3290 { 3291 unsigned long migrate, next_scan, now = jiffies; 3292 struct task_struct *p = current; 3293 struct mm_struct *mm = p->mm; 3294 u64 runtime = p->se.sum_exec_runtime; 3295 struct vm_area_struct *vma; 3296 unsigned long start, end; 3297 unsigned long nr_pte_updates = 0; 3298 long pages, virtpages; 3299 struct vma_iterator vmi; 3300 bool vma_pids_skipped; 3301 bool vma_pids_forced = false; 3302 3303 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3304 3305 work->next = work; 3306 /* 3307 * Who cares about NUMA placement when they're dying. 3308 * 3309 * NOTE: make sure not to dereference p->mm before this check, 3310 * exit_task_work() happens _after_ exit_mm() so we could be called 3311 * without p->mm even though we still had it when we enqueued this 3312 * work. 3313 */ 3314 if (p->flags & PF_EXITING) 3315 return; 3316 3317 if (!mm->numa_next_scan) { 3318 mm->numa_next_scan = now + 3319 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3320 } 3321 3322 /* 3323 * Enforce maximal scan/migration frequency.. 3324 */ 3325 migrate = mm->numa_next_scan; 3326 if (time_before(now, migrate)) 3327 return; 3328 3329 if (p->numa_scan_period == 0) { 3330 p->numa_scan_period_max = task_scan_max(p); 3331 p->numa_scan_period = task_scan_start(p); 3332 } 3333 3334 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3335 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3336 return; 3337 3338 /* 3339 * Delay this task enough that another task of this mm will likely win 3340 * the next time around. 3341 */ 3342 p->node_stamp += 2 * TICK_NSEC; 3343 3344 pages = sysctl_numa_balancing_scan_size; 3345 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3346 virtpages = pages * 8; /* Scan up to this much virtual space */ 3347 if (!pages) 3348 return; 3349 3350 3351 if (!mmap_read_trylock(mm)) 3352 return; 3353 3354 /* 3355 * VMAs are skipped if the current PID has not trapped a fault within 3356 * the VMA recently. Allow scanning to be forced if there is no 3357 * suitable VMA remaining. 3358 */ 3359 vma_pids_skipped = false; 3360 3361 retry_pids: 3362 start = mm->numa_scan_offset; 3363 vma_iter_init(&vmi, mm, start); 3364 vma = vma_next(&vmi); 3365 if (!vma) { 3366 reset_ptenuma_scan(p); 3367 start = 0; 3368 vma_iter_set(&vmi, start); 3369 vma = vma_next(&vmi); 3370 } 3371 3372 for (; vma; vma = vma_next(&vmi)) { 3373 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3374 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3375 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3376 continue; 3377 } 3378 3379 /* 3380 * Shared library pages mapped by multiple processes are not 3381 * migrated as it is expected they are cache replicated. Avoid 3382 * hinting faults in read-only file-backed mappings or the vDSO 3383 * as migrating the pages will be of marginal benefit. 3384 */ 3385 if (!vma->vm_mm || 3386 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3387 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3388 continue; 3389 } 3390 3391 /* 3392 * Skip inaccessible VMAs to avoid any confusion between 3393 * PROT_NONE and NUMA hinting PTEs 3394 */ 3395 if (!vma_is_accessible(vma)) { 3396 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3397 continue; 3398 } 3399 3400 /* Initialise new per-VMA NUMAB state. */ 3401 if (!vma->numab_state) { 3402 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3403 GFP_KERNEL); 3404 if (!vma->numab_state) 3405 continue; 3406 3407 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3408 3409 vma->numab_state->next_scan = now + 3410 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3411 3412 /* Reset happens after 4 times scan delay of scan start */ 3413 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3414 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3415 3416 /* 3417 * Ensure prev_scan_seq does not match numa_scan_seq, 3418 * to prevent VMAs being skipped prematurely on the 3419 * first scan: 3420 */ 3421 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3422 } 3423 3424 /* 3425 * Scanning the VMAs of short lived tasks add more overhead. So 3426 * delay the scan for new VMAs. 3427 */ 3428 if (mm->numa_scan_seq && time_before(jiffies, 3429 vma->numab_state->next_scan)) { 3430 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3431 continue; 3432 } 3433 3434 /* RESET access PIDs regularly for old VMAs. */ 3435 if (mm->numa_scan_seq && 3436 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3437 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3438 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3439 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3440 vma->numab_state->pids_active[1] = 0; 3441 } 3442 3443 /* Do not rescan VMAs twice within the same sequence. */ 3444 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3445 mm->numa_scan_offset = vma->vm_end; 3446 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3447 continue; 3448 } 3449 3450 /* 3451 * Do not scan the VMA if task has not accessed it, unless no other 3452 * VMA candidate exists. 3453 */ 3454 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3455 vma_pids_skipped = true; 3456 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3457 continue; 3458 } 3459 3460 do { 3461 start = max(start, vma->vm_start); 3462 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3463 end = min(end, vma->vm_end); 3464 nr_pte_updates = change_prot_numa(vma, start, end); 3465 3466 /* 3467 * Try to scan sysctl_numa_balancing_size worth of 3468 * hpages that have at least one present PTE that 3469 * is not already PTE-numa. If the VMA contains 3470 * areas that are unused or already full of prot_numa 3471 * PTEs, scan up to virtpages, to skip through those 3472 * areas faster. 3473 */ 3474 if (nr_pte_updates) 3475 pages -= (end - start) >> PAGE_SHIFT; 3476 virtpages -= (end - start) >> PAGE_SHIFT; 3477 3478 start = end; 3479 if (pages <= 0 || virtpages <= 0) 3480 goto out; 3481 3482 cond_resched(); 3483 } while (end != vma->vm_end); 3484 3485 /* VMA scan is complete, do not scan until next sequence. */ 3486 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3487 3488 /* 3489 * Only force scan within one VMA at a time, to limit the 3490 * cost of scanning a potentially uninteresting VMA. 3491 */ 3492 if (vma_pids_forced) 3493 break; 3494 } 3495 3496 /* 3497 * If no VMAs are remaining and VMAs were skipped due to the PID 3498 * not accessing the VMA previously, then force a scan to ensure 3499 * forward progress: 3500 */ 3501 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3502 vma_pids_forced = true; 3503 goto retry_pids; 3504 } 3505 3506 out: 3507 /* 3508 * It is possible to reach the end of the VMA list but the last few 3509 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3510 * would find the !migratable VMA on the next scan but not reset the 3511 * scanner to the start so check it now. 3512 */ 3513 if (vma) 3514 mm->numa_scan_offset = start; 3515 else 3516 reset_ptenuma_scan(p); 3517 mmap_read_unlock(mm); 3518 3519 /* 3520 * Make sure tasks use at least 32x as much time to run other code 3521 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3522 * Usually update_task_scan_period slows down scanning enough; on an 3523 * overloaded system we need to limit overhead on a per task basis. 3524 */ 3525 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3526 u64 diff = p->se.sum_exec_runtime - runtime; 3527 p->node_stamp += 32 * diff; 3528 } 3529 } 3530 3531 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3532 { 3533 int mm_users = 0; 3534 struct mm_struct *mm = p->mm; 3535 3536 if (mm) { 3537 mm_users = atomic_read(&mm->mm_users); 3538 if (mm_users == 1) { 3539 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3540 mm->numa_scan_seq = 0; 3541 } 3542 } 3543 p->node_stamp = 0; 3544 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3545 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3546 p->numa_migrate_retry = 0; 3547 /* Protect against double add, see task_tick_numa and task_numa_work */ 3548 p->numa_work.next = &p->numa_work; 3549 p->numa_faults = NULL; 3550 p->numa_pages_migrated = 0; 3551 p->total_numa_faults = 0; 3552 RCU_INIT_POINTER(p->numa_group, NULL); 3553 p->last_task_numa_placement = 0; 3554 p->last_sum_exec_runtime = 0; 3555 3556 init_task_work(&p->numa_work, task_numa_work); 3557 3558 /* New address space, reset the preferred nid */ 3559 if (!(clone_flags & CLONE_VM)) { 3560 p->numa_preferred_nid = NUMA_NO_NODE; 3561 return; 3562 } 3563 3564 /* 3565 * New thread, keep existing numa_preferred_nid which should be copied 3566 * already by arch_dup_task_struct but stagger when scans start. 3567 */ 3568 if (mm) { 3569 unsigned int delay; 3570 3571 delay = min_t(unsigned int, task_scan_max(current), 3572 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3573 delay += 2 * TICK_NSEC; 3574 p->node_stamp = delay; 3575 } 3576 } 3577 3578 /* 3579 * Drive the periodic memory faults.. 3580 */ 3581 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3582 { 3583 struct callback_head *work = &curr->numa_work; 3584 u64 period, now; 3585 3586 /* 3587 * We don't care about NUMA placement if we don't have memory. 3588 */ 3589 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3590 return; 3591 3592 /* 3593 * Using runtime rather than walltime has the dual advantage that 3594 * we (mostly) drive the selection from busy threads and that the 3595 * task needs to have done some actual work before we bother with 3596 * NUMA placement. 3597 */ 3598 now = curr->se.sum_exec_runtime; 3599 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3600 3601 if (now > curr->node_stamp + period) { 3602 if (!curr->node_stamp) 3603 curr->numa_scan_period = task_scan_start(curr); 3604 curr->node_stamp += period; 3605 3606 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3607 task_work_add(curr, work, TWA_RESUME); 3608 } 3609 } 3610 3611 static void update_scan_period(struct task_struct *p, int new_cpu) 3612 { 3613 int src_nid = cpu_to_node(task_cpu(p)); 3614 int dst_nid = cpu_to_node(new_cpu); 3615 3616 if (!static_branch_likely(&sched_numa_balancing)) 3617 return; 3618 3619 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3620 return; 3621 3622 if (src_nid == dst_nid) 3623 return; 3624 3625 /* 3626 * Allow resets if faults have been trapped before one scan 3627 * has completed. This is most likely due to a new task that 3628 * is pulled cross-node due to wakeups or load balancing. 3629 */ 3630 if (p->numa_scan_seq) { 3631 /* 3632 * Avoid scan adjustments if moving to the preferred 3633 * node or if the task was not previously running on 3634 * the preferred node. 3635 */ 3636 if (dst_nid == p->numa_preferred_nid || 3637 (p->numa_preferred_nid != NUMA_NO_NODE && 3638 src_nid != p->numa_preferred_nid)) 3639 return; 3640 } 3641 3642 p->numa_scan_period = task_scan_start(p); 3643 } 3644 3645 #else 3646 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3647 { 3648 } 3649 3650 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3651 { 3652 } 3653 3654 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3655 { 3656 } 3657 3658 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3659 { 3660 } 3661 3662 #endif /* CONFIG_NUMA_BALANCING */ 3663 3664 static void 3665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3666 { 3667 update_load_add(&cfs_rq->load, se->load.weight); 3668 #ifdef CONFIG_SMP 3669 if (entity_is_task(se)) { 3670 struct rq *rq = rq_of(cfs_rq); 3671 3672 account_numa_enqueue(rq, task_of(se)); 3673 list_add(&se->group_node, &rq->cfs_tasks); 3674 } 3675 #endif 3676 cfs_rq->nr_running++; 3677 if (se_is_idle(se)) 3678 cfs_rq->idle_nr_running++; 3679 } 3680 3681 static void 3682 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3683 { 3684 update_load_sub(&cfs_rq->load, se->load.weight); 3685 #ifdef CONFIG_SMP 3686 if (entity_is_task(se)) { 3687 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3688 list_del_init(&se->group_node); 3689 } 3690 #endif 3691 cfs_rq->nr_running--; 3692 if (se_is_idle(se)) 3693 cfs_rq->idle_nr_running--; 3694 } 3695 3696 /* 3697 * Signed add and clamp on underflow. 3698 * 3699 * Explicitly do a load-store to ensure the intermediate value never hits 3700 * memory. This allows lockless observations without ever seeing the negative 3701 * values. 3702 */ 3703 #define add_positive(_ptr, _val) do { \ 3704 typeof(_ptr) ptr = (_ptr); \ 3705 typeof(_val) val = (_val); \ 3706 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3707 \ 3708 res = var + val; \ 3709 \ 3710 if (val < 0 && res > var) \ 3711 res = 0; \ 3712 \ 3713 WRITE_ONCE(*ptr, res); \ 3714 } while (0) 3715 3716 /* 3717 * Unsigned subtract and clamp on underflow. 3718 * 3719 * Explicitly do a load-store to ensure the intermediate value never hits 3720 * memory. This allows lockless observations without ever seeing the negative 3721 * values. 3722 */ 3723 #define sub_positive(_ptr, _val) do { \ 3724 typeof(_ptr) ptr = (_ptr); \ 3725 typeof(*ptr) val = (_val); \ 3726 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3727 res = var - val; \ 3728 if (res > var) \ 3729 res = 0; \ 3730 WRITE_ONCE(*ptr, res); \ 3731 } while (0) 3732 3733 /* 3734 * Remove and clamp on negative, from a local variable. 3735 * 3736 * A variant of sub_positive(), which does not use explicit load-store 3737 * and is thus optimized for local variable updates. 3738 */ 3739 #define lsub_positive(_ptr, _val) do { \ 3740 typeof(_ptr) ptr = (_ptr); \ 3741 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3742 } while (0) 3743 3744 #ifdef CONFIG_SMP 3745 static inline void 3746 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3747 { 3748 cfs_rq->avg.load_avg += se->avg.load_avg; 3749 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3750 } 3751 3752 static inline void 3753 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3754 { 3755 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3756 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3757 /* See update_cfs_rq_load_avg() */ 3758 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3759 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3760 } 3761 #else 3762 static inline void 3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3764 static inline void 3765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3766 #endif 3767 3768 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3769 unsigned long weight) 3770 { 3771 unsigned long old_weight = se->load.weight; 3772 s64 vlag, vslice; 3773 3774 /* 3775 * VRUNTIME 3776 * -------- 3777 * 3778 * COROLLARY #1: The virtual runtime of the entity needs to be 3779 * adjusted if re-weight at !0-lag point. 3780 * 3781 * Proof: For contradiction assume this is not true, so we can 3782 * re-weight without changing vruntime at !0-lag point. 3783 * 3784 * Weight VRuntime Avg-VRuntime 3785 * before w v V 3786 * after w' v' V' 3787 * 3788 * Since lag needs to be preserved through re-weight: 3789 * 3790 * lag = (V - v)*w = (V'- v')*w', where v = v' 3791 * ==> V' = (V - v)*w/w' + v (1) 3792 * 3793 * Let W be the total weight of the entities before reweight, 3794 * since V' is the new weighted average of entities: 3795 * 3796 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3797 * 3798 * by using (1) & (2) we obtain: 3799 * 3800 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3801 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3802 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3803 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3804 * 3805 * Since we are doing at !0-lag point which means V != v, we 3806 * can simplify (3): 3807 * 3808 * ==> W / (W + w' - w) = w / w' 3809 * ==> Ww' = Ww + ww' - ww 3810 * ==> W * (w' - w) = w * (w' - w) 3811 * ==> W = w (re-weight indicates w' != w) 3812 * 3813 * So the cfs_rq contains only one entity, hence vruntime of 3814 * the entity @v should always equal to the cfs_rq's weighted 3815 * average vruntime @V, which means we will always re-weight 3816 * at 0-lag point, thus breach assumption. Proof completed. 3817 * 3818 * 3819 * COROLLARY #2: Re-weight does NOT affect weighted average 3820 * vruntime of all the entities. 3821 * 3822 * Proof: According to corollary #1, Eq. (1) should be: 3823 * 3824 * (V - v)*w = (V' - v')*w' 3825 * ==> v' = V' - (V - v)*w/w' (4) 3826 * 3827 * According to the weighted average formula, we have: 3828 * 3829 * V' = (WV - wv + w'v') / (W - w + w') 3830 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3831 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3832 * = (WV + w'V' - Vw) / (W - w + w') 3833 * 3834 * ==> V'*(W - w + w') = WV + w'V' - Vw 3835 * ==> V' * (W - w) = (W - w) * V (5) 3836 * 3837 * If the entity is the only one in the cfs_rq, then reweight 3838 * always occurs at 0-lag point, so V won't change. Or else 3839 * there are other entities, hence W != w, then Eq. (5) turns 3840 * into V' = V. So V won't change in either case, proof done. 3841 * 3842 * 3843 * So according to corollary #1 & #2, the effect of re-weight 3844 * on vruntime should be: 3845 * 3846 * v' = V' - (V - v) * w / w' (4) 3847 * = V - (V - v) * w / w' 3848 * = V - vl * w / w' 3849 * = V - vl' 3850 */ 3851 if (avruntime != se->vruntime) { 3852 vlag = entity_lag(avruntime, se); 3853 vlag = div_s64(vlag * old_weight, weight); 3854 se->vruntime = avruntime - vlag; 3855 } 3856 3857 /* 3858 * DEADLINE 3859 * -------- 3860 * 3861 * When the weight changes, the virtual time slope changes and 3862 * we should adjust the relative virtual deadline accordingly. 3863 * 3864 * d' = v' + (d - v)*w/w' 3865 * = V' - (V - v)*w/w' + (d - v)*w/w' 3866 * = V - (V - v)*w/w' + (d - v)*w/w' 3867 * = V + (d - V)*w/w' 3868 */ 3869 vslice = (s64)(se->deadline - avruntime); 3870 vslice = div_s64(vslice * old_weight, weight); 3871 se->deadline = avruntime + vslice; 3872 } 3873 3874 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3875 unsigned long weight) 3876 { 3877 bool curr = cfs_rq->curr == se; 3878 u64 avruntime; 3879 3880 if (se->on_rq) { 3881 /* commit outstanding execution time */ 3882 update_curr(cfs_rq); 3883 avruntime = avg_vruntime(cfs_rq); 3884 if (!curr) 3885 __dequeue_entity(cfs_rq, se); 3886 update_load_sub(&cfs_rq->load, se->load.weight); 3887 } 3888 dequeue_load_avg(cfs_rq, se); 3889 3890 if (se->on_rq) { 3891 reweight_eevdf(se, avruntime, weight); 3892 } else { 3893 /* 3894 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3895 * we need to scale se->vlag when w_i changes. 3896 */ 3897 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3898 } 3899 3900 update_load_set(&se->load, weight); 3901 3902 #ifdef CONFIG_SMP 3903 do { 3904 u32 divider = get_pelt_divider(&se->avg); 3905 3906 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3907 } while (0); 3908 #endif 3909 3910 enqueue_load_avg(cfs_rq, se); 3911 if (se->on_rq) { 3912 update_load_add(&cfs_rq->load, se->load.weight); 3913 if (!curr) 3914 __enqueue_entity(cfs_rq, se); 3915 3916 /* 3917 * The entity's vruntime has been adjusted, so let's check 3918 * whether the rq-wide min_vruntime needs updated too. Since 3919 * the calculations above require stable min_vruntime rather 3920 * than up-to-date one, we do the update at the end of the 3921 * reweight process. 3922 */ 3923 update_min_vruntime(cfs_rq); 3924 } 3925 } 3926 3927 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3928 const struct load_weight *lw) 3929 { 3930 struct sched_entity *se = &p->se; 3931 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3932 struct load_weight *load = &se->load; 3933 3934 reweight_entity(cfs_rq, se, lw->weight); 3935 load->inv_weight = lw->inv_weight; 3936 } 3937 3938 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3939 3940 #ifdef CONFIG_FAIR_GROUP_SCHED 3941 #ifdef CONFIG_SMP 3942 /* 3943 * All this does is approximate the hierarchical proportion which includes that 3944 * global sum we all love to hate. 3945 * 3946 * That is, the weight of a group entity, is the proportional share of the 3947 * group weight based on the group runqueue weights. That is: 3948 * 3949 * tg->weight * grq->load.weight 3950 * ge->load.weight = ----------------------------- (1) 3951 * \Sum grq->load.weight 3952 * 3953 * Now, because computing that sum is prohibitively expensive to compute (been 3954 * there, done that) we approximate it with this average stuff. The average 3955 * moves slower and therefore the approximation is cheaper and more stable. 3956 * 3957 * So instead of the above, we substitute: 3958 * 3959 * grq->load.weight -> grq->avg.load_avg (2) 3960 * 3961 * which yields the following: 3962 * 3963 * tg->weight * grq->avg.load_avg 3964 * ge->load.weight = ------------------------------ (3) 3965 * tg->load_avg 3966 * 3967 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3968 * 3969 * That is shares_avg, and it is right (given the approximation (2)). 3970 * 3971 * The problem with it is that because the average is slow -- it was designed 3972 * to be exactly that of course -- this leads to transients in boundary 3973 * conditions. In specific, the case where the group was idle and we start the 3974 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3975 * yielding bad latency etc.. 3976 * 3977 * Now, in that special case (1) reduces to: 3978 * 3979 * tg->weight * grq->load.weight 3980 * ge->load.weight = ----------------------------- = tg->weight (4) 3981 * grp->load.weight 3982 * 3983 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3984 * 3985 * So what we do is modify our approximation (3) to approach (4) in the (near) 3986 * UP case, like: 3987 * 3988 * ge->load.weight = 3989 * 3990 * tg->weight * grq->load.weight 3991 * --------------------------------------------------- (5) 3992 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3993 * 3994 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3995 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3996 * 3997 * 3998 * tg->weight * grq->load.weight 3999 * ge->load.weight = ----------------------------- (6) 4000 * tg_load_avg' 4001 * 4002 * Where: 4003 * 4004 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 4005 * max(grq->load.weight, grq->avg.load_avg) 4006 * 4007 * And that is shares_weight and is icky. In the (near) UP case it approaches 4008 * (4) while in the normal case it approaches (3). It consistently 4009 * overestimates the ge->load.weight and therefore: 4010 * 4011 * \Sum ge->load.weight >= tg->weight 4012 * 4013 * hence icky! 4014 */ 4015 static long calc_group_shares(struct cfs_rq *cfs_rq) 4016 { 4017 long tg_weight, tg_shares, load, shares; 4018 struct task_group *tg = cfs_rq->tg; 4019 4020 tg_shares = READ_ONCE(tg->shares); 4021 4022 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 4023 4024 tg_weight = atomic_long_read(&tg->load_avg); 4025 4026 /* Ensure tg_weight >= load */ 4027 tg_weight -= cfs_rq->tg_load_avg_contrib; 4028 tg_weight += load; 4029 4030 shares = (tg_shares * load); 4031 if (tg_weight) 4032 shares /= tg_weight; 4033 4034 /* 4035 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 4036 * of a group with small tg->shares value. It is a floor value which is 4037 * assigned as a minimum load.weight to the sched_entity representing 4038 * the group on a CPU. 4039 * 4040 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 4041 * on an 8-core system with 8 tasks each runnable on one CPU shares has 4042 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 4043 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 4044 * instead of 0. 4045 */ 4046 return clamp_t(long, shares, MIN_SHARES, tg_shares); 4047 } 4048 #endif /* CONFIG_SMP */ 4049 4050 /* 4051 * Recomputes the group entity based on the current state of its group 4052 * runqueue. 4053 */ 4054 static void update_cfs_group(struct sched_entity *se) 4055 { 4056 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4057 long shares; 4058 4059 if (!gcfs_rq) 4060 return; 4061 4062 if (throttled_hierarchy(gcfs_rq)) 4063 return; 4064 4065 #ifndef CONFIG_SMP 4066 shares = READ_ONCE(gcfs_rq->tg->shares); 4067 #else 4068 shares = calc_group_shares(gcfs_rq); 4069 #endif 4070 if (unlikely(se->load.weight != shares)) 4071 reweight_entity(cfs_rq_of(se), se, shares); 4072 } 4073 4074 #else /* CONFIG_FAIR_GROUP_SCHED */ 4075 static inline void update_cfs_group(struct sched_entity *se) 4076 { 4077 } 4078 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4079 4080 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4081 { 4082 struct rq *rq = rq_of(cfs_rq); 4083 4084 if (&rq->cfs == cfs_rq) { 4085 /* 4086 * There are a few boundary cases this might miss but it should 4087 * get called often enough that that should (hopefully) not be 4088 * a real problem. 4089 * 4090 * It will not get called when we go idle, because the idle 4091 * thread is a different class (!fair), nor will the utilization 4092 * number include things like RT tasks. 4093 * 4094 * As is, the util number is not freq-invariant (we'd have to 4095 * implement arch_scale_freq_capacity() for that). 4096 * 4097 * See cpu_util_cfs(). 4098 */ 4099 cpufreq_update_util(rq, flags); 4100 } 4101 } 4102 4103 #ifdef CONFIG_SMP 4104 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4105 { 4106 if (sa->load_sum) 4107 return false; 4108 4109 if (sa->util_sum) 4110 return false; 4111 4112 if (sa->runnable_sum) 4113 return false; 4114 4115 /* 4116 * _avg must be null when _sum are null because _avg = _sum / divider 4117 * Make sure that rounding and/or propagation of PELT values never 4118 * break this. 4119 */ 4120 SCHED_WARN_ON(sa->load_avg || 4121 sa->util_avg || 4122 sa->runnable_avg); 4123 4124 return true; 4125 } 4126 4127 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4128 { 4129 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4130 cfs_rq->last_update_time_copy); 4131 } 4132 #ifdef CONFIG_FAIR_GROUP_SCHED 4133 /* 4134 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4135 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4136 * bottom-up, we only have to test whether the cfs_rq before us on the list 4137 * is our child. 4138 * If cfs_rq is not on the list, test whether a child needs its to be added to 4139 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4140 */ 4141 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4142 { 4143 struct cfs_rq *prev_cfs_rq; 4144 struct list_head *prev; 4145 4146 if (cfs_rq->on_list) { 4147 prev = cfs_rq->leaf_cfs_rq_list.prev; 4148 } else { 4149 struct rq *rq = rq_of(cfs_rq); 4150 4151 prev = rq->tmp_alone_branch; 4152 } 4153 4154 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4155 4156 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4157 } 4158 4159 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4160 { 4161 if (cfs_rq->load.weight) 4162 return false; 4163 4164 if (!load_avg_is_decayed(&cfs_rq->avg)) 4165 return false; 4166 4167 if (child_cfs_rq_on_list(cfs_rq)) 4168 return false; 4169 4170 return true; 4171 } 4172 4173 /** 4174 * update_tg_load_avg - update the tg's load avg 4175 * @cfs_rq: the cfs_rq whose avg changed 4176 * 4177 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4178 * However, because tg->load_avg is a global value there are performance 4179 * considerations. 4180 * 4181 * In order to avoid having to look at the other cfs_rq's, we use a 4182 * differential update where we store the last value we propagated. This in 4183 * turn allows skipping updates if the differential is 'small'. 4184 * 4185 * Updating tg's load_avg is necessary before update_cfs_share(). 4186 */ 4187 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4188 { 4189 long delta; 4190 u64 now; 4191 4192 /* 4193 * No need to update load_avg for root_task_group as it is not used. 4194 */ 4195 if (cfs_rq->tg == &root_task_group) 4196 return; 4197 4198 /* rq has been offline and doesn't contribute to the share anymore: */ 4199 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4200 return; 4201 4202 /* 4203 * For migration heavy workloads, access to tg->load_avg can be 4204 * unbound. Limit the update rate to at most once per ms. 4205 */ 4206 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4207 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4208 return; 4209 4210 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4211 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4212 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4213 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4214 cfs_rq->last_update_tg_load_avg = now; 4215 } 4216 } 4217 4218 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4219 { 4220 long delta; 4221 u64 now; 4222 4223 /* 4224 * No need to update load_avg for root_task_group, as it is not used. 4225 */ 4226 if (cfs_rq->tg == &root_task_group) 4227 return; 4228 4229 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4230 delta = 0 - cfs_rq->tg_load_avg_contrib; 4231 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4232 cfs_rq->tg_load_avg_contrib = 0; 4233 cfs_rq->last_update_tg_load_avg = now; 4234 } 4235 4236 /* CPU offline callback: */ 4237 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4238 { 4239 struct task_group *tg; 4240 4241 lockdep_assert_rq_held(rq); 4242 4243 /* 4244 * The rq clock has already been updated in 4245 * set_rq_offline(), so we should skip updating 4246 * the rq clock again in unthrottle_cfs_rq(). 4247 */ 4248 rq_clock_start_loop_update(rq); 4249 4250 rcu_read_lock(); 4251 list_for_each_entry_rcu(tg, &task_groups, list) { 4252 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4253 4254 clear_tg_load_avg(cfs_rq); 4255 } 4256 rcu_read_unlock(); 4257 4258 rq_clock_stop_loop_update(rq); 4259 } 4260 4261 /* 4262 * Called within set_task_rq() right before setting a task's CPU. The 4263 * caller only guarantees p->pi_lock is held; no other assumptions, 4264 * including the state of rq->lock, should be made. 4265 */ 4266 void set_task_rq_fair(struct sched_entity *se, 4267 struct cfs_rq *prev, struct cfs_rq *next) 4268 { 4269 u64 p_last_update_time; 4270 u64 n_last_update_time; 4271 4272 if (!sched_feat(ATTACH_AGE_LOAD)) 4273 return; 4274 4275 /* 4276 * We are supposed to update the task to "current" time, then its up to 4277 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4278 * getting what current time is, so simply throw away the out-of-date 4279 * time. This will result in the wakee task is less decayed, but giving 4280 * the wakee more load sounds not bad. 4281 */ 4282 if (!(se->avg.last_update_time && prev)) 4283 return; 4284 4285 p_last_update_time = cfs_rq_last_update_time(prev); 4286 n_last_update_time = cfs_rq_last_update_time(next); 4287 4288 __update_load_avg_blocked_se(p_last_update_time, se); 4289 se->avg.last_update_time = n_last_update_time; 4290 } 4291 4292 /* 4293 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4294 * propagate its contribution. The key to this propagation is the invariant 4295 * that for each group: 4296 * 4297 * ge->avg == grq->avg (1) 4298 * 4299 * _IFF_ we look at the pure running and runnable sums. Because they 4300 * represent the very same entity, just at different points in the hierarchy. 4301 * 4302 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4303 * and simply copies the running/runnable sum over (but still wrong, because 4304 * the group entity and group rq do not have their PELT windows aligned). 4305 * 4306 * However, update_tg_cfs_load() is more complex. So we have: 4307 * 4308 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4309 * 4310 * And since, like util, the runnable part should be directly transferable, 4311 * the following would _appear_ to be the straight forward approach: 4312 * 4313 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4314 * 4315 * And per (1) we have: 4316 * 4317 * ge->avg.runnable_avg == grq->avg.runnable_avg 4318 * 4319 * Which gives: 4320 * 4321 * ge->load.weight * grq->avg.load_avg 4322 * ge->avg.load_avg = ----------------------------------- (4) 4323 * grq->load.weight 4324 * 4325 * Except that is wrong! 4326 * 4327 * Because while for entities historical weight is not important and we 4328 * really only care about our future and therefore can consider a pure 4329 * runnable sum, runqueues can NOT do this. 4330 * 4331 * We specifically want runqueues to have a load_avg that includes 4332 * historical weights. Those represent the blocked load, the load we expect 4333 * to (shortly) return to us. This only works by keeping the weights as 4334 * integral part of the sum. We therefore cannot decompose as per (3). 4335 * 4336 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4337 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4338 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4339 * runnable section of these tasks overlap (or not). If they were to perfectly 4340 * align the rq as a whole would be runnable 2/3 of the time. If however we 4341 * always have at least 1 runnable task, the rq as a whole is always runnable. 4342 * 4343 * So we'll have to approximate.. :/ 4344 * 4345 * Given the constraint: 4346 * 4347 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4348 * 4349 * We can construct a rule that adds runnable to a rq by assuming minimal 4350 * overlap. 4351 * 4352 * On removal, we'll assume each task is equally runnable; which yields: 4353 * 4354 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4355 * 4356 * XXX: only do this for the part of runnable > running ? 4357 * 4358 */ 4359 static inline void 4360 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4361 { 4362 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4363 u32 new_sum, divider; 4364 4365 /* Nothing to update */ 4366 if (!delta_avg) 4367 return; 4368 4369 /* 4370 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4371 * See ___update_load_avg() for details. 4372 */ 4373 divider = get_pelt_divider(&cfs_rq->avg); 4374 4375 4376 /* Set new sched_entity's utilization */ 4377 se->avg.util_avg = gcfs_rq->avg.util_avg; 4378 new_sum = se->avg.util_avg * divider; 4379 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4380 se->avg.util_sum = new_sum; 4381 4382 /* Update parent cfs_rq utilization */ 4383 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4384 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4385 4386 /* See update_cfs_rq_load_avg() */ 4387 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4388 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4389 } 4390 4391 static inline void 4392 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4393 { 4394 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4395 u32 new_sum, divider; 4396 4397 /* Nothing to update */ 4398 if (!delta_avg) 4399 return; 4400 4401 /* 4402 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4403 * See ___update_load_avg() for details. 4404 */ 4405 divider = get_pelt_divider(&cfs_rq->avg); 4406 4407 /* Set new sched_entity's runnable */ 4408 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4409 new_sum = se->avg.runnable_avg * divider; 4410 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4411 se->avg.runnable_sum = new_sum; 4412 4413 /* Update parent cfs_rq runnable */ 4414 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4415 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4416 /* See update_cfs_rq_load_avg() */ 4417 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4418 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4419 } 4420 4421 static inline void 4422 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4423 { 4424 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4425 unsigned long load_avg; 4426 u64 load_sum = 0; 4427 s64 delta_sum; 4428 u32 divider; 4429 4430 if (!runnable_sum) 4431 return; 4432 4433 gcfs_rq->prop_runnable_sum = 0; 4434 4435 /* 4436 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4437 * See ___update_load_avg() for details. 4438 */ 4439 divider = get_pelt_divider(&cfs_rq->avg); 4440 4441 if (runnable_sum >= 0) { 4442 /* 4443 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4444 * the CPU is saturated running == runnable. 4445 */ 4446 runnable_sum += se->avg.load_sum; 4447 runnable_sum = min_t(long, runnable_sum, divider); 4448 } else { 4449 /* 4450 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4451 * assuming all tasks are equally runnable. 4452 */ 4453 if (scale_load_down(gcfs_rq->load.weight)) { 4454 load_sum = div_u64(gcfs_rq->avg.load_sum, 4455 scale_load_down(gcfs_rq->load.weight)); 4456 } 4457 4458 /* But make sure to not inflate se's runnable */ 4459 runnable_sum = min(se->avg.load_sum, load_sum); 4460 } 4461 4462 /* 4463 * runnable_sum can't be lower than running_sum 4464 * Rescale running sum to be in the same range as runnable sum 4465 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4466 * runnable_sum is in [0 : LOAD_AVG_MAX] 4467 */ 4468 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4469 runnable_sum = max(runnable_sum, running_sum); 4470 4471 load_sum = se_weight(se) * runnable_sum; 4472 load_avg = div_u64(load_sum, divider); 4473 4474 delta_avg = load_avg - se->avg.load_avg; 4475 if (!delta_avg) 4476 return; 4477 4478 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4479 4480 se->avg.load_sum = runnable_sum; 4481 se->avg.load_avg = load_avg; 4482 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4483 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4484 /* See update_cfs_rq_load_avg() */ 4485 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4486 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4487 } 4488 4489 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4490 { 4491 cfs_rq->propagate = 1; 4492 cfs_rq->prop_runnable_sum += runnable_sum; 4493 } 4494 4495 /* Update task and its cfs_rq load average */ 4496 static inline int propagate_entity_load_avg(struct sched_entity *se) 4497 { 4498 struct cfs_rq *cfs_rq, *gcfs_rq; 4499 4500 if (entity_is_task(se)) 4501 return 0; 4502 4503 gcfs_rq = group_cfs_rq(se); 4504 if (!gcfs_rq->propagate) 4505 return 0; 4506 4507 gcfs_rq->propagate = 0; 4508 4509 cfs_rq = cfs_rq_of(se); 4510 4511 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4512 4513 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4514 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4515 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4516 4517 trace_pelt_cfs_tp(cfs_rq); 4518 trace_pelt_se_tp(se); 4519 4520 return 1; 4521 } 4522 4523 /* 4524 * Check if we need to update the load and the utilization of a blocked 4525 * group_entity: 4526 */ 4527 static inline bool skip_blocked_update(struct sched_entity *se) 4528 { 4529 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4530 4531 /* 4532 * If sched_entity still have not zero load or utilization, we have to 4533 * decay it: 4534 */ 4535 if (se->avg.load_avg || se->avg.util_avg) 4536 return false; 4537 4538 /* 4539 * If there is a pending propagation, we have to update the load and 4540 * the utilization of the sched_entity: 4541 */ 4542 if (gcfs_rq->propagate) 4543 return false; 4544 4545 /* 4546 * Otherwise, the load and the utilization of the sched_entity is 4547 * already zero and there is no pending propagation, so it will be a 4548 * waste of time to try to decay it: 4549 */ 4550 return true; 4551 } 4552 4553 #else /* CONFIG_FAIR_GROUP_SCHED */ 4554 4555 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4556 4557 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4558 4559 static inline int propagate_entity_load_avg(struct sched_entity *se) 4560 { 4561 return 0; 4562 } 4563 4564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4565 4566 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4567 4568 #ifdef CONFIG_NO_HZ_COMMON 4569 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4570 { 4571 u64 throttled = 0, now, lut; 4572 struct cfs_rq *cfs_rq; 4573 struct rq *rq; 4574 bool is_idle; 4575 4576 if (load_avg_is_decayed(&se->avg)) 4577 return; 4578 4579 cfs_rq = cfs_rq_of(se); 4580 rq = rq_of(cfs_rq); 4581 4582 rcu_read_lock(); 4583 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4584 rcu_read_unlock(); 4585 4586 /* 4587 * The lag estimation comes with a cost we don't want to pay all the 4588 * time. Hence, limiting to the case where the source CPU is idle and 4589 * we know we are at the greatest risk to have an outdated clock. 4590 */ 4591 if (!is_idle) 4592 return; 4593 4594 /* 4595 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4596 * 4597 * last_update_time (the cfs_rq's last_update_time) 4598 * = cfs_rq_clock_pelt()@cfs_rq_idle 4599 * = rq_clock_pelt()@cfs_rq_idle 4600 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4601 * 4602 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4603 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4604 * 4605 * rq_idle_lag (delta between now and rq's update) 4606 * = sched_clock_cpu() - rq_clock()@rq_idle 4607 * 4608 * We can then write: 4609 * 4610 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4611 * sched_clock_cpu() - rq_clock()@rq_idle 4612 * Where: 4613 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4614 * rq_clock()@rq_idle is rq->clock_idle 4615 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4616 * is cfs_rq->throttled_pelt_idle 4617 */ 4618 4619 #ifdef CONFIG_CFS_BANDWIDTH 4620 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4621 /* The clock has been stopped for throttling */ 4622 if (throttled == U64_MAX) 4623 return; 4624 #endif 4625 now = u64_u32_load(rq->clock_pelt_idle); 4626 /* 4627 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4628 * is observed the old clock_pelt_idle value and the new clock_idle, 4629 * which lead to an underestimation. The opposite would lead to an 4630 * overestimation. 4631 */ 4632 smp_rmb(); 4633 lut = cfs_rq_last_update_time(cfs_rq); 4634 4635 now -= throttled; 4636 if (now < lut) 4637 /* 4638 * cfs_rq->avg.last_update_time is more recent than our 4639 * estimation, let's use it. 4640 */ 4641 now = lut; 4642 else 4643 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4644 4645 __update_load_avg_blocked_se(now, se); 4646 } 4647 #else 4648 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4649 #endif 4650 4651 /** 4652 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4653 * @now: current time, as per cfs_rq_clock_pelt() 4654 * @cfs_rq: cfs_rq to update 4655 * 4656 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4657 * avg. The immediate corollary is that all (fair) tasks must be attached. 4658 * 4659 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4660 * 4661 * Return: true if the load decayed or we removed load. 4662 * 4663 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4664 * call update_tg_load_avg() when this function returns true. 4665 */ 4666 static inline int 4667 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4668 { 4669 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4670 struct sched_avg *sa = &cfs_rq->avg; 4671 int decayed = 0; 4672 4673 if (cfs_rq->removed.nr) { 4674 unsigned long r; 4675 u32 divider = get_pelt_divider(&cfs_rq->avg); 4676 4677 raw_spin_lock(&cfs_rq->removed.lock); 4678 swap(cfs_rq->removed.util_avg, removed_util); 4679 swap(cfs_rq->removed.load_avg, removed_load); 4680 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4681 cfs_rq->removed.nr = 0; 4682 raw_spin_unlock(&cfs_rq->removed.lock); 4683 4684 r = removed_load; 4685 sub_positive(&sa->load_avg, r); 4686 sub_positive(&sa->load_sum, r * divider); 4687 /* See sa->util_sum below */ 4688 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4689 4690 r = removed_util; 4691 sub_positive(&sa->util_avg, r); 4692 sub_positive(&sa->util_sum, r * divider); 4693 /* 4694 * Because of rounding, se->util_sum might ends up being +1 more than 4695 * cfs->util_sum. Although this is not a problem by itself, detaching 4696 * a lot of tasks with the rounding problem between 2 updates of 4697 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4698 * cfs_util_avg is not. 4699 * Check that util_sum is still above its lower bound for the new 4700 * util_avg. Given that period_contrib might have moved since the last 4701 * sync, we are only sure that util_sum must be above or equal to 4702 * util_avg * minimum possible divider 4703 */ 4704 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4705 4706 r = removed_runnable; 4707 sub_positive(&sa->runnable_avg, r); 4708 sub_positive(&sa->runnable_sum, r * divider); 4709 /* See sa->util_sum above */ 4710 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4711 sa->runnable_avg * PELT_MIN_DIVIDER); 4712 4713 /* 4714 * removed_runnable is the unweighted version of removed_load so we 4715 * can use it to estimate removed_load_sum. 4716 */ 4717 add_tg_cfs_propagate(cfs_rq, 4718 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4719 4720 decayed = 1; 4721 } 4722 4723 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4724 u64_u32_store_copy(sa->last_update_time, 4725 cfs_rq->last_update_time_copy, 4726 sa->last_update_time); 4727 return decayed; 4728 } 4729 4730 /** 4731 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4732 * @cfs_rq: cfs_rq to attach to 4733 * @se: sched_entity to attach 4734 * 4735 * Must call update_cfs_rq_load_avg() before this, since we rely on 4736 * cfs_rq->avg.last_update_time being current. 4737 */ 4738 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4739 { 4740 /* 4741 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4742 * See ___update_load_avg() for details. 4743 */ 4744 u32 divider = get_pelt_divider(&cfs_rq->avg); 4745 4746 /* 4747 * When we attach the @se to the @cfs_rq, we must align the decay 4748 * window because without that, really weird and wonderful things can 4749 * happen. 4750 * 4751 * XXX illustrate 4752 */ 4753 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4754 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4755 4756 /* 4757 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4758 * period_contrib. This isn't strictly correct, but since we're 4759 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4760 * _sum a little. 4761 */ 4762 se->avg.util_sum = se->avg.util_avg * divider; 4763 4764 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4765 4766 se->avg.load_sum = se->avg.load_avg * divider; 4767 if (se_weight(se) < se->avg.load_sum) 4768 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4769 else 4770 se->avg.load_sum = 1; 4771 4772 enqueue_load_avg(cfs_rq, se); 4773 cfs_rq->avg.util_avg += se->avg.util_avg; 4774 cfs_rq->avg.util_sum += se->avg.util_sum; 4775 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4776 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4777 4778 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4779 4780 cfs_rq_util_change(cfs_rq, 0); 4781 4782 trace_pelt_cfs_tp(cfs_rq); 4783 } 4784 4785 /** 4786 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4787 * @cfs_rq: cfs_rq to detach from 4788 * @se: sched_entity to detach 4789 * 4790 * Must call update_cfs_rq_load_avg() before this, since we rely on 4791 * cfs_rq->avg.last_update_time being current. 4792 */ 4793 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4794 { 4795 dequeue_load_avg(cfs_rq, se); 4796 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4797 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4798 /* See update_cfs_rq_load_avg() */ 4799 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4800 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4801 4802 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4803 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4804 /* See update_cfs_rq_load_avg() */ 4805 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4806 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4807 4808 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4809 4810 cfs_rq_util_change(cfs_rq, 0); 4811 4812 trace_pelt_cfs_tp(cfs_rq); 4813 } 4814 4815 /* 4816 * Optional action to be done while updating the load average 4817 */ 4818 #define UPDATE_TG 0x1 4819 #define SKIP_AGE_LOAD 0x2 4820 #define DO_ATTACH 0x4 4821 #define DO_DETACH 0x8 4822 4823 /* Update task and its cfs_rq load average */ 4824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4825 { 4826 u64 now = cfs_rq_clock_pelt(cfs_rq); 4827 int decayed; 4828 4829 /* 4830 * Track task load average for carrying it to new CPU after migrated, and 4831 * track group sched_entity load average for task_h_load calculation in migration 4832 */ 4833 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4834 __update_load_avg_se(now, cfs_rq, se); 4835 4836 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4837 decayed |= propagate_entity_load_avg(se); 4838 4839 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4840 4841 /* 4842 * DO_ATTACH means we're here from enqueue_entity(). 4843 * !last_update_time means we've passed through 4844 * migrate_task_rq_fair() indicating we migrated. 4845 * 4846 * IOW we're enqueueing a task on a new CPU. 4847 */ 4848 attach_entity_load_avg(cfs_rq, se); 4849 update_tg_load_avg(cfs_rq); 4850 4851 } else if (flags & DO_DETACH) { 4852 /* 4853 * DO_DETACH means we're here from dequeue_entity() 4854 * and we are migrating task out of the CPU. 4855 */ 4856 detach_entity_load_avg(cfs_rq, se); 4857 update_tg_load_avg(cfs_rq); 4858 } else if (decayed) { 4859 cfs_rq_util_change(cfs_rq, 0); 4860 4861 if (flags & UPDATE_TG) 4862 update_tg_load_avg(cfs_rq); 4863 } 4864 } 4865 4866 /* 4867 * Synchronize entity load avg of dequeued entity without locking 4868 * the previous rq. 4869 */ 4870 static void sync_entity_load_avg(struct sched_entity *se) 4871 { 4872 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4873 u64 last_update_time; 4874 4875 last_update_time = cfs_rq_last_update_time(cfs_rq); 4876 __update_load_avg_blocked_se(last_update_time, se); 4877 } 4878 4879 /* 4880 * Task first catches up with cfs_rq, and then subtract 4881 * itself from the cfs_rq (task must be off the queue now). 4882 */ 4883 static void remove_entity_load_avg(struct sched_entity *se) 4884 { 4885 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4886 unsigned long flags; 4887 4888 /* 4889 * tasks cannot exit without having gone through wake_up_new_task() -> 4890 * enqueue_task_fair() which will have added things to the cfs_rq, 4891 * so we can remove unconditionally. 4892 */ 4893 4894 sync_entity_load_avg(se); 4895 4896 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4897 ++cfs_rq->removed.nr; 4898 cfs_rq->removed.util_avg += se->avg.util_avg; 4899 cfs_rq->removed.load_avg += se->avg.load_avg; 4900 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4901 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4902 } 4903 4904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4905 { 4906 return cfs_rq->avg.runnable_avg; 4907 } 4908 4909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4910 { 4911 return cfs_rq->avg.load_avg; 4912 } 4913 4914 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4915 4916 static inline unsigned long task_util(struct task_struct *p) 4917 { 4918 return READ_ONCE(p->se.avg.util_avg); 4919 } 4920 4921 static inline unsigned long task_runnable(struct task_struct *p) 4922 { 4923 return READ_ONCE(p->se.avg.runnable_avg); 4924 } 4925 4926 static inline unsigned long _task_util_est(struct task_struct *p) 4927 { 4928 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4929 } 4930 4931 static inline unsigned long task_util_est(struct task_struct *p) 4932 { 4933 return max(task_util(p), _task_util_est(p)); 4934 } 4935 4936 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4937 struct task_struct *p) 4938 { 4939 unsigned int enqueued; 4940 4941 if (!sched_feat(UTIL_EST)) 4942 return; 4943 4944 /* Update root cfs_rq's estimated utilization */ 4945 enqueued = cfs_rq->avg.util_est; 4946 enqueued += _task_util_est(p); 4947 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4948 4949 trace_sched_util_est_cfs_tp(cfs_rq); 4950 } 4951 4952 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4953 struct task_struct *p) 4954 { 4955 unsigned int enqueued; 4956 4957 if (!sched_feat(UTIL_EST)) 4958 return; 4959 4960 /* Update root cfs_rq's estimated utilization */ 4961 enqueued = cfs_rq->avg.util_est; 4962 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4963 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4964 4965 trace_sched_util_est_cfs_tp(cfs_rq); 4966 } 4967 4968 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4969 4970 static inline void util_est_update(struct cfs_rq *cfs_rq, 4971 struct task_struct *p, 4972 bool task_sleep) 4973 { 4974 unsigned int ewma, dequeued, last_ewma_diff; 4975 4976 if (!sched_feat(UTIL_EST)) 4977 return; 4978 4979 /* 4980 * Skip update of task's estimated utilization when the task has not 4981 * yet completed an activation, e.g. being migrated. 4982 */ 4983 if (!task_sleep) 4984 return; 4985 4986 /* Get current estimate of utilization */ 4987 ewma = READ_ONCE(p->se.avg.util_est); 4988 4989 /* 4990 * If the PELT values haven't changed since enqueue time, 4991 * skip the util_est update. 4992 */ 4993 if (ewma & UTIL_AVG_UNCHANGED) 4994 return; 4995 4996 /* Get utilization at dequeue */ 4997 dequeued = task_util(p); 4998 4999 /* 5000 * Reset EWMA on utilization increases, the moving average is used only 5001 * to smooth utilization decreases. 5002 */ 5003 if (ewma <= dequeued) { 5004 ewma = dequeued; 5005 goto done; 5006 } 5007 5008 /* 5009 * Skip update of task's estimated utilization when its members are 5010 * already ~1% close to its last activation value. 5011 */ 5012 last_ewma_diff = ewma - dequeued; 5013 if (last_ewma_diff < UTIL_EST_MARGIN) 5014 goto done; 5015 5016 /* 5017 * To avoid overestimation of actual task utilization, skip updates if 5018 * we cannot grant there is idle time in this CPU. 5019 */ 5020 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 5021 return; 5022 5023 /* 5024 * To avoid underestimate of task utilization, skip updates of EWMA if 5025 * we cannot grant that thread got all CPU time it wanted. 5026 */ 5027 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 5028 goto done; 5029 5030 5031 /* 5032 * Update Task's estimated utilization 5033 * 5034 * When *p completes an activation we can consolidate another sample 5035 * of the task size. This is done by using this value to update the 5036 * Exponential Weighted Moving Average (EWMA): 5037 * 5038 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 5039 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 5040 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 5041 * = w * ( -last_ewma_diff ) + ewma(t-1) 5042 * = w * (-last_ewma_diff + ewma(t-1) / w) 5043 * 5044 * Where 'w' is the weight of new samples, which is configured to be 5045 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 5046 */ 5047 ewma <<= UTIL_EST_WEIGHT_SHIFT; 5048 ewma -= last_ewma_diff; 5049 ewma >>= UTIL_EST_WEIGHT_SHIFT; 5050 done: 5051 ewma |= UTIL_AVG_UNCHANGED; 5052 WRITE_ONCE(p->se.avg.util_est, ewma); 5053 5054 trace_sched_util_est_se_tp(&p->se); 5055 } 5056 5057 static inline unsigned long get_actual_cpu_capacity(int cpu) 5058 { 5059 unsigned long capacity = arch_scale_cpu_capacity(cpu); 5060 5061 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 5062 5063 return capacity; 5064 } 5065 5066 static inline int util_fits_cpu(unsigned long util, 5067 unsigned long uclamp_min, 5068 unsigned long uclamp_max, 5069 int cpu) 5070 { 5071 unsigned long capacity = capacity_of(cpu); 5072 unsigned long capacity_orig; 5073 bool fits, uclamp_max_fits; 5074 5075 /* 5076 * Check if the real util fits without any uclamp boost/cap applied. 5077 */ 5078 fits = fits_capacity(util, capacity); 5079 5080 if (!uclamp_is_used()) 5081 return fits; 5082 5083 /* 5084 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5085 * uclamp_max. We only care about capacity pressure (by using 5086 * capacity_of()) for comparing against the real util. 5087 * 5088 * If a task is boosted to 1024 for example, we don't want a tiny 5089 * pressure to skew the check whether it fits a CPU or not. 5090 * 5091 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5092 * should fit a little cpu even if there's some pressure. 5093 * 5094 * Only exception is for HW or cpufreq pressure since it has a direct impact 5095 * on available OPP of the system. 5096 * 5097 * We honour it for uclamp_min only as a drop in performance level 5098 * could result in not getting the requested minimum performance level. 5099 * 5100 * For uclamp_max, we can tolerate a drop in performance level as the 5101 * goal is to cap the task. So it's okay if it's getting less. 5102 */ 5103 capacity_orig = arch_scale_cpu_capacity(cpu); 5104 5105 /* 5106 * We want to force a task to fit a cpu as implied by uclamp_max. 5107 * But we do have some corner cases to cater for.. 5108 * 5109 * 5110 * C=z 5111 * | ___ 5112 * | C=y | | 5113 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5114 * | C=x | | | | 5115 * | ___ | | | | 5116 * | | | | | | | (util somewhere in this region) 5117 * | | | | | | | 5118 * | | | | | | | 5119 * +---------------------------------------- 5120 * CPU0 CPU1 CPU2 5121 * 5122 * In the above example if a task is capped to a specific performance 5123 * point, y, then when: 5124 * 5125 * * util = 80% of x then it does not fit on CPU0 and should migrate 5126 * to CPU1 5127 * * util = 80% of y then it is forced to fit on CPU1 to honour 5128 * uclamp_max request. 5129 * 5130 * which is what we're enforcing here. A task always fits if 5131 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5132 * the normal upmigration rules should withhold still. 5133 * 5134 * Only exception is when we are on max capacity, then we need to be 5135 * careful not to block overutilized state. This is so because: 5136 * 5137 * 1. There's no concept of capping at max_capacity! We can't go 5138 * beyond this performance level anyway. 5139 * 2. The system is being saturated when we're operating near 5140 * max capacity, it doesn't make sense to block overutilized. 5141 */ 5142 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5143 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5144 fits = fits || uclamp_max_fits; 5145 5146 /* 5147 * 5148 * C=z 5149 * | ___ (region a, capped, util >= uclamp_max) 5150 * | C=y | | 5151 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5152 * | C=x | | | | 5153 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5154 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5155 * | | | | | | | 5156 * | | | | | | | (region c, boosted, util < uclamp_min) 5157 * +---------------------------------------- 5158 * CPU0 CPU1 CPU2 5159 * 5160 * a) If util > uclamp_max, then we're capped, we don't care about 5161 * actual fitness value here. We only care if uclamp_max fits 5162 * capacity without taking margin/pressure into account. 5163 * See comment above. 5164 * 5165 * b) If uclamp_min <= util <= uclamp_max, then the normal 5166 * fits_capacity() rules apply. Except we need to ensure that we 5167 * enforce we remain within uclamp_max, see comment above. 5168 * 5169 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5170 * need to take into account the boosted value fits the CPU without 5171 * taking margin/pressure into account. 5172 * 5173 * Cases (a) and (b) are handled in the 'fits' variable already. We 5174 * just need to consider an extra check for case (c) after ensuring we 5175 * handle the case uclamp_min > uclamp_max. 5176 */ 5177 uclamp_min = min(uclamp_min, uclamp_max); 5178 if (fits && (util < uclamp_min) && 5179 (uclamp_min > get_actual_cpu_capacity(cpu))) 5180 return -1; 5181 5182 return fits; 5183 } 5184 5185 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5186 { 5187 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5188 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5189 unsigned long util = task_util_est(p); 5190 /* 5191 * Return true only if the cpu fully fits the task requirements, which 5192 * include the utilization but also the performance hints. 5193 */ 5194 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5195 } 5196 5197 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5198 { 5199 int cpu = cpu_of(rq); 5200 5201 if (!sched_asym_cpucap_active()) 5202 return; 5203 5204 /* 5205 * Affinity allows us to go somewhere higher? Or are we on biggest 5206 * available CPU already? Or do we fit into this CPU ? 5207 */ 5208 if (!p || (p->nr_cpus_allowed == 1) || 5209 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5210 task_fits_cpu(p, cpu)) { 5211 5212 rq->misfit_task_load = 0; 5213 return; 5214 } 5215 5216 /* 5217 * Make sure that misfit_task_load will not be null even if 5218 * task_h_load() returns 0. 5219 */ 5220 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5221 } 5222 5223 #else /* CONFIG_SMP */ 5224 5225 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5226 { 5227 return !cfs_rq->nr_running; 5228 } 5229 5230 #define UPDATE_TG 0x0 5231 #define SKIP_AGE_LOAD 0x0 5232 #define DO_ATTACH 0x0 5233 #define DO_DETACH 0x0 5234 5235 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5236 { 5237 cfs_rq_util_change(cfs_rq, 0); 5238 } 5239 5240 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5241 5242 static inline void 5243 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5244 static inline void 5245 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5246 5247 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5248 { 5249 return 0; 5250 } 5251 5252 static inline void 5253 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5254 5255 static inline void 5256 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5257 5258 static inline void 5259 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5260 bool task_sleep) {} 5261 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5262 5263 #endif /* CONFIG_SMP */ 5264 5265 static void 5266 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5267 { 5268 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5269 s64 lag = 0; 5270 5271 if (!se->custom_slice) 5272 se->slice = sysctl_sched_base_slice; 5273 vslice = calc_delta_fair(se->slice, se); 5274 5275 /* 5276 * Due to how V is constructed as the weighted average of entities, 5277 * adding tasks with positive lag, or removing tasks with negative lag 5278 * will move 'time' backwards, this can screw around with the lag of 5279 * other tasks. 5280 * 5281 * EEVDF: placement strategy #1 / #2 5282 */ 5283 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5284 struct sched_entity *curr = cfs_rq->curr; 5285 unsigned long load; 5286 5287 lag = se->vlag; 5288 5289 /* 5290 * If we want to place a task and preserve lag, we have to 5291 * consider the effect of the new entity on the weighted 5292 * average and compensate for this, otherwise lag can quickly 5293 * evaporate. 5294 * 5295 * Lag is defined as: 5296 * 5297 * lag_i = S - s_i = w_i * (V - v_i) 5298 * 5299 * To avoid the 'w_i' term all over the place, we only track 5300 * the virtual lag: 5301 * 5302 * vl_i = V - v_i <=> v_i = V - vl_i 5303 * 5304 * And we take V to be the weighted average of all v: 5305 * 5306 * V = (\Sum w_j*v_j) / W 5307 * 5308 * Where W is: \Sum w_j 5309 * 5310 * Then, the weighted average after adding an entity with lag 5311 * vl_i is given by: 5312 * 5313 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5314 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5315 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5316 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5317 * = V - w_i*vl_i / (W + w_i) 5318 * 5319 * And the actual lag after adding an entity with vl_i is: 5320 * 5321 * vl'_i = V' - v_i 5322 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5323 * = vl_i - w_i*vl_i / (W + w_i) 5324 * 5325 * Which is strictly less than vl_i. So in order to preserve lag 5326 * we should inflate the lag before placement such that the 5327 * effective lag after placement comes out right. 5328 * 5329 * As such, invert the above relation for vl'_i to get the vl_i 5330 * we need to use such that the lag after placement is the lag 5331 * we computed before dequeue. 5332 * 5333 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5334 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5335 * 5336 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5337 * = W*vl_i 5338 * 5339 * vl_i = (W + w_i)*vl'_i / W 5340 */ 5341 load = cfs_rq->avg_load; 5342 if (curr && curr->on_rq) 5343 load += scale_load_down(curr->load.weight); 5344 5345 lag *= load + scale_load_down(se->load.weight); 5346 if (WARN_ON_ONCE(!load)) 5347 load = 1; 5348 lag = div_s64(lag, load); 5349 } 5350 5351 se->vruntime = vruntime - lag; 5352 5353 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) { 5354 se->deadline += se->vruntime; 5355 se->rel_deadline = 0; 5356 return; 5357 } 5358 5359 /* 5360 * When joining the competition; the existing tasks will be, 5361 * on average, halfway through their slice, as such start tasks 5362 * off with half a slice to ease into the competition. 5363 */ 5364 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5365 vslice /= 2; 5366 5367 /* 5368 * EEVDF: vd_i = ve_i + r_i/w_i 5369 */ 5370 se->deadline = se->vruntime + vslice; 5371 } 5372 5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5374 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5375 5376 static inline bool cfs_bandwidth_used(void); 5377 5378 static void 5379 requeue_delayed_entity(struct sched_entity *se); 5380 5381 static void 5382 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5383 { 5384 bool curr = cfs_rq->curr == se; 5385 5386 /* 5387 * If we're the current task, we must renormalise before calling 5388 * update_curr(). 5389 */ 5390 if (curr) 5391 place_entity(cfs_rq, se, flags); 5392 5393 update_curr(cfs_rq); 5394 5395 /* 5396 * When enqueuing a sched_entity, we must: 5397 * - Update loads to have both entity and cfs_rq synced with now. 5398 * - For group_entity, update its runnable_weight to reflect the new 5399 * h_nr_running of its group cfs_rq. 5400 * - For group_entity, update its weight to reflect the new share of 5401 * its group cfs_rq 5402 * - Add its new weight to cfs_rq->load.weight 5403 */ 5404 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5405 se_update_runnable(se); 5406 /* 5407 * XXX update_load_avg() above will have attached us to the pelt sum; 5408 * but update_cfs_group() here will re-adjust the weight and have to 5409 * undo/redo all that. Seems wasteful. 5410 */ 5411 update_cfs_group(se); 5412 5413 /* 5414 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5415 * we can place the entity. 5416 */ 5417 if (!curr) 5418 place_entity(cfs_rq, se, flags); 5419 5420 account_entity_enqueue(cfs_rq, se); 5421 5422 /* Entity has migrated, no longer consider this task hot */ 5423 if (flags & ENQUEUE_MIGRATED) 5424 se->exec_start = 0; 5425 5426 check_schedstat_required(); 5427 update_stats_enqueue_fair(cfs_rq, se, flags); 5428 if (!curr) 5429 __enqueue_entity(cfs_rq, se); 5430 se->on_rq = 1; 5431 5432 if (cfs_rq->nr_running == 1) { 5433 check_enqueue_throttle(cfs_rq); 5434 if (!throttled_hierarchy(cfs_rq)) { 5435 list_add_leaf_cfs_rq(cfs_rq); 5436 } else { 5437 #ifdef CONFIG_CFS_BANDWIDTH 5438 struct rq *rq = rq_of(cfs_rq); 5439 5440 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5441 cfs_rq->throttled_clock = rq_clock(rq); 5442 if (!cfs_rq->throttled_clock_self) 5443 cfs_rq->throttled_clock_self = rq_clock(rq); 5444 #endif 5445 } 5446 } 5447 } 5448 5449 static void __clear_buddies_next(struct sched_entity *se) 5450 { 5451 for_each_sched_entity(se) { 5452 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5453 if (cfs_rq->next != se) 5454 break; 5455 5456 cfs_rq->next = NULL; 5457 } 5458 } 5459 5460 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5461 { 5462 if (cfs_rq->next == se) 5463 __clear_buddies_next(se); 5464 } 5465 5466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5467 5468 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5469 { 5470 se->sched_delayed = 0; 5471 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5472 se->vlag = 0; 5473 } 5474 5475 static bool 5476 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5477 { 5478 bool sleep = flags & DEQUEUE_SLEEP; 5479 5480 update_curr(cfs_rq); 5481 5482 if (flags & DEQUEUE_DELAYED) { 5483 SCHED_WARN_ON(!se->sched_delayed); 5484 } else { 5485 bool delay = sleep; 5486 /* 5487 * DELAY_DEQUEUE relies on spurious wakeups, special task 5488 * states must not suffer spurious wakeups, excempt them. 5489 */ 5490 if (flags & DEQUEUE_SPECIAL) 5491 delay = false; 5492 5493 SCHED_WARN_ON(delay && se->sched_delayed); 5494 5495 if (sched_feat(DELAY_DEQUEUE) && delay && 5496 !entity_eligible(cfs_rq, se)) { 5497 if (cfs_rq->next == se) 5498 cfs_rq->next = NULL; 5499 update_load_avg(cfs_rq, se, 0); 5500 se->sched_delayed = 1; 5501 return false; 5502 } 5503 } 5504 5505 int action = UPDATE_TG; 5506 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5507 action |= DO_DETACH; 5508 5509 /* 5510 * When dequeuing a sched_entity, we must: 5511 * - Update loads to have both entity and cfs_rq synced with now. 5512 * - For group_entity, update its runnable_weight to reflect the new 5513 * h_nr_running of its group cfs_rq. 5514 * - Subtract its previous weight from cfs_rq->load.weight. 5515 * - For group entity, update its weight to reflect the new share 5516 * of its group cfs_rq. 5517 */ 5518 update_load_avg(cfs_rq, se, action); 5519 se_update_runnable(se); 5520 5521 update_stats_dequeue_fair(cfs_rq, se, flags); 5522 5523 clear_buddies(cfs_rq, se); 5524 5525 update_entity_lag(cfs_rq, se); 5526 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5527 se->deadline -= se->vruntime; 5528 se->rel_deadline = 1; 5529 } 5530 5531 if (se != cfs_rq->curr) 5532 __dequeue_entity(cfs_rq, se); 5533 se->on_rq = 0; 5534 account_entity_dequeue(cfs_rq, se); 5535 5536 /* return excess runtime on last dequeue */ 5537 return_cfs_rq_runtime(cfs_rq); 5538 5539 update_cfs_group(se); 5540 5541 /* 5542 * Now advance min_vruntime if @se was the entity holding it back, 5543 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5544 * put back on, and if we advance min_vruntime, we'll be placed back 5545 * further than we started -- i.e. we'll be penalized. 5546 */ 5547 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5548 update_min_vruntime(cfs_rq); 5549 5550 if (flags & DEQUEUE_DELAYED) 5551 finish_delayed_dequeue_entity(se); 5552 5553 if (cfs_rq->nr_running == 0) 5554 update_idle_cfs_rq_clock_pelt(cfs_rq); 5555 5556 return true; 5557 } 5558 5559 static void 5560 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5561 { 5562 clear_buddies(cfs_rq, se); 5563 5564 /* 'current' is not kept within the tree. */ 5565 if (se->on_rq) { 5566 /* 5567 * Any task has to be enqueued before it get to execute on 5568 * a CPU. So account for the time it spent waiting on the 5569 * runqueue. 5570 */ 5571 update_stats_wait_end_fair(cfs_rq, se); 5572 __dequeue_entity(cfs_rq, se); 5573 update_load_avg(cfs_rq, se, UPDATE_TG); 5574 /* 5575 * HACK, stash a copy of deadline at the point of pick in vlag, 5576 * which isn't used until dequeue. 5577 */ 5578 se->vlag = se->deadline; 5579 } 5580 5581 update_stats_curr_start(cfs_rq, se); 5582 SCHED_WARN_ON(cfs_rq->curr); 5583 cfs_rq->curr = se; 5584 5585 /* 5586 * Track our maximum slice length, if the CPU's load is at 5587 * least twice that of our own weight (i.e. don't track it 5588 * when there are only lesser-weight tasks around): 5589 */ 5590 if (schedstat_enabled() && 5591 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5592 struct sched_statistics *stats; 5593 5594 stats = __schedstats_from_se(se); 5595 __schedstat_set(stats->slice_max, 5596 max((u64)stats->slice_max, 5597 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5598 } 5599 5600 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5601 } 5602 5603 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5604 5605 /* 5606 * Pick the next process, keeping these things in mind, in this order: 5607 * 1) keep things fair between processes/task groups 5608 * 2) pick the "next" process, since someone really wants that to run 5609 * 3) pick the "last" process, for cache locality 5610 * 4) do not run the "skip" process, if something else is available 5611 */ 5612 static struct sched_entity * 5613 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5614 { 5615 /* 5616 * Enabling NEXT_BUDDY will affect latency but not fairness. 5617 */ 5618 if (sched_feat(NEXT_BUDDY) && 5619 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5620 /* ->next will never be delayed */ 5621 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5622 return cfs_rq->next; 5623 } 5624 5625 struct sched_entity *se = pick_eevdf(cfs_rq); 5626 if (se->sched_delayed) { 5627 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5628 /* 5629 * Must not reference @se again, see __block_task(). 5630 */ 5631 return NULL; 5632 } 5633 return se; 5634 } 5635 5636 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5637 5638 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5639 { 5640 /* 5641 * If still on the runqueue then deactivate_task() 5642 * was not called and update_curr() has to be done: 5643 */ 5644 if (prev->on_rq) 5645 update_curr(cfs_rq); 5646 5647 /* throttle cfs_rqs exceeding runtime */ 5648 check_cfs_rq_runtime(cfs_rq); 5649 5650 if (prev->on_rq) { 5651 update_stats_wait_start_fair(cfs_rq, prev); 5652 /* Put 'current' back into the tree. */ 5653 __enqueue_entity(cfs_rq, prev); 5654 /* in !on_rq case, update occurred at dequeue */ 5655 update_load_avg(cfs_rq, prev, 0); 5656 } 5657 SCHED_WARN_ON(cfs_rq->curr != prev); 5658 cfs_rq->curr = NULL; 5659 } 5660 5661 static void 5662 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5663 { 5664 /* 5665 * Update run-time statistics of the 'current'. 5666 */ 5667 update_curr(cfs_rq); 5668 5669 /* 5670 * Ensure that runnable average is periodically updated. 5671 */ 5672 update_load_avg(cfs_rq, curr, UPDATE_TG); 5673 update_cfs_group(curr); 5674 5675 #ifdef CONFIG_SCHED_HRTICK 5676 /* 5677 * queued ticks are scheduled to match the slice, so don't bother 5678 * validating it and just reschedule. 5679 */ 5680 if (queued) { 5681 resched_curr(rq_of(cfs_rq)); 5682 return; 5683 } 5684 /* 5685 * don't let the period tick interfere with the hrtick preemption 5686 */ 5687 if (!sched_feat(DOUBLE_TICK) && 5688 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5689 return; 5690 #endif 5691 } 5692 5693 5694 /************************************************** 5695 * CFS bandwidth control machinery 5696 */ 5697 5698 #ifdef CONFIG_CFS_BANDWIDTH 5699 5700 #ifdef CONFIG_JUMP_LABEL 5701 static struct static_key __cfs_bandwidth_used; 5702 5703 static inline bool cfs_bandwidth_used(void) 5704 { 5705 return static_key_false(&__cfs_bandwidth_used); 5706 } 5707 5708 void cfs_bandwidth_usage_inc(void) 5709 { 5710 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5711 } 5712 5713 void cfs_bandwidth_usage_dec(void) 5714 { 5715 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5716 } 5717 #else /* CONFIG_JUMP_LABEL */ 5718 static bool cfs_bandwidth_used(void) 5719 { 5720 return true; 5721 } 5722 5723 void cfs_bandwidth_usage_inc(void) {} 5724 void cfs_bandwidth_usage_dec(void) {} 5725 #endif /* CONFIG_JUMP_LABEL */ 5726 5727 /* 5728 * default period for cfs group bandwidth. 5729 * default: 0.1s, units: nanoseconds 5730 */ 5731 static inline u64 default_cfs_period(void) 5732 { 5733 return 100000000ULL; 5734 } 5735 5736 static inline u64 sched_cfs_bandwidth_slice(void) 5737 { 5738 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5739 } 5740 5741 /* 5742 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5743 * directly instead of rq->clock to avoid adding additional synchronization 5744 * around rq->lock. 5745 * 5746 * requires cfs_b->lock 5747 */ 5748 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5749 { 5750 s64 runtime; 5751 5752 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5753 return; 5754 5755 cfs_b->runtime += cfs_b->quota; 5756 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5757 if (runtime > 0) { 5758 cfs_b->burst_time += runtime; 5759 cfs_b->nr_burst++; 5760 } 5761 5762 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5763 cfs_b->runtime_snap = cfs_b->runtime; 5764 } 5765 5766 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5767 { 5768 return &tg->cfs_bandwidth; 5769 } 5770 5771 /* returns 0 on failure to allocate runtime */ 5772 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5773 struct cfs_rq *cfs_rq, u64 target_runtime) 5774 { 5775 u64 min_amount, amount = 0; 5776 5777 lockdep_assert_held(&cfs_b->lock); 5778 5779 /* note: this is a positive sum as runtime_remaining <= 0 */ 5780 min_amount = target_runtime - cfs_rq->runtime_remaining; 5781 5782 if (cfs_b->quota == RUNTIME_INF) 5783 amount = min_amount; 5784 else { 5785 start_cfs_bandwidth(cfs_b); 5786 5787 if (cfs_b->runtime > 0) { 5788 amount = min(cfs_b->runtime, min_amount); 5789 cfs_b->runtime -= amount; 5790 cfs_b->idle = 0; 5791 } 5792 } 5793 5794 cfs_rq->runtime_remaining += amount; 5795 5796 return cfs_rq->runtime_remaining > 0; 5797 } 5798 5799 /* returns 0 on failure to allocate runtime */ 5800 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5801 { 5802 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5803 int ret; 5804 5805 raw_spin_lock(&cfs_b->lock); 5806 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5807 raw_spin_unlock(&cfs_b->lock); 5808 5809 return ret; 5810 } 5811 5812 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5813 { 5814 /* dock delta_exec before expiring quota (as it could span periods) */ 5815 cfs_rq->runtime_remaining -= delta_exec; 5816 5817 if (likely(cfs_rq->runtime_remaining > 0)) 5818 return; 5819 5820 if (cfs_rq->throttled) 5821 return; 5822 /* 5823 * if we're unable to extend our runtime we resched so that the active 5824 * hierarchy can be throttled 5825 */ 5826 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5827 resched_curr(rq_of(cfs_rq)); 5828 } 5829 5830 static __always_inline 5831 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5832 { 5833 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5834 return; 5835 5836 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5837 } 5838 5839 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5840 { 5841 return cfs_bandwidth_used() && cfs_rq->throttled; 5842 } 5843 5844 /* check whether cfs_rq, or any parent, is throttled */ 5845 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5846 { 5847 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5848 } 5849 5850 /* 5851 * Ensure that neither of the group entities corresponding to src_cpu or 5852 * dest_cpu are members of a throttled hierarchy when performing group 5853 * load-balance operations. 5854 */ 5855 static inline int throttled_lb_pair(struct task_group *tg, 5856 int src_cpu, int dest_cpu) 5857 { 5858 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5859 5860 src_cfs_rq = tg->cfs_rq[src_cpu]; 5861 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5862 5863 return throttled_hierarchy(src_cfs_rq) || 5864 throttled_hierarchy(dest_cfs_rq); 5865 } 5866 5867 static int tg_unthrottle_up(struct task_group *tg, void *data) 5868 { 5869 struct rq *rq = data; 5870 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5871 5872 cfs_rq->throttle_count--; 5873 if (!cfs_rq->throttle_count) { 5874 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5875 cfs_rq->throttled_clock_pelt; 5876 5877 /* Add cfs_rq with load or one or more already running entities to the list */ 5878 if (!cfs_rq_is_decayed(cfs_rq)) 5879 list_add_leaf_cfs_rq(cfs_rq); 5880 5881 if (cfs_rq->throttled_clock_self) { 5882 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5883 5884 cfs_rq->throttled_clock_self = 0; 5885 5886 if (SCHED_WARN_ON((s64)delta < 0)) 5887 delta = 0; 5888 5889 cfs_rq->throttled_clock_self_time += delta; 5890 } 5891 } 5892 5893 return 0; 5894 } 5895 5896 static int tg_throttle_down(struct task_group *tg, void *data) 5897 { 5898 struct rq *rq = data; 5899 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5900 5901 /* group is entering throttled state, stop time */ 5902 if (!cfs_rq->throttle_count) { 5903 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5904 list_del_leaf_cfs_rq(cfs_rq); 5905 5906 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5907 if (cfs_rq->nr_running) 5908 cfs_rq->throttled_clock_self = rq_clock(rq); 5909 } 5910 cfs_rq->throttle_count++; 5911 5912 return 0; 5913 } 5914 5915 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5916 { 5917 struct rq *rq = rq_of(cfs_rq); 5918 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5919 struct sched_entity *se; 5920 long task_delta, idle_task_delta, dequeue = 1; 5921 long rq_h_nr_running = rq->cfs.h_nr_running; 5922 5923 raw_spin_lock(&cfs_b->lock); 5924 /* This will start the period timer if necessary */ 5925 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5926 /* 5927 * We have raced with bandwidth becoming available, and if we 5928 * actually throttled the timer might not unthrottle us for an 5929 * entire period. We additionally needed to make sure that any 5930 * subsequent check_cfs_rq_runtime calls agree not to throttle 5931 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5932 * for 1ns of runtime rather than just check cfs_b. 5933 */ 5934 dequeue = 0; 5935 } else { 5936 list_add_tail_rcu(&cfs_rq->throttled_list, 5937 &cfs_b->throttled_cfs_rq); 5938 } 5939 raw_spin_unlock(&cfs_b->lock); 5940 5941 if (!dequeue) 5942 return false; /* Throttle no longer required. */ 5943 5944 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5945 5946 /* freeze hierarchy runnable averages while throttled */ 5947 rcu_read_lock(); 5948 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5949 rcu_read_unlock(); 5950 5951 task_delta = cfs_rq->h_nr_running; 5952 idle_task_delta = cfs_rq->idle_h_nr_running; 5953 for_each_sched_entity(se) { 5954 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5955 int flags; 5956 5957 /* throttled entity or throttle-on-deactivate */ 5958 if (!se->on_rq) 5959 goto done; 5960 5961 /* 5962 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5963 * This avoids teaching dequeue_entities() about throttled 5964 * entities and keeps things relatively simple. 5965 */ 5966 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5967 if (se->sched_delayed) 5968 flags |= DEQUEUE_DELAYED; 5969 dequeue_entity(qcfs_rq, se, flags); 5970 5971 if (cfs_rq_is_idle(group_cfs_rq(se))) 5972 idle_task_delta = cfs_rq->h_nr_running; 5973 5974 qcfs_rq->h_nr_running -= task_delta; 5975 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5976 5977 if (qcfs_rq->load.weight) { 5978 /* Avoid re-evaluating load for this entity: */ 5979 se = parent_entity(se); 5980 break; 5981 } 5982 } 5983 5984 for_each_sched_entity(se) { 5985 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5986 /* throttled entity or throttle-on-deactivate */ 5987 if (!se->on_rq) 5988 goto done; 5989 5990 update_load_avg(qcfs_rq, se, 0); 5991 se_update_runnable(se); 5992 5993 if (cfs_rq_is_idle(group_cfs_rq(se))) 5994 idle_task_delta = cfs_rq->h_nr_running; 5995 5996 qcfs_rq->h_nr_running -= task_delta; 5997 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5998 } 5999 6000 /* At this point se is NULL and we are at root level*/ 6001 sub_nr_running(rq, task_delta); 6002 6003 /* Stop the fair server if throttling resulted in no runnable tasks */ 6004 if (rq_h_nr_running && !rq->cfs.h_nr_running) 6005 dl_server_stop(&rq->fair_server); 6006 done: 6007 /* 6008 * Note: distribution will already see us throttled via the 6009 * throttled-list. rq->lock protects completion. 6010 */ 6011 cfs_rq->throttled = 1; 6012 SCHED_WARN_ON(cfs_rq->throttled_clock); 6013 if (cfs_rq->nr_running) 6014 cfs_rq->throttled_clock = rq_clock(rq); 6015 return true; 6016 } 6017 6018 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 6019 { 6020 struct rq *rq = rq_of(cfs_rq); 6021 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6022 struct sched_entity *se; 6023 long task_delta, idle_task_delta; 6024 long rq_h_nr_running = rq->cfs.h_nr_running; 6025 6026 se = cfs_rq->tg->se[cpu_of(rq)]; 6027 6028 cfs_rq->throttled = 0; 6029 6030 update_rq_clock(rq); 6031 6032 raw_spin_lock(&cfs_b->lock); 6033 if (cfs_rq->throttled_clock) { 6034 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6035 cfs_rq->throttled_clock = 0; 6036 } 6037 list_del_rcu(&cfs_rq->throttled_list); 6038 raw_spin_unlock(&cfs_b->lock); 6039 6040 /* update hierarchical throttle state */ 6041 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6042 6043 if (!cfs_rq->load.weight) { 6044 if (!cfs_rq->on_list) 6045 return; 6046 /* 6047 * Nothing to run but something to decay (on_list)? 6048 * Complete the branch. 6049 */ 6050 for_each_sched_entity(se) { 6051 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6052 break; 6053 } 6054 goto unthrottle_throttle; 6055 } 6056 6057 task_delta = cfs_rq->h_nr_running; 6058 idle_task_delta = cfs_rq->idle_h_nr_running; 6059 for_each_sched_entity(se) { 6060 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6061 6062 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6063 if (se->sched_delayed) { 6064 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6065 6066 dequeue_entity(qcfs_rq, se, flags); 6067 } else if (se->on_rq) 6068 break; 6069 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6070 6071 if (cfs_rq_is_idle(group_cfs_rq(se))) 6072 idle_task_delta = cfs_rq->h_nr_running; 6073 6074 qcfs_rq->h_nr_running += task_delta; 6075 qcfs_rq->idle_h_nr_running += idle_task_delta; 6076 6077 /* end evaluation on encountering a throttled cfs_rq */ 6078 if (cfs_rq_throttled(qcfs_rq)) 6079 goto unthrottle_throttle; 6080 } 6081 6082 for_each_sched_entity(se) { 6083 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6084 6085 update_load_avg(qcfs_rq, se, UPDATE_TG); 6086 se_update_runnable(se); 6087 6088 if (cfs_rq_is_idle(group_cfs_rq(se))) 6089 idle_task_delta = cfs_rq->h_nr_running; 6090 6091 qcfs_rq->h_nr_running += task_delta; 6092 qcfs_rq->idle_h_nr_running += idle_task_delta; 6093 6094 /* end evaluation on encountering a throttled cfs_rq */ 6095 if (cfs_rq_throttled(qcfs_rq)) 6096 goto unthrottle_throttle; 6097 } 6098 6099 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6100 if (!rq_h_nr_running && rq->cfs.h_nr_running) 6101 dl_server_start(&rq->fair_server); 6102 6103 /* At this point se is NULL and we are at root level*/ 6104 add_nr_running(rq, task_delta); 6105 6106 unthrottle_throttle: 6107 assert_list_leaf_cfs_rq(rq); 6108 6109 /* Determine whether we need to wake up potentially idle CPU: */ 6110 if (rq->curr == rq->idle && rq->cfs.nr_running) 6111 resched_curr(rq); 6112 } 6113 6114 #ifdef CONFIG_SMP 6115 static void __cfsb_csd_unthrottle(void *arg) 6116 { 6117 struct cfs_rq *cursor, *tmp; 6118 struct rq *rq = arg; 6119 struct rq_flags rf; 6120 6121 rq_lock(rq, &rf); 6122 6123 /* 6124 * Iterating over the list can trigger several call to 6125 * update_rq_clock() in unthrottle_cfs_rq(). 6126 * Do it once and skip the potential next ones. 6127 */ 6128 update_rq_clock(rq); 6129 rq_clock_start_loop_update(rq); 6130 6131 /* 6132 * Since we hold rq lock we're safe from concurrent manipulation of 6133 * the CSD list. However, this RCU critical section annotates the 6134 * fact that we pair with sched_free_group_rcu(), so that we cannot 6135 * race with group being freed in the window between removing it 6136 * from the list and advancing to the next entry in the list. 6137 */ 6138 rcu_read_lock(); 6139 6140 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6141 throttled_csd_list) { 6142 list_del_init(&cursor->throttled_csd_list); 6143 6144 if (cfs_rq_throttled(cursor)) 6145 unthrottle_cfs_rq(cursor); 6146 } 6147 6148 rcu_read_unlock(); 6149 6150 rq_clock_stop_loop_update(rq); 6151 rq_unlock(rq, &rf); 6152 } 6153 6154 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6155 { 6156 struct rq *rq = rq_of(cfs_rq); 6157 bool first; 6158 6159 if (rq == this_rq()) { 6160 unthrottle_cfs_rq(cfs_rq); 6161 return; 6162 } 6163 6164 /* Already enqueued */ 6165 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6166 return; 6167 6168 first = list_empty(&rq->cfsb_csd_list); 6169 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6170 if (first) 6171 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6172 } 6173 #else 6174 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6175 { 6176 unthrottle_cfs_rq(cfs_rq); 6177 } 6178 #endif 6179 6180 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6181 { 6182 lockdep_assert_rq_held(rq_of(cfs_rq)); 6183 6184 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6185 cfs_rq->runtime_remaining <= 0)) 6186 return; 6187 6188 __unthrottle_cfs_rq_async(cfs_rq); 6189 } 6190 6191 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6192 { 6193 int this_cpu = smp_processor_id(); 6194 u64 runtime, remaining = 1; 6195 bool throttled = false; 6196 struct cfs_rq *cfs_rq, *tmp; 6197 struct rq_flags rf; 6198 struct rq *rq; 6199 LIST_HEAD(local_unthrottle); 6200 6201 rcu_read_lock(); 6202 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6203 throttled_list) { 6204 rq = rq_of(cfs_rq); 6205 6206 if (!remaining) { 6207 throttled = true; 6208 break; 6209 } 6210 6211 rq_lock_irqsave(rq, &rf); 6212 if (!cfs_rq_throttled(cfs_rq)) 6213 goto next; 6214 6215 /* Already queued for async unthrottle */ 6216 if (!list_empty(&cfs_rq->throttled_csd_list)) 6217 goto next; 6218 6219 /* By the above checks, this should never be true */ 6220 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6221 6222 raw_spin_lock(&cfs_b->lock); 6223 runtime = -cfs_rq->runtime_remaining + 1; 6224 if (runtime > cfs_b->runtime) 6225 runtime = cfs_b->runtime; 6226 cfs_b->runtime -= runtime; 6227 remaining = cfs_b->runtime; 6228 raw_spin_unlock(&cfs_b->lock); 6229 6230 cfs_rq->runtime_remaining += runtime; 6231 6232 /* we check whether we're throttled above */ 6233 if (cfs_rq->runtime_remaining > 0) { 6234 if (cpu_of(rq) != this_cpu) { 6235 unthrottle_cfs_rq_async(cfs_rq); 6236 } else { 6237 /* 6238 * We currently only expect to be unthrottling 6239 * a single cfs_rq locally. 6240 */ 6241 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6242 list_add_tail(&cfs_rq->throttled_csd_list, 6243 &local_unthrottle); 6244 } 6245 } else { 6246 throttled = true; 6247 } 6248 6249 next: 6250 rq_unlock_irqrestore(rq, &rf); 6251 } 6252 6253 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6254 throttled_csd_list) { 6255 struct rq *rq = rq_of(cfs_rq); 6256 6257 rq_lock_irqsave(rq, &rf); 6258 6259 list_del_init(&cfs_rq->throttled_csd_list); 6260 6261 if (cfs_rq_throttled(cfs_rq)) 6262 unthrottle_cfs_rq(cfs_rq); 6263 6264 rq_unlock_irqrestore(rq, &rf); 6265 } 6266 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6267 6268 rcu_read_unlock(); 6269 6270 return throttled; 6271 } 6272 6273 /* 6274 * Responsible for refilling a task_group's bandwidth and unthrottling its 6275 * cfs_rqs as appropriate. If there has been no activity within the last 6276 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6277 * used to track this state. 6278 */ 6279 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6280 { 6281 int throttled; 6282 6283 /* no need to continue the timer with no bandwidth constraint */ 6284 if (cfs_b->quota == RUNTIME_INF) 6285 goto out_deactivate; 6286 6287 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6288 cfs_b->nr_periods += overrun; 6289 6290 /* Refill extra burst quota even if cfs_b->idle */ 6291 __refill_cfs_bandwidth_runtime(cfs_b); 6292 6293 /* 6294 * idle depends on !throttled (for the case of a large deficit), and if 6295 * we're going inactive then everything else can be deferred 6296 */ 6297 if (cfs_b->idle && !throttled) 6298 goto out_deactivate; 6299 6300 if (!throttled) { 6301 /* mark as potentially idle for the upcoming period */ 6302 cfs_b->idle = 1; 6303 return 0; 6304 } 6305 6306 /* account preceding periods in which throttling occurred */ 6307 cfs_b->nr_throttled += overrun; 6308 6309 /* 6310 * This check is repeated as we release cfs_b->lock while we unthrottle. 6311 */ 6312 while (throttled && cfs_b->runtime > 0) { 6313 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6314 /* we can't nest cfs_b->lock while distributing bandwidth */ 6315 throttled = distribute_cfs_runtime(cfs_b); 6316 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6317 } 6318 6319 /* 6320 * While we are ensured activity in the period following an 6321 * unthrottle, this also covers the case in which the new bandwidth is 6322 * insufficient to cover the existing bandwidth deficit. (Forcing the 6323 * timer to remain active while there are any throttled entities.) 6324 */ 6325 cfs_b->idle = 0; 6326 6327 return 0; 6328 6329 out_deactivate: 6330 return 1; 6331 } 6332 6333 /* a cfs_rq won't donate quota below this amount */ 6334 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6335 /* minimum remaining period time to redistribute slack quota */ 6336 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6337 /* how long we wait to gather additional slack before distributing */ 6338 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6339 6340 /* 6341 * Are we near the end of the current quota period? 6342 * 6343 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6344 * hrtimer base being cleared by hrtimer_start. In the case of 6345 * migrate_hrtimers, base is never cleared, so we are fine. 6346 */ 6347 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6348 { 6349 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6350 s64 remaining; 6351 6352 /* if the call-back is running a quota refresh is already occurring */ 6353 if (hrtimer_callback_running(refresh_timer)) 6354 return 1; 6355 6356 /* is a quota refresh about to occur? */ 6357 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6358 if (remaining < (s64)min_expire) 6359 return 1; 6360 6361 return 0; 6362 } 6363 6364 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6365 { 6366 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6367 6368 /* if there's a quota refresh soon don't bother with slack */ 6369 if (runtime_refresh_within(cfs_b, min_left)) 6370 return; 6371 6372 /* don't push forwards an existing deferred unthrottle */ 6373 if (cfs_b->slack_started) 6374 return; 6375 cfs_b->slack_started = true; 6376 6377 hrtimer_start(&cfs_b->slack_timer, 6378 ns_to_ktime(cfs_bandwidth_slack_period), 6379 HRTIMER_MODE_REL); 6380 } 6381 6382 /* we know any runtime found here is valid as update_curr() precedes return */ 6383 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6384 { 6385 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6386 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6387 6388 if (slack_runtime <= 0) 6389 return; 6390 6391 raw_spin_lock(&cfs_b->lock); 6392 if (cfs_b->quota != RUNTIME_INF) { 6393 cfs_b->runtime += slack_runtime; 6394 6395 /* we are under rq->lock, defer unthrottling using a timer */ 6396 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6397 !list_empty(&cfs_b->throttled_cfs_rq)) 6398 start_cfs_slack_bandwidth(cfs_b); 6399 } 6400 raw_spin_unlock(&cfs_b->lock); 6401 6402 /* even if it's not valid for return we don't want to try again */ 6403 cfs_rq->runtime_remaining -= slack_runtime; 6404 } 6405 6406 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6407 { 6408 if (!cfs_bandwidth_used()) 6409 return; 6410 6411 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6412 return; 6413 6414 __return_cfs_rq_runtime(cfs_rq); 6415 } 6416 6417 /* 6418 * This is done with a timer (instead of inline with bandwidth return) since 6419 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6420 */ 6421 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6422 { 6423 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6424 unsigned long flags; 6425 6426 /* confirm we're still not at a refresh boundary */ 6427 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6428 cfs_b->slack_started = false; 6429 6430 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6431 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6432 return; 6433 } 6434 6435 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6436 runtime = cfs_b->runtime; 6437 6438 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6439 6440 if (!runtime) 6441 return; 6442 6443 distribute_cfs_runtime(cfs_b); 6444 } 6445 6446 /* 6447 * When a group wakes up we want to make sure that its quota is not already 6448 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6449 * runtime as update_curr() throttling can not trigger until it's on-rq. 6450 */ 6451 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6452 { 6453 if (!cfs_bandwidth_used()) 6454 return; 6455 6456 /* an active group must be handled by the update_curr()->put() path */ 6457 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6458 return; 6459 6460 /* ensure the group is not already throttled */ 6461 if (cfs_rq_throttled(cfs_rq)) 6462 return; 6463 6464 /* update runtime allocation */ 6465 account_cfs_rq_runtime(cfs_rq, 0); 6466 if (cfs_rq->runtime_remaining <= 0) 6467 throttle_cfs_rq(cfs_rq); 6468 } 6469 6470 static void sync_throttle(struct task_group *tg, int cpu) 6471 { 6472 struct cfs_rq *pcfs_rq, *cfs_rq; 6473 6474 if (!cfs_bandwidth_used()) 6475 return; 6476 6477 if (!tg->parent) 6478 return; 6479 6480 cfs_rq = tg->cfs_rq[cpu]; 6481 pcfs_rq = tg->parent->cfs_rq[cpu]; 6482 6483 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6484 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6485 } 6486 6487 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6488 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6489 { 6490 if (!cfs_bandwidth_used()) 6491 return false; 6492 6493 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6494 return false; 6495 6496 /* 6497 * it's possible for a throttled entity to be forced into a running 6498 * state (e.g. set_curr_task), in this case we're finished. 6499 */ 6500 if (cfs_rq_throttled(cfs_rq)) 6501 return true; 6502 6503 return throttle_cfs_rq(cfs_rq); 6504 } 6505 6506 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6507 { 6508 struct cfs_bandwidth *cfs_b = 6509 container_of(timer, struct cfs_bandwidth, slack_timer); 6510 6511 do_sched_cfs_slack_timer(cfs_b); 6512 6513 return HRTIMER_NORESTART; 6514 } 6515 6516 extern const u64 max_cfs_quota_period; 6517 6518 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6519 { 6520 struct cfs_bandwidth *cfs_b = 6521 container_of(timer, struct cfs_bandwidth, period_timer); 6522 unsigned long flags; 6523 int overrun; 6524 int idle = 0; 6525 int count = 0; 6526 6527 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6528 for (;;) { 6529 overrun = hrtimer_forward_now(timer, cfs_b->period); 6530 if (!overrun) 6531 break; 6532 6533 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6534 6535 if (++count > 3) { 6536 u64 new, old = ktime_to_ns(cfs_b->period); 6537 6538 /* 6539 * Grow period by a factor of 2 to avoid losing precision. 6540 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6541 * to fail. 6542 */ 6543 new = old * 2; 6544 if (new < max_cfs_quota_period) { 6545 cfs_b->period = ns_to_ktime(new); 6546 cfs_b->quota *= 2; 6547 cfs_b->burst *= 2; 6548 6549 pr_warn_ratelimited( 6550 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6551 smp_processor_id(), 6552 div_u64(new, NSEC_PER_USEC), 6553 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6554 } else { 6555 pr_warn_ratelimited( 6556 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6557 smp_processor_id(), 6558 div_u64(old, NSEC_PER_USEC), 6559 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6560 } 6561 6562 /* reset count so we don't come right back in here */ 6563 count = 0; 6564 } 6565 } 6566 if (idle) 6567 cfs_b->period_active = 0; 6568 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6569 6570 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6571 } 6572 6573 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6574 { 6575 raw_spin_lock_init(&cfs_b->lock); 6576 cfs_b->runtime = 0; 6577 cfs_b->quota = RUNTIME_INF; 6578 cfs_b->period = ns_to_ktime(default_cfs_period()); 6579 cfs_b->burst = 0; 6580 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6581 6582 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6583 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6584 cfs_b->period_timer.function = sched_cfs_period_timer; 6585 6586 /* Add a random offset so that timers interleave */ 6587 hrtimer_set_expires(&cfs_b->period_timer, 6588 get_random_u32_below(cfs_b->period)); 6589 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6590 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6591 cfs_b->slack_started = false; 6592 } 6593 6594 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6595 { 6596 cfs_rq->runtime_enabled = 0; 6597 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6598 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6599 } 6600 6601 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6602 { 6603 lockdep_assert_held(&cfs_b->lock); 6604 6605 if (cfs_b->period_active) 6606 return; 6607 6608 cfs_b->period_active = 1; 6609 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6610 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6611 } 6612 6613 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6614 { 6615 int __maybe_unused i; 6616 6617 /* init_cfs_bandwidth() was not called */ 6618 if (!cfs_b->throttled_cfs_rq.next) 6619 return; 6620 6621 hrtimer_cancel(&cfs_b->period_timer); 6622 hrtimer_cancel(&cfs_b->slack_timer); 6623 6624 /* 6625 * It is possible that we still have some cfs_rq's pending on a CSD 6626 * list, though this race is very rare. In order for this to occur, we 6627 * must have raced with the last task leaving the group while there 6628 * exist throttled cfs_rq(s), and the period_timer must have queued the 6629 * CSD item but the remote cpu has not yet processed it. To handle this, 6630 * we can simply flush all pending CSD work inline here. We're 6631 * guaranteed at this point that no additional cfs_rq of this group can 6632 * join a CSD list. 6633 */ 6634 #ifdef CONFIG_SMP 6635 for_each_possible_cpu(i) { 6636 struct rq *rq = cpu_rq(i); 6637 unsigned long flags; 6638 6639 if (list_empty(&rq->cfsb_csd_list)) 6640 continue; 6641 6642 local_irq_save(flags); 6643 __cfsb_csd_unthrottle(rq); 6644 local_irq_restore(flags); 6645 } 6646 #endif 6647 } 6648 6649 /* 6650 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6651 * 6652 * The race is harmless, since modifying bandwidth settings of unhooked group 6653 * bits doesn't do much. 6654 */ 6655 6656 /* cpu online callback */ 6657 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6658 { 6659 struct task_group *tg; 6660 6661 lockdep_assert_rq_held(rq); 6662 6663 rcu_read_lock(); 6664 list_for_each_entry_rcu(tg, &task_groups, list) { 6665 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6666 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6667 6668 raw_spin_lock(&cfs_b->lock); 6669 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6670 raw_spin_unlock(&cfs_b->lock); 6671 } 6672 rcu_read_unlock(); 6673 } 6674 6675 /* cpu offline callback */ 6676 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6677 { 6678 struct task_group *tg; 6679 6680 lockdep_assert_rq_held(rq); 6681 6682 /* 6683 * The rq clock has already been updated in the 6684 * set_rq_offline(), so we should skip updating 6685 * the rq clock again in unthrottle_cfs_rq(). 6686 */ 6687 rq_clock_start_loop_update(rq); 6688 6689 rcu_read_lock(); 6690 list_for_each_entry_rcu(tg, &task_groups, list) { 6691 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6692 6693 if (!cfs_rq->runtime_enabled) 6694 continue; 6695 6696 /* 6697 * clock_task is not advancing so we just need to make sure 6698 * there's some valid quota amount 6699 */ 6700 cfs_rq->runtime_remaining = 1; 6701 /* 6702 * Offline rq is schedulable till CPU is completely disabled 6703 * in take_cpu_down(), so we prevent new cfs throttling here. 6704 */ 6705 cfs_rq->runtime_enabled = 0; 6706 6707 if (cfs_rq_throttled(cfs_rq)) 6708 unthrottle_cfs_rq(cfs_rq); 6709 } 6710 rcu_read_unlock(); 6711 6712 rq_clock_stop_loop_update(rq); 6713 } 6714 6715 bool cfs_task_bw_constrained(struct task_struct *p) 6716 { 6717 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6718 6719 if (!cfs_bandwidth_used()) 6720 return false; 6721 6722 if (cfs_rq->runtime_enabled || 6723 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6724 return true; 6725 6726 return false; 6727 } 6728 6729 #ifdef CONFIG_NO_HZ_FULL 6730 /* called from pick_next_task_fair() */ 6731 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6732 { 6733 int cpu = cpu_of(rq); 6734 6735 if (!cfs_bandwidth_used()) 6736 return; 6737 6738 if (!tick_nohz_full_cpu(cpu)) 6739 return; 6740 6741 if (rq->nr_running != 1) 6742 return; 6743 6744 /* 6745 * We know there is only one task runnable and we've just picked it. The 6746 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6747 * be otherwise able to stop the tick. Just need to check if we are using 6748 * bandwidth control. 6749 */ 6750 if (cfs_task_bw_constrained(p)) 6751 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6752 } 6753 #endif 6754 6755 #else /* CONFIG_CFS_BANDWIDTH */ 6756 6757 static inline bool cfs_bandwidth_used(void) 6758 { 6759 return false; 6760 } 6761 6762 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6763 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6764 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6765 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6766 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6767 6768 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6769 { 6770 return 0; 6771 } 6772 6773 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6774 { 6775 return 0; 6776 } 6777 6778 static inline int throttled_lb_pair(struct task_group *tg, 6779 int src_cpu, int dest_cpu) 6780 { 6781 return 0; 6782 } 6783 6784 #ifdef CONFIG_FAIR_GROUP_SCHED 6785 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6786 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6787 #endif 6788 6789 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6790 { 6791 return NULL; 6792 } 6793 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6794 static inline void update_runtime_enabled(struct rq *rq) {} 6795 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6796 #ifdef CONFIG_CGROUP_SCHED 6797 bool cfs_task_bw_constrained(struct task_struct *p) 6798 { 6799 return false; 6800 } 6801 #endif 6802 #endif /* CONFIG_CFS_BANDWIDTH */ 6803 6804 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6805 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6806 #endif 6807 6808 /************************************************** 6809 * CFS operations on tasks: 6810 */ 6811 6812 #ifdef CONFIG_SCHED_HRTICK 6813 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6814 { 6815 struct sched_entity *se = &p->se; 6816 6817 SCHED_WARN_ON(task_rq(p) != rq); 6818 6819 if (rq->cfs.h_nr_running > 1) { 6820 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6821 u64 slice = se->slice; 6822 s64 delta = slice - ran; 6823 6824 if (delta < 0) { 6825 if (task_current(rq, p)) 6826 resched_curr(rq); 6827 return; 6828 } 6829 hrtick_start(rq, delta); 6830 } 6831 } 6832 6833 /* 6834 * called from enqueue/dequeue and updates the hrtick when the 6835 * current task is from our class and nr_running is low enough 6836 * to matter. 6837 */ 6838 static void hrtick_update(struct rq *rq) 6839 { 6840 struct task_struct *curr = rq->curr; 6841 6842 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6843 return; 6844 6845 hrtick_start_fair(rq, curr); 6846 } 6847 #else /* !CONFIG_SCHED_HRTICK */ 6848 static inline void 6849 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6850 { 6851 } 6852 6853 static inline void hrtick_update(struct rq *rq) 6854 { 6855 } 6856 #endif 6857 6858 #ifdef CONFIG_SMP 6859 static inline bool cpu_overutilized(int cpu) 6860 { 6861 unsigned long rq_util_min, rq_util_max; 6862 6863 if (!sched_energy_enabled()) 6864 return false; 6865 6866 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6867 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6868 6869 /* Return true only if the utilization doesn't fit CPU's capacity */ 6870 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6871 } 6872 6873 /* 6874 * overutilized value make sense only if EAS is enabled 6875 */ 6876 static inline bool is_rd_overutilized(struct root_domain *rd) 6877 { 6878 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6879 } 6880 6881 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6882 { 6883 if (!sched_energy_enabled()) 6884 return; 6885 6886 WRITE_ONCE(rd->overutilized, flag); 6887 trace_sched_overutilized_tp(rd, flag); 6888 } 6889 6890 static inline void check_update_overutilized_status(struct rq *rq) 6891 { 6892 /* 6893 * overutilized field is used for load balancing decisions only 6894 * if energy aware scheduler is being used 6895 */ 6896 6897 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6898 set_rd_overutilized(rq->rd, 1); 6899 } 6900 #else 6901 static inline void check_update_overutilized_status(struct rq *rq) { } 6902 #endif 6903 6904 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6905 static int sched_idle_rq(struct rq *rq) 6906 { 6907 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6908 rq->nr_running); 6909 } 6910 6911 #ifdef CONFIG_SMP 6912 static int sched_idle_cpu(int cpu) 6913 { 6914 return sched_idle_rq(cpu_rq(cpu)); 6915 } 6916 #endif 6917 6918 static void 6919 requeue_delayed_entity(struct sched_entity *se) 6920 { 6921 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6922 6923 /* 6924 * se->sched_delayed should imply: se->on_rq == 1. 6925 * Because a delayed entity is one that is still on 6926 * the runqueue competing until elegibility. 6927 */ 6928 SCHED_WARN_ON(!se->sched_delayed); 6929 SCHED_WARN_ON(!se->on_rq); 6930 6931 if (sched_feat(DELAY_ZERO)) { 6932 update_entity_lag(cfs_rq, se); 6933 if (se->vlag > 0) { 6934 cfs_rq->nr_running--; 6935 if (se != cfs_rq->curr) 6936 __dequeue_entity(cfs_rq, se); 6937 se->vlag = 0; 6938 place_entity(cfs_rq, se, 0); 6939 if (se != cfs_rq->curr) 6940 __enqueue_entity(cfs_rq, se); 6941 cfs_rq->nr_running++; 6942 } 6943 } 6944 6945 update_load_avg(cfs_rq, se, 0); 6946 se->sched_delayed = 0; 6947 } 6948 6949 /* 6950 * The enqueue_task method is called before nr_running is 6951 * increased. Here we update the fair scheduling stats and 6952 * then put the task into the rbtree: 6953 */ 6954 static void 6955 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6956 { 6957 struct cfs_rq *cfs_rq; 6958 struct sched_entity *se = &p->se; 6959 int idle_h_nr_running = task_has_idle_policy(p); 6960 int task_new = !(flags & ENQUEUE_WAKEUP); 6961 int rq_h_nr_running = rq->cfs.h_nr_running; 6962 u64 slice = 0; 6963 6964 /* 6965 * The code below (indirectly) updates schedutil which looks at 6966 * the cfs_rq utilization to select a frequency. 6967 * Let's add the task's estimated utilization to the cfs_rq's 6968 * estimated utilization, before we update schedutil. 6969 */ 6970 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6971 util_est_enqueue(&rq->cfs, p); 6972 6973 if (flags & ENQUEUE_DELAYED) { 6974 requeue_delayed_entity(se); 6975 return; 6976 } 6977 6978 /* 6979 * If in_iowait is set, the code below may not trigger any cpufreq 6980 * utilization updates, so do it here explicitly with the IOWAIT flag 6981 * passed. 6982 */ 6983 if (p->in_iowait) 6984 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6985 6986 for_each_sched_entity(se) { 6987 if (se->on_rq) { 6988 if (se->sched_delayed) 6989 requeue_delayed_entity(se); 6990 break; 6991 } 6992 cfs_rq = cfs_rq_of(se); 6993 6994 /* 6995 * Basically set the slice of group entries to the min_slice of 6996 * their respective cfs_rq. This ensures the group can service 6997 * its entities in the desired time-frame. 6998 */ 6999 if (slice) { 7000 se->slice = slice; 7001 se->custom_slice = 1; 7002 } 7003 enqueue_entity(cfs_rq, se, flags); 7004 slice = cfs_rq_min_slice(cfs_rq); 7005 7006 cfs_rq->h_nr_running++; 7007 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7008 7009 if (cfs_rq_is_idle(cfs_rq)) 7010 idle_h_nr_running = 1; 7011 7012 /* end evaluation on encountering a throttled cfs_rq */ 7013 if (cfs_rq_throttled(cfs_rq)) 7014 goto enqueue_throttle; 7015 7016 flags = ENQUEUE_WAKEUP; 7017 } 7018 7019 for_each_sched_entity(se) { 7020 cfs_rq = cfs_rq_of(se); 7021 7022 update_load_avg(cfs_rq, se, UPDATE_TG); 7023 se_update_runnable(se); 7024 update_cfs_group(se); 7025 7026 se->slice = slice; 7027 slice = cfs_rq_min_slice(cfs_rq); 7028 7029 cfs_rq->h_nr_running++; 7030 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7031 7032 if (cfs_rq_is_idle(cfs_rq)) 7033 idle_h_nr_running = 1; 7034 7035 /* end evaluation on encountering a throttled cfs_rq */ 7036 if (cfs_rq_throttled(cfs_rq)) 7037 goto enqueue_throttle; 7038 } 7039 7040 if (!rq_h_nr_running && rq->cfs.h_nr_running) { 7041 /* Account for idle runtime */ 7042 if (!rq->nr_running) 7043 dl_server_update_idle_time(rq, rq->curr); 7044 dl_server_start(&rq->fair_server); 7045 } 7046 7047 /* At this point se is NULL and we are at root level*/ 7048 add_nr_running(rq, 1); 7049 7050 /* 7051 * Since new tasks are assigned an initial util_avg equal to 7052 * half of the spare capacity of their CPU, tiny tasks have the 7053 * ability to cross the overutilized threshold, which will 7054 * result in the load balancer ruining all the task placement 7055 * done by EAS. As a way to mitigate that effect, do not account 7056 * for the first enqueue operation of new tasks during the 7057 * overutilized flag detection. 7058 * 7059 * A better way of solving this problem would be to wait for 7060 * the PELT signals of tasks to converge before taking them 7061 * into account, but that is not straightforward to implement, 7062 * and the following generally works well enough in practice. 7063 */ 7064 if (!task_new) 7065 check_update_overutilized_status(rq); 7066 7067 enqueue_throttle: 7068 assert_list_leaf_cfs_rq(rq); 7069 7070 hrtick_update(rq); 7071 } 7072 7073 static void set_next_buddy(struct sched_entity *se); 7074 7075 /* 7076 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7077 * failing half-way through and resume the dequeue later. 7078 * 7079 * Returns: 7080 * -1 - dequeue delayed 7081 * 0 - dequeue throttled 7082 * 1 - dequeue complete 7083 */ 7084 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7085 { 7086 bool was_sched_idle = sched_idle_rq(rq); 7087 int rq_h_nr_running = rq->cfs.h_nr_running; 7088 bool task_sleep = flags & DEQUEUE_SLEEP; 7089 bool task_delayed = flags & DEQUEUE_DELAYED; 7090 struct task_struct *p = NULL; 7091 int idle_h_nr_running = 0; 7092 int h_nr_running = 0; 7093 struct cfs_rq *cfs_rq; 7094 u64 slice = 0; 7095 7096 if (entity_is_task(se)) { 7097 p = task_of(se); 7098 h_nr_running = 1; 7099 idle_h_nr_running = task_has_idle_policy(p); 7100 } else { 7101 cfs_rq = group_cfs_rq(se); 7102 slice = cfs_rq_min_slice(cfs_rq); 7103 } 7104 7105 for_each_sched_entity(se) { 7106 cfs_rq = cfs_rq_of(se); 7107 7108 if (!dequeue_entity(cfs_rq, se, flags)) { 7109 if (p && &p->se == se) 7110 return -1; 7111 7112 break; 7113 } 7114 7115 cfs_rq->h_nr_running -= h_nr_running; 7116 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7117 7118 if (cfs_rq_is_idle(cfs_rq)) 7119 idle_h_nr_running = h_nr_running; 7120 7121 /* end evaluation on encountering a throttled cfs_rq */ 7122 if (cfs_rq_throttled(cfs_rq)) 7123 return 0; 7124 7125 /* Don't dequeue parent if it has other entities besides us */ 7126 if (cfs_rq->load.weight) { 7127 slice = cfs_rq_min_slice(cfs_rq); 7128 7129 /* Avoid re-evaluating load for this entity: */ 7130 se = parent_entity(se); 7131 /* 7132 * Bias pick_next to pick a task from this cfs_rq, as 7133 * p is sleeping when it is within its sched_slice. 7134 */ 7135 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7136 set_next_buddy(se); 7137 break; 7138 } 7139 flags |= DEQUEUE_SLEEP; 7140 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7141 } 7142 7143 for_each_sched_entity(se) { 7144 cfs_rq = cfs_rq_of(se); 7145 7146 update_load_avg(cfs_rq, se, UPDATE_TG); 7147 se_update_runnable(se); 7148 update_cfs_group(se); 7149 7150 se->slice = slice; 7151 slice = cfs_rq_min_slice(cfs_rq); 7152 7153 cfs_rq->h_nr_running -= h_nr_running; 7154 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7155 7156 if (cfs_rq_is_idle(cfs_rq)) 7157 idle_h_nr_running = h_nr_running; 7158 7159 /* end evaluation on encountering a throttled cfs_rq */ 7160 if (cfs_rq_throttled(cfs_rq)) 7161 return 0; 7162 } 7163 7164 sub_nr_running(rq, h_nr_running); 7165 7166 if (rq_h_nr_running && !rq->cfs.h_nr_running) 7167 dl_server_stop(&rq->fair_server); 7168 7169 /* balance early to pull high priority tasks */ 7170 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7171 rq->next_balance = jiffies; 7172 7173 if (p && task_delayed) { 7174 SCHED_WARN_ON(!task_sleep); 7175 SCHED_WARN_ON(p->on_rq != 1); 7176 7177 /* Fix-up what dequeue_task_fair() skipped */ 7178 hrtick_update(rq); 7179 7180 /* 7181 * Fix-up what block_task() skipped. 7182 * 7183 * Must be last, @p might not be valid after this. 7184 */ 7185 __block_task(rq, p); 7186 } 7187 7188 return 1; 7189 } 7190 7191 /* 7192 * The dequeue_task method is called before nr_running is 7193 * decreased. We remove the task from the rbtree and 7194 * update the fair scheduling stats: 7195 */ 7196 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7197 { 7198 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7199 util_est_dequeue(&rq->cfs, p); 7200 7201 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7202 if (dequeue_entities(rq, &p->se, flags) < 0) 7203 return false; 7204 7205 /* 7206 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7207 */ 7208 7209 hrtick_update(rq); 7210 return true; 7211 } 7212 7213 #ifdef CONFIG_SMP 7214 7215 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7216 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7217 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7218 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7219 7220 #ifdef CONFIG_NO_HZ_COMMON 7221 7222 static struct { 7223 cpumask_var_t idle_cpus_mask; 7224 atomic_t nr_cpus; 7225 int has_blocked; /* Idle CPUS has blocked load */ 7226 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7227 unsigned long next_balance; /* in jiffy units */ 7228 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7229 } nohz ____cacheline_aligned; 7230 7231 #endif /* CONFIG_NO_HZ_COMMON */ 7232 7233 static unsigned long cpu_load(struct rq *rq) 7234 { 7235 return cfs_rq_load_avg(&rq->cfs); 7236 } 7237 7238 /* 7239 * cpu_load_without - compute CPU load without any contributions from *p 7240 * @cpu: the CPU which load is requested 7241 * @p: the task which load should be discounted 7242 * 7243 * The load of a CPU is defined by the load of tasks currently enqueued on that 7244 * CPU as well as tasks which are currently sleeping after an execution on that 7245 * CPU. 7246 * 7247 * This method returns the load of the specified CPU by discounting the load of 7248 * the specified task, whenever the task is currently contributing to the CPU 7249 * load. 7250 */ 7251 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7252 { 7253 struct cfs_rq *cfs_rq; 7254 unsigned int load; 7255 7256 /* Task has no contribution or is new */ 7257 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7258 return cpu_load(rq); 7259 7260 cfs_rq = &rq->cfs; 7261 load = READ_ONCE(cfs_rq->avg.load_avg); 7262 7263 /* Discount task's util from CPU's util */ 7264 lsub_positive(&load, task_h_load(p)); 7265 7266 return load; 7267 } 7268 7269 static unsigned long cpu_runnable(struct rq *rq) 7270 { 7271 return cfs_rq_runnable_avg(&rq->cfs); 7272 } 7273 7274 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7275 { 7276 struct cfs_rq *cfs_rq; 7277 unsigned int runnable; 7278 7279 /* Task has no contribution or is new */ 7280 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7281 return cpu_runnable(rq); 7282 7283 cfs_rq = &rq->cfs; 7284 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7285 7286 /* Discount task's runnable from CPU's runnable */ 7287 lsub_positive(&runnable, p->se.avg.runnable_avg); 7288 7289 return runnable; 7290 } 7291 7292 static unsigned long capacity_of(int cpu) 7293 { 7294 return cpu_rq(cpu)->cpu_capacity; 7295 } 7296 7297 static void record_wakee(struct task_struct *p) 7298 { 7299 /* 7300 * Only decay a single time; tasks that have less then 1 wakeup per 7301 * jiffy will not have built up many flips. 7302 */ 7303 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7304 current->wakee_flips >>= 1; 7305 current->wakee_flip_decay_ts = jiffies; 7306 } 7307 7308 if (current->last_wakee != p) { 7309 current->last_wakee = p; 7310 current->wakee_flips++; 7311 } 7312 } 7313 7314 /* 7315 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7316 * 7317 * A waker of many should wake a different task than the one last awakened 7318 * at a frequency roughly N times higher than one of its wakees. 7319 * 7320 * In order to determine whether we should let the load spread vs consolidating 7321 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7322 * partner, and a factor of lls_size higher frequency in the other. 7323 * 7324 * With both conditions met, we can be relatively sure that the relationship is 7325 * non-monogamous, with partner count exceeding socket size. 7326 * 7327 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7328 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7329 * socket size. 7330 */ 7331 static int wake_wide(struct task_struct *p) 7332 { 7333 unsigned int master = current->wakee_flips; 7334 unsigned int slave = p->wakee_flips; 7335 int factor = __this_cpu_read(sd_llc_size); 7336 7337 if (master < slave) 7338 swap(master, slave); 7339 if (slave < factor || master < slave * factor) 7340 return 0; 7341 return 1; 7342 } 7343 7344 /* 7345 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7346 * soonest. For the purpose of speed we only consider the waking and previous 7347 * CPU. 7348 * 7349 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7350 * cache-affine and is (or will be) idle. 7351 * 7352 * wake_affine_weight() - considers the weight to reflect the average 7353 * scheduling latency of the CPUs. This seems to work 7354 * for the overloaded case. 7355 */ 7356 static int 7357 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7358 { 7359 /* 7360 * If this_cpu is idle, it implies the wakeup is from interrupt 7361 * context. Only allow the move if cache is shared. Otherwise an 7362 * interrupt intensive workload could force all tasks onto one 7363 * node depending on the IO topology or IRQ affinity settings. 7364 * 7365 * If the prev_cpu is idle and cache affine then avoid a migration. 7366 * There is no guarantee that the cache hot data from an interrupt 7367 * is more important than cache hot data on the prev_cpu and from 7368 * a cpufreq perspective, it's better to have higher utilisation 7369 * on one CPU. 7370 */ 7371 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7372 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7373 7374 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7375 return this_cpu; 7376 7377 if (available_idle_cpu(prev_cpu)) 7378 return prev_cpu; 7379 7380 return nr_cpumask_bits; 7381 } 7382 7383 static int 7384 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7385 int this_cpu, int prev_cpu, int sync) 7386 { 7387 s64 this_eff_load, prev_eff_load; 7388 unsigned long task_load; 7389 7390 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7391 7392 if (sync) { 7393 unsigned long current_load = task_h_load(current); 7394 7395 if (current_load > this_eff_load) 7396 return this_cpu; 7397 7398 this_eff_load -= current_load; 7399 } 7400 7401 task_load = task_h_load(p); 7402 7403 this_eff_load += task_load; 7404 if (sched_feat(WA_BIAS)) 7405 this_eff_load *= 100; 7406 this_eff_load *= capacity_of(prev_cpu); 7407 7408 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7409 prev_eff_load -= task_load; 7410 if (sched_feat(WA_BIAS)) 7411 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7412 prev_eff_load *= capacity_of(this_cpu); 7413 7414 /* 7415 * If sync, adjust the weight of prev_eff_load such that if 7416 * prev_eff == this_eff that select_idle_sibling() will consider 7417 * stacking the wakee on top of the waker if no other CPU is 7418 * idle. 7419 */ 7420 if (sync) 7421 prev_eff_load += 1; 7422 7423 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7424 } 7425 7426 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7427 int this_cpu, int prev_cpu, int sync) 7428 { 7429 int target = nr_cpumask_bits; 7430 7431 if (sched_feat(WA_IDLE)) 7432 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7433 7434 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7435 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7436 7437 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7438 if (target != this_cpu) 7439 return prev_cpu; 7440 7441 schedstat_inc(sd->ttwu_move_affine); 7442 schedstat_inc(p->stats.nr_wakeups_affine); 7443 return target; 7444 } 7445 7446 static struct sched_group * 7447 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7448 7449 /* 7450 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7451 */ 7452 static int 7453 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7454 { 7455 unsigned long load, min_load = ULONG_MAX; 7456 unsigned int min_exit_latency = UINT_MAX; 7457 u64 latest_idle_timestamp = 0; 7458 int least_loaded_cpu = this_cpu; 7459 int shallowest_idle_cpu = -1; 7460 int i; 7461 7462 /* Check if we have any choice: */ 7463 if (group->group_weight == 1) 7464 return cpumask_first(sched_group_span(group)); 7465 7466 /* Traverse only the allowed CPUs */ 7467 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7468 struct rq *rq = cpu_rq(i); 7469 7470 if (!sched_core_cookie_match(rq, p)) 7471 continue; 7472 7473 if (sched_idle_cpu(i)) 7474 return i; 7475 7476 if (available_idle_cpu(i)) { 7477 struct cpuidle_state *idle = idle_get_state(rq); 7478 if (idle && idle->exit_latency < min_exit_latency) { 7479 /* 7480 * We give priority to a CPU whose idle state 7481 * has the smallest exit latency irrespective 7482 * of any idle timestamp. 7483 */ 7484 min_exit_latency = idle->exit_latency; 7485 latest_idle_timestamp = rq->idle_stamp; 7486 shallowest_idle_cpu = i; 7487 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7488 rq->idle_stamp > latest_idle_timestamp) { 7489 /* 7490 * If equal or no active idle state, then 7491 * the most recently idled CPU might have 7492 * a warmer cache. 7493 */ 7494 latest_idle_timestamp = rq->idle_stamp; 7495 shallowest_idle_cpu = i; 7496 } 7497 } else if (shallowest_idle_cpu == -1) { 7498 load = cpu_load(cpu_rq(i)); 7499 if (load < min_load) { 7500 min_load = load; 7501 least_loaded_cpu = i; 7502 } 7503 } 7504 } 7505 7506 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7507 } 7508 7509 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7510 int cpu, int prev_cpu, int sd_flag) 7511 { 7512 int new_cpu = cpu; 7513 7514 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7515 return prev_cpu; 7516 7517 /* 7518 * We need task's util for cpu_util_without, sync it up to 7519 * prev_cpu's last_update_time. 7520 */ 7521 if (!(sd_flag & SD_BALANCE_FORK)) 7522 sync_entity_load_avg(&p->se); 7523 7524 while (sd) { 7525 struct sched_group *group; 7526 struct sched_domain *tmp; 7527 int weight; 7528 7529 if (!(sd->flags & sd_flag)) { 7530 sd = sd->child; 7531 continue; 7532 } 7533 7534 group = sched_balance_find_dst_group(sd, p, cpu); 7535 if (!group) { 7536 sd = sd->child; 7537 continue; 7538 } 7539 7540 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7541 if (new_cpu == cpu) { 7542 /* Now try balancing at a lower domain level of 'cpu': */ 7543 sd = sd->child; 7544 continue; 7545 } 7546 7547 /* Now try balancing at a lower domain level of 'new_cpu': */ 7548 cpu = new_cpu; 7549 weight = sd->span_weight; 7550 sd = NULL; 7551 for_each_domain(cpu, tmp) { 7552 if (weight <= tmp->span_weight) 7553 break; 7554 if (tmp->flags & sd_flag) 7555 sd = tmp; 7556 } 7557 } 7558 7559 return new_cpu; 7560 } 7561 7562 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7563 { 7564 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7565 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7566 return cpu; 7567 7568 return -1; 7569 } 7570 7571 #ifdef CONFIG_SCHED_SMT 7572 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7573 EXPORT_SYMBOL_GPL(sched_smt_present); 7574 7575 static inline void set_idle_cores(int cpu, int val) 7576 { 7577 struct sched_domain_shared *sds; 7578 7579 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7580 if (sds) 7581 WRITE_ONCE(sds->has_idle_cores, val); 7582 } 7583 7584 static inline bool test_idle_cores(int cpu) 7585 { 7586 struct sched_domain_shared *sds; 7587 7588 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7589 if (sds) 7590 return READ_ONCE(sds->has_idle_cores); 7591 7592 return false; 7593 } 7594 7595 /* 7596 * Scans the local SMT mask to see if the entire core is idle, and records this 7597 * information in sd_llc_shared->has_idle_cores. 7598 * 7599 * Since SMT siblings share all cache levels, inspecting this limited remote 7600 * state should be fairly cheap. 7601 */ 7602 void __update_idle_core(struct rq *rq) 7603 { 7604 int core = cpu_of(rq); 7605 int cpu; 7606 7607 rcu_read_lock(); 7608 if (test_idle_cores(core)) 7609 goto unlock; 7610 7611 for_each_cpu(cpu, cpu_smt_mask(core)) { 7612 if (cpu == core) 7613 continue; 7614 7615 if (!available_idle_cpu(cpu)) 7616 goto unlock; 7617 } 7618 7619 set_idle_cores(core, 1); 7620 unlock: 7621 rcu_read_unlock(); 7622 } 7623 7624 /* 7625 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7626 * there are no idle cores left in the system; tracked through 7627 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7628 */ 7629 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7630 { 7631 bool idle = true; 7632 int cpu; 7633 7634 for_each_cpu(cpu, cpu_smt_mask(core)) { 7635 if (!available_idle_cpu(cpu)) { 7636 idle = false; 7637 if (*idle_cpu == -1) { 7638 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7639 *idle_cpu = cpu; 7640 break; 7641 } 7642 continue; 7643 } 7644 break; 7645 } 7646 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7647 *idle_cpu = cpu; 7648 } 7649 7650 if (idle) 7651 return core; 7652 7653 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7654 return -1; 7655 } 7656 7657 /* 7658 * Scan the local SMT mask for idle CPUs. 7659 */ 7660 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7661 { 7662 int cpu; 7663 7664 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7665 if (cpu == target) 7666 continue; 7667 /* 7668 * Check if the CPU is in the LLC scheduling domain of @target. 7669 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7670 */ 7671 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7672 continue; 7673 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7674 return cpu; 7675 } 7676 7677 return -1; 7678 } 7679 7680 #else /* CONFIG_SCHED_SMT */ 7681 7682 static inline void set_idle_cores(int cpu, int val) 7683 { 7684 } 7685 7686 static inline bool test_idle_cores(int cpu) 7687 { 7688 return false; 7689 } 7690 7691 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7692 { 7693 return __select_idle_cpu(core, p); 7694 } 7695 7696 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7697 { 7698 return -1; 7699 } 7700 7701 #endif /* CONFIG_SCHED_SMT */ 7702 7703 /* 7704 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7705 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7706 * average idle time for this rq (as found in rq->avg_idle). 7707 */ 7708 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7709 { 7710 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7711 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7712 struct sched_domain_shared *sd_share; 7713 7714 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7715 7716 if (sched_feat(SIS_UTIL)) { 7717 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7718 if (sd_share) { 7719 /* because !--nr is the condition to stop scan */ 7720 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7721 /* overloaded LLC is unlikely to have idle cpu/core */ 7722 if (nr == 1) 7723 return -1; 7724 } 7725 } 7726 7727 if (static_branch_unlikely(&sched_cluster_active)) { 7728 struct sched_group *sg = sd->groups; 7729 7730 if (sg->flags & SD_CLUSTER) { 7731 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7732 if (!cpumask_test_cpu(cpu, cpus)) 7733 continue; 7734 7735 if (has_idle_core) { 7736 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7737 if ((unsigned int)i < nr_cpumask_bits) 7738 return i; 7739 } else { 7740 if (--nr <= 0) 7741 return -1; 7742 idle_cpu = __select_idle_cpu(cpu, p); 7743 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7744 return idle_cpu; 7745 } 7746 } 7747 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7748 } 7749 } 7750 7751 for_each_cpu_wrap(cpu, cpus, target + 1) { 7752 if (has_idle_core) { 7753 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7754 if ((unsigned int)i < nr_cpumask_bits) 7755 return i; 7756 7757 } else { 7758 if (--nr <= 0) 7759 return -1; 7760 idle_cpu = __select_idle_cpu(cpu, p); 7761 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7762 break; 7763 } 7764 } 7765 7766 if (has_idle_core) 7767 set_idle_cores(target, false); 7768 7769 return idle_cpu; 7770 } 7771 7772 /* 7773 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7774 * the task fits. If no CPU is big enough, but there are idle ones, try to 7775 * maximize capacity. 7776 */ 7777 static int 7778 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7779 { 7780 unsigned long task_util, util_min, util_max, best_cap = 0; 7781 int fits, best_fits = 0; 7782 int cpu, best_cpu = -1; 7783 struct cpumask *cpus; 7784 7785 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7786 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7787 7788 task_util = task_util_est(p); 7789 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7790 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7791 7792 for_each_cpu_wrap(cpu, cpus, target) { 7793 unsigned long cpu_cap = capacity_of(cpu); 7794 7795 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7796 continue; 7797 7798 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7799 7800 /* This CPU fits with all requirements */ 7801 if (fits > 0) 7802 return cpu; 7803 /* 7804 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7805 * Look for the CPU with best capacity. 7806 */ 7807 else if (fits < 0) 7808 cpu_cap = get_actual_cpu_capacity(cpu); 7809 7810 /* 7811 * First, select CPU which fits better (-1 being better than 0). 7812 * Then, select the one with best capacity at same level. 7813 */ 7814 if ((fits < best_fits) || 7815 ((fits == best_fits) && (cpu_cap > best_cap))) { 7816 best_cap = cpu_cap; 7817 best_cpu = cpu; 7818 best_fits = fits; 7819 } 7820 } 7821 7822 return best_cpu; 7823 } 7824 7825 static inline bool asym_fits_cpu(unsigned long util, 7826 unsigned long util_min, 7827 unsigned long util_max, 7828 int cpu) 7829 { 7830 if (sched_asym_cpucap_active()) 7831 /* 7832 * Return true only if the cpu fully fits the task requirements 7833 * which include the utilization and the performance hints. 7834 */ 7835 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7836 7837 return true; 7838 } 7839 7840 /* 7841 * Try and locate an idle core/thread in the LLC cache domain. 7842 */ 7843 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7844 { 7845 bool has_idle_core = false; 7846 struct sched_domain *sd; 7847 unsigned long task_util, util_min, util_max; 7848 int i, recent_used_cpu, prev_aff = -1; 7849 7850 /* 7851 * On asymmetric system, update task utilization because we will check 7852 * that the task fits with CPU's capacity. 7853 */ 7854 if (sched_asym_cpucap_active()) { 7855 sync_entity_load_avg(&p->se); 7856 task_util = task_util_est(p); 7857 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7858 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7859 } 7860 7861 /* 7862 * per-cpu select_rq_mask usage 7863 */ 7864 lockdep_assert_irqs_disabled(); 7865 7866 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7867 asym_fits_cpu(task_util, util_min, util_max, target)) 7868 return target; 7869 7870 /* 7871 * If the previous CPU is cache affine and idle, don't be stupid: 7872 */ 7873 if (prev != target && cpus_share_cache(prev, target) && 7874 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7875 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7876 7877 if (!static_branch_unlikely(&sched_cluster_active) || 7878 cpus_share_resources(prev, target)) 7879 return prev; 7880 7881 prev_aff = prev; 7882 } 7883 7884 /* 7885 * Allow a per-cpu kthread to stack with the wakee if the 7886 * kworker thread and the tasks previous CPUs are the same. 7887 * The assumption is that the wakee queued work for the 7888 * per-cpu kthread that is now complete and the wakeup is 7889 * essentially a sync wakeup. An obvious example of this 7890 * pattern is IO completions. 7891 */ 7892 if (is_per_cpu_kthread(current) && 7893 in_task() && 7894 prev == smp_processor_id() && 7895 this_rq()->nr_running <= 1 && 7896 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7897 return prev; 7898 } 7899 7900 /* Check a recently used CPU as a potential idle candidate: */ 7901 recent_used_cpu = p->recent_used_cpu; 7902 p->recent_used_cpu = prev; 7903 if (recent_used_cpu != prev && 7904 recent_used_cpu != target && 7905 cpus_share_cache(recent_used_cpu, target) && 7906 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7907 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7908 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7909 7910 if (!static_branch_unlikely(&sched_cluster_active) || 7911 cpus_share_resources(recent_used_cpu, target)) 7912 return recent_used_cpu; 7913 7914 } else { 7915 recent_used_cpu = -1; 7916 } 7917 7918 /* 7919 * For asymmetric CPU capacity systems, our domain of interest is 7920 * sd_asym_cpucapacity rather than sd_llc. 7921 */ 7922 if (sched_asym_cpucap_active()) { 7923 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7924 /* 7925 * On an asymmetric CPU capacity system where an exclusive 7926 * cpuset defines a symmetric island (i.e. one unique 7927 * capacity_orig value through the cpuset), the key will be set 7928 * but the CPUs within that cpuset will not have a domain with 7929 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7930 * capacity path. 7931 */ 7932 if (sd) { 7933 i = select_idle_capacity(p, sd, target); 7934 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7935 } 7936 } 7937 7938 sd = rcu_dereference(per_cpu(sd_llc, target)); 7939 if (!sd) 7940 return target; 7941 7942 if (sched_smt_active()) { 7943 has_idle_core = test_idle_cores(target); 7944 7945 if (!has_idle_core && cpus_share_cache(prev, target)) { 7946 i = select_idle_smt(p, sd, prev); 7947 if ((unsigned int)i < nr_cpumask_bits) 7948 return i; 7949 } 7950 } 7951 7952 i = select_idle_cpu(p, sd, has_idle_core, target); 7953 if ((unsigned)i < nr_cpumask_bits) 7954 return i; 7955 7956 /* 7957 * For cluster machines which have lower sharing cache like L2 or 7958 * LLC Tag, we tend to find an idle CPU in the target's cluster 7959 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7960 * use them if possible when no idle CPU found in select_idle_cpu(). 7961 */ 7962 if ((unsigned int)prev_aff < nr_cpumask_bits) 7963 return prev_aff; 7964 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7965 return recent_used_cpu; 7966 7967 return target; 7968 } 7969 7970 /** 7971 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7972 * @cpu: the CPU to get the utilization for 7973 * @p: task for which the CPU utilization should be predicted or NULL 7974 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7975 * @boost: 1 to enable boosting, otherwise 0 7976 * 7977 * The unit of the return value must be the same as the one of CPU capacity 7978 * so that CPU utilization can be compared with CPU capacity. 7979 * 7980 * CPU utilization is the sum of running time of runnable tasks plus the 7981 * recent utilization of currently non-runnable tasks on that CPU. 7982 * It represents the amount of CPU capacity currently used by CFS tasks in 7983 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7984 * capacity at f_max. 7985 * 7986 * The estimated CPU utilization is defined as the maximum between CPU 7987 * utilization and sum of the estimated utilization of the currently 7988 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7989 * previously-executed tasks, which helps better deduce how busy a CPU will 7990 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7991 * of such a task would be significantly decayed at this point of time. 7992 * 7993 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7994 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7995 * utilization. Boosting is implemented in cpu_util() so that internal 7996 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7997 * latter via cpu_util_cfs_boost(). 7998 * 7999 * CPU utilization can be higher than the current CPU capacity 8000 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 8001 * of rounding errors as well as task migrations or wakeups of new tasks. 8002 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 8003 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 8004 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 8005 * capacity. CPU utilization is allowed to overshoot current CPU capacity 8006 * though since this is useful for predicting the CPU capacity required 8007 * after task migrations (scheduler-driven DVFS). 8008 * 8009 * Return: (Boosted) (estimated) utilization for the specified CPU. 8010 */ 8011 static unsigned long 8012 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8013 { 8014 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8015 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8016 unsigned long runnable; 8017 8018 if (boost) { 8019 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8020 util = max(util, runnable); 8021 } 8022 8023 /* 8024 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8025 * contribution. If @p migrates from another CPU to @cpu add its 8026 * contribution. In all the other cases @cpu is not impacted by the 8027 * migration so its util_avg is already correct. 8028 */ 8029 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8030 lsub_positive(&util, task_util(p)); 8031 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8032 util += task_util(p); 8033 8034 if (sched_feat(UTIL_EST)) { 8035 unsigned long util_est; 8036 8037 util_est = READ_ONCE(cfs_rq->avg.util_est); 8038 8039 /* 8040 * During wake-up @p isn't enqueued yet and doesn't contribute 8041 * to any cpu_rq(cpu)->cfs.avg.util_est. 8042 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8043 * has been enqueued. 8044 * 8045 * During exec (@dst_cpu = -1) @p is enqueued and does 8046 * contribute to cpu_rq(cpu)->cfs.util_est. 8047 * Remove it to "simulate" cpu_util without @p's contribution. 8048 * 8049 * Despite the task_on_rq_queued(@p) check there is still a 8050 * small window for a possible race when an exec 8051 * select_task_rq_fair() races with LB's detach_task(). 8052 * 8053 * detach_task() 8054 * deactivate_task() 8055 * p->on_rq = TASK_ON_RQ_MIGRATING; 8056 * -------------------------------- A 8057 * dequeue_task() \ 8058 * dequeue_task_fair() + Race Time 8059 * util_est_dequeue() / 8060 * -------------------------------- B 8061 * 8062 * The additional check "current == p" is required to further 8063 * reduce the race window. 8064 */ 8065 if (dst_cpu == cpu) 8066 util_est += _task_util_est(p); 8067 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8068 lsub_positive(&util_est, _task_util_est(p)); 8069 8070 util = max(util, util_est); 8071 } 8072 8073 return min(util, arch_scale_cpu_capacity(cpu)); 8074 } 8075 8076 unsigned long cpu_util_cfs(int cpu) 8077 { 8078 return cpu_util(cpu, NULL, -1, 0); 8079 } 8080 8081 unsigned long cpu_util_cfs_boost(int cpu) 8082 { 8083 return cpu_util(cpu, NULL, -1, 1); 8084 } 8085 8086 /* 8087 * cpu_util_without: compute cpu utilization without any contributions from *p 8088 * @cpu: the CPU which utilization is requested 8089 * @p: the task which utilization should be discounted 8090 * 8091 * The utilization of a CPU is defined by the utilization of tasks currently 8092 * enqueued on that CPU as well as tasks which are currently sleeping after an 8093 * execution on that CPU. 8094 * 8095 * This method returns the utilization of the specified CPU by discounting the 8096 * utilization of the specified task, whenever the task is currently 8097 * contributing to the CPU utilization. 8098 */ 8099 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8100 { 8101 /* Task has no contribution or is new */ 8102 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8103 p = NULL; 8104 8105 return cpu_util(cpu, p, -1, 0); 8106 } 8107 8108 /* 8109 * This function computes an effective utilization for the given CPU, to be 8110 * used for frequency selection given the linear relation: f = u * f_max. 8111 * 8112 * The scheduler tracks the following metrics: 8113 * 8114 * cpu_util_{cfs,rt,dl,irq}() 8115 * cpu_bw_dl() 8116 * 8117 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8118 * synchronized windows and are thus directly comparable. 8119 * 8120 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8121 * which excludes things like IRQ and steal-time. These latter are then accrued 8122 * in the IRQ utilization. 8123 * 8124 * The DL bandwidth number OTOH is not a measured metric but a value computed 8125 * based on the task model parameters and gives the minimal utilization 8126 * required to meet deadlines. 8127 */ 8128 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8129 unsigned long *min, 8130 unsigned long *max) 8131 { 8132 unsigned long util, irq, scale; 8133 struct rq *rq = cpu_rq(cpu); 8134 8135 scale = arch_scale_cpu_capacity(cpu); 8136 8137 /* 8138 * Early check to see if IRQ/steal time saturates the CPU, can be 8139 * because of inaccuracies in how we track these -- see 8140 * update_irq_load_avg(). 8141 */ 8142 irq = cpu_util_irq(rq); 8143 if (unlikely(irq >= scale)) { 8144 if (min) 8145 *min = scale; 8146 if (max) 8147 *max = scale; 8148 return scale; 8149 } 8150 8151 if (min) { 8152 /* 8153 * The minimum utilization returns the highest level between: 8154 * - the computed DL bandwidth needed with the IRQ pressure which 8155 * steals time to the deadline task. 8156 * - The minimum performance requirement for CFS and/or RT. 8157 */ 8158 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8159 8160 /* 8161 * When an RT task is runnable and uclamp is not used, we must 8162 * ensure that the task will run at maximum compute capacity. 8163 */ 8164 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8165 *min = max(*min, scale); 8166 } 8167 8168 /* 8169 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8170 * CFS tasks and we use the same metric to track the effective 8171 * utilization (PELT windows are synchronized) we can directly add them 8172 * to obtain the CPU's actual utilization. 8173 */ 8174 util = util_cfs + cpu_util_rt(rq); 8175 util += cpu_util_dl(rq); 8176 8177 /* 8178 * The maximum hint is a soft bandwidth requirement, which can be lower 8179 * than the actual utilization because of uclamp_max requirements. 8180 */ 8181 if (max) 8182 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8183 8184 if (util >= scale) 8185 return scale; 8186 8187 /* 8188 * There is still idle time; further improve the number by using the 8189 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8190 * need to scale the task numbers: 8191 * 8192 * max - irq 8193 * U' = irq + --------- * U 8194 * max 8195 */ 8196 util = scale_irq_capacity(util, irq, scale); 8197 util += irq; 8198 8199 return min(scale, util); 8200 } 8201 8202 unsigned long sched_cpu_util(int cpu) 8203 { 8204 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8205 } 8206 8207 /* 8208 * energy_env - Utilization landscape for energy estimation. 8209 * @task_busy_time: Utilization contribution by the task for which we test the 8210 * placement. Given by eenv_task_busy_time(). 8211 * @pd_busy_time: Utilization of the whole perf domain without the task 8212 * contribution. Given by eenv_pd_busy_time(). 8213 * @cpu_cap: Maximum CPU capacity for the perf domain. 8214 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8215 */ 8216 struct energy_env { 8217 unsigned long task_busy_time; 8218 unsigned long pd_busy_time; 8219 unsigned long cpu_cap; 8220 unsigned long pd_cap; 8221 }; 8222 8223 /* 8224 * Compute the task busy time for compute_energy(). This time cannot be 8225 * injected directly into effective_cpu_util() because of the IRQ scaling. 8226 * The latter only makes sense with the most recent CPUs where the task has 8227 * run. 8228 */ 8229 static inline void eenv_task_busy_time(struct energy_env *eenv, 8230 struct task_struct *p, int prev_cpu) 8231 { 8232 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8233 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8234 8235 if (unlikely(irq >= max_cap)) 8236 busy_time = max_cap; 8237 else 8238 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8239 8240 eenv->task_busy_time = busy_time; 8241 } 8242 8243 /* 8244 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8245 * utilization for each @pd_cpus, it however doesn't take into account 8246 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8247 * scale the EM reported power consumption at the (eventually clamped) 8248 * cpu_capacity. 8249 * 8250 * The contribution of the task @p for which we want to estimate the 8251 * energy cost is removed (by cpu_util()) and must be calculated 8252 * separately (see eenv_task_busy_time). This ensures: 8253 * 8254 * - A stable PD utilization, no matter which CPU of that PD we want to place 8255 * the task on. 8256 * 8257 * - A fair comparison between CPUs as the task contribution (task_util()) 8258 * will always be the same no matter which CPU utilization we rely on 8259 * (util_avg or util_est). 8260 * 8261 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8262 * exceed @eenv->pd_cap. 8263 */ 8264 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8265 struct cpumask *pd_cpus, 8266 struct task_struct *p) 8267 { 8268 unsigned long busy_time = 0; 8269 int cpu; 8270 8271 for_each_cpu(cpu, pd_cpus) { 8272 unsigned long util = cpu_util(cpu, p, -1, 0); 8273 8274 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8275 } 8276 8277 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8278 } 8279 8280 /* 8281 * Compute the maximum utilization for compute_energy() when the task @p 8282 * is placed on the cpu @dst_cpu. 8283 * 8284 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8285 * exceed @eenv->cpu_cap. 8286 */ 8287 static inline unsigned long 8288 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8289 struct task_struct *p, int dst_cpu) 8290 { 8291 unsigned long max_util = 0; 8292 int cpu; 8293 8294 for_each_cpu(cpu, pd_cpus) { 8295 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8296 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8297 unsigned long eff_util, min, max; 8298 8299 /* 8300 * Performance domain frequency: utilization clamping 8301 * must be considered since it affects the selection 8302 * of the performance domain frequency. 8303 * NOTE: in case RT tasks are running, by default the min 8304 * utilization can be max OPP. 8305 */ 8306 eff_util = effective_cpu_util(cpu, util, &min, &max); 8307 8308 /* Task's uclamp can modify min and max value */ 8309 if (tsk && uclamp_is_used()) { 8310 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8311 8312 /* 8313 * If there is no active max uclamp constraint, 8314 * directly use task's one, otherwise keep max. 8315 */ 8316 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8317 max = uclamp_eff_value(p, UCLAMP_MAX); 8318 else 8319 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8320 } 8321 8322 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8323 max_util = max(max_util, eff_util); 8324 } 8325 8326 return min(max_util, eenv->cpu_cap); 8327 } 8328 8329 /* 8330 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8331 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8332 * contribution is ignored. 8333 */ 8334 static inline unsigned long 8335 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8336 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8337 { 8338 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8339 unsigned long busy_time = eenv->pd_busy_time; 8340 unsigned long energy; 8341 8342 if (dst_cpu >= 0) 8343 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8344 8345 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8346 8347 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8348 8349 return energy; 8350 } 8351 8352 /* 8353 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8354 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8355 * spare capacity in each performance domain and uses it as a potential 8356 * candidate to execute the task. Then, it uses the Energy Model to figure 8357 * out which of the CPU candidates is the most energy-efficient. 8358 * 8359 * The rationale for this heuristic is as follows. In a performance domain, 8360 * all the most energy efficient CPU candidates (according to the Energy 8361 * Model) are those for which we'll request a low frequency. When there are 8362 * several CPUs for which the frequency request will be the same, we don't 8363 * have enough data to break the tie between them, because the Energy Model 8364 * only includes active power costs. With this model, if we assume that 8365 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8366 * the maximum spare capacity in a performance domain is guaranteed to be among 8367 * the best candidates of the performance domain. 8368 * 8369 * In practice, it could be preferable from an energy standpoint to pack 8370 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8371 * but that could also hurt our chances to go cluster idle, and we have no 8372 * ways to tell with the current Energy Model if this is actually a good 8373 * idea or not. So, find_energy_efficient_cpu() basically favors 8374 * cluster-packing, and spreading inside a cluster. That should at least be 8375 * a good thing for latency, and this is consistent with the idea that most 8376 * of the energy savings of EAS come from the asymmetry of the system, and 8377 * not so much from breaking the tie between identical CPUs. That's also the 8378 * reason why EAS is enabled in the topology code only for systems where 8379 * SD_ASYM_CPUCAPACITY is set. 8380 * 8381 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8382 * they don't have any useful utilization data yet and it's not possible to 8383 * forecast their impact on energy consumption. Consequently, they will be 8384 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8385 * to be energy-inefficient in some use-cases. The alternative would be to 8386 * bias new tasks towards specific types of CPUs first, or to try to infer 8387 * their util_avg from the parent task, but those heuristics could hurt 8388 * other use-cases too. So, until someone finds a better way to solve this, 8389 * let's keep things simple by re-using the existing slow path. 8390 */ 8391 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8392 { 8393 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8394 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8395 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8396 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8397 struct root_domain *rd = this_rq()->rd; 8398 int cpu, best_energy_cpu, target = -1; 8399 int prev_fits = -1, best_fits = -1; 8400 unsigned long best_actual_cap = 0; 8401 unsigned long prev_actual_cap = 0; 8402 struct sched_domain *sd; 8403 struct perf_domain *pd; 8404 struct energy_env eenv; 8405 8406 rcu_read_lock(); 8407 pd = rcu_dereference(rd->pd); 8408 if (!pd) 8409 goto unlock; 8410 8411 /* 8412 * Energy-aware wake-up happens on the lowest sched_domain starting 8413 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8414 */ 8415 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8416 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8417 sd = sd->parent; 8418 if (!sd) 8419 goto unlock; 8420 8421 target = prev_cpu; 8422 8423 sync_entity_load_avg(&p->se); 8424 if (!task_util_est(p) && p_util_min == 0) 8425 goto unlock; 8426 8427 eenv_task_busy_time(&eenv, p, prev_cpu); 8428 8429 for (; pd; pd = pd->next) { 8430 unsigned long util_min = p_util_min, util_max = p_util_max; 8431 unsigned long cpu_cap, cpu_actual_cap, util; 8432 long prev_spare_cap = -1, max_spare_cap = -1; 8433 unsigned long rq_util_min, rq_util_max; 8434 unsigned long cur_delta, base_energy; 8435 int max_spare_cap_cpu = -1; 8436 int fits, max_fits = -1; 8437 8438 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8439 8440 if (cpumask_empty(cpus)) 8441 continue; 8442 8443 /* Account external pressure for the energy estimation */ 8444 cpu = cpumask_first(cpus); 8445 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8446 8447 eenv.cpu_cap = cpu_actual_cap; 8448 eenv.pd_cap = 0; 8449 8450 for_each_cpu(cpu, cpus) { 8451 struct rq *rq = cpu_rq(cpu); 8452 8453 eenv.pd_cap += cpu_actual_cap; 8454 8455 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8456 continue; 8457 8458 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8459 continue; 8460 8461 util = cpu_util(cpu, p, cpu, 0); 8462 cpu_cap = capacity_of(cpu); 8463 8464 /* 8465 * Skip CPUs that cannot satisfy the capacity request. 8466 * IOW, placing the task there would make the CPU 8467 * overutilized. Take uclamp into account to see how 8468 * much capacity we can get out of the CPU; this is 8469 * aligned with sched_cpu_util(). 8470 */ 8471 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8472 /* 8473 * Open code uclamp_rq_util_with() except for 8474 * the clamp() part. I.e.: apply max aggregation 8475 * only. util_fits_cpu() logic requires to 8476 * operate on non clamped util but must use the 8477 * max-aggregated uclamp_{min, max}. 8478 */ 8479 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8480 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8481 8482 util_min = max(rq_util_min, p_util_min); 8483 util_max = max(rq_util_max, p_util_max); 8484 } 8485 8486 fits = util_fits_cpu(util, util_min, util_max, cpu); 8487 if (!fits) 8488 continue; 8489 8490 lsub_positive(&cpu_cap, util); 8491 8492 if (cpu == prev_cpu) { 8493 /* Always use prev_cpu as a candidate. */ 8494 prev_spare_cap = cpu_cap; 8495 prev_fits = fits; 8496 } else if ((fits > max_fits) || 8497 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8498 /* 8499 * Find the CPU with the maximum spare capacity 8500 * among the remaining CPUs in the performance 8501 * domain. 8502 */ 8503 max_spare_cap = cpu_cap; 8504 max_spare_cap_cpu = cpu; 8505 max_fits = fits; 8506 } 8507 } 8508 8509 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8510 continue; 8511 8512 eenv_pd_busy_time(&eenv, cpus, p); 8513 /* Compute the 'base' energy of the pd, without @p */ 8514 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8515 8516 /* Evaluate the energy impact of using prev_cpu. */ 8517 if (prev_spare_cap > -1) { 8518 prev_delta = compute_energy(&eenv, pd, cpus, p, 8519 prev_cpu); 8520 /* CPU utilization has changed */ 8521 if (prev_delta < base_energy) 8522 goto unlock; 8523 prev_delta -= base_energy; 8524 prev_actual_cap = cpu_actual_cap; 8525 best_delta = min(best_delta, prev_delta); 8526 } 8527 8528 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8529 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8530 /* Current best energy cpu fits better */ 8531 if (max_fits < best_fits) 8532 continue; 8533 8534 /* 8535 * Both don't fit performance hint (i.e. uclamp_min) 8536 * but best energy cpu has better capacity. 8537 */ 8538 if ((max_fits < 0) && 8539 (cpu_actual_cap <= best_actual_cap)) 8540 continue; 8541 8542 cur_delta = compute_energy(&eenv, pd, cpus, p, 8543 max_spare_cap_cpu); 8544 /* CPU utilization has changed */ 8545 if (cur_delta < base_energy) 8546 goto unlock; 8547 cur_delta -= base_energy; 8548 8549 /* 8550 * Both fit for the task but best energy cpu has lower 8551 * energy impact. 8552 */ 8553 if ((max_fits > 0) && (best_fits > 0) && 8554 (cur_delta >= best_delta)) 8555 continue; 8556 8557 best_delta = cur_delta; 8558 best_energy_cpu = max_spare_cap_cpu; 8559 best_fits = max_fits; 8560 best_actual_cap = cpu_actual_cap; 8561 } 8562 } 8563 rcu_read_unlock(); 8564 8565 if ((best_fits > prev_fits) || 8566 ((best_fits > 0) && (best_delta < prev_delta)) || 8567 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8568 target = best_energy_cpu; 8569 8570 return target; 8571 8572 unlock: 8573 rcu_read_unlock(); 8574 8575 return target; 8576 } 8577 8578 /* 8579 * select_task_rq_fair: Select target runqueue for the waking task in domains 8580 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8581 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8582 * 8583 * Balances load by selecting the idlest CPU in the idlest group, or under 8584 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8585 * 8586 * Returns the target CPU number. 8587 */ 8588 static int 8589 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8590 { 8591 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8592 struct sched_domain *tmp, *sd = NULL; 8593 int cpu = smp_processor_id(); 8594 int new_cpu = prev_cpu; 8595 int want_affine = 0; 8596 /* SD_flags and WF_flags share the first nibble */ 8597 int sd_flag = wake_flags & 0xF; 8598 8599 /* 8600 * required for stable ->cpus_allowed 8601 */ 8602 lockdep_assert_held(&p->pi_lock); 8603 if (wake_flags & WF_TTWU) { 8604 record_wakee(p); 8605 8606 if ((wake_flags & WF_CURRENT_CPU) && 8607 cpumask_test_cpu(cpu, p->cpus_ptr)) 8608 return cpu; 8609 8610 if (!is_rd_overutilized(this_rq()->rd)) { 8611 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8612 if (new_cpu >= 0) 8613 return new_cpu; 8614 new_cpu = prev_cpu; 8615 } 8616 8617 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8618 } 8619 8620 rcu_read_lock(); 8621 for_each_domain(cpu, tmp) { 8622 /* 8623 * If both 'cpu' and 'prev_cpu' are part of this domain, 8624 * cpu is a valid SD_WAKE_AFFINE target. 8625 */ 8626 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8627 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8628 if (cpu != prev_cpu) 8629 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8630 8631 sd = NULL; /* Prefer wake_affine over balance flags */ 8632 break; 8633 } 8634 8635 /* 8636 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8637 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8638 * will usually go to the fast path. 8639 */ 8640 if (tmp->flags & sd_flag) 8641 sd = tmp; 8642 else if (!want_affine) 8643 break; 8644 } 8645 8646 if (unlikely(sd)) { 8647 /* Slow path */ 8648 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8649 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8650 /* Fast path */ 8651 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8652 } 8653 rcu_read_unlock(); 8654 8655 return new_cpu; 8656 } 8657 8658 /* 8659 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8660 * cfs_rq_of(p) references at time of call are still valid and identify the 8661 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8662 */ 8663 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8664 { 8665 struct sched_entity *se = &p->se; 8666 8667 if (!task_on_rq_migrating(p)) { 8668 remove_entity_load_avg(se); 8669 8670 /* 8671 * Here, the task's PELT values have been updated according to 8672 * the current rq's clock. But if that clock hasn't been 8673 * updated in a while, a substantial idle time will be missed, 8674 * leading to an inflation after wake-up on the new rq. 8675 * 8676 * Estimate the missing time from the cfs_rq last_update_time 8677 * and update sched_avg to improve the PELT continuity after 8678 * migration. 8679 */ 8680 migrate_se_pelt_lag(se); 8681 } 8682 8683 /* Tell new CPU we are migrated */ 8684 se->avg.last_update_time = 0; 8685 8686 update_scan_period(p, new_cpu); 8687 } 8688 8689 static void task_dead_fair(struct task_struct *p) 8690 { 8691 struct sched_entity *se = &p->se; 8692 8693 if (se->sched_delayed) { 8694 struct rq_flags rf; 8695 struct rq *rq; 8696 8697 rq = task_rq_lock(p, &rf); 8698 if (se->sched_delayed) { 8699 update_rq_clock(rq); 8700 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8701 } 8702 task_rq_unlock(rq, p, &rf); 8703 } 8704 8705 remove_entity_load_avg(se); 8706 } 8707 8708 /* 8709 * Set the max capacity the task is allowed to run at for misfit detection. 8710 */ 8711 static void set_task_max_allowed_capacity(struct task_struct *p) 8712 { 8713 struct asym_cap_data *entry; 8714 8715 if (!sched_asym_cpucap_active()) 8716 return; 8717 8718 rcu_read_lock(); 8719 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8720 cpumask_t *cpumask; 8721 8722 cpumask = cpu_capacity_span(entry); 8723 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8724 continue; 8725 8726 p->max_allowed_capacity = entry->capacity; 8727 break; 8728 } 8729 rcu_read_unlock(); 8730 } 8731 8732 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8733 { 8734 set_cpus_allowed_common(p, ctx); 8735 set_task_max_allowed_capacity(p); 8736 } 8737 8738 static int 8739 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8740 { 8741 if (sched_fair_runnable(rq)) 8742 return 1; 8743 8744 return sched_balance_newidle(rq, rf) != 0; 8745 } 8746 #else 8747 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8748 #endif /* CONFIG_SMP */ 8749 8750 static void set_next_buddy(struct sched_entity *se) 8751 { 8752 for_each_sched_entity(se) { 8753 if (SCHED_WARN_ON(!se->on_rq)) 8754 return; 8755 if (se_is_idle(se)) 8756 return; 8757 cfs_rq_of(se)->next = se; 8758 } 8759 } 8760 8761 /* 8762 * Preempt the current task with a newly woken task if needed: 8763 */ 8764 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8765 { 8766 struct task_struct *curr = rq->curr; 8767 struct sched_entity *se = &curr->se, *pse = &p->se; 8768 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8769 int cse_is_idle, pse_is_idle; 8770 8771 if (unlikely(se == pse)) 8772 return; 8773 8774 /* 8775 * This is possible from callers such as attach_tasks(), in which we 8776 * unconditionally wakeup_preempt() after an enqueue (which may have 8777 * lead to a throttle). This both saves work and prevents false 8778 * next-buddy nomination below. 8779 */ 8780 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8781 return; 8782 8783 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8784 set_next_buddy(pse); 8785 } 8786 8787 /* 8788 * We can come here with TIF_NEED_RESCHED already set from new task 8789 * wake up path. 8790 * 8791 * Note: this also catches the edge-case of curr being in a throttled 8792 * group (e.g. via set_curr_task), since update_curr() (in the 8793 * enqueue of curr) will have resulted in resched being set. This 8794 * prevents us from potentially nominating it as a false LAST_BUDDY 8795 * below. 8796 */ 8797 if (test_tsk_need_resched(curr)) 8798 return; 8799 8800 if (!sched_feat(WAKEUP_PREEMPTION)) 8801 return; 8802 8803 find_matching_se(&se, &pse); 8804 WARN_ON_ONCE(!pse); 8805 8806 cse_is_idle = se_is_idle(se); 8807 pse_is_idle = se_is_idle(pse); 8808 8809 /* 8810 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8811 * in the inverse case). 8812 */ 8813 if (cse_is_idle && !pse_is_idle) 8814 goto preempt; 8815 if (cse_is_idle != pse_is_idle) 8816 return; 8817 8818 /* 8819 * BATCH and IDLE tasks do not preempt others. 8820 */ 8821 if (unlikely(!normal_policy(p->policy))) 8822 return; 8823 8824 cfs_rq = cfs_rq_of(se); 8825 update_curr(cfs_rq); 8826 /* 8827 * If @p has a shorter slice than current and @p is eligible, override 8828 * current's slice protection in order to allow preemption. 8829 * 8830 * Note that even if @p does not turn out to be the most eligible 8831 * task at this moment, current's slice protection will be lost. 8832 */ 8833 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8834 se->vlag = se->deadline + 1; 8835 8836 /* 8837 * If @p has become the most eligible task, force preemption. 8838 */ 8839 if (pick_eevdf(cfs_rq) == pse) 8840 goto preempt; 8841 8842 return; 8843 8844 preempt: 8845 resched_curr(rq); 8846 } 8847 8848 static struct task_struct *pick_task_fair(struct rq *rq) 8849 { 8850 struct sched_entity *se; 8851 struct cfs_rq *cfs_rq; 8852 8853 again: 8854 cfs_rq = &rq->cfs; 8855 if (!cfs_rq->nr_running) 8856 return NULL; 8857 8858 do { 8859 /* Might not have done put_prev_entity() */ 8860 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8861 update_curr(cfs_rq); 8862 8863 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8864 goto again; 8865 8866 se = pick_next_entity(rq, cfs_rq); 8867 if (!se) 8868 goto again; 8869 cfs_rq = group_cfs_rq(se); 8870 } while (cfs_rq); 8871 8872 return task_of(se); 8873 } 8874 8875 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8876 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8877 8878 struct task_struct * 8879 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8880 { 8881 struct sched_entity *se; 8882 struct task_struct *p; 8883 int new_tasks; 8884 8885 again: 8886 p = pick_task_fair(rq); 8887 if (!p) 8888 goto idle; 8889 se = &p->se; 8890 8891 #ifdef CONFIG_FAIR_GROUP_SCHED 8892 if (prev->sched_class != &fair_sched_class) 8893 goto simple; 8894 8895 __put_prev_set_next_dl_server(rq, prev, p); 8896 8897 /* 8898 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8899 * likely that a next task is from the same cgroup as the current. 8900 * 8901 * Therefore attempt to avoid putting and setting the entire cgroup 8902 * hierarchy, only change the part that actually changes. 8903 * 8904 * Since we haven't yet done put_prev_entity and if the selected task 8905 * is a different task than we started out with, try and touch the 8906 * least amount of cfs_rqs. 8907 */ 8908 if (prev != p) { 8909 struct sched_entity *pse = &prev->se; 8910 struct cfs_rq *cfs_rq; 8911 8912 while (!(cfs_rq = is_same_group(se, pse))) { 8913 int se_depth = se->depth; 8914 int pse_depth = pse->depth; 8915 8916 if (se_depth <= pse_depth) { 8917 put_prev_entity(cfs_rq_of(pse), pse); 8918 pse = parent_entity(pse); 8919 } 8920 if (se_depth >= pse_depth) { 8921 set_next_entity(cfs_rq_of(se), se); 8922 se = parent_entity(se); 8923 } 8924 } 8925 8926 put_prev_entity(cfs_rq, pse); 8927 set_next_entity(cfs_rq, se); 8928 8929 __set_next_task_fair(rq, p, true); 8930 } 8931 8932 return p; 8933 8934 simple: 8935 #endif 8936 put_prev_set_next_task(rq, prev, p); 8937 return p; 8938 8939 idle: 8940 if (!rf) 8941 return NULL; 8942 8943 new_tasks = sched_balance_newidle(rq, rf); 8944 8945 /* 8946 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8947 * possible for any higher priority task to appear. In that case we 8948 * must re-start the pick_next_entity() loop. 8949 */ 8950 if (new_tasks < 0) 8951 return RETRY_TASK; 8952 8953 if (new_tasks > 0) 8954 goto again; 8955 8956 /* 8957 * rq is about to be idle, check if we need to update the 8958 * lost_idle_time of clock_pelt 8959 */ 8960 update_idle_rq_clock_pelt(rq); 8961 8962 return NULL; 8963 } 8964 8965 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8966 { 8967 return pick_next_task_fair(rq, prev, NULL); 8968 } 8969 8970 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8971 { 8972 return !!dl_se->rq->cfs.nr_running; 8973 } 8974 8975 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8976 { 8977 return pick_task_fair(dl_se->rq); 8978 } 8979 8980 void fair_server_init(struct rq *rq) 8981 { 8982 struct sched_dl_entity *dl_se = &rq->fair_server; 8983 8984 init_dl_entity(dl_se); 8985 8986 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8987 } 8988 8989 /* 8990 * Account for a descheduled task: 8991 */ 8992 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8993 { 8994 struct sched_entity *se = &prev->se; 8995 struct cfs_rq *cfs_rq; 8996 8997 for_each_sched_entity(se) { 8998 cfs_rq = cfs_rq_of(se); 8999 put_prev_entity(cfs_rq, se); 9000 } 9001 } 9002 9003 /* 9004 * sched_yield() is very simple 9005 */ 9006 static void yield_task_fair(struct rq *rq) 9007 { 9008 struct task_struct *curr = rq->curr; 9009 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9010 struct sched_entity *se = &curr->se; 9011 9012 /* 9013 * Are we the only task in the tree? 9014 */ 9015 if (unlikely(rq->nr_running == 1)) 9016 return; 9017 9018 clear_buddies(cfs_rq, se); 9019 9020 update_rq_clock(rq); 9021 /* 9022 * Update run-time statistics of the 'current'. 9023 */ 9024 update_curr(cfs_rq); 9025 /* 9026 * Tell update_rq_clock() that we've just updated, 9027 * so we don't do microscopic update in schedule() 9028 * and double the fastpath cost. 9029 */ 9030 rq_clock_skip_update(rq); 9031 9032 se->deadline += calc_delta_fair(se->slice, se); 9033 } 9034 9035 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9036 { 9037 struct sched_entity *se = &p->se; 9038 9039 /* throttled hierarchies are not runnable */ 9040 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9041 return false; 9042 9043 /* Tell the scheduler that we'd really like se to run next. */ 9044 set_next_buddy(se); 9045 9046 yield_task_fair(rq); 9047 9048 return true; 9049 } 9050 9051 #ifdef CONFIG_SMP 9052 /************************************************** 9053 * Fair scheduling class load-balancing methods. 9054 * 9055 * BASICS 9056 * 9057 * The purpose of load-balancing is to achieve the same basic fairness the 9058 * per-CPU scheduler provides, namely provide a proportional amount of compute 9059 * time to each task. This is expressed in the following equation: 9060 * 9061 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9062 * 9063 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9064 * W_i,0 is defined as: 9065 * 9066 * W_i,0 = \Sum_j w_i,j (2) 9067 * 9068 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9069 * is derived from the nice value as per sched_prio_to_weight[]. 9070 * 9071 * The weight average is an exponential decay average of the instantaneous 9072 * weight: 9073 * 9074 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9075 * 9076 * C_i is the compute capacity of CPU i, typically it is the 9077 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9078 * can also include other factors [XXX]. 9079 * 9080 * To achieve this balance we define a measure of imbalance which follows 9081 * directly from (1): 9082 * 9083 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9084 * 9085 * We them move tasks around to minimize the imbalance. In the continuous 9086 * function space it is obvious this converges, in the discrete case we get 9087 * a few fun cases generally called infeasible weight scenarios. 9088 * 9089 * [XXX expand on: 9090 * - infeasible weights; 9091 * - local vs global optima in the discrete case. ] 9092 * 9093 * 9094 * SCHED DOMAINS 9095 * 9096 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9097 * for all i,j solution, we create a tree of CPUs that follows the hardware 9098 * topology where each level pairs two lower groups (or better). This results 9099 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9100 * tree to only the first of the previous level and we decrease the frequency 9101 * of load-balance at each level inversely proportional to the number of CPUs in 9102 * the groups. 9103 * 9104 * This yields: 9105 * 9106 * log_2 n 1 n 9107 * \Sum { --- * --- * 2^i } = O(n) (5) 9108 * i = 0 2^i 2^i 9109 * `- size of each group 9110 * | | `- number of CPUs doing load-balance 9111 * | `- freq 9112 * `- sum over all levels 9113 * 9114 * Coupled with a limit on how many tasks we can migrate every balance pass, 9115 * this makes (5) the runtime complexity of the balancer. 9116 * 9117 * An important property here is that each CPU is still (indirectly) connected 9118 * to every other CPU in at most O(log n) steps: 9119 * 9120 * The adjacency matrix of the resulting graph is given by: 9121 * 9122 * log_2 n 9123 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9124 * k = 0 9125 * 9126 * And you'll find that: 9127 * 9128 * A^(log_2 n)_i,j != 0 for all i,j (7) 9129 * 9130 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9131 * The task movement gives a factor of O(m), giving a convergence complexity 9132 * of: 9133 * 9134 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9135 * 9136 * 9137 * WORK CONSERVING 9138 * 9139 * In order to avoid CPUs going idle while there's still work to do, new idle 9140 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9141 * tree itself instead of relying on other CPUs to bring it work. 9142 * 9143 * This adds some complexity to both (5) and (8) but it reduces the total idle 9144 * time. 9145 * 9146 * [XXX more?] 9147 * 9148 * 9149 * CGROUPS 9150 * 9151 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9152 * 9153 * s_k,i 9154 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9155 * S_k 9156 * 9157 * Where 9158 * 9159 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9160 * 9161 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9162 * 9163 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9164 * property. 9165 * 9166 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9167 * rewrite all of this once again.] 9168 */ 9169 9170 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9171 9172 enum fbq_type { regular, remote, all }; 9173 9174 /* 9175 * 'group_type' describes the group of CPUs at the moment of load balancing. 9176 * 9177 * The enum is ordered by pulling priority, with the group with lowest priority 9178 * first so the group_type can simply be compared when selecting the busiest 9179 * group. See update_sd_pick_busiest(). 9180 */ 9181 enum group_type { 9182 /* The group has spare capacity that can be used to run more tasks. */ 9183 group_has_spare = 0, 9184 /* 9185 * The group is fully used and the tasks don't compete for more CPU 9186 * cycles. Nevertheless, some tasks might wait before running. 9187 */ 9188 group_fully_busy, 9189 /* 9190 * One task doesn't fit with CPU's capacity and must be migrated to a 9191 * more powerful CPU. 9192 */ 9193 group_misfit_task, 9194 /* 9195 * Balance SMT group that's fully busy. Can benefit from migration 9196 * a task on SMT with busy sibling to another CPU on idle core. 9197 */ 9198 group_smt_balance, 9199 /* 9200 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9201 * and the task should be migrated to it instead of running on the 9202 * current CPU. 9203 */ 9204 group_asym_packing, 9205 /* 9206 * The tasks' affinity constraints previously prevented the scheduler 9207 * from balancing the load across the system. 9208 */ 9209 group_imbalanced, 9210 /* 9211 * The CPU is overloaded and can't provide expected CPU cycles to all 9212 * tasks. 9213 */ 9214 group_overloaded 9215 }; 9216 9217 enum migration_type { 9218 migrate_load = 0, 9219 migrate_util, 9220 migrate_task, 9221 migrate_misfit 9222 }; 9223 9224 #define LBF_ALL_PINNED 0x01 9225 #define LBF_NEED_BREAK 0x02 9226 #define LBF_DST_PINNED 0x04 9227 #define LBF_SOME_PINNED 0x08 9228 #define LBF_ACTIVE_LB 0x10 9229 9230 struct lb_env { 9231 struct sched_domain *sd; 9232 9233 struct rq *src_rq; 9234 int src_cpu; 9235 9236 int dst_cpu; 9237 struct rq *dst_rq; 9238 9239 struct cpumask *dst_grpmask; 9240 int new_dst_cpu; 9241 enum cpu_idle_type idle; 9242 long imbalance; 9243 /* The set of CPUs under consideration for load-balancing */ 9244 struct cpumask *cpus; 9245 9246 unsigned int flags; 9247 9248 unsigned int loop; 9249 unsigned int loop_break; 9250 unsigned int loop_max; 9251 9252 enum fbq_type fbq_type; 9253 enum migration_type migration_type; 9254 struct list_head tasks; 9255 }; 9256 9257 /* 9258 * Is this task likely cache-hot: 9259 */ 9260 static int task_hot(struct task_struct *p, struct lb_env *env) 9261 { 9262 s64 delta; 9263 9264 lockdep_assert_rq_held(env->src_rq); 9265 9266 if (p->sched_class != &fair_sched_class) 9267 return 0; 9268 9269 if (unlikely(task_has_idle_policy(p))) 9270 return 0; 9271 9272 /* SMT siblings share cache */ 9273 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9274 return 0; 9275 9276 /* 9277 * Buddy candidates are cache hot: 9278 */ 9279 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9280 (&p->se == cfs_rq_of(&p->se)->next)) 9281 return 1; 9282 9283 if (sysctl_sched_migration_cost == -1) 9284 return 1; 9285 9286 /* 9287 * Don't migrate task if the task's cookie does not match 9288 * with the destination CPU's core cookie. 9289 */ 9290 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9291 return 1; 9292 9293 if (sysctl_sched_migration_cost == 0) 9294 return 0; 9295 9296 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9297 9298 return delta < (s64)sysctl_sched_migration_cost; 9299 } 9300 9301 #ifdef CONFIG_NUMA_BALANCING 9302 /* 9303 * Returns 1, if task migration degrades locality 9304 * Returns 0, if task migration improves locality i.e migration preferred. 9305 * Returns -1, if task migration is not affected by locality. 9306 */ 9307 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9308 { 9309 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9310 unsigned long src_weight, dst_weight; 9311 int src_nid, dst_nid, dist; 9312 9313 if (!static_branch_likely(&sched_numa_balancing)) 9314 return -1; 9315 9316 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9317 return -1; 9318 9319 src_nid = cpu_to_node(env->src_cpu); 9320 dst_nid = cpu_to_node(env->dst_cpu); 9321 9322 if (src_nid == dst_nid) 9323 return -1; 9324 9325 /* Migrating away from the preferred node is always bad. */ 9326 if (src_nid == p->numa_preferred_nid) { 9327 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9328 return 1; 9329 else 9330 return -1; 9331 } 9332 9333 /* Encourage migration to the preferred node. */ 9334 if (dst_nid == p->numa_preferred_nid) 9335 return 0; 9336 9337 /* Leaving a core idle is often worse than degrading locality. */ 9338 if (env->idle == CPU_IDLE) 9339 return -1; 9340 9341 dist = node_distance(src_nid, dst_nid); 9342 if (numa_group) { 9343 src_weight = group_weight(p, src_nid, dist); 9344 dst_weight = group_weight(p, dst_nid, dist); 9345 } else { 9346 src_weight = task_weight(p, src_nid, dist); 9347 dst_weight = task_weight(p, dst_nid, dist); 9348 } 9349 9350 return dst_weight < src_weight; 9351 } 9352 9353 #else 9354 static inline int migrate_degrades_locality(struct task_struct *p, 9355 struct lb_env *env) 9356 { 9357 return -1; 9358 } 9359 #endif 9360 9361 /* 9362 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9363 */ 9364 static 9365 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9366 { 9367 int tsk_cache_hot; 9368 9369 lockdep_assert_rq_held(env->src_rq); 9370 9371 /* 9372 * We do not migrate tasks that are: 9373 * 1) throttled_lb_pair, or 9374 * 2) cannot be migrated to this CPU due to cpus_ptr, or 9375 * 3) running (obviously), or 9376 * 4) are cache-hot on their current CPU. 9377 */ 9378 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9379 return 0; 9380 9381 /* Disregard percpu kthreads; they are where they need to be. */ 9382 if (kthread_is_per_cpu(p)) 9383 return 0; 9384 9385 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9386 int cpu; 9387 9388 schedstat_inc(p->stats.nr_failed_migrations_affine); 9389 9390 env->flags |= LBF_SOME_PINNED; 9391 9392 /* 9393 * Remember if this task can be migrated to any other CPU in 9394 * our sched_group. We may want to revisit it if we couldn't 9395 * meet load balance goals by pulling other tasks on src_cpu. 9396 * 9397 * Avoid computing new_dst_cpu 9398 * - for NEWLY_IDLE 9399 * - if we have already computed one in current iteration 9400 * - if it's an active balance 9401 */ 9402 if (env->idle == CPU_NEWLY_IDLE || 9403 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9404 return 0; 9405 9406 /* Prevent to re-select dst_cpu via env's CPUs: */ 9407 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9408 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9409 env->flags |= LBF_DST_PINNED; 9410 env->new_dst_cpu = cpu; 9411 break; 9412 } 9413 } 9414 9415 return 0; 9416 } 9417 9418 /* Record that we found at least one task that could run on dst_cpu */ 9419 env->flags &= ~LBF_ALL_PINNED; 9420 9421 if (task_on_cpu(env->src_rq, p)) { 9422 schedstat_inc(p->stats.nr_failed_migrations_running); 9423 return 0; 9424 } 9425 9426 /* 9427 * Aggressive migration if: 9428 * 1) active balance 9429 * 2) destination numa is preferred 9430 * 3) task is cache cold, or 9431 * 4) too many balance attempts have failed. 9432 */ 9433 if (env->flags & LBF_ACTIVE_LB) 9434 return 1; 9435 9436 tsk_cache_hot = migrate_degrades_locality(p, env); 9437 if (tsk_cache_hot == -1) 9438 tsk_cache_hot = task_hot(p, env); 9439 9440 if (tsk_cache_hot <= 0 || 9441 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9442 if (tsk_cache_hot == 1) { 9443 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9444 schedstat_inc(p->stats.nr_forced_migrations); 9445 } 9446 return 1; 9447 } 9448 9449 schedstat_inc(p->stats.nr_failed_migrations_hot); 9450 return 0; 9451 } 9452 9453 /* 9454 * detach_task() -- detach the task for the migration specified in env 9455 */ 9456 static void detach_task(struct task_struct *p, struct lb_env *env) 9457 { 9458 lockdep_assert_rq_held(env->src_rq); 9459 9460 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9461 set_task_cpu(p, env->dst_cpu); 9462 } 9463 9464 /* 9465 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9466 * part of active balancing operations within "domain". 9467 * 9468 * Returns a task if successful and NULL otherwise. 9469 */ 9470 static struct task_struct *detach_one_task(struct lb_env *env) 9471 { 9472 struct task_struct *p; 9473 9474 lockdep_assert_rq_held(env->src_rq); 9475 9476 list_for_each_entry_reverse(p, 9477 &env->src_rq->cfs_tasks, se.group_node) { 9478 if (!can_migrate_task(p, env)) 9479 continue; 9480 9481 detach_task(p, env); 9482 9483 /* 9484 * Right now, this is only the second place where 9485 * lb_gained[env->idle] is updated (other is detach_tasks) 9486 * so we can safely collect stats here rather than 9487 * inside detach_tasks(). 9488 */ 9489 schedstat_inc(env->sd->lb_gained[env->idle]); 9490 return p; 9491 } 9492 return NULL; 9493 } 9494 9495 /* 9496 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9497 * busiest_rq, as part of a balancing operation within domain "sd". 9498 * 9499 * Returns number of detached tasks if successful and 0 otherwise. 9500 */ 9501 static int detach_tasks(struct lb_env *env) 9502 { 9503 struct list_head *tasks = &env->src_rq->cfs_tasks; 9504 unsigned long util, load; 9505 struct task_struct *p; 9506 int detached = 0; 9507 9508 lockdep_assert_rq_held(env->src_rq); 9509 9510 /* 9511 * Source run queue has been emptied by another CPU, clear 9512 * LBF_ALL_PINNED flag as we will not test any task. 9513 */ 9514 if (env->src_rq->nr_running <= 1) { 9515 env->flags &= ~LBF_ALL_PINNED; 9516 return 0; 9517 } 9518 9519 if (env->imbalance <= 0) 9520 return 0; 9521 9522 while (!list_empty(tasks)) { 9523 /* 9524 * We don't want to steal all, otherwise we may be treated likewise, 9525 * which could at worst lead to a livelock crash. 9526 */ 9527 if (env->idle && env->src_rq->nr_running <= 1) 9528 break; 9529 9530 env->loop++; 9531 /* We've more or less seen every task there is, call it quits */ 9532 if (env->loop > env->loop_max) 9533 break; 9534 9535 /* take a breather every nr_migrate tasks */ 9536 if (env->loop > env->loop_break) { 9537 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9538 env->flags |= LBF_NEED_BREAK; 9539 break; 9540 } 9541 9542 p = list_last_entry(tasks, struct task_struct, se.group_node); 9543 9544 if (!can_migrate_task(p, env)) 9545 goto next; 9546 9547 switch (env->migration_type) { 9548 case migrate_load: 9549 /* 9550 * Depending of the number of CPUs and tasks and the 9551 * cgroup hierarchy, task_h_load() can return a null 9552 * value. Make sure that env->imbalance decreases 9553 * otherwise detach_tasks() will stop only after 9554 * detaching up to loop_max tasks. 9555 */ 9556 load = max_t(unsigned long, task_h_load(p), 1); 9557 9558 if (sched_feat(LB_MIN) && 9559 load < 16 && !env->sd->nr_balance_failed) 9560 goto next; 9561 9562 /* 9563 * Make sure that we don't migrate too much load. 9564 * Nevertheless, let relax the constraint if 9565 * scheduler fails to find a good waiting task to 9566 * migrate. 9567 */ 9568 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9569 goto next; 9570 9571 env->imbalance -= load; 9572 break; 9573 9574 case migrate_util: 9575 util = task_util_est(p); 9576 9577 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9578 goto next; 9579 9580 env->imbalance -= util; 9581 break; 9582 9583 case migrate_task: 9584 env->imbalance--; 9585 break; 9586 9587 case migrate_misfit: 9588 /* This is not a misfit task */ 9589 if (task_fits_cpu(p, env->src_cpu)) 9590 goto next; 9591 9592 env->imbalance = 0; 9593 break; 9594 } 9595 9596 detach_task(p, env); 9597 list_add(&p->se.group_node, &env->tasks); 9598 9599 detached++; 9600 9601 #ifdef CONFIG_PREEMPTION 9602 /* 9603 * NEWIDLE balancing is a source of latency, so preemptible 9604 * kernels will stop after the first task is detached to minimize 9605 * the critical section. 9606 */ 9607 if (env->idle == CPU_NEWLY_IDLE) 9608 break; 9609 #endif 9610 9611 /* 9612 * We only want to steal up to the prescribed amount of 9613 * load/util/tasks. 9614 */ 9615 if (env->imbalance <= 0) 9616 break; 9617 9618 continue; 9619 next: 9620 list_move(&p->se.group_node, tasks); 9621 } 9622 9623 /* 9624 * Right now, this is one of only two places we collect this stat 9625 * so we can safely collect detach_one_task() stats here rather 9626 * than inside detach_one_task(). 9627 */ 9628 schedstat_add(env->sd->lb_gained[env->idle], detached); 9629 9630 return detached; 9631 } 9632 9633 /* 9634 * attach_task() -- attach the task detached by detach_task() to its new rq. 9635 */ 9636 static void attach_task(struct rq *rq, struct task_struct *p) 9637 { 9638 lockdep_assert_rq_held(rq); 9639 9640 WARN_ON_ONCE(task_rq(p) != rq); 9641 activate_task(rq, p, ENQUEUE_NOCLOCK); 9642 wakeup_preempt(rq, p, 0); 9643 } 9644 9645 /* 9646 * attach_one_task() -- attaches the task returned from detach_one_task() to 9647 * its new rq. 9648 */ 9649 static void attach_one_task(struct rq *rq, struct task_struct *p) 9650 { 9651 struct rq_flags rf; 9652 9653 rq_lock(rq, &rf); 9654 update_rq_clock(rq); 9655 attach_task(rq, p); 9656 rq_unlock(rq, &rf); 9657 } 9658 9659 /* 9660 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9661 * new rq. 9662 */ 9663 static void attach_tasks(struct lb_env *env) 9664 { 9665 struct list_head *tasks = &env->tasks; 9666 struct task_struct *p; 9667 struct rq_flags rf; 9668 9669 rq_lock(env->dst_rq, &rf); 9670 update_rq_clock(env->dst_rq); 9671 9672 while (!list_empty(tasks)) { 9673 p = list_first_entry(tasks, struct task_struct, se.group_node); 9674 list_del_init(&p->se.group_node); 9675 9676 attach_task(env->dst_rq, p); 9677 } 9678 9679 rq_unlock(env->dst_rq, &rf); 9680 } 9681 9682 #ifdef CONFIG_NO_HZ_COMMON 9683 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9684 { 9685 if (cfs_rq->avg.load_avg) 9686 return true; 9687 9688 if (cfs_rq->avg.util_avg) 9689 return true; 9690 9691 return false; 9692 } 9693 9694 static inline bool others_have_blocked(struct rq *rq) 9695 { 9696 if (cpu_util_rt(rq)) 9697 return true; 9698 9699 if (cpu_util_dl(rq)) 9700 return true; 9701 9702 if (hw_load_avg(rq)) 9703 return true; 9704 9705 if (cpu_util_irq(rq)) 9706 return true; 9707 9708 return false; 9709 } 9710 9711 static inline void update_blocked_load_tick(struct rq *rq) 9712 { 9713 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9714 } 9715 9716 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9717 { 9718 if (!has_blocked) 9719 rq->has_blocked_load = 0; 9720 } 9721 #else 9722 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9723 static inline bool others_have_blocked(struct rq *rq) { return false; } 9724 static inline void update_blocked_load_tick(struct rq *rq) {} 9725 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9726 #endif 9727 9728 static bool __update_blocked_others(struct rq *rq, bool *done) 9729 { 9730 bool updated; 9731 9732 /* 9733 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9734 * DL and IRQ signals have been updated before updating CFS. 9735 */ 9736 updated = update_other_load_avgs(rq); 9737 9738 if (others_have_blocked(rq)) 9739 *done = false; 9740 9741 return updated; 9742 } 9743 9744 #ifdef CONFIG_FAIR_GROUP_SCHED 9745 9746 static bool __update_blocked_fair(struct rq *rq, bool *done) 9747 { 9748 struct cfs_rq *cfs_rq, *pos; 9749 bool decayed = false; 9750 int cpu = cpu_of(rq); 9751 9752 /* 9753 * Iterates the task_group tree in a bottom up fashion, see 9754 * list_add_leaf_cfs_rq() for details. 9755 */ 9756 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9757 struct sched_entity *se; 9758 9759 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9760 update_tg_load_avg(cfs_rq); 9761 9762 if (cfs_rq->nr_running == 0) 9763 update_idle_cfs_rq_clock_pelt(cfs_rq); 9764 9765 if (cfs_rq == &rq->cfs) 9766 decayed = true; 9767 } 9768 9769 /* Propagate pending load changes to the parent, if any: */ 9770 se = cfs_rq->tg->se[cpu]; 9771 if (se && !skip_blocked_update(se)) 9772 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9773 9774 /* 9775 * There can be a lot of idle CPU cgroups. Don't let fully 9776 * decayed cfs_rqs linger on the list. 9777 */ 9778 if (cfs_rq_is_decayed(cfs_rq)) 9779 list_del_leaf_cfs_rq(cfs_rq); 9780 9781 /* Don't need periodic decay once load/util_avg are null */ 9782 if (cfs_rq_has_blocked(cfs_rq)) 9783 *done = false; 9784 } 9785 9786 return decayed; 9787 } 9788 9789 /* 9790 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9791 * This needs to be done in a top-down fashion because the load of a child 9792 * group is a fraction of its parents load. 9793 */ 9794 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9795 { 9796 struct rq *rq = rq_of(cfs_rq); 9797 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9798 unsigned long now = jiffies; 9799 unsigned long load; 9800 9801 if (cfs_rq->last_h_load_update == now) 9802 return; 9803 9804 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9805 for_each_sched_entity(se) { 9806 cfs_rq = cfs_rq_of(se); 9807 WRITE_ONCE(cfs_rq->h_load_next, se); 9808 if (cfs_rq->last_h_load_update == now) 9809 break; 9810 } 9811 9812 if (!se) { 9813 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9814 cfs_rq->last_h_load_update = now; 9815 } 9816 9817 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9818 load = cfs_rq->h_load; 9819 load = div64_ul(load * se->avg.load_avg, 9820 cfs_rq_load_avg(cfs_rq) + 1); 9821 cfs_rq = group_cfs_rq(se); 9822 cfs_rq->h_load = load; 9823 cfs_rq->last_h_load_update = now; 9824 } 9825 } 9826 9827 static unsigned long task_h_load(struct task_struct *p) 9828 { 9829 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9830 9831 update_cfs_rq_h_load(cfs_rq); 9832 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9833 cfs_rq_load_avg(cfs_rq) + 1); 9834 } 9835 #else 9836 static bool __update_blocked_fair(struct rq *rq, bool *done) 9837 { 9838 struct cfs_rq *cfs_rq = &rq->cfs; 9839 bool decayed; 9840 9841 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9842 if (cfs_rq_has_blocked(cfs_rq)) 9843 *done = false; 9844 9845 return decayed; 9846 } 9847 9848 static unsigned long task_h_load(struct task_struct *p) 9849 { 9850 return p->se.avg.load_avg; 9851 } 9852 #endif 9853 9854 static void sched_balance_update_blocked_averages(int cpu) 9855 { 9856 bool decayed = false, done = true; 9857 struct rq *rq = cpu_rq(cpu); 9858 struct rq_flags rf; 9859 9860 rq_lock_irqsave(rq, &rf); 9861 update_blocked_load_tick(rq); 9862 update_rq_clock(rq); 9863 9864 decayed |= __update_blocked_others(rq, &done); 9865 decayed |= __update_blocked_fair(rq, &done); 9866 9867 update_blocked_load_status(rq, !done); 9868 if (decayed) 9869 cpufreq_update_util(rq, 0); 9870 rq_unlock_irqrestore(rq, &rf); 9871 } 9872 9873 /********** Helpers for sched_balance_find_src_group ************************/ 9874 9875 /* 9876 * sg_lb_stats - stats of a sched_group required for load-balancing: 9877 */ 9878 struct sg_lb_stats { 9879 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9880 unsigned long group_load; /* Total load over the CPUs of the group */ 9881 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9882 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9883 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9884 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9885 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9886 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9887 unsigned int group_weight; 9888 enum group_type group_type; 9889 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9890 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9891 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9892 #ifdef CONFIG_NUMA_BALANCING 9893 unsigned int nr_numa_running; 9894 unsigned int nr_preferred_running; 9895 #endif 9896 }; 9897 9898 /* 9899 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9900 */ 9901 struct sd_lb_stats { 9902 struct sched_group *busiest; /* Busiest group in this sd */ 9903 struct sched_group *local; /* Local group in this sd */ 9904 unsigned long total_load; /* Total load of all groups in sd */ 9905 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9906 unsigned long avg_load; /* Average load across all groups in sd */ 9907 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9908 9909 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9910 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9911 }; 9912 9913 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9914 { 9915 /* 9916 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9917 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9918 * We must however set busiest_stat::group_type and 9919 * busiest_stat::idle_cpus to the worst busiest group because 9920 * update_sd_pick_busiest() reads these before assignment. 9921 */ 9922 *sds = (struct sd_lb_stats){ 9923 .busiest = NULL, 9924 .local = NULL, 9925 .total_load = 0UL, 9926 .total_capacity = 0UL, 9927 .busiest_stat = { 9928 .idle_cpus = UINT_MAX, 9929 .group_type = group_has_spare, 9930 }, 9931 }; 9932 } 9933 9934 static unsigned long scale_rt_capacity(int cpu) 9935 { 9936 unsigned long max = get_actual_cpu_capacity(cpu); 9937 struct rq *rq = cpu_rq(cpu); 9938 unsigned long used, free; 9939 unsigned long irq; 9940 9941 irq = cpu_util_irq(rq); 9942 9943 if (unlikely(irq >= max)) 9944 return 1; 9945 9946 /* 9947 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9948 * (running and not running) with weights 0 and 1024 respectively. 9949 */ 9950 used = cpu_util_rt(rq); 9951 used += cpu_util_dl(rq); 9952 9953 if (unlikely(used >= max)) 9954 return 1; 9955 9956 free = max - used; 9957 9958 return scale_irq_capacity(free, irq, max); 9959 } 9960 9961 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9962 { 9963 unsigned long capacity = scale_rt_capacity(cpu); 9964 struct sched_group *sdg = sd->groups; 9965 9966 if (!capacity) 9967 capacity = 1; 9968 9969 cpu_rq(cpu)->cpu_capacity = capacity; 9970 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9971 9972 sdg->sgc->capacity = capacity; 9973 sdg->sgc->min_capacity = capacity; 9974 sdg->sgc->max_capacity = capacity; 9975 } 9976 9977 void update_group_capacity(struct sched_domain *sd, int cpu) 9978 { 9979 struct sched_domain *child = sd->child; 9980 struct sched_group *group, *sdg = sd->groups; 9981 unsigned long capacity, min_capacity, max_capacity; 9982 unsigned long interval; 9983 9984 interval = msecs_to_jiffies(sd->balance_interval); 9985 interval = clamp(interval, 1UL, max_load_balance_interval); 9986 sdg->sgc->next_update = jiffies + interval; 9987 9988 if (!child) { 9989 update_cpu_capacity(sd, cpu); 9990 return; 9991 } 9992 9993 capacity = 0; 9994 min_capacity = ULONG_MAX; 9995 max_capacity = 0; 9996 9997 if (child->flags & SD_OVERLAP) { 9998 /* 9999 * SD_OVERLAP domains cannot assume that child groups 10000 * span the current group. 10001 */ 10002 10003 for_each_cpu(cpu, sched_group_span(sdg)) { 10004 unsigned long cpu_cap = capacity_of(cpu); 10005 10006 capacity += cpu_cap; 10007 min_capacity = min(cpu_cap, min_capacity); 10008 max_capacity = max(cpu_cap, max_capacity); 10009 } 10010 } else { 10011 /* 10012 * !SD_OVERLAP domains can assume that child groups 10013 * span the current group. 10014 */ 10015 10016 group = child->groups; 10017 do { 10018 struct sched_group_capacity *sgc = group->sgc; 10019 10020 capacity += sgc->capacity; 10021 min_capacity = min(sgc->min_capacity, min_capacity); 10022 max_capacity = max(sgc->max_capacity, max_capacity); 10023 group = group->next; 10024 } while (group != child->groups); 10025 } 10026 10027 sdg->sgc->capacity = capacity; 10028 sdg->sgc->min_capacity = min_capacity; 10029 sdg->sgc->max_capacity = max_capacity; 10030 } 10031 10032 /* 10033 * Check whether the capacity of the rq has been noticeably reduced by side 10034 * activity. The imbalance_pct is used for the threshold. 10035 * Return true is the capacity is reduced 10036 */ 10037 static inline int 10038 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10039 { 10040 return ((rq->cpu_capacity * sd->imbalance_pct) < 10041 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10042 } 10043 10044 /* Check if the rq has a misfit task */ 10045 static inline bool check_misfit_status(struct rq *rq) 10046 { 10047 return rq->misfit_task_load; 10048 } 10049 10050 /* 10051 * Group imbalance indicates (and tries to solve) the problem where balancing 10052 * groups is inadequate due to ->cpus_ptr constraints. 10053 * 10054 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10055 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10056 * Something like: 10057 * 10058 * { 0 1 2 3 } { 4 5 6 7 } 10059 * * * * * 10060 * 10061 * If we were to balance group-wise we'd place two tasks in the first group and 10062 * two tasks in the second group. Clearly this is undesired as it will overload 10063 * cpu 3 and leave one of the CPUs in the second group unused. 10064 * 10065 * The current solution to this issue is detecting the skew in the first group 10066 * by noticing the lower domain failed to reach balance and had difficulty 10067 * moving tasks due to affinity constraints. 10068 * 10069 * When this is so detected; this group becomes a candidate for busiest; see 10070 * update_sd_pick_busiest(). And calculate_imbalance() and 10071 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10072 * to create an effective group imbalance. 10073 * 10074 * This is a somewhat tricky proposition since the next run might not find the 10075 * group imbalance and decide the groups need to be balanced again. A most 10076 * subtle and fragile situation. 10077 */ 10078 10079 static inline int sg_imbalanced(struct sched_group *group) 10080 { 10081 return group->sgc->imbalance; 10082 } 10083 10084 /* 10085 * group_has_capacity returns true if the group has spare capacity that could 10086 * be used by some tasks. 10087 * We consider that a group has spare capacity if the number of task is 10088 * smaller than the number of CPUs or if the utilization is lower than the 10089 * available capacity for CFS tasks. 10090 * For the latter, we use a threshold to stabilize the state, to take into 10091 * account the variance of the tasks' load and to return true if the available 10092 * capacity in meaningful for the load balancer. 10093 * As an example, an available capacity of 1% can appear but it doesn't make 10094 * any benefit for the load balance. 10095 */ 10096 static inline bool 10097 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10098 { 10099 if (sgs->sum_nr_running < sgs->group_weight) 10100 return true; 10101 10102 if ((sgs->group_capacity * imbalance_pct) < 10103 (sgs->group_runnable * 100)) 10104 return false; 10105 10106 if ((sgs->group_capacity * 100) > 10107 (sgs->group_util * imbalance_pct)) 10108 return true; 10109 10110 return false; 10111 } 10112 10113 /* 10114 * group_is_overloaded returns true if the group has more tasks than it can 10115 * handle. 10116 * group_is_overloaded is not equals to !group_has_capacity because a group 10117 * with the exact right number of tasks, has no more spare capacity but is not 10118 * overloaded so both group_has_capacity and group_is_overloaded return 10119 * false. 10120 */ 10121 static inline bool 10122 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10123 { 10124 if (sgs->sum_nr_running <= sgs->group_weight) 10125 return false; 10126 10127 if ((sgs->group_capacity * 100) < 10128 (sgs->group_util * imbalance_pct)) 10129 return true; 10130 10131 if ((sgs->group_capacity * imbalance_pct) < 10132 (sgs->group_runnable * 100)) 10133 return true; 10134 10135 return false; 10136 } 10137 10138 static inline enum 10139 group_type group_classify(unsigned int imbalance_pct, 10140 struct sched_group *group, 10141 struct sg_lb_stats *sgs) 10142 { 10143 if (group_is_overloaded(imbalance_pct, sgs)) 10144 return group_overloaded; 10145 10146 if (sg_imbalanced(group)) 10147 return group_imbalanced; 10148 10149 if (sgs->group_asym_packing) 10150 return group_asym_packing; 10151 10152 if (sgs->group_smt_balance) 10153 return group_smt_balance; 10154 10155 if (sgs->group_misfit_task_load) 10156 return group_misfit_task; 10157 10158 if (!group_has_capacity(imbalance_pct, sgs)) 10159 return group_fully_busy; 10160 10161 return group_has_spare; 10162 } 10163 10164 /** 10165 * sched_use_asym_prio - Check whether asym_packing priority must be used 10166 * @sd: The scheduling domain of the load balancing 10167 * @cpu: A CPU 10168 * 10169 * Always use CPU priority when balancing load between SMT siblings. When 10170 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10171 * use CPU priority if the whole core is idle. 10172 * 10173 * Returns: True if the priority of @cpu must be followed. False otherwise. 10174 */ 10175 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10176 { 10177 if (!(sd->flags & SD_ASYM_PACKING)) 10178 return false; 10179 10180 if (!sched_smt_active()) 10181 return true; 10182 10183 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10184 } 10185 10186 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10187 { 10188 /* 10189 * First check if @dst_cpu can do asym_packing load balance. Only do it 10190 * if it has higher priority than @src_cpu. 10191 */ 10192 return sched_use_asym_prio(sd, dst_cpu) && 10193 sched_asym_prefer(dst_cpu, src_cpu); 10194 } 10195 10196 /** 10197 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10198 * @env: The load balancing environment 10199 * @sgs: Load-balancing statistics of the candidate busiest group 10200 * @group: The candidate busiest group 10201 * 10202 * @env::dst_cpu can do asym_packing if it has higher priority than the 10203 * preferred CPU of @group. 10204 * 10205 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10206 * otherwise. 10207 */ 10208 static inline bool 10209 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10210 { 10211 /* 10212 * CPU priorities do not make sense for SMT cores with more than one 10213 * busy sibling. 10214 */ 10215 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10216 (sgs->group_weight - sgs->idle_cpus != 1)) 10217 return false; 10218 10219 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10220 } 10221 10222 /* One group has more than one SMT CPU while the other group does not */ 10223 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10224 struct sched_group *sg2) 10225 { 10226 if (!sg1 || !sg2) 10227 return false; 10228 10229 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10230 (sg2->flags & SD_SHARE_CPUCAPACITY); 10231 } 10232 10233 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10234 struct sched_group *group) 10235 { 10236 if (!env->idle) 10237 return false; 10238 10239 /* 10240 * For SMT source group, it is better to move a task 10241 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10242 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10243 * will not be on. 10244 */ 10245 if (group->flags & SD_SHARE_CPUCAPACITY && 10246 sgs->sum_h_nr_running > 1) 10247 return true; 10248 10249 return false; 10250 } 10251 10252 static inline long sibling_imbalance(struct lb_env *env, 10253 struct sd_lb_stats *sds, 10254 struct sg_lb_stats *busiest, 10255 struct sg_lb_stats *local) 10256 { 10257 int ncores_busiest, ncores_local; 10258 long imbalance; 10259 10260 if (!env->idle || !busiest->sum_nr_running) 10261 return 0; 10262 10263 ncores_busiest = sds->busiest->cores; 10264 ncores_local = sds->local->cores; 10265 10266 if (ncores_busiest == ncores_local) { 10267 imbalance = busiest->sum_nr_running; 10268 lsub_positive(&imbalance, local->sum_nr_running); 10269 return imbalance; 10270 } 10271 10272 /* Balance such that nr_running/ncores ratio are same on both groups */ 10273 imbalance = ncores_local * busiest->sum_nr_running; 10274 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10275 /* Normalize imbalance and do rounding on normalization */ 10276 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10277 imbalance /= ncores_local + ncores_busiest; 10278 10279 /* Take advantage of resource in an empty sched group */ 10280 if (imbalance <= 1 && local->sum_nr_running == 0 && 10281 busiest->sum_nr_running > 1) 10282 imbalance = 2; 10283 10284 return imbalance; 10285 } 10286 10287 static inline bool 10288 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10289 { 10290 /* 10291 * When there is more than 1 task, the group_overloaded case already 10292 * takes care of cpu with reduced capacity 10293 */ 10294 if (rq->cfs.h_nr_running != 1) 10295 return false; 10296 10297 return check_cpu_capacity(rq, sd); 10298 } 10299 10300 /** 10301 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10302 * @env: The load balancing environment. 10303 * @sds: Load-balancing data with statistics of the local group. 10304 * @group: sched_group whose statistics are to be updated. 10305 * @sgs: variable to hold the statistics for this group. 10306 * @sg_overloaded: sched_group is overloaded 10307 * @sg_overutilized: sched_group is overutilized 10308 */ 10309 static inline void update_sg_lb_stats(struct lb_env *env, 10310 struct sd_lb_stats *sds, 10311 struct sched_group *group, 10312 struct sg_lb_stats *sgs, 10313 bool *sg_overloaded, 10314 bool *sg_overutilized) 10315 { 10316 int i, nr_running, local_group; 10317 10318 memset(sgs, 0, sizeof(*sgs)); 10319 10320 local_group = group == sds->local; 10321 10322 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10323 struct rq *rq = cpu_rq(i); 10324 unsigned long load = cpu_load(rq); 10325 10326 sgs->group_load += load; 10327 sgs->group_util += cpu_util_cfs(i); 10328 sgs->group_runnable += cpu_runnable(rq); 10329 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 10330 10331 nr_running = rq->nr_running; 10332 sgs->sum_nr_running += nr_running; 10333 10334 if (nr_running > 1) 10335 *sg_overloaded = 1; 10336 10337 if (cpu_overutilized(i)) 10338 *sg_overutilized = 1; 10339 10340 #ifdef CONFIG_NUMA_BALANCING 10341 sgs->nr_numa_running += rq->nr_numa_running; 10342 sgs->nr_preferred_running += rq->nr_preferred_running; 10343 #endif 10344 /* 10345 * No need to call idle_cpu() if nr_running is not 0 10346 */ 10347 if (!nr_running && idle_cpu(i)) { 10348 sgs->idle_cpus++; 10349 /* Idle cpu can't have misfit task */ 10350 continue; 10351 } 10352 10353 if (local_group) 10354 continue; 10355 10356 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10357 /* Check for a misfit task on the cpu */ 10358 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10359 sgs->group_misfit_task_load = rq->misfit_task_load; 10360 *sg_overloaded = 1; 10361 } 10362 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10363 /* Check for a task running on a CPU with reduced capacity */ 10364 if (sgs->group_misfit_task_load < load) 10365 sgs->group_misfit_task_load = load; 10366 } 10367 } 10368 10369 sgs->group_capacity = group->sgc->capacity; 10370 10371 sgs->group_weight = group->group_weight; 10372 10373 /* Check if dst CPU is idle and preferred to this group */ 10374 if (!local_group && env->idle && sgs->sum_h_nr_running && 10375 sched_group_asym(env, sgs, group)) 10376 sgs->group_asym_packing = 1; 10377 10378 /* Check for loaded SMT group to be balanced to dst CPU */ 10379 if (!local_group && smt_balance(env, sgs, group)) 10380 sgs->group_smt_balance = 1; 10381 10382 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10383 10384 /* Computing avg_load makes sense only when group is overloaded */ 10385 if (sgs->group_type == group_overloaded) 10386 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10387 sgs->group_capacity; 10388 } 10389 10390 /** 10391 * update_sd_pick_busiest - return 1 on busiest group 10392 * @env: The load balancing environment. 10393 * @sds: sched_domain statistics 10394 * @sg: sched_group candidate to be checked for being the busiest 10395 * @sgs: sched_group statistics 10396 * 10397 * Determine if @sg is a busier group than the previously selected 10398 * busiest group. 10399 * 10400 * Return: %true if @sg is a busier group than the previously selected 10401 * busiest group. %false otherwise. 10402 */ 10403 static bool update_sd_pick_busiest(struct lb_env *env, 10404 struct sd_lb_stats *sds, 10405 struct sched_group *sg, 10406 struct sg_lb_stats *sgs) 10407 { 10408 struct sg_lb_stats *busiest = &sds->busiest_stat; 10409 10410 /* Make sure that there is at least one task to pull */ 10411 if (!sgs->sum_h_nr_running) 10412 return false; 10413 10414 /* 10415 * Don't try to pull misfit tasks we can't help. 10416 * We can use max_capacity here as reduction in capacity on some 10417 * CPUs in the group should either be possible to resolve 10418 * internally or be covered by avg_load imbalance (eventually). 10419 */ 10420 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10421 (sgs->group_type == group_misfit_task) && 10422 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10423 sds->local_stat.group_type != group_has_spare)) 10424 return false; 10425 10426 if (sgs->group_type > busiest->group_type) 10427 return true; 10428 10429 if (sgs->group_type < busiest->group_type) 10430 return false; 10431 10432 /* 10433 * The candidate and the current busiest group are the same type of 10434 * group. Let check which one is the busiest according to the type. 10435 */ 10436 10437 switch (sgs->group_type) { 10438 case group_overloaded: 10439 /* Select the overloaded group with highest avg_load. */ 10440 return sgs->avg_load > busiest->avg_load; 10441 10442 case group_imbalanced: 10443 /* 10444 * Select the 1st imbalanced group as we don't have any way to 10445 * choose one more than another. 10446 */ 10447 return false; 10448 10449 case group_asym_packing: 10450 /* Prefer to move from lowest priority CPU's work */ 10451 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10452 10453 case group_misfit_task: 10454 /* 10455 * If we have more than one misfit sg go with the biggest 10456 * misfit. 10457 */ 10458 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10459 10460 case group_smt_balance: 10461 /* 10462 * Check if we have spare CPUs on either SMT group to 10463 * choose has spare or fully busy handling. 10464 */ 10465 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10466 goto has_spare; 10467 10468 fallthrough; 10469 10470 case group_fully_busy: 10471 /* 10472 * Select the fully busy group with highest avg_load. In 10473 * theory, there is no need to pull task from such kind of 10474 * group because tasks have all compute capacity that they need 10475 * but we can still improve the overall throughput by reducing 10476 * contention when accessing shared HW resources. 10477 * 10478 * XXX for now avg_load is not computed and always 0 so we 10479 * select the 1st one, except if @sg is composed of SMT 10480 * siblings. 10481 */ 10482 10483 if (sgs->avg_load < busiest->avg_load) 10484 return false; 10485 10486 if (sgs->avg_load == busiest->avg_load) { 10487 /* 10488 * SMT sched groups need more help than non-SMT groups. 10489 * If @sg happens to also be SMT, either choice is good. 10490 */ 10491 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10492 return false; 10493 } 10494 10495 break; 10496 10497 case group_has_spare: 10498 /* 10499 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10500 * as we do not want to pull task off SMT core with one task 10501 * and make the core idle. 10502 */ 10503 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10504 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10505 return false; 10506 else 10507 return true; 10508 } 10509 has_spare: 10510 10511 /* 10512 * Select not overloaded group with lowest number of idle CPUs 10513 * and highest number of running tasks. We could also compare 10514 * the spare capacity which is more stable but it can end up 10515 * that the group has less spare capacity but finally more idle 10516 * CPUs which means less opportunity to pull tasks. 10517 */ 10518 if (sgs->idle_cpus > busiest->idle_cpus) 10519 return false; 10520 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10521 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10522 return false; 10523 10524 break; 10525 } 10526 10527 /* 10528 * Candidate sg has no more than one task per CPU and has higher 10529 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10530 * throughput. Maximize throughput, power/energy consequences are not 10531 * considered. 10532 */ 10533 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10534 (sgs->group_type <= group_fully_busy) && 10535 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10536 return false; 10537 10538 return true; 10539 } 10540 10541 #ifdef CONFIG_NUMA_BALANCING 10542 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10543 { 10544 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10545 return regular; 10546 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10547 return remote; 10548 return all; 10549 } 10550 10551 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10552 { 10553 if (rq->nr_running > rq->nr_numa_running) 10554 return regular; 10555 if (rq->nr_running > rq->nr_preferred_running) 10556 return remote; 10557 return all; 10558 } 10559 #else 10560 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10561 { 10562 return all; 10563 } 10564 10565 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10566 { 10567 return regular; 10568 } 10569 #endif /* CONFIG_NUMA_BALANCING */ 10570 10571 10572 struct sg_lb_stats; 10573 10574 /* 10575 * task_running_on_cpu - return 1 if @p is running on @cpu. 10576 */ 10577 10578 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10579 { 10580 /* Task has no contribution or is new */ 10581 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10582 return 0; 10583 10584 if (task_on_rq_queued(p)) 10585 return 1; 10586 10587 return 0; 10588 } 10589 10590 /** 10591 * idle_cpu_without - would a given CPU be idle without p ? 10592 * @cpu: the processor on which idleness is tested. 10593 * @p: task which should be ignored. 10594 * 10595 * Return: 1 if the CPU would be idle. 0 otherwise. 10596 */ 10597 static int idle_cpu_without(int cpu, struct task_struct *p) 10598 { 10599 struct rq *rq = cpu_rq(cpu); 10600 10601 if (rq->curr != rq->idle && rq->curr != p) 10602 return 0; 10603 10604 /* 10605 * rq->nr_running can't be used but an updated version without the 10606 * impact of p on cpu must be used instead. The updated nr_running 10607 * be computed and tested before calling idle_cpu_without(). 10608 */ 10609 10610 if (rq->ttwu_pending) 10611 return 0; 10612 10613 return 1; 10614 } 10615 10616 /* 10617 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10618 * @sd: The sched_domain level to look for idlest group. 10619 * @group: sched_group whose statistics are to be updated. 10620 * @sgs: variable to hold the statistics for this group. 10621 * @p: The task for which we look for the idlest group/CPU. 10622 */ 10623 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10624 struct sched_group *group, 10625 struct sg_lb_stats *sgs, 10626 struct task_struct *p) 10627 { 10628 int i, nr_running; 10629 10630 memset(sgs, 0, sizeof(*sgs)); 10631 10632 /* Assume that task can't fit any CPU of the group */ 10633 if (sd->flags & SD_ASYM_CPUCAPACITY) 10634 sgs->group_misfit_task_load = 1; 10635 10636 for_each_cpu(i, sched_group_span(group)) { 10637 struct rq *rq = cpu_rq(i); 10638 unsigned int local; 10639 10640 sgs->group_load += cpu_load_without(rq, p); 10641 sgs->group_util += cpu_util_without(i, p); 10642 sgs->group_runnable += cpu_runnable_without(rq, p); 10643 local = task_running_on_cpu(i, p); 10644 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10645 10646 nr_running = rq->nr_running - local; 10647 sgs->sum_nr_running += nr_running; 10648 10649 /* 10650 * No need to call idle_cpu_without() if nr_running is not 0 10651 */ 10652 if (!nr_running && idle_cpu_without(i, p)) 10653 sgs->idle_cpus++; 10654 10655 /* Check if task fits in the CPU */ 10656 if (sd->flags & SD_ASYM_CPUCAPACITY && 10657 sgs->group_misfit_task_load && 10658 task_fits_cpu(p, i)) 10659 sgs->group_misfit_task_load = 0; 10660 10661 } 10662 10663 sgs->group_capacity = group->sgc->capacity; 10664 10665 sgs->group_weight = group->group_weight; 10666 10667 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10668 10669 /* 10670 * Computing avg_load makes sense only when group is fully busy or 10671 * overloaded 10672 */ 10673 if (sgs->group_type == group_fully_busy || 10674 sgs->group_type == group_overloaded) 10675 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10676 sgs->group_capacity; 10677 } 10678 10679 static bool update_pick_idlest(struct sched_group *idlest, 10680 struct sg_lb_stats *idlest_sgs, 10681 struct sched_group *group, 10682 struct sg_lb_stats *sgs) 10683 { 10684 if (sgs->group_type < idlest_sgs->group_type) 10685 return true; 10686 10687 if (sgs->group_type > idlest_sgs->group_type) 10688 return false; 10689 10690 /* 10691 * The candidate and the current idlest group are the same type of 10692 * group. Let check which one is the idlest according to the type. 10693 */ 10694 10695 switch (sgs->group_type) { 10696 case group_overloaded: 10697 case group_fully_busy: 10698 /* Select the group with lowest avg_load. */ 10699 if (idlest_sgs->avg_load <= sgs->avg_load) 10700 return false; 10701 break; 10702 10703 case group_imbalanced: 10704 case group_asym_packing: 10705 case group_smt_balance: 10706 /* Those types are not used in the slow wakeup path */ 10707 return false; 10708 10709 case group_misfit_task: 10710 /* Select group with the highest max capacity */ 10711 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10712 return false; 10713 break; 10714 10715 case group_has_spare: 10716 /* Select group with most idle CPUs */ 10717 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10718 return false; 10719 10720 /* Select group with lowest group_util */ 10721 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10722 idlest_sgs->group_util <= sgs->group_util) 10723 return false; 10724 10725 break; 10726 } 10727 10728 return true; 10729 } 10730 10731 /* 10732 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10733 * domain. 10734 * 10735 * Assumes p is allowed on at least one CPU in sd. 10736 */ 10737 static struct sched_group * 10738 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10739 { 10740 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10741 struct sg_lb_stats local_sgs, tmp_sgs; 10742 struct sg_lb_stats *sgs; 10743 unsigned long imbalance; 10744 struct sg_lb_stats idlest_sgs = { 10745 .avg_load = UINT_MAX, 10746 .group_type = group_overloaded, 10747 }; 10748 10749 do { 10750 int local_group; 10751 10752 /* Skip over this group if it has no CPUs allowed */ 10753 if (!cpumask_intersects(sched_group_span(group), 10754 p->cpus_ptr)) 10755 continue; 10756 10757 /* Skip over this group if no cookie matched */ 10758 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10759 continue; 10760 10761 local_group = cpumask_test_cpu(this_cpu, 10762 sched_group_span(group)); 10763 10764 if (local_group) { 10765 sgs = &local_sgs; 10766 local = group; 10767 } else { 10768 sgs = &tmp_sgs; 10769 } 10770 10771 update_sg_wakeup_stats(sd, group, sgs, p); 10772 10773 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10774 idlest = group; 10775 idlest_sgs = *sgs; 10776 } 10777 10778 } while (group = group->next, group != sd->groups); 10779 10780 10781 /* There is no idlest group to push tasks to */ 10782 if (!idlest) 10783 return NULL; 10784 10785 /* The local group has been skipped because of CPU affinity */ 10786 if (!local) 10787 return idlest; 10788 10789 /* 10790 * If the local group is idler than the selected idlest group 10791 * don't try and push the task. 10792 */ 10793 if (local_sgs.group_type < idlest_sgs.group_type) 10794 return NULL; 10795 10796 /* 10797 * If the local group is busier than the selected idlest group 10798 * try and push the task. 10799 */ 10800 if (local_sgs.group_type > idlest_sgs.group_type) 10801 return idlest; 10802 10803 switch (local_sgs.group_type) { 10804 case group_overloaded: 10805 case group_fully_busy: 10806 10807 /* Calculate allowed imbalance based on load */ 10808 imbalance = scale_load_down(NICE_0_LOAD) * 10809 (sd->imbalance_pct-100) / 100; 10810 10811 /* 10812 * When comparing groups across NUMA domains, it's possible for 10813 * the local domain to be very lightly loaded relative to the 10814 * remote domains but "imbalance" skews the comparison making 10815 * remote CPUs look much more favourable. When considering 10816 * cross-domain, add imbalance to the load on the remote node 10817 * and consider staying local. 10818 */ 10819 10820 if ((sd->flags & SD_NUMA) && 10821 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10822 return NULL; 10823 10824 /* 10825 * If the local group is less loaded than the selected 10826 * idlest group don't try and push any tasks. 10827 */ 10828 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10829 return NULL; 10830 10831 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10832 return NULL; 10833 break; 10834 10835 case group_imbalanced: 10836 case group_asym_packing: 10837 case group_smt_balance: 10838 /* Those type are not used in the slow wakeup path */ 10839 return NULL; 10840 10841 case group_misfit_task: 10842 /* Select group with the highest max capacity */ 10843 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10844 return NULL; 10845 break; 10846 10847 case group_has_spare: 10848 #ifdef CONFIG_NUMA 10849 if (sd->flags & SD_NUMA) { 10850 int imb_numa_nr = sd->imb_numa_nr; 10851 #ifdef CONFIG_NUMA_BALANCING 10852 int idlest_cpu; 10853 /* 10854 * If there is spare capacity at NUMA, try to select 10855 * the preferred node 10856 */ 10857 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10858 return NULL; 10859 10860 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10861 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10862 return idlest; 10863 #endif /* CONFIG_NUMA_BALANCING */ 10864 /* 10865 * Otherwise, keep the task close to the wakeup source 10866 * and improve locality if the number of running tasks 10867 * would remain below threshold where an imbalance is 10868 * allowed while accounting for the possibility the 10869 * task is pinned to a subset of CPUs. If there is a 10870 * real need of migration, periodic load balance will 10871 * take care of it. 10872 */ 10873 if (p->nr_cpus_allowed != NR_CPUS) { 10874 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10875 10876 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10877 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10878 } 10879 10880 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10881 if (!adjust_numa_imbalance(imbalance, 10882 local_sgs.sum_nr_running + 1, 10883 imb_numa_nr)) { 10884 return NULL; 10885 } 10886 } 10887 #endif /* CONFIG_NUMA */ 10888 10889 /* 10890 * Select group with highest number of idle CPUs. We could also 10891 * compare the utilization which is more stable but it can end 10892 * up that the group has less spare capacity but finally more 10893 * idle CPUs which means more opportunity to run task. 10894 */ 10895 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10896 return NULL; 10897 break; 10898 } 10899 10900 return idlest; 10901 } 10902 10903 static void update_idle_cpu_scan(struct lb_env *env, 10904 unsigned long sum_util) 10905 { 10906 struct sched_domain_shared *sd_share; 10907 int llc_weight, pct; 10908 u64 x, y, tmp; 10909 /* 10910 * Update the number of CPUs to scan in LLC domain, which could 10911 * be used as a hint in select_idle_cpu(). The update of sd_share 10912 * could be expensive because it is within a shared cache line. 10913 * So the write of this hint only occurs during periodic load 10914 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10915 * can fire way more frequently than the former. 10916 */ 10917 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10918 return; 10919 10920 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10921 if (env->sd->span_weight != llc_weight) 10922 return; 10923 10924 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10925 if (!sd_share) 10926 return; 10927 10928 /* 10929 * The number of CPUs to search drops as sum_util increases, when 10930 * sum_util hits 85% or above, the scan stops. 10931 * The reason to choose 85% as the threshold is because this is the 10932 * imbalance_pct(117) when a LLC sched group is overloaded. 10933 * 10934 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10935 * and y'= y / SCHED_CAPACITY_SCALE 10936 * 10937 * x is the ratio of sum_util compared to the CPU capacity: 10938 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10939 * y' is the ratio of CPUs to be scanned in the LLC domain, 10940 * and the number of CPUs to scan is calculated by: 10941 * 10942 * nr_scan = llc_weight * y' [2] 10943 * 10944 * When x hits the threshold of overloaded, AKA, when 10945 * x = 100 / pct, y drops to 0. According to [1], 10946 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10947 * 10948 * Scale x by SCHED_CAPACITY_SCALE: 10949 * x' = sum_util / llc_weight; [3] 10950 * 10951 * and finally [1] becomes: 10952 * y = SCHED_CAPACITY_SCALE - 10953 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10954 * 10955 */ 10956 /* equation [3] */ 10957 x = sum_util; 10958 do_div(x, llc_weight); 10959 10960 /* equation [4] */ 10961 pct = env->sd->imbalance_pct; 10962 tmp = x * x * pct * pct; 10963 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10964 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10965 y = SCHED_CAPACITY_SCALE - tmp; 10966 10967 /* equation [2] */ 10968 y *= llc_weight; 10969 do_div(y, SCHED_CAPACITY_SCALE); 10970 if ((int)y != sd_share->nr_idle_scan) 10971 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10972 } 10973 10974 /** 10975 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10976 * @env: The load balancing environment. 10977 * @sds: variable to hold the statistics for this sched_domain. 10978 */ 10979 10980 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10981 { 10982 struct sched_group *sg = env->sd->groups; 10983 struct sg_lb_stats *local = &sds->local_stat; 10984 struct sg_lb_stats tmp_sgs; 10985 unsigned long sum_util = 0; 10986 bool sg_overloaded = 0, sg_overutilized = 0; 10987 10988 do { 10989 struct sg_lb_stats *sgs = &tmp_sgs; 10990 int local_group; 10991 10992 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10993 if (local_group) { 10994 sds->local = sg; 10995 sgs = local; 10996 10997 if (env->idle != CPU_NEWLY_IDLE || 10998 time_after_eq(jiffies, sg->sgc->next_update)) 10999 update_group_capacity(env->sd, env->dst_cpu); 11000 } 11001 11002 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11003 11004 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11005 sds->busiest = sg; 11006 sds->busiest_stat = *sgs; 11007 } 11008 11009 /* Now, start updating sd_lb_stats */ 11010 sds->total_load += sgs->group_load; 11011 sds->total_capacity += sgs->group_capacity; 11012 11013 sum_util += sgs->group_util; 11014 sg = sg->next; 11015 } while (sg != env->sd->groups); 11016 11017 /* 11018 * Indicate that the child domain of the busiest group prefers tasks 11019 * go to a child's sibling domains first. NB the flags of a sched group 11020 * are those of the child domain. 11021 */ 11022 if (sds->busiest) 11023 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11024 11025 11026 if (env->sd->flags & SD_NUMA) 11027 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11028 11029 if (!env->sd->parent) { 11030 /* update overload indicator if we are at root domain */ 11031 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11032 11033 /* Update over-utilization (tipping point, U >= 0) indicator */ 11034 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11035 } else if (sg_overutilized) { 11036 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11037 } 11038 11039 update_idle_cpu_scan(env, sum_util); 11040 } 11041 11042 /** 11043 * calculate_imbalance - Calculate the amount of imbalance present within the 11044 * groups of a given sched_domain during load balance. 11045 * @env: load balance environment 11046 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11047 */ 11048 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11049 { 11050 struct sg_lb_stats *local, *busiest; 11051 11052 local = &sds->local_stat; 11053 busiest = &sds->busiest_stat; 11054 11055 if (busiest->group_type == group_misfit_task) { 11056 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11057 /* Set imbalance to allow misfit tasks to be balanced. */ 11058 env->migration_type = migrate_misfit; 11059 env->imbalance = 1; 11060 } else { 11061 /* 11062 * Set load imbalance to allow moving task from cpu 11063 * with reduced capacity. 11064 */ 11065 env->migration_type = migrate_load; 11066 env->imbalance = busiest->group_misfit_task_load; 11067 } 11068 return; 11069 } 11070 11071 if (busiest->group_type == group_asym_packing) { 11072 /* 11073 * In case of asym capacity, we will try to migrate all load to 11074 * the preferred CPU. 11075 */ 11076 env->migration_type = migrate_task; 11077 env->imbalance = busiest->sum_h_nr_running; 11078 return; 11079 } 11080 11081 if (busiest->group_type == group_smt_balance) { 11082 /* Reduce number of tasks sharing CPU capacity */ 11083 env->migration_type = migrate_task; 11084 env->imbalance = 1; 11085 return; 11086 } 11087 11088 if (busiest->group_type == group_imbalanced) { 11089 /* 11090 * In the group_imb case we cannot rely on group-wide averages 11091 * to ensure CPU-load equilibrium, try to move any task to fix 11092 * the imbalance. The next load balance will take care of 11093 * balancing back the system. 11094 */ 11095 env->migration_type = migrate_task; 11096 env->imbalance = 1; 11097 return; 11098 } 11099 11100 /* 11101 * Try to use spare capacity of local group without overloading it or 11102 * emptying busiest. 11103 */ 11104 if (local->group_type == group_has_spare) { 11105 if ((busiest->group_type > group_fully_busy) && 11106 !(env->sd->flags & SD_SHARE_LLC)) { 11107 /* 11108 * If busiest is overloaded, try to fill spare 11109 * capacity. This might end up creating spare capacity 11110 * in busiest or busiest still being overloaded but 11111 * there is no simple way to directly compute the 11112 * amount of load to migrate in order to balance the 11113 * system. 11114 */ 11115 env->migration_type = migrate_util; 11116 env->imbalance = max(local->group_capacity, local->group_util) - 11117 local->group_util; 11118 11119 /* 11120 * In some cases, the group's utilization is max or even 11121 * higher than capacity because of migrations but the 11122 * local CPU is (newly) idle. There is at least one 11123 * waiting task in this overloaded busiest group. Let's 11124 * try to pull it. 11125 */ 11126 if (env->idle && env->imbalance == 0) { 11127 env->migration_type = migrate_task; 11128 env->imbalance = 1; 11129 } 11130 11131 return; 11132 } 11133 11134 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11135 /* 11136 * When prefer sibling, evenly spread running tasks on 11137 * groups. 11138 */ 11139 env->migration_type = migrate_task; 11140 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11141 } else { 11142 11143 /* 11144 * If there is no overload, we just want to even the number of 11145 * idle CPUs. 11146 */ 11147 env->migration_type = migrate_task; 11148 env->imbalance = max_t(long, 0, 11149 (local->idle_cpus - busiest->idle_cpus)); 11150 } 11151 11152 #ifdef CONFIG_NUMA 11153 /* Consider allowing a small imbalance between NUMA groups */ 11154 if (env->sd->flags & SD_NUMA) { 11155 env->imbalance = adjust_numa_imbalance(env->imbalance, 11156 local->sum_nr_running + 1, 11157 env->sd->imb_numa_nr); 11158 } 11159 #endif 11160 11161 /* Number of tasks to move to restore balance */ 11162 env->imbalance >>= 1; 11163 11164 return; 11165 } 11166 11167 /* 11168 * Local is fully busy but has to take more load to relieve the 11169 * busiest group 11170 */ 11171 if (local->group_type < group_overloaded) { 11172 /* 11173 * Local will become overloaded so the avg_load metrics are 11174 * finally needed. 11175 */ 11176 11177 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11178 local->group_capacity; 11179 11180 /* 11181 * If the local group is more loaded than the selected 11182 * busiest group don't try to pull any tasks. 11183 */ 11184 if (local->avg_load >= busiest->avg_load) { 11185 env->imbalance = 0; 11186 return; 11187 } 11188 11189 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11190 sds->total_capacity; 11191 11192 /* 11193 * If the local group is more loaded than the average system 11194 * load, don't try to pull any tasks. 11195 */ 11196 if (local->avg_load >= sds->avg_load) { 11197 env->imbalance = 0; 11198 return; 11199 } 11200 11201 } 11202 11203 /* 11204 * Both group are or will become overloaded and we're trying to get all 11205 * the CPUs to the average_load, so we don't want to push ourselves 11206 * above the average load, nor do we wish to reduce the max loaded CPU 11207 * below the average load. At the same time, we also don't want to 11208 * reduce the group load below the group capacity. Thus we look for 11209 * the minimum possible imbalance. 11210 */ 11211 env->migration_type = migrate_load; 11212 env->imbalance = min( 11213 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11214 (sds->avg_load - local->avg_load) * local->group_capacity 11215 ) / SCHED_CAPACITY_SCALE; 11216 } 11217 11218 /******* sched_balance_find_src_group() helpers end here *********************/ 11219 11220 /* 11221 * Decision matrix according to the local and busiest group type: 11222 * 11223 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11224 * has_spare nr_idle balanced N/A N/A balanced balanced 11225 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11226 * misfit_task force N/A N/A N/A N/A N/A 11227 * asym_packing force force N/A N/A force force 11228 * imbalanced force force N/A N/A force force 11229 * overloaded force force N/A N/A force avg_load 11230 * 11231 * N/A : Not Applicable because already filtered while updating 11232 * statistics. 11233 * balanced : The system is balanced for these 2 groups. 11234 * force : Calculate the imbalance as load migration is probably needed. 11235 * avg_load : Only if imbalance is significant enough. 11236 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11237 * different in groups. 11238 */ 11239 11240 /** 11241 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11242 * if there is an imbalance. 11243 * @env: The load balancing environment. 11244 * 11245 * Also calculates the amount of runnable load which should be moved 11246 * to restore balance. 11247 * 11248 * Return: - The busiest group if imbalance exists. 11249 */ 11250 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11251 { 11252 struct sg_lb_stats *local, *busiest; 11253 struct sd_lb_stats sds; 11254 11255 init_sd_lb_stats(&sds); 11256 11257 /* 11258 * Compute the various statistics relevant for load balancing at 11259 * this level. 11260 */ 11261 update_sd_lb_stats(env, &sds); 11262 11263 /* There is no busy sibling group to pull tasks from */ 11264 if (!sds.busiest) 11265 goto out_balanced; 11266 11267 busiest = &sds.busiest_stat; 11268 11269 /* Misfit tasks should be dealt with regardless of the avg load */ 11270 if (busiest->group_type == group_misfit_task) 11271 goto force_balance; 11272 11273 if (!is_rd_overutilized(env->dst_rq->rd) && 11274 rcu_dereference(env->dst_rq->rd->pd)) 11275 goto out_balanced; 11276 11277 /* ASYM feature bypasses nice load balance check */ 11278 if (busiest->group_type == group_asym_packing) 11279 goto force_balance; 11280 11281 /* 11282 * If the busiest group is imbalanced the below checks don't 11283 * work because they assume all things are equal, which typically 11284 * isn't true due to cpus_ptr constraints and the like. 11285 */ 11286 if (busiest->group_type == group_imbalanced) 11287 goto force_balance; 11288 11289 local = &sds.local_stat; 11290 /* 11291 * If the local group is busier than the selected busiest group 11292 * don't try and pull any tasks. 11293 */ 11294 if (local->group_type > busiest->group_type) 11295 goto out_balanced; 11296 11297 /* 11298 * When groups are overloaded, use the avg_load to ensure fairness 11299 * between tasks. 11300 */ 11301 if (local->group_type == group_overloaded) { 11302 /* 11303 * If the local group is more loaded than the selected 11304 * busiest group don't try to pull any tasks. 11305 */ 11306 if (local->avg_load >= busiest->avg_load) 11307 goto out_balanced; 11308 11309 /* XXX broken for overlapping NUMA groups */ 11310 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11311 sds.total_capacity; 11312 11313 /* 11314 * Don't pull any tasks if this group is already above the 11315 * domain average load. 11316 */ 11317 if (local->avg_load >= sds.avg_load) 11318 goto out_balanced; 11319 11320 /* 11321 * If the busiest group is more loaded, use imbalance_pct to be 11322 * conservative. 11323 */ 11324 if (100 * busiest->avg_load <= 11325 env->sd->imbalance_pct * local->avg_load) 11326 goto out_balanced; 11327 } 11328 11329 /* 11330 * Try to move all excess tasks to a sibling domain of the busiest 11331 * group's child domain. 11332 */ 11333 if (sds.prefer_sibling && local->group_type == group_has_spare && 11334 sibling_imbalance(env, &sds, busiest, local) > 1) 11335 goto force_balance; 11336 11337 if (busiest->group_type != group_overloaded) { 11338 if (!env->idle) { 11339 /* 11340 * If the busiest group is not overloaded (and as a 11341 * result the local one too) but this CPU is already 11342 * busy, let another idle CPU try to pull task. 11343 */ 11344 goto out_balanced; 11345 } 11346 11347 if (busiest->group_type == group_smt_balance && 11348 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11349 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11350 goto force_balance; 11351 } 11352 11353 if (busiest->group_weight > 1 && 11354 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11355 /* 11356 * If the busiest group is not overloaded 11357 * and there is no imbalance between this and busiest 11358 * group wrt idle CPUs, it is balanced. The imbalance 11359 * becomes significant if the diff is greater than 1 11360 * otherwise we might end up to just move the imbalance 11361 * on another group. Of course this applies only if 11362 * there is more than 1 CPU per group. 11363 */ 11364 goto out_balanced; 11365 } 11366 11367 if (busiest->sum_h_nr_running == 1) { 11368 /* 11369 * busiest doesn't have any tasks waiting to run 11370 */ 11371 goto out_balanced; 11372 } 11373 } 11374 11375 force_balance: 11376 /* Looks like there is an imbalance. Compute it */ 11377 calculate_imbalance(env, &sds); 11378 return env->imbalance ? sds.busiest : NULL; 11379 11380 out_balanced: 11381 env->imbalance = 0; 11382 return NULL; 11383 } 11384 11385 /* 11386 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11387 */ 11388 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11389 struct sched_group *group) 11390 { 11391 struct rq *busiest = NULL, *rq; 11392 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11393 unsigned int busiest_nr = 0; 11394 int i; 11395 11396 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11397 unsigned long capacity, load, util; 11398 unsigned int nr_running; 11399 enum fbq_type rt; 11400 11401 rq = cpu_rq(i); 11402 rt = fbq_classify_rq(rq); 11403 11404 /* 11405 * We classify groups/runqueues into three groups: 11406 * - regular: there are !numa tasks 11407 * - remote: there are numa tasks that run on the 'wrong' node 11408 * - all: there is no distinction 11409 * 11410 * In order to avoid migrating ideally placed numa tasks, 11411 * ignore those when there's better options. 11412 * 11413 * If we ignore the actual busiest queue to migrate another 11414 * task, the next balance pass can still reduce the busiest 11415 * queue by moving tasks around inside the node. 11416 * 11417 * If we cannot move enough load due to this classification 11418 * the next pass will adjust the group classification and 11419 * allow migration of more tasks. 11420 * 11421 * Both cases only affect the total convergence complexity. 11422 */ 11423 if (rt > env->fbq_type) 11424 continue; 11425 11426 nr_running = rq->cfs.h_nr_running; 11427 if (!nr_running) 11428 continue; 11429 11430 capacity = capacity_of(i); 11431 11432 /* 11433 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11434 * eventually lead to active_balancing high->low capacity. 11435 * Higher per-CPU capacity is considered better than balancing 11436 * average load. 11437 */ 11438 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11439 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11440 nr_running == 1) 11441 continue; 11442 11443 /* 11444 * Make sure we only pull tasks from a CPU of lower priority 11445 * when balancing between SMT siblings. 11446 * 11447 * If balancing between cores, let lower priority CPUs help 11448 * SMT cores with more than one busy sibling. 11449 */ 11450 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11451 continue; 11452 11453 switch (env->migration_type) { 11454 case migrate_load: 11455 /* 11456 * When comparing with load imbalance, use cpu_load() 11457 * which is not scaled with the CPU capacity. 11458 */ 11459 load = cpu_load(rq); 11460 11461 if (nr_running == 1 && load > env->imbalance && 11462 !check_cpu_capacity(rq, env->sd)) 11463 break; 11464 11465 /* 11466 * For the load comparisons with the other CPUs, 11467 * consider the cpu_load() scaled with the CPU 11468 * capacity, so that the load can be moved away 11469 * from the CPU that is potentially running at a 11470 * lower capacity. 11471 * 11472 * Thus we're looking for max(load_i / capacity_i), 11473 * crosswise multiplication to rid ourselves of the 11474 * division works out to: 11475 * load_i * capacity_j > load_j * capacity_i; 11476 * where j is our previous maximum. 11477 */ 11478 if (load * busiest_capacity > busiest_load * capacity) { 11479 busiest_load = load; 11480 busiest_capacity = capacity; 11481 busiest = rq; 11482 } 11483 break; 11484 11485 case migrate_util: 11486 util = cpu_util_cfs_boost(i); 11487 11488 /* 11489 * Don't try to pull utilization from a CPU with one 11490 * running task. Whatever its utilization, we will fail 11491 * detach the task. 11492 */ 11493 if (nr_running <= 1) 11494 continue; 11495 11496 if (busiest_util < util) { 11497 busiest_util = util; 11498 busiest = rq; 11499 } 11500 break; 11501 11502 case migrate_task: 11503 if (busiest_nr < nr_running) { 11504 busiest_nr = nr_running; 11505 busiest = rq; 11506 } 11507 break; 11508 11509 case migrate_misfit: 11510 /* 11511 * For ASYM_CPUCAPACITY domains with misfit tasks we 11512 * simply seek the "biggest" misfit task. 11513 */ 11514 if (rq->misfit_task_load > busiest_load) { 11515 busiest_load = rq->misfit_task_load; 11516 busiest = rq; 11517 } 11518 11519 break; 11520 11521 } 11522 } 11523 11524 return busiest; 11525 } 11526 11527 /* 11528 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11529 * so long as it is large enough. 11530 */ 11531 #define MAX_PINNED_INTERVAL 512 11532 11533 static inline bool 11534 asym_active_balance(struct lb_env *env) 11535 { 11536 /* 11537 * ASYM_PACKING needs to force migrate tasks from busy but lower 11538 * priority CPUs in order to pack all tasks in the highest priority 11539 * CPUs. When done between cores, do it only if the whole core if the 11540 * whole core is idle. 11541 * 11542 * If @env::src_cpu is an SMT core with busy siblings, let 11543 * the lower priority @env::dst_cpu help it. Do not follow 11544 * CPU priority. 11545 */ 11546 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11547 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11548 !sched_use_asym_prio(env->sd, env->src_cpu)); 11549 } 11550 11551 static inline bool 11552 imbalanced_active_balance(struct lb_env *env) 11553 { 11554 struct sched_domain *sd = env->sd; 11555 11556 /* 11557 * The imbalanced case includes the case of pinned tasks preventing a fair 11558 * distribution of the load on the system but also the even distribution of the 11559 * threads on a system with spare capacity 11560 */ 11561 if ((env->migration_type == migrate_task) && 11562 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11563 return 1; 11564 11565 return 0; 11566 } 11567 11568 static int need_active_balance(struct lb_env *env) 11569 { 11570 struct sched_domain *sd = env->sd; 11571 11572 if (asym_active_balance(env)) 11573 return 1; 11574 11575 if (imbalanced_active_balance(env)) 11576 return 1; 11577 11578 /* 11579 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11580 * It's worth migrating the task if the src_cpu's capacity is reduced 11581 * because of other sched_class or IRQs if more capacity stays 11582 * available on dst_cpu. 11583 */ 11584 if (env->idle && 11585 (env->src_rq->cfs.h_nr_running == 1)) { 11586 if ((check_cpu_capacity(env->src_rq, sd)) && 11587 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11588 return 1; 11589 } 11590 11591 if (env->migration_type == migrate_misfit) 11592 return 1; 11593 11594 return 0; 11595 } 11596 11597 static int active_load_balance_cpu_stop(void *data); 11598 11599 static int should_we_balance(struct lb_env *env) 11600 { 11601 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11602 struct sched_group *sg = env->sd->groups; 11603 int cpu, idle_smt = -1; 11604 11605 /* 11606 * Ensure the balancing environment is consistent; can happen 11607 * when the softirq triggers 'during' hotplug. 11608 */ 11609 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11610 return 0; 11611 11612 /* 11613 * In the newly idle case, we will allow all the CPUs 11614 * to do the newly idle load balance. 11615 * 11616 * However, we bail out if we already have tasks or a wakeup pending, 11617 * to optimize wakeup latency. 11618 */ 11619 if (env->idle == CPU_NEWLY_IDLE) { 11620 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11621 return 0; 11622 return 1; 11623 } 11624 11625 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11626 /* Try to find first idle CPU */ 11627 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11628 if (!idle_cpu(cpu)) 11629 continue; 11630 11631 /* 11632 * Don't balance to idle SMT in busy core right away when 11633 * balancing cores, but remember the first idle SMT CPU for 11634 * later consideration. Find CPU on an idle core first. 11635 */ 11636 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11637 if (idle_smt == -1) 11638 idle_smt = cpu; 11639 /* 11640 * If the core is not idle, and first SMT sibling which is 11641 * idle has been found, then its not needed to check other 11642 * SMT siblings for idleness: 11643 */ 11644 #ifdef CONFIG_SCHED_SMT 11645 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11646 #endif 11647 continue; 11648 } 11649 11650 /* 11651 * Are we the first idle core in a non-SMT domain or higher, 11652 * or the first idle CPU in a SMT domain? 11653 */ 11654 return cpu == env->dst_cpu; 11655 } 11656 11657 /* Are we the first idle CPU with busy siblings? */ 11658 if (idle_smt != -1) 11659 return idle_smt == env->dst_cpu; 11660 11661 /* Are we the first CPU of this group ? */ 11662 return group_balance_cpu(sg) == env->dst_cpu; 11663 } 11664 11665 /* 11666 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11667 * tasks if there is an imbalance. 11668 */ 11669 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11670 struct sched_domain *sd, enum cpu_idle_type idle, 11671 int *continue_balancing) 11672 { 11673 int ld_moved, cur_ld_moved, active_balance = 0; 11674 struct sched_domain *sd_parent = sd->parent; 11675 struct sched_group *group; 11676 struct rq *busiest; 11677 struct rq_flags rf; 11678 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11679 struct lb_env env = { 11680 .sd = sd, 11681 .dst_cpu = this_cpu, 11682 .dst_rq = this_rq, 11683 .dst_grpmask = group_balance_mask(sd->groups), 11684 .idle = idle, 11685 .loop_break = SCHED_NR_MIGRATE_BREAK, 11686 .cpus = cpus, 11687 .fbq_type = all, 11688 .tasks = LIST_HEAD_INIT(env.tasks), 11689 }; 11690 11691 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11692 11693 schedstat_inc(sd->lb_count[idle]); 11694 11695 redo: 11696 if (!should_we_balance(&env)) { 11697 *continue_balancing = 0; 11698 goto out_balanced; 11699 } 11700 11701 group = sched_balance_find_src_group(&env); 11702 if (!group) { 11703 schedstat_inc(sd->lb_nobusyg[idle]); 11704 goto out_balanced; 11705 } 11706 11707 busiest = sched_balance_find_src_rq(&env, group); 11708 if (!busiest) { 11709 schedstat_inc(sd->lb_nobusyq[idle]); 11710 goto out_balanced; 11711 } 11712 11713 WARN_ON_ONCE(busiest == env.dst_rq); 11714 11715 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11716 11717 env.src_cpu = busiest->cpu; 11718 env.src_rq = busiest; 11719 11720 ld_moved = 0; 11721 /* Clear this flag as soon as we find a pullable task */ 11722 env.flags |= LBF_ALL_PINNED; 11723 if (busiest->nr_running > 1) { 11724 /* 11725 * Attempt to move tasks. If sched_balance_find_src_group has found 11726 * an imbalance but busiest->nr_running <= 1, the group is 11727 * still unbalanced. ld_moved simply stays zero, so it is 11728 * correctly treated as an imbalance. 11729 */ 11730 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11731 11732 more_balance: 11733 rq_lock_irqsave(busiest, &rf); 11734 update_rq_clock(busiest); 11735 11736 /* 11737 * cur_ld_moved - load moved in current iteration 11738 * ld_moved - cumulative load moved across iterations 11739 */ 11740 cur_ld_moved = detach_tasks(&env); 11741 11742 /* 11743 * We've detached some tasks from busiest_rq. Every 11744 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11745 * unlock busiest->lock, and we are able to be sure 11746 * that nobody can manipulate the tasks in parallel. 11747 * See task_rq_lock() family for the details. 11748 */ 11749 11750 rq_unlock(busiest, &rf); 11751 11752 if (cur_ld_moved) { 11753 attach_tasks(&env); 11754 ld_moved += cur_ld_moved; 11755 } 11756 11757 local_irq_restore(rf.flags); 11758 11759 if (env.flags & LBF_NEED_BREAK) { 11760 env.flags &= ~LBF_NEED_BREAK; 11761 goto more_balance; 11762 } 11763 11764 /* 11765 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11766 * us and move them to an alternate dst_cpu in our sched_group 11767 * where they can run. The upper limit on how many times we 11768 * iterate on same src_cpu is dependent on number of CPUs in our 11769 * sched_group. 11770 * 11771 * This changes load balance semantics a bit on who can move 11772 * load to a given_cpu. In addition to the given_cpu itself 11773 * (or a ilb_cpu acting on its behalf where given_cpu is 11774 * nohz-idle), we now have balance_cpu in a position to move 11775 * load to given_cpu. In rare situations, this may cause 11776 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11777 * _independently_ and at _same_ time to move some load to 11778 * given_cpu) causing excess load to be moved to given_cpu. 11779 * This however should not happen so much in practice and 11780 * moreover subsequent load balance cycles should correct the 11781 * excess load moved. 11782 */ 11783 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11784 11785 /* Prevent to re-select dst_cpu via env's CPUs */ 11786 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11787 11788 env.dst_rq = cpu_rq(env.new_dst_cpu); 11789 env.dst_cpu = env.new_dst_cpu; 11790 env.flags &= ~LBF_DST_PINNED; 11791 env.loop = 0; 11792 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11793 11794 /* 11795 * Go back to "more_balance" rather than "redo" since we 11796 * need to continue with same src_cpu. 11797 */ 11798 goto more_balance; 11799 } 11800 11801 /* 11802 * We failed to reach balance because of affinity. 11803 */ 11804 if (sd_parent) { 11805 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11806 11807 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11808 *group_imbalance = 1; 11809 } 11810 11811 /* All tasks on this runqueue were pinned by CPU affinity */ 11812 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11813 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11814 /* 11815 * Attempting to continue load balancing at the current 11816 * sched_domain level only makes sense if there are 11817 * active CPUs remaining as possible busiest CPUs to 11818 * pull load from which are not contained within the 11819 * destination group that is receiving any migrated 11820 * load. 11821 */ 11822 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11823 env.loop = 0; 11824 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11825 goto redo; 11826 } 11827 goto out_all_pinned; 11828 } 11829 } 11830 11831 if (!ld_moved) { 11832 schedstat_inc(sd->lb_failed[idle]); 11833 /* 11834 * Increment the failure counter only on periodic balance. 11835 * We do not want newidle balance, which can be very 11836 * frequent, pollute the failure counter causing 11837 * excessive cache_hot migrations and active balances. 11838 * 11839 * Similarly for migration_misfit which is not related to 11840 * load/util migration, don't pollute nr_balance_failed. 11841 */ 11842 if (idle != CPU_NEWLY_IDLE && 11843 env.migration_type != migrate_misfit) 11844 sd->nr_balance_failed++; 11845 11846 if (need_active_balance(&env)) { 11847 unsigned long flags; 11848 11849 raw_spin_rq_lock_irqsave(busiest, flags); 11850 11851 /* 11852 * Don't kick the active_load_balance_cpu_stop, 11853 * if the curr task on busiest CPU can't be 11854 * moved to this_cpu: 11855 */ 11856 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11857 raw_spin_rq_unlock_irqrestore(busiest, flags); 11858 goto out_one_pinned; 11859 } 11860 11861 /* Record that we found at least one task that could run on this_cpu */ 11862 env.flags &= ~LBF_ALL_PINNED; 11863 11864 /* 11865 * ->active_balance synchronizes accesses to 11866 * ->active_balance_work. Once set, it's cleared 11867 * only after active load balance is finished. 11868 */ 11869 if (!busiest->active_balance) { 11870 busiest->active_balance = 1; 11871 busiest->push_cpu = this_cpu; 11872 active_balance = 1; 11873 } 11874 11875 preempt_disable(); 11876 raw_spin_rq_unlock_irqrestore(busiest, flags); 11877 if (active_balance) { 11878 stop_one_cpu_nowait(cpu_of(busiest), 11879 active_load_balance_cpu_stop, busiest, 11880 &busiest->active_balance_work); 11881 } 11882 preempt_enable(); 11883 } 11884 } else { 11885 sd->nr_balance_failed = 0; 11886 } 11887 11888 if (likely(!active_balance) || need_active_balance(&env)) { 11889 /* We were unbalanced, so reset the balancing interval */ 11890 sd->balance_interval = sd->min_interval; 11891 } 11892 11893 goto out; 11894 11895 out_balanced: 11896 /* 11897 * We reach balance although we may have faced some affinity 11898 * constraints. Clear the imbalance flag only if other tasks got 11899 * a chance to move and fix the imbalance. 11900 */ 11901 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11902 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11903 11904 if (*group_imbalance) 11905 *group_imbalance = 0; 11906 } 11907 11908 out_all_pinned: 11909 /* 11910 * We reach balance because all tasks are pinned at this level so 11911 * we can't migrate them. Let the imbalance flag set so parent level 11912 * can try to migrate them. 11913 */ 11914 schedstat_inc(sd->lb_balanced[idle]); 11915 11916 sd->nr_balance_failed = 0; 11917 11918 out_one_pinned: 11919 ld_moved = 0; 11920 11921 /* 11922 * sched_balance_newidle() disregards balance intervals, so we could 11923 * repeatedly reach this code, which would lead to balance_interval 11924 * skyrocketing in a short amount of time. Skip the balance_interval 11925 * increase logic to avoid that. 11926 * 11927 * Similarly misfit migration which is not necessarily an indication of 11928 * the system being busy and requires lb to backoff to let it settle 11929 * down. 11930 */ 11931 if (env.idle == CPU_NEWLY_IDLE || 11932 env.migration_type == migrate_misfit) 11933 goto out; 11934 11935 /* tune up the balancing interval */ 11936 if ((env.flags & LBF_ALL_PINNED && 11937 sd->balance_interval < MAX_PINNED_INTERVAL) || 11938 sd->balance_interval < sd->max_interval) 11939 sd->balance_interval *= 2; 11940 out: 11941 return ld_moved; 11942 } 11943 11944 static inline unsigned long 11945 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11946 { 11947 unsigned long interval = sd->balance_interval; 11948 11949 if (cpu_busy) 11950 interval *= sd->busy_factor; 11951 11952 /* scale ms to jiffies */ 11953 interval = msecs_to_jiffies(interval); 11954 11955 /* 11956 * Reduce likelihood of busy balancing at higher domains racing with 11957 * balancing at lower domains by preventing their balancing periods 11958 * from being multiples of each other. 11959 */ 11960 if (cpu_busy) 11961 interval -= 1; 11962 11963 interval = clamp(interval, 1UL, max_load_balance_interval); 11964 11965 return interval; 11966 } 11967 11968 static inline void 11969 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11970 { 11971 unsigned long interval, next; 11972 11973 /* used by idle balance, so cpu_busy = 0 */ 11974 interval = get_sd_balance_interval(sd, 0); 11975 next = sd->last_balance + interval; 11976 11977 if (time_after(*next_balance, next)) 11978 *next_balance = next; 11979 } 11980 11981 /* 11982 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11983 * running tasks off the busiest CPU onto idle CPUs. It requires at 11984 * least 1 task to be running on each physical CPU where possible, and 11985 * avoids physical / logical imbalances. 11986 */ 11987 static int active_load_balance_cpu_stop(void *data) 11988 { 11989 struct rq *busiest_rq = data; 11990 int busiest_cpu = cpu_of(busiest_rq); 11991 int target_cpu = busiest_rq->push_cpu; 11992 struct rq *target_rq = cpu_rq(target_cpu); 11993 struct sched_domain *sd; 11994 struct task_struct *p = NULL; 11995 struct rq_flags rf; 11996 11997 rq_lock_irq(busiest_rq, &rf); 11998 /* 11999 * Between queueing the stop-work and running it is a hole in which 12000 * CPUs can become inactive. We should not move tasks from or to 12001 * inactive CPUs. 12002 */ 12003 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12004 goto out_unlock; 12005 12006 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12007 if (unlikely(busiest_cpu != smp_processor_id() || 12008 !busiest_rq->active_balance)) 12009 goto out_unlock; 12010 12011 /* Is there any task to move? */ 12012 if (busiest_rq->nr_running <= 1) 12013 goto out_unlock; 12014 12015 /* 12016 * This condition is "impossible", if it occurs 12017 * we need to fix it. Originally reported by 12018 * Bjorn Helgaas on a 128-CPU setup. 12019 */ 12020 WARN_ON_ONCE(busiest_rq == target_rq); 12021 12022 /* Search for an sd spanning us and the target CPU. */ 12023 rcu_read_lock(); 12024 for_each_domain(target_cpu, sd) { 12025 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12026 break; 12027 } 12028 12029 if (likely(sd)) { 12030 struct lb_env env = { 12031 .sd = sd, 12032 .dst_cpu = target_cpu, 12033 .dst_rq = target_rq, 12034 .src_cpu = busiest_rq->cpu, 12035 .src_rq = busiest_rq, 12036 .idle = CPU_IDLE, 12037 .flags = LBF_ACTIVE_LB, 12038 }; 12039 12040 schedstat_inc(sd->alb_count); 12041 update_rq_clock(busiest_rq); 12042 12043 p = detach_one_task(&env); 12044 if (p) { 12045 schedstat_inc(sd->alb_pushed); 12046 /* Active balancing done, reset the failure counter. */ 12047 sd->nr_balance_failed = 0; 12048 } else { 12049 schedstat_inc(sd->alb_failed); 12050 } 12051 } 12052 rcu_read_unlock(); 12053 out_unlock: 12054 busiest_rq->active_balance = 0; 12055 rq_unlock(busiest_rq, &rf); 12056 12057 if (p) 12058 attach_one_task(target_rq, p); 12059 12060 local_irq_enable(); 12061 12062 return 0; 12063 } 12064 12065 /* 12066 * This flag serializes load-balancing passes over large domains 12067 * (above the NODE topology level) - only one load-balancing instance 12068 * may run at a time, to reduce overhead on very large systems with 12069 * lots of CPUs and large NUMA distances. 12070 * 12071 * - Note that load-balancing passes triggered while another one 12072 * is executing are skipped and not re-tried. 12073 * 12074 * - Also note that this does not serialize rebalance_domains() 12075 * execution, as non-SD_SERIALIZE domains will still be 12076 * load-balanced in parallel. 12077 */ 12078 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12079 12080 /* 12081 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12082 * This trades load-balance latency on larger machines for less cross talk. 12083 */ 12084 void update_max_interval(void) 12085 { 12086 max_load_balance_interval = HZ*num_online_cpus()/10; 12087 } 12088 12089 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12090 { 12091 if (cost > sd->max_newidle_lb_cost) { 12092 /* 12093 * Track max cost of a domain to make sure to not delay the 12094 * next wakeup on the CPU. 12095 */ 12096 sd->max_newidle_lb_cost = cost; 12097 sd->last_decay_max_lb_cost = jiffies; 12098 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12099 /* 12100 * Decay the newidle max times by ~1% per second to ensure that 12101 * it is not outdated and the current max cost is actually 12102 * shorter. 12103 */ 12104 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12105 sd->last_decay_max_lb_cost = jiffies; 12106 12107 return true; 12108 } 12109 12110 return false; 12111 } 12112 12113 /* 12114 * It checks each scheduling domain to see if it is due to be balanced, 12115 * and initiates a balancing operation if so. 12116 * 12117 * Balancing parameters are set up in init_sched_domains. 12118 */ 12119 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12120 { 12121 int continue_balancing = 1; 12122 int cpu = rq->cpu; 12123 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12124 unsigned long interval; 12125 struct sched_domain *sd; 12126 /* Earliest time when we have to do rebalance again */ 12127 unsigned long next_balance = jiffies + 60*HZ; 12128 int update_next_balance = 0; 12129 int need_serialize, need_decay = 0; 12130 u64 max_cost = 0; 12131 12132 rcu_read_lock(); 12133 for_each_domain(cpu, sd) { 12134 /* 12135 * Decay the newidle max times here because this is a regular 12136 * visit to all the domains. 12137 */ 12138 need_decay = update_newidle_cost(sd, 0); 12139 max_cost += sd->max_newidle_lb_cost; 12140 12141 /* 12142 * Stop the load balance at this level. There is another 12143 * CPU in our sched group which is doing load balancing more 12144 * actively. 12145 */ 12146 if (!continue_balancing) { 12147 if (need_decay) 12148 continue; 12149 break; 12150 } 12151 12152 interval = get_sd_balance_interval(sd, busy); 12153 12154 need_serialize = sd->flags & SD_SERIALIZE; 12155 if (need_serialize) { 12156 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12157 goto out; 12158 } 12159 12160 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12161 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12162 /* 12163 * The LBF_DST_PINNED logic could have changed 12164 * env->dst_cpu, so we can't know our idle 12165 * state even if we migrated tasks. Update it. 12166 */ 12167 idle = idle_cpu(cpu); 12168 busy = !idle && !sched_idle_cpu(cpu); 12169 } 12170 sd->last_balance = jiffies; 12171 interval = get_sd_balance_interval(sd, busy); 12172 } 12173 if (need_serialize) 12174 atomic_set_release(&sched_balance_running, 0); 12175 out: 12176 if (time_after(next_balance, sd->last_balance + interval)) { 12177 next_balance = sd->last_balance + interval; 12178 update_next_balance = 1; 12179 } 12180 } 12181 if (need_decay) { 12182 /* 12183 * Ensure the rq-wide value also decays but keep it at a 12184 * reasonable floor to avoid funnies with rq->avg_idle. 12185 */ 12186 rq->max_idle_balance_cost = 12187 max((u64)sysctl_sched_migration_cost, max_cost); 12188 } 12189 rcu_read_unlock(); 12190 12191 /* 12192 * next_balance will be updated only when there is a need. 12193 * When the cpu is attached to null domain for ex, it will not be 12194 * updated. 12195 */ 12196 if (likely(update_next_balance)) 12197 rq->next_balance = next_balance; 12198 12199 } 12200 12201 static inline int on_null_domain(struct rq *rq) 12202 { 12203 return unlikely(!rcu_dereference_sched(rq->sd)); 12204 } 12205 12206 #ifdef CONFIG_NO_HZ_COMMON 12207 /* 12208 * NOHZ idle load balancing (ILB) details: 12209 * 12210 * - When one of the busy CPUs notices that there may be an idle rebalancing 12211 * needed, they will kick the idle load balancer, which then does idle 12212 * load balancing for all the idle CPUs. 12213 * 12214 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 12215 * anywhere yet. 12216 */ 12217 static inline int find_new_ilb(void) 12218 { 12219 const struct cpumask *hk_mask; 12220 int ilb_cpu; 12221 12222 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 12223 12224 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12225 12226 if (ilb_cpu == smp_processor_id()) 12227 continue; 12228 12229 if (idle_cpu(ilb_cpu)) 12230 return ilb_cpu; 12231 } 12232 12233 return -1; 12234 } 12235 12236 /* 12237 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12238 * SMP function call (IPI). 12239 * 12240 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 12241 */ 12242 static void kick_ilb(unsigned int flags) 12243 { 12244 int ilb_cpu; 12245 12246 /* 12247 * Increase nohz.next_balance only when if full ilb is triggered but 12248 * not if we only update stats. 12249 */ 12250 if (flags & NOHZ_BALANCE_KICK) 12251 nohz.next_balance = jiffies+1; 12252 12253 ilb_cpu = find_new_ilb(); 12254 if (ilb_cpu < 0) 12255 return; 12256 12257 /* 12258 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12259 * i.e. all bits in flags are already set in ilb_cpu. 12260 */ 12261 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12262 return; 12263 12264 /* 12265 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12266 * the first flag owns it; cleared by nohz_csd_func(). 12267 */ 12268 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12269 if (flags & NOHZ_KICK_MASK) 12270 return; 12271 12272 /* 12273 * This way we generate an IPI on the target CPU which 12274 * is idle, and the softirq performing NOHZ idle load balancing 12275 * will be run before returning from the IPI. 12276 */ 12277 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12278 } 12279 12280 /* 12281 * Current decision point for kicking the idle load balancer in the presence 12282 * of idle CPUs in the system. 12283 */ 12284 static void nohz_balancer_kick(struct rq *rq) 12285 { 12286 unsigned long now = jiffies; 12287 struct sched_domain_shared *sds; 12288 struct sched_domain *sd; 12289 int nr_busy, i, cpu = rq->cpu; 12290 unsigned int flags = 0; 12291 12292 if (unlikely(rq->idle_balance)) 12293 return; 12294 12295 /* 12296 * We may be recently in ticked or tickless idle mode. At the first 12297 * busy tick after returning from idle, we will update the busy stats. 12298 */ 12299 nohz_balance_exit_idle(rq); 12300 12301 /* 12302 * None are in tickless mode and hence no need for NOHZ idle load 12303 * balancing: 12304 */ 12305 if (likely(!atomic_read(&nohz.nr_cpus))) 12306 return; 12307 12308 if (READ_ONCE(nohz.has_blocked) && 12309 time_after(now, READ_ONCE(nohz.next_blocked))) 12310 flags = NOHZ_STATS_KICK; 12311 12312 if (time_before(now, nohz.next_balance)) 12313 goto out; 12314 12315 if (rq->nr_running >= 2) { 12316 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12317 goto out; 12318 } 12319 12320 rcu_read_lock(); 12321 12322 sd = rcu_dereference(rq->sd); 12323 if (sd) { 12324 /* 12325 * If there's a runnable CFS task and the current CPU has reduced 12326 * capacity, kick the ILB to see if there's a better CPU to run on: 12327 */ 12328 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 12329 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12330 goto unlock; 12331 } 12332 } 12333 12334 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12335 if (sd) { 12336 /* 12337 * When ASYM_PACKING; see if there's a more preferred CPU 12338 * currently idle; in which case, kick the ILB to move tasks 12339 * around. 12340 * 12341 * When balancing between cores, all the SMT siblings of the 12342 * preferred CPU must be idle. 12343 */ 12344 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12345 if (sched_asym(sd, i, cpu)) { 12346 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12347 goto unlock; 12348 } 12349 } 12350 } 12351 12352 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12353 if (sd) { 12354 /* 12355 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12356 * to run the misfit task on. 12357 */ 12358 if (check_misfit_status(rq)) { 12359 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12360 goto unlock; 12361 } 12362 12363 /* 12364 * For asymmetric systems, we do not want to nicely balance 12365 * cache use, instead we want to embrace asymmetry and only 12366 * ensure tasks have enough CPU capacity. 12367 * 12368 * Skip the LLC logic because it's not relevant in that case. 12369 */ 12370 goto unlock; 12371 } 12372 12373 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12374 if (sds) { 12375 /* 12376 * If there is an imbalance between LLC domains (IOW we could 12377 * increase the overall cache utilization), we need a less-loaded LLC 12378 * domain to pull some load from. Likewise, we may need to spread 12379 * load within the current LLC domain (e.g. packed SMT cores but 12380 * other CPUs are idle). We can't really know from here how busy 12381 * the others are - so just get a NOHZ balance going if it looks 12382 * like this LLC domain has tasks we could move. 12383 */ 12384 nr_busy = atomic_read(&sds->nr_busy_cpus); 12385 if (nr_busy > 1) { 12386 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12387 goto unlock; 12388 } 12389 } 12390 unlock: 12391 rcu_read_unlock(); 12392 out: 12393 if (READ_ONCE(nohz.needs_update)) 12394 flags |= NOHZ_NEXT_KICK; 12395 12396 if (flags) 12397 kick_ilb(flags); 12398 } 12399 12400 static void set_cpu_sd_state_busy(int cpu) 12401 { 12402 struct sched_domain *sd; 12403 12404 rcu_read_lock(); 12405 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12406 12407 if (!sd || !sd->nohz_idle) 12408 goto unlock; 12409 sd->nohz_idle = 0; 12410 12411 atomic_inc(&sd->shared->nr_busy_cpus); 12412 unlock: 12413 rcu_read_unlock(); 12414 } 12415 12416 void nohz_balance_exit_idle(struct rq *rq) 12417 { 12418 SCHED_WARN_ON(rq != this_rq()); 12419 12420 if (likely(!rq->nohz_tick_stopped)) 12421 return; 12422 12423 rq->nohz_tick_stopped = 0; 12424 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12425 atomic_dec(&nohz.nr_cpus); 12426 12427 set_cpu_sd_state_busy(rq->cpu); 12428 } 12429 12430 static void set_cpu_sd_state_idle(int cpu) 12431 { 12432 struct sched_domain *sd; 12433 12434 rcu_read_lock(); 12435 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12436 12437 if (!sd || sd->nohz_idle) 12438 goto unlock; 12439 sd->nohz_idle = 1; 12440 12441 atomic_dec(&sd->shared->nr_busy_cpus); 12442 unlock: 12443 rcu_read_unlock(); 12444 } 12445 12446 /* 12447 * This routine will record that the CPU is going idle with tick stopped. 12448 * This info will be used in performing idle load balancing in the future. 12449 */ 12450 void nohz_balance_enter_idle(int cpu) 12451 { 12452 struct rq *rq = cpu_rq(cpu); 12453 12454 SCHED_WARN_ON(cpu != smp_processor_id()); 12455 12456 /* If this CPU is going down, then nothing needs to be done: */ 12457 if (!cpu_active(cpu)) 12458 return; 12459 12460 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12461 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12462 return; 12463 12464 /* 12465 * Can be set safely without rq->lock held 12466 * If a clear happens, it will have evaluated last additions because 12467 * rq->lock is held during the check and the clear 12468 */ 12469 rq->has_blocked_load = 1; 12470 12471 /* 12472 * The tick is still stopped but load could have been added in the 12473 * meantime. We set the nohz.has_blocked flag to trig a check of the 12474 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12475 * of nohz.has_blocked can only happen after checking the new load 12476 */ 12477 if (rq->nohz_tick_stopped) 12478 goto out; 12479 12480 /* If we're a completely isolated CPU, we don't play: */ 12481 if (on_null_domain(rq)) 12482 return; 12483 12484 rq->nohz_tick_stopped = 1; 12485 12486 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12487 atomic_inc(&nohz.nr_cpus); 12488 12489 /* 12490 * Ensures that if nohz_idle_balance() fails to observe our 12491 * @idle_cpus_mask store, it must observe the @has_blocked 12492 * and @needs_update stores. 12493 */ 12494 smp_mb__after_atomic(); 12495 12496 set_cpu_sd_state_idle(cpu); 12497 12498 WRITE_ONCE(nohz.needs_update, 1); 12499 out: 12500 /* 12501 * Each time a cpu enter idle, we assume that it has blocked load and 12502 * enable the periodic update of the load of idle CPUs 12503 */ 12504 WRITE_ONCE(nohz.has_blocked, 1); 12505 } 12506 12507 static bool update_nohz_stats(struct rq *rq) 12508 { 12509 unsigned int cpu = rq->cpu; 12510 12511 if (!rq->has_blocked_load) 12512 return false; 12513 12514 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12515 return false; 12516 12517 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12518 return true; 12519 12520 sched_balance_update_blocked_averages(cpu); 12521 12522 return rq->has_blocked_load; 12523 } 12524 12525 /* 12526 * Internal function that runs load balance for all idle CPUs. The load balance 12527 * can be a simple update of blocked load or a complete load balance with 12528 * tasks movement depending of flags. 12529 */ 12530 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12531 { 12532 /* Earliest time when we have to do rebalance again */ 12533 unsigned long now = jiffies; 12534 unsigned long next_balance = now + 60*HZ; 12535 bool has_blocked_load = false; 12536 int update_next_balance = 0; 12537 int this_cpu = this_rq->cpu; 12538 int balance_cpu; 12539 struct rq *rq; 12540 12541 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12542 12543 /* 12544 * We assume there will be no idle load after this update and clear 12545 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12546 * set the has_blocked flag and trigger another update of idle load. 12547 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12548 * setting the flag, we are sure to not clear the state and not 12549 * check the load of an idle cpu. 12550 * 12551 * Same applies to idle_cpus_mask vs needs_update. 12552 */ 12553 if (flags & NOHZ_STATS_KICK) 12554 WRITE_ONCE(nohz.has_blocked, 0); 12555 if (flags & NOHZ_NEXT_KICK) 12556 WRITE_ONCE(nohz.needs_update, 0); 12557 12558 /* 12559 * Ensures that if we miss the CPU, we must see the has_blocked 12560 * store from nohz_balance_enter_idle(). 12561 */ 12562 smp_mb(); 12563 12564 /* 12565 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12566 * chance for other idle cpu to pull load. 12567 */ 12568 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12569 if (!idle_cpu(balance_cpu)) 12570 continue; 12571 12572 /* 12573 * If this CPU gets work to do, stop the load balancing 12574 * work being done for other CPUs. Next load 12575 * balancing owner will pick it up. 12576 */ 12577 if (need_resched()) { 12578 if (flags & NOHZ_STATS_KICK) 12579 has_blocked_load = true; 12580 if (flags & NOHZ_NEXT_KICK) 12581 WRITE_ONCE(nohz.needs_update, 1); 12582 goto abort; 12583 } 12584 12585 rq = cpu_rq(balance_cpu); 12586 12587 if (flags & NOHZ_STATS_KICK) 12588 has_blocked_load |= update_nohz_stats(rq); 12589 12590 /* 12591 * If time for next balance is due, 12592 * do the balance. 12593 */ 12594 if (time_after_eq(jiffies, rq->next_balance)) { 12595 struct rq_flags rf; 12596 12597 rq_lock_irqsave(rq, &rf); 12598 update_rq_clock(rq); 12599 rq_unlock_irqrestore(rq, &rf); 12600 12601 if (flags & NOHZ_BALANCE_KICK) 12602 sched_balance_domains(rq, CPU_IDLE); 12603 } 12604 12605 if (time_after(next_balance, rq->next_balance)) { 12606 next_balance = rq->next_balance; 12607 update_next_balance = 1; 12608 } 12609 } 12610 12611 /* 12612 * next_balance will be updated only when there is a need. 12613 * When the CPU is attached to null domain for ex, it will not be 12614 * updated. 12615 */ 12616 if (likely(update_next_balance)) 12617 nohz.next_balance = next_balance; 12618 12619 if (flags & NOHZ_STATS_KICK) 12620 WRITE_ONCE(nohz.next_blocked, 12621 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12622 12623 abort: 12624 /* There is still blocked load, enable periodic update */ 12625 if (has_blocked_load) 12626 WRITE_ONCE(nohz.has_blocked, 1); 12627 } 12628 12629 /* 12630 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12631 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12632 */ 12633 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12634 { 12635 unsigned int flags = this_rq->nohz_idle_balance; 12636 12637 if (!flags) 12638 return false; 12639 12640 this_rq->nohz_idle_balance = 0; 12641 12642 if (idle != CPU_IDLE) 12643 return false; 12644 12645 _nohz_idle_balance(this_rq, flags); 12646 12647 return true; 12648 } 12649 12650 /* 12651 * Check if we need to directly run the ILB for updating blocked load before 12652 * entering idle state. Here we run ILB directly without issuing IPIs. 12653 * 12654 * Note that when this function is called, the tick may not yet be stopped on 12655 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12656 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12657 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12658 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12659 * called from this function on (this) CPU that's not yet in the mask. That's 12660 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12661 * updating the blocked load of already idle CPUs without waking up one of 12662 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12663 * cpu about to enter idle, because it can take a long time. 12664 */ 12665 void nohz_run_idle_balance(int cpu) 12666 { 12667 unsigned int flags; 12668 12669 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12670 12671 /* 12672 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12673 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12674 */ 12675 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12676 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12677 } 12678 12679 static void nohz_newidle_balance(struct rq *this_rq) 12680 { 12681 int this_cpu = this_rq->cpu; 12682 12683 /* 12684 * This CPU doesn't want to be disturbed by scheduler 12685 * housekeeping 12686 */ 12687 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12688 return; 12689 12690 /* Will wake up very soon. No time for doing anything else*/ 12691 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12692 return; 12693 12694 /* Don't need to update blocked load of idle CPUs*/ 12695 if (!READ_ONCE(nohz.has_blocked) || 12696 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12697 return; 12698 12699 /* 12700 * Set the need to trigger ILB in order to update blocked load 12701 * before entering idle state. 12702 */ 12703 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12704 } 12705 12706 #else /* !CONFIG_NO_HZ_COMMON */ 12707 static inline void nohz_balancer_kick(struct rq *rq) { } 12708 12709 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12710 { 12711 return false; 12712 } 12713 12714 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12715 #endif /* CONFIG_NO_HZ_COMMON */ 12716 12717 /* 12718 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12719 * idle. Attempts to pull tasks from other CPUs. 12720 * 12721 * Returns: 12722 * < 0 - we released the lock and there are !fair tasks present 12723 * 0 - failed, no new tasks 12724 * > 0 - success, new (fair) tasks present 12725 */ 12726 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12727 { 12728 unsigned long next_balance = jiffies + HZ; 12729 int this_cpu = this_rq->cpu; 12730 int continue_balancing = 1; 12731 u64 t0, t1, curr_cost = 0; 12732 struct sched_domain *sd; 12733 int pulled_task = 0; 12734 12735 update_misfit_status(NULL, this_rq); 12736 12737 /* 12738 * There is a task waiting to run. No need to search for one. 12739 * Return 0; the task will be enqueued when switching to idle. 12740 */ 12741 if (this_rq->ttwu_pending) 12742 return 0; 12743 12744 /* 12745 * We must set idle_stamp _before_ calling sched_balance_rq() 12746 * for CPU_NEWLY_IDLE, such that we measure the this duration 12747 * as idle time. 12748 */ 12749 this_rq->idle_stamp = rq_clock(this_rq); 12750 12751 /* 12752 * Do not pull tasks towards !active CPUs... 12753 */ 12754 if (!cpu_active(this_cpu)) 12755 return 0; 12756 12757 /* 12758 * This is OK, because current is on_cpu, which avoids it being picked 12759 * for load-balance and preemption/IRQs are still disabled avoiding 12760 * further scheduler activity on it and we're being very careful to 12761 * re-start the picking loop. 12762 */ 12763 rq_unpin_lock(this_rq, rf); 12764 12765 rcu_read_lock(); 12766 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12767 12768 if (!get_rd_overloaded(this_rq->rd) || 12769 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12770 12771 if (sd) 12772 update_next_balance(sd, &next_balance); 12773 rcu_read_unlock(); 12774 12775 goto out; 12776 } 12777 rcu_read_unlock(); 12778 12779 raw_spin_rq_unlock(this_rq); 12780 12781 t0 = sched_clock_cpu(this_cpu); 12782 sched_balance_update_blocked_averages(this_cpu); 12783 12784 rcu_read_lock(); 12785 for_each_domain(this_cpu, sd) { 12786 u64 domain_cost; 12787 12788 update_next_balance(sd, &next_balance); 12789 12790 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12791 break; 12792 12793 if (sd->flags & SD_BALANCE_NEWIDLE) { 12794 12795 pulled_task = sched_balance_rq(this_cpu, this_rq, 12796 sd, CPU_NEWLY_IDLE, 12797 &continue_balancing); 12798 12799 t1 = sched_clock_cpu(this_cpu); 12800 domain_cost = t1 - t0; 12801 update_newidle_cost(sd, domain_cost); 12802 12803 curr_cost += domain_cost; 12804 t0 = t1; 12805 } 12806 12807 /* 12808 * Stop searching for tasks to pull if there are 12809 * now runnable tasks on this rq. 12810 */ 12811 if (pulled_task || !continue_balancing) 12812 break; 12813 } 12814 rcu_read_unlock(); 12815 12816 raw_spin_rq_lock(this_rq); 12817 12818 if (curr_cost > this_rq->max_idle_balance_cost) 12819 this_rq->max_idle_balance_cost = curr_cost; 12820 12821 /* 12822 * While browsing the domains, we released the rq lock, a task could 12823 * have been enqueued in the meantime. Since we're not going idle, 12824 * pretend we pulled a task. 12825 */ 12826 if (this_rq->cfs.h_nr_running && !pulled_task) 12827 pulled_task = 1; 12828 12829 /* Is there a task of a high priority class? */ 12830 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12831 pulled_task = -1; 12832 12833 out: 12834 /* Move the next balance forward */ 12835 if (time_after(this_rq->next_balance, next_balance)) 12836 this_rq->next_balance = next_balance; 12837 12838 if (pulled_task) 12839 this_rq->idle_stamp = 0; 12840 else 12841 nohz_newidle_balance(this_rq); 12842 12843 rq_repin_lock(this_rq, rf); 12844 12845 return pulled_task; 12846 } 12847 12848 /* 12849 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12850 * 12851 * - directly from the local scheduler_tick() for periodic load balancing 12852 * 12853 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12854 * through the SMP cross-call nohz_csd_func() 12855 */ 12856 static __latent_entropy void sched_balance_softirq(void) 12857 { 12858 struct rq *this_rq = this_rq(); 12859 enum cpu_idle_type idle = this_rq->idle_balance; 12860 /* 12861 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12862 * balancing on behalf of the other idle CPUs whose ticks are 12863 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12864 * give the idle CPUs a chance to load balance. Else we may 12865 * load balance only within the local sched_domain hierarchy 12866 * and abort nohz_idle_balance altogether if we pull some load. 12867 */ 12868 if (nohz_idle_balance(this_rq, idle)) 12869 return; 12870 12871 /* normal load balance */ 12872 sched_balance_update_blocked_averages(this_rq->cpu); 12873 sched_balance_domains(this_rq, idle); 12874 } 12875 12876 /* 12877 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12878 */ 12879 void sched_balance_trigger(struct rq *rq) 12880 { 12881 /* 12882 * Don't need to rebalance while attached to NULL domain or 12883 * runqueue CPU is not active 12884 */ 12885 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12886 return; 12887 12888 if (time_after_eq(jiffies, rq->next_balance)) 12889 raise_softirq(SCHED_SOFTIRQ); 12890 12891 nohz_balancer_kick(rq); 12892 } 12893 12894 static void rq_online_fair(struct rq *rq) 12895 { 12896 update_sysctl(); 12897 12898 update_runtime_enabled(rq); 12899 } 12900 12901 static void rq_offline_fair(struct rq *rq) 12902 { 12903 update_sysctl(); 12904 12905 /* Ensure any throttled groups are reachable by pick_next_task */ 12906 unthrottle_offline_cfs_rqs(rq); 12907 12908 /* Ensure that we remove rq contribution to group share: */ 12909 clear_tg_offline_cfs_rqs(rq); 12910 } 12911 12912 #endif /* CONFIG_SMP */ 12913 12914 #ifdef CONFIG_SCHED_CORE 12915 static inline bool 12916 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12917 { 12918 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12919 u64 slice = se->slice; 12920 12921 return (rtime * min_nr_tasks > slice); 12922 } 12923 12924 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12925 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12926 { 12927 if (!sched_core_enabled(rq)) 12928 return; 12929 12930 /* 12931 * If runqueue has only one task which used up its slice and 12932 * if the sibling is forced idle, then trigger schedule to 12933 * give forced idle task a chance. 12934 * 12935 * sched_slice() considers only this active rq and it gets the 12936 * whole slice. But during force idle, we have siblings acting 12937 * like a single runqueue and hence we need to consider runnable 12938 * tasks on this CPU and the forced idle CPU. Ideally, we should 12939 * go through the forced idle rq, but that would be a perf hit. 12940 * We can assume that the forced idle CPU has at least 12941 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12942 * if we need to give up the CPU. 12943 */ 12944 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12945 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12946 resched_curr(rq); 12947 } 12948 12949 /* 12950 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12951 */ 12952 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12953 bool forceidle) 12954 { 12955 for_each_sched_entity(se) { 12956 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12957 12958 if (forceidle) { 12959 if (cfs_rq->forceidle_seq == fi_seq) 12960 break; 12961 cfs_rq->forceidle_seq = fi_seq; 12962 } 12963 12964 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12965 } 12966 } 12967 12968 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12969 { 12970 struct sched_entity *se = &p->se; 12971 12972 if (p->sched_class != &fair_sched_class) 12973 return; 12974 12975 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12976 } 12977 12978 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12979 bool in_fi) 12980 { 12981 struct rq *rq = task_rq(a); 12982 const struct sched_entity *sea = &a->se; 12983 const struct sched_entity *seb = &b->se; 12984 struct cfs_rq *cfs_rqa; 12985 struct cfs_rq *cfs_rqb; 12986 s64 delta; 12987 12988 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12989 12990 #ifdef CONFIG_FAIR_GROUP_SCHED 12991 /* 12992 * Find an se in the hierarchy for tasks a and b, such that the se's 12993 * are immediate siblings. 12994 */ 12995 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12996 int sea_depth = sea->depth; 12997 int seb_depth = seb->depth; 12998 12999 if (sea_depth >= seb_depth) 13000 sea = parent_entity(sea); 13001 if (sea_depth <= seb_depth) 13002 seb = parent_entity(seb); 13003 } 13004 13005 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13006 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13007 13008 cfs_rqa = sea->cfs_rq; 13009 cfs_rqb = seb->cfs_rq; 13010 #else 13011 cfs_rqa = &task_rq(a)->cfs; 13012 cfs_rqb = &task_rq(b)->cfs; 13013 #endif 13014 13015 /* 13016 * Find delta after normalizing se's vruntime with its cfs_rq's 13017 * min_vruntime_fi, which would have been updated in prior calls 13018 * to se_fi_update(). 13019 */ 13020 delta = (s64)(sea->vruntime - seb->vruntime) + 13021 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13022 13023 return delta > 0; 13024 } 13025 13026 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13027 { 13028 struct cfs_rq *cfs_rq; 13029 13030 #ifdef CONFIG_FAIR_GROUP_SCHED 13031 cfs_rq = task_group(p)->cfs_rq[cpu]; 13032 #else 13033 cfs_rq = &cpu_rq(cpu)->cfs; 13034 #endif 13035 return throttled_hierarchy(cfs_rq); 13036 } 13037 #else 13038 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13039 #endif 13040 13041 /* 13042 * scheduler tick hitting a task of our scheduling class. 13043 * 13044 * NOTE: This function can be called remotely by the tick offload that 13045 * goes along full dynticks. Therefore no local assumption can be made 13046 * and everything must be accessed through the @rq and @curr passed in 13047 * parameters. 13048 */ 13049 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13050 { 13051 struct cfs_rq *cfs_rq; 13052 struct sched_entity *se = &curr->se; 13053 13054 for_each_sched_entity(se) { 13055 cfs_rq = cfs_rq_of(se); 13056 entity_tick(cfs_rq, se, queued); 13057 } 13058 13059 if (static_branch_unlikely(&sched_numa_balancing)) 13060 task_tick_numa(rq, curr); 13061 13062 update_misfit_status(curr, rq); 13063 check_update_overutilized_status(task_rq(curr)); 13064 13065 task_tick_core(rq, curr); 13066 } 13067 13068 /* 13069 * called on fork with the child task as argument from the parent's context 13070 * - child not yet on the tasklist 13071 * - preemption disabled 13072 */ 13073 static void task_fork_fair(struct task_struct *p) 13074 { 13075 set_task_max_allowed_capacity(p); 13076 } 13077 13078 /* 13079 * Priority of the task has changed. Check to see if we preempt 13080 * the current task. 13081 */ 13082 static void 13083 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13084 { 13085 if (!task_on_rq_queued(p)) 13086 return; 13087 13088 if (rq->cfs.nr_running == 1) 13089 return; 13090 13091 /* 13092 * Reschedule if we are currently running on this runqueue and 13093 * our priority decreased, or if we are not currently running on 13094 * this runqueue and our priority is higher than the current's 13095 */ 13096 if (task_current(rq, p)) { 13097 if (p->prio > oldprio) 13098 resched_curr(rq); 13099 } else 13100 wakeup_preempt(rq, p, 0); 13101 } 13102 13103 #ifdef CONFIG_FAIR_GROUP_SCHED 13104 /* 13105 * Propagate the changes of the sched_entity across the tg tree to make it 13106 * visible to the root 13107 */ 13108 static void propagate_entity_cfs_rq(struct sched_entity *se) 13109 { 13110 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13111 13112 if (cfs_rq_throttled(cfs_rq)) 13113 return; 13114 13115 if (!throttled_hierarchy(cfs_rq)) 13116 list_add_leaf_cfs_rq(cfs_rq); 13117 13118 /* Start to propagate at parent */ 13119 se = se->parent; 13120 13121 for_each_sched_entity(se) { 13122 cfs_rq = cfs_rq_of(se); 13123 13124 update_load_avg(cfs_rq, se, UPDATE_TG); 13125 13126 if (cfs_rq_throttled(cfs_rq)) 13127 break; 13128 13129 if (!throttled_hierarchy(cfs_rq)) 13130 list_add_leaf_cfs_rq(cfs_rq); 13131 } 13132 } 13133 #else 13134 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13135 #endif 13136 13137 static void detach_entity_cfs_rq(struct sched_entity *se) 13138 { 13139 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13140 13141 #ifdef CONFIG_SMP 13142 /* 13143 * In case the task sched_avg hasn't been attached: 13144 * - A forked task which hasn't been woken up by wake_up_new_task(). 13145 * - A task which has been woken up by try_to_wake_up() but is 13146 * waiting for actually being woken up by sched_ttwu_pending(). 13147 */ 13148 if (!se->avg.last_update_time) 13149 return; 13150 #endif 13151 13152 /* Catch up with the cfs_rq and remove our load when we leave */ 13153 update_load_avg(cfs_rq, se, 0); 13154 detach_entity_load_avg(cfs_rq, se); 13155 update_tg_load_avg(cfs_rq); 13156 propagate_entity_cfs_rq(se); 13157 } 13158 13159 static void attach_entity_cfs_rq(struct sched_entity *se) 13160 { 13161 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13162 13163 /* Synchronize entity with its cfs_rq */ 13164 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13165 attach_entity_load_avg(cfs_rq, se); 13166 update_tg_load_avg(cfs_rq); 13167 propagate_entity_cfs_rq(se); 13168 } 13169 13170 static void detach_task_cfs_rq(struct task_struct *p) 13171 { 13172 struct sched_entity *se = &p->se; 13173 13174 detach_entity_cfs_rq(se); 13175 } 13176 13177 static void attach_task_cfs_rq(struct task_struct *p) 13178 { 13179 struct sched_entity *se = &p->se; 13180 13181 attach_entity_cfs_rq(se); 13182 } 13183 13184 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13185 { 13186 detach_task_cfs_rq(p); 13187 } 13188 13189 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13190 { 13191 SCHED_WARN_ON(p->se.sched_delayed); 13192 13193 attach_task_cfs_rq(p); 13194 13195 set_task_max_allowed_capacity(p); 13196 13197 if (task_on_rq_queued(p)) { 13198 /* 13199 * We were most likely switched from sched_rt, so 13200 * kick off the schedule if running, otherwise just see 13201 * if we can still preempt the current task. 13202 */ 13203 if (task_current(rq, p)) 13204 resched_curr(rq); 13205 else 13206 wakeup_preempt(rq, p, 0); 13207 } 13208 } 13209 13210 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13211 { 13212 struct sched_entity *se = &p->se; 13213 13214 #ifdef CONFIG_SMP 13215 if (task_on_rq_queued(p)) { 13216 /* 13217 * Move the next running task to the front of the list, so our 13218 * cfs_tasks list becomes MRU one. 13219 */ 13220 list_move(&se->group_node, &rq->cfs_tasks); 13221 } 13222 #endif 13223 if (!first) 13224 return; 13225 13226 SCHED_WARN_ON(se->sched_delayed); 13227 13228 if (hrtick_enabled_fair(rq)) 13229 hrtick_start_fair(rq, p); 13230 13231 update_misfit_status(p, rq); 13232 sched_fair_update_stop_tick(rq, p); 13233 } 13234 13235 /* 13236 * Account for a task changing its policy or group. 13237 * 13238 * This routine is mostly called to set cfs_rq->curr field when a task 13239 * migrates between groups/classes. 13240 */ 13241 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13242 { 13243 struct sched_entity *se = &p->se; 13244 13245 for_each_sched_entity(se) { 13246 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13247 13248 set_next_entity(cfs_rq, se); 13249 /* ensure bandwidth has been allocated on our new cfs_rq */ 13250 account_cfs_rq_runtime(cfs_rq, 0); 13251 } 13252 13253 __set_next_task_fair(rq, p, first); 13254 } 13255 13256 void init_cfs_rq(struct cfs_rq *cfs_rq) 13257 { 13258 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13259 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13260 #ifdef CONFIG_SMP 13261 raw_spin_lock_init(&cfs_rq->removed.lock); 13262 #endif 13263 } 13264 13265 #ifdef CONFIG_FAIR_GROUP_SCHED 13266 static void task_change_group_fair(struct task_struct *p) 13267 { 13268 /* 13269 * We couldn't detach or attach a forked task which 13270 * hasn't been woken up by wake_up_new_task(). 13271 */ 13272 if (READ_ONCE(p->__state) == TASK_NEW) 13273 return; 13274 13275 detach_task_cfs_rq(p); 13276 13277 #ifdef CONFIG_SMP 13278 /* Tell se's cfs_rq has been changed -- migrated */ 13279 p->se.avg.last_update_time = 0; 13280 #endif 13281 set_task_rq(p, task_cpu(p)); 13282 attach_task_cfs_rq(p); 13283 } 13284 13285 void free_fair_sched_group(struct task_group *tg) 13286 { 13287 int i; 13288 13289 for_each_possible_cpu(i) { 13290 if (tg->cfs_rq) 13291 kfree(tg->cfs_rq[i]); 13292 if (tg->se) 13293 kfree(tg->se[i]); 13294 } 13295 13296 kfree(tg->cfs_rq); 13297 kfree(tg->se); 13298 } 13299 13300 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13301 { 13302 struct sched_entity *se; 13303 struct cfs_rq *cfs_rq; 13304 int i; 13305 13306 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13307 if (!tg->cfs_rq) 13308 goto err; 13309 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13310 if (!tg->se) 13311 goto err; 13312 13313 tg->shares = NICE_0_LOAD; 13314 13315 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13316 13317 for_each_possible_cpu(i) { 13318 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13319 GFP_KERNEL, cpu_to_node(i)); 13320 if (!cfs_rq) 13321 goto err; 13322 13323 se = kzalloc_node(sizeof(struct sched_entity_stats), 13324 GFP_KERNEL, cpu_to_node(i)); 13325 if (!se) 13326 goto err_free_rq; 13327 13328 init_cfs_rq(cfs_rq); 13329 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13330 init_entity_runnable_average(se); 13331 } 13332 13333 return 1; 13334 13335 err_free_rq: 13336 kfree(cfs_rq); 13337 err: 13338 return 0; 13339 } 13340 13341 void online_fair_sched_group(struct task_group *tg) 13342 { 13343 struct sched_entity *se; 13344 struct rq_flags rf; 13345 struct rq *rq; 13346 int i; 13347 13348 for_each_possible_cpu(i) { 13349 rq = cpu_rq(i); 13350 se = tg->se[i]; 13351 rq_lock_irq(rq, &rf); 13352 update_rq_clock(rq); 13353 attach_entity_cfs_rq(se); 13354 sync_throttle(tg, i); 13355 rq_unlock_irq(rq, &rf); 13356 } 13357 } 13358 13359 void unregister_fair_sched_group(struct task_group *tg) 13360 { 13361 int cpu; 13362 13363 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13364 13365 for_each_possible_cpu(cpu) { 13366 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13367 struct sched_entity *se = tg->se[cpu]; 13368 struct rq *rq = cpu_rq(cpu); 13369 13370 if (se) { 13371 if (se->sched_delayed) { 13372 guard(rq_lock_irqsave)(rq); 13373 if (se->sched_delayed) { 13374 update_rq_clock(rq); 13375 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13376 } 13377 list_del_leaf_cfs_rq(cfs_rq); 13378 } 13379 remove_entity_load_avg(se); 13380 } 13381 13382 /* 13383 * Only empty task groups can be destroyed; so we can speculatively 13384 * check on_list without danger of it being re-added. 13385 */ 13386 if (cfs_rq->on_list) { 13387 guard(rq_lock_irqsave)(rq); 13388 list_del_leaf_cfs_rq(cfs_rq); 13389 } 13390 } 13391 } 13392 13393 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13394 struct sched_entity *se, int cpu, 13395 struct sched_entity *parent) 13396 { 13397 struct rq *rq = cpu_rq(cpu); 13398 13399 cfs_rq->tg = tg; 13400 cfs_rq->rq = rq; 13401 init_cfs_rq_runtime(cfs_rq); 13402 13403 tg->cfs_rq[cpu] = cfs_rq; 13404 tg->se[cpu] = se; 13405 13406 /* se could be NULL for root_task_group */ 13407 if (!se) 13408 return; 13409 13410 if (!parent) { 13411 se->cfs_rq = &rq->cfs; 13412 se->depth = 0; 13413 } else { 13414 se->cfs_rq = parent->my_q; 13415 se->depth = parent->depth + 1; 13416 } 13417 13418 se->my_q = cfs_rq; 13419 /* guarantee group entities always have weight */ 13420 update_load_set(&se->load, NICE_0_LOAD); 13421 se->parent = parent; 13422 } 13423 13424 static DEFINE_MUTEX(shares_mutex); 13425 13426 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13427 { 13428 int i; 13429 13430 lockdep_assert_held(&shares_mutex); 13431 13432 /* 13433 * We can't change the weight of the root cgroup. 13434 */ 13435 if (!tg->se[0]) 13436 return -EINVAL; 13437 13438 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13439 13440 if (tg->shares == shares) 13441 return 0; 13442 13443 tg->shares = shares; 13444 for_each_possible_cpu(i) { 13445 struct rq *rq = cpu_rq(i); 13446 struct sched_entity *se = tg->se[i]; 13447 struct rq_flags rf; 13448 13449 /* Propagate contribution to hierarchy */ 13450 rq_lock_irqsave(rq, &rf); 13451 update_rq_clock(rq); 13452 for_each_sched_entity(se) { 13453 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13454 update_cfs_group(se); 13455 } 13456 rq_unlock_irqrestore(rq, &rf); 13457 } 13458 13459 return 0; 13460 } 13461 13462 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13463 { 13464 int ret; 13465 13466 mutex_lock(&shares_mutex); 13467 if (tg_is_idle(tg)) 13468 ret = -EINVAL; 13469 else 13470 ret = __sched_group_set_shares(tg, shares); 13471 mutex_unlock(&shares_mutex); 13472 13473 return ret; 13474 } 13475 13476 int sched_group_set_idle(struct task_group *tg, long idle) 13477 { 13478 int i; 13479 13480 if (tg == &root_task_group) 13481 return -EINVAL; 13482 13483 if (idle < 0 || idle > 1) 13484 return -EINVAL; 13485 13486 mutex_lock(&shares_mutex); 13487 13488 if (tg->idle == idle) { 13489 mutex_unlock(&shares_mutex); 13490 return 0; 13491 } 13492 13493 tg->idle = idle; 13494 13495 for_each_possible_cpu(i) { 13496 struct rq *rq = cpu_rq(i); 13497 struct sched_entity *se = tg->se[i]; 13498 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13499 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13500 long idle_task_delta; 13501 struct rq_flags rf; 13502 13503 rq_lock_irqsave(rq, &rf); 13504 13505 grp_cfs_rq->idle = idle; 13506 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13507 goto next_cpu; 13508 13509 if (se->on_rq) { 13510 parent_cfs_rq = cfs_rq_of(se); 13511 if (cfs_rq_is_idle(grp_cfs_rq)) 13512 parent_cfs_rq->idle_nr_running++; 13513 else 13514 parent_cfs_rq->idle_nr_running--; 13515 } 13516 13517 idle_task_delta = grp_cfs_rq->h_nr_running - 13518 grp_cfs_rq->idle_h_nr_running; 13519 if (!cfs_rq_is_idle(grp_cfs_rq)) 13520 idle_task_delta *= -1; 13521 13522 for_each_sched_entity(se) { 13523 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13524 13525 if (!se->on_rq) 13526 break; 13527 13528 cfs_rq->idle_h_nr_running += idle_task_delta; 13529 13530 /* Already accounted at parent level and above. */ 13531 if (cfs_rq_is_idle(cfs_rq)) 13532 break; 13533 } 13534 13535 next_cpu: 13536 rq_unlock_irqrestore(rq, &rf); 13537 } 13538 13539 /* Idle groups have minimum weight. */ 13540 if (tg_is_idle(tg)) 13541 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13542 else 13543 __sched_group_set_shares(tg, NICE_0_LOAD); 13544 13545 mutex_unlock(&shares_mutex); 13546 return 0; 13547 } 13548 13549 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13550 13551 13552 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13553 { 13554 struct sched_entity *se = &task->se; 13555 unsigned int rr_interval = 0; 13556 13557 /* 13558 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13559 * idle runqueue: 13560 */ 13561 if (rq->cfs.load.weight) 13562 rr_interval = NS_TO_JIFFIES(se->slice); 13563 13564 return rr_interval; 13565 } 13566 13567 /* 13568 * All the scheduling class methods: 13569 */ 13570 DEFINE_SCHED_CLASS(fair) = { 13571 13572 .enqueue_task = enqueue_task_fair, 13573 .dequeue_task = dequeue_task_fair, 13574 .yield_task = yield_task_fair, 13575 .yield_to_task = yield_to_task_fair, 13576 13577 .wakeup_preempt = check_preempt_wakeup_fair, 13578 13579 .pick_task = pick_task_fair, 13580 .pick_next_task = __pick_next_task_fair, 13581 .put_prev_task = put_prev_task_fair, 13582 .set_next_task = set_next_task_fair, 13583 13584 #ifdef CONFIG_SMP 13585 .balance = balance_fair, 13586 .select_task_rq = select_task_rq_fair, 13587 .migrate_task_rq = migrate_task_rq_fair, 13588 13589 .rq_online = rq_online_fair, 13590 .rq_offline = rq_offline_fair, 13591 13592 .task_dead = task_dead_fair, 13593 .set_cpus_allowed = set_cpus_allowed_fair, 13594 #endif 13595 13596 .task_tick = task_tick_fair, 13597 .task_fork = task_fork_fair, 13598 13599 .reweight_task = reweight_task_fair, 13600 .prio_changed = prio_changed_fair, 13601 .switched_from = switched_from_fair, 13602 .switched_to = switched_to_fair, 13603 13604 .get_rr_interval = get_rr_interval_fair, 13605 13606 .update_curr = update_curr_fair, 13607 13608 #ifdef CONFIG_FAIR_GROUP_SCHED 13609 .task_change_group = task_change_group_fair, 13610 #endif 13611 13612 #ifdef CONFIG_SCHED_CORE 13613 .task_is_throttled = task_is_throttled_fair, 13614 #endif 13615 13616 #ifdef CONFIG_UCLAMP_TASK 13617 .uclamp_enabled = 1, 13618 #endif 13619 }; 13620 13621 #ifdef CONFIG_SCHED_DEBUG 13622 void print_cfs_stats(struct seq_file *m, int cpu) 13623 { 13624 struct cfs_rq *cfs_rq, *pos; 13625 13626 rcu_read_lock(); 13627 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13628 print_cfs_rq(m, cpu, cfs_rq); 13629 rcu_read_unlock(); 13630 } 13631 13632 #ifdef CONFIG_NUMA_BALANCING 13633 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13634 { 13635 int node; 13636 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13637 struct numa_group *ng; 13638 13639 rcu_read_lock(); 13640 ng = rcu_dereference(p->numa_group); 13641 for_each_online_node(node) { 13642 if (p->numa_faults) { 13643 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13644 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13645 } 13646 if (ng) { 13647 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13648 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13649 } 13650 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13651 } 13652 rcu_read_unlock(); 13653 } 13654 #endif /* CONFIG_NUMA_BALANCING */ 13655 #endif /* CONFIG_SCHED_DEBUG */ 13656 13657 __init void init_sched_fair_class(void) 13658 { 13659 #ifdef CONFIG_SMP 13660 int i; 13661 13662 for_each_possible_cpu(i) { 13663 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13664 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13665 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13666 GFP_KERNEL, cpu_to_node(i)); 13667 13668 #ifdef CONFIG_CFS_BANDWIDTH 13669 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13670 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13671 #endif 13672 } 13673 13674 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13675 13676 #ifdef CONFIG_NO_HZ_COMMON 13677 nohz.next_balance = jiffies; 13678 nohz.next_blocked = jiffies; 13679 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13680 #endif 13681 #endif /* SMP */ 13682 13683 } 13684